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Smart Sensors for Structural Health Monitoring and
Nondestructive Evaluation

Zenghua Liu

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; liuzenghua@bjut.edu.cn

1. Introduction

During manufacturing, processing, and usage, various types of damage may be caused
in structures. For example, corrosion and fatigue cracks are common defects in metal plates,
while the main defects in composite plates are delamination, debonding, etc. Thus, it is
important to develop defect detection and monitoring techniques to ensure the integrity of
structures [1–3]. Structural health monitoring (SHM) and nondestructive evaluation (NDE)
technologies can be used to identify defects or damages and evaluate the health status
of components and systems to avoid structural failure or catastrophes. NDE is usually
a technique for detecting offline defects without destroying structures using removable
sensors. In contrast, SHM is a potential alternative whereby the global and local security
state of a structure is permanently monitored through embedded or attached sensors or
sensor arrays. By monitoring the condition, or change in conditions, of a structure, the
detection of damage at any location within a structure becomes possible [4–6]. SHM and
NDE both aim to assess the integrity of a structure nondestructively and these fields often
overlap, whether that be to a greater or lesser extent [7].

With complex working conditions of structures, including harsh and high-temperature
environments, increasing structure scale, and increasing detection requirements, SHM and
NDE are progressively becoming more challenging to implement [8–11]. A lot of techniques
with different working mechanisms, such as the piezoelectric effect [12], magnetostriction
effect [13], and magnetic effect [14], can be used for SHM and NDE. In order to detect
how safe a structure is, it is crucial to use appropriate sensors and sensor arrays to obtain
effective information to try to evaluate a safety status using various signal processing
methods. A major development in the fields of SHM and NDE over the past few decades
has been the development and use of smart sensors.

In short, the development and application of sensors are key research topics in the
areas of SHM and NDE. This Special Issue “Smart Sensors for Structural Health Monitoring
and Nondestructive Evaluation” has collected the most recent original contributions relat-
ing to all facets of smart sensors utilized in structural health monitoring and nondestructive
evaluation. The call for papers for this Special Issue included topics such as sensors and sen-
sor arrays, sensor modeling and simulation, SHM systems and technology, nondestructive
testing and evaluation, structural diagnosis and performance evaluation, signal processing,
artificial intelligence applications in SHM and NDE, system and instrument development,
and field applications of SHM and NDE.

2. Overview of Published Papers

In this context, this Special Issue includes 33 papers focused on the latest advancements
in the field of smart sensors for structural health monitoring and nondestructive evaluation.
Each of the 33 original contributions (2 review papers and 31 research papers) accepted
for publication have undergone a rigorous review process by a minimum of two expert
reviewers across at least two rounds of revision. The papers published in the current Special
Issue are briefly summarized as follows:

Sensors 2024, 24, 603. https://doi.org/10.3390/s24020603 https://www.mdpi.com/journal/sensors
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In contribution 1, the authors present an overview of recent progress in the field of
piezoelectric materials and sensors for structural health monitoring. The article commences
with a brief introduction to the fundamental physical science of the piezoelectric effect.
Emphases are placed on piezoelectric materials engineered using various strategies and
applications of piezoelectric sensors for structural health monitoring. Finally, challenges,
along with opportunities for future research and the development of high-performance
piezoelectric materials and sensors for structural health monitoring, are highlighted.

In contribution 2, the authors present a systematic literature review on the state-of-the-
art electrochemical methods and physical methods used so far for corrosion monitoring
that are compatible with low-cost sensors and data acquisition devices for metallic and
concrete structures. In addition, special attention is paid to the use of these devices for
corrosion monitoring and detection for in situ applications in different industries. This analysis
demonstrates the possible applications of low-cost sensors in the corrosion monitoring sector.
In addition, this study provides scholars with preferred techniques and the most common
microcontrollers to overcome corrosion monitoring difficulties in the construction industry.

In contribution 3, the authors propose a two-step physics- and machine learning
(ML)-based electromechanical impedance (EMI) measurement data evaluation approach
for sandwich face-layer debonding detection and size estimation in SHM applications.
This approach was shown to be robust against unknown artificial disturbances and it
outperformed a previous method for debonding size estimation.

In contribution 4, the authors propose a novel baseline-free method for damage
localization using Lamb waves based on a hyperbolic algorithm. This method employs
a special array with a relatively small number of transducers and only one branch of the
hyperbola. The novel symmetrical array was arranged on plate structures to eliminate the
direct waves. The imaging results showed that both the damages outside and inside the
diamond-shaped arrays could be localized, and the positioning error reached its maximum
for the diamond-shaped array using the minimum size.

In contribution 5, the authors discuss the need for surface monitoring of municipal
solid waste (MSW) landfills. A properly 3D-mapped landfill mass was the basis for
ensuring the geotechnical safety of the restored landfill. Based on archival data and current
measurements of Radiowo landfill (Poland), this study compared the advantages and
limitations of the following measurement techniques: linear and angular measurements,
satellite measurements, TLS, and UAV scanning and photogrammetry, considering specific
conditions regarding the location and vegetation of the landfill. Solutions for long-term
monitoring were proposed, considering the cost and time resolution necessary for creating
a differential model of landfill geometry changes.

In contribution 6, the authors present a novel adaptive filtering approach to enhance
the signal-to-noise ratio (SNR) of a measured ultrasonic signal from the inspection of a
stainless steel component, enabling the detection of hidden flaws under strong noise. The
performance of the proposed method for SNR enhancement was evaluated by both the
simulated and experimental signal and its effectiveness was successfully demonstrated.

In contribution 7, the authors propose a method to simultaneously estimate the me-
chanical parameters of vehicles, bridges, and road unevenness with only a few constraints.
Signals from acceleration sensors attached to vehicles traveling on bridges were processed.
Methods were proposed to estimate the modal parameters of bridges and road unevenness
from vehicle vibrations on a case-by-case basis. The road surface irregularities estimated
by the proposed method were compared with the measured values, which were somewhat
smaller than the measured values.

In contribution 8, the authors propose a deep neural network to detect failures and
investigate sensor sensitivity to damage classification for an orbiting satellite hosting a
distributed network of accelerometers on a large mesh reflector antenna. The proposed deep
learning framework and sensor configuration were shown to accurately detect failures
in the most critical area or the structure while opening new investigation possibilities
regarding geometrical properties and sensor distribution.
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In contribution 9, the authors investigate the effect of the cycle period of a stimulation
wave on amplitude-phase results by performing various numeric simulations and laboratory
tests. The recommended cycle period from the prediction surfaces was experimentally vali-
dated using two samples. After various laboratory experiments, the temperature, amplitude,
and phase results validated the previous equations and prediction surfaces relating to the
poly(methyl methacrylate) (PMMA) and carbon-fiber-reinforced polymer (CFRP) sample.

In contribution 10, the authors develop a wireless impedance monitoring system to
have cheap, mobile, and handy practical features compared to wired commercial impedance
analyzers. A Raspberry Pi platform sensor node was designed to acquire impedance
signals using a PZT interface technique. The software scheme was designed to operate the
Raspberry Pi platform and impedance sensor node. The calibration procedure was designed
for the impedance sensor node. The feasibility of the proposed Raspberry Pi platform
SSeL-Pi system was experimentally evaluated for PZT interfaces that were subjected to
various compressive loadings.

In contribution 11, the authors design a sandwich piezoelectric ceramic transducer
and analyze the vibration of each part of the transducer, making use of elastic mechanics
and piezoelectric theory. The vibration characteristics of the transducer under different
parameters such as voltage and frequency were analyzed, and the accuracy of the vibration
model was verified. The results showed that the equivalent simplified model established in
this study could effectively be used to design the inherent frequency of the transducer, and
the operation of the first-order inherent frequency met the one-dimensional assumptions of
this study.

In contribution 12, the authors present research on the performance of composite and
monolithic sensors for distributed fiber optic sensing (DFOS). The performance of each DFOS
nondestructive tool was investigated in the close vicinity of the cracks—both the new ones,
opening within the tension zone, and the existing ones, closing within the compression zone.
Qualitative (detection) and quantitative (width estimation) crack analyses were performed
and discussed. Finally, examples of actual applications within concrete structures, including
bridges, were presented, with some examples of in situ results.

In contribution 13, the authors develop a laser ultrasonic system to indirectly evaluate
the preload force of different-frequency piezoelectric bolts and achieve the goal of non-
contact excitation and synchronous reception of laser-induced ultrasonic signals using
a combination of a smart piezoelectric sensor and a magnetically mounted transducer
connector. The results indicate that the proposed system based on a surface-mounted
piezoelectric sensor is a promising system for evaluating axial preload change in a connector
and fastener and is an additional potential laser ultrasonic system for nondestructive tests.

In contribution 14, the authors propose a new configuration of angled shear vertical
(SV) wave EMAT with horizontal magnetization to reduce the influence of a head wave. The
results from simulations and experiments showed that the proposed EMAT had a larger
signal amplitude and significantly reduced interference in large-incidence angle scenarios.
Moreover, it was found that an incidence angle of an SV wave of up to 60 degrees could be
achieved, which will help to improve the performance and capability of nondestructive testing.
In contribution 15, the authors present an experimental field study using an unattended
corrosion sensor developed on the basis of ultrasound technology to assess the thickness
loss caused by general atmospheric corrosion on land close to the sea (coastal regions). The
system described here used FPGA, a low-power microcontroller, analog front-end devices
in the sensor node, and a Beaglebone black wireless board to post data to a server. Over the
course of 5 months, the proposed experiment continuously monitored the corrosion rate in
an equivalent corrosion process, showing an average thickness loss rate of 0.134 mm/year.

In contribution 16, the authors propose an improved RAPID (reconstruction algorithm
for probabilistic inspection of defect) imaging method based on machine learning (ML) to
precisely visualize the location and features of defects in a composite plate. The simulation
results showed that the proposed method can intuitively characterize the location and related
feature information of a defect and effectively improve the accuracy of defect imaging.

3
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In contribution 17, the authors investigate directional magnetic incremental perme-
ability in an iron–cobalt magnetic sheet. The study revealed that an angle of π/2 between
DC (Hsurf DC) and AC (Hsurf AC) magnetic excitations with a flux density Ba at Hsurf
DC = 10 kA·m−1 constituted the ideal experimental situation and the highest correlated
parameter in homogeneous imposed tensile stress. Magnetic incremental permeability was
linked to the magnetic domain wall bulging magnetization mechanism; this study thus
provided insights for understanding such a mechanism.

In contribution 18, the authors present a measurement system involving the applica-
tion of 3D cameras for a wind tunnel test. A specific application of displacement measure-
ment using a 3D shape was shown and an analysis of acquired data allowed the authors to
obtain the displacement of each side of each structure, for different sections. This proposed
system can be seen as a complete system for measuring displacement, with higher accuracy
than relying on the uncertainty of 3D sensors, and a system for measuring the 3D geometry
of structures in harsh environments.

In contribution 19, the authors propose an efficient semi-analytical method capable of
modeling the propagation of flexural waves on cracked plate structures with any form of
excitation, based on the same group of vibration characteristics and validated by a non-
contact scanning Laser Doppler Vibrometer (LDV) system. The proposed modeling method
was based on the superposition of the vibrational normal modes of the detected structure,
which could be applied to analyze long-time and full-field transient wave propagations.
The experimental results indicated that the proposed semi-analytical method can model
flexural waves, and in doing so, crack information can be revealed.

In contribution 20, the authors present the effect of different curing methods on gas
permeability with the help of laboratory and on-site tests, showing that inadequate curing
leads to increased permeability in the near-surface area of concrete. The measurement
results of concrete samples and components with the same composition but varying curing
treatments were compared and evaluated. Influences on the quality of concrete, such as
concrete composition and environmental factors, were observed.

In contribution 21, the authors deduce the theoretical process of calculating the prop-
agation characteristics of Lamb waves in functionally graded material (FGM) sandwich
plates by combining the FGM volume fraction curve and Legendre polynomial series ex-
pansion method. For comparison purposes, the Lamb wave dispersion curve of the sliced
layer model for the FGM sandwich plate was obtained using the global matrix method.
Meanwhile, the FGM sandwich plate was subjected to finite element simulation, which was
also based on the layered-plate model. The acoustic characteristic detection experiment
was performed via simulation using a defocusing measurement. Thus, the Lamb wave
dispersion curves were obtained through V(f, z) analysis.

In contribution 22, the authors thoroughly investigate pulse modulation eddy current
(PMEC) for the imaging and assessment of ILC through theoretical simulations and experi-
ments. A semi-analytical model of PMEC evaluation of ILC occurring at the interlayer of
two conductor layers was established based on extended truncated region eigenfunction
expansion (ETREE) along with an efficient algorithm for the numerical computation of
eigenvalues for reflection coefficients of the stratified conductor under inspection. The
theoretical and experimental results revealed the feasibility of PMEC for the imaging and
evaluation of ILC in stratified conductors.

In contribution 23, the authors investigate the validation of a numerical method from
the literature which was used to simulate an H-N source on a complex plate. The location
results of the numerical delta-t map technique were compared with those of traditional
TOA techniques and an experimental delta-t map technique. The viability of using the FE
method was demonstrated to decrease the time and labor required for manually collecting and
processing training data whilst maintaining a reasonable degree of source location accuracy
with an average error of 3.88 mm. With such high source location accuracy, the specific area of
concern requiring inspection using other NDE techniques can be greatly reduced.
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In contribution 24, the authors propose an adaptive signal truncation method based
on signal difference analysis to improve the defect location accuracy of the probabilistic
elliptic imaging algorithm. The experimental results showed that the probabilistic ellipse
imaging algorithm, based on the new adaptive signal truncation method, could effectively
locate a single defect on a pressure vessel.

In contribution 25, the authors derive an analytical expression for the response of
piezoelectric transducers under the action of stress waves to obtain an overall mathematical
model of an acoustic emission signal from generation to reception. By comparing the
finite element simulations, experimental validation, and analytical modeling, it was found
that they were almost consistent in the time and frequency domains, and the presence of
the Lamb wave S0 mode was clearly observed. All of this validated the accuracy of the
analytical modeling predictions.

In contribution 26, the authors propose a novel time reversal (TR)-based localization
method for pipeline leakage. In the proposed method, so-called TR self-adaptive cancel-
lation was developed to improve leak localization resolution. The experimental results
showed that the leak positions could be accurately revealed by using the proposed ap-
proach. Furthermore, the resolution of the proposed approach was shown to be ten times
that of the conventional TR localization method.

In contribution 27, the authors measure the acoustic parameters of guided wave
propagation in different cement tailing ratios and different curing times of cemented paste
backfills (CPBs). Combined with the uniaxial compression strength of CPB, the relationships
between CPB strength and the guided wave parameters were established. Based on the
relationship curves between CPB strength and guided wave velocity and attenuation, the
guided wave technique was proven to be feasible in monitoring the strength development
of CPB.

In contribution 28, the authors propose a method using only two piezoelectric transducers
and based on orthogonal matching pursuit (OMP) decomposition to detect damage with the
fewest sensors and high resolution. The experimental results showed that the OMP-based
algorithm was beneficial for resolution improvement and transducer usage reduction.

In contribution 29, the authors propose a new method for identifying many different
types of rail defects. Segment principal component analysis (S-PCA) was utilized to extract
characteristics from signals collected by sensors located at different positions. The Support
Vector Machine (SVM) model was used to identify different defects depending on the
features extracted. The results showed that the defect classification accuracy rates were
96.29% and 96.15% for combining multiple signals, such as the method of single-point
excitation and multi-point reception or the method of multi-point excitation and reception
at a single point.

In contribution 30, the authors propose a new concept of nonlinearity parameter group-
ing with multi-frequency excitation as an early failure parameter. An analytical solution of
the one-dimensional wave equation was derived with four fundamental frequencies and a
total of 64 individual and 30 group nonlinearity parameters. Experimental validation of
the approach was conducted on metal plates with different types of cracks and on turbine
blades where cracks originated under service conditions. The results showed that the use
of multi-frequency excitation offered advantages in detecting cracks.

In contribution 31, the authors present a metamaterial lens design and its use in far-
field microwave imaging for subwavelength defect detection in nondestructive evaluation
(NDE). Theoretical formulation and numerical studies of the metamaterial lens design were
presented, followed by experimental demonstration and characterization of metamaterial
behavior. A microwave homodyne receiver-based system was used in conjunction with
the metamaterial lens to develop a far-field microwave NDE sensor system. The system
was shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive
positions of the defect with a separation of 0.23λ were resolvable using the proposed system.

In contribution 32, the authors present a coherent optical fiber sensor with adequate
sensitivity for detecting acoustic emission (AE) during the propagation of a crack in a
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ferrous material. The proposed fiber optic sensor was successfully compared, in terms of
the SNR (signal-to-noise ratio) and detectable AE energy levels, to commercially available
AE piezo-transducers and was proven to be an effective and advantageous alternative for
sensing and monitoring fatigue damage in structural applications.

In contribution 33, the authors propose a new triangle eddy current sensor array to
increase the level of quantifying hole-edge crack parameters, especially the crack angle.
This new sensor array consists of triangular coils instead of planar rectangular coils. The
configuration of the novel sensor array, including the excitation current directions and the
excitation winding shape, was optimized through simulation. The ability of the proposed
sensing film to identify the crack parameters was verified using finite element simulations
and experiments. The results showed that triangular coils with the same current directions
in circumferentially adjacent coils and opposite current directions in axially adjacent coils
achieved better performance in terms of sensor linearity and resolution compared to
rectangular coils.

3. Conclusions

In this Special Issue, we selected 33 papers that address different topics related to
smart sensors for structural health monitoring and nondestructive evaluation in order
to delineate the state of the art and the future of this field. We hope that the selected
papers may provide useful insights into the research areas of smart sensors for structural
health monitoring and nondestructive evaluation, inspiring future work in these rapidly
developing research fields.
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Abstract: Globally, corrosion is the costliest cause of the deterioration of metallic and concrete
structures, leading to significant financial losses and unexpected loss of life. Therefore, corrosion
monitoring is vital to the assessment of structures’ residual performance and for the identification
of pathologies in early stages for the predictive maintenance of facilities. However, the high price
tag on available corrosion monitoring systems leads to their exclusive use for structural health
monitoring applications, especially for atmospheric corrosion detection in civil structures. In this
paper a systematic literature review is provided on the state-of-the-art electrochemical methods
and physical methods used so far for corrosion monitoring compatible with low-cost sensors and
data acquisition devices for metallic and concrete structures. In addition, special attention is paid to
the use of these devices for corrosion monitoring and detection for in situ applications in different
industries. This analysis demonstrates the possible applications of low-cost sensors in the corrosion
monitoring sector. In addition, this study provides scholars with preferred techniques and the most
common microcontrollers, such as Arduino, to overcome the corrosion monitoring difficulties in the
construction industry.

Keywords: corrosion monitoring; electrochemical sensors; data acquisition; data analysis; physical
methods; structural health monitoring; low-cost sensors; atmospheric corrosion

1. Introduction

Continuous maintenance and repair work are two vital factors to guarantee the neces-
sary conditions of safety, economy, and functionality during the life cycle of infrastructures.
However, the lack or inefficiency of these actions can significantly accelerate the deteriora-
tion of structures leading to more costly reparations. One harmful phenomenon that might
jeopardize the structural integrity of structures is corrosion, which is a thermodynamically
spontaneous process. In fact, the cost incurred from corrosion contributes more than the
total damage caused by all natural disasters (such as earthquakes, floods, and storms)
combined. The World Corrosion Organization (WCO) estimates that the annual cost of
problems caused by corrosion worldwide reaches $US2.4 trillion, which is 3% of the world’s
gross domestic product (GDP) [1]. In many developed nations, corrosion can cause struc-
tural damages with costs approaching 3.5% to 4.5% of the gross national product (GNP) [2].
For example, on 22 November 2013, corrosion was the main reason for the oil pipeline
explosion in the city of Qingdao in China’s eastern Shandong province, as it thinned the
pipeline’s wall, leading to the break and causing a substantial economic loss of $US123.9
million [3]. In addition to economic losses, corrosion might lead to structural collapses with
consequent casualties. For instance, the Guadalajara sewer explosion in Mexico in April
1992 claimed the lives of 215 people and injured another 1500 [4]. In addition, a $US75
million financial loss was estimated. The incident was linked to a gas line’s degradation,
which led to a gas leak into the nearby sewage main.

Sensors 2023, 23, 1309. https://doi.org/10.3390/s23031309 https://www.mdpi.com/journal/sensors
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Moreover, corrosion is also responsible for the leakage of devastating pollution into
the environment. For instance, on 12 December 1999; the tanker Erika sank off of France’s
Brittany coast [4]. This type of catastrophe also caused a heavy oil spill globally in 1998,
about 19,000 tons [5]. Another recent accident occurred during a severe rainfall event on
14 August 2018, when a 210 m portion of Ponte Morandi collapsed. Corrosion of the
concrete reinforcements was listed as one of the primary causes of the collapse [6].

These disasters could have been avoided if regular corrosion detections had been
conducted. Corrosion detection, in general, is the process of evaluating the relevant types
of corrosion in a particular environment and identifying the critical variables impacting the
rate of propagation, which is divided into corrosion inspection and corrosion monitoring [7].
Inspection typically refers to short-term “once-off” measurements performed in accordance
with maintenance and inspection schedules, whereas corrosion monitoring refers to the
measurement of corrosion damage or variables that accelerate the corrosion rate over
a longer time period. Corrosion monitoring frequently includes an attempt to gain a
deeper understanding of how and why the corrosion rate fluctuates over time. Therefore,
nowadays, corrosion monitoring has been attracting considerable attention among different
industries, such as oil and gas, civil infrastructures, and the marine industry as a means to
guarantee their structures’ safe operation. Figure 1 illustrates the distribution of papers
focused on corrosion monitoring from the SCOPUS database from the years 2004 to 2021.
Analysis of this graph shows a constant interest in this field among researchers.
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Figure 1. Distribution of publications on corrosion monitoring over time (2004–2021) in the
SCOPUS database.

Corrosion monitoring is carried out using a set of detectors, data storage and trans-
mission systems. The implemented system analyzes the detected data and assesses the
corrosion state of the structure and its components [4]. Among different types of detectors,
metal coupons are one of the most widely used and reliable methods for corrosion detec-
tion in different industries. Metal coupons are exposed to corrosive conditions in order to
calculate the mean corrosion rate from the mass loss, mass gain, or coulometric decrease of
corrosion products. However, this technique does not provide real-time measurements,
and corrosion monitoring usually relies on electronic corrosion sensors or probes [8]. These
electronic corrosion sensors or probes continuously or semi-continuously transmit corro-
sion information to the system. Afterwards, by using the proper corrosion management
algorithm in the corresponding data acquisition system, not only the performance data but
also a basis for life prediction of the under-study system are provided. Therefore, contin-
ued development of these electronic devices has a high level of importance, as corrosion
monitoring is one of the most essential components in corrosion prevention and corrosion
control. Figure 2 illustrates the scheme of a corrosion monitoring system, and, as can be
seen, it contains three main parts: (1) a sensor or probe that is connected to a corrosive area
in order to measure the events and changes of the environmental parameters; (2) a data
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acquisition system which is used to collect and transfer the data; and (3) a data processing
and storing component where the collected data are analyzed and stored.

Figure 2. Scheme of a corrosion monitoring system.

Corrosion is a highly complex process involving at least two phases. For instance,
solid and liquid; solid and gas; solid, liquid, and gas; or even a solid and a first and
second liquid might be involved in the corrosion process. Therefore, corrosion monitoring
is a multidisciplinary task, and very often, two or more methods are needed in order
to adequately manage the monitoring needs in a given situation. However, because
almost all corrosion processes in nature take place in the aqueous phase, electrochemical
detection and monitoring procedures are considered to be more efficient compared to
physical methods [9]. In addition, electrochemical techniques have several advantages,
including sensitivity to low corrosion rates, a short experimental period, and a well-
established theoretical understanding [10]. Nevertheless, due to their high sensitivity and
accuracy in corrosion measurements, monitoring for field applications is more complex
than laboratory experiments. Electrochemical techniques that are appropriate for field
applications should have two key properties. On the one hand, the methods must be
dependable and straightforward, which is crucial for long-term corrosion monitoring.
Numerous complex electrochemical techniques exist that are effective for understanding
the kinetics and mechanism of corrosion. Nevertheless, they may not be applicable to
field evaluation, because they are either too slow or too complex for the typical operator
to utilize in the field. On the other hand, in order to minimize the negative impact on the
materials being studied, the techniques used should be non-destructive.

Depending on different natural environments, such as corrosion in soils, atmospheric
corrosion, fresh-water corrosion and seawater corrosion, corrosion monitoring instances
are usually considered separately, and different electrochemical or physical techniques are
used. For instance, in the case of corrosion in different industries (i.e., chemical processing,
oil and gas production, power generation, civil infrastructures), different electronic systems
are implemented [11]. Lately, with the development of technology the demand for adopting
sensors in civil infrastructures and buildings for static or dynamic structural system identifi-
cation (SSI) has increased. However, in order to implement sensors to monitor the corrosion
in these structures, the atmospheric conditions are normally monitored. Although there
are many methods available for monitoring metal corrosion, only some of them can be
applied in the atmosphere [12]. Among all of the methods available, atmospheric corrosion
monitoring (ACM), electrochemical impedance spectroscopy (EIS), electrochemical noise
(EN), and electrical resistance (ER) probes stand out for their unique ability to monitor
the real-time data of environmental corrosiveness [13]. ACM is also known as a galvanic
corrosion sensor, which is composed of two different metal electrodes insulated from each
other. One of them is fashioned from a noble metal, and the other one is formed from
the metal of interest in order to create galvanic corrosion, and by measuring the galvanic
current using a galvanometer or a zero-resistance ammeter (ZRA), the corrosion current
and corrosion rate are measured [14]. EIS is a non-destructive monitoring technique that
provides information about the corrosion progress and condition of protective coatings.
EIS measures the amplitude and phase of the surface impedance at different frequencies.
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Traditionally, measurements are performed by employing a conventional electrochemical
cell filled with an electrolytic solution so that, if a corrosion product layer coats the metallic
surface, the current gets through owing to both an electronic and an ionic contribution.
Since corrosion products, such as metallic oxides and hydroxides, have low electronic
conductivity, their ionic contribution can become significant. Therefore, measuring the
impedance at different frequencies enables the study of electrochemical reactions on the
metallic surface and permits highlighting of the presence of cracks and porosity on the
surface layer, both of which can act as starting points for localized corrosion attacks [15–17].
Although the use of EIS in atmospheric circumstances is constrained by the requirement
for an electrolyte, it has recently been used in a number of atmospheric corrosion exper-
iments [18,19]. Generally speaking, EN refers to the current or potential fluctuation that
occurs on a corroding electrode. In this method, the current between two identical elec-
trodes (ECN) and the potential difference between the two identical electrodes compared
with the potential of a reference electrode (EPN) are measured simultaneously. The poten-
tial measurement (EPN) is related to the corrosion mechanism, whereas the current data
(ECN) indicates the corrosion rate [20]. EN is the only electrochemical approach that is ideal
for in situ measurements [21], straightforward to set up, and does not affect the system
while conducting experiments [22]. ER probes have been widely used since the 1950s to
track corrosion in soils, solutions, concrete, and atmosphere [23]. In short, a metallic sensor
crafted from the same element as the materials of the structure under study is exposed to
the corrosive environment and its resistance is monitored by detecting a potential drop
while applying a small current. Primarily thin films are used for atmospheric systems due
to their high sensitivity. The principle relies on the fact that the resistance of an element
is a function of its resistivity and geometrical parameters (length, width, and thickness).
Therefore, by tracking the resistance values, the values of the thickness loss due to corrosion
and the corrosion depth (CD) will be acquired, and consequently, the corrosion rate, which
is the slope of CD with respect to time, is monitored [5].

Table 1 provides an overview of the techniques mentioned for monitoring corrosion in
the atmosphere. For a quick orientation, the sensitivity is indicated in general categories.
Moreover, the main benefits and drawbacks of each method are presented.

Table 1. Comparison of atmospheric corrosion methods.

Method Sensitivity Benefits Drawbacks

Coupons Medium, unless there
are long exposure times

Standardized method
Simple to analyze the
data

Does not have real-time
updates
Requires a long time for
measurements

Galvanic Medium

Not affected by
temperature changes
Suitably equipped for
harsh outdoor
conditions

Galvanic corrosion
increases the corrosion
rate
Electrolyte connection
required

EIS Medium

Details of the
mechanism of corrosion
Non-destructive
examination of coatings

Data interpretation
requires deep
knowledge of EIS
Unevaluable data in the
presence of a thick
corrosion product
Electrolyte connection
required

EN Medium
Localized detection
Identification of the
corrosion mechanism

Complicated data
interpretation
Electrolyte connection
required
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Table 1. Cont.

Method Sensitivity Benefits Drawbacks

ER High

Standardized method
Very sensitive
Data interpretation and
operation are simple.
The best option for
consistent corrosion
monitoring

Temperature dependent
Monitoring limitations
for non-uniform
corrosion

The cost of commercial corrosion systems is a crucial determinant to their suitability
for use in given services. Therefore, Table 2 presents a list of common corrosion monitoring
devices with real-time updates available on the market for each technique, including their
names, measurement ranges, and their retail prices in 2022.

Table 2. List of commercial corrosion sensors in the market for real-time update.

Technique Device
Corrosion Rate
Range (mpy)

Price ($US) Ref.

ER ZK9800 0.00394–39.34 1250 [24]
EIS CST1808 0.00394–0.3934 5511 [25]
Galvanic CST480MS 0.00394–3.934 3150 [26]
LPR AquaMate 0.01–200 2925 [27]

As can be seen from Table 2, commercial corrosion monitoring devices are character-
ized by their high precision and their high price. In addition to these prices, the cost of data
acquisition equipment (such as cables, a corrosion data logger, an inductance transmitter,
and a corrosion management system) must be added. These needed auxiliary elements can
increase the prices of the aforementioned sensors by up to an additional $US7000. More-
over, it is well established that corrosion detection and monitoring in outdoor applications
is more complicated in comparison to laboratory experiments. Some areas that require
ongoing development are probe/sensor design, data processing, and electrochemical in-
strumentation. In some circumstances, environmental noise is mixed with the observed
data, thereby necessitating the use of appropriate signal processing technology to filter
or even analyze this noise. In fact, because many corrosion systems are not steady-state,
and as the corrosion potential may change, it is possible to apply transient techniques like
electrochemical noise analysis (ENA) or other physical methods (image analysis [28–30],
acoustic emission [31–34]). However, these systems are generally quite large and expensive,
because they need to be equipped with complex auxiliary assets.

The high price tag on corrosion monitoring systems leads to their exclusive use
with limited measuring points. These systems are typically used only in areas with the
highest probability of corrosion, for example, inside petrochemical pipelines. However, in
conventional structures, which are those in which many pathologies occur, the provision
of corrosion monitoring systems is not usual, and insufficient attention has been paid
to evaluating the progress of corrosion, especially in the case of atmospheric corrosion
attacks in civil infrastructure. Additionally, this high price tag is a barrier to the long-term
monitoring of structures on a low structural monitoring budget.

Therefore, the demand to use low-cost probes and open-source platforms for data
acquisition systems by implementing various techniques to improve their accuracy com-
pared to high-cost precision systems has attracted considerable attention for structural
assessments [35–37]. This includes improvement such as increasing the density of mea-
surement points as well as making it possible to implement long-term monitoring systems
in order to reduce the uncertainty of the obtained data [38]. Low-cost sensor (LCS) usage
for many aspects of structural health monitoring is evident in the literature due to the
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rapid advancement of micro sensor technology and microcontrollers (such as Arduino and
Raspberry Pi) [39,40]. The monitoring of acceleration [41–43], tilt [44], temperature [45,46],
humidity [47], and corrosion [19] are a few examples of this research. Komarizadehsasl et al. [48]
reported that, with a proper code and the right mode to exploit the features and potential of
inexpensive electronics, it is possible to obtain valuable data that can provide useful insights for
structural health monitoring applications. In this work, a high-precision low-cost inclinome-
ter was developed through the fusion of multiple microelectromechanical systems (MEMS).
There are also various review papers in the literature concerning the use of low-cost sensors
(LCSs) in structural health monitoring applications. Mobaraki et al. [49] reviewed the applica-
tion of some low-cost sensors for the measurement of temperature, humidity, and airflow for
building monitoring.

For corrosion monitoring systems, there are several literature reviews concerning
different electrochemical methods used both for in situ and laboratory assessments [50],
corrosion monitoring in atmospheric conditions [13], different techniques for monitoring
the corrosion of steel rebar in reinforced concrete structures [51], using fiber optic sensors
for the assessment of rebar corrosion in RC structures [52], and the advancement of a
sensor capable of corrosion detection [53]. However, a systematic literature review on the
use of LCSs and inexpensive technologies as low-cost solutions for corrosion monitoring
applications is lacking. Therefore, in order to fill this gap, the current review offers a
thorough, up-to-date analysis of the state of the art for using low-cost digital technologies
for sustainable corrosion monitoring by examining the SCOPUS database. Additionally,
the authors pay close attention to the presentation of many elements of the main fields of
corrosion monitoring (such as techniques and ambient conditions) and the most popular
sensors used in each technique.

The current review is divided into four sections. The primary topic of discussion in this
study is the research on in situ measurements of atmospheric corrosion. The background
and research significance of corrosion detection and monitoring are briefly introduced
in Section 1. The rest of the paper is organized as follows. The data sampling technique
for low-cost corrosion technologies is described in Section 2. In addition, the approach
for processing data from inexpensive monitoring equipment is presented. The results are
presented in Section 3. Specifically, Section 3.1 provides a thorough discussion of the many
domains of corrosion monitoring as well as the reviewed articles. The distribution of the
publications among different countries and industries are also reviewed in this section.
Section 3.2 reviews the use of low-cost corrosion monitoring systems using electrochemical
methods. In addition, the open-source microcontrollers discussed in the literature are
evaluated, and the ones recommended for use in the installation of inexpensive monitoring
devices are described. Section 3.3 describes and compares the use of low-cost technologies
to detect and monitor the physical parameters induced by corrosion. The conclusions of
the current literature review are presented in the final section.

2. Materials and Methods

This section describes the sources of the data, the evaluation techniques, and the
classifications of low-cost technologies used for corrosion monitoring. Two main fields of
corrosion monitoring in the industry are associated with (1) electrochemical methods and
(2) physical methods. These two fields could provide and cover a structure’s corrosion
monitoring for atmospheric corrosion. Measurements made in the field are the next primary
discipline of this review. This paper addresses the publications in the SCOPUS database
between the years 1986 and 2021. The current review was carried out in November
2022. The initial search technique used for this systematic review paper consists of three
major components. The first stage is meant to provide an initial set of articles found by
employing a certain search algorithm using the Boolean operator AND (Figure 3). The
obtained articles in the first stage were then filtered further in the next step in order to
eliminate duplicates and irrelevant ones. Following this process 209 articles were deemed
inappropriate because they lacked information on corrosion monitoring or did not clearly
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cover low-cost features. It shall be highlighted that in this study, the authors only considered
peer-reviewed papers written in English. This exclusion was accomplished using the “AND
NOT” command, and the final outcome was 38 using electrochemical methods and 52
articles implementing physical methods to track and monitor the essential parameters of
corrosion across all industries.

SCOPUS database

search period: 1986–2021

Se
ar

ch
 

al
go

ri
th

m

AND

Low-cost corrosion monitoring

        (n = 299)

Fi
lte

ri
ng

 

pr
oc

ed
ur

e AND NOT

Low-cost corrosion monitoring

        (n = 90)

Categorizing methods used for both areas

Analyzing the distribution of 

publications across countries

Examining the distribution of 

publications across various industries

Evaluating used low-cost technologies

Figure 3. Flowchart depicting the systematic data sampling procedure.

In the final step, a detailed review of the selected articles was conducted in terms of
defining the main methods featured in the selected articles, assessing their distribution in
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different countries around the world, analyzing their contribution in different industries,
and finally, evaluating the types of sensors and technologies used for the installation of the
low-cost corrosion monitoring system.

There are several methods available in the literature to detect corrosion and monitor
its essential parameters for different type of structures. However, the principal aim of this
article is to present comprehensive information about low-cost technologies implementing
electrochemical methods in this field, and to do so, only corrosion detection methods
that are compatible with the intended inexpensive electronics are reviewed in this paper.
Therefore, this review can be used as a thorough reference for scholars interested in low-cost
corrosion monitoring. Moreover, this review provides comprehensive information about
low-cost technologies measuring physical parameters to track corrosion progress as well as
the preferred data acquisition systems and their important parameters for use in low-cost
corrosion monitoring applications. Table 3 provides a summary of the corrosion monitoring
methods introduced so far in the literature and their designated categories.

Table 3. Shows methods for the two main fields of electrochemical and physical techniques.

Fields of
Corrosion

Monitoring
Electrochemical Physical

Methods used EIS LPR Galvanic EN ER Optical
fiber

Radio
frequency

Image
sensor Ultrasonic Electromagnetic

induction

Recent advances in data processing technology, along with an ever-increasing demand
for online structural health monitoring, have resulted in the development of more efficient
monitoring systems. One of the most essential features of current low-cost monitoring
systems is that they run open-source software. This enables the users to access the library
source of the low-cost sensors, thereby giving them the chance to improve and develop
their own algorithms in the post-processing stage [54]. However, the vast majority of the
commercial corrosion monitoring devices on the market have already been programmed
by the associated companies, and they are based on closed source platforms. This implies
that users have no access to inspect and develop the software, which represents a huge
drawback for researchers interested in this field. Therefore, this paper provides insight to
the scholars for choosing the most desirable low-cost open-source monitoring system for
their project by reviewing the most-preferred options in the literature.

3. Results

3.1. Overview of the Results

The first study found in the SCOPUS database dealing with the idea of low-cost
corrosion monitoring is dated to 1984 [55]. However, this paper is not included in the
statistical analysis of this research, as it only introduced the use of various types of probes
with portable devices to reduce the risk and the cost of the corrosion monitoring procedure
in the oil and gas industry. In fact, the actual first paper that focused on the use of a low-cost
corrosion monitoring device was dated to 1986. Knuutila et al. were the first researchers
to describe the use of a low-cost microcomputer compatible with electrochemical systems
for polarization and cyclic voltammogram measurements [56]. Since then, the number of
yearly publications on the subject was limited until 2008, when a significant increase was
observed (Figure 4). A second relative rebound can be seen between 2008 and 2012. It was
observed that more than 54% of all the publications over a 36-year period (1986–2021) were
condensed between 2012 and 2021, highlighting the importance of technology’s growth
on the development of new low-cost electronics. It can be seen from Figure 4 that the
majority of the authors investigated low-cost approaches using physical methods (almost
58%), whereas only 42% of the articles introduced economic developments by employing
electrochemical methods. In addition, it was observed that from 1986 until 2007, the number
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of papers associated with the use of electrochemical methods for corrosion monitoring was
quite few (23.7%), and more than 76.3% of the articles were published in the last 14 years
(from 2008 to 2021). This rebound in projects concentrating on the use of physical methods
for corrosion monitoring applications occurred within the same amount of time as the
number of papers that contributed more than 78.9% in the last 14 years, and only 21.1% of
them were published in the years 1986 to 2007.
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Figure 4. Distribution of publications over time (1986–2021) from the SCOPUS database.

Figure 5 illustrates the number of papers by country. It an be observed that, in terms of
the publication numbers, the countries that put forth the largest contribution to the use of
low-cost technologies for corrosion monitoring are the United states (43 papers), the United
Kingdom (7 papers), Italy and China (6 papers each), Canada (5 papers), and Australia and
Portugal (3 papers each), followed by Spain, Mexico, India, and Germany (2 papers each).
In total, researchers from 26 countries around the world contributed to investigating and
introducing the use of new low-cost systems in different industries in order to overcome
corrosion monitoring’s high price tag problem in all 90 of the reviewed publications.

Figure 5. Distribution of the publications on low-cost corrosion monitoring by country.
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Figure 6 shows the contribution of the reviewed publications to different industries.
It can be seen that 51% of the researchers devoted their studies to developing low-cost
solutions for monitoring the corrosion parameters of civil structures. The second most-
interesting industry for corrosion monitoring using low-cost technologies is the oil and
gas industry, for which the most pipeline pathologies have occurred, and 18% of the pub-
lications implemented low-cost solutions to overcome the high price tag of conventional
corrosion monitoring systems in this industry. The analysis in Figure 6 shows that the
monitoring of artifacts is considered to be a vital area among researchers for develop-
ing low-cost monitoring techniques for tracking and controlling the corrosion process of
these valuable assets. The rest of the industries for which researchers developed low-cost
corrosion monitoring systems are shown in Figure 6.

Civil
51%

Aerospace
5%

Heritage
8%

Military
5%

Electronics
7%

Marine
6%

Oil
18%

Figure 6. Contribution of the publications on low-cost corrosion monitoring by industry.

3.2. Electrochemical Methods Used for Corrosion Monitoring

In this section, the reviewed articles associated with the use of electrochemical methods
for low-cost corrosion monitoring techniques are presented. This first group of papers can
be classified into four separate categories. The first category is a group of publications
that devoted their research to the application of EIS in the corrosion field and especially
to the development of low-cost systems compatible with this method. In the second
category, authors utilized linear polarization resistance (LPR)-based devices to remotely
track corrosion potential in their studies. In Sections 3 and 4, Galvanic and EN methods
were respectively used to measure and monitor electrochemical parameters for low-cost
corrosion monitoring. Figure 7 shows the distribution of the reviewed publications in
SCOPUS associated with the above-mentioned methods.

It can be seen that among the four groups, the highest number of papers dealt with the
application of the EIS method for the measuring and monitoring of electrochemical param-
eters involved in the corrosion process. This category contained 58% of the publications
from 1986 to 2021. Analysis of Figure 7 proves that EIS is considered among authors to be
the most reliable method of monitoring the coating condition and the corrosion progress
for their projects [57–59]. It also shows that the distribution of the publications dealing with
LPR as their main method was almost constant during the years (from 2007 to 2018) with
no significant changes, representing 34% of the total publications in the field of low-cost
corrosion monitoring. Although EN and galvanic are considered to be useful electrochemi-
cal methods in the corrosion industry, they have not attracted the attention of researchers
for low-cost monitoring applications, and they only contributed 3% and 5% (respectively)
of the entire number of publications. The main reason for this low participation is their
complicated data interpretation and the short life span of their sensors, respectively [13].
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Figure 7. Distribution of the reviewed articles associated with the application of electrochemical
methods for corrosion monitoring from 1986 to 2021.

3.2.1. Electrochemical Impedance Spectroscopy

This subsection provides detailed information on the reviewed publications that
introduced low-cost corrosion monitoring systems based on the EIS principle. EIS is one
of the most commonly used methods in the industry that enables researchers to study
and monitor the coating conditions of metallic structures. However, the corrosion rate
measurements produced by EIS are not so simple, and it is normally considered to be a time-
consuming method due to the requirement of recording data at various frequencies [60]. In
addition, EIS measurements require 3 electrodes as well as an electrolyte connection, which
makes mostly limits this method to laboratory use. Therefore, attempts to develop low-cost
portable EIS-based devices are considered to be highly valuable among various industries.
These attempts are focused either on the development of the sensing component (low-cost
electrodes or sensors) or the data acquisition implement (use of a low-cost microcontroller).

Licina et al. [61], Thien et al. [62], Park et al. [63], Yu et al. [64], Thien et al. [65], Abdur
Rahman et al. [66], Mejía-Aguilar et al. [67], Azhari et al. [68], Friedersdorf et al. [69],
Andrews et al. [70], Nazir et al. [57], Bansal et al. [71], Li et al. [72], Corva et al. [73],
Chowdhury et al. [74], and Strachotová et al. [75] all employed new technologies (such
as piezoelectric materials and advanced nanocomposites) for the sensing section of their
EIS-based corrosion monitoring systems in order to obtain low-cost and low-power features.
For instance, Yu et al. [64] used a piezoelectric wafer active sensor (PWAS) for the detection
of coating thickness and the monitoring of the corrosion condition of metallic plates and
pipes with a price of $US10 for each sensor.

Thien et al. [62] developed a low-cost active-sensing-based diagnostic system using
flexible micro-fiber composite (MFC) patches as both the sensors and the actuators in
order to detect cracks or corrosion damage along the pipeline structures by recording
the impedance responses. Figure 8 illustrates that only 27% of the authors—such as
Carullo et al. [76], Davis et al. [77], Angelini et al. [19], Matsiev [78], Grassini et al. [79], and
Sebar et al. [80]—focused on the use of open-source microcontrollers (such as Arduino and
AD5933) in the development of their reliable low-cost EIS-based data acquisition systems.
Among the reviewed microcontrollers that are able to perform impedance measurement
through various frequencies, Arduino board—which costs less than $US50—stands out
for its unique benefits, such as ease of use, active user community and various available
libraries due its open-source feature. Angelini et al. [19] and Grassini et al. [79] proposed a
simple low-cost solution based on a commercial Arduino board coupled with a logarithmic
amplifier to perform impedance measurements in the frequency range of 0.01 Hz to 100 kHz.
Sebar et al. [80] proposed a novel low-cost device that measured EIS using a simple
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Teensyduino board in the frequency range of 0.01 to 10,000 Hz without need of an additional
analog amplifier.
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Figure 8. Two areas of development in the SCOPUS database for the application of low-cost corrosion
monitoring solutions using the EIS technique: Area 1 focusing on the development of the sensing
elements, and Area 2 focusing on the use of open-source microcontrollers as the low-cost data
acquisition system.

3.2.2. Linear Polarization Resistance

LPR is one of the most commonly used methods for corrosion monitoring in field
applications. In this method, a very small polarization potential (usually ± 30 mV) above
and below the corrosion potential is applied to the sample. The current response recorded
over this short range near the corrosion potential is linear. As a result, the polarization
resistance (RP) is defined as the slope of this current–potential curve, which is constant.
Under certain conditions RP is inversely related to the instantaneous corrosion rate, accord-
ing to the Stern–Geray equation [81]. In fact, polarization techniques such as EIS and LPR
are considered highly accurate with easy data interpretation. Hence, many investigators
have tried to develop low-cost monitoring solutions through the use of either open-source
microcontrollers or developed sensing elements. In Figure 9 it is shown that 54% of the
publications that implemented LPR method focused the development of their data acquisi-
tion system on using open-source microcontrollers, while 46% of the articles addressed the
use of low-cost sensors.

For instance, Niblock et al. [82], Wood et al. [83], Abu Yosef et al. [84], Rafezi et al. [85],
Perveen et al. [86], and Ahmad et al. [87] employed low-cost passive wireless sensors such
as piezoelectric sensors for the detection of corrosion in pipelines and in concrete by taking
advantage of the LPR technique. At the same time, Knuutila et al. [56], Arpaia et al. [88],
Mugambi et al. [89], Kwan et al. [90,91], Samoilǎ et al. [92], and Degrigny et al. [93]
devoted the main objective of their research to developing open-source hardware systems
with low-cost and easy-to-use instrumentation for in-field measurements. For example,
Samoilǎ et al. [92] presented virtual instrument technology made up of a low-cost but
powerful Cypress PSoC microcontroller based on the polarization resistance technique.
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Figure 9. Two areas of development in the SCOPUS database on the application of low-cost corrosion
monitoring solutions using the LPR technique: Area 1 focusing on the development of the sensing
elements, and Area 2 focusing on the use of open-source microcontrollers as the low-cost data
acquisition system.

3.2.3. Galvanic or Atmospheric Corrosion Monitoring

In the late 1950s, the first attempts to quantify atmospheric corrosion using galvanic
sensors were made. An ACM system is composed of two different metal electrodes
insulated from each other. One of them formed from is a noble metal, while the other is
crafted from the metal of interest in order to create galvanic corrosion, and by measuring the
galvanic current using a galvanometer or a zero-resistance ammeter (ZRA), the corrosion
current and corrosion rate are measured. Figure 10 shows a schematic illustration of
an ACM sensor used to monitor automotive corrosion. However, due to the fact that
galvanic coupling accelerates the corrosion process, which results in a shorter life span of
the sensors and unclear data interpretation in harsh environments, researchers have not
found this technique interesting for the development of low-cost monitoring solutions.
Nevertheless, Castro-Borges et al. [94] proposed a reasonable, low-cost solution for the
detection and monitoring of the corrosion performance of concrete columns after localized
repairs using galvanic sensors to measure the electrochemical parameters. Mierau [95]
proposed a remote monitoring solution for corrosion monitoring at airports, solving the
access and field-diagnostic issues. The proposed low-cost PC-based control system, which
employs galvanic sensors, provides corrosion engineers with a remote monitoring system
with real-time updates.

Figure 10. Fe–Ag-type atmospheric corrosion monitor (ACM) sensor (reproduced with permission
from Reference [26]).
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3.2.4. Electrochemical Noise

EN is a useful electrochemical method for investigating and monitoring corrosion
processes such as pitting and stress corrosion cracks’ growth, microbial corrosion, and
uniform corrosion. The measuring mode, the surface area of the working electrodes, the
electrolyte resistance, and the symmetry of the electrode system all have a significant impact
on the EN results. In addition, depending on the measurement mode, this technique can be
used for in situ measurements employing either three-electrode or two-electrode setups [96].
Although the EN method has numerous benefits, such as localized corrosion detection
because of its complex and unclear data interpretation, very little attention has been paid to
using it to implement new technologies for low-cost monitoring developments. However,
Arellano-Pérez et al. [27] developed a portable device for measuring and monitoring
corrosion parameters such as electrochemical potential (EP) and electrochemical current
(EC) based on EN signals. In this research, the corrosion type and rate, a probe made
of three identical electrodes (6061-T6 aluminum) was constructed in order to evaluate.
Furthermore, the proposed low-cost portable device includes a signal amplifier, a physical
filter, and an analog-to-digital convertor (ADC), which enables it to measure weak signals
and analyze the corrosion variables in different materials. Figure 11 illustrates both the
three-electrode probe and the proposed low-cost portable device.

  
(a) (b) 

  
(c) (d) 

Figure 11. The developed low-cost EN-based corrosion monitoring system: (a) three-electrode
probe made of aluminum; (b) touchscreen display for communication and graphical interface;
(c) on–off switch and connectors of the portable device; (d) the electronic circuit board for the signal
amplification (reproduced with permission from Reference [27]).

3.3. Physical Methods Used for Corrosion Monitoring

In this section low-cost approaches for corrosion monitoring implementing physical
methods are reviewed. Controlling and tracking the physical parameters of the corrosion
progress—such as metal thickness loss, crack propagation, and physical pathologies—are
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the main features of this method [97]. Unlike the electrochemical methods, these techniques
do not directly measure the corrosion parameters such as corrosion potential or corrosion
current. However, depending on the requirements of the projects, these techniques provide
the possibility of measuring and tracking the physical changes caused by corrosion, and
furthermore, calculating the corrosion rate. Therefore, in this section, the existing low-
cost technologies for the measurement of the physical changes to structures caused by
corrosion are reviewed. The reviewed publications are categorized into six distinct groups.
The first category is a group of researchers that used ER as their principal method of
measuring and monitoring corrosion rate using low-cost electronics. The second group
of authors profited from radio frequency sensors (RF) and their unique features in their
respective projects aimed at developing inexpensive remote corrosion monitoring systems.
In the third group are authors who employed optical fiber (OF) sensors as their principal
physical detection method for low-cost corrosion monitoring applications. The fourth
group of authors focused on adapting ultrasonic waves (UW) to introduce their novel
low-cost remote technologies for monitoring the coating and internal corrosion condition of
structures in different industries. Authors from Group 5 implemented the electromagnetic
induction (EMI) method to track physical changes using passive wireless sensors. Finally,
in Group 6, authors addressed a novel technique taking advantage of image recognition
(IR) technology to develop low-cost image sensors for tracking the progression of corrosion
in their projects.

Figure 12 illustrates the rise in the number of publications associated with low-cost
corrosion monitoring using physical methods that were published over the period from
1998 to 2021 and found in the SCOPUS database. It can be seen that researchers chose a
more balanced distribution of physical methods suitable for low-cost corrosion monitoring
applications as compared to the electrochemical approaches mentioned before. Neverthe-
less, among the six groups, the majority of the authors employed ER sensors and RF-based
methods to detect physical changes (such as strain and thickness loss) and monitor them
using inexpensive wireless technologies. These two groups contain 25% and 23% of the
publications from 1998 to 2021, respectively. Analysis of Figure 12 shows that 75% of the
articles focusing on the use of RF-based sensors were published in the past 10 years. At the
same time, the least attention was paid to the use of IR for detecting and tracking structural
pathologies. This technique has only been investigated in publications in recent years, with
100% of the articles having been published in the last 6 years. In fact, the developments
in camera sensors and artificial intelligence (AI) technology in recent years have made
them more accessible and thus more affordable for the development of low-cost corrosion
monitoring systems [98]. Figure 12 also illustrates that the distribution of publications
employing OF sensors and UW for low-cost corrosion monitoring solutions has been almost
constant through across the years 1998 to 2021. However, low-cost monitoring solutions
based on the EMI technique have been only reviewed by authors over a 10-year period
between 2006 and 2016.

3.3.1. Electrical Resistance

Low-cost sensors based on the ER principle have been widely utilized to monitor corro-
sion in various industries since 1998. As shown in Figure 13, these sensors generally contain
two parts: a reference element, which is protected by a coating layer, and an exposed element.
The resistance of the sensing element is measured by comparing its potential drop to the refer-
ence element, which is proportional to the loss in metal thickness experienced by the sensing
element for a uniform corrosion mechanism. Furthermore, these values are used to calculate
the accurate corrosion rate over time. Due to the simplicity and high precision of this
technique, many scholars such as Taylor [99], Hautefeuille et al. [100], McCarter et al. [101],
Holst et al. [102], Materer et al. [103], Halabe et al. [104], Hurley et al. [105], and
Corva et al. [106] have introduced the use of low-cost ER sensors in their projects. Strom-
ment et al. [107] introduced FSM (the field signature method) for the first time in 1998, which
is an economical solution based on the ER principle for internal corrosion and crack monitor-
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ing in pipelines and vessels. In that study the authors combined non-destructiveness, high
sensitivity, and real-time updateability with the ability to cover large areas and no mainte-
nance requirements as the main features of their technique in order to develop their low-cost
corrosion monitoring system. Andringa et al. [108,109] and Pasupathy et al. [110,111]
demonstrated in their publications the use of sacrificial transducers as sensing elements for
monitoring corrosion in concrete. This passive wireless sensor, which is ideal for in situ
measurements in inaccessible locations, contains a resonant inductor–capacitor circuit with
a resistive transducer that is exposed to the corrosive ambient in order to perform resistance
measurement based on the ER technique.
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Figure 12. Distribution of the reviewed articles associated with the application of physical methods
for corrosion monitoring from 1986 to 2021.

Figure 13. An ER sensor made of high-strength steel with four elements: (a) a schematic illustration
of the sensor; (b) a photo of the sensor, protected by a transparent epoxy coating (reproduced with
permission from Reference [24]).

3.3.2. Radio Frequency

Radio-frequency identification (RFID) sensors are generally employed for inventory
management and product tracking, and their application for corrosion monitoring is a
relatively new concept established in the previous decade. However, in recent years
numerous authors have addressed applications of this method in the field of corrosion
monitoring. Bouzaffour et al. [112] introduced an innovative embedded UHF RFID (ultra-
high-frequency RFID) sensor in concrete in order to detect the mass loss of the steel and
monitor its corrosion process. El Masri et al. [113] addressed the sensitivity feature of the
UHF RFID sensors and investigated their potential as indoor environmental corrosiveness
detectors sensitive to variation of the metal thickness loss in the range of tens of nanometers.
One of the controversial issues for corrosion monitoring sensors is the interpretation of
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the output data when localized corrosion phenomena appear. Yasri et al. [114] proposed
a novel RF-based technique for atmospheric corrosion monitoring, the results of which
showed the ability to distinguish between uniform and localized corrosion mechanisms.
Another important usage for this technique within corrosion monitoring applications is
in tracking the condition of the coating layer and monitor its degradation process [115].
This ability allows for the improvement of infrastructure maintenance operations and can
result in large financial savings in many industrial fields. Generally, the basic components
of an RFID system are a reader and a tag sensor. The tag is a transponder with integrated
circuits and an antenna that can be activated by the reader’s electromagnetic radiation, and
it communicates stored information back. Figure 14 shows a detailed view of a commercial
RFID system´s scheme for crack detection. Depending on the power supply, tags can be
active or passive. Active tags can convey data and have their own power sources (such as a
battery or solar cell), making them larger and more expensive. Passive tags convey data
in response to reader inquiry, since their only power source is the electromagnetic field
transmitted by the reader. These tags are simpler, less expensive, more dependable, and
more widely utilized. Therefore, for low-cost corrosion monitoring applications, passive
wireless RFID sensors are predominantly used. In the publications reviewed in this study,
Lippincott [116], Dante et al. [117], Palmer et al. [118], He et al. [119], Zhang et al. [120],
Sunny et al. [121], Bruciati et al. [122], and Marindra et al. [123] addressed the use of
low-cost passive wireless RFID sensors (tags) in order to detect physical parameters such as
coating thickness and crack propagation which are essential corrosion elements in pipelines
and concrete structures. It is important to mention that in the aforementioned studies, real-
time corrosion monitoring and corrosion rate calculation were not performed. However,
Zhang et al. [124], Zarifi et al. [125], Deif et al. [126], and Rioual et al. [127] developed
RFID-based low-cost corrosion monitoring systems with real-time update ability.

Figure 14. The commercial UHF RFID tag ALN-9662 (reproduced with permission from
Reference [122]).

3.3.3. Optical Fiber

Over the last few decades, optical fibers have been developed and widely used for a
variety of applications in the oil and gas sector; civil engineering construction; structural
health monitoring; and cracks, strain, temperature, and pH monitoring. Essentially, the
approach employs optical fibers composed of glass or plastic that convey light along their
length and are thus sensitive to any parameter that can change the intensity, frequency,
polarity, or phase of the light. For corrosion monitoring, optical fiber sensors such as
fiber Bragg gratings (FBG), interferometers, surface plasmon resonances (SPR), distributed
sensing, or optical intensity modulations are used. As can be seen in Figure 15, optical fiber
sensors for low-cost corrosion monitoring applications are categorized into four types based
on how they detect the presence of corrosion in the structure. The first group employs the
direct measurement of corrosion effects. For that purpose, sensors measure parameters such
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as corrosion-induced strain, deformation, and displacements within the structure. FBGs,
white light interferometry, and optical time domain interferometry (OTDR)—a technology
within optical distributed sensing—are among the optical sensors used in this category.
These sensors are implanted in the building’s structure in order to monitor the corrosion
in concrete structures as well as in civil and military airframes where corrosion is a worry
because they are working beyond their projected lifetime in some circumstances.

0 1 2 3 4 5

Group 1

Group 2

Group 3

Group 4

Number of publications in SCOPUS

Figure 15. Distribution of publications in the SCOPUS database between four areas of corrosion
measurement using optical fiber sensors.

Among the authors who developed low-cost corrosion monitoring solutions based on
optical fiber sensors, Zhao et al. [97] implemented a white light interferometer,
Ramani et al. [128] addressed the use of lens-based plastic optical fibers (LPOF), and
Dos Santos et al. [129] and Chen et al. [130] employed long-period grating (LPG) sensors
to detect and monitor parameters such strain and corrosion crack propagation in their
projects. In the second group, the corrosion of the structure of interest was estimated rather
than directly measured by monitoring the corrosion of a similar substance deposited onto
an optical fiber. Obviously, this sensor must be situated near the structure whose corrosion
is being investigated in order to experience identical conditions. Wan et al. [131] and
Guan et al. [132] employed this approach to monitor corrosion in metals such as steel and
aluminum as well as for the monitoring of coating layer thickness. In terms of corrosion
precursors, optical fiber sensors can detect ions that cause a higher corrosion rate, with
waterborne chlorides being the most relevant. Elster et al. [133] and Chen et al. [134] used
fluorescence-based optical fiber sensors to detect chlorides ions inside of concrete structures.

Environmental parameters such as humidity and pH play an important role in cor-
rosion, therefore optical fiber sensors such as fluorescence or colorimetry are widely used for
monitoring these elements. Cooper et al. [135], Casas et al. [136], and Kiremidjian et al. [137]
developed novel low-cost systems based on the combination of type 1 and type 4 measure-
ments using LPG sensors in order to detect both the strain and environmental parameters
and therefore obtain better corrosion data on the analyzed structure.

3.3.4. Ultrasonic Wave

Ultrasonic corrosion monitoring is a type of non-destructive testing (NDT) that is used
to track the corrosion process. High-frequency acoustic waves (sound waves) are used in
this monitoring technique to measure or map the interior structure, thickness, and other
properties of the material being monitored. There are numerous commercial ultrasound in-
struments available that provide useful information regarding various types of degradation
(i.e., cracks, deformations, thinning, and corrosion). They are, however, generally classified
as inspection equipment rather than monitoring devices. Therefore, in this this paper,
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publications that presented low-cost corrosion monitoring solutions for various industries
based on ultrasound technology are reviewed. For instance, in the aerospace industry,
the use of ultrasonic sensors is very common. Zhao et al. [138], Meyendorf et al. [139],
and Perelli et al. [140] introduced novel low-cost monitoring systems based on ultrasound
technology for aircraft´s health monitoring applications. In the oil industry, in order to track
the health of the pipelines, Wan et al. [141] and Barshinger et al. [142] developed low-cost
wireless ultrasound-based monitoring devices. Harper et al. [143] and Jalali et al. [144]
proposed remote ultrasound-based techniques for corrosion monitoring in civil structures.
The aforementioned corrosion monitoring systems take highly frequent readings in order
to detect minor variations, which in this case are connected to corrosion phenomena. The
accuracy of ultrasound signals enables very frequent thickness measurements that can be
used to monitor corrosion.

3.3.5. Electromagnetic Induction

Over the last few years, a novel corrosion control method has been created for pro-
tecting damaged, painted surfaces in contact with atmospheric conditions, and it employs
electromagnetically induced surface currents. In addition, this technique has attracted
considerable attention for the initial monitoring of corrosion in concrete structures. Several
scholars have introduced monitoring sensors based on Faradays law of electromagnetic
induction (EMI) for the early assessment of corrosion in reinforced concrete (RC) structures.
In this review, authors such as Andringa et al. [145], Vinogradov [146], Chen et al. [147,148],
and Kranz et al. [149] introduced low-cost corrosion monitoring solutions based on this
technique. The monitoring devices used in the aforenamed experiments are made up of
multiple loop coils (MLCs) which operate as sensors and have a receiver and a transmit-
ter coil. The positioning of the two coils on concrete structures measures the potential
difference, which is then used to analyze the extent of the corrosion. Gallo et al. [150]
introduced a novel corrosion monitoring method based on the magnetic field induced
by the electrochemical activity from a uniform corrosion mechanism of a metal sample.
Figure 16 shows a scheme of the monitoring system containing a two-unit set of commercial
giant magneto-resistive (GMR) sensors for tracking the magnetic fields from the active
corrosion of metal plates.

 

Figure 16. Scheme of the side view of the sensor setup (reproduced with permission from
Reference [150]).

3.3.6. Image Recognition

Human-based visual inspection, which is time-consuming, costly, and even danger-
ous, has so far been one of the most-used techniques for structural health monitoring
applications. Concerns about safety, high costs, as well as recent developments in image
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detection sensors and AI technology have highlighted the urge for the development of
a reliable, low-cost, safe, and quantitative solution known as image recognition (IR) or
image analysis technology. In fact, the phenomenon of corrosion leads to changes in the
surface structure, morphology, and composition of materials [151]. These changes can be
captured by a number of image sensors, and by implementing image recognition technolo-
gies, information about the type and extent of corrosion can be obtained [152]. Figure 17
illustrates a simple image-collection setup using a portable CCD camera. Xia et al. [153]
presented a comprehensive review of the digital image analysis systems as well as the
developed algorithms used to assess and process the corrosion images. In addition, some
physical and electrochemical methods that can be employed to support the IR results are
summarized in this study. However, this technique is still considered to be new for low-cost
corrosion monitoring applications, and it has not yet been widely investigated. Among the
reviewed publications, Igoe et al. [154] addressed the use of smartphone cameras to detect
and monitor the corrosion process on the surface of a clean iron sample. Smartphone tech-
nology offers numerous prospects for increased participation in scientific and technological
research. In fact, in this research, congruent validation tests and errors of less than 5%
demonstrated the efficiency of this method for the characterization of a smartphone image
sensor response to the degree of steel corrosion. These findings show that a smartphone
can be used to evaluate surface corrosion efficiently and at a low cost. Moreover, Jindal
et al. [155] proposed the use of a panoramic image transmission and refinement technique
in order to overcome difficulties such high time consumption, blurred data, and color
variations that are common problems in underwater pipeline monitoring applications. The
proposed method was validated efficiently in terms of energy consumption and commu-
nication, and it showed maximum data delivery at a low-cost compared to conventional
techniques. A more recent development in the field of corrosion monitoring using image
sensors was produced by Benkhoui et al. [156]. In this study the authors introduced the use
of an unmanned aerial vehicle (UAV) for crack detection in a bridge and investigated the
adoption of stereo cameras based on passive and active depth calculation for the assessment
of bridge structural integrity.

 

Figure 17. Collection of corrosion images of metallic materials in the field using a portable CCD
camera: (a) image collection, (b,c) corrosion images of 304 SS exposed to a marine atmosphere
(reproduced with permission from Reference [153]).
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4. Conclusions

In this paper, a systematic literature review of low-cost technologies for corrosion
monitoring applications has been presented. After the filtering process, 90 articles published
since 1986 were examined that address the use of low-cost technologies such as sensors and
microcontrollers in the corrosion monitoring field. According to the reviewed articles, this
paper could provide the readers with an overview of the low-cost technologies that have
been implemented so far for the monitoring of corrosion parameters using electrochemical
methods (EIS, LPR, galvanic, and EN) and physical methods (ER, RF, OF, UW, EMI, and IR).
In the case of using electrochemical methods as the principal measurement technique, it
was found that the majority of the authors (58%) focused their studies on the use of EIS, as it
turned out to be the most reliable and feasible method for corrosion monitoring applications.
In the case of physical methods, ER has proven to be the most reliable method, indicating
that 25% of the scholars were focused on development of their respective low-cost corrosion
monitoring systems based on this technique. Regarding the architecture of the low-cost data
acquisition system, it has been discovered that the Arduino microcontroller has attracted a
lot of attention for EIS and ER measurements. Moreover, among the physical methods, it
was found that RFID and OF sensors were the two second-most-reliable areas in which the
majority of the researchers focused the development of their respective low-cost corrosion
monitoring systems (23% and 21%, respectively). Furthermore, it has been observed that
most of the reviewed articles were published in the US (43 out of 90), and the majority of
the projects were established in the civil structure industry (46 out of 90).

This article shows that, despite the fact that a significant number of studies have been
reviewed with the goal of employing low-cost technologies for corrosion monitoring, there
are still some gaps in the literature that must be addressed in future research. The same
systematic literature research should be conducted using other databases (such as IEEE
explore or Google Scholar) in order to give a full analysis of the used low-cost solutions for
corrosion monitoring. It is also necessary to provide an overview of the existing low-cost
sensors for corrosion monitoring in the market and compare their features with the those
in the literature.
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Abstract: Structural health monitoring technology can assess the status and integrity of structures in
real time by advanced sensors, evaluate the remaining life of structure, and make the maintenance
decisions on the structures. Piezoelectric materials, which can yield electrical output in response
to mechanical strain/stress, are at the heart of structural health monitoring. Here, we present an
overview of the recent progress in piezoelectric materials and sensors for structural health monitoring.
The article commences with a brief introduction of the fundamental physical science of piezoelectric
effect. Emphases are placed on the piezoelectric materials engineered by various strategies and the
applications of piezoelectric sensors for structural health monitoring. Finally, challenges along with
opportunities for future research and development of high-performance piezoelectric materials and
sensors for structural health monitoring are highlighted.

Keywords: piezoelectric materials; sensors; structural health monitoring

1. Introduction

Structural health monitoring (SHM) is a ubiquitous technology to evaluate the status and
integrity of structures, and even predict their lifetime by constantly collecting and analyzing
the data acquired from the sensors integrated in the structures [1,2]. SHM is of particular
importance for complex engineering structures, which require costly maintenance, to signif-
icantly lower the maintenance cost and guarantee the safety and reliability thereof [3]. It is
estimated that the market of SHM reached up to USD 2 billion in 2022 [4]. In addition, driven
by the growing demands of internet of things, the SHM market is predicted to expand at a
high compound annual growth rate of 14.6 in the following 5 years.

Sensors with high sensitivity, good reliability, and low cost are the cornerstone for
the structural health monitoring (SHM). Various kinds of sensors have been developed
to realize the SHM, such as strain gages [5], accelerometers [6], fiber optical sensors [7,8],
displacement sensors [9], piezoelectric sensors [10], and laser Doppler vibrometers [11].
Piezoelectric materials are capable of becoming electrically polarized upon the application
of external stress or deform in response to electrical stimuli. Therefore, sensors based
on piezoelectric effect could be used as multipurpose sensors to realize the SHM using a
variety of methods, including electromechanical impedance technology [12,13], ultrasonic
propagation monitoring [14], acoustic emission [15], and stress monitoring [16]. Compared
with other monitoring sensors or techniques, piezoelectric sensors have numerous advan-
tages, such as small size, light weight, low cost, availability in a variety of formats, high
sensitivity, and so on.

Sensors 2023, 23, 543. https://doi.org/10.3390/s23010543 https://www.mdpi.com/journal/sensors
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To meet the growing demands for high-performance piezoelectric sensors for SHM,
there has been considerable research interest in this domain. In the recent years, lots of
work has been focused on the piezoelectric sensors, such as piezoelectric transducers, smart
aggregates, direct deposition piezoelectric sensors on structure, flexible smart sensors,
and so on [17–21]. Numerous review articles have been published on the applications of
piezoelectric SHM, for instance, bonded structures [22], polymer-matrix composites [23,24],
aircraft applications [14], wind turbine blades [25,26], bridge applications [27], or other
engineering structures [10]. Moreover, some reviews were focused on the monitoring
techniques, such as impedance-based SHM [12,13], ultrasonic Lamb, or both [28].

In this review, we provide an overview of the currently available piezoelectric ma-
terials and sensors for SHM. In particular, focuses are placed on the high-performance
piezoelectric materials, covering organic piezoelectrics, inorganic piezoelectrics and piezo-
electric composites, engineered by various strategies, and piezoelectric sensors operated
in active and passive modes for SHM. We conclude by highlighting some challenges and
opportunities for future developments.

2. Piezoelectric Effect

The working principle of a piezoelectric sensor depends on “piezoelectric effect” of
piezoelectric materials, first discovered by the Curie brothers in 1880 [29]. They found
that, when an external force (pressure or tension) is applied in a specific direction of
some dielectric crystals, the surface of both ends of the crystal will generate positive
and negative bound charges of equal amount of electricity, and the density of bound
charges is proportional to the magnitude of the applied stress, which is called the “positive
piezoelectric effect”. Subsequently, G. Lippman and the Curie brothers predicted and
confirmed the existence of inverse piezoelectric effect in theory and experiment, respectively,
that is, the material with piezoelectric effect will produce corresponding deformation under
a certain electric field, and the deformation of the material will be restored when the applied
electric field is removed. The positive piezoelectric effect and the inverse piezoelectric effect
are reciprocal inverse effects, which jointly characterize the ability of piezoelectric materials
to realize the conversion of mechanical energy and electric energy. The schematic diagram
is shown in Figure 1a [30].

Figure 1. (a) Schematic of direct and converse piezoelectric effect [30]; (b) the affiliations of dielectric,
piezoelectric, pyroelectric, and ferroelectric.

Whether the piezoelectric effect exists in a crystal depends on the symmetry of its crys-
tal structure. Neumann principle requires that the symmetry of any macroscopic physical
properties of a crystal should include the symmetry of the point group to which the crystal
belongs. Therefore, it is possible for crystals without symmetry centers to have piezoelectric
effects. Strict mathematical derivation shows that there are 32 kinds of macroscopic symme-
tries of crystals, that is, 32 kinds of point groups without translation operation. According
to symmetry, these 32 point groups can be divided into two categories: central symmetry
and noncentral symmetry. Of these, 11 are centrally symmetric, so only 21 are likely to have
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piezoelectric effects. However, although the point group 432 (O) has no symmetry center,
its symmetry is very high and it does not have the piezoelectric effect. In addition, the
spontaneous polarization of a part of the pyroelectric body can be reversed under the action
of an applied electric field. Such crystals are called ferroelectrics. It must be pointed out
that piezoelectric material must first be dielectric. Secondly, some piezoelectric materials
are pyroelectric or ferroelectric. The affiliations of dielectric, piezoelectric, pyroelectric, and
ferroelectric are shown in Figure 1b.

3. Piezoelectric Materials

3.1. Inorganic Piezoelectric Materials

Inorganic piezoelectric materials include piezoelectric single crystals (e.g., quartz),
piezoelectric ceramics, and piezoelectric films, and their development process is the pro-
cess of improving their piezoelectric properties. The piezoelectric properties of piezo-
electric materials are mainly controlled by element doping. The development of an in-
organic piezoelectric material system has gone through two stages: single component
(such as BaTiO3 [31] and PbTiO3 [32]) and morphotropic phase boundary (such as lead
zirconate titanate (PZT) [33,34], (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) [35], and
Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BCT-BZT) [36]). With the development of material
systems, the properties of inorganic piezoelectric materials have been greatly improved.
Among them, PZT is one of the piezoelectric materials with outstanding comprehensive
performance. As shown in Figure 2a, Lin et al. prepared Sb2O3-doped PZT-based piezo-
electric ceramics that possess simultaneously enhanced piezoelectric coefficient d33 and
large mechanical quality factor Qm value [37].

However, with the increasing application requirements and scenarios of piezoelectric
materials, the demand for high-performance piezoelectric materials is increasingly urgent.
The existing material systems developed based on traditional methods have reached a
bottleneck stage, which is gradually difficult to meet the requirements of precision sensing.
In recent years, studies have shown that the doping of new complex multi-component com-
ponents (such as Sm-doped PMN-PT [38]) can greatly improve the piezoelectric properties
of piezoelectric materials, and the piezoelectric coefficient can be more than twice that of the
existing piezoelectric system. The new ultra-high performance piezoelectric materials have
the characteristics of multi-rare-earth element doping and multi-scale complex structures,
which make the traditional methods, such as composition traversal preparation methods
and single-scale material structure characterization methods, have a huge workload. To
meet the increasing demand for high-end electrical materials, the development of new ultra-
high-performance piezoelectric materials and their devices based on artificial intelligence
methods, such as machine learning or high-throughput computation and experiments, has
become an inevitable trend in the future of the sensing field.

In addition, due to the toxicity of Pb, environmentally benign lead-free piezoelectrics have
received intensive attention, such as BaTiO3 [39–41], sodium bismuth titanate (BNT) [42–44],
and potassium sodium niobate (KNN) [45–52]. In Figure 2b, Jong et al. demonstrated a BaTiO3
hybrid film by adopting a simple and facile inkjet-printing process [53]. By optimization of
the ceramic particle movement in the flow that occurred by solvent evaporation in a droplet
of ink, they successfully formed the BaTiO3 ceramic layer, whose packing density of ceramic
particles was over 55% in volume. Wang et al. proposed the engineering of oxygen vacancy,
aiming to solve the antagonistic relationship between Qm and d33 in hard piezoelectrics of
KNN by the hot-pressing combined with a post-annealing process, leading to an enhancement
of Qm by 60% (Figure 2c) [46].
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Figure 2. (a) P(E) loops of unpoled (xSb, Mn)-doped PZT ceramics at 1 Hz (i) and d33, kp, and
Qm of poled (xSb, Mn)-doped PZT ceramics (ii) [37]. (b) Schematic illustrations for a facile inkjet-
printing process and ink solvent evaporation mechanism in the printed droplet [53]. (c) Hot-pressing
combined with a post-annealing process for the KNN preparation [46].

3.2. Organic Piezoelectric Materials

Organic piezoelectric materials are mainly piezoelectric polymers, which are widely
used in flexible sensors due to their good mechanical properties, including poly(L-lactide)
(PLLA) [54], poly(vinylidene fluoride) (PVDF) [55], poly(vinylidene fluoride trifluoroethylene)
(P(VDF-TrFE)) [56], polyimides (PI) [57], polyacrylonitrile (PAN) [58], etc. As shown in
Figure 3a, Sohini et al. first reported the direct observation of shear piezoelectricity in highly
crystalline and oriented PLLA nanowires grown by a novel template-wetting method [59].
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Figure 3. (a) A schematic of the temperature controlled capillary infiltration process used to grow the
PLLA nanowires [59]; (b) schematic diagram of ZnO-nanoparticle-reinforced PVDF nanofibers by elec-
trospinning [60]; (c) a typical hot-pressing method adopted to fabricate ultrathin PVDF nanoflakes [55].

PVDF is the most typical organic piezoelectric material, which is versatile and light in
weight in comparison to piezoelectric ceramics. In consequence, thin films of any desired
form can be drawn into them, giving them an advantage over piezoceramics in various
applications involving complex designs of sensors. Despite organic piezoelectric materials
having lower electromechanical coupling compared to inorganic counterparts, other charac-
teristics that make the piezoelectric polymers attractive are their low electrical permittivity,
low acoustic impedance, high voltage sensitivity, and relatively lower cost. Mandal et al.
designed ZnO-nanoparticle-reinforced PVDF nanofibers by electrospinning (Figure 3b) [60].
Nanofibers act as the active layer and interlocked conducting microfiber composite mats
as electrodes to convert the mechanical energy into electrical power. Taking advantage of
high flexibility and easy processability of PVDF, Wang et al. fabricated ultrathin PVDF
nanoflakes with thicknesses down to 7 nm by using a hot-pressing method (Figure 3c) [55].
This thermo-mechanical strategy simultaneously induces robust thermodynamic α to
electroactive β phase transformation, with β fraction as high as 92.8% in sub-10 nm flakes.
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3.3. Composite Piezoelectric Materials

As mentioned above, piezoelectric polymers have good mechanical properties. How-
ever, their low piezoelectric coefficients limit the performance of sensors. Therefore, many
typical inorganic piezoelectric materials, such as PZT [61] and ZnO [62], have been used to
fabricate piezoelectric composites to improve the performance of piezoelectric polymer sen-
sors. At the same time, the piezoelectric composites obtained by doping the inorganic fillers
in the polymer also show better physical properties than the single component. Niu et al.
prepared stretchable ceramic/polymer piezoelectric composite by mixing PZT with solid
silicone rubber, with 92% filler mass ratio and 30% deformation (Figure 4a) [61]. In another
work, Gu et al. prepared a novel flexible ZnO/PVDF nanocomposite fibrous membrane by
electrospinning (Figure 4b) [62]. The study showed that the synergistic effect between the
rod-like piezoelectric nanofillers and electroactive β-crystals of PVDF plays an important
role in enhancing the piezoelectric behaviors of a ZnO/PVDF nanocomposite.

Figure 4. (a) Fabrication process and characterizations of the high performance PZT-based stretchable
piezoelectric composite [61]; (b) schematic illustration of ZnO/PVDF nanocomposite fibrous membrane [62].
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4. Piezoelectric Sensors for Structural Health Monitoring

The following section presents an updated literature review of piezoelectric sensors for
the structural health monitoring in the recent years. In order to elaborate clearly, different
technologies are simply introduced and recent relevant progress on piezoelectric sensors
are reviewed in detail. The piezoelectric SHM can act in both active and passive modes to
realize the SHM. Active monitoring sensors can be utilized based on electro-mechanical
impedance, guided wave propagation, or ultrasonic propagation, while passive monitoring
sensors based on acoustic emission or stress wave propagation.

4.1. Sensors Based on Electro-Mechanical Impedance (Active Mode)

The electromechanical impedance-based (EMI) monitoring is one of the innovative
and powerful structure health monitoring techniques. The electromechanical impedance-
based SHM utilizes the electromechanical property of piezoelectric materials and the
coupling of piezoelectric sensors and target structure. The EMI sensors can be attached
to the surface of the structure or embedded into the structure, such as smart aggregates.
In this active monitoring method, the piezoelectric EMI sensors can work as actuators,
converting the electric voltage signal into a mechanical stress solicitation. Meanwhile,
the piezoelectric sensors can act as the sensors, converting the structure’s mechanical
response to an electric signal. The feedback electric signals can be further dealt, using
algorithms to detect, localize, and characterize damages in the structure. The EMI methods
are used for continuous monitoring and early detection of structural defects, such as joint
looseness, debonding, and crack detection. Liang et al. were the first to propose the
concept of the electromechanical impedance for the EMI system and suggested 1-DOF
free-body diagram of a PZT–structure system to explain the interaction between the PZT
and the host structure [63,64]. In addition, for the last decade, EMI sensors have been
used to detect the occurrence, location, and characterization of damage in the concrete
structures [65,66], composite structures [67], rotary blades in turbomachine [68,69], and
bolted or adhesive joints [70,71]. Due to the limitation of damage-detecting area, EMI
sensors are always attached to the positions that are important and prone to damage,
such as bolted joints, adhesive joints, blades, etc. In the development of EMI sensors, the
sensitivity and self-diagnosis of piezoelectric sensors have been investigated to guarantee
the adequate application of EMI sensors.

In order to ensure immunity to ambient noise and vibrations commonly present in
practical applications, variable high frequencies (typically larger than 30 kHz) are preferred.
This makes the EMI sensors sensitive to the minor damage; however, it also brings the
issue of weak signals from far away, which limits the EMI sensor to the local damage
monitoring. Some investigations on the design of EMI sensors have been conducted to
improve the sensitivity of the monitoring system [72–74]. The sensitivity of detecting
damage through EMI is closely related to the selected frequency band/wavelength of the
excitation signal, which is emitted by the EMI sensor. The size of PZT piezoelectric sensor
affects ZS/ZT (ratio of host structures’ mechanical impedance to the PZT transducer’s
mechanical impedance), which is equivalent to the sensitivity. For using the frequencies
below 125 kHz, the sizes (length and width) of sensors should fall into the range of 5 mm
to 20 mm and thickness of sensors of 0.1 mm to 0.3 mm [72]. Hire et al. optimized the
size of the piezoelectrical patch for optimum corrosion detection in reinforced concrete by
combining theoretical and experimental studies [74]. They utilized the model developed
by Giurgiutiu et al. to evaluate the impact of sensor patch sizes to the sensitivity range.
They also measured the impedance of actual steel with sensor patch in air and in concrete.
As shown in Figure 5, the experiment results are consistent with the theoretical results. In
addition, it demonstrates that the appropriate design of the piezoelectric patch can improve
its sensitivity for damage detection.
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Figure 5. (a) Sensitivity levels with respect to thickness variations using Giurgiutiu’s model;
(b) the real part of impedance in free air over frequency ranges from 50 to 400 kHz related to different
patch size; (c) the real part of the impedance in reinforced concrete with varying patch thickness;
(d) diagram of steel dimensions, actual steel, and actual concrete used in the experiments [74].

Recently, the investigation of sensors with the capability of self-diagnosis for elec-
tromechanical health monitoring has become an essential issue [75–78]. Distinguishing
sensor faults and functional degradations from structure damage will directly affect the
effectiveness and accuracy of SHM. Jiang et al. introduced a K-means clustering analysis
and artificial neural network to realize the self-diagnosis of piezoelectric active sensor for
electromechanical impedance monitoring [75]. Three principal components, including
the average change of conductance peak, the RMSD of susceptance, and the RMSD of
conductance, were extracted by principal component analysis from the impedance signals.
Then, the K-means algorithm was used to cluster different cases of sensor damages rep-
resented by the principal components. Finally, the analysis and artificial neural network
were used to identify degree of the sensor damages. Four kinds of sensor damages, namely,
pseudo-soldering, debonding, wear, and breakage, can be distinguished from the struc-
ture damage using the K-means clustering analysis based on admittance characteristics.
Nguyen et al. established a finite element model corresponding to an experimental model
based on a bolted steel girder connection to investigate the EMI response characteristics
of a degraded piezoelectric-based smart interface [76]. Four common degradation types,
including shear lag effect, transducer debonding, transducer breakage, and interface de-
taching, are simulated and their effects on EMI response are comprehensively analyzed.
Figure 6 shows the photo and schematic picture of smart interface of PZT sensors. It was
found that the transducer breakage occurring in the smart interface can result in unique
shifts in the imaginary admittance and they can be feasibly diagnosed and differentiated
from the structural damage through a diagnosis process, as shown in Figure 6.
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Figure 6. (a) Photo and schematic of smart interface with PZT transducer; (b) schematic of PZT
breakage; (c,d) numerical EMI responses under PZT debonding defects, PZT breakage, and interface
debonding defect [76].

4.2. Sensors Based on Guided Wave or Ultrasonics Propagation (Active Mode)

In this section, a typical structural health monitoring technique based on a specific
wave, which can be guided wave or ultrasonics, is introduced. Guided wave, such as Lamb
and Rayleigh waves, have the characteristics of surface propagation, low energy loss, and
long propagation range. It determines that sensors based on guided wave propagation are
technology of particular importance in SHM.

Guided wave-propagation-based SHM is most widely used for damage detection in
metallic and composite structures, existing in aircraft, pressure vessels, missiles, pipelines,
and steel bridges [14]. Piezoelectric components can be utilized as actuators or sensors in
the guided wave-propagation-based SHM. According to the functionality of piezoelectric
sensors, there are mainly four modes of the guided wave propagation, including pitch–
catch mode, pulse–echo mode, thickness mode, and impact detection mode, as shown in
Figure 7 [79]. Taking the typical pitch–catch mode as an example, a pair of piezoelectric
transducers are attached on the plate-like structures. Firstly, ultrasonic guided waves are
induced by the piezo-actuator attached to the surface of a flat plate-like structure. Secondly,
ultrasonic disturbances occur and propagate radially to the around in the structure. Finally,
the piezo-sensor around receives the electric charge signal, owing to the induced mechanical
strains and output voltage signals (sensing waveform). While there is an even damage
existing in the structure, the guided wave (such as Lamb wave) would incur dispersion
and energy would attenuate during the propagation in the pitch–catch mode, pulse–echo
mode, and thickness mode. The thickness mode can be used for the detection of corrosion
thickness loss. In the impact detection mode, the piezoelectric sensors would receive a
signal of acoustic guided wave, while impact events on the structure and advancing cracks
occur. This is specific in acoustic emission, which will be introduced in detail in Section 4.3.
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Figure 7. Modes of operation of piezoelectric transducers using propagating Lamb waves [79].

Compared with the local electromechanical impedance-based SHM, the guided wave
monitoring technology can both realize local damage monitoring and global monitoring.
In the case of local damage monitoring, the guided waves could be used to monitor
the hybrid bonded joints. Jahanbin [80] utilized the ultrasonic interface guided waves
that were propagating on the boundaries of bonded joints to inspect the disbond and
delamination by recording the change in wave form, energy attenuation, and time of flight.
For global monitoring, the selection or design of the piezoelectric sensors/transducers
is of significant importance. To realize the global monitoring using a lower quantity of
transducers, piezoelectric transducers exciting high purity of shear horizontal (SH0) wave
are preferred. Boivin [81] optimized the geometry of the transducer to obtain a 23.0 dB SH0
wave using both simulations and experiments, and Zennaro [82] revised the transducer
design (removed the wrap-around electrode) to eliminate the out-of-plane wave well in
the propagation direction of fundamental SH0 mode. Ochoa et al. proposed a systematic
multiparameter design methodology for the piezoelectric transducers used in SHM, and
the multiparameter design includes the transducer shape, piezoelectric material, and
transducer size [83].

Apart from the transducers themselves, transducer/sensor network optimization
offers an opportunity to obtain robust and low-cost active SHM systems. Two reviews had
focused on the sensor networks for SHM by Ostachowicz [84] and Mustapha [85]. Sensor
networks should be well-designed as they affect the SHM system integration, system
performance, and accuracy of assessment. In the sensor network, deciding the number
and locations of the sensors are the primary work for accurate damage detection and
localization, then followed by the data transmission, data processing, etc. Many researchers
have focused on determining the minimum number of piezoelectric transducers and
achieving full or high coverage of damage monitoring by developing algorithms. A lot of
algorithms, such as iterative optimization, combinatorial optimization, genetic algorithms
(GA), and artificial neural network (ANN) techniques, have been developed to optimize
distribution of sensors [85]. Recently, Ismail et al. proposed an approach of transforming
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any complex or closed structure surface, and then used a genetic algorithm to optimize the
deployment of piezoelectric sensors [86]. The coverage of the optimized sensor network
increases from 85 to 99% for a pipe-like structure, as shown in Figure 8a. Experimental
validation was performed on a circular section (pipe) and the artificial damage can be
accurately located within 18 mm from the actual location in Figure 8b. They also developed
a similar model for sensor network optimization based on genetic algorithms, which was
further validated on a large cargo door of an A330 airplane [87].

Figure 8. (a) A sensor network mounted on a pipe-like structure with 99% detecting coverage; (b) the
location of damage identified on the pipe surface [86].

In addition to the optimization of sensor network for global monitoring, there are
some interesting works on the topic of large area monitoring. Nonlinear lamb waves
have attracted intensive attentions to be used for contact-type damages (e.g., disbands,
delamination, and micro-crack) because of its high sensitivity to these damages [88,89].
Ju et al. proposed a nonlinear ultrasonic testing method for large-area monitoring of
practical structures with arbitrary complexity using multi-mode guided waves [88]. When
the multi-mode guided waves diffusely propagate through the structure, all available
guided wave modes are automatically down-selected by the medium through attenuation
or dispersion and the remaining modes efficiently transfer energy (for example, to their
second harmonic modes) after encountering the micro-cracks. This method assures the
success in detecting the crack that is close to the middle of actuator and sensor with a
distance of 0.95 m. When large-scale monitoring is demanded, smart sensor networks
are proposed to overcome the problems regarding large number of sensors, the complex
cable, and placement efficiency. Many investigators developed the smart sensor networks
combing the piezoelectric materials and flexible circuit technology [90–92]. The smart
sensor networks have the advantages of light weight, high placement efficiency, and being
suitable for complex structural forms. Ren et al. developed a large-scale PZT network layer
(LPNL) design method based on FPC technology and one of the LPNLs connecting 37 PZT
transducers has a dimension of 565 mm × 500 mm [91]. A small section of LPNL is shown
in Figure 9a and one of the LPNL network is attached to the composite plate with the detail
placement in Figure 9b,c. The maximum localization error of its damage diagnosis using
this LPNL network is 0.41 cm, as shown in Figure 9d.
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Figure 9. (a) Small section of LPNL and (b) the adopted LPNL, (c) its placement, (d) its imaging
result of damage [91].

4.3. Sensors Based on Acoustic Emission and Stress Wave (Passive Mode)

While the structures are subjected to impact by external force or irreversible damage
with ultra-limited internal stress, the structures would generate transient elastic waves
to release strain energy. Structure health monitoring based on this kind of elastic wave
is also called acoustic-emission-based SHM. This typical acoustic-emission-based SHM is
preferred to be introduced separately from the foregoing topics, as this method is a specific
passive monitoring. Acoustic emission method is available only for damage initiation
and propagation, such as impact event, crack initiation, fiber breakage, debonding, and
delamination. For example, when a sudden crack occurs in the structure, piezoelectric
sensors can catch the signal of acoustic emission from the crack. The acoustic-emission-
based SHM is a local monitoring. Piezoelectric sensors should be placed near the key
objects where damages or defects are prone to occurring.

The acoustic-emission-based SHM has been deeply developed after its initial trail for
damage monitoring. In the early research, the acoustic emission method was only used
for the detection of the damage occurrence [93,94]. Then, this method was improved to
localize the damage in metallic plates and composite structures [95–97]. Capineri et al. have
reviewed the acoustic emission sensors and advanced methods for impact detection and
localization [98]. Many papers have been published to improve the reliability and accuracy
of detection and localization of damages, such as Akaike Information Criterion (AIC) for the
accurate estimation of measured differential time of arrival [95], artificial neural network
(ANN) [99], and theoretical modeling based on the phase velocity analysis [100]. In the
recent years, much more advanced methods were evaluated to determine the type, magni-
tude, and severity of the impact or defects in the structures [101]. Garrett et al. proposed
an artificial intelligence approach to estimate the fatigue crack length in thin metallic plates
using acoustic-emission-based SHM [101]. Finite element modeling was firstly conducted
to establish the simulated frequency spectra of calculated PWAS responses for different
fatigue-crack-generated AE signals. Then, the Choi–Williams transform (CWT) result of
the experimental inspected structure could be obtained from the raw acoustic emission
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signals following the process flow, as shown in Figure 10. It shows that a convolutional
neural network (CNN) was successfully used for the artificial intelligence processing of the
AE signals to predict the crack length.

Figure 10. Flowchart of acoustic emission signal processing from microcrack growth event to the
time–frequency intensity plot of Choi–Williams transform [101].

The piezoelectric stress/strain sensing technique is a promising approach of SHM
techniques for dynamic loading to the structures, such as railway bridge [102] and aircraft
wings [103]. When the structures are under low-frequency dynamic loadings, elastic
waves would generate and propagate to the piezoelectric materials. The stress variation
of structures can be reflected by analyzing the output voltage of piezoelectric sensors
based on the direct piezoelectric effect. The application of piezoelectric stress/strain
sensing technique for SHM has triggered worldwide interest after the first investigation
by Krueger et al. [104]. Sha et al. developed an embedded smart piezoelectric sensor
for concrete SHM [16]. The ratio of encapsulation materials is optimized to have proper
mechanical performance. Furthermore, the mechanical sensing property of the embedded
sensors with dynamic compressive loadings were studied in concrete, which demonstrates
the great potentials of applying the piezoelectric sensors for concrete SHM.

4.4. Integrated Passive and Active Sensors

In some practical applications, only passive monitoring is not enough. For example, the
impact events on airplane or aerospace structures might cause damage to the structures and
the damage could also worsen or become extended with time due to the operational fatigue.
In this scenario, the active monitoring is needed to continuously monitor the damage
progression. In analogy, purely active monitoring also has its drawbacks. Piezoelectric
transducers need to send out inspect waves continuously, resulting in useless work when
they are not demanded. Therefore, it is desirable to integrate the passive and active sensors
to overcome their drawbacks.

Bulletti et al. developed an integrated acoustic/ultrasonic SHM system for composite
pressure vessels (massively used as fuel tanks) using the same piezoelectric transducers [105].
Two flexible arrays of PVDF interdigital transducers were designed. The transducers have
two functionalities: passive detection of impacts and active damage assessment using guided
Lamb waves. Guo et al. proposed a piezoelectric transducer-based integrated SHM system
for impact monitoring and impedance measurement [106]. A “scheduling module” method is
utilized to schedule the commands to the PZT sensors and transfer their signals to different
preprocessing units for impact detecting or EMI measurement. This designed system is
deployed in a supporting structure of a sailplane. Gayakwad et al. developed smart sensing
units (SSU) to improve the effectiveness of the monitoring system, which contain PZT patches
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to detect both near-field and far-field damage in concrete structures through EMI and wave
propagation techniques [107]. The PZT patch in the SSU-1 is used as an EMI admittance
sensor for local damage identification and, meanwhile, the same EMI sensor is used to
acquire elastic waves generated by another PZT patch in SSU-2 to monitor damages outside
the EMI admittance sensor’s sensing area, as shown in Figure 11. Figure 11b,c show the
schematic diagram of a concrete cube with embedded SSU and an experimental specimen
with embedded PZT patches and crack, respectively.

Figure 11. (a) Schematic representation of the combined EMI-WP technique for damage detection in
concrete structure utilizing two SSUs; (b) the schematic diagram of concrete cube with embedded
SSU and (c) an experimental specimen with embedded PZT patches and crack [107].

5. Challenges, Opportunities, and Future Prospects

Piezoelectric sensors are indispensable for structural health monitoring. The last
decades have witnessed many exciting developments of piezoelectric materials and sensors
for structural health monitoring. Despite these breakthroughs, there is still plenty of room
for further improvement, as exemplified by the following challenges.

Piezoelectric materials are the key component of piezoelectric sensors for structural
health monitoring. The development of high-performance piezoelectric materials is es-
sential to enable high-end piezoelectric sensors with exceptional sensitivity and further
promote their practical applications in structural health monitoring. The combination of ex-
perimental synthesis, comprehensive characterization and the concept of materials genome,
high-throughput calculations, and machine learning is expected to substantially accelerate
the discovery of piezoelectric materials with unprecedented piezoelectrical properties [108].
As mentioned above, inorganic piezoelectric materials usually have good piezoelectric
property but poor flexibility. In contrast, stretchable organic piezoelectric materials have
low piezoelectric coefficients. Composite piezoelectric materials and sensors integrated
with simultaneously high piezoelectricity and decent flexibility show unprecedented op-
portunity to improve the performance of SHM systems, such as working range, complex
mechanical loadings, etc.

Piezoelectric materials always work as stacked wafers in the piezoelectric sensors and
SHM systems, as shown in many reviewed examples. However, it increases the difficulty
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of placement and decreases the reliability, such as debonding fault. Piezoelectric films can
be attached to the surface of the structure or embedded in the composite structure, which
make them highly flexible and adaptable for deployment on complex configurations [92].
Advanced material processing technologies represented by additive manufacturing and
three-dimensional printing offer new platforms to manufacture and implement piezo-
electric sensors for structural health monitoring [109]. Piezoelectric materials, including
piezoceramics, polymers, or composites, can be facilely processed into sensor components
by these technologies.

So far, most of the work focuses on the research to address the deployment problems in
SHM techniques in the category of experiment. From the experiment result to the practical
applications, many problems need to be resolved, such as sensors self-detection, influence
of environmental change on the monitoring signals, fundamental structure failure mode,
and so on. For a reliable SHM system, especially in engineering system, accurate sensor
self-diagnostics is one of the major issues. The sensor failures without self-identification
will lead to false result in damage detection. For the long-term monitoring in the engineer-
ing SHM, sensor failure or debonding failure tends to occur. Different sensor faults need
to be investigated to increase reliability of SHM systems [110]. Self-diagnostics for piezo-
electric transducers have been investigated by much research based on the change in wave
propagation signature or the change in EMI signature [77,111,112]. Sensor self-diagnostics
would improve the reliability in the engineering SHM application in the future. The change
in environment condition would bring error to the SHM systems. Lots of properties of
piezoelectric materials would vary when the operating temperature changes, such as piezo-
electric properties, dielectric constant, coupling constant, and Young’s modulus. For the
guided-wave-based SHM systems, the temperature would make an impact on the guided
wave baseline comparison and an optimal baseline selection method for the environment
temperature range should be adopted [113,114]. For the EMI-based SHM technique, the
dielectric constant exhibits the most significant effect on the electrical impedance of PZT
sensor, which results in the shift of frequency and amplitude of impedance signatures [12].
Furthermore, the environmental effect of ambient induced noises, vibrations, and external
loads also should be dealt with appropriately in the practical engineering SHM systems.

The material, sensor, and structural designs play an important role in the SHM systems.
This phenomenon is particularly obvious in the EMI-based monitoring techniques. The
working frequency range is decided not only by the design of piezoelectric sensor, but also
by the structure properties. Traditional EMI methodology for indicating a failure is not
enough. Developing a technique to determine the impact of damage on structural prop-
erties is demanding. Aabid et al. proposed some open research areas, such as packaging
piezoelectric materials to generate a high working frequency range, integrating a network
of sensors with local artificial intelligence (AI)/machine learning (ML) data-processing
platforms and so on [10]. As reviewed above, only sensors based on guided wave propaga-
tion or acoustic emission have the opportunity to realize the global damage monitoring.
However, structure health monitoring in the practical engineering applications is always
preferred to cover the large area, such as in the bridge, aircraft, airplane, etc. It would
make the SHM systems contain plenty of piezoelectric transducers and a complex line
layout. The wireless sensor network to collect and process the information becomes the
priority way to optimize the SHM system. Generally, bulky batteries are needed to provide
power for the wireless sensor network, and these batteries should be frequently replaced
due to the limited capacity. Therefore, a self-powered wireless sensor network is highly
demanded, particularly for the case of structural health monitoring. The direct piezoelectric
effect enables the piezoelectric devices to harvest electrical power from ambient mechanical
and vibrational energies, such as structure vibration, airflow, etc. [115]. The piezoelectric
energy harvesters can be integrated to the wireless sensor network for structural health
monitoring to provide an unbounded power source for the system.
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6. Conclusions

In this contribution, the recent progress in piezoelectric materials and sensors for
structural health monitoring has been systematically reviewed. A brief introduction of
the fundamental physical science of piezoelectric effect was introduced. Emphases are
placed on the piezoelectric materials engineered by various strategies and the applications
of piezoelectric sensors for structural health monitoring. Finally, challenges along with
opportunities for future research and development of high-performance piezoelectric
materials and sensors for structural health monitoring are highlighted. It is expected that
the contribution could accelerate the development of high-end piezoelectric materials and
sensors for structural health monitoring.
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Abstract: The present research proposes a two-step physics- and machine-learning(ML)-based
electromechanical impedance (EMI) measurement data evaluation approach for sandwich face layer
debonding detection and size estimation in structural health monitoring (SHM) applications. As a
case example, a circular aluminum sandwich panel with idealized face layer debonding was used.
Both the sensor and debonding were located at the center of the sandwich. Synthetic EMI spectra
were generated by a finite-element(FE)-based parameter study, and were used for feature engineering
and ML model training and development. Calibration of the real-world EMI measurement data was
shown to overcome the FE model simplifications, enabling their evaluation by the found synthetic
data-based features and models. The data preprocessing and ML models were validated by unseen
real-world EMI measurement data collected in a laboratory environment. The best detection and
size estimation performances were found for a One-Class Support Vector Machine and a K-Nearest
Neighbor model, respectively, which clearly showed reliable identification of relevant debonding
sizes. Furthermore, the approach was shown to be robust against unknown artificial disturbances,
and outperformed a previous method for debonding size estimation. The data and code used in this
study are provided in their entirety, to enhance comprehensibility, and to encourage future research.

Keywords: sandwich debonding; detection and size estimation; electromechanical impedance
method; machine learning; feature engineering; physics-based

1. Introduction

Modern products face increasing demand for sustainable manufacturing and opera-
tion. These demands are addressed by research in a variety of technological fields, amongst
which, lightweighting of the mechanical structure of a product is often applied. Applying
high-performance materials, such as fiber-reinforced polymer composites, and modern
numerical design methods, such as the finite element (FE) method, enables the highest
optimization of mechanical structures. However, high optimization always implies the
possibility of critical failure, e.g., when loads are underestimated, when unexpected man-
ufacturing defects exist, or when damages occur during operation. These uncertainties
are a significant issue in industries where the highest structural reliability is requested,
e.g., transportation industries. To address these uncertainties, e.g., in aviation engineering,
damage tolerance design philosophy is used together with maintenance programs: this
produces high operational costs, due to downtime and labor. An upcoming approach to re-
ducing maintenance costs, while reliably obtaining integrity, is structural health monitoring
(SHM) [1,2].

SHM is the continuous on-board monitoring of the condition of a mechanical struc-
ture, during operation, by online and integrated systems of sensors, and can be classified
into five levels: (i) damage detection; (ii) damage localization; (iii) damage quantification;
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(iv) damage typification; and (v) structural integrity assessment. Numerous active and pas-
sive SHM methods readily exist, achieving up to level four in laboratory conditions [3–5].
These apply systems of sensors to measure different physical effects, and continuously
evaluate the collected data for potential damage. Among the various methods, acoustic
methods—such as the passive acoustic emission (AE) method or the active guided waves
(GW) and electromechanical impedance (EMI) method—are of the highest research interest,
due to their sensitivity to structural change, and their potential for damage identification
up to level four [2,3,5–11]. Furthermore, the often-used piezoelectric wafer active sensors
(PWAS) are lightweight and easy to apply; however, due to the high sensitivity of acoustic
methods, they are also very prone to environmental influences, measurement equipment,
etc. This makes their application in realistic operational conditions extremely challenging,
and has thus, to date, prevented their widespread industrial application. This is partic-
ularly true for the EMI method, which evaluates the dynamic response of a structure of
interest (part of an electromechanical system) to continuous harmonic excitation, i.e., it is a
vibration-based method. Consequently, the evaluation of potential damages is extremely
complicated, due to reflections from more distant structural regions, e.g., boundaries and
correlated disturbances [12]. Classical statistical damage metrics typically do not allow
reliable damage identification [9]. However, recently, with the development and increasing
distribution of novel statistical methods like machine learning (ML), and the availability
of large computational power, new potential to solve the issue has been identified by the
scientific community [13]. This has been similarly reported by Avci [14] for “vibration-
based methods”, by a review of a number of selected journals. Furthermore, numerous
recent review articles have highlighted the application and the advances of ML-based
measurement data evaluation for vibration-based damage monitoring methods, such as the
EMI [13–16]. Fan [13] classified EMI measurement data evaluation methods into data-based
and physics-based methods.

Significant advances in data-based methods, which rely solely on real-world mea-
surement data, are currently being achieved, in light of the increasing number of damage
indicators, via the application of novel ML algorithms. Lopes [17] used an artificial neural
network (ANN) to evaluate EMI measurements for monitoring the loosening of bolted
joints of a scaled steel bridge section. The algorithm evaluated the data of four PWAS in
two steps, and succeeded in detecting and locating loose joints, and identifying the severity
of the loosening (one, two, or three bolts loose per joint). The training was done according
to the same structure, by systematically loosening and tightening bolts. Giurgiutiu [11]
demonstrated, in laboratory conditions, the superiority of a probabilistic neural network
(PNN) to conventional damage-metric-based EMI measurement data evaluations, by means
of artificially introduced cracks in an aging aircraft panel. He applied a number of the
largest resonance frequencies as features, and classified unknown data into pristine and
non-pristine (i.e., damaged). For training, only pristine state data was used. While the
classical damage metric was only capable of detecting a crack in a very narrow region,
the PPN-based evaluation also identified all cracks, at a distance of 100 mm. Another
demonstration of PNN-based EMI measurement data evaluation for damage was reported
by Palomino [18], who investigated a number of different damage scenarios in laboratory
conditions, and was able to detect, localize, and classify cracks and rivet losses in large
aluminum aircraft fuselage components by means of a sensor array consisting of eight
PWAS. Park [19] demonstrated the potential of principal component analysis (PCA) to
extract relevant features for damage monitoring from EMI measurement data: he used a
bolted metal–metal single-lap shear joint, and used bolt loosening and bolt re-tightening
as damage. He clearly showed the improvement of the feature extraction by the PCA,
for differentiating between a loose and a re-tightened joint by a simple damage metric,
and he also demonstrated the applicability of the k-means clustering algorithm to damage
identification, using only two principal components. Min [20] addressed the sensitivity of
EMI signal damage metrics to the considered frequency ranges, and solved the issue by
training an ANN with damage metric values of discretized frequency spectra, to identify
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five different damage scenarios at a building structure (zero to four loose bolts at a joint).
The same approach also performed well in an experimental study on the detection of loose
bolts and cracks induced on a steel bridge. Oliveira [21] first proposed a convolutional-
neural-network(CNN)-based evaluation method for damage detection, by the use of EMI
measurements, and demonstrated its superiority to other ML methods on an aluminum
plate equipped with three PWAS and with nuts adhesively bonded to it as artificial dam-
ages. Rezende [22] used aluminum beams, with weight added as damage, at varying
temperature conditions, and demonstrated CNN-based evaluation also for temperature
compensation. A similar demonstration was performed by Li [23] for the more complex
use case of a concrete cube with cracks at varying temperature conditions, using CNN in
combination with Pearson Correlation Coefficient indices from measured electromechani-
cal admittance spectra sub-ranges, to identify both crack length and applied temperature.
Furthermore, Li [23] used the Orthogonal Matching Pursuit algorithm to synthetically
generate data based on measurement data, to reduce training costs for the CNN. Other
successful applications of CNN models were reported by Ai [24,25], who demonstrated the
identification of concurrent compressive stresses and damage (crack number and width),
and minor mass loss of a concrete specimen. The application of a deep residual network
to the EMI data evaluation for damage, and its potential to overcome the necessity of
programmer-dependent preprocessing, was demonstrated by Alazzawi [26], who managed
to directly evaluate time domain impedance data for crack quantification and localization
in a steel beam. This potential for the evaluation of electromechanical admittance raw
data was also found for a deep neural network by Nguyen [27], who applied it to the
EMI data-based prestress loss monitoring of a post-tensioned reinforced concrete girder,
in laboratory conditions. Singh [28] successfully used unsupervised self-organizing maps
(SOM) to fuse multi-sensor data for the identification of hole sizes in a large aluminum plate.
Furthermore, he found that data reduction of measured EMI spectra by PCA is not only
more efficient but also improves the quality of the data for the realized experiments. The
latter was also supported by the findings of Lopes [17], who stated that feature engineering,
i.e., the selection of meaningful features of the raw data, often (i) highlights dynamic
characteristics of the evaluation objective, and (ii) strongly reduces the required amount of
training data. For a summary of the key contributions to data-driven and ML-based EMI
measurement data, see Fan [13].

Physics-based methods use physical models of the monitored structure of interest and
the applied sensor system, to evaluate real-world EMI measurement data. Analytical or
numerical models are used to, e.g., find sensitive frequency ranges or specific sensitive
features and their responses to a considered damage and its location and properties [29,30].
Another physics-based approach is model updating, whereby predefined parameters of a
model, which represent damage, temperature changes, etc., are optimized until the EMI
measurement data is matched by the model’s simulation results. Albakri [31], e.g., used a
length-varying spectral element mesh to efficiently model a beam with a single crack-like
opening, the opening parameters of which were subsequently optimized to fit the EMI
measurement data of the equivalent, but physical, beam with a single unknown opening,
thereby enabling the identification of the opening’s location, width, and severity. However,
due to the large parameter space for more complex mechanical structures, and their large
number of possible damage modes, the computational effort for model updating is large,
and fast data evaluation is challenging. Ezzat [32] addressed this issue by increasing the
efficiency of the model updating evaluation method by the application of surrogate models
and a multi-stage statistical calibration framework. The framework used a pre-screening
step to reduce the parameter space, by identifying probable damage locations before the
model updating and signal matching steps and, therefore, strongly reduced the overall
computational effort for damage identification. Another approach to accelerating data
evaluation is to pre-simulate impedance spectra for varying damage parameters of the
structure of interest. The typically large database is computationally expensive; however,
its calculation can be done prior to the operational life of the monitored structure. To reduce

59



Sensors 2023, 23, 2910

this large computational effort, the application of numerical surrogate models (e.g., ML
models) can be used to lower the number of required simulations by interpolation. An
approach was recently demonstrated for the accurate interpolation of simulated guided
wave signals by Humer [33]. The available simulated signals (and their correlated and
known damage parameters) enable very fast damage identification, by simply comparing
their similarity to measured EMI spectra. Shuai [34] and Kralovec [9] demonstrated this
approach by the identification of the crack location and severity in a simple metallic
beam, and the debonding size in an aluminum sandwich panel, respectively. However,
physics-based methods are still limited to a low-frequency range or simple mechanical
structures (mostly beams are investigated), as computational accuracy and efficiency are
still issues [13].

Nevertheless, ML methods are generally found to be superior to traditional evaluation
methods, in which the vibration signal is fuzzy and noise-contaminated [14,21]. To date, ML
algorithms applied to vibration-based monitoring methods, such as EMI, are predominantly
supervised learning algorithms based on real-world measurement data. Avci [14] concludes
that the latest ML data evaluation approaches to potential damage increasingly apply signal
features other than modal parameters, as these are often very sensitive to environmental
conditions, e.g., temperature. Furthermore, the curation of experimental data is typically
very costly. Thus, approaches using synthetic data (e.g., simulated by an FE model) are
utilized, to reduce the cost of data acquisition [35,36]. Similarly, Fan [13] highlighted the
significant potential of physics-based (i.e., based on synthetic data from physical models)
EMI data evaluation, and the need for efficient numerical modeling.

The present research contributes to the field of EMI data evaluation for structural
damage identification, by proposing a novel two-step physics- and ML-based EMI data
evaluation approach to sandwich debonding detection and size estimation. The proposed
novel approach addresses the above-mentioned research shortcomings by (i) very fast
and accurate damage identification by supervised ML models, (ii) the replacement of
costly real-world measurement data for training, by synthetic FE model-based data, and
(iii) the engineering of EMI signal features that are robust against simplifications of the FE
model (used to generate training data), environmental disturbances and small variations
of the debonding shape (in reality, debondings are not perfectly circular). As a case
example, a comparatively large and complex mechanical structure—a circular sandwich
with aluminum face layers and an aluminum honeycomb core—was used. A single PWAS
located at the center of the sandwich directly above the considered idealized face layer
debonding was used for the EMI measurements. In contrast to many other EMI studies,
the FE model used to simulate the artificial EMI data was strongly simplified, and was
not intended to perfectly reflect all features of the real structural response: this, on the one
hand, enabled a very efficient simulation of the artificial EMI data, which may be very
relevant for larger structural components or more complex damage modes, and on the
other hand, it represented a test of the proposed method’s robustness against incomplete
training data. The considered idealized face layer debonding was increased stepwise by
milling and EMI measurements, which were evaluated by the proposed physics-based ML
approach. The approach was tested for the consistency, accuracy, reliability, and robustness
of its evaluation results, and was benchmarked.

2. Electromechanical Impedance Data Generation

In the present research, we used synthetic and real-world EMI spectra as data. The
synthetic EMI spectra were generated by a multi-physics FE model. The real-world EMI
spectra were generated by measurements from a PWAS attached to a physical test specimen.
To fully understand the EMI data generation, the present section presents (i) the funda-
mentals of the EMI method, (ii) the electromechanical system of the used case example
of a circular sandwich plate with idealized face layer debonding and adhesively attached
PWAS, (iii) the FE model and the conducted parameter study, and the generated data, and
(iv) the real-world measurement setup and procedure, and the collected data.
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2.1. Electromechanical Impedance Method

The EMI method is a vibration-based SHM method, which evaluates the dynamic
response of a mechanical structure of interest to harmonic excitation. A single PWAS
is usually used for both excitation and dynamic response measurement. The PWAS is
adhesively bonded to the mechanical structure, resulting in the evaluated electromechanical
system. For evaluation, the PWAS—and, thus, the whole electromechanical system—is
excited over a wide frequency range by a harmonic voltage signal U( f ), and the system’s
dynamic response is measured by the PWAS’s electrical impedance Z( f ) = U( f )/I( f )
or its reciprocal, the admittance, where I( f ) is the electrical current and f the frequency.
Consequently, changes in the mechanical structure are also reflected in the measured
impedance signal, and allow conclusions on its health state. The underlying correlation is
given for one-dimensional strain and neglected PWAS dynamics by [2]

Z( f ) =
1

j2π f C

[
1− κ2

31
kst( f )

kst( f ) + kp

]−1

, (1)

where C is the capacity, kp the static stiffness, and k31 the non-dimensional coupling
coefficient of the PWAS. The behavior of the structure enters the equation by the frequency-
dependent dynamic stiffness kst( f ). The imaginary unit is denoted by j.

2.2. Test Specimen

The investigated case example was the identification of sandwich debonding. A single
circular aluminum honeycomb sandwich panel, with an idealized debonding in the center,
was used in the present study. Figure 1 presents the used test specimen. The circular
panel had the dimensions ∅500× 20 mm2. The face layers were produced from aluminum
ENAW5754-H22, and had a thickness of 1 mm; thus, the aluminum honeycomb core
(3/8–3000–0.0025) had a thickness of 18 mm. The in-plane orientation of the orthotropic
honeycomb core was arbitrary, and was not considered in the present study. The face
layer and core were adhesively bonded. To enable the physical introduction of debonding
initiation and propagation, circular debonding was idealized by removing the core and
bottom face layer in the debonded area. For the EMI measurements, a single PWAS
of dimensions ∅10× 0.25 mm2 (PIC 255 material provided by PI Ceramic GmbH) was
adhesively bonded (by LOCTITE EA 9466) to the center of the top face layer, i.e., directly
above the debonded area. The material properties are presented later in Section 2.3.

Honeycomb CoreBottom Face Layer Removed Face Layer and Core

Top Face Layer

Debonded AreaPWAS

Figure 1. Circular sandwich panel with central face layer debonding and applied PWAS (cut and
non-scaled visualization).

2.3. Synthetic EMI Data Generation

The synthetic data were EMI spectra that were simulated by the variation of the
material parameters of a number of multi-physics FE models that included different face
layer debonding sizes.

2.3.1. Simulation Model

The FE model was set up by the commercially available FE analysis software, Abaqus,
provided by Dassault Systemes. The direct-solution steady-state dynamics analysis of
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Abaqus/Standard was used to simulate the dynamic response to harmonic excitation for
the same 801 frequencies as measured on the physical test specimen (see Section 2.4). For
efficiency, and to test the influence of unreflected features (e.g., all asymmetric modes
and local resonances within core cells;, cf., [9]) in the training data, the FE model of the
(in reality, orthotropic) sandwich structure was strongly simplified to an axisymmetric, and
thus two-dimensional FE model. Consequently, the orthotropic honeycomb structure of the
core was neglected, and was modeled by volume elements with homogenized transverse
isotropic material properties (G12 = G23 = (G12 + G23)/2). Figure 2 presents the employed
FE model.

Top Face Layer

1

2

Bottom Face LayerPWAS Honeycomb Core

Centerline
(a)

(b)Removed Face
Layer and Core

Figure 2. Axisymmetric FE model of sandwich panel in (a) pristine condition, and (b) with face layer
debonding of a radius of 8.33 mm (non-scaled visualization).

The dimensions of the FE model were according to the considered test specimen (see
Section 2.2). The face layers were modeled by quadratic, axisymmetric shell elements
(Abaqus: SAX2). The core was modeled by quadratic, axisymmetric, and reduced inte-
grated elements (Abaqus: CAX8R). The PWAS was modeled by quadratic, axisymmetric,
piezoelectric, and reduced integrated elements (Abaqus: CAX8RE). The face layers were
assumed to be perfectly bonded to the core and PWAS, and thus connected by tie con-
straints. The basic model discretization was based on a previous study that experimentally
validated the model on an identical sandwich structure with idealized debonding damage.
For further details of the FE model, see Kralovec [9]. The idealized debonding was mod-
eled by simply removing the elements from the bottom face layer and the core, i.e., every
damage size had its own FE model, where the remaining mesh was unchanged in respect
of the pristine condition. Consequently, the simulated debonding sizes were modeled
perfectly circularly, and were predefined by the model discretization. For the present
work, the considered debonding sizes were given by their radius. Simulated debonding
radii are {0, 0.3125, . . . 5, 6.6670, . . . 10, 12, . . . 40}mm: thus, 35 different FE models were
used (including pristine condition). The material properties used for the FE models were
typically from manufacturer data sheets; however, these always differed from the true
properties, thus resulting in deviations between simulated and measured results. This
could be addressed by, e.g., model updating during the initial pristine condition of a
monitored structure of interest. However, due to, e.g., environmental conditions—such as
temperature, moisture, or surface pollution—the properties of the structure could also vary
during operation. To overcome these issues, we included possible variations of the material
properties, via a large FE-simulation-based parameter study implemented by the software
OptiSLang 8.0.0, provided by ANSYS Inc. Table 1 presents the considered material parame-
ter ranges. The reference values were taken from manufacturer data sheets, or were typical
values from the literature [2,9]. The parameter ranges represented extreme values found in
data sheets and the literature, or were simply estimated within a spacious but meaningful
range. The parameter range, in percent, was an additive scaling factor for all parameters in
the table row, i.e., these parameters were assumed to change relative to one other, which
(i) seemed reasonable, and (ii) strongly reduced the parameter space. The following are
some arguments for the parameter range selection. The density of aluminum is exacted to
be very constant, as it is defined by the alloy elements. However, the aluminum honeycomb
core can be easily stretched or compressed during manufacturing: thus, its density and
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stiffness may vary together in a larger range. The Young’s modulus of aluminum typically
varies in a narrow range. The review of different data sheets yielded the assumed parameter
range. The Poisson’s ratio was found to be very constant for aluminum. Typical values
for structural damping of mechanical structures are 0–0.05 [2]. The structural damping of
aluminum is low. The aluminum honeycomb core was assumed to have stronger damping
properties, due to the enclosed air. For the PWAS material parameter range, no adequate
literature was found: thus, a small scattering was assumed to include the influence of
these parameters.

Table 1. Range for material parameter variations considered for the FE parameter study.

Parameter Unit Reference Value Range

face layer

density kg/m3 2660 –
Young’s modulus GPa 70 ±3%
Poisson’s ratio 1 0.33 –
structural damping 0.01 0.0–0.05

honeycomb

density kg/m3 59.3 }
±18%Young’s moduli E11,E22,E33 GPa 0.634, 0.001, 0.001

shear moduli G12,G23,G23 GPa 0.137, 0.001, 0.275
structural damping 1 0.02 0.0–0.05

PWAS

density kg/m3 7800 –
Poisson’s ratio 1 0.34 –
elastic compliance coefficients
sE

11, sE
22

m2/N {16.1, 20.7} × 10−12 ±5%

coupling factor for
transverse oscillation 1 0.35 –

relative permitivity εT
22, εT

11 1 {1750, 1650} ε0 ±5%
piezoelectric large-signal
deformation coefficient
d21, d22, d15

C/N {−180, 400, 550} × 10−12 ±5%

dielectric loss factor tan(δ) 0.02 –

To cover the material parameter space, space-filling Latin hypercube sampling was
applied, with a sample size of 200: thus, a total of 35 damage states × 200 parameter
variations = 7000 simulation results were generated (with 801 discrete dynamic frequency
responses each). The overall computation time on a desktop machine was about 29 days.
Using piezoelectric elements to model the PWAS in Abaqus, the dynamic frequency re-
sponse was given by the frequency-dependent complex nodal charge output, Qk( f ), where
k ∈ Ne were the nodes of the PWAS electrode supplied by the harmonic excitation voltage
signal with constant amplitude Ufe. The nodal charges could be used to calculate the
complex impedance of the PWAS for the i = 1 . . . 801 frequencies fi, and thus, for the whole
electromechanical system, by [9,29]

Z( fi) = Ufe

[
j2π fi

( Ne

∑
k=1

Qk( fi)︸ ︷︷ ︸
FE result

− jδεT
33

Ufe
tp

Ap︸ ︷︷ ︸
electrical
damping

)]−1

, (2)

where Ap, tp and δ were the electrode area, the thickness, and the dielectric loss factor of
the PWAS, respectively. The latter could also vary in a range of ±20%. Thus, varying the

63



Sensors 2023, 23, 2910

dielectric loss factor arbitrarily within this range enabled us to further multiply the synthetic
data generated for training. In the present work, five arbitrarily selected values for the
dielectric loss factor were used, thus yielding a theoretical number of 35,000 calculated EMI
spectra. However, some of the generated parameter combinations did not give meaningful
results, and were thus sifted out, yielding a final number of used synthetic EMI spectra
of 34,152.

2.3.2. Simulated Data

The FE-based simulation results were 34,152 complex EMI spectra of different perfectly
circular debonding sizes and varying material parameters (cf., Section 2.3). Each of the
simulated EMI spectra consisted of 801 complex values, which were evenly distributed over
the measured frequency range of 0.004 kHz to 60 kHz (i.e., the simulated and measured
results were at the same frequencies). For the selection of the material parameters, space-
filling Latin hypercube sampling was used: thus, there was no sequence of simulation
results in which the effect of a single parameter might be illustrated. However, Figure 3
shows the real part of a number of simulated EMI spectra, which reflect the influence of
different debonding sizes (cf., Figure 3a) and the influence of the varied material properties
for a constant debonding size (cf., Figure 3b).

Figure 3. Examples of synthetic EMI spectra simulated by the FE model of the sandwich plate, with
different arbitrarily selected material properties and (a) different debonding sizes, (b) debonding
radius of 24 mm.

For the circular plate with debonding, clearly higher and more resonance peaks can
be observed than in the pristine case (i.e., damage radius 0; cf., Figure 3a). Furthermore,
with debonding size increase, more resonance peaks appear at lower frequencies. Some
of the first significant resonance peaks could be assigned to axisymmetric resonances
of the debonded face layer, as demonstrated in [9]. Generally, it is difficult to conclude
on specific effects of the debonding size on the simulated EMI spectra, as the material
properties varied, and strongly influenced the baseline and resonance peak heights and
frequencies (cf., Figure 3b). However, the intended representation of a wide range of
material parameters in the simulated EMI spectra seems to have been achieved.

2.4. Real-World EMI Data Generation

The real-world data were EMI spectra that were measured on the considered test spec-
imen with debonding sizes increased stepwise, and different artificial disturbances applied.

2.4.1. Measurement Setup and Procedure

The experimental setup for the real-world EMI measurements is presented in Figure 4.
The aluminum sandwich panel was placed on foamed polymer, to allow free vibration.

The PWAS was electrically connected, via soldered 400 mm-long AWG 20 cables, to the
four-terminal probe, type L2000, of the impedance analyzer, type IM3570—both provided
by the Hioki E.E. Corporation. The excitation voltage amplitude of 5

√
2 was constant over

the whole considered frequency range of 0.004 kHz to 60 kHz. The frequency range was
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discretized by 800 evenly distributed steps, thus resulting in 801 complex impedance values
per measurement. The excitation speed of the impedance analyzer was set to medium,
and the averaging was set to three, to get a good balance between measurement noise and
efficiency. In total, 225 EMI measurements were conducted, including both pristine and
damaged states. The debonding was manufactured successively by removing, stepwise,
the bottom face layer and the core, by milling. Figure 5 shows the clamped sandwich panel
after tooling different debonding sizes in the milling machine.

Figure 4. Setup for real-world EMI measurements.

Figure 5. Circular sandwich plate clamped in the milling machine, with a debonding of the radius of
(a) 2.5 mm, and (b) 40 mm.

The manufactured and measured 25 different debonding sizes are summarized in
Table 2. The debonding shapes were mostly perfectly circular. Five debonding sizes had an
elongated shape, which was manufactured by simply elongating the readily existing hole
symmetrically along one arbitrary direction, until its largest extent had the value given in
Table 2.

Table 2. Experimentally measured debonding sizes in mm.

0 1.5 2.5 3.5 4.5 5.5 7 * 8 10 * 12 14 16 * 17
19 21 23 * 25 27 29 31 * 33 35 37 39 40

* elongated shape.

Furthermore, eight artificial environmental disturbances were used to influence the
EMI measurements. The used disturbances were local forces and damping applied by
human fingers, by a whole human hand, and by small modeling compound rolls. These
disturbances were found, in previous experimental tests, to influence the measured EMI
spectrum, and are summarized in Table 3.

Figure 6 shows four examples of the application of these disturbances.
For every debonding size, one EMI spectrum was measured without any disturbance,

sequentially followed by EMI measurements with the disturbances presented in Table 3.
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Thus, nine measurements were done per debonding size, yielding a total number of 25
damage states × 9 disturbance states = 225 experimentally measured EMI spectra.

Table 3. Artificial environmental disturbances of EMI measurements.

Type Approximate Total Load
Approximate Distance Plate

Center to First Contact

whole hand 10 N 25 mm
one finger 10 N 25 mm
two finger 10 N 25 mm

three finger 10 N 25 mm
one roll - 25 mm

two rolls - 25 mm
three rolls - 25 mm
four rolls - 25 mm

Figure 6. Examples of artificial disturbances: (a) hand next to PWAS; (b) one finger next to PWAS;
(c) one modeling compound roll next to PWAS; (d) four modeling compound rolls next to PWAS.

2.4.2. Measured Data

The results of the real-world EMI measurements were 225 complex impedance spectra
of different debonding states and additional artificial environmental disturbances. Each
of the EMI spectra consisted of 801 complex values, which were evenly distributed over
the measured frequency range of 0.004 kHz to 60 kHz. Figure 7 presents the real part of
a number of measured EMI spectra for (a) comparatively small, and (b) middle-range
debonding sizes.

Readily small debonding sizes clearly changed the EMI spectra from the pristine
state (debonding radius 0, cf., Figure 7a). With increasing debonding size, single very
sharp resonance peaks appeared in the low-frequency range of the spectra (below 10 kHz).
Furthermore, resonance frequency accumulations seem to have taken place around specific
frequencies (e.g., at 17 kHz and 50 kHz for a debonding radius of 8 mm), yielding significant
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deviations from the pristine spectra. Moreover, the values of the presented EMI spectra
generally increased with debonding size, and the resonances tended to lower in their
frequencies. Similar trends may be seen also for middle-range debonding sizes; however,
they are not clear anymore, as can be seen in Figure 7b. Similar experimental results
were also found by the authors, in a previous work, for EMI measurements on identical
circular sandwich plates with artificial debonding of a thickness of 20 mm and 40 mm,
where the correlation between dominant resonance frequencies in the low-frequency range
and the first eigenmodes of the debonded face layer was analytically, numerically, and
experimentally demonstrated [9].

Figure 7. Examples of measured EMI spectra of the sandwich plate without any artificial disturbance,
and with different perfectly circular debondings of (a) small size, and (b) middle-range size.

In addition to the debonding size, other effects—such as measurement noise, ambient
noise, pollution, and environmental temperature changes—may also have an influence
on real-world EMI measurements [37,38]. Therefore, in the present work, strong artificial
disturbances were applied, to test the robustness of the proposed evaluation method,
and also to test some possible environmental influences during the operational life of a
structural component. Figure 8 presents the real part of a number of EMI spectra measured
on the circular sandwich plate, with perfectly circular debonding of the radius of 29 mm,
and different applied artificial disturbances (cf., Section 2.4).

The effects of the artificial disturbances could be clearly observed in the measured
EMI spectra. As expected, all applied disturbances resulted in a damping effect, that
reduced the resonance peaks and smoothed out the spectra. For modeling compound
rolls, the resonances additionally shifted towards lower frequencies, and the baseline of
the EMI spectra appeared slightly increased. This may also have been due to the added
mass. All the applied artificial disturbances clearly influenced the measured EMI spectra.
Generally, the influence increased with the application of more fingers or more compound
rolls. Furthermore, the influence of the artificial disturbances on the EMI spectra increased
with the debonding size, in particular, when the disturbing fingers, compound rolls, etc.,
were readily located within the debonded area.

Figure 8. Examples of measured EMI spectra of the sandwich plate with perfectly circular debonding
of the 29 mm radius, and (a) hand and fingers, (b) compound rolls applied as artificial disturbances.
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3. Data Preprocessing

A three-step approach was implemented for preprocessing the input data for the
ML-based evaluation, in order to decrease its dimensionality and, at the same time, im-
prove the robustness of the overall method: firstly, relevant frequencies were identified
through analysis of the frequency spectrum, allowing for the elimination of unnecessary
information; secondly, a log-scaled filterbank was applied to the data, leading to more
robust representation, in terms of slight variations in resonance frequencies; lastly, a discrete
cosine transform (DCT) was applied to the processed data, for further data compression
and smoothing of the spectrum. After each step, it was important to confirm that enough
relevant information was still present in the data. To ensure this, a well-known data explo-
ration technique called t-SNE (t-distributed stochastic neighbor embedding) was applied.
T-SNE is a non-linear, unsupervised technique for visualizing high-dimensional data in 2D
or 3D maps, which preserves the local data structure: that is, data points close to each other
in high-dimensional space will end up close to each other in low-dimensional space. This
technique allows for the visualization of high-dimensional data in a lower-dimensional
space, making it easier to identify patterns, and to confirm the preservation of relevant
information. This way, the original data representation, with a dimensionality of 801, was
reduced to only 31.

The features obtained through the preprocessing steps were then extracted from both the
synthetic and the real-world EMI data, before conducting the ML-based damage evaluation
experiments described in Section 4. The real-world EMI data were additionally calibrated
to the synthetic data, to compensate for the strong simplifications of the FE model (see
Section 2.3) used to generate the synthetic data. The finally defined preprocessing for the
ML-based damage evaluation of real-world EMI data is depicted in Figure 9, for a better
overview. The preprocessing for synthetic EMI data was the same, but without the calibration.

3.1. Feature Engineering

The goal of feature engineering is to improve the performance and robustness of
ML-based algorithms: to this end, the dimensionality of data can be reduced for denoising
purposes, and features can be developed to extract relevant information, while at the same
time suppressing irrelevant information. The features used in this analysis were obtained
through the process of feature engineering using exclusively synthetic data.

We started with an exploration of the raw synthetic spectra, by looking at damage size-
specific characteristics, to identify the most informative range of frequencies. In Figure 10,
we can see the mean and standard deviation values of each damage size individually.

Figure 9. Flowchart of the preprocessing for real-world EMI data, where the original data representation,
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with 801 spectral bins (real part of impedance), was reduced step-by-step to only 31 DCT coefficients.
The calibration process involved the adjustment of pristine real-world spectra to match pristine
synthetic spectra. In the case that we only propagated a subset of the signal to the next step, it is
outlined accordingly by a dashed window.

Figure 10. Summary of raw synthetic EMI spectra, scaled to have zero mean and unit standard
deviation, for better clarity. The centerline is the mean value, and the surrounding translucent
range represents the standard deviation per frequency of all spectra with the same damage size
(approximately 1000 each).

Note that we scaled the spectra to have zero mean and unit standard deviation, for
better clarity. In general, it can be seen that different damage sizes caused peaks (i.e.,
resonances) at different frequencies. However, frequencies below 1.3 kHz were found to
be less informative (see Figure 10 detail), and were therefore excluded. Furthermore, the
size-specific damage peaks were less pronounced, between 28 kHz and 46 kHz. Given our
knowledge, from previous work, about the precision decrease of the simulation results
with increasing frequency, and the clear objective to find an efficient evaluation method, we
defined a frequency range between 1.3 kHz and 28 kHz to be considered, thereby readily
shrinking the dimensionality of the data to less than half. With the help of the previously
mentioned t-SNE plots, it was possible to further optimize the frequency range from
1.3 kHz to 24 kHz, i.e., only 38% of the available data. Figure 11 shows the clear structure
of the t-SNE plot of the finally used frequency range.

The central cluster consisted of comparatively small damage sizes up to a radius of
5 mm. Furthermore, there was some overlap for very small damage sizes (debonding
radius < 2 mm) in the lower part.

After identifying the relevant frequencies, a filterbank was applied, which consisted
of triangular filters that were 50% overlapping, and uniformly spaced on a logarithmic fre-
quency scale. The overlapping of the filters allowed for a more fine-grained representation
of the frequency spectrum, while the logarithmic spacing ensured that the filterbank was
more sensitive to lower frequencies than to higher frequencies. This led to a more robust
representation in terms of slight variations in resonance frequencies, while at the same
time compressing the frequency axis of the spectrum. Additionally, log-scaling the mag-
nitude compressed the dynamic range of the spectrum, which can be useful for handling
signals with wide variations in amplitude. Considering the range of frequencies obtained
in the previous step, and the filterbank configuration, a log-scaled spectrum with 66 bins
was computed.
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Figure 11. 2D T-SNE embedding of synthetic data of the final frequency range from 1.3 kHz to 24 kHz,
with a clear structure. The big cluster in the center comprises smaller defects up to 5 mm, and only
very small defects (<2 mm) seem to overlap a lot (lower part of the center cluster).

Finally, the log-scaled spectrum obtained through the previous steps was transformed,
using the DTC [39]. The DCT is a mathematical technique used to decorrelate and transform
data into a new coordinate system: that is, orthogonal cosine basis vectors with specific
frequencies. The resulting transformed data will be a set of uncorrelated basis vectors, each
representing a different frequency component of the original data. This step can further
improve the robustness and efficiency of the data representation, by eliminating the depen-
dencies between the data, furthermore only keeping the lower-order coefficients of the DCT
results, in a signal that is more compact, and less affected by irrelevant information. This is
based on the assumption that a signal can be separated—at least to a certain extent—into
low-order components comprising relevant information, and high-order components that
are irrelevant to the ML model, to perform the task at hand. In other words, the lower
DCT coefficients represent a low-pass filtered spectrum that converges to its envelope.
Furthermore, ignoring the 0th DCT coefficient increases the robustness of the method even
further, by eliminating the dependency on the overall energy level of the signal.

The final feature vector consisted of 31 DCT coefficients that were computed on a
log-scaled spectrum that exhibited a frequency range from 1.3 kHz to 24 kHz. This feature
vector, which represented a robust and compact representation of the input signal, captured
the essential spectral information relevant to damage identification. In the case of real-
world data, there was an additional calibration step required, which is discussed in the
next Section.

3.2. Calibration of Real-World EMI Data

The real-world data (i.e., the measured EMI spectra) were calibrated to the synthetic
data (i.e., the simulated EMI spectra), to increase comparability. Therefore, it was possible to
evaluate real-world EMI spectra by synthetic data-based features and ML models. This data
preprocessing step was required, as the FE model used for the simulation of the synthetic
EMI spectra was strongly simplified, to increase efficiency and robustness. The applied
calibration was a simple shift of the real-world EMI spectra Zr

i by the difference of the
frequency-dependent mean values of the real-world pristine data μ

Z,r,p
i and the synthetic

pristine data μ
Z,s,p
i , thereby aligning the pristine spectra of the real-world measurements

and the synthetic simulations. For illustration, Figure 12 shows the mean real-world EMI
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spectra μ
Z,r,p
i for all measurements at the pristine sandwich panel, and the mean synthetic

EMI spectra for all simulations by the pristine FE model μ
Z,s,p
i .

Figure 12. Difference between mean EMI spectra of all pristine real-world EMI spectra and mean
EMI spectra of all pristine synthetic EMI spectra used to calibrate single real-world EMI spectra
before evaluation.

Furthermore, the difference between the two mean spectra used to shift, and thus
calibrate, the real-world data is highlighted. This difference was used to calculate the
calibrated real-world EMI spectra by

Zr,C
i = Zr

i − (μ
Z,r,p
i − μ

Z,s,p
i ), (3)

where i represents the bin of the spectrum (i.e., the 801 discrete frequency steps).

4. Data Evaluation Experiments

The data evaluation experiments tested a number of frequently used ML models for
evaluating the existence and the size of a potential sandwich debonding. For a fair and
meaningful comparison of the ML models, with respect to their performance, the available
EMI spectra were split into arbitrary subsets, and the experiments were repeated at each of
the subsets, thereby also enabling the evaluation of the consistency of the results, and thus
the robustness of each ML model when repeated.

4.1. Debonding Detection by Anomaly Detection

In this Section, the results of the evaluation experiments for damage detection by
anomaly detection methods are presented: firstly, the setup of the experiments is described;
secondly, the results of synthetic EMI spectra are presented, i.e., the models are trained and
tested by synthetic data; thirdly, the results of real-world EMI spectra are presented, i.e., the
models are trained exclusively by synthetic data, but tested by calibrated real-world data.

4.1.1. Setup of Experiments

The problem of anomaly detection was formulated as a novelty detection problem.
The training data were not polluted by anomalies, and whether or not a new observation
was an anomaly was evaluated. This could be done with the following models, which only
needed normal data to learn their characteristics and identify deviations from this pattern
as anomalies [40–42]:

1. Isolation Forest is an ensemble of binary trees specifically trained to isolate anomalies;
decisions are made based on depth, where anomalous data points have shorter
average depths in the tree structure;

2. One-Class Support Vector Machine (SVM) learns a boundary around the normal data
points, which can be used to identify data points that deviate significantly from the
normal data;
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3. Elliptic Envelope assumes that the data are normally distributed, and fits an ellipse
around them; the ellipse is determined by the mean and covariance of the data, and
the assumption that anomalies are located in low-density regions.

For a fair and meaningful comparison, a cross-validation setting, which produced
consistent results when experiments were repeated, was set up. The following setting was
found to be adequate: the cross-validation used 128 splits, and 95% randomly picked EMI
spectra from the pristine FE simulation model (synthetic data) as training data. For the
experiments with synthetic data, the remaining 5% of the pristine, and all the anomalous
EMI spectra examples, were used as test data. For the experiments with real-world data,
only the real-world data were used as test data. All the models used the same cross-
validation splits for training and testing.

4.1.2. Results on Synthetic Data

Figure 13 presents the results of the anomaly detection methods on synthetic data.

Figure 13. Anomaly detection results on synthetic data, by different ML models. According to
balanced accuracy, the Isolation Forest and One-Class SVM seemed to perform reasonably well. The
Elliptic Envelope exhibited the worst performance, due to a relatively high false positive rate.

The height of the bars refers to the mean value, and the error bars correspond to one
standard deviation. According to balanced accuracy, the Isolation Forest and One-Class
SVM seemed to perform reasonably well, while the Elliptic Envelope exhibited the worst
performance. The ROC AUC metric did not reflect this as clearly, and should therefore be
considered less appropriate in this setting. On closer inspection, the bad performance of
the Elliptic Envelope was caused by a relatively high false positive rate on small damage
sizes. A false positive example represented an anomalous example that was classified
as normal (i.e., pristine), and a true negative example represented a correctly classified
anomaly (i.e., damaged). Therefore, the false positive and true negative rates covered the
performance of the complete set of anomalous examples, and always summed up to 1. In
Figure 14, the false positive and true negative rates from the same experiment, with a focus
on the comparatively small debonding radii of 2.2 mm and 2.5 mm, are shown.

In that regard, the Isolation Forest was the best-performing model, while the Elliptic
Envelope had the poorest performance. Debonding sizes larger than a radius of 2.5 mm
were accurately and consistently detected by all models.
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Figure 14. Anomaly detection results, on synthetic data, of small debonding radii of 2.2 mm and
2.5 mm. Larger damage was consistently detected accurately by all models.

4.1.3. Results on Real-World Data

Figure 15 presents the evaluation results of the real-world EMI spectra measurements.

Figure 15. Anomaly detection results on real-world data.

Interestingly, compared to the results of synthetic data, the ranking of the performance
of the models was preserved, where the One-Class SVM was the best, and the Elliptic En-
velope was the worst performing model. However, this time there was a greater difference
in performance, with respect to the considered damage sizes. Figure 16 shows the false
positive rate of each model, with respect to damage size.

Figure 16. False positive rates of real-world data.

As can be seen, smaller damages could not be correctly classified as anomalous. This
was to be expected, given the geometric structure of the honeycomb core of the considered
sandwich panel. The core material consisted of hexagonal cells with thin aluminum walls,
whose core cells were oriented normally to the face layers, and had a size of 3/8′′ (i.e.,
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they enclosed a circle with a 4.75 mm radius). Furthermore, it can be confirmed that only
the One-Class SVM consistently detected damage > 3.5 mm, which was the reason for its
best performance among the models. The Elliptic Envelope exhibited unexpectedly good
performance on damage with 3.5 mm and 4.5 mm, but the reasons remain unclear at this
time, and are still under investigation. According to these results, the One-Class SVM
turned out to be the best-suited model, as the good performance of the synthetic data was
well-aligned to the performance of the real-world data.

4.2. Debonding Radius Estimation by Regression

In this Section, the results of the evaluation experiments for debonding radius estima-
tion by regression methods are presented: firstly, the setup of the experiments is described;
secondly, the results of the synthetic EMI spectra are presented (i.e., the models trained and
tested by synthetic data); thirdly, the results of real-world EMI spectra are presented (i.e.,
the models trained exclusively by synthetic data, but tested by calibrated real-world data),
and are compared to a baseline previously published by Kralovec [9].

4.2.1. Setup of Experiments

The regression problem, where the debonding size had to be estimated based on the
EMI measurement data, was realized by a baseline algorithm (BASE; a simple nearest-
neighbor-based approach proposed by Kralovec [9], which works directly on the spectra of
the measurements) and the following frequently used algorithms [43–45]:

1. K-Nearest Neighbor (KNN), which selects the K-Nearest Neighbors, based on a chosen
distance (we used Euclidean distance and K = 1), and outputs the corresponding
target value;

2. Support Vector Regression (SVR), which is the counterpart of the nonlinear SVM
algorithm for regression problems;

3. Multilayer Perceptron (MLP), which is a fully connected, feed-forward multi-layer
neural network. We implemented one with just a single hidden layer of 48 neurons
(MLP_48), and another with two hidden layers of 64 and 32 neurons (MLP_64.32).

The nearest-neighbor-based method (KNN) is interesting, insofar as the only difference
to the baseline (BASE) is the representation of the measurement data: that is, the baseline
takes the raw spectra as input, and the novel method takes the features computed from the
raw spectra (data preprocessing) as input. Therefore, we could evaluate the impact of our
feature extraction pipeline in the most meaningful way.

As with the previous debonding detection task (see Section 4.1), a cross-validation
setting that produced consistent results when repeated was needed, to compare the models
fairly. This time, the cross-validation used 32 splits, and 90% randomly picked examples as
training data. For the experiments with synthetic data, the remaining 10% of the examples
were used as test data. For the experiments with real-world data, only the real-world data
were used as test data. All the models used the same cross-validation splits for training
and testing.

4.2.2. Results on Synthetic Data

Figure 17 presents the regression results for the synthetic data set.
Compared to the baseline (BASE), all methods gave substantially better results,

whereas the nearest-neighbor-based method (KNN) yielded the smallest overall Mean
Squared Error (MSE). The MLP with higher capacity (MLP_64.32) predictably gave better
results than the simpler MLP architecture with fewer neurons (MLP_48), and was on a par
with the performance of the SVR.
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Figure 17. Regression results on synthetic data. Note the logarithmic scale on the y-axis. Compared to
the baseline (BASE), all methods gave substantially better results, whereas the nearest-neighbor-based
method (KNN) yielded the smallest overall MSE.

In Figure 18, a closer look at the results is given.

Figure 18. Relative contribution to the overall MSE, for each defect size, of synthetic data.

Here, the relative contribution to the MSE of each damage size is presented. Note that
in such a visualization, the performance of the models cannot be compared in terms of MSE,
but it sheds light on the behavior with respect to damage size. As can be seen, three different
characteristics of the models can be distinguished: firstly, an increased error-proneness
with increasing damage size (BASE); secondly, perfect handling of damage with ≥5 mm
radius, and higher error-proneness with damage < 5 mm radius (KNN); thirdly, higher
error-proneness only with small (0–2.5 mm radius) and large damage (>30 mm radius)
(SVR, MLP_48, MLP_64.32).

4.2.3. Results on Real-World Data

Figure 19 presents the regression results of the real-world EMI measurements.
The MSE increased compared to the results on the synthetic data. This was expected,

as no real-world data were used for training any of the models. All methods, except
the baseline (BASE) and the smallest neural network (MLP_48), seemed to generalize
reasonably well to unseen data. Similar to the anomaly detection task, the ranking between
models, compared to the results of the synthetic data, was preserved, and the nearest-
neighbor-based method (KNN) yielded the smallest MSE. Additionally, the results of KNN
and SVR seemed to exhibit very small variances, which was also consistent with the results
of the synthetic data. MLP_48 yielded the highest MSE, matching approximately the
performance of the baseline (BASE).
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Figure 19. Regression results on real-world data. All methods except the baseline (BASE) and the
smallest neural network (MLP_48) seemed to generalize reasonably well to unseen data.

In Figure 20, the relative contribution to the MSE of each damage size is presented.

Figure 20. Relative contribution to the overall MSE, for each defect size, of real-world data.

Compared to the results of the synthetic data, the behavior of the models was quite
different. To give an example, the contribution to MSE increased for the baseline (BASE)
with defect size for synthetic data, but for real-world data, the highest contributions came
from the normal examples with no defect, and the largest damage with 40.0 mm. On
the other hand, the increased error-proneness with increasing damage size, which was
noticed for the baseline (BASE) (see Figure 19), could now be observed in the MLP-based
algorithms (MLP_48, MLP_64.32). The low variance that had already been observed with
respect to MSE for KNN and SVR (see Figure 19) could also be observed here. This clearly
indicates that the weaknesses of these models did not change, even when slightly different
training data were used.

The erratic behavior of the baseline (BASE), especially for normal measurements—where
often large damage sizes were predicted—rendered it unreliable. Given the overall low
MSE and consistency of the results, the KNN algorithm seemed to be the best choice for
damage size estimation, followed by the SVR. The MLP-based algorithms might perform
better if more architectures were evaluated, but from those considered, only the more
complex one (MLP_64.32) could outperform even the baseline.

5. Discussion

5.1. Evaluation Experiments

In the present research, great care was taken to meticulously select an appropriate
cross-validation setup for each task individually, recognizing that this crucial step is over-
looked in many studies. Thus, each experimental setup with cross-validation produced
consistent results when repeated. Interestingly, the ranking of models was preserved
between synthetic and real-world data for both tasks: this demonstrated that the syn-
thetic data, in combination with the experimental setup, were sufficiently accurate for
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developing methods for a specific task, and for determining their relative performance in
real-world settings.

5.2. Preprocessing

It is important to understand that although exclusively synthetic data were used to set
up the complete preprocessing pipeline and ML models for evaluation, real-world data
were still needed for calibration purposes. However, this was not a significant issue in
practice, as the calibration process only required pristine baseline samples, which could
be easily collected during the installation of the sensor network and the corresponding
data acquisition system. Despite this, the value is recognized of further investigating more
advanced preprocessing methods that could eliminate the need for calibration altogether.

5.3. Data

There are numerous disturbing influences on EMI measurements of operating me-
chanical structures, and thus challenges to the robustness of damage evaluation methods.
The present research does not reflect all of these. Among them, measurement disturbances
by ambient structural vibrations should be highlighted, as the results presented for the
proposed two-step evaluation approach used comparatively low frequencies, and recent
studies clearly show its relevance [38,46].

Thus, future research will address the approach’s robustness against ambient structural
vibrations. Further frequently reported and not directly addressed influences on EMI
measurements are temperature and moisture, as these are not expected to significantly
affect aluminum sandwich panels. However, other important lightweight design materials,
e.g., fiber-reinforced polymer composite, are well-known to be sensitive to temperature
and moisture. The authors expect that an FE parameter study that also considers the
density change of the face layers will reflect all parameters that are affected by temperature
and moisture, and thus also allow damage evaluation in composite materials. This is also
supported, as the real-world EMI data used for model testing already include measurements
of unknown elongated debondings and artificial disturbances, which may have effects
similar to temperature and moisture on composite properties. However, extended studies
should also include composite materials and the examination of other non-idealized types
of damages, such as delamination and cracks. The proposed physics-based two-step
approach is expected to be applicable to all these cases, but may require inefficiently
detailed FE models.

The considered debonding in the FE model is a strong idealization, and the results
of the real-world measurements may also be interpreted as the identification of a hole in
the back side of the sandwich panel. However, unpublished simulations with the same
FE model, but with the remaining core and back-side face layer, show very similar charac-
teristics of the EMI spectra. This is also supported by previous results of the authors [9],
who found a clear correlation between the resonances in the EMI spectra and the debonded
face layer area. Furthermore, damages distant from the sensor are expected to be very
challenging to the proposed approach, due to the strongly increased parameter space.
Nevertheless, today’s computational power, and the fusion of the data of a sensor array,
are considered promising for solving this issue.

It is noteworthy that, while the real-world data used in this study provided valuable
insights, the sample size was limited; therefore, the conclusions drawn from it should be
considered within the scope of this limitation. Further research, with a larger and more
diverse set of real-world data, is necessary, to fully validate the results and conclusions of
this study.

5.4. Debonding Detection by Anomaly Detection

Depending on the material properties, small damages may only be detectable if a
relatively high rate of false negatives (i.e., normal examples classified as anomalous) is
accepted. However, by monitoring over a longer period of time, and evaluating summary

77



Sensors 2023, 23, 2910

statistics, satisfactory results may still be obtained. In regard to the real-world specimen
used in this study, it might not be considered practical to investigate debonding damage
sizes that are smaller than the size of the honeycomb core cells. However, the ability of the
proposed method to identify even smaller damages could be useful in certain applications,
such as predictive maintenance. These applications may also be supported by the short data
evaluation times of the considered ML models, which are in the magnitude of 1/10−3 (for
damage detection) and 1/10−5 (for damage size estimation) of the duration of a real-world
EMI measurement.

Overall, the results are promising, and provide valuable insights into the use of
anomaly detection models for identifying damage in sandwich panels.

5.5. Debonding Size Estimation by Regression

One of the main disadvantages of using the KNN approach is that it requires the
traversal of the entire training data set during inference; therefore, the running time of
a KNN is directly proportional to the number of examples in the data set, which means
that the larger the data set, the more time-consuming the process will be. This can lead
to increased computational time and memory usage, particularly when dealing with
large data sets. In cases where real-time or near-real-time predictions are needed, the KNN
approach may not be the most efficient choice, due to this requirement. If the computational
efficiency is less important, the KNN results may be further improved by increasing K,
the number of considered NNs. However, as most of the time the NNs correspond to
the same target value, little improvement is expected. The ML models considered in
the present research showed short data evaluation times in the magnitude of 1/10−3 of
the duration of a real-world EMI measurement, and thus were hardly constrained in
their possible applications. This efficiency may even question the need for the previous
anomaly detection step. However, anomaly detection is (i) believed to be more robust in
the evaluation of data that strongly deviate from the used training data, and (ii) 100-times
faster, which appears meaningful for applications where normal data (data from the pristine
structure) are predominantly evaluated.

6. Conclusions

The presented results clearly demonstrate the applicability of the proposed two-step
physics- and ML-based EMI spectra evaluation approach for sandwich debonding detection
and size estimation. The approach is capable of evaluating measured real-world EMI
spectra exclusively based on synthetic, FE-simulated EMI spectra for debonding detection
(step one) and debonding size estimation (step two). In addition, the feature engineering
and the evaluation model development are conducted exclusively based on synthetic,
FE-simulated EMI spectra. Therefore, the approach is very economic, compared to training
with measured real-world data. The ML models applied for damage evaluation are, once
trained, approximately 105-times (for damage detection) and 103-times (for damage size
estimation) faster than the EMI measurement itself. This also enables quasi-real-time
applications and edge computing at small and lightweight local processing units.

The best performance for damage detection by real-world EMI data was given by
the combination of the developed data preprocessing with a One-Class SVM anomaly
detection model. Misclassifications were only given for radial debonding sizes below
2.5 mm, i.e., debondings smaller than the honeycomb core’s cell size. The best performance
for damage size estimation by real-world EMI data (1.7 mm MSE and 0.01 mm standard
deviation) was given by the combination of the developed data preprocessing with a
KNN regression model, which clearly outperformed a previous method used as a bench-
mark. Both the damage detection and the size estimation models were cross-validated,
and showed high consistency in their results. Furthermore, the physics-based two-step
approach demonstrated robustness against unknown artificial disturbances that were ap-
plied during real-world data acquisition. Data preprocessing was identified as the key
factor in the performance of the proposed two-step evaluation approach, which—after
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comprehensive data exploration—found the consideration of a frequency range between
1.3 kHz and 24 kHz to be sufficient. This strongly reduced the ML model complexity, and
allowed for a less discretized FE model, leading to a significant reduction in the simulation
costs of the synthetic data.

However, the application of synthetic data-based features to the evaluation of real-
world EMI measurement data still requires calibration to baseline measurements, to over-
come the strong simplifications of the used FE model—a drawback that shall be addressed
in future research. Future research must also investigate the proposed approach’s appli-
cability to other important materials (e.g., composites) and their peculiar damage types,
and damage evaluation with distant sensors. In addition, damage assessment with more
remote sensors, and the extension of the approach to data fusion of a sensor network, need
to be addressed.

The present work is also intended to promote future research in the field, by providing
the complete EMI spectra data and the full code for data exploration, data preprocessing,
and data evaluation (access see: Data Availability Statement).
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Abstract: Most imaging methods based on ultrasonic Lamb waves in structural health monitoring
requires reference signals, recorded in the intact state. This paper focuses on a novel baseline-free
method for damage localization using Lamb waves based on a hyperbolic algorithm. This method
employs a special array with a relatively small number of transducers and only one branch of the
hyperbola. The novel symmetrical array was arranged on plate structures to eliminate the direct
waves. The time difference between the received signals at symmetrical sensors was obtained
from the damage-scattered waves. The sequence of time difference for constructing the hyperbolic
trajectory was calculated by the cross-correlation method. Numerical simulation and experimental
measurements were implemented on an aluminum plate with a through-thickness hole in the current
state. The imaging results show that both the damages outside and inside the diamond-shaped arrays
can be localized, and the positioning error reaches the maximum for the diamond-shaped array with
the minimum size. The results indicate that the position of the through-hole in the aluminum plate
can be identified and localized by the proposed baseline-free method.

Keywords: Lamb waves; baseline-free; hyperbola; cross-correlation; damage localization

1. Introduction

Plate-like structures are widely used in the fields of mechanical engineering, civil
engineering, aerospace engineering and so on. During the fabrication and service process,
plate-like structures inevitably undergo various degrees of damage with the possibility of
failure under extreme conditions and environment. Structural health monitoring (SHM)
based on Lamb waves is an important means to effectively monitor the structural safety
and predict the service life of structures, due to its outstanding advantages of low at-
tenuation, long propagation distance, large detection area and, most importantly, high
sensitivity to structural damage and material inhomogeneity [1–4]. However, phenomena
like dispersion, multimodes and the mode conversion (change in wave velocity when the
wave interacts with structural discontinuities or boundaries) of Lamb waves make reliable
damage localization a challenging task, because it is difficult to effectively extract damage
features from the received signals.

In the process of damage localization, the typical detection technology is to refer to
the baseline signals, namely, to compare the signals in the current state with those in the
healthy state. A scattered signal containing some damage-related information (location,
size, orientation, type) can be obtained by performing reference signal subtraction. The
time of flight (ToF), which corresponds to the time taken by the wave packet to travel
from an actuator to a sensor along a certain path, is a straightforward feature of the
damage-scattered signal for damage localization. The ellipse and hyperbola algorithms
become the two most important methods for locating defects based on the ToF in plate-like
structures [5–10].

This technology will be very effective and accurate if damage is the only factor causing
the change in the baseline signals. In practice, operational and environmental conditions,
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such as stress, load, temperature, etc., are constantly changing, which may lead to significant
changes in the baseline signals and can easily overwhelm the signal changes caused by
damage [11,12]. This could cause significant errors and may even corrupt the damage
localization results.

To overcome such drawbacks, baseline-free damage detection algorithms have become
a focus in the development of SHM. An instantaneous baseline can be obtained through a
comparison between different sensor pairs that have a similar path [13], but the distance
of each pair must be kept identical. A large number of undamaged wave-propagating
paths are also required, which may not be satisfied simultaneously in practice. The time
reversal method (TRM) is widely used as a promising candidate for baseline-free damage
detection in thin-walled plate/shell-like structures [14]. It is based on the concept of spatial
reciprocity and time-reversal invariance, originally observed in acoustic waves [15]. This
is due to an input signal, which can be reconstructed at the source transducer, when
the output signal measured at the receiver transducer is time-reversed and emitted back.
Liu et al. [16] combined the probability imaging algorithm with the virtual time reversal
method to study the damage in a composite board by air-coupled sensors; the effects of the
damage type and size on the probability imaging algorithm were discussed to achieve the
baseline-free detection. Huang et al. [17] proposed a reciprocity index-based probabilistic
imaging algorithm to achieve the baseline-free identification of delamination on the path of
a piezoelectric piece. Kannusamy et al. [18] presented a refined time reversal method in
conjunction with the probability imaging algorithm for baseline-free damage localization
in thin plates, using a sparse array arrangement of piezoelectric wafer transducers.

However, the aforementioned methods need a lot of actuators/sensors to form enough
monitoring paths for damage localization. Damage in the survey areas, but not covered
by the monitoring paths, is hard to detect accurately. To circumvent these limitations,
damage can be detected and localized anywhere in the monitoring areas by using the ToF
of the damage-scattered signals. Wang and Yuan [19] applied the time reversal method
on the scattered signals so as to focus on the damage location and achieve the baseline-
free damage imaging using a delay and sum algorithm. Jeong et al. [20] obtained the
ToF information using the time reversal of a scattered Lamb wave and constructed a
baseline-free localization image by a beamforming technique. Jun and Lee [21] proposed
a new baseline-free technique, which combined a hybrid time reversal method with a
beamforming method using the ToF of the wave packets generated by the damage. In
general, TRM often requires a programmable transducer array to synthesize time-reverse
signals simultaneously, which limits its application due to the complexity and cost of the
hardware system. Therefore, a baseline-free method without complex manipulation, such
as time-reversal based on the ToF information, is urgently needed.

In addition to the ToF of the scattered signals, the time difference of arrival (TDOA)
between two scattered signals can also be used for damage localization. This method
utilizes the difference in the ToF to localize damage based on the intersection of hyperbolas.
Yelve et al. [22] introduced a baseline-free method based upon the TDOA of nonlinear
Lamb waves to localize barely visible impact damage in composite laminates. Li et al. [23]
introduced a probability-based hyperbola diagnostic imaging method based on the different
ToFs of the damage signals to achieve the baseline-free damage localization and imaging.
This method required at least twice as many transducers as in the general hyperbola method
to form sufficient pairs of two sensors. This study aims to achieve baseline-free damage
localization by the hyperbola algorithm using far fewer transducers. A new array composed
of these transducers can not only eliminate the direct wave, but can also make the boundary
reflection signal, and other noise, cancel each other out. The proposed baseline-free method
is expected to be more convenient and effective in engineering practice.

According to the aforementioned research, a crucial step of the baseline-free damage
imaging, based on the ToF, is to extract the damage-scattered signals accurately. In this
paper, a novel baseline-free method for damage localization was presented, including a
peculiar symmetrical array of PZT actuators/sensors to eliminate the direct waves from
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the received signals. Meanwhile, the cross-correlation method (CCM) was introduced to
determine the sequence of time difference accurately from the damage-scattered waves.
The damage was identified and localized by a hyperbolic algorithm with only one branch
of the hyperbolic curve. To demonstrate the feasibility and the effectiveness of the proposed
strategy, numerical simulation and experimental validation were carried out to localize a
through-thickness hole in an aluminum plate. The influence of different damage locations
and array forms on the damage localization results was discussed.

2. Methodology for Baseline-Free Damage Localization

Lamb wave based damage localization is based on the fundamental idea that a trav-
eling wave in a plate structure will be scattered by the damage. Note that the damage
location is usually determined by the group velocity and the ToF of the scattered Lamb
waves. While the group velocity of a certain Lamb wave mode is often determined in a
homogenous and isotropic plate structure, the ToF information becomes a key factor in
damage localization. There are many imaging and localizing methods based on the ToF,
including ellipse and hyperbola algorithms.

Whereas the ellipse algorithm considers two transducers to be acting in pairs, the
hyperbola algorithm mainly considers combinations of one actuator (transmitter), n, and
pairs of sensors (receivers), i and j, in a spatially distributed array, as shown in Figure 1a.
Without the loss of generality, a received signal on the sensing path consists, at least, of
a direct signal and a scattered signal. If a damage is positioned at the point D(x, y), the
difference in arrival time of the scattered signals at the two sensors is defined as:

Δtij(x, y) =
ln−D−i − ln−D−j

Vg
, (1)

where ln−D−i and ln−D−j are the distances from the actuator to the damage, and then to
the two sensors, respectively. Further, Vg is the velocity of the signals. Since the distance
from the actuator to the damage is the same for both sensors (Figure 1a), it does not affect
the difference in the arrival time. Equation (1) can then be simplified as [24]:

Δtij(x, y) =

√
(xi − x)2 + (yi − y)2 −

√(
xj − x

)2
+
(
yj − y

)2

Vg
, (2)

where (xi, yi) and
(

xj, yj
)

are the coordinates of the two sensors, respectively. The solution
of Equation (2) is a hyperbola with its foci on the two sensors. By performing this for all
the available nij groups of sensors, the damage location in the sensor network is obtained
as the intersection point of all the hyperbolas. The time difference of the scattered signals is
a robust feature of the wave signals, for which it is not necessary to know the time origin of
the excitation.

In general, the scattered signals are always subtracted by the corresponding baselines
in the intact state, depicted by:

f i
SC(t) = f i

S(t)− f i
C(t), (3)

where f i
SC(t) is the scattered signal for the sensor i, f i

S(t) is the received signal for the
sensor i in the intact state, which is the state without damage in the structure, and f i

C(t)
is the received signal for the sensor i in the current state. The same processing is carried
out for the sensor j. To realize baseline-free localization and imaging, a novel symmetrical
sensor arrangement is presented to eliminate the direct propagating waves and extract
the damage-scattered waves in this paper. As shown in Figure 1b, one actuator is placed
in the perpendicular bisector of the line segment connecting the two sensors, while one
actuator and two sensors are located in random positions in the typical sensor array. This
form of array can be in a diamond or square shape, as long as the diagonals of the array
are perpendicular to each other. Since the distances between the actuator and the two
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sensors are equal, according to vertical theorem in mathematics, the direct propagating
signals on the two sensors from the actuator are almost identical. Under this situation, the
damage-scattered signals can be extracted by subtracting the two received signals in the
current state, which is described by:

fij(t) = fi(t)− f j(t), (4)

where fij(t) is the damage-scattered signal; fi(t) and f j(t) are the received signals for the
sensors i and j in the current state, respectively. At the same time, boundary reflection
signals, and other noise, can also cancel each other out because of the symmetrical posi-
tioning of the two sensors in the structure. Therefore, the time difference Δtij(x, y) can be
obtained according to the characteristics of the damage-scattered signals. Here, Hilbert
transform [12] is used to estimate the ToF by extracting the time corresponding to the
maximum of the envelope of the signal component. This is described by:

Hij(T) =
1
π

+∞∫
−∞

fij(t)
T − t

dt, (5)

where Hij(T) is the Hilbert transform of the damage-scattered signal fij(t).

  

Figure 1. Schematic diagram of hyperbolic positioning with: (a) a traditional array; and (b) a new
symmetrical array for exciting and receiving signals.

In addition, one should also pay further attention to the sign of the time difference
Δtij(x, y), because the hyperbolic loci usually have two branches by definition, which may
bring pseudo-intersection points. To overcome such a problem, a cross-correlation method
(CCM) is used to determine the sequence of time difference with a positive or negative sign.
The time delays are calculated by means of the CCM between the damage-scattered signals
and the two received signals, respectively, in which the cross-correlation function exhibits a
notable characteristic value at Δtij(x, y). This can be expressed by [25]:

Riji(T) =
+∞∫
−∞

fij(t) fi(t− T)dt =
+∞∫
−∞

fij(t + T) fi(t)dt (6)
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and

Rijj(T) =
+∞∫
−∞

fij(t) f j(t− T)dt =
+∞∫
−∞

fij(t + T) f j(t)dt. (7)

Since the damage-scattered signals are subtracted from the two received signals, the
cross-correlation function will give a peak value at time 0, simultaneously. If the peak value
appears at Δtij(x, y) positive relative to 0, the scattered signal in another received signal
will be behind that in the received signal. Otherwise, it is in advance. Once the sign of
Δtij(x, y) has been determined, whether it is positive or negative, it can specify only one
branch of the hyperbola, so as to achieve damage localization precisely.

In this imaging method, a cumulative distribution function (CDF) F
(
zij
)

is introduced
to determine a specific pixel at each node when the inspection area of the structure is
virtually and evenly meshed, which is defined as [26]:

F
(
zij
)
=
∫ zij

−∞
f (z)dz. (8)

where f (z) = 1
σ
√

2π
exp

[− z
2σ

]
is the Gaussian distribution function that relates the proba-

bility density of damage occurrence at the meshed node (x, y). Further, σ is the standard
deviation of the relevant damage feature as a tolerance factor in the imaging process, and
zij is the upper limit of integral function, which means the shortest distance from the node
to the hyperbolic loci. Thus, the probability value Dij(x, y) on each node constructed by
sensor i and j is then defined as:

Dij(x, y) = 1− [F(zij
)− F

(−zij
)]

. (9)

For simplicity, a general overview of the proposed method in the symmetrical array is
given in Figure 2.

Figure 2. A flowchart of the proposed method in the symmetrical array.
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3. Validation of Numerical Simulation

In order to verify the effectiveness of the proposed method, a three-dimensional
finite element (FE) model was firstly developed in conjunction with a commercial FEM
software (ABAQUS/CAE). The FE model was considered as an effective method to study
the characteristics of wave propagation in plate structures.

3.1. Simulation Model

The dimensions of the aluminum plate employed for the simulation were
300 mm× 300 mm× 1 mm. A circular through-thickness hole with a diameter of 5 mm was
dug on the aluminum plate as a damage source, as shown in Figure 3. Additionally, in order
to realize very minimal or no wave reflection from the boundary, a gradually damping
artificial boundary was introduced to simulate a nonreflecting boundary condition [27].
The damping coefficients of the individual layers were gradually increased from the inner
layer to the finite boundary. Both the boundary length and the damping coefficient of each
layer were dependent on the excitation frequency. The Young’s modulus, Poisson’s ratio
and the density of the aluminum plate were 69 GPa, 0.33 and 2700 kg/m3, respectively.

 
Figure 3. A schematic diagram of the simulation model setup.

Since piezoelectric elements were not available in ABAQUS/explicit, concentrated
forces were applied to simulate the Lame wave excitation for round PZT transducers.
Hanning window modulated five-cycle sinusoidal tone bursts, at a central frequency of
250 kHz, were excited by applying a pair of symmetric forces on two points, which were
symmetrically positioned on the upper and lower surfaces of the plate. This kind of
point displacement modeling to generate a single S0 mode Lamb wave was described in
detail in [28]. The S0 mode Lamb wave was selected as an incident wave because it is
more sensitive to the through-hole than an A0 mode. The Lamb waves were received at
monitored points on the upper surface of the plate.

A global cartesian coordinate was introduced, in which the abscissa axis was parallel
to the lower edge of the plate, and the bottom left corner of the plate was at the origin. The
points for exciting and receiving signals, forming a diamond-shaped array, were labelled
as A, B, C and D at different coordinates, respectively. The coordinates of the diamond-
shaped array, and different damage positions, were shown in Table 1; the coordinates of
the diamond-shaped arrays with different sizes and the damage location, were shown in
Table 2. These diamond-shaped arrays were numbered from 1 to 6, both in the case of
numerical simulation and experimental testing.
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Table 1. The diamond-shaped array with the through-hole of different positions. (Unit: mm).

Position of Array
Center Position of

the Hole
Localization Result

(Simulation)
Error

Localization Result
(Experiment)

Error Number

Diagonal distance
was 200,

A (150, 50),
B (50, 150),

C (150, 250),
D (250, 150).

(50, 250) (60.1, 240.1) 3.3% (35.6, 266) 5.3% 1

(100, 150) (101.2, 146.8) 1.07% (92.9, 149.8) 2.36% 2

Table 2. The locations of the through-hole in the diamond-shaped arrays with different sizes
(Unit: mm).

Number Position of Array
Center Position of

the Hole
Localization Result

(Simulation)
Error

Localization Result
(Experiment)

Error

3

Diagonal distance
was 80,

A (150, 110),
B (110, 150),
C (150, 190),
D (190, 150)

(230, 230)

(211.1, 211.1)
(211.3, 211.3)

6.3%
6.2% (244.6, 253.1) 7.7%

4

Diagonal distance
was 120,

A (150, 90),
B (90, 150),

C (150, 210),
D (210, 150)

(218.6, 220.7) 3.8% (251.9, 249.1) 7.3%

5

Diagonal distance
was 160,

A (150, 70),
B (70, 150),

C (150, 230),
D (230, 150)

(220.4, 219.8) 3.4% (244.1, 243.1) 4.7%

6

Diagonal distance
was 200,

A (150, 50),
B (50, 150),

C (150, 250),
D (250, 150)

(221.6, 223.4) 2.8% (241.4, 239.3) 3.8%

Eight-noded 3D reduced integrated linear brick elements, C3D8R, were adopted to
complete the structured mesh division. In order to obtain sufficient accuracy and high
efficiency, the dimension of the elements was around 0.5 mm × 0.5 mm × 0.5 mm, so that
there were at least 20 elements per wavelength of the Lamb waves. A time step of 20 ns
was used to ensure the accuracy of the wave propagation modeling [29].

3.2. Signal Analysis

According to the above-mentioned diamond-shaped array for excitation and reception,
all the received signals were obtained from the pair of two sensors. As shown in Figure 4,
there are two time-domain received signals from the sensing path AB (blue line) and AD
(red line) in the diamond-shaped array with number 1, including a direct signal and a
scattered signal, respectively. The direct signals are almost the same in the two received
signals. By taking the difference between the two received signals (Equation (4)), a damage-
scattered signal was obtained by eliminating the direct signals from each other.
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Figure 4. A schematic diagram of two received signals from the sensing path AB (blue line) and AD
(red line) in the diamond-shaped array with the damage location of number 1.

As shown in Figure 5a, the two wave packets in the damage-scattered signal represent
the scattered signals in the received signals, respectively. Since the direct propagation
distances from one actuator to pairs of two sensors are equal theoretically, the direct signals
are canceled by each other. Moreover, since the two receiving sensors are geometrically
symmetrical in the structure, other noise and boundary reflection signals are also eliminated
in the subtraction process, so as to highlight the damage-scattered signals. The envelope
curve (blue line in Figure 5a) was constructed by Hilbert transform (Equation (5)) from
the damage-scattered signal, hence the relative time difference Δt was determined from
the corresponding times (two red dots of the envelope curve in Figure 5a). According to
the Δt and group velocity of the S0 mode, the hyperbolic trajectory is constructed, and
the points on the trajectory indicate the possible locations of the damage. Obviously, the
group velocity of the S0 mode can be calculated from the received signals with different
propagation distances, which is about 5164.7 m/s in this numerical simulation.

 

Figure 5. (a) A damage-scattered signal obtained by subtracting two received signals; (b) the cross-
correlation curves between the damage-scattered signal and the two received signals, respectively.
(Red dots denote the amplitude corresponding to the time, black dot denotes the peak corresponding
to the time difference).

At the same time, the sequence of Δt was determined by means of the CCM
(Equations (6) and (7)) between the damage-scattered signal and the two received sig-
nals, respectively. As shown in Figure 5b, there are two envelope curves based on the
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cross-correlation function, in which a peak always appears at time zero. Considering time
zero as the reference, and the relative time difference Δt as the interval, the correspond-
ing peaks at Δt are found on the left- or right hand sides of the time zero, respectively.
Therefore, the sign of Δt is determined when the time sequence is judged from the time
lag in the cross-correlation curve. For instance, the red envelope curve was calculated
from the cross-correlation between the damage-scattered signal and the received signal AD.
Obviously, the peak at Δt is on the left hand side of the time zero, which means that the
scattered signal in the received signal AB is in advance of that in the received signal AD.
On the contrary, it is behind. Similar results can be obtained from the blue envelope curve.
Unfortunately, the peak may not be easy to find in the blue envelope curve because of the
interference of the other components of the cross-correlation function. Nevertheless, any
of the envelope curves can be used to determine the sequence of the time difference Δt,
and there is no need to calculate the value of the relative time difference. This may be a
relatively robust feature for damage localization.

After obtaining the time difference, the damage location can be realized based on the
hyperbolic trajectory; the imaging results of the through-hole location in the simulation
is shown in Figure 6a. The maximum probability position of the imaging result is at 60.1,
240.1, while the center position of the through-hole is at 50, 250. It is shown that the
proposed method can be used to achieve baseline-free damage localization. At the same
time, the imaging result of the traditional hyperbolic method in the symmetrical array is
shown in Figure 6b. The coordinates of the maximum pixel value are 56.5, 243.5. It shows
that the traditional hyperbolic method can also achieve damage positioning, and is more
accurate than the proposed method. The reason is probably due to the use of more groups
of signals in the traditional hyperbolic method; there are 12 pairs of signals in total, while
the proposed method includes four groups of signals. It should be noted that the more
signals, the longer the processing time of localization, and the traditional method needs the
reference signals in the intact state.

 

Figure 6. The imaging results of: (a) the proposed method; and (b) the traditional hyperbolic method
in the diamond-shaped array with number 1 in the simulation (white points denotes the exciting and
receiving position, + indicates the center position of the circular hole).

4. Experimental Verification

The proposed method based on Lamb waves was then corroborated by the ultrasonic
experimental testing of a through-hole in an aluminum plate.

4.1. Experimental Setup

The experimental testing system, as shown in Figure 7, consisted of a dual channel
arbitrary/function generator (Textronix AFG 3022C), a power amplifier (EPA 104), a mixed
domain oscilloscope (Textronix MDO 3012) and a personal computer (PC) connected
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with the oscilloscope. The specimen was a common aluminum plate with a dimension
of 500 mm × 500 mm ×1 mm, and a through-hole with a diameter of 5 mm was used
as a damage source, which was the same as that in the numerical simulations. Four
PZT piezoelectric transducers, each 10 mm in diameter and 1 mm in thickness, were
permanently bonded to the surface of the aluminum plate by means of a thin cyanoacrylate
adhesive layer.

Figure 7. A schematic of the experimental testing system.

A global cartesian coordinate was also introduced for convenience, as in the simulation
model. The PZT transducers were labelled as A, B, C and D; damage locations also had the
same coordinates as in the numerical simulation. It should be noted that the bottom left
corner of the aluminum plate was not at the origin of the coordinate axis.

A five-cycle Hanning windowed sine wave with a central frequency of 250 kHz,
generated by the arbitrary function generator, was applied as the excitation tone burst. The
burst was then amplified by means of the power amplifier before it was sent to one of the
PZT transducers. The PZT transducers, at two symmetrical positions, were used to receive
the Lamb wave signals. For example, the PZT transducers B and D, which were considered
to be symmetrical in the diamond-shaped array, were used to receive the signals when PZT
transducer A was excited. The signals were captured by the oscilloscope at a sampling
rate of 25 MHz with 256-time averaging, and was then transmitted to the computer. The
excitation-acquisition procedure was implemented in turn on each PZT transducer, so
that in total eight received signals were collected from these sensing paths. It is worth
noting that the received signals were always measured in the current state, but not in the
intact state.

4.2. Signal Processing

The experiments and simulations have some similar results because of the same
excitation and reception process with the diamond-shaped array. Firstly, the group velocity
of the S0 mode is about 5451.2 m/s, as calculated from the direct waves with different
propagation distances. It is considered that the PZT transducers can effectively excite the
S0 mode Lamb wave. Then, the received time-domain signals of the sensing paths AB and
AD, in the diamond-shaped array with number 1, are represented in Figure 8, including the
direct waves and the scattered waves. Meanwhile, there is an electromagnetic interference
signal at the front of the received signals, which is mainly introduced by the transducer
and circuit imperfections.
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Figure 8. A schematic diagram of two received signals from the sensing path AB (blue line) and AD
(red line) in the diamond-shaped array with the damage location of number 1.

After the electromagnetic signal was filtered out, the two received signals were com-
pared, according to Equation (4). A damage-scattered wave was obtained by eliminating
the direct waves via subtraction of the received signals. However, as shown in Figure 9a,
the damage-scattered wave still has an obvious wave packet at the position of the direct
wave, which means that the direct waves are not fully consistent with each other and not
completely eliminated, as in the numerical simulation. This is because the direct waves are
not exactly the same in phase and amplitude, as shown in the inset of Figure 8. This is due
to a slight difference in the performance of the adhesive and the geometric position of the
PZT transducers, which cannot be avoided in the experiments. Fortunately, the difference
between the two direct waves can be reduced considerably by phase compensation and
standard normalization to obtain the damage-scattered wave, as shown in Figure 9b. The
next steps are consistent with those in the simulation, including calculating the time differ-
ence Δt and constructing the hyperbolic trajectory. It is noted here that the first wave packet
in the damage-scattered wave (the first red dot shown in Figure 9b) may be the A0 mode
direct wave. This is because the A0 mode could also be excited in the above process of the
effective S0 mode excitation, in which the amplitude of the A0 mode is seemingly small.
Although the S0 mode direct wave can be eliminated through the above manipulation, the
A0 mode direct wave may not be completely excluded.

At the same time, the sequence of Δt was determined by means of the CCM
(Equations (6) and (7)). As shown in Figure 10, the red envelope curve is the cross-
correlation curve between the damage-scattered wave and the received signal AD. A
characteristic point corresponding to the time difference Δt is found on the left hand side
of the time zero, shown as a black circle in Figure 10. It indicates that the scattered wave in
the received signal AB is in advance of that in the received signal AD. On the other hand,
the blue envelope is the cross-correlation curve between the damage-scattered wave and
the received signal AB, and it does not show the characteristic point at the time difference
Δt. Regardless, the time sequence could be obtained as long as a feature point in any of the
cross-correlation curves is found. It should be noted that the peak of the cross-correlation
curve does not appear at the time zero. This is because there is a time offset in the process
of phase compensation. In addition, the point corresponding to the time difference Δt is
actually in the valley of the signals, not at the peak. This could be attributed to the fact that
the first red dot corresponding to the time difference Δt of the damage-scattered signal is
also in the trough of the waves, which is caused by the failure to completely eliminate the
A0 mode direct wave.
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Figure 9. A damage-scattered signal obtained by subtracting two received signals: (a) without phase
compensation; and (b) with phase compensation. (Red dots denote the amplitude corresponding to
the time).

Figure 10. The cross-correlation curves between the damage-scattered signal and the two received
signals, respectively. (Black dot denotes the characteristic point corresponding to the time difference).

5. Results and Discussion

In the aforementioned diamond-shaped array, the time difference Δt is obtained from
the two received signals in the current state. Then, using the proposed baseline-free method,
the imaging results of damage locations in the experiments are shown in Figures 11 and 12.

As shown in Figure 11a, there are four intersections of the hyperbolic trajectories in
the diamond-shaped array, resulting in artifacts in the imaging result, and it is not able to
achieve damage localization accurately. Obviously, the hyperbola itself has two branches
using the relative time difference of each pair of the two received signals. Therefore, it
is still necessary to determine the sign of the relative time difference (namely, the time
sequence), for precise damage localization. By using the cross-correlation function, only
one branch of the hyperbola can be determined and the damage location can be achieved
precisely, as shown in Figure 11b. The maximum probability position of the imaging result
considered to be the most likely location for the damage is at 35.6, 266, while the center
position of the through-hole is at 50, 250. According to the error calculation method in [30],
the relative error of the imaging result is about 5.3%. It shows that the probability position
of the imaging result is very close to the actual location of the through-hole, and the method
gives the damage location fairly well.
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Figure 11. The imaging results of the experiments with: (a) two branches; and (b) one branch of
hyperbola in the diamond-shaped array with number 1 (white points denotes the exciting and
receiving position, + indicates the center position of the circular hole).

 

Figure 12. The imaging results of the experiments with: (a) two branches; and (b) one branch of
hyperbola in the diamond-shaped array with number 2 (white points denotes the exciting and
receiving position, + indicates the center position of the circular hole).

The imaging result in Figure 12 is similar to that in Figure 11, while the most obvious
difference is that in Figure 12 the damage location is inside the diamond-shaped array
and on the perpendicular bisector of certain line segment(s) of the pairs of two receiving
sensors. Here, a correlation coefficient of two received signals is used to prejudge whether
the damage location is on some of the perpendicular bisectors. If the correlation coefficient
exceeds a certain threshold, it means that the damage is most likely on the perpendicular
bisector, and vice versa. As shown in Figure 12b, the maximum probability position of
the imaging result is at 92.9, 149.8, which is almost at the actual center position of the
through-hole at 100, 150, with a relative error of only about 2.36%. The above results show
that no matter whether the damage location is inside or outside the diamond-shaped array,
or even in the position symmetrical with respect to the pairs of two receiving sensors, the
proposed method can be used to achieve baseline-free damage localization.

In order to further study the influence of the array forms on the imaging results,
diamond-shaped arrays with different sizes were used for the baseline-free damage lo-
calization of the aluminum plate. As shown in Figure 13, the imaging results in the
experiments are obtained for different arrays. Meanwhile, the size of the arrays, the dam-
age location and relative errors are shown in Table 2. As shown in Figure 13a, when the
diagonal distance of the diamond-shaped array is about 80 mm, the maximum relative
error is 7.7%. Compared with the array with maximum size, the array with minimum size
has not only a higher relative error, but also two maximum probability locations in the
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simulated imaging results. It is worth mentioning that these imaging results come from
some intersecting areas, not trajectory intersections; this is because this size of array has
a small time difference, which makes the hyperbolic trajectory infinitely approach their
asymptotes. Consequently, the maximum probability position becomes the intersection
area of the asymptotes. Based on the above research, it is believed that when the diagonal
distance of the diamond-shaped array is less than 80 mm, it will deteriorate the positioning
accuracy and cause noticeable positioning errors, no matter where the damage location
is. However, as the size of the array (namely, the diagonal distance) increases, the maxi-
mum probability position approaches the actual locations of damage and the accuracy of
damage localization also increases correspondingly. As shown in Figure 13d, when the
diagonal distance of the diamond-shaped array is about 200 mm, the maximum probability
location of the imaging result is at 241.4, 239.3, while the actual center position of the
through-hole is at 230, 230. The relative error is about 3.8%, which means that the imaging
result is close enough to the damage location. Therefore, the positioning accuracy can be
significantly improved when the diagonal distance is larger than 80 mm, especially up to
200 mm. In summary, by using the diamond-shaped arrays with appropriate size, and
the hyperbola algorithm, it is possible to effectively achieve damage localization with the
proposed baseline-free method.

 

Figure 13. The imaging results of the through-hole for different diamond-shaped arrays with a
diagonal distance of: (a) 80 mm; (b) 120 mm; (c) 160 mm; and (d) 200 mm, in the experiments (white
points denotes the exciting and receiving position, + indicates the center position of the circular hole).

The simulations and experiments have similar imaging results because of the same
excitation and reception process in the diamond-shaped arrays. The positioning errors of
arrays with different sizes in the experimental testing and numerical simulations are shown
in Table 2. The results show that the accuracy of damage localization in the simulations is
higher than that in the experiments. The reason may be that it is easy to excite a single S0
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mode in the simulations, and the wave propagation is relatively simple, while the A0 mode
can also be excited in the experiments, and the imaging results are probably affected by the
multimode characteristics of Lamb waves. It can be seen that the damage localization is
realized through simulations and experiments, which indicates that the proposed method
is an effective baseline-free method for damage localization.

In further study, in order to verify the effectiveness of the proposed method, a compar-
ative analysis was made of the baseline-free method presented in Ref. [31]. The array form
in the baseline-free method is shown in Figure 14a. Although it is somewhat similar to the
array form mentioned above, the difference is that two transducers are closely placed as a
pair in the special transducer arrangement. Thus, the direct wave and damage-scattered
wave can be separated effectively because of the large difference of their time of flight. The
damage-scattered wave is easily extracted, and the imaging result of through-hole location
in the experiment is shown in Figure 14b. The maximum probability position of the imaging
result is at 94.3, 146.3; it shows that the baseline-free method can also achieve damage
positioning. Compared with the coordinate 92.9, 149.8 of the maximum value in Figure 12b,
it could be concluded that the positioning accuracy of the two methods is almost the same,
even though it seems that the baseline-free method is more accurate than the proposed
method, according to the positioning error here. Thus, these two kinds of baseline-free
method can achieve damage localization by the special arrangement. It is worth noting that
there are four groups of signals in these methods, while only four transducers are used in
the proposed method. Further, the baseline-free method in Ref. [31] has a high resolution
and can detect multi defects due to the employed single mode nondispersive SH0 wave.

 

Figure 14. (a) A special transducer arrangement and (b) the imaging result of the baseline-free
method [31] in the experiment (white points denotes the exciting and receiving position, + indicates
the center position of the circular hole).

6. Conclusions

Due to the changing of operational and environmental conditions, typical detection
methods involving baseline signals have large damage localization error. To address this
problem, a novel baseline-free method for damage localization using Lamb waves based
on a hyperbolic algorithm, was proposed in this study.

To eliminate the direct signals, diamond-shaped arrays were arranged on the plate
structures to receive signals at two symmetrical positions. The time difference between
the received signals was obtained from the damage-scattered signals. The sequence of
time difference calculated by the cross-correlation method determined only one branch
of the hyperbola. Damage localization was realized by a hyperbolic algorithm with the
damage probability of each point in the structure. Numerical simulations and experimental
measurements were implemented on an aluminum plate with a through-thickness hole in
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the current state. The imaging results show that the damage localization can be achieved
no matter whether the position of the defect is outside or inside the diamond-shaped
arrays. Meanwhile, because of the intersection of the asymptote of the hyperbola, the
diamond-shaped array with the smallest size has the biggest positioning error of about
7.7%. Nevertheless, the relative error can be reduced to 3.8% when the diagonal distance of
the diamond-shaped array increases to 200 mm. The consistency between the numerical
and experimental results indicates that the position of the through-hole in the aluminum
plate can be accurately identified and localized by the proposed baseline-free method.
Ultimately, the baseline-free method proposed here may largely improve the practicability
of the Lamb wave damage localization technique.
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Abstract: Surface monitoring of landfills is crucial not only during their operation but also for later
land restoration and development. Measurements concern environmental factors, such as leachate,
migration of pollutants to water, biogas, and atmospheric emissions, and geotechnical factors, such as
stability and subsidence. Landfill subsidence can be measured using modern surveying techniques.
Modern measurement methods for landfill body displacement monitoring and their control after
restoration and adaptation as recreational areas include terrestrial laser scanning (TLS), and scanning
and low-altitude photogrammetric measurements from an unmanned aerial vehicle (UAV). The
acquired measurement data in the form of 3D point clouds should be referenced to the local control
network to enable a comprehensive analysis of data acquired using various techniques, including
geotechnical sensors such as benchmarks, piezometers, and inclinometers. This study discusses
the need for surface monitoring of municipal solid waste (MSW) landfills. A properly 3-D mapped
landfill mass is the basis for ensuring the geotechnical safety of the restored landfill. Based on archival
data and current measurements of the Radiowo landfill (Poland), this study compares the advantages
and limitations of the following measurement techniques: linear and angular measurements, satellite
measurements, TLS, and UAV scanning and photogrammetry, considering specific conditions of the
location and vegetation of the landfill. Solutions for long-term monitoring were proposed, considering
the cost and time resolution necessary for creating a differential model of landfill geometry changes.

Keywords: point cloud; landfill; unmanned aerial vehicle; terrestrial laser scanner; aerial laser
scanning; geotechnical structure

1. Introduction

Mass movements and failures of municipal and post-production landfills, landslides
in open-pit mines, or bulk product storage areas cause serious economic losses and safety
hazards for workers during landfilling and for the public after landfill restoration [1–3].
Potential damage resulting from insufficient compaction of waste layers and inadequate
slope protection requires continuous monitoring of the surface of municipal solid waste
(MSW) landfills. Early detection of displacement of slowly creeping material is an important
part of early warning against landslides. Stability assessment and prediction of large
deformations and failures, including in open-pit mines and slopes during construction
works, are usually performed using surveying techniques [4,5].

The requirement for geodetic monitoring for aforementioned facilities in Poland is set
forth in the Regulation of the Minister of Environment of 30 April 2013, on landfills [6]. The
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regulation specifies the minimum frequency of geodetic measurements at a landfill every
3 months during the operational stage and every 12 months during the post-operational
stage. The scope of monitoring should include control of the subsidence of the surface of
the structure using geodetic methods based on measurements of displacements at control
points, and evaluation of slope stability using geotechnical methods.

The stability of slopes can be achieved by using retaining walls, weight-bearing
embankments, local slope mitigation, local replacement and recompaction of waste in the
road substructure, and horizontal reinforcement with geogrid and car tire mattresses [7,8].
Accurate mapping of the surface of the restored landfill provides the starting material for
the design of the target land use, such as forestry, agriculture, construction, parks, and
recreation. In the case of the Radiowo landfill (Poland) selected for this study, the plan
is to develop part of the area for sports and recreation and another part (slopes) for the
installation of photovoltaic panels (PP) and wind turbines (RES). Given the large size of
the landfill, steep slopes, and deformable material prone to landslides, it is necessary to
measure the current shape and deformation of the mass over time to ensure geotechnical
safety, preferably covering the entire landfill surface [9–11].

Landslide monitoring uses a number of surveying techniques and remote sensing
tools to detect surface deformation at various scales and magnitudes. These include the
Global Navigation Satellite System (GNSS), total station surveying [12], ground-based inter-
ferometric synthetic aperture radar (GB-InSAR), thermal infrared imagery [13], terrestrial
laser scanning (TLS) [14], and techniques using UAVs [15–18].

The classic surveying techniques (GNSS, leveling, total station) allow obtaining results
with high accuracy, but only at certain points, in a discrete manner, without depicting
changes over the entire area. In contrast to these surveying techniques, laser scanning and
photogrammetric techniques cover the entire monitored area with a dense grid of points,
while being fast and efficient [19–21]. These techniques are widely used in various fields of
geology/geomorphology, in issues related to landslide monitoring [22] and landslide risk
assessment [16,17,23–26], for acquiring a high accuracy terrain model or making precise
volumetric measurements.

Unlike traditional methods, monitoring using 3D laser scanning allows for non-contact
point measurement, so it can complement traditional monitoring methods, improve the
efficiency of slope monitoring, and provide data support/supplementation for site protec-
tion [4]. For example, Huang et al. [14] proposed a method for monitoring slow-moving
landslides using long-range TLS. The proposed method features several key steps of TLS
point cloud processing, including ground point extraction based on multidimensional
classification, hybrid-weighted iterative closest point (HWICP) algorithm, and ALC2M-
based deformation calculation [14]. Numerous literature examples indicate that TLS is
an effective solution for providing accurate information on the movement of inaccessible
areas characterized by landslide hazards [27–30]. In view of the expectations of planners
and engineers designing both sports and recreational facilities, as well as those related
to renewable energy sources, the use of appropriate/efficient measurement techniques
provides the starting material for further work and enables the monitoring of phenomena
occurring inside the landfill and on its surface.

The purpose of this paper is to analyze the possibility of using modern measurement
techniques in monitoring the restored Radiowo landfill near Warsaw (Poland). The landfill
was turned into a recreational and winter park with a slope for skiers and tobogganers,
and in the summer for cyclists, runners, modelers, etc. The current geodetic monitoring
of the site is based on point measurements of specially stabilized points (benchmarks)
using GNSS methods and does not fully reflect the changes occurring in the entire area
of the landfill, especially in the area of the ski run. The inventory measurement of this
slope, a method that can serve as a baseline measurement for monitoring using point cloud
analysis methods, is the focus of the article. Due to the specific conditions of the landfil’s
location (proximity to the airport and protected areas), the existing vegetation, and the
large size of the landfill (area of 17.3 hectares, height of more than 60 m), the paper proposes
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three alternative measurement methods. Two UAV-based survey methods, i.e., LIDAR
and low-altitude photogrammetry, were first proposed. However, the close proximity to
the airport imposes certain limitations and requirements for permits issued by Airport
Flight Information Service (AFIS) may pose a serious problem in the context of long-term
monitoring of the landfill. For this reason, TLS has been proposed as an alternative. The
paper compares the measurement results of these methods in the form of point clouds with
reference data obtained from linear and angular measurements (trigonometric leveling).

2. Study Area

The study concerned the Radiowo landfill site in Warsaw in July 2022. The site is
located near the northwestern border of Warsaw at the junction of the Bemowo district and
the Stare Babice municipality (Figure 1). The area of the landfill is about 17.3 hectares, and
its height relative to ground level is about 60 m [31].

Figure 1. Location of the Radiowo landfill in Warsaw: (a) view from the access road (northeast slope),
(b) view from the ski run (southeast slope), and (c) location of the landfill within the administrative
borders of Warsaw.

Initially, the Radiowo landfill received only unsegregated MSW (1961–1991). Due to
the unfavorable location in terms of geotechnical conditions (wetlands) and the occurrence
of numerous slope landslides, from 1992 the landfill began to accept only solid waste
generated from compost produced at the Radiowo composting plant (foils, tires, textiles,
scrap metal), and, from 2012 to 2018, stabilized compost produced by the mechanical-
biological processing of MSW. Since 1993, to reduce the slopes and thus improve their
stability, a number of reclamation works have been carried out, which were completed in
2018. Since then, cyclic geodetic monitoring on installed benchmarks has made it possible
to assess the condition of the structure’s geometry in terms of horizontal displacements
and subsidence. This process was aimed at preparing the landfill, which was closed in
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2017, for its transformation into a public facility, i.e., a ski run for skiers, snowboarders,
and tobogganers, as well as runners and cyclists [7,32]. The regulation [6] allows building
constructions on the crown of a landfill after fifty years from the date of its closure. However,
it allows a shorter time based on geotechnical and sanitary expert opinions in cases where
this does not endanger human life and health or cause a risk to the environment.

The lump of the Radiowo landfill was monitored for many years by measuring con-
trolled points using traditional surveying methods (more than 100 benchmarks were
installed), which over time were supplemented by satellite measurements using GNSS
receivers. The survey work at the Radiowo landfill used a survey set consisting of two
GNSS Real Time Kinematic (RTK) receivers operating in a Base and Rover mode [8]. In
such a configuration, one of the receivers serves as a stationary base and sends correc-
tions via radio to the other mobile receiver (Rover) performing the measurement. The
advantage of such a solution is that a single base station can cooperate with several mobile
receivers which serve as the equipment for controlling construction machines, such as
dozers, excavators, and graders used in earthmoving works at the landfill [7].

3. Materials and Methods

3.1. Periodic Archival Measurements

In the past, the studied landfill experienced frequent landslides caused by improper
compaction of waste layers and inadequate protection of steep slopes. Accordingly, land-
slide areas have been rebuilt in accordance with earthwork rules and considering slope
stability conditions (horizontal reinforcements, retaining structures), and geodetic moni-
toring has been introduced. Periodic geodetic monitoring of control points allows early
detection of potential hazards and early response to the occurring changes in the shape of
the landfill, especially in the areas of slopes with landslide hazards.

During the 30 years of geodetic monitoring, a total of 105 control points (benchmarks)
were established, 59 of which were monitored for more than 5 years. Some of them have
existed since the beginning of the site’s monitoring, i.e., since 1993, and are located on
the northern and western slopes of the landfill. Long-term monitoring has allowed the
assessment of the mechanical parameters of the waste (deformation and strength) and the
prediction of the displacements occurring at the landfill [8]. Figure 2 shows the location
of the control points and the values of their measured subsidence over a one-year period:
December 2020–December 2021.

Figure 2. Map of annual subsidence and uplift of control points (December 2020–December 2021) [7].
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As of 2017, i.e., after the formation of the target landfill body, the largest overall
subsidence has been about 1.8 m and applies to the southern slope formed along the
designed ski run. This area is still subject to increased subsidence, which is visualized in
Figure 2 in the form of circles with a diameter corresponding to local displacement. The
value of displacements per year reaches about 0.20 m [7]. The subsidence is expected to
slowly disappear over time; however, it may locally increase following the installation of
facilities on the surface of the landfill (buildings, PP, pole structures, etc.).

3.2. Data Sets

In the area of the landfill in 2022, the periodic measurements were made using
four methods: (i) Method 1 (set 1)—photogrammetric measurements from an unmanned
aerial vehicle (UAV); (ii) Method 2 (set 2)—aerial laser scanning (ALS); (iii) Method
3 (set 3)—terrestrial laser scanning (TLS); and (iv) Method 4 (set 4)—linear and angu-
lar measurements.

As a result of the measurement using methods 1–3, point clouds were obtained,
differing in density and resolution from the recorded data. Figure 3 summarizes the general
technical and accuracy characteristics of the instruments and reference points used.

Figure 3. Overview of the research measurements. Developed based on [33–35].

Set 1: Digital images were obtained from a photogrammetric flight taken using a
Phantom 4 Pro platform, which is equipped with a 1-inch, 20-megapixel CMOS sensor
with a 24-mm FOV lens. The measurements were taken from a height of 60 m above the
landfill crown. The BSP measurement was divided into five flights. During the first flight,
vertical (nadir) images were taken. In the next four, flights were carried out with oblique
photos in four different directions (north, south, east, and west). A total of 18 longitudinal
and 18 transverse series were taken. Coverage of longitudinal and transverse images was
80% for nadir images and 50% for oblique images with an off-nadir angle of 30◦. A total
of 1768 images were acquired. In the field, before the flights, 13 ground control points
(GCPs) were marked and their XYZ coordinates were measured. Their shape, color, and
size enabled unambiguous identification of the points in the field. The point clouds from
imaging data were generated using the Pix4D Mapper software.
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Set 2: Data acquired with an airborne laser scanning system using a DJI Matrice M600
platform. The flight was performed at an altitude of 60 m above the crown of the landfill.
The distance between each flight path was 20 m. A total of four overflights were performed.
The S50 LiDAR system mounted on the platform consists of a scanner: Velodyne’s VLP-16
and a Sony A6000 RGB camera. The survey can be performed at a distance range of up to
70 m with an accuracy of ±0.05 m and a scanning angle of −15◦ to 15◦ (longitudinal). In
the field, 10 control points were marked in the form of dedicated reference mats prior to
the flights (Figure 3). During the flight, a GNSS reference station was used to reference the
data. The average density of the resulting point cloud was about 160 pts/m2. In areas of
double coverage, the point cloud density was 200–250 pts/m2.

Set 3: Point clouds (9 scans) acquired with the Z + F Imager 5006H laser scanner. The
clouds were recorded in XYZI format (where I denotes the intensity of reflection of the laser
beam from the measured structure). Benchmarks were the spheres with known diameters
situated on geodetic tripods. The measurement was performed with high resolution reach-
ing ±6.3 mm/10 m. The data acquisition process included several steps: (i) planning the
measurement stations; (ii) arrangements of reference spheres for surveying tripods; and
(iii) landfill scanning. The oriented point cloud was developed (filtering, referring the point
cloud into a global coordinate system) in Faro Scene software.

Set 4: Reference data: In order to reference measurements made by alternative methods
(set 1, set 2, and set 3), the position of control points located on the landfill was determined
using trigonometric leveling. The measurement was made using the Leica Flex Line TS03
total station. To ensure the highest possible accuracy of the measurement, the so-called
“three tripod method” was used. The measurement was referred to reference points located
outside the area of the structure’s influence.

3.3. Data Processing
3.3.1. Method 1

The processing of the images acquired from the photogrammetric flights was per-
formed in Pix 4D Mapper software. It consists of calculating the internal and external
orientation elements of each photo by generating tie points. This stage as well as the process
of generating a dense point cloud is based on multi-image correlation (Dense Matching).

The alignment of the photo block was carried out based on the signaled matrix
measured in the field—the ground control points (GCPs). After measuring the photopoints,
a dense point cloud was generated. A GSD value of 0.03 m was obtained. The average
density of the point cloud was 185 points per 1 m2.

An important step in the processing of point clouds was their filtering, resulting from
the intensive coverage of slopes with vegetation. Figure 4 shows an example of vegetation
filtering of photogrammetric data. The landfill area is largely covered with vegetation,
especially in the western part, as indicated by the red color in Figure 4b.

Figure 4. Point cloud generated from photos showing (a) green vegetation visible on the landfill,
(b) the process of vegetation filtration, and (c) the surface of the site after filtration.
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3.3.2. Method 2

The processing of ALS data was performed using LIDAR 360 software, which consisted
of georeferencing the point cloud based on the position of the GNSS ground antenna and
applying appropriate data filtering. Points that were recorded during the UAV’s turnaround,
ascent, and descent were removed from the dataset. Redundant points covering data areas
recorded in overflights on adjacent paths were eliminated. Points recorded by beams
emitted at angles greater than 25◦ from the nadir were removed. Vegetation filtering was
also performed, as well as correction of the mutual position of fragments of the point cloud
registered during the flight on two adjacent parallel paths (elimination of the so-called
“broadside error”).

3.3.3. Method 3

The acquired scans were recorded in local coordinate systems. The first step in process-
ing the TLS data was to orient the scans. This process was performed based on reference
spheres and points homologously located on adjacent scans using Faro Scene software. The
accuracy of the scan orientation results is affected by (i) the incidence angle of the laser
beam; (ii) surface color; (iii) the type of surface material; and (iv) the number and geometry
of overlapping points on several scans.

Based on the measured GCPs, the resulting point cloud was transformed into the
coordinate system in which the other measurements were made (EPSG:2178) and was
filtered to remove vegetation from the image.

3.3.4. Method 4 (Reference Method)

The results of the angle-line measurements were used to calculate the elevation and
topographic position of the control points. Calculations of the angular–linear network were
made using the WinKalk program using the least squares method. Separate calculations
were made for the altimetric network and horizontal geodetic network for topographic
measurements. The average error in the calculation of the height of the points was 4 mm,
while the average error in the topographic position was 25 mm.

4. Methodology

The study used four data sets (sets 1–4), acquired using different measurement systems.
The measurements focused on the areas of the access road to the crown of the landfill
(northern part), the crown of the landfill, and the ski run located in the southeastern part
of the landfill. The alternative measurement methods proposed in the paper (sets 1 and
2) were compared with classical methods (set 4). Due to the large area of the landfill, TLS
measurements were used only to image the western, less vegetated part of the landfill
which is, however, the main area exposed to the landslide associated with the use of the
slope for recreation in winter (ski run). The comparison of measurement methods was
performed in the vertical plane, keeping in mind the results of archival measurements and
the trends of change determined based on the analysis of behavioral models of similar
objects, indicating changes in elevation as the main components of the displacement of
control points on the site.

The study proposed three approaches to compare the methods used: (i) Approach
1 based on comparing the altitude of homologous points; (ii) Approach 2 based on the direct
comparison of point clouds using the cloud-to-cloud (C2C) method; and (iii) Approach
3 based on the comparison of cross-sections created from point clouds.

Approach 1: To carry out a comprehensive analysis of the point clouds in the landfill
area, the height differences determined at the control points based on the heights measured
on the point clouds (obtained from methods 1 and 2) and the heights measured by method
4 (the reference data) were compared. The analyzed points are located at different locations
in the landfill area (Figure 5). These include points located on the concrete road (the northern
part of the landfill), among the vegetation along the road, on the slopes (mainly on the
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western side of the site) and on the crown of the landfill. Figure 5 shows the location of the
control points measured using method 4.

Figure 5. Location of the analyzed homologous points and the ski run.

Approach 2: TLS measurement was limited to the ski run located in the southeastern
part of the landfill. The range of measurements is marked in red in Figure 5 (bounded
by a purple dashed line). Only cloud-to-cloud distance analyses obtained from methods
1–3 were performed in this area.

Approach 3: When studying the quality of point clouds, attention should also be paid
to their detail level related to their resolution [36]. The assessment of their detail levels
was based on a comparative analysis of the profiles created from the measurements. In
this approach, cross-sections along the ski run were extracted and their geometry was
compared for each of the three-point clouds (sets 1–3).
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5. Results and Discussion

Approach 1: This approach presented a comparison of point clouds obtained by
methods 1 and 2 with reference data (set 4). The analyses performed included a comparison
of height differences on the control points and a comparison of the difference in height
between adjacent points, which are marked with a purple line in Figure 5. The results are
shown in Tables 1 and 2.

Table 1. Summary of height differences at the control points.

Point No.
Height Differences (m)

ΔH4–2 ΔH4–1 ΔH4–2–ΔH4–1

3003 0.143 −0.067 0.210

301 1.225 0.996 0.229

401 0.507 0.295 0.212

305 0.699 0.648 0.051

306 2.009 1.908 0.101

402 0.858 0.778 0.080

701 0.326 0.173 0.153

604 −0.292 −0.018 −0.274

403 −0.019 −0.041 0.022

307 −0.665 −0.502 −0.163

404 0.031 −0.102 0.133

311 −0.184 −0.140 −0.044

405 −6.226 −6.392 0.166

313 −0.131 −0.188 0.057

407 −0.325 −0.341 0.016

408 −0.259 −0.103 −0.156

315 −1.135 −1.068 −0.067

806 0.098 0.109 −0.011

802 0.004 −0.067 0.071

803 −0.022 0.036 −0.058

804 0.241 0.231 0.010

805 −0.142 −0.043 −0.099

3001 0.033 −0.037 0.070

808 −0.875 −0.783 −0.092

707 −0.278 −0.280 0.002

3002 −0.212 −0.198 −0.014

The largest height differences (0.20–0.27 m) were obtained for points 3003, 301, 401,
and 604 located in the northern part of the landfill on the road or in its close location to the
slopes amidst dense vegetation. In other areas of the landfill, the differences were smaller. In
general, the recorded height differences did not exceed 0.28 m. The standard deviation was
0.12 m. The results obtained for the area excluding the northern slope were sufficient and in
accordance with the requirements for the accuracy of topographic-elevation measurements
for earth structures.

An analysis of elevation differences was also conducted for selected sections located
between control points, and the results are shown in Table 2.
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Table 2. Summary of elevation differences on selected sections between control points.

Number of Section
Height Differences (m)

ΔH4 ΔH2 ΔH1 ΔH4–2 ΔH4–1 ΔH4–2–ΔH4–1

3003–301 −11.866 −10.784 −10.803 −1.082 −1.063 −0.019

301–401 −8.460 −9.179 −9.161 0.719 0.701 0.018

401–305 −2.823 −2.631 −2.470 −0.192 −0.353 0.161

305–306 −4.893 −3.583 −3.633 −1.310 −1.260 −0.050

306–402 −2.072 −3.223 −3.202 1.151 1.130 0.021

402–701 −3.620 −4.152 −4.225 0.532 0.605 −0.073

701–403 −14.560 −14.904 −14.774 0.344 0.214 0.130

403–307 −2.290 −2.937 −2.751 0.647 0.461 0.186

307–404 2.113 2.809 2.513 −0.696 −0.400 −0.296

404–311 −0.285 −0.501 −0.323 0.216 0.038 0.178

311–405 0.882 −5.160 −5.370 6.042 6.252 −0.210

405–313 0.267 6.362 6.471 −6.095 −6.204 0.109

313–407 −8.591 −8.785 −8.744 0.194 0.153 0.041

407–3001 −0.668 −0.311 −0.364 −0.357 −0.304 −0.053

407–408 0.758 0.824 0.996 −0.066 −0.238 0.172

408–315 9.722 8.846 8.757 0.876 0.965 −0.089

315–806 0.259 1.492 1.436 −1.233 −1.177 −0.056

408–805 0.119 0.236 0.179 −0.117 −0.060 −0.057

805–804 −1.088 −0.705 −0.814 −0.383 −0.274 −0.109

804–802 0.500 0.263 0.202 0.237 0.298 −0.061

802–803 0.087 0.061 0.190 0.026 −0.103 0.129

803–808 10.314 9.461 9.495 0.853 0.819 0.034

808–707 9.965 10.563 10.468 −0.598 −0.503 −0.095

707–3002 35.242 35.307 35.324 −0.065 −0.082 0.017

Maximum height differences were obtained for sections 307–404 and 311–405. These
sections are located in the northern part of the landfill crown in an area covered with
vegetation. The value of the standard deviation was 0.12 m. The obtained values of height
differences did not exceed 0.30 m.

Approach 2: Cloud-to-cloud distance analyses were performed to calculate the average
distance between point clouds derived from methods 1–3. This approach adopted the
principle of comparing the results side by side. The differences in the distances of the
resulting point clouds are shown in Figures 6–8.

Table 3 shows the statistical data calculated using the Gaussian elimination for the
mean value of the height differences obtained from the comparison of the different methods,
as well as their standard deviation (mean value, standard deviation).

Table 3. Results of statistical analysis using the Gaussian elimination.

Sets 1 vs. 2 Sets 2 vs. 3 Sets 3 vs. 1

Mean (m) 0.201 −0.024 −0.209

Standard deviation (m) 0.153 0.321 0.329
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Figure 6. C2C distance analyses for set 1 compared to set 2.

 

Figure 7. C2C distance analyses for set 2 compared to set 3.

Based on the obtained results of measurements and approximations, the mean value
of the height difference for the compared methods was 0.20 m (set 1 vs. set 2), −0.02 m
(set 2 vs. set 3), and −0.21 m (sets 3 vs. set 1), respectively. The largest average differences
were observed in the comparison of set 1 (photogrammetric method). Methods 2 (ALS) and
3 (TLS) are based on laser scanning to penetrate vegetation and better reach the ground
surface, while method 1 is based on surface measurement. Therefore, the difference may
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be due to the vegetation cover lushly growing on the landfill during the summer. The
standard deviation values were 0.15 m (set 1 vs. set 2), 0.32 m (set 2 vs. set 3), and 0.33 m
(set 3 vs. set 1), respectively. The largest standard deviations were found when comparing
set 3 acquired by using method 3 (TLS). This parameter indicates how widely the values
of a given size are scattered around its mean. Its larger value for set 3 may indicate errors
made in the mutual orientation of the measurement stations, as shown in Figures 7 and 8.

Figure 8. C2C distance analyses for set 3 compared to set 1.

Approach 3: Point cloud analysis was carried out based on profiles generated in the
landfill area. Figure 9 shows three selected profiles generated in the northern, central, and
southern areas of the ski run axis. The profiles were generated from the acquired point
clouds (sets 1–3). Strips of 0.5 m width were used in profile extraction.

Analyzing the generated land surface profiles it can be concluded that the greatest
differences in elevation occurred between the data acquired using method 1 and method 2.
This is due to the greater penetration of vegetation in method 2 and the surface measure-
ment in method 1.

The highest accuracy of measurements at the Radiowo landfill was obtained in discrete
linear and angular measurements (trigonometric leveling) of controlled points, which is
due to the accuracy of the method itself, the precise measuring equipment used and the
high regime of measurement execution (adequate repeatability of measurements of leveling
sections—both in forward and backward leveling).

The quasi-continuous methods of measurement that produce point clouds can be an
excellent complement to classical measurements. However, due to the accuracies of the
methods themselves and the data filtering necessary due to vegetation, methods 1, 2, and
3 were consistent with each other in terms of accuracy (height differences of 0.20 m) but
inferior compared to the GNSS RTK, classical linear and angular methods.

On the other hand, the main advantage of methods 1–3 over method 4 is the rep-
resentation of the whole body of the geotechnical structure and not just the coordinates
of selected individual points. Data in the form of a point cloud can provide a basis for
modeling the shape of the solid of the entire landfill, not just periodic measurements of
coordinates of control points.
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Figure 9. Height differences on selected profiles between point clouds extracted based on methods 1–3.

However, it is necessary to compare not only the area coverage or economic context,
but, above all, the accuracy and resolution of the acquired data and their further use in the
post-restoration management of the landfill. In particular, the selection of the method of
periodic and inventory measurement must consider the expected values of change and
the purpose of the measurement. In particularly fortified areas that are the basis of the
stability of the landfill (steep slope, access road, crown), periodic control measurements
of displacements should be carried out discreetly in the network of control points using
linear and angular methods, precision leveling or GNSS RTK or STATIC methods, which
will allow achieving repeatability and accuracy in the range of single millimeters and
centimeters (depending on the method). ALS and TLS methods are suitable in areas
intended for intensive use and annual renewal of geometry (artificial ski run) to control
displacements in decimeter ranges.

The use of selected measurement methods to inventory the landfill was compared
from an economic point of view, considering the selected two aspects, i.e., time (to perform
field work, conduct an intimate study) and the number of people required to perform the
measurement, the results of the comparison of the proposed measurement methods are
shown in Figure 10.

The analysis of the aforementioned data (Figure 10) shows a clear advantage of
methods 2 and 1, both in terms of the time taken to perform the measurement, the indoor
analysis, and the number of people required to perform the field measurements. The
most accurate results were obtained using the trigonometric leveling method, despite only
obtaining the coordinates of single points.
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Figure 10. Comparison of the applied methods in terms of (a) data acquisition time, (b) point cloud
development time, and (c) the number of people necessary to perform the measurement.

The photogrammetric method [16–18], the ALS method [15], and the TLS
method [4,5,13,14,19,22,23] are successfully used in the periodic geodetic monitoring of
facilities similar in their construction to MSW landfills (large-scale, soil-built facilities).
These include open-pit mines, natural landslide slopes, post-production landfills, and
various types of bulk product storage areas. On this basis, it can be concluded that these
methods will also find application in the periodic monitoring of MSW landfills. The paper
attempts to validate the above-mentioned methods in the area of the reclaimed MSW land-
fill Radiowo, which is a modern approach to a paper. The research is a prelude to a better
understanding of modern measurement methods in the context of periodic monitoring of
such facilities.

6. Conclusions

The analyses and comparisons of the measurement methods to control and inventory
periodic changes at landfills described in the paper allowed identifying of their advantages
and limitations in the context of long-term geodetic monitoring. In structures such as
landfills, the expected and recorded annual displacements reach decimeters in the course of
a year, and in multi-year cycles even several meters, depending on the way the slopes are
reinforced and how they are used. The use of proposed remote sensing methods is justified
mainly because of the magnitude of predicted displacements of the earth. The recorded
height differences between the data set from the photogrammetric method and the data set
from ALS did not exceed 0.28 m and the standard deviation was 0.12 m. The subsidence
of the Radiowo landfill surface is variable. Its values depend on the morphology and age
of the waste. In the last five years, the values of subsidence on the crown of the landfill
have ranged from 0.6 to 2.1 m, giving an average annual increase range from 0.12 to 0.40 m.
In the next ten years, average annual increments in subsidence are forecast to be between
0.02 and 0.10 m.

TLS-based monitoring allows for high-resolution data but is labor-intensive and not
very economical in the context of monitoring the entire landfill. This method can be used
to monitor selected portions of the landfill that are particularly vulnerable to displacement
and in areas where high accuracy is required, for example, in the ski run or slopes with
exceeded critical conditions. When performing such measurements, it is important to keep
in mind the close location of measurement stations and as many benchmarks as possible,
due to the vast area of the landfill and the lack of terrain details that hinder the process of
orienting the scans.

Monitoring using UAVs (photogrammetry and ALS) can be an excellent complemen-
tation of the classical methods in monitoring periodic changes on a landfill, especially in
areas where it is not possible to stabilize controlled points, or due to dense vegetation (used
as slope reinforcement) that prevents good visibility between points. On the other hand, it
cannot completely replace classical measurement methods based on cyclic measurement of
control points, due to the required accuracy of displacement determination and current
legal regulations in Poland (requirement to install and periodic measurement benchmarks).
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Due to the growing seasons in which the quality of data and the need for filtration
change significantly, and also due to changing atmospheric conditions (humidity: precipi-
tation and haze), geodetic monitoring of landfills should be carried out in late autumn (late
October/early November) or early spring (late March/early April). Comparative analysis
of the acquired point cloud data shows the greatest differences in areas with high and dense
vegetation. This difference can be seen especially in the results of the photogrammetric
method compared to the ALS and TLS methods. The mean value of the height difference
for the compared methods was 0.20 m (photogrammetric method vs. ALS), −0.02 m (ALS
vs. TLS), and −0.21 m (TLS vs. photogrammetric method). High and dense vegetation
makes it impossible in the photogrammetric method to directly measure the area of ground
cover of the landfill.

The presented results of the 3-D measurements will be used during the design of
facilities at the restored landfill, including sports and recreational equipment and renewable
energy sources (PP, RES, and a landfill gas collection system). The obtained imaging will
also be useful in the periodic assessment of the geotechnical safety of the structure and in
designing appropriate strengthening solutions on the slopes of the landfill. Finally, they
may be used as references for future inventory studies and visualizations of changes.

Author Contributions: Conceptualization, G.P. and J.Z.-P.; methodology, G.P. and J.Z.-P.; software,
G.P.; validation, J.Z.-P., E.K. and M.D.V.; formal analysis, G.P. and K.P.; investigation, G.P. and K.P.;
resources, G.P., J.J., M.P., J.Z.-P. and K.P.; writing—original draft preparation, G.P. and K.P.; writing—
review and editing, J.Z.-P., E.K. and M.D.V.; visualization, G.P. and K.P.; supervision, J.Z.-P.; funding
acquisition, M.D.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
co-author Grzegorz Pasternak, e-mail: grzegorz_pasternak@sggw.edu.pl.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jahanfar, A.; Dubey, B.; Gharabaghi, B.; Movahed, S.B. Landfill failure mobility analysis: A probabilistic approach. Int. J. Environ.
Ecol. Eng. 2016, 10, 568–576.

2. Koelsch, F.; Fricke, K.; Mahler, C.; Damanhuri, E. Stability of Landfill—The Bandung Dumpsite Deseaster. In Proceedings Sardinia.
2005. Available online: http://dr-koelsch.de/assets/images/sardinia_2005.pdf (accessed on 15 December 2022).

3. Blight, G. Slope failures in municipal solid waste dumps and landfills: A review. Waste Manag. Res. 2008, 26, 448–463. [CrossRef]
[PubMed]

4. Guo, Y.; Li, X.; Ju, S.; Lyu, Q.; Liu, T. Utilization of 3D Laser Scanning for Stability Evaluation and Deformation Monitoring of
Landslides. J. Environ. Public Health 2022, 2022, 8225322. [CrossRef] [PubMed]

5. Weidner, L.; Walton, G. Monitoring the Effects of Slope Hazard Mitigation and Weather on Rockfall along a Colorado Highway
Using Terrestrial Laser Scanning. Remote Sens. 2021, 13, 4584. [CrossRef]

6. Regulation of the Minister of Environment of 30 April 2013 on Landfills (Journal of Laws 2013, Item 523). Available online:
https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130000523 (accessed on 15 December 2022).

7. Pasternak, G. Geodetic monitoring of geotechnical structures displacements: A case study of Radiowo landfill site in Warsaw.
Acta Sci. Pol. Archit. 2022, 21, 75–83. [CrossRef]

8. Koda, E.; Kiersnowska, A.; Kawalec, J.; Osinski, P. Landfill slope stability improvement incorporating reinforcements in
reclamation process applying Observational Method. Appl. Sci. 2020, 10, 1572. [CrossRef]

9. Adamcová, D.; Barton, S.; Osinski, P.; Pasternak, G.; Podlasek, A.; Vaverková, M.; Koda, E. Analytical modelling of MSW landfill
surface displacement based on GNSS monitoring. Sensors 2020, 20, 5998. [CrossRef] [PubMed]
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32. Koda, E.; Rybak-Niedziółka, K.; Winkler, J.; Černý, M.; Osinski, P.; Podlasek, A.; Kawalec, J.; Vaverková, M.D. Space Re-
development of Old Landfill Located in the Zone between Urban and Protected Areas: Case Study. Energies 2022, 15, 146.
[CrossRef]

33. DJI Website. Available online: https://www.dji.com (accessed on 15 December 2022).
34. Available online: https://www.mertind.com (accessed on 15 December 2022).
35. Available online: https://leica-geosystems.com (accessed on 15 December 2022).
36. Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A. Effective detection of sub-surface archaeo-

logical features from laser scanning point clouds and imagery data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42,
245–251. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

114



Citation: Wu, B.; Yang, H.; Huang, Y.;

Zhou, W.; Liu, X. A Novel Adaptive

Time-Frequency Filtering Approach

to Enhance the Ultrasonic Inspection

of Stainless Steel Structures. Sensors

2023, 23, 1030. https://doi.org/

10.3390/s23021030

Academic Editor: Zenghua Liu

Received: 2 December 2022

Revised: 10 January 2023

Accepted: 11 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Adaptive Time-Frequency Filtering Approach to
Enhance the Ultrasonic Inspection of Stainless Steel Structures

Biao Wu 1, Haitao Yang 1, Yong Huang 2, Wensong Zhou 2 and Xiaohui Liu 3,*

1 College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
2 Key Laboratory of Structural Dynamic Behavior and Control of the Ministry of Education, School of Civil

Engineering, Harbin Institute of Technology, Harbin 150090, China
3 Institute of Engineering Mechanics, China Earthquake Administration, Langfang 065201, China
* Correspondence: liuxh1998@yeah.net

Abstract: Ultrasonic nondestructive testing (NDT) provides a valuable insight into the integrity
of stainless steel structures, but the noise caused by the scattering of stainless steel microstructure
often limits the effectiveness of inspection. This work presents a novel adaptive filtering approach
to enhance the signal-to-noise ratio (SNR) of a measured ultrasonic signal from the inspection of a
stainless steel component, enabling the detection of hidden flaws under strong noise. After the spec-
tral modeling of the noisy ultrasonic NDT signal, the difference between the spectral characteristics
of a flaw echo and that of grain noise is highlighted, and a reference spectrum model to estimate
the frequency spectrum of the echo reflected by any possible flaw is developed. Then, the signal
is segmented and the similarity between the spectra of data segments and the reference spectra is
evaluated quantitatively by the spectral similarity index (SSI). Based on this index, an adaptive time-
frequency filtering scheme is proposed. Each data segment is processed by the filtering to suppress
the energy of noise. The processed data segments are recombined to generate the de-noised signal
after multiplying weighting coefficients, which again is determined by the SSI. The performance of
the proposed method for SNR enhancement is evaluated by both the simulated and experimental
signal and the effectiveness has been successfully demonstrated.

Keywords: stainless steel; ultrasonic nondestructive testing; grain noise; noise suppression;
time-frequency filtering

1. Introduction

Excellent mechanical properties such as toughness, high strength as well as resistance
to corrosion and heat have made stainless steel important building material widely applied
in civil and marine engineering. For example, introducing stainless steel tubes to replace the
carbon steel tube in concrete-filled-steel-tube systems can fundamentally solve the corrosion
problem [1]. Stainless steel is also used as reinforcement for concrete structures in the coastal
environment [2] as well as storage canisters and piping systems in the nuclear industry [3].
During long-term service, properties of stainless steel such as strength, ductility and
corrosion resistance deteriorate due to aging [4]. Among the factors responsible for the
performance deterioration, chloride-induced stress corrosion cracking of welded heat
affected zones is of special concern as a well-documented mode of attack for stainless
steels [5]. Manufacturing flaws (inclusions, voids or lack of fusion) are another factor of
performance deterioration that could also exist in the welded joints. To ensure the safety and
integrity of stainless steel structures, ultrasonic nondestructive testing techniques would
be very helpful to detect, locate and size potential in-service cracks and manufacturing
flaws [6,7]. Especially, state-of-the-art additive manufacturing (AM) requires advanced
ultrasonic NDT techniques to evaluate the integrity of AM components [8] and to design
an inspection scheme based on the reliability and cost analysis of AM components [9].
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However, stainless steels are coarse-grained, heterogeneous and anisotropic. The
interaction between incident ultrasonic waves and the grain microstructure of stainless
steel results in a type of complex acoustic noise, often called grain noise, leading to low
SNR of the measured signal and poor detectability of flaws. The instrumental noise of the
NDT system could further lower the SNR.

For the effective inspection of stainless steel, SNR enhancement of the measured ul-
trasonic signal is of great importance, and numerous methods have been proposed for it.
Widely explored methods include wavelet-based processing [10–13], split spectrum pro-
cessing [14–16] and deconvolution-based approaches [17–19]. In more recent years, efforts
based on sparse signal representation [20–22] and empirical mode decomposition [19] also
contributed to the enhancement of SNR for ultrasonic NDT.

When an ultrasonic pulse propagates inside a stainless steel component, the pulse
will interact with the grain microstructure, resulting in the distortion of the pulse due to
scattering and attenuation. In stainless steel, as reported in [23], the ratio of the wavelength
λ to the average grain diameter D satisfies that λ/D � 1. The scattering of the incident
ultrasonic wave by the grain microstructure falls in the Rayleigh scattering region where
attenuation is proportional to the fourth power of frequency. As a result, the high-frequency
component of the ultrasonic wave attenuates more significantly than the low-frequency
component, leading to the waveform distortion of the ultrasonic pulse that the center
frequency decreases while the duration dilates. Meanwhile, the interaction between the
incident ultrasonic pulse and a flaw is different from that of a grain. Generally, the size of a
flaw is comparable or larger than the ultrasonic wavelength λ and thus can be viewed as a
geometrical reflector, and the reflected signal can be regarded as frequency independent [24].
On the contrary, the backscattering of the incident ultrasonic pulse by a grain is frequency
dependent on the amplitude of scattering being proportional to the second power of
frequency [25]. The difference between the two interaction mechanisms can be useful for
noise suppression in the ultrasonic NDT of stainless steel structures.

Based on the above analysis, this work presents a novel methodology to enhance the
ultrasonic NDT of stainless steel materials by exploiting the time-frequency characteristics
of the ultrasonic signal. Specifically, the commonly used pulse-echo testing mode will be
considered here. It is important to note that the echo reflected by a defect has a finite-
time duration and the distortion of the waveform is dependent on the traveling distance.
Taking these characteristics into consideration, it is desirable to exploit the time-frequency
features of the signal rather than analyzing the signal as a whole. We start with the spectral
modeling of grain noise and a typical flaw echo, and how the two spectra evolve with
traveling distance is established. The difference between the spectral characteristics of
a flaw echo and that of noise is highlighted. A reference spectrum model based on this
difference is developed for the echo reflected by any possible flaw. Next, the signal is
segmented and the similarity between the spectra of data segments and the corresponding
reference spectra is evaluated quantitatively by a term defined as the spectral similarity
index (SSI) in a moving window fashion. For each data segment, its SSI will determine the
shape of the filter as well as the weighting coefficient which is used in the recombination
stage where all the filtered data segments are recombined to generate the de-noised signal.

The rest of this paper is organized as follows. In Section 2, detailed spectral analysis
and modeling of the components of a typical ultrasonic NDT signal are conducted. In
Section 3, the proposed method is presented in detail. In Section 4, we demonstrate
our method by synthetic ultrasonic signals and signals from an experimental ultrasonic
inspection of a stainless steel block that contains prefabricated flaws, respectively. In the
final section, some conclusive remarks are drawn.

2. Modeling of Ultrasonic NDT Signal

When conducting ultrasonic NDT on a stainless steel component in pulse-echo mode,
the measured signal y(t) can be written as y(t) = e(t) + g(t) + w(t) where e(t) refers to the
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echoes reflected by defects in the component, g(t) and w(t) are backscattered grain noise
and electrical noise caused by the instruments, respectively.

In pulse-echo mode where the transducer is functioning as both a transmitter and a
receiver, the scattered wave by a grain scatterer in the time domain can be viewed as the
convolution of the impulse response of a grain scatterer r(t, λ) and the impinging ultrasonic
wave h(t, λ) on the scatterer:

g(t) = h(t, λ) ∗ r(t, λ) (1)

where ∗ denotes the convolution operator. The impulse response function r(t, λ) mathe-
matically describes the backscattered wave as a function of wavelength λ (or equivalently,
frequency) in the time domain. Meanwhile, the impinging ultrasonic pulse h(t, λ) is a
convolution of the transmitted pulse from the transducer u(t, λ) and the attenuation func-
tion a(t, λ), since the transmitted pulse will experience frequency-dependent attenuation
during its propagation from the transmitter to the scatterer. Therefore, the backscattered
signal by a grain scatterer received by the receiver can be expressed as:

g(t) = u(t, λ) ∗ a(t, λ) ∗ r(t, λ) (2)

In the frequency domain, the above expression can be written as:

G( f ) ∝ |U( f )||S( f )||R( f )||A( f )| (3)

where |U( f )| is the impulse response of the transducer which is usually modeled as a
bandpass Gaussian-shaped spectrum. |S( f )| is the frequency modulation function due
to the sum of grain scatterers with random orientations and phases [26]. |R( f )| is the
frequency-dependent scattering function which is proportional to the second power of
frequency in the Rayleigh scattering region. |A( f )| is the transfer function corresponding
to the frequency-dependent attenuation characteristics of the ultrasonic wave during
its propagation.

Similar to grain noise, the echo reflected by a flaw can be viewed as a convolution
between the impinging ultrasonic pulse and the impulse response function of a flaw,
considering the effect of frequency-dependent attenuation:

e(t) = u(t, λ) ∗ a(t, λ) ∗ p f (4)

where p f is the impulse response function of a flaw and is independent on frequency. In
the frequency domain, a flaw echo can be expressed as:

E( f ) ∝ |U( f )||A( f )| (5)

By comparing Equations (3) and (5), it is obvious that the spectrum of a flaw differs
from that of grain noise, represented by |S( f )| and |R( f )|. The inherent randomness
property of |S( f )| will make the spectrum of grain noise take on a grass-like pattern; while
|R( f )|means that the spectrum of grain noise shifts upward compared to the spectrum of a
flaw, due to the frequency dependence scattering property of |R( f )| which is proportional
to the second power of frequency in the Rayleigh scattering region.

From Equation (5), it is seen that once the attenuation function A( f ) is determined,
one can estimate the frequency spectrum of a flaw echo at any given depth. According to
earlier studies, the attenuation function can be written as [23,24]:

A( f ) ∝ exp[−2
∫ z

0
α(z, f )dz] = exp{−2

∫ z

0
[αa(z, f ) + αs(z, f )]dz} (6)

where z is the distance of a reflector from the transducer. α(z, f ) is the frequency-dependent
attenuation coefficient defined as the sum the scattering term αs(z, f ) and the absorption
term αa(z, f ). In the Rayleigh scattering region, the former varies with the third power
of grain diameter and the fourth power of frequency while the latter increases linearly
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with frequency. However, the absorption term is usually insignificant and negligible when
compared to the scattering term; therefore, the attenuation model can be expressed as:

A( f , t) = exp[−α(2π f )4vt] (7)

where v is the velocity of the sound in stainless steel and t is the time delay of the pulse. In
practice, the attenuation coefficient α can be estimated beforehand [27]. Generally, the spec-
trum of the transmitted pulse U( f ) possesses a Gaussian shape with the following form:

U( f ) = exp[− ( f − fc)
2

2s2 ] (8)

where fc is the center frequency of the transmitted pulse, s is a parameter that describes
the frequency bandwidth of the transmitted pulse. Combining Equations (7) and (8), the
spectrum of a flaw echo can be estimated as:

E( f ) = exp[− ( f − fc)
2

2s2 ]exp[−α(2π f )4vt] (9)

3. The Proposed Methodology

The procedure of the proposed method is illustrated in Figure 1. First, the measured
signal is segmented successively along the time axis at a step of one sample. Here, the
segment length is set to be slightly longer than the duration of the transmitted pulse
because the duration of the pulse increases during propagation due to frequency-dependent
attenuation, which results in the decrease of the frequency bandwidth of the pulse. Next, a
fast Fourier transform (FFT) operation is performed on the ith segmented data of which the
time delay is ti, after multiplying a Hamming window function, to extract its spectrum Pi.
At the same time, the reference spectrum Ti is obtained by substituting ti into Equation (9).
The similarity between Pi and Ti is calculated, yielding the SSI value Si. For each data
segment, based on its Si, a time-frequency filter can be designed employing the Tukey
window. The filter is adaptive because, for each data segment, one filter is specifically
tailored whose width and shape are determined by the spectral characteristics of the data
segment. The spectrum Pi is then fed to the filter to produce the spectrum of the de-noised
data segment. After inverse FFT operation and recombination, the final de-noised signal
can be obtained. The calculation of SSI and the designing of the filter for each data segment
are elaborated as follows.

Figure 1. Illustration of the proposed method.
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3.1. Calculation of Spectral Similarity Index

To evaluate the degree of similarity between Pi and Ti, an appropriate similarity
measure is designed first. The correlation coefficient is one of the most used similarity
measures. For the two vectors Pi and Ti, the correlation coefficient is calculated by:

C =
Pi × Ti√‖Pi‖2 · ‖Ti‖2

=
〈Pi, Ti〉√〈Pi, Pi〉 · 〈Ti, Ti〉

(10)

where 〈Ti, Pi〉 = Ti
T · Pi is the inner product of Pi and Ti. It is worthwhile noting that the

calculation of the correlation coefficient is a linear operation and is appropriate for data that
are best described by second-order statistics. To evaluate the similarity between two spectra
that have complex patterns, second-order statistics may not be sufficient. As reported
in [28], by mapping the two variables into high-dimensional space before calculating the
correlation coefficient, high-order statistics of the variables can be exploited, thus better
performance can be achieved. In this study, a nonlinear technique employing a kernel
function is used in the evaluation of similarity between Pi and Ti. First, both Pi and Ti are
nonlinearly mapped into a potentially higher dimensional space, denoted as P̃i = Φ(Pi)
and T̃i = Φ(Ti), respectively. With the help of a kernel function, one can compute the
inner product in the high dimensional space without explicitly computing the nonlinear
mapping Φ.

A kernel function κ computes the inner product of mapped Pi and Ti as follows:

κ(Pi, Ti) = 〈Φ(Pi), Φ(Ti)〉 (11)

Substituting normalized variables into Equation (11), one has

κ̃(Pi, Ti) =

〈
Φ(Pi)

‖Φ(Pi)‖ ,
Φ(Ti)

‖Φ(Ti)‖
〉

=
κ(Pi, Ti)√

κ(Pi, Pi) · κ(Ti, Ti)
(12)

From Equations (10)–(12), it is easily noticed that Equation (12) is equivalent to com-
puting the correlation coefficient between Φ(Pi) and Φ(Ti). In this study, a Gaussian kernel
function is employed which has the following form:

κ(Pi, Ti) = exp(−‖Pi − Ti‖2

2σ2 ) (13)

where σ > 0 is a parameter that controls the flexibility of the kernel. Note that the
denominator in Equation (13) equals 1. Therefore, the SSI between Pi and Ti can be
calculated by

Si = κ̃(Pi, Ti) = exp(−‖Pi − Ti‖2

2σ2 ) (14)

Note that the calculation of SSI above combines two commonly used similarity criteria,
i.e., the correlation coefficient and the sum of squares of deviations.

3.2. SSI-Ssi-Based Adaptive Time-Frequency Filtering

Essentially, the reference spectrum Ti estimates the frequency band and spectrum
shape of any possible flaw echo of time delay ti. Therefore, a time-frequency filtering
scheme can be devised based on the SSI calculated above, which evaluates the similarity
between the spectrum of the ith data segment and its corresponding reference spectrum.
The proposed time-frequency filtering is expressed as follows:

P̂i = Pi ·Wi(Ni, βi) (15)
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where P̂i is the frequency spectrum of the ith data segment after the filtering process,
Wi(Ni, βi) is the Tukey window function that has the following form [29]:

W(n) =

⎧⎪⎪⎨⎪⎪⎩
1
2 [1− cos( 2πn

βN )], 0 ≤ n ≤ βN
2

1, βN
2 ≤ n ≤ N

2
W(N − n), 0 ≤ n ≤ N

(16)

where N is the width of the Tukey window, β is a flexible parameter that controls the
shape of the window so that at β = 0 the window becomes rectangular and at β = 1 the
window becomes a Hann window. The relation between window shape and β is illustrated
in Figure 2.

Figure 2. Shapes of Tukey window with various β values.

Because the spectrum of a flaw echo is assumed to process a Gaussian shape where
the energy of the signal is distributed in a finite bandwidth centered at the center frequency,
the width of the Tukey window N can be determined by the bandwidth of significant
energy distribution, which is set to be the −20 dB bandwidth in this study. For example,
for the data segment centered at ti, its corresponding reference spectrum Ti is estimated
using Equation (9), the width of the Tukey window Ni for this data segment is equal to the
−20 dB bandwidth of the reference spectrum, and the shape parameter is determined as
βi = 1− Si.

From Equation (15), it can be observed that if the spectrum of a data segment Pi highly
resembles its reference spectrum Ti, the SSI between the two spectra will approach 1, the
Tukey window is almost rectangular and the designed filter is equivalent to a band-pass
filter and has no impact on Pi. Conversely, if Pi is very different from Ti, the SSI between
the two spectra will be near 0, the Tukey window is now a Hann window that modulates
the spectrum Pi so that the power of signal outside the main frequency band will be
reduced to zero and at the meantime keeps remained power concentrated at the predicted
center frequency and decayed toward both sides. By doing this, the power of noise is
significantly reduced.

After the filtering stage, inverse FFT is applied to P̂i, and the final de-noised signal can
be obtained by the recombination process:

ỹ = ∑ wi · invFFT(P̂i) (17)

where wi is a weighting coefficient which is determined by SSI as follows:

wi =

{
1, if Si ≥ thres
0, if else

(18)

where thres is the threshold value to dismiss the data segments having insignificant SSI
values. In this study, thres = 0.3max(Si).
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The implementation of the proposed method is summarized in Algorithm 1.

Algorithm 1. Procedure of the proposed method.

Input: noisy signal y
Output: de-noised signal ỹ

Step 1: Data segmentation.

Successive segmentation of the signal, such that:
(1) Segment length L is slightly larger than the length of transmitted pulse;
(2) The overlapped length of adjacent segments is L− 1.
Step 2: Filtering of each data segment.

For the ith segment whose time center is ti:
(1) Calculate its frequency spectrum Pi by FFT;

(2) Obtain the reference spectrum: Ti = exp[− ( f− fc)
2

2s2 ]exp[−α
(
2π f )4vti

]
;

(3) Calculate its SSI value Si: Si = κ̃(Pi, Ti) = exp(−‖Pi−Ti‖2

2σ2 );
(4) Let β = 1− Si, calculate the Tukey window:

W(n) =

⎧⎪⎨⎪⎩
1
2 [1− cos( 2πn

βN )], 0 ≤ n ≤ βN
2

1, βN
2 ≤ n ≤ N

2
W(N − n), 0 ≤ n ≤ N

(5) Calculate the filtered spectrum P̂i by: P̂i = Pi ·Wi(Ni, βi);

(6) Calculate the weighting coefficient wi: wi =

{
1, if Si ≥ thres
0, if else

.

Step 3: Signal reconstruction.

Reconstruct the de-noised signal ỹ: ỹ = ∑ wi · invFFT(P̂i).

4. Results

4.1. Simulated Signals

Considering the typical inspection scenario shown in Figure 3, simulation studies
are conducted to evaluate the SNR enhancement performance of the proposed method.
The ultrasonic transducer used here has a center frequency of 5 MHz and full width at
half maximum (FWHM) of 2 MHz. The specimen is a stainless steel block containing two
flaws located 60 mm and 72 mm below the surface, respectively. The transmitted pulse is
assumed to be a Gabor pulse, which is characterized by:

g(t) =
A√
2πs

exp[−(t− u)2/
(

2s2
)
] exp[iω(t− u)] (19)

where A is an energy normalization parameter, s determines the duration of the pulse, u is
the time delay of the Gabor pulse, ω is the angular frequency. The frequency spectrum and
waveform of the transmitted pulse are given in Figure 4.

Figure 3. The ultrasonic inspection scenario for the simulation study.
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Figure 4. (a) Waveform of the transmitted pulse from the transducer. (b) Frequency spectrum of the
transmitted pulse.

For the inspection scenario above, the received signal contains two flaw echoes and
grain noise backscattered by the grain microstructure of stainless steel as well as white
Gaussian noise from the circuits of instruments. Employing the model in [30], the frequency
spectrum of grain noise can be expressed as:

G(ω) = Z(ω) ·∑Kg
j=1 γj

ω2

dj
exp(−2αdjω

4)exp(−2iωdj/v) (20)

where Z(ω) is the frequency spectrum of the transmitted pulse from the transducer, Kg
is the number of grain scatterers in the ensonified area, γj is the scattering coefficient of
the jth grain scatterer which is dj away from the transducer, α is the frequency-dependent
attenuation coefficient, v is longitudinal wave velocity in stainless steel. In this study, the
parameters are chosen as follows: Kg = 2500, α = 1× 10−28, v = 6000 m/s. The frequency
spectrum of a simulated grain noise by Equation (20) is shown in Figure 5a. Applying
inverse Fourier transform to G(ω), the time domain waveform of the grain noise g(t) can
be generated as shown in Figure 5b. Similarly, the frequency spectrum of an echo reflected
by a flaw at depth d f law can be expressed as:

E(ω) = Z(ω) · exp(−2αd f lawω4) · exp(−2iωd f law

v
) (21)

Figure 5. (a) Frequency spectrum of simulated grain noise. (b) The time-domain waveform of the
simulated grain noise. (c) The simulated noisy signal.
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The simulated noisy signal is the superposition of grain noise g(t) and flaw echoes
e(t) plus some white Gaussian noise. In Figure 5c, the simulated noisy signal is presented.

To evaluate the SNR enhancement performance of the proposed method, normalized
signal-to-noise ratio (NSNR) is introduced which is calculated as [31]:

NSNR =
∑

u+lp/2
u−lp/2 y(n)2

∑Ns
1 y(n)2 (22)

where u denotes the time delay of a flaw echo, lp is the width of the flaw echo, and Ns is the
length of signal y(t). It can be observed that a noise-free ultrasonic signal has a NSNR = 1,
and if only noise is present, NSNR approaches 0. Therefore, the enhancement of SNR can
be evaluated by comparing NSNR values before and after signal de-noising.

For the highlighted signal segment in Figure 5c, which contains two flaw echoes
as shown in Figure 6a, the NSNR is 0.5946. After signal processing by the proposed
method, the de-noised signal is shown in Figure 6b along with the original noise-free
flaw echoes. After de-noising, the NSNR increases to 0.9488, meaning that the SNR is
significantly increased. Meanwhile, by comparing the de-noised signal and the original
noise-free echoes, it can be seen that the waveform of the two echoes can be preserved
with high fidelity. For comparison, the four-level discrete wavelet transform (DWT) using
the sym25 wavelet proposed in [11] is employed to process the same noisy signal, and the
de-noised signal, which has NSNR = 0.7378, is given in Figure 6c. According to [11], after
an extensive study, the authors concluded that a four-level sym25 wavelet yields the best
result for signal-to-noise ratio enhancement. The comparison clearly demonstrates a better
performance of our method. Although the second reconstructed echo by our method has a
slightly lower amplitude, the majority of noise is effectively removed. On the contrary, the
de-noised signal by four-level sym25 DWT still contains notable residual noise, resulting in
a lower NSNR value.

Figure 6. (a) The analyzed signal segment containing two flaw echoes, NSNR = 0.5946. (b) De-noised
signal by our method along with noise-free flaw echoes, NSNR = 0.9488 (blue line: reconstructed signal;
red line: original noise-free echoes). (c) De-noised signal by DWT (level-4 sym25) along with noise-free
flaw echoes, NSNR = 0.7378 (blue line: reconstructed signal; red line: original noise-free echoes).

4.2. Experimental Signals

In this section, the proposed methodology is employed to process signals obtained
from ultrasonic inspection of a stainless steel block in the laboratory to demonstrate its
effectiveness. The specimen being tested is a heat-treated Type 304 stainless steel block with
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two fabricated flaws (side drilled holes with a diameter of 2 mm) as shown in Figure 7a.
The dimensions of the specimen are 150 mm × 82 mm × 59 mm, and the two holes are
about 31 mm and 51 mm below the top surface, respectively. Heat treatment is conducted
at a temperature of 1250 ◦C for 8 h, followed by quenching in a water bath. Empirically,
grain sizes around D ≈ 120 μm will be formed. The ultrasonic DNT system is shown
in Figure 7b. The transducer used is type 5P20 made by Shantou Institute of Ultrasonic
Instruments Co., Ltd. (Shantou, China), with a center frequency of 5 MHz. The ultrasonic
pulse transmitted by the transducer is given in Figure 8a and the frequency spectra of the
transmitted pulse is shown in Figure 8b. The ultrasonic pulse/receiver, Type 5072PR, is
from Olympus Co., Ltd.(Tokyo, Japan). A-scan signals are obtained in pulse-echo mode and
sampled at 50 MHz using DPO2024 oscilloscope produced by Tektronix, Inc. (Beaverton,
OR, USA).

 
Figure 7. (a) A stainless steel specimen with two flaws. (b) The setup of the experiment system.

Figure 8. (a) The measured pulse transmitted by the transducer. (b) Frequency spectrum (F.S.) of the
transmitted pulse and its Gaussian fitting.

Longitudinal sound velocity in the block is measured first on the time-of-flight prin-
ciple. The thickness of the specimen is measured ten times using a Vernier caliper, and
the average thickness of the specimen is about 81.4 mm. The round-trip travel time of the
ultrasonic pulse reflected by the bottom of the specimen is 28.4 μs; therefore, the longitudi-
nal sound velocity equals v = 5735 m/s. Now one can notice that the wavelength of the
ultrasonic pulse is λ ≈ 1 mm, which means λ/D � 1, confirming that the scattering is in
the Rayleigh region.
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In Figure 9a, an experimental signal obtained when the transducer is positioned
between the two flaws so the received signal contains two flaw echoes is presented. The
signal segment to be analyzed is highlighted in Figure 9a and shown in Figure 9b, which
has an NSNR = 0.2864. By using the proposed method, the de-noised signal is shown in
Figure 9c. Notable SNR enhancement is observed, as its NSNR now increases to 0.9596.
From the de-noised signal, the time delays of the two flaw echoes are easily identified,
which are 11.28 μs and 18.35 μs, respectively. Based on the time-of-flight principle, the
depths of the flaws are obtained and compared with their actual values, as tabulated in
Table 1. The detection results reveal good detection accuracy. For comparison, the DWT
approach is implemented to process the same noisy signal, revealing NSNR = 0.2685. The
low value of NSNR is due to the inability of the DWT approach to remove the strong grain
noise on the left side. The de-noised signal by the DWT approach (4-level sym25) is shown
in Figure 9d. Although the two flaw echoes are successfully revealed and the yielded time
delays are in line with our method, the waveform of the two flaw echoes in the de-noised
signal is not sound, because theoretically, the duration of the second flaw echo will be
longer than the first one due to frequency-dependent attenuation.

Figure 9. (a) A noisy signal measured from the experiment. (b) The signal to be analyzed containing
two flaw echoes, NSNR = 0.2864. (c) The signal de-noised by our method, NSNR = 0.9596. (d) The
signal de-noised by DWT (4-level sym25), NSNR = 0.2685.

Table 1. Flaw detection results using the proposed method.

Upper Flaw Lower Flaw

Detected depth (mm) 32.3 52.6
Actual depth (mm) 31.0 51.0

Absolute error (mm) 1.3 1.6

5. Conclusions

In this work, a novel time-frequency filtering approach is proposed to enhance the
ultrasonic inspection performance of stainless steel structures by suppressing noise induced
by the grain microstructure of stainless steel; thus, increasing the SNR of the measured
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signal. Spectral modeling of a flaw echo and grain noise shows that, in the same time
frame, the spectrum of a flaw echo and that of grain noise exhibits different characteristics
which can be exploited to suppress the energy of noise. As such, the spectral similarity
index is introduced, which is used to determine the shape of the Tukey window in the
filtering stage and to determine the weighting coefficients in the signal recombination stage.
This approach has been validated both in the processing of simulated signals and signals
measured from experiments. In both cases, the enhancement of SNR is significant. The
high fidelity of the de-noised signal enables accurate flaw depth detection, showing good
performance of the proposed method. Moreover, the method is also effective for scenarios
where multiple flaws exist.
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Abstract: For infrastructures to be sustainable, it is essential to improve maintenance and manage-
ment efficiency. Vibration-based monitoring methods are being investigated to improve the efficiency
of infrastructure maintenance and management. In this paper, signals from acceleration sensors
attached to vehicles traveling on bridges are processed. Methods have been proposed to individually
estimate the modal parameters of bridges and road unevenness from vehicle vibrations. This study
proposes a method to simultaneously estimate the mechanical parameters of the vehicle, bridge, and
road unevenness with only a few constraints. Numerical validation examined the effect of introducing
the Kalman filter on the accuracy of estimating the mechanical parameters of vehicles and bridges.
In field tests, vehicle vibration, bridge vibration, and road unevenness were measured and verified,
respectively. The road surface irregularities estimated by the proposed method were compared with
the measured values, which were somewhat smaller than the measured values. Future studies are
needed to improve the efficiency of vehicle vibration preprocessing and optimization methods and to
establish a methodology for evaluating accuracy.

Keywords: drive-by bridge monitoring; vehicle–bridge interaction; system identification; field test

1. Introduction

Transportation and logistics are supported by civil structures. Civil structures de-
teriorate due to daily use and natural disasters. If the deterioration of infrastructures is
left unattended, it will lead to structural damage. Structural damage sometimes causes
serious accidents, with economic consequences and loss of life. Therefore, infrastructure
development is essential, and structure health monitoring (SHM) is attracting attention
in many countries [1–3]. Infrastructures are maintained and managed through detailed
inspections, but inspection costs are high. Therefore, methods focusing on vibration have
been proposed as low-cost bridge inspection methods. The suggested methods can be
divided into two categories. One is direct monitoring, in which sensors are installed directly
on the bridges. This method uses multiple sensors on each bridge to measure vibration
data. Based on the measured data, the modal parameters of the bridge are estimated, and
the bridge’s state is monitored. However, this method requires the installation of multiple
sensors on each bridge, which is costly.

Indirect monitoring has been proposed as an alternative to costly direct monitoring
methods [4]. Indirect monitoring uses mounting sensors on vehicles; the data are measured
when vehicles pass over a bridge. The vehicle acts as a bridge exciter and vibration
receiver in this method. When a vehicle passes over a bridge, it is shaken by the vehicle.
At the same time, the vehicle is also shaken by the bridge. This interaction is called
vehicle–bridge interaction (VBI). The vehicle vibration includes the response due to this
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interaction. Therefore, it is possible to estimate the structural parameters of the bridge from
the measured vehicle vibration. Once the structural parameters of the bridge are estimated,
priorities for bridge inspection can be determined. Indirect monitoring can be implemented
quickly and inexpensively because it is sufficient to mount sensors only on the vehicle.
A conceptual diagram of the efficiency of detailed inspections with drive-by monitors is
shown in Figure 1.

Figure 1. Conceptual diagram of drive-by monitoring.

Existing drive-by-bridge monitoring techniques are affected by road surface irregu-
larities, limited VBI time, and the environment [5]. Therefore, crowdsourcing information
collection and the integrated analysis of multiple data runs are considered [6]. Integrated
data analysis can eliminate influences unrelated to bridge damage, such as measurements
and factors that may affect the behavior of bridges. However, existing methods separately
estimate the mass, damping, and stiffness of bridges and road unevenness. Therefore, an
analytical method capable of integrated analysis is needed to detect bridge damage from
vehicle vibration.

The authors proposed the VBI system identification (VBISI) method [7–9]. The VBISI
method can simultaneously estimate vehicles’ and bridges’ mechanical parameters and road
unevenness from vehicle vibration and location information, under the condition that both
the wheelbase and total weight of the vehicle are known. The VBISI method is inspired
by technology that simultaneously estimates the vehicles’ mechanical parameters and
road unevenness [10,11]. The numerical simulation of bridge vibration is combined with
methods proposed in previous studies. The numerical validation of the VBISI method [7–9]
has already shown the feasibility of this method. However, it is not verified in a field test.

This study aims to identify issues based on the results of field tests of the VBISI method.
A Kalman filter is used to mitigate the effects of measurement noise in vehicle vibration.

The contribution of this research is as follows.

- The Kalman filter can be used to estimate road unevenness, but estimating mechanical
parameters is challenging.

- The applicability of the VBISI method was verified using experimental data from a
14-t truck and an actual concrete bridge with a 30 m span.

- Through the VBISI method in the field study, a vehicle response analysis problem
was proposed.

This paper is organized as follows: Section 2 introduces the related techniques of the
VBISI method. Section 3 presents the identification method for the coupled vehicle–bridge
system. Section 4 describes the basic mathematics of vehicle–bridge interaction system
identification. Next, Section 5 verifies the effectiveness of applying the findings of previous
studies to this technology through numerical simulations. Section 6 analyzes the field
test data, and Section 7 discusses this study’s limitations and future challenges. Section 8
summarizes the conclusions of this paper.

2. Related Work

This section reviews previous studies. Fortunately, there is an extensive review
article [5,6,12–15]. Malekjafarian et al. [5] provided the first comprehensive review of bridge
monitoring using vehicle response. Yang et al. [12] summarized methods for estimating the
bridge mode shapes and detecting damage from vehicle vibration. Sholravi, H. et al. [13]
outlined the broad framework of vehicle-assisted monitoring, which considers the vehicle
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classification-based SHM from bridge vibration. Hou et al. [14] comprehensively summa-
rized SHM for bridges from 2010 to 2019 and touched on the challenges of damage detection
by drive-by monitoring. Based on the previous review paper [5], Malekjafarian et al. [6]
discussed drive-by monitoring by dividing it into individual and multiple passes.

2.1. Estimating the Bridge Modal Parameter

The estimation of the bridge’s modal parameters is a central topic in indirect moni-
toring. Modal parameters of bridges are mainly natural frequency, damping, and mode
shape. Since indirect monitoring was proposed, identifying bridge frequencies [16–27]
from vehicle vibrations has been an exciting topic. Yang et al. [4] proposed the first method
to estimate the natural frequencies of bridges from vehicle vibrations. After that, Lin and
Yang [16] showed applicability in a field test, and Yang and Lin [17] also investigated the
estimation of higher-order frequencies. Jian et al. [25] focused on coupled vibration in a 3D
model of the vehicle–bridge interaction system. By taking the difference in the acceleration
of the front and rear wheels in the frequency domain, it is possible to suppress the influence
of road unevenness and identify the bridge’s natural frequency. In addition, estimations of
mode shapes [28–36] and damping [37–44] were also performed. Yang et al. [35] proposed
a method for estimating the bridge mode shapes from the acceleration responses on towed
vehicles. Next, the bridge stiffness is calculated from the estimated bridge mode shape.
From the estimated bridge stiffness, the bridge deflection was calculated using the finite
element method and compared to the measured values [36]. Other methods have been
proposed that use machine learning to identify bridge damage from multiple data [45]
and estimate bridge vibration from vehicles traveling at high speeds [46]. Yamamoto
and Takahashi [47] proposed a damage index that can detect minor damage, such as bolt
dropout. Shin et al. [48] proposed a model to discriminate whether the vehicle vibration
data were obtained from driving on a bridge or not to implement VBI technology in society.

2.2. Estimating the Road Unevenness

Road unevenness also shakes vehicles. If the road pavement is rough, the luggage
will deteriorate due to the shaking of the vehicle, and the passenger’s satisfaction will
be low. Road roughness affects logistics efficiency, so the World Bank adopted it as an
investment decision index. Therefore, it is crucial to manage pavement conditions. Road
unevenness reduces the accuracy of estimating bridge modal parameters and damage
states from vehicle vibration. Therefore, estimating road unevenness from vehicle vibration
is essential. McGetrick et al. [49] proposed a method to estimate road unevenness by
calculating dynamic vehicle forces from vehicle vibrations. A study of bridge span lengths
and vehicle speeds was conducted to verify the method’s robustness. He and Yang [50]
proposed a method for estimating road unevenness on a bridge from a single vehicle using
a Kalman filter. The proposed method showed robust results against VBI, vehicle speed,
noise contained in vehicle vibration, and bridge damping. Yang et al. [51] estimated the
displacement input to the vehicle system (input profile in this study) using the Kalman filter
from the measured vehicle vibration. The input profile is the sum of bridge vibration and
road unevenness at the axle position. The bridge vibration component is obtained from the
difference between the input profile’s front and rear axle positions. Road unevenness can be
estimated by subtracting the bridge vibration from the input profile. Hasegawa et al. [52]
proposed a road unevenness estimation method using regularized least squares minimiza-
tion by dynamic programming. Compared to the Kalman filter, it is helpful to use fewer
hyperparameters for optimization. The methods described above aim at estimating road
unevenness from vehicle vibration.

2.3. Estimating the Mechanical Parameters and the Road Unevenness

On the other hand, methods for estimating mechanical vehicle parameters simul-
taneously with estimating road unevenness have been proposed. Keenahan et al. [53]
proposed a method for estimating road unevenness from the vibrations of multiple vehicles
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traveling on the same route. Their research is interesting because it proposes a method
that can integrally process multiple vehicles and driving data. The proposed method was
verified by numerical simulations and can also estimate vehicle parameters. Previous
research [10,11] estimated vehicles’ mechanical parameters and road unevenness using a
Kalman filter from vehicle vibration data measured by smartphones. The smartphone is
installed in only one vehicle, and in field tests, road unevenness has been estimated with
high accuracy. Techniques for simultaneously identifying road unevenness and vehicles’
mechanical parameters from vehicle vibrations are susceptible to noise. Therefore, it is
necessary to reduce the influence of noise using a Kalman filter or the like. The noise
reduction method means it is possible to estimate the flatness of a road surface even when
the vehicle vibration contains high noise [10,11]. However, when the Kalman filter is used,
the accuracy of estimating the mechanical parameters of a vehicle decreases. In particular,
the VBISI method can simultaneously estimate a bridge’s mass, damping, and stiffness
parameters. However, papers have yet to investigate the relationship between the Kalman
filter and the accuracy of estimating the mechanical parameters of vehicles and bridges.
In the context of comparison with the VBISI method, the methods for estimating road
surface irregularities from vehicle vibrations are summarized in Table 1. The first three
columns in Table 1 depict the targets estimated by the methods proposed in each paper.
They also distinguish whether the model includes bridges, and whether the estimation
process incorporates the Kalman filter. If the relevant condition is satisfied, it is indicated
by a symbol �.

Table 1. Comparison with previous studies.

Estimated Target

Road Vehicle Bridge
Including
Bridges

Kalman
Filter

McGetrick et al. [49] � �
He and Yang [50] � � �
Yang et al. [51] � � �
Hasegawa et al. [52] �
Xue et al. [10]
Nagayama et al. [11] � � �
Keenahan et al. [53] � � � �
VBISI method [7–9] � � � � � [7,9]

3. Preliminaries

Before explaining the VBISI method, this section mentions what a VBI system is.

3.1. Vehicle–Bridge Interaction System

VBI systems consist of bridge and vehicle systems. The bridge system takes the
contact-point force of a vehicle as an input and returns bridge vibration as an output.
Bridge vibration as an output is the response at a fixed point of a bridge. Now, vibrations
at fixed points are converted into vibrations at moving points using interpolation. In this
paper, the bridge vibration at a moving point is called the bridge profile. On the other hand,
the vehicle system receives the input profile and returns the vehicle vibration as an output.
The input profile is the sum of the road profile and the bridge profile. Here, the road
profile represents road unevenness at the moving point. The vehicle’s contact-point force is
obtained from the output vehicle vibration, which is used as the input of the bridge system.
In summary, the vehicle and bridge systems have mutual input and output relationships.
The VBI system is nonlinear because of repeated interactions as vehicles travel over bridges.

3.2. Vehicle–Bridge Interaction System Identification Method

Next, an overview of the VBISI method to be verified in this study is provided. The
VBISI method first assumes random vehicle and bridge mechanical parameters. The VBISI
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method is divided into two processes. The first is the vehicle system’s IEP (input estimation
problem) from the vehicle vibration. In this research, the input profile is estimated using the
Kalman filter from the equation of motion of the vehicle. The second is the bridge system’s
DRS (dynamic response simulation). The input is the contact-point force calculated from
the measured vehicle responses. In DRS, the dynamic response of the bridge is calculated by
numerical schemes. The bridge profile is obtained from the obtained bridge vibration. The
road profile is given by subtracting the bridge profile from the input profile. The obtained
road profile can also be converted back to road unevenness. Assuming the vehicle’s
pathway is straight, the front and rear wheels run on the same road. However, because
the mechanical parameters of the vehicle and bridge are assumed randomly, the estimated
road unevenness usually does not match. The objective function is the residual of the road
surface roughness estimated for the front and rear wheels. The dynamic parameters of
the vehicle and bridge are estimated by solving an optimization problem to minimize this
objective function.

4. Methodology

The VBISI method verified in this study simultaneously estimates road unevenness
and all mechanical parameters (mass, damping, stiffness) both of vehicle and bridge only
from the position and vibration data of a traveling vehicle. The formulas of the VBISI
method have already been published [7–9].

4.1. Overview of Vehicle–Bridge Interaction

Figure 2 shows a conceptual diagram of the VBI system used in this study. A half-car
model is adopted for the vehicle, and the bridge is a simple one-dimensional beam model
that considers only bending. The half-car model considers four independent degrees of
freedom: the translation and rotation of the car body and the translation of the half-car
axle. As the VBI system is a non-linear system and the input/output of the vehicle is the
output/input of the bridge, convergence calculation is required to reproduce the vehicle
vibration. First, input displacement is given to the vehicle model to obtain the vehicle
vibration, and the contact-point force calculated from the vehicle vibration is input to the
bridge model to obtain the bridge vibration. The input displacement of the vehicle is
updated from the obtained bridge vibration, and the vehicle vibration is calculated again.
This process is repeated until the vehicle vibration converges.

Figure 2. Conceptual diagram of vehicle–bridge interaction [9].

4.2. Vehicle

For the half-car model shown in Figure 2, ms is the mass of the vehicle body and csi,
ksi, di, mui, and kui represent the suspension damping, the suspension stiffness, the distance
from the gravity point, the unspring-mass, and the tire stiffness of the i-th axle, respectively.
Let zsi be the vertical displacement of sprung-mass vibration at the axle, zsi be the unsprung
mass, ui be the input profile at the axle. The sprung mass models the vehicle body, and the
unsprung mass models the tires and axles. The subscript i corresponds to the axle, with
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1 being the front wheel and 2 being the rear wheel. The equation of motion of the vehicle is
expressed as [7]

Mv
..
z(t) + Cv

.
z(t) + Kvz(t) = Fv (1)

where t represents the time.
..
z(t) and

.
z(t) represent the second and first derivatives of

z(t), which are the velocity vibration and the acceleration vibration. z(t) and Fv(t) can be
represented as

z(t) =

⎧⎪⎪⎨⎪⎪⎩
zs1(t)
zs2(t)
zu1(t)
zu2(t)

⎫⎪⎪⎬⎪⎪⎭ (2)

Fv(t) =

⎧⎪⎪⎨⎪⎪⎩
0
0

ku1u1(t)
ku2u2(t)

⎫⎪⎪⎬⎪⎪⎭ (3)

Mv =

⎡⎢⎢⎢⎣
d2ms

d1+d2

d1ms
d1+d2

I
d1+d2

− I
d1+d2

mu1
mu2

⎤⎥⎥⎥⎦ (4)

Cv =

⎡⎢⎢⎣
cs1 cs2

d1cs1 −d2cs2

−cs1 −cs2
−d1cs1 d2cs2

−cs1 0
0 −cs2

cs1 0
0 cs2

⎤⎥⎥⎦ (5)

Kv =

⎡⎢⎢⎣
ks1 ks2

d1ks1 −d2ks2

−ks1 −ks2
−d1ks1 d2ks2

−ks1 0
0 −ks2

ks1 + ku1 0
0 ks2 + ku2

⎤⎥⎥⎦ (6)

Mv, Cv, and Kv are the mass, damping, and stiffness matrices of the vehicle. If the
center of rotation coincides with the gravity point, it is known that

I = msd1d2 (7)

4.3. Bridge

Let flexural rigidity and mass per unit length of bridge be EI(x) and ρA(x), respec-
tively; the equation of motion of the bridge system can be expressed as

ρA
..
y(x, t) +

∂2

∂x2 EI
(

∂2

∂x2 y(x, t)
)
= p(x, t) (8)

where y(x, t) denotes the deflection and x represents the position. The external force p
consists of the contact-point force Pi(t) of the vehicle and the reaction forces RA and RB at
both supports. x = 0 indicates the bridge entrance, and x = L indicates the exit. The bridge
span length is L. Let the positions of the fulcrums be also xA = 0 and xB = L, respectively,
and the position of the i-th wheel be xi(t). The function δ(x) represents Dirac’s Delta
function. The external force p is expressed as follows [7].

p =
2

∑
i=1

δ(x− xi)Pi(t) + δ(x)RA + δ(x− L)RB (9)
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This study applies the finite element method to solve Equation (8) numerically. The
finite element formulation is derived by the WRM (weighted residual method). The
weighted residual formula in Equation (8) is

∫ L

0
ω

(
ρA

∂2y
∂t2 + EI

∂4y
∂x4 − p

)
dx = 0 (10)

Let ω be the weight. The weak form of Equation (10) is given by Equation (11).

∫ L

0

(
ρAω

∂2y
∂t2 + EI

∂2ω

∂x2
∂2y
∂x2 − p

)
dx = 0 (11)

A one-dimensional finite element model discretizes the bridge vibration y(x, t) with a
Hermite basis. ⎧⎪⎪⎨⎪⎪⎩

φ1(s) = 1
4 (s− 1)(s− 1)(s + 2)

φ2(s) = Δx
8 (s− 1)(s− 1)(s + 1)

φ3(s) = − 1
4 (s + 1)(s + 1)(s− 2)

φ4(s) = Δx
8 (s− 1)(s + 1)(s + 1)

(12)

where s represents the normalized local coordinate in each element. Assuming that the j-th
and (j + 1)-th nodes compose the j-th beam elements, X = −1 indicates the position of the
j-th node, and X = 1 indicates the position of the (j + 1)-th node. Δx = xj − xj+1 when the
whole system is inside beam element j, which consists of node xj and node xj+1. Define a
basis function vector N(x) whose components are⎧⎪⎪⎨⎪⎪⎩

N2j−1(x) = φ1(s)
N2j+0(x) = φ2(s)
N2j+1(x) = φ3(s)
N2j+2(x) = φ4(s)

(13)

All components outside the element are set to zero. Using the bridge deflection y
(

xj, t
)

and deflection angle θ
(

xj, t
)

at the nodes, the deformation vector y(t) is{
y2(j−1)+1(t) = y

(
xj, t

)
y2(j−1)+2(t) = θ

(
xj, t

) (14)

Then, the approximate solution of y(x, t) is

y(x, t) = N(x) · y(t) (15)

Similarly, by setting the weights to ω(x) = N(x) · ω and substituting them into
Equation (11), we obtain the following.

ωT(Mb
..
y(t) + Kby(t)− F(t)

)
= 0 (16)

Mb, Cb, and Kb are the mass, damping, and stiffness matrices of the bridge.

Mb =
∫ L

0
NNTdx (17)

Kb =
∫ L

0

∂2N
∂x2

∂2NT

∂x2 dx (18)

F(t) is an external force vector whose components are the external forces (concentrated
load and moment of force) at each node. Considering Rayleigh damping,

Cb = αMb + βKb (19)
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Solving for the integration condition in Equation (16) for any ω gives the following
finite element equation.

Mb
..
y(t) + Cb

.
y(t) + Kby(t) = F(t) (20)

4.4. Vehicle–Bridge Interaction

In general, the responses of vehicles and bridges are modeled by interactions with
each other’s outputs as inputs. In order to realize a numerical simulation considering this
interaction, the following steps are performed. First, the vehicle vibration is calculated by
inputting only the road profile. Then, the contact-point force to the bridge is obtained from
the obtained vehicle vibration, and the bridge vibration is calculated. Adding this bridge
profile to the road profile creates a new input profile, and the vehicle vibration is obtained
again. By repeating this process, the displacement vibration of the vehicle and the bridge is
obtained. The input profile and contact-point force, which are the inputs of the vehicle and
bridge, are explained below [7].

4.4.1. Input Profile

The input profile u(t), which is the input of the vehicle system, is given by the sum of
the road profile r(t) and the bridge profile ỹ(t) and is expressed by Equation (21).

u(t) = r(t) + ỹ(t) (21)

Here, the road profile represents the road at the axle position. When the road uneven-
ness is R(x) and the axle position is xi(t),

ri(t) = R(xi(t)) (22)

ri(t) is the component of r(t). On the other hand, the bridge profile is the bridge
vibration y(x, t) at the axle position xi(t). In other words, the bridge vibration is the
deformation vector of each node fixed on the bridge. Therefore, converting to bridge
displacement at the axle position is necessary. The same basis used in the discretization
was used. The transformation matrix is

L(t) =
[
N(x1(t)) N(x2(t))

]
(23)

The bridge profile is
ỹ(t) = LT(t)y(t) (24)

4.4.2. Contact-Point Force

The contact-point force, which is the input to the bridge, corresponds to the restoring
force acting on the tire. However, as the equation of motion of the vehicle (Equation (1)) is
based on the equilibrium position, it should be noted that the gravity term has disappeared.
In calculating the restoring force, the effect of gravity is considered based on the equilibrium
length. Considering that the center of gravity of the vehicle body is the center of gravity,
the contact-point force between the front and rear wheels is

V1(t) = − d2ms
d1+d2

(
g +

..
zs1
)−mu1

(
g +

..
zu1

)
V2(t) = − d1ms

d1+d2

(
g +

..
zs2
)−mu2

(
g +

..
zu2

) (25)

The external force vector acting on the bridge is

F(t) = L(t)
[
V1(t) V2(t)

]
+ H(t) (26)

H(t) represents the fulcrum reaction force.
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4.5. System Identification

It is assumed that vehicle vibration is obtained as measurement data. Here, the road
profile can be estimated by substituting the vehicle vibration data and the vehicle and
bridge parameters whose initial values are randomly assumed in the VBI system. By
positionally synchronizing the obtained road profile, the estimated road unevenness R1(x)
and R2(x) for the front and rear wheels can be obtained. When the vehicle travels straight,
the front and rear wheels are considered to run on the same road unevenness. Therefore,
the estimated road unevenness R1(x) and R2(x) should also match. However, as the
mechanical parameters are given randomly, they do not match. Therefore, the optimization
problem is to update the dynamic parameters to minimize the error between the estimated
road unevenness R1(x) and R2(x). In other words, the VBISI method is a search method
for mechanical parameters where R1(x) = R2(x).

4.5.1. Kalman Filter

In order to estimate the road unevenness from the vehicle vibration, this study also
introduced the discrete-time extended state-space model proposed by Xu et al. [10]. The
following equations give the state vector and observation vector.

Zk =

⎧⎪⎪⎨⎪⎪⎩
z(kΔt)
.
z(kΔt)
u(kΔt)
.
u(kΔt)

⎫⎪⎪⎬⎪⎪⎭ (27)

sk =

{ ..
z(kΔt)
z(kΔt)

}
(28)

The state vector is given by the vehicle’s vertical displacement vibration, velocity
vibration, input profile, and velocity vibration. The discrete-time extended state-space
model in this study can be written as follows:

Zk =
–
VZk−1 + ωk (29)

sk = HZk + εk (30)

The matrix index V is given by Equation (31), where ωk, εk represent system noise and
observation noise, and ω ∼ N(0, Q), ε ∼ N(0, R).

–
V = expm[VΔt]= Udiag(exp(D))U−1 (31)

V =

⎡⎢⎢⎣
O4×4 I4×4 O4×2 O2×2

−M−1
v Kv −M−1

v Cv M−1
v Fv O2×2

O2×4 O2×4 I2×2 O2×2

O2×4 O2×4 O2×2 O2×2

⎤⎥⎥⎦ (32)

U and D are the modal matrices and diagonal matrix when VΔt is diagonalized and
are expressed as follows.

VΔt = UDU−1 (33)

Additionally, H is given by
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ks1
ms

0 ks1
ms

0 − cs1
ms

0 cs1
ms

0 0 0 0 0
0 − ks2

ms
0 ks2

ms
0 − cs2

ms
0 cs1

ms
0 0 0 0

ks1
mu1

0 − (ks1+ku1)
mu1

0 cs1
mu1

0 − cs1
mu1

0 ku1
mu1

0 0 0

0 ks1
mu2

0 − (ks2+ku2)
mu2

0 cs2
mu2

0 − cs1
mu2

0 ku2
mu2

0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(34)

Let Q and R be the variance–covariance matrices of system noise ωk and observation
noise εk.

Q = E
[
ωkωT

k

]
(35)

R = E
[
εkεT

k

]
(36)

Apply the Kalman filter [54] to the obtained discrete-time extended state-space model.
According to Xue et al. [10], it is possible to estimate the input profile even in a noisy
environment. In addition, the Robbins–Monro algorithm [55] can be used to dynam-
ically estimate the variance–covariance matrix of process noise and observation noise.
Xue et al. [10] also used Rauch-Tung-Striebel smoothing [56], which was also applied in
this study. The Kalman filter [55] is an efficient method for obtaining state vectors based
on observed data and a dynamic model. Let the estimated state vector be Ẑk. Now, when
Ẑk−1 is obtained, the candidate X of Ẑk from Equation (29) is X ∼ N(μa, Σa). On the
other hand, when sk is obtained, the candidate Y of Ẑk derived from Equation (30) follows
Y ∼ N(μb, Σb).

μa =
–
VẐk−1 (37)

Σa,k =
–
VPk−1

–
V

T
+ Q (38)

μb = H−1sk (39)

Σb = H−1RH−T (40)

After applying the Kalman filter, the state vector Ẑk is estimated as the maximum
likelihood value, assuming that the two candidates X and Y follow a normal distribution.
That is, Ẑk is derived as follows.

Ẑk =
(

Σ−1
a,k + Σ−1

b

)−1(
Σ−1

a,k μa + Σ−1
b μb

)
= [I−GkH]

{ –
VẐk−1

}
+ [GkH]

{
H−1sk

}
= [I−GkH]

{ –
VẐk−1

}
+ Gksk

(41)

where Gk and Pk are calculated as follows.

Gk = Σa,kHT
(

HΣa,kHT + R
)−1

(42)

Pk =
(

Σ−1
a,k + Σ−1

b

)−1
= [I−GH]Σa (43)

Subsequently, the Robbins–Monro algorithm [55] dynamically estimates the variance–
covariance matrix of the process noise ωk and the observation noise εk. Correctly estimating
the order of noise is important because it affects the practicality of Kalman filter-based road
profile estimation. Here, αQ,k and αR,k are positive real numbers smaller than one.

Qk =
(
1− αQ,k

)
Qk−1 + αQ,kGk

(
sk −HẐk

)(
sk −HẐk

)T
GT

k (44)
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Rk = (1− αR,k)Rk−1 + αR,k
(
sk −HẐk

)(
sk −HẐk

)T (45)

4.5.2. Object Function

First,
.
z(t) and z(t) are obtained by applying the Newmark-β method to vehicle

vibration
..
z(t), which is the measurement data. Mv, Cv, and Kv can also be obtained by

randomly assuming the system parameters of the vehicle. At this time, u1 and u2 can be
obtained by estimating the state vector using the Kalman filter. Next, the vehicle vibration
data

..
z(t) and the assumed vehicle system parameters are substituted into Equation (25) to

obtain contact-point forces V1(t) and V2(t). Suppose the system parameters of the bridge
are also assumed randomly. In that case, the bridge vibration y(t) can be obtained using the
equation of motion of the bridge and the Newmark-β method, as in numerical simulation.
By substituting into Equation (24), the bridge profile ỹ(t) can be obtained. Then, r(t) can
be estimated by subtracting ỹ(t) from u(t) obtained earlier. Here, R1(x) is obtained by
synchronizing r1(t) with x1(t), and R2(x) is obtained by synchronizing r2(t) with x2(t).
Based on the assumption that road unevenness R1(x) and R2(x) should be equal, the
problem of estimating mechanical parameters is treated as an optimization problem that
minimizes the squared error of R1(x) and R2(x). The objective function of this optimization
problem is

J(x) = ∑|R1(x)− R2(x)|2 (46)

If the parameters of the vehicle and bridge are all correct values, the two road uneven-
ness calculations match. Therefore, if the parameters can be updated so that the calculated
road unevenness matches, it can be expected that the parameters will eventually approach
the correct values. However, the equations of motion are equivalent when all parameters
are multiplied by the same factor. Therefore, at least one parameter must be known. This
research assumes that the gross vehicle weight M = ms + mu1 + mu2 and the distance
between axles D = d1 + d2, which are easy to measure, are known parameters [7].

4.5.3. Optimization Method

This research adopts the Nelder–Mead method [57,58] as the parameter search method.
The method creates an initial simplex (a simulated triangle in high-dimensional space). The
simplex is then iteratively modified to approach the minimum or maximum value of the
function. The simplex is then modified using the reflection, expansion, contraction, and
shrink methods. The Nelder–Mead method is independent of the slope of the objective
function and searches for the optimal solution relatively quickly. This study uses the
faster adaptive Nelder-Mead method [58]. In addition, there are non-negative conditions
and constraints on mechanical parameters. Therefore, the objective function of the VBISI
method is changed from a constrained objective function to an unconstrained objective
function using a penalty function. The penalty function sets the value of the objective
function to infinity if the parameters do not satisfy the following conditions.

1. One of the parameters is negative.
2. The sum of axle weights mu1 and mu2 exceeds the vehicle weight.
3. The center of gravity position d1 exceeds the wheelbase value.

For the initial value, give 0.8 to 1.2 times the value assumed in advance.

4.6. Implementation of Numerical Simulation

Based on the model shown in Figure 2, the coupled vibration of the vehicle and bridge
is reproduced by numerical simulation. Here, the vehicle model is separated from the
bridge model, and the computation is repeated until the vehicle vibration converges [7].
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4.6.1. Newmark-β Method

Vehicle and bridge vibrations are obtained by applying the Newmark-β method to the
respective equations of motion. The arbitrary equations of motion are shown below.

M
..
η(t) + C

.
η(t) + Kη(t) = ξ(t) (47)

Discretize the time function η(t), and let ηk be the displacement response of the vehicle
or bridge, where Δt is the time increment

ηk = η(kΔt). (48)

In the Newmark-β method,

.
ηk =

.
ηk−1 + Δt

(
(1− γ)

..
ηk−1 + γ

..
ηk−1

)
ηk = ηk−1 + Δt

.
ηk−1 + Δt2

((
1
2 − β

) ..
ηk−1 + β

..
ηk

) (49)

From the above equation, the equation can be written as follows

M
..
ηk + C

.
ηk + Kηk = ξk (50)

Applying the Newmark-β method, we receive

A
..
ηk = bk. (51)

From this, the following can be derived

A =
[
M + ΔtγC + Δt2βK

]
(52)

bk =

{
ξk − C

( .
ηk−1 + Δt(1− γ)

..
ηk−1

)−K
(

ηk−1 + Δt
.
ηk−1 + Δt2

(
1
2
− β

)
..
ηk−1

)}
(53)

4.6.2. Iterative Computation

Iterative calculations reproduce the coupled vibration of the vehicle and bridge. First,
vehicle vibration is calculated using only the road unevenness as an input. The data
matrix Z = [· · · zk · · ·] represents the discretized vehicle vibration. The obtained vehicle
vibration Z is set to Z0, as convergence calculations are performed, and using Z0, the
ground forces can be obtained. Replacing Equation (47) with the equation of motion of
the bridge (Equation (20), the bridge vibration is obtained in the same way. Let this be Y0

from Y0; Z1 is obtained. This process is repeated to obtain Yl from Zl and Zl+1 from Yl . The
convergence condition for this iterative calculation is

ε =

∣∣∣Zl+1 − Zl
∣∣∣∣∣∣Zl+1

∣∣∣ ≤ εmax. (54)

The computation is terminated when the update ratio of Zl is less than the threshold
value εmax. Additionally, | | denotes the quadratic norm.

The time increment is set to 1.0× 10−3[s], and the threshold for convergence judgment
is set to 1.0× 10−6. The Newmark-β method employs the average acceleration method,
with γ = 1

2 and β = 1
4 .

5. Numerical Validation

5.1. Setting

First, this study verifies whether road unevenness can be estimated from vehicle
vibration calculated by numerical simulation. To see how the Kalman filter’s application
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changes the parameter estimation accuracy. The mechanical parameters of the vehicle were
determined from the vehicle inspection certificate. The vehicle is assumed to be a 14-t truck
that can sufficiently vibrate the bridge. The mechanical parameters of the bridge were
determined concerning the bridge ledger (Table 2). The roughness of the road profile used
in the numerical simulation was determined based on the values calculated by the road
profiler. The vehicle displacement vibration is estimated from the acceleration using the
Newmark-β method. The estimated vehicle displacement vibration is high-pass filtered at
0.1 Hz. The filtering process is to remove trends due to numerical integration.

Table 2. The assumed mechanical parameters of vehicle and bridge.

Vehicle Parameter Assumed Bridge Parameter Assumed

d1 Distance between
wheels and center

of gravity

2.18 [m] L Length 30.0 [m]

d2 2.67 [m] Number of
Elements 7

ms Mass 13,060 [kg] EIi Bending stiffness 5.50× 1010 [Nm2]

mui Mass (sprung) 3.20× 103 [kg] ρA Mass per unit 1.80× 104 [kg/m]

csi Damping (sprung) 3.00× 104 [kg/s] α Rayleigh damping
coefficient

0.7024

ksi Stiffness (sprung) 4.00× 103 [N/m] β 0.0052

kui
Stiffness

(unsprung) 4.00× 105 [N/m]

The authors assumed values for the variance–covariance matrix based on previously
measured vehicle vibration data. Table 3 summarizes the initial value diagonal components
of the variance–covariance matrix of the process and observation noise. Even if the model
parameters corresponding to an actual vehicle are estimated, there will consistently be
modeling errors because the half-car model is a simplified linear system with limited
degrees of freedom. It is generally difficult to estimate the degree of the first through eighth
components of Q corresponding to this modeling error [10]. Therefore, the values were
determined by trial and error with reference to [10]. On the other hand, the observed noise
value can be determined by referring to the noise level of the measurement equipment and
the installation method. However, it is difficult to accurately estimate these values for each
measurement vehicle and installation method. Therefore, R was also determined by trial
and error. In this study, the values were set based on the RMS values of vehicle vibration
measured when the vehicle was stationary; the off-diagonal elements of Q and R are zero.

Table 3. Variance–Covariance Matrix Settings.

(i,i) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6)

Qii 1.35× 10−4 1.47× 10−4 1.84× 10−4 1.85× 10−4 5.11× 10−4 5.73× 10−4

Rii 4.50× 10−3 5.20× 10−3 3.34× 10−3 3.34× 10−3 1.25× 10−4 1.37× 10−4

(i,i) (7, 7) (8, 8) (9, 9) (10, 10) (11, 11) (12, 12)

Qii 1.20× 10−3 1.20× 10−3 1.00× 10−9 1.00× 10−9 1 1

Rii 1.74× 10−4 1.75× 10−4

5.2. Result and Discussion

Parameter identification and road unevenness estimation are performed using vehi-
cle vibrations. The effect of the Kalman filter on parameter identification was confirmed
through comparison with the case where the Kalman filter was not used. The diagonal
elements of the variance–covariance matrices R and Q of the Kalman filter without consid-
eration of noise are assumed to be 1.00× 10−9 for all one to eight elements. In addition,
the case where noise is included in the vehicle vibration is also considered for field tests.
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The noise was set based on the value measured by an acceleration sensor installed in the
vehicle in a static state. Figure 3 shows the estimation of road unevenness by the VBISI
method without a Kalman filter. Figure 4 shows the results using the Kalman filter. The
upper and lower rows show the estimated road unevenness when noise is not considered
and when noise is considered, respectively. The set vehicle speed is 8.1 [m/s], and the data
for about 5 s is used. The Nelder–Mead method was adopted to minimize the objective
function, and the number of updates was set to 1000 times. The input profile without the
Kalman filter is obtained from Equations (1) and (3).

Figure 3. Road unevenness estimation results without Kalman filter [upper: without noise, lower:
with noise].

Figure 4. Road unevenness estimation results with Kalman filter [upper: without noise, lower:
with noise].

When the Kalman filter is not used, the road unevenness estimated for the front
and rear wheels almost always coincide with the absence of noise. In addition, the road
unevenness calculated for the front and rear wheels almost always overlaps with the correct
value. However, when noise is considered, the estimation accuracy is significantly reduced.
On the other hand, when the Kalman filter is used, the decrease in the accuracy of road
unevenness is slight regardless of the presence or absence of noise. However, the road
unevenness estimated for the front and rear wheels differs from the correct ones. There
are several possible reasons for this. One is that the parameters of the variance–covariance
matrix of the Kalman filter need to be better adjusted, which may have been affected by the
noise processing. It is also known that the accuracy of the Kalman filter in estimating road
unevenness decreases as the distance from the center of gravity increases [7]. There is a
possibility that the influence of the estimation error of the front and rear wheels cannot be
ignored. Table 4 summarizes the parameter estimation results. The two columns on the left
in Table 4 indicate the presence or absence of the Kalman filter in the estimation process
and the consideration or lack thereof of noise to vehicle vibration. If the conditions are met,
a symbol of � is given; if not, a symbol of ×is assigned.
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Table 4. Variance–Covariance Matrix Settings.

KF Noise d1 cs1 cs2 ks1 ks2 mu1 mu2 ku1 ku2 ρA α bC EI1 EI4 EI7

× × 1.00 1.01 1.01 1.05 1.04 1.02 1.02 1.01 1.02 1.00 0.99 1.06 1.00 0.94 0.96

× � 0.00 0.20 0.13 0.07 3.02 2.32 0.37 2.69 1.19 0.33 1.73 2.01 0.62 0.36 0.02

� × 0.96 1.22 1.05 0.93 0.94 0.92 1.02 1.05 1.07 1.09 1.06 0.94 1.05 0.89 0.94

� � 1.13 1.82 2.11 0.70 1.41 1.05 0.93 0.68 0.85 1.60 1.86 0.84 1.07 1.08 0.38

Estimated parameters were divided by their correct values and normalized. Only the
bridge endpoints and the central part are represented as bridge stiffness values. The highest
accuracy is obtained when the Kalman filter is not used and noise is not considered. Even if
the Kalman filter is used, it is possible to estimate the mechanical parameters of the vehicle
and bridge without considering noise. However, the accuracy of the estimated parameters
is slightly lower than before using the Kalman filter. This phenomenon occurs even though
the front and rear wheels estimate almost the same road surface. In other words, the
difference between the estimated road unevenness and the correct road unevenness is the
cause. In addition, when noise is considered, the parameter estimation accuracy decreases
in both methods regardless of the introduction of the Kalman filter.

6. Field Test

6.1. Bridge Description

Matsumi Bridge is a one-span bridge constructed in 1973 across Kaede Street in
Tsukuba City, Ibaraki Prefecture, Japan (Figure 5). The bridge’s total length is about
30.88 m, and the width is about 12.98 m. The main girder is a PC box post-tension girder. It
is paved with asphalt and integrated with the main girder.

 
(a) (b) 

Figure 5. The view of the bridge: (a) full view; (b) expansion joint [48].

To provide a baseline for comparison with drive-by measurements, the natural fre-
quency of Matsumi Bridge is directly measured by installing accelerometers on the bridge.
A three-axis wireless MEMS accelerometer was used to record the forced vibration of the
bridge. Two sensors were installed at the center of each bridge for bridge measurement. A
wireless accelerometer driven by a mobile battery was attached using double-sided tape
for construction. Vertical acceleration was measured at 300 Hz.

The first natural frequency of Matsumi Bridge was calculated by the fast Fourier
transform of free vibration and forced vibration data. Figure 6 shows an example of the
free vibration and FFT of the bridge after passing vehicles measured at two locations.
Additionally, forced vibration is shown in Figure 6. In this example, a passing measurement
vehicle excites a bridge. Comparing the free vibration and vehicle vibration, the latter
has more frequencies in the lower frequency range than the fundamental frequency of the
bridge (including vehicle frequencies). As shown in Figure 6, the first peak in the frequency
domain, corresponding to the fundamental frequency of the bridge, was evident in the
data from all two sensors. The averages of five measurements of free vibration and forced
vibration due to the passage of the measurement vehicle were 18.6 Hz and 18.33 Hz. The

142



Sensors 2023, 23, 539

lower frequency of forced oscillation than that of free oscillation can be attributed to the
mass increase by the measurement vehicle [59]. As there are only two sensors in this study,
it is impossible to determine which bridge mode is responsible for the observed peaks.

Figure 6. Free-vibration response of the Matsumi Bridge in both the time and frequency domain.

6.2. Measured Data

Measurements were taken with multiple accelerometers and multiple GPSs for a
two-axis vehicle. The layout of the installed sensors is shown in Figure 7. The instrumenta-
tion and testing details are presented in [48]. Over 18 and 19 May 2022, the vertical acceler-
ation was measured when the measurement vehicle crossed Matsumi Bridge 100 times. In
VBI studies, the measured acceleration vibration is often in the vertical direction. However,
it is difficult to obtain data only in the vertical direction when accelerometers are installed in
vehicles, depending on the location. Therefore, the acceleration data were corrected using a
rotation matrix before conducting this analysis. The accelerometers used in this study were
triaxial, and the vertical direction can be inferred in the post-process by correcting the data
with a rotation matrix. The sensor tilt was estimated from the vehicle vibration measured
while the vehicle was stopped and corrected. The obtained rotation matrix is applied to
the vehicle vibration data for analysis to obtain the mean value of the acceleration signal
in the vertical direction, and the process of average zeroing is performed. Figure 8 shows
an example of the vertical acceleration of a vehicle and the forced vibration of a bridge
and its FFT results. The upper, middle, and lower rows represent the vehicle’s front, rear,
and bridge vibrations. For vehicle vibration, the vibration of the vehicle body and the
vibration of the axle are plotted simultaneously. In common with front and rear vehicle
vibrations, the amplitude of axle vibration is larger than vehicle body vibration. In the
frequency domain, both the vehicle and bridge vibrations have a peak of about 3 Hz. By
VBI, a peak was observed that did not exist during forced vibration (Figure 8b). Some
peaks are seen around 13 Hz at the front of the vehicle. These are due to the effects of the
vehicle’s natural frequency, engine vibration, and road unevenness. In addition, the FFT
of vehicle vibration does not show a peak near 18 Hz. Therefore, it is difficult to identify
the fundamental frequency of a bridge simply by the FFT of the measurement data. The
Nelder–Mead method was adopted to minimize the objective function, and the number of
updates was set to 10,000 times.

6.3. Results

The results of the VBISI method run using the data measured in the field test are
summarized in Figures 9 and 10 and Table 4. Figure 9a shows the acceleration vibration
of the bridge vibration estimated by the VBISI method, its FFT result, and the estimated
road profile. In the frequency domain of Figure 6, a peak around 18 Hz can be observed for
the bridge vibration. This peak could not be observed from the estimated bridge vibration,
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as shown in Figure 9a. Figure 9b shows the road profile estimated by the VBISI method.
Large amplitudes can be seen around 0 m and 30 m of the estimated road unevenness.
These amplitudes can be attributed to the expansion joint in front of and behind the bridge.
The road unevenness estimated for the front and rear wheels show similar characteristics,
but they did not match. Figure 10 compares the power spectral density function (PSD) of
the VBISI-estimated and measured road unevenness. The estimated road unevenness was
assessed at the vehicle’s front axle position. The road unevenness was measured using a
road profiler. The estimated road unevenness is lower than the measured road unevenness.
Table 5 summarizes the vehicle and mechanical bridge parameters estimated by the VBISI
method. The correct values of the modal parameters for vehicles and bridges in a field test
have yet to be discovered. Therefore, evaluating the parameters estimated by this method
is a technical issue.

(a) (b) 

Figure 7. Layout of sensor installation: (a) vehicle; (b) bridge.

(a) (b) 

Figure 8. Vibration response of vehicle and bridge: (a) in time domain; (b) in frequency domain.

 
(a) (b) 

Figure 9. The VBISI method estimation result: (a) bridge vibration in time and domain;
(b) road profile.
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Figure 10. Comparison of estimated and measured PSD functions of road unevenness.

Table 5. The estimated mechanical parameters of vehicle and bridge.

Parameter Estimated Parameter Estimated

d1 [m] 2.18 EI1 [Nm2] 5.48× 1010

d2 [m] 2.67 EI2 [Nm2] 5.35× 1010

mu1 [kg] 3.25× 102 EI3 [Nm2] 5.75× 1010

mu2 [kg] 3.27× 102 EI4 [Nm2] 5.19× 1010

cs1 [kg/s] 3.02× 104 EI5 [Nm2] 5.80× 1010

cs2 [kg/s] 3.04× 104 EI6 [Nm2] 5.38× 1010

ks1 [N/m] 4.22× 103 EI7 [Nm2] 5.25× 1010

ks2 [N/m] 4.17× 103 α 0.6921

ku1 [N/m] 4.04× 105 β 0.0055

ku2 [N/m] 4.07× 105 ρA [kg] 1.79× 104

7. Discussion

When the estimated road unevenness matches the correct values [8,9], the mechanical
parameters of the vehicle and bridge also mostly match the correct values. Therefore, the
accurate estimation of road unevenness is essential. To improve the estimation accuracy,
actions are taken to improve the accuracy of the road unevenness estimation. In this study,
several possible factors may reduce the accuracy of road unevenness estimation.

One is the problem of measured data. In this study, vehicle acceleration vibration
and displacement vibration are used as observation data. However, vehicle displacement
vibration is calculated by the numerical integration of vehicle acceleration vibration. The
acceleration vibration of a vehicle contains various noises. Vibrations included in vehicle
vibration may include engine vibration. Therefore, the numerically integrated displacement
vibration of the vehicle has a trend. Because it is difficult to remove this effect, the accuracy
of the road unevenness estimation is reduced. It is possible to use only acceleration
vibration as the observed data. However, displacement vibration is essential to satisfy
observability in the state-space model. In a model that does not satisfy observability, it is
difficult to determine the state variables from the observed data uniquely. On the other
hand, the vehicle is also equipped with a GPS sensor to measure vertical displacement. The
model’s accuracy can be improved if the GPS’s vertical displacement can compensate for
the accelerometer’s displacement oscillations.

Optimization also poses challenges. Many nonlinear optimization problems have
multiple local solutions. As the objective function of the VBISI method is also a nonlinear
function, there are local solutions. Therefore, even if the optimal solution is obtained,
there may be a different value. Moreover, in the absence of blueprints, it is necessary to
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increase the range of parameters to be explored. Therefore, a more efficient parameter
search method is needed for future verification. There is also potential for improvement in
the objective function. Although this study used road unevenness estimated from the front
and rear wheel positions, the synchronization of the positions takes work.

It is also necessary to consider how to verify the accuracy of this method. Therefore, it
is practical to conduct a laboratory experiment to examine the applicability of this method.
In laboratory experiments, it is relatively easy to grasp the mechanical parameters of the
vehicle and bridge. In addition, it may be possible to estimate mechanical vehicle parame-
ters from free vibration tests using humps and compare them with the results. Mechanical
bridge parameters are also being considered to use findings from direct monitoring of
bridges. A sensor is installed directly on the bridge, and the excitation test estimates the
modal parameters of the bridge. Nikkhoo et al. [60] proposed a method for estimating the
natural frequencies and dynamic response of various beams subjected to excitation by a
moving mass. If these direct bridge monitoring techniques can be utilized, more efficient
and reliable parameter estimation may be possible. Additionally, Yang et al. [36] proposed
a method to evaluate the stiffness of a bridge estimated from vehicle vibration. Based
on the estimated bridge stiffness, the deflection of the bridge, when given a specific load,
is calculated by the finite element method. A similar load is applied to an actual bridge
and compared with its displacement to verify accuracy. In addition, the VBISI method
does not examine vehicle speed restrictions, which have been pointed out in previous
studies [61]. Therefore, it is necessary to verify the practicality of this technique through
parametric studies.

8. Conclusions

A field study of an indirect bridge health monitoring method for single-span con-
crete bridges is described. Acceleration responses extracted from sensor-mounted sen-
sors were used. The study examined methods for estimating (i) mechanical vehicle
parameters, (ii) mechanical bridge parameters, and (iii) road unevenness. Direct mea-
surements using sensors installed on the bridges confirmed that the vehicles shook the
bridge. Road profilers were also used to measure road unevenness. It is difficult to identify
the fundamental frequencies of bridges from the estimated bridge vibrations. In addition,
the estimated road unevenness needs to be more accurate when compared to the measured
road unevenness, although they show some of the same trends. This paper is the first to
examine the simultaneous identification of vehicle and bridge parameters and road un-
evenness in a field test. The VBISI method is a new approach that expands the possibilities
of indirect monitoring.

A limitation of this study is that it took a lot of work to find a combination of param-
eters to estimate the road unevenness by the studied method between the front and rear
wheels. The VBISI method had to consider the effects of noise fully, and the optimiza-
tion method needed to be revised. Therefore, it is conceivable to adopt a less susceptible
technique to engine vibration and measurement noise in future research. Establishing a
methodology to evaluate the estimated mechanical parameters of the vehicle and bridge is
also essential.

A summary of the results is as follows:

1. The VBISI method can estimate the mechanical parameters of the vehicle and bridge
and road unevenness from vehicle vibration and position information. The only
information required for the estimation is the vehicle’s total weight and the wheelbase.

2. The Kalman filter improves the accuracy of estimating road unevenness but reduces
the accuracy of estimating the mechanical parameters of the vehicle and bridge.

3. The method was validated with vehicle vibrations measured during field tests. The val-
ues estimated by the proposed method are compared to the directly measured vibrations.

4. It is not easy to estimate the natural frequencies of bridges from the bridge vibrations
estimated by the proposed method. On the other hand, some of the estimated road
unevenness showed similar trends.
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5. To improve the accuracy of the VBISI method, the vibration preprocessing and op-
timization methods need to be improved. In addition, a method for evaluating the
estimated mechanical parameters needs to be established.
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Abstract: Most modern Earth and Universe observation spacecraft are now equipped with large
lightweight and flexible structures, such as antennas, telescopes, and extendable elements. The trend
of hosting more complex and bigger appendages, essential for high-precision scientific applications,
made orbiting satellites more susceptible to performance loss or degradation due to structural
damages. In this scenario, Structural Health Monitoring strategies can be used to evaluate the health
status of satellite substructures. However, in particular when analysing large appendages, traditional
approaches may not be sufficient to identify local damages, as they will generally induce less
observable changes in the system dynamics yet cause a relevant loss of payload data and information.
This paper proposes a deep neural network to detect failures and investigate sensor sensitivity to
damage classification for an orbiting satellite hosting a distributed network of accelerometers on a
large mesh reflector antenna. The sensors-acquired time series are generated by using a fully coupled
3D simulator of the in-orbit attitude behaviour of a flexible satellite, whose appendages are modelled
by using finite element techniques. The machine learning architecture is then trained and tested by
using the sensors’ responses gathered in a composite scenario, including not only the complete failure
of a structural element (structural break) but also an intermediate level of structural damage. The
proposed deep learning framework and sensors configuration proved to accurately detect failures
in the most critical area or the structure while opening new investigation possibilities regarding
geometrical properties and sensor distribution.

Keywords: space structures; space antenna; damage classification; deep learning; structural health
monitoring

1. Introduction

Modern large space structures (LSS) have a higher level of structural flexibility and
larger dimensions than those experienced in past spacecraft. Due to the constraints imposed
by the launch vehicle on the lift-off mass, the size of such flexible appendages (i.e., antennas,
telescopes, solar panels, etc.) comes at the expense of the overall stiffness of their structural
elements. Therefore, many large structures exhibit a multitude of closely spaced and lightly
damped elastic modes, thus making the Control/Structure Interaction (CSI) phenomenon
a very critical issue that can significantly affect the satellite’s behaviour and degrade its
performance. In fact, external and internal disturbances such as thermal loads, reaction
wheels/mechanisms exported forces and vibrations, among others, or the control inputs for
attitude stabilisation and orbital manoeuvres, can easily excite the vibrational responses of
the satellites’ flexible appendages [1]. Moreover, flexible appendages are generally subjected
to narrow pointing and instrument requirements [2–4]. However, during their operative
life, such parts are potentially exposed to several sources of damage and degradation,
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as well as sudden stiffness loss, due to debris impact or fatigue and material ageing or
wear phenomena. When a failure or deterioration occurs, a change in the overall system
properties takes place. Even minor local structural damages may induce a relevant change
in the stiffness and dimensional stability of spacecraft scientific instruments, possibly
compromising the acquisition of data and images.

Spacecrafts such as the Soil Moisture Active Passive (SMAP) [5,6], launched by NASA
in 2015, or the European Copernicus Imaging Microwave Radiometer (CIMR) [7], currently
under development by Thales Alenia Space, can be mentioned as representative cases of
such large flexible systems. Both the cited missions consist of a main non-spun platform
and a rotating part composed of an antenna boom, a deployable large mesh reflector model
(LMRM), and a rotation mechanism. The interest in such larger and structurally complex
missions imposes the precise analysis of how, where, and when failures can be detected
with sufficient accuracy. To this end, we analyse in this paper a satellite hosting an LMRM
payload with properties and characteristics comparable to the SMAP and CIMR missions.
In particular, the LMRM is deemed a case of interest given its design maturity, promising
current and future space applications, and also its high-precision pointing and balance
requirements [8], which make it particularly susceptible to performance degradation in case
of local structural damages. The goal is to study the sensitivity of a distributed network of
sensors to structural damages when using a deep learning approach.

On account of this, the current and next LSS and related missions are calling for new
de-risking technologies, aimed at minimising the impact of damages directly on orbiting
satellites. A possible approach is to implement a set of sensors—whose amount and location
will depend on the specific application—to promptly identify the location and the entity of
the damage, and to assess the impact on the mission and relevant mitigation strategies [9].
In such cases, Structural Health Monitoring (SHM) strategies have hence assumed an
increasing importance on the consideration of improved performance, safety, and costs,
especially referring to modern space lightweight structures [10,11]. An important aspect of
the SHM of the LSS is related to the use of in situ sensing to detect the structural damage
of the structures and their related components [12–14]. Different sensing technologies can
be used to identify the damages of on-board satellites: the solutions range from cameras
allowing image processing (such as the debris hit detection on Sentinel 1-A’s solar panel) to
distributed devices—such as accelerometers, piezoelectrics, or optical fibre sensors—at the
structural level, for both a time response acquisition and strain sensing [15].

Cameras are used to visually identify the faults by acquiring pictures and/or ex-
tracting the relevant information, such as displacement measurements. A vision-based
method for in-plane displacement acquisition of cantilever beams was applied in [16], while
Ye et al. [17] combined a vision-based system with digital image processing and proposed
a hybrid approach using a multipoint pattern-matching algorithm. Although the vision
systems generally prove to capture good results when compared to other types of in situ
sensors, it is found that illumination has a critical effect on the overall performance. Vision
in space faces even more challenges in respect to lighting conditions, exposition, and the
accessibility of partially hidden areas. According to the orbit selected, there is the chance
of detectors being saturated or blinded by direct sun light, as well as interference and a
poorer performance due to the noisy environment for the light background.

As this paper focuses on identifying local failures that could be then difficultly ob-
served via cameras [18], the focus is given to the possibility of implementing a network
of distributed sensors. In particular, accelerometers are selected as the sensing technology
to acquire structural nodal acceleration time histories, as they are space qualified, easily
installable, and have a low cost/mass impact, as demonstrated by the Honeywell, InnaLabs,
and PCB catalogues [19]. Additionally, the presence of a distributed set of sensors, e.g.,
accelerometers and piezoelectrics, is of particular interest as being crucial to pave the road
to another key technology, such as active structural control for spacecraft [20–22], especially
in terms of failure-tolerant strategies.
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Over the past decades, several techniques have been studied to perform a diagnosis
and failure analysis for space systems [23,24]. Such strategies are still mostly based on
traditional methods, such as lamb wave-based approaches [25], used to detect cracks or
flaws which perturb the waves propagation, or a comparison between healthy and damaged
structural parameters, as in dynamic strain measurements [26] and optimisation methods
for model updates [27] or Transmissibility Functions (TF) [28]. Another class of techniques
successfully assessed and tested in a real-time SHM is based on the eigenvalue perturbation
theory [29,30], including both first- and higher-order perturbation methods [31]. Recent
advancements in singular spectral analysis [32,33] proved that not only can this approach
allow to detect degradation patterns and model features in real time (even by using a
single sensor output), but it can also relevantly filter out the noise component [34], i.e.,
without any external filters. Moreover, data-driven approaches can be used in space
applications focusing on in-orbit sensed acceleration profiles. The research in this category
traditionally adopts modern signal processing methods and tries to catch a sudden change
in signals caused by the occurrence of damage [35,36]. Recently, methodologies based on
data analysis and information extraction, in the broad field of machine learning, are being
increasingly used to address damage/failure identification problems to achieve a wider
range of applicability [37,38]. In order to overcome the limitations associated to traditional
neural networks solutions [39], such as real-world noise, more complex deep learning (DL)
models and techniques, with higher generalisation capabilities, have been introduced as
data extractors, classifiers, and predictors [40–42]. Such models can include also recurrent
neural networks (RNN) [43] to efficiently obtain the information from time-series data.
In fact, a state-of-the-art recurrent DL network, known as the Long Short-Term Memory
NN (LSTM-NN), was applied to failure identification for an LSS by the authors [9] with
promising results.

The purpose of this study is then to expand and test the limits of the approach proposed
in the authors’ previous research [9]. Indeed, the present study focuses on a much more
complex study case from the structural point of view, different from both the geometrical
and dynamic point of view, and on the possibility to detect diverse failure types (not only
in the antenna attachment area with the satellite but also on the supporting structure)
that are quite difficult to detect due to a neglectable impact on the satellite dynamics.
Moreover, the concept of “damage” is now extended to include not only complete failures
of structural elements but also partial damages that are notoriously more difficult to classify.
Indeed, one of the main objectives of this paper is to propose a more generalisable deep
neural network (DNN) system for the SHM and to investigate the architecture sensitivity
to different damages both in terms of the locations and structural type. In this research,
a data acquisition process is carried out based on attitude manoeuvres simulations, the
sensor readings are correlated to the damage presence and location, and the processing
is performed by using Long Short-Term Memory neural networks (LSTM-NN) layers
combined with non-linear activation layers and fully connected blocks. The resultant deep
learning model is then trained to solve the sequence-to-label classification issue of structural
damage detection.

The paper is divided as follows. Firstly, the fully coupled 3D mathematical model of
a flexible spacecraft is implemented in a simulator for carrying out a wide set of in-orbit
attitude manoeuvres (Section 2). Then, the spacecraft test case model is described, including
the network of distributed sensors for the SHM and the damage configurations addressed
herein (Section 3). In Section 4, the implemented deep neural architecture for the damage
classification is described, based on an LSTM variant. Section 5 reports the main results and
analyses the performance of the trained classification network. Finally, Section 6 discusses
the relevant findings while Section 7 highlights some of conclusions and provides the
indications about further steps in this research effort.
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2. Dynamics of a Flexible Spacecraft

This section deals with the general equations of a flexible spacecraft in a gravitational
field. The main steps for the description of the motion of a flexible body are:

• The definition of kinematic parameters for flexible structures;
• The definition of the functionals: kinetic, elastic, and gravitational;
• The definition of the Lagrangian;
• The writing of the equilibrium equations through the Hamilton’s principle.

To write the above-mentioned quantities, the position of a generic point P belonging
to the spacecraft in the inertial reference frameRi can be expressed as the superposition of
a rigid motion plus a combination of structural modes:

xI
P = xI

O + PB/I

(
ξ +

N

∑
k=1

Ak(t)φk(ξ)

)
(1)

where xI
O is the position of a reference point O of the body inRi, ξ is the rigid component

of the position vector of point P with respect to the reference point O in the body reference
frameRb while its flexible component is expressed via the classical modal decomposition
through N modal amplitudes Ak and their relevant mode shapes φk(ξ). Finally, PB/I = PT

I/B

is the rotation matrix that transforms vectors fromRb toRi.
Using Hamilton’s principle [44], the equilibrium equations of a flexible spacecraft

can be obtained by evaluating the functionals associated to: the kinetic energy, the elastic
potential of the system, the gravitational field, and the control actions (if any). Only
the final equations of motion, Equations (2)–(4), are reported in this work for brevity’s
sake while the methods leading to their derivation are covered in [44–46]. Hence, the
governing translational, rotational, and modal base flexible equations of a flexible body
under gravitational force, respectively, can be written as:

mẍI
O + ω× (ω× p̃) + 2ω×

N

∑
k=1

Λk Ȧk + ω̇× p̃ +
N

∑
k=1

Λk Äk = f g (2)

p̃× ẍI
O + J̃ω̇ +

N

∑
k=1

(
J̃k

1 Ȧk

)
ω +

N

∑
k=1

N

∑
t=1

Ξkt Ȧk Ȧt +
N

∑
k=1

Γ̃k Äk + ω× J̃ω + ω×
N

∑
k=1

Γ̃k Ȧk = Cg + Cc (3)

ΛT
k ẍI

O + Γ̃
T
k ω̇ + Äk + ω2

k Ak + 2ζkωk Ȧk − 1
2

ωT J̃kω + 2ωT
N

∑
t=1

Ξkt Ȧt = f̃g,k k = 1, . . . , N (4)

where the symbol × indicates the cross product operation between two vectors; ω is the
angular velocity of the spacecraft defined with respect toRi; m, p̃, and J̃, respectively, are
the total mass of the spacecraft, the static moment, and its inertia tensor. The translational
and rotational modal participation factors, accounting for the most significant contribution
to the coupling between rigid and flexible dynamics, are, respectively, expressed as Λk and
Γ̃k. ωk and ζk are the natural frequency and damping factor associated to the k-th mode of
vibration. Further parameters, such as Ξkt and J̃k

1 (first variation in the inertia tensor due to
the flexibility), appear in higher-order terms in Equations (3) and (4).

Moreover, the gravitational forces f g (in the inertial reference frameRi), the gravity
gradient torques Cg (in the body reference frameRb), the generalised gravitational forces
projected on the k-th elastic mode f̃g,k are reported as follows:

fg = −mμ⊕
ŝ

|xI
O|2

with ŝ =
xI

O

|xI
O|

(5)

Cg = − μ⊕
|xI

O|2
(p̃× ŝ) +

3μ⊕
|xI

O|3
(ŝ× Jŝ) (6)
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f̃g,k = − μ⊕
|xI

O|2
(

ŝTΛk

)
(7)

being ŝ the unitary vector of the position of the origin ofRb in the inertial frameRi and μ⊕
the gravitational constant of Earth. Finally, Cc is the vector of the applied control torques.

For more details about the symbols reported in the above equations, please refer
to [44,47].

3. Spacecraft Model and Dataset Generation

To test the damage classification DL architecture, the case of a spacecraft equipped with
an LMRM is considered. Such a model, representative of a realistic Earth Observation (EO)
satellite, is composed of a central platform of prismatic shape, two solar arrays (3 × 8 m),
and a large mesh reflector (diameter ∼ 12 m).

In detail, the LMRM is attached to a central platform—considered to be rigid with
respect to the flexible structure—in correspondence to an attachment point P1 defined in the
S/C reference frame, whose origin O is located at the centre of the launch vehicle payload
adapter, while the two large solar panels are connected to the bus at points P2 and P3 (see
Figure 1). Each array is reinforced via a supporting structure in Carbon-Fibre-Reinforced
Polymers (CFRP) and a Yoke is added to reproduce the attachment of the panel to the
platform. Because the central hub is assumed rigid, each flexible substructure is directly
assembled in MSC Nastran by connecting them via rigid body element connections to a
single node coinciding with the point O. Then, the relevant data concerning the inertial
properties, modal participation factors, and the natural frequencies of the flexible structure
computed with respect to O are imported in the Matlab environment, implementing the
dynamics of the flexible spacecraft described in Section 2. The inertial properties of the
platform, without considering the appendages, are listed in Table 1.

Figure 1. Schematic of the spacecraft model.

Table 1. Platform inertial properties.

Mass Inertia Wrt CoM CoM WrtRb
(kg)

(
kgm2

)
(m)

Jxx Jyy Jzz Jxy Jxz Jyz X Y Z

1200 903.6 985.2 885.6 2 4 −7 0 0 −2
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3.1. Large Mesh Reflector Structural Model

This section briefly introduces a representative case of a realistic LMRM, which was de-
signed using MSC Nastran FEM tool based on information available in the literature [48].
The LMRM is here composed of a circular truss backbone structure, a mesh reflector, sup-
port cables, and a deployable boom. In detail, the truss structure counts 30 unit bays, while
the parabolic surface (with an areal density of about 0.3 kg/m2) is sustained by a net of rod
elements representing the reflector cable mesh. Concerning the LMRM, the horizontal and
vertical truss tubes are designed to be 2.5 m long (external radius 0.021 m, internal radius
0.02 m), while the diagonal ones 2.81 m (external radius 0.01 m, internal radius 0.009 m).
The selected material for the truss is Carbon-Fibre-Reinforced Polymer (CFRP), with density
equal to 1550 kg/m3 and Young’s modulus 125 GPa. The cable mesh is represented by
rod elements with area equal to 1 mm2, in CFRP material. The reflector’s main structural
properties are listed in Table 2. An 8 m long, 20 kg, extendable boom is also modelled to
complete the structural model of the LMRM.

Table 2. Reflector properties.

Property LMRM

Mass (kg) Truss: 38.34
Mesh: 4.25

Total: 42.6

1st Mode (Hz) Truss: 0.20
Truss + Mesh: 0.53

Generally, LMRM-deployed structures show three different constrained modes, namely
yaw, pitch, and roll modes. They correspond to torsion and bending with respect to the
main coordinated axes. When mounted on a satellite hosting other flexible appendages, the
flexible modes of the payload interact with the structural dynamics of the additional sub-
structures. In particular, the presented study case is composed of a central bus, equipped
with both symmetric solar panels and the LMRM. The set of modes of the assembled space-
craft is illustrated in Figure 2, along with an overview of the complete system. It can be
noticed how the system modal behaviour is characterised by both symmetric/asymmetric
bending and torsion modes of the solar panels, interacting with the three traditional modes
of the LMRM payload.

3.2. Training Set Generation and Processing

With respect to the location of damage on the structure of the spacecraft, failures
are expected to lead most likely to major consequences in the attachment element of
the mesh reflector to the satellite. In the following, as reported in Figure 3, six possible
structural elements of the reflector are supposed to be susceptible to a failure. In particular,
failures are placed in those areas where issues may occur, such as connection areas, where,
for instance, hinges or similar components are located due to the structure deployment
strategy. Moreover, they are considered at both the attachment area of the antenna with
the satellite and on the supporting truss to test the failure/damage of elements with
completely different impact on the overall satellite dynamics. Furthermore, for each
element, two damage scenarios are considered: the first one consists of the complete failure
of the structural element (“Broken element” in Table 3) while the second models a partial
damage of the element itself (“Damaged element” in Table 3). To mathematically reproduce
these behaviours, the “Broken elements”, associated to the fully damaged location of the
structure, are erased from the finite element model (in other words, the structural stiffness
is considered null, and the order of the stiffness matrix is changed), while the partial
structural failure, on “Damaged elements”, is introduced into the structure considering a
50% reduction in the element’s Young’s modulus, which is representative of the mechanical
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properties of the material of the damaged element. Table 3 also reports the associated label
to each elements and damage type used to train the classification DL network.

f1 = 0.17 Hz f2 = 0.26 Hz f3 = 0.32 Hz

f5 = 0.74 Hz f6 = 0.76 Hzf4 = 0.50 Hz

Figure 2. Mode shapes and natural frequency of the assembled spacecraft.

Table 3. Damaged element ID, associated damage configuration (broken or partial failure), and
associated label.

Damaged Element ID Damage Configuration Associated Label

- Undamaged system 0

Elm 4115 Failure 1—Broken element 1
Failure 2—Damaged element 2

Elm 4110 Failure 3—Broken element 3
Failure 4—Damaged element 4

Elm 3872 Failure 5—Broken element 5
Failure 6—Damaged element 6

Elm 3920 Failure 7—Broken element 7
Failure 8—Damaged element 8

Elm 3823 Failure 9—Broken element 9
Failure 10—Damaged element 10

Elm 3972 Failure 11—Broken element 11
Failure 12—Damaged element 12

The behaviour of the LMRM during its operational life is observed by a network of
sensors that has been designed in order to measure the time response of the structure in
some critical points, namely Nodes of Interest (NOIs), of the FEM (see Figure 4). In detail,
a set of 12 tri-axial accelerometers is considered, with the majority of them localised in
proximity to critical areas, such as the connection of the reflection with the boom.
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Figure 3. Possible damage location on the reflector structure (labels are used to identify the element
in which the failure can occur).

Figure 4. Network of distributed sensors (labels are used to identify the node on which the sensor
is placed).

Once the damaged structural sub-models, deriving from the original undamaged one,
and the network of sensors are defined, the dataset generation for the training of the DNN
can be set up. This process, summarised in Figure 5, consists of the following steps:

• The set Nd structural models extrapolated from the finite element suite (MSC Nastran),
as previously described, are imported in Matlab to perform further analysis. At
this point, the non-linear simulator of the flexible spacecraft (built on the basis of
the equations reported in Section 2) is used to carry out Nm attitude manoeuvres
and produce the measurements from the sensors network. A quaternion-based PD
controller [49,50] is implemented to produce the desired control torque Cc:

Cc = −Kpq̄I
e sign(q0)− Kdω (8)

with Kp and Kd as proportional and derivative gain matrices, respectively, q̄I
e the

error quaternion [50], q0 scalar component of the quaternion, and ω the angular rate
of the spacecraft. The dataset of possible manoeuvres is built by varying properly
both the desired final attitude angles of the manoeuvre (considering also one- and
two-axis manoeuvres to improve the variation in the data collection) and the gains of
the controller.

• s quantities of interest (i.e., s = 36 because 12 tri-axial accelerometers are mounted on
the structure) are then collected by the sensors network with a sampling frequency
of 10 Hz. At this stage, the raw data, extrapolated from the simulator, consists of
a multidimensional array X1 ∈ Rs×k×q with k = Nd · Nm and q the number of time
samples. Moreover, a Gaussian noise equal to the 2% of measured values is considered
when acquiring the data from the accelerometers to simulate a realistic condition.
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• The raw multidimensional array X1 is not directly fed to the network for the training,
but it passes through two intermediate steps of pre-processing. Indeed, data-driven
classification algorithms need a relevant amount of training data, which require to
be properly processed to avoid introducing biases and ill-conditioning in the results,
while being used in a computationally and time-expensive process (in particular for
recurrent neural networks). In this paper, firstly, each time sequence is truncated
(X1 → XR ∈ Rs×k×qr ) in order to preserve only parts of the signals where relevant
dynamical content is detected. In the current study, the sequences are truncated
to 25s for a total of 251 samples. Such a reduction is supported by the fact that
responses below a certain threshold do not improve classification accuracy during
network training or operation. Conversely, it was also observed in [9] that feeding the
full-time sequence to the network rather jeopardises the performance of the training
process (and subsequently also the performance of damage identification in real-
time condition). The second step consists of normalising the measurements so as to
ensure proper dynamic range of the variables in the learning space of the NN model.
Therefore, in this study, each time sequence is normalised according to their mean and
standard deviation as reported here:

Xσijl =
XRijl − μx

σx
with

i = 1, . . . , s

j = 1, . . . , k

l = 1, . . . , qr

(9)

where μx and σx are, respectively, the mean value and standard deviation of the
measured time history

[
XRij1 XRij2 · · · XRijqr

]
.
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Figure 5. Dataset generation and processing prior to network training.

For the sake of illustration, we show, in Figure 6, the behaviour of the truncated and
normalised 36-sensor time series associated with one observation having class label “0”
(undamaged system). The picture aims at pointing out that the most relevant dynamic
content of the acceleration time sequences is detected in the first-time instants of the
manoeuvre. Indeed, after the rotation of the satellite has occurred, the residual naturally
damped oscillations fade out and the system returns to a stationary condition while the
measurements go to zero. Therefore, the time histories have been cut to avoid including
in the dataset the components (equal to zero or under a certain threshold) which would
contribute to flatten the dataset. The final dataset used for the training consists of an input
multidimensional array XR of size 36 × 3003 × 251 while the output vector contains the
labels of the failures reported in Table 3 and it has dimensions equal to 3003 × 1, where
each simulation is associated with the label of the corresponding failure.
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Figure 6. Time−series behaviour (first 100 time samples) of the 36-sensor data relevant to one of the
231 observations of the dataset with the undamaged system (class label “0”).

4. Bidirectional Long-Short Term Memory Network

In recent times, deep recurrent neural networks have been the staple for time-series
classification problems. In particular, because most of the real-world use cases revolve
around sequences that are in the hundreds or thousands of observations, it was deemed
necessary to utilise learning models that are able to connect information found far in the
past to the present task. In this regard, LSTM networks are a well-known solution and
have been applied to a multitude of problems. While the LSTM model is indeed reliable,
there are some cases in which a more robust information extraction is needed, such as
the classification of long sequences. To this end, bidirectional Long Short-Term Memory
(Bi-LSTM) networks have been introduced and applied to many practical contexts [51].

Unlike the classic, unidirectional LSTM model, the Bi-LSTM applies a first LSTM on
the input sequence in the given order, then it reverses the sequence and feeds the second
LSTM. It was proved [52] that the Bi-LSTM architecture works better in a multivariate
time-series analysis and classification, which is the application studied in this work. A
detailed scheme of the workings of the Bi-LSTM model is reported in Figure 7. The input
size is equal to N and the hidden state hi

j refers to the j-th time step of the i-th (backward
or forward) LSTM.

Figure 7. Unrolled network structure of a bidirectional LSTM.
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It is important to underline that the Bi-LSTM is trained twice, once for both directions
(forward and backward). The bidirectional application of this more complex LSTM cell
structure is performed to robustly save information from both past and future samples,
improving the accuracy of the model [53].

In the present work, we employ a multivariate deep classification model which we
called deep Bi-LSTM (DBLSTM); it is composed of an input layer (in the form of a sequence)
and two stacked Bi-LSTM layers, interspersed with a dropout layer, a dense layer, a Softmax
layer, and a classification layer. A qualitative trade-off was carried out between the different
network architectures to find the best compromise between the computational costs and
accuracy. Therefore, the network proposed in this paper was selected as the simplest stack
that could be applied to this configuration.

The sequence input layer creates the proper input sequence to feed the network. The
two Bi-LSTM layers are the ones charged with learning the temporal dependencies among
the data; two stacked layers are preferred over a single layer to enhance the predictive
power of the model [54]. A dropout layer is inserted between the Bi-LSTM layers as a
regularisation factor to avoid overfitting. A fully connected (FC) layer is stacked on the last
Bi-LSTM unit to map the output of the Bi-LSTM layer to a desired output size. The Softmax
layer turns the output of the FC layer into probability values summing to one so that the
final classification layer is able to perform the binary classification. The architecture of the
network is visualised in Figure 8.

Figure 8. Network configuration of the proposed DBLSTM.

The output of the model is a binary vector ŷ, whose dimension is equal to n and which
contains the predicted outcome.

In the DBLSTM scheme, the number of hidden units in the Bi-LSTMs is denoted as
N(1)

h for the first layer and N(2)
h for the second layer; these are the recurrently connected

blocks (i.e., the computational units) and their number should be optimised based on the
application and data purposes.

In fact, based on the dataset defined earlier, it is possible to empirically set the hyper-
parameters for the DBLSTM network structure; the first Bi-LSTM layer has 36 features and
two or three classes in the FC and Softmax layers, depending on the specific problem, as
explained in Section 5.

5. Results

The present study investigates the sensitivity and accuracy of the structural damage
recognition by using an ensemble of sensors distributed across the structure to be monitored.
We dealt with this problem by using a suited DNN architecture for the multivariate time-
series classification, namely the one introduced in Section 4, and the dataset obtained by
the measures through the simulations on the spacecraft model defined in Section 3.

We carried out three different types of analysis; in every problem, all the sensor data
are used to build a 36-element vector associated with each time sample of the multivariate
time series that feed the input of the adopted DNN:

• First, six binary classification problems were considered, one for each structural
element reported in Table 3. Two classes only are selected among the observations:
231 time series having the class label “0” (undamaged system) and 462 times series
having a unique class label associated with that element, either broken or damaged
(i.e., a unique class named “1-2” for “Elm 4115”, a unique class named “3-4” for “Elm
4110”, and so on). This meets the normal logic of damage detection to firstly determine
whether damage has occurred or not and then to determine the degree of the damage.
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• Successively, twelve binary classification problems were considered, two of them for
each structural element reported in Table 3. Two classes only are selected among
the observations: 231 time series having the class label “0” (undamaged system) and
231 times series having one class label (between “1” and “12”), which is associated
with a specific failure of the considered structural element. Here, the rationale is
to find whether, by analysing the data coming from all the sensors, is it possible to
recognise one specific failure at a time, either a broken or damaged element, with
respect to an undamaged condition.

• The third analysis pertains to six three-class classification problems, one for each
structural element reported in Table 3. Three classes are considered in this case:
231 time series having the class label “0” (undamaged system); 231 times series having
an odd class label (between “1” and “11”), which is associated with the broken failure
of the considered structural element; and 231 times series having the even class label
(between “2” and “12”) associated with the damaged failure of the same element,
which is the previous odd class label increased by one. In this situation, we want to
study the capability of the proposed multivariate deep learning approach to identify
both a broken and a same damaged element with respect to the undamaged condition.

The optimal model performance and selection of the considered deep neural archi-
tecture were obtained by means of a nested cross-validation procedure. Namely, an outer
10-fold cross-validation was carried out for a model performance evaluation. In each of
these folds, using the training data only, a grid search procedure was applied to obtain the
best setting of the hyperparameters for an optimal model selection. For each hyperparame-
ters’ setting (i.e., for each point of the grid to be searched), an inner 3-fold cross-validation
was carried out for obtaining different partitions into training and validation sets in order
to actually train the neural network with the ADAM algorithm [55].

Because of the randomness in any k-fold partitioning and in neural network param-
eters’ initialisation, both the outer and inner cross-validations were repeated for 10 and
5 runs, respectively, using a different seed for the random number generation. Accordingly,
the statistical average of the classification accuracy on the validation set, over the different
inner folds and runs, was used for the best hyperparameters’ selection during the grid
search; the statistical average of the classification accuracy on the test set, over the different
outer folds and runs, was used to evaluate the final model performance, and it is reported
in the following tables.

The hyperparameters optimised in each grid search were the number of units N(1)
h

and N(2)
h in the first and second Bi-LSTM layer of the adopted network, respectively. The

possible values for both of them were searched in the range from 5 to 50 with a step of
5 units. We note that the optimal values of the hyperparameters, which are obtained at the
end of every grid search procedure, generally differ among the several outer folds and
hence only a statistical average of the optimal setting can be reported in the following
tables. The other main hyperparameters set in advance were a dropout rate of 0.1; 150
maximum epochs; five iterations per epoch (which affects the mini batch size according to
the actual training size); an ADAM learning rate of 1.0 (0.75% drop factor every 10 epochs);
a regularisation factor of 0.0001; a gradient decay factor of 0.9; and the validation patience
of 50 epochs before early stopping.

All the experiments were performed using Matlab® R2022a on a machine provided
with an AMD Ryzen Threadripper™ 3970X CPU (32 cores at 4.5 GHz), 128 GB of DDR4
RAM (at 3.2 GHz), and an NVIDIA® RTX A6000 GPU (10752 cores at 1.8 GHz) with 48 GB
of GDDR6 RAM (bus width 384 bits at 16 GB/s).

The numerical results for the two-class recognition problems described before, both
the six and twelve arrangements, are reported in Table 4. As explained, the accuracy is
the average on the several test sets while the optimal values of the Bi-LSTM slightly differ
among the different optimisation tests. It is evident that the structural element “Elm 4110”
can be well recognised both in the case of explicit breaking (class “3”) or damage (class
“4”); also, the prior discrimination as to whether general damage occurred (class “3-4”) or
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not is obtained with a maximum accuracy close to 100%. The element “Elm 4115” is well
classified in the case of explicit breaking only (class “1”), while the prior discrimination of
general damage (class “1-2”) is less accurate but good enough around 75%.

The other failures are recognised at a poor rate around 50% in the case of either broken
or damage recognition. In these cases, the prior analysis as to whether general damage has
occurred or not seems more accurate around 66.7%, but this is due only to the unbalanced
datasets used in such situations, as the undamaged time series are 231 while the ones
associated with general damage (either the “broken” or “damaged” class) are doubled
to 462. Nonetheless, a discussion in this regard is reported in the next section. We also
note that the optimal values of the Bi-LSTM units are always considerably smaller than 50,
which was the largest value considered during the grid search; thus, the overfitting of the
tested networks was correctly prevented.

Table 4. Classification Results of the 2-class Structural Health Recognition Problems.

Failure Class Labels Accuracy (%)
Bi-LSTM
Units 1

Bi-LSTM
Units 2

Elm 4115 broken–damaged 0, 1-2 75.8± 4.9 20± 10.0 11± 4.2
Elm 4115 broken 0, 1 100.0± 0.0 30± 12.2 12± 2.7
Elm 4115 damaged 0, 2 47.3± 8.5 14± 5.5 13± 2.7
Elm 4110 broken–damaged 0, 3-4 99.9± 0.3 22± 4.5 6± 2.2
Elm 4110 broken 0, 3 99.8± 0.5 16± 5.5 5± 0.0
Elm 4110 damaged 0, 4 100.0± 0.0 22± 11.0 6± 2.2
Elm 3872 broken–damaged 0, 5-6 66.7± 0.3 16± 8.9 14± 5.5
Elm 3872 broken 0, 5 58.8± 21.3 18± 11.0 16± 6.5
Elm 3872 damaged 0, 6 50.4± 1.0 32± 17.9 10± 5.0
Elm 3920 broken–damaged 0, 7-8 66.7± 0.3 20± 17.3 10± 7.1
Elm 3920 broken 0, 7 54.3± 7.5 26± 21.9 15± 6.1
Elm 3920 damaged 0, 8 50.0± 0.4 26± 16.7 8± 4.5
Elm 3823 broken–damaged 0, 9-10 67.1± 1.1 28± 20.5 10± 6.1
Elm 3823 broken 0, 9 49.8± 0.3 18± 8.4 11± 8.2
Elm 3823 damaged 0, 10 50.0± 0.4 16± 8.9 6± 2.2
Elm 3972 broken–damaged 0, 11-12 66.7± 0.3 18± 7.9 8± 4.5
Elm 3972 broken 0, 11 50.0± 0.4 32± 17.9 6± 2.2
Elm 3972 damaged 0, 12 49.8± 0.3 30± 14.1 9± 6.5

It is interesting to show which kind of mistakes are made in wrong situations. For
instance, in Figure 9, the confusion matrix in the case of “Elm 4115” damaged (class “2”)
is reported. In this case, the number of undamaged observations that are misclassified
as “Elm 4115” damaged (i.e., false positive) is 70, which is less than the 149 observations
of “Elm 4115” damaged that are misclassified as undamaged (i.e., false negative). Con-
versely, as shown in Figure 10 in the case of “Elm 3823” broken (class “9”), the number of
false positive observations is 139, which is larger than the 93 false negative observations.
So, no general rules can be proved to exist about the majority of false positive or false
negative observations.
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Figure 9. Confusion matrix for the binary classification between undamaged system (class “0”) and
“Elm 4115” damaged (class “2”).

Figure 10. Confusion matrix for the binary classification between undamaged system (class “0”) and
“Elm 3823” broken (class “9”).

The numerical results for the three-class recognition problem are reported in Table 5. It
is confirmed that, also in this case, element “Elm 4110” is well-classified in both situations;
in fact, the accuracy is close to 100%. Similarly, “Elm 4115” is well-classified only in part
of the situations, therefore achieving an accuracy close to 72%. The failures of the other
elements are poorly recognised, staying always around 33% (i.e., 1 out of 3). Moreover, in
this case, the optimal values of the Bi-LSTM units are far from the largest possible value of
50, thus showing that the optimal networks are not overfitted.

Table 5. Classification Results of the 3-class Structural Health Recognition Problem.

Failure Class Labels Accuracy (%)
Bi-LSTM
Units 1

Bi-LSTM
Units 2

Elm 4115 broken, damaged 0, 1, 2 72.7± 3.0 32± 11.0 11± 4.2
Elm 4110 broken, damaged 0, 3, 4 99.8± 0.3 18± 8.4 8± 2.8
Elm 3872 broken, damaged 0, 5, 6 33.8± 0.5 20± 7.1 8± 4.5
Elm 3920 broken, damaged 0, 7, 8 34.5± 6.0 22± 11.0 16± 6.5
Elm 3823 broken, damaged 0, 9, 10 33.2± 0.1 22± 8.4 8± 6.7
Elm 3972 broken, damaged 0, 11, 12 33.3± 0.3 32± 17.9 14± 6.5
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By looking at the confusion matrix shown in Figure 11, we see that the broken situa-
tions of “Elm 4115” (class “1”) are always perfectly classified. However, there are 51 false
positive classifications of the undamaged system as “Elm 4115” damaged (class “2”) and
138 false negative classifications of “Elm 4115” damaged as an undamaged structure. By the
way, these numbers are similar to the case of the binary classification reported in Figure 9,
therefore showing a peculiarity on some time series related to this structural element when
damaged. A totally different situation pertains to other elements with a poor classification
accuracy, for instance, as illustrated in Figure 12 for element “Elm 3823”. In this case,
there is an even distribution of false positive classifications (i.e., 46/47 cases) between
class “9” and “10”, as well as an equal distribution of 139 false negative recognitions of an
undamaged system instead of a broken or damaged element.

Figure 11. Confusion matrix for the 3-class recognition problem regarding the undamaged system
(class “0”) and the failures of element “Elm 4115” (class “1” and “2”).

Figure 12. Confusion matrix for the 3-class recognition problem regarding the undamaged system
(class “0”) and the failures of element “Elm 3823” (class “9” and “10”).

6. Discussion

The obtained outcome is comprehensively interpreted and discussed in Table 6. The
analysed sensing architecture proved to be optimal to classify the damages for the elements
near the antenna attachment area with the central satellite. It can be noticed, however, that
the presented results clearly depend on the physical location of the damage with respect to
the sensors network and, simultaneously, on the physical properties of the system itself.
This opens the possibility to future investigations on the optimal positioning of sensing
devices with respect to the most sensitive structural elements based on machine learning
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approaches, with particular regards to the problem of investigating and differentiating
similar data originating in different attitude manoeuvres.

Table 6. Results interpretation.

Structural
Element

Discussion

Elm 4110

The DNN architecture proved to well detect and identify the failure, both in
the break and the partial damage cases. The reason for this outcome can be
interpreted as three-fold. On one hand, Elm 4110 and Elm 4115, located at the
antenna attachment point with the satellite, are the ones affecting the overall
system behaviour the most—yet still limitedly, even from a structural point of
view—when compared to the other considered elements. Indeed, as proved
by the previous research discussed in [9], failures near a substructure attach-
ment area to a satellite can be straightforwardly identified by using LSTM-based
machine learning approaches. This is true in terms of structural stiffness modifi-
cations and consequently of natural frequencies changes and different antenna
nodal elastic displacements. On the other hand, local partial damage—which
could be more difficult to classify due to its minor impact on the satellite attitude
dynamics—can be identified with high precision mainly due to its vicinity to
Sensor “1”, which is able to better “see” the local effects of the failure. Finally,
the location of Elm 4110—as well as 4115—is peculiar with respect to the other
elements: it is positioned in a way to not be impacted by the symmetry effects
of the overall system structure and also in terms of the registered acceleration
profiles (please refer to further discussions in this table for more details).

Elm 4115

The DNN architecture demonstrated to be able to well detect and classify the total
break of Elm 4115. Similarly to Elm 4110, this behaviour can be assumed as due to
the more relevant impact on the system dynamics than other structural elements
and on its position. In detail, while a good classification performance can be
observed for the three-class problem in Table 5, the partial damage cannot be
identified with the same accuracy when identified with respect to the undamaged
condition. This result is interpreted as related to the absence of any local sensors
near the damaged element.

Elm 3972
Elm 3920
Elm 3872
Elm 3823

The DNN architecture showed not to be able to properly detect and classify both
the total break and partial damage cases with respect to the undamaged condition
nor in the three-class problem. This behaviour gives relevant information on the
ability of detecting failures on distributed elements in relation to their position on
the structure. It can be noticed, indeed, that the same classification performance
can be observed for all the damaged elements, except Elm 4115 and Elm 4110.
This can be explained by the fact that the structural parts are symmetrically
positioned with respect to the plane, including the Z-axis, perpendicular to the
Y-axis, which is indeed a symmetry plane of the satellite (please refer to Figure 1):
Elm 3972 is symmetric to Elm 3823, and Elm 3920 to 3872. Likewise, Sensors
“1” and “75” are the only sensors positioned in the symmetry plane, while the
others are located symmetrically with respect to each other. Hence, they are
inducing a comparable effect/change in the system dynamics which results in
similar classification results. Indeed, according to the specific manoeuvre, they
are producing either a response with the same magnitude and same sign, or the
same response with opposite sign. In general, nevertheless, this proves that the
local failures, both breaks and damages, have a limited impact on the system
from a structural point of view. They are all indeed elements which are part
of the antenna backbone supporting structure, as opposed to the attachment
point. This, on the other hand, indicates that, even with local sensors near the
damage/failure of the element, the damage on the supporting backbone loop
does not change the properties of the system enough to be clearly identified by
the DNN architecture. Because the DNN system relies purely on data, without
knowledge of the physical system, which could help discriminate the area of the
failure, the accuracy level is significantly worse than the one of both Elm 4115
and 4110.

165



Sensors 2023, 23, 368

7. Conclusions

This paper investigated the problem of detecting structural breaks and partial dam-
ages for a complex system, such as a large space antenna, while assessing the SHM frame-
work/sensors sensitivity to local damages with regard to their geometric location and
impact on the system dynamics. The adopted data-driven SHM approach was based on a
state-of-the-art deep recurrent neural network (Bi-LSTM) with a tailored structure for dam-
age classification. The proposed DL architecture was trained with data produced by using
a 3D simulator of the attitude/flexible dynamics of a spacecraft equipped with structural
appendages, including not only a mesh antenna but also a pair of symmetric solar panels.
The obtained results proved the SHM system was able to accurately identify breaks in the
antenna attachment area with the hosting spacecraft while showing a lower performance
in the case of distributed failures in the backbone antenna supporting elements. Therefore,
for the considered study case, a minimal set of two sensors is deemed sufficient to detect
those failures which could produce detectable changes in the system dynamics.

Future research will deepen the obtained results by using the DL approach to investi-
gate optimal sensors placement configurations for different classes of large space structures.
Moreover, an improvement in the presented outcome will be explored by implementing
upgraded DL strategies, such as methods augmented/coupled with a certain degree of
knowledge of the physical system. This would aim at discriminating among the specific
types of failures and/or similar acquired data and to knowingly address areas judged to
have a minimal impact on the overall system dynamics. A possible approach could be
the use of physics-informed machine learning techniques to better discern the types and
location of damages, thus improving the system sensitivity.

Further work might also consider adopting automatic validation/testing methods to
properly tune the complexity of the proposed network (based on the type and number of
implemented sensors) and to use the DL approach to assess the best sensors to detect a
specific structural failure or damage.
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Abstract: Lock-in thermal tests (LTTs) are one of the best ways to detect defects in composite materials.
The parameter that most affects their performance is the cycle period of the stimulation wave. Its
influence on the amplitude-phase results was determined by performing various numeric simulations
and laboratory tests. The laboratory tests were used to infer part of the simulation parameters,
namely the input and output heat, corresponding to the stimulation and natural convection. The
simulations and the analysis of their results focus on the heat flow inside the sample and the manner
they change for different geometries. This was performed for poly(methyl methacrylate (PMMA)
and carbon fiber-reinforced polymers (CFRPs). The simulation of these materials was also used to
create prediction surfaces and equations. These predict the amplitude and phase for a sample with
a thickness l and a cycle period. These new findings were validated with new laboratory tests and
two new samples. These validated the prediction surfaces and equations and can now be used as a
reference for future works and industrial applications.

Keywords: thermography; nondestructive testing; lock-in; simulation; laboratory tests

1. Introduction

1.1. Background

Non-Destructive Tests/Testing (NDT) is characterized by the ability to test components
without diminishing their service period or degrading their performance. Field view
techniques allow the examination of the area of a component, thus increasing the test speed.
Most techniques use wave propagation like ultrasounds, visible, ultraviolet, X-rays, or
infrared to test a component area. Infrared thermography measures the radiation naturally
emitted by objects near the ambient temperature and creates temperature images using
this information. External energy sources are used to amplify or create thermal patterns
that provide insight into the component state external energy sources are used. These will
provoke a temperature to unbalance. Studying and analyzing these patterns and how they
evolve during the test enables the determination of some conditions and the identification
of defects. Using optical stimulation (light) usually leads to good results and a setup that is
easy to arrange with good portability, along with the good results provided. This type of
stimulation is mainly used in two manners: (i) a simple uniform stimulation applied during
a period (transient thermal tests) and (ii) a cyclic stimulation modulated as a sinusoidal
wave. These last ones are called Lock-in Thermal Tests (LTTs) [1,2].

The temperature response is a combination of three factors: (i) heat received by
radiation (optical stimulation), (ii) heat transfer by radiation and convection with the air,
and (iii) conduction inside the component. The radiated heat from the sample is small
and is usually discarded. With the increase in temperature, the heat loss by convection
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will also increase, and vice versa, meaning the heat will not travel from the surface to the
interior of the sample but will travel from the inside to the outside of the sample [3]. Less
energy (shorter stimulation) results in less thermal variations and less heat exchange by
convection since the temperature difference is lower. Likewise, lower temperatures lead to
less heat flow by conduction. With this type of test it is possible to analyze the temperature
throughout its entire duration. However, determining the amplitude and phase response
leads to precise and sensitive results.

The amplitude and phase images are determined by comparing (a) the stimulation
and (b) individual pixel temperature. These are used to calculate the amplitude and phase
response for each pixel. Two maps (images) of the object’s thermal response are then
created. These are sometimes called ampligrams and phasegrams Since each of these
images is obtained using several temperature measures, the results contain less noise than
the temperature images. However, special care is necessary when choosing and using these
sinusoidal stimulations. If they are not perfect sinusoidal waves, significant errors can
occur [4,5]. A higher number of measures (thermal images) is preferable when calculating
the phase delay and amplitude response. The best situation or characteristic response has
been found for stimulations with periods of a few seconds and some cycles. Longer cycles
result in the application of more energy to the object under analysis. However, the longer
stimulation disadvantage is the inherent duration of the global thermal test. In industrial
applications, a longer stimulation means that the NDT and the entire maintenance or
preventive operation will have a higher cost or might become a bottleneck.

Numeric simulations predict the behavior of structures or components under prede-
termined conditions [6]. These are particularly useful in situations where exact solutions
are unknown or complex. Another alternative to study processes is to build prototypes and
test them. Apart from the cost, this process can also be time-consuming. Simulations can
show the inside of a component or structures difficult or impossible in experimental testing
processes. Currently, numeric simulations are almost entirely run on computers, being im-
plemented in several programming languages, such as Python, FORTRAN, C, and Matlab®,
among others. Some companies commercialize specific programs to perform simulations;
the most common are COMSOL®, SIMULIA®, ANSYS®, Nastran®, etc. Using a virtual
environment to manipulate the results also facilitates the management, documentation,
communication, and pre/post-processing of data.

The most common numeric simulation uses one of three methodologies: Finite Differ-
ences Method (FDM), Finite Elements Method (FEM), or Finite Volume Method (FVM) [7].
They are also called the classic choices to solve Partial Differential Equations (PDEs). FDM
uses a local Taylor expansion to calculate the PDE. However, it has some difficulties for com-
plex geometries [8]. FVM equations are integrated for each volume with linear variations
inside, resulting in errors when using tetrahedral meshes or elements with unbalanced
dimensions [9]. Usually, FEM uses the weighted Galerkin method, being well suited for
complex geometries. The development of the FEM in the last years made them the most
common choice in commercial simulation software [10]. Due to the robust formulation
of the FEM and its flexibility for a given mesh, this was the selected method in this work.
The analysis of the evolution and distribution of the temperature in the samples should
use Fourier’s first law of heat conduction. Here, a heat flux (q) that enters a surface has a
thermal conductivity (K) of the material that travels for a certain distance (x) transversal to
the surface with a temperature (T) [11]. The meshing process is also critical, with a constant
spacing in the nodal points distribution leading to an equilateral and balanced element,
preventing significant errors and singularities in the shape functions.

The selection of the materials is an essential part of the design of any component,
even more in the case of high-performance elements. One of the most used materials is
composite materials, particularly carbon fiber-reinforced polymers (CFRPs). These have
a very high stress-to-weight ratio, among other characteristics. However, they present
some disadvantages such as being anisotropic, having a costly and complex manufacturing
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process, and their failure is unpredictable, among other things [12]. For the latter, the
importance of NDT in CFRP is even higher, especially in the amount of energy applied.

1.2. Recent and Relevant Works

Recently, artificial intelligence has gained much attention from the research commu-
nity. It is also being used to improve NDT methods. Al-Athel et al. present a hybrid
thermography, computational, and Artificial Neural Networks (ANN) approach to charac-
terize sub-surface defects in composite materials. Their “defects consisted of grill holes and
the simulation data is fed to the ANN”. Their results are not on par with other applications of
ANN but are promising [13].

Stoynova et al. performed numerical simulations of a thermal 3D model with artificial
defects under a lock-in test. This is one of several works that used LTT to perform subsur-
face defect detection and characterization [14]. Other similar works were performed by
Shrestha [15], Chulkov [16], Pitarresi [17], An, Y.K, [18], Zoecke [19], and Peng [20]. The
usage of lasers as an excitation source is not the most common. The delamination problem
was researched by Swiderski using a numerical and experimental approach. With a laser
stimulation with a wavelength of 808 nm, a maximum power of 32 W, and a FLIR 7600 SC
camera, they showed it is possible to detect delaminations on CFRP [21].

Lock-in thermography is mainly used to analyze carbon-fiber reinforced polymers
(CFRPs) or glass fiber-reinforced polymers (GFRPs). However, at a macroscale, electronic
circuits, especially Printed Circuit Boards (PCBs), can be considered composite materi-
als. Here, the most desired feature is not the improvement of the mechanical properties
but rather the electrical connection between two or more points. If these connections are
damaged, the PCB is useless. The usage of (a) flash, (b) transient, or (c) lock-in thermog-
raphy has been used by Stoynova to study the shape and better understand their root
cause [22,23]. Other similar and relevant works, even if not using simulations but focus-
ing on laboratory tests, were presented by Breitenstein [24], Brand [25], Andersson [26],
Leppänen [27], and Hovhannisyan [28].

Flash, Transient, and lock-in thermography are the classic Infrared Thermography
NDT techniques. These require an intense heat source (transient test) or a well-controlled
and linear power source [2,5]. To overcome these drawbacks, frequency-modulated stimula-
tions have been studied by Mulaveesala and by Rani [29,30]. The highly damped behavior
of the heat waves in LTT leads to dispersion in the surface thermal patterns. Hedaya-
trasa studied the viability and sensitivity of using thermal wave radar (TWR) to inspect
CFRP [31]. Here, analog frequency-modulated (sweep), discrete phase-modulated (Barker
binary coded) waveforms, and frequency-phase-modulated (FPM) were considered. The
3D Finite Element Analysis (FEA) showed “outstanding performance of TWR at relatively high
excitation frequencies is highlighted, particularly when approaching the so-called blind frequency of
a defect”.

Despite most research centering itself on CFRP or GFRP, Philipp et al. studied the
application of thermal diffusivity of semitransparent polymer films. They presented a
theoretical heat loss model by convection and radiation in semitransparent film surfaces.
They claim that “the slopes method is valid for any semitransparent film in the thermally thin
regime” [32].

Despite the several works studying LTT with experimental techniques and numerical
simulations, several issues are persisting/missing in the literature and are addressed in this
work. Most works are difficult to compare due to their differences in the test settings or
do not present this information at all. This work aims to analyze the influence of the cycle
period in LTT applied to CFRP samples for different thicknesses. An in-depth analysis
of the sample’s heat flow and temperature variations is presented. The analysis of the
temperature profiles at the sample surface for different cycle periods and the temperature
profiles’ inversion pattern (related to blind frequencies) is exceptionally detailed. To
summarize and facilitate the inclusion of the presented findings, prediction equations are
presented. These predict the amplitude and phase results according to the component
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thickness and cycle period used. For this purpose, a numerical model was created using
FEM and validated with poly(methyl methacrylate) (PMMA) and CFRP samples. This
document and the work followed the structure presented in Figure 1.

Figure 1. Workflow and article structure.

2. Materials and Methods (Simulating LTT)

The present chapter presents the analyses and simplification of a 3D sample into a
2D surface. A rapid description of the equations implemented for the FEM and the mesh
evaluation is shown. A comparison between the temperature results from the laboratory
tests and simulations is also present.

CFRP is anisotropic material built from overlapping sheets of carbon with resin as a
bonding element. The initial LTT was done with a sample made from PMMA and used as
a reference and had the geometry presented in Figure 2. In this 3D representation of the
designed sample, the thickness and slot width were increased to improve visualization.
The overall measures are 210 × 160 × 4.5 mm, with slots having 10 mm in width and 0.5,
1.5, 2.5, and 3.5 depth. A mate varnish (kameralack) from Tetenal® is used to paint the
transparent PMMA. This provides a high and uniform emissivity (0.98), thus enabling the
usage of optical stimulations. This procedure was also used in previous works [33].

The last analyses refer to a CFRP sample. Its size is 206 × 170 × 8 mm, built using
28 carbon fiber sheets, and has circular blind holes. There were twelve blind holes with a
geometry that combined diameters of 10, 16, 20, and 25 mm, along with depths of 2, 4, and
6 mm.

The laboratory tests consisted in applying an optical stimulation modulated as a
sinusoidal wave. The thermal camera is positioned horizontally and perpendicular to the
sample at approximately 1 m. The halogen lamp was 0.8 m above the thermal camera. The
stimulation and thermal measures were executed on the sample side without visible slots,
using the configuration known as reflection mode [34]. In the initial test, a stimulation
period of 20 s during 15 cycles was applied. The stimulations were applied using a halogen
lamp from Hedler®, model H25S, with 2500 W. These were controlled using the power box
model from AT—Automation Technology GmbH®. The sample temperature was measured
using a thermal camera from FLIR® model 7500, with a measuring waveband ranging from
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1.5 to 5.1 and less than 25 mK of Noise Equivalent Differential Temperature (NEDT). A
computer synchronized the stimulation and the image acquisition through the application
IRNDT V.1.7, also from AT—Automation Technology GmbH. These initial tests were used
to optimize the simulation script and are mentioned further ahead.

It was intended to simulate the temperature variations in the sample with the slots
having a uniform geometry, vertically oriented, for an isotropic material. Here, it is possible
to discard the vertical dimension (Z dimension in Figure 2). This simplifies the geometry
into a two-dimensional shape. This approximation was validated by analyzing the heat
transfer during a sample LTT.

Figure 2. PMMA sample and its slots.

Depending on the temperature gradients, this simplification of the 3D sample into a 2D
area, corresponding to the sample horizontal cross-section, might be incorrect. Thus, it was
necessary to determine the Biot number. If this is less than 0.1, the simplification is valid.
An accurate model to calculate the heat transfer coefficient was proposed by Churchill and
Chu in 1975 [35]. This model requires the previous calculation of the Rayleigh number (Ra)
and the Prandtl number (Pr) and can be calculated using Equation (4).

During the LTT, the sample is warmed, appearing as a vertical airflow due to the
natural convection. By multiplying the Grashof number (Gr, Equation (1)) by the Prandtl
number (Pr, Equation (2)), the Rayleigh number (Ra, Equation (3)) is obtained [36]. With
temperature T∞ equal to the laboratory tests and Ts twice the maximum amplitude recorded
in the initial tests, Ra equals 3.84×106. It is a significant laminar flow (101 and 109), meaning
the airflow due to convection is significant.

Equation (4), proposed by Churchill and Chu in 1975, determines the heat transfer
coefficient [35]. With this coefficient h is calculated as a Biot of 0.08 (Equation (5)), thus
being less than the established limit of 0.1. Indicating the vertical temperature gradients
inside the sample due to the natural convection can be discarded, and any temperature
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patterns are a direct result of a defect (in this case, a machined slot). Therefore, simplifying
the sample into a two-dimension horizontal surface is a good and correct approximation (1).

GR =
gβ(Ts − T∞)L3

c
υ2 → GR = 5.39× 106 (1)

PR =
Cpμ

K
→ PR = 0.7 (2)

Ra = GR× Pr → Ra = 3.84× 106 (3)

h =
K
Lc

[
0.68 +

0.67× Ra1/4

[1 + (0.492/Pr)9/16]4/9

]
→ h = 0.384

(
W

m2K

)
(4)

Bi =
hl

KPMMA
→ Bi = 0.08 (5)

where:

υ—Kinematic viscosity, 15.68× 10−6
(

m2

s

)
Ts—Temperature at the sample surface, 306.5 (K)
T∞—Ambient temperature, 296.5 (K)

β—Volumetric thermal expansion coefficient, 3.3 × 10−6
(

m2

s

)
Lc—Characteristic length, 0.16 (m)

Cp—specific heat, 1005
(

J
KgK

)
μ—Viscosity, 1.857 × 10−5

(
Kg

s×m

)
k—Thermal conductivity, 0.0262

(
W

m×K

)
l—Sample thickness, 4.5 × 10−3 (m)

KPMMA—PMMA Thermal conductivity, 0.21
(

W
m×K

)
The simulation of a transient response is well described in the literature. A sequence of

transient stimulations can be used to discretize a sinusoidal one, like the one used in lock-in
tests. Fourier’s first law, in its basic form, must be expanded to match the tested sample
geometries and the PDE. Since the Z axis is discarded, the geometry is defined in the X and
Y coordinates and time (t). By expanding the PDE, commonly used in the finite element
approximation (Equation (6)), we obtain the final and the system governing equation. The
simulations were implemented in MATLAB® and followed the methodologies described
by Erik Thompson [11].

∂

∂x

[
Kx

∂T
∂x

]
+

∂

∂x

[
Ky

∂T
∂y

]
+ Qi = ρ× Cp

dT
dt

(6)

where:

Qi—interior heat source per unitary area (stimulation);
Kx—conductivity coefficients in the X direction;
Ky—conductivity coefficients in the Y direction;
ρ—material relative density;
Cp—Heat capacity.

The simulated area required the definition of boundary conditions that mimicked the
laboratory tests. It applied a natural convection coefficient to the external contour, the
blue line in Figure 3. Along with the natural convection (energy output), the stimulus or
energy input was simulated, the green line in Figure 3. In these nodes, the heat generation
coefficient (Qi), contrary to all the other nodes, was not zero. Due to the uncertainty
in determining the heat applied by the halogen lamps, the remaining parameters were
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determined by fitting the temperature curves to the laboratory data (the results are in the
next section).

Figure 3. PMMA sample and its slots.

For the simulated section, X has the range [0–210], Y has the range [0–4.5], and t ranges
from zero up to 15 times the cycle period (in seconds). The sample horizontal dimensions
a, b, and d were kept equal to the samples, more precisely with 40, 30, and 10 mm. The
mesh had a uniform spacing in the Y direction (l and c). The surface was divided into
quadrilateral shapes with one nodal point at each corner, thus four nodes per element.
Some recommendations for the mesh size and shape are available in the literature and
provide some guidelines [37,38]. Fine-tuning of the mesh was performed through several
simulations with different meshes. The results are presented in Table 1. The mesh’s name
indicates the number of elements in dimensions d, a/b, and c represented in Figure 3. The
results in Table 1 show that there is a temperature conversion. In all the sets of meshes
evaluated, the selected mesh is highlighted in bold, and the final mesh is in red.

Table 1. Reference temperatures from the center of the sound area and slot 1, obtained with various
meshes.

Peak fig 5.4 and 5.5
Mesh

Num. Elements in d, a/b, and c Sound Area Slot 1

20 × 20 × 2 301.97281 306.77600
20 × 20 × 3 301.89808 306.73894
20 × 20 × 4 301.92363 306.72390
20 × 20 × 5 301.95672 306.72745
20 × 20 × 6 301.91589 306.71402
20 × 20 × 8 301.92080 306.71607

20 × 4 × 4 301.92380 307.29634
20 × 6 × 4 301.92373 306.94711
20 × 8 × 4 301.92369 306.84510

20 × 12 × 4 301.92366 306.76780
20 × 16 × 4 301.92364 306.73865
20 × 20 × 4 301.92363 306.72390
20 × 40 × 4 301.92362 306.70019

12 × 16 × 4 301.92388 306.69013
16 × 16 × 4 301.92372 306.72122
20 × 16 × 4 301.92364 306.73865
30 × 16 × 4 301.92356 306.75944
40 × 16 × 4 301.92353 306.76843

The initial laboratory tests served to fine-tune the simulation parameters. Both corre-
spond to a test with 15 cycles and 20 s of the cycle period. Figure 4 presents the temperatures
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inside the sample. These results are from a simulation at the end of the 15th cycle. Video S1
presents these same temperatures. In both, the Y scale was increased to improve visualization.

Figure 4. Temperature distribution after the initial simulation, 15 cycles of 20 s each.

The temperature profiles from the laboratory tests and simulation (Figure 5) show a
significant difference. In the laboratory tests, the maximum temperatures are higher than
in simulations. This is due to the reflected radiation from the stimulation. For the lower
stimulation amplitude, the reflected radiation is almost null. This makes the temperatures
in the laboratory tests and simulations very close. As a result, the stimulation amplitude
value was set to approximate the temperatures in the lower part of the cycles (valleys).

Figure 5. Obtained temperatures in laboratory and simulation at the center of slot 1.

Observing the temperature profile at the last frame of the tests (Figure 6) is the second
validation of the simulation parameters (Figure 6). From the laboratory test, slot one thermal
profile base was slightly wider than the simulated one, and the maximum temperature for
slot 4 was lower. Apart from these two differences, all the other temperatures were very
similar. Therefore, these differences are considered irrelevant.
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Figure 6. Temperature profiles at the end of the test in the stimulation surface (20 s).

3. Simulation Results

The sample simulations had a sinusoidal stimulation, with each simulation having
15 cycles and 65 different cycle periods, ranging from 0.02 to 80 s. The analyses were
performed for all of these; however, to facilitate the representation and its observation,
only the results of 15 are presented. Figure 7 presents the temperature evolution of the
central node from slot one, through the entire LTT. For shorter cycle periods, it is visible
that the temperature evolution is a linear oscillating curve. Longer cycle periods present
a temperature response that combines sinusoidal stimulation and a negative exponential
evolution. The temperature curves for cycles of 20 to 80 s present higher temperature
variations. These higher variations in the slot temperature occur in the first three to four
cycles. After these, the slot temperature evolution is mainly due to sinusoidal stimulation.
The sinusoidal temperature variation in the entire profile is uniform. Among the several
simulations, the temperature variations in the center of slot 4 were considerably small.

Figure 7. Temperature evolution at the center of slot 1 for cycle periods of 0.02, 0.10 up to 80 s.

178



Sensors 2023, 23, 325

Figure 8 represents the temperature profiles in the stimulus area after 15 cycles, also
obtained with cyclic stimulations from 0.02 to 80 s per cycle. Slots 1, 2, 3, and 4 are visible for
stimulations longer than 0.1, 0.2, 0.7, and 2 s, respectively. Increasing the stimulation period
increases the overall temperatures. However, as the slots present higher temperatures, their
profiles also become blurred, indicating an attenuation in the temperature distribution.
For 15-s periods, the temperature response starts to invert the temperature response. The
temperature difference between slot one and its boundaries starts to decrease. Increasing
the cycle period makes the boundaries harder to identify. For stimulations longer than 32 s,
the temperatures observed for the center of slots one and two are lower than those in its
sound areas. Figure 9 presents the temperature profiles during the entire test with a cycle
period of 40 s.

Figure 8. Temperature profiles in the stimulation surface after 15 cycles for cycle periods of 0.02, 0.10
up to 80 s.

Figure 9. Temperature profiles throughout the entire test for a stimulation period of 40 s.

One of the main principles behind using the amplitude analyses is that any slight
difference will be amplified (cumulative effect) at each cycle. Thus, observation of the
temperature distribution after a certain number of cycles is a starting point to identify the
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defects in thermal patterns. The amplitude and phase delay calculus was executed at an
application in LabVIEW®. It uses a Discrete Fourier Transform (DFT) to extract the relative
gain and phase between the normalized sinusoidal reference and the temperature at each
node. Figure 10a presents 15 of the 65 amplitude results to facilitate the visualization.
The small temperature decays observed at the boundaries of the slot become visible for
stimulations longer than 11 s (Figure 10a). A similar amplitude behavior is observed
in slot 2. However, they are softer and tend to appear for slightly longer stimulations.
The difference between slots 1 and 2 is the complete inversion of the amplitude profile
at the slot 2 location, passing for a near “zero” identification for the stimulation of 14 s
(Figure 10a). The thermal response of slot 4 is low, despite the cycle period used. We define
the amplitude response as the temperature difference between a slot and its two sound
areas. One can consider this to be technique sensitivity. Slot 1 amplitude response has a
local maximum near the three-cycle period, a local minimum at the 11 cycle period, and
starts to increase for stimulations longer than 15 s (Figure 10b). This behavior is observed
for all the slots as visible in Figure 10b,c for different cycle periods. These local maximum
and minimum result in a null response for the second and third slots. This can indicate
the presence of blind frequencies. A stimulation frequency for which the slot presents zero
thermal amplitude. This last aspect reveals the limitations of amplitude images. When
comparing the amplitude response with the final temperature, the fourth slot was visible
in the temperature profiles. This is a way to overcome the existence of blind frequencies.

Figure 11a presents the phase profiles for cycle periods from 0.02 to 80 s per cycle.
With a cycle time of 0.02 s, the phase delay was considerably high and diminished for
longer cycles. Slot 1 was once again the most visible, presenting the higher profile variation
(increase in the phase delay) and appearing earlier (stimulation of 0.2 s). Slots 2, 3, and 4
were visible with stimulations of 0.4, 0.5, and 1 s, respectively. In Figure 11b and for slot 1,
we observe a continuous increase in the phase difference. Since all the slot temperatures
are a response to the stimulus, these present a time delay. Thus, all the phase differences
presented negative values. Apart from this, the phase difference of slots 2, 3, and 4 present
similar profiles to the amplitude difference. They have a local maximum followed by a
local minimum and decrease with the increase of the cycle period. While not having this
local maximum and minimum, slot 1 also presents a similar pattern.

Stimulations with a small amplitude response lead to phase images with high noise.
These usually result from short stimulation periods and should be ignored. A slot can
be observed as an area with a smaller thickness, thus, more heat per volume of material.
However, the thicker area will have a higher damping factor, resulting in a slower dynamic.
So, detecting and characterizing defects is accomplished by observing the different dy-
namics of the sound areas. The area corresponding to slot 1 is thinner than the sample
thickness. Thus, slots 2 and 3 better represent the behavior of an “industrial” defect. Slot
2 and 3 behaviors are difficult to fully understand just by observing Figure 11. Thus, a
detailed observation is presented in Figure 12. The evolution of the phase difference of the
slots resembles the amplitude response. Slots 2 and 3 reached a local maximum with cycle
periods of 4.5 and 6.5 s (Figure 12a,b). The phase delay decreases with the increase of the
stimulus, being most visible in slot two and less visible in slot three. A local minimum is
reached for slots two and three with cycle periods of 14 and 28 s, respectively. Slot 3 passes
through an almost null response for a 36 s stimulation period. This is a blind frequency in
the phase image. For slot two, the curve in Figure 12b does not cross the zero axis, being
very close. With the existence of noise in laboratory tests, this slot might not be visible.
However, slot 3 reaches a minimum of 0.01, leading to the intersection of the zero phase
delay, thus the existence of two blind frequencies. These conditions that result in minimum
phases should be avoided, and the thermal tests should be conducted with cycle periods
that are shorter or longer. Longer stimulation will result in phase images with the contrast
presented in Figure 11b.
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(a) (b)

(c)

Figure 10. Amplitude response and Amplitude difference, function of the cycle period. (a) Amplitude
responses from the stimulation surface after 15 cycles. (b) Amplitude difference between slots 1, 2, 3,
and 4 and their sound areas, for cycle periods of 0.02 to 20 s. (c) Amplitude difference between the
slot and its surroundings from 0.02 to 80 s per cycle.

(a) (b)

Figure 11. Phase delay and difference function of the cycle period. (a) Phase delay of the stimulation
surface after 15 cycles. (b) Phase difference for periods from 0.02 to 80 s per cycle.
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(a) (b)

Figure 12. Detailed view of slots 2 and 3 for periods between 8 to 20 s. (a) Phase delay of slots 2 and
3 for stimulations ranging from 8 and 20 s. (b) Phase difference for periods from 0.02 to 20 s per cycle.

4. Analyses of the LTT Simulations

The first aspect to highlight from the results is the difference between the laboratory
and simulated temperature curves. The reflected radiation prevented a direct comparison
between the two sets of data. Comparing the cycle’s lower temperatures (valleys) was the
selected criterion to validate the FEA parameters. The comparison of the temperatures at
the end of the test was used as a confirmation. Overall, the laboratory tests validated the
settings used in the FEM simulations.

Using a thermal image during LTT is one manner to identify some defects. This analy-
sis is relevant if the stimulation period is near a blind frequency. Using cyclic stimulation
also has a cumulative effect and amplifies temperature profile patterns, showing different
temperature patterns than the ones observed when using a constant and single stimulation.
The samples used were made of PMMA. Its thermal conductivity is slightly lower than
a CFRP but is fully isotropic. A material with low thermal conductivity is expected to
increase its global temperature during cyclic stimulation. Thus, when a fast sinusoidal stim-
ulation is applied, low-temperature variations are expected, and increasing the stimulation
cycle period delivers more energy to the specimen, and higher temperatures will show.
This type of behavior is observed in over-damped mechanical systems. Since all the tests
used sinusoidal stimulations, it was impossible to separate the negative exponential from
the sinusoidal response in the temperature data. When these present a constant sinusoid
evolution, this indicates the test was long enough for the temperature to reach a steady-state
regime. If longer sinusoidal stimulations are used, an exponential thermal response will
appear, overlapping with the sinusoidal thermal response. Increasing the period of cyclic
stimulation also increases the amount of energy received by the sample.

Thinner areas receive more energy per volume, resulting in higher temperatures and
vice versa. For long cycle periods, areas have higher temperatures, and with the stimulation
being in a lower instance of the cycle, these areas will start to warm their surroundings.
This lateral temperature conduction (along the X-axis) will result in the dispersion of the
temperature gradients, like in a transition area such as the slot boundaries. This is observed
in the eight boundaries of the slots and at the profile extremities. As the cycle period
increases, the time available for this lateral heat flux to become visible also increases. A
higher difference between the slot temperature and the surrounding sound areas increases
the lateral heat flux and consequentially softens the temperature profile. The resulting
temperature profiles have blurred boundaries (difficult to identify), especially for long
stimulations.

To optimize an LTT, a low number of cycles should always be used. Since most
cameras can reach tens of frames per second, obtaining more than 100 images per cycle is
an easy setup to accomplish. To calculate the amplitude image, it should use at least two
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cycles. Figure 13 presents the variations in the phase as a function of the number of cycles
and cycle periods. For a short stimulation (cycle period of 5 s for example), the hardest slots
to detect require more cycles, while the deepest slots reach the maximum phase difference
with 5 to 9 cycles. With the stimulation of 30 s, this introduces blind frequencies and slots 2
and 3 detectability decreases with each cycle. This is particularly critical for slot 3, reaching
a zero phase for nine cycles, while the third slot indicates that with a few more cycles this
slot would not be detected. For longer stimulations (80 s for example), the smallest slots
are mainly insensitive to the variation of the number of cycles. In contrast, the third and
fourth slots present some big variations. The fourth slot presented a higher phase delay
with stimulation of 15 s and one cycle when compared with the 15 cycles and stimulation
of 80 s per cycle, which results in a considerably shorter test; however, this is not a usual
situation and should not be used as a reference.

Figure 13. Phase difference function of cycle period, number of cycles, and for slots 1 to 4.

In LTT, it is impossible to identify a single image that produced the desired results. The
best results (better detectability) occur when analyzing the amplitude and phase images.
Thus, for these types of data/images, the optimal test parameters can be calculated. As
such, we performed new simulations for PMMA and CFRP samples. These simulations
focused on a sample with one slot (equivalent to slot 3) with various sample thicknesses
and cycle periods. For each simulation, an amplitude and phase difference are calculated.
Finally, the optimum cycle period was determined. For this, both phase and amplitude
images were considered.

Figure 14 represents the amplitude variation as a function of the cycle periods (from
0.1 to 60 s) and for sample thickness ranging from 0.1 to 10 mm. Here, longer stimulations
lead to higher temperature differences. When increasing the cycle period, a peak was not
obtained, and the locations of the lower increasing rate were identified. These locations
are represented by the green points in Figure 14. Due to the amplitude response stability
(Equation (7)), this is considered the ideal location to conduct the LTT for PMMA samples.
From the analyses, we concluded that the amplitude images do not provide the most
accurate data. Despite a long cycle period leading to a higher amplitude result, the defect
boundaries will become blurred. Therefore, the amplitude images provide a direct analysis
and quality and accuracy control for the phase images. A higher amplitude response
means that the temperature variations are significant and thus lead to less noise in the
phase delay images. They can also act as a control preventing any false detection due to
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blind frequencies. Therefore, Equation (7) indicates the ideal stimulation for the amplitude
analyses. However, it is less relevant than the ideal phase curve.

CyclePeriodPMMAamplitude(s) = 4.1615 + 11.6358× l − 0.5648× l2 (7)

Figure 14. Amplitude difference function of PMMA sample thickness and cycle period.

In previous chapters, the phase images were considered one of the most sensitive ones.
Apart from the blind frequencies, these should always be used to assess the sample results.
Figure 15 presents the phase differences between the reference slot and its sound areas. The
“negative” areas reveal the crossing of the zero axis. So, at least one blind frequency should
occur, corresponding to the inversion of the phase profiles. The surface in Figure 15 can
be divided into three main areas: (i) the peak for thicker samples and short cycle period;
(ii) the valley on the diagonal of the surface; and (iii) the maximum area for the thinner
samples and longer stimulations. In area (i), the amplitudes are very low; thus, the phase
images will be very noisy. The area that presents a valley (area (ii) is a direct result of the
existence of a blind frequency. From the analyses of the several slots, we conclude that a
cycle period producing a minimum phase delay of a defect could correspond to the exact
blind frequency of another. As a result, cycle periods and sample thicknesses that lead to
these locations should be avoided. Finally, area (iii) corresponds to the maximum obtained
for long stimulus periods. This maximum area indicates the presence of a higher difference
in the phase profiles. These points occur for long stimulations and samples thinner than 5
mm. The ideal stimulations should be here. A regression of these green points is presented
in Equation (8). This is the recommended cycle period function of the sample thickness.
The LTT ideal parameters depend on the method used to identify and characterize the
defect. The ideal parameters should consider where the best phase or amplitude images are
obtained. While the phase images tend to present higher detectability and signal-to-noise
ratio (SNR), the amplitude response should be high enough to enable the phase image to
eliminate most of the existing noise.

CyclePeriodPMMAphase(s) = 2.029 + 8.694× l − 0.309× l2 (8)
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Figure 15. Phase difference function of the sample thickness and cycle period for PMMA samples.

The next step was to find the best parameters to conduct an LTT in CRFP. This is an
anisotropy material, particularly for its thermal properties [39]. Different fiber orientations,
layouts, and resign percentages also change its mechanical properties [40,41]. The simula-
tions of the CFRP sample were the same as used previously, with thermal conductivities
for the X and Y directions of 6.3 and 0.6, respectively [14]. It should be considered that the
following results and analyses might be different for different properties such as different
resin percentages or fiber alignment [42].

Figure 16 presents the amplitude of different functions of the sample thicknesses
and cycle periods. The amplitude difference response presents a shape similar to the one
observed in the PMMA simulations. Comparing both surfaces, the amplitude response
for the PMMA sample is higher than for the CFRP. This may result from the different and
higher thermal conductivity in the fiber direction and parallel to the surface, thus helping
to blur and reduce the thermal patterns in the CFRP samples surface. Higher thermal
conductivity decreases the temperature variations during the test. If only considering the
amplitude images, using cycle periods indicated by the green dots is recommended. A
fitting to these green points results in Equation (9).

CyclePeriodCFRPamplitude(s) = 7.935 + 1.875× l − 0.0356× l2 (9)

One of the main tasks of this work is represented in Figure 17, the phase difference as a
function of the cycle period and sample thickness for the phase response of CFRP samples.
An obvious observation is the resemblance between the phase surface corresponding to the
CFRP and the PMMA. Here, the surface also crosses the zero phase plane, revealing the
existence of blind frequencies in some situations. Long cycle periods are also recommended,
despite the higher values obtained with shorter cycle periods for thicker samples (surface
valleys). In this manner, the low amplitude responses are avoided, and the noise in the
phase images decreases. In the PMMA phase surface, when reaching the 5 mm thickness,
the phase revealed the incapacity to maintain a good response. In the phase surface
corresponding to the CFRP, the cycle period for which the maximum phase is almost
proportional to the sample’s thickness. This is obvious in the best phase response given
with Equation (10). Thus, it was obtained by a curve fitting the green points in Figure 17.

CyclePeriodCFRPphase(s) = 2.15 + 5.53× l − 0.25× l2 (10)
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Figure 16. Amplitude difference function of the sample thickness and cycle period, for CFRP samples.

Figure 17. Phase difference function of the sample thickness and cycle period of CFRP samples.

5. Lock-In Thermal Test Validation

5.1. Validation of a Sample Made of PMMA

The previous chapter presented the best parameters for performing an LTT for PMMA
and CFRP samples. The results show that certain conditions resulting in phase images can
lead to inconclusive results. To prevent this, amplitude images should also be considered
in the evaluation. The following validation tests used a different sample. It had four slots
with a depth equal to slot three and widths of 5.0, 7.5, 10.0, and 12.5 mm. These validation
tests consisted of laboratory tests LTT with various cycle periods.
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Figure 18a,b illustrate the averaged amplitude and phase cross-section profiles ob-
tained for the validation LTT. The amplitude response is proportional to the cycle period,
as observed previously. Observing Figure 15, a small phase response was expected for
shorter cycle periods as presented in Figure 18b. With the increase in the cycle period, the
phase response in the slots’ evidence started to increase. Similar to the simulation pattern
and the evolution described previously, the phase difference at the slots becomes constant.
The downside of longer stimulations (60 s) is the fading/blur of the boundaries. In the
phase profiles, this is evident. Apart from the possible identification of defects, these long
cycle periods do not provide better results and should not be considered. For the sample of
PMMA and using Equation (8), the ideal cycle period has 35 s. Observing Figure 18a, one
can say that the ideal cycle period is between 30 and 40 s.

(a) (b)

Figure 18. Results from the PMMA validation tests. (a) Average amplitude profiles. (b) Average
phase profiles.

5.2. Validation of a Sample Made of CFRP

Performing an analogy to the observations of the PMMA sample, the overall thermal
response for the amplitude images should increase with the cycle period. Figure 19a,b
present the vertical profiles for two groups of slots, corresponding to the amplitude profiles
of 2 and 4 mm thick (slots areas). According to the pattern described, the amplitude
response in the slots should increase for long cycle periods. Naturally, a deeper slot and
a long cycle period lead to better slot visibility. An important aspect is a similarity in the
amplitude differences between 20 and 30 s. This indicates that the amplitude variation
resulting from a possible increase in the cycle period is becoming smaller, as predicted by
the observed amplitude surface for CFRP (Figure 16).

(a) (b)

Figure 19. Vertical amplitude profiles for two slots. (a) Thermal profiles for the slot 2 mm thick.
(b) Thermal profiles for the slots 4 mm thick.
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Figure 20 presents the phase profiles for the two sets of slots discussed. Similar to
the PMMA samples and their phase, the CFRP profiles present a crescendo with the cycle
period. The phase delay revealed low variations for the two shorter cycles, presenting
a considerable variation for the 20 and 30 s profile. This pattern follows the behavior
of the PMMA sample and the results of previous simulations. The phase delay for the
cycle periods of 20 and 30 s are similar, thus validating the optimum cycle period of 26 s
(Figure 20a,b).

(a) (b)

Figure 20. Vertical phase profiles for two rows of slots of the CFRP samples and various cycle periods.
(a) Phase profiles for the slots 2 mm thick. (b) Phase profiles for the slots 4 mm thick.

6. Conclusions

This work intended to study the influence of the cycle period in LTT for CFRP sam-
ples for different thicknesses. This was accomplished using simulations and validated
experimentally using PMMA and CFRP samples. The analysis of laboratory conditions
determined if the assumptions and simplifications were correct. Here, the Biot number
was significant and low enough for the intended simplification to be possible. The mesh
optimization diminished the computational cost and allowed accurate results. Fitting the
temperature results through time and at the end of a cyclic simulation with 15 sinusoidal
cycles, it was possible to determine the stimulation parameters.

The temperature differences resulted from the stimulation reflected radiation and were
impossible to remove from the thermal measurements. Apart from this expected difference
between the laboratory tests and the simulation, the similarity was very high.

Numerous LTT simulations were performed, producing the amplitude and phase
results for different sample thicknesses and cycle periods. Despite the current results, some
different behaviors occur when changing the number of cycles. Even if not compromising
the evaluations, the number of cycles might decrease the test sensibility. The initial stim-
ulations provided a comprehension of the temperature through the entire thermal cyclic
test, thus providing good visualization of the heat flow inside the sample, inaccessible
experimentally. An important aspect is the signal-to-noise ratio presented by the amplitude
and phase. The amplitude images and the resulting profiles revealed a lower signal-to-noise
ratio than the phase images. From all of the data, the phase images demonstrated a higher
sensitivity to the stimulus and cycle period. The results also show that a shorter stimulation
reveals a better boundary definition. In some situations, the blind frequencies can result
in a null response in the phase images, only visible in the amplitude response. The rapid
variation in the phase profiles was also predictable.

The recommended cycle period from the prediction surfaces was validated experimen-
tally with two samples. These are different from the ones used to create the mentioned
surfaces. After various laboratory experiments, the temperature, amplitude, and phase
results validated the previous equations and prediction surfaces relating to the PMMA and
CFRP sample. It is worth mentioning the CFRP validation sample was 8 mm thick and had
circle blind holes.
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To present this work’s findings and facilitate their usage in future research, prediction
surfaces and equations for the amplitude and phase difference were created. These consider
PMMA and CFRP. The prediction surfaces can help in the identification of blind frequencies
and prevent false negatives for a determined component thickness.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23010325/s1, Video S1: Simulation with 15 cycles and 20 s of
the cycle period.
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Abbreviations

The following abbreviations are used in this manuscript:

Ts Temperature at the sample surface, 306.5 (K)

υ Kinematic viscosity, 15.68× 10−6
(

m2

s

)
T∞ Ambient temperature, 296.5 (K)

β Volumetric thermal expansion coefficient, 3.3 × 10−6
(

m2

s

)
Lc Characteristic length, 0.16 (m)

Cp specific heat, 1005
(

J
KgK

)
μ Viscosity, 1.857 × 10−5

(
Kg

s×m

)
k Thermal conductivity, 0.0262

(
W

m×K

)
l Sample thickness, 4.5 × 10−3 (m)

KPMMA PMMA Thermal conductivity, 0.21
(

W
m×K

)
Qi interior heat source per unitary area (stimulation)
Kx conductivity coefficients in the X direction
Ky conductivity coefficients in the Y direction
ρ material relative density
Cp Heat capacity
GR Grashof number
PR Prandtl number
Ra Rayleigh number
Bi Biot number
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Abstract: A wireless impedance monitoring system, called SSeL-Pi, is designed to have cheap, mobile,
and handy practical features as compared to wired commercial impedance analyzers. A Raspberry Pi
platform impedance sensor node is designed to measure signals at a low-frequency range of up to
100 kHz. The low-frequency impedance measurement via the proposed node has been combined
with a new PZT interface technique for measuring local responses sensitive to structural damage.
The new PZT interface can work as a surface-mounted or embedded sensor, and its local dynamic
characteristics are numerically analyzed to pre-determine an effective impedance resonant frequency
range of less than 100 kHz. Next, a software scheme was designed to visualize the input/output
parameters of the proposed SSeL-Pi system (i.e., Raspberry Pi platform and PZT interface) and
automate signal acquisition procedures of the impedance sensor node. The calibration for impedance
signals obtained from the proposed system was performed by a series of procedures, from acquiring
real and imaginary impedance to adjusting them with respect to a commercial impedance analyzer
(HIOKI-3532). The feasibility of the wireless impedance monitoring system was experimentally
evaluated for PZT interfaces that were subjected to various compressive loadings. The consistent
results analyzed from signals measured by the SSeL-Pi and HIOKI 3532 systems were observed.
Additionally, the strong relationships between impedance features (frequency shift and RMSD index)
and compressive stresses of the PZT interfaces showed the potential for axial force/stress variation
monitoring in real structures using the Raspberry Pi platform impedance sensor node and developed
PZT interface.

Keywords: Raspberry Pi; wireless sensor node; impedance response; PZT interface; stress variation

1. Introduction

Electromechanical impedance (EMI)-based techniques have been developed for struc-
tural health monitoring (SHM) in civil, mechanical, and aerospace engineering areas [1–3].
The fundamental theory of the EMI-based methods was developed by Liang et al. [4], and
it was successively followed by many researchers [5,6]. However, the field implementation
of the techniques is limited due to the lack of affordable hardware. As they are designed
for the laboratory environment, most impedance analyzers (e.g., HIOKI 3532 or HP4149A)
are bulky and expensive but unsuitable for use in the field. Therefore, there is a need to
develop portable, handy, and inexpensive measurement units for impedance-based SHM
of real structures in the field.

Wireless impedance monitoring methods have been developed for SHM [7–15]. Mas-
carenas et al. [7] proposed a prototype of a wireless impedance sensor node for structural
health monitoring. The developed sensor node used an AD5933 impedance chip [16] for
measuring the impedance signals of a piezoelectric (PZT) transducer, an ATmega128L
microcontroller for computing, and a 2.4 GHz Xbee radio-frequency telemetry module for
wireless communication. Many researchers have then followed and improved the initial

Sensors 2022, 22, 9592. https://doi.org/10.3390/s22249592 https://www.mdpi.com/journal/sensors
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prototype to obtain a low-cost multi-functional wireless impedance sensor node. Park S.
et al. [10] improved the prototype by adding some functions such as a memory card slot,
multi-channel measurement, and temperature recording. Min et al. [11] embedded the algo-
rithms on the microcontroller for structural damage detection/sensor self-diagnosis. Kim
et al. [13] developed an SSeL-I impedance sensor board operated on an Imote2 platform
to enhance the wireless monitoring capacity. As a high-performance sensor platform, the
Imote2 [17] consists of a low-power microcontroller of 416 MHz clock speed, 32 MB SDRAM
(synchronous dynamic random-access memory), and a radio transceiver of 250 kb/s trans-
mission rate with 16 channels in the 2.4 GHz band. The Imote2 platform impedance
sensing system (called Imote2/SSeL-I) was applied for local damage detection in structural
connections [13,15,18] and prestress-loss monitoring in tendon anchorage [19,20].

Recently, Raspberry Pi has been developed for a commercial microcomputer [21,22].
As compared to the Imote2 platform, Raspberry Pi has many advanced features, such as a
powerful microprocessor of 1.5 GHz clock speed, 1~8 GB SDRAM, and a wireless LAN with
600 Mb/s transmission rate in the 2.4/5.0 GHz bands. The Raspberry platform simultane-
ously supports multiple sensors via a 40-pin GPIO (general-purpose input/output) header.
For example, a unit of Raspberry Pi costs about US$80 for a model with 4 GB SDRAM.
As a cheap, powerful, and multi-functional unit, Raspberry Pi is an effective platform
for controlling distributed sensors to continuously monitor structural responses [23–26].
Mahmud et al. [24] used a Raspberry Pi to generate an excitation signal on a PZT sensor,
detect damage in a metal plate, and send a structural health status to an Internet server.
This study used a combination of pitch-catch and pulse-echo techniques for monitoring
the structure’s health. Ghosh et al. [25] employed a Raspberry Pi as a computing unit
to code the piezoelectric sensors and receive the data from these sensors in structural
health monitoring for concrete beams. Meng and Zhu [26] combined a Raspberry Pi 4
and a microelectromechanical systems accelerometer to form an Internet of Things sensing
system for vibration monitoring.

So far, the Rasberry Pi platform has not been used for wireless impedance-based SHM.
At least three techniques should be developed to make it feasible. Firstly, a data acquisition
system should be integrated with a miniature impedance analyzer. A sensing module
‘PmoldIA’ for measuring impedance signals up to 100 kHz [27] (which costs about US$50)
is a good choice for the Raspberry Pi platform. Secondly, the operating software of the
Raspberry Pi platform should be programmed for autonomous measurement and feature
extraction. Thirdly, the data acquisition protocol in the impedance sensor node should be
calibrated based on the commercial impedance analyzer.

In this study, a new wireless impedance monitoring system, called SSeL-Pi, is designed
to have cheap, mobile, and handy practical features as compared to wired commercial
impedance analyzers (e.g., HIOKI 3532 or HP4149A). A Raspberry Pi platform sensor node
is designed to acquire impedance signals at a low-frequency range of up to 100 kHz. The
low-frequency impedance measurement was combined with a new PZT interface technique,
which was developed following the study of Huynh et al. [28]. The new PZT interface
helps pre-determine effective frequency ranges of less than 100 kHz, which is used for
measuring local responses sensitive to structural damage. A software scheme was designed
to operate the proposed SSeL-Pi system (i.e., Raspberry Pi platform and PZT interface).
Next, a calibration procedure was designed for the impedance sensor node. The calibration
results from the proposed system were compared to signals obtained from the commercial
impedance analyzer system (HIOKI 3532). Then, the feasibility of the newly designed
impedance sensing system was experimentally evaluated for PZT interfaces subjected to
various compressive loadings.

This paper is organized as follows: (i) Section 2 presents the development of the
hardware, the software, and the PZT interface technique for the proposed SSeL-Pi system;
(ii) Section 3 presents the calibration procedures for the monitoring system; (iii) Section 4
presents the experiment performed to evaluate the feasibility of the SSeL-Pi system; and
(iv) Section 5 draws the findings and conclusions. The major contributions of this study
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are described as follows: (i) the newly developed impedance sensor node was developed
based on the Raspberry Pi platform; (ii) the new PZT interface model with a low pre-
determined frequency range of less than 100 kHz was integrated with the Raspberry Pi
platform impedance sensor node; and (iii) the newly developed impedance sensor node
was applied to monitor stress variation in concrete structures.

2. Design of Raspberry Pi Platform Impedance Monitoring System

According to Nagayama et al. [29], a smart sensor node has five main features: an on-
board microprocessor, sensing capability, wireless radio, battery power, and low cost. The
sensing capability is implemented by a data acquisition unit that enables a signal generator,
amplifier, and anti-aliasing filter. The microcontroller operates on-board computation
of signal process and feature extraction for the data acquisition unit. As proposed by
Mascarenas et al. [7], the data acquisition procedure for an impedance-based sensor node
has three steps. Firstly, an AD5933 impedance chip with a 12-bit analog-to-digital converter
(ADC) measures impedance signals from a PZT sensor. Then, impedance signals are
stored in data storage (e.g., secure digital card—SD card). And lastly, the stored data are
transferred to a master device (e.g., laptop) via the wireless communication module.

2.1. Schematic of Impedance Monitoring System

In this study, a Raspberry Pi platform impedance monitoring system ‘SSeL-Pi’ was
designed as schematized in Figure 1. The main components of the SSeL-Pi system include
a power supply, a Raspberry Pi platform [22], an impedance sensing module PmodIA from
Digilent [27], and a PZT interface device. The SSeL-Pi system requires a power supply of
5 V/3 A. The Raspberry Pi platform manages a micro-central processing unit (mCPU), a
wireless radio (WiFi), and a few other parts described in the following Section 2.2. The
Raspberry Pi platform runs on Raspbian, which is an operating software (OS) based on the
Debian Linux distribution optimized for the Rasberry Pi family.

Impedance Sensing Module

Raspberry Pi Sensor Platform
(mCPU, RAM, WiFi, & Linux OS )

PZT
Interface
Device

Power Supply – Battery (5V/3A)

3.3V I2C

Sensor

AD5933 Impedance 
Converter
12-bit ADC

Temperature 
Sensor

Figure 1. Raspberry Pi platform impedance monitoring system ‘SSeL-Pi’.

The impedance sensing module manages a built-in AD5933 impedance chip with a
12-bit ADC converter. The board is also equipped with a temperature sensor. The built-
in AD5933 impedance chip generates frequency-domain signals of less than 100 kHz to
the PZT sensor (e.g., PZT 5 A patch). The impedance sensor node was designed to be
combined with a new PZT interface device, which was designed following the study of
Huynh et al., 2017 [28]. The proposed PZT interface helps ensure impedance signals (less
than 100 kHz) that are sensitive to local damage and stress change. The inter-integrated
circuit (I2C) communication protocol and a power supply (3.3/5 V) are utilized for com-
municating between the Raspberry Pi platform and the impedance sensing module. The
impedance sensing module is connected to the Raspberry Pi platform via GPIO pins [21]
(see Figure 1). Additionally, the PZT sensor is connected to the impedance sensing module
by electrical wires.

194



Sensors 2022, 22, 9592

As outlined in Table 1, the specification of the proposed SSeL-Pi system is compared
to those of the impedance measurement system HIOKI 3532 [30]. The proposed system can
measure an impedance range of up to 10 MΩ with a frequency range of up to 100 kHz [27].
The proposed system is smaller in dimension and weight as compared to the commercial
one. The voltage peak-to-peak (Vp-p) is 2 Vp-p for the board PmodIA [27], while it is up
to 14 Vp-p for HIOKI 3532 [30]. Note that the Raspberry Pi platform sensing system costs
around US$280 (in E-commerce, the price for Raspberry Pi 4 B with full options is around
US$230 and for PmodIA about US$50), which is much lower than the HIOKI 3532 system.

Table 1. Raspberry Pi platform impedance monitoring system ‘SSeL-Pi’ versus commercial impedance
analyzer ‘HIOKI-3532’.

Parameter SSeL-Pi System [22,27] HIOKI 3532 [30]

Impedance range 100 Ω–10 MΩ 10 mΩ–200 MΩ
Frequency range 1 kHz–100 kHz 42 Hz–5 mHz

Voltage peak-to-peak 2 Vp-p 14 Vp-p
Cost US$280 US$15,000

Dimension 88 × 58 × 19.5 mm 352 × 323 × 124 mm
Weight 80 g 6.5 kg

2.2. Specification of Impedance Monitoring System
2.2.1. Raspberry Pi Platform

A Raspberry Pi is a single-board computer with good features such as small size,
low price, Linux operation, and flexible form factor. In this study, a Raspberry Pi 4 B
platform was used for the impedance sensing system. Its main specifications are outlined
in Table 2. It has a micro central processing unit (mCPU) of 64-bit quad-core Cortex-A72
(1.5 GHz), RAM memory of LPDDR4 4 GB, wireless radio 802.11 ac of WI-FI 2.4/5 GHz,
and storage capacity of 16 GB SD card. The Raspberry Pi platform can be powered by
a USB-C connection supplying at least 400 mA at 5 V. An on-board 40-pin GPIO header
connects externally to the impedance sensing module. Others include USB and HDMI ports
for external devices (e.g., keyboard and monitor), CSI and audio ports for video/audio
input, and Gigabit Ethernet.

Table 2. Main specifications of Raspberry Pi 4 B.

No. Name Feature No. Name Feature

1 mCPU 64-bit quad-core Cortex-A72 (1.5 GHz) 5 GPIO 40 pinouts
2 RAM 4 GB LPDDR4 6 Storage MicroSD-16 GB
3 Wireless 802.11 ac (2.4/5 GHz) 7 USB ports 2 × USB 3.0, 2 × USB 2.0
4 Power supply USB Type-C/5 V and 3 A 8 HDMI ports 2 ×Micro-HDMI up to 1080 p60

2.2.2. Impedance Sensing Board

Figure 2 shows a portable impedance analyzer board (the so-called PmodIA mod-
ule [27]) which consists of an AD5933 chip, temperature sensor, I2C communication ports,
and two SMA (subminiature version A) sensor connectors. The Analogue Devices AD5933
chip is a high-precision impedance converter that combines an on-board frequency gen-
erator with 12-bit ADC [16,27]. The I2C communication has four pins, which are SCL
(serial clock), SDA (serial data), GND (ground), and VCC (voltage common collector) (see
Figure 2). There is a pair for each type of pin. The impedance measurement using the
AD5933 is performed in the following three procedures. Firstly, a frequency generator
excites complex dynamic signals at an assigned frequency that is commended externally
via the I2C communication. Secondly, the response signal is sampled by the on-board ADC.
Thirdly, a discrete Fourier transform (DFT) is processed by an on-board DSP (digital signal
processor) engine. The DFT algorithm returns a real (R) and imaginary (I) data word at
each output frequency.
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AD5933 chip (12-bit ADC)

I2C communication

Sensor connector

Figure 2. Impedance sensing module ‘PmodIA’.

As outlined in Table 3, a few parameters of the PmodIA module [27,31,32] were
orientated for the measurement of impedance signatures from the PZT interface device
(which is described later). The internal oscillator frequency was set at 16.776 mHz to run
the device [27]. The current-to-voltage amplifier gain resistor and peak-to-peak voltage
were set at 20,000 Ohm and 2 Vp-p, respectively [31,32]. The programmable gain amplifier
(PGA) was ×5 times, and the number of setting time cycles was 100. The supply voltage
was 3.3 V.

Table 3. Initial setup of impedance sensing module ‘PmodIA’.

Specification Value Unit

Internal oscillator frequency 16.776 mHz
Current-to-voltage amplifier gain resistor 20,000 Ohm
Programmable gain amplifier (PGA gain) ×5 -

Output excitation voltage 2 Vp-p V
Number of settling time cycles 100 -

Supply voltage 3.3 V

2.2.3. Circuit Design of ‘SSeL-Pi’

Figure 3 shows the connection method between Raspberry Pi 4, the PmodIA, and an
example of the PZT interface. First, the PmodIA was linked with Raspberry Pi 4 via I2C
communication. The SDA and SCL pins of the PmodIA were connected with the GPIO
SDA (pin #3) and GPIO SCL (pin #5) of Raspberry Pi 4, respectively. Additionally, the VCC
and GND pins of the PmodIA were linked to pin #1 (3V3 PWR) and pin #9 (Ground) of the
Raspberry Pi 4, correspondingly. Then, the example of the PZT interface was connected to
the PmodIA via the SMA connectors on this board.

2.2.4. PZT Interface for Impedance Measurement
Impedance Concept of PZT Interface

Huynh et al. [28] developed a PZT interface technique to monitor the damage in a
tendon anchorage induced by the variation of tendon forces. The developed interface,
which worked as a beam-like structure, included a flexible part in the middle and two
outside fixed parts. The proposed technique helped pre-determine the effective frequency
band less than 100 kHz, which was suitable for wireless impedance measurement [7,12].

By following the above-mentioned study, a new type of aluminum PZT interface was
proposed for structural health monitoring using a low pre-determined frequency range
(less than 100 kHz) of impedance responses. As shown in Figure 4a, the newly designed
PZT interface has a vibrating plate (i.e., flexural section). Then, the fabricated component is
covered by two plates on its top and bottom, respectively. The vibrating plate, where the
PZT patch is installed, is designed to help the interface fluctuate according to the inverse-
piezoelectric behaviors of the PZT patch. With the support and protection of the cover
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walls and plates (i.e., top and bottom plates), the PZT interface works as a multi-functional
sensor: (1) surface-bonded PZT sensor and (2) embedded PZT sensor.

Power 5V

HDMI port

HDMI port

Audio port

Micro SD card

Wireless 
radio

mCPU

RAM

USB 2.0 USB 3.0
Gigabit 

Ethernet

40
 G

PI
O 

pin
s

VCC
GND
SDA
SCL

AD5933

I2C 
interface

(1) 3V3 PWR (2) 5V PWR
(3) SDA I2C (4) 5V PWR
(5) SCL I2C (6) Ground
(7) GPIO4 (8) UART_TXD
(9) Ground (10) UART_RXD
(11) GPIO17 (12) PCM_CLK
(13) GPIO27 (14) Ground
(15) GPIO22 (16) GPIO23

. .

. .

. .

. .

. .
(38) GPIO20

(39) Ground (40) GPIO21
Raspberry Pi Platform

(with Linux operating system)
Impedance board

PmodIA

Electric wires

PZT-interface

Electric wires PZT sensor

Example of interface

SMA connector

(37) GPIO26

Figure 3. Circuit design of ‘SSeL-Pi’.
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Figure 4. A PZT interface device for impedance monitoring. (a) PZT interface, (b) Surface-
mounted PZT interface on structure, (c) Embedded PZT interface in concrete structure, (d) 2-DOF
impedance model.
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For the surface-bonded sensor (see Figure 4b), the PZT interface could be contacted
with a host structure via a bonding layer between the bottom plate of the PZT interface and
structural surface. With the protected cover walls and plates, the integrity of the PZT sensor
could be ensured during the construction and operation of the host structure. Furthermore,
the ambient effects [33,34] on the impedance responses could be reduced.

For the embedded PZT sensor (see Figure 4c), the PZT interface could be embedded
in the concrete structures and work as a piezoelectric-based smart aggregate [35]. By
embedding into the concrete structures, the PZT interface could directly observe the internal
stress variation and concrete transformation induced by the externally applied forces [36].
Furthermore, with the pre-determined frequency range, the impedance measurement using
the embedded PZT interface could be processed faster than that using the conventional
smart aggregates, which used the trial-and-error method to find the effective monitoring
frequency ranges [37]. Thus, the proposed PZT interface could be cost-saving and time-
efficient for the impedance monitoring procedure.

As described in Sections 2.2.1 and 2.2.2, the Raspberry Pi platform impedance sensor
node was designed to measure signals at the frequency range of up to 100 kHz. Thus, the
developed measuring system can be combined with the new PZT interface device for low
pre-determined frequency impedance monitoring.

As shown in Figure 4d, the interaction between the PZT interface and target structure
could be simplified as a two-DOF impedance model [28]. In the two-DOF impedance
model, one DOF stands for the motion of the PZT interface, and the other represents the
motion of the inspected structure. The coupled structural-mechanical (SM) impedance
Z(ω) of the interface structure at the PZT-driven point can be written as [28]:

Z(ω) =
fi(ω)
.
xi(ω)

=
K11(ω)K22(ω)− K2

12(ω)

iωK22(ω)
(1)

where dynamic stiffness coefficients are derived as K11 = −ω2mi + iωci + ki, K12 = −iωci − ki,
and K22 = −ω2ms + iω(ci + cs) + (ki + ks). The terms m, c, and k are mass, damping
coefficient, and spring stiffness.

The subscripts s and i stand for the inspected structure and interface, respectively. The
stiffness coefficients depend on the structural parameters of the inspected structure and
interface. The SM impedance of the PZT patch, Zp(ω), and that of the interface-inspected
structure, Zs(ω), are coupled together (Liang et al. 1994 [4]):

Z(ω) =
V
I
=

{
iω

wala

ta

[
ε̂T

33 −
1

Za(ω)/Z(ω) + 1
d2

31ŶE
11

]}−1
(2)

where wa, la, ta are geometric constants of the PZT patch; ŶE
11, d31, and ε̂T

33 are the complex
Young’s modulus patch at zero electric fields, the piezoelectric coupling constant, and the
complex dielectric constant zero stress, respectively. Once the PZT patch has no changes in
mechanical properties or electrical characteristics and no energy loss induced by contact
conditions between the interface structure, the SM impedance Zp(ω) remains constant.
Thus, any changes in the monitored structure (e.g., stress change or structural damage) that
cause shifts in impedance frequencies can be measured via the interface technique.

The 2-DOF impedance model contains resonant peaks in its impedance signatures that
represent coupled vibration modes out of the PZT interface structure system. Therefore,
the effective frequency bands of the impedance signatures can be predetermined by con-
trolling the structural parameters of the PZT interface. Additionally, the impedance model
represents the structural parameters of both the interface device and host structure. Any
structural changes (e.g., damage or stress variation) result in a change in the impedance
response of the model.
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Numerical Impedance Response and Local Dynamic Characteristics of PZT Interface

As studied by [28,38], the effective frequency ranges for impedance measurement
via the PZT interface have a relationship with the dynamic characteristics of this device.
Therefore, the local dynamic characteristics of the PZT interface needed to be examined.

Figure 5a shows a prototype design of the PZT interface. Aluminum was selected
for the interface’s material. A PZT 5 A patch, which had a size of 10 × 10 × 0.51
mm, was surface-mounted on the middle of a component including the vibrating plate
(21 × 21 × 1.5 mm) and the cover walls (height of 7 mm and thickness of 2 mm). Super
glue was used for a bonding layer (0.1 mm thickness). After that, the fabricated combo was
covered by two plates (25 × 25 × 2.0 mm) on the top and bottom to form the PZT interface
(Figure 5a). The material properties of the aluminum, the PZT 5 A [38], and superglue are
listed in Table 4. The epoxy’s properties, which were used in the interface’s fabrication in
this study, are also presented in this table.

(a)

(b)

PZT 5A
(10 10 0.51)

Upper & lower spacing
2.75 mm

Aluminum (AL) vibrating plate
(21 21 1.5 ) 

Bonding layer 
thickness 0.1 mm

AL cover walls

AL cover plate 
thickness 2.0 mm

2

PZT 5A
(10 10 0.51)

Fixed

I=Iosin( t+ )

V(

y x
z

Figure 5. Geometric parameters of the PZT interface (dimension in mm). (a) Prototype design,
(b) Meshing and boundary conditions.

Table 4. Material properties of aluminum, PZT patch, and bonding layers.

Properties
Aluminum

6061-T6
PZT 5 A

Bonding Layer
Super Glue

Bonding Layer
Epoxy

Young’s modulus, E (GPa) 68.9 62.1 5 0.75
Poisson’s ratio, ν 0.33 0.35 0.38 0.3

Mass density, ρ (kg/m3) 2700 7750 1700 1090
Damping loss factor, η 0.02 0.0125 0.02

Yield strength, σy (MPa) 241
Compressive strength, σc (MPa) 32.3

Dielectric constant, εT
33 (F/m) 1.53 × 10−8

Coupling constant, d31 (m/V) −1.71 × 10−10

Dielectric loss factor, δ 0.015

Figure 5b shows three-quarters of a finite element (FE) model of the PZT interface,
which was simulated using Comsol Multiphysics. The FE model had 968 elements, of
which 100 were for the bonding layer, 100 for the PZT patch, 260 for the vibrating plate,
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220 for the cover walls, and 288 for two cover plates. Quadratic hexahedron elements were
used for the PZT interface. It was assumed that the PZT interface would be embedded in
the concrete structures for impedance monitoring. Thus, all outer surfaces of the interface
were assigned as fixed boundary conditions, and only the vibrating plate had the ability to
oscillate in the structures.

To acquire the impedance responses of the PZT interface, a 1 V harmonic excitation was
assigned on the top surface of the PZT, while the bottom one was simulated as the ground
electrode. Figure 6 shows the impedance signals of the PZT interface in the frequency
range of 5–100 kHz with 1901 sweeping points. The PZT interface shows the first and
second resonant impedance peaks at 24.65 kHz (Peak 1) and 93.05 kHz (Peak 2). Since the
vibrating plate (flexible section) of the PZT interface had a square shape, the transverse
displacements along the x-axis were identical to the ones along the y-axis. The impedance
responses of Peaks 1–2 were the 1st (at 24.14 kHz) and 6th (at 91.41 kHz) flexural motions
of the vibrating plate in the PZT interface (see Figure 6). Note that the low-frequency range
of the PZT interface’s impedance signals can be pre-determined via the modal analysis,
which is similar to previous studies [28,38].

1st mode at 24.14 kHz

y x
z

Peak 1: 24.65 kHz

Peak 2: 93.05 kHz

6th mode at 91.41 kHz

Figure 6. Numerical impedance responses of the PZT interface.

2.3. Software Design for Raspberry Pi Platform Impedance Monitoring System
2.3.1. Prototype of SSeL-Pi Impedance Monitoring System

A prototype of the SSeL-Pi impedance monitoring system was designed as shown in
Figure 7. A prototype of the SSeL-Pi system was fabricated by a laptop, a Linux-operating
Raspberry Pi platform, an impedance sensor board (PmodIA module), and a PZT interface
device ensuring frequency responses less than 100 kHz. The way to connect the Raspberry
Pi, PmodIA, and PZT interface is presented in Figure 3. The laptop controls the Raspberry Pi
platform to command the PmodIA module for sensing impedance signals of the PZT sensor.
The measurement command is transferred to the sensor node via WiFi communication.

Wireless data 
transfer

Command/Control SSeL-Pi impedance sensor node
Raspberry Pi

PmodIA PZT-interface

Electric wires

PZT

Figure 7. Prototype of impedance monitoring system ‘SSeL-Pi’.
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At the sensor node, Raspberry Pi automatically decodes the command to control the
impedance sensor board. The PmodIA module introduces an excitation of 2 V into the
PZT sensor at the designed frequency. At the same time, the corresponding impedance
response at the exciting frequency is received backward from the sensor. The PZT interface
device ensures the impedance signals (less than 100 kHz) that are sensitive to local damage
and stress change. The decoding procedure of the input/output signals is carried out
by the PmodIA module. Then, the impedance signatures are stored in the Raspberry Pi
platform, and the saved data are wirelessly transferred to the laptop, where the post-process
is conducted for the measured impedance features.

2.3.2. Operation Scheme for Impedance Sensor Node

An operation scheme was designed for the Raspberry Pi platform impedance monitor-
ing system. The impedance sensor node is controlled by an embedded Flask server, which
is an application for building a web-server using Python language. The Flask server is
used for REST API (Representational State Transfer Application Programming Interface) to
communicate with other units. Since REST API uses the standard HTTP protocol, a unit to
control the impedance sensor node can be easily developed by any programming language.

As shown in Figure 8, five routines were designed for the control scheme of the
impedance sensor node, which includes “setting”, “operate”, “data”, “delete_data”, and
“measureone”. The “setting” routine is used for setting impedance measurement param-
eters such as start frequency, frequency increment, and measuring interval or for getting
stored parameters from the sensor node. The “operate” routine starts or stops scheduled
monitoring by the pre-defined measuring interval. The “data” routine sends the measured
data to the control unit. The “delete_data” routine deletes all measured data in the sensor
node. The “measureone” routine measures impedance signals at once and sends the mea-
sured data. The setting parameters and measured data are stored in a database by SQLite
DBMS (database management system). The sensor node returns JSON (JavaScript Object
Notation) formatted data to the server.

Remote control unit

REST API

setting data delete_data operate measureone

Timer
On time

Impedance measurementDatabase (SQLite)

Impedance sensor node
Flask server

Figure 8. Control scheme of impedance monitoring system ‘SSeL-Pi’.

2.3.3. GUI Software for Impedance Monitoring

As a general-purpose computer language, Delphi [39] was used to program the op-
erating software of the SSeL-Pi impedance monitoring system. It is known that Delphi
uses the Object Pascal (OP) programming language and provides an integrated devel-
opment environment (IDE) for rapid application development of console software. The
Delphi-based programming environment is free to academic users. A graphic user interface
(GUI) software for the Raspberry Pi platform impedance monitoring was designed, as
illustrated in Figure 9. As marked in the figure, the GUI software includes six main features
to visualize the software interface, input command, and output results:
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1© Check and link to a ‘SSeL’ impedance sensor node. In this feature, the identity (ID) of
the node is displayed. A previously set ID is a reference factor to distinguish a node
from others. The tab “IP address” is also shown to visualize the dynamic IP of the
node. A node’s ID must be input to identify the selected node for post-usage.

2© Set impedance measurement parameters for the selected node. Eleven parameters
and corresponding options should be selected according to the test requirement. The
parameter ‘Measuring Interval’ should be set for periodic monitoring tasks.

3© Control the selected node to acquire impedance signatures in periodic monitoring.
The measurement interval should be set correctly to measure impedance signals.

4© Test the status of the impedance measurement of the selected node. There are four
options: Calibration, Measurement (No Save), Measurement (Save), and Reference
measurement. These options should be selected based on the user’s purpose.

5© Display the real and phase parts of the impedance measurement results.
6© Save the measurement results into the master device (e.g., laptop).

1

2

3

4

5
6

Figure 9. GUI software for Raspberry Pi system—’SSeL’ impedance sensor node.

3. Calibration of Impedance Monitoring System ‘SSeL-Pi’

The Raspberry Pi platform impedance sensing system (i.e., the prototype shown
in Figure 7) was calibrated for accurate and stable performance. The calibration was
carried out in the following four steps: (1) Acquisition of real and imaginary impedance,
(2) Calculation of magnitude, gain factor, and phase angles, (3) Calibration of real and
phase impedance, and (4) Extraction of correct real, and imaginary, and phase impedance.
The calibration of impedance signals was conducted mainly on the impedance sensor board
(Pmod IA).

Figure 10 shows the PZT interface device fabricated based on the conceptual design
illustrated in Figure 4. A PZT 5 A patch [40] was surface-bonded on an aluminum vibrating
plate (21 mm × 21 mm × 1.5 mm). The vibrating plate was supported by outer edges,
which are aluminum walls (2 mm thickness and 7 mm height). Then, the fabricated combo
was covered by two aluminum plates (25 × 25 × 2.0 mm). The cover plates had holes
(diameter 2.0 mm) for passing electric wires.
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Aluminum wall
(thickness 2 mm & height 7 mm)

Epoxy

PZT patch
(10 10 0.51)

Vibrating plate
(21 21 1.5)

Electric wires

25

Hole for  wires 
(diameter 2 mm)

Two cover p lates
(25 25 2.0)

Epoxy layer
~ 0.2 mm thick

PZT-interface

Figure 10. PZT interface device tested for calibration of impedance monitoring system ‘SSeL-Pi’.
(dimension in mm).

A series of calibration tests were performed on the PZT interface connected to the
PmodIA board (see Figure 7). The PZT interface was freely placed on a table without any
external loading. As the reference signature, the impedance signal of the PZT interface
device was measured under the non-constraint boundary condition by using the HIOKI
3532 system. As shown in Figure 11, four impedance peaks (Peak 1 at 22.6 kHz, Peak 2
at 32.2 kHz, Peak 3 at 80.2 kHz, and Peak 4 at 88.2 kHz) were acquired in the frequency
range of 5–95 kHz. As compared to the numerical impedance signal (see Figure 6), the
experimental impedance signature of the PZT interface sample had a similar pattern at Peak
1 (highest peak). Furthermore, there was a difference between experimental and numerical
impedance signals in other peaks. The difference could be induced by the boundary
conditions of the PZT interface (non-constraint in the experimental measurement and fixed
in the numerical analysis) and the effect of the fabrication process. It is known that the
resonant impedance frequency bands represent meaningful structural characteristics [38,41].
The frequency range of 18–28 kHz (containing the highest peak—Peak 1) was selected for
the calibration test. The calibration procedure was demonstrated by comparing it with the
HIOKI 3532 analyzer.

Peak 1
22.6 kHz

Peak 2
32.2 kHz

Peak 3
80.2 kHz

Peak 4
88.2 kHz

Selected range for 
calibration (18-28 kHz)

Figure 11. Impedance signal of PZT interface device measured by HIOKI-3532.

Step 1: Acquisition of Real (RP) and Imaginary (IP) Impedance
An impedance board (PmodIA) was connected to the PZT sensor interface, and a wide

range of frequency-domain excitation was applied to the PZT sensor. Figure 12 shows real
(RP) and imaginary (IP) parts of impedance responses measured by the SSeL-Pi system.
Figure 13 shows the corresponding impedance signature (RH) and phase (ϕH) measured
by the HIOKI 3532 system. The frequency band of 18~28 kHz was selected for both the
SSeL-Pi and HIOKI systems.
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(a) (b)

Figure 12. Impedance responses of PZT interface measured by SSeL-Pi system. (a) Real part RP,
(b) Imaginary part IP.

(a) (b)

Figure 13. Impedance responses of PZT interface measured by HIOKI-3532. (a) Real impedance RH ,
(b) Phase impedance ϕH .

Step 2: Calculation of Impedance Magnitude MP, Gain Factor G1, and Phase ϕP, ϕ1.
For the real and imaginary impedance data of the SSeL-Pi system (see Figure 12), the

impedance magnitude was calculated as follows:

MP =
√

R2
P + I2

P (3)

The gain factor G1 was obtained for the calculated magnitude MP by treating the real
impedance data RH of the HIOKI 3532 (see Figure 13a) as the reference:

G1 =
1

MP × RH
(4)

At each sensor point of the SSeL-Pi system, the phase angle ϕP was calculated from
the real and imaginary data, RP and IP:

ϕP = tan−1
(

IP
RP

)
× 180o

π
(5)

in which the signs of RP and IP components were positive. In the case of the positive RP
and negative IP, the phase angle should add 180◦ into Equation (5) [16]. For the calibration
of the impedance sensing system, the gap of phase angles between ϕP (SSeL-Pi system)
and ϕH (HIOKI-3532) was calculated as ϕ1:

ϕ1 = ϕP − ϕH (6)

The impedance magnitude MP and phase angle ϕP were calculated for the SSeL-Pi
system, as shown in Figure 14. The impedance phase gap and gain factor were calculated
for the SSeL-Pi system, as also shown in Figure 15.
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(a) (b) 

Figure 14. Calculation of impedance magnitude and phase angle for Raspberry Pi system.
(a) Magnitude MP, (b) Phase angle ϕP.

 
(a) (b) 

Figure 15. Calculation of impedance phase gap and gain factor for SSeL-Pi system. (a) Phase gap ϕ1,
(b) Gain factor G1.

Step 3: Calibration of Real and Phase Impedance
As previously observed in Figure 15, the impedance phase gap ϕ1 and gain factor

G1 were different along the monitored frequency ( f ). Linear regression models were
established to manage these variations. The phase angle and gain factor values were
standardized on the basis of the phase angle (ϕ1−i, fi) obtained in the ith frequency and
the gain factor (G1−i, fi) obtained in the ith frequency (as described in Step 2).

Figure 16 shows two regression models for estimating the phase fit ϕ2 (see Figure 16a),
and the gain factor fit G2 (see Figure 16b) at investigated frequencies. Then, the impedance
magnitude and phase angle were corrected as follows:

Z =
1

G2 ×MP
(7)

θ = ϕP − ϕ2 (8)

in which Z and θ denote the corrected impedance magnitude and corrected phase angle.

Step 4: Extraction of Correct Real, Imaginary, and Phase Impedance
The real (RC), imaginary (IC), and phase ((ϕC) components of the impedance were

calibrated based on the corrected magnitude Z and the corrected phase angle θ described
in Step 3. The calibration was made by the vector projection of the impedance magnitude
and phase angle onto the real and imaginary impedance components, as follows:

|RC| = |Z| × cos(θ) (9)

|IC| = |Z| × sin(θ) (10)

ϕC = −θ (11)
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The accuracy of the calibrated impedance signals of the SSeL-Pi system was evaluated
by comparing it to the HIOKI 3532 system. As shown in Figure 17, the imaginary impedance
signal measured by the SSeL-Pi impedance sensing node had a good consistency with
the one measured by the HIOKI 3532 system. The real impedance and phase impedance
components were relatively similar, and the frequencies corresponding to the peaks were
almost the same. Accordingly, the performance of the SSeL-Pi system could be successfully
guaranteed after the calibration.

 
(a) (b) 

G2 = 1.4126-8×f + 9.7642×10-7

(f22, G1-22 )

φ2 = 1.2883×f + 253.7917

(f26, φ1-26 )

Figure 16. Regression models for impedance phase angle and gain factor. (a) Phase fit ϕ2, (b) Gain
factor fit G2.

 
(a) (b) 

 
(c) 

Figure 17. Performance of impedance calibration between SSeL-Pi and HIOKI-3532. (a) Real
impedance RC, (b) Imaginary impedance IC, (c) Phase impedance ϕC.
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4. Experimental Evaluation of Impedance Monitoring System ‘SSeL-Pi’

4.1. Testing Setup and Test Scenarios

As shown in Figure 18, laboratory experiments were performed on PZT interfaces
under compressive loadings to acquire impedance signals from the SSeL-Pi system. A
PZT sensor interface (see Figure 10) was positioned in the compression testing machine,
as shown in Figure 18a. Compression forces controlled by a load cell were applied to the
PZT interface with a loading speed of 0.05 mm/min. Two PZT interfaces (i.e., two test
samples), PZT 1 and PZT 2 were measured for impedance responses under the z-directional
compressive loading. As the loading scenarios, the forces were incrementally applied from
P1 (2.0 kN) to P5 (4.0 kN) with an interval of 0.5 kN. Note that P1 (2.0 kN) was treated as
the baseline intact state to compare with P2~P5 loading cases.

(a)

(b) (c)

Load cell

Lower platen 

Steel frame

Load Disp.

Electric wires

DONG AH
Compressive testing machine

PZT-interface 
with covers

Upper platen 

Aluminum plate 
with notchForce 

direction

PZT’s 
orientation

PZT-interface under loading

Rasp. Pi platform PmodIA

Connected 
to PZT-interface

SSeL-Pi sensor node

Laptop

Impedance signal

Wireless network

Delphi program

Temp. measurement
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Figure 18. Impedance measurement of PZT interface device via SSeL-Pi and HIOKI-3532. (a) PZT
interface device under compression test, (b) SSeL-Pi system, (c) HIOKI 3532 system.

As shown in Figure 18b, the SSeL-Pi system was utilized to measure impedance
responses of the two PZT interfaces (PZT 1 and PZT 2) as the compressive loadings varied
from P1 to P5. For the z-directional loadings, the impedance signals were measured at
31 points in a frequency range of 20.5–23.5 kHz by a constant interval of 0.1 kHz. At the
same time, the impedance analyzer HIOKI 3532 (see Figure 18c) was set up to measure
the impedance signals of the two PZT interfaces (PZT 1 and PZT 2) for the same loading
scenarios. The impedance signatures measured from the HIOKI 3532 system were used
as the reference to evaluate the confidence levels of impedance signatures measured from
the SSeL-Pi sensor node. The laboratory temperature was kept near constant, around
20 ◦C (measured via Kyowa EDX-100A), to minimize the effect of temperature variation on
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impedance features. For each loading case, four ensembles of impedance responses were
measured to determine an upper control limit (UCL) threshold.

4.2. Impedance Measurement of Raspberry Pi Impedance Monitoring System
4.2.1. Impedance Responses of PZT Interface under Compression

As shown in Figure 19, impedance responses of a PZT interface (PZT 1) were measured
via the wireless SSeL-Pi and wired HIOKI-3532, respectively. For the five loading cases
(i.e., P1–P5), the impedance signals of the two systems had similar patterns for the series of
loadings. The impedance signals of both systems shifted to the right with the increment of
compressive loadings. The impedance signals measured from both systems consistently
responded to the series of loadings. Additionally, Figure 20 shows the impedance responses
of the other interface (PZT 2) under five loading cases (i.e., P1–P5). Like the PZT 1, the
impedance signals measured from the wireless SSeL-Pi and wired HIOKI 3532 were similar
in their patterns. The variation tendency of the experimental impedance responses from
the SSeL-Pi system was consistent with those from the HIOKI 3532 system. As observed in
Figures 19 and 20, the alteration in impedance responses of PZT 2 was higher than those of
PZT 1. The difference could be caused by the sensor fabrication, bonding condition, and
compressive testing setup.

(a) (b)

PZT1 (SSeL-Pi) PZT1 (HIOKI)

Figure 19. Impedance signals of PZT 1 for compressive loadings P1–P5. (a) SSeL-Pi, (b) HIOKI-3532.

(a) (b)

PZT2 (SSeL-Pi) PZT2 (HIOKI)

Figure 20. Impedance signals of PZT 2 for compressive loadings P1–P5. (a) SSeL-Pi, (b) HIOKI-3532.

4.2.2. Frequency Shifts in Impedance Responses of PZT Interfaces under Compression

Figures 21 and 22 show peak impedance frequencies of the two PZT interfaces (PZT 1
and PZT 2) that were acquired by the SSeL-Pi and HIOKI 3532 systems under applied forces
P1–P5. There were slight differences in the peak frequencies of PZTs 1–2 measured by the
SSeL-Pi and HIOKI 3532 under the reference case P1. By comparing to the reference P1, the
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peak frequencies increased linearly under the incremental loadings P2–P5. For PZT 1 (see
Figure 21), the peaks rose from 0.05 kHz (0.25%) to 0.26 kHz (1.18%), which was measured
via the SSeL-Pi, and from 0.05 kHz (0.25%) to 0.23 kHz (1.06%), which was measured via
the HIOKI 3532. For PZT 2 (see Figure 22), the peaks increased from 0.09 kHz (0.40%)
to 0.33 kHz (1.48%), which was measured via the SSeL-Pi, and from 0.09 kHz (0.42%) to
0.40 kHz (1.79%), which was measured via the HIOKI 3532.

(a) (b)

PZT1 (SSeL-Pi) PZT1 (HIOKI)

Figure 21. Frequency shifts of PZT 1 corresponding to compressive loadings P1–P5. (a) SSeL-Pi,
(b) HIOKI-3532.

(a) (b)

PZT2 (SSeL-Pi) PZT2 (HIOKI)

Figure 22. Frequency shifts of PZT 2 corresponding to compressive loadings P1–P5. (a) SSeL-Pi,
(b) HIOKI-3532.

As analyzed, it can be observed that there was a similarity in the frequency shifts
in the impedance responses measured by the SSeL-Pi and HIOKI 3532 for both PZTs
1–2, thus suggesting the potential of the SSeL-Pi system for impedance measurement.
Furthermore, the linear variations of the peak frequencies in the impedance signals of
the PZT interfaces (PZTs 1–2) showed the feasibility of the new PZT interface device for
impedance monitoring.

4.2.3. RMSD Changes in Impedance Responses of PZT Interfaces under Compression

To quantify the changes in impedance signals, the RMSD (root mean square deviation)
index is commonly used as a damage indicator for the characterization of structural damage.

The RMSD index is computed as follows [5]:
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RMSD(Z, Z∗) =

√√√√(
N

∑
i=1

[Z∗(ωi)− Z(ωi)]
2

)
/

N

∑
i=1

[Z(ωi)]
2 (12)

where Z(ωi) and Z∗(ωi) are the impedance signals in the intact and damaged states of
structure at frequency, respectively, and N denotes the number of frequency sampling
points in the sweep.

Figures 23 and 24, respectively, show the RMSD indices of the impedance signatures
of PZT 1 and PZT 2 computed for the five compressive loadings P1–P5. The upper control
limit UCL [42] was calculated using the impedance signals at the applied force P1 (as the
reference). The error bar was also computed for each loading case. Generally, an upward
trend in the percentage of RMSD indices was found as the compressive force rose. The
RMSD indices were negligible in the intact case (P1), but they were linearly increased and
beyond the UCLs in other cases (P2–P5), thus suggesting that the variations of the com-
pressive forces were successfully monitored. The small error bars in Figures 23 and 24 also
pointed out that the impedance signals were relatively stable. Note that a similar tendency
was observed in the SSeL-Pi and HIOKI-3532. Thus, the analyzed results demonstrated the
feasibility of the SSeL-Pi system for impedance monitoring in the PZT interfaces.

(a) (b)

UCL UCL

PZT1 (SSeL-Pi) PZT1 (HIOKI)

RMSD’s mean

Error bar

Figure 23. Impedance features of PZT 1 corresponding to compressive loadings P1–P5. (a) SSeL-Pi,
(b) HIOKI-3532.

(a) (b)

UCL
UCL

PZT2 (SSeL-Pi) PZT2 (HIOKI)

Figure 24. Impedance features of PZT 2 corresponding to compressive loadings P1–P5. (a) SSeL-Pi,
(b) HIOKI-3532.

4.2.4. Empirical Relationship of Impedance Features and Stress

Figures 25 and 26 show the relationships between the impedance features of PZTs
1–2 and compressive stresses induced by loading cases P1–P5. The relationships were
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built based on impedance signals, which were obtained from the SSeL-Pi and HIOKI 3532
systems. These correlations were compared to each other to show the potential of the
proposed measuring system for impedance measurement.

 
(a) (b) 

y  0.0247x  0.276
R²  0.9949

y  0.0213x  0.238
R²  0.9953

y  0.0361x  0.398
R²  0.9942

y  0.0298x  0.32
R²  0.9983

Figure 25. Relationship between frequency shift and corresponding compressive stress. (a) PZT1,
(b) PZT2.

 
(a) (b) 

y  6.434x  65.54
R²  0.9933

y  5.7247x  58.665
R²  0.9969

y  8.8052x  80.522
R²  0.9375

y  8.4621x  77.965
R²  0.9295

Figure 26. Relationship between RMSD index and corresponding compressive stress. (a) PZT1,
(b) PZT2.

Figure 25 presents the correlation between the frequency shift Δf and the stress. As
observed in this figure, strong positive linear relations could be found between the fre-
quency shifts and stresses. The correlation coefficients R2 were beyond 0.994 for both
PZTs 1–2. The same tendency could be observed for the correlation between the RMSD
index and the stress, as shown in Figure 26. It can be noted that significant correlations
could be found between the RMSD indices and stresses. R2 was beyond 0.993 for PZT 1
and 0.929 for PZT 2. Note that the strong relationships between the impedance features
of PZT interfaces (i.e., PZTs 1–2) could be observed. Furthermore, the relationships built
on impedance signals of the SSeL-Pi and HIOKI 3532 (see Figures 25 and 26) were quite
consistent. Therefore, it can be concluded that the new wireless impedance sensing node
SSeL-Pi has a high potential for impedance-based structural health monitoring.

From the experimental analyses, the following observations were made to verify the
feasibility of the Raspberry Pi platform impedance monitoring system “SSeL-Pi”: (1) the
measurable impedance frequency range of less than 100 kHz was controlled using the
new PZT interface device; (2) the impedance analyses using signals obtained from the
SSeL-Pi were quite consistent with the ones using signatures measured from the com-
mercial analyzer HIOKI 3532; (3) the impedance features measured by the PZT interfaces
were relatively similar and sensitive to the variation in compressive forces; and (4) the
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relationship between impedance signatures and stresses could be used to quantitatively
monitor stress change in structures using the new PZT interface.

It is also noted that more tests on the SSeL-Pi system should be conducted in the
future to verify the practicability of the developed system and also to determine empirical
formulas on impedance signatures and compressive forces, which would be reliable enough
for impedance-based stress monitoring in concrete structures.

5. Concluding Remarks

The wireless impedance monitoring system was developed to have cheap, mobile,
and handy practical features as compared to wired commercial impedance analyzers
(e.g., HIOKI 3532 or HP4149A). The Raspberry Pi platform sensor node was designed to
acquire impedance signals by collaborating with the PZT interface technique. The software
scheme was designed to operate the Raspberry Pi platform and impedance sensor node.
The calibration procedure was designed for the impedance sensor node. The feasibility of
the proposed Raspberry Pi platform SSeL-Pi system was experimentally evaluated for PZT
interfaces that were subjected to various compressive loadings.

From the experimental evaluation, at least four concluding remarks can be made as
follows: Firstly, the prototype of the ‘SSeL-Pi’ impedance monitoring system was suc-
cessfully fabricated by the remote-control laptop, Linux-operating Raspberry Pi platform,
impedance sensor board (PmodIA module), and the PZT interface device ensuring fre-
quency responses of less than 100 kHz. Secondly, the Delphi-based GUI software was
programmed to visualize the input/output parameters for the Raspberry Pi platform and
automate the signal acquisition procedure for the PmodIA module via the PZT interface.
Thirdly, the calibration of the impedance signals was carried out on the PmodIA module,
from the acquisition of real and imaginary impedance to the adjustment of them, with
respect to a commercial impedance analyzer, HIOKI-3532. Finally, the impedance responses
of the PZT interface that was subjected to a series of compressive loadings were accurately
measured by the SSeL-Pi system compared to the HIOKI-3532. There were strong linear
relationships between impedance features (frequency shift and RMSD index) and compres-
sive stresses of the PZT interface, thus suggesting that the developed SSeL-Pi system has
the potential for stress variation monitoring in concrete structures.
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Abstract: Great progress has been made in the field of ultrasonic processing in recent years, and
piezoelectric ceramic transducers have been widely used as drive sources. In this paper, a sandwich
piezoelectric ceramic transducer is designed, and the vibration of each part of the transducer is
analyzed by elastic mechanics and piezoelectric theory. According to its mechanical and electrical
boundary conditions, the vibration model of the piezoelectric transducer was established. Based on
the equivalent elastic modulus method for simplifying the pre-stressed bolts into a one-dimensional
transducer vibration model, the relationship between the one-dimensional axial response frequency of
the transducer and the length of each component was obtained. Based on the half wavelength theory,
a transducer with the vibration node in the crystal stack and an inherent frequency of 15 kHz was
designed and fabricated. In order to verify the natural frequency and vibration characteristics of the
piezoelectric transducer, a laser vibration measurement system was built in this study. The vibration
characteristics of the transducer under different parameters such as voltage and frequency were
analyzed, and the accuracy of the vibration model was verified. The vibration states of the end surface
of the transducer and the radial surface were evaluated at the first-order inherent frequency and
second-order inherent frequency. The results show that the equivalent simplified model established
in this study can effectively design the inherent frequency of the transducer, and the operation at the
first-order inherent frequency meets the one-dimensional assumptions of this study. The transducer
operating conditions measured in this study also provide a more detailed reference for ultrasonic
processing applications.

Keywords: piezoelectric ceramics; vibration model; inherent frequency; transducer vibration characteristics

1. Introduction

With the wide application of power ultrasound in advanced machining fields, sand-
wich piezoelectric transducers are valued and studied in ultrasonic milling [1,2], ultrasonic
casting [3,4], and ultrasonic vibration for machining residual stress removal [5–9] because
of their good electromechanical conversion characteristics. Although the structure and
performance of piezoelectric ceramic transducers for different ultrasonic processing fields
are not consistent, the inherent frequency of sandwich piezoelectric transducers is the
most important performance parameter, which is the key to achieving high power output
and high-efficiency energy conversion in practical applications. The excitation signal that
deviates from the inherent frequency not only leads to the low efficiency of ultrasonic
vibration but also to other vibration modes of the transducer, so it is very necessary to
determine the inherent frequency before the application of the transducer.

Various methods have been used to study the relationship between the physical pa-
rameters of the PZT sandwich structure and its inherent frequency as well as other dynamic
parameters. The most commonly used analytical method is the electromechanical equiva-
lent model [10–12], whose transducer frequency characteristic equation can be obtained by
drawing the mechanical-circuit 3-port or 4-port equivalent model according to mechanical
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boundary conditions. However, with the increasing demand for sound power of power
transducers, the structure of multi-layer piezoelectric ceramic stacked pressure transducers
is more popular, resulting in a very complex electromechanical equivalent model. In order
to simplify the calculation model, the entire piezoelectric ceramic stack is regarded as
an equivalent homogeneous body. The matrix transfer method [13–16] separates trans-
ducers into different independent elements to simulate multi-layer piezoelectric stack
vibration, thus obtaining the vibration characteristics of piezoelectric ceramic stack trans-
ducers. Even more complex piezoelectric devices are still applicable under the assumption
of one-dimensional wave propagation. Fu [17] proposed a hybrid transfer matrix approach
for the modeling of the Rangzwan transducer, in which the prestressed bolt was modeled
as a single quadrupole element, which was connected in parallel with other elements
to establish a quadrupole element description of the piezoelectric Rangzwan transducer,
thereby deriving the total transfer matrix and the inherent frequency of the transducer.
Zhang [18] developed a simplified parametric analysis model of a piezoelectric transducer’s
distribution that can effectively analyze piezoelectric transducers with thickness vibration
modes. Finite element simulation is also a commonly used method to study the inherent
frequency and vibration characteristics of the transducer. Abdullah, A [19] analyzed the
mechanical behavior and inherent frequency of a sandwich transducer using the finite
element method. Then, the equivalent circuit of the transducer was simulated to study
the inherent frequency of the transducer that had been calculated [20]. Pérez-Sánchez [21]
designed an ultrasonic transducer for acoustic cavitation using finite element analysis and
found that when the ultrasonic transducer was used with a load, the frequency response of
the transducer needed to be adjusted in terms of inherent frequency and voltage. Jiang,
X [22] proposed an equivalent length method based on half-wavelength theory to analyze
the inherent frequency of a sandwich transducer and analyzed the effect of different thick-
nesses of piezoelectric ceramics on the inherent frequency. Wei, X. [23] proposed a PSpice
loss model for a sandwiched piezoelectric ultrasonic transducer undergoing longitudinal
vibration using one-dimensional wave and transmission line theory to obtain the trans-
ducer’s resonance and anti-resonance frequencies. Chen [24] estimated the frequency of a
sandwich transducer under various parameters by giant fuzzification-learning methods.
Although the equivalent circuit method and matrix transfer method can model continuous
systems with discrete components, which are valid around an inherent frequency, mod-
eling the transducer’s continuous system vibration [25] can be valid in a wider range of
frequencies. It can also describe the effect of geometry and material properties on the fre-
quency response of the transducer. Based on the plane stress–strain assumption [26], many
scholars have analyzed the vibrational characteristics of transducers. Piao [27] analyzed
the inherent frequency and vibration modes of a transducer by solving the differential
equations of piezoelectric motion. Other studies consider the coupling effect of radial
and axial vibrations. The coupling vibration of a metal hollow cylinder is simplified to
two equivalent one-dimensional vibrations by the apparent elasticity method [28–31]: one
is the axial vibration of the equivalent cylinder and the other is the equivalent plane vibra-
tion in the radial direction. The inherent frequency equation of the metal hollow cylinder
in the coupled vibration was derived, and the longitudinal and radial coupled resonant
frequencies were calculated.

Although there are many studies and methods for analyzing the inherent frequency
of a transducer, most of the current studies only focus on the operating frequency of
the transducer, and the study of the operating state of the transducer near the inherent
frequency is often neglected. At present, the evaluation of transducers’ performance is
mainly described by the speed or amplitude of the front mass block—which is not only
unintuitive but also incomplete with respect to the sandwich transducer—to evaluate
the overall working state of the transducer. The operating conditions of the sandwich
transducer lead to the observation of complex working conditions. Currently, the acoustic
emission (AE) method [32,33], optical measurement method [34,35], mode degradation
method [36], and other single-point methods are mainly used to measure the vibration
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amplitude of the transducer. Albareda [37] used a combination of optoelectronic methods,
voltage and current measurements with an oscilloscope, and the vibration velocity of the
transducer point with a laser vibrometer to evaluate a transducer’s operating state.

In this paper, the sandwich transducer is simplified into three parts: the front mass
block, backing, and piezoelectric ceramic crystal stack, and the vibration model of the
sandwich piezoelectric ceramic transducer is derived by continuous dielectric mechanics
and a planar stress–strain assumption. A sandwich piezoelectric ceramic transducer with
an inherent frequency of about 15 kHz is designed and fabricated by considering the mass
effect of the compression bolt using the equivalent elastic modulus method. A doppler
laser vibration measurement system was built, the vibration signal of the transducer was
collected by the single-point method, and the inherent response frequency of the transducer
was derived by FFT (Fast Fourier Transform). The operating state of the transducer under
different parameters is discussed, the overall operating state of the transducer is swept and
imaged, and the vibration state of the transducer in the axial and radial directions at the
first-order and second-order resonant frequencies is measured.

2. Transducer Structure and Equivalent Models

The sandwich transducer consists of front and back mass blocks, a piezoelectric
ceramic stack consisting of piezoelectric ceramic circular pieces, pre-tensioning bolts, insu-
lating sleeves, electrode sheets, etc. It is a continuous elastomer with a complex structure,
as shown in Figure 1. The PZT-8 piezoelectric ceramic crystal stack is fixed between the
front mass block and the metal backing by pre-stressed bolt connections.

Figure 1. Schematic diagram of the structure of the sandwich piezoelectric transducer.

According to the wave propagation theory, the standing wave along the longitudi-
nal axis of the transducer satisfies Equation (1) [22] during the resonant oscillation of
the transducer:

L = N
λ

2
, (1)

where L is the total length of the transducer; λ is the wavelength of the wave generated
by the transducer’s vibration; N is a positive integer—when N = 1, the corresponding
sandwich transducer becomes a half-wavelength transducer; and the total phase length of
each component wave is π. As shown in Figure 2, both the metal backing and the end of
the front mass block are at the peak of the displacement wave, where the vibration is most
intense. The interface along the longitudinal axis where the wave propagation phase occurs
is π/2 and the interface with zero displacement amplitude is the displacement node plane.
The length of the metal backing is Lb, the cross-sectional area is Sb, the vibration velocity
is Vb, the length of the front mass block is Lf, the cross-sectional area is Sf, the vibration
velocity is Vf, the length of the piezoelectric ceramic stack is Lp, and the cross-sectional area
is Sp.
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Figure 2. Schematic diagram of standing waves in a simplified sandwich transducer.

To satisfy the engineering requirements without affecting the working performance of
the transducer, we need to make the following assumptions.

• The motion of the sandwich transducer along the axial direction is uniform, which means
that the vibration caused by the piezoelectric ceramic is generated as a plane wave.

• It is assumed that the contact of the surface is perfect. Therefore, the reflection of the
wave is neglected.

• Each ceramic piece in the piezoelectric ceramic stack is excited by a continuous sinu-
soidal wave, and the signal is in the same phase.

• The length of the transducer is more than three times its diameter, so the transverse Poisson
effect is ignored and the transducer can be simplified to a one-dimensional model.

• The effect of the chamfer and thread of the transducer can be ignored; the transducer
will be regarded as equal to the outside diameter.

• The acoustic impedance of air is much smaller than the transducer, so it is ignored.
When the transducer is operating in the air, it is referred to as being under the “no-load”
condition, and its stress is considered to be zero.

• The matched upper part is considered to be a solid cylinder with the center bolt
integrated to simplify the boundary conditions.

3. Analysis Method of Transducer Inherent Frequency

3.1. Mechanical Vibration Equation of Piezoelectric Ceramic Stack

The thickness vibration of a thin, circular piezoelectric ceramic has an axial polarization
direction and the thickness of the piezoelectric ceramics is h. The mechanical and electrical
connections of the piezoelectric ceramics are shown in Figure 3, and the stress and electric
field conditions of the piezoelectric equation are shown in Equation (2):⎧⎨⎩

T3 �= 0, T1 = T2 = T12 = T13 = T23 = 0
E3 �= 0
∂D3
∂z = 0

, (2)

where T is the stress on the piezoelectric ceramic and E is the electric field strength on
the surface of the piezoelectric ceramic. Since this study simplifies the transducer into the
one-dimensional axial continuous model, only the axial stress and electric field strength
are considered. T3 is the stress in the axial direction, D3 is the electric displacement in the
axial direction of the piezoelectric ceramic, and E3 is the electric field strength applied to
the piezoelectric ceramic in the axial direction.

When a voltage is applied on the surface of the piezoelectric ceramic, mechanical and
electrical energy are converted into each other. Neglecting the transverse Poisson effect and
assuming that only axial stresses exist, it can be concluded that T3 �= 0. Since the axially
applied voltage has E3 �= 0, and considering that the ceramic is an insulating medium
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with no free charge in space, the potential shift vector is uniformly distributed and can be
derived as ∂D3/∂z = 0. The piezoelectric ceramic plates are polarized along the thickness
direction, and every two adjacent piezoelectric ceramic plates are polarized in opposite
directions so that the vibration can be better transmitted and superimposed.

Figure 3. Electrical and mechanical boundary model of piezoelectric ceramic crystal stack.

According to the above boundary conditions, the piezoelectric matrix is shown in
Equation (3): [

S3
E3

]
=

[
sD

33 −g33
−g33 βT

33

][
T3
D3

]
, (3)

where S3 is the strain in the axial direction, sD
33 denotes the elastic constants of the piezo-

electric ceramic at the equipotential boundary condition, g33 is the piezoelectric constant,
and βT

33 is the dielectric isolation rate of the piezoelectric ceramic.
From the partial differential equation of motion, it follows that:

ρp
∂2ζ(z, t)

∂t2 = Ep3
∂ζ(z, t)

∂z
, (4)

where ρp is the density of the piezoelectric ceramic, Ep3 is the equivalent modulus of
elasticity in the axial direction of the piezoelectric ceramic, and ζ(z, t) is the longitudinal
displacement of the cross-section.

Merging Equation (4) into the piezoelectric matrix yields:

ρ
∂2ζ(z, t)

∂t2 =
∂T3(z, t)

∂z
− g33

sD
33

∂D3(z, t)
∂z

, (5)

The boundary condition, Equation (5), can be simplified as:

∂2ζ(z, t)
∂t2 = ν2 ∂2ζ(z, t)

∂z2 , (6)

where ν =
√

1
ρsD

33
is the propagation velocity of the one-dimensional longitudinal vibration

in the piezoelectric ceramic crystal stack.
Since a continuous sinusoidal signal is applied to the piezoelectric ceramic, the vibra-

tional response of the transducer is also a simple harmonic:

ζ(z, t) = ζ(z)·ejwt = (m sin kz + n cos kz)·ejwt, (7)

where m and n are coefficients to be determined, which can be determined by the boundary
conditions of the piezoelectric ceramics.
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The displacement distribution in the axial direction of the piezoelectric ceramic crystal
stack can be derived as: ⎧⎪⎨⎪⎩

ζ(z) = ζ1 sin k(l−z)+ζ2 sin kz
sin kl

ζ1 = ζ|z=0
ζ2 = ζ|z=l

, (8)

where ζ1, ζ2 denote the vibration displacement of the two ends of the piezoelectric ceramic,
so according to the mechanical boundary conditions F1 = −ST3|z=0, F2 = −ST3|z=l , the
mechanical vibration equation can be obtained as:⎧⎨⎩F1 = [jρvS tan kh

2 + ( ρvS
j sin kh − n2

jωc0
)]

.
ζ1 + ( ρvS

j sin kh − n2

jωc0
)]

.
ζ2 + nV

F2 = ( ρvS
j sin kh − n2

jωc0
)]

.
ζ1 + [jρvS tan kh

2 + ( ρvS
j sin kh − n2

jωc0
)]

.
ζ2 + nV

, (9)

3.2. Vibration Model of Transducer

For this system, the parts of the transducer are all columns with the same cross-section,
and assuming that the cross-sectional rods are composed of uniform, isotropic materials
and neglecting their mechanical losses, the stress distribution on the rods’ cross-section is
considered to be uniform. Figure 4 represents the forces and displacements of the unit body
at any interface of the equal diameter sandwich transducer, which can be expressed as:

dF = E
∂

∂z
(

πD2

4
∂ζ(z, t)

∂z
)dz = ρ

πD2

4
dz

∂2ζ(z, t)
∂t2 , (10)

Figure 4. Simplified model of transducer vibration.

Combinning Equation (8) into Equation (10) can lead to:

∂2ζ(z, t)
∂z2 =

ρ

E
ζ(z, t), (11)

Since the longitudinal vibration of the multilayer piezoelectric ceramic sandwich
transducer generally exists at the nodal plane of the piezoelectric ceramic element part,
it is divided into four parts, as shown in Figure 2, where the subscript n denotes each
section of the sandwich transducer: n = 1, 2, 3, and 4. The vibration equation of each section
is a simple harmonic vibration, so the vibration speed equation of each section can be
expressed as:

∂2vn(z)
∂zn2 + kn

2vn(z) = 0, (12)

The vibration speed and force on the mass block part can be expressed as:{
vn(zn) = An sin(knzn) + Bn cos(knzn)

Fn(zn) =
EπD2

j4ω · ∂vn
∂zn

= −jZn[An cos(knzn)− Bn sin(knzn)]
, (13)

where Zn is the acoustic impedance of each part of the transducer and An, Bn are the
coefficients to be determined by the boundary conditions.
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The vibration node’s cross-section is used to analyze both sides separately, and the
boundary conditions are shown in Table 1.

Table 1. Boundary conditions of transducer vibration node’s sections.

Cross-Sectional Position Boundary Conditions

The right side of the cross-section

v1(0) = 0
v1(L1) = v2(0)

v1(L2) = v f
F1(L1) = F2(0)

F2(L2) = −Zf v f

The left side of the cross-section

v3(L3) = 0
v3(0) = v4(L4)

v4(0) = vb
F3(0) = F4(L4)

F4(0) = 0

The frequency equation describing the nodal plane can be obtained by bringing the
boundary conditions in Table 1 into Equation (13).{

cot(k1L1) =
z2
z1
(tan(k2L2)− j

z f
z2
)

tan(k3L3)· tan(k4L4) =
z3
z4

, (14)

If the input impedance z f is neglected, the frequency equation for the left and right
sides of the transducer vibration node can be simplified as:{

tan(k1L1)· tan(k2L2) =
z1
z2

tan(k3L3)· tan(k4L4) =
z3
z4

, (15)

3.3. Equivalent Elastic Modulus Method of Transducer

The piezoelectric ceramic group of the longitudinal vibration sandwich transducer
consists of four PZT-8 piezoelectric ceramics and four copper electrode sheets bonded by
epoxy resin. The front and rear mass blocks of the transducer are made of a Duraluminum
alloy, and the nuts and preload bolts are made of C45E4 steel; the properties of the materials
are shown in Table 2 [38].

Table 2. Parameters of each component material of the transducer.

Materials
Velocity of
Sound m/s

Density
kg/m3 Elastic Modulus Gpa

Poisson’s
Ratio

Elastic Constants
SD

33 1010 m2/N

Piezoelectric Voltage
Constants g33 10−3

V·m/N

PZT-8 3100 7600 72 - 8.5 25.4
duralumin 5200 2790 72 0.34 - -
C45E4 steel 5170 7850 200 0.28 - -

As can be seen from Figure 1, the transducer is not composed of the same material
within the same cross-section, so the equivalent elastic modulus method is used to correct
the material parameters in this paper. Assuming that the velocity and displacement of
each cross-section of the pre-stressed bolt are consistent with the external piezoelectric
ceramic wafer, then the equivalent density ρ′, equivalent sound velocity c′, and equivalent
cross-sectional area s′ of the piezoelectric ceramic and pre-tensioned bolt can be chosen to
replace the original ceramic acoustic parameters:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ′ = ρ1s1+ρ2s2
s′

c′ = c1s1+c2s2
s′

Z′ = ρ′c′s′
s′ = s1 + s2

k′ = 2π f
c′

, (16)

where ρ1, s1, c1 are the density, cross-sectional area, and sound velocity of PZT-8, re-
spectively. ρ2, s2, and c2 are the density, cross-sectional area, and sound velocity of the
pre-stressed bolt. Z′ and k′ and are the equivalent impedance and equivalent wave number.
Structural equivalence means that the structure of different materials in the same section
of the vibration direction is equal to the structure of a single material, and the material
property parameters of the equivalent structure are shown in Table 3.

Table 3. Equivalent parameters of each component material of the transducer.

Structure of the Transducer
Velocity of

Sound c (m/s)
Density ρ
(Kg/m3)

Elastic Modulus E
(Gpa)

Piezoelectric Ceramics PZT-8 3367 7632 88.52
Aluminum front mass block 5019 3272 72
Aluminum back mass block 5019 3272 72

4. Experimental Methods

4.1. Design and Inherent Frequency Measurement of Piezoelectric Transducer

The propagation speeds of the acoustic waves in the three components of the trans-
ducer are different. Therefore, Equation (1) cannot be used to directly calculate the structural
parameters of each part of the actuator, but the propagation frequencies of each part of the
transducer are the same: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

θb
Lb

= 2π
λb

,
θ f
L f

= 2π
λ f

, θp
Lp

= 2π
λp

Lb + L f + Lp = L
θb + θ f + θp = π

λ = f ·c(b, f ,p)

, (17)

where cb, cp, and c f represent the propagation velocities in the backing, the piezoelectric
ceramic, and the front mass block, respectively. λb, λp, and λ f represent the wavelengths
in the corresponding components, respectively. As shown in Figure 2, the lengths of
the backing, the piezoelectric ceramic stack, and the front mass block are Lb, LP, and L f ,
respectively, and the phase lengths of each element are θb, θp, and θ f , respectively.

In order to verify the accuracy of calculating the inherent frequency of the one-
dimensional simplified sandwich transducer, the test system is composed of a polytec
doppler laser vibrometer (controller model OFV-5000; laser head model OFV-503), Power
ultrasonic transducer, high-power supply (Yongke, Ningbo, China), signal-generating de-
vice (RIGOL-DG1022U, Suzhou, China), digital oscilloscope-MDO3102 (Tektronix, USA),
and vibration isolation test bench, as shown in Figure 5. The pulse signal is generated by the
signal-generating device to enable the transducer to produce free attenuation vibration, and
the vibration velocity of the end face of the transducer is measured by the laser vibrometer.
After the vibration signal is converted into a voltage signal, it is obtained on the digital
oscilloscope and analyzed by FFT to obtain the inherent frequency of the transducer.
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Figure 5. Single-point transducer vibration signal acquisition device: (a) Schematic diagram of
transducer free vibration signal acquisition system; (b) Free vibration signal acquisition system
of transducer.

4.2. Measurement of Transducer Working State

In order to accurately evaluate the working state of the transducer, the surface vibration
energy of the transducer is used as the evaluation index in this paper [31].

I =
1
2

ρcv2, (18)

Previous studies have only used laser vibrometry and acoustic emission methods
to detect the vibration amplitude or vibration velocity of a single point of a piezoelectric
sheet or sandwich transducer, which only enables the acquirement of the vibration state
of a single point of the transducer and does not characterize the overall surface at the end
of the transducer, so the characterization of the overall working state of the transducer
is not complete. Therefore, this paper adopts a manipulator-based sandwich transducer
sound intensity measurement system, as shown in Figure 6, which consists of a six-degree-
of-freedom manipulator with a laser vibrometer that sweeps the working surface of the
transducer along a preset trajectory, collecting the coordinates of the manipulator’s position
and surface vibrational data through a position acquisition card and a data acquisition
card, wherein the position acquisition card triggers the data acquisition card to achieve
synchronous acquisition and uploads the data to the host computer software via a PCI
bus. The above computer software processes the data in real time, displays the vibration
information in A-sweep, extracts its eigenvalues, matches them with the positional coordi-
nates one by one, and displays the sound field distribution in C-sweep. The robot adopted
was a six-degree-of-freedom Staubli RX160 robot with a repeatability of 0.05 mm. The
selected laser vibrometer was Germany Polytec laser interferometer, including the con-
troller OFV-5000 and the laser head OFV-503. The data acquisition card was M2i.3120 from
Spectrum, Germany, with a frequency up to 10 MHz. The signal generator was DG1022U
dual-channel arbitrary waveform generator from Puyuan. Power amplifier was the signal
source small excitation signal employing the linear method and impedance matching to
achieve high-power excitation of the power transducer.
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Figure 6. Working state measurement system of sandwich transducer.

5. Results and Discussion

5.1. Transducer Inherent Frequency Analysis

The length of each part of the transducer is set as LP = L1 + L3 = 41 mm, L2 = 74 mm,
and L4 = 32 mm; the outer diameter of the piezoelectric ceramic φDr = 60 mm; the inner
diameter φdr = 30 mm; the thickness is h = 10 mm; and the thickness of the electrode sheet
is 0.25 mm. Therefore, the piezoelectric ceramic’s inherent frequency of 15.15 kHz can be
obtained from Equations (15) and (17), where L1 = 3 mm and L3 = 38 mm, and the node’s
cross section is located in the piezoelectric ceramic stack and near the front mass block.

The free vibration signal of the transducer after being excited by the pulse is observed
using a digital oscilloscope, as shown in Figure 7a. The obtained spectrum is shown in
Figure 7b. There is only one peak in the analysis’s frequency range, and the corresponding
frequency value is 15.10 kHz, which is a 0.05 kHz difference from the design. The inherent
frequency of the transducer is 15.44 kHz when ignoring the pressing bolt without an
equivalent calculation of each part of the transducer.

Figure 7. Free attenuation signal and spectrum analysis of high power piezoelectric transducer:
(a) Free vibration signal of transducer; (b) FFT diagram of vibration signal.

5.2. Working Performance Measurement and Analysis of Sandwich Piezoelectric Transducer

The working performance of the sandwich transducer will directly affect the opera-
tional performance of the power ultrasonic system. In order to maintain the best perfor-
mance of the transducer in its working state, it is necessary to analyze the factors affecting
the working performance of the transducer. The influence of the excitation signal on the
transducer is considered in this study. The characteristics of the excitation signal include
voltage, frequency, and continuity.

Combined with the working range of the piezoelectrically powered transducer, the
voltage range of the excitation signal is selected to be 80~400 V. The excitation signal is
selected near the first-order inherent frequency, and the frequency range is 14.5~15.5 kHz.
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The signal generator outputs a continuous sine wave, and the laser vibrometer is used to
detect the vibration velocity of the end face of the front mass block. The measurement
results are read on the digital oscilloscope and the performance cloud diagram of the
piezoelectric transducer is obtained after fitting, as shown in Figure 8. It can be seen that
as the excitation voltage increases, the vibration velocity of the transducer also increases,
and the closer the excitation frequency is to the inherent frequency, the higher the vibration
velocity at the end of the transducer. However, with the increase in the excitation voltage,
the optimal working frequency of the transducer is not fixed, and the vibration velocity at
the end of the transducer is not linear with respect to the excitation voltage.

Figure 8. Performance cloud diagram of sandwich transducer.

In order to analyze the influence of the excitation frequency on the working character-
istics of the sandwich transducer, six groups of constant voltage excitation were selected to
obtain vibration velocity curves with different frequencies, as shown in Figure 9.

Figure 9. Power transducer frequency characteristic curve.

Corresponding to each voltage value, there is a peak in the frequency range, and the
transducer deviates from the inherent frequency of the vibration, which decreases signifi-
cantly. This shows that if the power transducer does not work at the optimal frequency, its
working efficiency is greatly reduced. At the same time, the shape of the curve is similar
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to the peak at the resonant frequency shown in Ref [25], and the experimental results are
consistent with the theory. In addition, it can be found that the resonant frequency of
the transducer is different under different excitation voltages. For example, the resonant
frequency of the transducer is 15.16 kHz when the excitation voltage is 100 V, and the
resonant frequency is 15.15 kHz when the excitation voltage is 150 V and 200 V. As the
excitation voltage continues to increase, the change in the resonant frequency is no longer
obvious—specifically, it is 15.14 kHz. In general, the change in the resonant frequency is
not obvious. In practical applications, the maximum working efficiency can be obtained by
fine-tuning the frequency according to the excitation voltage.

Based on the continuous excitation method, the inherent frequency obtained by ana-
lyzing the above data is about 15.15 kHz. Based on the electromechanical equivalent circuit
method proposed in Ref [25], the inherent frequency of the transducer is 15.25 kHz. The
difference in the inherent frequency obtained after analysis is due to the machining assem-
bly’s accuracy and preload. The inherent frequency based on the pulse excitation method
is 15.10 kHz. This can be explained by the different excitation modes of the pulse wave
and the continuous wave of the transducer, which lead to the difference in the mechanical
vibration state of the transducer.

Since the inherent frequency of the transducer is 15.15 kHz, several sets of frequencies
near the two sides of the frequency were selected, and the voltage characteristic curve is
shown in Figure 10.

Figure 10. Voltage response curve of frequency for piezoelectric transducer near 15.15 kHz: (a) di-
agram of voltage-frequency relationship in 14.55–15.15 kHz frequency, (b) diagram of voltage-
frequency relationship in 15.15–15.75 kHz frequency.

It can be found that at a frequency far from the inherent frequency, the change in
the vibration velocity with the voltage is basically linear, but the closer to the inherent
frequency, the weaker the linear relationship. When the vibration frequency is 15.15 kHz,
a nonlinear relationship between the vibration velocity and the voltage can be seen, in-
dicating that when the power transducer is close to the inherent frequency, the vibration
amplitude changes dramatically; consequently, the bolt preload is not sufficient to offset
the stress generated by the large displacement vibration, resulting in a gap between the
transducer structures, thereby blocking the propagation of vibrations, and, finally, causing
the measured velocity to differ from the theoretical value.

5.3. Measurement of Working State of Sandwich Transducer

The sandwich transducer uses the vibration of the piezoelectric ceramic along the
thickness direction to realize its overall vibration along the axis. Under ideal conditions,
the piezoelectric ceramic is in a uniform vibration state. However, the sandwich transducer
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relies on the pre-tightening of the bolts; the vibration amplitude and phase of the particles
in the end face are different along the radial direction, which will affect the application
of the power transducer system. Since the sandwich transducer is a vibration system, its
vibration mode is related to the excitation frequency, and the function of the sandwich
transducer is to use the longitudinal vibration to transfer energy; thus, it is necessary to find
the frequency corresponding to the longitudinal vibration. It can be seen that the first-order
and second-order inherent frequencies of the transducer are 15.10 kHz and 23.84 kHz. The
vibrational intensity distribution of the transducer’s surface obtained by continuous signal
excitation is shown in Figure 11. Since the pre-stressed bolt of the transducer runs through
the whole transducer, the working area of the face is annular.

Figure 11. Radiation intensity distribution of sandwich transducer end face: (a) vibration intensity
cloud diagram of transducer end under first order natural frequency; (b) Vibration intensity cloud
diagram of transducer end under second order natural frequency.

In Figure 11, I is the sound intensity value of a unit, which is 7 W/m2, and the
corresponding vibration velocity is 1 mm/s. Comparing the first-order and second-order
radiation intensity distribution maps, it is clear that the second-order radiation intensity of
the end face of the transducer is almost reduced to one-quarter of the first-order. According
to the sound intensity calculation formula, the particle vibration velocity of the end face is
reduced to about one-half. Through Figure 7b, it can also be seen that during vibration, the
composition of the first-order frequency is much higher than the second-order frequency;
that is, the energy ratio is large, indicating that the sandwich transducer works under the
first-order inherent frequency.

It can be seen from Figure 11a that the first-order radiation intensity distribution is
relatively uniform, indicating that the vibration amplitude of the first-order end face parti-
cles is basically the same, indicating that there is no vibration mode other than longitudinal
vibration, or that the proportion of other vibration modes is very small. Figure 11b shows
that the second-order sound field distribution is not uniform. It can be seen that the surface
of the transducer is not equal in terms of amplitude vibration, and the radiation intensity
distribution is different from the center, indicating that the structural coupling between the
piezoelectric ceramic, the front and rear cover plates, and the preload bolt is not uniform,
resulting in the overall vibration of the transducer not only along the axial vibration but
also in the radial vibration mode. The ideal vibration state of the transducer is that in which
there is only longitudinal vibration, that is, there is no radial vibration of the transducer,
which does not include the small side vibrations caused by material deformation. When
there is radial vibration, that is, when there is vibration along the normal direction of the
cylinder, it will have a super positional effect on the longitudinal vibration. Therefore, a
radiation intensity scanning experiment was carried out on the cylinder of the transducer.
The scanning area is a quarter of the circumferential area of the front mass block. The
scanning results are shown in Figure 12.
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Figure 12. Radial radiation intensity distribution cloud diagram of sandwich transducer: (a) vibration
intensity cloud diagram of transducer shaft side first order natural frequency; (b) Vibration intensity
cloud diagram of transducer shaft side under second order natural frequency.

Compared with the end face’s radiation intensity, the radial radiation intensity is very
small, indicating that the radial vibration amplitude is relatively small. Figure 12a is the
first-order side radiation intensity distribution. Although it is unevenly distributed along
the circumferential direction, considering that its value is very low, the influence of bending
vibration on the end face radiation intensity distribution can be ignored, which is consistent
with the measurement results in Figure 11a. Figure 12b shows a uniform distribution along
the circumferential direction and a uniform variation along the height direction, which
is consistent with the radial vibration caused by radial deformation due to longitudinal
tensile and compressive deformation.

6. Conclusions

In this paper, a natural frequency calculation model of a sandwich transducer is estab-
lished based on continuum mechanics and a one-dimensional wave equation. Considering
the influence of the preload bolt on the overall response frequency of the transducer, the
equivalent elastic model-based quantitative method is proposed to calculate the equiv-
alent sound velocity and elastic modulus of each part of the transducer. Based on the
half-wavelength theory, the mathematical relationship between the natural frequency of the
transducer and the length of each equivalent component is obtained. According to the one-
dimensional simplified model proposed in this study, a sandwich transducer with a natural
frequency of 15 KHz was designed and fabricated. The vibration signal of the end face of
the transducer was collected by a laser vibrometer for spectrum analysis. The accuracy
of the one-dimensional vibration model of the transducer was verified, and the effects of
different voltages, operating frequencies, and signal continuity on the working state of the
transducer were analyzed. Finally, a transducer end vibration-scanning system was built
to evaluate the working state of the transducer, and the vibration state of the first-order
and second-order end surfaces and the radial surface of the transducer were obtained. The
results show that the axial vibration response of the transducer at the first-order resonant
frequency is much larger than the radial vibration response. This study not only simplifies
the calculation of the natural frequency of the transducer but also provides a reference for
the application of the power transducer in the field of ultrasonic machining. This study
plays a guiding role in quantifying the working state of the transducer and adjusting the
process parameters of ultrasonic machining.
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Abstract: The article presents research on the performance of composite and monolithic sensors for
distributed fibre optic sensing (DFOS). The introduction summarises the design of the sensors and the
theoretical justification for such an approach. Lessons learned during monitoring cracked concrete
are summarised to highlight what features of the DFOS tools are the most favourable from the crack
analysis point of view. Later, the results from full-size laboratory concrete specimens working in a
cracked state were presented and discussed in reference to conventional layered sensing cables. The
research aimed to compare monolithic sensors and layered cables embedded in the same reinforced
concrete elements, which is the main novelty. The performance of each DFOS nondestructive tool
was investigated in the close vicinity of the cracks—both the new ones, opening within the tension
zone, and the existing ones, closing within the compression zone. The qualitative (detection) and
quantitative (widths estimation) crack analyses were performed and discussed. Finally, the examples
of actual applications within concrete structures, including bridges, are presented with some examples
of in situ results.

Keywords: distributed fibre optic sensing DFOS; composite sensors; monolithic sensors; strains;
cracks; widths; detection; reinforced concrete; laboratory; civil engineering

1. Introduction

1.1. Structural Safety

An acceptable level of safety is an obvious and essential requirement for structural
design, construction, and maintenance. During each phase, relevant control procedures
should always be specified and applied to ensure optimal decision-making [1,2]. These
decisions are mainly about finding the balance between financial savings and keeping the
failure risk at an acceptable level. However, this task is particularly important and, at the
same time, challenging for:

• ageing infrastructure [3], which is many years old and in a technical condition prob-
lematic for correct assessment,

• new engineering structures with unusual geometry, construction technologies or
material solutions for which there is a lack of common experiences.

Because of the complexity of civil engineering projects, including material and ge-
ometrical imperfections, uncertainties, time-depended effects, construction technologies
and many others, structural safety cannot be ensured only by theoretical considerations,
even taking into account the newest achievements in advanced numerical simulations.
The knowledge must be developed based on the analysis of real structures’ behaviour,
provided by in situ measurements. This task is currently being handled by structural health
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monitoring (SHM) systems [4,5] operating based on different sensing technologies selected
according to a given project’s specific requirements. Usually, sensors for measurements of
various physical quantities, like strains, displacements, inclinations, accelerations, forces,
and others, are installed within the structure or construction site to monitor changes in
these values over time during changing loading and thermal conditions. A well-designed
system should provide reliable data for structural assessment, validation of simplified
models, and decrease the risk of failure [6]—meaning an increase in safety.

It must be emphasised that failure consequences in civil engineering and geotechnical
facilities include not only financial, social, and environmental losses but also loss of human
health or life. This is the reason for the constant development of new solutions improving
structures’ reliability and long-term high-quality performance.

1.2. Distributed Measurements of Concrete

Despite the advantages of conventional (discrete) structural health monitoring systems,
a direct answer to the question about the state (e.g., the crack state) of the structure between
the measurement points is still not possible. The solution to this problem is provided by
distributed fibre optic sensing (DFOS), enabling the measurements with spatial resolution
so high that they could be treated as geometrically continuous from an engineering point
of view. Figure 1 shows the scheme comparing the capabilities of conventional spot strain
gauges and distributed linear sensors installed within the example damaged concrete
element. While performing distributed measurements, it is impossible to omit any extreme
values, so one of the main goals of structural health monitoring—direct damage detection
and its size estimation [7]—can finally be fulfilled.

Figure 1. Comparison between capabilities of distributed fibre optic sensing DFOS and spot measure-
ments in crack detection [8].

The concept of smart structures with integrated systems based on distributed fibre
optic sensors has been intensively developed for several years. Instead of a single number
obtained by standard spot gauge, these sensors measure the profiles of strains [9], dis-
placements [10–12], temperatures [13] or vibrations [14] over the entire structural length.
DFOS-based systems are an analogue of the human nervous system [15,16], as the linear
sensors can be compared to the individual nerves informing of dangers at any point and
the data logger to the brain processing the data.

The above feature is especially useful regarding concrete because of its heterogene-
ity, local imperfections, changes in stiffness caused by the random presence of aggregate
and dependence on many other factors like mixture components, time (rheology), curing
process or load procedure. The most crucial aspect that should be underlined, though, is
concrete discontinuities in the form of multiple cracks. They are a common and natural
feature of reinforced and prestressed concrete structures [17]. Cracking already starts dur-
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ing early-age concrete hydration, when thermal-shrinkage strains are blocked by internal
(reinforcement) and external (other elements, formworks, supports, boundary conditions)
constraints [18,19]. Later, under operating conditions, mechanical loads, external temper-
ature impacts and time-dependent structural degradation, cracks develop and change
their widths. Knowing the actual crack state of concrete structures is one of the essential
requirements for technical assessments of their condition and safety.

Comprehensive data gathered by distributed fibre optic sensors, replacing thousands
of conventional spot-type sensors, provide a new quality in structural measurements and
become the reason why DFOS nowadays is finding a growing acceptance in the laboratory,
and above all, in field applications. It is worth underlining that it is possible and favourable
to install the DFOS sensors inside the structural components [20] during construction, e.g.,
embedding them inside the concrete [21,22], which brings many benefits, including:

• The possibility of analysis of the structural behaviour from a real zero stress-strain
state (usually, conventional gauges are installed within existing structures with the
unknown initial level of stress and deformation).

• Integration inside the structure (concrete) provides a more accurate transfer of the
measured physical quantity from the structure to the sensor (no additional mounting
brackets or installation methods are needed).

• Natural protection of the embedded sensors against mechanical damages, aggressive
external environmental or direct sunlight. The expected operation lifetime of such a
system should be comparable with the operation lifetime of the structure itself.

1.3. DFOS Techniques (Data Loggers)

The general idea of distributed sensing described above can be utilised using different
techniques reflected in the data loggers available on the market. Three main optical
phenomena used for that purpose are Rayleigh, Brillouin and Raman scatterings, named so
to honour their discoverers (Figure 2). It is worth noting that both Rayleigh and Raman were
awarded the Nobel Prize in the early twentieth century for their achievements in physics.

   
(a) (b) (c) 

Figure 2. (a) John William Strutt (Lord Rayleigh); (b) Léon Brillouin; (c) Chandrasekhara Venkata
Raman [6].

Each of these approaches is characterised by its own advantages and limitation related
to measurement parameters. The final choice should always be preceded by a detailed
analysis of the requirements of the project in question. However, general insights can be
presented as follows:

1. Rayleigh scattering [23] is used to measure the strains in optical fibre, which are
caused both by mechanical and thermal loads. It provides the best spatial resolution,
starting from the mm range [24] (1000 measurement gauges per 1 m of the linear
sensor), which is particularly useful when analysing localised events like cracks.
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Moreover, dynamic readings with a frequency of up to 250 Hz are also possible [25].
However, the main limitation of that approach lies in a measurement distance range
limited to 100 m (while keeping the high spatial resolution).

2. Brillouin scattering [26,27] is used to measure the strains in optical fibre, which are
caused both by mechanical and thermal loads. It provides multiple lower spatial
resolution (from 20 to 100 cm) compared to Rayleigh scattering. On the other hand,
it allows the measurements to be performed over very long distances (e.g., 25 km
or more). This makes it suitable for monitoring linear structures like tunnels, roads,
embankments, dams or mining and landslide areas.

3. Raman scattering [28,29] is used to measure the temperature profile in optical fibre so
that it could be used as one of the compensation solutions for Rayleigh and Brillouin
measurements. Standard spatial resolution starts from 50 cm, while distance ranges
from 25 km and more. This approach can be successfully used as a thermo-detection
method [30] to localise fires or leakages.

It must be underlined that thanks to the dynamic development of commercially
available optical solutions, their parameters are constantly improved. It is also possible to
apply a few DFOS techniques to read the same sensors and thus, obtain extended benefits
like automatic thermal compensation [31] or simultaneous measurements of different
physical quantities.

1.4. DFOS Sensing Tools

The efficiency of the entire DFOS-based system depends not only on the optical
data loggers’ parameters but also on the quality and performance of the measuring tools.
Optical devices are usually designed by physicists, optical and electronics engineers, and
IT specialists. However, the design of the tools being installed within the concrete, very
often in challenging construction conditions, requires the knowledge of civil engineers,
materials scientists and mechanics.

There are three main groups of DFOS sensing tools [6], including optical fibres in
their primary coating, layered sensing cables and monolithic, composite strain sensors
(Figure 3). The first group is mainly used in laboratory conditions because of the dimen-
sions of standard optical fibre (outer diameter of 250 μm—Figure 3a), which makes it
susceptible to break or be disturbed by any local and transverse pressures. That is why
installation conditions must be strictly controlled, which is impossible on construction sites
or geotechnical fields.

A few aspects must be considered regarding the measurements of cracked concrete.
The basic thing is the type of the primary coating, which influence the maximum strain
range, strain transfer mechanism or the resistance of the fibre to an alkaline concrete envi-
ronment. Two commonly used primary coating types are acrylate (softer) and polyimide
(stiffer). The final choice should be made considering the following relationships:

• the softer the coating, the higher the maximum strain range [6,20] (during crack
detection, very high and local strain values are expected, so the acrylate coating
minimises the risk of the fibre’s breakage);

• the stiffer the coating, the better the strain transfer mechanism and the shorter the
length of strain mobilisation [32,33] (it means that acrylate coatings are not preferable
for short measurement sections);

• alkaline concrete environment degrades the polyimide coating even after 14 days,
while no influence is observed on the acrylate one [34] (that is why polyimide coatings
are not advised for long-term measurements of concrete structures).

To enable safe handling of the measurement fibre on site, it must be somehow protected.
There are two basic concepts utilised in practice. The earliest approach involves techniques
known from telecom applications, where a set of intermediate layers are arranged around
the fibre for its mechanical protection. In the worldwide literature, these solutions are
known as layered sensing cables [35–37]. The layers are usually made of plastics, but steel
strengthening inserts are sometimes applied (Figure 3b) to improve the strength parameters
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of the entire cable. However, it is important to note that the yielding point of steel is
approximately equal to 2000 με, while the maximum range of the fibre itself could exceed
even 50,000 με [6]. Moreover, crack-induced strain values are usually multiple times higher
that yielding point of steel [6,8].

  
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Example cross-sections of (a) single-mode optical fibre in its primary coating, (b) layered
sensing cable with steel strengthening insert and (c) monolithic strain sensor with the corresponding
views of their external surfaces (d–f).

The presence of intermediate layers implicates the risk of mutual slippage between
them and thus, influences the correct strain transfer from the concrete to the measuring
fibre inside the cable. The problem of slippage is especially noticeable during high strain
values and high strain gradients close to the cracks. This phenomenon was observed and
described in many works [6,38–41], confirming that the presence of a coating or layer
results in differences between the structural strains and those sensed by the cable.

Another uncertainty is caused by thermal changes, which, in the case of different and
unknown thermal expansion coefficients of subsequent layers, may produce unknown
strains in the fibre. Thus, the mechanical and physical properties of the cable’s components
and their adhesion parameters must be carefully studied before application within the
cracked concrete structures to enable the correct data interpretation. Moreover, the name
‘cable’ corresponds to the feature of these tools, i.e., their usability only when subjected to
tension loads. If compression strains are expected, the pre-tensioning process should be
performed during installation [42], which is difficult, and sometimes even impossible, in
the case of site or geotechnical conditions.

Finally, the type of outer surface of the cable should be considered to provide its
best possible bonding between the surrounding concrete. Figure 3e shows the example
surface with tiny, perforated grooves. However, most conventional cables’ outer surfaces
are entirely smooth, which increases the unfavourable effect of internal slippage.

Another concept for fibre protection is proposed by monolithic sensors, which are
produced as composite bars in the pultrusion process [43]. The glass measuring optical fibre
is fully integrated within the monolithic core without any intermediate layers (Figure 3c).
Thus, any potential disturbances caused by the internal slippage within the DFOS tool are
excluded. External unidirectional (Figure 3e) or bi-directional braid should provide the
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best bonding properties with surrounding concrete, similarly to reinforcing bars (not only
by adhesion but also by mechanical clampings).

Although the general idea and operation rule of monolithic sensors remain the same,
their properties could be adjustable depending on the specific requirements of the project
in question. Both geometrical (diameter, cross-section shape) and mechanical (strength,
elastic modulus, limit strain) parameters can be considered. The design of a DFOS-based
system involving monolithic sensors for crack detection in concrete is presented hereafter
and discussed based on actual data from laboratory and field tests.

The research shows the performance of monolithic sensors when monitoring cracked
concrete structures in comparison with selected layered cables. All of these tools are
commercially available on the market and widely used, so the presented results would
have important meaning for practical applications in the future.

2. Design of DFOS-Based System for Cracked Concrete

2.1. Main Objectives

The main goal of distributed fibre optic sensing for cracked concrete is to enable the
advanced analysis of cracks. However, it should be clarified what this analysis means in
practice. Two issues should be considered:

• qualitative analysis: cracks’ detection and location (Figure 4a); a significant limitation
of spot techniques for crack measurements is that they can be used only when the
presence and the position of the crack are known. Knowledge about the location of
the crack is not necessary during distributed sensing because its detection is one of
the system’s objectives. The possibility of crack detection was checked and confirmed
in much research, e.g., [44–46]. However, this does not mean that the effectiveness of
each DFOS system is unconditional and absolute.

• cracks’ width estimation (Figure 4b); knowledge about the crack’s presence and
location is necessary but insufficient for assessing structural safety. The DFOS system
should provide information about the actual width of the crack (mm), changing over
time, which could be compared to the thresholds defined in relevant standards to
answer the question about the crack’s significance for load capacity or durability. The
measured strain profile in the close vicinity of the crack should be converted into
the crack width (in the literature called also crack opening displacement COD) with
reasonable accuracy, useful from a practical point of view (not worse than 0.05 mm).
A few procedures are presented in the literature [47–50], taking into account applied
spatial resolution and the assumed physical model of the entire system (also internal
design of the DFOS tool).

 
(a) (b) 

Figure 4. The scheme for crack analysis based on the DFOS system: (a) qualitative analysis (detection,
location); (b) quantitative analysis (width estimation) [6].

2.2. Selection of DFOS Technique

Distributed sensing through a fibre optic sensor is supported by several optical phe-
nomena already outlined in Section 1.3. The cracks formed within the concrete structures
usually have widths much lower than 1 mm, so they should be treated as a local event.
This is the basis for selecting the DFOS technique with appropriate high spatial resolution.
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Despite the crack widths or their changes reaching only the tenths of a millimetre, the
spatial resolution of mm or cm order is sufficient due to the deboning effect between the
DFOS tool and the concrete. This effect is similar to that observed during the interaction
of the concrete and reinforcing bar within the crack (Figure 5a), where debonding length
occurs over a few to several centimetres, influencing the crack-induced strain profiles. A
simplified graphical interpretation of high spatial resolution defined for the sensor installed
in concrete along the reinforcing bars is presented in Figure 5b. The bases and spacings of
virtual gauges, which are connected in series in a chain, allows for the identification and
analysis of localised events.

  
(a) (b) 

Figure 5. (a) Simplified scheme for a bond-slip crack model for reinforced concrete [51]; (b) simplified
graphical interpretation of spatial resolution in distributed sensing.

Today, the above requirements on high spatial resolution are usually met by Rayleigh
scattering. For standard Brillouin-based systems, spatial resolutions range from 200 to
1000 mm, which is insufficient to solve the stated measurement problem (qualitative and
quantitative crack analysis). However, it should be clearly emphasised that thanks to
the dynamic development of DFOS techniques, the performance of optical data loggers
(including spatial resolution) is constantly being improved. Other parameters should be
counted when selecting the appropriate one, like accuracy, strain resolution, precision, or
repeatability.

2.3. Design of DFOS Tools

DFOS tools are a critical component of the entire system. They are fully integrated with
the monitored concrete structure (by mounting within the surface or embedding inside
the structural member) to provide reliable measurements during the predicted period.
Preferably, this time is equal to the operational lifetime of the structure itself. In most
projects, it is difficult, and sometimes even impossible, to replace the DFOS tools, while the
reflectometer can be easily replaced in case of failure.

The high-quality and long-term performance of DFOS tools dedicated to civil engi-
neering and geotechnical applications must be ensured by meeting the set of the following
requirements:

1. High accuracy ensured by unambiguous strain transfer from the structure to the
measuring fibre inside the DFOS tool. This feature is characteristic of a monolithic
cross-section of the sensor without any intermediate layers, which disturb measure-
ments by extensive slippage. The lack of slippage within the sensor itself allows for
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reducing uncertainties and simplifying mathematical models used for strain transfer
analysis and crack width calculation;

2. High strain range allowing for undisturbed readings of crack-induced deformations
without fear of damaging the sensor’s components. Fast-yielding materials like steel
or plastic tend to remember the localised historical strains rather than reflect the actual
deformation state of the structure. This is especially dangerous during long-term
monitoring while cyclic loads are expected;

3. Rough outer surface of the sensor must provide the best possible bonding with the
surrounding concrete, not only through the adhesion but also mechanical clamping
(similar to the reinforcing bars). For instance, it could be done by ribs, braids or
perforated grooves [52];

4. Resistance to harsh conditions, which are expected during the construction and
operation of civil engineering structures. The design of the sensor must provide
appropriate protection against mechanical damages, local transverse forces (e.g.,
pressure of aggregate grains or mounting elements), alkaline concrete environment
and other aggressive factors;

5. High durability provided by appropriate material. As the sensors are usually fully
integrated within the concrete, the expected operation lifetime should be equal to the
lifetime of the structure itself;

6. DFOS tools cannot require pretension, as this process in construction or geotechnical
conditions is challenging or often impossible. Selected stiffness of the sensor’s core
must ensure correct positioning without extensive waving, as deviations from the
designed position will result in additional errors during data interpretation. Reliable
readings must be possible both in the tension and compression zone;

7. Prove the sensors’ high performance in at least tens of engineering projects.

Debonding effect between the outer surface of the sensor and the surrounding concrete
is natural and cannot be entirely eliminated. Perfect bonding means the full compliance of
concrete and sensors strains, but in case of concrete discontinuity (crack), it would result in
the sensor’s breakage. Thus, debonding over the section called “effective length” appears,
reducing the infinite theoretical strain to the level which will not cause the sensor’s breakage.
This is how the reinforcement bars work in the close vicinity of the crack (Figure 5a).
Designing monolithic sensors for crack detection and analysis is thus about finding the
balance between bonding quality, the core’s elasticity and its maximum strain.

Example parameters of two different monolithic strain sensors are summarised in
Table 1 for comparison.

Table 1. Comparison between the parameters of two different monolithic strain sensors [16].

Parameter EpsilonSensor EpsilonRebar

Strain resolution ±1 με ±1 με

Maximum strain ±40,000 με (±4%) ±20,000 με (±2%)
Standard diameter Ø3 mm Ø5 mm

Elastic modulus 3 GPa 50 GPa
Axial stiffness EA 21 kN 982 kN

Core material PLFRP (polyester + epoxide) GFRP (glass + epoxide)
Bending radius 50 mm 350 mm
Sensor weight 13 kg/km 45 kg/km

Light scattering 1 Rayleigh, Brillouin, Raman
Delivery method coils or straight sections

Length any length made to order
1 Compatible with optical devices based on such phenomena.
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Monolithic sensors can replace the composite reinforcing bars and be included in
strength calculations of the structure itself. Figure 6a shows the footbridge example [15],
where stiff monolithic sensors (called “EpsilonRebars”, Ø5 mm, E = 50 GPa) were used to
reinforce the hybrid deck over the entire length of 80 m.

  
(a) (b) 

Figure 6. (a) Footbridge reinforced with stiff monolithic sensors; (b) concrete slab with the flexible
monolithic sensor not influencing the structural behaviour [8].

On the other hand, to increase the sensitivity in crack detection and to avoid strength-
ening the structural elements, it is favourable to reduce the axial stiffness as much as
possible [6]. Figure 6b shows the example of a laboratory reinforced concrete slab, where
the applied sensors (called “EpsilonSensors”, Ø3 mm, E = 3 GPa) provided an almost
50 times reduction in stiffness, being invisible to the structure itself.

2.4. Installation Methods

After selecting the DFOS technique and type of monolithic sensor, the next important
issue influencing the system’s reliability and efficiency is the installation method. It depends
on the type of structure (small-size laboratory specimens or full-scale engineering facilities)
and the mounting time (existing, ageing infrastructure or new one).

The common approach for existing structures is to glue the sensors to the prepared
(grinded, cleaned and degreased) concrete surface [6,52]. The monolithic sensors can be
produced as flat bars (tapes) to facilitate that process and increase the bonding surface.
However, thinking about long-term measurements, the more favourable solution is to
install the sensors in pre-made near-to-surface grooves [52] filled with two-component
epoxy or mortar injection (Figure 7a). This approach is preferable due to:

• the maximum bonding surface between the sensor and the surrounding concrete (from
three sides instead of one in case of surface installation);

• natural protection against mechanical damages;
• significant reduction of thermal influence (direct sunlight) on strain results;
• the beast aesthetics without mounting elements visible on the surface.

The adhesive parameters, similar to the sensors themselves, should be selected care-
fully to ensure the best strain transfer mechanism. Too stiff adhesive can crack itself, while
too soft can underestimate the actual structural strains.

Sensors can be installed not only within the concrete surface but also on the reinforcing
bars along their longitudinal rib (Figure 7b). Based on that approach, crack detection
will still be possible, but the main goal will be rather to assess crack-induced stress in the
reinforcement instead of precise width estimation (because of the very high stiffness of
reinforcing bars, the effective length of debonding will be higher in comparison to the
effective length of the flexible sensor itself).
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(a) (b) (c) 

Figure 7. Possibilities of the sensors’ installation methods: (a) installation in near-to-surface grooves;
(b) surface gluing (on steel bar); (c) embedding inside the concrete.

The most convenient way of installation is applied in the new, reinforced structures.
The sensors cut at the required length are usually delivered on site in coils, and the only
task is to unroll them and stabilise them in designed positions by tying to the existing
reinforcement using cable ties (Figure 7c). The significant advantage of the approach is that
the measurements can be started at real zero stress-strain-crack state and being performed
through all the constructions stages [53]: from early-age concrete, thermal-shrinkage strains,
and corresponding micro-cracks, through prestressing and construction stages to the load
tests and final operation. Structural assessment can be done more effectively based on such
data because they refer to the absolute values of measured parameters (strains or crack
widths) instead of their changes (increments).

2.5. Thermal Compensation

The measured strain profiles using Rayleigh or Brillouin scattering are affected both
by mechanical loads and thermal changes. In most general terms, the following equation
can be presented:

Δε(x) = f (ΔL(x), Δ T(x)) (1)

where Δε(x) is the strain measured over the distance x, ΔL(x) is the mechanical strain change
and ΔT(x) is the temperature change.

Providing that temperature changes between the subsequent readings are constant,
measured strains are directly equal to the mechanical strains (caused by external forces),
i.e., generating the stress inside the structural component. This situation is possible only
in laboratory conditions or during short-term field measurements, especially overnight or
within underground installations.

However, during long-term monitoring, knowledge of thermal changes is uncondi-
tionally necessary to enable the correct engineering interpretation of structural behaviour.
Appropriate correction can be applied based on the technical specifications of monolithic
sensors and the guidelines of their producers. Usually, in the standard operating range
(from −20 ◦C to +60 ◦C), it is enough to use a single (linear) coefficient, including the
sensor core’s thermal expansion and the refractive index’s temperature-dependence of the
optical fibre itself. This task became more complicated and uncertain with coated fibres [31]
and layered cables, as the individual coatings have different (usually unknown) thermal
expansion coefficients. With temperature changes, they interact with each other causing
additional mechanical strains in the measuring fibre.
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Nevertheless, the profiles of temperature changes between the subsequent readings
over the entire monitored length are the basis for further compensation procedures. Today,
there are four possible approaches to obtaining them:

1. Using the strain DFOS sensors with a Raman-based optical datalogger, which is
insensitive to mechanical loads and thus, allows only for temperature measurements;
DTS (distributed temperature sensing). This solution is primarily dedicated to long
distances (km order).

2. Using the strain sensors with both Rayleigh-based and Brillouin-based optical datalog-
ger. These two techniques are depended on mechanical strains and temperatures to
varying degrees. Knowing the individual coefficients for each technique, it is possible
to solve a system of equations in which the unknowns are mechanical strains and
temperatures [31]. It is worth noticing that there are already hybrid data loggers
available on the market that use different optical phenomena in their design.

3. Using special DFOS temperature sensors and one from DFOS techniques for strain
measurements (Rayleigh or Brillouin). The idea behind this solution is to isolate the
measuring optical fibre from mechanical strains, for instance, by placing it inside the
tube. The fibre is then, apparently, subjected only to temperature changes. However,
the free fibre does not exist because of the friction between the tube and the fibre. It
can cause disturbances in the measured temperature profiles, especially considering
longer distances. In addition, high mechanical strains expected while monitoring the
cracks in concrete can consume excess fibre inside the tube.

4. Using conventional spot temperature gauges and approximating the temperature field
between the measurement points. That approach is justified when no high gradients
over length are expected (like in underground installations or other horizontal sections
with similar conditions over the entire length).

2.6. System’s Design—Summary

Multiple aspects must be considered when designing the DFOS system for crack
monitoring in concrete structures. After selecting the DFOS technique, appropriate sensors,
installation methods and thermal compensation approach, the last thing is to elaborate al-
gorithms and procedures for data post-processing, allowing the system’s main objectives to
be achieved. First, raw strain data should be validated, and eventual distortions should be
removed. For the inexperienced user, cross-correlation failed points can be misinterpreted
as cracks [7]. Then, thermal compensation should be applied to distinguish between the
strains causing the mechanical stress in the element (εσ) and those related to the change in
length (εL)—actual shortenings or elongations consist of the stress-free part (unconstrained
thermal strains) and part generating the stress. For correct crack width estimation, strains
related to the real change in length should be considered. For example, for ultimate limit
state analysis, only strains generating the stress are essential.

As described in Section 2.1, there are a few methods for crack width estimation and
choosing the appropriate one should be preceded by the studies on uncertainties and
possibilities of applied software (in case of automatic analysis). It is recommended to
define thresholds in reference to the relevant standard and the decision-making procedure
after possibly exceeding these values. One of the important steps is the intuitive repre-
sentation of the data, both in length and time domain. The convenient way is to present
the strains in relation to the geometry of the structure in question, which makes physical
interpretation easier.

The proposed step-by-step procedure of designing a DFOS system dedicated to crack
monitoring in concrete structures, with general descriptions, is summarised in Table 2.
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Table 2. Design procedure of DFOS system for crack monitoring in concrete structures.

Step Selection of Details Considered

1 DFOS technique
(Rayleigh, Brillouin, hybrid)

Measurement parameters (spatial resolution, accuracy, strain resolution,
distance range, acquisition time, number of channels, etc.).

2 Monolithic strain sensor Geometrical and mechanical properties (diameter, elastic modulus,
strength, maximum strain, external braid, bending radius).

3 Installation method Surface or near-to-surface installation for existing structures (with analysis
of the adhesive’s properties). Embedding inside the new structures.

4 Thermal compensation
Raman technique, hybrid measurements, special DFOS temperature

sensors, conventional spot temperature gauges (depending on distance
range or expected temperature distributions and changes).

5 Post-processing algorithms
Data validation, thermal compensation algorithms, strain presentation,

crack detection, width estimation, assessment of uncertainties,
results visualisation (in length and time domain).

3. Laboratory Tests

3.1. The Concept and Preparation of the Specimens

The laboratory tests described hereafter were one of the first in the world, allowing for
direct comparison between different types of DFOS tools embedded in the same reinforced
concrete beams. A total of six beams with rectangle cross-section 250 × 350 mm were
made, with tools installed in the lower (tension) and upper (compression) zones. The
spatial visualisation of the single specimen is presented in Figure 8a. Two types of layered
cables and two types of monolithic sensors commercially available on the market were
selected (Figure 8b), which makes the results particularly important in terms of practical
applications:

• C1: sensing cable with three plastic layers (Ø2.8 mm, E = unknown).
• M1: monolithic, reinforcing sensor (Ø5.0 mm, E = 50 GPa)
• M2: monolithic, flexible sensor (Ø3.0 mm, E = 3 GPa)
• C2: sensing cable with two plastic layers and steel insert (Ø3.2 mm, E = unknown).

   
(a) (b) (c) 

Figure 8. (a) Spatial visualisation of the reinforced concrete beam equipped with DFOS tools; (b) close-
up to the selected tools; (c) the view of the beam during concreting.

To avoid damage or changing the position of the tools during concreting, self-compacting
concrete was applied (Figure 8c). There were three beams with 10 mm main reinforcing bars
(named “S”) and three with 20 mm (named “L”). Thanks to that, different crack patterns
(including the cracks’ number, widths and spacing) were obtained.

Another implemented approach was to use a concrete mixture with a large amount
of Portland cement and to leave the top surface of the beams after concreting without any
curing (Figure 9a). The idea behind that procedure was intended to intensify the shrinkage
process and thus, the formation of cracks within the upper part of the beams, what was
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finally succeeded (Figure 9b). Thanks to that, during mechanical tests, the effectiveness of
DFOS tools was analysed in relation to the new cracks being opened in the tension zone
(Figure 9c), simultaneously with the existing cracks being closed in the compression zone.

   
(a) (b) (c) 

Figure 9. (a) The view of the beams after concreting; (b) thermal-shrinkage cracks within the upper
part; (c) mechanical cracks within the lower part during bending tests.

3.2. Course of the Study and Measurements

The research was performed in the Building Materials and Structures Research Lab-
oratory at Cracow University of Technology, Poland. Beams were loaded in four-point
bending tests using the universal machine with the max. load cell capacity of 1000 kN,
which is permanent equipment of the laboratory (Figure 10a). The machine’s accuracy is
±0.5% of the reading down to 1/500 of the full scale, while the maximum force applied
during research was equal to 210 kN. The static scheme of the simply supported beam has
been provided by rolled supports, allowing for both rotations and horizontal movements.

   
(a) (b) (c) 

Figure 10. (a) Example beam during four-point bending test; (b) Rayleigh-based data logger with an
optical switch connected to embedded DFOS tools; (c) reference readings.

The DFOS readings were done statically step-by-step (while increasing force) using a
Rayleigh-based datalogger with an optical switch connected to all embedded tools inside
the beam (Figure 10b). During selected load steps, the reference readings were performed
by portable optical microscope with a resolution of 0.02 mm on the side surface of the beam
(Figure 10c). An in-built scale above the focusing ring allowed for convenient readings.
The results were systematically written on the beams using a marker. This method was
applied for the crack widths up to 0.4 mm, while the plate crack-meters were used for the
wider ones.
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The test course has been established separately for S- and L-type beams due to their
different structural response resulting from different reinforcement (4 times smaller cross-
sectional area of main bars for beams type S). Due to the many beams, load steps and
multiple cracks formed during research, in the following part of the article, the entire
procedure and results will be presented and discussed for the example beam S3 for the
sake of transparency. In the beginning, the experiment was steered (controlled) by the
displacement of a hydraulic cylinder, which was stopped at selected force values. Figure 11
shows the measurement schedule graphically with designed load cycles. Blue dots repre-
sent the load steps when DFOS measurements were taken, while green arrows indicate
the reference readings of crack widths. In S-type beams, after reaching the force of 55 kN
(27th load step), it was impossible to keep it constant when the piston stopped. Thus, it was
decided to move the piston 2 mm down at each load step, no matter the force value. It was
because of the significant and uncontrolled crack development and reduction in stiffness.

Figure 11. Designed research schedule for S-type beams.

All the beams were loaded up to the structural failure, which was achieved by losing
the bending capacity in S-type beams and shearing capacity in L-type beams.

3.3. Compression—Example Results

A detailed comparative analysis of all DFOS tools in crack detection and width estima-
tion will be the subject of another article [54]. This paper chose two fundamentally different
tools for the abbreviated presentation: a monolithic sensor with reduced axial stiffness (M2)
and a sensing cable (C2) with two plastic layers and a steel insert. That approach aims to
underline the differences resulting from the tool’s internal design. In the following part of
the article, the results for the monolithic sensor will be represented by the red scale lines,
and for the layered cable, by the blue scale lines.

The graphs presented in Figure 12 show the strain profiles obtained over the entire
length of the beam (4 m) within the compression zone, where existing shrinkage cracks were
closing under mechanical load. Presented data refer to the first twenty-seven measurement
steps (up to the force of 55 kN), in which the beam behaviour was stable and the results,
therefore, comparable. The zero reading was assumed just before the loading (the dead
weight is not included). Negative strain values correspond to the increase in compression,
while the positive ones to the tension. The closing cracks induced all the local negative
strain peaks. Five of them were chosen for further analysis and marked on the plots. The
maximum registered strain was approximately equal to only 550 με because the width
changes of the existing cracks in the compression zone, in contrast to the opening cracks in
tension, are limited by the initial crack width.
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(a) (b) 

Figure 12. Beam S3/compression zone: strain profiles registered by (a) monolithic sensor M2 and
(b) layered sensing cable C2 with steel strengthening insert.

Despite the minor differences in the shape of strain profiles, which could be caused by
the random course of the cracks and their varying size over the beam’s width, it should
be stated that analysed tools could detect all the existing cracks correctly. The locations of
strain peaks were in line with the external observations. Moreover, the crack width changes
were calculated by strain integration over the effective length, and the maximum difference
between the tools during subsequent load steps did not exceed the value of 0.01 mm, while
the mean difference was a few times smaller. Such a value, treated as an error in width
estimation, allows for correct structural safety assessment and can be usually neglected
from an engineering point of view.

3.4. Tension—Example Results

Although the results provided by all the analysed DFOS tools in the compression zone
were satisfying, it should be underlined that the obtained strain range was minimal in
comparison to the declared maximum strains (±40,000 με for sensor M2 and ±10,000 με

for cable C2). Moreover, while analysing the behaviour of reinforced concrete structures,
the tension zone is of the main interest, including cracks increasing their widths.

Figure 13 shows the strain profiles in the tension zone over the entire structural length
during subsequent load steps, corresponding to those presented in Figure 12 for the com-
pression zone. The scale of the horizontal and vertical axes is the same to facilitate visual
comparison. For the load step no. 27 and the corresponding force of 55 kN, the maximum
strain value within the crack-induced area registered by the monolithic sensor was equal
to 16,780 με, while by the layered cable, it was almost four times smaller—4569 με. Given
that both tools are theoretically dedicated to the same purpose and that the above maxi-
mum values are still well below the declared limits, such a difference in strain values is
not acceptable.

The above observation about a significant decrease in the crack-induced strain peaks
in the tension zone is valid for all the beams and all the cracks. Figure 14 presents the
maximum strain values changes in subsequent load steps within the five selected cracks,
which locations are marked in Figure 13.
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(a) (b) 

Figure 13. Beam S3/tension zone: strain profiles registered by (a) monolithic sensor M2 and (b) lay-
ered sensing cable C2 with steel strengthening insert.

 
(a) (b) 

Figure 14. Beam S3/tension zone: crack-induced strain peaks over subsequent load steps registered
by (a) monolithic sensor M2 and (b) layered sensing cable C2 with steel strengthening insert.

Because the strain data gained through distributed sensing are expressed in two
domains: structural length and time (load step), they could be conveniently presented in
the form of spatial visualisations. The example plots corresponding to data in Figure 13 for
monolithic sensor M2 and layered cable C2 are shown in Figures 15a and 15b, respectively.

The locations of all the cracks were identified unequivocally by a monolithic sensor
with an accuracy equal to applied spatial resolution (10 mm), which was confirmed by
reference readings using a metric tape on the side surface of the beam and photo-camera.
On the other hand, the indications from the layered cable are not conclusive, especially
given the negligible increments during cyclic loading. In real projects, very often, the zero
reading is taken after the formation of the cracks and width changes are usually much
smaller than in laboratory conditions (under the applied force). Thus, the risk of data
misinterpretation is too high. Figure 16 summarises on the same plot the strain profiles
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measured by monolithic sensor (red line) and layered cable (blue line) in load step no. 26
(50 kN), in reference to the documented cracks’ locations on a side surface.

 
(a) (b) 

Figure 15. Beam S3/tension zone: strain profiles in length and load step domain registered by
(a) monolithic sensor M2 and (b) layered sensing cable C2 with steel strengthening insert.

Figure 16. Strain profiles over length measured by monolithic sensor M2 and layered cable C2 (beam
S3, load step no. 26, force = 50 kN).

The next step of the analysis was focused on the crack width estimation, which was
done by strain integration over the effective length. This length was assumed to be equal to
half of the mean spacing between the multiple cracks (the conservative assumption about
overlapping the effective lengths). The local crack-induced strain peaks indicated the centre
of this length. The crack widths calculated for the example load step no. 26 are summarised
in Table 3, showing that the cable’s results underestimate the sensor’s results by almost
0.15 mm (≈30%). In addition, the results from the external microscope were provided to
give the general overlook on the actual crack widths. However, these values cannot be
compared directly, as the readings were taken in different place (on the side surface).
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Table 3. Calculated crack widths based on strain profiles measured by monolithic sensor M2 and
layered cable C2 (beam S3, load step no. 26, force = 50 kN).

Crack
Width (mm) Diff. (mm) Diff. (%)

M2 C2 Ext. ref. (M2 − C2) (M2 − C2)/M2 × 100%

1© 0.329 0.267 0.30 0.062 19.0
2© 0.548 0.351 0.60 0.197 35.9
3© 0.451 0.318 0.40 0.133 29.6
4© 0.409 0.309 0.35 0.100 24.5
5© 0.593 0.382 0.45 0.211 35.6

mean 0.466 0.325 0.42 0.141 28.9

3.5. Findings

Considering the above specific example, but also global statistics presented in [7],
the most sensitive and reliable tool for crack detection and analysis is a monolithic sensor
with reduced axial stiffness. Unambiguous measurements are further supported by theory:
the internal design of the cross-section includes the full integration of measurement fibre
with composite core during its pultrusion, eliminating the slippage phenomena. Moreover,
minimal axial stiffness means that the sensor is no longer the reinforcement for the concrete
and does not influence its structural response.

Another advantage is the highest strain range. The maximum value of tensile strain
registered in the last load step, just before the structural failure, was equal to 2.86%
(28,575 με), while the strain range declared by the producer is ±40,000 με. The corre-
sponding crack width exceeded 1.3 mm at that time. The ability to measure extensive
cracks without fear of damaging the sensor is an essential aspect while monitoring cracked
reinforced concrete structures.

Although the layered cable with steel insert inside provided reasonable results in
the compression zone in the very limited strain range (<550 με), its performance was
unacceptable within the tension zone. The registered crack-induced strain peaks were
almost four times lower compared to the monolithic sensor, and the shape of strain profiles
did not allow for certain crack detection. The maximum declared value of correct strain
measurements (equal to 1%) is not feasible. It is worth noticing that the steel layer inside
the cable yields itself at the strain level of approx. 0.2%. The main reason for unreliable
readings, though, is disturbed strain transfer from the concrete to the measuring fibre
caused by the internal slippage between the intermediate layers in the cable.

Considering the above findings, the layered tools are not recommended for high-
spatial-resolution DFOS measurements of reinforced concrete structures when crack detec-
tion and analysis are of the main interest.

4. Field Proofs

Field proofs are the last and most important step in verifying the effectiveness of
DFOS-based monolithic sensors. This section describes three examples of actual concrete
structures equipped with such sensors, giving the example results related to crack analysis.
The first is a new bridge with sensors embedded inside the concrete slab. The second
refers to the existing 10-years-old bridge, where the near-to-surface installation method
was applied. Finally, the very old concrete sewer collector is described as an example of an
ageing infrastructure requiring the appropriate control and maintenance.

4.1. Railway Bridge near Frankfurt, Germany

Three monolithic sensors were used to monitor the performance of the concrete slab
in a railway bridge north of Frankfurt am Main, Germany. Since the decision to create
the system was made before construction was completed, it was possible to embed the
sensors inside the slab. The installation consisted of stabilising the sensors in their designed
positions by tying them to the existing reinforcement along the main bars (Figure 17).
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Figure 17. Installation of the monolithic sensor by tying to the existing reinforcement.

Sensors with appropriate lengths were delivered on site in coils, and the ease of
installation allowed it to be completed within half a day. As the sensors were installed
before concreting (Figure 18a), the structural performance analysis was possible from an
actual zero state, i.e., zero readings were taken before the first cracks were formed. The
blue lines on the strain plot in Figure 18b correspond to the measurements performed a
few hours after concreting. There are still no characteristic crack-induced strain peaks. The
data are presented over the 10 m long section.

 
(a) (b) 

Figure 18. (a) The view of the slab during concreting; (b) example strain profiles with crack analysis
20 h after concreting.

However, the measurement performed the next day, 20 h after concreting is completed,
clearly indicates the presence of the first ten cracks (red line on the plot). Their spacings and
locations depend on the geometry of the structure and boundary conditions. The estimated
crack widths did not exceed the value of 0.06 mm.

Cracking in concrete structures is a normal process taking place from the first days,
and it usually cannot be avoided. The structural engineer’s main task is to monitor and
control the crack positions and widths over time. Distributed fibre optic sensing allows
all the cracks to be detected and analysed, even inside the structural elements, where
visual inspection is impossible. However, a precondition for the system efficiency is the
use of high-definition monolithic sensors, high-spatial-resolution DFOS technique and
appropriate data processing algorithms.
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The DFOS-based system in the Frankfurt bridge was used to detect the first cracks
formed during early-age concrete behaviour (thermal shrinkage strains) but also to mon-
itor structural response according to the planned schedule, including long-term static
measurements as well as dynamic readings during the train passages.

4.2. Largest Concrete Cable-Stayed Bridge in Poland

Although embedding sensors inside the components of new structures is most ben-
eficial from the quality and quantity of information obtained, it is also necessary to be
aware of the existing, ageing infrastructure [55]. The following example is related to one
of the largest concrete bridges in Poland—Rędziński Bridge [56,57] (Figure 19a). It was
opened to traffic on August 31, 2011, and is the most significant bridge along the Wrocław
motorway ring road. It is a four-span cable-stayed bridge over the Odra River with spans
of 50 m + 2 × 256 m + 50 m long. The two separated concrete box girders are suspended to
a single H-shaped pylon with a height of 122 m, which makes it the tallest in Poland. Its
shape allows connecting 160 stays arranged in four planes.

  
(a) (b) 

Figure 19. (a) Rędziński Bridge in Wrocław, Poland—general view (photo: W. Kluczewski); (b) the
close-up of the lower crossbeam connecting two inclined legs of the pylon.

Due to the limited width of the route below the lower crossbeam, the pylon’s legs
are inclined to minimise the size of the foundation (massive concrete slab with a base of
67.4 × 28.0 m and thickness from 2.5 to 6.5 m, placed on 160 reinforced concrete bored
piles with a diameter of 1.5 m and 18 m in length). The pylon’s legs have a rectangular
cross-section with variable dimensions: 6.0 × 7.0 m at the foundation level, 4.0 × 4.0 m
near the upper crossbeam and 4.0 × 6.0 at the top.

Although the decks are suspended by the set of cables, they are also (to a lesser extent)
supported by the prestressed lower crossbeam of the pylon. However, the main task of this
prestressed element, with the midspan rectangle cross-section of 2.5 m (height) and 4.0 m
(width), is to connect two inclined legs of the pylon, which, due to their geometry, tend to
move outwards (Figure 19b).

After ten years of the bridge’s operation, multiple cracks (with widths up to 0.1 mm)
were observed over the length of this crossbeam, which is a natural consequence of its
static scheme and loading. However, due to the unfavourable environment above the river,
controlling cracks widths changes over time (according to the standard’s requirements) is
very important.

The Rędziński Bridge was equipped with DFOS monolithic sensors in 2020, joining the
honourable group of several bridges in Poland with this innovative monitoring solution.
Four sensors were glued inside the pre-made near-to-surface grooves (Figure 20a) located
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in each corner of the lower crossbeam of the pylon (Figure 20b) over its entire length
(Figure 20c). This installation approach is the best in terms of bonding properties and
mechanical protection, but also in terms of reducing the direct impact of the sunlight and
ensuring the appropriate aesthetics in the facility being operated.

 
 

 

(a) (b) (c) 

Figure 20. (a) Installation in near-to-surface grooves; (b) cross-section of the beam with locations of
the sensors; (c) side view of the crossbeam with sensors marked over its length.

The cyclic measurement sessions are now performed according to a planned schedule,
with reference taken shortly after the installation. In a single reading, the strain data from
7400 locations are recorded, providing direct crack detection and estimation of their width
changes (both while closing and opening).

Next to the long-term analysis, the short-term readings (at an interval of a few seconds)
were also done under the random traffic loads. The width changes identified then did not
exceed thousandths of a millimetre. Example results from the lower and upper sensor are
presented in Figure 21. Strain profiles with crack width analysis are shown on a few metre-long
sections, selected in reference to the structure’s geometry, to keep appropriate clarity.

Figure 21. Example strain profiles over selected sections of the lower and upper monolithic sensor
with crack width analysis.

Despite such small values of crack widths changes, the system was able for a reliable
diagnosis thanks to the appropriate strain transfer from the concrete to the optical fibre
fully integrated inside the monolithic core of the high-sensitivity sensors.
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Four spot temperature gauges were installed within the crossbeam to compensate for
the long-term thermal influences. It is also worth noticing that the applied strain sensors
can be used simultaneously with other dataloggers (based on various optical phenomena)
to measure different physical quantities like distributed temperatures or vibrations. Finally,
thanks to the known arrangement of the sensors within the beam’s cross-section, it is
possible to calculate horizontal and vertical displacements (deflections, shape changes), as
well as axial shortenings or elongations.

In 2022, the force adjustment within eight shortest stays was performed, relieving
the pylon’s lower crossbeam and bending it up slightly. Distributed fibre optic monolithic
sensors were used for the advanced and simultaneous analysis of the beam’s strains, cracks
and displacements.

4.3. Renovated Sewage Collector in Poland

The last example refers to the Burakowski sewage collector, an essential element of the
sewage system in Warsaw, Poland [58]. It was built in the 1960s using the mining method
in a concrete casing, with segments of lengths from 2 to 3 m and an internal diameter
of approximately 3 m, buried under the ground surface at a depth of 4.5 to 7.5 m. Its
designed capacity is about 12 m3/s, while the recorded capacity may be higher during
heavy rainfalls.

The unfavourable external conditions in the close vicinity of the collector include
the edge of the high bank of the Vistula River, as well as subway and tram lines and
stations. In addition, several tall and deep-founded buildings have been built in this
area over the last 15 years. In 2015, the construction of a new “Burakowski Bis” collector
was completed passing along the existing one, which resulted in environmental changes
(including ground-water conditions) compared to the times when it was constructed.

After analysing the collector’s technical condition in 2019, a decision was made to
retrofit a 4.8 km long section using non-circular 3 m-long GRP module panels and relining
technology. The space between the panels placed inside and the existing inner walls of
the concrete collector was filled with a cement injection. Thus, the possibility of a visual
inspection of the collector was lost.

This was one of the reasons for equipping the old concrete part with a DFOS-based sys-
tem. Three monolithic sensors were installed longitudinal over the length of the 146 m-long
section between the maintenance holes. One top sensor and two side sensors (Figure 22a,b)
in the known configuration were mounted in near-to-surface grooves filled with mortar in-
jection (Figure 22c). The approach, like this applied in the above bridge example, aimed for
simultaneous analysis of strains, cracks and vertical displacements during the retrofitting
process, but also after putting the collector to the normal operation again.

   

(a) (b) (c) 

Figure 22. (a) Design of the collector with monolithic sensors; (b) the view of the collector with
marked locations of monolithic sensors; (c) near-to-surface groove filled with injection.
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What is more, one monolithic strain sensor was installed along the circumference of the
collector’s cross-section (Figure 23a), creating four loops located in the most safety-critical
area (Figure 23b), where a few cracks were documented through visual inspection before
the installation of the sensors (Figure 23c).

   
(a) (b) (c) 

Figure 23. (a) Cross-section of the collector [58]; (b) location of the circumference monolithic sen-
sor [58]; (c) the view of the crack documented before installation.

Strain measurements were taken during the retrofitting and strengthening works,
including the following stages:

• before GRP modules were provided inside the collector (zero reading),
• after the GRP modules were placed (before grout injection),
• after grout (mortar) injection,
• and finally, after the collector was put back into service and filled with sewage.

DFOS readings allowed observing the collector’s structural response under gradual
load changes.

The dead weight of the new panels and mortar injection, as well as the dead weight
of the launched sewage flow, caused the original structure of the concrete collector casing
was reflected in DFOS readings. Increasing mechanical load during the renovation work
revealed cracks caused by technological breaks, and changes in their widths were carefully
analysed during this process. Figure 24 shows strain profiles registered by the top sensor
over a 10 m-long section in the subsequent load steps. Crack-induced strain peaks are
negative, which means they correspond to the compression (decreasing the crack width).
The maximum changes in crack widths during retrofitting did not exceed the value of
0.02 mm. The crack spacing results from the original construction technology of the collector,
where concrete casing sections had the length from 2.2 to 2.9 m.

Figure 24. Strain profiles measured by the monolithic sensor (T) along the test section showing the
primary discontinuities in the concrete collector closing during strengthening process. Example
section from 132 to 146 m. Measurement P01—after installation of GRP panels, P02—during grout
injection, P03—after completed grout injection, P04—after filling the collector with sewage [58].
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The application of the DFOS system based on monolithic strain sensors allowed for
detection of all discontinuities in the collector structure, most of which were undetectable by
the naked eye during visual inspection. The system is now used to control the crack widths
over time during periodical measurement sessions, supporting the expert in assessing the
technical condition and structural safety of the collector.

5. Conclusions

There has been a noticeable increase in distributed fibre optic sensing deployment in
recent years, not only in laboratory research but, above all, in real civil engineering and
geotechnical projects. The main advantage is the possibility of continuously measuring
selected physical quantities over length to fulfil one of the fundamental goals for struc-
tural health monitoring: direct damage detection and estimation of its size. However, to
utilise the advantages of DFOS approach, a set of requirements must be understood and
implemented to obtain high-quality and reliable data.

The versatility of this technique lies in the ability to customise system elements (in-
cluding the type of sensor, datalogger parameters, light scattering, installation methods,
software and post-processing algorithms) according to the individual needs of a given
project. In reference to reinforced concrete structures, it is essential to be aware that they
operate in a cracked state and that a reliable assessment of local discontinuities (cracks) of
a very small size (usually < 1 mm) is one of the primary challenges for the DFOS system.

The lessons learned while monitoring cracked concrete structures were summarized
in the article to highlight what features of the DFOS tools are the most favourable from the
crack analysis point of view. During the selection, not only their internal design should
be considered, but also the strain range and resolution, axial stiffness, cross-section area,
elasticity modulus, bending radius, material and its resistance to corrosion, durability, no
need for pre-tensioning, the tendency to wave and more.

Theoretical considerations were supported by laboratory tests on full-size components.
The novelty of the research lies in direct comparison between specific monolithic sensors
and layered cables commercially available on the market, and often used for the same pur-
poses. The obtained results have, thus, practical meaning, showing significant differences
in the performance of different DFOS tools.

The findings include that layer-free sensors are adequate solution for crack analysis.
The measuring fibre does not slip inside the cross-section, as it does in layered cables,
providing that the structural strains are transferred in an as undisturbed way as possible.
Based on the performed measurements, a reliable interpretation of the deformation state of
the structure was possible.

The DFOS-based monitoring of cracked concrete structures is a challenging process.
In addition to the monolithic sensors, which are one of the key components of the entire
system, the appropriate high-spatial-resolution technique should be selected (preferably,
Rayleigh-based), as well as installation methods which directly influence the physical
interpretation of the obtained data. This article is a part of a discussion about the best
DFOS configuration, which could be recommended for application in cracked concrete,
depending on whether we are dealing with new or existing structures. A set of good
practices based on lessons learned while applying monolithic DFOS strain sensors were
presented in this article and discussed through laboratory and field proofs.
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20. Kulpa, M.; Howiacki, T.; Wiater, A.; Siwowski, T.; Sieńko, R. Strain and displacement measurement based on distributed fibre

optic sensing (DFOS) system integrated with FRP composite sandwich panel. Measurement 2021, 175, 109099. [CrossRef]
21. Barrias, A.; Casas, J.R.; Villalba, S. Application study of embedded Rayleigh based Distributed Optical Fiber Sensors in concrete

beams. Procedia Eng. 2017, 199, 2014–2019. [CrossRef]
22. Imai, M.; Igarashi, Y.; Shibata, M.; Miura, S. Experimental study on strain and deformation monitoring of asphalt structures using

embedded fiber optic sensor. J. Civ. Struct. Health Monit. 2014, 4, 209–220. [CrossRef]

255



Sensors 2022, 22, 8713

23. Coscetta, A.; Catalano, E.; Cerri, E.; Oliveira, R.; Bilro, L.; Zeni, L.; Cennamo, N.; Minardo, A. Distributed Static and Dynamic
Strain Measurements in Polymer Optical Fibers by Rayleigh Scattering. Sensors 2021, 21, 5049. [CrossRef] [PubMed]

24. Sang, A.K.; Froggatt, M.E.; Kreger, S.T.; Gifford, D.K. Millimeter resolution distributed dynamic strain measurements using
optical frequency domain reflectometry. Proc. SPIE 2011, 7753, 432–435. [CrossRef]

25. Luna—Optical Distributed Sensor Interrogator. Available online: https://lunainc.com/product/odisi-6000-series (accessed on
22 September 2022).

26. Bao, X.; Chen, L. Recent Progress in Brillouin Scattering Based Fiber Sensors. Sensors 2011, 11, 4152–4187. [CrossRef]
27. Hong, C.Y.; Zhang, Y.F.; Li, G.W.; Zhang, M.X.; Liu, Z.X. Recent progress of using Brillouin distributed fiber sensors for

geotechnical health monitoring. Sens. Actuators A Phys. 2017, 258, 131–145. [CrossRef]
28. Wang, W.; Chang, J.; Lv, G.; Wang, Z.; Liu, Z.; Luo, S.; Jiang, S.; Liu, X.; Liu, X.; Liu, Y. Wavelength dispersion analysis on

fiber-optic Raman distributed temperature sensor system. Photonic Sens. 2013, 3, 256–261. [CrossRef]
29. Muanenda, Y.; Oton, C.J.; Di Pasquale, F. Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber

Sensing. Front. Phys. 2019, 7, 155. [CrossRef]
30. Yan, B.; Li, J.; Zhang, M.; Zhang, J.; Qiao, L.; Wang, T. Raman Distributed Temperature Sensor with Optical Dynamic Difference

Compensation and Visual Localization Technology for Tunnel Fire Detection. Sensors 2019, 19, 2320. [CrossRef]
31. Kishida, K.; Yamauchi, Y.; Guzik, A. Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh

System. Photonic Sens. 2014, 4, 1–11. [CrossRef]
32. Falcetelli, F.; Rossi, L.; Di Sante, R.; Bolognini, G. Strain Transfer in Surface-Bonded Optical Fiber Sensors. Sensors 2020, 20, 3100.

[CrossRef] [PubMed]
33. Li, D.; Ren, L.; Li, H. Mechanical Property and Strain Transferring Mechanism in Optical Fiber Sensors. In Fiber Optic Sensors;

Yasin, M., Harun, S.W., Arof, H., Eds.; InTechOpen: London, UK, 2012. [CrossRef]
34. Bremer, K.; Alwis, L.S.M.; Zheng, Y.; Weigand, F.; Kuhne, M.; Helbig, R.; Roth, B. Durability of Functionalized Carbon Structures

with Optical Fiber Sensors in a Highly Alkaline Concrete Environment. Appl. Sci. 2019, 9, 2476. [CrossRef]
35. Barrias, A.; Casas, J.R.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors 2016,

16, 748. [CrossRef] [PubMed]
36. Schenato, L. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications. Appl. Sci. 2017, 7, 896. [CrossRef]
37. Soga, K.; Luo, L. Distributed fiber optics sensors for civil engineering infrastructure sensing. J. Struct. Integr. Maint. 2018, 3, 1–21.

[CrossRef]
38. Weisbrich, M.; Holschemacher, K. Comparison between different fiber coatings and adhesives on steel surfaces for distributed

optical strain measurements based on Rayleigh backscattering. J. Sens. Sens. Syst. 2018, 7, 601–608. [CrossRef]
39. Sieńko, R.; Zych, M.; Bednarski, Ł.; Howiacki, T. Strain and crack analysis within concrete members using distributed fibre optic

sensors. Struct. Health Monit. 2018, 18, 1510–1526. [CrossRef]
40. Bado, M.S.; Casas, J.R.; Kaklauskas, G. Distributed Sensing (DOFS) in Reinforced Concrete members for reinforcement strain

monitoring, crack detection and bond-slip calculation. Eng. Struct. 2021, 226, 111385. [CrossRef]
41. Li, Q.; Li, G.; Wang, G. Effect of the plastic coating on strain measurement of concrete by fiber optic sensor. Measurement 2003, 34,

215–227. [CrossRef]
42. Kania, J.; Sørensen, K.K. A Static Pile Load Test on a Bored Pile Instrumented with Distributed Fibre Optic Sensors. In Proceedings

of the International Symposium on Field Measurements in Geomechanics, Rio de Janeiro, Brazil, 16–20 July 2018.
43. Barkanov, E.; Akishin, P.; Namsone-Sile, E. Effectiveness and Productivity Improvement of Conventional Pultrusion Processes.

Polymers 2022, 14, 841. [CrossRef] [PubMed]
44. Imai, M.; Feng, M. Sensing optical fiber installation study for crack identification using a stimulated Brillouin-based strain sensor.

Struct. Health Monit. 2012, 11, 501–509. [CrossRef]
45. Barrias, A.; Casas, J.R.; Villalba, S. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study.

Sensors 2018, 18, 980. [CrossRef] [PubMed]
46. Liu, T.; Huang, H.; Yang, Y. Crack Detection of Reinforced Concrete Member Using Rayleigh-Based Distributed Optic Fiber Strain

Sensing System. Adv. Civ. Eng. 2020, 2020, 8312487. [CrossRef]
47. Fischer, O.; Thoma, S.; Crepaz, S. Distributed fiber optic sensing for crack detection in concrete structures. Civ. Eng. Des. 2019, 1,

97–105. [CrossRef]
48. Alj, I.; Quiertant, M.; Khadour, A.; Grando, Q.; Terrade, B.; Renaud, J.-C.; Benzarti, K. Experimental and Numerical Investigation

on the Strain Response of Distributed Optical Fiber Sensors Bonded to Concrete: Influence of the Adhesive Stiffness on Crack
Monitoring Performance. Sensors 2020, 20, 5144. [CrossRef]

49. Kwak, H.-G.; Song, J.-Y. Cracking analysis of RC members using polynomial strain distribution function. Eng. Struct. 2002, 24,
455–468. [CrossRef]

50. Rodríguez, G.; Casas, J.R.; Villaba, S. Cracking assessment in concrete structures by distributed optical fiber. Smart Mater. Struct.
2015, 24, 035005. [CrossRef]

51. Tang, Y.; Wang, Z.; Song, M. Self-sensing and strengthening effects of reinforced concrete structures with near-surfaced mounted
smart basalt fibre-reinforced polymer bars. Adv. Mech. Eng. 2016, 8, 10. [CrossRef]

52. Bastianini, F.; Di Sante, R.; Falcetelli, F.; Marini, D.; Bolognini, G. Optical Fiber Sensing Cables for Brillouin-Based Distributed
Measurements. Sensors 2019, 19, 5172. [CrossRef]

256



Sensors 2022, 22, 8713
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Abstract: We report here on a laser ultrasonic system to indirectly evaluate the preload force of
different-frequency piezoelectric bolts. This newly developed system enables us to achieve the
goal of non-contact excitation and synchronously collects the laser-induced ultrasonic signal by
the combination of a smart piezoelectric sensor and a magnetically mounted transducer connector.
A numerical model based on the finite element method (FEM) was developed to simulate the
propagation and displacement distribution of laser-generated ultrasonic waves along the axial
direction. The measured A-scan waveform basically coincided with the counterpart obtained from
a theoretical simulation, confirming the effectiveness of the proposed system to measure a bolt. By
comparison, a laser spot diameter of 6 mm was the optimal beam diameter for the excitation of the
ultrasonic wave in the bolt. The linear relationship between time of flight (TOF) of the ultrasonic
longitudinal wave and bolt torque was almost independent from the center frequency of the smart
bolt. By contrast, a piezoelectric patch centered at 5 MHz was more suitable as an ultrasonic sensor
in terms of the nonlinear effects component suppression and linear fitting degree between TOF and
torque. The results indicate that the proposed system based on a surface-mounted piezoelectric
sensor is a promising system for evaluating the axial preload change of connector and fastener and is
an additional potential laser ultrasonic system for nondestructive tests.

Keywords: laser inspection system; bolt preload; intelligent sensor; ultrasonic TOF; non-destructive testing

1. Introduction

Bolts are important fasteners indispensable in the manufacturing and national defense
industries and are critical components of important infrastructure, such as aerospace,
vehicle, ship, railway, bridge, and building facilities [1,2]. As the use of bolt increases,
there is a greater need for the accurate control of bolt preload during tightening and in situ
online monitoring or the evaluation of the residual axial force during the service life of
the connection. Insufficient preload will cause vibration, slack, and slipping of structural
connections, which can damage the integrity of the structure and affect the normal operation
of any bolt-assembled equipment. Instead, an excessive preload will cause a severe plastic
deformation of the bolt, which could lead to failure due to fatigue or fracture [3,4]. On this
basis, researchers and engineers around the world are striving to develop on-line reliable
methods to evaluate and measure the bolt preload force. These methods can be roughly
divided into three categories: percussion detection, vision detection and sensor detection.
It is difficult to achieve high precision using percussion and vision detection because of
variations in the actual working conditions, low accuracy of the construction equipment
and lack of experience among workers [5–7]. Other sensors, such as the strain sensor
and the fiber Bragg grating (FBG) sensor, have also been developed in recent years and
have been proven to evaluate the bolt preload force [8–11]. However, most of the sensors
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have different intrinsic shortcomings and are found unsuitable to evaluate or measure the
bolt preload force [8–11]. For instance, conventional strain gauges cannot adhere to fully
threaded bolts, and the FBG sensor embedded into the bolt body measures the preload
force by the relative displacement of Bragg Wavelength. It is of no use for small bolts and
causes damage to the bolt structure. In addition, its performance is strongly attenuated at
high temperature, thus this sensor is not suitable for high-temperature environments.

In contrast to the above methods, benefiting from their advantages of high precision,
excellent real−time performance, and strong sensing penetration, ultrasonic sensors have
been widely used for the detection of axial stress in bolts since the 1980s [12–15]. A great
deal of research has been conducted on ultrasonic theory and equipment to determine
or evaluate the axial preload in bolts [16–24]. Although piezoelectric transducers are
widely used, the accuracy of ultrasonic detection is relatively low due to poor bolt surface
conditions and unstable coupling properties. During measurement, the ultrasonic wave
passes through the coupling layer twice. As a result, unevenness and inconsistency of the
coupling layer can produce errors of the same order of magnitude as the measured value.
In order to improve the coupling performance, an electromagnetic acoustic transducer
(EMAT) and a permanent mounted transducer system (PMTS) were introduced, gradually
replacing the piezoelectric transducer in recent years. Nevertheless, EMAT has obvious
drawbacks, such as low conversion efficiency and difficulty in exciting the longitudinal
wave on the end faces of ferromagnetic bolts. Currently, the widespread application of
PMAT is also limited by special handling processes of the bolt.

In addition to the previous methods, a few researchers [25–27] apply laser ultrasonic
systems to monitor and estimate the looseness in bolted joints. For example, based on
the Hertzian theory of contact, Yang Zhou et al. [27] applied laser-induced wave energy
dissipation to monitor the looseness of a bolt. Ju−Won Kim et al. [26] reported the automatic
estimation of looseness in a bolt joints by the combination of a non-contact laser scanning
system and a deep convolutional neural network (DCNN). Studies in the literature applied
a laser−induced guide wave rather than a single longitudinal wave (a longitudinal wave
is more sensitive to preload changes) [12,13] to monitor and estimate the looseness of
a bolt. Because there are few reports on the measurement of the bolt preload force by
using a laser as a signal excitation source, all studies have used the Hertz contact method
with this excitation mode, and the area of laser action was the surface of the connected
parts; by analyzing the ultrasonic attenuation signal on the other side, the looseness of
bolts was evaluated. In this work, a nanosecond pulsed laser used as a pump source
directly irradiated the bottom of the bolt. The laser thermal effect area on the bolt itself,
strictly in line with the thermoelastic effect, did not cause damage to the bolt, in line with
non−destructive testing requirements, and the bolt head received the single longitudinal
wave signals through a smart piezoelectric sensor and a magnetically mounted transducer
connector. A numerical simulation of the longitudinal wave in the bolt induced by a
nanosecond laser pulse was carried out. The influence of the laser spot diameter on a single
longitudinal wave signal was investigated. By the TOF change, the axial preload change
of the smart bolt could be evaluated effectively. The 5 MHz piezoelectric sensor showed
advantages over the 2 MHz and 10 MHz piezoelectric sensors in terms of nonlinear effects
and linear fitting degree between the TOF and the torque.

2. Research Methods

2.1. Measurement Principle of Bolt Preload

The preload force measured by an ultrasonic sensor is based on the acoustic−elastic
effect. The mono−wave method, i.e., the use of a single transverse wave or longitudinal
wave, is widely used to measure the axial stress in a bolt. The longitudinal wave is
frequently used in engineering applications because it is more sensitive to changes in
stress or preload force. Figure 1 shows the basic principle of the mono-wave method. The

259



Sensors 2022, 22, 8665

preload force can be calculated by measuring the TOFs of the pulse−echo before and after
tightening. The relationship between TOF and preload force can be expressed as follows:

F =
E·S·ΔL

L
(1)

where F is the preload force, ΔL = ΔT·V is the change of bolt length, ΔT is the change
in TOF from before to after tightening, and V is the propagation speed of the ultrasonic
longitudinal wave in the material; E is the elastic modulus of the bolt material, S is the
effective cross−sectional area, and L is the clamping length of the bolt. In this relation,
the TOF of the ultrasonic wave is positively correlated with the preload force. It is well
known that different batch bolts correspond to different elastic moduli E and therefore
to the absolute preload values. Considering this, we only measured the TOF of the first
longitudinal wave to evaluate the bolt axial preload in this work. The whole experiment was
performed in a temperature−controlled laboratory. Thus, the influence of the temperature
on the velocity of the longitudinal wave and the elastic modulus of the bolt material was
not considered here to simplify the process.

Figure 1. Fundamental principle to measure the bolt preload force by the mono-wave method:
(a) TOF of the pulse−echo before tightening; (b) TOF of the pulse−echo after tightening.

2.2. Laser Ultrasonic Measurement System

The excitation source of the ultrasonic wave was a commercial nanosecond pulsed
laser at 1064 nm in this work. The collimation laser beam had a spot diameter of 8 mm
and a pulse width of 10 ns. The repetition rate could be adjusted from 1 Hz to 20 Hz.
The laser output energy was 30 mJ, and the energy stability (RMS) was less than 1%. The
independently developed instrument could collect ultrasonic wave signals at a frequency
from 0.2 MHz to 25 MHz. The corresponding sampling frequency was 100 MHz, and the
maximum gain value was as high as 89 dB. A schematic diagram of the laser ultrasonic
measurement principle is presented in Figure 2. The laser beam pulse directly irradiated
the bottom of the bolt, and then induced an ultrasonic longitudinal wave which propagated
along the axial direction of the bolt through the thermo-elastic effect. Simultaneously,
a smart piezoelectric sensor received an ultrasonic signal, and a magnetically mounted
transducer connector converted the ultrasonic signal covert into a voltage signal above
100 mV. To ensure the effectiveness and reliability of the collected signal, the use of a BNC
connector line achieved synchronization between the laser excitation unit and the signal
receiver unit.
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Figure 2. Schematic diagram of the laser ultrasonic system for bolt preload force evaluation.

The optical path of the laser excitation unit is shown in Figure 3. The ultrasonic probe
was the developed magnetically mounted transducer connector. Through a commercial
laser cleaning and polishing system, the surface roughness of the bolt head was controlled
below 1 μm. Three different−frequency smart piezoelectric sensors were directly bonded
on the surface of the bolt head by epoxies such as Loctite ABLESTIK 104, as a viscous
coupling layer. After baking–curing in a low-temperature furnace for 2 h, a viscous couplant
layer formed. The corresponding center frequencies were 2 MHz, 5 MHz, and 10 MHz,
respectively. After passing through the aperture diaphragm, the collimated laser vertically
irradiated the bottom of the bolt. Subsequently, an ultrasonic wave was induced through a
thermo-elastic effect on the surface [28]. The induced signal component was mainly the
ultrasonic longitudinal wave propagating from the bottom to the bolt head. The measured
bolt in this work was an M8 carbon steel bolt with a nominal diameter of 8 mm and a
length of 35.2 mm (Figure 4a). Considering that the laser irradiation area is the solid region
free from thread, an aperture diaphragm was used to adjust the laser spot diameter from
2 mm to 6 mm. The influence of the laser spot diameter on the ultrasonic wave signal
was investigated and is shown in Figure 4b. By comparison, the spot diameter of 6 mm
corresponded to a higher signal amplitude and better signal quality. Therefore, the 6 mm
diameter laser beam was the optimal ultrasonic wave excitation source in this work.

Figure 3. Schematic diagram and experimental setup of the laser ultrasonic excitation unit.
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Figure 4. (a) M8 bolt with a smart piezoelectric sensor; (b) ultrasonic signal strength for different
spot diameters.

3. Ultrasonic Measurement of the Bolt

3.1. Theoretical Model and Simulation

Laser energy absorption occurs on the surface and sub-surface of a bolt, regarded as
the boundary heat source. The energy expression is

Q = I· f (x)·g(t) (2)

where Q is the heat source, I is the energy absorbed by the material, and f (x) and g(t) are
the laser spatial distribution function and the time distribution function, respectively. The
laser source beam is the Gaussian beam, and its distribution function can be expressed as⎧⎪⎨⎪⎩ f (x) = exp

(
− x2

r2
0

)
g(t) = t

t0
exp

(
− t

t0

) (3)

where r0 is the laser spot radius, and t0 is the laser pulse width.
The finite element method [29,30] is used to simulate the propagation process of

laser ultrasound inside the bolt. Figure 5 shows the displacement distribution of the
ultrasonic wave from 4 μs to 8 μs. It is important to note that the main vibration energy
was transmitted along the axial direction of the bolt and was reflected on both sides of
the bolt to generate the trailing wave (Figure 5a). At 6 μs, the main vibration reached
the boundary of the bolt head (Figure 5b) and was then reflected (Figure 5c). Part of the
reflection was transmitted along the opposite axial direction, and the remaining wave
secondary reflection occurred at the internal boundary of the bolt head (Figure 5d). Figure 6
shows the propagation process of the ultrasonic wave between 4 μs to 8 μs. The wave
front propagated along the bolt axis (Figure 6a), reached the bolt head boundary at 6 μs
(Figure 6b), and was reflected at the bolt head (Figure 6c). Some reflected waves appeared
in the secondary reflection at the bolt head structural boundary (Figure 6d). Since the
ultrasonic wave was generated by mechanical vibration displacement, the propagation
process in Figures 5 and 6 is consistent.

Figure 5. Displacement of the mechanical vibration caused by thermo−elastic effects in the bolt;
dissemination process: (a)→(b)→(c)→(d).
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Figure 6. Ultrasonic longitudinal wave propagating along the axial direction in the bolt; dissemination
process: (a)→(b)→(c)→(d).

3.2. Ultrasonic Signal Acquisition

To examine the effectiveness of the laser ultrasonic system for bolt preload evaluation,
the simulated A−scan waveform and measured A−scan waveform from the ultrasonic
acquisition unit were compared, as shown in Figure 7a. We noted that the profile curve
of the simulated A−scan waveform was almost in accordance with that of the measured
one. The first longitudinal wave signal envelope can be easily observed in Figure 7 and
originated from the interaction between the laser-induced ultrasonic wave and the head
boundary. After propagating three times along the axial direction, the bolt head could
detect the second longitudinal wave. The multiple small peaks between the first and the
second longitudinal wave correspond to trail waves and reflection waves from the bolt head
region. The amplitude intensity of the second longitudinal wave presented a reduction
compared with its counterpart in the simulation results. This was due to the bolt intrinsic
loss caused by dissipation, absorption and scattering and the slight deviation of the wave
transmission direction caused by the roughness and uncleanness of the bolt surface. Thus,
the first longitudinal wave was more suitable for the measurement of the bolt preload force
in our work.

 
Figure 7. (a) Ultrasonic signals obtained from the simulation and the experiment; (b) FFT spectrum
of the simulation and experiment’s ultrasonic signal.

Limited by the 100 MHz of the available data acquisition frequency, the time accuracy
was relatively low. In our experiment, the TOFs of the pulse−echo presented no change
when the axial preload force was below 1 kN, as shown in Figure 8a,b; although the signal
waveform showed a slight phase shift, the TOF of the peak point was still the same, because
of the original sampling frequency. To address this issue, we applied the spline function
interpolation [31] to increase the data points and improve the resolution of the propagation
time difference. We inserted 100 interpolation points between the two original time data
points. The time interval was improved from 10 ns to 100 ps. The original temporal signal
A and B correspond to the longitudinal wave signal before and after a slight tightening,
as shown in Figure 8a. We found no change of TOF between signal A and signal B. The
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interpolation algorithm made the signal curves A and B convert into the corresponding
curves A’ and B’. The curve profiles became smooth, as indicated in Figure 8b. With the
introduction of the interpolation algorithm, a small TOF change was observed at the signal
peak position, and the corresponding change value was 0.7 ns (see Figure 8b).

Figure 8. (a) Original signal before and after applying a small preload; (b) the waveform underwent
a slight phase shift, but the data of the sampling points at the peak remained the same; (c) original
sample data (temporal signals A, B) and interpolation waveforms (interpolated signals A’, B’) before
and after loading; (d) rectangular window for comparing the TOF at the peak position between pre-
and post−interpolation.

The preload force of the bolt of this work was inconvenient for a commercial tensile
machine. A manual torque wrench was used here to indirectly control the bolt preload
through a tightening torque, although only about 10% of the torque was converted into
axial preload. A bolt was gradually installed by a torque wrench with a torque from 0 N·m
to 15 N·m, and the preload increase interval was designed to be 2.5 N·m. For each torque,
the laser ultrasonic system improved the measurement precision by averaging the testing
ultrasonic signal of measurements repeated 20 times. In addition, time−domain averaging
and an FIR filter were adopted to suppress noise interference. In order to investigate
the relationship between the torque and the TOF change, the ultrasonic signals during
different torque tightening processes were received by a smart sensor, as shown in Figure 9a.
With the increase of the torque, the highest peak position of the first longitudinal wave
presented the time−decay phenomenon. The ultrasonic signal amplitude had a small range
of fluctuations, as indicated in Figure 9b. This could be attributed to a slight variation of
the laser beam irradiation position and the small noise inference of the acquisition unit.
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Figure 9. (a) Received signals from the ultrasonic sensor during different torque−tightening pro-
cesses; (b) rectangular window demonstrating the TOF change before and after different torque
tightening processes.

For different torques, the bolt was subjected to different forces, which made the bolt
elongation change. The time variation of signal T (TOF) is the key data we use to evaluate a
preload. It directly reflects the elongation change of the bolt force, but the amplitude of the
signal is not the value we pay attention to. In the experiment, we also found that due to the
small interference of the measuring equipment and external signals, the amplitude of the
signal constantly fluctuated up and down, but this vibration did not affect our acquisition
of the TOF and the overall measurement results. Figure 9 shows one set of data from all
repeated experiments. For each set of different data, the amplitude of the signal was also
different. However, the phase shift (TOF) on the time axis was strictly in line with physical
laws and expectations.

For the increase in the amount of phase shift from 12.5 N·m to 15 N·m, as shown in
Figure 10a, the relationship was not strictly linear. This was true only for bolts with 2 MHz
sensors, as the linearity of 5 MHz and 10 MHz bolts was obviously better. However, this
did not affect the validity of the preload measurement, which, we think, was affected by
the sensor itself.

The TOF of the laser-induced longitudinal wave as a function of the torque for three
different-frequency smart bolts was measured and is shown in Figure 10a,c,e. With the
increase of the preload applied to the bolts, the TOF of the longitudinal wave presented a
nearly linear increase, demonstrating an extension of the axial length of the bolts. Nonlinear
ultrasonic effects were easily induced due to the special bolt shape, heterogeneous extension
of the length, and intense ultrasonic amplitude induced by the laser. On this basis, frequency
spectra of the three different sensor bolts were obtained by the Fastest Fourier Transform in
the West (FFTW) algorithm. The corresponding results are presented in Figure 10b,d,f. It is
important to note that all the three different sensor bolts presented broad frequency spectra.
This was due to a wide−band ultrasonic signal induced by the pulsed laser. In addition
to this, obvious harmonic waves induced by nonlinear effects can be easily observed.
As shown in Figure 10b, the center frequency of the 2 MHz smart bolt was at 2.6 MHz,
and the components of the third and four harmonic generations can be clearly seen. The
deviation of the frequency center value could be caused by the piezoelectric material and
frequency shift induced by the special bolt structure. In addition, no second harmonic
generation component was found. This was probably related to the intrinsic property of the
piezoelectric material. The frequency spectrum of the 5 MHz smart bolt also presented no
second harmonic generation component. The intensity of the higher harmonic generations
was weaker than the center frequency intensity and counterpart of the 2 MHz smart bolt.
For the 10 MHz smart bolt, the center frequency peaked at 11.2 MHz. No higher harmonic
generation component was observed. However, a strong low−frequency response centered
at 5.2 MHz could be observed. The reason is still unclear and will be further explored in
the near future. According to the nonlinear effects component proportion and the linearly
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fitting degree between the TOF and the torque, the 5 MHz piezoelectric sensor appeared
more suitable as an ultrasonic sensor for the evaluation of the axial preload.

Figure 10. Relationship between the TOF and the preload torque for different center frequency
sensors: (a) 2 MHz, (c) 5 MHz, (e) 10 MHz; spectrum of the first longitudinal wave signal for
(b) 2 MHz, (d) 5 MHz, and (f) 10 MHz PZT sensors.

To further analyze the deviation between the actual measurement and the linearly
fitted result, a photograph of the bottom end face of the smart bolts was taken, as shown
in Figure 11a. The bottom of the bolt presented an obvious, uneven distribution. A two
dimensional (2D) cross−sectional snapshot of the bolt is presented in Figure 11b. The
deviation was mainly induced by the uneven bottom of the bolt, the length error Δl caused
by the offset of the laser incidence center position during multiple tests, and the angular
error Δθ of the incident position originated from the incomplete collimation of optical
path and the tilted bottom surface of the bolt. The slight loosening of the bolts during
testing caused by friction failure of the bolt die also affected the stress stability of the bolts.
Additionally, signal interference of the laser excitation source and electronic noise of the
ultrasonic acquisition unit contributed to the deviation.

The pure laser−based ultrasonic technique, i.e., the laser generation−laser receiving
technique, has been intensely investigated recently in various industrial fields. Neverthe-
less, for strongly scattering surfaces, high−powered detection lasers are needed as well as
complex interferometer set−ups, which may be costly and difficult to miniaturize. The laser
ultrasonic system proposed here combines the advantages of laser non−contact excitation
and good−stability ultrasonic sensing free from a couplant. In addition to this, the combi-
nation of a smart piezoelectric sensor and a magnetically mounted transducer connector
allows for much higher sensitivity with a lower cost in ultrasound detection than laser
interferometers. In this work, we applied this proposed system to successfully measure
the TOF of a laser ultrasonic longitudinal wave and indirectly evaluate the relationship
between the bolt preload and the TOF of the ultrasonic wave. This work indicates that
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this system can be used as another effective laser ultrasonic method for non−destructive
testing (NDT) applications in the near future.

Figure 11. (a) Photograph of the bottom−end faces of three intelligent bolts; (b) errors caused by
incident center and incident angle offset.

4. Conclusions

In this paper, we successfully measured the TOF of an ultrasonic longitudinal wave by
applying a pulsed laser as the ultrasonic excitation in combination with a newly developed
ultrasonic sensor (i.e., a smart piezoelectric sensor and a magnetically mounted transducer
connector). The propagation process and displacement distribution of the laser-induced
ultrasonic wave were fully demonstrated along the axial direction of the bolt. The experi-
mental testing results agreed very well with the phenomena observed in the simulation
results. The introduction of interpolation made the TOF change measure of the ultrasonic
longitudinal wave accurate and effective. The TOF change of the first longitudinal wave
presented an almost linear increase with the increase of the torque. Compared with the
piezoelectric patches centered at 2 MHz and 10 MHz, the piezoelectric patch centered
at 5 MHz showed a better suppression ability of more intense nonlinear effects and a
better degree of linear fitting between the TOF and the torque. Future research work will
focus on the optimization of the laser ultrasonic measurement system to reduce external
errors, the analysis and verification of nonlinear ultrasonic effects of the piezoelectric sen-
sor at a microscopic level, and the combination with deep learning algorithms for axial
preload evaluation.
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Abstract: Angled shear vertical (SV) waves have been successfully employed in the non-destructive
testing of welds, pipes, and railways. Non-contact meander-line coil electromagnetic acoustic
transducers (EMAT) have many benefits in generating angled SV waves. The most important benefit
is that the incidence angle of an SV wave can be controlled by the excitation frequency. However, the
incidence angle of a traditional SV-wave EMAT is reported to be under 45 degrees in many cases. In
this work, such cases are tested, and the problems of the received signal at large incidence angles are
found to be due to wave interference and small signal amplitudes. An equivalent finite element (FE)
model is established to analyze the problem, and the main reason is found to be the head wave. An
alternative configuration of angled SV-wave EMAT with horizontal magnetization is proposed to
reduce the influence of the head wave. Finally, the results from simulations and experiments show
that the proposed EMAT has a larger signal amplitude and significantly reduced interference in
large-incidence angle scenarios. Moreover, an incidence angle of an SV wave of up to 60 degrees can
be achieved, which will help improve the performance and capability of nondestructive testing.

Keywords: SV wave; EMAT; incidence angle; horizontal magnetization; head wave

1. Introduction

Ultrasonic testing is a popular tool in nondestructive testing and evaluation. Guided ul-
trasonic waves can be used for distant flaw detection and structural health monitoring [1–3],
while bulk ultrasonic waves can be used for local flaw sizing and imaging [4]. Angled shear
vertical waves are one of the common bulk ultrasonic wave types for ultrasonic testing.
An angled SV wave propagates along a path that deflects from the normal direction of
the testing plane at a specified angle, which is usually called the incidence angle. With an
incidence angle, SV waves could be applied in the detection of oriented flaws and situa-
tions where space is restricted such that normal probes cannot be employed. Therefore,
angled SV waves have had remarkable success in the nondestructive testing of welds [5,6],
pipes [7,8], railways [9,10], etc.

Angled SV waves are normally generated by a piezoelectric transducer assembled on a
plastic wedge [6,11]. The wedge alters the incidence angle of longitudinal waves generated
by the piezoelectric transducer and transforms them into shear waves through mode
conversion and refraction. The angle of the wedge should be predesigned knowing the
acoustic velocities or impedance of the wedge and the tested object. However, the incidence
angle of SV waves cannot be changed without replacing the wedge once the angle of
the wedge is determined. A meander-line coil (MC) electromagnetic acoustic transducer
(EMAT) can also be used for angled SV wave generation [12]. The incidence angle of an
SV wave generated by an MC-EMAT is controlled by the spacing of the coil, the excitation
frequency, and the SV wave velocity in the specimen. As a result, the incidence angle of an
SV wave can be easily manipulated by changing the excitation frequency of an MC-EMAT
without redesigning the transducer. An EMAT is a type of non-contact transducer, making
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it suitable for some applications where wedged piezoelectric transducers cannot be applied,
such as in elevated temperatures, online testing etc. [13–18]. Moreover, an EMAT has no
requirement for a couplant, making it suitable for some applications where accurate time-
of-flight (ToF) measurement is needed by getting rid of the influence of the inconsistent
coupling condition [19,20].

The main drawback of an EMAT is its low transduction efficiency such that the signal-
to-noise ratio (SNR) of EMAT signal is small and prone to noise interference [21]. Therefore,
improving the efficiency of SV-wave EMAT has drawn a lot of attention. Line-focusing [22]
or point-focusing [23] SV-wave EMATs employ MC with variable coil spacing, focusing
the SV-wave beam on a line or a point, respectively, inside the specimen with designed
frequency. The beam profile and intensity of the SV waves generated by these transducers
are improved. However, the coil structure and the excitation frequency are bonded together
to achieve beam focusing for a focusing SV-wave EMAT, which means the focusing line or
point is fixed and cannot be simply controlled through switching the excitation frequency.
Accordingly, the focusing-type SV-wave EMAT is less flexible than typical MC SV-wave
EMAT, especially in some circumstances such as scanning tests of large areas or angles.

Much previous research has shown that the signal amplitude of SV-wave EMAT drops
sharply when the incidence angle is beyond a specific angle (typically below 45 degrees) [21],
which limits the scanning range. Even with a phased array of SV EMATs, large incidence
angles still seem unavailable [24]. In our experiments with a pitch-catch configuration
on an aluminum specimen, the receiving transducer picked up some interference signals
when operating at large incidence angle. The interval between the interference signal
and the SV-wave signal varies when the incidence angle changes. This phenomenon is
not conducive to applications such as flaw detection and precise ToF measurement as the
interference signal may cause false alarms or partially overlap the actual SV wave signal.
Therefore, solving the two problems is critical to enabling the large-angle operation of
SV-wave EMAT. With the aid of the FE model, the main cause is analyzed and found to be
the head wave. An alternative configuration of SV-wave EMAT is designed to solve the
problem based on this analysis.

This article first provides a quick overview of the basic working principles of angled
SV-wave EMAT. Then, the problems are illustrated with experimental results, and an
equivalent simulation model is established to show the internal acoustic field. In the
next section, the acoustic field generated by a point source is analyzed to find differences
from the assumptions made in the working principles. Finally, a new configuration of
SV-wave EMAT is proposed, and its performances are assessed with both simulations and
experiments. The performances of the traditional angled SV-wave EMAT and the proposed
one are also compared.

2. Working Principles of Angled SV-Wave EMAT

The typical SV-wave EMAT configuration is made up with an MC with equal spacing
and a permanent magnet with vertical magnetization, as shown in Figure 1.

When the MC-EMAT is placed on an aluminum material, the Lorentz force mechanism
is the only consideration since it dominates the transduction process on paramagnetic mate-
rials. In the MC coil, current flows in adjacent wires have opposite direction. Consequently,
a spatial alternating eddy current J is induced in the specimen. Under the bias magnetic
field B provided by the permanent magnet, the Lorentz force f can be calculated by

f = J × B. (1)

Inside the specimen, f has a similar distribution to the eddy current. This force makes
ultrasonic waves form and propagate. In practice, the eddy current decays exponentially
along the depth at a rate related to skin depth δ, which is given by

δ =
√

2/(ωμσ), (2)
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where ω is the angular frequency of the excitation current, μ is the magnetic permeability,
and σ is the electrical conductivity. Skin depth is at the sub-millimeter scale in the common
EMAT operating frequency range. As a result, the Lorentz force mainly acts on the surface
of the specimen.

Figure 1. Illustration for the working principle of MC-EMAT on an aluminum specimen.

An ultrasonic wave, when propagating inside the solid media, obeys the frequency-
wavelength relationship, given by

c = λ f , (3)

where c is the wave propagation velocity, λ is the wavelength and f is the frequency.
Figure 2 employs a linearly distributed point force on the top boundary to illustrate
the criteria for angled incidence. To make the incident waves interfere constructively,
the wave generated by each source should arrive at an arbitrary plane perpendicular to
the propagation direction with an identical phase. These planes are the wavefronts of SV
waves. In Figure 2, the formation of one wavefront (black dot-dash line) is illustrated,
and those of the other wavefronts (grey dot-dash lines) are omitted for simplicity. This
means the equivalent wavelength λeq is 2d sin θ by the geometric relationship, assuming
each wave initiates at the same phase and has a cylindrical wavefront. Substituting λeq into
Equation (3), the equation for incidence angle calculation can then be written as

θ = sin−1 cs

2d f
, (4)

where cs is the shear wave velocity and 2d is the distance between two point sources with
the same initial phase. In the MC-EMAT, d is the distance between two adjacent wires.
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Figure 2. Illustration for geometric relations in SV wave angled incidence.

3. The Problems of Common Angled SV-Wave EMAT

The present experiment was set up to provide a more intuitive explanation of the
problems mentioned in the introduction. The configuration of the experiment is shown
in Figure 3, where the picture in the top-right corner shows the coil and the magnet of
the EMAT used in this experiment. In this configuration, the high-power pulser (RITEC
RAM-5000 [25]) generates high voltage tone-burst signals and drives the transmitting
EMAT connected by a coaxial cable. The parameters (cycles, frequency, power, etc.) of the
tone-burst signal can be controlled by the computer. The transmitting EMAT generates
an angled SV wave in the specimen, and when the wave arrives, the receiving EMAT
transduces the ultrasonic waves to the electrical signals. The voltage amplitude of the
received signal is typically within tens of microvolts, so the receiving EMAT is wired
to a homemade variable gain amplifier (40–80 dB) to make the signal measurable in the
following data acquisition (DAQ) process. The amplified signal is fed to an oscilloscope
(Agilent MSO-X 3024A) under the control of a computer for acquisition, and the data are
saved on the computer for further processing. The transmitting and DAQ processes are
synchronized by the trigger output of the pulser. Two identical EMATs are arranged on
both sides of the specimen in a pitch-catch configuration. Fixing the transmitting EMAT on
one side of the specimen, the incidence angle of the SV wave is expected to be controlled
via changing the excitation frequency according to Equation (4). The receiving EMAT
can then be moved along the other side to a corresponding position to receive the angled
SV-wave signal.

The specimen was made of 6061-T6 aluminum alloy. The acoustic velocities of the
specimen from the experiment were different from those calculated from the standard
material properties (density, Young’s modulus, and Poisson’s ratio), so the acoustic ve-
locities were measured firstly with an electromagnetic acoustic thickness gauge (Orisonic
ETGmini-X1 [26]) with a thickness measurement resolution of 0.01 mm and a Vernier
caliper with a resolution of 0.01 mm.The pieces of equipment with calibration functions
were calibrated before the experiment. The corresponding properties of the specimens and
the EMAT in this experiment are detailed in Table 1.

The excitation signal used in the experiment was an 8-cycle sinusoidal tone burst with
a voltage amplitude of 1000 V. The frequencies for 30 degrees and 45 degrees of incidence are
calculated to be 1.210 MHz and 0.856 MHz, respectively. The environmental temperature
was measured to be 26 degrees Celsius, and the temperature variation was within±1 degree
Celsius, so the acoustic velocities had almost no changes during the experiments.
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Figure 3. Configuration of angled SV-wave EMAT testing experiment.

Table 1. Properties of specimens and EMAT used in experiment.

Parameter Value

Specimen dimension 35 mm× 70 mm× 400 mm
Specimen longitudinal wave velocity cl 6436 m/s

Specimen shear wave velocity cs 3146 m/s
Magnet dimension 25 mm× 35 mm× 40 mm

Magnetic flux density on surface of magnet 0.55 T (Teslas)
Coil turns 7

Coil space interval d 2.6 mm
Coil wire diameter 0.12 mm
Coil element width 1.2 mm
Coil element length 30 mm

Number of coil elements 10

Figure 4 shows the received SV-wave signals. The signal at 30 degrees looks promising,
while the signal at 45 degrees suffers from severe discontinuity and interference. Moreover,
the amplifier gain settings for the two signals are different. The real amplitude of the
SV-wave signal at 30 degrees is 16 dB larger than that at 45 degrees at the same amplifier
gain. The small signal amplitude is still resolvable through increasing the gain and the
averaging level. However, the discontinuity and interference in Figure 4b will cause some
problems such as false alarms or incorrect ToF measurements. Therefore, a two-dimensional
FE model is established to further investigate the problem, which contributes to the analysis
of wave motions inside the specimen. The model is built with COMSOL Multiphysics [27]
using parameters consistent with the above experiment. Figure 5 shows the schematic
diagram of the FE model. There are two things that need special care: one is that the left and
right edge should be a low-reflection boundary to lower disturbances from the reflections
on those edges, while the other is that the mesh size of the subsurface layer should be small
enough to accurately analyze the eddy current as well as the Lorentz force.

This full coupled model employs a magnetic field and solid mechanics module to
model the electromagnetic field and the mechanic field inside the specimen, respectively.
The two modules interact through Lorentz force coupling. The detailed parameters used in
this model are shown in Table 2 in addition to those in Table 1 above, where δ refers to the
skin depth under the corresponding frequency and can be calculated from Equation (2).
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Figure 4. The received SV-wave signals when the incidence angles are (a) 30 degrees and (b) 45 degrees.

Figure 5. The schematic diagram of the angled SV wave EMAT FE model.

Table 2. Extra parameters used in FE model.

Parameter Value

Model thickness 35 mm
Specimen dimension 70 mm× 300 mm
Specimen density ρ 2700 kg/m3

Specimen relative permeability μrc 1
Specimen conductivity σs 3.774× 107 S/m

Coil relative permeability μrs 1
Coil conductivity σc 5.998× 107 S/m

Lift-off of coil 0.3 mm
Magnet residual flux density Br 1.4 T

Lift-off of magnet 1 mm
Eddy current area meshing thickness 5δ

Eddy current area meshing size δ/3
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The excitation signal is loaded through voltage inside the transmitting coil. The re-
ceiving signal can be extracted from the receiving coil. The simulated signals for incidence
angles of 30 degrees and 45 degrees are shown in Figure 6, which are in good agreement
with the experimental results. There are minor differences between the simulation and
experimental results. The reasons for these differences are mainly due to the following: (1)
slight anisotropy of the specimen, (2) misalignment of the transducers and (3) inaccurate pa-
rameters in the FE model. During the ultrasound transmitting, propagating, and receiving
processes, both mechanical and electromagnetic fields are involved. Therefore, the good
agreement between the simulated and experimental results can verify the validity of the
FE model. This FE model will be used to simulate and analyze the acoustic field inside
the specimen.

Figure 6. The simulated and experimental SV wave signals when the incidence angles are (a) 30 degrees
and (b) 45 degrees. Here, the amplitudes of experimental signals are scaled to those of the simulated
ones for comparison.

There are many quantities that can be used for visualizing acoustic fields, including
displacement, velocity, acceleration, stress, etc. However, most of them simply reflect
local motions of particles and are not intuitive for analyzing wave components when the
acoustic field is relatively complex. Here, we use the second principal stress invariant [28]
to visualize the acoustic field inside the specimen, which is given by

I2 = tr(σ)2 − tr(σ2) = σiiσjj − σijσji, (5)

where σ is the Cauchy stress tensor, tr(·) is the trace of a matrix, and the component form
uses the Einstein summation convention. The sign of I2 divides the whole acoustic field
into two types—one with a minus sign representing a shear wave, and the other with a
plus sign representing a longitudinal wave. The magnitude of I2 corresponds to the power
of the acoustic field. Thus, the signed squared root of the second principal stress invariant
can be used to visualize the bulk shear and longitudinal wave in a much clearer way, which
is given by

A ≡
√
|I2|sgn(I2), (6)

where sgn(·) is the sign of a number. A symmetric linear color map with blue and red
for negative and positive values, respectively, is used in the following visualizations.
Meanwhile, the acoustic field is highly symmetric, so only half of the field is shown in the
following figures unless otherwise specified.

The acoustic field with an incidence angle of 30 degrees at 20 μs is shown in Figure 7a.
Blue parts represent the shear wave, or more specifically the SV wave, and it propagates at
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the shear wave velocity. Red parts represent the longitudinal wave, and it propagates at the
longitudinal wave velocity. The surface wave is not considered here. The wave front angle
is defined as the angle between the wave front and the horizontal direction, which should
be equal to the incidence angle θ by a geometry relationship. The shear wave front angle is
measured as roughly 30.3 degrees, which is basically the same as the incidence angle.

Figure 7. The simulated acoustic field from SV-wave EMAT at 20 μs when the incidence angles are
(a) 30 degrees and (b) 45 degrees.

The acoustic field with an incidence angle of 45 degrees at 20 μs is shown in Figure 7b.
Ideally, there should be an SV wave propagating along the direction identical to the preset
incidence direction. However, in the configuration with an incidence angle of 45 degrees,
the shear wave fronts have multiple angles, measured roughly as 32.1 degrees, 27.3 degrees
and 36.1 degrees from top to bottom, respectively. None of them are 45 degrees, which is
unexpected. Moreover, the wave front is not continuous, resulting in the discontinuity and
interference of the time domain signal.

The acoustic field generated by the SV-wave EMAT is too complex to analyze. There-
fore, the model was simplified to an elemental source to investigate the acoustic field and
analyze the working principle of SV waves.

4. Analysis

Based on Equation (4), the working principle of SV waves requires that the waves
generated by each source arrive at a plane with the same phase. The related calculation
also assumes that the bulk wave by the same source has a cylinder wavefront and the same
phase at every angle of an instant circle. The Lorentz force mainly acts within the skin depth
(around 0.08 mm at 1MHz in the used specimen) of the specimen, so a boundary point
source is a suitable approximation in a 2D space. Therefore, another model with a point
load on the center of the top boundary is established to analyze the basic acoustic field,
as shown in Figure 8. This model uses the solid mechanics module only. The geometry
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of the specimen is changed to 100 × 50 mm. The point load is set to be a 3-cycle 1MHz
sinusoidal tone-burst with a direction parallel to the top boundary.

Figure 8. The schematic diagram of the point source model.

The acoustic field at 7.5 μs is shown in Figure 9. There are four different types of waves
that can be distinguished from the results: a circular-front shear wave, a longitudinal wave,
a surface wave, and a planar-front shear wave. The planar-front shear wave intersects with
the circular-front shear wave, and the superposition of these two shear waves results in the
non-uniform distribution of phase and amplitude on a circle.

Figure 9. The acoustic field from a horizontal point source at 7.5 μs. There are 4 types of waves:
circular-front (1) SV wave; (2) longitudinal wave; (3) surface wave; (4) planar-front SV wave.

A set of observing points is arranged in a 25 mm-radius semicircle with an even angle
interval to further evaluate the amplitude and phase of the circular shear wave front versus
the angle, as shown in Figure 8. A time-domain signal of the quantity A can be calculated
for each observing point. Then a B-scan-like image is obtained via combining the time
domain signal of every observing point, as shown in Figure 10. The X-axis represents
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the angle of the observing points when defining the direction normal to the surface as
0 degrees, as indicated in Figure 8. The Y-axis represents time, and the color represents the
quantity A.

Figure 10. Time-angle distribution from a horizontal point source with observers on a 25 mm
semicircle; the solid line refers to the calculated head wave ToF.

As indicated in Figure 10, the shear wave is uniform within 30 degrees, while abrupt
changes in the wave front happen after 40 degrees, which is troublesome for beam-forming
in those angles. Therefore, weakening the planar front shear wave should be a solution.
In fact, this type of wave has been extensively studied in the past and has names such
as head wave, von Schmidt wave, or refraction wave. In the half-space medium above,
the head wave forms due to the interface and the surface-skimming longitudinal (SL) wave
according to research originated by Goodier and Bishop [29]. Here, the SL wave refers to the
part of the circular front longitudinal wave near the surface, whose propagation direction
and polarization direction are both parallel to the surface. The SL wave, if considered as a
plane wave with a horizontal incidence angle, will emit a planar front shear wave at the
surface, which is a head wave and propagates at an angle equals to the critical refraction
angle given by

θh = sin−1 cs

cl
, (7)

where the subscription h refers to the head wave. θh is 29.3 degrees for the material studied
in this paper.

The time-of-flight (ToF) of the head wave from the point source to the observing point
can be calculated through a geometric relationship, as illustrated in Figure 11, given by

t =
r cos(θ − θh)

cs
, (8)

where r is the radius of the circle the observing point lies on, and θ is the observing point
angle. The predicted ToF of the head wave is drawn in Figure 10 in a solid line to confirm
that the interference wave is a head wave. Evidently, the head wave should be considered
for reducing the interference between the circular shear wave and the planar shear wave.
In addition, the amplitude of the head wave is proportional to that of the SL wave, so
lowering the SL wave amplitude will help reduce the interference.

The horizontal vibration source creates a strong shear wave in the normal direction.
However, it also creates a strong longitudinal wave in the horizontal direction, part of
which is the unwanted SL wave. To reduce the SL wave and head wave, a vertical vibration
source can be used. Switching the point load direction in the previous model to the vertical
direction, the corresponding acoustic field at 7.5 μs is shown in Figure 12a. The amplitudes
of both the SL wave and head wave decrease as expected. The circular shear wave is
affected when the incidence is close to the normal direction, since there is no shear vibration
in the normal direction. Fortunately, this is not a problem for large incident angle operation,
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indicated by the B-scan-like image obtained with the same observing points shown in
Figure 12b.

Figure 11. Illustration for head wave ToF calculation at the observing point.

Figure 12. The simulation results of a vertical point source: (a) the acoustic field at 7.5 μs and (b) the
time-angle distribution from observing points.
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The influence of the head wave is not eliminated but has been significantly lowered—
there is only a small change in the phase of the circular shear wave for a larger angle range,
especially at large incidence angles. To be more precise, the incidence angle range of SV
waves has been enlarged to be between 15 and 70 degrees. The head wave still needs to be
considered at large angles, since the head wave arrives earlier than the circular shear wave.

5. New Configuration of SV-Wave EMAT for Large Incidence Angles

From the analysis, vertical force should outperform the horizontal force when gen-
erating SV waves at large incidence angles. According to Equation (1), the Lorentz force
direction is related to the eddy current direction and the magnetic field direction, so us-
ing horizontal magnetization instead of vertical magnetization will generate the vertical
Lorentz force. Figure 13 shows both the common and the proposed EMAT configurations.

Figure 13. The structure diagram of (a) common and (b) proposed angled SV-wave EMAT.

The magnet direction in the full coupled FE model is set to be horizontal for both
transmitting and receiving EMATs. Firstly, the Lorentz force distribution at δ/3 under the
upper surface with x between −15 mm and 15 mm is extracted and visualized in Figure 14
at an instant when it comes to the maximum. The corresponding force components of
interest for the related configuration are drawn in red. With horizontal magnetization,
the vertical Lorentz force predominates as intended.

Figure 14. The subsurface Lorentz force distributions along x of both configurations.

Then, the acoustic fields in incidence configurations of 30 degrees and 45 degrees at
20 μs were examined separately. The result is shown in Figure 15. The corresponding

280



Sensors 2022, 22, 8589

received signals in the SV-wave EMAT are shown in Figure 16. From Figures 15 and 16,
the SV wave with an incidence of 30 degrees with horizontal magnetization makes no
improvement compared to that with vertical magnetization, while the situation with an
incidence of 45 degrees makes a notable difference. The wave no longer has discontinuity
and interference but has a uniform propagation direction, which precisely matches the
preset incidence angle. In addition, the intensity of the wave is enforced as well.

Figure 15. The acoustic field from the proposed horizontal magnetization EMAT at 20 μs when the
incidence angles are (a) 30 degrees and (b) 45 degrees.

Figure 16. The simulated wave signals with proposed horizontal magnetization EMAT when the
incidence angles are (a) 30 degrees and (b) 45 degrees.
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6. Comparison between SV-Wave EMATs with Vertical and Horizontal Magnetization

Simulations and experiments were carried out for SV-wave EMATs with vertical and
horizontal magnetic field configurations, respectively. The incidence angles varied from
30 degrees to 60 degrees with a 5 degree step, and the received SV wave signals were
captured and compared for both configurations. The signals were normalized through
dividing the maximum amplitude of the signals among all angles with the same configura-
tion, and the experimental signals were compensated from corresponding amplifier gains.
The simulation and experimental signals are shown in Figures 17 and 18, respectively.
The signals with the horizontal magnetization configuration show great uniformity of
the time-domain signal in the angle range of interest. As for the vertical magnetization
configuration, the overall problems are the interfering head wave and weak signals at large
incidence angles.

Figure 17. The simulated signals from (a) proposed horizontal magnetization EMAT and (b) common
vertical magnetization EMAT; incidence angle ranges from 30 to 60 degrees. The amplitudes for
normalization are 3.49 and 8.87 for (a,b), respectively.

It should be noted that the vertical magnetization configuration has a larger signal am-
plitude and better SNR than the horizontal magnetization configuration when the incidence
angle of the SV wave is small (e.g., <40 degrees). Therefore, the vertical magnetization con-
figuration should be considered when improving SNR is the priority. When the incidence
angle of SV wave is the same or close to the angle of the head wave (e.g., the 30 degree
scenario in the paper), the two shear waves interfere constructively. The signal is much
stronger with the superposition of these two shear waves. The horizontal magnetization
configuration is suitable for a wide range of incidence angles, making it suitable for wide-
angle scanning tests. The horizontal magnetization configuration should be used if the
incidence angle steerability is the concern. The incidence angle near the angle of the head
wave should be avoided because the head wave may introduce errors in the incidence
angle. Part of the interference signal can be filtered out through the differences in the ToF
of the SV wave and the head wave.

282



Sensors 2022, 22, 8589

Figure 18. The experimental signals from (a) the proposed horizontal magnetization EMAT and
(b) the common vertical magnetization EMAT. The incidence angle ranges from 30 to 60 degrees.
The amplitudes for normalization are 0.33 and 1.92 for (a,b), respectively.

7. Conclusions

The typical angled SV-wave EMAT suffers from interference and weak signals when
used for large-incidence-angle applications. In this paper, a fully coupled FE model was
established and verified. The acoustic fields of an angled SV-wave were visualized with
the aid of the FE model to analyze the interference in the SV-wave signal. Through 2D
space point source analysis, the main reason was found to be the head wave, which is
directly related to the surface skimming longitudinal wave. Accordingly, an EMAT with a
horizontal magnetization configuration was proposed to suppress the impact of the head
wave. The simulation and experimental results showed that the proposed configuration
makes a great improvement in large incidence angles. Finally, the performances of both
configurations for 30- to 60-degree incidence angles were compared with simulations
and experiments. The proposed horizontal magnetization configuration outperforms the
vertical configuration on both signal amplitude and interference when the incidence angle
is larger than 40 degrees. Moreover, the horizontal magnetization configuration is suitable
for wide-angle scanning tests.

The proposed EMAT adopts horizontal magnetization to solve the problem mentioned
in this article. Further studies will be carried out to optimize the horizontal magnetic
field of the EMAT, such as using a magnet array or a specially designed magnetic flux
concentrator. Moreover, the parameters of the EMAT can be optimized with suitable
optimization methods, and the directivity profile and steerability of the EMAT can be
assessed and further improved.
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Abstract: The conventional way of studying corrosion in marine environments is by installing
corrosion coupons. Instead, this paper presents an experimental field study using an unattended
corrosion sensor developed on the basis of ultrasound (US) technology to assess the thickness loss
caused by general atmospheric corrosion on land close to the sea (coastal region). The system
described here uses FPGA, low-power microcontroller, analog front-end devices in the sensor node,
and a Beaglebone black wireless board for posting data to a server. The overall system is small,
operates at low power, and was deployed at Gran Canaria to detect the thickness loss of an S355
steel sample and consequently estimate the corrosion rate. This experiment aims to demonstrate the
system’s viability in marine environments and its potential to monitor corrosion in offshore wind
turbines. In a day, the system takes four sets of measurements in 6 hour intervals, and each set
consists of 5 consecutive measurements. Over the course of 5 months, the proposed experiment
allowed for us to continuously monitor the corrosion rate in an equivalent corrosion process to an
average thickness loss rate of 0.134 mm/year.

Keywords: corrosion monitoring; corrosion rate; FPGA; offshore wind turbines; ultrasound; thickness loss

1. Introduction

As the offshore wind-energy industry is prepared to increase its capacity in the follow-
ing years [1] it is also facing important challenges. The need for wind farms farther away
from land (10–50) km and at increasing depths (>200 m) [2] has led to new wind tower
designs and deployment strategies [3] to reduce capital expenditure (CAPEX). However, in
the medium and long term, wind-farm operators face increasing costs due to the operation
of the wind farms in extremely harsh environments. Maintenance tasks in offshore wind
farms need to be thoroughly prepared in advance because access to the wind towers is
expensive in terms of both trained staff and trip costs [4].

Therefore, structural health monitoring (SHM) has become one of the major disci-
plines for offshore wind turbines (OWTs) with the necessity of improving operation and
maintenance strategies [5]. SHM provides a strategy for the damage detection of structures
in the mean of changes in material or geometric properties that affect current or future
performance [6]. Hence, the continuous structural health monitoring of wind turbines
would be beneficial in improving structural reliability and optimizing maintenance tasks at
minimal associated costs [7]. Corrosion is one of the main roots for degradation of offshore
structure materials which could eventually lead to damage and weaken the structure [8].
The deterioration of the materials and their properties due to corrosion is a fact that reduces
the useful service life of the material and leads to fail the structures, equipment and other
objects from their intended functioning. Studies show that the estimated cost of corrosion
is about 3–4%, of each nation’s gross domestic product (GDP). It was estimated that be-
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tween 15% and 35% of the cost of corrosion could be saved through improved corrosion
management [9].

Corrosion Monitoring in Offshore Wind Turbines

Corrosion in the tower and other equipment within the wind tower is one of the main
consequences of an offshore environment [10]. In particular, corrosion in the tower and its
foundations is critical because it could potentially lead to a structural failure of catastrophic
consequences. The form of corrosion on offshore steel wind turbine towers varies for each
tower zone depending on the access to the levels of oxygen, humidity, and water, including
water water temperature, salinity, and depth [11].

Corrosion coupons are the most conventional technique for calculating the corrosion
rate in an offshore environment. Corrosion rates for construction steel below sea level are
0.2 mm/year on average; in tidal and splash zones, the rate may fluctuate from around
0.4 to 1.2 mm/year [12]. Reported corrosion rates of steel from different marine locations
are available in [13]. Moreover, a 0.83 mm/year of corrosion was experimentally estimated
in the North Sea, which is quite a higher value compared to other reported values [14].

Hence, the early detection of the possible risks of structural failure allows for avoiding
severe damage to the structure and saving on associated costs. For that, maintenance
operators are very keen on proper and efficient solutions that can continuously monitor
corrosion unattended while using wireless connectivity to obtain real-time data, with the
possibility to move around the tower to inspect new areas as required.

Corrosion monitoring covers a broad range of techniques that involve measuring and
converting a measured parameter into corrosion loss or rate [15–17]. On the basis of the
sensing principle, different types of corrosion detection sensors are available [18]. The
change in the material could be sensed via the loss of weight, the alteration of physical,
chemical, electrical, magnetic, or mechanical properties, and the loss of component integrity
(e.g., cracking). Nondestructive testing (NDT)-based corrosion detection allows for inspect-
ing the material without disturbing the material properties. Hence, NDT techniques are
more suitable for corrosion monitoring solutions with real-time data acquisition systems
and remote data logging.

Ultrasound techniques for corrosion monitoring are based on the continuous reduction
in the thickness of a material immersed in a corrosive environment. As such, they are
normally classified as a direct, nondestructive, and nonintrusive technique. Nonintru-
siveness means that the sensor itself does not influence the corrosion mechanism taking
place. Furthermore, the ultrasound sensor can be located on the “clean” side of the material
being corroded. There are many commercial ultrasound devices that provide valuable
information about various forms of degradation (cracks, deformations, thinning, corrosion,
etc.). However, in general, they are classified as inspection devices rather than monitoring
devices. Inspection means measurements carried out by trained staff over a predetermined
time frame in accordance with maintenance schedules. Instead, corrosion monitoring
devices perform very frequent measurements with the aim of detecting small fluctuations,
in this case related to corrosion phenomena. Thus, the data coming from the corrosion mon-
itoring devices can be used as input for a general assessment of corrosion. The precision
obtained with ultrasound signals allows for very frequent thickness measurements that
can be used to track corrosion.

In this paper, we present a miniaturized corrosion monitoring solution based on
ultrasound technology for offshore platforms. The ultrasound probe was glued onto an
S355 bare steel sample of 5 mm in thickness. The developed system was deployed at
a corrosive environment in Gran Canaria with the aim of analyzing the thickness loss
evolution and estimating the corrosion rate in a real and harsh scenario.

This paper is organized as follows. The theory of the ultrasound-based sensor is
presented in Section 2, including the theory of ultrasound with ToF estimation in Section 2.1,
the description of the corrosion sensor in Section 2.2, the discussion of the ToF calculation
algorithm with the temperature compensation in Section 2.3, and how to calculate the
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relative thickness loss is discussed in Section 2.4. Next, the introduction to the experiment
of measuring thickness loss due to corrosion in real conditions is provided in Section 3,
followed by the experiment’s results and discussion in Section 4.

2. Theory

2.1. Ultrasound Theory

In the ultrasound technique, the corrosion loss rate is determined on the basis of
wall thickness loss. During the ultrasound test, a short duration of ultrasound energy is
introduced into the test object at periodic intervals of time. The sound energy propagates
through the material in the form of mechanical vibrations. This propagation attenuates
and weakens the sound wave, with the travel distance mainly as a result of scattering,
absorption, and reflection [19]. When a sound wave strikes a medium interface, part of the
energy is transmitted into the next medium across the boundary, while some is reflected
into the first medium as a result of different acoustic impedances in different media or
materials. The amount of reflected or transmitted energy gives information about the size
of the reflector.

On that basis, there are two approaches that can be used to estimate thickness during
ultrasound testing: through-transmission and pulse-echo techniques. In the through-
transmission technique, the transmitted part of the signal through the test specimen is
monitored, whereas in the pulse-echo technique, the reflected signal at different boundaries
is considered [20]. Hence, in through transmission, two transducers are necessary for
transmission and reception, whereas in the pulse-echo technique, a single transducer is
enough for both tasks.

Generally, ultrasound nondestructive-testing-based measurements involve wave prop-
agation (transit) time across a given distance and a degree of attenuation that takes place at
that time [21]. Measurement modes used to find the transit time of a sound wave in the
process of thickness calculation can be classified on the basis of the choice of echoes [22]:

• Mode 1: excitation signal—first back-wall echo.
• Mode 2: near surface—first back-wall echo.
• Mode 3: two successive back-wall echoes.

The probes used to generate and receive ultrasonic energy are known as ultrasonic
transducers. Typically, these transducers are produced from piezoelectric ceramic or
composite material [23]. The performance efficiency of a piezoelectric transducer depends
on the proper matching of electrical and acoustic impedance. Electrical impedance matching
needs the design of an electrical matching circuit between the driving circuit and the
transducer; the acoustic impedance between the piezoelectric generators/detectors and the
propagating media likewise needs to be matched. A mismatch could lead to a loss in signal
transmission and a low signal-to-noise ratio (SNR) [24]. The electrical impedance can be
matched in different ways, such as using an impedance matching electrical network, and
matching the characteristics and properties of the cable connected to the transducer [25].
A significant acoustic impedance mismatch results in most of the signal’s energy being
reflected. Hence, a couplant material (often a liquid, such as a thin film of oil, glycerin,
or water) is typically required in nondestructive material testing to reduce the acoustic
impedance mismatch between air and a test specimen.

In our solution, we used the pulse-echo technique with a single direct-contact trans-
ducer, and Mode 3 was selected to estimate the thickness. Moreover, relative measurements
were performed to observe the thickness loss in a certain location where the sensor was
placed, which we discuss further in Section 2.4.

The capacity of the ultrasound technique was presented in [26], measuring the wall
thickness loss of a mild steel sample under accelerated laboratory conditions. Our ap-
proach presents a novel solution, applying the ultrasound technique to a smart continuous
monitoring system deployed on a marine environment over the course of several months.
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Estimation of Time of Flight

Using ultrasonic waves, corrosion condition is evaluated on the basis of the wall
thickness loss caused by corrosion. Generally, the two common ways to determine the
geometric distance measurement on the basis of an ultrasound response are phase shift
and time of flight (ToF) [27,28].

ToF is the time taken by ultrasound signal to arrive from transmitter to receiver
corresponding to the thickness d of the test specimen; when a single transducer is used,
this relation can be stated as in Equation (1).

d = c× ToF/2 (1)

where c is the speed of sound in the material. This value depends on the physical properties
of the material/medium (elastic moduli and the density of the material) [29]. The most
common technique employed in many ultrasonic applications to estimate a signal’s transit
time through a test material is the ToF technique, which was also applied to our approach.

Applying a threshold with an analog comparator at a certain amplitude level is the
most fundamental and straightforward method of calculating the ToF value. A more
accurate and reliable way is to apply appropriate digital signal processing techniques.
In that case, the ultrasound response is processed on the basis of its echo parameters.
One of the most common methods is to consider the received signal as a delayed and
attenuated (amplitude-scaled) version of a reference signal with noncorrelated additive
noise [30]. The objective is to estimate a ToF measurement by matching the received
signal with a reference signal. For that, the cross-correlation function is widely used to
mathematically quantify the highest similarity between the reference and delayed version
of signals/echoes in the time domain. An estimation of the ToF value is the time at which
the cross-correlation result reaches its maximum.

However, the precision of a ToF measurement depends on the quality of the received
signal. ToF value estimation can become more complex in the presence of noise, interference,
scattering, and attenuation of the signals [31]. Thus, it may require a preprocessing step of
filtering before the cross-correlation process. Even afterwards, ambiguities detecting the
actual ToF value in the cross-correlated result are possible; in such situations, the precision
of the ToF estimation could be improved with additional computational steps [31–34].

Our solution uses a single transducer based on the pulse-echo method. As the same
transducer is employed for transmission and reception, it is important to consider the
dead zone of the sensor, which is the interval of the transducer ringing due to the initial
pulse and not yet completely ready to receive/detect reflected echoes [35]. Figure 1 shows
a raw signal obtained for a bare steel sample of 5 mm thickness. There is an interval of
approximately 440 samples (3.5 μs) produced by the piezoelectric sensor’s dead zone, in
which the output of the sensor presented transient behavior due to the characteristics of
the signal’s generation circuitry and the electrical adaptation inside the piezoelectric sensor.
Since the first back-wall echo falls into the dead zone of the piezoelectric sensor, the next
two consecutive back-wall echoes were used to calculate the ToF value (using Mode 3 as
mentioned in Section 2.1).

2.2. Description of the Corrosion Sensor

Our miniaturized and low-cost monitoring solution (see the electronics in Figure 2) is
expected to operate unattended under the harsh conditions of offshore platforms for a long
period, estimating the thickness loss due to corrosion. A small size (110 × 60 × 15 mm),
wireless connectivity, and low power (5.4 μW in standby mode, 850 mW average power for
measurement events with a duration of 200 μs) are some important features to facilitate
deployment and to provide higher autonomy. On top of that, the low weight of the system
(around 100 g) is important to obtain a feasible solution integrated into a mobile platform
with the aim of covering large structures by using the same sensor node.
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Figure 1. Raw piezoelectric signal with echo representation.

Figure 2. Electronics of the ultrasound corrosion sensor node.
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The ultrasound probe/transducer used in the proposed solution is V111 from Olympus [36]
with a peak frequency of 8.44 MHz and 15 mm of diameter of contact. The sensor was
chosen after analyzing the performance specifications prioritizing its lower waveform
duration (higher bandwidth) and sound pressure power.

Architecture of the Sensor Node

Typically, an ultrasound testing system consists of a pulser, a transmitter/receiver
transducer, an amplifier, and data collection and display devices/platform. The hardware
architecture of our corrosion sensor comprised a low-power Cortex-M4-based microcon-
troller interfacing with an Intel MAX 10 FPGA by using a serial peripheral interface (SPI)
link and analog front end (AFE) devices as shown in Figure 3. More details related to the
microcontroller and the wireless connectivity of the system are provided in [37].

Figure 3. Hardware architecture of the ultrasound corrosion sensor node.

When the microcontroller requests a ToF measurement, the field-programmable gate
array (FPGA) takes control of the devices that form the data acquisition circuit [36]. Thus,
the FPGA is responsible for generating enabling signals for the ultrasound pulser and
the trigger to start the data acquisition. The ultrasound pulser circuit used in this work
can generate high-voltage, high-frequency, unipolar, or bipolar pulses. In the this paper’s
experiment, the excitation pulse is a bipolar square wave with 50% duty cycle. The pulse
frequency in MHz was set according to Equation (2), where 125 MHz is the sampling
frequency and FREQC was set as an even positive integer to maintain a duty cycle of 50%.

f = 125/FREQC (2)

Once a measurement is performed, the FPGA processes the acquired data and provides
the calculated ToF estimation to the microcontroller. This signal processing is controlled
by the microcontroller through the design parameters explained in Table 1 and shown
in Figure 4 over the filtered ultrasound response. The LOC and PEAK values shown in
Figure 4 are calculated in the FPGA and are used internally to extract the different echoes.
They are also accessible via SPI as read-only registers.

The ultrasound response processed by the FPGA was previously amplified by a low-
noise variable gain amplifier (VGA) that was composed of two cascaded amplifiers, with
each one providing a maximal amplification of up 38 dB. Both amplifiers were controlled
with analog voltage Vctrl from 0.2 to 2.3 V. The relation between the control voltage Vctrl
and the total amplification G is given by Equation (3).

G(dB) = 44×Vctrl − 23.6 (3)

The system is capable of generating the Vctrl for the amplifier using the microcontroller
and allowing for further degrees of flexibility of its operation. The corresponding signal
level of the ultrasound response (root mean square (RMS) value of the first detected echo) is
measured by the FPGA and sent to the microcontroller via SPI with the aim of implementing

291



Sensors 2022, 22, 8451

an automatic gain controller. The signal processing algorithm for ultrasound response
analysis takes place in the FPGA and is explained next in Section 2.3.

Table 1. Parameters to configure the digital processing from the microcontroller.

Parameter Name Description Value

SIZEUS Number of data samples received from the ADC 2048

NT Number of samples that must be trimmed 0
from the envelop signal to remove
of the piezo’s dead zone

FREQC Number of cycles of the sampling period 16
to obtain the piezo sensor’s resonance
frequency

NCYC Number of periods of the excitation pulse 1

TOFREF Approximate expected value of the ToF in number of samples 210

SIZEW Typical echo duration in number of samples 192

ECHON First echo to be detected and processed 2

SIZEWL Number of cross-correlation samples taken on the 32
left-hand side of the correlation index 0

SIZEXC Total number of processed cross-correlation samples 64

Figure 4. Design parameters used for output response signal analysis.

Furthermore, the sensor node reads from a 16-bit analog-to-digital converter (ADC)
(LT2451) [38] through an interintegrated circuit (I2C) to link temperature values to the
corrosion measurements using the NTC10K3A1I thermistor [39] as the temperature sensor
to acquire the temperature of the steel sample. The variation of ToF with temperature is
discussed in Section 2.4.

2.3. Algorithm Description of ToF Calculation

The algorithm extracts two consecutive back-wall echoes from the received ultrasound
response with an echo windowing process that separates the echoes for the ToF estimation.
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The thickness at a certain time and position is determined by using the ToF technique as
given in Equation (1). The size of the S355 bare steel sample to test the algorithm was
75× 150× 5 mm. Therefore, considering the initial thickness of the sample to be 5mm, the
expected delay between echoes was 2× 5/5.9× 106 = 1.69 μs (the speed of sound in steel
is approximately 5.9× 106 mm/s).

A block diagram of the digital processing stages performed inside the FPGA to calcu-
late the ToF value between two consecutive echoes is given in Figure 5. The signal from the
piezoelectric sensor was first bandpass (BP)-filtered; then, the envelop of that signal was
obtained. Both signals, the outputs of the bandpass filter, and the envelop filter are shown
in Figure 4.

Figure 5. Block diagram of digital signal processing in FPGA.

The two extracted consecutive echoes (see Figure 4), Echos 2 and 3 from the bandpass
signal, were cross-correlated to detect the point of maximal matching to determine the
ToF value. In the cross-correlation approach, the obtained time delay at the maximal
cross-correlation peak was used for estimating this ToF value. Generally, time delays
in cross-correlation results are not integral multiples of the sampling period. Therefore,
the largest cross-correlation peak position could be between the indices of the time-delay
vector. Thus, to improve the precision of the ToF value, a cross-correlation function (ccf)
can be interpolated between the samples [40]. In our solution, parabolic interpolation was
used to estimate the location of the ccf peak with the aim of reducing the computational
complexity. The final cross-correlation output from the second and third consecutive echoes
is shown in Figure 6a. To obtain the final ccf peak, curve fitting was performed for the
maximal cross-correlation peak, and its two nearest neighbors were as shown in Figure 6b.
The peak offset (δToF) was estimated using parabolic interpolation given in Equation (4),
where r[0] is the largest peak of the cross-correlation result, and r[−1] and r[+1] are its two
nearest neighbors.

δToF =
0.5× (r[−1]− r[+1])

r[−1] + r[+1]− 2 · r[0] (4)

Accordingly, the final cross-correlation peak after parabolic interpolation was obtained
at δ ToF. In the example shown in Figure 6b, the maximal correlation peak was obtained
at correlation index −10. Therefore, the estimated delay between the two echoes was
−10 + δToF.
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(a) (b)

Figure 6. (a) Final cross-correlation output; (b) parabolic interpolation around the maximum of
cross correlation.

The methodological design presented in [35] was followed to validate this digital
processing. The first step was to use our own testbed on the basis of Red Pitaya [41] to
acquire ultrasound signals. Then, a model was developed in MATLAB to process the
ultrasound responses. Afterwards, the digital processing algorithm was implemented in
Red Pitaya and compared against the MATLAB model. Lastly, this signal processing was
implemented into the FPGA and verified using the MATLAB model.

2.4. Calculation of Relative Thickness Loss Using ToF

The measurement of ToF in ultrasound signals propagating through steel is directly
related to variation in the speed of sound with temperature and, to a lesser extent, to
thermal expansion. Therefore, we needed to measure the temperature of the steel to
compensate for this temperature effect in the measurement of ToF. Let us assume that, in
the absence of corrosion, we were measuring the ToF of a bare steel sample of thickness
Ls0 at a room temperature T0 and the speed of sound vs0 also at T0. For the relatively small
temperature ranges that we considered, the propagation speed of the ultrasonic signal in
steel at a given temperature T follows this expression:

vs(ΔT) = vs0 · (1 + ξ1ΔT + ξ2ΔT2 + · · · ), (5)

where ξi are constants of the material (°C−i), ΔT = T − T0 is the temperature difference
with respect to T0. For the range of working temperatures, 15 °C< T < 25 °C, we can
safely assume that a first-order approximation is more than enough, and ξ = ξ1. At a given
temperature T, the measured ToF is:

ToF =
2Ls

vs
=

2Ls0(1 + cxΔT)
vs0(1 + ξΔT)

= ToF0
1 + cxΔT
1 + ξΔT

, (6)

where cx is the thermal expansion coefficient of steel (cx � 12× 10−6 °C−1). The value of ξ
for steel is small and negative, so the speed of sound decreases as temperature increases.

ToF ≈ ToF0(1 + cxΔT)(1− ξΔT) = ToF0[1 + (cx − ξ)ΔT]

ToF/ToF0 ≈ 1 + (cx − ξ)ΔT
ΔToF
ToF0

≈ (cx − ξ)ΔT (7)
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The value of (cx − ξ) can be experimentally determined by running an experiment
that measures the ToF in a bare steel sample in a climatic chamber (see Section 2.4.1).

In the initial state, the bare sample presented no corrosion, and the first ToF measure was
taken at temperature T0. We call that value ToF0, which corresponds to an initial thickness Ls0:

ToF0 =
2Ls0

vs0
(8)

If we now consider the situation of a corroded sample at temperature T, the thickness
of that sample is related to ToF as follows:

Ln =
ToF× vs

2
=

ToF
2
× vs0(1 + ξΔT) =

ToF
2
× 2Ls0

ToF0
(1 + ξΔT)

=
ToF
ToF0

× Ls0(1 + ξΔT) (9)

However, Ln is the thickness after corrosion at temperature T. We must reference all
measurements to the same temperature T0. Thickness Ln is related to the thickness after
corrosion at temperature T0, Ln0, as follows:

Ln = Ln0(1 + cxΔT) (10)

Therefore, the loss of thickness due to corrosion at temperature T0 substituting
Equation (9) into the above equation is:

ΔLc

Ls0
=

ToF
ToF0

× (1 + (ξ − cx)ΔT)− 1

=
ΔToF
ToF0

+
ToF(ξ − cx)ΔT

ToF0
(11)

2.4.1. Temperature Experiment

To experimentally determine the value of ξ, we conducted an experiment that consisted
of placing the sample in a climatic chamber and linearly varying the temperature from
20 to 40 °C. The process has to be as slow as possible to avoid transient behavior in the
time-of-flight and temperature measurements. In this way, the process is almost stationary.
Because corrosion is an even slower process, from the above equation, we can write that,
for this experiment,

ΔLc

Ls0
= 0 (12)

Substituting the value of ΔLc/Ls0 into Equation (11), we obtain:

ΔToF
ToF

= −(ξ − cx) · ΔT = r · ΔT (13)

Therefore, if we plot Equation (13) in the (ΔT,ΔToF/ToF) axis using the results of the
experiment and perform a linear fitting, the calculated slope is r = −(ξ − cx). With the
obtained data (see Figure 7), we estimated the value of ξ = −1.054 · 10−4 °C−1.

To understand the needed amount of correction given the known values for ξ and cx,
this results in a correction in thickness of around −0.6 μm/°C for a 5 mm thick steel sample.
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Figure 7. Experimental results to estimate the value of parameter ξ.

3. Experiment: Evolution of Thickness Loss Due to Corrosion in Real Conditions

With the aim of analyzing the evolution of thickness loss due to corrosion in a real
environment, an experiment was carried out deploying our ultrasound sensor node in
Gran Canaria, near the coast (see Figure 8).

(a) (b)

Figure 8. Location of the experimental setup. (a) Photo of the final location of the system (provided
by PLOCAN); (b) experimental setup location on the map.

The experimental setup was arranged by permanently adhering the ultrasound probe
onto a certain spot on the (75× 150× 5) mm bare steel sample (as shown in Figure 9) using
bicomponent epoxy adhesive Structalit 1028 R from Panacol [42]. After fixing the sensor to
the sample, a bicomponent layer of epoxy resin PX900D [43] was applied over the sensor-
attached side of the sample as a corrosion protection layer. As is shown in Figure 10b, the
sensor was attached from the inner (clean) side of the sample, and the other side was fully
exposed to the marine environment. Since the sensor was fixed to one particular location
of the sample, this experiment allowed for monitoring the thickness loss due to corrosion,
avoiding larger uncertainties due to thickness variations on different spots of the same
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sample. The thickness variations underneath the whole sensor (contact area of 15 mm)
were even smaller than those when measuring different spots. The solution is averaging a
shot of quick measurements. As was said in [35], thickness at different locations of the same
sample varied even for the unexposed bare steel samples. These small thickness variations
(at the μm level) were due to common existing imperfections during the sample production
process. Therefore, in order to achieve more precise ToF measurements, the positioning of
the sensor on the same location is very important.

Figure 9. Bare steel sample attached to the monitoring solution.

To easily collect data from this experiment, the ultrasound sensor node was connected
to a Beaglebone black wireless board (see Figure 10b). The Beaglebone was used to receive
the ultrasound signals and to post the data to a data server in json format. Both the
sensor node and Beaglebone are battery-powered (rechargeable, 3.6 V/7000 mAh), and the
amplifier gain was set to 17.7 dB in this experiment.

Although our sensor node is capable of autonomously operating without a Beaglebone,
in this case, the microcontroller from the sensor node communicated with the Beaglebone
via the Universal Asynchronous Receiver and Transmitter (UART) protocol. The Beagle-
bone was basically in charge of sending the updated TOFREF value (see Table 1), estimated
from the previous measurement event, to the sensor node at the beginning of an ultrasound
measurement event, and then receiving and posting the data to the cloud after each mea-
surement event. Thus, in a day, the system performed four measurement events (every 6 h).
Each event consisted of five successive ToF measurements.

The corrosion monitoring setup was deployed at the PLOCAN premises in Gran
Canaria (near the coast, see Figure 10) from the end of February to the beginning of August
to receive thickness loss data, and to estimate the intraday corrosion rate thanks to the fast
continuous measurements and high-precision estimates. Figure 11 shows how the bare
steel sample looked like after five months of exposure in this marine environment.
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(a) (b)

Figure 10. Final electronics setup used in the experiment. (a) Block digram of the setup; (b) photograph
of the actual setup.

Figure 11. Photo of the bare steel sample after five months of exposure in the Gran Canaria (provided
by PLOCAN).

The system gathered data for approximately 5 months, performing four measurement
shots/events per day, and each shot was composed of five successive measures. Table 2
presents the main features of the experimental setup explained throughout this paper.
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Table 2. Main features of the experiment.

Experimental Setup Value

Sample material S355

Sample thickness 5 mm

Ultrasound probe V111 (Olympus)

Probe diameter of contact 15 mm

Probe nominal element size 13 mm

Adhesive/Couplant Structalit 1028 R

US signal frequency 7.8 MHz

US signal amplitude 30 V (±15 V)

Speed of sound in S355 (long. waves) 5950 m/s

Speed of sound thermal coefficient ξ −1.054× 10−4 °C−1

Thermal expansion coefficient cx 12× 10−6 °C−1

Experimental location in latitude–longitude (decimal degrees) 27.9920, −15.3686

No. of measurement events per day 4 (one every 6 h)

4. Results of the Experiment and Discussion

The corrosion rate is the speed of deterioration of a material due to corrosion. One of
the most important aspects of the proposed corrosion monitoring solution is being able to
perform very frequent measurements in order to calculate the corrosion rate. The proposed
experiment was carried out, analyzing the thickness loss evolution due to uniform corrosion
in a real marine environment, and estimating the corrosion rate in real time (for practical
purposes, taking into account that corrosion is an extremely slow process).

After computing the average of the five successive measurements taken every 6 h,
we processed a linear fitting of the last 28 measurements, which represent 1 week of data.
Figure 12 shows the thickness estimations in mm obtained during the experiment.

During the first month, we chose the location and prepared the system setup. Once the
experiment had begun, we could see that the measured temperature was higher than what
was expected due to the setup being exposed to direct sunlight. We corrected that during
May by shadowing the setup. This means that we measured higher temperatures from
March to May (particularly during sunlight periods), but taking into account that the error
for a 5 mm thick steel sample is −0.6 μm/°C , the measurements could still be considered
to be acceptable. On the other hand, we lost data at the beginning of July because of the
accumulation of dirt and dust on the cable of the ultrasound probe. Once the cable had
been cleaned, the system resumed working as usual.

The thickness estimations were corrected on the basis of the reference temperature; in
this case, we chose them to be the initial temperature that we had measured at the beginning
of the experiment (21.3 °C). The correction to temperature variations was applied using the
second term of Equation (11) and considering that (ξ − cx) was −1.174× 10−4 °C−1.

As commented in Section 2.3, we followed the methodological design presented in [35]
to validate the system processing. Figure 13 compares the ToF estimations performed by the
deployed system and the MATLAB model using the raw data acquired from the experiment
and configured with the same design parameters as the deployed system. The differences
between ToF estimations were so small that it was impossible to visualize them, and most
of the data points seemed to be overlapped. Then, Figure 14 presents the error among the
ToF estimations shown in Figure 13. In the worst case, we had a maximal error of around
4.3× 10−3 %, and the error increased with exposure time. Figure 15 shows how the signal
level (SL) of the US response decreased during the experiment, explaining why the error
increased. The SL refers to the root mean square (RMS) value of the first detected echo,
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measured after the amplifier [35]. This is an indication of the SNR of the digitized signal
after bandpass filtering.

Figure 12. Thickness estimations from the experiment’s data with temperature compensation.

Figure 13. Comparison of ToF estimations with the MATLAB model.
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Figure 14. Error between ToFs estimated by the sensor node and by the MATLAB model.

Figure 15. Signal level of the received US signal during the experiment.

Next, we took the slope of the linear fittings shown in Figure 12 as an estimation of
the corrosion rate at each measurement point. Afterwards, a filtered corrosion rate was
obtained by running the average of the last four slopes as is shown in Figure 16. Thus, the
intraday corrosion rate could be estimated from the ToF measurements taken every 6 h and
had an approximate delay of 4 days.
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Figure 16. Estimation of the intraday corrosion rate.

As we can see from the thickness measurements, Figure 12 shows increments of
thickness followed by a rapid and greater decrease in thickness. A similar behavior
was observed even in a laboratory experiment with permanently installed ultrasound
transducer: an increase in thickness followed by rapid thickness loss [26,44,45]. This was a
consequence of the ToF measuring method that relies on the speed of sound being constant
at all points of the steel sample. However, corrosion provokes a gradual degradation
of a small layer of steel that reduces the speed of sound and acoustic impedance in that
layer. At the beginning of the corrosion process, acoustic impedance is still large enough to
allow for the ultrasound signal to bounce off the initial wall, while slower speed of sound
produces an apparent increase in thickness. When the acoustic impedance decreases so
much that the ultrasound signal bounces off the new wall, the result is a rapid reduction
in total thickness. The net result is, of course, thickness loss (see Figure 12). Therefore,
although the average corrosion rate calculated below is correct (considering positive and
negative slopes), the positive instantaneous corrosion rates were overestimated using the
ToF method.

The proposed experiment allowed for us to measure an average corrosion rate equiva-
lent to 0.134 mm/year, which is in very good agreement with typically reported corrosion
rates for uniform corrosion (0.1–0.2 mm/year). It is also possible to reduce the sample
interval from the 6 h of the current experiment. The experimental setup could be modified
to drastically reduce its power consumption by removing the Beaglebone board, resulting
in a more frequent waking up of the sensor node using the same batteries. This means that
ToF measurements can be taken, for example, every hour instead of 6 h, reducing the time
response of the corrosion rate estimation algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-digital converter
AFE Analog front end
BP Bandpass
CAPEX Capital expenditure
CCF Cross-correlation function
FPGA Field-programmable gate array
GDP Gross domestic product
I2C Interintegrated circuit
NDT Nondestructive testing
OWTs Offshore wind turbines
RMS Root mean square
SNR Signal-to-noise ratio
SHM Structural health monitoring
SL Signal level
SPI Serial peripheral interface
ToF Time-of-flight
UART Universal asynchronous receiver and transmitter
US Ultrasound
VGA Variable gain amplifier
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Abstract: The RAPID (reconstruction algorithm for probabilistic inspection of defect) method based
on Lamb wave detection is an effective method to give the position information of a defect in
composite plate. In this paper, an improved RAPID imaging method based on machine learning
(ML) is proposed to precisely visualize the location and features of defects in composite plate. First,
the specific feature information of the defect, such as type, size and direction, can be identified by
analyzing the detection signals through multiple machine learning models. Then, according to the
obtained defect features, the scaling parameter β of the RAPID method which controls the size of
the elliptical area is revised, and weights are set to the important detection paths which are related
to defect features to realize precise defect imaging. The simulation results show that the proposed
method can intuitively characterize the location and related feature information of the defect, and
effectively improve the accuracy of defect imaging.

Keywords: lamb wave; composite plate; nondestructive testing; defect imaging; machine learning

1. Introduction

Composite materials with fatigue resistance, light weight, and high strength are widely
utilized in aerospace, construction, and other fields [1,2]. Surface or internal defects such as
delamination, crack, debonding, pore, inclusion, looseness, and rich resin may occur in the
manufacturing and service process of composite materials [3]. Lamb wave-based detection
has been widely used in the detection of composite materials due to its long propagation
distance, small attenuation, and sensitivity to small defects [4,5]. The anisotropy of the
composite plate results in the change of the propagation behavior of guided waves in the
plate structure [6], and the complex transformation of waveform aggravates the complexity
of interpreting the detection signal [7,8]. At the same time, the complexity of the detection
signal also increases the difficulty of precise defect imaging in the composite plate.

Many damage imaging methods can be used for defect detection in composite plates,
such as the ellipse imaging method [9,10], delay-and-sum imaging method [11,12], time-
reversal imaging method [13,14], RAPID imaging method [15–18], etc. The RAPID can
intuitively present the location of defects by analyzing the statistical characteristics of the
detection signal, and has been widely studied by researchers. Wang et al. [19] studied the
mode of directional scattering of cracks in aluminum plate and proposed an improved
probabilistic damage imaging algorithm, which achieved defect imaging by finding the path
with the smallest signal difference coefficient to predict the crack direction. Wu et al. [20]
studied the influence mechanism of several parameters in the probabilistic damage imaging
method, and proposed a method to optimize the sensor network and determine these
parameters, which was verified on the composite stiffened panel. In the above studies of
probabilistic damage imaging methods, the specific characteristics of defects (e.g., length
and direction of cracks, size of delaminated areas) cannot be precisely known, which
reduces the accuracy of defect imaging and affects the application of imaging methods
in practice.
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The combination of Lamb wave detection and ML can be used to identify defects. In
general, according to prior knowledge in the field, damage-sensitive features are analyzed
and extracted as input training model through a variety of signal processing methods to
realize the identification of damage types and degrees [21]. Zhou et al. [22] extracted the
relevant characteristics of the time domain, the frequency domain, and the energy of the
Lamb wave signal as input to the classifier, and studied the degree of corrosion damage at
the bend of the pipeline. Experimental results show that machine learning can be used to
identify the damage category of defects, and support vector machine (SVM) has a better
identification effect under the condition of small samples. Peng et al. [23] estimated the size
and location of the defect by obtaining the damage-sensitive features of the guided wave
signal and incorporating them into a Bayesian update framework. Mardanshahia et al. [24]
extracted different features of Lamb wave signal to train three supervised ML methods to
classify the density of cracks. However, for anisotropic composite plates, the propagation
law of Lamb waves is more complicated, and it relies too much on existing prior knowledge
to extract features and cannot perform damage detection highly efficiently.

In this paper, a defect imaging method based on an improved RAPID algorithm is
proposed for defects in composite plates. Before the defect detection, the guided wave
detection baseline signal is obtained by a circular sensor array arranged in the defect-free
composite plate through simulation or experiment. Then defects with different types
and parameters are pre-constructed in the center of the array to obtain the corresponding
damage detection signal for constructing the defect feature identification sample library.
And based on these defect detection signals, the ML models for defect feature identification
are trained, respectively. For the composite plate to be inspected, the above-mentioned
circular sensor array is first used to obtain the detection signals of the inspected area. Then,
based on these detection signals and the reference signals, the DI values of each path are
calculated, and path selection is performed based on these DI values. For the selected paths,
pre-location is performed using RAPID to obtain the center coordinates of the defect. After
that, the center of the sensor array is moved to the predicted defect location to obtain the
detection signals for feature recognition. On this basis, the corresponding models are used
to identify the defect types and main geometric parameters (such as the length and direction
of cracks, the size of the delamination area, etc.). Finally, after obtaining the characteristic
parameters of the defects, the RAPID algorithm is improved by modifying the β values and
setting the weights of the relevant detection paths to refine the imaging of different types of
defects. Based on theoretical analysis, this paper takes two types of defects, notably crack
and delamination, in composite plates as examples to carry out simulation experiments
and research to verify the effectiveness of the above methods. The simulation results show
that the proposed method can intuitively characterize the location and related feature
information of the defect, and effectively improve the accuracy of defect imaging.

The abbreviations involved in the proposed method and their meanings are shown in
Table 1.

Table 1. The acronyms in the defect imaging method.

Symbol Meaning Symbol Meaning

RAPID The Reconstruction Algorithm for
Probabilistic Inspection of Defect SVM Support Vector Machine

ML Machine Learning PCA The Principal Component Analysis
DI Damage Index C The Penalty Factor

2. Methods

The RAPID is based on the correlation coefficient of the reference and damage signals,
and the location relationship among the transmitter, the receiver, and the defect. It avoids
the complex process analysis of Lamb wave propagation to achieve defect localization. The
proposed method fuses the defect feature predicted by the ML method into the RAPID
algorithm to achieve precise defect imaging.
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The mode conversion, reflection, and transmission process of the Lamb wave is
affected by the characteristics of the defect which include type, size, location, and other
factors. Such influence causes the detection signal to change. The closer the defect is to the
sensing path, the more influence it has on Lamb wave signal. Conversely, the farther the
relative distance is, the smaller the influence on the Lamb wave signal. Therefore, RAPID
imaging methods can roughly estimate the location of defects.

2.1. Path Selection and Defect Pre-Locating

In the process of using the RAPID, the composite plate is divided into uniform grids,
and each grid corresponds to a pixel. For each pixel, its value is the probability value of
existence of damage. The probability of the presence of the defect at position (x, y) can be
defined as:

P(x, y) =
N

∑
i=1

DIi · β− Ri(x, y)
β− 1

(1)

where N is the number of participating sensing paths, [β− Ri(x, y)]/( β− 1) is the spatial
distribution function of the ith path, and its outline is an ellipse. The parameter β is a
scaling parameter that controls the size of the ellipse distribution area. It is usually set
around 1.0, which is an empirical value determined on a case-by-case basis, but such
treatment is not always suitable for all situations in practice. In this paper, the pre-locating
process sets β = 1.05 [25]. The term Ri(x, y) is defined as follows:

Ri(x, y) =
{

RDi(x, y), RDi(x, y) < β
β, RDi(x, y) ≥ β

(2)

where RDi(x, y) = [Da,i(x, y) + Ds,i(x, y)]/Di,Da,i(x, y),Ds,i(x, y) is the distance from the
point (x, y) to the excitation point and the receiving point, respectively. Di is the distance
from the excitation point to the receiving point, as shown in Figure 1a.

Figure 1. Schematic diagram of RDI and path selection: (a) Schematic diagram of RDi; (b) Schematic
diagram of the path selection.

DIi is the damage factor of the ith path, defined as follows:

DI = 1− ρ = 1− ∑n
k=1 (Xk−Xk)(Yk−Yk)√

∑n
k=1 (Xk−Xk)

2
(Yk−Yk)

2

= 1− n∑n
k=1 XkYk−∑n

k=1 Xk ·∑n
k=1 Yk√

[n∑n
k=1 X2

k−(∑n
k=1 Xk)

2][n∑n
k=1 Y2

k−(∑n
k=1 Yk)

2]

(3)

where ρ is the correlation coefficient between the baseline data and the detection data. XK
and Yk are the baseline signal and inspection signal, respectively. Xk and Yk are the mean
of XK and YK, respectively. k is the number of recorded points in the data.
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The magnitude of the DI value reflects the degree of correlation between the sensing
path and the defect. The rule for path selection is as follows: using P1 as the excitation
sensor and the rest of the sensors as the receiving sensors as an example, the circular array
is shown in Figure 1b. A coordinate system with path P1–P9 as the x-axis and path P5-P13
as the vertical y-axis is created. The sensing paths in the second and third quadrants are
ignored, and the remaining paths are the filtered paths. The DI values of these remaining
paths are calculated according to Equation (3), then the larger two are selected as valid DI
values. On this basis, the final DI values is obtained by filtering again through considering
the reciprocity of the paths.

2.2. Defect Classification and Feature Identification

Under the same detection conditions, the detection signals generated by the same type
of defect have some common characteristics, and this lays a foundation for the use of ML
methods to realize defect feature recognition.

SVM is a ML method based on statistical theory. It maximizes the interval between
classes by finding a “hyperplane”. Additionally, the kernel function is utilized to map the
data from a low-dimensional space to a high-dimensional space to make the data linearly
separable. SVM has great advantages for data with high dimensions, small sample size, and
nonlinearity [26,27]. It can be used for the identification of defect types and defect sizes.

Light GBM [28] is a distributed gradient lifting framework with the decision tree as
a weak learner. It innovatively uses the gradient-based unilateral sampling algorithm
and mutually exclusive feature binding algorithm to conduct data sampling and feature
sampling, respectively. In addition, it does not need to traverse all the data in each iteration
and can improve the training speed with the same accuracy. Although the model has high
complexity, it is very suitable for classification tasks with high dimension. The model is
used to identify crack direction in this study.

2.3. RAPID Algorithm for Fusing Defect Features

Sheen et al. [29] proposed that the β value can be further adjusted to achieve precise
imaging based on knowing the size of the defect. Therefore, according to the main charac-
teristics (type, size, orientation) of the defect obtained by the ML method, the parameter β
is precisely corrected to improve the quality of the defect imaging. Figure 2 is a flow chart
of the improved imaging algorithm.

The calculation of β is shown in Figure 3, where the defect range is described as the
maximum vertical distance between the defect boundary and the detection path. In this
paper, two kinds of defects (delamination and cracks) are studied as follows.

2.3.1. Delamination

In the detection path, the sum of the distances from the farthest point of the delam-
ination defect to the excitation and receiver is calculated first, then the ratio of this sum
value and the distance between excitation and receiver can be used to revise the β value
as follows:

β = RMax_de f ect_range =

√
(xa − x)2 + (ya − y)2 +

√
(xs − x)2 + (ys − y)2√

(xa − xs)
2 + (ya − ys)

2
(4)

Here, (xa, ya), (xs, ys), and (x, y) are the coordinates of the excitation, receiver, and of the
point which is farthest from the sensing path on the delamination boundary, respectively.
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Figure 2. The flow diagram of the proposed method.

Figure 3. Schematic diagram of the calculation of β.

2.3.2. Crack

The width of the crack is extremely narrow. Therefore, if the direction of path i is
consistent with the direction of crack (defined as the angle between the crack and the
positive x-axis in the coordinate system shown in Figure 4a), it can be empirically set to
β0 = 1.0001. After the length value of the crack is predicted by the ML model, half of the
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length value is considered to be the defect range. On the basis of obtaining the defect range,
and knowing (xa, ya) and (xs, ys), the β can be adjusted according to the following formula:

β =

{
RMax_de f ect_range, the direction of path i is not consistent with the crack direction
β0, the direction of path i is consistent with the crack direction

(5)

Figure 4. Schematic diagram of the experimental setup: (a) sensor arrangement and defect setting;
(b) sensing path.

In addition, the path closest to the crack direction and the path perpendicular to the
crack direction form the “cross path”. The weight Wi of the above two paths should be set
much larger than the other paths, and its weight can be set as:

Wi =

{ L
l , cross paths
1 , other paths

(6)

where L(mm) is the diameter of the circular sensing array; and l(mm) is the crack length.
The smaller the crack length is, the greater the weight applied.

In summary, for the crack, the modified damage imaging algorithm is defined as:

P(x, y) = ∑N
i=1 DIi · β− Ri(x, y)

β− 1
·Wi (7)

In order to illustrate the proposed method more specifically, the pseudocode of the
improved methods is given in Algorithms 1–3. Algorithms 1 and 2: the pseudocode for
feature recognition. Algorithm 3: the main pseudocode of crack in the proposed method.

Algorithm 1: Train the SVM model

Input: D: training set
D1←StandardScaler (D)
D2←Dimension reduction: PCA (D1)
Params←[{C}, {kernel function}]
C, kernel function←GridSearchCV(SVM, params)
return the SVM model
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Algorithm 2: Feature identification by ML models

Input: D1: detection signal acquired at paths P1–P9 after adjusting the position of the
sensing array
D2: detection signals acquired in paths P1–P9, P2–P10, P3–P11, P4–P12, P5–P13,
P6–P14, P7–P15, P8–P16 after adjusting the position of the sensing array

Input: I1: the model for identifying the defect type
I2: the model for identifying the delamination size
I3: the model for identifying the crack direction
I4: the model for identifying the crack size

preds←I1. predict (D1)
if preds==delamination then

| the size of delamination←I2. predict (D1)
else if preds==crack then

| f (the direction of crack)←I3. predict (D2), l (the size of crack)←I4. predict (D1)
else

| . . . . . .
end

return the features of the defect

Algorithm 3: Precise imaging of crack
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Algorithm 3 Cont.

3. Experimental Setup

A three-dimensional finite element analysis is performed with ABAQUS software. A
[45◦/−45◦/0◦/90◦] quasi-isotropic composite laminate with a dimension of 500 mm ×
500 mm× 1.28 mm is considered in the coordinate system shown in Figure 4a. The material
properties of the laminate are listed in Table 2. A circular sensor array (radius r = 100 mm)
composed of 16 evenly distributed sensors is arranged on the surface of the laminate.
The excitation signal used in the numerical study is a 160-kHz narrow-band five-cycle
sinusoidal tone burst modulated by a Hanning window. Loading is performed at each
sensor position in turn, and the received signal is obtained at the remaining sensor positions.
A total duration of 300 μs time length is solved using ABAQUS/Explicit dynamical analysis
with a fixed step size of 10−8 s for all the numerical cases.

Table 2. Elastic properties of composite plate in the numerical study.

E1/GPa E2 = E3/GPa G12 = G13/GPa G23/GPa υ12 = υ13 υ23 ρ/
(
kg/m3)

128 82 4.7 3.44 0.27 0.2 1560
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3.1. Building the Sample Library

This study only discusses two typical types of defects in the composite plate: delami-
nation and cracks. On the defect-free simulation model mentioned above, the delamination
or crack defect with changing geometric parameters is set at the center of the circular sensor
array which is shown in Figure 4b, and the detection signals are acquired by one-excitation,
one-receive pattern to construct a sample library.

As shown in Figure 4a, a rectangle of variable length and width corresponding to the
dashed box is used to simulate the delamination defects. Due to computational limitations,
the obtained samples do not cover all delamination sizes. In the sample library for this
simulation experiment, only the following nine classes are considered: 5 mm × 5 mm,
10 mm × 10 mm, 15 mm × 15 mm, 5 mm × 10 mm, 5 mm × 15 mm, 10 mm × 5 mm,
10 mm × 15 mm, 15 mm × 5 mm, and 15 mm × 10 mm, and the corresponding sample
labels are set as 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively, as shown in Table 3. For the
composite plate studied in this paper, the delamination defects are set between the top layer
and the adjacent second layer, and between the second layer and the adjacent third layer,
respectively. The variations of the length and width of the defects are shown in Table 3.
Classes 1, 2 and 3 contain 84 samples, respectively, and classes 4, 5, 6, 7, 8 and 9 contain
44 samples, each. In addition, in order to increase the robustness of the model, samples
that are between classes are also supplemented in the experiments, such as adding samples
of 5 mm × 8 mm, 5 mm × 14 mm, 10 mm × 6 mm, 10 mm × 16 mm, 15 mm × 6 mm,
and 15 mm × 11 mm. Although the length and width directions of the rectangles can be
changed, this paper does not consider such changes for the time being and only assumes
that the length and width directions of the rectangles are the same as the length and width
directions of the plates. Since in the method proposed in this paper, the detection signal is
closely related to the variation of defects in the direction perpendicular to the direction in
which the path is located, only the detection signal acquired on the path P1-P9 as shown in
Figure 4b is selected here for the parametric classification identification of layered defects.

Table 3. The variation of length and width of delamination between top layer and the adjacent second
layer (mm).

Label
Length
(mm)

Width
(mm)

Number of Samples Label
Length
(mm)

Width
(mm)

Number of Samples

1 5, 5.1 5, 5.01, · · · · · · 5.2 42 6 10, 10.1 5, 5.01, · · · · · · 5.1 22
2 10, 10.1 10, 10.01, · · · · · · 10.2 42 7 10, 10.1 15, 15.01, · · · · · · 15.1 22
3 15, 15.1 15, 15.01, · · · · · · 15.2 42 8 15, 15.1 5, 5.01, · · · · · · 5.1 22
4 5, 5.1 10, 10.01, · · · · · · 10.1 22 9 15, 15.1 10, 10.01, · · · · · · 10.1 22
5 5, 5.1 15, 15.01, · · · · · · 15.1 22

The main geometrical features of the crack include length and direction. For the
direction of the crack, there are 7 categories: 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦. The ply
direction of composite plate and the crack direction itself will comprehensively affect
the detection signal, so the detection signals on the detection paths which is in different
directions need to be acquired for direction identification. The detection paths include
path P1–P9, P2–P10, P3–P11, P4–P12, P5–P13, P6–P14, P7–P15, and P8–P16 as shown in
Figure 4b. For the same crack direction, the crack length is set to 3 mm, 4 mm, ..., 12 mm,
respectively. In the same crack length category, the length is varied in 0.01mm steps to
obtain 88 samples of defects with length differences. For example, 2.68 mm, 2.69 mm, ......,
3 mm, 3.01 mm, ......, 3.55 mm is considered to be a variation of the length of the 3 mm class.
Thus, 880 samples are included under each direction class, and a total of 6160 samples
are obtained.

3.2. Building the Testing Defects

To illustrate the implementation process of the optimized RAPID imaging algorithm,
three representative defects are selected as test samples: defect 1, an oblique crack with
a length of 12.05 mm and an angle of 45◦ is set on the surface of the composite plate,
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and its coordinates are (x, y) = (186, 264); defect 2, a vertical crack with a length of
4.1 mm and an angle of 90◦ is set on the surface of the composite plate, and its coordinates
are (x, y) = (263, 225); defect 3, a rectangle shape representative delamination with the size
of 5 mm × 5.2 mm is modeled at the coordinates of the composite plate (x, y) = (225, 263)
between the first layer (top surface) and the adjacent second layer of the composite plate.
The sensor array and the setting of defect 1 are shown in Figure 4a.

4. Identification Model

4.1. Identification Model of Defect Type

The effect of delamination and cracks on the propagation behavior of guided waves
is different. On the detection path passing through the center of the circle, the signal is
obtained by one-excitation and one-receive pattern for building a sample library. According
to exciting frequency and sampling frequency, each detection signal contains 30,000 data
points, and the signal is taken as a 30,000-dimensional sample. The sample library of
defect type is constituted by 522 detection signals of delamination and 6160 detection
signals of the crack. It is randomly divided into training set and test set with a ratio of
8:2. Because the dimension of the samples is too high, the Principal Component Analysis
(PCA) method [30,31] is utilized for pre-processing. Samples of the training set are used
as input of the SVM classifier, and the label set is formed by the defect classes of the
corresponding samples (0 and 1 represent crack and delamination, respectively). The grid
optimization method and cross-validation are used to adjust the kernel function type and
the main model parameters. The kernel function is set as the linear kernel function, and
the penalty factor (C) is 3. The average accuracy rate, the recall rate, and F1 score obtained
from 10 experiments are about 96.74%, 97.81%, and 96.04%, respectively. It can be seen
from the scatter plot in Figure 5 that most of the samples are correctly classified and only
one sample from the crack class is misclassified into the delamination class. Crack and
delamination have different effects on the propagation behavior of Lamb waves, which
enables the model to better identify the two types of defects.

Figure 5. Scatter diagram of identification results of the defect type.

4.2. Parameter Identification Model for Delamination

The delamination defects mainly include 9 categories, with a total of 516 samples
(6 supplemented samples between different classes are taken as test samples), which are
randomly divided into training set and test set in a ratio of 8:2. Referring to the above
method, the model kernel function is set as a linear kernel function, the penalty parameter
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C = 2, and the average accuracy rate, recall rate, and F1 score are 97.78%, 96.67%, and 97.57%,
respectively. Figure 6 is the scatter diagram of the results of identification of delamination
size. As can be seen from the figure, only one sample with a size of 5 mm × 8 mm is
misclassified into the 5 mm × 5 mm class. The variation in the width of the rectangle has
a certain influence on the detection signal. When the sample size is not sufficient to fully
cover this variation, it will lead to misclassification of the model.

Figure 6. Scatter diagram of identification results of delamination size.

4.3. Parameter Identification Model for Crack
4.3.1. Direction

The scattered field formed by the crack has a certain influence on the guided wave.
However, it is difficult to clearly know its law of propagation. In this paper, the LightGBM
algorithm is used to identify the crack direction, because it is suitable for high-dimensional
data, and its calculation speed is fast. The Hyperparameter Optimization (Hyperopt)
method is used to automatically optimize the model parameters.

First, the LightGBM model is used to identify the crack directions on each single path
separately, but the effect is not good after parameter adjustment. Taking the path P3–P11 as
an example, the average accuracy rate is only 54.29%. This fully shows that in the single
detection path, the influence of the ply direction of the composite board and the crack
direction cannot be peeled off, which is not conducive to the correct identification of the
crack direction by the model.

Comparing the detection signals obtained from different paths for the same defect,
as shown in Figure 7a, the distance between the defect and the excitation and receiving
point is relatively consistent, resulting in the wave packets of all samples appearing in
the time period [100, 300] μs. Therefore, for all defects, the detection samples obtained
on the paths P1–P9, P2–P10, P3–P11, P4–P12, P5–P13, P6–P14, P7–P15, and P8–P16 are
intercepted and then connected to form new samples with a dimension of 160,000. Dataset
with high-dimensional features is randomly divided into training set and test set according
to a 9:1 ratio. During parameter adjustment, it is found that the parameters learning_rate
and max_depth have a great influence on the classification results. The optimization range
of learning_rate is [0.01, 1], the optimization range of max_depth is [1, 15]. Therefore, the
optimization result is learning_rate = 0.05, max_depth = 7, and other parameters are set
to default. The average accuracy rate, recall rate, and F1 score are 97.44%, 98.43%, and
97.71%, respectively.
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Figure 7. Identification of crack direction: (a) comparison of detection signals obtained from different
paths for the same defect; and (b) scatter diagram of identification results of crack direction.

Figure 7b shows the scatter plot of the classification results after updating the sample
size. As can be seen from the figure, only 1 sample in the 60◦ class is misclassified in the
90◦ class. This shows that after considering the relationship among the crack direction, the
ply direction, and the direction of detection paths to update the dimension of samples, the
classification accuracy of the model has been significantly improved.

4.3.2. Length

In each crack direction, when using the detection signals to identify the crack length,
these detection signals should be taken from the path perpendicular to the crack direction.
For example, the detection signal for a direction of 45◦ is taken from the path P7–P15; and
the detection signal for a direction of 90◦ is taken from the path P1–P9. The 880 samples
obtained in each direction are trained separately to identify the crack length in the cor-
responding direction. Taking the dataset of crack length in the 45◦ as an example, the
880 crack samples are randomly divided into a training set and a test set according to
an 8:2 ratio. Referring to the method of identifying delamination parameters, the kernel
function is set as a linear kernel function, and the penalty parameter C = 2. It can be seen
from the scatter diagram in Figure 8 that two samples are misclassified to other classes.
Since some paths for acquiring detection signals cannot be strictly perpendicular to the
crack direction, the deviation in directions sometimes leads to misclassification of some
samples (so, a sample with a length of 6.31 mm is misclassified into the 7 mm class; and
a sample with a length of 7.07 mm is misclassified into the 9 mm class). However, most
samples are classified correctly, indicating that the model has good performance. Based
on the identification results of crack length in all directions, the mean of the classification
accuracy, recall, and F1 scores of length samples in each crack direction are 96.84%, 97.12%,
and 96.52%, respectively.
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Figure 8. Scatter diagram of crack length.

5. Imaging for Testing Defects

5.1. Pre-Locating of Defects

Taking defect 1 as an example, 18 valid DI values are obtained by the above method
for reconstructing the image. The image of the defect is reconstructed by RAPID, and the
pre-locating imaging result is shown in Figure 9. The defect center is located at (178,266),
which is close to the actual position of the defect shown by “+” in the figure. This shows
the effectiveness of RAPID for defect location, yet at the same time that the algorithm is not
precise enough and cannot give the type and geometric parameters of defects.

Figure 9. Imaging results before optimization of defect 1: (a) before optimization; and (b) threshold
processing result before optimization.

5.2. Identification of Defect Features

The circular sensor array is repositioned so that its center is located at the predeter-
mined position as described in Section 5.1. Obtaining detection signals for defect feature
parameter identification was performed as follows: First, the defect type identification
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model is used to determine the type of defect, and the identification result shows that
defect 1 is a crack. Then, the direction of the crack is determined by the crack direction
identification model, and the identification result shows that the direction of defect 1 is
45◦. Finally, the length of the crack under the 45◦ direction is identified by the crack length
model, and the identification result shows that the length of defect 1 is 12 mm.

5.3. Precise Imaging of Defects

Based on the known crack size, the scaling parameter β is calculated according to
Equation (4) for paths that are inconsistent with crack direction. Taking paths P7–P15 as
an example, the scaling parameter β calculated for this path is 1.004. According to the
identification results of the crack direction model, the weight of the cross paths can be
calculated by Equation (6) as Wi = 17, where the cross paths are P1–P13 (in line with the
crack direction) and P7-P15 (perpendicular to the crack direction). The optimized results
are shown in Figure 10, where “+” is marked as the real position. Comparing the results of
Figures 9 and 10, the optimized results not only reflect the location of the defect, but also
intuitively indicate the type, direction, and size of the defects. However, because the crack
is extremely narrow in the width direction, and the scaling parameters in this direction
are not considered, the obtained localization results still have a certain deviation from the
real position.

Figure 10. The imaging results of defect 1: (a) after optimization; (b) threshold processing result
after optimization.

Defects 2 and 3 are also studied according to the analysis process of defect 1. Firstly,
the RAPID algorithm is used for pre-locating and the results are obtained as shown in
Figures 11a and 12a, respectively. After the sensor array position adjustment to regain
the required detection signals, the results of crack and delamination are derived from
the identification model of defect type, respectively. Next, different feature parameter
identification models are applied to predict the crack tilt angle, crack length, and the size
of the delamination defect, respectively. The results are shown in Table 4. The scaling
parameter β is calculated as mentioned before (taking the paths P1–P9 of defect 2 and
P10–P16 of defect 3 as examples, the scaling parameters β are calculated as 1.00053 and
1.0022, respectively) and to set the weights for the “cross paths” (P1–P9 and P6–P12) of
defect 2. The coordinate positions of defect centers before and after optimization are shown
in Table 4. The comparison plots of the results are shown in Figures 11 and 12, which
indicate that the features of the defects are visualized and the imaging positions are closer
to the real positions.
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Figure 11. Comparison of imaging results before and after optimization of defect 2: (a) imaging
results before optimization; (b) the threshold processing result before optimization; (c) image result
after optimization; and (d) the threshold processing result after optimization.

Figure 12. Comparison of imaging results before and after optimization of defect 3: (a) imaging
results before optimization; (b) the threshold processing result before optimization; (c) image result
after optimization; and (d) the threshold processing result after optimization.
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Table 4. Comparison of parameters and center coordinates of three defects before and after optimiza-
tion with the actual situation.

Actual Defect Parameters and Center Coordinates Predicted Defect Parameters and Center Coordinates

Type Size (mm) Direction
Center

Coordinates
Type Size (mm) Direction

Before
Optimization

After
Optimization

Defect 1 Crack 12.05 45◦ (186,264) Crack 12 45◦ (178,266) (180,265)
Defect 2 Crack 4.1 90◦ (263,225) Crack 4 90◦ (277,227) (264,225)
Defect 3 Delamination 5 × 5.2 × (225,263) Delamination 5 × 5 × (222,268) (224,261)

6. Discussion

In this paper, the proposed method can visually characterize the defects and im-
prove the accuracy of the imaging results. However, there are still some shortcomings in
the method.

First, we need to further supplement and improve the sample library; the special case
where the size is exactly in the middle of the two classes should be especially considered.
For the study of delamination defects, our sample library currently only considers the
case when the length and width directions are fixed. In subsequent studies, it will also
be necessary to further investigate how to identify the size and direction of delamination
when both the length and width directions vary.

Secondly, in relation to the algorithm, the effect of the ellipse factor of the width
direction on the imaging results is not considered at present, resulting in the optimized
imaging results still having a certain degree of offset compared with the actual position.
At the same time, the influence of the neglected path on the imaging results during the
path selection process, and whether there is a correspondence between the geometric
parameters of the defect and the path selection scheme, need to be further explored in
subsequent studies.

Finally, the limited number of sensors in the sensor array can degrade defect imaging
quality. The lower the density of the sensor array, the lower the image quality. For oblique
cracks, the fewer the sensors arranged in the detection area, the fewer sensing paths there
will be. An insufficient number of sensors will result in the inability to select a suitable path
to characterize the crack. As described above, the detection signal of the path perpendicular
to the crack direction is selected to identify the crack length. When the direction of the
selected path deviates from the desired direction, the recognition result of the crack length
will be affected. Even when the number of sensors is severely insufficient, this will also
lead to the inability to select a suitable path to characterize the crack. Determining how
many cells should be contained in the sensor array to be most suitable for the final imaging
for defects of different sizes will also need to be further discussed in further research.

7. Conclusions

In this paper, an improved RAPID imaging method for composite plates based on
machine learning is proposed. The improved method consists of two main parts: (1) Using
multiple machine learning models, the main features of defects, including type, size and
direction, are identified by analyzing the detection signals. (2) Based on these defect
features, the ellipse area scaling parameter β of the RAPID method is modified and weights
are set for the detection paths associated with the features to visualize the defect features
and effectively improve the accuracy of defect imaging.

(1) Appropriate ML models can be used to predict characteristics of defects such as
the type of defect, the size of the delamination, and the length and the direction of
the crack.

(2) The RAPID can be used for imaging of composite plates. After the type of defects and
main parameter are predicted by the ML models, the β value in the algorithm can
be further corrected and weights applied to the relevant paths, so that the predicted
position is closer to the real position and the geometric characteristics of the defect
can be visually displayed in the imaging results.
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(3) The relationship between the crack direction, the ply direction, and the angle of
detection paths comprehensively affects the detection signal and cannot be easily
peeled off from the waveform curve. Therefore, the detection samples obtained under
a single detection path are not sufficient to accurately predict the crack direction.
Combining the information obtained under multiple detection paths leads to a larger
sample dimension, and the combination of different information facilitates the model’s
ability to accurately identify the crack direction.
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Abstract: Iron-Cobalt ferromagnetic alloys are promoted for electrical energy conversion in aeronautic
applications, but their high magnetostrictive coefficients may result in undesired behaviors. Internal
stresses can be tuned to limit magnetostriction but must be adequately assessed in a non-destructive
way during production. For this, directional magnetic incremental permeability is proposed in this
work. For academic purposes, internal stresses have been replaced by homogenous external stress,
which is easier to control using traction/compression testbench and results in similar effects. Tests
have been limited to tensile stress stimuli, the worst-case scenario for magnetic stress observation on
positive magnetostriction coefficient materials. Hysteresis cycles have been reconstructed from the
incremental permeability measurement for stability and reproducibility of the measured quantities.
The directionality of the sensor provides an additional degree of freedom in the magnetic response
observation. The study reveals that an angle of π/2 between the DC (Hsurf DC) and the AC (Hsurf AC)
magnetic excitations with a flux density Ba at Hsurf DC = 10 kA·m−1 constitute the ideal experimental
situation and the highest correlated parameter to a homogeneous imposed tensile stress. Magnetic
incremental permeability is linked to the magnetic domain wall bulging magnetization mechanism;
this study thus provides insights for understanding such a mechanism.

Keywords: magnetic control; internal stress; local characterization; domain wall bulging; multi-axis
magnetization

1. Introduction

The aeronautic domain is undergoing profound changes, visible in the proliferation of
electrical comfort equipment, electronic controllers, and navigation aid systems. As the
level of required electrical power increases, so do the mass of electrical appliances since the
weight/power ratio remains challenging to reduce [1].

In the case of onboard transformers [2], an industrial solution for the increase in power
density consists of developing new magnetic materials such as iron-cobalt alloys. High
power density gains (up to 10% and more) are, for instance, expected with Fe-27%Co
compound. This material exhibits the highest saturation magnetization of all known soft
ferromagnetic materials (>2.4 T) [3].

Unfortunately, FeCo alloys’ astonishing saturation magnetization is associated with
substantial magnetostrictive effects. These effects result in large deformation and signif-
icant undesired acoustic noise [4,5]. There are many ways to reduce magnetostriction,
including the development of appropriate textures [4,6]. In [7], B. Nabi et al. claimed that
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magnetostriction in Fe-27%Co alloy is a consequence of magnetocrystalline anisotropy
partly linked to the sheet crystallographic texture and, by developing a Goss texture, much
better magnetic properties will be observed including a lower magnetostriction. Tuning
internal stresses is another promising solution [8].

Mechanical Internal Stress (MIS) is crucial in iron alloys’ magnetic and mechanical
performance. MIS originates from various mechanisms, including plastic deformations,
temperature gradients, or microstructural changes. Manufacturing processes including
machining, welding, shot peening, heat treatment, and grinding are sources of MIS.

All MIS estimation methods are indirect. They start with the measurement of a coupled
physical quantity and finish with a calculation stage [9]. The hole-drilling method [10] (see
Figure 1 for illustration), the contour method [11], the crack compliance method [12], and
the stripping method [9] are the most conventional mechanical methods. Together with the
chemical processes [9], they constitute the so-called destructive techniques.

Figure 1. Illustration of internal stress evaluation by destructive hole-drilling tests (courtesy of
CETIM, Senlis, France).

Non-destructive Testing (NDT) methods have also been described [13–15]. These
methods include diffraction (X-ray, Neutron), ultrasounds, or acoustic emission [16]. In the
case of conductive and/or ferromagnetic parts, electromagnetic NDT is often indicated.
Eddy currents testing [17], magneto-acoustic emission [18,19], electromagnetic acoustic
transducer [6], and Magnetic Barkhausen Noise (MBN) [20–22] are the most popular
ones [23]. These methods offer fast response, low cost, small size, and easy maintenance,
but their current industrial developments are limited, and their efficiency is questionable.
Very few of them have crossed the threshold between academia and industry.

Based on MBN measurements, the Stresstech controller (Jyväskylä, Finland) is, how-
ever, one of them [9]. A significant problem for this device comes from a quasi-impossibility
to distinguish the effect of MIS from other dependent properties (dislocations, grain size,
texture, plastic strain, precipitates, phase changes, impurities, etc.). The micromagnetic,
multi-parametric, microstructure and stress analysis (3MA) developed by IZFP Fraunhofer
institute (Saarbrücken, Germany) is an interesting alternative. 3MA accumulates and com-
bines data from different magnetization signatures and identifies the ultimate magnetic
combination of indicators to a given targeted property (hardness, internal stress, yield
strength, etc.) [24]. 3MA is pragmatic and efficient but needs time-consuming experimental
campaigns and provides non-transposable results.

All magnetic MIS controllers have been designed on the same principles that use a
unidirectional magnetization induced by a powerful electromagnet combined with local
surface sensors to observe the magnetic answers [25]. A current research trend of alternative
and/or self-made magnetic sensors for magnetic NDT measurements is perceptible in the
literature [26,27]. While attractive in terms of sensor reproducibility and stability, these
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innovations fail to accurately showcase the claim for directional selectivity of the magnetic
sensor as they are applied in angular-dependent measurements. In Figure 14 of [21],
however, simulation predictions on FeCo alloys show that stress effects on the magnetic
response can be more visible when the magnetic excitation and the stress direction are not
colinear and that a directional sensor would probably bring significant improvement in the
stress observation.

Among the magnetic methods, just a few can enforce directional measurements. Point
probes [28,29] and MBN are one of them [30] but not tested in this study. Instead, we
opted for Magnetic Incremental Permeability (MIP, μMIP), as the first results over stress
dependency were auspicious ([31], Figure 13 in [32]). MIP is based on the domain walls
bulging magnetization mechanism (reversible magnetization variations), as observed under
low amplitude magnetic excitation variations. This mechanism appears to be very sensitive
to MIS [31].

So far, MIP has almost always been observed with pancake (Figure 2, left-hand side)
or wound coils preventing access to directional information. Still, this limitation can be
overcome using double coils Transmitter/Receptor adjacent TR-probes as depicted on the
right-hand side of Figure 2.

Figure 2. (Left): single pancake coil illustration; (Right): adjacent Transmitter/Receptor, TR-probes illustration.

We propose to overpass the directional limitation in the present study by using a
miniature U-shape ferrite magnetic core. MIS is impossible to be precisely controlled; thus,
it has been replaced by external stress. The effect on the magnetization process is considered
independent of the stress origin. Tests were limited to tensile stress, constituting the worst-
case scenario for stress observation. Iron-Cobalt alloys have positive magnetostriction
coefficients, and tensile stress softens the magnetic behavior. As an already soft material,
limited tensile stress effects can be observed in the Ba(Hsurf) classic hysteresis cycles (where
Ba is the flux density, and Hsurf is the tangential magnetic excitation field). Hysteresis cycles
were reconstructed for all MIP measurements providing a stable and reproducible signature.
Then, indicators read on these cycles were defined and plotted vs. the homogeneous tensile
stress. Pearson factors were calculated and analyzed to establish their correlation level with
the external tensile stress. Conclusions were drawn regarding the non-destructive testing
objective and the physical properties of the domain wall bulging.

This manuscript is organized as follows: Section 2 describes the experimental condi-
tions, including sensors and tested specimens. Section 3 gives the experimental results.
Section 4 provides analysis, discussions, and conclusions. Among them, the optimal
conditions arise for a mechanical tensile stress estimation based on directional MIP.
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2. Experimental Setup

2.1. Description of the Specimens

FeCo Iron-Cobalt laminations were tested in this study. This material has a high yield
strength (1000 MPa). All specimens were extracted from the same batch. Strips were cut by
Electrical Discharge Machining (EDM) to get tensile-shape type specimens (Figure 3). Two
specimens were tested for consistency.

Figure 3. FeCo tensile stress specimen dimensions.

Table 1 gives the detailed composition, physical and mechanical properties of the
tested specimens.

Table 1. Composition, physical and mechanical properties of the tested specimens.

• Composition:

C (Mass %) Si Mn Co V Fe

<0.015 <0.1 <0.15 49 2 Bal.

• Physical properties:

Density
(g·cm3)

Elect. Res.
(μΩ·cm)

Exp. Coef.
(·K−1)

Therm. Cond.
(W·cm−1 K−1)

Curie Temp.
(◦C)

8.12 40 9 × 10−6 0.3 950

• Mechanical properties:

Yield
Strength

(MPa)

Tens.
Strength

(MPa)

Young Mod.
(GPa)

Hardness
(HV10)

1000 1345 250 300

2.2. Description of the Experimental Setup

The IEC 60404-3 standard details using a single sheet tester for the magnetic charac-
terization of a ferromagnetic lamination [33]. For geometrical reasons, it is impossible to
combine a traction bench while respecting all the recommendations. Still, the experimen-
tal setup we developed was inspired by this standard. Figure 4 gives pictures and a 2D
overview of the test bench.
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Figure 4. 2D overview of the experimental setup.

A tension–compression machine Shimadzu AGS-X series (Kyoto, Japan) was used for
the tensile stress application. All tests were done at room temperature and under constant
imposed stress conditions without initial load. The distance between the grips was 100 mm.
Once the constant stress was imposed, a minimum of 60 s was waited before starting
the acquisition process to avoid any drift issues. The magnetic inductor was made of a
U-shaped FeSi 3% electrical steel yoke. The leg size of the yoke was 12 mm × 12 mm, and
the inner distance between the legs was 30 mm. A 500 Turns excitation coil was wound
around the yoke and supplied by a Kepco BOP 100-4 M (New York, NY, USA) power
amplifier for the Ba(Hsurf) characterization and by an RS pro 180 W bench power supply
(Corby, UK) for the MIP. The data acquisition and analog signal generation were ensured by
the DEWESoft X2 (Trbovlje, Slovenia) data acquisition software associated with a SIRIUS
8 × CAN data acquisition. A noise-shielded radiometric linear Hall probe SS94A from
Honeywell (Charlotte, NC, USA) was positioned tangentially to the surface of the tested
sample for the surface magnetic field (Hsurf) measurement.

2.3. Magnetic Sensors

Two sensors dedicated to evaluating the magnetic state of the tested specimens have
been used in this study. Figure 5 depicts a 3D overview of both sensing solutions.

The first sensor was an n = 50 turns wound coil. The magnetic flux density Ba was
obtained by numerical integration (Equation (1)) of the voltage drop e(t) during the magne-
tization cycle:

Ba(t) = − 1
n·S

t∫
0

e(t)dt (1)

where S is the specimen cross-section. A numerical correction was done to cancel the
undesired drift due to the integration process. The second sensor (Figure 6) combines half
a toroidal ferrite core (WE-TOF EMI from Würth Elektronik, Künzelsau, Germany), and a
54 turns wound coil. Specific 3D-printed support (see Figures 5 and 6) has been designed
to hold the sensor and authorize plane measurements at every Δq = π/18 rad angle step. A
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Flashforge Dreamer (Jinhua, China) and PLA polymer were used. This support does not
influence the magnetic measurements.

Figure 5. Illustration of the magnetic sensors used in this study.

Figure 6. Photo and dimensions of the directional MIP sensor.

A precision Keysight (Santa Rosa, CA, USA) LCR meter was used to record the
impedance Z of the second sensor during the experimental phases.

2.4. Experimental Process

The experimental campaign was divided into two phases:

• The first phase was dedicated to evaluating the tensile stress effect on the evolution of
the classic Ba(Hsurf) hysteresis cycles. This effect has already been thoroughly described
in the literature [28,34], and our objective was to validate the specimens’ conformity;

• A similar tensile stress sequence was run in the second phase but combined with
directional magnetic incremental permeability measurements. For each tensile stress
level, a set of ten Z(Hsurf) curves were plotted (for different values of angle q from 0 to
π/2 rad with a Δq = π/18 rad step).

3. Experimental Results

3.1. Ba(Hsurf) Hysteresis Cycles

Tensile stress σ on Iron-Cobalt ferromagnetic materials is expected to soften the mag-
netic behavior. In the low-frequency range, softer magnetic behavior means higher perme-
ability but lower coercivity. This behavior is well-known and has already been displayed
in the scientific literature (Figure 6 in [21] and Figure 2.34 in [34]).

329



Sensors 2022, 22, 6296

Experimental results depicted in Figure 7 confirm our expectations. They validate the
conformity of our test bench and the tested specimens.

Figure 7. FeCo: experimental measurements for the tensile stress-dependent Ba(Hsurf) hysteresis cycles.

Ba(Hsurf) hysteresis cycles are firmly tensile stress-dependent and could be considered
for σ observation. Still, the impossibility of using wound coils in an industrial context
where large surfaces must be controlled is worth mentioning. This observation encour-
ages users toward other methods, including the directional MIP non-destructive method
described below.

3.2. Directional Incremental Permeability Z(Hsurf)
3.2.1. Magnetic Incremental Permeability

In general, magnetic permeability μ can be described as a measure of the material’s
response to an applied magnetic field.

More precisely and according to the German standard DIN1324 (part II: magnetic
field for material quantities [35,36]), the Magnetic Incremental Permeability (MIP, μMIP) is
defined as the slope of inner asymmetric loops (Equation (2), Figure 8). These loops, also
called minor cycles, are obtained when the tested material is exposed to the superimposition
of two magnetic contributions:

1. A low-frequency (quasi-static), high amplitude magnetic excitation, that provides a
bias magnetization;

2. A high-frequency, low amplitude magnetic excitation, allowing the measurement of
the relative magnetic incremental permeability μMIPr as:

Ba(t) = − 1
n·S

t∫
0

e(t)dt (2)
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Figure 8. MIP illustration and equation [37].

3.2.2. Z(Hsurf) Butterfly Loops

The experimental setup described in Section 2.2 measures the impedance of the MIP
sensor shown in Figures 5 and 6. Figure 9 consists of the evolution of IZI, the sensor
impedance modulus vs. the quasi-static magnetic excitation for four levels of tensile stress
σ. For this test, the sensor is aligned with the tested specimen’s length and the magnetic
excitation (see Figure 9 top left-hand corner).

Figure 9. IZI(Hsurf) for different tensile stress levels and with the MIP sensor aligned with the length
of the tested specimen as illustrated in the top left-hand side incrustation.

3.2.3. From Z to the FeCo μMIP

The interpretation of measurements displayed in Section 3.2.2 is facilitated by returning
the physical quantities. For this, the relation between IZI and μMIP for the FeCo sheet MIP
needs to be established.

The solution opted out in this study is based on a magnetic reluctance scheme. Even
inexact as relying on simplifying assumptions, it allows quickly estimating the permeability
with satisfactory accuracy. Additional post-processing checking the validity of the resulting
MIP was also performed: we ran comparisons between incremental μMIP and differential
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μDiff permeabilities (from Figure 9 results) in the saturated zone where they are supposed
to be similar. These comparisons are available in Table 1. Figure 10 describes the method:
reluctancesR1 andR2 are associated with the ferrite core and the FeCo sheet, respectively.
The magnetic contact between the ferrite core and the sheet is supposed ideal; thus, with a
total absence of airgap. Then, by assumingR2>>R1, this simplified approach leads to a
linear relationship between the imaginary part of Z” and the relative permeability μr:

μr =
Z′′ ·l2

μ0·N2·A2·ω (3)

Figure 10. Simplified reluctance scheme for a linear relation between Z” and μr.

Figure 11 gives the resulting μr(Hsurf) for all Figure 9 tests. It can be noted that the
curve shape is conserved compared to the impedance modulus |Z|, denoting negligible
electrical losses in the device.

Figure 11. μr(Hsurf) for different tensile stress levels and with the MIP sensor aligned with the length
of the tested specimen as illustrated in Figure 9.
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Table 2 comparisons confirm our expectations and the relatively similar permeabilities
in the saturated range.

Table 2. Comparisons between μr MIP and μr Diff in the high Hsurf amplitude range (saturated zone).

σ (MPa) Hsurf (A·m−1) μr MIP μr Diff

– 4500 37.5 40
160 4500 12 17
320 4500 9 10
480 4500 7 9

3.2.4. From μMIP to Ba MIP(Hsurf) Hysteresis Cycles

The butterfly loop (Figure 11) is the MIP method conventional signature. In NDT,
defining indicators read directly on this signature and plot them vs. the targeted properties
(i.e., the property to be assessed, MIS, microstructural information, etc.) is classical. For MIP
tests, those indicators include the maximum amplitude, the amplitude at the remanence
point, the curve width at 50% of max(μMIP), to name but a few [38]. In this study and for
comparison purposes, the indicator definition has been postponed to a final step consisting
of reconstructing a MIP hysteresis cycle.

Same indicators can be used for the classic and the MIP hysteresis cycles and com-
paring the stress influence on both these magnetic signatures is facilitated. The resulting
induction field Ba MIP is obtained from Equation (4):

Ba MIP =
∫

μ0μr MIP.dHsur f (4)

The integration process brings stability and eases the determination of the indicators.
Figure 12 depicts the Ba MIP(Hsurf) for all tests performed in Figure 9.

Figure 12. Ba MIP(Hsurf) hysteresis cycles for all Figure 9 tests.

3.2.5. Directional Ba MIP(Hsurf) Hysteresis Loop

In the following series of tests, five tensile stress levels and ten angle positions were
implemented. The applied stress was limited to 250 MPa. For saturation reasons, the stress
effect is especially weak beyond the [0–250] MPa range.
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4. Discussion

Ba(Hsurf) standard cycles are straightened by external tensile stress (Figure 7). Quite
interestingly, Ba MIP(Hsurf) loops show opposite behaviors (i.e., the resulting hysteresis
loop is laying down, see Figure 13). Iron-Cobalt alloys are characterized by positive
magnetostriction, resulting in a magnetic behavior softened by tensile stress. As an already
soft material, tensile stress effects on Ba(Hsurf) are limited. Oppositely, a much stronger
influence can be detected on the Ba MIP(Hsurf) cycles. This observation opens exciting
perspectives and confirms MIP as an excellent alternative for estimating tensile stress
stimuli.

Figure 13. Ba MIP(Hsurf) hysteresis cycles in the [0–π/2] angle range.

Coercivity is supposed to be independent of the nature of the magnetic signature
tested (Ba(Hsurf), Barkhausen noise, MIP, etc.). Therefore, comparing Hc(σ) and Hc MIP(σ)
(at θ = 0 rad) can be considered a way to check the reliability of the MIP measurements.
Figure 14 depicts this comparison in the σ = 0–250 MPa range (Figure 13), and as expected,
coercivities of both charaterizations (Ba(Hsurf) and Ba MIP(Hsurf)) remain close as σ varies.

334



Sensors 2022, 22, 6296

Figure 14. Coercivity vs. stress for Ba(Hsurf) and Ba MIP(Hsurf) hysteresis cycles.

From its atomic origin to human-scale observation, magnetization in ferromagnetic
steels depends on distinct mechanisms. Each mechanism is characterized by its geometrical
scale, time constant, and sensitivity to the physical environment (magnetic, mechanical,
thermal, etc.). These mechanisms overlap; thus, isolating and listing them is complex. Still,
three categories can be established:

1. Structure and kinetics of the magnetic domains (10−4–10−6 m):

• Domain walls bulging (reversible, in the low excitation range);
• Irreversible domain wall motions (middle excitation range);
• Nucleation and annihilation (high range);

2. Orientation and amplitude of atomic magnetic moments (10−11–10−9 m):

• Magnetization rotation (high and very high magnetic excitation).

3. Human scale mechanisms:

• Macroscopic eddy currents

Such a combination makes impossible to isolate the effect of stress on a given mech-
anism by a unique observation of standard Ba(Hsurf) hysteresis cycles. Oppositely, MIP
experimental observation provides privileged access to domain walls bulging. In the
recommendation of the literature [39–41], MIP is suggested to be run under an alternat-
ing magnetic field of amplitude half the coercivity, limiting the domain wall motions to
reversible ones. Domain walls bulging is sensitive to the low amplitude of magnetic excita-
tion. Scaling approaches and analogies encourage us to check its sensitivity in a low range
of stress.

The directionality of domain wall bulging is an open question. Even if according to
the manufacturer, FeCo laminations exhibit a not very pronounced crystallographic texture,
every material is somehow anisotropic in its magnetic answer, and so it should be for MIP.

Figure 13 confirms this statement by showing substantial variations over the tested angles.
Five indicators directly read on the q-dependent Ba MIP(Hsurf) cycles have been tested

to identify the most adapted to a tensile stress estimation:

1. Coercivity Hc MIP;
2. Remanence Br MIP;
3. Ba MIP(Hsurf) Hysteresis area;
4. Ba MIP at Hsurf = 2 kA·m−1;

5. Ba MIP at Hsurf = 10 kA·m−1.
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A refined analysis based on Pearson correlation factors ρ reveals Ba MIP at Hsurf = 10 kA·m−1

as the best indicator. Figure 15a depicts its variations vs. σ and for the ten sensor positions
that have been tested. An astonishing 0.99 linear correlation was obtained for θ = π/2.

(a)

(b)

Figure 15. (a) Ba at Hsurf = 10 kA·m−1 for θ in the [0, π/2] range. (b) Related Pearson correlation factors.

Even if read on the Ba MIP(Hsurf) cycles, Hc MIP depends on every magnetization mech-
anism. Oppositely, Ba MIP at Hsurf = 10 kA·m−1 provides a cumulative reflection all along
the magnetization cycle of the domain wall bulging mechanism.

Concerning the sensor orientation, there is no energetical reason for the domain wall
to bulge differently in one direction or the other in a supposedly isotropic material. σ and
Hsurf being parallel, on the first hand, if θ = 0 rad, the static and dynamic contributions are
superimposed, creating an even stronger softening behavior, and accentuating the effect
on the material and the behavior differences between the stress levels. Oppositely when
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θ = π/2 rad, the static and the dynamic contribution operate in quadratic directions, and
the sensor measurement is less affected by the softening effect, so that the measure becomes
quasi-linearly dependent on σ.

5. Conclusions

The directionality influence of MIP sensors has barely been studied before. In this
work, we focus on observing the effect of a tensile stress σ on the magnetic response for
several angles. We found that ideal conditions are reached when Hsurf DC and Hsurf AC
exhibit quadratic directions.

Ba(Hsurf) standard cycles are straightened by external tensile stress and show little
changes. Ba MIP(Hsurf) loops show opposite behaviors and significant variations (Figure 13),
confirming MIP as an excellent way to estimate tensile stress stimuli.

Among Ba MIP(Hsurf) indicators, Hc MIP depends on all the magnetization mechanisms.
Its σ dependency is evident but not the most linear one. Other Ba MIP(Hsurf) indicators
are more specific to the domain wall bulging mechanism and can be used to interpret the
influence of σ on this mechanism. The best result in terms of linear correlation was obtained
with Ba MIP at Hsurf = 10 kA.m−1 and for q = π/2 rad (Pearson coefficient ρ ≈ 0.995).

Many possibilities can be listed in the follow-up associated with this study; this
includes, in the short term, the influence of homogeneous compressive stress. Also, the
proposed results should be confirmed on MIS of pre-characterized specimens (by X-ray
diffraction, for instance).

Eventually, a new type of materials (martensitic stainless steel, low carbon steel,
etc.) could be tested. In an even longer-term vision, it would be interesting to check
the capability of the directional MIP on other usual magnetic NDT targeted properties,
including microstructural properties, aging, etc.
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Abstract: Wind tunnel tests often require deformation and displacement measures to determine the
behavior of structures to evaluate their response to wind excitation. However, common measurement
techniques make it possible to measure these quantities only at a few specific points. Moreover,
these kinds of measurements, such as Linear Variable Differential Transformer LVDTs or fiber optics,
usually influence the downstream and upstream air fluxes and the structure under test. In order to
characterize the displacement of the structure not just at a few points, but for the entire structure,
in this article, the application of 3D cameras during a wind tunnel test is presented. In order to
validate this measurement technique in this application field, a wind tunnel test was executed. Three
Kinect V2 depth sensors were used for a 3D displacement measurement of a test structure that did
not present any optical marker or feature. The results highlighted that by using a low-cost and
user-friendly measurement system, it is possible to obtain 3D measurements in a volume of several
cubic meters (4 m × 4 m × 4 m wind tunnel chamber), without significant disturbance of wind
flux and by means of a simple calibration of sensors, executed directly inside the wind tunnel. The
obtained results highlighted a displacement directed to the internal part of the structure for the side
most exposed to wind, while the sides, parallel to the wind flux, were more subjected to vibrations
and with an outwards average displacement. These results are compliant with the expected behavior
of the structure.

Keywords: wind tunnel; Kinect V2; 3D measurements; 3D reconstruction; point cloud registration

1. Introduction

Wind tunnel tests usually investigate the response of structures to wind in terms of
deformation and displacement [1]. For these tests, it is essential to measure deformations
and displacements on a large number of points on a structure, for a comparison with
mathematical models [2]. In addition, measuring the 3D shape and deformations of an
entire structure could be more suitable for simulation model comparison, since usually
mathematical models refer to the entire structure [3], while traditional measurement tech-
niques can often return data referred to a few points (e.g., Linear Variable Differential
Transformers LVDTs, fiber optics, and strain gauges).

Displacement measures could be performed using common and traditional approaches
and instruments. For example, the application of LVDT sensors or laser doppler vibrome-
ters [4] can be helpful also for determining natural frequencies, as well as for time domain
analysis. In addition, the application of fiber optics [5] can return small deformation mea-
surements at specific points and they are also commonly used for structural monitoring [6].
However, these techniques can be invasive for wind tunnel tests [3]. For example, LVDT
sensors have to be placed in direct contact with the surface for measuring displacement,
changing the wind flow, and affecting the test. Fiber optics, accelerometers, and pressure
sensors are less intrusive, but, if it is necessary to determine the shape of an object, it will
be difficult to acquire many different sensor signals, leading to a quite complex setup and
acquisition system. Moreover, they should be applied to the surface to be measured leading
to possible changes in its properties.
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With these considerations, non-contact measurement techniques can be addressed as
less invasive measurement methods. In this sense, laser doppler vibrometers could be used
for wind tunnel tests [7], but they could interfere with the air flux and they could have
a limited Field of View (FOV) and measurement range. In addition, the application of a
vibrometer could disturb the wind flux. Therefore, to obtain the shape of an object during
wind tunnel tests, a sensor with a large FOV, to be placed far away from the structure,
and can return a point cloud at a specific time, can be of great advantage in the case of
measurements of entire object displacements.

Within this framework, in this article, the application of 3D Time-of-Flight (ToF)
cameras, such as Kinect V2, is investigated in wind tunnel tests, for 3D shape measurement,
with the objective of measuring the structure displacement for different wind velocities.
For this purpose, the application of 3D cameras returning a point cloud for a specific
time instant can help to obtain the entire 3D shape under different testing conditions.
Traditional optical measurement techniques can be used as well [8,9], but they would
involve the application of markers or spraying patterns [10], leading to a modification
of the model surface. In the case of reflective markers consisting of solid spheres, object
surfaces could be modified, and the response of the structure to wind would be different.
Three-dimensional laser scanners, such as the ones used in [11,12], could be used as well,
but they usually require a scanning time of a few seconds to complete a scan and if the
object to measure is subjected to vibration, the final result will be affected by noise. In
addition, these techniques have a limited measurement range and a limited FOV, while the
proposed method could perform measurements in a volume of a few meters, it is possible
to place the sensors close to the walls of the wind tunnel chamber, reducing the effect on the
downstream and upstream wind fluxes. The proposed method is one of the less expensive
wind tunnel tests for 3D measurements. For these reasons, it would be difficult and not very
meaningful to perform a comparison with the cited techniques, which are more expensive
and have very different characteristics. In this paper, the feasibility of the application of
3D ToF cameras, such as Kinect V2, is studied, since they represent a valid option for their
compactness, lightness, and low cost and, to the best of our knowledge, are not present
in the literature. At the same time, they do not require markers and they can be used for
3D shape measurement to obtain the displacement of the entire structure. In addition, the
greater measurement range, compared to the devices mentioned in this paragraph, permits
the sensors to be placed close to the walls of the wind tunnel chamber, reducing the effect
on the downstream and upstream wind fluxes. The measurement method is based on:

1. Calibration of the 3 Kinect V2 placed in the wind tunnel to align all the three sensors
to a unique reference system (Section 3.3);

2. Extraction of sections of the structure measured to identify the displacement on those
sections for different wind velocities (Section 3.5);

3. Subdivision of each section into different sides of the object (Section 3.5);
4. Definition of the undeformed object sections given by fitting 3D reconstructions

obtained from undeformed object acquisitions (Section 3.5);
5. Calculation of the displacement for each side provided as the average and standard

deviation displacement, in relation to the undeformed condition, along each side
coordinate (Section 3.5);

6. Evaluation of the average displacement of each side to obtain more compact data (Section 4).

The paper is structured as follows: in Section 2, a literature review is presented to
introduce the scientific context of the article; in Section 3, an experimental setup is described;
in Section 3, the sensors point cloud registration and the data analysis method are explained;
test results are presented and discussed in Section 4; and in Section 5, conclusions about
the test method and results are drawn.

2. Related Works

In the literature, vision-based measurements may require the presence of markers
or at least features to track in order to obtain the displacement of an object on the image
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plane [13]. On the other hand, 3D scanners can project infrared or visible light patterns,
whose reflection can be used to obtain depth information. Using this method, 3D scan-
ners do not require the presence of markers to obtain a set of points in a 3D environment
and to perform displacement measurements for monitoring, e.g., monitoring of human
breathing [14]. In particular, Time-Of-Flight (ToF) devices, such as Kinect V2, project
IR light on the entire scene and measure the elapsed time between the light source
emission and reception after its reflection on a target. This time delay is determined
for Kinect V2 as the reflected energy and sampled at every pixel, using two windows
with a phase shift of 180◦ (pulsed modulation) [15]. In this way, it is possible to perform
wind tunnel tests without interfering with the aerodynamical properties of the structure
under test. Moreover, it was also demonstrated that the application of depth cameras,
in wind tunnel tests, is suitable to estimate the pose of an object subjected to wind,
as addressed in [16], or to determine the position and orientation of an ultra-small
airplane [17]. Indeed, pose estimation is one of the main applications of low-cost depth
cameras, such as Kinect V2, using also multiple cameras [18], and also for cameras
covered by a protective glass [19].

Regarding the 3D measurement applications, the main limitation of depth cameras
is their uncertainty of a few millimeters [20], when it is required to measure objects
with high stiffness and subjected to submillimeter displacement. For these conditions,
it could be more appropriate to use one single camera or stereo cameras with a high-
quality sensor and high framerate to perform Digital Image Correlation (DIC) [21]. This
technique can be used for measuring strains of mechanical components, also using
3D-DIC [22], also in a wind tunnel environment [23]. However, using these techniques,
it is possible to measure only a reduced part of an object to perform DIC effectively, with
speckle reproduced on the object. On the other hand, further studies presented in the
literature involve the application of photogrammetry for the 3D shape measurement
of large offwind yacht sails, which were also carried out in wind tunnels [24,25]. As
explained in [24], the precision of this measurement system is of few centimeters, which is
not significant for measuring the apparent wind angles (AWA) and spinnaker shapes, but
it can be important for other objects’ wind tunnel tests. Moreover, for 3D reconstructions
in a wind tunnel, more than one camera or stereo camera (four cameras in [24]) can
be required, leading to a quite expensive and cumbersome setup. On the contrary, the
accuracy can significantly decrease in the case of the application of Light Detection and
Ranging (LIDAR) sensors, as in [26]. However, in this case, the measurement system is
based on a custom sensor, which can be quite expensive in terms of instrumentation and
involves considerable work to set up the system. As for the system presented in this
article, if the displacement of a structure, such as the one used for the test presented in this
article, is much higher than the uncertainty of the Kinect V2 sensor, the application of our
measurement method is a valid option for measuring 3D displacements without advance
equipment and with a more user-friendly acquisition. In particular, the uncertainty of
Kinect V2 is 1.2 mm at about 1500 mm to 3.3 mm at the maximum reliable distance
(4200 mm) [20], (much lower than photogrammetry measures), while the displacement
of the structure under test was estimated to be of few centimeters. At the same time,
the wind tunnel chamber used for the test is 4 m × 4 m × 4 m; thus, Kinect V2 can
measure inside its measurement range, if the object to measure is placed at the center of
the chamber. Thus, in this case, the application of depth cameras is suitable for this test.

In the literature, 3D reconstruction of a civil structure could be performed with differ-
ent state-of-the-art techniques. These algorithms for obtaining a 3D shape reconstruction
usually involve the movement of a camera around the structure to capture a set of 2D
images to be processed using Structure from Motion (SfM) algorithms [27] or a set of
RGBD images to be processed using Simultaneous Localization And Mapping (SLAM)
algorithms [28]. However, during wind tunnel tests, it is not possible to change the position
of a 3D scanner and the structure is not still during tests; therefore, these algorithms would
not be able to obtain reliable results. For these reasons, in this research, the application of
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multiple Kinect V2 sensors for 3D reconstruction is presented with the specific application
of 3D displacement measurement, for wind tunnel tests, without interference from the
upstream and downstream wind and with calibration of the system executed directly in
the wind tunnel.

3. Materials and Methods

The experimental setup is composed of two parts. The first one is defined by the
structures to be tested and the second is the optical measurement system.

3.1. Tensile Structures

For the wind tunnel test, the structures under test were based on a squared and
a decagonal base prism, respectively (Figure 1). The two structures are based on a
tissue (cover) made of polyester micro-pierced tissue, which is the part being evaluated
and the one more subjected to greater displacement. The cover is linked to the steel
structure only at the top and bottom extremities (referred to as steel to extremity and
steel bottom extremity in Figure 2) and it can be easily deformed by a few centimeters
by hand. This link between the cover and the steel extremities is obtained with glue
and small screws to prevent them from fluttering, creating a disturbance to the flow and
leading to potential local damage of the cover tissue. The tissue displacement under
the effect of the wind is much higher than the state-of-the-art uncertainty of ToF depth
cameras. The height of both structures is 3500 mm and the cover starts from the bottom
steel extremity at 580 mm from the wind tunnel floor. For the squared structure, the side
length is 1200 mm, and for the decagonal structure, the diameter of the circle containing
the prism base is 1230 mm. The tensile structure is made out of micro-pierced polyester
tissue. This cover is connected at the extremities to a steel border base and the same
border is replicated at the top of the structure. The steel structure is connected to a
central steel column. A scheme of both structures is visible in Figure 2. To reinforce the
central part of the structure, elastic belts connect the two borders, constraining the cover
to a smaller displacement. Elastic belts are highlighted in Figure 1 using red lines in
the top view of the schematic in Figure 2. In Figure 2, the belts are represented as short
lines to schematically represent that they are attached to the steel extremities and do
not cross the top and bottom base of the structures. The cross section of the elastic belts
is 60 × 5 mm and the length of the elastic belts is equal to the height of the cover. The
cover thickness is 1 mm. This tissue could be broken by wind or it could be plastically
deformed if it is not reinforced by elastic belts; this is the reason for the presence of elastic
belts. A side is equipped with a small entrance to access the internal part of the structure.
This side is considered as the door side. The entire structure was fixed on a rotating plate
to make it possible to perform tests for different wind directions. The two described
structures are shown in Figures 1 and 2. The two structures, squared and decagonal, are
simple structures whose displacements can be measured using the proposed technique,
since the displacement of the cover is much higher than the Kinect V2 measurement
uncertainty. This measurement method can also be extended to more complex structures
with known geometry. There is no particular reason why these two structures were
selected. They simply represent a case study of the measurement method.
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Figure 1. Squared (a) and decagonal (b) structures under test.

  
(a) (b) 

Figure 2. A schematic of the squared (a) and decagonal (b) structures under test. The positions of
elastic belts are highlighted by using red lines, in the top view.

3.2. Measurement System

The measurement system is based on 3 Kinect V2 3D cameras used to reconstruct the
3D geometry of the two structures with the main goal to determine the average displace-
ment of the object subjected to different wind velocities.

For our test, among the different technologies and sensors available on the market,
Kinect V2 was chosen, since its characteristics (Table 1) are compatible with the require-
ments of the test. In particular:

1. Total measurement range: 0.7–4.2 m [20];
2. Displacement of the tensile structure, which is a few centimeters and it is much higher

than the random error of the Kinect V2 sensor, which is 1.2 mm at about 1500 mm to
3.3 mm at the maximum reliable distance (4200 mm) [20];

3. Low latency time of 20 ms to acquire a depth image [20];
4. Absence of markers, which could affect or damage the structure during the test;
5. The structure is convex; thus, the multiple reflection errors that are typical of Time-Of-

Flight devices are not present [29];
6. Low cost: during wind tunnel tests many cameras could be required and their usage

could be limited to a few tests. Thus, large investments for very low uncertainty
devices could be not justified.
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Table 1. Kinect V2 characteristics [20].

Characteristic Kinect V2

Working principle Pulsed Time-of-Flight (ToF)
Depth Range 0.7–4.2 m

Max Depth Resolution 512 × 424
Max Color Resolution 1920 × 1080
Field Of View (FOV) H: 70◦, V: 60◦

Max Acquisition Frequency 30 Hz
Latency time 20 ms

Software, SDK Libfreenect2

“Max Depth Resolution” and “Max Color Resolution” in Table 1 are the resolutions
of the depth sensor and RGB camera of Kinect V2. They are referred to as max since it
is possible to acquire depth and color images with a lower resolution by changing the
acquisition mode of the sensor. In the current work, the maximum resolution is used.

Since it is not possible to move Kinect V2 around the structure during the test to
perform the 3D reconstruction in a conventional way, 3 Kinect V2 sensors were placed
according to the scheme in Figure 3. The number of sensors was limited to the minimum,
since a higher number of sensors would not significantly reduce the uncertainty, unless a
very high number of sensors was applied with a high overlap of point clouds, to have a
large number of measurements at the same point.

 
(a) (b) 

Figure 3. Scheme of the sensor positions (a) and actual positions (b).

Sensor 1 was placed at a height of about 0.2 m from the ground and it was inclined
with respect to the vertical direction at about 20◦ (Figure 4). On the other side, sensors 2 and
3 are connected to the walls of the wind tunnel at a height of about 2.5 m and rotated toward
the structure and downwards. All sensors were installed with their longer dimension close
to the vertical direction to exploit the higher FOV of Kinect V2 on the horizontal direction
(Table 1). In this way, the structure is centered on the depth image of each sensor, limiting
the errors since it was demonstrated that close to the borders of the depth image, the Kinect
V2 sensor is less precise, due to the projection IR cone that is less intense going to the
corners [20].

The acquisition of data from sensors was performed using libfreenect2 API [30]. This
API permitted us to acquire up to 5 sensors simultaneously by using the same PC, instead
of the Kinect for Windows SDK2.0, for which only one single device acquisition is permitted.
The synchronization of devices was not required for our case, since the average and
standard deviation of displacement do not require particular synchronization of devices.
The average and standard deviation of displacement were computed for specific sections
of the structure, with reference to the sides of the structure, as described in Section 3.5.
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Figure 4. Pictures of the Kinect V2 1, 2, and 3, respectively, for wind tunnel test (cable ties to fix the
sensors do not affect the point cloud acquisition).

3.3. Measurement System Calibration: Point Cloud Registration

Before starting the test, it is necessary to calibrate the vision system. This procedure
is performed to find those transformation matrices to align the 3 Kinect V2 sensors with
respect to the same reference system. Then, point clouds from the 3 sensors are registered
in post-processing to obtain the full 3D geometry of the structure for each frame acquired,
assuming the 3D cameras are not moving during the test. This assumption is based on
the consideration that the wind force acting on a single sensor, in the worst case, was
estimated to be 20–30 N, while sensors were fixed using cable ties able to resist a force of
about 10 times higher.

Calibration was performed to ensure that the transformations aligned with the point
clouds from sensors 1 and 2 to sensor 3. To obtain this result, a thin wooden plane was used
in order to acquire the point cloud from all 3 sensors at the same time in static conditions,
and the point clouds obtained from the sensors were segmented to extract the plane. To
better identify the plane, high-reflective tape was put on the corners of the plane since it can
lead to out-of-range measures for ToF cameras, such as Kinect V2 [29]. Using this method,
it was easier to find the corners of the plane and to extract the part of the point cloud related
to the plane. All the 3 point clouds representing a single plane were then aligned with the
Iterative Closest Point (ICP) algorithm [31], and the transformation obtained matrices were
referred to the one of sensor 3. To consider the 10 mm thickness of the wooden plane of the
point clouds from sensor 1, the extracted point cloud was modeled by using a plane, and
then the point cloud was translated 10 mm along the normal direction of the plane.

To investigate the level of uncertainty in the registration process, this procedure
was executed on 20 different acquisitions with the plane rotated with different quantities
and directions. The uncertainty was estimated by measuring the distance between the
corners of the plane obtained from the 3 sensors after the registration process. There
were 3 estimations of each corner of the plane, one for each sensor. The distance between
these points, which referred to the same corner, was used to determine the uncertainty of
the calibration procedure. This distance was estimated to be on average 16 mm, and the
standard deviation 5.5 mm. These values are definitely below the range of displacements
to be measured during the described wind tunnel test. At the same time, it should be noted
that the measured quantity is the displacement of the structure, which does not depend
directly on the registration procedure, since a large part of the structure displacement is not
related to overlapping parts of the point clouds (Figure 5). A similar registration procedure
is presented in [28], with an accuracy ranging a few centimeters.
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(a) (b) 

Figure 5. Three-dimensional reconstruction of the rectangular (a) and decagonal (b) tensile structures
example (different colors refer to point clouds acquired from the three sensors).

A reconstruction of the tensile structure for both geometries can be seen in Figure 5.
Only the points related to the object under inspection are visible since the background was
removed through segmentation by considering the Euclidean distance of points (outliers’
removal [32]).

3.4. Tests Summary

To study the cover deformation due to wind exposure, the test was performed at
different wind speeds and for different angles of incidence of the wind. The variation in
the angle of incidence was obtained by rotating the structure that was linked to a rotating
platform. A summary of the tests carried out is shown in Table 2. The wind velocities were
related to the power percentage of the engines of the wind tunnel.

Table 2. Tests summary.

Structure Type Wind Velocities (km/h)
Wind Exposure

Angles (◦)

Squared base 41.4, 66.6, 90, 101.5, 112, 124, 135, 144, 158.5 0, 45, 90, 135, 180

Decagonal base 41.4, 66.6, 90, 101.5, 112, 124, 135, 144, 158.5, 176.5 0, 45, 180

For each wind velocity and exposure angle, 30 depth frames for each sensor were
acquired. Having set the sensor acquisition at 30 fps, the acquisition time was 1 s, for each
wind velocity. Acquisitions were performed also for each angle with no wind.

3.5. Data Analysis Method

After the point cloud registration process, to obtain a measure of the displacement of
the structure, it is necessary to find a relation between the point clouds acquired during the
test and the ones before the tests, with no wind.

To find this relation, 3 sections of the object were considered. These sections were
defined by the planes shown in Figure 6. The points within 10 mm of distance from the
sections were projected on the planes and a section of the object could be extracted. The
position of each section compared to the height of the structure is shown in Figure 7.
The planes of the sections were found by obtaining the sides of structure prisms and by
computing the height from the basis of the structures on each side.
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(a) (b) 

Figure 6. Planes to extract the sections of the structures of rectangular (a) and decagonal (b) structures.

 

Figure 7. Schematic diagram showing the height of the sections.

Point clouds of the 3 sensors after registration were defined with respect to the refer-
ence system of sensor 3. In particular, the edges of the squared and decagonal structures in
the undeformed conditions were extracted from acquisitions of the structures not subjected
to wind. After extracting the sections of the structures by projecting points within 10 mm
distance from the sections, as described before, the sides of the structures for each section
are given by fitting a straight line for each side. Using this procedure, the displacement can
be computed as the point-line distance of the points of the deformed condition in relation
to the straight lines of the undeformed condition, for each side.

The final result of this procedure is the displacement calculated and displayed in
graphs in Figures 8 and 9 (similar graphs, but with different values, were calculated for
each velocity and angle). The error source, which influences the displacement measures, is
the uncertainty of the sensor, since the bias is deleted when the displacement is computed
as the difference between deformed and undeformed object measurements. The second
source of measurement error can be given by the point cloud registration to align the
3 sensors to the same reference system. The influence of the point cloud registration on the
results has already been discussed in Section 3.3. Displacement is computed for each frame
acquired and mean and standard deviation are extracted for each wind speed. For each
side of the structure, the deformation trend is visible. In addition, the dashed line curves
are defined, as the mean displacement ± standard deviation (Std. Dev.). Displacement is
computed as the mean displacement for each millimeter along the length of the side. In
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order to avoid outliers, in particular at the corners of each side, in the case of a low number
of points per millimeter along the length of the side, the average and standard deviation
were not considered. This was done to reduce the noise related to error measurement and
to discard unreliable data.

Figure 8. Example of the analysis performed for the squared structure of section at 1/2 of total height
at wind speed of 158.5 km/h. The wind direction is indicated by the red arrow.

Figure 9. Example of the analysis performed for the decagonal structure of section at 1/2 of total
height at wind speed of 176.5 km/h. The wind direction is indicated by the red arrow.

At the corners of the structure, the displacement can be subjected to mistakes due
to possible errors of Kinect V2 sensors, described as mixed pixels errors, in [29]. On the
other hand, the computed standard deviation is caused by both vibration and by sensor
uncertainty. However, the sensor uncertainty can be quantified, since the sensor noise is
given by the distance at which the object is framed. Since the object was placed between
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2 and 3 m from the sensors, the uncertainty given by the sensors is expected to be about
2–3 mm, according to the sensors’ uncertainty [20]. Moreover, point cloud registration can
have an impact, as described in Section 3.3. This level of uncertainty can be confirmed by
lower standard deviation levels for the sides of the structures that are the most exposed
to wind (sides 1-2 Figure 8 and sides 1-2-3 Figure 9). On these sides, the vibrations are
almost negligible and the standard deviation is mainly caused by the sensor uncertainty.
Moreover, it is difficult to split the points of the deformed structure section and relate them
to the correct side of the structure, when they are close to corners. For these reasons, from
displacement graphs, the corners of the structure are partially excluded. The 2D graph in
Figure 8 that represents the squared structure refers to a single frame, while graphs are
related to the entire acquisition for one single wind speed (30 frames). The 2D graph scales
are related to the sensor 3 origin and they are the coordinates of the plane at 1/2 of the total
height section.

The displacement of the graphs in Figures 8 and 9 are referred to in the reference
systems in Figures 10 and 11. By convention, the reference exposure angle compared to the
wind is defined as shown in Figures 10 and 11. Positive displacement is always directed
outwards and the reference systems are named in a clockwise direction. Reference systems
are shown for each angle of the tests performed (Table 2).

 (a) (b) (c) (d) (e) 

Figure 10. Reference systems for squared structure test for (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦, and
(e) 180◦.

        (a)                 (b)                 (c). 

Figure 11. Reference systems for squared structure test for (a) 0◦, (b) 45◦, and (c) 180◦.

By looking at the results in Figures 7 and 8, it is possible to observe the symmetry
between sides 1 and 2 in Figure 8, by noting the reference systems used to compute
displacements for sides 1 and 2 in Figure 9. To observe this symmetry, one of the two
graphs of the two sides should be flipped with respect to the center of the horizontal axis
(length of the side). Regarding Figure 8, a symmetry can be observed between sides 1 and 3
with a reversed horizontal axis of side 1 or of side 3, since the reference systems are placed
as in the scheme of Figure 10a.

To make a comparison between tests performed at different angles and wind speed,
the average displacement of an entire side was computed.
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4. Results

Using the procedure described before, the average displacement was calculated for
each side, wind velocity, and structure section.

In general, for both structures, tests evidenced the following results (Figures 12–14):

1. The average displacement of the sides of the structure more exposed to wind changes
approximately linearly compared to the increase in the wind velocity;

2. A higher average displacement and a larger vibration level were observed for the
middle section with respect to the other sections, which are closer to the sides of the
structure. This is reasonable since the central section is the farthest from steel borders
that link the cover to the extremities of the object (Figure 6);

3. Greater displacements were measured at 1/4 of the total length section with respect to
3/4 of the total length section, since the 1/4 section is more distant from the connection
of the tensile structure to the ground (Figure 13);

4. The most exposed to wind sides are the ones that have the highest displacement and
their adjacent sides are the ones subjected to the highest vibrations (standard deviation
of displacement). This is likely because the wind first impacts against the sides more
exposed and then it slides to the closest ones generating a separated unsteady flow,
causing vibrations. This happens especially for the decagonal structure;

5. The displacements of the most exposed to the wind side and of the opposite side are
directed inwards, suggesting an internal pressure lower than the external one, while
the displacement of the other sides is usually directed outwards;

6. The most exposed to wind sides are the ones with the lowest vibration level;
7. Elastic belts connecting the two steel borders of the structure (Figure 1) can reduce

significantly the average displacement when it is directed to the center of the struc-
ture, while they do not change the shape of the expected deformation when the
displacement is outwards;

8. A higher displacement of the side most exposed to wind has a corresponding lower
displacement of the opposite side.

The application of consumer 3D depth cameras, such as Kinect V2, is not a common
practice for wind tunnel tests. However, the Kinect V2’s advantage is its low-cost, its
wide FOV (suitable for large dimension objects 3D reconstruction), and its capability to
acquire the point cloud at a frame rate of 30 fps or higher with a random error well below
10 mm [20] in the entire operative range. Thus, 3D reconstruction can be applied to measure
the displacement of the entire structure, rather than perform measures of just a few points.

In this article, a method to measure the displacement of a structure in harsh environ-
ments, such as a wind tunnel, is presented. This method is based on the acquisition of three
sensors’ point clouds. Since all the sensors remained in the same positions during the entire
test, point cloud registration was performed only once before the test. The calculation of
displacements was obtained by extracting three sections of the object. This procedure can
be applied to the measurement of displacement for any structure, with a similar shape, for
which a section can be extracted.

One of the main advantages of this kind of measurement system is the application
of low-cost and user-friendly sensors for 3D displacement measurements, in cases of a
large deformation tensile structure. At the same time, this method does not require the
installation of markers or speckles for optical measurements. Another advantage is the
possibility to have the displacement of the entire structure under evaluation, given by the 3D
shape measurements obtained for each point of the structure (with traditional measurement
systems, it would be difficult to obtain such resolution in terms of displacement measures).
On the other hand, a limitation of this procedure can be determined by the uncertainty
of Kinect V2, which would be not suitable in cases of a low displacement of a structure.
Indeed, these kinds of measurements require a sensor that has an uncertainty much lower
than the expected deformation. The presence of edges makes it possible to locate the section
to extract; in the case of irregular or very complicated geometry, the section to extract might
be hard to detect.
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Figure 12. Average displacements and the standard deviation for each side of the squared base
structure at 1/2 of the total height for different wind velocities for angles 0◦ (a), 45◦ (b), 90◦ (c),
135◦ (d), 180◦ (e).
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(a) 

 
(b) 

 
(c) 

Figure 13. Average displacements and standard deviation for each side of the decagonal base
structure at 1/2 of the total height for different wind velocities for angles 0◦ (a), 45◦ (b), 180◦ (c).
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Figure 14. Comparison between average displacements at different heights of sections for the squared
structure at 0◦ angle, for each side of the structure going from side 1 to 4.

The results allowed the behavior of the two structures starting from their deformed
shape to be studied. Results at points 1 and 2 of Section 4 are expected and they allow the
goodness of the measurement system to be checked.

It was possible to observe the shape of the structures for different speed velocities
and angles. The average displacement and the standard deviation were computed since
the results for these kinds of tests are related to a quantification of the displacement and
3D shape measurement of a structure when it is exposed to wind, in order to compare
experimental results with numerical ones, for stationary wind conditions.

5. Conclusions

In this article, a measurement system involving the application of 3D cameras for
a wind tunnel test is presented. The specific application of displacement measurement
from a 3D shape is treated in this article and the analysis of acquired data allowed us
to obtain the displacement of each side of the structures, for different sections. With
reference to traditional measurement systems, this measurement system permits us to
obtain the entire shape of the object being evaluated, and it is not measured only for
specific points. As matter of fact, any section of the object could be extracted to determine
the displacement. In comparison with other non-contact measurement systems, it does
not require the application of markers on the object to measure. For these reasons, its
application is suitable for the test described in this article. Other measurement systems,
based on different 3D cameras, can be created with the same procedure of data analysis.

As a consequence, this measurement system can be seen as a complete system for
measuring displacement, higher than the uncertainty of 3D sensors, and as a system
for measuring the 3D geometry of structures in harsh environments. The frequency of
vibration was not accurately measured in this experiment, since the purpose of the proposed
technique was to measure the average displacement distribution of the 3D structure under
test and even possible aliasing of the vibration would not affect the mean displacement. The
measurement of the frequency of vibration can be part of future work, by acquiring sensors
using an external trigger and by acquiring at an fps that is large enough to describe properly
the vibrations of the structure (twice that of the vibration frequencies of the structure).
Further improvements could follow these considerations involving the study of structural
properties of structures with depth cameras, e.g., modal parameters or natural frequencies.
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Abstract: We propose an efficient semi-analytical method capable of modeling the propagation of
flexural waves on cracked plate structures with any forms of excitations, based on the same group of
vibration characteristics and validated by a non-contact scanning Laser Doppler Vibrometer (LDV)
system. The proposed modeling method is based on the superposition of the vibrational normal
modes of the detected structure, which can be applied to analyze long-time and full-field transient
wave propagations. By connecting the vibration-based transient model to a power flow analysis
technique, we further analyze the transient waves on a cracked plate subjected to different excitation
sources and show the influence of the damage event on the path of the propagating waves. The
experimental results indicate that the proposed semi-analytical method can model the flexural waves,
and through that, the crack information can be revealed.

Keywords: flexural waves; vibrations; structural health monitoring; semi-analytical method

1. Introduction

Structural health monitoring (SHM) technologies are crucial in maintaining the safety
and integrity of engineering structures and thus have attracted much attention in the
research community [1–3]. Generally, non-destructive damage detection techniques can
be characterized by the vibration-based [4,5] and guided wave-based methods [6,7]. The
guided wave-based detection techniques are suitable for sensitively locating small or local
damages. However, detected signals in guided waves are liable to be contaminated by
environmental noises, such as temperature effects [8,9], dispersion properties [10], multiple
modes [11], and material uncertainties [12]. The vibration-based detection techniques, on
the other hand, can detect global damage events and have the advantage of requiring no a
priori information of the vicinity of damage. The existence or onset of damage will alter the
vibration characteristics, such as shifts of natural frequencies, changes of modal damping, or
derivatives of mode shapes, of the detected structures, and thus, the vibration characteristics
contain the information of the damage events [13–16]. Generally, the vibration-based and
guided wave-based methods are regarded as two distinct approaches despite the fact that
vibration and waves are essentially closely related.

Waves propagating in plate structures, known as Lamb waves, are sensitive to various
types of damage and their propagation characteristics and interpretation are crucial in
developing related monitoring strategies [17–20]. Numerically, Lamb waves are generally
analyzed by the finite element method (FEM) [21,22], finite difference method (FDM) [23,24],
the spectral element method (SEM) [25], the boundary element method (BEM) [26], or the
semi-analytical finite element method (SAFE) [27,28], where the SAFE has recently been
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developed to model guided wave on anisotropic composite laminates and in situations with
thermal effect [29,30]. Although vibrations- and waves-based damage detection techniques
are characterized as two distinct approaches, the vibration can be regarded as standing
waves while waves can be regarded as the superposition of vibrational modes. Thus, the
damage-induced changes of the modal parameters in the time-domain should contribute to
the behavior of the spatial-domain propagating waves. In addition to capturing the wave
propagation characteristics with plate structures with cracks, analysis of spatial-domain
propagating Lamb waves based on time-domain vibration characteristics enables us to
calculate the instantaneous wave responses at any given time under different arrangements
or forms of excitations with the same database of vibration information and time-consuming
iterative time-stepping process from the initial condition required in general numerical
methods can be avoided.

Aiming to provide a modeling method for cracked plate structures by linking the vibra-
tion and wave, in this work, we propose a semi-analytical method for modeling the full-field
transient propagation of flexural waves (i.e., the approximation of the low-frequency A0
Lamb wave mode) on a cracked plate based on temporal vibration characteristics and the
superposition of the deviated vibrational normal modes. The proposed semi-analytical
method is further connected to a power flow analysis technique to analyze the transient
waves excited by different excitation sources. Finally, the proposed semi-analytical method
is validated by a non-contact scanning Laser Doppler Vibrometer (LDV) system.

2. Semi-Analytical Model Linking the Vibrations and Waves

Classical plate theory claims that if the coordinate in the thickness direction of a
three-dimensional solid can be eliminated, the three-dimensional plate problem can be
reduced to a two-dimensional problem and physical quantities, such as displacements,
strains, and stresses, at all points in the mid-plane of the plate can be used to determine
the associated quantities at any point in the three-dimensional plate structure [31]. When
the thin plate has cracks symmetrical in the direction of thickness, where the mid-plane of
the plate remains continuous, the classical plate theory can still be applied. Based on the
classical plate theory, we now propose a semi-analytical method to analyze the transient
behaviors of a cracked plate.

Consider a homogeneous thin plate, also known as the Kirchhoff plate, with an external
loading p(x1, x2, t) applied on the upper surface of the plate. The governing equation for
the out-of-plane deformation u3 is [32]

D
(

∂4u3

∂x1
4 + 2

∂4u3

∂x1
2∂x22 +

∂4u3

∂x24

)
+ ρ sh

∂2u3

∂t2 = p(x1, x2, t), (1)

where D = Eh3

12(1−ν2)
, E is Young’s modulus, ρ s is the density, ν is Poisson’s ratio, and

h(x1, x2) is the thickness at position (x1, x2) of a plate. The out-of-plane transient dis-
placement of the plate can be written as a superposition of the vibration normal modes
as follows

u3(x1, x2, t) =
∞

∑
i=1

Ti(t)Wi(x1, x2), (2)

where Wi(x1, x2) is the ith mode shape, Ti(t) is the time function representing the weight
coefficients of the contribution of the ith mode shape at a specific time to the transient
wave field. By the orthogonal properties between the mode shapes in the modal space,
the transient displacement solution of the flexural wave (i.e., the approximation of the
low-frequency A0 Lamb wave mode) can be derived from Equation (1) as [32]

u3(x, y, t) =
∞

∑
i=1

Wi(x1, x2)

ρ sωi

⎧⎨⎩
∫ t

0

[∫ b
0

∫ a
0 p(x1, x2, τ)Widx1dx2

]
sin ωi(t− τ)dτ∫ b

0

∫ a
0

(
h ·Wi

2
)

dx1dx2

⎫⎬⎭, (3)
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where ωi is the resonant frequency of the ith resonant mode of the plate and a and b are the
length and width of the plate, respectively. If the external loading with a loading history
F(t) is applied within a specific range R(x1, x2), Equation (3) can be written as the following
Duhamel’s integral

u3(x, y, t) =
∞

∑
i=1

⎡⎣Wi(x1, x2) ·
∫ b

0

∫ a
0 R(x1, x2) ·Widx1dx2

ρ sωi ·
∫ b

0

∫ a
0

(
h ·Wi

2
)

dx1dx2

⎤⎦ · ∫ t

0
F(τ) sin ωi(t− τ)dτ. (4)

From the term
∫ b

0

∫ a
0 R(x1, x2) ·Widx1dx2 shown in the temporal solution in Equa-

tion (4), we can see that the applying range of the external loading will influence the
contribution of the individual mode. Note that R(x1, x2) is expressed as a Dirac-delta func-
tion δ

(
x1 − x1p

)
δ
(

x2 − x2p
)

when a pointwise excitation is applied at position
(

x1p, x2p
)
.

Although the out-of-plane displacement is dependent on space and time, the vibration char-
acteristics ωi and Wi(x1, x2) in Equation (4) (i.e., resonant frequencies and mode shapes)
are determined by the boundary conditions, material constants, and geometry of the plate
and are independent of time, magnitude of the external loadings, and the excitation lo-
cations. Thus, even for complicated transient responses, if the vibration characteristics
can be obtained beforehand through theoretical calculations or finite element simulations,
transient behaviors at any time and any location can be obtained by Equation (4) by the fact
that the vibration characteristics and wave source are decoupled and thus can be analyzed
separately. We note that the frequencies and mode shapes of the analyzed plate can also be
experimentally measured using techniques, such as experimental modal analysis (EMA)
or electronic speckle pattern interferometry (ESPI) [33]. However, it should be noted that
limited by the bandwidth of the excitations as well as the resolution of the sensing systems,
high-frequency resonant frequencies and mode shapes are usually difficult to be experi-
mentally identified. In this work, resonant frequencies and mode shapes of the intact plate
are theoretically derived [32]. However, for the damaged plate, vibration characteristics are
obtained using finite element analysis.

The analysis of the instantaneous wave propagations on the damaged plate is based
on the temporal contributions of each vibrational mode to the overall transient wave
field. Although each vibrational mode contributes to the overall transient waves, only
a finite number of vibrational modes are required to efficiently converge the calculation.
However, when the excitation frequency is high with a short wavelength, more modes
are required, and the convergence speed of the calculation would be lower. In addition,
for the calculation of the overall transient responses, only a specific range of dominated
resonant frequencies centered around the excitation frequency are required. Furthermore,
according to the Nyquist sampling theory, when the excitation frequency is at N Hz, the
considered highest mode in the modal contribution should have resonant frequency higher
than 2N Hz for the convergence of the transient solution [34].

This semi-analytical approach based on the vibration characteristics enjoys the follow-
ing advantages:

(1) When the loading range R(x1, x2) or the loading history F(t) is changed, the same
vibration characteristics in the database of the vibration information can be substituted
by Equation (4) to obtain the transient solutions.

(2) There is no time-consuming iterative time-stepping process in calculating the temporal
integral term

∫ t
0 F(τ) sin ωi(t− τ)dτ. Thus, we can efficiently obtain on-demand full-

field wave propagations at a specific time t.
(3) The form of the transient solution in Equation (4) can be further transformed to

other physical quantities, such as strain or velocity fields, without having to perform
any additional numerical post-processing operations, which minimizes the possible
sacrifice of the resolution (spatial or temporal) or distortion of the transient solutions
coming from numerical processing. Based on this advantage, in addition to the
relation between the vibration modes and the instantaneous wave responses, in this
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work, a power flow analysis (PFA) is also considered to reveal the transmission paths
of the propagating waves on the plate. The PFA uses the instantaneous power flow
density vector defined as the dot product of the velocity vector and stress tensor in
the form of qj = −σjivi , i, j = 1, 2, 3, to trace the instantaneous energy transmission
paths from one location to another within the plate [35–37].

3. Simulation of the Instantaneous Flexural Waves Using the Semi-Analytical Model

To demonstrate the proposed semi-analytical model for analyzing instantaneous
wave propagation, here, we investigate a damaged cantilever rectangular aluminum plate
(400× 150× 2 mm) with a rectangular slot (60× 5× 2 mm) in the center, which has been
studied in the literature, as shown in Figure 1a [4,38]. The isotropic plate is made of
aluminum material with a Young’s modulus of 69 GPa, a Poisson’s ratio of 0.33, and a
density of 2705 kg/m3. The dispersion curves, obtained by the FEM analysis using the
COMSOL software for the analyzed plate, are shown in Figure 1b. For the Lamb waves
on plates, each frequency corresponds to both the symmetric and asymmetric modes on
the dispersion curves. However, by using a windowed excitation signal around a low-
dispersion frequency with an asymmetric arrangement of the actuator, a dominated mode
(here, the low-frequency A0 mode) can be generated. The transient behaviors of the excited
flexural wave (i.e., the low-frequency approximation of the A0 mode) can be analytically
captured based on the Kirchhoff plate theory given in Section 2. Later, to model and study
the influence of the crack, we considered low-frequency one-sided excitations, and thus,
practically, the flexural waves with a high signal-to-noise ratio are mainly excited [39].

Figure 1. (a) Dimension of the damaged plate and the location of the actuator. (b) The
dispersion curves.

Before demonstrating the disturbed waves on the damaged plate, we first consider
an intact plate with a point source in the form of a five-cycle tone burst at an operation
frequency f0 located at coordinate (200 mm, 0 mm, 2 mm) as marked in Figure 1a. The
expression of the five-cycle tone burst is as follows:

A1(t) =
1
2
[H(t)− H(t− 5/ f0)][1− cos(2π f0t/5)] sin(2π f0t), (5)

where H(t) is the Heaviside step function. To avoid numerical errors, Equation (5) will be
substituted by the temporal solution in Equation (4) and a closed form of the integral can
be obtained.

Then, we show the number of modes required to determine the transient displace-
ment field. We compute the root-mean-square (RMS) of the displacement field u3

rms at
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the coordinate (200 mm, 150 mm, 2 mm), with a 1 ms duration and a 1 MHz sampling
rate, where

u3
rms =

√√√√√ M
∑

i=1
[u32(t1) + u32(t2) + u32(t3) + . . . u32(tM)]

M
. (6)

The number of the composed vibration modes with respect to the RMS displacement
field at excitation frequencies of 5, 10, and 20 kHz is considered, as shown in Figure 2a.
Although only a finite number of vibrational modes is required for converging the solution,
the convergent speed of the RMS displacement field is related to the excitation frequency.
When the excitation frequency is high, more modes are required for the convergence of the
RMS displacement field. Then, we show the contribution of each mode (i.e., u3,i

rms) to the
overall transient responses with respect to the resonant frequency in Figure 2b. We can
see that as the excitation frequency gets higher, the bandwidth of the contributing modes
gets wider, where the dominating modes of the transient responses are centered around
the excitation frequency.

Figure 2. (a) The relation between the root-mean-square (RMS) transient displacement and the
required number of vibrational modes. (b) The relation between the RMS transient displacement due
to the ith mode and the resonant frequency.

The normalized full-field transient wave fields of the intact plate when the operation
frequency is 10 kHz are plotted in Figure 3, where the Solid Mechanics Module with
the time-dependent solver is utilized. Good correspondences can be obtained between
the semi-analytical method and the FEM results, where the maximum displacements are
4.51× 10−7 m and 4.57× 10−7 m, respectively. Here, in calculating the semi-analytical
method, there are a total of 400 vibrational modes considered, with a span from 0 to 35 kHz.
The PFA results that give the energy transport at every location and at every specific time
are also listed in Figure 3a, where the arrows demonstrate the instantaneous transmission
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paths of the propagating waves, and their lengths refer to the intensity of the vectors. We
can see that, as time increases, the waves expand from the point source and are finally
reflected from the boundary to interfere with the coming waves. Since the boundary
condition is clamped at the left end, the wave pattern is not symmetric.

Figure 3. The full-field displacement response within 0.2 to 0.5 ms of the intact plate (a) the semi-
analytical method with the power transmission paths. (b) The FEM methods.

Benefiting from avoiding the time-consuming iterative time-stepping process, the
proposed semi-analytical method needs less calculation time compared to the FEM. To
compare the simulation efficiency, a computer with the configuration of an AMD Ryzen
7 5800X 8-Core Processor 3.8 GHz and 32 GB RAM was used to run the simulations using
the semi-analytical method (i.e., a combination of the FEM for Eigen Frequency Module
and the theoretical Duhamel’s integral solution) and the FEM (i.e., time-dependent solver).
The mesh of the model consisted of 27,229 elements and the duration of the observation
time is 1 ms. The comparisons of the calculation time between the FEM and the proposed
semi-analytical method with respect to three different sampling times are shown in Table 1.
As the sampling time is decreased, the calculation time for the FEM is increased. However,
mainly spent on the obtainment of the vibration modes, the additional calculation time
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for the semi-analytical method is all very short. For the case of a 1 μs sampling time, the
calculation time for the semi-analytical method is only 53% of that used in the FEM analysis.

Table 1. Comparison of the computational time between the FEM and semi-analysis method.

Sampling Time Δt FEM (Time-Dependent) Semi-Analytical Method

3 μs 159 s 241.4 s (235 + 6.4)
2 μs 242 s 242.4 s (235 + 7.4)
1 μs 462 s 244.1 s (235 + 9.1)

0.5 μs 855 s 247.0 s (235 + 12.0)

The relationship of the amplitude of the Lamb waves with respect to the time and each
vibration mode contribution at its resonant frequency is given as a three-dimensional plot
shown in Figure 4. We can see that, as time passes by, more and more modes are involved
in the contribution of the instantaneous wave field. However, although each vibration
mode contributes to the overall wave field, only the vibration modes centered around
the excitation frequency will dominate the transient wave field, where the amplitude of a
specific vibration mode is the largest. Similar to the Nyquist sampling theory, well known
in signal analysis, for the convergence of the transient solution, vibrational modes higher
than 2N Hz are required when the excitation frequency is at N Hz. However, from Figure 4,
we can see that the dominated vibration modes are within 2N Hz [34]. We also note that,
even for a specific mode, its contribution to the full-field wave field is not uniform and
instead will oscillate as time increases, and the oscillation frequency is 2N Hz when the
excitation frequency is N Hz.

Figure 4. (a) The relationship of the displacement of the flexural waves with respect to the time and
each vibration mode at its resonant frequency. (b) The 129th mode shape around 10 kHz with a
resonant frequency of 10,077 Hz (c). The full-field displacement response at 0.3 ms, where the flexural
wavelength is 44.1 mm.

It is interesting to point out that the wavelength of the dominated mode is related to
the excitation frequency of the transient wave as

λ f =
c f

f
=

√
2π

f

[
Eh2

12 ρ s(1− ν2)

]1/4

, (7)
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where c f is the phase velocity of the flexural wave, which has been given in Figure 1b. By
substituting the 10 kHz excitation frequency by Equation (8), we can get a wavelength of
44.1 mm, which is close to the distance between the nodal lines of the dominating mode,
the 129th mode, plotted in Figure 4. Thus, through the excitation frequency, one can know
the resonant frequency and wavelength of the dominating modes of the instantaneous
displacement field.

3.1. Simulation of Instantaneous Wave Field on the Damaged Plate

Figure 5 shows the simulated instantaneous wave field on the damaged plate. Good
correspondence can be seen between the proposed semi-analytical method and the FEM.
We can see the energy transport vectors are reduced when the instantaneous waves pass
behind the slot. To separate the damaged information for clear observation, we then
substrate the wave fields on the intact plate from those on the damaged plate, and the
result is shown in Figure 6. Diffraction of the scattered elastic waves from the slot can
be clearly seen due to the fact that the wavelength of the excited wave is larger than the
corresponding dimension of the slot, and thus, the baseline subtraction method amplifies
the influence of the presence of the damage on the propagating waves [40]. The intensity
of the incoming wave distributes to the reflection waves and the scattered waves. From
Figure 6, we can see that the presence of the damage reduces the intensity of the incoming
transient waves, and that of the reflection wave is increased after performing the baseline
subtraction method, and an antisymmetric displacement pattern can be observed. The
pattern of the scattered waves follows the principle of diffraction, where a small obstacle
would span the wave fields.

Figure 5. The full-field displacement response within 0.2 to 0.5 ms of the damaged plate (a) the
semi-analytical method with the power transmission paths. (b) The FEM methods.
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Figure 6. The subtracted full-field displacement response within 0.2 to 0.5 ms by the baseline
subtraction method.

3.2. Simulation for the Pointwise Excitations

One advantage of the proposed semi-analytical method is that, when calculating
the full-field instantaneous wave field on the damaged plate with different arrangements
of the excitations, we only need to substitute different forms of excitations without the
requirement of recalculating the vibration modes. Next, using the proposed semi-analytical
method, we respectively model full-field transient Lamb waves on damaged plates with
any spatial or temporal arrangement of excitations, as illustrated in Figure 7.

Figure 7. (a) Pointwise excitations at different horizontal locations. (b) Pointwise excitations at
different vertical locations. (c) Surface excitation with a radius of R = 4 mm. (d) Horizonal line
excitation. (e) Vertical line excitation. (f) Different temporal waveforms of excitations.
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First, we consider pointwise excitations at different locations, marked as P1∼P5 in
Figure 7a. Since different excitation locations lead to different arrival times and different
incident angles of the Lamb waves, excitation locations will affect the instantaneous Lamb
waves and the corresponding differential wave responses from the baseline subtraction
method. Figure 8 shows the differential instantaneous wave fields when the excitations
are at P1, P2, P4, and P5, where the results at P3 have been shown in Figure 6. When the
Lamb waves are excited directly facing the long side of the slot (i.e., at P3), the diffraction
of the Lamb waves is more significant. In addition, when exciting at P3, the differential
instantaneous waves reflect the damage information much earlier than the excitations at
other locations. For the instantaneous waves, the influence of the boundary condition is
not significant in affecting the wave propagation, and we can see that the wave patterns
are symmetric to the center axis in the y direction of the plate when the waves are excited
at P1 and P5 or P2 and P4.

Figure 8. Differential instantaneous wave field when the pointwise excitations are at different
locations.

The simulation results when the pointwise excitations are at P6, P7, and P8 at the
left side of the plate are shown in Figure 9. Since the damage “seen” by the incoming
waves is smaller when the excitations are located normal to the short side of the slot, the
intensity of the scattered waves is smaller compared to those in Figure 8. Note that unlike
the results obtained when the excitation is at P6, the differential instantaneous wave field
obtained when the excitation is at P8 is asymmetric to the slot due to the fact that the waves
are asymmetrically reflected by the slot. These simulation results support the concept of
identifying the damage information through the full-field instantaneous wave patterns by
using pointwise excitations at different locations.
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Figure 9. Differential instantaneous wave field when the pointwise excitations are at different
locations from the left side of the damaged plate.

3.3. Simulation for the Surface or Linear Excitations

Now, we consider more practical linear or surface excitations. We first replace the
pointwise excitation located at P3 (as shown in Figure 7a and studied in Section 3.1) as a
round surface excitation (as shown in Figure 7c) with a radius of 4 mm, a dimension identi-
cal to that of a commercial piezoelectric actuator. Under the surface excitation, the reflected
A0 mode Lamb waves in front of the plate edges interfere with the incoming waves and
distort the wave pattern from a circular one to that excited by the pointwise excitation [41].
Even generating a distorted circular wave pattern due to the presence of the boundary
conditions, the differential instantaneous wave field shown in Figure 10a is similar to that
when the pointwise excitations are at location P3 (i.e., Figure 6). Linear excitations are also
practical, and the results of the linear excitations, as arranged in Figure 7d (parallel to the
long edge of the plate) and Figure 6e (parallel to the short edge of the plate), are shown in
Figure 10b,c. Similar to the pointwise excitations, the differential wave field in the damaged
plate is also dependent on the relative locations between the excitation and the damage
event as well as its geometry [4,12,38]. These simulations are efficiently carried out in a
sense that the same group of temporal vibration modes is utilized.

Figure 10. Differential instantaneous wave field when the excitations are (a) surface, (b) linear parallel
to the long edge of the damaged plate, and (c) linear parallel to the short edge of the damaged plate.
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3.4. Simulation for the Excitations with Specific Temporal Waveforms

After considering the simulation of different spatial excitations, we next consider
excitations with different temporal waveforms. We consider the general five-cycle tone
bursts, marked as Wave 1, at different frequencies and a Ricker wavelet, marked as Wave 2,
as shown in Figure 7f. The expression of the Ricker wavelet is as follows:

A2(t) = (2(π f0(t− 1/ f0))
2 − 1) exp(−(π f0(t− 1/ f0))

2). (8)

The expression of the Ricker wavelet is substituted by Equation (4) to obtain the
transient displacement solution of the flexural wave. However, unlike the wave source of
the tone burst where a simpler closed form can be obtained, here, Simpson’s 1/3 rule is
used to perform Duhamel’s integral.

Figure 11a,b shows the differential wave field when the excitations are the 5 kHz
and 20 kHz five-cycle tone bursts (i.e., Wave1), respectively. Obviously, dependent on the
relation of the excitation frequency and the excited wavelength, the advantage of high-
frequency excitations can be seen in damage detection. Without having to recalculate the
vibration modes, we can efficiently simulate the full differential wave field, as shown in
Figure 11c, by simply replacing the tone bursts as the Ricker wavelet (i.e., Wave2) with an
operation frequency of 10 kHz.

Figure 11. Differential instantaneous wave field when the excitations are (a) 5 kHz five-cycle tone
burst, (b) 20 kHz five-cycle tone burst, and (c) the 10 kHz Ricker wavelet.

4. Experimental Results and Discussions

To validate the proposed semi-analytical method for modeling the full-field transient
Lamb waves, we performed experiments on an intact and a damaged aluminum plate
(150× 500× 2 mm) utilizing the surface and the linear excitations. For the convenience of
clamping one side of the plate, the long edge of the plate is longer than that of the plate
considered in the previous modeling. For the surface excitation, the A0 mode Lamb waves
were generated by a circular piezoelectric patch (Haiying Group, Wuxi, China), bonded on
the location S (as shown in Figure 7c) of the plate. For the linear excitation, an array of the
piezoelectric patches was bonded along the location L2 (as shown in Figure 7e). A 10 kHz
five-cycle tone burst was excited by the piezoelectric patches using a function generator
(DG4102, Rigol Technologies, Suzhou, China) and a voltage amplifier (Trek Model PZD350).
A laser scanning vibrometer system (Polytec PSV-500) was used to measure the out-of-plane
component of the propagating displacement wave fields of the intact plate and damaged
plate over a grid of points.
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The measured displacement fields at 10 kHz frequencies are given in Figure 12a,c and
Figure 13a,c, which agree well with the results obtained from the semi-analytical method
in Figure 12b,d and Figure 13a,c. From the wave patterns in Figure 12a,b, we can see the
interference between the incoming and reflected waves due to the presence of the boundary
when using a non-pointwise excitation source. In addition, from the experimental results in
Figure 12, we can see that the slot disturbs the instantaneous incident wave fields. However,
agreed with the analytical prediction, when the Lamb waves generated from the linear
excitation meet the short edge of the slot, the incident wave is almost not disturbed due to
the fact that the dimension of the damage is smaller than the wavelength.

Figure 12. Instantaneous wave field under the surface excitations: (a) Experimental results of the
intact plate; (b) semi-analytical results of the intact plate; (c) experimental results of the damaged
plate; (d) semi-analytical results of the damaged plate.

Figure 13. Instantaneous wave field under the linear excitations: (a) Experimental results of the intact
plate; (b) semi-analytical results of the intact plate; (c) experimental results of the damaged plate;
(d) semi-analytical results of the damaged plate.
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5. Conclusions

In this paper, a semi-analytical method for modeling the propagation of Lamb waves
based on the vibration characteristics of the intact or damaged plate is proposed. Using the
same group of the temporal vibrational modes, the proposed method can model the full-
field transient Lamb waves efficiently with any forms of excitations, where the temporal
resolution relies on the number of the vibration modes. As an additional advantage, the
wave fields expressed as the superposition of the vibration modes can be transformed
into other physical quantities without having to perform any additional numerical post-
processing operations. As an application, a power flow analysis is employed in this work to
reveal the transmission paths of the propagating waves on the damaged plate. In addition
to demonstrating the modeling capability of the semi-analytical method, we also examine
its role in structure health monitoring on a classic damage model by combing the baseline
subtraction method. After comparing the analytical results with the finite element method
simulation, the proposed semi-analytical method is validated by a non-contact scanning
Laser Doppler Vibrometer (LDV) system.
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Abstract: Durability is an essential aspect of the lifetime performance of concrete components. The
adequate surface quality and thus the service life of concrete can be achieved, among other things,
by appropriate curing during hydration. To measure and control the curing quality, appropriate
procedures are required. Gas permeability allows conclusions to be drawn about the porosity of
concrete, which has a significant impact on durability. In this contribution, the effect of different
curing methods on gas permeability is presented with the help of laboratory and on-site tests,
showing that inadequate curing leads to increased permeability in the near-surface area of concrete.
The measurement results of concrete samples and components with the same composition but
varying curing treatment are compared and evaluated. Influences such as concrete composition and
environmental factors on the quality of concrete are observed, and recommendations are made for a
reliable assessment of the surface quality as a result of the investigated curing measures.

Keywords: concrete curing; non-destructive testing (NDT); gas permeability testing; durability;
quality control

1. Introduction

1.1. Motivation

The durability of concrete has received increasing attention in recent years. In the past,
it was assumed that concrete structures are maintenance-free if certain basic rules of concrete
technology are followed. The experience of the past decades, however, showed that only
minor deviations from these rules as well as incorrectly assessed or harsh environmental
conditions can lead to considerable damage [1]. Due to the addition of ground granulated
blast furnace slag and fly ash to reduce CO2 emissions, modern cement in particular tends
toward slower reacting, which is why modern concrete requires a more extensive curing [2].

The curing of concrete is essential for the durability of a structure [3]. Various guide-
lines and standards as [4–6] give information on measures and durations for the adequate
curing of concrete. However, during the construction phase, in many cases, little impor-
tance is attached to curing due to a lack of control options, tight schedules, and cost reasons.
Excerpting from Prof. Neville [2]: ‘Curing concrete is the lowest of low-tech operations . . . it is
seen by many as a silly operation, a non-job . . . and bad curing does not show . . . . If I emphasize
ensuring curing, it is because curing can make all the difference between having good concrete and
having good concrete ruined by the lack of a small effort’.

Different to bad compaction that ‘shows’, lack of curing does not show; therefore, the
finding of test methods for proving sufficient curing is of great interest.

Numerous methods are already cited in the literature to evaluate the curing efficiency.
In addition to standardized methods such as the determination of the abrasion resistance [7],
the compressive strength [8] or the rate of absorption [9,10], alternative methods were
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investigated that provide information about the concrete quality as a result of curing.
The procedures range from monitoring during the hydration phase to determine the
appropriate time for formwork removal [11] to destructive procedures in the laboratory [12]
to evaluate the curing effects afterwards. The authors of [13] investigate the effect of
curing water availability on cement hydration using isothermal calorimetry. Consequential
damage or damage processes occurring due to inadequate curing such as freeze–thaw
attack or microcracks have been determined in studies with mercury intrusion porosimetry
testing [14] or acoustic emission [15].

Various non-destructive methods are already being used to assess the durability
of concrete structures, such as computer tomography, radar techniques and ultrasonic
testing [16]. There is also the approach to combine non-destructive tests in order to obtain
results for the evaluation of the curing performance [17].

Many of the methods mentioned are associated with great effort or represent the
curing effectiveness inadequately. Therefore, the objective of this contribution is to present
a non-destructive, simple, and low-cost test method for curing quality control.

1.2. Durability

According to [18], durability is defined as the capability of structures, products or
materials to fulfill the requirements defined, which are determined after a specified period
of time and usage. The durability and performance of concrete is reduced by indirect and
direct damage processes during its entire service life. Direct damage processes on concrete
are freeze–thaw attack, acid action and leaching processes. The indirect damage processes
include chloride penetration and carbonation, which can lead to the corrosion of reinforcing
steel [18]. The prevention of the mentioned damage processes and a sufficient durability is
achieved amongst other things by:

• Durability-oriented design of the structure, e.g., keep away from attacking substances
and water;

• Correct selection of the concrete raw materials and a concrete composition suitable for
the job;

• Proper production and processing techniques, especially curing of the concrete;
• Passive protection of the concrete, e.g., by impregnation, coating [1].

1.3. Concrete Curing

The concrete cover needs to be as impermeable as possible to achieve a proper re-
sistance against chemical and physical attack of the reinforcement steel, such as chloride
and carbon dioxide [3]. Therefore, a high hydration rate of the concrete surface must be
achieved. Cement can hydrate only when there is enough moisture available. Curing
measures are carried out to ensure optimal humidity and temperature conditions in the first
days of hydration and subsequently the achievement of the expected concrete quality [3].
Under a lack of proper curing, the capillary pores of the outer concrete surface dry out.
This leads to a standstill of the hydration and eventually to plastic shrinkage, a reduced
surface strength and higher surface permeability [18]. As a result of this, the concrete in
the areas close to the surface, which are highly exposed to the weather and environmental
conditions, are less durable [4,19,20].

The following methods are suitable for proper curing of the concrete surface, and they
can also be combined:

• Keeping the concrete in the formwork;
• Covering the concrete surface with foils;
• Wetting the concrete surface;
• Application of an effective curing compound [18,21–24].

1.4. Permeability Testing

The durability of concrete depends heavily on the tightness of the concrete pore sys-
tem, which, according to [1], can be demonstrated, among other things, by gas permeability.

373



Sensors 2022, 22, 4672

Permeable concrete favors transport processes in the concrete and therefore damage pro-
cesses such as carbonation, chloride ingress and freeze–thaw deterioration [25]. It has
been shown that there is a close relationship between the time it takes to reach a certain
carbonation depth and the gas permeability. The authors of [26–28] developed an analytical
model for the correlation of gas permeability with resistance to carbonation, while [29]
found that the chloride input in concrete correlates with its gas permeability. Moreover,
a linear relationship between freeze–thaw deterioration and gas permeability has been
demonstrated [27]. The parameter gas permeability can cover the permeability of concrete
for various corrosion and aging mechanisms and represents a suitable test method for
characterizing the transport properties of concrete [30]. The gas permeability of a concrete
surface depends on many key factors, including:

• Concrete mixture composition;
• The composition and physical properties of the cement and aggregates;
• Curing quality [31–33];
• Degree of hydration or age;
• Presence of microcracks;
• Presence of surface treatments;
• Moisture content at the time of the test [30,34,35].

Gas permeability is, therefore, a relevant durability indicator for the tested con-
crete [36].

The procedure for collecting and evaluating gas permeability data for determining the
durability of the concrete surface is described in the Swiss standard SIA 262/1: 2019 [24].

As shown in Figure 1, the equipment for gas permeability testing basically consists of:

• A two-chamber vacuum cell composed of two concentric chambers (inner and
external chambers);

• A control system, consisting of valves, pressure sensors and a pressure regulator
that keeps the pressure of both vacuum chambers balanced during the measurement
(Pe = Pi) [37].

 
Figure 1. Vacuum cell, pressure regulation and air flow into its two concentric chambers [38].

In the inner test chamber (Ø = 50 mm) and the protective external ring surrounding
this chamber, both of which are open toward the concrete surface, a vacuum is generated
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using a vacuum pump. Depending on the concrete and the measuring device, the vacuum
is approx. 10–40 mbar. At 60 s, the inner chamber is isolated from the vacuum pump, which
is the moment at which its pressure begins to build up due to the gas flowing through the
concrete. The gas permeability is calculated from the change in pressure over time and
other parameters. The purpose of the protective ring surrounding the test chamber (the
pressure of which is permanently balanced with that of the inner chamber) is to ensure that
the gas only flows into the test chamber in one dimension, which means that it only comes
from inside the component (see Figure 1). For laboratory tests, cubes of at least 150 mm
side length are the most suitable specimen for measuring the gas permeability coefficient
kT [39]. The moisture of the concrete has a very strong influence on the gas permeability, as
the water in the pores hinders the flow of air [30,33,40,41]. The concrete moisture has to be
measured with an impedance-based moisture meter [42] and should be a maximum of 5.5%.
This can, e.g., be achieved through drying at 50 ◦C for a few days prior to measurement.

In the case of in situ tests, it should be noted that according to [24], the test should be
carried out when the concrete is aged between 28 and 120 days, so that the requirements
for moisture content can be met. The moisture content of the concrete component to be
examined must be determined in accordance with the laboratory measurements before the
gas permeability measurement. In addition, it must be ensured that the air and component
temperature should be at least 5 ◦C. Ref. [24] stipulates that 6–12 measurements need to
be made per test area, which are separated by horizontal and vertical distances of at least
0.2 m. The coefficient of permeability to gas kT of hardened concrete is measured in m2,
corresponding to the intrinsic coefficient of permeability of the material, and it is calculated
with Equation (1) according to [29].

kT =

(
Vc

A

)2
· μ

2 · ε · Pa
·
⎛⎝ ln

(
Pa+ΔP
Pa−ΔP

)
√

t f −
√

t0

⎞⎠2

, (1)

where

Vc = volume of the inner test chamber (m3);
A = area of the inner test chamber (m2);
μ = dynamic viscosity of air (Ns/m2);
ε = open porosity of the concrete (-) which, by default is taken as 0.15;
Pa = atmospheric pressure (N/m2);
ΔP = increase in effective pressure in the inner chamber between time t0 and tf (N/m2);
t0 = time at which the increase in pressure is measured (s);
tf = time at which the test is finished (s).

The kT values recorded can be assessed using the permeability classes from [29].
Table 1 shows the limit values for “very good” to “very poor” concrete cover quality for
the kT value measured after 28 days.

Table 1. Classification of the quality of the concrete cover according to kT [29].

Classification of the Quality of the Concrete Cover kT Measured at 28 Days [10−16 m2]

1 very good kT < 0.01
2 good 0.01 ≤ kT < 0.1
3 normal 0.1 ≤ kT < 1.0
4 bad 1.0 ≤ kT < 10
5 very bad kT ≥ 10

1.5. Objectives

With the following studies, the authors want to present and evaluate an innovative
possibility to test the curing quality in a non-destructive and user-friendly way. As outlined
in previous sections, the gas permeability allows making specific statements about the
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surface condition of concrete. Since the surface condition of concrete heavily depends on
the quality of curing, the following objectives will be addressed:

1. Can curing quality be classified and evaluated using gas permeability measurements?
2. How can the curing quality on a structure be assessed? What kind of requirements

must be met for reliable results with onsite measurements, considering environmental
influences such as moisture, solar radiation, ambient temperature, wind, etc.?

3. Which recommendations for the implementation and analysis of gas permeability
measurements for curing quality evaluation can be given on the basis of the laboratory
and construction site investigations for different concrete types?

2. Laboratory Test Campaign

In the laboratory, it was possible to exclude influences such as wind, temperature
fluctuations and solar radiation and only examine the effect of various curing conditions on
concrete. By evaluating concrete samples that were treated in the laboratory under precisely
defined curing conditions, connections between gas permeability and curing quality could
be established.

2.1. Concrete and Curing Characteristics

With the involvement of a group of experts, three common types of concrete used in
Austrian civil engineering were selected for the laboratory tests. Since the area of interest
was particularly in road and railway construction, the types of concrete should cover
as many different areas of application as possible. The names and composition of the
concrete types and their fresh concrete properties according to the Austrian standard [5]
are summarized in Table 2. Possible areas of application for concrete type B3 are traffic
areas without de-icing agents. B5 is used for components that are exposed to spray mist
containing a de-icing agent, such as bridge structures. The third type, BS1C, is used for
waterproof structures directly exposed to de-icing agents.

Table 2. Material properties of the examined concrete types in the course of the laboratory tests.

(Austrian) Concrete Name B3 B5 BS1C Plus

Strength class C25/30 C30/37 C25/30

Cement (kg/m3): 290 (CEM II/A-M (S-L)
42.5 N)

320 (CEM II/A-M (S-L)
42.5 N)

258 (CEM I 42.5N SR0
WT27 C3A-free)

Additions (kg/m3): 40 40 103additions type 2 according to EN 206

Total water (kg/m3) 171 170 165

w/c-ratio 0.53 0.48 0.48

Aggregates (kg/m3):
Gravel 16/32 round grain 457 451 333
Gravel 8/16 round grain 292 289 333
Gravel 4/8 311 307 298

Sand 0/4 round grain 770 761 792

Air-entraining agent (m%-Cement):
Mapei Mapeair LP 100 0.30–0.97 0.00–0.50 0.00–1.20
Mapei Mapeair LP 200 0.00–0.50 0.00–0.70
Sika Addiment LPS A NEU 0.00–0.15

Superplasticizer (m%-Cement):
Mapei Dynamon LZF 0.00–0.31 0.20–0.39 0.28–0.64
Sika VC4030Ultra - - 0.00–0.15

Air content (fresh concrete) (%) 2.6–3.6 2.5–4.2 5.8–8.0

Bulk density (fresh concrete) (kg/m3) 2379–2431 2362–2442 2224–2313

Fresh concrete temperature (◦C) 21.5–22.9 21.8–24.1 19.8–23.3
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In order to analyze various curing effects on those three concrete types, nine concrete
cubes with a side length of 0.15 m were produced for each type of concrete. The cubes were
subjected to three different types of curing, with a distinction being made between “good”,
“no” and “bad” treatment. The applied curing conditions were discussed in advance in a
panel of experts. Based on empirical values, it was assumed that with surface protection
and a moderate temperature of 20 ◦C and a relative humidity of 60%, satisfactory concrete
properties can be achieved (“good curing”). On the other extreme, being unprotected under
an ambient temperature of 30 ◦C and a lower relative humidity of 40% should simulate
more extreme conditions for “bad” curing. As can be seen in Table 3, variations for the
curing types were made in the storage conditions with regard to storage with or without
foil protection and also in terms of temperature and relative humidity. Since the duration of
the curing treatments also influences hydration, the curing was carried out with different
durations of one, three or seven days. All samples were then dried at 50 ◦C for three days
to ensure dry samples for the measurements.

Table 3. Curing types for the laboratory tests, see also [43].

Curing Type Storage Temperature Relative Humidity

Curing conditions until day 1, 3 or 7

good in foil 20 ◦C 60%
no without foil 20 ◦C 60%

bad without foil 30 ◦C 40%

Curing conditions from day 1, 3 or 7

all types Storage at 50 ◦C for 3 days

2.2. Measurements and Monitoring

Since there is the possibility of measurement deviations due to the application of
different gas permeability devices, two devices were used for the measurements in order
to compare their results, including the PermeaTORR device from Materials Advanced
Services [44] and the Torrent Permeability Tester from Proceq SA [45].

Before the start of the measurements, the instruments were calibrated at least two
times, until the recorded maximum pressure did not exceed 5 mbar nor did it differ by
more than 0.5 mbar from the previous calibration measurement, according to [24].

A minimum of three faces per sample were measured, including the top surface
that was not covered by the formwork during concreting and two lateral faces that were
protected by the formwork. The measurement of two “formwork faces” was considered
sufficient, since the scatter of the results between two faces is very small, and a further
measurement would change the standard deviation only slightly.

As recommended in [24], the moisture content of each sample was measured with a
impedance-based moisture meter CMEXII from Tramex [46] before measuring kT. To ensure
the creation of a sufficient vacuum and protect the instrument, the existing loose dust on
the surface was removed with a brush. In case a repetition of a measurement might be
needed, due to abnormal results or to find if the permeability changes with time, the outer
perimeter of the vacuum cell was marked on the surfaces. In addition to the permeability
and moisture measurements, the compressive strength at the concrete age of 28 days was
measured for all samples to determine whether the minimum requirements for the concrete
types examined were met and to see to what extent the strength of the samples changes
because of the varying curing treatments.

2.3. Findings

According to [29], the results of the permeability measurements are presented in a
diagram which refers to the permeability classes. For a clear visualization of the results,
the geometric mean values of the coefficient of gas permeability (kT) values in 10−16 m2

are entered as points on a logarithmic scale also showing segments representing ± the
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standard deviation of the logarithms of the results. A high gas permeability corresponds to
a poor surface quality and vice versa. All results of a series are summarized in a separate
graph for further analysis. Series B3, B5 and BS1C Plus data are shown in Figures 2–4,
respectively. Each graph includes the measured kT values, divided into “good”, “no” and
“bad” cured samples depending on the duration of the curing treatment. When presenting
the results, the focus was not only placed on the classification into surface classes but also
on differentiating the results of the two devices used and the distinction of the values
from measurements at the side and the top faces of the samples, which are displayed with
different symbols.

Figure 2. Gas permeability kT [10−16 m2] of the B3 test samples depending on the curing quality.

Figure 3. Gas permeability kT (10−16 m2) of the B5 test samples depending on the curing quality.

Figure 4. Gas permeability kT (10−16 m2) of the BS1C Plus test samples depending on the
curing quality.
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2.3.1. Permeability Properties of Concrete B3

Clear differences in the results of the three curing types of the samples of concrete
type B3 are visualized in Figure 2. As expected, the kT values of the samples with “good”
curing, shown in the first row of Figure 2, are in a good to middle surface condition class,
while the values of the samples with “bad” curing, represented in the last row, are in
the bad surface condition range, i.e., have a one to two orders of magnitude higher gas
permeability. The samples that were not subjected to any curing treatment (middle row in
Figure 2) show a middle to good surface condition, but on average, they have a slightly
higher permeability than the samples with “good” curing. It can be confirmed that the
duration of the curing treatment has an influence on the gas permeability. The sample with
the longest treatment (7 days) of the “well”-treated samples had the lowest kT values. It
follows that the protection of a sample with an adequate duration has a positive effect on
the quality of the concrete. The top surfaces, marked as squares in Figure 2, tend to have a
higher gas permeability, as the surface dries out faster than the side faces (round symbols)
protected with the formwork and is therefore more porous. A settlement effect can also
contribute to the higher permeability of the top surface as cast.

The Proceq permeability tester (blue symbols) was only used on samples with 7 days
of curing. By comparing the results of the two gas permeability devices used, it can be seen
that the kT values of the Proceq device are generally higher, which was a difference that
was detected also by other researchers [47].

In parallel to the gas permeability measurements, the moisture content (%) of the
samples was recorded according to Table 4. As listed in the third column, the average
moisture decreases with increasing age of the concrete and with increasing poor curing.
While the moisture content is almost the same for all samples after one day of curing, it
differs more and more with increasing age in the three types of curing. Samples with
“good” curing still have a moisture level of 3.6% after 7 days of curing and 3 days of drying
treatment, while poorly cured samples with same curing duration only have a moisture
level of 3.2%.

Table 4. Average moisture and compressive strength after 28d tested on 15cm cubes for series B3.

Curing Type Curing Duration (d)
Average Moisture on

Measurement Day (%)
Compressive Strength

after 28 d (N/mm2)

good
1 4.0

41.14 3.8
7 3.6

no
1 4.0

39.34 3.4
7 3.3

bad
1 3.9

36.54 3.1
7 3.2

An influence of the curing can also be demonstrated by determining the compressive
strength after 28 days. The last column of Table 4 shows the compressive strengths for
all three curing types. “Good” curing samples show the highest compressive strength
with 41.1 N/mm2, while the strength of the “bad” cured samples is the lowest with only
36.5 N/mm2.

2.3.2. Permeability Properties of Concrete B5

As shown in Figure 3, the measured kT values of the samples of concrete type B5
(w/c = 0.48) are lower for all curing types compared to series B3 (w/c = 0.53). On average,
they have a better surface quality, which suggests that the concrete composition has a
significant influence on the gas permeability.
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With series B5, it can be demonstrated that a “good” curing has a positive effect on
the surface quality over the long term, as already could be concluded with series B3. The
lowest kT values were measured in samples with “good” curing and a curing period of
4 and 7 days with about 0.01 × 10−16 m2. Samples with no curing, such as the samples
with “good” curing, are in the good surface quality range with slightly higher kT values
between 0.01 and 0.1 × 10−16 m2. The results of the “badly” cured samples are in the
middle to bad quality range reaching from 0.2 to 5 × 10−16 m2 depending on the curing
duration and the used device. Especially, the top surfaces (orange squares in Figure 3) of
the samples with “bad” curing show that the quality decreases with the duration of the
poor treatment.

In this series, too, it can be confirmed that the permeability tester from Proceq SA
delivers higher kT values than the PermeaTORR device.

The moisture contents of the concrete type B5 are listed in Table 5 for the three curing
types with different curing durations. They partly show a different effect than the samples
of the B3 series. Samples with “good” or no curing show higher moisture content with
increasing treatment time. “Bad” curing leads to drier samples with longer lasting curing
duration. The highest humidity with 4.3% could be measured on “well” cured samples
with 7 days of curing treatment followed by 3 days of drying. The lowest moisture content
was found after 7 days of “bad” curing and 3 days of drying, with 3.4%.

Table 5. Average moisture and compressive strength after 28 d tested on 15 cm cubes for series B5.

Curing Type Curing Duration (d)
Average Moisture on

Measurement Day (%)
Compressive Strength

after 28 d (N/mm2)

good
1 3.6

49.74 4.1
7 4.3

no
1 3.7

46.74 4.0
7 4.1

bad
1 3.7

38.94 3.4
7 3.4

As with series B3, “good” curing has a positive effect on the 28 days compressive
strength. In Table 5, “good” curing samples from series B5 show a compressive strength of
49.7 N/mm2, while “badly” cured samples only achieve a strength of 38.9 N/mm2.

2.3.3. Permeability Properties of Concrete BS1C Plus

The results of the gas permeability coefficient measurements for series BS1C Plus are
presented in Figure 4. The measured values of this series also clearly confirm the influence
of the curing on the kT value and the surface quality.

While the measured values of the samples with “good” and no curing are in the range
of a middle to bad surface quality, reaching from 0.1 to 2 × 10−16 m2, the condition of the
“bad” cured samples is correspondingly worse and is in the bad to very bad range between
2 and 12 × 10−16 m2. As it was already evident in the case of series B3 and B5, the extended
“good” curing duration up to day 7 also has a positive effect on the surface quality. As with
the other two series, the kT values of the top surfaces of the BS1C Plus samples are higher
than those of the side faces.

The samples in this series were examined with the PermeaTorr device. Only the “bad”
cured samples with a curing period of 4 and 7 days were measured with the Proceq SA
permeability tester. These measurements have the highest permeability values, as shown
with the blue symbols.

The average moisture in the BS1C Plus samples is given in Table 6. The values are
similar to those of the B5 series, where the 7-day lasting “good” curing results in a moisture
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level of 4.1%. The moisture of the samples without curing treatment hardly differs due to
the curing time, while the “bad” cured samples show the lowest moisture with 2.7% after
7 days of treatment.

Table 6. Average moisture and compressive strength after 28 d tested on 15cm cubes for series
BS1C Plus.

Curing Type Curing Duration (d)
Average Moisture on

Measurement Day (%)
Compressive Strength

after 28 d (N/mm2)

good
1 3.5

33.74 3.9
7 4.1

no
1 3.6

31.54 3.8
7 3.6

bad
1 3.2

29.14 2.9
7 2.7

The samples of the concrete type BS1C Plus achieve a compressive strength after
28 days of 33.7 N/mm2 at “good” curing conditions and 29.1 N/mm2 at “bad” curing
conditions (Table 6). It can be concluded that also with this series, the curing type affects
the compressive strength of the samples.

2.3.4. Summary of the Laboratory Findings

In all three series, an effect of the curing quality on the gas permeability could be
demonstrated. Samples with “good” curing generally had a lower kT value than samples
with “no” or “poor” curing. As shown in Figure 5, there is a correlation between the
permeability coefficient kT (geometric mean) and the compressive strength (arithmetic
mean). Considering the kT values of the three concrete series as a function of the curing
conditions after 7 days of curing, samples with higher gas permeability have a lower
compressive strength. Therefore, better curing results in a low permeability coefficient and
increases the compressive strength of concrete. On average, the BS1C Plus series achieved
the highest gas permeability and therefore the worst surface condition and at the same time
had the lowest compressive strength. This may be due to the higher content of additions,
the hydraulic contribution of which is not very significant in the first 7 days, even under
“good” curing conditions. The samples of series B5 had the highest compressive strength
compared to B3 and BS1C, had lower kT values and thus achieved a better surface condition
on average. The B3 series results were in the middle with regard to compressive strength
and gas permeability. Overall, the laboratory tests confirm that the quality of the curing
influences both the gas permeability and the compressive strength of concrete and that the
type of concrete plays an important role in the evaluation of the curing quality.

Figure 5. Relation between kT (10−16 m2) after 7 days “good”, “no”, “bad” curing and the compres-
sive strength after 28 days of B3, B5 and BS1C Plus test samples.
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3. On Site Test Campaign

Under controlled laboratory conditions, clear differences in the gas permeability
of samples with varying curing treatments could be determined. In construction site
conditions, components are exposed to a wide variety of environmental factors, such as
solar radiation, temperature fluctuations, rain, wind, etc., which also strongly influence
the development of the pore structure of concrete during the early hydration phase and
therefore the permeability. The suitability of the gas permeability measurement for on-site
evaluation of the curing quality was investigated by further tests directly on concrete
structures. Concrete walls of two objects were examined at two different construction sites
at different times of the year (summer and late autumn) in order to check the influence of
the environmental conditions and the concrete composition on the measurement results.

3.1. Object 1—Measured in Summer

The first on-site investigations were carried out during dry and warm weather condi-
tions on a concrete wall at a construction site of a railway passage of the Austrian Federal
Railways in Obersiebenbrunn (48◦14′43.6” N 16◦42′14.1” E). The wall was executed with
the Austrian type of concrete BS1C, which was composed according to Table 7.

Table 7. Material properties of the examined concrete type of object 1.

(Austrian) Concrete Name BS1C

Strength class C25/30

Cement (kg/m3): 275 (CEM I 42.5N SR0 WT27 C3A-free)

Additions (kg/m3): additions type 2 according to
EN 206

80

Total water (kg/m3) 165

w/c-ratio 0.49

Aggregates (kg/m3):
Gravel 16/32 round grain 442
Gravel 4/16 round grain 619
Sand 0/4 round grain 705

Air-entraining agent (kg/m3):
1.53WTB Air 102

Superplasticizer (kg/m3):
2.17WTB Plast 100/3

Air content (fresh concrete) (%) 5.8

Bulk density (fresh concrete) (kg/m3) 2290

Fresh concrete temperature (◦C) 20

Different curing areas were prepared by dividing the west-facing side of the 4 × 11 m
large concrete wall into three parts, each of which was given a different curing treatment by
the construction company. A distinction was made between “good” (curing A), “moderate”
(curing B) and “bad” curing (curing C). The area with “bad” curing was left in the formwork
for one day with no further treatment afterwards. The formwork of the “moderately”
cured area was removed after four days, and the “good” area was left in formwork for
seven days. Both the “good” and the “moderate” areas were encased in fleece for three
days after removing the formwork and were sprinkled with water in the mornings. The
outside temperature during the curing period was on average 22.5 ◦C, and the air humidity
was 67.3%. The gas permeability tests on the concrete wall were carried out 13 days
after concreting.

As pictured in Figure 6a, the side of the wall to be examined was close to a sheet
pile wall, which is why the lower area of the concrete wall was better protected from
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environmental influences such as solar radiation and wind than the upper area. In order to
take the more humid conditions in the lower area of the wall into account, the measurements
were carried out both in the upper and in the lower part and were evaluated separately. A
sketch of the division of the areas can be seen in Figure 6b.

  
 

(a) (b) (c) 

Figure 6. (a) Lower and (b) upper area of the concrete wall on the construction site, (c) division of the
measured wall areas according to curing type.

As performed in the laboratory, the measurements were carried out with both the
PermeaTorr and the Proceq devices. The results of the two devices are shown separately in
Figure 7. The kT values in Figure 7 were given separately for curing A (“good” curing area),
curing B (“moderate” curing area) and curing C (“bad” curing area) and for the lower and
upper wall area. Each given kT value represents the geometric mean value of the results
of three measurements taken per area. The graphic shows that the surface condition with
curing A (“good”) is generally in the good to middle range, while curing B has a medium
quality and curing C is in the middle to bad surface condition class. It is noticeable that the
Proceq device measures a significantly higher gas permeability than the PermaTorr device,
especially in the upper wall area. This effect could already be observed with the laboratory
samples. The significantly poorer values in the upper wall area can be explained by the
more intensive exposure of this area to wind and solar radiation and therefore more severe
drying of the concrete surface. Since there was a more humid and shadier environment
in the lower wall area, lower kT values were measured. This effect is confirmed by the
moisture meter results. The humidity in the upper area averaged 3.6%, while an average of
4.1% was measured in the lower area.

 

Figure 7. Gas permeability kT (10−16 m2) of the BS1C concrete wall depending on the curing quality.

The results of the construction site tests show that the quality of the curing can be
measured under natural environmental influences by means of gas permeability. It can also
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be seen that exposure and environmental conditions have an impact on the development
of concrete quality.

3.2. Object 2—Measured in Late Autumn

Another series of tests was carried out during cooler weather on the concrete walls of
a sedimentation basin at an Asfinag (Austrian highway operator) construction site near
Göttlesbrunn (48◦03′55.3′′ N 16◦41′46.0′′ E). The concrete walls were cast with Austrian
concrete type B7 as described in Table 8.

Table 8. Material properties of the examined concrete type of object 2.

(Austrian) Concrete Name B7

Strength class C25/30

Cement (kg/m3): 330

Additions (kg/m3):
80additions type 2 according to EN 206

Total water (kg/m3) 178

w/c-ratio 0.43

Aggregates (kg/m3): 1669

Air content (fresh concrete) (%) 6.0

Bulk density (fresh concrete) (kg/m3) 2251

Fresh concrete temperature (◦C) 30.4

Same as for construction site object 1, three areas with varying curing treatment were
prepared. The curing for these tests was carried out on differently oriented areas. According
to Figure 8, curing A (“good” curing) was carried out on the southeast side of a wall. Curing
A means that the concrete was left in the formwork for 8 days. Curing B was on the opposite
side, facing northeast. This area B was left in the formwork for 5 days and is referred to as
“moderate” curing. Finally, a poor curing treatment (curing C) also took place on a wall
facing northeast. This area was left in formwork for just three days. No further curing
treatment was carried out in any of the three areas after removing the formwork.

 

Figure 8. Orientation of the measured concrete walls depending on their curing treatments A, B
and C.

The measurements took place when the concrete was 15 days old. The average outside
temperature from concreting to the day of measurement was 6.5 ◦C. The humidity was
relatively high at 84%.

Due to the prevailing damp weather, the moisture content of the structure was also
measured. With 2.5%, the moisture content was below the maximum recommended value
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for gas permeability measurements. The low moisture content in the concrete was attributed
to the strong wind conditions.

Three measurements were made per curing area with the Proceq permeability tester.
The results in Figure 9 show the geometric mean kT values in 10−16 m2 with± the standard
deviations of the logarithms for each area. The tendency that the surface quality is impaired
with increasingly poor curing is also confirmed in this series of tests. The values in the
“good” curing area A show a very good to good surface condition, while the poorly treated
wall area C only achieves middle quality. A good surface condition could be demonstrated
through “moderate” curing. The results of “good” and “moderate” curing are very close
to each other. It can be assumed that the favorable location of the area of curing B had a
positive effect on hydration due to the adjacent moist soil, while curing A is more exposed
and is therefore less protected from wind and consequently less protected from drying
out. The stronger solar radiation on the southwest side in area A could be considered as
a further aspect, which would also promote dehydration. However, due to the cloudy
circumstances, solar radiation plays only a minor role in the period from concreting to
the day of measurement. The variability of the kT data, for the three curings (especially
for curings A and C) was extremely high, which was possibly due to the young age and
exposure conditions prone to the development of microcracks; this experience indicates
that taking at least six readings on each test area, as defined in the Swiss standard SIA
262/1: 2019 [24], is recommendable.

Figure 9. Gas permeability kT (10−16 m2) of the B7 concrete wall depending on the curing quality.

4. Discussion of the Main Findings

The laboratory tests show that the influence of the curing quality on concrete can be
detected by determining the gas permeability. Concrete samples of the same composition
have different properties due to different curing treatments. Sufficiently cured concrete
has a lower gas permeability than untreated or insufficiently cured concrete. Furthermore,
the compressive strength is reduced for laboratory samples with increasingly poor curing
treatment. In addition to the curing quality, other factors, such as the composition of the
concrete, are also decisive for the quality of the concrete surface. Therefore, the results
of the examined types of concrete differ from each other when the curing treatment was
carried out in the same way. While the concrete type BS1C Plus generally had higher kT
values in the laboratory tests, the results for type B5 were significantly lower. Nevertheless,
the trend of decreasing gas permeability with higher curing quality is reflected within all
examined series.

It is not possible to set a general kT value as a threshold value for adequate curing.
Rather, test results already collected for different types of concrete represent guide values
for further measurements.

Different curing quality could also be clearly identified on the construction site. The
same effect was found there as with the laboratory samples. Longer or better curing
treatment had a positive effect on the concrete quality and thus lowered the gas perme-
ability. However, the results of the construction site tests cannot be directly compared
with the laboratory results, as the climatic conditions, the type of curing and the concrete
composition differed.
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When evaluating the quality of curing on a structure, numerous other factors are
responsible for the surface quality of concrete in addition to the composition of the con-
crete. The gas permeability of structures on site was not only influenced by the concrete
composition and curing quality (achieved in the laboratory due to variations in ambient
temperature, humidity, and protection against drying out) but also by exposure to wind,
solar radiation and precipitation. Concrete surfaces exposed to sunlight and wind showed
a higher gas permeability than surfaces that were protected against these influences. Envi-
ronmental influences can have both positive and negative effects on the hydration of the
concrete. Their effect is reflected in the results of the gas permeability.

In addition, when determining the gas permeability, the age of the concrete must be
taken into account, which according to the Swiss standard [24] has at least to be 28 days.
The measurements of this study were already carried out approx. 14 days after concreting.
A difference in the quality of the concrete due to the curing treatment was nevertheless
measurable. However, the measured values should not be used as a reference for older or
newer structures.

Since a single gas permeability measurement only captures a small sub-area, several
measurements need to be carried out for the overall assessment of a component in order to
achieve reliable results. The measurements should not be carried out before the concrete is
14 days old, as young concrete still has a very high level of moisture, which may falsify
the results. In addition, the humidity of the investigated component should be determined
before each permeability measurement so that the recommended limit humidity of 5.5% is
not exceeded. If the limit of 5.5% is exceeded, it is advisable to repeat the measurements
later once the concrete has dried sufficiently.

As already mentioned, no general recommendation for a limit gas permeability value
for sufficiently cured concrete can be given. A possibility for evaluation of the results is
the use of the permeability classes approach from [29] as guide values. A possible solution
could be to establish reference areas where good curing conditions have been consistently
applied, taking the resulting kT values as control values, not to be exceeded.

5. Conclusions

In the research work presented, different curing treatments were compared under
otherwise almost identical conditions. It was found that the type and duration of curing
has a strong influence on the gas permeability and, subsequently, on the durability of the
structure. Thus, the quality of the curing of concrete structures can be measured indirectly
by determining the gas permeability.

This method is characterized by the simple and non-destructive implementation of
measurements both in the laboratory and on the construction site. The evaluation of
the results is quick and uncomplicated. Recommendations for the representation of the
permeability values and the assessment of the surface quality are already available.

In summary, the following main statements could be derived from the investigations
carried out:

• Investigations in the laboratory have shown that the gas permeability measure-
ment method is a promising and reliable method for evaluating the curing quality
of concrete.

• The comparison of a “good” with “no” or a “poor” curing treatment is reflected in the
permeability coefficient. In addition to the curing conditions, the gas permeability also
depends on the composition of the concrete, which is why no general limit values can
be specified for the curing quality evaluation.

• The higher permeability due to inadequate curing is accompanied by lower compres-
sive strength than for optimal curing.

• The construction site tests show that the gas permeability measured directly on the
structure also provides reliable information on the curing quality of concrete.
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• Environmental influences play a major role in on-site measurements, since the concrete
quality can be influenced both positively and negatively by factors such as wind,
temperature, and humidity. For this reason, these factors must be considered when
selecting the measurement points, the time of measurement and when evaluating the
curing quality.

• For site testing, it is recommended to perform at least six individual measurements of
kT per testing area, as set in the Swiss standard SIA 262/1:2019 [24].

As the measured permeability coefficient not only depends on curing conditions, but
also on the type of concrete and other influencing factors, a direct measurement of the
curing quality is not possible. One possibility would be to set a limit value in the planning
phase as a minimum requirement for achieving the desired concrete quality. This limit
value could be determined on the basis of reference measurements on similar concrete
components with the same compositions. To implement this approach, however, further
comprehensive investigations would be necessary in order to obtain a sufficient sample
size for a reliable determination of these limit values.

In a follow-up research project, further investigations are currently being carried out
on concrete structures with different properties and under varying climatic conditions
with gas permeability measurements to evaluate the curing quality. At the same time,
reference values are collected from test samples with the same formulation and optimal
curing conditions for evaluating the construction site results. This promising study still
requires extensive research to determine the reliability of this type of assessment.

Author Contributions: Writing—original draft, L.P.; Writing—review & editing, A.S., C.B., M.P. and
R.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Bundesminsterium für Klimaschutz, Umwelt, Energie,
Mobiliät, Innovation und Technologie, ÖBB, ASFINAG and the Austrian Research Promotion
Agency (FFG).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was carried out during VIF OptiNB activities. The authors would
like to acknowledge Bundesminsterium für Klimaschutz, Umwelt, Energie, Mobiliät, Innovation
und Technologie, ÖBB and ASFINAG als well as the Austrian Research Promotion Agency (FFG) for
supporting this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stark, J.; Wicht, B. Dauerhaftigkeit von Beton; Springer Vieweg: Berlin/Heidelberg, Germany, 2013.
2. Neville, A.M. Neville on Concrete—An Examination of Issues in Concrete Practice; American Concrete Institute: Farmington Hills,

MI, USA, 2003.
3. Alexander, M.; Bentur, A.; Mindess, S. Durability of Concrete: Design and Constructio; CRC Press: Boca Raton, FL, USA, 2017.
4. Verein Deutscher Zementwerke. Zement-Taschenbuch, 51st ed.; Verlag Bau + Technik: Düsseldorf, Germany, 2008.
5. ÖNORM B4710-1; Beton—Festlegung, Eigenschaften, Herstellung, Verwendung und Konformität Teil 1. Austrian Standards

Institute: Vienna, Austria, 2018.
6. ACI PRC-308-16; Guide to External Curing of Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2016.
7. Senbetta, E.; Scholer, C.F. A New Approach for Testing Concrete Curing Efficiency. ACI J. Proc. 1984, 81, 82–86.
8. ASTM C803/C803M-18; Standard Test Method for Penetration Resistance of Hardened Concrete. ASTM International: West

Conshohocken, PA, USA, 2019.
9. ASTM C1585-13; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM

International: West Conshohocken, PA, USA, 2020.
10. Wang, L.C.; Cheng, B.J.; Bao, J.W. Experimental Study on the Influence of Curing Conditions on Capillary Absorption of Concrete.

In Proceedings of the 5th International Conference on the Durability of Concrete Structure, Shenzhen, China, 30 June–1 July 2016;
Purdue University Press: Shenzhen, China, 2016; pp. 51–56. [CrossRef]

11. Lim, Y.Y.; Smith, S.T.; Padilla, R.V.; Soh, C.K. Monitoring of concrete curing using the electromechanical impedance technique:
Review and path forward. Struct. Health Monit. 2021, 20, 604–636. [CrossRef]

387



Sensors 2022, 22, 4672

12. Wedatalla, A.M.O.; Jia, Y.; Ahmed, A.A.M. Curing Effects on High-Strength Concrete Properties. Adv. Civ. Eng. 2019,
2019, 1683292. [CrossRef]

13. Siddiqui, M.S.; Nyberg, W.; Smith, W.; Blackwell, B.; Riding, K.A. Effect of Curing Water Availability and Composition on Cement
Hydration. ACI Mater. J. 2013, 110, 315–322. [CrossRef]

14. Al-Assadi, G.; Casati, M.J.; Fernández, J.; Galvez, J.C. Effect of the curing conditions of concrete on the behavior under freeze-thaw
cycles. Fatigue Fract. Eng. Mater. Struct. 2010, 34, 461–469. [CrossRef]
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Abstract: Functionally graded materials (FGM) have received extensive attention in recent years due
to their excellent mechanical properties. In this research, the theoretical process of calculating the
propagation characteristics of Lamb waves in FGM sandwich plates is deduced by combining the
FGM volume fraction curve and Legendre polynomial series expansion method. In this proposed
method, the FGM plate does not have to be sliced into multiple layers. Numerical results are given
in detail, and the Lamb wave dispersion curves are extracted. For comparison, the Lamb wave
dispersion curve of the sliced layer model for the FGM sandwich plate is obtained by the global
matrix method. Meanwhile, the FGM sandwich plate was subjected to finite element simulation, also
based on the layered-plate model. The acoustic characteristics detection experiment was performed
by simulation through a defocusing measurement. Thus, the Lamb wave dispersion curves were
obtained by V(f, z) analysis. Finally, the influence of the change in the gradient function on the Lamb
wave dispersion curves will be discussed.

Keywords: functionally graded materials; Legendre polynomial series expansion method; Lamb
wave dispersion curve; volume fraction curve; finite element simulation

1. Introduction

Functionally graded materials (FGM) are based on computer-aided material design,
using advanced material compounding technology to make the elements (composition,
structure, etc.) of the constituent materials continuously change from one side to the other
along the thickness direction. Thus, the properties and functions of the material also vary
in gradient. Functional gradient materials of metal-ceramics were proposed and prepared
in 1984 [1]. Since the volume content of the FGM components is continuously changed in
the spatial position, and there is no sudden change in physical properties, the interlayer
stress problem can be avoided and the stress concentration phenomenon can be reduced.
At the same time, FGM is a good devisable material, in which one can change the spatial
distribution of composition and content of the material by a target function, so as to achieve
the purpose of optimizing the internal stress distribution of the structure [2].

The FGM sandwich plate consists of three layers: the top layer, the middle layer
and the bottom layer. Generally, FGM sandwich plates are divided into two categories.
One is FGM as the top and bottom layers of the sandwich plate, and the homogeneous
isotropic materials as the intermediate layer. The other type is FGM as the middle layer
of the sandwich plate, and homogeneous isotropic materials as the top and bottom layers.
FGM sandwich plates have excellent overall performance, and have been used in optical,
biomedical, electromagnetic and mechanical engineering, etc. [3].

The elastic waves in the FGM sandwich plate contain ultrasound guided waves and
body waves. Ultrasonic guided waves cover Lamb waves, surface waves, Love waves, etc.
Ultrasonic guided waves provide unique capabilities for the structural health monitoring
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of plate-like structures [4]. However, the guided waves have multi-mode and dispersion
characteristics during propagation, and the dispersion appears to be a unique physical
property. It mainly indicates that the propagation characteristics of the guided waves
are affected by frequency. That is to say, the propagation velocity of a guided wave will
change by frequency, which is called dispersion [5]. In addition, most guided wave modes
have strong dispersion characteristics. Therefore, studying the relationship between the
dispersion curve of FGM sandwich plates and material property parameters is an important
part of theoretical research. Zhu et al. [6] used the matrix recursion method to establish
the characteristic equations of Lamb waves of multi-layer free plates, and analyzed the
dispersion characteristics of double-layer plates and sandwich plates. Wu et al. [7] studied
the propagation dispersion characteristics of Lamb waves from single-layer plates to
multi-layer FGM plates, and obtained the relationship between the continuous change in
material properties and the Lamb wave velocity and displacement. Bruck [8] analyzed
the propagation of stress waves in FGM by establishing a one-dimensional FGM model,
and transitioned the FGM layered model to a continuously changing gradient model.
Chen et al. [9] used a layered plate model to analyze the dispersion characteristics of FGM
plates under large frequencies and thick product conditions. In all the above research, the
FGMs were divided into many homogeneous or inhomogeneous layers, in order to solve
the wave propagation problem. However, the layer number of FGMs plays a vital role in
the numerical accuracy of the calculations.

In addition, Lefebvre et al. [10] proposed the Legendre orthogonal polynomial series
expansion (LOPSE) method to study the propagation properties of waves in layered-plate
structures. Yu et al. [11] further introduced the Legendre series expansion method into
the dispersion curve calculation of an anisotropic multilayer piezoelectric material plate
with a greater difference in mechanical parameters. Compared with the rotation matrix
method, a good calculation result is obtained. Dong et al. [12] studied the SH surface
wave in the piezoelectric gradient half space, considering the horizontal shear direction
displacement by using Laguerre orthogonal polynomials. Salah et al. [13] proposed a
layered model to analyze the Love wave over a half space of an elastic substrate covered by
a functionally gradient piezoelectric material plate. As mentioned above, the studies treated
the FGM structures as a continuously gradient medium, and they effectively calculated
the propagation characteristics of acoustic waves in FGMs without separating them into
multilayer plates. However, there are few reports on the numerical simulation of Lamb
wave propagation in FGM sandwich structures.

Likewise, the finite element method is a numerical method with both a theoretical
basis and practical significance. It was originally used by Zienkiewicz [14] to simulate
wave propagation and scattering, but then Finnveden [15] successively used the spectral
finite element method to study the periodic waveguide structure and the guided wave in
the viscoelastic damped waveguide structure. Cheng et al. [16] studied the propagation of
surface acoustic waves excited by lasers in functionally graded materials, and simulated the
gradients of various mechanical and thermal parameters in functionally graded materials.
Kim and Paulino [17] proposed an isoparametric gradient element model, and applied
the shape function of the model to obtain the material properties of the attribute of the
element node to the inner difference. Zhang and Xiao [18] applied this method to prove
that the finite element model based on isoparametric gradient elements can better reflect
the gradient variation in material properties. Wang and Gross [19] proposed a layered
model of FGM. The material parameters of each layer change according to a continuous
function and are continuous at the interface. Such a layered model achieved good results
in the crack analysis of FGM structures. Nevertheless, little research paid attention to the
complex multi-mode dispersion characteristics of functionally graded materials, which can
provide more abundant information for non-destructive testing and the evaluation of the
characteristics of FGM plates.

In this research, we use the Legendre polynomial series expansion method to study
the propagation of Lamb waves in functionally graded material sandwich plates, and
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discuss their convergence problem. The influence of gradient layer parameter changes on
Lamb wave dispersion curves will also be given. In addition, the finite element model of
FGM sandwich plates was established by PZFlex (Division of Applied Science, Mountain
View, United States), and the experimental process of defocusing the measurement of
line-focused ultrasonic transducers based on acoustic microscopy, also known as the V(f, z)
measurement, was simulated.

2. Theoretical Derivation and Numerical Results

2.1. Modeling

For a functionally graded sandwich plate, as shown in Figure 1, the propagation
direction of the Lamb wave is along the x1 axis. The thickness of the sandwich plate is
h1 + h2 + h3, in which h2 is the thickness of the FGM layer, and h1 and h3 are the thick-
nesses of steel and copper, respectively. The material parameters of the FGM layer vary
continuously in the thickness direction. Here, we are referring to the density and the elastic
constants, which are functions of x3.

Figure 1. Schematic diagram of Lamb wave propagation and spatial coordinate system in a function-
ally graded material sandwich panel.

Assuming that the displacement components of the Lamb wave are the following:

u1 = U(x1, x3, t)
u2 = 0
u3 = W(x1, x3, t)

(1)

then the equations of motion will be given as follows:

∂σ11
∂x1

+ ∂σ13
∂x3

= ρ ∂2u1
∂t2

∂σ31
∂x1

+ ∂σ33
∂x3

= ρ ∂2u3
∂t2

(2)

Geometric relationship under the assumption of small deformation is as follows:

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(i, j = 1, 2, 3) (3)

Free harmonics of the particle displacement can be written as follows:

u1 = U(x3) · e[i(kx1−ωt)]

u3 = W(x3) · e[i(kx1−ωt)] (4)
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where σij and εij represent stress and strain, respectively, U(x3) and W(x3) are the amplitudes
of particle vibrations on the x1 and x3 direction, k is the wave number, and ω is the
angular frequency.

Considering the boundary problem of isotropic plates, the rectangular window func-
tion can be introduced by the following:

πhn(x3) =

{
1, 0 ≤ x3 ≤ h1 + h2 + h3
0, elsewhere

(5)

The elastic constant and density of the material are expressed as a function of position,
as follows:

Cij =
N
∑

n=1
Cn

ijπhn(x3)

ρ =
N
∑

n=1
ρnπhn(x3)

(6)

where N is the total number of layers, and here, N = 3. Therefore, the elastic constants and
density in the sandwich plate can be expressed as follows:

Cij(x3) = C1
ijπh1(x3) + C2

ij(x3)πh2(x3) + C3
ijπh3(x3)

ρ(x3) = ρ1πh1(x3) + ρ2(x3)πh2(x3) + ρ3πh3(x3)
(7)

The middle layer of the sandwich plate is the FGM layer; the volume fraction of copper
of this layer is represented as VCu, which can be written by a power function, as follows:

VCu =

(
1− x3 − h1

h2

)n
(h1 ≤ x3 ≤ h1 + h2, 0 ≤ n ≤ ∞) (8)

where n is the exponent of the power function. The propagation characteristics of Lamb
waves in the FGM layer under different gradient distributions can be obtained by chang-
ing the power exponent n. Then, in the FGM layer, the relationships between elastic
constants/density and volume fraction are as follows:

Csteel
I J = Csteel

I J +
(

CCu
I J − Csteel

I J

)
VCu

ρsteel = ρsteel +
(
ρCu − ρsteel)VCu

(9)

Substituting Equation (8) into Equation (9) yields the functions of the elastic constant
and density in the FGM layer, with respect to x3:

Csteel
I J (x3) = Csteel

I J +
(

CCu
I J − Csteel

I J

)(
1− x3−h1

h2

)n

ρsteel(x3) = ρsteel +
(
ρCu − ρsteel)(1− x3−h1

h2

)n (10)

Thus, the constitutive relationship is given as follows:

σ11 = [C11(x3)ε11 + C13(x3)ε33] · π(x3)
σ33 = [C13(x3)ε11 + C33(x3)ε33] · π(x3)
σ13 = 2C55(x3)ε13 · π(x3)

(11)

2.2. Legendre Orthogonal Polynomial Expansion

Substituting Equations (3), (4), (7), (10) and (11) into Equation (2) yields the wave
control equation in the x1–x3 plane. Then, the wave control equation in the x1 direction is
as follows:

393



Sensors 2022, 22, 4052

[
C1

11πh1(x3) + C2
11(x3)πh2(x3) + C3

11πh3(x3)
] · i2k2 ·U

+
[
C1

13πh1(x3) + C2
13(x3)πh2(x3) + C3

13πh3(x3)
] · ik ·W ′

+C2
55
′(x3)πh2(x3) ·U′ +

[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
] ·U′′

+C2
55
′(x3)πh2(x3) · ik ·W +

[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
] · ik ·W ′

+

[
C1

55[δ(x3 − 0)− δ(x3 − h1) ] + C2
55(x3)[δ(x3 − h1)− δ(x3 − h1 − h2) ]

+C3
55[δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3) ]

]
· (U′ + ik ·W)

= −[ρ1πh1(x3) + ρ2(x3)πh2(x3) + ρ3πh3(x3)
] ·ω2 ·U

(12)

The wave control equation in the x3 direction is as follows:[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
] · ik ·U′

+
[
C1

55πh1(x3) + C2
55(x3)πh2(x3) + C3

55πh3(x3)
] · i2k2 ·W

+C2
13
′(x3)πh2(x3) · ik ·U +

[
C1

13πh1(x3) + C2
13(x3)πh2(x3) + C3

13πh3(x3)
] · ik ·U′

+C2
33
′(x3)πh2(x3) ·W ′ +

[
C1

33πh1(x3) + C2
33(x3)πh2(x3) + C3

33πh3(x3)
] ·W ′′

+

[
C1

13[δ(x3 − 0)− δ(x3 − h1) ] + C2
13(x3)[δ(x3 − h1)− δ(x3 − h1 − h2) ]

+C3
13[δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3) ]

]
· ik ·U

+

[
C1

33[δ(x3 − 0)− δ(x3 − h1) ] + C2
33(x3)[δ(x3 − h1)− δ(x3 − h1 − h2) ]

+C3
33[δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3) ]

]
·W ′

= −[ρ1πh1(x3) + ρ2(x3)πh2(x3) + ρ3πh3(x3)
] ·ω2 ·W

(13)

The amplitudes of U(x3) and W(x3) of the displacements are expanded into the form
of a summation of the Legendre orthogonal polynomials, which can be written as follows:

U(x3) =
∞
∑

m=0
p1

m ·Qm(x3)

W(x3) =
∞
∑

m=0
p3

m ·Qm(x3)
(14)

where (i = 1, 3; m = 1, 2, . . . , M) are the expansion coefficients of Qm(x3). Theoretically, m
takes from zero to infinity, but, in fact, m takes a finite value of M. Higher-order terms can
be considered as infinitesimal quantities, and M is the cutoff order of Legendre orthogonal
polynomial series. It should be noted that Qm(x3) is an orthogonally normalized polynomial
group, as follows:

Qm(x3) =

√
2m + 1

h1 + h2 + h3
Pm(

2x3 − h1 − h2 − h3

h1 + h2 + h3
) (15)

Substituting the displacement amplitude Equation (14) into the wave control
Equations (12) and (13) will derive the final form of Legendre polynomial expansion equa-
tions. Multiply both sides of the expanded equation by Qj(x3) and integrate x3 from zero to
h1 + h2 + h3. Using the orthogonal properties of the Legendre polynomial, a matrix form of
the equations can be given, as follows:[

Aj,m
11 Aj,m

12
Aj,m

21 Aj,m
22

]{
p1

m
p3

m

}
= −ω2

[
Mj

m 0
0 Mj

m

]{
p1

m
p3

m

}
(16)

where Aj,m
ij and Mj

m can be obtained from the wave control equations after expansion,
which are shown in Appendix A. According to the matrix Equation (16), the relationship
between the wave number k and the angular frequency ω can be obtained by solving the
eigenvalues. That is how the dispersion curves of the Lamb wave in the FGM sandwich
plate can be extracted.
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2.3. Numerical Results and Discussion
2.3.1. Convergence Analysis of Cutoff Order M

The material selected was a copper–FGM–steel sandwich plate, and the mechanical
performance parameters of copper and steel are shown in Table 1. In total, the thickness of
the plate is 0.4 mm, in which both the thicknesses of copper and steel are 0.1 mm, and the
thickness of the FGM layer is 0.2 mm. According to Equation (8), the volume fraction of
copper in the FGM layer along the thickness direction will take the indices n = 0.2, 0.5, 1, 2,
10, respectively, as illustrated in Figure 2.

Table 1. Parameters of Cu and steel [20].

Material C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa) ρ (kg/m3)

Cu 154.8 81.5 154.8 36.7 8292
Steel 275.0 113.2 275.0 80.9 7900

Figure 2. Volume fraction distribution of copper.

From the LOPSE method, it can be concluded that in the process of solving the Lamb
wave dispersion curves, once the number of polynomials exceeds a certain threshold, the
phase velocity will infinitely approach the eigenvalue. Calculations of the Lamb wave
dispersion curves in the frequency range of 0–10 MHz under seven cutoff orders (M = 3, 4,
5, 6, 7, 8, 9) are shown in Figure 3a–g, where the volume fraction index is n = 0.2. It can be
observed that as the cutoff order M increases, the Lamb wave dispersion curve shows a
convergence trend, which is consistent with the characteristics of the LOPSE method. This
verifies the feasibility of the theoretical method. As can be observed from Figure 3h, when
M = 8 and M = 9, the curves are substantially coincident, so the Lamb wave dispersion
curves obtained at M = 8 are taken as a convergence solution.

 
(a) (b) 

Figure 3. Cont.
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(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 3. Lamb wave dispersion curves under different cutoff orders: (a) M = 3; (b) M = 4; (c) M = 5;
(d) M = 6; (e) M = 7; (f) M = 8; (g) M = 9; (h) M = 7, 8, 9 comparison.

Taking the volume fraction curve at n = 0.2 as an example, according to Equation (10),
the elastic constant CIJ and density ρ of the FGM layer can be sliced into 10 equal minor sub
layers. Meanwhile, when N = 1, the corresponding material layer is Cu; and when N = 10,
the corresponding material layer is steel, and the material parameters can be obtained from
Table 1. The thickness of each layer is 0.02 mm, and the material parameters vary in the
same step. The corresponding parameters of all layers can be obtained from Equation (10),
which are shown in Table 2.
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Table 2. Parameters of sliced FGM layer.

Layer C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa) ρ (kg/m3)

N = 1 154.8 81.5 154.8 36.7 8292.0
N = 2 157.6 82.2 157.6 37.7 8282.9
N = 3 160.7 83.0 160.7 38.8 8272.8
N = 4 164.2 84.0 164.2 40.1 8261.5
N = 5 168.1 85.0 168.1 41.6 8248.5
N = 6 172.8 86.2 172.8 43.3 8233.3
N = 7 178.5 87.7 178.5 45.4 8214.7
N = 8 186.0 89.7 186.0 48.2 8190.2
N = 9 197.6 92.8 197.6 52.4 8152.6
N = 10 275.0 113.2 275.0 80.9 7900.0

The parameters from Table 2 are used to obtain a comparison result from Disperse
(Imperial College NDT Laboratory, London, UK), also under n = 0.2. Compared with the
convergent solution from the Legendre orthogonal polynomial expansion method, the
results are shown in Figure 4. It can be observed that the curve is basically consistent
in the frequency range of 0–10 MHz, which means that the theoretical solutions of the
non-sliced model by Legendre expansion are consistent with the solutions of the sliced
model by Disperse. In this case, M = 8 will approach closely enough to the results of the
global matrix method [21].

Figure 4. Lamb wave dispersion curve with cutoff order M = 8.

2.3.2. Effect of Volume Fraction n on Dispersion Curves

Under different power exponents, the gradient distribution of material parameters
in the FGM layer is different, which has a certain influence on the Lamb wave dispersion
curves. The dispersion curves of Lamb waves in the sandwich plate under different
gradient distributions are calculated, as shown in Figure 5. The cutoff order of the Legendre
orthogonal polynomial is also M = 8. Figure 5a–e show Lamb wave dispersion curves in
five different sandwich plates, with n = 0.5, 1, 5, 10, 20, respectively. It can be observed
that as the power exponent increases, the phase velocity of S0 mode at a low frequency
range gradually increases. Meanwhile, the same phenomenon shows up in the higher-order
modes. According to Figure 5, when the power index is gradually increased to infinity, the
copper content in the FGM layer almost reduces to zero, and the sandwich plates can be
regarded as double-layered plates with a top layer of 0.1 mm copper and a bottom layer of
0.3 mm steel. The Lamb wave dispersion curve in the copper–steel double-layered plate
calculated by the Legendre orthogonal polynomial method is shown in Figure 5f.
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(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 5. Lamb wave dispersion curve in FGM sandwich plates. (a) n = 0.5; (b) n = 1; (c) n = 5;
(d) n = 10; (e) n = 20; (f) double-layered plate with 0.1 mm Cu and 0.3 mm steel.

2.3.3. Displacement and Stress Distribution

The amplitude distribution of displacements and stress components along the thick-
ness direction is the wave structure. According to the calculation result of the dispersion
curve at n = 1 in Figure 5b, the eigenvector and its corresponding eigenvalue are calculated.
Then, the displacement distribution of the different Lamb wave modes at different frequen-
cies can be obtained. An arbitrary frequency f = 2 MHz is selected, and the Lamb wave
velocities corresponding to the A0 (anti-symmetric zero-order mode) and S0 (symmetrical
zero-order mode) modes at this frequency are 1933 m/s and 4469 m/s, respectively. The
matrix eigenvectors p1

m and p3
m are inversely obtained by using the angular frequency ω

corresponding to the two wave velocities as the eigenvalues. Substituting p1
m and p3

m into
the Equation (16), the displacement and stress distribution in the FGM sandwich plate
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can be obtained, as shown in Figures 6 and 7. So, the displacement and stress distribution
curves corresponding to the arbitrary modes of the Lamb wave at any frequency can
be obtained.

 
(a) (b) 

Figure 6. Lamb wave displacement distribution curve in FGM sandwich plate. (a) A0 mode;
(b) S0 mode.

 
(a) (b) 

Figure 7. Lamb wave stress distribution curve in FGM sandwich plate. (a) A0 mode; (b) S0 mode.

It can be observed from Figure 6 that, with the gradual change in the material com-
position in the FGM sandwich plate along the thickness direction, the LOPSE method can
ensure that the displacement variation in the plate is continuous. Additionally, due to the
gradual change in the material composition, its displacement distribution no longer has a
strict “symmetric” or “asymmetric” distribution, with respect to the center position of the
plate. The advantage of the LOPSE method is that the sandwich plate can be calculated
globally without delamination, thus solving the problem of stress discontinuity at the
boundary. In the calculation, the stress distribution of the Lamb wave can be obtained by
simply substituting the obtained displacement solution into the constitutive equation and
the geometric equation. As can be observed from Figure 7, the stress components σ31 and
σ33 are continuously distributed in the FGM sandwich plate, and the stress components at
the top and bottom boundaries are zero.

3. Finite Element Analysis

3.1. Simulation Model

Based on ultrasonic microscope technology, an acoustic measurement simulation
model with an FGM sandwich plate was established, and the corresponding Lamb wave
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dispersion curve was extracted. For the functionally graded material sandwich panel,
the thickness of the sandwich plate is h1 + h2 + h3, in which h2 is the thickness of the
FGM layer, and h1 and h3 are the thicknesses of steel and copper, respectively. In order
to simulate the structural characteristics of nonhomogeneous materials (FGM layer), the
corresponding material properties should vary between homogeneous steel and copper.
Meanwhile, it is assumed that the material properties of each element layer are constant,
and the material properties mesh uniformly along the thickness direction [22,23]. A number
of subdivisions can approximate the continuous property variation; the corresponding
propagation characteristics of acoustic waves are close to the graded type at this time [24].
On the other hand, when using the commercial finite element package PZFlex to simulate
the distribution of sound field in materials, it is very important to assign mechanical
property parameters to the corresponding layer of the FGM sandwich plate. In this problem,
the uniform element with a thickness of 0.02 mm can solve the numerical simulation of
sound field distribution for functionally graded material layers with a thickness of 0.2 mm.

In this section, a two-dimensional finite element model for a line-focusing ultrasound
transducer was built in PZFlex. The dimensional parameters and material properties of
the finite element model of the line-focusing ultrasonic transducer were referred to with
the ultrasonic transducer used in the experiment. In the model, a piezoelectric polymer
of polyvinylidene fluoride (PVDF) film was selected as the excitation/receiving element,
and the polarization direction is directed to the center of the circle. The upper surface of
the film is the positive electrode and the lower surface is the negative electrode. Back10
(tungsten-loaded epoxy, 10% VF, 5.8 Mray1) was used as the backing. Water was selected
as the coupling medium for detection, and a copper–FGM–steel sandwich plate was used
as the specimen.

Table 3 shows the material parameters of the model. The top layer of the specimen is
copper, the middle is layered FGM, and the bottom is steel. The transverse/longitudinal
wave velocity and density of copper and steel are known. The material parameters of the
FGM layered model are obtained from the volume fraction curve (n = 0.2). The parameters
of each layer are shown in Table 3. The thickness, focus radius, and full opening angle of
PVDF film were set to 40 μm, 20 mm, and 80◦, respectively. Then, this finite element model
can be simplified to a two-dimensional model, as shown in Figure 8. The signal excited
by the line-focusing ultrasonic transducer is a transient wide-band signal. Therefore, the
excitation signal in the simulation selects the Sine-Impulse broadband signal with a central
frequency of 7 MHz.

Table 3. The material property parameters of the model.

Material Density ρ (Kg/m3)
Longitudinal Wave
Velocity CL (m/s)

Transverse Wave
Velocity CT (m/s)

Back10 2975 1960 1047

PVDF 1780 — —

Water 1000 1496 —

Cu 8292 4321 2103

FGM layer

8282.9 4357.7 2128.5
8272.8 4398.4 2156.8
8261.5 4444.0 2188.5
8248.5 4496.1 2224.7
8233.3 4557.4 2267.2
8214.7 4632.5 2319.4
8190.2 4731.2 2388.0
8152.6 4882.5 2493.1

Steel 7900 5900 3200
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Figure 8. Finite element simulation model.

The simulation started at the focusing plane. Generally, at around 28 μs, the PVDF
film receives the reflected echo from the bottom surface of the specimen for the first time.
Thus, in this simulation, the propagating times of the acoustic waves were set to 35 μs. The
finite element model is discretized by a rectangular grid, and a unit wavelength is divided
by 20 grid nodes in water. It should be noted that the bottom surface of the model is set as
a free boundary. In order to prevent reflection, the other boundaries of the model are set as
absorbing boundaries.

3.2. Simulation Results

By changing the relative position of the ultrasonic transducer to achieve equal interval
defocusing, a defocusing measurement simulation based on an ultrasonic microscopy
technique was simulated, which is called V(f, z) analysis [25]. The defocus distance was
15 mm and the step was 0.025 mm. The finite element simulation was performed on each
defocus position, and, in total, 600 sets of simulation data were obtained. The Lamb wave
dispersion curve can be extracted by performing 2D Fourier transform of the time and
space domains, as shown in Figure 9.

 
(a) (b) 

Figure 9. Cont.
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(c) (d) 

Figure 9. Defocusing experiment simulation results. (a) Time domain signal waveform at different de-
focusing positions; (b) frequency domain diagram after time domain Fourier transform; (c) frequency
peak tracing after spatial Fourier transform; (d) Lamb wave dispersion curves.

The Lamb wave dispersion curves from the simulation were superimposed with the
dispersion curves from the LOPSE method, as shown in Figure 10. It can be observed
from the figure that the theoretical results solved by the LOPSE method using the volume
fraction index are consistent with the finite element simulation results using the layered
model. Therefore, this result lays the theoretical foundation for FGM characterization by
acoustic microscopy.

Figure 10. Comparison of simulation results with theoretical results.

4. Conclusions

In this research, the problem of Lamb wave propagation in the FGM sandwich plate
without discretizing the gradient structure into a homogeneous multilayered model is
solved numerically.

(1) The LOPSE method is employed for solving the Lamb wave dispersion curves
and their displacement and stress distributions, even when the material parameters vary
continuously along the thickness direction. The convergence of the results by a polyno-
mial method is analyzed, and the convergence solution is also obtained. Moreover, the
convergence solution is basically consistent with the results calculated using the global
matrix method.

(2) The middle layer of the sandwich plate is FGM, in which the material parameter
changes gradiently along the thickness direction. By solving the Lamb wave dispersion
curve of the sandwich plate under different gradient distributions, it is obvious that the
volume fraction of the top layer material in the FGM layer decreases and the volume
fraction of the underneath layer material increases when the power exponent increases,
then the dispersion relation of the Lamb wave gradually approaches a double-layer plate.
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(3) The finite element model of the FGM sandwich plate is established by slicing the
FGM into layers, and the defocus measurement simulation by a line-focusing ultrasonic
transducer was carried out based on an acoustic microscopy technique. The extracted
Lamb wave dispersion curves are basically consistent with the theoretical calculation
results, which further verifies the LOPSE method. Then, this research provides an approach
for the FGM characterization method based on acoustic microscopy.
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Appendix A

In the integration process, the common factor term is extracted for the convenience of
calculation, as follows:

The common factor of the first layer:

u1(j, m, l) =
∫ h1

0 Q∗j (x3) · ∂l Qm(x3)
∂x3

l · [H(x3 − 0)− H(x3 − h1)]dx3

K1(j, m, l) =
∫ ∞
−∞ Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [δ(x3 − 0)− δ(x3 − h1)]dx3

(A1)

The common factor of the second layer:

u2(j, m, l) =
∫ h1+h2

h1
Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [H(x3 − h1)− H(x3 − h1 − h2)]dx3

K2(j, m, l) =
∫ ∞
−∞ Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [δ(x3 − h1)− δ(x3 − h1 − h2)]dx3

(A2)

The common factor of the third layer:

u3(j, m, l) =
∫ h1+h2+h3

h1+h2
Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [H(x3 − h1 − h2)− H(x3 − h1 − h2 − h3)]dx3

K3(j, m, l) =
∫ ∞
−∞ Q∗j (x3) · ∂l Qm(x3)

∂x3
l · [δ(x3 − h1 − h2)− δ(x3 − h1 − h2 − h3)]dx3

(A3)

Then the matrix items Aj,m
ij and Mj

m can be obtained by the following:

Aj,m
11 = i2k2 · [C1

11 · u1(j, m, 0) + C2
11(x3) · u2(j, m, 0) + C3

11 · u3(j, m, 0)
]

+C2
55
′(x3) · u2(j, m, 1) + C1

55 · u1(j, m, 2) + C2
55(x3) · u2(j, m, 2)

+C3
55 · u3(j, m, 2) + C1

55 · K1(j, m, 1) + C2
55(x3) · K2(j, m, 1) + C3

55 · K3(j, m, 1)
(A4)

Aj,m
12 = ik ·

⎡⎢⎢⎣
C1

13 · u1(j, m, 1) + C2
13(x3) · u2(j, m, 1) + C3

13 · u3(j, m, 1)
+C2

55
′(x3) · u2(j, m, 0) + C1

55 · u1(j, m, 1) + C2
55(x3) · u2(j, m, 1)

+C3
55 · u3(j, m, 1) + C1

55 · K1(j, m, 0) + C2
55(x3) · K2(j, m, 0)

+C3
55 · K3(j, m, 0)

⎤⎥⎥⎦ (A5)
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Aj,m
21 = ik ·

⎡⎢⎢⎣
C1

55 · u1(j, m, 1) + C2
55(x3) · u2(j, m, 1) + C3

55 · u3(j, m, 1)
+C2

13
′(x3) · u2(j, m, 0) + C1

13 · u1(j, m, 1) + C2
13(x3) · u2(j, m, 1)

+C3
13 · u3(j, m, 1) + C1

13 · K1(j, m, 0) + C2
13(x3) · K2(j, m, 0)

+C3
13 · K3(j, m, 0)

⎤⎥⎥⎦ (A6)

Aj,m
22 = i2k2 · [C1

55 · u1(j, m, 0) + C2
55(x3) · u2(j, m, 0) + C3

55 · u3(j, m, 0)
]

+C2
33
′(x3) · u2(j, m, 1) + C1

33 · u1(j, m, 2) + C2
33(x3) · u2(j, m, 2)

+C3
33 · u3(j, m, 2) + C1

33 · K1(j, m, 1) + C2
33(x3) · K2(j, m, 1) + C3

33 · K3(j, m, 1)
(A7)

Mj,m
11 = ρ1 · u1(j, m, 0) + ρ2 · u2(j, m, 0) + ρ3 · u3(j, m, 0) (A8)

Mj,m
22 = ρ1 · u1(j, m, 0) + ρ2 · u2(j, m, 0) + ρ3 · u3(j, m, 0) (A9)
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Abstract: Interlaminar corrosion (ILC) poses a severe threat to stratified conductors which are broadly
employed in engineering fields including aerospace, energy, etc. Therefore, for the pressing con-
cern regarding the safety and integrity of stratified conductors, it is imperative to non-intrusively
and quantitatively interrogate ILC via non-destructive evaluation techniques. In this paper, pulse-
modulation eddy current (PMEC) for imaging and assessment of ILC is intensively investigated
through theoretical simulations and experiments. A semi-analytical model of PMEC evaluation of
ILC occurring at the interlayer of two conductor layers is established based on the extended trun-
cated region eigenfunction expansion (ETREE) along with the efficient algorithm for the numerical
computation of eigenvalues for reflection coefficients of the stratified conductor under inspection.
Based on theoretical investigation, PMEC evaluation of ILC in testing samples are further scruti-
nized by using the PMEC imaging system built up for the experimental study. The theoretical and
experimental results have revealed the feasibility of PMEC for imaging and evaluation of ILC in
stratified conductors.

Keywords: electromagnetic non-destructive evaluation; pulse-modulation eddy current technique;
semi-analytical model; interlaminar corrosion; defect imaging and evaluation

1. Introduction

The stratified conductor which consists of a train of thin metallic layers is widely
utilized in engineering fields including aerospace, energy, chemical, etc. However, the
penetration of moisture and corrosive substances and abrasion of interlaminar surfaces
may result in the interlaminar corrosion (ILC) at the interface between each two layers [1].
The fact that ILC is essentially buried within the structure body severely leaves the layered
conductor vulnerable to structural failure, since the non-destructive testing methods such
as visual testing [2], ultrasonic testing [3], etc., are inapplicable for the inspection and
assessment of ILC. Therefore, advanced non-destructive evaluation (NDE) techniques are
required to detect and evaluate ILC in order to guarantee the integrity and safety of layered
structures in service for an extended period.

In view of the conductive characteristics of stratified conductors, eddy current (EC)
testing as well as pulsed eddy current (PEC) testing, which barely requires any contact
between the test piece and probe, is one of the preferred NDE techniques for the efficient
inspection of conductive structures [4]. In recent years, EC and PEC have been successfully
applied to detect the anomalies of railways [5] and delamination in carbon-fiber-reinforced
plastic [6], and to estimate the yield strength of ferromagnetic materials [7]. To further
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improve the testing performance of EC and PEC, the related research is focused on the
probe design, signal processing and feature extraction, etc. Wang et al. proposed a non-
destructive testing technique integrating EC with PEC to localize the micro-crack in metals
and quantitatively characterize its depth separately [8]. Yu et al. designed transverse
probes to render the eddy currents perpendicular to circumferential cracks and improved
the detection sensitivity to the defects [9]. Bernieri et al. designed a double-coil-based
differential probe to detect buried thin cracks with a giant magneto resistance (GMR)
sensor [10]. Ge et al. proposed a bobbin probe with two excitation coils to induce more
uniform eddy current and pick up signals with array sensors [11]. Besides the novel design
of probes, signal features immune to lift-off variations have been investigated. Wang et al.
used the dynamic apparent time constant of the PEC-induced coil voltage decay signal to
measure wall thinning under the large lift-off variations [12]. Song et al. applied the last
peak point of differential PEC signals to measure thickness for non-ferrimagnetic metal
under large lift-offs [13]. Zhang et al. proposed Euclidean distances as a signal feature by
decoupling interferences of insulations, claddings and the lift-off [14].

As one of the extended NDE methods from EC and PEC, pulse-modulation eddy
current (PMEC) testing has been found to be superior to EC and PEC in terms of higher sen-
sitivity and accuracy in detection, imaging and assessment of subsurface defects in planar
and tubular conductors [15,16]. The technical advantage of PMEC lies in the fact that the
majority of the excitation energy can be effectively allocated to the eddy currents induced
right within a conductor body, and thus the dedicated interrogation of the conductor is re-
alized [15]. In a bid to further improve the testing sensitivity, a funnel-shaped PMEC probe
has been proposed, and found to be advantageous over the traditional pancake probe in an
evaluation of back-surface flaws [17]. Based on this, Yan et al. investigated the methods for
imaging of subsurface corrosion in the planar conductor [18], and subsequently established
an inversion scheme for the 3D profile reconstruction of detected corrosions [19]. However,
to the authors’ knowledge, little research on PMEC inspection of ILC in layered conductors
has been conducted.

It is also noticeable that in the aforementioned research, despite the analytical models
established based on the extended truncated region eigenfunction expansion (ETREE)
modeling [20] for theoretical investigation of PMEC, the corrosion involved in the related
model is deemed to be the wall-thinning defect under the assumption that the defect
size is appreciably larger than the probe dimension. The scenario regarding the localized
corrosion is barely taken into account, leaving a research blank in regard to the theory of
PMEC inspection of localized defects and particularly ILC in layered structures. This issue
could be tackled in reference to the relevant analytical modeling of EC. Theodoulidis et al.
constructed the analytical modeling for calculating eddy currents in a plate with a long
slot flaw by the average of an odd and even parity solution [21]. Jiang et al. established
an analytical model for eddy current testing of an angled slot with different upper and
bottom length in 2D system [22]. Yu et al. proposed an analytical expression for the
magnetic field for a cylindrical defect in metal in eddy current testing system by solving the
partial differential equations [23]. Tytko et al. presented an axially symmetric mathematical
model of an I-cored coil placed over a two-layered conductive material with a cylindrical
surface hole [24]. However, more and more complex geometries in analytical models
with defect flaws make the numerical implementation more difficult [25]. To solve this
problem, some researchers tried to develop more efficient calculation approach to solve
the analytical modeling. The main obstacle for implementation of the analytical model is
solving discrete complex eigenvalues of the partial differential equations in a defect domain.
To find eigenvalues in a defect domain, Theodoulidis et al. used the Newton–Raphson
algorithm [21] and a derived Cauchy principle [26] developed by Delves and Lyness [27]
for the computation of eigenvalues. Darko et al. further improved Delves and Lyness’
work and designed an iteration algorithm for dividing regions in complex planes for
guaranteeing the efficient solution of eigenvalues [28]. Strakova adapted Cauchy’s residue
theorem and presented a contour integral method for the localization of eigenvalues of a
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matrix pencil in a bounded domain in the complex plane [29]. Tytko proposed a method for
the multilevel computation of complex eigenvalues by combining both the Newton method
and Cauchy principle and applying them in different regions of the complex plane [25].
The related analytical modeling of EC with localized defects could be supportive of the
establishment of theoretical models for PMEC evaluation of ILC in stratified conductors.

In a bid to scrutinize the feasibility of PMEC for the evaluation of ILC in stratified
conductors, a series of theoretical simulations of PMEC testing of localized ILC with
different radii and depths are carried out with a semi-analytical model established based
on the ETREE modeling. In parallel, a PMEC system has been built up for experimental
investigation in a bid to further confirm the applicability of PMEC for the detection,
imaging and assessment of ILC. The rest of the paper is organized as follows: Section 2
elaborates the semi-analytical modeling of PMEC for ILC evaluation. The theoretical and
experimental investigations involving characteristics and features of PMEC responses to
ILC, etc., are intensively presented in Sections 3 and 4, respectively. The investigation
results are summarized and concluded in Section 5.

2. Semi-Analytical Modeling Regarding PMEC Evaluation of ILC

2.1. Field Formulation

In an effort to investigate PMEC evaluation of ILC in stratified conductors, a semi-
analytical model based on ETREE modeling is established. A 2D axisymmetric model of
PMEC evaluation of a two-layer conductor subject to an ILC is portrayed in Figure 1. The
model comprises a funnel-shaped PMEC probe and a two-layer conductor. The funnel-
shaped probe consists of: (1) an excitation coil with the parallelogram cross-section for
generation of the incident magnetic field; and (2) a solid-state magnetic-field sensor which
is deployed at the bottom center of the excitation coil and used for acquiring the testing
signal of the net magnetic field (superposition of the incident and eddy-current-induced
fields). It is noted that the ILC residing at the interface between the upper and bottom layers
is in the shape of a cylinder with the radius of c and depth/thickness of D, D = d2 − d1. The
region of interest (ROI) truncated with the radial distance of h in Figure 1 is divided into a
series of sub-regions numbered from Region II to Region VI in reference to the continuity
of electromagnetic field over the boundaries of the coil, conductor and ILC with the z
coordinates of z1, 0, −d1, −d2 and −d3.

Figure 1. A 2D axisymmetric model of a funnel-shaped PMEC probe placed over a two-layer stratified
conductor with an ILC at the interface between the upper and bottom layers.

Based on ETREE modeling for transient eddy current testing [15], the closed-form
expression of z-component of the transient net magnetic field which is sensed by the sensor
at an arbitrary coordinate of (r, z) in Region II can be written as:

Bz(r, z, t) = I(t)⊗F−1[Bz(r, z, ω)], (1)
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where I(t) denotes the excitation signal of the electric current driving the coil. ⊗ stands
for the circular convolution. F−1 denotes the inverse Fourier transform. Bz (r, z, ω) is
the spectral response with respect to every harmonic at an angular frequency of ω within
the excitation signal. For each harmonic, Bz (r, z, ω) can be written in a form of a double
integral of the z-component of the total magnetic field resulted from a filament excitation
coil (with the radius of r0 and liftoff of z0), i.e., B f

z (r, z, ω) as:

Bz(r, z, ω) =
Ncoil

δ(z2 − z1)

∫ z2

z1

∫ ro(z)

ri(z)
B f

z (r, z, ω)drdz, (2)

where Ncoil is the number of turns of the excitation coil. δ denotes the coil radial thickness.
z1 and z2 are the z-integral limits corresponding to the lower and upper boundaries of the
coil. ri (z) and ro (z), which stand for the inner and outer boundaries of the coil, respectively,
are taken as the lower and upper limits for the r-integral. They are written as:{

ri(z) = r1 +
δz

z2−z1

ro(z) = r1 + δ + δz
z2−z1

. (3)

It is noteworthy that since the localized ILC is taken into account in the model, in
Equation (2) B f

z (r, z, ω) can hardly be expressed in the form of series expansion, but is
formulated in the matrix notation. Since the magnetic field can be derived from the identity,
i.e., the curl of the magnetic vector potential, in the cylindrical coordinate system it is thus
written as:

→
B

f
(r, z, ω) = −∂A f (r, z, ω)

∂z
→
r +

1
r

∂[rA f (r, z, ω)]

∂r
→
z , (4)

where
→
r and

→
z are the unit vectors. Af denotes the magnetic vector potential resulting

from the filament excitation coil. Referring to [23], it is expressed as:⎧⎪⎨⎪⎩
A f (r, z, ω) = J1(κ

Tr)(eκzC + e−κzD)

C = μ0r0
2 e−κz0κ−1E−1 J1(κr0)

D = ΓC

, (5)

where J1 (κTr) and J1 (κr0) represent the 1× Ns and Ns × 1 matrices with the corresponding
elements of J1 (κir) and J1 (κir0), respectively. Jn is the first-kind Bessel function of the order
of n. eκz and e−κz denote the Ns × Ns diagonal matrices with the individual elements of
eκiz and e−κiz, respectively. μ0 is the permeability of vacuum. C and D are Ns × 1 matrices.
Based on Equations (4) and (5), the magnetic field at the sensor position is formulated as:

→
B

f
(r, z, ω) = −J1(κ

Tr)κ
(
eκzC− e−κzD

)→
r + J0(κ

Tr)κ
(
eκzC + e−κzD

)→
z . (6)

In Equations (5) and (6), κ is a diagonal matrix with the diagonal elements of κi,
i = 1, 2, 3 . . . Ns. κi are eigenvalues for the air domains, which are the positive roots of
the equation:

J1(κih) = 0. (7)

E is a diagonal matrix with the elements expressed as:

Eii =
h2 J2

0 (κih)
2

. (8)

Γ is a Ns × Ns full matrix representing the conductor reflection coefficient. It can be derived
from the boundary conditions implying the continuity of electromagnetic field over each
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interface in the domain under the excitation coil (i.e., Regions II, III, . . . and VI), and thus
written as:

Γ = K−1
2 K1, (9)

where K1 and K2 are formulated as:{
K1 = (L1M1 − L2M2)Ee−λd1N1 − (L2M1 − L1M2)Eeλd1N2

K2 = (L2M1 − L1M2)Eeλd1 N1 − (L1M1 − L2M2)Ee−λd1N2
. (10)

It is noted that L1, L2, M1, M2, M3, M4, N1 and N2 in Equation (10) are the coefficient
matrices which are expressed as:⎧⎨⎩ L1 =

[
N−1

1 eλ(d2−d3)E−1M3 −N−1
2 eλ(d3−d2)E−1M4

]
ep(d1−d2)

L2 =
[
N−1

2 eλ(d3−d2)E−1M3 −N−1
1 eλ(d2−d3)E−1M4

]
ep(d2−d1)

, (11)

{
M1 = U−1 + (Up)−1λ, M3 = U + λ−1Up

M2 = U−1 − (Up)−1λ, M4 = U− λ−1Up
, (12)

{
N1 = I + λ−1κ

N2 = I− λ−1κ
. (13)

In these expressions, I denotes the Ns × Ns identity matrix. λ is the Ns × Ns diagonal
matrix with the diagonal elements of λi which are eigenvalues for the layered conductor
free of ILC, and can be expressed as:

λi =
√

κ2
i + jωμ0μrσ, (14)

where σ and μr denote the apparent conductivity and relative permeability of the conduc-
tive layers, respectively. The elements Uij in the Ns × Ns full matrix U can be computed out
by using the equation written as:

Uij =
−ck2

(p2
j − κ2

i )(q
2
j − κ2

i )

[
κi J0(κic)J1(pjc)− pj J1(κic)J0(pjc)

]
R1(qjc), (15)

where k2 = jωμ0μrσ. Rn (qic) is formulated as:

Rn(qic) = Y1(qih)Jn(qic)− J1(qih)Yn(qic), (16)

where Yn denotes the second-kind Bessel function of the order of n. The diagonal elements
pi in the Ns × Ns diagonal matrix p are eigenvalues for the ILC region. They can be sought
by finding the roots of the equation:

pi J0(pic)R1(qic)− qi J1(pic)R0(qic) = 0. (17)

In Equations (15)–(17), qi is also the eigenvalues for the ILC domain, and can be derived by
using the equation:

qi =
√

p2
i − jωμ0μrσ. (18)

By using Equations (1) and (2), the temporal responses of PMEC to localized ILC at
the interface of the layered conductor can be readily predicted.

2.2. Numerical Calculation of Eigenvalues

The calculation of eigenvalues particularly pi is a fundamental step in predicting the
PMEC signals via the semi-analytical model. In this paper, eigenvalues in the ILC domain
are acquired based on the Delves and Lyness algorithm calculating the eigenvalues and

410



Sensors 2022, 22, 3458

further improving the precision by Newton–Raphson iteration. When applying the Delves
and Lyness algorithm to seek eigenvalues, the roots of Equation (17) are equivalent to zeros
of the function written as:

f (x) = xJ0(xc)R1(qc)− qJ1(xc)R0(qc). (19)

According to the Cauchy argument principle developed by Delves and Lyness, the
summation of nth power of zeros of an analytic function enclosed by the contour C in the
complex plane can be expressed as:

sn =
1

2π j

∮
C

xn f ′(x)
f (x)

dx =
N

∑
i=1

ξn
i n = 1, 2, . . . N, (20)

s0 =
1

2π j

∮
C

x0 f ′(x)
f (x)

dx =
N

∑
i=1

ξ0
i = N, (21)

where f’(x) is the derivative function of f (x). ξi are zeros of the f (x) enclosed by the
contour C, giving the solutions to pi in Equation (17). By dividing the complex plane into a
series of discretized subareas, information of eigenvalues in each subarea is derived from
Equations (20) and (21). In each subarea, the number of zeros N is equal to s0. To obtain to
solutions to pi in defect domain, it is required to solve the Nth degree system of equations
which is written as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1 = p1 + p2 + . . . + pN

s2 = p2
1 + p2

2 + . . . + p2
N

...
sN = p1

N + pN
2 + . . . + pN

N

. (22)

In a bid to mitigate the potential overflow and rounding error in computation of Bessel
functions, Equation (19) is further modified and formulated in an exponentially scaled
form as: {

f (x) = e|�(xc)|+|�(qh)|+|�(qc)| f̂ (x)

f̂ (x) = xĴ0(xc)R̂1(qc)− qĴ1(xc)R̂0(qc)
, (23)

where � denotes the imaginary part of a complex value. This scaling method is im-
plemented based on the embedded functions “besselj (n, x, 1)” and “bessely (n, x, 1)” in
MATLAB, and gives solutions to e−|�(x)|Jn(x) and e−|�(x)|Yn(x) which are efficient in
mitigation regarding overflow and reduction in computational accuracy of Bessel functions.
The scaled forms of Jn(x) and Yn(x) are Ĵn(x) and Ŷn(x) whilst R̂n(qc) is the scaled form of
Rn(qc). R̂n(qc) can thus be expressed as:

R̂n(qc) =
[
Ŷ1(qh) Ĵn(qc)− Ĵ1(qh)Ŷn(qc)

]
. (24)

In addition, f̂ ′(x), which is the scaled form of f’(x) can also be derived:

f ′(x) = e|�(xc)|+|�(qh)|+|�(qc)| f̂ ′(x). (25)

In the virtue of the uniform coefficient in Equations (23) and (25), the ratio term, i.e.,
f’(x)/f (x) in Equations (20) and (21) can be replaced by f̂ ′(x)/ f̂ (x). It is noteworthy that:
(1) the function ratio in Equations (20) and (21) is essentially the integrand of the loop-
integration for finding the eigenvalue in each discretized subarea when applying the Delves
and Lyness algorithm in Reference [27]; and (2) by substituting f̂ ′(x)/ f̂ (x) for f’(x)/f (x)
and taking it as the integrand, the overflow and rounding error in computation can be
suppressed. In a bid to predict PMEC responses to the ILC, the efficient computation of
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the complex roots of f (x) is realized via the modified Delves and Lyness formula which is
written in the scaled form as:

sn =
1

2π j

∮
C

xn f̂ ′(x)
f̂ (x)

dx =
N

∑
i=1

pn
i n = 1, 2, . . . N, (26)

s0 =
1

2π j

∮
C

f̂ ′(x)
f̂ (x)

dx =
N

∑
i=1

p0
i = N. (27)

The loop-integration can readily be computed with the MALTAB routine “integral”. It is
further revealed that in Newton–Raphson algorithm for improving the computation accu-
racy regarding the complex eigenvalues, the ratio term, i.e., f (x)/f’(x) can also be replaced
with the exponentially scaled form to avoid computational overflow or rounding errors.

It is noted that the accuracy regarding the computation of complex eigenvalues de-
pends also on the discretized subareas in the complex plane. In the event that the number
of eigenvalues in each subarea is increased, it becomes more difficult to solve the system of
equations shown in Equation (22). Previous investigation has revealed that the computa-
tional accuracy for pi is undermined when the discretized subarea in the complex plane
encloses too many eigenvalues [25]. The relatively large number of N also brings about
the tedious computation of sn with n varying from 1 to N. Therefore, it is vital to properly
divide the complex plane into the discretized subareas and limit the maximum number of
eigenvalues in each subarea. Different from the proposed iteration algorithms to make the
subareas denser in the complex plane to reach the limited number of eigenvalues in Refer-
ence [28], in this paper characteristics of eigenvalues’ distribution are firstly investigated
and utilized to optimize the shape and size of the subarea in the complex plane.

When the ILC radius varies from 0 (the defect-free case) to h (the wall-thinning case
where the ILC radius is considerably larger than the probe size), in the complex plane,
the corresponding eigenvalues change from λi to κi. Due to the continuity in numerical
values, the distribution of pi is thus bounded by λi and κi. An example regarding the
distribution characteristics of eigenvalues pi in the complex plane for the harmonic case
of ω = 2000π rad/s and the subareas are portrayed in Figure 2. It can be observed from
Figure 2a that pi (red dots) sought in the plane is essentially enclosed by a region with
its lower and upper boundaries defined by κi and λi, respectively. Interestingly, after
discretizing the region into a train of rectangular subareas (when κi < �(λ1), where �
denotes the real part of a complex value) and trapezoidal subareas (when κi > �(λ1)) with
their vertices set as κi and λi, it can be found that within each resultant subarea the total
number of pi is up to 2. Further investigation indicates that such a finding still holds
for the other harmonic cases. The distribution characteristics of eigenvalues provide an
advantageous reference to the division of discretized subareas. In light of this, a new
approach for discretizing the complex plane is thus proposed. Prior to the computation
of the loop integrals in Equations (26) and (27), the complex plane is discretized into a
train of subareas in the shapes of rectangles and trapezoids. The coordinates of the vertices
defining the contour of each subarea are set as κi and λi. For the rectangular-shaped and
trapezoidal-shaped subareas, the coordinates regarding the vertices of the subarea contour
are exhibited in Figure 2b.

It should be pointed out that the proposed approach ensures that there are up to
2 eigenvalues of pi in each subarea whilst the number of discretized subareas is highly
relied on the number of κi and λi. This makes the subarea discretization free of multiple
iteration to obtain denser subareas in the localized complex region where eigenvalues are
concentrated and are beneficial to the efficient seeking of all pi with high computation
speed and accuracy. Further investigation also reveals that by taking the pi sought with
the proposed approach as the initial estimates, the number of iterations for refinement
of eigenvalues via the Newton–Raphson algorithm for further precision improvement
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is significantly decreased, which benefits the fast solution to predicted PMEC responses
to ILC.

Figure 2. Characteristics regarding the distribution of eigenvalues in the complex plane and de-
fined subareas: (a) distribution of eigenvalues pi, κi and λi along with the discretized subareas;
(b) coordinates of the subareas.

2.3. Verification with the Finite Element Modeling

In conjunction with the proposed efficient algorithm for computation of eigenvalues,
the established semi-analytical model and formulated closed-form expression of the PMEC
signal could be adopted for efficient prediction of testing signals. Prior to theoretical
simulations, the semi-analytical model is corroborated by the finite element modeling
(FEM). The specimen under PMEC inspection is chosen as a double-layered conductor with
cylindrical ILC. The material of each conductor layer is the aluminum alloy. The parameters
of the PMEC probe and specimen are listed in Tables 1 and 2, respectively.

Table 1. Parameters of the PMEC probe.

Symbol Quantity Value

r1 Inner radius of the coil bottom 8.0 mm
r2 Inner radius of the coil top 14.8 mm
δ Coil radial thickness 0.8 mm
z1 Lift off 2.0 mm
z2 Position of the coil top 12.1 mm

Ncoil The number of coil turns 205
(r, z) Sensor location (0, 1) mm

Table 2. Parameters of the specimen.

Symbol Quantity Value

h Specimen length 100 mm
d3 = 2dLayer Specimen thickness 8.0 mm

σ Specimen conductivity 34.0 MS/m

μr
Specimen relative

permeability 1

d1 Upper boundary of ILC 2.0 mm
D ILC thickness 4.0 mm
c ILC radius 15.0 mm

The excitation current driving the funnel-shaped PMEC probe and testing signals are
exhibited in Figure 3. The maximum amplitude of the excitation current is 1A. It is noted
that regarding the excitation-current signal in the pulse-modulation waveform, as per the
frequency-selection strategy in Reference [15] the frequencies of modulation wave and
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carrier wave are set at 24 Hz and 204 Hz, respectively. Different from the excitation signal
presented in Reference [15], the carrier wave is truncated by the modulation wave when
its amplitude reaches maximum. The comparison of the PMEC signals predicted by the
semi-analytical model and FEM is presented in Figure 3b.

Figure 3. Excitation current and PMEC signals: (a) excitation current driving the probe; (b) signals
predicted by the semi-analytical model and FEM.

It can be observed from Figure 3b that the predicted PMEC signal from the semi-
analytical model agrees well with that from FEM. Further analysis implies that compared
with the FEM results, the relative error of the computed signal from the semi-analytical
model is less than 1%, whilst the simulation time of the semi-analytical model is 10~15 times
faster than FEM, indicating the superiority in terms of efficiency regarding the established
semi-analytical model to FEM.

3. Theoretical Simulations and Discussion

Following verification, the PMEC responses to ILCs with different radii and depths are
scrutinized through theoretical simulations based on the established semi-analytical model.
For the ILC scenarios of various radii (c = 1~15 mm with D fixed at 4 mm) and depths
(D = 1~5 mm, while c = 15 mm), the predicted PMEC signals are exhibited in Figure 4.

Figure 4. Testing signals predicted by the semi-analytical model: (a) ILCs with various radii; (b) ILCs
with various depths.

It can be seen from Figure 4 that the signal amplitude increases as the ILC size in terms
of the radius (shown in Figure 4a) and depth (shown in Figure 4b) rises. The reasoning
lies in the fact that the increase in the ILC volume enhances the perturbation of eddy
currents induced within the specimen, causing the drop in the eddy-current-induced field
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and thus the increase in the net magnetic field. Further signal processing is conducted by
subtracting the reference signal for the defect-free case from the defect signals for different
ILC scenarios, giving the so-called difference signals. The peak value (Pv) is subsequently
extracted from the difference signal. The correlations of Pv with the radius and depth of
ILC are presented in Figure 5.

Figure 5. Difference signal and correlations of Pv: (a) difference signals with various radii and depths
of ILC; (b) correlations of Pv with the radius and depth of ILC.

As can be observed from Figure 5b, amplitude of difference signals will rise with the
increase of radius and depth of ILC. In Figure 5b, Pv which is the extreme value extracted
from the PMEC difference signal is closely associated with the sizing parameters of the
ILC with a positive correlation. It is directly proportional to either radius or depth of the
ILC, indicating that more eddy currents are perturbed in the presence of the ILC with the
increasing size. Therefore, Pv is utilized as the signal feature for detection, imaging and
evaluation of ILC in layered conductors.

4. Experiments

In parallel to the theoretical investigation, a PMEC inspection system has been built
up for detection, imaging and assessment of ILC in stratified conductors. The schematic
illustration of the PMEC system along with the picture of the fabricated funnel-shaped
probe and testing specimen is portrayed in Figure 6.

Figure 6. Schematic illustration of the PMEC inspection system (inset: the funnel-shaped probe and
testing specimen).

The parameters of the probe and specimen are same as those tabulated in Tables 1 and 2.
The in-house PMEC probe generates the incident field with the funnel-shaped coil whilst a
Tunnel Magneto-Resistance (TMR) sensor (MultiDimension TMR 2505) deployed at the
bottom center of the coil is used to pick up the z-component of the net magnetic field. The
excitation signal driving the probe is in pulse-modulation waveform with the frequencies
of modulation wave and carrier wave set at 24 Hz and 204 Hz, respectively, whilst its
maximum amplitude is 0.3 A.

415



Sensors 2022, 22, 3458

The layered specimens adopted in experiments consist of two aluminum-alloy layers
whose conductivity and relative permeability are 34 MS/m and 1, respectively. Flat bottom
holes imitating ILCs with different radii (from 12.5 mm to 17.5 mm) and depths (from 1 mm
to 4 mm) are fabricated at the interface of the layers and reside at: (1) the back surface
of the upper layer for ILC Scenario #1; and (2) the surface of the bottom layer for ILC
Scenario #2. During experiments, the probe is scanned over the specimen by a scanning
table with the spatial resolution of 1 mm whilst the lift-off of the probe is fixed at 2 mm.
The reference signal is obtained when the probe is right over the defect-free area of the
specimen. Difference signals are acquired by subtracting the testing signal at each scanning
position from the reference signal. The experimental signals and derived difference signals
when the PMEC probe is placed right over the center of each ILC are portrayed in Figure 7.

Figure 7. Experimental signals for different ILC parameters: (a) testing signals; (b) difference signals.

It can be observed from Figure 7a that the amplitude of the testing signal increases as
the size of ILC is increased due to more perturbation of eddy currents by ILC whilst the
magnitude of the difference signal presented in Figure 7b rises when the radius and depth
of ILC are increased. This is consistent with findings from the theoretical investigation.
It is also noticeable that the amplitudes of the testing signals are lower than those for the
back-surface corrosion in a conductive plate (analogous to a single-layer conductor). This is
due to the fact that more eddy currents are induced within the multilayered conductor, and
thus the eddy-current-induced field opposing the incident field becomes stronger, resulting
in the decrease in strength of the net magnetic field.

It is also noticed from Figure 7b that Pv of the difference signal is directly proportional
to the ILC size. Therefore, Pv extracted from the difference signal is subsequently used for
ILC imaging. With all Pvs obtained at scanning positions, the Pv-based images of ILCs
with different radii and depths are produced. The imaging results for various ILC scenarios
are exhibited in Figures 8 and 9 against different sizes of ILCs in either circle or square
shape for ILC Scenarios #1 and ILC Scenarios #2. It is observed from Figures 8 and 9 that
the position of each ILC can be readily localized by using the imaging results along with
the indication regarding the ILC size.

Based on the acquired ILC images, further investigation is carried out to analyze the
feasibility of PMEC for evaluation of ILCs in terms of the ILC opening size and depth. A
Canny-algorithm-based edge recognition method [16] is applied for identification of the ILC
edge with Pv-based images. The processed image results are shown in Figures 10 and 11.
It can be seen from Figures 10 and 11 that the identified ILC edge agrees well with the
real ILC opening profile. Following this, the ILC opening size is estimated based on the
identification results. The estimation results of the ILC opening size for ILC Scenarios #1
and ILC Scenarios #2 are listed in Tables 3 and 4. It is noticeable from Tables 3 and 4 that the
approximated area of ILC opening has good agreement with the actual size. The maximum
of relative errors is less than 10%.
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Figure 8. Imaging results for ILC Scenario #1 (where l denotes the length of the square-shaped ILC).

Figure 9. Cont.
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Figure 9. Imaging results for ILC Scenario #2.

Figure 10. Edge-identification results for ILC Scenario #1.

Figure 11. Cont.
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Figure 11. Edge-identification results for ILC Scenario #2.

Table 3. Assessment results regarding ILC opening areas for ILC Scenario #1.

ILC Radius/Length ILC Depth Estimated Area Actual Area Relative Error

c = 12.5 mm
2 mm 471 mm2 490.87 mm2 4.05%
3 mm 449 mm2 490.87 mm2 8.53%
4 mm 456 mm2 490.87 mm2 7.10%

c = 17.5 mm
2 mm 957 mm2 962.11 mm2 0.53%
3 mm 910 mm2 962.11 mm2 5.42%
4 mm 903 mm2 962.11 mm2 6.14%

l = 35 mm
2 mm 1196 mm2 1225 mm2 2.37%
3 mm 1181 mm2 1225 mm2 3.59%
4 mm 1157 mm2 1225 mm2 5.55%

Table 4. Assessment results regarding ILC opening areas for ILC Scenario #2.

ILC Radius/Length ILC Depth Estimated Area Actual Area Relative Error

c = 12.5 mm
2 mm 526 mm2 490.87 mm2 7.16%
3 mm 519 mm2 490.87 mm2 5.73%
4 mm 539 mm2 490.87 mm2 9.81%

c = 17.5 mm
2 mm 964 mm2 962.11 mm2 0.20%
3 mm 954 mm2 962.11 mm2 0.84%
4 mm 950 mm2 962.11 mm2 1.26%

l = 35 mm
2 mm 1224 mm2 1225 mm2 0.08%
3 mm 1244 mm2 1225 mm2 1.55%
4 mm 1260 mm2 1225 mm2 2.86%

Based on the identification results regarding the opening of each ILC, the center of
every ILC is determined, and the Pv corresponding to the ILC center is extracted from the
Pv-based image in order to establish the correlation between the Pv and ILC depth. The
obtained correlation curves are shown in Figure 12. As can be observed from Figure 12 that
for every ILC scenario, the Pv has a monotonic correlation with the ILC depth whilst Pv
rises with the ILC depth increased. This agrees with the finding from the simulations. Both
theoretical simulation and experiment indicate that the ILC depth can readily be evaluated
by using the correlation curve. The ILC radius can be assessed by using the processed ILC
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image with the Canny-algorithm-based edge recognition method. The feasibility of PMEC
for the detection, imaging and evaluation of ILC in stratified conductors is confirmed.

Figure 12. Pv against the ILC depth for: (a) ILC Scenario #1; (b) ILC Scenario #2.

5. Conclusions

In an effort to intensively investigate the feasibility of PMEC for the detection, imaging
and evaluation of ILCs in layered conductors, in this paper a semi-analytical model for
the efficient prediction of PMEC responses to ILC has been established along with the
resulting formulation of the closed-form expression of the PMEC testing signal. More
efforts have been given to the reliable computation of eigenvalues for the ILC region. The
exponentially scaled form of the integrand in the loop integral is deduced in a bid to
mitigate the overflow and rounding errors in computation. An approach for discretizing
the complex plane for an efficient solution to eigenvalues has been proposed. Following
the establishment of the semi-analytical model, the characteristics of PMEC responses to
ILC and correlation of the PMEC signal feature with the sizing parameter are investigated
through theoretical simulations. It has been found that the Pv extracted from the difference
signal has a monotonic relation with the ILC size. Therefore, it is used for ILC imaging.

In conjunction with the finding from simulations, the feasibility and applicability of
PMEC for imaging and evaluation of ILC in a stratified conductor are further investigated
via experiments. It can be noticed that the Pv-based ILC image implies the position and
size of the ILC. The processed image with the Canny-algorithm-based edge recognition
method can be adopted for approximation regarding the opening area of the detected
ILC. Complying with the finding from simulations, the correlation of Pv with the ILC
depth is monotonic, and the resultant correlation curve is applicable for the estimation of
ILC depths.

Following the affirmation regarding the feasibility of PMEC for the imaging and
evaluation of ILCs, further work involves: (1) investigation regarding the advantages of
PMEC over other NDE methods such as PEC in particular; (2) imaging of ILCs in irregular
shapes/profiles; and (3) 3D reconstruction of ILCs in layered conductors.
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Abstract: One of the most significant benefits of Acoustic Emission (AE) testing over other Non-
Destructive Evaluation (NDE) techniques lies in its damage location capability over a wide area. The
delta-T mapping technique developed by researchers has been shown to enable AE source location to
a high level of accuracy in complex structures. However, the time-consuming and laborious data
training process of the delta-T mapping technique has prevented this technique from large-scale
application on large complex structures. In order to solve this problem, a Finite Element (FE) method
was applied to model training data for localization of experimental AE events on a complex plate.
Firstly, the FE model was validated through demonstrating consistency between simulated data and
the experimental data in the study of Hsu-Nielsen (H-N) sources on a simple plate. Then, the FE
model with the same parameters was applied to a planar location problem on a complex plate. It
has been demonstrated that FE generated delta-T mapping data can achieve a reasonable degree
of source location accuracy with an average error of 3.88 mm whilst decreasing the time and effort
required for manually collecting and processing the training data.

Keywords: Acoustic Emission; Non-Destructive Evaluation; Structural Health Monitoring; delta-T
mapping; finite element; Hsu-Nielsen sources; source location; complex plate

1. Introduction

Ageing-induced cracks, human-caused hazards and natural disasters such as earth-
quakes or hurricanes can result in the deterioration of in-service metallic structures and
loss of structural integrity in the oil and gas industry [1]. Without appropriate remedial
measures, structural integrity is likely to reduce further with potential to lead to catas-
trophic damage with risks of loss of lives and capital. In order to eliminate unplanned
shutdowns and reduce inspection and maintenance costs, there is a need for a proactive
monitoring approach to assess the existing structural condition and facilitate safe operation.
As a method of monitoring the structural behaviour, evaluating structural performance and
identifying damage at an early stage, Structural Health Monitoring (SHM) systems such
as systems which include strain and vibration monitoring are gaining significant interest
and increased application. Recent industrial studies suggest that detecting damage at an
early stage can reduce costs and increase the life expectancy of a structure [2]. Therefore,
a practical and cost-efficient SHM method that can identify micro and nano defects at an
early stage and continually assess the structural health is desirable to ensure structures
operate safely and efficiently throughout the service life. Adaptation of Non-Destructive
Evaluation (NDE) techniques for SHM is gathering significant interest because of the ability
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to provide quantitative information on defects based on measured physical parameters [3].
Inspection of large-scale complex structures using NDE techniques such as X-ray and
ultrasonic techniques can be laborious and expensive. However, if the damage location
can be identified accurately in advance by one of the NDE techniques, i.e. the Acoustic
Emission (AE) measurement technique, only the area of concern needs to be inspected.
AE is defined as the transient elastic energy released by a material when it experiences a
change of deformation in its structure [4]. As a passive technique, only active defects can
be detected by AE testing.

Difficulties in applying the most commonly used source location method within
the field of AE, Time of Arrival (TOA) technique, for locating active defects in complex
structures were reported by Baxter et al. [5] and Pearson et al. [6]. The main assumptions
of constant wave speed and unobstructed wave path between the AE source and sensor
in TOA technique were not met due to the inhomogeneity of certain materials such as
composites and the complexity of the real structures that contain features such as welds,
holes and thickness. In order to overcome these difficulties, the delta-T mapping technique
was developed by Baxter et al. [5]. This has been shown to improve AE source location
accuracy in complex structures. In this technique, a training grid is placed on an area of
special interest. The generation of a well-established and widely used artificial source of
AE, Hsu-Nielsen (H-N) source [7], at each node of the grid can provide arrival time data of
waves for each sensor. The difference in arrival time of waves (or delta-T) for each sensor
pair can be found at each point; these data can be employed to generate maps. Once real
test data has been collected, the actual delta-Ts can be used to identity a line with same and
equal delta-T in corresponding map. By overlaying all the resulting maps, the intersections
of all lines should converge into one point, which is the most likely location of a real AE
event. Due to the good performance of this technique, it was adopted in further lab-based
studies by Eaton et al. [8], Pearson et al. [6] and Grigg et al. [9]. Researchers have also
improved localisation by utilising the minimum difference method [10] and generalized
regression neural network [11] for identifying the source location from the delta-T map.
The details of delta-T mapping technique can be found in Baxter et al. [5]. However, there
is a disadvantage to this technique in that the manual collection and processing of training
data requires significant time and human input. This lengthy and time-consuming process
has prevented this technique from broad applications on large complex structures.

To overcome these problems, Marks [12] used Local Interaction Simulation Approach
(LISA) to train the delta-T maps and locate real damage events on a plane of a complex
structure. Results of fatigue crack event locations using simulated training data were
compared to those from experimentally acquired training data. Similarity in the accuracy of
the results of the two approaches demonstrated great potential for the use of modelling data
to locate real AE events. The commercially available package based on LISA, cuLISA3D,
bears high computational efficiency and thus has a short runtime (for example, running
a 370 mm × 200 mm × 3 mm model takes approximately 3 min [12]). However, the
application of cuLISA3D was very limited. The reported disadvantages of cuLISA3D
include lacking the ability to define irregular mesh sizes and to model anisotropic materials
such as composites [12]. As the Finite Element (FE) method allows for easier modelling of
complex geometrical structures with anisotropic materials properties, it was employed in
this study to produce simulated data required for delta-T mapping. Some studies [13–18]
for simulation of AE signals from H-N sources using FE method can be found. A 2-D
(two-dimensional) Dynamic Finite Element Method (DFEM) was firstly proposed by Gary
and Hamstad [13] and extended to a 3-D (three-dimensional) DFEM [14] to simulate AE
waveforms generated by an H-N source in thin plates. A step force was used in 2-D
and 3-D models to excite the AE waves. Later, the lead break in an H-N source was also
simulated using an abrupt change of boundary conditions by Sause [15]. The simulated
AE waveforms were compared with those obtained by analytical source functions and
the best agreement was found for the ‘cosine bell’ function [16]. Le Gall et al. [17] also
proposed a monopole point source in FE model to simulate AE signals from H-N sources.
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The FE model was validated and the influence of different AE sources, specimen geometry
and piezoelectric sensor on the AE wave were investigated. Recently, AE waves induced
from H-N sources were simulated by Cheng et al. [18] using excitation signals modulated
as tone burst with a central frequency of 150 kHz at the FE model. The artificial neural
network models were trained using the data collected in FE modelling and shown to
predict AE source locations with satisfactory accuracy on a steel–concrete composite girder.
Although FE modelling of AE signals from H-N sources has been widely studied over the
past 20 years, the authors were unable to source any studies where FE modelled training
data were used for delta-T mapping in the literature.

In this study, a numerical method for simulation of an H-N source was validated and
applied on a complex plate to train a delta-T map for localization of experimental H-N
sources. Results of the present investigation indicated that the FE generated delta-T map
decreases the time and effort required for manually collecting and processing the training
data, whilst maintaining a reasonable degree of source location accuracy. To the best of
our knowledge, this is the first paper in which FE method was used to collect data to train
delta-T maps. The FE generated delta-T mapping technique can be applied on monitoring
active defects in complex structures as an accurate, low-cost and time-efficient method. The
paper is arranged as follows: The numerical method for simulation of an H-N source is
described and validated on a simple structure. Then, the delta-t map generated by the FE
method is compared with the map from the experiment and traditional TOA techniques in
a complex plate. Finally, findings are discussed and concluded in the last section.

2. Numerical Method for Simulating H-N Sources and Its Validation

A numerical method in which a monopole point force pulse acts in the out-of-plane
direction was used to model an H-N source. Before applying this approach on a complex
plate model, it was used to simulate an H-N source on a simple plate and numerical results
were compared with the experimental results to validate the FE model.

2.1. Numerical Method for Simulating H-N Sources

Using the break of a pencil lead to generate acoustic waves, the H-N source [19–21]
creates a step-function from a maximum compressive contact force and to 0 value in a very
short time period [22]. A broadband range of frequencies is excited by the step-function
force, which has been used for the primary sensor calibration in codes and standards [23].
Therefore, a commonly used step-function, ‘cosine bell’ function, which was proposed
by Hamstad [16], was selected to simulate the time-dependent surface deflection on the
plate caused by H-N source. The ‘cosine bell’ force pulse is described in Equation (1). The
characteristics of ’cosine bell’ function sources are plotted and shown in Figure 1.

F(t) =

⎧⎪⎨⎪⎩
0 N , t ≤ 0

0.5− 0.5× cos
(

π×t
T
)

N , 0 < t < T
1 N , t > T (T = 1.5 μs)

(1)

Figure 1. ‘Cosine bell’ source characteristic.

The pulse was applied to a point on the top surface of the FE model in the out-of-plane
direction. As the actual load during a H-N source is unknown, the magnitude of the force
was assumed to be 1 N [24]. As shown in Figure 1, the force pulse ramps up from 0 N to
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1 N over a time duration of 1.5 μs, with a temporal resolution of 0.1 μs and then remains
constant.

2.2. FE Model for Simulating an H-N Source on a Simple Plate

To test the effectiveness of the numerical method described in Section 2.1, a simple
plate model was created using a commercial code ABAQUS (Dassault Systèmes Simulia
Corp., Providence, RI, USA). This model has a width of 300 mm in the X direction, length
625 mm in the Y direction and thickness 3 mm in the Z direction. Material properties of the
steel plate are a density value of 7850 kg/m3, Young’s modulus of 210 GPa, and Poisson’s
ratio of 0.3. A schematic layout of the sensors and the simulated H-N source is shown in
Figure 2. The point force pulse described in Section 2.1 was excited at the location of the
simulated H-N source. For the sake of simplicity and saving computing time [18], it was
decided not to model an actual sensor and to only consider the out-of-plane displacement
since the focus of the work was to model the delta-T mapping process rather than to model
a sensor. A single node acted as the basis of the output signal; displacements in Z direction
(out-of-plane) over time of all nodes at locations of sensors were used for the analysis. The
central 500 mm section of the specimen was considered as test area in the investigation for
the purpose of minimizing the influence of the edge reflections on the recorded waves. A
coordinate system was introduced, and the origin was placed on the bottom left corner
of the test area. The coordinates relative to the origin of four sensors and the H-N source
are summarized in Table 1. The four outermost nodes at the bottom surface of the plate
(Z = 0 mm) were fixed in X, Y, Z direction (Ux = Uy = Uz = 0) to prevent rigid body motion.

 
Figure 2. Schematic layout of the sensors and H-N source (units: mm).

Table 1. Coordinates of sensors and H-N source (units: mm).

X Coordinate Y Coordinate

Sensor 1 35 465
Sensor 2 265 465
Sensor 3 35 35
Sensor 4 265 35

H-N source 150 400

The convergence of numerical results is strictly dependent upon the temporal and the
spatial resolution used in the FE model. To avoid numerical instability and enhance wave
propagation accuracy, the shortest wavelength of the simulated elastic waves needs to be
resolved by the mesh resolution [25–27].
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According to the wavelength formula, the relationship between wavelength λ and
frequency f is described by the following simple equation:

λ = υ/ f (2)

where υ is the wave velocity.
The maximum frequency of the wave was set as 500 kHz to align with the frequency

range (100–450 kHz) of VS150-RIC (Vallen Systeme GmbH, Wolfratshausen, Germany)
sensors used in the following experiments. Assuming the longitudinal and shear wave
velocities in steel are 5940 m/s and 3220 m/s, respectively [28], the smallest wavelength,
thereby the maximum mesh size for 500 kHz frequency was calculated to be 6.44 mm. As
reported by Le Gall et al. [17], at least 5 nodes per wavelength are sufficient to simulate AE
waves accurately with frequencies in the range of 500 kHz. Therefore, the mesh resolution
of 1 mm, which gives 6 nodes per wavelength, was used for the simulations for both the
accuracy and computational efficiency. The mesh convergence test also showed that 1 mm
was sufficient mesh resolution for accurate simulation of elastic wave propagation. The
general purpose 8-node linear brick element, C3D8R, provided by ABAQUS was used for
the FE model. The FE model and mesh are shown in Figure 3.

Figure 3. FE model and mesh in ABAQUS.

Choosing an appropriate time integration step is also critical to achieve numerical
stability and resolve the high frequency components accurately. An equation shows the re-
lationship between time increment Δt and maximum of frequency fmax was recommended
by Moser et al. [29] and expressed as:

Δt < 1/(20 fmax) (3)

Given that the highest frequency of interest is 500 kHz, a maximum time integration
step of 0.1 μs was calculated. In order to save computational time while maintain a
sufficient a temporal resolution, a time integration step was set as 0.01 μs in accordance to
the reference [15]. The time increment equalled to a sampling rate of 100 MHz, which did
not correspond to the sample rate of the experimental tests (5 MHz). However, it should be
noted that both the sampling rates used in the modelling and experiments are sufficient to

427



Sensors 2022, 22, 2493

resolve the signals’ highest frequency content of interest (500 kHz). Therefore, the error on
time estimation between experiments and modelling caused by different sampling rates
was marginal.

2.3. Experimental Verification of FE Model for Simulating an H-N Source on a Simple Plate

In parallel, experimental testing of H-N sources on a simple mild steel plate was
performed to validate the FE model. The dimensions of this plate were the same as those of
the FE model in Section 2.2, 625 mm × 300 mm × 3 mm. The setup of the experiment is
shown in Figure 4. In order to easily specify the locations of AE sensors and H-N sources
on the plate, a grid with 10 mm spacing was drawn on the central 500 mm section of
the specimen. A coordinate system identical to that of FE model was introduced. The
coordinates relative to the origin of four sensors and the H-N source are the same as those
presented in Table 1.

 

Figure 4. AE sensors mounted on 10 × 10 mm spaced grid specimen and connected to the AE
systems.

The AE waveforms were measured by four VS150-RIC sensors, which were acous-
tically coupled using ultrasound gel and pressure was applied using magnetic clamps.
The integral pre-amplifiers with 34 dB gain amplified the signals recorded by sensors and
outputs of the transducers were linked to a Vallen 4-channel AMSY-6 System. The signals
were acquired using the AE system with the acquisition settings shown in Table 2.

Table 2. AE acquisition settings.

Threshold
(dB)

Sample Length
(ms)

Sample Rate
(MHz)

Pre-Trigger
(ms)

Rearm Time
(ms)

Duration Discrimination Time
(ms)

45 1.6 5 0.1 0.8 0.8

The experiment was conducted in the lab at TWI Ltd., Cambridge, UK. Bubble wrap
was used to acoustically de-couple the sample from the workbench surface. Before starting
the experiment, an H-N source was generated close to each AE sensor to assess the sensor
sensitivity and the coupling between the sensors and testing plate. Hits with amplitude
above 98 dB at each sensor were recorded, which verified the coupling. A total of three H-N
sources with 0.5 mm 2H type pencils were performed on the location of H-N source given
in Table 1 to reduce erroneous data and provide a reliable average result. The amplitude
remained constant with discrepancies within a couple of dBs for each sensor.
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2.3.1. Modal Analysis

When two surfaces are introduced in a medium (i.e., a plate-like structure), the longi-
tudinal and transverse waves couple at the surfaces and form new surface waves known as
Lamb waves. Lamb wave propagation is very complex. Velocities of Lamb wave modes
have a strong dependency on frequency content and plate thickness. For a specific geome-
try, the relationship between wave velocity and frequency of each mode can be described
by a set of curves known as dispersion curves. Two major Lamb waves are symmetric
zero-order (S0) and antisymmetric zero-order (A0) modes.

Given the dispersive properties of elastic waves in flat plates, each wave mode with
different frequencies has varied phase and group velocities, which results in the overlapping
of some modes. Wavelet Transform (WT) is one of the most useful analysis tools for
transient signals. It can be used to plot a time-domain graph showing the magnitude of
the frequency spectrum of the signal. Hence, the amplitude of the AE waveform in both
time and frequency domains can be viewed simultaneously. By overlapping the calculated
dispersion curves with WT, the oncoming wave modes can be clearly distinguished.

Numerical and experimental signals at sensor 1, which were induced by an H-N
source whose location was given in Table 1, are presented with WT diagrams processed
using a Gabor wavelet in Figures 5 and 6 respectively. Dispersion curves for Lamb wave
propagation in a 3 mm steel plate were superimposed onto the WT diagrams. These have
been shifted manually to achieve a best fit between the arrival of the fastest S0 mode in
dispersion curve with the arrival of S0 mode on the WT colour plot.

The movements of particles are mainly parallel to the plate for S0 mode and perpen-
dicular to the plate for the A0 mode [30]. When the H-N source is conducted in plane to the
sensor face, a large portion of the resulting displacement is normal to the plane of the plate
giving rise to A0 mode, while there is still a small portion of displacement tangential to the
plate due to the Poisson effect, giving rise to the S0 mode. Consequently, A0 modes have a
substantially larger out-of-plane amplitude than S0 modes [31]. WT for each signal were
analysed under two time periods (i.e., before A0 arrival and after A0 arrival).

 
(a) (b) 

Figure 5. Experimental signal at sensor 1 and corresponding WT diagram with superimposed
dispersion curves from: (a) −30 to 10 μs (scale was altered to make the S0 visible); (b) −30 to 40 μs.

As can be seen in Figures 5 and 6, S0 and A0 are discernible within both experimental
and numerical signals even though S0 and A0 components were not well separated in the
responses of the sensor 1. The S0 components have a faster velocity than the A0 compo-
nents [32]. It is shown that the arrival of low amplitude S0 components are followed by

429



Sensors 2022, 22, 2493

high amplitude A0 component. The first-arrival waves were S0 modes with low amplitude,
which were followed by the A0 modes with very high amplitude as expected.

 
(a) (b) 

Figure 6. Numerical signal at sensor 1 and corresponding WT diagram with superimposed dispersion
curves from: (a) −30 to 10 μs (scale was altered to make the S0 visible); (b) −30 to 40 μs.

It can be observed that the experimental and numerical WT diagrams show a rea-
sonably good agreement. The discrepancy between the experimental and numerical WT
magnitude at sensor 1 can be explained by the frequency response of the actual sensors not
being simulated in the FE modelling.

2.3.2. Arrival Time Estimation

Determination of arrival time of signals is crucial for localization of the AE source.
Three arrival time estimation methods, which are threshold crossing, the Akaike Informa-
tion Criterion (AIC) and WT analysis are discussed in the following.

The default time arrival estimation method in commercially available AE systems
is threshold crossing. In this method, the arrival timing will be triggered, and an AE hit
will be recorded only when a signal crosses a pre-set threshold level. Because of factors
including the assumptions on the magnitude of the force, the time duration during an
H-N source and a simplified sensor model, accurate prediction of AE signals’ amplitudes
using the FE model were not achieved and not within the scope of this work. Moreover,
displacement was measured in FE model while voltage was measured in the experiment.
Consequently, a same threshold level cannot be found for both experimental and numerical
signals in the threshold-crossing method. Therefore, this method was only used to estimate
arrival times of experimental signals.

For the threshold-crossing method, it is difficult to choose the appropriate threshold
level. Triggering errors might come from missing the start of the wave as shown in Figure 7b.
A reduced threshold can improve the arrival time measurement accuracy [6]. However,
background noise bearing a lower amplitude than the pre-set threshold can falsely trigger
AE acquisition, resulting in erroneous arrival time. Therefore, in addition to threshold-
crossing method, AIC was also used in this study to estimate the arrival times of AE signals.
The AIC function [33] compares the difference in classic variance before and after each point
in the wave, typically when it is at its minimum represents the point where the transition
from noise to waveform is occurring, and therefore the arrival time of the wave. It can be
observed that the threshold-crossing error was around 2 μs on a high-amplitude signal
from an H-N source in Figure 7a, while it was around 65 μs on a low-amplitude signal
from a corrosion test in Figure 7b which is presented for demonstration. However, the AIC
method detected the accurate onset time of signal regardless of changes to the amplitude.
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Moreover, the robust performance of AIC function to pick the arrival times of signals with
varied signal-to-noise ratios was demonstrated by Kurz et al. [33] and Pearson et al. [6].
Therefore, the AIC method has been demonstrated to be a reliable onset time determination
tool.

 
(a) (b) 

Figure 7. An example of arrival time estimation using AIC and threshold crossing on (a) high
amplitude and (b) low amplitude AE signals.

The arrival times can also be predicted by considering the peak WT magnitudes at
a mode known frequency, as shown by Yamada et al. [34], Hamstad et al. [35] and Jeong
and Jang [36]. It was demonstrated that the maximum magnitude of WT in the time-
frequency domain corresponds to the arrival time of mode wave traveling with group
velocity. Hence, the arrival times of specific frequency component can be determined.
In this study, different dominant Lamb wave modes over time were shown using WT
in Section 2.3.1. The frequency component of 200 kHz was used in the WT analysis to
determine the arrival time of mode waves. This frequency was chosen because S0 modes
can be observed at this frequency according to the spectral analysis of captured signals and
the peak wavelet coefficients of S0 modes are conspicuous at this frequency. The arrival
time of S0 modes at 200 kHz was determined based on the peaks of the WT coefficients at
200 kHz.

In general, threshold crossing was only used to estimate the arrival time of experimen-
tal signals induced by an H-N source on a simple plate and AIC and WT analysis were
used on both experimental and numerical signals. For simplicity, delta-T for sensor 1 and
sensor 3 was calculated. Results are summarized in Table 3.

Table 3. Delta-T for sensor 1 and sensor 3 in the experiment and FE modelling (units: μs).

Threshold Crossing AIC WT Analysis

Experiment 48.4 46.8 47.2
FE modelling - 46.74 46.57

Difference - 0.06 0.63

The estimated delta-T produced by threshold crossing, AIC and WT analysis in the
experiment showed very little difference. Compared with delta-T determined by AIC,
threshold crossing and WT analysis showed a discrepancy of 1.6 μs and 0.4 μs, respectively.
The simulation predictions appeared to be well in agreement with experimental obser-
vations. For the delta-T estimated by AIC, a 0.06 μs discrepancy was given between the
experiment and FE modelling. Good agreement was also demonstrated between delta-T
in the experiment predicted by WT analysis and that of modelling, with a discrepancy of
0.63 μs. Moreover, for the simulation results, delta-T given by WT analysis was very close
to that given by AIC.

Overall, experimental and numerical WT diagrams show a reasonably good agreement.
A high level of accuracy of the delta-T from FE modelling can be observed. It can thus
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be concluded that a numerical method for simulation of an H-N source on a simple plate
was validated. The validation of this numerical method demonstrated great potential on
making it a useful tool for predicting arrival times of AE waveforms induced by H-N
sources on a complex FE plate model. For arrival time estimation, results show that AIC
represents a viable option for estimating the onset of signals. As the accuracy of threshold
crossing depends on the pre-set threshold level, and the arrival time determined by WT
analysis is the time at a single frequency, AIC was used to estimate arrival time of signals
in numerical and experimental delta-T techniques.

3. Experimental and Numerical Delta-T Mapping Training on Complex Plate

Using the validated numerical method described in Section 2.1, H-N sources were
simulated on a complex plate model. Information including arrival times of signals at each
sensor was collected to build the numerical delta-T map. In parallel, experimental delta-T
mapping was also calculated on a complex plate for the localization of experimental AE
events. Localization results produced by numerical and experimental delta-T mapping
were compared.

3.1. Experimental Delta-T Mapping Training on Complex Plate

The delta-T mapping technique requires the structure to be mapped whereby test
data are compared to the training maps which are created by performing H-N sources and
evaluating the difference of arrival times for each sensor pair to estimate the source location.
The procedural steps of implementing the delta-t mapping technique [5] are presented in
Figure 8. By performing H-N sources on each node of the grid, factors including complex
geometric features can be considered within mapping area and detailed accurate wave
speed data are not required. Therefore, this technique shows its advantage on source
location in complex structures.

 
Figure 8. Procedural steps of implementing delta-T mapping technique [5].

A complex geometry mild steel plate with four holes was used for experimental delta-
T mapping training. The dimensions of the specimen with coordinates of the centres of four
holes and radiuses are shown in Figure 9. The locations of all the sensors were the same
as those in the experiment on simple plate described in Section 2.3. Following procedural
steps shown in Figure 8, the central 500 mm section was determined as the area of interest
and a coordinate system was introduced. After that, a training grid was placed on this area.
The spacing of the grid was determined to be 20 mm as prior research [6] has shown that
this is the point at which further reduction in size has minimal influence on accuracy. The
arrival time data, which were determined by AIC, were collected after the generation of an
H-N source at each node of the grids. For each sensor pair, a delta-T map was produced.
The number of maps produced will depend on the number of sensors given by the equation
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N ∗ (N − 1)/2, where N is the number of sensors in the network. By comparing the delta-T
for an unknown source with those of the maps, the location can be determined. It should be
noted that there is a significant interaction of waves with holes and plate edges. However,
the basis of the delta-T mapping is the first arrival time of signals, and this interaction is
beyond the scope of this study.

Figure 9. Schematic layout of the sensors on a complex plate model with 20 mm spacing grid
(unit: mm).

3.2. FE Generated Delta-T Mapping Training on Complex Plate

In parallel, FE modelling was performed to produce a FE generated delta-T map or
numerical delta-T map. As shown in Figure 10, a complex plate model same as the plate in
Section 3.1 was created in ABAQUS. As with the FE modelling of H-N sources on simple
plate in Section 2.2, steel material properties, mesh resolution of 1 mm, time integration
step of 0.01 μs, C3D8R element and same boundary conditions were used for simulation.
The locations of sensors and the grid were chosen to be the same as those of the experiment
on complex plate in Section 3.1. The validated numerical method described in Section 2.1
was used to simulate an H-N source on each node of the grid. Displacements in Z direction
(out-of-plane) over time of all nodes at locations of sensors were recorded in FE modelling
to estimate the arrival time. AIC was used to determine the arrival times of simulated
signals. The FE generated delta-T map was built in the same way as experimental delta-T
map in Section 3.1.

 

Figure 10. Complex geometry plate modelled in ABAQUS.
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3.3. Experimental Test Data on Complex Plate

In order to test the performance of experimental and numerical delta-T maps, six extra
H-N sources (H-N source 1, 2, 3, 4, 5 and 6) were conducted at six off grid locations on
complex plate in the experiment. The coordinates of the locations of six extra H-N sources
relative to the origin are given in Table 4.

Table 4. Actual locations of H-N sources and results calculated by TOA-TC, TOA-AIC, numerical
delta-T and experimental delta-T (units: mm).

H-N Source 1 H-N Source 2 H-N Source 3 H-N Source 4 H-N Source 5 H-N Source 6

X Y Error X Y Error X Y Error X Y Error X Y Error X Y Error

Actual 70 70 - 70 210 - 130 90 - 170 390 - 230 230 - 250 430 -

TOA-TC 74.42 59.19 11.68 83.04 207.21 13.34 134.54 79.42 11.51 168.99 397.51 7.58 213.60 223.92 17.49 244.54 438.59 10.18

TOA-AIC 77.13 61.63 11.00 81.29 210.88 11.32 133.89 83.19 7.84 167.79 393.18 3.87 222.44 224.29 9.47 246.58 434.70 5.81

Numerical
delta-T 74.82 67.80 5.30 73.99 211.46 4.25 132.26 91.41 2.66 169.33 386.67 3.40 225.27 229.86 4.73 251.17 432.7 2.94

Experimental
delta-T 71.54 66.80 3.55 67.39 210.13 2.61 132.89 90.03 2.89 169.93 390.35 0.36 231.13 230.45 1.22 248.96 433.33 3.49

3.4. Results

The AE test data collected from H-N source 1, 2, 3, 4, 5 and 6 were assessed with the
traditional TOA location approach based on threshold crossing (or TOA-TC for short), TOA
location approach based on AIC method (or TOA-AIC), experimental delta-T mapping (or
experimental delta-T) and numerical delta-T mapping (or numerical delta-T) techniques.
Table 4, Figures 11 and 12 documented source location results and the associated Euclidian
distance errors.

For H-N source 1 and 2, it can be observed that a small improvement in accuracy was
observed after the AIC method was used in the TOA localization technique. The errors were
reduced significantly using the numerical delta-T and experimental delta-T respectively
compared with that of the TOA-TC. For H-N source 3 and 6, the TOA-AIC produced
location errors of 7.84 mm and 5.81 mm compared with 11.51 mm and 10.18 mm calculated
by TOA-TC, respectively. Results at H-N source 3 and 6 showed that the experimental
and numerical training approaches produced similar levels of error, with a slightly higher
accuracy given by numerical training approach. For H-N source 4, TOA-TC had a location
error of 7.58 mm compared with 3.87 mm using TOA-AIC, a 49% reduction using TOA-
AIC. The results showed little difference on location error when TOA-AIC and numerical
delta-T were used, with numerical delta-T having slightly increased accuracy. However,
the accuracy of source location was significantly better using experimental delta-T with
a Euclidean distance error of 0.36 mm. For H-N source 5, the TOA-TC, TOA-AIC and
numerical delta-T located the H-N source slightly to the left of the actual position with a
Euclidean error distance of around 17.49 mm, 9.47 mm and 4.73 mm, respectively, while
experimental delta-T located the source to the right of the actual location with an error of
1.22 mm. Experimental delta-T and numerical delta-T showed an obvious improvement
over the TOA-TC and TOA-AIC. The average errors of H-N source locations calculated by
experimental and numerical delta-T are 2.35 mm and 3.88 mm, respectively.

In general, the TOA-TC technique produced highest location errors because of indi-
rect wave path and unreliable arrival time estimation method. Since the AIC method is
considered to be more accurate in arrival time determination than threshold crossing [6],
TOA-AIC led to a marked improvement in accuracy. As had been discovered in previous
works [1,6,8,9,37,38], the delta-T mapping technique improved the source location accuracy
on the complex plate. The presented results show the noticeable improvement in source
location accuracy using experimental delta-T and numerical delta-T methods over TOA-
TC and TOA-AIC. Because a coarse training grid was used in experimental delta-T and
numerical delta-T, the accuracy of the location results may be further improved with a
higher spatial resolution of the training grid. Other than H-N source 3 and 6, experimental
delta-T shows a higher degree of accuracy over numerical delta-T, which can be explained
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by errors of FE analysis in numerical delta-T including the modelling errors associated with
the simplification and mesh discretization error. It is also worth noting that the locations of
the artificial damage were calculated with sufficient accuracy by both experimental delta-T
and numerical delta-T.

 

Figure 11. Euclidian distance errors of source location results.

 
Figure 12. Actual locations of H-N sources and results calculated by TOA-TC, TOA-AIC, numerical
delta-T and experimental delta-T (units: mm).

4. Discussions

The FE generated or numerical delta-T mapping techniques offer certain advantages
over experimental delta-T. Firstly, for experimental delta-T, it requires several days to set
up the experiment, perform H-N sources on all the grid points, select and prepare the AE
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data to build the delta-T maps. For the numerical delta-T, it takes 0.5 days to build an FE
model. The computation time for simulation of an H-N source on each node of the grid
is 5 min on a personal laptop. There is a total of 285 nodes in the present model, which
results in a computation time of 1 day. The total time required for the whole process is
1.5 days. This reveals that the numerical delta-T decreases the time required for constructing
a delta-T map. It is worth noting that processes of experimental and numerical delta-T
mapping could be optimised to reduce these times. To ensure maximum accuracy, an
operator with an AE background is required to manually sort and discard useless arrival
time data being captured experimentally [38]. With numerical delta-T, data are captured
autonomously, which means that collection and processing of training data do not rely
on experience and human errors are removed. Moreover, the expenses associated with
the equipment and labour required for experiments can be eliminated. Furthermore, the
numerical delta-T mapping method scales better compared with experimental delta-T.
With the FE method, large-scale models with numerical sensors can be easily created for
collection of training data, whilst experimental collection of delta-T data may be limited by
several factors including large size or complex structures. Moreover, instead of artificial AE
sources which can only be performed on the surface in experiments, the FE method allows
multiple training sources such as fatigue [39] and fibre breaks [40] and internal damage
to be modelled. This might provide a solution to a 3-D delta-T location problem. A final
benefit of numerical delta-T is that the risk of foreign object debris from broken pencil leads
is eliminated, which in some sectors is a major consideration.

However, numerical delta-T also bears some disadvantages. One of the main diffi-
culties lies in the modelling of wave propagation in highly complex structures, such as
composites which are being used abundantly in safety critical structures in recent years.
Furthermore, fine mesh is required to model AE waves with high accuracy. The number
of degrees of freedom in a large complex FE model will be huge, leading to a significant
demand for computational resources such as memory space and processor time. The
solution for this could be the use of fine meshes over the area of interest and coarse meshes
over other areas.

Although the FE generated delta-T was carried out successfully, there are some limita-
tions to this study. Firstly, one such limitation is that TOA-TC, TOA-AIC, numerical delta-T
and experimental delta-T have not been trialled to locate real AE data. As real damage
sources [12] usually exhibit a smaller amplitude and different frequency content compared
with H-N sources, it will be of interest to examine the performance of four methods with
AE signals generated from real damage mechanisms. Secondly, only holes were considered
in the complex plate in the present study; however, other complexities of real structures
including multiple thickness changes, stiffeners, holes, nozzles, welds, etc., need to be
considered in future study. Thirdly, the defined boundary conditions in the model were not
the same as real boundary conditions of the plate. The wave propagation will be slightly
influenced by the edge of the hole on the complex plate and thus might result in errors in
arrival time. By applying realistic boundary conditions in the FE model, the influence of the
edges of holes on the first arrival of AE waves can be eliminated. The accuracy of arrival
time of signals recorded in complex FE model can be improved. Moreover, another source
of error is that the AE sensor face is not considered, as the sensor is simplified as a point
in the modelling. It could be stated that the signal in experimental training is captured
at the sensors’ circumference rather than sensors’ centre point where simulated sensors
are located, thereby resulting in different arrival times. A numerical study conducted by
Tsangouri and Aggelis [41] showed that the size of the simulated AE sensor bears a direct
effect on wave content in time domains. The source location accuracy produced by finite
element generated delta-T maps may be improved if the AE sensor with the sensor face
can be modelled. Furthermore, the material defined in the FE model was an isotropic
homogenous metallic material which was considered in this investigation. As composites
are being increasingly used in the oil and gas industry, it would be beneficial to examine
the performance of a modelled delta-T training dataset on composite materials. Moreover,
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it should be noted that the delta-T mapping technique and other localization techniques do
not account for factors such as temperature, loading and sensor coupling changes. It will be
of interest to investigate how these factors will influence the delta-T maps and identifying
the methods to update delta-T maps accordingly. Finally, current commercial AE systems
remain incapable of the live application of experimental and numerical delta-T mapping
techniques. However, it will be beneficial to integrate these methods with commercial AE
systems to observe online AE events.

5. Conclusions

In this investigation, a numerical method from the literature was used to simulate an
H-N source on a simple plate and was validated by the experiment results. The validation
of the FE model exhibited great promise for application of the FE method to a planar
location problem on a complex plate. Using the same numerical method, H-N sources were
simulated on a complex plate and a numerical delta-T map was generated. The location
results of the numerical delta-t map technique were compared with those of traditional
TOA techniques and an experimental delta-t map technique. The viability of using the FE
method was demonstrated to decrease the time and labour required for manually collecting
and processing training data whilst maintaining a reasonable degree of source location
accuracy with an average error of 3.88 mm. With such a high source location accuracy, the
specific area of concern requiring inspection using other NDE techniques can be greatly
reduced. Moreover, if the specific location of an AE event is identified on an area with
certain geometric features or loading conditions, the number of potential damage source
mechanisms can be decreased.

Although the FE generated delta-T mapping was conducted successfully, it would
be preferable to examine the performance of present FE generated delta-T maps with AE
signals from real damage mechanisms. Development of the FE model such as improved
boundary conditions, realistic AE sensors, additional complexity and anisotropic materials
requires further investigation.
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Abstract: Pressure vessels are prone to defects due to environmental conditions, which may cause
serious safety hazards to industrial production. The probabilistic ellipse imaging method, based on
ultrasonic guided wave, is a common method for locating defects on plate-like structures. In this
paper, the research showed that the accuracy of the traditional probabilistic ellipse imaging method
was severely affected by the truncation length of the signal. In order to improve the defect location
accuracy of the probabilistic elliptic imaging algorithm, an adaptive signal truncation method based
on signal difference analysis was proposed, and a novel probabilistic elliptic imaging method was
developed. Firstly, the relationship model between the signal difference coefficient (SDC) and the
distance coefficient was constructed. Through this model, the distance coefficient of each group signal
can be calculated, so that the adaptive truncation length for each group of signals can be determined
and the truncated signals used for defect imaging. Secondly, in order to improve the robustness of
the new imaging method, the relationship between the defect location accuracy and SDC thresholds
were investigated and the optimal threshold was determined. The experimental results showed that
the probabilistic ellipse imaging algorithm, based on the new adaptive signal truncation method, can
effectively locate a single defect on a pressure vessel.

Keywords: pressure vessel; ultrasonic guided wave; defect location; signal analysis; probabilistic
elliptic algorithm; adaptive signal truncation

1. Introduction

Pressure vessels are devices that can hold gas or liquid under a certain pressure,
which are widely used in industry production, civil industries, etc. Under the influence of
actual working conditions and environment, pressure vessels are prone to cracks, corrosion,
holes, and other defects, which may cause safety hazards to industrial production [1].
Therefore, in order to improve the working safety of pressure vessels, it is necessary
to detect and locate the defects on pressure vessels. Ultrasonic guided wave testing
technology is one of the more popular non-destructive testing technologies used in recent
years. Compared with traditional non-destructive testing technologies, ultrasonic guided
wave testing is widely used with the advantages of simpler detection equipment, larger
detection range, faster detection speed, and online monitoring. Ultrasonic guided wave
testing has also been applied in the structural health monitoring of pressure vessels and
has achieved certain results [2–4]. At present, the research of ultrasonic guided wave
defect detection mainly focuses on plate and pipe structure, with few studies reporting on
pressure vessels. In terms of the propagation characteristics of guided waves, Li et al. [5]
studied the dispersion characteristics of different guided wave modes in pressure vessels,
and optimized the excitation center frequency and waveform parameters of guided waves
according to the simulation and experimental results. Yang et al. [6] proposed an elliptic
positioning algorithm based on coordinate transformation, based on the propagation
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characteristics of guided waves in hollow spheres and cylinders. Zhai et al. [7] studied
the direct wave difference values of different distance coefficients in pressure vessels,
and Chen et al. [8] proposed a fuzzy C-means clustering algorithm based on direct wave.
Although some scholars have done some work around the defect detection of pressure
vessels based on guided wave technology, the imaging algorithm and positioning accuracy
are still worthy of further research.

The probabilistic ellipse algorithm is a commonly used imaging algorithm based
on ultrasonic guided wave to detect defects in plate-like structures. For defect detection
and localization in flat-panel components, the probabilistic ellipse imaging algorithm
has relatively mature applications. Many scholars have studied the improvement and
application of the probabilistic ellipse algorithm. Liu et al. [9] used the probabilistic elliptic
positioning algorithm to perform imaging of artificial defects on board members, and the
experimental results showed that the direction and shape of the artificial defects could be
effectively identified. Tua et al. [10] estimated defect-reflected wave time-of-flight (ToF)
through the energy spectrum of the Hilbert–Huang transform, and used the probabilistic
elliptic positioning algorithm to locate defects in plates. This provides a basis for the signal
difference analysis of ultrasonic guided wave. Li et al. [11] combined wavelet transform
and the probabilistic elliptic imaging algorithm to realize the location of artificial defects in
a curved, spherical, thin shell structure. Chen et al. [12] proposed a signal screening method
based on the distance coefficient on the basis of the traditional probabilistic elliptic imaging
algorithm, and the experiments showed that the specific data filtered by the distance
coefficient could improve the defect positioning accuracy of plate structures. These studies
have improved the imaging algorithm through signal analysis and signal preprocessing.
This idea inspired the following research in this paper. Hu et al. [13] studied the propagation
characteristics of guided waves in 30 CrMo steel bent plates with different radii and depths
using experimental and numerical methods, and used the probabilistic elliptic imaging
algorithm to locate defects in bent plates. In these studies, the probabilistic elliptic imaging
algorithm was widely applied in the defect detection of pressure vessels based on guided
waves, but the feasibility of the probabilistic elliptic imaging algorithm for different arrays
has not been discussed. In particular, the signal truncation strategy, which plays a decisive
role in imaging accuracy, has also not been discussed. There are few studies on the imaging
accuracy of the probabilistic elliptic imaging algorithm applied to the defect detection of
pressure vessels. Therefore, the probabilistic ellipse imaging algorithm for defect detection
in pressure vessels is worth studying.

The feasibility of the traditional probabilistic elliptic imaging algorithm for defect
detection and location in pressure vessels will be studied in this paper. In order to improve
the accuracy of the imaging positioning, the factors affecting the imaging accuracy should
be discussed. In this study, a new adaptive signal truncation method based on signal
difference analysis is proposed. The structure of this paper is as follows. The factors
affecting the imaging accuracy of the traditional probabilistic elliptic imaging algorithm for
defect detection in pressure vessels are discussed in Section 2. In Section 2, the concepts of
the signal difference coefficient (SDC) and the distance coefficient are briefly introduced,
and a new idea of signal truncation based on signal difference analysis is constructed.
The experimental objects and parameters of the experimental operations are described
in detail in Section 3. In Section 4, the relationship model between the SDC and the
distance coefficient is constructed based on experimental data, and the new adaptive signal
truncation method is verified. Then, the imaging accuracy of the probabilistic ellipse
imaging algorithm based on the new method is discussed and further improved. Finally,
the conclusion is given in Section 5.

2. Theory

2.1. Traditional Probabilistic Elliptic Imaging Algorithm and Signal Processing

The probabilistic ellipse imaging algorithm is an algorithm developed based on the
ellipse imaging algorithm. Both are localization algorithms based on the time-of-flight of
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scattered waves. By calculating the difference in signal between the healthy signal and the
damaged signal, the peak wave packet of the defect scattered wave can be obtained. The
arrival time t1 of the scattered wave is generally taken as the time when the peak of the
scattered wave appears. t1 represents the time taken for the guided wave to propagate from
the excitation source to the defect to the receive sensor. Thus, the sum of the distances of
the defect to the two sensors can be calculated. According to the sum of the distances from
the defect to the two sensors, the possible trace of the defect can be obtained, like an ellipse,
as shown in Figure 1. The location of the defect can be determined from the intersection of
the elliptical trajectories of multiple sensor pairs. Based on the ellipse imaging algorithm,
the probabilistic ellipse imaging algorithm combines the probability functions, and then
the entire area of the detected object is meshed. The distance from each cell to the elliptical
trajectory is calculated, and a probability function is used to express the probability of the
defect location in that cell. After all groups of signals are processed, the position of the
maximum probability value in the imaging result is considered as the position of the defect.

Figure 1. Ellipse trajectory of defect location.

In traditional probabilistic elliptic imaging, the guided wave signal is analyzed by
using baseline subtraction to extract the scattered wave packet. Firstly, the ultrasonic
guided wave signal acquired by the experiment is preliminarily filtered and denoised.
Then, the damaged signal is subtracted from the healthy signal to obtain the residual signal
containing the defect scattered wave. Finally, the envelope of the residual signal is obtained
by Hilbert transformation. A case of signal processing from the defect detection experiment
on pressure vessel is shown in Figure 2.

By analyzing the envelope signal (Figure 2c), it can be found that in addition to
the scattered signal caused by the defect, there are also interference components. These
interference components may be caused by factors such as multiple reflected wave and
electromagnetic noise. In Figure 2c, it can be seen that the amplitude of the interference
component peak is even greater than the scattered wave. In this case, the arrival time of
the interference component packet (t2), rather than the arrival time of the scattered wave
packet (t1), is easy to be mistaken for the index representing the defect. In order to avoid
the influence of these interference signals on the imaging accuracy, the signal should be
truncated after the abovementioned signal processing steps.

2.2. Signal Difference Coefficient and Signal Truncation

In order to avoid the influence of unimportant signals on defect detection, the differ-
ence analysis of the signal is carried out. The signal difference coefficient (SDC) was first
used in rapid algorithms in ultrasonic guided wave imaging technology to evaluate the
correlation between a healthy signal and a damaged signal [11], and the equation is:

SDC = 1− CXY
σXσY

(1)
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where CXY is the covariance of signal X and Y, σX and σY are the variance of signal X and
signal Y.

CXY =
K

∑
k=1

(Xk − μX)(Yk − μY) (2)

σXσY =

√√√√ K

∑
k=1

(Xk − μX)
2

√√√√ K

∑
k=1

(Yk − μY)
2 (3)

where μ is the mean value of the signal amplitude and K is the signal length.

(a)

(b)

(c)

Figure 2. Signal processing of the traditional elliptic imaging method: (a) healthy signal and damaged
signal; (b) residual signal obtained by baseline subtraction. (c) Envelope of residual signal.

In the traditional probabilistic ellipse imaging algorithm, the signals of all groups
are usually truncated at a fixed length of time. The arrival time of boundary reflec-
tion/diffraction wave (ts) is usually used as the fixed length. Theoretically, the amplitude
of the scattered wave packets caused by defect reflection in the truncated signal should
be more prominent. However, in practice, some interference components may be larger
than the residual signals, like the case in Figure 2c. Therefore, different truncation lengths
should be discussed. Rather than residual signal analysis, signal difference analysis is
conducted. Figure 3 shows the signal difference analysis between the healthy signal and
the damaged signal between the sensor pairs of different paths after truncation. Before ts,
100 equidistant signal interception is performed. The time of each curve’s peak in Figure 3
corresponds to the arrival time of each group of damaged reflection wave signals (t1). In
the curves of sensor pairs 1, 2, 4, and 5, the damaged reflection waves obviously correspond
with the curve’s peak. Figure 3b shows the SDC curve of sensor pair 3. According to the
experimental parameters, the SDC peak value of sensor pair 3 should appear where it is
circled in Figure 3b. However, with the extension of the truncation time, a peak that is not
related to the damaged reflection signal was shown in the curve.
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(a)

(b)

Figure 3. Signal difference analysis of healthy signal and damaged signal under different truncated
length: (a) SDC curves of different sensor pairs; (b) SDC curves of sensor pair 3.

From Figure 3a, the fixed truncation length used in the whole group is not suitable
for the signal of sensor pair 3. If each group of signals is truncated at a fixed length, some
interference components that are more prominent than the scattered wave packages from
defects may be included in the truncated signals. The actual ellipse track will be missed
due to these truncated signals in the defect location. When the processed signal contains
multiple interference components, the pixel value at the defect position in the imaging result
will be sharply reduced, which will eventually lead to the failure of defect localization.
Therefore, in order to accurately locate defects, appropriate truncated lengths must be
selected for each group of signals to overcome the influence of interference components.

2.3. Signal Difference Coefficient and Signal Truncation

In actual ultrasonic guided wave defect detection and positioning experiments, the
large deviation of the imaging results is caused by the inaccurate truncated length. Due to
the uncertainty of the defect location information and the difference in the relative position

444



Sensors 2022, 22, 1540

of the sensor pairs, the optimal truncated length is inconsistent. In order to obtain more
accurate imaging results, the relationship between the optimal truncated length and the
distance coefficient of the signals will be discussed in this section.

Figure 3a shows that the peak values of different curves have different amplitudes
and delay times. According to Chen’s studies [12], the peak value of the SDC varies with
the distance between defects and the path of a transmitter/receiver pair. Figure 3 shows
that the damaged reflected signal in each group of signals will cause SDC mutations, and
this mutation can be observed even in sensor pair 3. However, the severity of the mutation
is different in these signals. In order to adaptively determine the signal’s truncated length,
it is necessary to analyze the relationship between the arrival time of the scattered waves
and the peak value of the SDC mutation. The arrival time of the damaged reflection wave
is related to the defect position and the distance of the sensor pair. Therefore, for the
convenience of description, the concept of distance coefficient cd is defined, and it is defined
as in Equation (4):

cd =
dTD + dRD

dTR
=

dTRD
dTR

(4)

where dTR is the distance from the excitation sensor to the receiving sensor; dTD is the
distance from the excitation sensor to the defect; dRD is the distance from the defect to the
receiving sensor; and dTRD is the sum of the distances from the excitation sensor to the
defect and from the defect to the receiving sensor. Then, the ideal truncation time t1 can be
expressed by Equation (5) [12]:

t1 = cddTR/vg (5)

where vg is the group velocity of the S0 mode of the ultrasonic guided wave.
If the signal truncated time is set to t1, the wave package from the defect is included in

the truncated signal and the interference components are excluded. However, the defect
location is unknown in the actual detection, and the distance coefficient of each sensor pair
cannot be determined directly. Although the arrival time of the scattered waves cannot
be obtained directly, Equation (5) provides a method to estimate the t1 of the scattered
waves using a distance coefficient. Relevant studies have shown that with the increase of
the distance between a defect and sensor pairs, the difference between the healthy signal
and damaged signal will decrease [14,15]. According to this characteristic, the distance
coefficient can be judged by the difference between the healthy signal and damaged signal,
and then the t1 of the scattered wave can be estimated. In order to determine the optimal
truncated length, the relationship between the peak value of the SDC mutation and the
distance coefficient should be studied. For the convenience of presentation, the equational
relationship between the SDC and the distance coefficient is expressed as the exponential
equation form of Fourier series:

S(cd) = F0 +
n

∑
n=1

(Fn·ejnωcd + F−n·e−jnωcd) (6)

where n is the number of series to expand, ω is the angular frequency, F0 is the constant
term to be solved, and Fn and F−n are the coefficients of the two terms of the nth level in
the expansion.

Obviously, the relationship between SDC and the distance coefficient monotonically
decreases, so the above equation is simplified to Equation (7). Through the experimental
data in Section 3 and the discussion in Section 4, the specific parameters in Equation (7)
will be determined and the accuracy of the formula will be verified.

S(cd) = a0 + b0·e f (cd) (7)

where a0 is the constant term to be solved, and b0 is the coefficient of the exponential term
to be solved.
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In order to solve the relationship equation between the SDC and the distance coeffi-
cient, the signals of each sensor pair need to be tested at different defect positions. The
experimental setup is described in detail in Section 3. The technical route of the new signal
difference analysis method is shown in Figure 4. Firstly, the SDC mutation of the healthy
signal and the damaged signal will be calculated according to Equation (1). Then, according
to Equation (7), the distance coefficient can be estimated. Finally, the optimal truncated
lengths for different group signals can be determined.

Figure 4. Imaging process of the probabilistic elliptical algorithm based on the adaptive signal
truncation method.

3. Experiment

3.1. Experiment Platform

In this study, the whole experimental platform of multi-channel ultrasonic guided
wave detection and the connection of the system are shown in Figure 5. The experimental
detection steps are as follows. Firstly, five-cycle sinusoidal wave signals modulated by the
Hanning window are generated by a waveform generator (Tektronix AFG 3021C, Tektronix,
Beaverton, OR, USA), and then the signals are amplified using a power amplifier (AG
1006, TC Power Conversion, Rochester, NY, USA) and transmitted to one piezoelectric
sensor. The piezoelectric sensor converts the electrical signal into a vibration signal through
the inverse piezoelectric effect, and then the ultrasonic guided wave signal is excited in
the pressure vessel. After the ultrasonic guided wave vibration signal propagates in the
pressure vessel, the corresponding vibration signal is received by the piezoelectric sensors
in other positions. The guided wave vibration signals are then converted into electrical
signals by the piezoelectric effect and displayed on an oscilloscope (Tektronix DPO 2012B,
Tektronix, Beaverton, OR, USA), and finally, data are automatically collected and stored in
the computer through the data acquisition system (NI PXIe 5105, Pickering PXI 40-533B-032,
Apex Waves, Cary, NC, USA).

Figure 5. Experimental system.
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3.2. Experimental Parameters

The size and material composition of the pressure vessel in the experiment are shown
in Table 1. The size of the ceramic piezoelectric wafers used to excite and receive the
ultrasonic guided waves are 10 mm (diameter) × 1 mm (thickness). The signal sampling
frequency involved in the experiment in this paper is 50 MHz, the trigger voltage is set
at 200 mV, and the single sampling time is 0.5 ms. According to the dispersion curve and
amplitude–frequency characteristic (Figures 6 and 7), the L (0,2) mode guided wave signal
under 275 kHz is selected as excited signal for the defect detection experiment.

Table 1. Parameter of pressure vessel.

Material
Outside

Diameter (mm)
Inside

Diameter (mm)
Height
(mm)

Density
(kg/mm3)

MOE
(GPa)

Poisson’s
Ratio

30 CrMo 350 340 1000 7850 210 0.30

(a) (b)

Figure 6. Dispersion curves in 5 mm thick pressure vessel: (a) dispersion curve of phase velocity;
(b) dispersion curve of group velocity.

Figure 7. Amplitude–frequency characteristics of L (0,1) and L (0,2) modes.
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Defects are simulated by bonding a steel ingot (diameter 10 mm) to the surface of the
pressure vessel. To visually represent the relative positions of sensors and defects in the
four groups, the images of the curved cylinder are converted into 2D flat images, and then
the positions of the sensors and defects are quantitatively described on the plane. In order
to avoid errors, four groups of experiments with different defect locations and arrays are
set up. The locations of the sensors and defects are shown in Figure 8. The coordinates of
the sensors and defects in each array are shown in Table 2.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 8. Position of sensors and defects. (“O” represents the positions of the sensors and “+”
represents the actual positions of the defects.)

Table 2. Coordinates of sensors and defects.

Sensor/Defect Number Circular Array Irregular Array

S1 (250,400) (170,385)
S2 (144,356) (75,325)
S3 (100,250) (80,235)
S4 (144,144) (210,95)
S5 (250,100) (285,120)
S6 (356,144) (405,160)
S7 (400,250) (405,300)
S8 (356,356) (380,395)
D1 (320,275) -
D2 (220,175) -
D3 - (300,305)
D4 - (250,160)

4. Results and Discussion

4.1. Adaptive Signal Truncation Method Based on Signal Difference Analysis

Through the experiment in Section 3, the data of each case are collected and recorded.
The data are shown in Figure 9. It can be seen that the SDC decreases as the distance
coefficient increases. Based on these data points, the relationship models of the SDC and
the distance coefficient in each case are first established, and then exponential fitting is
performed according to the relationship equation of the four cases. The fitting curve is
shown as the black curve in the figure. The analytical formula of the curve is as follows:

S(cd) = 0.0013·e
4.2922

cd (8)

After obtaining the approximate relationship between the SDC and the distance
coefficient, the distance coefficient of the sensor pair can be estimated to be t1. It should be
noted that the distance coefficient–SDC curve that fits all data is located in the “middle”
of the data. Therefore, when calculating the distance coefficient according to the SDC, the
distance coefficient of the “outside” part of the curve is smaller than the actual distance
coefficient, resulting in an estimated t1 that is too small, which may cause the reflected wave
packages from defects to be missed. In order to avoid this situation, the edge data points
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are used to fit the curve, and a new fitting curve is obtained (the red curve in Figure 9). The
analytical formula of the new curve is as follows:

S(cd) = 0.0039·e
2.4293

cd (9)

Figure 9. Relationship between distance coefficient and signal difference coefficient.

Thus, the specific parameters of Equation (7) in Section 2.3 are determined through
experiments. Therefore, an adaptive signal truncation method based on signal difference
analysis is proposed in this study. The technical route of this method, described in Figure 3
in Section 2.3, is supplemented as shown in Figure 10. The imaging effect based on this
new signal truncation method will be discussed in the next section.

Figure 10. Adaptive signal truncation method based on signal difference analysis.
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4.2. Analysis of Imaging Effect under New Adaptive Signal Truncation Method

In order to explore the effect of the probabilistic ellipse imaging algorithm based on the
new adaptive signal truncation method, the improved imaging algorithm is used to image
the experimental data. The traditional probabilistic elliptic imaging results are shown in
Figure 11. The imaging results are shown in Figure 12. From the imaging results, it can be
seen that the image obtained by the improved probabilistic ellipse imaging algorithm can
effectively characterize the defect location. The defect location errors of case 1 to case 4 are
5.30 mm, 2.80 mm, 6.25 mm, and 4.51 mm, respectively. In addition, compared with the
imaging results in Figure 11, the number and range of artifacts in Figure 12 are significantly
reduced. The defect location accuracy is significantly improved. Obviously, the new signal
truncation method can be effectively applied to defect detection in pressure vessels.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 11. Imaging results of traditional probabilistic ellipse imaging algorithm. (The white circles
are the sensor locations, and the black crosses are the actual locations of the defect.)

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 12. Imaging results of probabilistic ellipse based on adaptive signal truncation method.
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In Figure 12c,d, the smear outside the defect area can be seen. This phenomenon
can be explained as follows: when calculating the distance coefficient according to the
SDC–distance coefficient fitting Equation (9), if the SDC is very small, the deviation of the
calculated distance coefficient can be large. Moreover, when all signals are directly used
for imaging, the program can easily report errors. Therefore, it may be beneficial to set a
minimum SDC threshold Q during the imaging process to perform a preliminary screening
of signals, and to exclude signals with an SDC less than the threshold Q from the final
imaging result.

4.3. Threshold Optimization of Adaptive Signal Truncation Method

In order to determine an appropriate threshold Q, the imaging results under different
thresholds are compared. In this study, the threshold Q value is set from 0 to 0.03 at
0.002 intervals. The imaging results of Case 1 under 15 different thresholds are shown in
Figure 13. Among them, sub-picture 1 corresponds to the imaging result with threshold
Q = 0, sub-picture 2 corresponds to the imaging result with threshold Q = 0.002, and so
on, and sub-picture 15 corresponds to the imaging result with threshold Q = 0.028. It can
be observed that as the threshold Q increases from 0 to about 0.02, the high pixel value
area close to the defect position in the imaging result gradually shrinks. That is, the pixel
value contrast between the defect position and the non-defect position is improved, and
the accuracy of the imaging result is also improved. As the threshold Q increases from
0.02, the high pixel value area of the defect tends to expand, and the imaging quality
gradually deteriorates.

Figure 13. Case 1 imaging results of probabilistic ellipse imaging algorithm at different SDC thresholds.

In order to quantitatively evaluate the influence of threshold Q on the positioning
results, a positioning error is used to quantify the deviation between the defect position
in the imaging result and the actual defect position. The aggregation coefficient c [16] is
used to quantify the aggregation degree of pixels in the imaging results, that is, the color
contrast between the defect area and the non-defect area in the image. The definition of
positioning error d is given by Equation (10), and the definition formula of aggregation
coefficient c is given by Equation (11):

d =

√(
xp − xr

)2
+
(
yp − yr

)2 (10)
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ĉ = argmin
c

∑
(

ln
(

P(x)
P(0)

)
+ cx

)2

(11)

where xp and yp represent the horizontal and vertical coordinates of the defect obtained
from the imaging results; xr and yr represent the actual horizontal and vertical coordinates
of the defect;P(x) represents the pixel value of a discrete point whose distance is x from
the maximum pixel value point, and in particular, P(0) is the pixel value of the maximum
pixel value point.

According to the definition of clustering coefficient c, when the pixel value contrast
increases, the aggregation coefficient also increases. In order to compare the imaging effects
under different SDC thresholds Q, the defect location errors and aggregation coefficients of
different sensors and defects at each threshold Q are calculated, as shown in Figure 14a,b. It
can be observed that in terms of the positioning error, when the threshold Q is in the range
of 0–0.02, the positioning error slightly decreases with the increase of the threshold value,
but the decrease range is very small; when the threshold Q exceeds 0.02, the positioning
error begins to increase with the increase of the threshold value. In terms of aggregation
coefficient c, when the threshold Q is in the range of 0–0.02, the aggregation coefficient c
increases with the increase of the threshold value; when the threshold value exceeds 0.02,
the aggregation coefficient begins to decrease. Considering the comprehensive influence of
the threshold on the positioning error and aggregation coefficient, it can be found that the
imaging results with a threshold between 0.018 and 0.022 are better. The imaging results of
four cases when the SDC threshold Q is set to 0.02 are shown in Figure 15.

(a) SDC threshold— d (b) SDC threshold— c

Figure 14. Imaging location deviation and degree of aggregation under different SDC thresholds.

In Table 3, the defect location error and aggregation coefficient of the traditional
probabilistic ellipse imaging algorithm, the probabilistic ellipse imaging algorithm based
on the fixed time signal truncation method, and the new adaptive signal truncation method
are listed. (The fixed truncated length is set as 0.10 ms.) It can be seen that the traditional
probabilistic ellipse imaging algorithm has the worst localization quality, and its defect
location error is much greater than that of the improved algorithm; the fixed time signal
truncation method effectively reduces the positioning error of the traditional probabilistic
ellipse imaging algorithm, but the improvement of the aggregation coefficient of the
positioning result is limited; the results show that the new image algorithm based on the
adaptive signal truncation method has the best positioning quality when the threshold set
to 0.02, and the positioning accuracy and aggregation coefficient of the positioning results
are significantly improved. The minimum positioning error is 1.25 mm, and the maximum
aggregation coefficient is 14.10.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 15. Imaging results with SDC threshold set to 0.02.

Table 3. Deviations and aggregation coefficients of localization results of different probabilistic ellipse
imaging algorithms.

Imaging Algorithms Case 1 Case 2 Case 3 Case 4

(1) Traditional probabilistic ellipse imaging algorithm
without signal truncation

Positioning error d 48.54 17.15 106.09 137.39
Aggregation coefficient c 0.89 0.89 0.82 0.92

(2) Probabilistic ellipse imaging algorithm with fixed signal
truncation length

Positioning error d 13.51 15.61 22.21 25.61
Aggregation coefficient c 1.74 1.67 1.60 1.71

(3) Probabilistic ellipse imaging algorithm based on
adaptive signal truncation method (no threshold)

Positioning error d 5.30 2.80 6.25 4.51
Aggregation coefficient c 9.75 9.40 8.07 8.52

(4) Probabilistic ellipse imaging algorithm based on
adaptive signal truncation method (set threshold = 0.02)

Positioning error d 1.77 1.25 2.50 1.25
Aggregation coefficient c 14.10 13.61 12.03 12.86

It can be seen intuitively from Table 3 and Figure 15 that the signal truncation method
based on signal difference analysis proposed in this study can effectively improve the
imaging accuracy of the probabilistic ellipse imaging algorithm for single defect detection
in pressure vessels.

5. Conclusions

The feasibility of the traditional probabilistic ellipse imaging algorithm for defect
detection in pressure vessels were theoretically and experimentally studied in this paper.
The experimental results show that the imaging results are affected by the signal truncation
length. There are large deviations in the imaging results based on the fixed-length truncated
signal. On this basis, in view of the confusion of imaging results, the relationship between
signal truncation length and imaging accuracy was discussed. In order to improve the
positioning accuracy of the probabilistic ellipse imaging algorithm applied to the defect
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detection on the pressure vessel, experiments, theoretical analysis, and discussion have
been conducted in this paper. The main conclusions are as follows:

(i). In this study, it was found that the positioning accuracy of the probabilistic ellipse
imaging algorithm is affected by the signal truncation length. By analyzing the
healthy signal and the damaged signal, it was found that the truncation length can be
determined according to the SDC and the distance coefficient. Then, the functional
relationship between the SDC and the distance coefficient was constructed through
experiments in this study.

(ii). In this paper, an adaptive signal truncation method based on signal difference analysis
is proposed, and based on this, a new probabilistic ellipse imaging method was
developed in this study for ultrasonic guided wave defect localization on pressure
vessels. The new probabilistic ellipse imaging method can effectively improve the
accuracy in detecting and positioning defects on pressure vessels.

(iii). Further study is recommended to analyze the effect of different thresholds of the SDC
on the imaging results. The location error and aggregation coefficient are useful for
measuring the location accuracy of different imaging methods. The experimental
results show that when the SDC threshold is 0.02, the defect location accuracy can be
further improved.
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Abstract: The acoustic emission (AE) method is a popular and well-developed method for passive
structural health monitoring of metallic and composite structures. The current study focuses on
the analysis of one of its processes, sound source or signal propagation. This paper discusses the
principle of plate wave signal sensing using piezoelectric transducers, and derives an analytical
expression for the response of piezoelectric transducers under the action of stress waves, to obtain
an overall mathematical model of the acoustic emission signal from generation to reception. The
acoustic emission caused by fatigue crack extension is simulated by a finite element method, and the
actual acoustic emission signal is simulated by a pencil lead break experiment. The results predicted
by the mathematical model are compared with the experimental results and the simulation results,
respectively, and show good agreement. In addition, the presence of obvious S0 mode Lamb waves is
observed in the simulation results and experimental results, which further verifies the correctness of
the analytical model prediction.

Keywords: acoustic emission (AE); fatigue crack growth; predictive modeling

1. Introduction

Today, many kinds of materials are used for construction infrastructure, aviation and
ocean sailing. Applying the technical conditions of continuous monitoring to the security
of these infrastructures is a challenge [1]. AE technology has shown great advantages in
monitoring large structures, and it allows effective health monitoring and life prediction
of materials. It is important to detect damage in the early stages to prevent catastrophes
from occurring [2]. Mu et al. used visible graph modelling [3] and acoustic emission
beamforming [4] to achieve AE source localization. In terms of material life prediction,
Roberts et al. linked the AE count rate with crack growth [5] in an effort to predict the
material’s remaining life. Similar methods have been used to link observed AE data trends
with fracture [6] and crack growth [7] in metallic materials.

However, the AE electrical signal output by the AE transducer is often far from the real
AE source signal [8]. In contrast with other nondestructive testing and evaluation methods
for acoustics, AE lacks precise information related to the source, which complicates efforts
to relate AE activity to, e.g., fracture location and size [9]. Therefore, determining how to
obtain more information about the AE source, based on the electrical signal of the sensor,
has become a challenge for the relevant practitioners.

Previous research on AE mostly uses statistical methods, such as duration, rise time,
count and frequency, which reflect the physical characteristics of AE. W. Kaewwaewno et al.
used AE detection technology to analyze the characteristics of valve leakage at low pressure,
and the effect of differences in valve size and pressure on the effective voltage value of AE
characteristic parameters [10]. Guo-Yang Ye et al. used Gaussian process regression (GPR)
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to develop a multivariate mathematical model to characterize the relationship between the
AE signal and the pressure and leakage rate [11]. On the other hand, many researchers
have proved that time–frequency conversion technology, as a very useful tool for AE signal
analysis, can provide more reliable and comprehensive characteristic information about
AE phenomena [12]. E. Mland et al. used kernel partial least squares regression (KPLSR)
to establish the relationship between spectral components and leakage rate for both gas
valves and liquid valves [13].

Another research method, analytical modeling of the AE signal, can be performed to
predict the AE signal through the mathematical model. These studies help to understand
the AE signal signature and source mechanism from both theoretical and experimental per-
spectives. Research on wave propagation and other basic theories is one of the development
trends of AE technology [14].

Based on the theory of elastic dynamics and the dislocation model, Ohtsu and Ono
developed the generalized theory of AE and the representation of the AE source mechanism
in half-space [15], and further continued their work by performing a simulation of tensile
cracks and shear cracks in half-space [16]. Researchers are also analyzing and studying
the AE of the plate structure. Weaver and Pao [17] studied the numerical results of the
surface response of a plate at different locations from the source for different modes of the
Rayleigh–Lamb spectrum. Gorman and Prosser [18] studied the normal-mode solution to
the classical plate bending equation to understand its applicability to AE. Aiming at the AE
phenomenon caused by crack propagation, Lysak [19] studied the AE of growing cracks
from the point of view of fracture mechanics, and described the models of crack initiation
and subcritical growth in quasi-brittle materials. Giurgiutiu et al. [20] used a piezoelectric
wafer active sensor (PWAS) to study the AE signal characteristics of fatigue crack growth
in metal sheets.

For metallic or composite materials, the in-service conditions and failure modes are
generally complex and may not be accurately predicted [21]. Guo-Yang Ye et al. [22]
combined the time–frequency domain characteristics of acoustic emission signals and the
random forest method to develop a multi-variable classification model that relates the
internal leakage acoustic emission signal and the leakage rate under varying pressure. Ajay
and Carlos [23] made efforts to accurately characterize guided wave excitation. They de-
rived equations for the output voltage response of surface-bonded piezo-sensors in guided
fields based on 3D linear elasticity equations. The above study focuses on the modeling
of acoustic emission sources. Maillet and Morscher [24] proposed a new waveform-based
procedure for localization of the AE source based on the Akaike information criterion (AIC).
The energy-based approach also offers a potential for damage monitoring that could be
used to improve the description of AE sources. Sause et al. [25] modeled the acoustic
emission signal of hybrid multi-layer plates, focusing on the acoustic emission source
and the signal propagation process. This model can solve the anisotropy problem in the
plate, and it is more widely used. Sengupta et al. [26] proposed a refined 2D plate theory
more applicable to plate structures, which satisfies the transverse shear stress continuity at
the layer interface. This method has better computational efficiency compared to the 3D
plate theory. These studies are mainly devoted to the modeling of acoustic emission signal
propagation processes. Victor [27] described a model of the Lamb waves’ tuning mecha-
nism with transducers. In this model, the piezoelectric wafer also used a thin adhesive
layer to achieve structural coupling. Subsequently, he innovatively developed a theoretical
model for the analysis of Lamb wave time reversal, and used it to analyze the Lamb wave
propagation process [28]. His research focuses on the corresponding modeling of sensors.
Zelenyak et al. [29] changed the geometry of the wave guide by varying the radius and
height to investigate the influence on the detected signals. Similarly, this paper explores
the effects of changes in the source, plate thickness and receiving sensor parameters on
the detected signal. Unlike previous studies, the paper establishes a mathematical model
of the overall process of the acoustic emission signal from generation and propagation to
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reception, and the accepted signal can be predicted based on the parameters of the source,
propagation and reception.

In this paper, the AE induced by fatigue crack growth in a plate is analytically modeled
by using a piezoelectric transducer. Sections 3 and 4 verify the correctness of the analytical
modeling using a simulation and an experiment, respectively. In Section 5, the factors
influencing the spectrum of the received AE signal are discussed. The final part presents
the summary and conclusions, and makes suggestions for further work.

2. Modeling Method of AE

The excitation in the fatigue crack growth process can be represented by the M11
dipole moment, and the dipole moment is used to deduce the complete solution of the
wave field caused by AE.

As shown in Figure 1, suppose the torque is generated due to the force vector Fi,
applied at the position ξ(α, β), and the reverse force vector Fi applied at the position
ξ ′
(
α, β + ΔXj

)
, ΔXj is a minute distance in the Xj direction.

Figure 1. Schematic diagram of coupling force generating torque at small distances.

The displacement field at an arbitrary position x, due to the force vector Fi, is uξ
i and

uξ ′
i , respectively. The displacement field in the force couple Mij can be written as follows:

u
Mij
i = Mij

∂

∂Xj
G(x; α, β) (1)

where G is Green’s function of point forces and the force couple Mij = FiΔXj.
In order to obtain the excitation field of the M11 dipole moment through the thickness

of the plate, the dynamic reciprocity theorem was used to solve the elastic wave field
generated by the force excitation through the thickness of the plate [30]. The M11 dipole
moment excitation of the inertial plate thickness is shown in Figure 2, and the minute
distance of the moment M11 is in the X direction.

Figure 2. M11 dipole moment excitation.
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The displacement of the wave field can be obtained as follows:

uM11 = −ikn M11
∞
∑

n=0

Un(h)
2Inn

Un(z) exp(−iknx)

wM11 = kn M11
∞
∑

n=0

Un(h)
2Inn

Wn(z) exp(−iknx)
(2)

where the harmonic factor exp(iωt) is omitted; parameter n represents the nth mode; kn
represents the beam of the nth mode at a given frequency; h is half of the plate thick-
ness; [Un(z), Wn(z)] is the mode shape, and its expression is US

n = s1 cos pz + s2 cos qz
and WS

n = s3 sin pz + s4 sin qz; Tm is the stress mode shape of the normal mode, and
Inn =

∫ h
−h [T

n
xxUn(z)− Tn

xzWn(z)]dz.
The strain can be obtained by the first derivative of Equation (2), as follows:

εx
M11

= ∂
∂x uM11 = −k2

n M11
∞
∑

n=0

Un(h)
2Inn

Un(z) exp(−iknx)

εz
M11

= ∂
∂z wM11 = kn M11

∞
∑

n=0

Un(h)
2Inn

Wn
′(z) exp(−iknx)

= kn M11
∞
∑

n=0

Un(h)
2Inn

(s3 p cos pz + s4q cos qz) exp(−iknx)

(3)

The PZT sensor is located on the plate. The PZT sensor detects the surface strain
caused by the AE waveform and converts it to an equivalent voltage. Due to the physical
characteristics of the PZT sensor, it does not significantly change the strain field of the
incident wave. The voltage at both ends of the sensor electrode can be written as follows:

Vs = −
∫ b/2+hs

b/2
Ez dz = hs

ep
31εy − Dz

∈p
33

(4)

where b is the thickness of the plate and hs is the thickness of the sensor. Dz is defined as
the amount of charge per unit area.

The electrical boundary condition of the piezoelectric sensor is open circuit and the
total charge on the electrode area is zero [31]. In the frequency domain, Equation (4) can be
written as follows:

Vs = Cvs
1
A

∫
A

εdA (5)

where A in Equation (5) represents the area where the PZT can generate charge. The
electromechanical conversion coefficient can be defined as follows:

Cvs =
hsep

31

∈p
33

= hs
e31 − e33c13/c33

∈33 +e2
33/c33

(6)

The M11 dipole moment excitation through the plate thickness, as shown in Figure 3,
is used to represent the dipole moment excitation generated by the type I crack. Therefore,
the complete solution of the response of the M11 dipole moment excitation at the AE sensor
is derived for the prediction modeling of the type I crack.

The distance between the PZT sensor and the AE source is rc; as is the radius of the
PZT sensor. The traditional AE sensor mainly inducts the vibration of the structure to be
measured by off-plane displacement. Therefore, the following equation can be obtained by
substituting the strain of the excitation wave field of the dipole into the induction formula
of the piezoelectric sensor:

459



Sensors 2022, 22, 1208

Vs(x, ω) = Cvs
1
A
∫

A kn M11
∞
∑

n=0

Un(h)
2Inn

Wn
′(z) exp(−iknx)dA

= knCvs M11
∞
∑

n=0

Un(h)
2Inn

sin kmas
kmas

Wn
′(z) exp(−ikmx0)

= knCvs M11
∞
∑

n=0

Un(h)
2Inn

sin kmas
kmas

(s3 p cos pz + s4q cos qz) exp(−ikmx0)

(7)

Translated to the time domain by the inverse Fourier transform, the following is obtained:

Vs(x, t) = 1
2π

∞
∑

n=0
knCvs M11

∞
∑

n=0

Un(h)
2Inn

sin kmas
kmas

Wn
′(z) exp(iωt)dω

= 1
2π

∞
∑

n=0
knCvs M11

∞
∑

n=0

Un(h)
2Inn

sin kmas
kmas

(s3 p cos pz + s4q cos qz) exp(iωt)dω
(8)

Figure 3. M11 excitation through plate thickness in thin plate.

3. AE Simulation of Type I Fatigue Crack

3.1. Finite Element Simulation Settings

For validating the effectiveness of the analytical modeling, ANSYS software was used
to conduct finite numerical analysis of the response precision of the piezoelectric sensor
in the finite element model. The plate is set as 600 mm × 1.6 mm aluminum material,
and is modeled by the two-dimensional unit Plan-182. The piezoelectric sensor is made of
APC-850 material, and the two-dimensional multi-physical field unit Plan-13 is used for
modeling. The size of the piezoelectric sensor is set as 20 mm× 0.42 mm. The characteristics
of aluminum and piezoelectric materials are detailed in Table 1.

Table 1. Material parameters.

Material Density (kg/m3) Elastic Modulus (GPa) Poisson’s Ratio

Aluminum plate 2700 69 0.33
APC-850 7700 84.3 0.31

For the time-domain excitation of the dipole moment source, the wide-band cosine
response function is used, and its mathematical representation is as follows [32]:

E(t) =

⎧⎨⎩
0 t < 0
0.5(1− cos(πt/τ)) 0 ≤ t ≤ τ
1 t > τ

(9)

where τ = 1.5 μs is the rise time of the signal. The distance between dipoles is 0.2 mm.
The excitation of the M11 dipole moment is located in the central position of the plate,

and piezoelectric sensors are set on the upper and lower surfaces of the thin plate, 100 mm
away from the AE source. The size of the grids is set as 0.1 mm × 0.5 mm. The simulation
model is shown in Figure 4.
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Figure 4. The simulation model: (a) dipole moment diagram; (b) overall model.

3.2. Verification and Analysis of Models

The in-plane and off-plane displacements of the nodes on the upper and lower surfaces
of the thin plate were extracted at a distance of 100 mm from the excitation point, and
the displacement waveform is shown in Figure 5. It can be observed that the in-plane
displacements of the upper and lower surface nodes are in the same direction, while the
off-plane displacements are in the opposite direction, which is in line with the particle
motion characteristics of S0 mode Lamb waves.

Figure 5. Displacement waveform of finite element simulation: (a) in-plane displacement; (b) off-
plane displacement.

The results of the signal comparison between the finite element simulation and the
prediction model are shown in Figure 6. As can be observed from the analysis results,
Figure 6a,b show that the finite element simulation and analytical prediction results have
a superb matching effect in the time domain. As the finite element model does not take
into account issues such as wave absorption setting and high-frequency filtering, there
are slight differences in the waveforms, which have little impact on the description of the
AE phenomenon. Figure 6c,d show the results of the time–frequency analysis after the
short-time Fourier transform of the time-domain waveform. It can be observed that the
time–frequency analysis results have a high overlap with the time–frequency curve of the
S0 mode Lamb wave. Type I crack excitation through the plate thickness only produces
the S0 mode in the sheet pattern, and there is no A0 mode. The comparison of finite
element simulations and theoretical simulations effectively proved the correctness of the
analytical predictions.
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Figure 6. Sensor waveforms of finite element simulation and analytical prediction: (a) the analytical
modeling result (time domain); (b) the finite element simulation results (time domain); (c) the
analytical modeling result (short-time Fourier transform); (d) the finite element simulation results
(short-time Fourier transform).

4. Experimental Verification

4.1. Experimental Setup

A square plate, with the dimensions 600 mm × 600 mm × 1.6 mm (length × width ×
thickness), was adopted as the experimental sample. The sensor was placed 10 mm away
from the edge of the plate. The experimental setup consisted of a DS2−8B data acquisition
instrument, a smart AE charge amplifier and a computer. The amplifier magnification was
10 times; the resonant frequency of the sensor was 150 kHz; a silicone coupling agent was
used between the sensor and the plate. The experimental equipment and excitation details
are shown in Figure 7.

It is impossible to accurately monitor the AE signal of simple type I crack growth in
the laboratory environment. Based on the analysis of the crack and the load form, it can be
concluded that the AE of type I crack growth can be simplified to the assumption of the
load excitation in the inner surface of the thin plate. Therefore, a pencil lead break on the
edge of the plate is used to simulate the AE phenomenon of the actual type I crack growth.
It should be noted that the location of the broken lead should be, as far as possible, in the
middle of the plate thickness to ensure the experimental effect.
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4.2. Experimental Results

The experimental results are shown in Figure 8. It can be observed from Figure 8a,b
that the experimental results and the analytical waveform have a good matching effect
in the time domain. The time–frequency analysis results can be obtained through the
synchronous compression wavelet transform of the time–domain waveform, as shown in
Figure 8c,d. Because the frequency band of the pencil lead break is narrow, the analytical
results and the experimental results are set at the same frequency band. The time–frequency
diagram showed the waveform component as vertical linear distributed, which completely
accords with the time–frequency performance of the S0 modal. Although the two spectra
showed differences in details, this does not affect the verification of the correctness of
the model.

Figure 7. Experimental setup.

In the AE experiments, in addition to the obvious presence of S0 wave packets, the
presence of slow-moving wave packets and a mass of interference noise can be observed.
Since their frequency domain components differ significantly from the wave packets
generated by AE, the frequency spectrum of the signal is affected. From Equation (8),
it can be deduced that, for the same acoustic emission signal, the main frequency of the
signal received by sensors with different resonant frequencies should also be different.
As shown in Figure 9a, the sensors with resonant frequencies of 150 kHz and 80 kHz are
arranged at the same distance from the excitation point. The frequency spectrum envelopes
of the signals received by the two sensors are shown in Figure 9b,c. The experimental
results are consistent with the predictions of analytical modeling.
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Figure 8. Comparison between the experimental result and the analytical modeling prediction
result: (a) the waveform of experimental detection; (b) the waveform of analytical prediction;
(c) experimental results (synchronous compression wavelet transform); (d) analytical prediction
results (synchronous compression wavelet transform).

Figure 9. The experiment with sensors of different resonant frequencies: (a) experiment setup; (b) the
frequency spectrum of the signal received by sensor A; (c) the frequency spectrum of the signal
received by sensor B.
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5. Influencing Factors of AE Frequency Spectrum

The modeling of the AE monitoring process is divided into the following three compo-
nents: the AE source response, the response of the plate structure, and the response of the
sensor. These aspects will be discussed in this section.

5.1. Effect of AE Sources

The AE source is modeled with reference to the dipole model, and the excitation
function is a unified cosine clock function. Therefore, adjusting the rise time parameter τ
of the function can effectively change the frequency of the excitation function, and, thus,
obtain the best similarity between the experiment and the simulation. However, the actual
AE signal cannot be measured directly, and the material properties, stress level and other
factors may affect the AE signal frequency. By varying the rise time parameter τ of the
cosine clock function in the prediction model, differences in the perceived AE signals under
different rise time conditions are obtained, as shown in Figure 10. It can be observed
that, with the increase in rise time τ, the main frequency of the AE sensing signal shows a
decreasing trend, but the corresponding amplitude of the main frequency rises significantly.
Although the main frequency and the corresponding amplitude basically show a linear
change, the rise time of the function has a more significant effect on the main frequency
amplitude, compared with the small change in the main frequency.

Figure 10. Variation in predicted AE results for different rise times: (a) change in model-predicted
AE frequency spectrum; (b) trend of model-predicted main frequency and corresponding amplitude.

5.2. Effect of Structural Response

The role of the structural response in the AE prediction model is mainly reflected in the
structural factor Un(h)Wn

′(z)/Inn. Analysis of the detailed expressions for the structural
factor shows that the wave number k of the Lamb wave in the structure varies with the
frequency component, in addition to the parameters related to the material properties of
the structure. For an isotropic metal sheet with known material parameters, the frequency
thickness product is directly related to the phase velocity of the Lamb wave. Therefore,
the effect of wave number k on the frequency spectrum of the signal can be reflected by
varying the thickness of the thin plate. The main peaks of the signal spectrum perceived by
the piezoelectric sensor under different plate thickness conditions are shown in Figure 11.
As the thickness of the thin plate increases, both the main frequency and the corresponding
amplitude of the sensed signal show a decreasing trend, and the changes are relatively weak.
Because the AE signal is mostly band-pass filtered at 30–700 kHz, and the S0 mode of the
Lamb wave has a small phase velocity change in this frequency range, the corresponding
wave number change is not obvious, and the change range is relatively small when reflected
in the final spectrum.
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Figure 11. Variation in predicted AE results for different plate thicknesses: (a) variation in model-
predicted AE spectrum; (b) trend of model-predicted main frequencies and corresponding amplitudes.

5.3. Effect of Sensor Parameters

The electromechanical conversion coefficient Cvs is related to the material properties
of the piezoelectric material, and affects the amplitude of the signal. The parameter
sin(knas)/as of the sensor plays the role of signal frequency modulation. Considering that
the wave number k does not vary much in this frequency range, the effect of the radius
of the piezoelectric sensor is discussed. The main peaks of the signal spectrum received
by piezoelectric sensors with different radiuses are shown in Figure 12. As the radius of
the piezoelectric sensor becomes larger, the main frequency of the sensed signal decreases
rapidly and the corresponding amplitude shows an inverse trend. It should also be noted
that, unlike the effect of rise time, the sensor radius mostly affects the final signal main
frequency, and the corresponding amplitude change is much smaller. This is related to the
fact that the parameter sin(knas)/as mainly plays the role of signal modulation.

Figure 12. Variation in predicted AE results for different sensor radiuses: (a) variation in model-
predicted AE spectrum; (b) trend of model-predicted main frequencies and corresponding amplitudes.

6. Conclusions

This paper presents an analytical modeling method for AE caused by fatigue crack
growth in a thin plate using a piezoelectric sensor. Assuming the existence of type I fatigue
cracks in an isotropic thin metal plate, the dynamic analytical expression of Lamb wave
propagation in the plate is derived by using the reciprocity theorem. On this basis, the
concept of the dipole moment is used to model the type I fatigue crack growth AE source,
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and the constitutive equation of piezoelectric materials is combined. Finally, a complete
analytical prediction model of the piezoelectric sensor AE signal caused by normal fatigue
crack growth is obtained. By comparing the finite element simulations, experimental
validation and analytical modeling, it is found that they are almost consistent in the time
and frequency domains, and the presence of the Lamb wave S0 mode is clearly observed.
These validate the accuracy of the analytical modeling predictions. The model is useful as a
guide for the selection of detection equipment. The developed model allows the AE signal
to be predicted in advance and prepared for the upcoming monitoring. For the same AE
signal, different resonant frequencies of the sensor produce different main frequencies of
the electrical signal. Therefore, when the ambient noise frequency is high, a sensor with
a lower resonant frequency can be selected to distinguish the received AE signal from
the noise.

This paper considers an ideal two-dimensional case and does not consider the effect of
the third dimensional crack length and the difference in the three-dimensional propagation
of guided waves in thin plates. Additionally, it only considers a type I open crack in
the modeling process; the modeling of a slip-open crack and tear-open crack will be
addressed in the future, as an extension of the current research. In the current study, the
models of structural response and sensor response are relatively clear, while the crack
expansion AE source is mostly simulated by the cosine clock function. In fact, there are
differences in the signal spectrum at different stages of cracking. Therefore, it is important to
investigate the relationship between the actual AE source and the stress level and material
properties, and to construct a reasonable AE source simulation function. The above results
obtained by AE analytical modeling still have certain simplifying conditions and sub-
optimal considerations. For example, the signal modulation effect of the parameters is
affected not only by the radius of the piezoelectric transducer, but also by the wave number
k, which cannot be ignored. However, our conclusions are still important for the selection
of piezoelectric transducers and the improvement in AE monitoring sensitivity.
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Abstract: In this paper, we propose a novel time reversal-based localization method for pipeline
leakage. In the proposed method, a so-called TR self-adaptive cancellation is developed to improve
the leak localization resolution. First of all, the proposed approach time reverses and back-propagates
the captured signals. Secondly, the time reversed signals with the various coefficients are superposed.
Due to the synchronous temporal and spatial focusing characteristic of time reversal, those time
reversed signals will cancel each other out. Finally, the leakage location is distinguished by observing
the energy distribution of the superposed signal. In this investigation, the proposed method was
employed to monitor a 58 m PVC pipeline. Three manually controllable valves were utilized to
simulate the leakages. Six piezoceramic sensors equipped on the pipeline, recorded the NWP signals
generated by the three valves. The experimental results show that the leak positions can accurately
revealed by using the proposed approach. Furthermore, the resolution of the proposed approach can
be ten times that of the conventional TR localization method.

Keywords: time reversal; localization; PZT transducer; negative pressure wave; pipeline leakage

1. Introduction

Structural health monitoring (SHM) is a newly developed research field devoted to the
monitoring and assessment of structural health and durability. SHM is especially useful for
remotely monitoring the health of high-profile mechanical systems such as spacecraft, ships,
offshore structures, and pipelines where onsite monitoring is difficult or even impossible [1].
Optic fiber bragg grating is employed for the applications for SHM [2–4], such as monitoring
the load level of the bolts [5,6] and the detection of hoop-strain in the pipeline [7–9]. Another
SHM systems are based on lead zirconate titanate (PZT) transducer. For the PZT based
passive sensing, the PZT transducers are employed to acquire the stress signals from
impact or leakage [10–13]. Furthermore, the active sensing based on PZT is applied more
widely [14,15]. For example, the monitoring of debonding in the structures [16–18], the
pipeline damage detection [19], the grouting compactness monitoring of post-tensioning
tendon duct [20,21], the pre-stress monitoring of rock bolts [22], the evaluation of the fatigue
damage in the modular bridge expansion joints [23], structure damage imaging [24,25],
and real-time monitoring of soil compaction [26].

As an important investigation field of SHM, pipeline leakage monitoring is attracting
extensive attention [27,28] since the pipeline leakage caused numbers of catastrophic
accidents every year around the world. The detection methods of the pipeline leakage have
been explored in numerous studies in the available literature. The representative pipeline
leak localization methods include the transient model method [29–31], the magnetic flux
detection method [32,33], the acoustics method [34–37], the image analysis method [38], the
hybrid method [39,40], the negative pressure wave (NPW) method [41,42], etc. For example,
Ni et al. [31] compared the leak localization based on the particle swarm optimization
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theory with that based on the transient model. Yan et al. presented the magnetic flux
leakage detection technique which uses magnetic sensitive sensors to detect the magnetic
leakage field of defects on both the internal and external surfaces of pipelines [32]. Bian
et al. developed a leakage localization method which analyzes the space-time correlation
of the ultrasonic signals of the leakage hole [37]. Su et al., detected leaking defects by
using an image segmentation method [38]. Zhang et al. [40] proposed a hybrid leak
detection technology which combined the negative-pressure wave method and the transient
modeling method. Liu et al. [41] developed a novel leakage detection approach based on
the amplitude attenuation model of dynamic pressure waves. Although the aforementioned
technologies are capable of detecting the existence of leakages, they may suffer from high
computational cost [31], expensive equipment [32,33], or large location error [41]. For
example, the location error of the hybrid leak detection technology is about 10%. Although
the transient model method has a high localization accuracy, its complex models mean a lot
of training and expensive cost which prevent its wide applications. Compared with other
methods, the NPW method is widely utilized due to its simple operation and high accuracy.

When a leak occurs, a negative pressure wave propagates toward the two ends of a
pipeline from the leak position. After recording the NPW signals via the sensors mounted
on the outside layer of the pipeline, the signal processing algorithms are utilized to analyze
the NPW signals, in order to localize the leakage points. For instance, Jia et al. [42]
developed a leakage localization approach which detected the NPW by measuring the
hoop strain. Zhu et al. [43] localized the leakages by calculating the arriving time of
the NPW and analyzed the localization accuracy. Hou et al. [8] developed a compound
Simpson formula and dichotomy searching-based leak localization formula. Zhou et al. [44]
developed an improved spline-local mean decomposition to process the negative pressure
wave signal, and revealed the leak by using the convolutional neural network to analyze
the processed signal. Li et al., developed a novel localization algorithm based on the
attenuation of negative pressure wave [45]. Those methods aimed to improve the location
error via suppressing the noise [44,45]. No matter that the localization methods are based
on the time delay estimation [42–44] or the attenuation of negative pressure wave [45],
most of them merely revealed the leakage positions. Other acoustic signatures such as
−3 dB width which sets a boundary limit between leakage points and non-leakage points,
cannot be observed from the results obtained by using the existing methods. However,
Ing et al. proved that−3 dB width and the maximum peak which are the two main acoustic
characteristics can be identified by using the time reversal (TR) localization method at the
same time [46].

In the computational time-reversal localization [47], the signals are computationally
re-radiated into the area of interest [48–50] in a computer [48]. In the computational
process, the TR methods generate grids in the monitoring area, and obtain the signals at
the grids by convoluting the time reversed signal with channel impulse response in time
domain. Due to the spatial reciprocity, TR techniques can force the signals to focus at their
sources. The sources’ locations can be revealed by plotting the distribution of the TR signals’
energy [51,52]. Recently, time reversal technology is studied for non-destructive testing and
SHM [53,54]. For example, Amitt et al. performed a computational TR run, and obtained
an identification solution at the reference time [55]. In concrete model, the peak of the TR
signal is utilized to identify the source’s position [56,57]. Zhao et al., built the defect image
map by using the maximum of the time reversal field [58].

However, for the passive detection, such as the pipeline leakage detection, the time
reversal localization suffers several issues. Due to the long signal duration which is the
result of the superposition of incident and reflected NPW, although the conventional TR
localization method can reveal the positions of the pipeline leakages, it can merely offer a
poor resolution which is dozens of meters in size (i.e., the maximum −3 dB width is dozens
of meters in size) [46,47]. For improving the localization resolution, a new TR localization
method is developed in this paper. In this approach, the time reversed signals with specific
coefficients are superposed. Since time reversed signals are multiplied by the coefficients,
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the localization functional value based on the proposed method decrease significantly
with the movement of the observed point. Therefore, the resolution gets improved. For
investigating the performance of the proposed method in passive detection application, a
pipeline leakage localization experiment was conducted. For a 58 m pressurized pipeline,
three manually controllable valves were utilized to simulate the leakages. Six piezoceramic
transducers equipped on the pipeline, recorded the NWP signals generated by the three
valves. The experimental results show that the proposed approach accurately reveals the
leak locations with a maximum −3 dB width of 2 m. Meanwhile, the maximum −3 dB
width of the conventional TR localization method is 20 m. That means the proposed
approach can improve the resolution, compared to the conventional one.

2. Theoretical Approach of the Proposed Localization Method

For corresponding to the pipeline leakage experiment, we describe the proposed
method by using the model of pipeline. For a pressurized gas pipeline, a leakage will
generate a negative pressure wave (NPW) which will propagate toward the two ends
of a pipeline. The NPW can be detected by lead zirconate titanite sensors equipped on
the pipeline wall. We assume that N transducers are used along a pipeline, and the nth

transducer is located at rn, as shown in Figure 1. We further assume that the leakage occurs
at rL. In this paper, plain symbols denote scalar quantities, whereas vectors and matrices
are denoted by bold symbols.

Figure 1. Model of the proposed method.

For the purpose of convenience, we describe the proposed method in the time domain.
Assume a NPW signal generated by the leakage is represented as x(t) and the leakage
occurrence time is t = T. All transducers are synchronous. The leakage signal recorded by
the nth transducer can be modeled as,

y(t, rn, rL) = gr(rn, rL, t)⊗ x(t− T) (1)

where “⊗” represents the convolution operation. The function gr(rn, rL, t) is the actual
channel impulse response between the nth transducer and the leakage at rL, obtained
via measurement.

The time reverse signal y(t, rn, rL), and the time-reversal version of Equation (1) can
be represented as,

y(−t, rn, rL) = gr(rn, rL,−t)⊗ x(−t− T) (2)

A time reversal process is indeed equivalent to a correlation of impulse responses.
Therefore, accounting for back-propagation from the nth transducer to the observation point
rk in the monitoring domain, the time reversed signal at a point rk can be illustrated as,

f (t, rn, rk) = gr(rn, rL,−t)⊗ x(−t− T)⊗ gc(rn, rk, t) (3)

where gc(rn, rk, t) is the computational channel impulse response from the nth transducer
to the point rk.

Then, the so-called self-adaptive cancellation is used to process the time reversed
signals: firstly, multiplying f (t, rn, rk) by a coefficient (−1)n. Secondly, summing over all
time reversed signals multiplied by the coefficients. On the other hand, due to the various
attenuation coefficients of the actual channels, the various sensors’ TR signals cannot cancel
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each other out via the superposition at the leak position. For eliminating that influence, the
TR signals are normalized. The corresponding result can be written as,

q(rk, t) =
N

∑
n=1

(−1)n f (t, rn, rk)/max( f (t, rn, rk)) (4)

Due to reciprocity principle, and assuming that the computational channel response
function matches the measured data perfectly, namely gc(rn, rL, t) = gr(rn, rL, t). Then, all
time reversed signals f (t, rn, rk) (n = 1 . . . . . . N) will focus on the leakage location (rk = rs)
at the time t = −T, with similar waveform. Therefore, all time reversed signals multiplied
by coefficients will cancel each other out at rs as the amplitude of q(rs, t) approaches zero.

Since the time reversed signals cancel each other out at the leakage’s location, the
signal energy in the leakage area is low than those in other areas. Therefore, the localization
functional is designed as following,

Ip(rk) =

(∫
|q(rk, t)|dt

)−1
(5)

In the localization map, the localization functional value at leakage locations will be
larger than those at other points.

For the convenience of explanation, the diagram of signal processing based on the
proposed method is shown in Figure 2. After time reversal and back-propagation, the time
reversed signals focus on the leakage positions at the reference time t = −T. Due to the
temporal focusing, those time reversed signals are the same to each other. Via multiplying
the coefficient (−1)n, part of the time reversed signals is upside down. Then, when the
time reversed signals multiplied by coefficients are superposed, they cancel each other out.
Therefore, via the self-adaptive cancellation, the amplitude of the final output signal at the
leakage position approaches to minimum.

Generally speaking, in the proposed method, the following steps are taken to localize
the leakages, as shown in Figure 3. First of all, the sensors capture the NPW signals.
Secondly, time reverse and back-propagate the captured signals (convolve the time reversed
signal with channel impulse response in time domain). The time reversed signals at a
generic observation point are normalized and multiplied with the coefficients (i.e., (−1)n).
Then, the sum of all time reversed signals is multiplied by the coefficients, as Equation (4)
shows. Finally, plot the localization map is plotted by calculating the localization functional
(i.e., Equation (5)).

3. Experiment

As one kind of passive detection, a PVC pipeline leak experiment was executed. The
pipeline was composed by a series of straight sections connected by twenty-four 90◦-
elbow connectors and twelve 0.05 m sections. The pipeline was fixed to a steel frame and
connected to another pipeline with the pressure of 0.8 MPa, as shown in Figure 4. Six lead
zirconate titanite (PZT) sensors whose size is 15 mm × 10 mm × 2 mm were directly
mounted on the pipe wall and utilized to measure the local hoop strain change. Their
special locations are listed at Table 1. The locations of three manually controllable valves
equipped in the pipeline are shown in Table 2. The inner diameter of the valves is 12.7 mm.
A leakage was simulated by opening any one of the valves. The data acquisition system is
NI USB-6366 with the sampling rate of 2 MS/s. Since the distance between the first sensor
and the last one was 58 m, the proposed method was utilized to monitor a pipeline of
length = 58 m in this experiment. The host computer, which was utilized for localization
computation, was equipped with i7-6700 CPU, 8 GB DDR3 memory.
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Figure 2. The diagram of signal processing based on the proposed method.

Figure 3. The procedure of the localization method.
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Figure 4. Schematic diagram and photo of the measured experiment.

Table 1. Specific positions of the sensors.

Sensors Distance from Sensor 1 (Unit: m)

Sensor 2 15.83
Sensor 3 18.66
Sensor 4 34.48
Sensor 5 37.31
Sensor 6 58

Table 2. Specific locations of the leakages.

Leakages Distance from Sensor 1 (Unit: m)

Leakage 1 (L1) 7.2
Leakage 2 (L2) 23.52
Leakage 3 (L3) 42.15

The experiment was performed by taking the following steps: (1) The three valves
were initially closed; (2) for each test, the pipeline was pressurized up to 0.8 MPa via the
pipeline with the pressure of 0.8 MPa; (3) an event of leakage was created through opening
one of the valves in the pipeline; (4) the data acquisition system recorded the NPW signals
captured by PZT sensors; (5) by using the proposed method, the leakage position could be
distinguished by analyzing the recorded signals.

Under the usual operating states of pressurized pipelines, the internal pressure of the
pipeline is invariable and much higher than the external pressure [43]. When a leakage
happens (i.e., a crack develops), the pipeline content escapes through the crack, thus,
internal pressure drops significantly at the leakage point. The content in the pipeline shifts
from both upstream and downstream towards the crack. Following the decrease of the
internal pipeline pressure, the contraction of pipe wall decreases hoop strain variation on
the surface of the pipe. The six piezoelectric sensors will detect the hoop strain variation.
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4. Results and Discussion

The typical waveform of the NPW captured by PZT sensors are shown in Figure 5. As
aforementioned [43], for an undamaged pipeline, the amplitude is held at zeros as a result
of the internal pressure keeping constant. Then, the pulse-like waveform is generated since
the NPW reaches the sensors. The initial upward edge of the pulse indicates the drop of
internal pressure associated with the NPW, while the downward edge means the internal
pressure settling at a new baseline pressure. The peak of the pulse is the result of the NPW
being arriving at the sensor’s position.

In the signal processing phase, all NPW signals generated the leakages are processed
by using the conventional TR localization algorithms and the proposed algorithm, respec-
tively. During re-constructing the leakage area, we made the channel impulse response
gc(rn, rk, t) in Equation (3), by using the NPW propagation time of the corresponding
channel. gc(rn, rk, t) can be written as the following [51]:

gc(rn, rk, t) = an,kδ(t− distanc en,k

vg
) (6)

where δ(t) is the Dirac function, distancen,k is the distance between rn and rk, an,k is the
attenuation coefficient of the computational channel from point rn and the localization
point rk. During the computational back-propagation, it can reduce computation cost
for obtaining the attenuation coefficients and the waveform deterioration caused by the
back-propagation to set the attenuation coefficients to 1 (i.e., an,k = 1). Furthermore, as
mentioned above, the normalization eliminates the influence of the attenuation coefficients
of the channels (including the actual channels and the computational channels). Therefore,
by using the parameter setting (an,k = 1), the proposed method can obtain the results easily
and accurately. The NPW velocity is considered as 300 m/s, which is also the theoretical
NPW velocity reported in [42,43]. Furthermore, this value was chosen as it is situated in
the upper margin of velocity estimation and for convenience of calculations [59,60].

Since the system recorded the NPW signals under voltage trigger mode, the leak-
age happened before the data acquisition system began to obtain the signals. Therefore,
there is a time delay between the leakage occurrence time and the starting time of the
received leakage signal, namely the parameter “T” of Section 2. After time reversing and
re-transmitting the received NPW signals, the time reversed signals focus at the time t = −T.
The conventional TR localization algorithm which used the signal values at the time t = 0
to re-construct the image of the leakage location is shown in following equation:

Ic(rk) =
N

∑
n=1

f (t, rn, rk)

∣∣∣∣∣
t=0

(7)

In order to focus the time reversed signals at the time t = 0, the time delay needed to
be compensated. However, since the pipeline leakage occurrence time is unknown, the
compensation cannot be done. In this case, the conventional TR localization based on the
focal time will result in a wrong localization result.
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Figure 5. The NPW signals from leakage L2.

Therefore, the conventional TR localization method based on the maximum of the
time reversed signal is utilized to process the data for the purpose of comparison. The
localization functional of the conventional TR localization algorithm based on the maximum
value is represented as follows:

Ic(rk) = max
N

∑
n=1

f (t, rn, rk) (8)
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The results base on the proposed method and the conventional TR localization method
are shown in Figure 6. The localization functional values are normalized, and the position
of sensor 1 is considered as the starting point of the results. Since the distance between
the first sensor and the last sensors is 58 m, the length of the pipe in a computer is set as
60 m for convenience, and the length of the grid is set as 0.2 m. As shown in Figure 6, the
conventional TR localization method based on the peak of the time reversed signal can
reveal the positions of the leakages. However, due to the long signal duration which is
the result of the superposition of incident and reflected NPW, the time reversed signals
still superposed with each other at the points beyond the leakage point. Therefore, the
maximum value of the output signal attenuated slowly with the movement of the observed
point, the localization functional values at a lot of points are very close to that at the leakage
position. The leakage area revealed by the conventional TR localization method based on
the maximum of the time reversed signal covers a large range. By using the conventional
TR localization method, the −3 dB area of the L1 cover from length = 0 m to length = 19 m,
the −3 dB area of the L2 is from length = 23 m to length = 27 m and the −3 dB area of the
L3 ranges from length = 37 m to length = 60 m, as shown in Figure 6.

Figure 6. The localization results obtained by using the proposed method and the conventional TR
localization method based on the maximum of the time reversed signal.
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All time reversed signals will focus at the leakage positions with a similar waveform.
That means that the time reversed signals can cancel each other out completely via Equa-
tion (4) at the leakage position. After integrating the superposed signals via Equation (5),
the localization functional values at the leakage position will be larger than those at other
positions. Due to the adoption of the temporal integration, we do not need to calculate the
time delay which cannot be obtained. As shown in Figure 6, the plot based on the proposed
method gives a good estimate of the leakage positions. By using the proposed method, the
three estimated leakage positions are 7.4 m, 25 m, and 42.2 m, respectively. The maximum
deviation is about 2.7% over a 58-m monitoring area. Furthermore, the resolution of the
proposed method is superior to that of the conventional TR localization algorithm based
on the peak of the TR signal. As shown in Figure 6, the lengths of the three leakages’ −3 dB
areas are about 2 m, 2 m, and 4 m respectively. Obviously, the −3 dB area of the results
based on the proposed method is much smaller than that of the conventional one [46].

At various observation points, the L2’s time reversed signals from the all sensors, the
output signals of the proposed method and the output signals of the TR localization method
based on the maximum signal are shown in Figures 7–9. As shown in Figure 7, the time
reversed signals completely overlap with each other at the leakage position. Furthermore,
due to the long duration of the signals, most of the time reversed signals still superpose
with each other at the points beyond the leakage. Therefore, the output signal of the TR
localization method based on the maximum signal slowly attenuates at the points beyond
the leakage position, as shown in Figure 8. On the other hand, by using the proposed
method, most of the signals are canceled after the superposition. The output signal based
on the proposed localization method rapidly enlarges at the points away from the leakage,
as shown in Figure 9. The output signal of the proposed method at 24.68 m is twice larger
than that at 23.52 m. However, the signal of the conventional TR localization method based
on the maximum value only drops to 92%. At 25.68 m, the same phenomenon can also be
found; the output signal of the proposed method at the leakage position is one third of that
at 25.68 m, but the output signal of the conventional TR localization method based on the
maximum value drops to 69%. Since the change of the output signal based on the proposed
method is larger than that based on the conventional TR localization method, the −3 dB
leakage area revealed by the proposed method contains less points, compared to that of the
conventional TR localization method. Therefore, the resolution of the proposed method is
better than that of the conventional TR localization method based on the maximum.

Generally speaking, by using the proposed method, the three estimated leakage
positions are 7.4 m, 25 m, and 42.2 m respectively. That means that the maximum deviation
is about 2.7% over a 58 m monitoring area. Furthermore, the lengths of the three leakages’
−3 dB areas are about 2 m, 2 m, and 4 m, which are superior to those of the conventional
localization method. Therefore, the plot based on the proposed method gives a better
estimate of the leakage positions, compared to the result based on the conventional one.
That improvement is a result of the localization functional value based on the proposed
method decreasing significantly with the movement of the observed point. Besides, the
estimated localization errors of the proposed method are the result of the NPW reflecting
off the ends of the pipeline. The superposition of incident and reflected NPW postpones the
peak of the NPW signal. Consequently, the estimated leak locations shift from the actual
locations slightly. However, the estimated localization error of 2.7% is less and comparative.
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Figure 7. The L2’s time reversed signals.

Figure 8. Cont.
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Figure 8. After the superposition, the L2’s signals of the TR localization method based on the
maximum value.

Figure 9. After the superposition, the L2’s signals of the proposed method.
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5. Conclusions

When the conventional TR localization methods are employed for pipeline leakage
localization, they suffer from some issues, such as a low resolution. In this paper, a novel
time reversal localization method is designed for localizing pipeline leakages. Via the self-
adaptive cancellation and the temporal integration, the proposed localization method can
reveal NPW sources with an accurate and high-resolution result. We applied the proposed
method for leakage localization in a pressurized pipeline with PZT sensors. The results
indicate the proposed method can localize the leakages with a high accuracy. Furthermore,
the resolution of the proposed approach can be ten times that based on the conventional
TR localization method.
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Abstract: The strength of cemented paste backfill (CPB) directly affects mining safety and progress. At
present, in-situ backfill strength is obtained by conducting uniaxial compression tests on backfill core
samples. At the same time, it is time-consuming, and the integrity of samples cannot be guaranteed.
Therefore guided wave technique as a nondestructive inspection method is proposed for the strength
development monitoring of cemented paste backfill. In this paper, the acoustic parameters of
guided wave propagation in the different cement-tailings ratios (1:4, 1:8) and different curing times
(within 42 d) of CPBs were measured. Combined with the uniaxial compression strength of CPB,
relationships between CPB strength and the guided wave acoustic parameters were established.
Results indicate that with the increase of backfill curing time, the guided wave velocity decreases
sharply at first; on the contrary, attenuation of guided waves increases dramatically. Finally, both
velocity and attenuation tend to be stable. When the CPB strength increases with curing time, guided
wave velocity shows an exponentially decreasing trend, while the guided wave attenuation shows
an exponentially increasing trend with the increase of the CPB strength. Based on the relationship
curves between CPB strength and guided wave velocity and attenuation, the guided wave technique
in monitoring the strength development of CPB proves feasible.

Keywords: cemented paste backfill; guided wave; guided wave velocity; attenuation of guided wave

1. Introduction

The utilization of mineral resources has extensively promoted the development and
progress of human society, but it has also brought many environmental and safety problems.
For example, many environmental or geotechnical problems in the waste rock and tailings
are produced in ore mining and processing and the void left by mining [1]. One way to
solve this problem is to backfill the void with waste rocks and tailings, supporting the
ground and decreasing the management on the mine-site surface [2–4]. The backfilling
method can directly transport waste rocks and tailings to the void or transport the waste
rock and tailings to the void after adding water or cementitious materials [5]. It is called
cemented paste backfill (CPB) mining method to backfill the void after mixing the tailings
with cementitious material. Cemented paste backfill mainly consists of 70–85% (by solid
weight) tailings discharged by the mineral processing plant, 3–7 wt% binder, and a certain
amount of water [6]. Compared to other mining methods, it performs better in preventing
surface subsidence and controlling ground pressure activities. It has a higher ore recovery
rate, which reduces the accumulation of mine wastes on the surface, releases a large
amount of ground space, and reduces the mining industry’s impact on the environment [7].
Since the first underground CPB was implemented at the Bad Grund Mine in Germany in
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1979, which employed the fine mill rejects aggregate and silty filtered tailings as its main
components [8], it is still widely used worldwide. The strength of backfilling body is an
important index to evaluate the quality of CPB. Moreover, it is a crucial factor affecting
the safety production of adjacent stope [9]. If the backfill strength is insufficient, safety
accidents will quickly occur, and the environment will be polluted. At present, in-situ
backfill strength is obtained by conducting uniaxial compression tests on backfill core
samples, while it is time-consuming and the integrity of samples cannot be guaranteed [10].

The ultrasonic wave propagates as a bulk wave in an infinite medium, while the
guided wave is confined to propagate in a medium due to the medium boundary, and
the propagation direction is parallel to the medium boundary. The most significant dif-
ference between bulk and guided wave propagation is that guided wave propagation
needs the boundary’s ‘guidance’. A large number of reflections, refractions, and modal
transformations occur when acoustic waves propagate to the boundary of the waveguide
structure, resulting in mutual interference between acoustic waves and continuous super-
position, forming stable guided waves in a waveguide structure. The formation process
of guided waves determines that the guided wave propagation has high sensitivity to
defect characteristics and mechanical boundary changes. Based on this feature, guided
wave detection technology had been formed [11]. Guided wave technology is a popular
and relatively novel technology in the field of nondestructive testing. Compared with
the traditional ultrasonic wave test, it has the advantages of long propagation distance,
high detection efficiency, and wide detection range. However, the application of guided
waves has only gradually matured in the past 20 years. Cawley et al. [12–17] conducted
in-depth research on the propagation of guided waves in plates and pipelines and first
applied it to the field of nondestructive testing. Simonetti et al. [18] studied the corrosion
of pipelines by guided ultrasonic wave tomography. He C, Liu Z, et al. [19–22] proposed
a series of methods for the nondestructive testing of steel strands and wind blades by
ultrasonic guided waves [23–25]; meanwhile, they have developed a pipeline guided wave
testing system, which is based on a time-reversal defect-identifying method and time-space
focus theory [26–29]. D. Zou and Wang C et al. [30–35] conducted an in-depth study on
the guided wave characteristics of the rock bolts. Li J and Zima B [36,37] explored the
application of guided wave nondestructive testing technology to the integrity testing of
reinforced concrete materials through theories and experiments. Literature review shows
that guided waves have rarely been reported in the strength detection of mine backfill.

As the curing time goes on, the types and speciation of hydration reaction products
inside the cemented paste backfill changes, which will cause the strength of CPB to dif-
fer [38] and affect the propagation of guided waves in cemented paste backfill mass. Then
a variety of acoustic parameters such as wave velocity and attenuation during age means
the change of backfilling mechanical properties. Therefore, the corresponding acoustic
parameters of the guided wave to CPB strength, the guided wave monitoring method of
strength development of cemented paste backfill mass can be realized.

In this paper, we try to find out the relationship between acoustic characteristics of
guided waves propagating in CPB and the mechanical properties of CPB and propose a new
method for detecting the strength of CPB using guided waves. The frequency and period
of the excitation longitudinal guided waves were first optimized, and then the propagation
velocity and attenuation changes of guided waves in CPBs at different cement-tailings
ratios and different curing ages were tested. Combined with the uniaxial compression
strength of CPB, a relation between CPB strength and the guided wave acoustic parameters
was established.

2. Materials and Methods

2.1. Materials

The unclassified tailings come from the tailings pond of a copper mine. The chemical
composition of the tailings is shown in Figure 1. The main chemical compositions are
SiO2, CaO, Fe, and S, which account for 71.43% of the tailings’ weight. The particle size
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distribution of tailings is listed in Table 1. The tailings have a specific gravity of 2.75
and an average moisture content of 1.17%. It can be seen from Table 1 that the tailings
with a particle size larger than 0.074 mm account for 42.16%. Therefore, according to the
commonly used classification standard [39], the whole tailings in the test are classified as
coarse tailings.

Figure 1. Main chemical properties of the tailings.

Table 1. Particle size distribution of the tailings samples.

Particle Size/um 0~33 33~45 45~74 >74

Content/% 38.82 4.31 14.71 42.16 100

No. 32.5 ordinary Portland cement was used as a binder agent, commonly used in the
copper mine. Ordinary tap water was used to mix binder and tailings in this study.

2.2. Specimens for Test
2.2.1. Background

Cemented paste backfill mining method is adopted in a copper mine, and the void
is backfilled in two phases. The concentration of the first stage backfilling slurry is 70%,
and the cement-tailings ratio is 1:4. When backfilling to 1/2 of an inlet section, the first
stage backfilling is terminated, the second stage backfilling slurry concentration is 70%,
but the cement-tailings ratio is 1:8. To be combined with the field, the concentration of
test specimens prepared in this test is 70%, and cement-tailings ratios are 1:4 and 1:8,
respectively, representing the first-stage and second-stage backfill.

2.2.2. Specimens for Guided Wave Test

Generally, the waveguide structure, including a waveguide rod and several sensors, is
used to excite and receive signals. Therefore, a waveguide structure was buried in the CPB
specimen, with part of the waveguide structure exposed to the air.

The size of guided wave test pieces is 400 mm × 400 mm × 300 mm, the concentration
of test specimens prepared in this test is 70%, and cement-tailings ratios are 1:4 and 1:8. With
a diameter of 20 mm and length of 460 mm, a waveguide was buried in the longitudinal
center of the piece, letting 30 mm at each end of the waveguide rod fix the sensor. The
dimension diagram of specimens is shown in Figure 2. For the convenience of explanation,
the 1:4 CPB sample was numbered ‘A’, and the 1:8 CPB sample was numbered ‘B’.

Before preparing test pieces, we placed the waveguide rod in the prefabricated hole.
The weighed materials were mixed and homogenized for about 10 min. Then, the stirred
slurry was poured into the test mold to be vibrated evenly. Demoulding after curing for
three days, and placed the test piece into an environmental chamber with the controlled
temperature at 20 ± 2 ◦C and 90% ± 5% relative humidity.
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Figure 2. The dimension of specimens for guided wave testing. (a) Side view; (b) Top view;
(c) Photograph.

2.2.3. Specimens for Uniaxial Compression Strength (UCS) Test

In this section, specimens for UCS tests are prepared with a concentration of 70%, and
the cement-tailings ratio is 1:4 and 1:8, respectively, and the curing time is 3, 7, 14, and
28 days. The tailings, binder, and water with different proportions were prepared by an
electronic scale with an accuracy of 0.01 g and thoroughly homogenized for about 5 min to
produce the desired CPB mixtures. Then the CPB slurry was molded to a 50 mm × 100 mm
cylinder. Next, put the prepared test specimens into an environmental chamber with the
controlled temperature at 20 ± 2 ◦C and 90% ± 5% relative humidity.

2.3. Guided Wave Test

During the consolidation process, the phase state and microstructure of CPB constantly
change, making the acoustic characteristics of guided wave propagation change. In this
experiment, the parameters of the guided wave are optimized. Firstly, the same frequency
with different cycles (within eight cycles) of excitation waves was adopted to determine the
optimal cycle, and then the same cycle with different frequencies (20–70 kHz) of excitation
waves was used to find the best frequency. These tests were carried out on CPB with the
ratio of 1:4 and 1:8 and the concentration of 70%. The monitoring time was from 1 d to
42 d. The solidification process of the specimen is changing from a fluid to an elastoplastic
body, and the change of this process will definitely lead to the change of the mechanical
parameters of the specimen. The wave velocity and attenuation characteristics are obtained
through the guided wave test to reflect the solidification process of the filling. In this
way, the relationship between the strength of the filled body and the wave velocity and
attenuation is established.

2.3.1. Test Set-Up and Procedure

Guided wave testing system includes waveform generator, oscilloscope, signal power
amplifier, sensors, et al. Connect as shown in Figure 3. Firstly, sensors were connected with
the waveguide rod. Then, a thin layer of coupling agent was coated on the contact surfaces
of the sensor and waveguide rod to ensure complete contact. Only one channel was used
for the waveform generator after turning on the signal waveform generator, preheated for
10 min. The waveform generator generated excitation waves by reading the waveform
file. After amplifying by the power amplifier, excitation wave entered the waveguide rod
through the sensor. Finally, the received signal was denoised by the signal acquisition
system and then stored in a U disk.

The excitation wave in this test comes from the following signal function Equation (1):

A sin(2π f t)× (1− cos(2π f t/n)) (1)

where A is amplitude, f is the frequency, t is the duration, and n is the number of input
cycles. The larger n is, the higher the energy of the excitation wave and the easier the
resulting reflected wave is to identify. However, increasing n also increases the width of
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the wave packet, resulting in the overlap of the wave packet of the excitation wave with
the wave packet of the reflection wave. Therefore, n cannot be too large or too small.

Figure 3. Diagram of guided wave testing system.

2.3.2. Guided Wave Velocity and Attenuation Data Processing

The collected data need to be processed to obtain the desired guided wave acoustic
parameters, wherein the wave velocity of the guided wave is calculated by the following
Equation (2):

V =
L

Δt
(2)

where V represents wave velocity, L represents the waveguide length, Δt represents the
time difference between the original signal and the received signal.

To reduce the error, the time difference of data processing takes a value between the
starting point of the original signal and the first received wave, as shown in Figure 4. The
first vibration change of the signal waveform is the starting point, and the starting point
of the excitation and reception waves is specifically the point where the amplitude of the
excitation and reception waves cross the threshold for the first time.

Figure 4. Pickup at the starting point and the time difference between the excitation and reception waves.
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In addition to the velocity of guided waves, the attenuation of guided waves can also
reflect the change of cemented paste backfill strength. Therefore, the attenuation value At
is calculated by the following Equation (3):

At = −20
L

lg(
P

Pre f
) (3)

where Pref represents the peak-to-peak value of the excitation wave, P represents the peak-
to-peak value of the wave captured from the other end of the waveguide, L is the length of
the waveguide.

2.4. UCS Test

Uniaxial compressive strength is one of the important indexes to evaluate the quality
of backfill. The High-pressure triaxial testing system produced by British GDS Instruments
was used in this test, as shown in Figure 5. In the test progressing, specimens were loaded
under a constant force ratio of 0.5 kN/s. To avoid random errors in the tests, referring to
the test standard ASTMC 39, four specimens were taken for each group of tests.

Figure 5. The High-pressure triaxial testing system.

3. Results and Discussion

3.1. Optimization of Excitation Wave

To obtain the effective acoustic parameters of guided waves, it is necessary to select
the optimal parameters of the excitation wave. The main parameters of the excitation
wave are cycle and frequency. In this section, the appropriate cycle and frequency of the
excitation wave were selected by analyzing the following two parts.

3.1.1. Optimization of the Excitation Wave Cycle

The signal waveforms of the same frequency (within 100 kHz) in different cycles were
used to test. Due to space constraints, following Figure 6 shows four representative signal
waveforms under different cycles (n = 3, 5, 6, 8) at 40 kHz.

As shown in Figure 6, when the excitation waves with the same frequency but different
periods were generated, the reflection formed by the guided wave propagating in the rod
was different. The more period the excitation wave, the more incredible energy it will
generate and the more pronounced the received wave can be formed, which is convenient to
analyze. As shown in Figure 6a,b, it can be seen that the first end-reflected wave magnitude
of 5 cycles has less attenuation than three cycles. The amplitude of 3 cycles was reduced
from 15.09 v to 2.73 v, a decrease of 81.90%; the amplitude of 5 cycles was reduced from
10.00 v to 2.33 v, a decrease of 76.74%, indicating that the reflected wave with five cycles
has more energy than that with three cycles, and the peaks of the excitation wave and the
reflection wave with five cycles are more straightforward to distinguish than the waves
with three cycles. Hence, it is more convenient to calculate the time difference between
the peaks. However, increasing the number of cycles also increases the width of the wave
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packet, as shown in Figure 6c,d, which will cause the wave packet of the excitation wave to
overlap with the reflected wave of the waveguide and cannot be identified. The amplitude
of guided wave with six cycles reduced from 30.12 v to 1.32 v, with a decrease of 95.61%,
and the amplitude of guided wave with eight cycles decreased from 15.11 v to 0.97 v, with a
decrease of 93.60%. In conclusion, the excitation wave with five periods is the most suitable
for this test.

Figure 6. Effect of excitation wave parameter n on the receiving wave. The characteristics of the
received wave are observed by changing the excitation wave parameter n. The amplitude decay,
wave packet shape and overlap of the received wave are compared to optimize the parameter n.

3.1.2. Optimization of the Excitation Wave Frequency

The same cycle with different frequencies (20–70 kHz) of the excitation waves was used
to detect guided waves’ velocity and attenuation in CPBs. The results were illustrated in the
following figures. Figure 7 shows the change of velocity with curing age at different guided
wave frequencies. The result shows that the sensitivity of different frequency excitation
wave to the detected structure is different. The overall trend of wave velocity changes
at various frequencies decreases with the curing time, especially the initial wave velocity
changes most apparent, and the wave velocity changes at the middle and late curing
periods are small and tend to be stable. As shown in Figure 7, sample A has noticeable
wave velocity variation at the excitation wave frequencies of 30 kHz, 50 kHz, and 60 kHz.
The differences between the first day and the second day are all about 1000 m/s, among
them, the wave velocity changes the most when the excitation frequency is 30 kHz, and
the difference reaches 1364.33 m/s; For sample B, the wave velocity changes significantly
when the excitation wave frequencies were 20 kHz, 30 kHz, and 50 kHz. At the frequency
of 30 kHz, the maximum difference between the first day and the second day reaches
1300 m/s.
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Figure 7. Velocities at different guided wave frequencies; (a) sample A; (b) sample B.

It can also be demonstrated from Figure 7 that the influence of CPB with a different
cement-tailings ratio on wave velocity is different. From the stable value of wave velocity
in the later curing period, velocity in sample A is lower than that in sample B.

Figure 8 shows the change of attenuation with curing age at different guided wave
frequencies. It can be seen from the figure that according to the change of attenuation value
with age, as the curing age increases, the attenuation change trend of guided waves in
samples A and B is the same, which increases first and then decreases. From the initial
curing to the age of 21 d, the attenuation shows an increasing trend, reaching the maximum
value at 21 d and decreasing. When the excitation frequencies are 20 kHz, 30 kHz, and
70 kHz, the attenuation is more prominent, the maximum attenuation value of all three
exceed 120 dB/m, and the guided wave attenuation is the smallest at 50 kHz. Among them,
the attenuation value at 20 kHz and 70 kHz are relatively close, but the attenuation value
of guided waves reaches the maximum at 30 kHz. The attenuation of guided waves in
CPB with different cement-tailings ratios is also different. In the frequency range 20 kHz
to 70 kHz, the attenuation value of specimens with a cement-tailings ratio of 1:8 is more
significant than that with a cement-tailings ratio of 1:4. From the above results, it can be
seen that the excitation wave with a frequency of 30 kHz is more sensitive to the detection
of CPB, so the best frequency of the guided wave is 30 kHz. Therefore, combined with the
conclusion of Section 3.1.1, a cycle of 5 and a frequency of 30 kHz are the most suitable
parameters for monitoring CPB.

3.2. Relationship between UCS and Velocity of Guided Wave

When specimens were tested using guided waves, specimens with curing times of 3 d,
7 d, 14 d, and 28 d were conducted uniaxial compressive testing simultaneously. The test
results are shown in Table 2.
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Figure 8. Attenuation at different guided wave frequencies; (a) sample A; (b) sample B.

Table 2. Uniaxial compressive strength of CPBs.

UCS/MPa

3 d 7 d 14 d 28 d

Cement-tailings Ratio (1:4)

1.25 1.73 2.12 3.42
1.23 2.01 2.15 3.33
1.08 1.82 2.38 3.15
1.32 1.64 2.34 3.65

Cement-tailings Ratio (1:8)

0.69 1.14 1.67 2.12
0.73 1.12 1.47 2.08
0.71 1.15 1.23 1.99
0.75 1.08 1.51 2.29

As demonstrated in Table 2, the UCS of CPB regularly increases with curing time.
From the results obtained in Section 3.1.2, the guided wave propagation in CPB also
changes regularly with curing time. Based on this, the uniaxial compressive strength can
be correlated with velocity or attenuation of guided waves in CPB under the corresponding
curing time, and relationships between UCS and velocity or attenuation can be found. In
engineering practice, the waveguide rod structure can be applied to monitor the strength
of CPB, thus realizing the on-site monitoring of the strength of cemented paste backfill.
The curve between the UCS and guided wave velocity of CPB was fitted in this section.

Compared with various fitting schemes, an exponential function was finally selected
for fitting, and the results are shown in Figure 9. The fitting of UCS and wave velocity
of CPB with cement-tailings ratio 1:4 is illustrated in Figure 9a, and the fitting formula is
shown in the following Equation (4), with a correlation coefficient (R2) of 0.9868. The fitting
of UCS and wave velocity of CPB with cement-tailings ratio 1:8 is shown in Figure 9b, and
the fitting formula is shown in the following Equation (5), with a correlation coefficient
(R2) of 0.9874.

y = e(313.9545−0.21249x+3.5965×10−5x2) (4)
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y = e(626.11828−0.39199x+6.1315×10−5x2) (5)

where y represents the UCS, and x represents the wave velocity of guided waves in CPB.

Figure 9. Relationship between UCS and velocity data for different cement-tailings ratio. Quantifica-
tion of UCS by wave velocity.

The correlation coefficients of fitting are all greater than 0.98, so the fitting is reliable.
The strength changes of the two kinds of cement-tailings ratio CPB are the same with
the change of wave velocity, and both show an exponential downward trend with the
increase of wave velocity. The higher the wave velocity of guided waves propagating in
cemented paste backfill mass, the lower the strength of CPB and the smaller change value
of the strength.

3.3. Relationship between UCS and Guided Wave Attenuation

This part fits the curve between UCS and the attenuation of guided waves in cemented
paste backfill mass. Compared with various fitting schemes, the exponential function is
still selected for fitting, and the results are shown in Figure 10.

Figure 10. Relationship between UCS and attenuation data for different cement-tailings ratio. Quan-
tification of UCS by wave attenuation.

The fitting of UCS and attenuation of guided wave in CPB with cement-tailings ratio
1:4 is shown in Figure 10a, and the fitting formula is shown in the following Equation (6),
with a correlation coefficient (R2) of 0.9715. The fitting of UCS and attenuation of guided
wave in CPB with cement-tailings ratio 1:8 is shown in Figure 10b, and the fitting formula
is shown in the following Equation (7), with a correlation coefficient (R2) of 0.9760.

y = 0.22848 + 0.00372e0.05837x (6)

y = 0.71553 + 1.1902× 10−7e0.1296x (7)

where y represents the UCS, and x represents the attenuation of guided wave in CPB.

493



Sensors 2021, 21, 8499

As is shown from the fitting function, the correlation coefficients of the fitting are both
more than 0.97, and it is considered that the fitting is ideal. The strength variations of the
two kinds of cement-tailings ratio are the same with the change of attenuation. UCS has
the trend of the exponential increase with the increase of the wave velocity. The higher
the attenuation of guided wave in CPB, the higher the UCS, and the greater the intensity
variation value.

4. Conclusions

This section is not mandatory but can be added to the manuscript if the discussion is
unusually long or complex.

(1) Guided waves with a frequency of 40 kHz and cycle numbers of 3, 5, 6, and 8 were
used to detect cemented paste backfill samples. The results show that the larger cycle
of the excitation wave, the easier the excitation wave and received wave overlap;
they are difficult to distinguish. Combined with the attenuation of guided waves, the
optimal detection cycle of the guided wave was determined to be 5.

(2) Guided waves with frequencies of 20–70 kHz were used to test samples A and B,
respectively. The general trend of wave velocity at each frequency decreases with
curing time and will finally be stable. However, with the increase of the curing period,
the attenuation of guided waves in CPB increases first and then decreases. The test
results indicate that both the velocity and attenuation of guided wave change most
obviously at the frequency of 30 kHz. Therefore, 30 kHz is the optimal guided wave
frequency for cemented paste backfill monitoring.

(3) Through the uniaxial compression test and guided wave test, the Mechanical and
acoustic parameters of CPB were studied. The relationship between strength and
wave velocity, strength and attenuation, and the corresponding exponential function
fitting equations were found.

This study implicated that the guided wave technique as a nondestructive inspec-
tion method can also be used to evaluate CPB’s quality and properties besides defect
detection. While some aspects still need to investigate the performance of CPB samples
using the guided wave technique. In this paper, the guided wave testing uses the through-
transmission method; whether the pulse-echo method still works remains determined.
Furthermore, the influence of cement-tailings ratio on acoustic parameters has been stud-
ied, but the influence of slurry concentration and aggregate particle size on guided wave
acoustic parameters still needs further study.
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Abstract: Lamb waves have multimodal and dispersion effects, which reduces their performance in
damage localization with respect to resolution. To detect damage with fewest sensors and high reso-
lution, a method, using only two piezoelectric transducers and based on orthogonal matching pursuit
(OMP) decomposition, was proposed. First, an OMP-based decomposition and dispersion removal
algorithm is introduced, which is capable of separating wave packets of different propagation paths
and removing the dispersion part successively. Then, two simulation signals, with nonoverlapped
and overlapped wave packets, are employed to verify the proposed method. Thereafter, with the
proposed algorithm, the wave packets reflected from the defect and edge are all separated. Finally, a
sparse sensor array with only two transducers succeeds in localizing the defect. The experimental
results show that the OMP-based algorithm is beneficial for resolution improvement and transducer
usage reduction.

Keywords: Lamb wave; modal separation; damage imaging

1. Introduction

Ultrasonic guided waves have become the preferred tool in nondestructive testing
and structural health monitoring (SHM). Lamb waved are one of the most commonly
used ultrasonic guided waves in damage detection, due to their intrinsic advantages [1,2].
Lamb waves can propagate in a thin shell structure for a long distance with low energy
loss. At the same time, they are sensitive to different types of damage such as cracks and
corrosion [3]. Usually, a change of sensing signal amplitude or energy can be considered to
be a change of wave-guided material, which is generally caused by damage.

In most mechanical structures, such as airplanes, ships, and deep submersibles, there
are a lot of covering skins fixed by rivets. (e.g., Figure 1). Although the skins do not bear
the structural gravity and workload, they play a great role in structure safety. There have
been serious airline accidents caused by damage to skins. Usually, the damage is in the
form of fatigue cracks in the rivet area. Therefore, the defects are mostly found at locations
close to the edge. In this case, generated Lamb waves propagate to the defect and edge
zone, and are reflected by the crack and edge. Consequently, the sensing signals contain
the direct arrival wave, and the reflection waves from crack and edge. The wave signals
may overlap each over, which makes signal explanation rather difficult. However, if these
individual waves can be decomposed, it is beneficial to localize the damage, and moreover,
it helps to reduce the number of deployed sensors. In this paper, we try to decompose the
overlapped signals from the collected signal of two sensors. Ideally, it is best to deploy
only one self-sensing sensor, which can generate and sense simultaneously.

Due to the dispersion nature of Lamb waves, waves of different frequencies will
propagate with different speeds, which causes the wave packet to widen during propaga-
tion. Therefore, the dispersed waves of each path are overlap with each other more easily
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than without dispersion. Moreover, there are at least two modes of Lamb waves at any
frequency, due to their multimodal nature, which makes signal processing more difficult [4].
Therefore, signal processing is essential for a Lamb wave-based SHM system. Wang et al.
proposed a damage imaging algorithm based on time-of-arrival (TOA), in which they
innovatively defined the possible location of the defect to be an ellipse with excitation and
reception sensors as the focal points [5]. Following from that, Hall and Michaels improved
the TOA algorithm using adaptive weighting coefficients, making the location imaging
more accurate [6]. Another commonly used imaging method is based on time difference
of arrival (TDOA) to different sensors; mathematically, the possible location of the defect
seems to be a hyperbolic line. When using the TDOA algorithm, the number of sensors
increases, but the imaging quality is not significantly enhanced [7]. Perelli et al. proposed
a damage localization based on warped frequency transform (WFT) [8], which decom-
poses each wave packet from the spectrum of WFT and localizes the damage using these
decomposed wave packets. However, the decomposed wave, not the original excitation
wave, is dispersed, which may reduce the localization resolution. If damage occurs near
the edge, there are multiple simultaneous propagation paths. Therefore, Ebrahimkhanlou
et al. initially used a priori information of scattered wave fields to confirm each wave path.
Then, the start and end points are taken as the focal points, and the TOA method is used
to localize the damage. However, they used the original signal to confirm the possible
localization line [9]. To improve the localization resolution, in this paper, it is similarly
necessary to clarify the path of scattered waves. Moreover, accurately separating individual
wave packets is also important.

Figure 1. Skins of structures. (a) hull of ships and (b) aircraft skins.

In the history of scattered wave decomposition, decomposition methods based on
dictionaries have gained great popularity. Alguri et al. constructed a dictionary containing
wave signals of different travel distance using experiments, and then reconstructed the
scattered waves from the online monitoring data [10]. Golato et al. built a dictionary
consisting of multi-mode scattered Lamb waves and solved the sparse reconstruction
problem of Lamb wave signals [11]. However, the above-mentioned methods above did
not accomplish modal separation and elimination of the dispersion. Caibin Xu et al. built
a dispersion signal dictionary using the dispersion curves to sparsely decompose the
recorded dispersive guided waves, and innovatively obtained dispersion-compensated
guided waves by using a non-dispersion signal dictionary [12]. Furthermore, they furthered
an interesting method to obtain the dispersion curve of an unknown material, in which
they acquired the unit pulse response of the measured structure, and interpolated the
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transfer function from the frequency domain into the wavenumber domain [13]. After
this, they systematically proposed the construction method of over-completed dictionaries,
which contained dispersive atoms and nondispersive atoms [14].

Recently, Caibin Xu et al. have proposed a focusing classical multiple-signal classifica-
tion (MUSIC) algorithm based on the virtual time reversal technique, which can localize
multi-defects without baseline subtraction. The proposed method is valuable for the practi-
cal use of Lamb wave-based structural health monitoring [4]. The matching pursuit (MP)
algorithm, proposed by Mallat and Zhang, can decompose the signal into a combination
of waveforms selected from the dictionary [15]. However, the vertical projection of the
signal onto selected atoms is non-orthogonal, which makes the result of each iteration not
optimal but suboptimal, requiring more iterations to achieve convergence. In this paper,
we propose a guided-wave imaging method based on sparse reconstruction, which uses
an analytical guided-wave propagation model to generate scattered signals for different
propagation distances and modes, known as atoms of the dictionary. We constructed a
dictionary containing wave signals of different travel distances by equations, and built a
nondispersive dictionary by equations. In addition, then, the overcomplete dictionary is
used to match the collected Lamb wave signals under the assumption of signal sparsity,
which means there are only a few damage-related signals in the collected signal. Indeed, the
damage occurs at only a few discrete locations in the structure. The orthogonal matching
pursuit (OMP) algorithm is used to separate each wave component. The propagation
distance is related to the labels of the selected atoms. The OMP algorithm orthogonalizes
all the atoms needed at each step of the decomposition, and converges faster [16].

The rest of the article is organized as follows. Section 2 describes in detail how to
construct the dictionary using the Lamb wave scattering model and the procedures of the
OMP algorithm, and how to remove dispersion simultaneously. In Section 3, numerical
simulations are carried out, nonoverlapped and overlapped signals are decomposed, and
dispersion is removed by the OMP algorithm to verify its correctness. In Section 4, experi-
mental studies are implemented to validate the proposed method. Finally, conclusions are
drawn in Section 5.

2. Methodology

2.1. Introduction of OMP

If the signal is sparse on some basis functions during decomposition, it means that
the energy of the signal gathers on a few basis functions. Therefore, the signal can be
represented by these basis functions and their coefficients [17].

Suppose that given a dictionary D = {a1, a2, a3 . . . . . . aL}, L � N. For arbitrary
signals y∈RN, select K atoms in the dictionary D and make a K-term approximation to y.

yK = ∑
i∈IK ,|IK |=K

〈y, ai〉ai (1)

where IK is the subscripts set of the K atoms, corresponding to the first K maximum
coefficient of |y, ai|.

In other words, it prefers selecting the set of atoms with the sparsest decomposition
coefficients from various possible combinations of dictionary atoms, which also reflects the
idea of sparse signal decomposition.

2.2. Overcomplete Dictionary Construction

In an infinitely large thin plate, the structure response at a distance of d from the
excitation can be expressed as [18]

uAorS
n (t) =

√
1
d

1
2π

∫ +∞

−∞
S(ω)ejωte−jkA or S

n (ω)ddω (2)
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where u(t) is the time domain response signal of n-th symmetric mode (S) or anti-symmetric
mode (A), t is the travel time, ω is the angular frequency, S(ω) is the frequency domain
representation of the excitation signal f(t), k(ω) is the wave number of the corresponding
Lamb wave mode, and j is the imaginary unit. The frequency representation of Equation
(2) can be written as

U(ω) =

√
1
d

S(ω)e−jk(ω)d (3)

The same as above, if there is a through-thickness damage in the plate, then the
propagation distance from the excitation source to the damage then to the receiver is ds.
Therefore, the received scattered signal Y(ω) in the frequency domain can be expressed as

Y(ω) = α(ω)β(ω)

√
1
ds

S(ω)e−jk(ω)ds (4)

When there are multiple damages in the plate, the corresponding scattered signal can
be approximated as a linear superposition of each individual case, without considering the
scatter phenomenon between any two damages [18,19]

Y(ω) = ∑
i

αi(ω)βi(ω)

√
1

dsi S(ω)e−jk(ω)ds
i

(5)

In the above equation, αi(ω) is the scattered coefficient from the excitation source to
the damage of the i-th damage; βi(ω) is the scattered coefficient from the damage to the
receiver of the i-th damage, and ds

i is the propagation distance of the i-th propagation path.
From Equation (2), it can be seen that the signal is obtained by multiplying the atoms in
the dictionary with their coefficients, so the value of the scattered coefficient αi(ω) will be
reflected in the coefficient matrix θ. From this, the i-th column of the dictionary D of A or S
mode can be expressed as

ai = F−1

{√
1
di S(ω)e−jkAorS

n (ω)di

}
(6)

where di is the propagation distance of the i-th atom, F−1{·} represents the inverse Fourier
transform. Thus, the single-mode dictionary can be obtained in the form [12]

DA or S =

⎡⎢⎢⎢⎣
a1

1a2
1 · · · ai

1 · · · aL
1

a1
2a2

2 · · · ai
2 · · · aL

2

...
...

. . .
...

. . .
...

a1
N a2

N . . . ai
N · · · aL

N

⎤⎥⎥⎥⎦
where the aim is the value of the m-th sampling point in the i-th atom.

2.3. Nondispersive Dictionary

The expressions of wave number, phase velocity, and group velocity are respec-
tively [14]

ka(ω) = 1
Cp(2π f )ω

Cp(ω) = ω
ka

= Cp(2π f )
Cg(ω) = dω

dka
= Cg(2π f )

(7)

It is proved that if the wave number of the Lamb wave is linearly related to the
frequency, the envelope of the response signal will be the same as the envelope of the
excitation. In other words, if the wave number of Lamb wave is linear with respect to
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frequency, it will not be dispersive. Therefore, the propagation distance can be calculated
by the group velocity of central frequency.

xi = Cg(2π fc)ti (8)

Bringing the above equation into Equation (3) and neglecting the amplitude change
due to signal propagation, we can obtain the nondispersive signal yi(t).

yi(t) =
1

2π

∫ +∞

−∞
S(ω)ej(ωt−kaxi)dω =

1
2π

∫ +∞

−∞
S(ω)ejω(t−ti)dω = f (t− ti) (9)

Equation (9) shows that the nondispersive signal is equal to the excitation signal with
a phase shift, so the nondispersive dictionary Dn can be built.

DA or S
n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(t− t1) f1(t− t2) · · · f1(t− ti) · · · f1(t− tL)
f2(t− t1) f2(t− t2) · · · f2(t− ti) · · · f2(t− tL)

...
...

. . .
...

. . .
...

fm(t− t1) fm(t− t2) · · · fm(t− ti) · · · fm(t− tL)
...

...
. . .

...
. . .

...
fN(t− t1) fN(t− t2) · · · fN(t− ti) · · · fN(t− tL)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where fm(t-ti) is the value of the m-th sampling point of the nondispersive signal with time
shift ti.

2.4. OMP-Based Decomposition and Dispersion Removal Algorithm

Assuming that ys contains r wave packets, the received signal ys can be represented
by a linear combination of its atoms [18]

ys = Dθ + n (10)

where D∈RN×M (M ≥ r) is the overcomplete dictionary, θ∈RM is the coefficient column
vector, and n∈RN is the residual noise term.

The above equation is an underdetermined equation. If the number of atoms M is large
enough and the travel distance ds

i (1 ≤ i ≤ r, i∈N+) of the scattered signal is completely
covered by the distance di (1 ≤ i≤M, i∈N+) corresponding to the given atoms, then, the
scattered signal can be sparsely decomposed with the dictionary D by the OMP algorithm.

OMP is an iterative algorithm capable of selecting the best fitness atoms from the
overcomplete dictionary for signal reconstruction. The OMP algorithm is described as [20]

(1) Initialization process. Determine sparsity degree K which means the number of
potential wave packets. Build an overcomplete dictionary D as:

D = [a1, a2, a3 . . . ai . . . aL]

where ai indicates the i-th atom in the dictionary.

(2) Orthogonal matching. Find the column aλ in the dictionary according to the product
value θλ of acquisition signal y and aλ. Then, record the product value θλ, known
as matching coefficients. aλ = argmaxi=1,2...N |〈y, ai〉|, λ indicates that the atom is the
λ-th column in the dictionary, and θλ = maxi=1,2...N |〈y, ai〉|.

(3) Update and iteration. Update the solution set θ = θ ∪ {θλ}, and update the residual
signal by subtracting the selected atoms from the signal of last iteration.

y = min‖y− aλθλ‖2
2

(4) Termination judgment. Determine whether the number of iterations is greater than K.
If it is not satisfied, execute the matching and update procedures again.
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It should be noted that the solved θ is a column vector with mostly zero elements,
when using the overcomplete dictionary, and the non-zero element θλ of θ represents
the scattering coefficient of the λ-th atom in the dictionary with travel distance Lλ. Each
scattering wave packet with a unique travel distance in the collected signal can be recovered
using the above equation and the overcomplete dictionary D. The propagation distance of
the scattering wave packet can be visually expressed by the travel distance of the λ-th atom.
With the same column label, the collected signal can be represented as the combination
of nondispersive wave packets using the nondispersive dictionary. Sparsity degree K
determines the number of atoms selected from the dictionary. When the value of K is
small, some wave packets may not be matched. When the value of K is large, matching
performance will be better but the amount of calculation is greatly increased. Therefore,
the total number of wave packets m in the signal needs to be predicted, and in general,
the value range of K is 2m ≥ K ≥ m. The procedure of the proposed method is shown in
Figure 2.

Figure 2. Schematic of the procedure of the proposed method.
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3. Methodology Verification

Numerical Simulation

To verify the performance of the OMP-based dispersion removal approach, numerical
simulations are first provided, including a nonoverlapped case and an overlapped case.

Abuqus CAE was adopted to simulate Lamb wave propagation, and a simulation
model with the dimensions 1250 mm × 1250 mm × 2 mm (length × width × thickness)
was conducted. At the edge regions, the wave absorption layer was built to eliminate the
reflected wave. Moreover, two different actuators with the locations A (100,400) and B
(300,400), and one receiver with location C (800,400) were set. Therefore, two different
wave-guided paths were simulated in this case, and the distances between the actuator and
receiver were different. Material parameters of the simulation model are listed in Table 1.

Table 1. Material parameters.

Material Density (kg/m3) Elastic Modulus (Pa) Poisson’s Ratio

Q235 7800 2.1 × 1011 0.33

In the numerical simulation, the larger the grid size, the less computational con-
sumption. However, with the increase of the grid size, simulation error decreases. On
the contrary, a smaller size might increase the computational consumption exponentially.
Therefore, element size is usually limited to one-tenth of the wavelength. In this case, the
central frequency of the excitation signal was 100 kHz, and the grid size in this study is set
as 1 mm. According to Nyquist’s theory, the acquisition frequency must be at least twice
the maximum frequency component. In the simulation and experiment, the acquisition
frequency was 2.5 MHz for full frequency range acquisition [21].

A five-cycle sinusoidal signal modulated with Hanning window was selected as the
excitation signal, it can be expressed as follows:

y = A sin(2π fct)× (1− cos(2π fct/N)) (11)

where A is the amplitude of the sinusoidal signal, N denotes the cycle number of the
modulated signal, fc represents the central frequency, and t is time serial ranging from zero
to N/fc.

Since the center frequency used is below the cutoff frequency of S1 and A1 modes,
only two fundamental Lamb wave modes A0 and S0 are considered [22]. As shown in
Figure 3a, the dispersive signal contains a total of four wave packets, which are two mode
components for two propagation paths. By OMP algorithm, the original signal can be
separated to four wave packets. The two separated S0 and A0 mode wave packets are as
shown in Figure 3b,c respectively.

The A0 and S0 modes can be easily separated by the previously built single-mode
dictionary, and it can be seen that the A0 mode has undergone more serious dispersion, as
shown in Figure 3c. Reconstruction of the separated modal signals using a nondispersive
dictionary can better eliminate the dispersion, as in Figure 4.

In the modal separation of Lamb waves, the sparse decomposition of the dispersive
signal is based on the corresponding modal dictionary, which must contain all the corre-
sponding atoms to fully compensate all the dispersive modes. Otherwise, the dispersive
signal will be incompletely compensated [23]. In signal reconstruction using only the S0
modal dispersion dictionary, the dispersive signal is recovered for the S0 mode component,
while the A0 mode component is not recovered, as shown in Figure 5. This is because
there is no atom corresponding to the wave packet of A0 mode in the S0 mode dictionary.
In conclusion, the proposed approach based on sparse decomposition cannot handle the
case with an incomplete dictionary. In other words, the maximum propagation distance of
the atom signal in the single-mode dictionary must be larger than that of the signal to be
processed, and the same requirement is suitable for the atom signal in the nondispersive
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dictionary. In practice, the time information depending on the length of the dispersive
signal acquisition can be known in advance, and then the dispersive and nondispersive
dictionaries can be built to cover all possible wave packets.

Figure 3. Mode separation: (a) Original signal; (b) Separated S0 mode dispersion signal; (c) Separated
A0 mode dispersion signal.

Figure 4. Dispersion compensation: (a) S0 mode signal; (b) S0 dispersion removal signal; (c) A0
mode signal; (d) A0 dispersion removal signal.

504



Sensors 2021, 21, 8127

Figure 5. S0 modal recovery.

Usually, there are many wave packets from different propagation paths collected by
the acquisition system simultaneously. Apparently, there are wave packets that overlap
each other. For further verification of the proposed algorithm, the exciter positions are set
to A (250,400) and B (300,400), and the receiver position remains unchanged. In contrast to
Figure 5, there seems to be only two wave packets of two mode components, as shown in
Figure 6, due to the overlap phenomenon.

Figure 6. Overlapping wave packets.

However, when sparse decomposition of the signal is performed, it still requires two
atoms from the A0 dictionary and two atoms from the S0 dictionary to match it. In the
same way as above, the matched atoms are used to represent the wave packets of the signal,
and finally the dispersion is removed using the nondispersive dictionary. The procedure is
shown in Figure 7. It turns out that this approach is still able to separate the wave packets,
even if they are overlapped.
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Figure 7. Separation of overlapped wave packets.

4. Experimental Verification

4.1. Sparse Sensor Array-Based Localization Method

The PZT wafer A and B with dimensions 13 mm × 0.5 mm (diameter × thickness) are
mounted at (xA, yA) and (xB, yB), respectively. Therefore, the propagation distance of the
primary scattered wave (as shown in Figure 8) that is reflected only by the defect can be
described as

d =

√
(x− xA)

2 + (y− yA)
2 +

√
(x− xB)

2 + (y− yB)
2 (12)
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Figure 8. Experiment sample.

Although the defect location is unknown in practical detection, a through-thickness
hole is fabricated to make an analogy to the defect and drilled at (xc,yc) for this experiment.
In the process of defect localization, at least three different propagation distances need
to be determined for a more accurate localization [24]. Traditionally, each propagation
distance is confirmed by a pair of PZT wafers. Hence, at least three PZT wafers are needed.
In addition to the direct arrival wave and the primary scattered waves, there are also
secondary scattered waves reflected from the edges and defects. Figure 9a indicates the
signal via path a-b, excited by the exciter A and reflected by the defect. Moreover, sensor B
will also receive signal from paths c-d, e-f, and e-d, with two reflections by the defect and
the edge. The latter two scattered waves are relatively weak compared with the first one,
and are not considered here.

Figure 9. Guided-wave scattering path: (a) PZT A to PZT B; (b) PZT B to PZT A.

The incident angle into the edge is equal to the reflection angle that is θi = θr, so the
scattered signal path c-d can be easily deduced out by the mirror point of sensor B, and its
propagation distance is

Dcd = dc + d′d =

√
(x− xA)

2 + (y− yA)
2 +

√
(x− x′B)2 + (y− y′B)

2 (13)

where dc denotes the distance of path c that is the distance from the excitation sen-
sor A(xA,yA) to the defect; d′d denotes the distance from the defect to the mirror point
B′(x′B, y′B)
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With sensor B for excitation and sensor A for reception, as shown in Figure 9b, the
propagation distance of the primary scattered wave is the same Dab. The propagation
distance of the secondary scattered wave is

Dij = di + d′ j =
√
(x− xB)

2 + (y− yB)
2 +

√
(x− x′A)2 + (y− y′A)

2 (14)

where di denotes the distance of path i; d′ j denotes the distance from the defect to the mirror
point A′(x′A, y′A) of sensor A(xA,yA).

According to analyses above, three wave paths are obtained with only two PZT wafers.
The propagation distance determined by each pair of excitation–reception or excitation-to-
mirror sensors can determine an ellipse with the sensor as the focus, as shown in Figure 10.
The red ellipse in Figure 10a confirmed by PZT A to PZT B is the same as that in Figure
10b, due to the same propagation distance of A–B and B–A. Additionally, the blue ellipse
and green ellipse confirmed by the primary scattered waves are combined with the red
ellipse in Figure 10c to access the damage location.

Figure 10. Elliptical trajectories: (a) PZT A to PZT B; (b) PZT B to PZT A; (c) combination.

When three ellipses are identified, their envelopes, or intersections, are the defect
locations. As long as the measured wave packet has enough energy to be detected, the
damage can theoretically be located with only one excitation [25]. However, in practice,
the signal resolution and intensity are not high enough, so it is necessary to change the
excitation to improve the imaging effect. PZT A and B will be taken as the actuator and
sensor successively. When the plate is intact, the recorded signals are considered to be
the reference signals. Ignoring the changes of wave guide material due to environment
and damage, the wave signal varies only with respect to the scatter phenomenon of the
damage [26]. The sparsity degree K can be set to be 8 at least, due to 4 propagation paths
for S0 and A0 mode.

4.2. Experimental Setup

A square plate with dimensions 1250 mm × 1250 mm × 2 mm (length × width
× thickness) was adopted as the experimental sample. Two PZT wafers A and B were
mounted at (400, 150) and (700, 150), respectively. A prefabricated through-hole was located
at (500, 50). The experimental setup consisted of a Tektronix AFG1022 arbitrary waveform
generator, a DS2−8B data acquisition instrument and a smart AE charge amplifier. To
coincide with the simulation case, the experimental parameters, such as the acquisition
frequency and the excitation signal, were all the same as the simulation model.

As PZT A and B will be taken as the actuator and sensor successively, the actuator
will be connected with Tektronix AFG1022, and the sensor will be connected with the

508



Sensors 2021, 21, 8127

charge amplifier which is connected to the data-acquisition device. At the same time,
the waveform generator will be connected to the data acquisition device with an isolator
to record the excitation and sensing wave packets simultaneously. The diagram of the
experimental setup is shown in Figure 11.

Figure 11. Experimental setup.

Therefore, the reference-based monitoring method can be carried out as follows.

(1) under the intact condition, excite a five-peak sinusoidal wave modulated by Hanning
window with a center frequency of 100 kHz from PZT A, collect the signals from
PZT B. Then, excite modulated wave from PZT B, and collect the signals from PZT B.
These signals are considered to be the reference signals.

(2) in the practical monitoring, repeat the acquisition step above.
(3) subtract the intact signal from the acquisition signal with defects, known as the

state-relative signals.
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(4) decompose the state-relative signals into wave packets of a single mode by the OMP-
based decomposition and dispersion compensation method.

(5) localize the defect by sparse sensor array-based localization method.

4.3. Experimental Results

Under the intact situation, PZT A and B are taken as actuator and sensor, respectively.
The collected signal was taken from PZT B for the sample, as shown in Figure 12a, which
contains disturbed noise using the excitation signal, direct wave of S0 and A0 mode, and
reflected wave using the edge. If the sparsity degree K is 8, the wave packets with relatively
high amplitude are extracted. The recovery signal is shown in Figure 12a. Theoretically,
there is also a reflected wave of S0 mode, although it is not determined visually. With the
largest two matching coefficients θλ, only the A0 mode waves are extracted, as shown
in (b), because the amplitude of S0 mode wave is relatively low. Therefore, the OMP
algorithm can remove the system noise well, because the predefined atomic functions are
independent of the noise. Moreover, using the columns of the chosen atoms, it is easy to
get the travel distance of the corresponding wave packets, which verifies the correctness of
the method. Figure 12c shows the recomposed signal using the nondispersive dictionary to
remove the dispersion.

Figure 12. Defect-free signal processing: (a) Defect-free signal and recovery signal; (b) Recovery A0
with largest matching coefficients; (c) The result after dispersion removal.
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After fabricating a through-thickness hole in the plate, we collect the signals from PZT
A and B successively. Then, the received signals are subtracted from the corresponding
signal when there is no defect, the residual signal is processed with the same process
procedures, and the results are shown in Figure 13.

Figure 13. Residual signal processing: (a) Original residual signal and reconstructed signal; (b) Reconstructed signal with
largest matching coefficients; (c) Reconstructed signal with dispersion removed; (d) Separated wave packet and envelope
of path a–b; (e) Separated wave packet and envelope of path c–d; (f) Original residual signal and reconstructed signal;
(g) Reconstructed signal with largest matching coefficients; (h)Reconstructed signal with dispersion removed; (i) Separated
wave packet and envelope of g–h; (j) Separated wave packet and envelope of i–j;.

We decompose with the overcomplete dictionary and extract with the largest two
matching coefficients. Only two scattered wave packets from two paths are obtained, as
shown in Figure 13b. Therefore, wave packets on multiple paths are precisely separated,
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and the effect of measurement noise is significantly reduced. Then, we remove the wave
dispersion by the non-dispersion dictionary, as shown in Figure 13c, which makes the
energy more concentrated for damage imaging. To determine the case of the third propaga-
tion path, the signal is excited by PZT B and received by PZT A. The signal is processed
using the same process and the results, as shown in Figure 13f–j. Meaningfully, Figure 13h
indicates that the proposed decomposition approach can separate the overlapped wave
packets, due to similar travel distance or the occurrence of dispersion. To improve the
resolution of defect localization, the enveloped signals of the reconstructed waveform, as
shown in Figure 13d,e,i,j, are taken to generate the virtual wavefield for each exciter–sensor
pair. Each wavefield characterizes the possible trajectory of the defect as an ellipse, and the
energies of multiple wavefields are superimposed at the actual defect location [26,27], as
shown in Figure 14.

Figure 14. Damage imaging: (a) The location schematic of PZT; (b) The imaging result with original signal; (c) The imaging
result with dispersion signal; (d) The imaging result with non-dispersion signal.
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Figure 14a shows the actual location of the PZT wafer A and B, and the mirror wafer
of PZT A and B. With the state-relative signal, the imaging result, as shown in Figure 14b,
presents a large energy concentration area, which is as about 15 times the size of the actual
defect area. With the reconstructed signals, a relatively clear image can be obtained by
filtering out unwanted noise signals, as shown in Figure 14c. With the final non-dispersion
signal, a much higher-resolution image, as shown in Figure 14d, succeeds in localizing
the defect with a similar energy-concentrated area. Therefore, with the OMP-based sparse
reconstruction, the signals from the sparse sensor array can be separated.

5. Conclusions

To detect damage with as few sensors and as high resolution as possible, a method,
using only two piezoelectric transducers and based on orthogonal matching pursuit (OMP)
decomposition, was proposed. With the proposed algorithm, the wave packets reflected
from the defect and edge are all separated. The experimental results show that a sparse
sensor array with only two transducers succeeds in localizing the defect, and the OMP-
based algorithm is beneficial for resolution improvement and transducer usage reduction.
Some conclusions can be drawn as follows.

1. with the over-completed dictionaries of A0 and S0 mode, the OMP-based algorithm
can separate wave packets from collected signals, even if the wave packets are over-
lapped. Thereafter, with the nondispersive dictionaries, the dispersion part is re-
moved, which transforms the deformed wave packets to the original excitation signal.

2. the wave packets reflected by the defect and edge are innovatively used for defect
localization, which is the equivalent of mounting a virtual sensor at the mirroring
position. The use of these multipath wave packets is beneficial for reducing the use of
transducers.

3. the dispersion-removed wave packets of multipath can localize the defect position
and improve the resolution of defect localization.

A little further discussion is required. The method in this article is mainly used to
locate a defect. When there are two defects, the energy is concentrated at two or more
potential points. However, when there are too many defects, the signals overlap and
separation is difficult, and this method is no longer suitable.

The defect is located by first-order mode signals in the experiment. When other mode
signals (e.g., A1, S1) are excited, it is possibly beneficial for high-resolution localization,
if there are sufficient atoms of the corresponding mode in the over-completed dictionary.
Although the method can separate overlapping signals, in practice, the OMP algorithm is
no longer effective when the envelope peaks of the two signals completely overlap. When
the travel distance of the wave packet is very short, the waveforms of A0 mode and S0
mode are similar to the excitation waveform, which may also produce matching errors.
Therefore, the travel distance of the wave packet is suggested to be longer than 150 mm,
when the A0 mode signal has been significantly scattered.
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Abstract: Ultrasonic guided waves are sensitive to many different types of defects and have been
studied for defect recognition in rail. However, most fault recognition algorithms need to extract
features from the time domain, frequency domain, or time-frequency domain based on experience
or professional knowledge. This paper proposes a new method for identifying many different
types of rail defects. The segment principal components analysis (S-PCA) is developed to extract
characteristics from signals collected by sensors located at different positions. Then, the Support
Vector Machine (SVM) model is used to identify different defects depending on the features extracted.
Combining simulations and experiments of the rails with different kinds of defects are established to
verify the effectiveness of the proposed defect identification techniques, such as crack, corrosion, and
transverse crack under the shelling. There are nine channels of the excitation-reception to acquire
guided wave detection signals. The results show that the defect classification accuracy rates are
96.29% and 96.15% for combining multiple signals, such as the method of single-point excitation and
multi-point reception, or the method of multi-point excitation and reception at a single point.

Keywords: ultrasonic guided waves; principal component analysis; defect recognition; nondestruc-
tive testing; multi-signal combination

1. Introduction

As an infrastructure, the structural health of the rails has attracted much attention in
the fields of engineering and NDT. Because of the influence of the manufacturing process,
the operating situation, and the geographic conditions, rails are prone to various defects.
Based on the analysis of the operating situation, rolling contact is the main reason for the
rail surface crack. In the manufacturing process, the inclusion in the railhead can lead
to an area-shaped section within the rail, which will lead to the formation of transverse
cracks under the shelling. Moreover, the natural status, such as air pollution, natural
rainfall, and temperature change, provides favorable conditions for the generation of
corrosion. In the case of in-service rail, the expansion speed of defects will increase as
the size of the defect increases, and the expansion speed is different for different types
of defects [1–3]. Therefore, further research determining the type and size of rail defects
is necessary to ensure proper and effective maintenance and replacement. Attracted by
multi-mode and low attenuation, ultrasonic guided waves can perform nondestructive
testing of multiple types of defects in long-range rails [4–8]. For instance, the vertical
vibration mode is sensitive to cracks at the bottom of rail [9]; the SH mode can detect a
transverse defect in rail [8]; the flexural mode can measure axial stress to monitor rail
breakage [10]; Evans et al. [11] used ultrasonic guided waves to detect defects in rail
level crossings. Lee et al. [12] presented a hybrid analytical-FEM technique based on
the dispersion characteristics of the guided wave to design the sensor which can excite
specific modes and frequencies for identifying transverse cracking under the shelling.
Xing et al. [13] constructed a mathematical model composed of a modal vibration factor
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and a modal orthogonal factor to select the guided wave modal with the highest sensitivity
to detect rail cracks. According to the variation regularity of dispersion characteristics
along the longitudinal direction, a three-dimensional dispersion surface with cross-section
position information was proposed by Chen et al. [14] for damage detection in turnout
straight switch rail. Based on the Lamb wave, Deng et al. [15] proposed the method of
automatically searching defects to achieve defect location in the plate structure.

Influenced by the mode of vibration and wavelength, ultrasonic guided waves dis-
play different sensitivity to different rail defects. These will induce changes in signal
features [16–18]. Various signal processing techniques are used to extract signal features
from the time, frequency, or time-frequency domain in the field of NDT. Power Spectral
Density (PSD) is used to retrieve frequency domain information. The short-term Fourier
transformation (STFT) can reflect the characteristics of the time-frequency domain. Re-
searchers extracted various features, including maximum, peak power frequency (PPF),
median power frequency (MPF), and STFT coefficients from the original signals, and used
an SVM classifier to realize 4 kinds of corrosion defects recognition in the rail foot [19].
Jiang et al. [20] used laser ultrasound to detect defects of different depths on the rail surface.
The information generated by the wave-packet transformation, including time-frequency
coefficients, local entropy, and energy from the collected detection signals, are used for
identifying different defects. Zhou et al. [21] proposed that extracting features by data-
driven was used for recognizing defects. Furthermore, it is based on empirical analysis
that six features from different domains are extracted from the detection signal. According
to the experience, Li et al. [22] extracted six features from the time domain and frequency
domain of the guided wave detection signal to identify rail cracks. Torkamani et al. [23]
introduced an innovative time-domain damage index named Normalized Correlation Mo-
ment (NCM) for identifying laminated composites based on the guided wave. The result
was shown to have significant advantages over the signal difference coefficient (SDC),
including sensitivity to attenuation of the signal and decreased sensitivity to signal noise.
Luca et al. [24] calculated damage indexes (DI’s) to quantify the variations of the signal
amplitude caused by the induced damage and chose the DI’s for the Probability Ellipse (PE)
method to estimate the probability of the presence of the damage. All the above methods
can identify defects. However, these all require professional knowledge or experience to
extract the damage index reflecting the defect from the guided wave detection signal to
identify the defects.

This paper proposes a new method for identifying rail defects to get away from
the limitation of professional knowledge and experience. It can distinguish the defects
by combining multiple signals and extracting the features by the S-PCA. The process of
identifying rail weaknesses is shown in Figure 1. First, guided wave detection signals
are obtained through experiments and simulations of several single-excitation and single-
reception methods, as shown in the area enclosed by the round dash line. Then, the S-PCA
is used to extract features from the obtained signals, as shown in the area enclosed by the
round dotted line. Finally, the SVM classification model enables one to qualitatively and
quantitatively identify rail defects based on the extracted features. In signal processing, the
restriction of professional knowledge is avoided by dividing the guided wave detection
signal and extracting features from each segment. Compared with PCA, S-PCA can
dig more weak damage information from guided wave detection signals, which is more
conducive to defect identification.
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Figure 1. Flow chart of the segmented principal components analysis (S-PCA) for rail defect identification. The enclosed
area with the dashed line represents the process of acquiring data; the enclosed area with the dotted line represents the
process of extracting features by S-PCA, and the rest area represents the process of classification. Si is the ith sub-signal of
the origin signal. And W is the matrix of correlation coefficient obtained via PCA with the threshold θP.

2. Materials and Methods

2.1. Signal Dividing

The guided wave detection signal is a typical nonstationary time-series signal. The
existent defects may cause modal conversion and dispersion of the guided wave signal, and
the most intuitive effect is the change of the wave shape. The diverse defect information
may be retained in the local zone of the guided wave detection signal. Therefore, we
consider that extracting features from each local area realizes the feature extraction of the
detection signal. The dividing is an effective means that the feature extraction of the high-
dimensional signal is converted into the feature extraction of P low-dimensional signals.{

Tc = L
Vp

= K
f

P = floor( T
Tc
)

(1)

L is a parament in signal segmentation and is determined by both Lmin and N. The
special expression is L = N × Lmin, in which Lmin is the smallest size of the defect detected
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by the guided wave selected. N is a constant that needs to be determined experimentally.
The choice of N or L will be discussed in the following section. Tc, as shown in Equation (1),
is equal to the time interval between two adjacent dividing points. VP is the guided wave
group velocity. Figure 2 is a schematic diagram of dividing signals. The guided wave
detection signal of crack defect is divided by Tc (12.5 μs) or L (5 mm).
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Figure 2. Diagram of the signal divided by Tc (12.5 μs) or L (5 mm), in which the black boxes represent
the dividing points. Tc is the time interval between two adjacent dividing points. The vertical axis is
the signal amplitude. The horizontal axis is the sampling time of the signal.

2.2. Principal Component Analysis

PCA is a common method to reduce data dimensions. Its theme is to use low-
dimensional data to reflect the valuable information contained in high-dimensional data
based on the mapping. Gottumukka et al. [25] used a modular PCA method to improve
face recognition technology. Senneville B et al. [26] applied PCA to the motion estimation
of abdominal organs. Mazzeo et al. [27] combined wavelet transformed with PCA for the
preprocessing of bolts image.

The role of PCA for rail defect recognition is manifested in two aspects: removing
redundant information and extracting features. The specific implementation steps are
as follows:

• Construct a sample set X of the rail damage characteristics. Matrix A is composed of
guided wave detection signals of different defect types or the same type of defects with
different levels of damage. As shown in Equation (2), m is the number of detection
signals, and n is the number of features in each sample; am represents the mth detected
signal sample with n data, and am1 represents the first data in the mth sample.

A =

⎡⎢⎢⎢⎣
a1
a2
...

am

⎤⎥⎥⎥⎦
m×1

=

⎡⎢⎢⎢⎣
a11 a12
a21 a22

· · · a1n
· · · a2n

...
...

am1 am2

. . .
...

· · · amn

⎤⎥⎥⎥⎦
m×n

(2)

The set of samples X of the rail damage characteristic is obtained after centralized
processing A. The centralization is expressed in Equation (3), which A represents the
average value of each column in A.

X = A−A (3)

• Construct the damage covariance matrix C. The correlation coefficient in guided wave
detection signals can be used to characterize different defects. A covariance matrix is
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an efficient tool for characterizing the correlation coefficient. The covariance matrix C
is described by Equation (4).

C =
1

m− 1
XTX (4)

• Calculate the eigenvalues and eigenvectors of the damage covariance matrix C. Ac-
cording to the matrix decomposition method, the eigenvalues and corresponding
eigenvectors of matrix C are solved. Then the eigenvalues are ranked in descending
order, λ1 ≥ λ2 ≥ . . . ≥ λn, and the corresponding eigenvectors in sequential order,
x1 x2 . . . xn. Among them, each eigenvector represents a principal component.

• Determine the number of principal components K. The information percentage of a
principal component is an important reference when the number of principal compo-
nents is determined. The ratio of one eigenvalue to the sum of all eigenvalues is the
information percentage of this principal component, as shown in Equation (5).

θi =
λi

∑n
i=1 λi

(5)

Set a threshold θ (0 < θ < 1) and accumulate the information percentages of the prin-
cipal components sorted in sequence. When the cumulative sum of the information
percentages of the Kth principal component is greater than or equal to θ, there is
selected for the K principal components.

θ ≥ ∑K
i=1 λi

∑n
i=1 λi

(6)

• Extract features. The K principal components extracted from the covariance matrix
C are gathered to form a local weight matrix W. The process of feature extraction is
shown as Equation (7), where X’ is a feature set extracted.

X′ = XW (7)

2.3. Build S-PCA

Figure 3 is a schematic diagram of the S-PCA. There are two steps based on the S-PCA
to extract features. The first step is to divide. According to the time interval Tc, the detection
signal S is divided into P segments of equal length. Si represents the ith signal segment
(1 ≤ i ≤ P). The second step is feature extraction in two sub-steps. The first sub-step is
extracting features from each segment by PCA with a threshold θP (0 < θP < 1) to form a
feature set named F. The second sub-step is to get the final features from F by PCA with a
threshold θ (0 < θ < 1).

2.4. SVM Classification Model

SVM realizes classification by searching for the optimal hyperplane determined by a
certain number of support vectors. It is often used for solving linearly separable problems.
For nonlinear separable problems, the introduction of the kernel function maps the sample
data to a high-dimensional space, making it a linearly separable problem, which is then
solved by linear classification. The Gaussian radial basis function (RBF) has excellent
characteristics of nonlinearity and continuity, so it is often used as the kernel function of
SVM. Equation (8) is the expression of RBF, in which g is the kernel size of the RBF, and X
and Xi are feature vectors with the same dimension.

Kernel(X, Xi) = exp

(
‖X−Xi‖2

2g2

)
(8)
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Figure 3. Diagram of segmented principal component analysis of ultrasonic guided waves. S is the original signal; F is
a feature set that combines features from each segment. Si represents the ith subsection; Tc is the time interval used for
dividing S; θP is a threshold used for extracting features from each segment; θ is a threshold used for extracting features
from F. The grey chip represents a feature.

2.5. Classification Model Evaluation

Evaluating the performance of the model provides a basis for the credibility of the
model classification results. These are called respectively the precision rate and the recall
rate, which are usually used for evaluating the model performance. The precision rate
reflects the ability of the model to detect positive samples from the sample set, its expression
is shown in Equation (9). The recall rate reflects the ability of the model to detect the
number of correctly classified positive samples from all positive samples and is expressed
as Equation (10). This article also introduces the F1-score to balance the precision rate and
the recall rate to make the model evaluation more accurate, as shown in Equation (11).
All the equations above, True Positive (TP) is the number of samples whose labels and
the predictions are positive samples. False Positive (FP) is the number of samples where
the object labels are negative and the predicted labels inverted. True Negative (TN) is
the number of samples whose object labels are positive and the predicted labels inverse.
False Negative (FN) is the number of samples whose labels of the object and predicted are
negative samples.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F1 =
2× P× R

P + R
(11)

3. Experimental Setup

There are 7 different degrees of crack, 5 different degrees of transverse crack under
the shelling, and 4 different degrees of corrosion within the railhead. The detect signals of
the above defects are acquired by combining the experiments and the simulations.

3.1. Experimental Setup

The experimental system is shown in Figure 4. The experimental object is a 60 kg/m
rail with a length of 250 mm. Ceramic piezoelectric sheets (PZT-5H, diameter 14 mm,
thickness 1 mm, center frequency 200 kHz) are arranged symmetrically on the railhead and
marked in sequence as 1, 2, 3, A, B, C. The distance between the center of the piezoelectric
films and the rail end is 7 mm. The vertical distance between the rail tread and the center of
the piezoelectric films 1, 3, A, or C is 23.57 mm. The piezoelectric plates at positions 1, 2, and
3 are used to excite guided wave signals, and the piezoelectric plates at positions A, B, and
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C are used to receive detection signals. Any exciting sensors are paired with any receiving
sensors to form a signal acquisition channel. There are 9 channels for acquiring signals,
like 1TA, 1TB, 1TC, 2TA, 2TB, 2TC, 3TA, 3TB, 3TC. Figure 5 is a connection diagram of the
detection equipment. The arbitrary function generator (TektronixAFG3021B) can modulate
a sinusoid exciting signal of 200 kHz and 5 circles loaded alternately on piezoelectric slices 1,
2, or 3. The guided wave signal will propagate in the rail. The detection signals are collected
using piezoelectric slices A, B, or C. Both the excitation signal and the reception signal are
input into the oscilloscope (Tektronix DPO4054) with a specific sampling frequency.

Figure 4. The experimental system for using ultrasonic guided waves detection, in which the position
of the red box represents the location of the crack. The PZTs are located at the position of 1, 2, 3, A, B,
C, respectively. The distance between the center of PZT and the rail end is 7 mm.
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Figure 5. The connection diagram of the detection equipment, in which the Tektronix AFG3021B is the arbitrary function
generator and the oscilloscope is used to sample the signals. The PZTs are coupled via ultrasonic gel with the rail surface.
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As shown in Figure 4, the location of the crack is indicated by the red square. The
crack is artificially cut in the fillet radius on one side of the railhead, located 125.5 mm
from the rail end. The crack depth gradually increases at an interval of 1 mm to reflect
the varying degrees of crack damage. In this study, 8 kinds of crack defects with different
damage levels, 0 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, are considered, and
the corresponding sample labels are 1, 2, 3, 4, 5, 6, 7, 8, respectively.

In the experiment, uncertain physical factors are inevitable, such as the tightness of
coupling between the piezoelectric sheet and the surface of the rail. Hence the experiments
are repeated 10 times under each excitation-reception mode for each degree of crack to
reduce the effect of tightness. The detection signal is picked up at a sampling frequency of
100 MHz, and 10 samples are taken accordingly for each crack degree. 80 samples may be
obtained in each signal acquisition mode, and a total of 720 may be obtained from 9 signal
acquisition channels. Table 1 shows the types of cracks and the number of samples taken
through the experiments of 1TA.

Table 1. The types of cracks and the quantities of samples taken from the experiments of exciting at
position 1 and receiving the signal at position A.

Damage Degree Number of Samples Damage Degree Number of Samples

intact 10 4 mm 10
1 mm 10 5 mm 10
2 mm 10 6 mm 10
3 mm 10 7 mm 10

3.2. Numerical Simulation

The finite element simulation software ABAQUS is used to build a model consistent
with the experimental object. Table 2 shows the material parameters of the rail model. ρ
represents density, E represents the Elastic Modules, and υ represents Poisson’s ratio. The
rail model is divided by grid cells C3D8, and the grid size is 1.5 mm. The arrangement
of the piezoelectric sheets on the railhead is consistent with the experiment, as shown in
Figure 6. The total time to analyze the model is 2 ms, and the time step is 0.01 μs.

23.57mm

B 

C 

3 

2 1 

A 

250mm 

7mm 

Figure 6. Sensor layouts in the rail simulation model, in which the black dots represent the PZTs.
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Table 2. Configuring the rail model built by ABAQUS.

Model Length ρ E υ

60 kg/m 250 mm 7.85 × 10−9 2 × 105 0.29

Figure 7a is the model of rail defects made by ABAQUS, such as crack, corrosion.
The position of the black box corresponds to the location of the failure. The method of
fine-tuning the defect parameters is adopted to make the numerical simulation and the
experimental effect more consistent. Moreover, more detect signals are collected. For crack,
the depth of the defect is continuously adjusted with a deviation of 0.001 mm. Taking
a 1 mm sample as an example, the crack depth of 0.999 mm, 0.998 mm, 1.001 mm, and
1.002 mm, etc., and these defects are classed as 1 mm cracks. According to the above
method, 10 samples are expanded under each excitation-reception mode, there are a total
of 80 samples expanded for 8 damage categories. In practice, the depth of crack defect
is always irregular. The author uses rounding to make the mark of defects in integers.
For instance, the depth of crack less than 1.5 mm carries a 1 mm tag, and the depth of
crack which equals 1.5 mm or more carries a 2 mm tag. If the difference between the
marked value and the defect depth is within 0.2 mm, the defect depth is indicated with
the marked value. For example, the crack depth of 1.2 mm, 1.1 mm, 0.9 mm, and 0.8 mm
are all classified as 1 mm cracks. The type of sample expansion is only in the crack depth
of 1 mm and 7 mm in this study, and the total number of expanded samples is 58, as
shown in Table 3. With respect to corrosion, four defect models of different damage levels,
6 mm2, 12 mm2, 25 mm2 and 30 mm2, are constructed by ABAQUS. And the corresponding
samples are marked as 9, 10, 11, and 12, respectively. For each type of corrosion defect, the
corrosion size is modified by 0.004 mm2 to produce more samples. 80 samples are obtained
per the excitation-reception method. The transverse crack under shelling is also an area
defect. One rectangle is used to approximate the shape of the internal transverse crack.
Figure 7b is a rail model with a 6 mm × 7 mm transverse crack under the shelling defect
constructed by ABAQUS. 6 mm is the defect’s width, and 7 mm is the length of the defect.
The defect is located at a rail length of 125.5 mm and a depth of 12.5 mm from the rail tread.
Five transverse cracks under shelling models with different damage levels, 2 mm × 3 mm,
3 mm × 4 mm, 4 mm × 5 mm, 5 mm × 6 mm, 6 mm × 7 mm, are constructed through
numerical simulation. Moreover, sample labels corresponding to defect sizes are marked
as 13, 14, 15, 16, 17. Under each excitation-reception channel, 21 samples are collected
under each type of transverse crack under shelling by adjusting the length or width with
the deviation of 0.001 mm.

Table 3. The type of crack and the quantity of samples collected in a simulation of exciting at position 1 and receiving the
signal at position A.

Defection Type Defection Category (mm) Total Number of Samples Actual Damage (mm) Number of Samples

intact intact 10 0 10

crack

1 30
1.0 10
1.1 10
1.2 10

2 30
1.8 10
1.9 10
2.0 10

3 10 3.0 10
4 10 4.0 10
5 10 5 10
6 10 6 10

7 28

6.9 6
7 10

7.1 6
7.2 6
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Figure 7. Rail defect model diagram. (a) describes the position of the crack and corrosion defect model where the black
sequence is the position of the defect, such as corrosion and crack; (b) describes the position of the transverse crack under
the shelling model.

Table 4 shows that the total number of samples obtained by experiments and simu-
lations under the channel of 1TA, and the sample labels corresponding to defects. Subse-
quently, all samples obtained by 1TA are made into a dataset including samples and the
sample labels. Moreover, the dataset is divided into two parts, which randomly take 80%
of the dataset as the training set, the remaining 20% as the testing set. The classify model is
trained and tested by training set and testing set, respectively. The data obtained from the
remaining 8 signal acquisition methods are processed by the same method with 1TA for
subsequent rail defect identification.

Table 4. Sample type and the total number of samples collected by exciting at the position of 1 and receiving the signal at
position A.

Defection Type Sample Label Defection Category Number of Samples Total Number of Samples

intact 1 - 20

403

Crack defect

2 1 mm 40
3 2 mm 40
4 3 mm 20
5 4 mm 20
6 5 mm 20
7 6 mm 20
8 7 mm 38

Corrosion defect

9 6 mm2 20
10 12 mm2 20
11 25 mm2 20
12 30 mm2 20

Internal nuclear defect

13 2 mm × 3 mm 21
14 3 mm × 4 mm 21
15 4 mm × 5 mm 21
16 5 mm × 6 mm 21
17 6 mm × 7 mm 21
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4. Feature Extraction

4.1. Signal Analysis

Figure 8 shows the waveform diagram of the crack detection signal obtained at the
time range of 0–0.002 s by 2TA in the experiment, and the cracks’ depth is 2 mm, 4 mm,
6 mm, 7 mm, respectively. Based on the guided wave theory, the guided wave group
velocity is about 3845 m/s in the experiment. And the speed in the simulation is 3850 m/s,
approximately like the result of the experiment. In addition, the experimental signal
waveform is like the simulated signal waveform, under different degrees of defect damage.
Thus, the simulated signals are used for the expansion of defect samples.

Figure 8. Comparison of experimental signals waveforms of four types of different crack defects with different degrees
of damage.

Figures 8–10 show the signal waveforms of crack defects, transverse cracks under the
shelling, and corrosion defects at different damage levels, respectively. We find that the
waveforms of detection signals caused by different damage degrees of defects at the same
position are generally similar. According to the elastic wave theory, the corresponding
wave packet will cause amplitude changes and overlap due to some factors such as defects.
However, the existing method is difficult to distinguish the specific defects by the time
domain waveform. In this paper, the amplitude corresponding to each time point on the
detection signal is regarded as a feature value in each sample. The statistical analysis and
machine learning algorithms are used to find the features between the sample data of
defects and correspondence defect types and eliminate redundant features.

4.2. Feature Extraction

Feature extraction is a significant part of structural health monitoring (SHM). Redun-
dant features are removed from the detection signal through feature extraction, and several
important features are retained to achieve accurate and rapid identification of defects.

Tc is an important parameter to achieve feature extraction by S-PCA. And the selection
of Tc depends on parament L and the group velocity VP of the guided wave signal. In this
study, the guided wave group velocity VP is 3850 m/s. The L participating in the discussion
is shown in Table 5. KP is the number of data points in each segment. The influence of
different Tc on defect identification is stated in Section 6.
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Figure 9. Comparison of the detection signal waveforms of four different corrosion defects with different degrees of damage.

Figure 10. Comparison of five transverse cracks under shelling detection signal waveforms with different levels of damage.

Table 5. Selection of the parameter L and time interval Tc.

N L(mm) Tc (μs) Kp P

2 0.2 0.5 50 400
10 1.0 2.5 250 80
20 2.0 5.0 500 40
30 3.0 7.5 750 27
40 4.0 10.0 1000 20
50 5.0 12.5 1250 16

PCA is a means of globally reducing data dimensions. Selecting an adequate number
of principal components is critical when the PCA algorithm filters the feature. In the
process of extracting features from detection signals with S-PCA, θP is a threshold to extract
principal components from sub-signal segments using PCA. θ is a threshold for extracting
the principal components from feature set F. The influences of these two parameters on rail
defect identification are outlined in Section 6, respectively.
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5. Model Parameter Adjustment

The number of support vectors in the SVM classification model is an essential factor
influencing the model performance [28]. The number of support vectors for nonlinear
SVM is modified by adjusting the penalty coefficient C and the kernel radius g. There are
always optimal C and g values for different datasets to achieve accurate classification of
the samples. It is considered that the method of grid search automatically finds suitable C
and g within the range of [−3, 20], and [−25, 0], for nine datasets.

6. Experiment Results and Discuss

6.1. Influence of Tc on the Defect Recognition

The guided wave detection signals are divided into P sub-signal segments with a time
interval Tc. To select a suitable Tc, we assume that both θP and θ are equal to 99%. When
Tc is equal to 0.5 μs, 2.5 μs, 5 μs, 7.5 μs, 10 μs, and 12.5 μs, the accuracy of SVM varies in
shown in Table 6.

Table 6. The influence of Tc on the accuracy of defect classifications, in which the red number is the
best-classified result in this dataset.

0.5 μs 2.5 μs 5.0 μs 7.5 μs 10.0 μs 12.5 μs

1TA 86.21 86.21 87.36 86.21 86.21 86.21
1TB 94.25 95.40 95.40 90.80 91.95 90.80
1TC 77.01 77.01 79.31 78.16 79.31 78.16
2TA 94.25 95.40 95.40 95.40 95.40 93.10
2TB 90.80 90.80 93.10 91.95 89.66 88.51
2TC 88.51 88.51 88.51 89.66 89.66 88.51
3TA 72.41 74.71 75.86 73.56 72.41 72.41
3TB 89.66 89.66 90.80 89.66 89.66 88.51
3TC 90.81 91.95 91.95 93.10 90.81 91.95

In Table 6, the red number represents the maximum classification accuracy attained
by the classifier based on the selected parameters in each dataset. When Tc is 5 μs, seven
datasets, such as 1TA, 1TB, 1TC, 2TA, 2TB, 3TA, and 3TB, reach the maximum classifica-
tion accuracy rate. When Tc is equal to 7.5 μs, both 2TC and 3TC reach the maximum
classification accuracy rate. But when Tc is 5 μs, the classification results of 2TC and 3TC
are not much different from the optimal result maintaining a relatively high classification
level. According to the content above, most of the nine datasets may achieve the best
classification effect when Tc is equal to 5 μs. So 5 μs is selected as the optimal parament of
Tc for subsequent analysis.

6.2. Influence of θP on The Rail Defects Identification

θP controls the number of principal components extracted from each sub-signal. Differ-
ent θP can extract different numbers of principal components from the sub-signal segments
and affects the classification results of the classification model. It is the initial step that Tc is
equal to 5 μs and θ is equal to 99%. Table 7 shows the variation of the classification results
in the nine datasets with θP selected in turn from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, and 99%.

Table 7. The effect of θP on classification accuracy, in which the red number is the best classification
result in this dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

1TA 89.66 89.66 89.66 89.66 90.80 91.95 90.80 89.66 89.66 88.51
1TB 88.51 88.51 88.51 88.51 94.25 94.25 89.66 90.80 88.51 87.36
1TC 79.31 79.31 79.31 79.31 79.31 77.01 70.11 78.16 75.86 78.16
2TA 95.40 95.40 95.40 95.40 96.55 93.10 94.25 93.10 94.25 90.80
2TB 94.25 94.25 94.25 94.25 96.55 96.55 95.40 95.40 95.40 94.25
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Table 7. Cont.

10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

2TC 90.80 90.80 90.80 90.80 90.80 88.51 88.51 88.51 88.51 83.91
3TA 72.41 72.41 72.41 72.41 73.56 68.97 68.97 67.82 68.97 67.82
3TB 81.61 81.61 81.61 81.61 89.66 94.25 91.95 87.36 83.91 87.36
3TC 86.21 86.21 86.21 86.21 90.80 89.66 87.36 88.51 89.66 86.21

As shown in Table 7, when θP equals 50%, any one of 1TB, 1TC, 2TA, 2TB, 2TC, 3TA,
and 3TC reaches the maximum classification accuracy. For 1TB, when θP is equal to 60%,
the classification accuracy is the same as the optimal classification result. However, when
θP equals 50%, the number of the features used to classify defects is 5. When θP equals
60%, the number is 7. Thus 50% is taken at 1TB to reduce the loss of computation. When
θP equals 60%, 1TA and 3TB reach the best classification outcomes at 91.95% and 94.25%,
respectively. For 1TC and 2TC, when θP equals 10%, they attain the maximum classification
accuracy. Moreover, when θP is equal to 20%, 30%, 40%, and 50%, in turn, the classification
accuracy keeps the same classification result equaled to the optimal result. However, when
θP equals 10%, 20%, 30%, and 40%, in turn, the 13th category cannot be identified in 3TB, as
shown in Table 8. The reason is that the value of θP is too low to extract enough principal
components. When θP equals 50%, all categories can be recognized, and when θP equals
60%, the classification accuracy rate is 94.25% that is the best-classified outcome for 3TB.
According to the analysis above, most of the nine datasets can maintain a relatively high
classification accuracy when θP equals 50%. Thus 50% is selected as the optimal parament
of θP for subsequent research.

Table 8. 3TB’s confusion matrix when θP equals 10%, Tc equals 5 μs, and θ equals 99%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

precision 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.90 0.75 1.00 0.75 1.00 0 1.00 0.80 0.60 1.00
recall 1.00 0.67 0.75 1.00 1.00 1.00 1.00 0.90 0.75 0.80 1.00 1.00 0 1.00 0.80 0.50 0.71

F1-score 1.00 0.71 0.75 1.00 1.00 1.00 0.86 0.90 0.75 0.89 0.86 1.00 - 1.00 0.80 0.55 0.83

6.3. Influence of θ on the Rail Defect Identification

θ is an important parameter to extract features from F which are final features. Table 9
shows that when Tc equals 5 μs and θP equals 50%, the classification results of the nine
datasets vary with θ changed from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and
99%. According to Table 9, the classification accuracy rates of the nine datasets show an
increasing trend as the θ value increases. Therefore, 99% is chosen as a fixed parameter of θ
for follow-up research.

Table 9. The influence of θ on classification accuracy in which the red circle is the best classification
result in this dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

1TA 49.43 49.43 49.43 49.43 74.71 74.71 74.71 77.01 80.46 90.80
1TB 42.53 42.53 42.53 63.22 63.22 63.22 73.56 73.56 85.06 94.25
1TC 50.57 50.57 50.57 66.67 66.67 66.67 66.67 66.67 71.26 78.16
2TA 54.02 54.02 54.02 75.86 75.86 75.86 83.91 89.66 89.66 96.55
2TB 58.62 58.62 58.62 58.62 82.76 82.76 90.80 90.80 93.10 95.40
2TC 48.28 48.28 48.28 48.28 73.56 73.56 73.56 83.91 89.66 88.51
3TA 42.53 42.53 42.53 42.53 55.17 55.17 55.17 59.77 64.37 73.56
3TB 58.62 58.62 58.62 58.62 81.61 81.61 81.61 85.06 87.36 94.25
3TC 50.57 50.57 50.57 70.11 70.11 74.71 74.71 80.46 78.16 90.80

In summary, 5 μs, 50%, and 99% are selected, respectively, as the optimal parameters,
which are the fixed values of Tc, θP, θ.
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6.4. Classification Result of Single-Channel Acquisition Signal

The signals collected by different signal acquisition channels are turned into cor-
responding datasets. Once each dataset is normalized, the S-PCA model with selected
paraments is utilized to extract features. The dataset is split into the training set and the
testing set. The outcome of the classification is the average of the 10 results of the classifica-
tion. The variance S represents the standard deviation of 10 classification results, which is
used for evaluating the stability of the classification. And the results of nine datasets are
presented in Table 10.

Table 10. The SVM’s classification results of single-channel acquisition signal.

Accuracy S Precision Recall F1-Score

1TA 90.99% 0.03 91.20% 90.13% 89.83%
1TB 90.22% 0.02 91.95% 90.07% 90.19%
1TC 76.15% 0.04 82.01% 73.76% 74.43%
2TA 93.63% 0.02 94.12% 93.54% 93.32%
2TB 92.75% 0.02 94.68% 92.36% 92.05%
2TC 90.11% 0.03 90.79% 89.26% 89.06%
3TA 76.53% 0.03 83.10% 79.71% 76.89%
3TB 90.77% 0.02 91.80% 90.26% 90.29%
3TC 88.02% 0.03 89.90% 87.88% 87.43%

Table 10 shows that among the 9 signal acquisition methods, the accuracy rates of
the SVM classification model exceed 76% that is a medium score. In 1TA, 1TB, 2TA, 2TB,
2TC, and 3TB, the SVM classification accuracy rates reach nearly or more than 90%, which
is a good score. Both 2TA and 2TB have excellent classification because the sensor at
position 2 can be smoothly attached to the track surface, making the defect information
in the collected detection signal more obvious. For 3TB, the distance between the sensor
and the defect is relatively close, which makes the difference of the defect signals more
prominent, which is conducive to the identification of the defect. Both 1TA and 1TB have
higher classification accuracy because the signal reflected by the defect can be received by
the A and B sensors, which is conducive to the recognition defect. In addition, the S-PCA
is an effective method of extracting features and can extract the local differences in the
detection signal, which is useful for the classifier to make the correct distinction. Similarly,
the distance between the exciting sensor and the receiving sensor is relatively long, so the
classification results of 1TC and 3TA are 76.15% and 76.53%, respectively, lower than the
signals collected by other signal acquisition methods.

6.5. Classification Result of Multi-Channel Signal Combination

The above research shows that a single channel collecting signal can identify different
types and degrees of defects damage on the railhead. Based on theoretical analysis, a single-
channel acquisition signal can only reflect part of the characteristics of the defect. Thus,
1TC and 3TA classification accuracy rates are lower. The two types of combination methods
are comprehensively analyzed to explore the influence of multi-channel signals on rail
defect recognition, such as multi-point excitation and single-point reception or single-point
excitation and multi-point reception. The types of combinations and the corresponding
classification results are indicated in Tables 11 and 12.

Table 11 shows the results of the classification of the combined methods of single-
point excitation and multi-points reception signals. With the number of combined signals
increasing, it is found that the classification accuracy rate shows an increasing trend,
such as 1TAC, 1TBC, and 1TABC; 2TAB, 2TAC, 2TBC, and 2TABC; 3TAB, 3TAC, 3TBC,
and 3TABC. Moreover, compared to the classification of signals collected by one single
channel, the standard deviation S of the classification is slightly reduced after multiple
signal combinations. The above results show that the accuracy of the classification can
be effectively enhanced by the combination method. Since the propagation path of each
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signal is different, the effective combination can more widely reflect the health status of the
detected object. The same results can also be found in Table 12.

Table 11. The SVM’s classification results of feature combinations method of single-point excitation
and multi-point reception.

Combination Type Accuracy S Precision Recall F1-Score

1TAB 96.15% 0.02 96.29% 95.59% 95.51%
1TAC 93.08% 0.01 93.67% 92.37% 92.08%
1TBC 91.21% 0.02 92.56% 90.295 90.50%

1TABC 94.73% 0.02 95.32% 94.00% 94.20%
2TAB 93.74% 0.02 95.42% 93.51% 93.20%
2TAC 94.07% 0.01 94.99% 93.66% 93.58%
2TBC 94.95% 0.02 96.34% 95.10% 94.87%

2TABC 96.15% 0.01 96.63% 96.13% 95.93%
3TAB 89.01% 0.03 90.25% 88.36% 88.51%
3TAC 88.79% 0.02 90.57% 88.49% 87.77%
3TBC 88.90% 0.02 90.62% 88.38% 88.34%

3TABC 90.55% 0.03 91.64% 90.31% 89.99%

Table 12. The SVM’s classification results of the combination method of multi-point excitation and
single-point reception.

Combination Type Accuracy S Precision Recall F1-Score

1TA + 2TA 96.29% 0.02 96.34% 96.06% 95.70%
1TA + 3TA 89.78% 0.01 90.39% 87.82% 87.58%
2TA + 3TA 92.75% 0.02 93.23% 92.72% 92.43%

1TA + 2TA + 3TA 95.49% 0.02 96.12% 95.20% 95.03%
1TB + 2TB 95.38% 0.01 96.32% 95.35% 94.94%
1TB + 3TB 93.08% 0.02 94.54% 92.35% 92.59%
2TB + 3TB 94.03% 0.02 95.31% 94.71% 94.10%

1TB + 2TB + 3TB 93.41% 0.02 95.23% 93.79% 93.45%
1TC + 2TC 92.09% 0.02 93.02% 92.05% 92.00%
1TC + 3TC 90.22% 0.03 91.97% 89.74% 89.06%
2TC + 3TC 91.43% 0.03 93.35% 90.98% 90.83%

1TC + 2TC + 3TC 92.09% 0.03 93.44% 92.22% 91.95%

7. Conclusions

Aiming to identify multiple defects in rail, experiments and numerical simulations are
used to focus on the ultrasonic guided wave detection signals of crack defect, transverse
crack under shelling, and corrosion defect. By modifying and combining the sensor
positions, a sample library of defect detection signals is obtained by 9 different signal
excitation-reception methods. The S-PCA algorithm is proposed to extract the features
of the signal to eliminate the dependency on professional knowledge. Furthermore, the
extracting features are input into the SVM classifier to identify the type and extent of
defects. At the end of the research, the following conclusions are drawn:

• The method of extracting features from the segments of detection signal by PCA
can effectively eliminate redundant information in the signal and retain adequate
information, which improves the accuracy of quantitative and qualitative identification
of rail defects.

• The detection signals collected from different excitation-reception positions describe
the overall health of the different parts of the rail. Obtaining the combined detection
signal through single-point excitation and multi-point reception or multi-point excita-
tion and single-point reception can more comprehensively describe the health status
of the detection object, which is good to improve the accuracy of defect recognition.
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• The S-PCA algorithm is an efficient method of extracting features based on statistical
theory. It does not rely too much on the professional knowledge of guided wave
detection, which reduces the difficulty of rail defect identification. Furthermore, the
method could be more easily implemented in practical engineering in the future.
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Abstract: Nonlinear ultrasound crack detection methods are used as modern, non-destructive testing
tools for inspecting early damages in various materials. Nonlinear ultrasonic wave modulation,
where typically two or more frequencies are excited, was demonstrated to be a robust method for
failure indicators when using measured harmonics and modulated response frequencies. The aim
of this study is to address the capability of multi-frequency wave excitation, where more than two
excitation frequencies are used, for better damage identification when compared to single and double
excitation frequencies without the calculation of dispersion curves. The excitation frequencies were
chosen in such a way that harmonic and modulated response frequencies meet at a specific frequency
to amplify signal energy. A new concept of nonlinearity parameter grouping with multi-frequency
excitation was developed as an early failure parameter. An analytical solution of the one-dimensional
wave equation was derived with four fundamental frequencies, and a total of 64 individual and
30 group nonlinearity parameters. Experimental validation of the approach was conducted on
metal plates with different types of cracks and on turbine blades where cracks originated under
service conditions. The results showed that the use of multi-frequency excitation offers advantages
in detecting cracks.

Keywords: nonlinear ultrasound; modulation; crack detection; gas turbines

1. Introduction

Linear ultrasound techniques are proven testing methods for inspecting components.
The failure detection entails measuring changes in elastic properties such as the speed of
sound, attenuation, transmission coefficient, and reflection coefficient [1–3].

In 1964, Hikata et al. expanded this research and found that a sinusoidal ultrasonic
wave distorts the fundamental frequency when it propagates in the presence of nonlineari-
ties [4]. If an ultrasonic wave propagates into a solid body with the fundamental frequency
and is disturbed during the propagation, harmonic frequencies are generated. When the
amplitudes of these frequencies are measured and compared with the fundamental fre-
quencies, these values represent an accurate indicator for detecting material changes [4].
When linear ultrasonic failure detection techniques reach their limits, nonlinear ultrasonic
techniques revealed higher detection rates of incipient failures in materials [4,5].

The comparison of the amplitudes is conducted using derived nonlinearity parameters.
Jhang et al. studied the second harmonic parameter β to explain its dependence on the
wave shift, which enabled drawing conclusions about the material to be examined [6].
This work was extended by Frouin et al. [7], Rothenfusser et al. [8], and Yost et al. [9],
who showed the direct dependence of the amplitudes of the fundamental frequency as
well as the frequency of the second harmonic. The analytical derivations were conducted
by Jeong et al. [10], while Ostrovky et al. investigated the nonlinearity parameters for
geomaterials [11]. To determine the residual fatigue life of a component, Malfense Fierro
and Meo developed the nonlinearity parameters for two superimposed frequencies [12–14],
which was further developed by Jinpin et al. [15]. The third-order nonlinearity parameter

Sensors 2021, 21, 5368. https://doi.org/10.3390/s21165368 https://www.mdpi.com/journal/sensors
534



Sensors 2021, 21, 5368

with one driving frequency was derived from Amura and Meo [16]. The nonlinearity
parameters of the second and third harmonic frequencies are shown in Equation (1) for
one excitation frequency, where A is the amplitude of the fundamental frequency, A2 is
the amplitude of the second harmonic frequency, and A3 is the amplitude of the third
harmonic frequency:

β2 f ∝ A2
A2 ,

γ3 f ∝ A3
A3 .

(1)

The excitation with two different frequencies up to third-order nonlinearity was analyt-
ically derived and investigated [17]. A total of 12 derived nonlinearity parameters were suc-
cessfully used to detect cracks in metal components and turbine blades (Equation (2)). The
excitation with two different frequencies was defined with u(1) = A1sin

[
k f 1(x− ct)

]
+

A2cos
[
k f 2(x− ct)

]
, where A1 and A2 are the amplitudes and kf1 and kf2 are the wavenum-

bers of the fundamental frequencies f 1 and f 2. A f 1+ f 2 are the amplitudes of the harmonic
or modulated response frequencies:

γ f 1 ∝
A f 1+ f 2

A1
3+A1 A2

2 ,

γ f 2 ∝
A f 1+ f 2

A2
3+A1

2 A2
,

β2 f 1 ∝
A f 1+ f 2

A1
2 ,

β2 f 2 ∝
A f 1+ f 2

A2
2 ,

γ3 f 1 ∝
A f 1+ f 2

A1
3 ,

γ3 f 2 ∝
A f 1+ f 2

A2
3 ,

β f 2± f 1 ∝
A f 1+ f 2
A1 A2

,

γ2 f 1± f 2 ∝
A f 1+ f 2
A1

2 A2
,

γ2 f 2± f 1 ∝
A f 1+ f 2
A1 A2

2 .

(2)

An overview of current research developments relating to nonlinear vibroacoustic
modulation techniques is shown in [18]. Van Den Abeele et al. used two superimposed
frequencies for excitation and examined the harmonics of both waves and their side-
band frequencies to detect cracks [19]. They also developed a technique to investigate
the influence of damaged materials on the amplitude-dependent resonance frequency
shifts [20]. These methods are based on the nonlinear interactions of low-frequency and
high-frequency waves. Straka et al. and Greenhall et al. worked on a nonlinear elastic
wave modulation spectroscopy (NEWMS), where the effect of two superimposed waves
was investigated, and low-frequency and high-frequency waves were combined to detect
damages in components [21,22]. Using time-reversal-based imaging methods, an appli-
cation for non-destructive material testing (NDT) with two multi-frequency signals was
developed [23]. A technique was presented where two signals are correlated to estimate
the Time-of-Flight (ToF) for determining distance information [24]. Novak et al. developed
a method to extract system reactions for the second and third harmonic frequencies with a
nonlinear convolutional signal analysis [25]. Pfleiderer et al. investigated the nonlinear
response of subharmonics, ultra-subharmonics, and ultra-frequency pairs for detecting
defects in components [26]. Abraham et al. used nonlinear multi-frequency ultrasound
measurement to characterise grain size fluctuations and distributions in metal samples [27].
Gao et al. developed a method for estimating corrosion size, position, and depth in aircraft
structures based on a local multi-frequency wavenumber estimation [28]. Malfense Fierro
and Meo developed a phased array technique where three frequencies were used to identify
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cracks. The initiate signal f 2 is sent out to affect the dynamics of the crack topology. The
subsequent transmitted pump signals f 1 and f 3 generate a modulation that can be used for
crack detection, and it was demonstrated that using multiple frequency excitation improves
crack detection capabilities [29].

Deng investigated shear horizontal (SH) mode propagation on solid plates, where
two shear waves propagate vertically and parallel in the plate and intersect. If the phase
velocity of the SH mode is equal to the longitudinal velocity of the plate material, this
leads to a cumulative effect of the second harmonic excitation frequency [30,31]. Pruell
et al. showed that phase and group velocity matching can be used to generate acoustic
nonlinearities to determine plasticity-driven fatigue damage [32,33]. Approaches were
developed where correction factors were integrated into the solution of the wave equation
for other wave types [34,35].

To show possibly occurring Lamb waves, Figure 1 reveals the dispersion diagram of
the phase velocity for the material Inconel 718, which is examined in Section 4. Due to
comparable behaviour, the group velocity was not shown in this context. The fundamental
frequencies from 6 MHz to 10 MHz were used in parallel and represented by the S1 mode
according to [32]. The S2 mode demonstrates the range of the second harmonic frequency
(12 MHz to 20 MHz) and S3 demonstrates the third harmonic frequency range (18 MHz to
30 MHz). It becomes clear that phase synchronisation with several excitation frequencies
in this frequency range is not possible. The difference in phase velocities decreases only at
higher frequencies, such as in the third harmonic frequency range. The integration of the
modulated response frequencies would make synchronisation highly complex.

 
Figure 1. Dispersion curve—phase velocity.

In this paper, the strength of the quasi-chaotic generation of harmonic and modu-
lated response frequencies was clearly demonstrated, while the dispersion curves were
not considered.

Different excitation concepts were compared to detect cracks in metal plates and on
turbine blades. For this purpose, excitations with up to four frequencies were examined. In
the case of quadruple excitation, a new concept of nonlinearity grouping was developed
analytically. The fundamental frequencies were defined in such a way that several har-
monics and sideband frequencies meet at certain frequencies to improve crack detection
and classification.

2. Multiple Nonlinearity Parameter

Several studies demonstrated that damages in materials could be detected with non-
linear ultrasound techniques using two superimposed fundamental frequencies. The
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detection of defects was also significantly improved using three excitation frequencies, and
therefore, the question is whether increasing this number brings further advantages.

2.1. Analytical Approach

To describe and evaluate the excitation with four frequencies, novel nonlinearity
parameters up to the third-order of nonlinearity were derived analytically in this section.

Figure 2 demonstrates this excitation with the one-dimensional model. In the area of
the defect, nonlinearities are generated, and these signals are received at the other end.

 

Figure 2. Model—multi-frequency excitation.

The one-dimensional wave equation was solved with four excitation frequencies. All
harmonic frequencies and modulated response frequencies up to the third-order were
derived as well as the associated nonlinearity parameters, which include the amplitudes of
the fundamental frequencies and the harmonic and sideband frequencies as variables.

In the presence of nonlinearity, the stress σ is defined as:

σ = Eε +
Eβ

2
ε2 +

Eγ

6
ε3, (3)

where E is the Young’s modulus, ε is the strain, β is the second-order nonlinearity parameter,
and γ is the third-order nonlinearity parameter.

Equation (4) is the one-dimensional wave equation, with the assumption that longitu-
dinal waves propagate in a thin circular rod and the attenuation is neglected:

ρ
∂2u
∂t2 =

∂σ

∂x
(4)

where ρ is the mass density and u represents the displacement. The wave speed is defined

as c =
√

E
ρ and the strain as ε = ∂u

∂x . This is substituted into Equations (3) and (4) and
leads to:

∂2u
∂t2 − c2 ∂2u

∂x2︸ ︷︷ ︸
Linear part

= c2β
∂u
∂x

∂2u
∂x2︸ ︷︷ ︸

2nd order

+
c2γ

2

(
∂u
∂x

)2 ∂2u
∂x2︸ ︷︷ ︸

3rd order︸ ︷︷ ︸
Nonlinear part

. (5)

Equation (5) is solved using the perturbation method; therefore, Equation (6) is used
to find solutions for u(2) with the second-order parameter β and u(3) with the third-order
parameter γ:

u = u(1) + u(2) + u(3) (6)

According to Fourier, the assumption for u(1) for four excitation frequencies is:

u(1) = A1sin
[
k f 1(x− ct)

]
+ A2cos

[
k f 2(x− ct)

]
+A3sin

[
k f 3(x− ct)

]
+ A4cos

[
k f 4(x− ct)

]
,

(7)

where A1,2,3,4 are the amplitudes and k1,2,3,4 are the wavenumbers of the four fundamental
frequencies. The detailed derivations are documented in Appendix A.

With an assumed constant wave propagation distance and wavenumber, the general
expressions in Table 1 can be derived. The displacement u (Equations (A2) and (A5)) is
interpreted as the accumulated amplitude of the harmonic frequency: u(x) = Af 1+f 2+f 3+f 4.
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Table 1. Nonlinearity parameter of quadruple-excitation.

Frequency Nonlinearity Parameter

fn
1 γ f n ∝ A f 1+ f 2+ f 3+ f 4

An3+An(∑n−1
i = 1 Ai

2+∑4
i = n+1 Ai

2)

2 fn
1 β2 f n ∝ A f 1+ f 2+ f 3+ f 4

An2

3 fn
1 β3 f n ∝ A f 1+ f 2+ f 3+ f 4

An3

fn ± fm
1,2 β f n± f m ∝ A f 1+ f 2+ f 3+ f 4

An Am

2 fn ± fm
1,3 γ2 f n± f m ∝ A f 1+ f 2+ f 3+ f 4

An2 Am

fn + fm ± fp
1,3 γ fn+ fm± fp ∝ A f 1+ f 2+ f 3+ f 4

Am An Ap

1 n, m, p ∈ {1, 2, 3, 4}, 2 n > m, 3 n �= m �= p.

The parameters β or γ were used depending on the degree of nonlinearity. In the
following, δ is used overriding and independent of the degree of nonlinearity for all
nonlinearity parameters. A comparison of the various nonlinearity parameters due to
multi-frequency excitation is shown in Appendix B.

2.2. Group Parameters

The choice of excitation frequencies is crucial to improving damage detection. The
following criteria were defined for selecting the highest (f 4) and lowest frequency (f 1) in
the multi-frequency analysis:

1. No frequency overlap: f4 �= f1
2 .

2. No frequencies with theoretical zero values and negative values: f4 > f1
2 .

3. Sensor bandwidth.

With the defined criteria, the excitation frequencies f 1 = 6.8 MHz, f 2 = 7.3 MHz,
f 3 = 10 MHz, and f 4 = 12 MHz result in 64 individual harmonic and sideband frequencies.
If the excitation frequency combination is chosen systematically (f 1 = 6 MHz, f 2 = 7.3 MHz,
f 3 = 8.7 MHz, and f 4 = 10 MHz), only 30 harmonic and sideband frequencies result. The
signal energies of the various harmonic and sidebands add up at specific frequencies;
therefore, the group parameters form a stronger indicator for the presence of nonlinearities.
The nonlinearity parameters shown in Table 1 describe individual values for each frequency.
When different fundamental frequencies, harmonic frequencies, and sidebands coincide
on a frequency, these parameters are no longer valid. The nonlinearity information of
one frequency must be summarised on one nonlinearity parameter. For this purpose,
the solutions from u(2) (Equation (A2)) and u(3) (Equation (A5)) were re-examined for the
grouped nonlinearity parameters. If, for example, the sideband frequencies f 3 − f 1 and
f 4 − f 2 coincide at the frequency 2.6 MHz, it can be assumed that the individually calculated
nonlinearity parameters, δ, are identical at this point. The total displacement, according
to Equations (A2) and (A5), is defined as u = u f3− f1 + u f4− f2 , which is interpreted as
the accumulated amplitude of the sideband frequency (2.6 MHz). Therefore, equations
were solved for the new combined nonlinearity parameters. Thirty new parameters were
derived for this work, called group parameter δG. Tables 2–5 illustrate the groups with
corresponding frequencies, the harmonic and sideband designation, and the new group
nonlinearity parameters δG.
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Table 2. Nonlinearity parameter group 1, δG1.

Group Ax
Frequency

[MHz]
Γf/h/sx

Nonlinearity Parameter Group
δG

1

1 2 2f 1 − f 4
δ1

G1 =
A f 1+ f 2+ f 3+ f 4

A1
2 A4

1 4 f 4 − f 1 δ2
G1 =

A f 1+ f 2+ f 3+ f 4
A4 A1

1 12 2f 1
δ3

G1 =
A f 1+ f 2+ f 3+ f 4

A1
2

1 13.3 f 2 + f 1 δ4
G1 =

A f 1+ f 2+ f 3+ f 4
A2 A1

1 14 2f 4 − f 1
δ5

G1 =
A f 1+ f 2+ f 3+ f 4

A4
2 A1

1 18 3f 1
δ6

G1 =
A f 1+ f 2+ f 3+ f 4

A1
3

1 18.7 f 4 + f 3 δ7
G1 =

A f 1+ f 2+ f 3+ f 4
A4 A3

1 19.3 2f 1 + f 2
δ8

G1 =
A f 1+ f 2+ f 3+ f 4

A1
2 A2

1 20 2f 4
δ9

G1 =
A f 1+ f 2+ f 3+ f 4

A4
2

1 28.7 2f 4 + f 3
δ10

G1 =
A f 1+ f 2+ f 3+ f 4

A4
2 A3

1 30 3f 4
δ11

G1 =
A f 1+ f 2+ f 3+ f 4

A4
3

Table 3. Nonlinearity parameter group 2, δG2.

Group Ax
Frequency

[MHz]
Γf/h/sx

Nonlinearity Parameter Group
δG

2

1
2.6

f 3 − f 1 δ1
G2 =

A f 1+ f 2+ f 3+ f 4
A3 A1+A4 A22 f 4 − f 2

1
3.3

f 1 + f 2 − f 4 δ2
G2 =

A f 1+ f 2+ f 3+ f 4

A1 A2 A4+A1
2 A32 2f 1 − f 3

1
12.6

f 3 + f 4 − f 1 δ3
G2 =

A f 1+ f 2+ f 3+ f 4

A3 A4 A1+A4
2 A22 2f 4 − f 2

1
14.7

2f 2 δ4
G2 =

A f 1+ f 2+ f 3+ f 4

A2
2+A3 A12 f 3 + f 1

1
16

f 4 + f 1 δ5
G2 =

A f 1+ f 2+ f 3+ f 4
A4 A1+A3 A22 f 3 + f 2

1
17.3

2f 3 δ6
G2 =

A f 1+ f 2+ f 3+ f 4

A3
2+A4 A22 f 4 + f 2

1
20.7

2f 1 + f 3 δ7
G2 =

A f 1+ f 2+ f 3+ f 4

A1
2 A3+A2

2 A12 2f 2 + f 1

1
27.3

2f 3 + f 4 δ8
G2 =

A f 1+ f 2+ f 3+ f 4

A3
2 A4+A4

2 A22 2f 4 + f 2
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Table 4. Nonlinearity parameter group 3, δG3.

Group Ax
Frequency

[MHz]
Γf/h/sx

Nonlinearity Parameter Group
δG

3

1
1.3

f 2 − f 1
δ1

G3 =
A f 1+ f 2+ f 3+ f 4

A2 A1+A3 A2+A4 A3
2 f 3 − f 2
3 f 4 − f 3

1
6

f 1
δ2

G3 =
A f 1+ f 2+ f 3+ f 4

A1
3+A1 A2

2+A1 A3
2+A1 A4

2+A2
2 A3+A2 A3 A4

2 2f 2 − f 3
3 f 2 + f 3 − f 4

1
10

f 4
δ3

G3 =
A f 1+ f 2+ f 3+ f 4

A4
3+A1

2 A4+A2
2 A4+A3

2 A4+A3
2 A2+A2 A3 A1

2 2f 3 − f 2
3 f 2 + f 3 − f 1

1
22

3f 2
δ4

G3 =
A f 1+ f 2+ f 3+ f 4

A2
3+A1

2 A4+A1 A2 A3
2 2f 1 + f 4
3 f 1 + f 2 + f 3

1
23.3

2f 2 + f 3
δ5

G3 =
A f 1+ f 2+ f 3+ f 4

A2
2 A3+A3

2 A1+A1 A2 A4
2 2f 3 + f 1
3 f 1 + f 2 + f 4

1
24.7

2f 2 + f 4
δ6

G3 =
A f 1+ f 2+ f 3+ f 4

A2
2 A4+A3

2 A2+A1 A3 A4
2 2f 3 + f 2
3 f 1 + f 3 + f 4

1
26

3f 3
δ7

G3 =
A f 1+ f 2+ f 3+ f 4

A3
3+A4

2 A1+A2 A3 A4
2 2f 4 + f 1
3 f 2 + f 3 + f 4

Table 5. Nonlinearity parameter group 4, δG4.

Group Ax
Frequency

[MHz]
Γf/h/sx

Nonlinearity Parameter Group
δG

4

1

4.6

2f 2 − f 4

δ1
G4 =

A f 1+ f 2+ f 3+ f 4

A2
2 A4+A1 A2 A3+A1 A3 A4+A1

2 A2

2 f 1 + f 2 − f 3
3 f 1 + f 3 − f 4
4 2f 1 − f 2

1

7.3

2f 3 − f 4

δ2
G4 =

A f 1+ f 2+ f 3+ f 4

A3
2 A4+A2

3+A1
2 A2+A2 A3

2+A2 A4
2+A1 A3 A2+A1 A4 A3

2 f 2
3 f 1 + f 3 − f 2
4 f 1 + f 4 − f 3

1

8.7

f 3

δ3
G4 =

A f 1+ f 2+ f 3+ f 4

A3
3+A1

2 A3+A2
2 A3+A3 A4

2+A2
2 A1+A2 A4 A3+A1 A4 A2

2 2f 2 − f 1
3 f 2 + f 4 − f 3
4 f 1 + f 4 − f 2

1

11.3

2f 3 − f 1

δ4
G4 =

A f 1+ f 2+ f 3+ f 4

A3
2 A1+A2 A4 A1+A3 A4 A2+A4

2 A3

2 f 2 + f 4 − f 1
3 f 3 + f 4 − f 2
4 2f 4 − f 3

The derivation of this parameter is illustrated by Equation (8). For group 1, where
only one harmonic or sideband per frequency were used, the parameters result from
Equations (A2) and (A5). In group 2, two harmonics and sidebands always meet one
frequency, which is described by the generalised shift of group 2 with uG2. The amplitudes
A1 and A2 reveal the summary of the solutions from Equations (A2) and (A5) which should
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be solved. The placeholder Γf /h/s represents the combination of fundamental, harmonic,
and sideband frequencies:

uG2 = A1
sin
cos

[(
Γf /h/s1

)
(x− ct)

]
x+A2

sin
cos

[(
Γf /h/s2

)
(x− ct)

]
x,

uG3 = A1
sin
cos

[(
Γf /h/s1

)
(x− ct)

]
x

+A2
sin
cos

[(
Γf /h/s2

)
(x− ct)

]
x+A3

sin
cos

[(
Γf /h/s3

)
(x− ct)

]
x,

uG4 = A1
sin
cos

[(
Γf /h/s1

)
(x− ct)

]
x+A2

sin
cos

[(
Γf /h/s2

)
(x− ct)

]
x

+A3
sin
cos

[(
Γf /h/s3

)
(x− ct)

]
x + A4

sin
cos

[(
Γf /h/s4

)
(x− ct)

]
x.

(8)

This procedure was also used for the further displacement terms uG3 and uG4.
If several harmonics or sidebands meet on one frequency, it was expected that the

signal energy increases at this point. This assumption was proved experimentally, and the
groupings were conducted with two frequencies for comparison. In this case, the previ-
ously defined criteria for frequency combination selection do not apply. The frequencies
f 1 = 5 MHz and f 2 = 10 MHz are selected for the experiments (Figure 3).

 

Figure 3. Sensor arrangement—evidence signal grouping.

Using the pulse generator Rigol DG1022Z, the sinus signals were sent to the sensor
Olympus A5013. The same sensor was used on the receiving side. Table 6 illustrates
the fundamentals, harmonics, and sidebands with the corresponding frequencies and
groupings. With this frequency combination, there are several harmonics and sidebands at
the frequencies 5 MHz, 10 MHz, 15 MHz, and 20 MHz.

Table 6. Signal grouping.

Group Γf /h/s Frequency [MHz]

- 2f 1 − f 2 0

1
f 1 5

f 2 − f 1 5

2
f 2 10
2f 1 10

3
3f 1 15

f 2 + f 1 15
2f 2 − f 1 15

4
2f 2 20

2f 1 + f 2 20

- 2f 2 + f 1 25

- 3f 2 30

The first measurement was separately executed with one frequency, f 1 and f 2. In
the frequency spectrum, the amplitudes were measured at positions f 1/2, 2f 1/2, and 3f 1/2
(Figure 4a,b). The same experiments were repeated using two superimposing frequencies
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(f 1 and f 2) transmitted in parallel (Figure 4c). For this purpose, 100 signals were sent
out, an average frequency spectrum was formed, and the corresponding amplitudes
were evaluated.

Figure 4. Grouping spectra: (a) f 1 = 5 MHz; (b) f 2 = 10 MHz; (c) f 1 = 5 MHz and f 2 = 10 MHz.

The signal energies were calculated from the measured amplitudes and shown as a
comparison in Figure 5. The signal energy resulting from the excitation with one frequency
is on the left side of the graphs (1f), while the energy from the two-frequency excitation
is demonstrated on the right (2f). It is evident that more energy was transmitted in the
multi-harmonic and sideband grouped signals (2f).

Figure 5. Energy comparison: (a) Group 1 (5 MHz); (b) Group 2 (10 MHz); (c) Group 3 (15 MHz);
(d) Group 4 (20 MHz).

2.3. Evaluation Parameter

The aim of this work is to demonstrate a practicable application of the multi-frequency
excitation and compare the results with one, two, and four excitation frequencies.

In other research, the total sums of the fundamental frequencies and those of the
harmonic and sideband frequencies were compared for evaluation (Equation (9)) [17,36]:

E =
∫ ∞

−∞
| x̂( fn)|2d fn ∝ ∑|AF|+ ∑|AH | ∝ ∑|EF|+ ∑|EH |, (9)

where E is the energy, x̂ is the signal, AF are the fundamental amplitudes, AH are the
harmonic amplitudes, EF is the signal energy of the fundamental frequencies, and EH is
the energy of the harmonic signal. This approach may not be applicable with the four-
frequency excitation, however, because the grouping of the fundamental frequencies as well
as the harmonic and sideband frequencies may overlap. Another possibility of evaluation
with the same disadvantages is to use the acoustic moment concept, which is the integral
of the power spectral density (PSD) function of a signal [37,38].

In addition to the nonlinearity parameters, the comparison value Nindex was introduced
for this purpose. This is a summation of the parameter values δ (Equation (10)):

N(1 f ,2 f ,2 f−swept, 4 f )
index =

m

∑
n = 1

|δn|, (10)

where m is the total number of nonlinearity parameters of the individual measurements.
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3. Proof of the Use of the One-Dimensional Wave Equation

The derived nonlinearity parameters are based on one-dimensional wave propagation,
and it was examined as to whether this model can also be applied to multi-dimensional
applications. A round bar made of the material 1.4571 with a diameter of 5 mm and length
of 100 mm was used to simulate a one-dimensional model. To generate artificial contact
nonlinearities, the sample was cut in the middle and glued back together. At an area
of 1 mm wide, no glue was used so that the two halves had metallic contact. For the
measurements, the Olympus sensor A109S was used to send the longitudinal waves into
the sample via the front side and to receive them on the other side (Figure 6).

One frequency (6 MHz), two frequencies (6 and 10 MHz), and 4 frequencies (6, 7.3,
8.7, and 10 MHz) were sent according to the group derivation from Section 2.2. The signals
were generated with Rigol DG1022Z pulse generators over two channels each and an input
voltage of 150 V. The output signal was amplified with the Phoenix ISL 40 dB amplifier.

 
Figure 6. Experimental setup—longitudinal waves.

These tests were also conducted with a reference sample without damage for com-
parison. The nonlinearity parameters were calculated from these measurements, and the
determined Nindex values are shown in Figure 7a. To clarify the comparison of the excitation
methods, the normalised view was also selected (Figure 7b). It becomes clear that the
difference with the 4f excitation is stronger than with the 1f excitation.

Figure 7. Evaluation: (a) Nindex; (b) Normalised Nindex.

4. Experimental Investigation—Plate Samples

In this section, the analytical derivations were proven experimentally and compared
with the different excitation concepts.

4.1. Experimental Setup

Identical test setups were installed for all experiments (Figure 8a), where two Rigol
DG1022Z pulse generators were used for signal generation. Each device had two output
channels to send the single or superimposed frequencies to the sending sensor. For syn-
chronisation, both devices were connected to each other via the trigger inputs and outputs.
The combined signals were amplified with the amplifier Falco WMA-300. The S1 sensor
was the Olympus A5013. The same sensor was used to receive the signal (R1), which was
amplified with the Phoenix ISL 40 dB amplifier and sent to the Picoscope 4424 oscilloscope.
The post-processing was conducted from this position.

Figure 8b reveals the experimental setup. The sensors were held in an additively
manufactured holder and always ensured precise alignment. Two clamps were used for
a certain contact pressure, and standard contact gel was applied under the sensors for
better contact.
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Figure 8. Experimental setup: (a) Scheme; (b) Sensor arrangement.

The samples used were Inconel 718 plates with the dimensions 2 mm× 70 mm× 30 mm,
which consisted of two plates connected using a special micro laser welding process. Samples
with a defect width of 5, 2, and 1 mm were used and arranged centrally (Figure 9). Due to
these artificial defects, contact nonlinearities were generated and evaluated, and reference
samples without defects were available for comparison. Six variants of each sample were
examined, and the arithmetic mean values were processed.

Figure 9. Specimen: (a) X1—reference sample; (b) 1M—failure size: 1 mm; (c) 2M—failure size:
2 mm; (d) 5M—failure size: 5 mm.

4.2. One-Frequency Excitation

In this section, the excitation via single frequencies was examined. A 6 MHz frequency
signal and a 10 MHz signal were separately sent to the samples (Figure 10).

 

Figure 10. Excitation frequencies: (a) f 1 = 6 MHz; (b) f 1 = 10 MHz.

The second and third harmonic frequencies were considered accordingly. When
6 MHz is excited, the nonlinearity parameters of samples 1M and 2M increase significantly
(Figure 11a). A form of saturation was observed as the values drop in the 5M sample.
With the nonlinearity parameters of the third harmonic frequency, the value for the 1M
sample decreases and then continuously increases for the other samples (2M and 5M). If
the samples are sonicated with 10 MHz, a downward trend for both the second and third
harmonic frequencies was given. Only the 5M sample demonstrated a significant increase
in nonlinearities compared to the reference sample (Figure 11b).
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Figure 11. Nonlinearity parameter: (a) f 1 = 6 MHz; (b) f 1 = 10 MHz.

4.3. Two-Frequency Excitation
4.3.1. Constant Frequencies

If two frequencies emitted in parallel are used, the evaluation becomes more complex
since a total of 12 harmonic and sideband frequencies are formed which can be evaluated.
This technique was successfully used and proven in [17]. A 6 MHz and 10 MHz signal
were generated, superimposed, and sent via sensor S1 (Figure 12). If the waves overlap,
harmonic frequencies and more complex modulated response frequencies were generated,
which are evaluated in the following. To compensate the overlapping effects of alternating
compressive and tensile stresses on the various sine waves, 100 signals were transmitted
per experiment and the mean values of the amplitudes were evaluated.

Figure 12. Excitation frequencies: f 1 = 6 MHz, f 2 = 10 MHz.

Figure 13 reveals the evaluation of the nonlinearity parameters, and all demonstrate
a change compared to the reference sample. The parameter value δ2f 2 showed a clear
pattern depending on the crack size. This phenomenon was moreover observed in [17,36],
where the largest nonlinearities were not generated for the largest crack. These are strongly
dependent on the fundamental frequencies and illustrate significantly more influence with
the 1M and 2M samples.

Figure 13. Nonlinearity parameter.
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4.3.2. Linear Increasing Frequency

To investigate as many frequency combinations as possible, the concept of linearly
increasing frequencies was also explored. A constant frequency of 10 MHz was transmitted
via the sensor S1, and a 6 MHz signal was sent in parallel, which increases linearly to
10 MHz over a period of 60 s. The signals were received by sensor R1 (Figure 14), and
60 measurements per second were recorded.

 

Figure 14. Excitation frequencies: f 1 = 6 to 10 MHz, f 2 = 10 MHz.

In Figures 15–19, the nonlinearity parameters are shown for the individual harmonics
and sidebands.

In Figure 15a, the x-axis illustrates the actual increasing frequency combination starting
with 6/10 MHz up to 10/10 MHz. At the excitation frequencies of 8.4/10 MHz, the values
of the 5M sample increase drastically. The values of the 1M sample are consistently higher
than those of the 2M sample, while the reference values are always lower, except for a peak
at 7.4/10 MHz. With parameter δ2f 2 (Figure 15b), there were increased nonlinearities in
the 5M sample at the frequency combinations 6.4/10 MHz, 9.25/10 MHz, and 9.6/10 MHz;
therefore, the 1M sample reveals smaller peaks at 6.4/10 MHz and 7.8/10 MHz.

Figure 15. Nonlinearity parameter: (a) δ2f 1; (b) δ2f 2.

The third harmonic frequency of the sample 1M demonstrates several significant
points at δ3f 1 (Figure 16a). With δ3f 2, increased material nonlinearities were detected in
the reference sample at the start of the measurement. In the further course, several peaks
of the 5M sample arise again (Figure 16b).

Figure 16. Nonlinearity parameter: (a) δ3f 1; (b) δ3f 2.
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In Figure 17a, the strength of the dual frequency excitation with a modulated response
parameter becomes clear. A comparison demonstrates that the δf 2 − f 1 values for the 1M
sample as well as for the 2M and 5M samples reveal significant increases in nonlinearity.
For the parameter δf 2 + f 1, all samples reveal peaks from different frequency excitation
combinations (Figure 17b).

Figure 17. Nonlinearity parameter: (a) δf 2 − f 1; (b) δf 2 + f 1.

The parameter δ2f 1 − f 2 (Figure 18a) demonstrates a clear crack-predicting behaviour.
All damaged samples reveal nonlinear features. The previously shown nonlinearity be-
haviour is continued in Figure 18b, with clear nonlinear signature particularly in the
frequency range 9/10 MHz to 10/10 MHz.

Figure 18. Nonlinearity parameter: (a) δ2f 1 − f 2; (b) δ2f 1 + f 2.

In Figure 19a, the sample 1M stands out again due to increased parameter values. In
the higher frequency combination range, the damages of the samples 2M and 5M could
be identified. Of all parameters, 2f 2 + f 1 (Figure 19b) best demonstrates the nonlinearity
increases as a function of the crack size. Although higher values were required from the
frequency combination 7/10 MHz, the clearest results are from 8.6/10 MHz to 10/10 MHz.

Figure 19. Nonlinearity parameter: (a) δ2f 2 − f 1; (b) δ2f 2 + f 1.
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4.4. Four-Frequency Excitation

Four frequencies were sent into the sample with sensor S1 (Figure 20). The frequency
selection should relate to the concept of frequency grouping (Section 2.2).

Figure 20. Excitation frequencies: f 1 = 6 MHz, f 2 = 7.3 MHz, f 3 = 8.7 MHz, f 4 = 10 MHz.

In Figures 21–24, the nonlinearity parameters were shown separately with the different
groupings. Figure 21 demonstrates all nonlinearity parameters for one frequency (Table 2).
The parameter values of the damaged samples usually differ significantly from those of
the reference sample. With the 5M sample, insufficient nonlinearities are generated to
observe a clear change to the reference sample. For the parameters δ2f 1, δf 2 + f 1, δ2f 4 − f 1,
δ3f 1, δ2f 1 + f 2, δ2f 4 + f 3, and δ3f 4, the values of the reference sample and the damaged
5M sample are on the same level. With this nonlinearity group, frequencies with a large
bandwidth from 2 MHz to 30 MHz were considered.

Figure 21. Nonlinearity parameter—δG1.

In the nonlinearity grouping with 2 frequencies (Table 3), eight parameters were evaluated
(Figure 22), with a clear change to the reference sample. At 12.6 MHz (δf 3 + f 4 − f 1/δ2f 4 − f 2),
14.7 MHz (δ2f 2/δf 3 + f 1), 16 MHz (δf 4 + f 1/δf 3 + f 2), 17.3 MHz (2f 3/δf 4 + f 2) and 20.7 MHz
(δ2f 1 + f 3/δ2f 2 + f 1), there is an increase in the nonlinearity parameters as a function of the
crack size. The bandwidth ranges from 2.6 MHz to 27.3 MHz.

Figure 23 demonstrates the frequencies where three nonlinearity parameters meet
(Table 4). This group consists of seven frequencies covering a bandwidth from 1.3 MHz
to 26 MHz. These results revealed the strength of the multiple harmonic and modulated
response frequencies on one frequency. They reflect the size of the cracks in the samples,
with exception of the higher frequencies (23.3 MHz, 24.7 MHz, and 26 MHz). Contrary
to group 1, an increase in the parameter values of the 5M sample is given; however, the
values remain below the 1M and 2M samples.

The group with four nonlinearity parameters per frequency is shown Figure 24
(Table 5), which was revealed in a narrower frequency range from 4.6 MHz to 11.3 MHz.
This illustrated that the energy of four fundamental, harmonic, and sideband frequencies
are combined at one frequency, which is why this group has the greatest influence in
the evaluation. At 7.3 MHz and 8.7 MHz, two fundamental frequencies are included.
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At 4.6 MHz, the values of the 5M sample decrease. The other frequencies reveal the
nonlinearity parameters as a function of the crack size.

Figure 22. Nonlinearity parameter—δG2.

Figure 23. Nonlinearity parameter—δG3.

Figure 24. Nonlinearity parameter—δG4.
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4.5. Results and Discussion

The various excitation techniques are compared in this section. Therefore, Figure 25
illustrates all Nindex values. Since the reference sample X1 represents the basis of comparison
(Nindex = 0), only the difference to these values were shown. If the values are higher than
zero, the nonlinearities increase; if they are smaller, the nonlinearities decrease. The values
drop sharply with single-frequency excitation at 10 MHz. Only the values of the 5M
sample are in the positive range. The 6 MHz excitation provided better values, even if
the values of the 1M sample are minimally below the value of the reference sample. The
constant excitation with two frequencies reveals a clear increase in the values, which,
however, decrease in the still-positive range for the 5M sample. The arithmetic mean of all
measurement data was used to evaluate the swept values. The Nindex of the 2M sample is
on the same level as the reference sample. In this graphic, it was only possible to deliver a
course as a function of the crack size with the quadruple-excitation.

Figure 25. Comparison Nindex values.

5. Experimental Investigation—Turbine Blades

In the previous section, the various excitation philosophies were tested on metal plates
with artificial defects. In this section, turbine blades with cracks on the trailing edges were
examined using the different excitation concepts.

5.1. Experimental Setup

Four Inconel 628 turbine blades from an industrial gas turbine were used for this
study. Three blades had cracks on the trailing edges on different positions, while one blade
was unused and undamaged and serves as a reference for comparison. These blades are
cooled internally, with the cooling air directed into the blade via the blade root and exiting
via various outlet slots at the trailing edge following the serpentine cooling. Figure 26
illustrates the blades used with the crack positions and Table 7 illustrates the corresponding
crack lengths.

Figure 26. Damaged turbine blades.
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Table 7. Overview—turbine blades.

Blade
Crack Position

[Cooling Air Outlet Chamber (Figure 26)]
Crack Length [mm]

B292 - -
B046 2 6.0
B254 3 6.8
B286 6 6.1

The experimental setup was implemented as described in Section 4. The emitting
sensor S1 was positioned in the area of the inner shroud on a smooth area on the blade
airfoil (Figure 27a). The receiving sensor R1 was located opposite, near the outer shroud.
Using an additively manufactured sensor holder, the sensors are held in the same position
during all tests, and an identical measuring distance was ensured (Figure 27b).

 
Figure 27. Measurements of turbine blades: (a) Sensor orientation; (b) Experimental setup.

5.2. Measurements with Results and Discussion

Figure 28 revealed the excitation with a frequency of 6 MHz (Figure 28a) and 10 MHz
(Figure 28b). When excited with 6 MHz, the second harmonic parameter δf 2 demonstrates a
clear increase in nonlinearities; the 10 MHz excitation, however, hardly allows conclusions
to be drawn about the damage.

Figure 28. Nonlinearity parameter: (a) f 1 = 6 MHz; (b) f 1 = 10 MHz.

The dual frequency excitation with 6 MHz and 10 MHz clearly reveals increases in
nonlinearity (Figure 29).
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Figure 29. Nonlinearity parameter.

In Figures 30 and 31, the most relevant results are demonstrated with swept signals.
It is noticeable that the reference blades (B292) also have a higher degree of nonlinearity
peaks (Figure 30a). Using an excitation frequency combination starting with 8.2/10 MHz,
both the reference blade B292 and blade B286 show harmonics. Further significant increases
in the nonlinearity parameters were measured for all damaged blades. As with the metal
plate samples, the excitation frequency combinations from 8/10 MHz lead to considerable
increases in the nonlinearity parameters. Blade B254 achieved the highest values for both
δ2f 1 and parameter δ3f 1 (Figure 30b).

Figure 30. Nonlinearity parameter: (a) δ2f 1; (b) δ3f 1.

The results of two modulated response parameters (δ2f 2 ± f 1) are illustrated in
Figure 31. The blade B254 reveals the highest nonlinear values. The crack can also be
diagnosed for blades B046 and B286 by the increased nonlinearity values.

Figure 31. Nonlinearity parameter: (a) δ2f 1 − f 2; (b) δ2f 1 + f 2.
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When evaluating the excitation with four frequencies, the procedure described in
Section 2.2 was followed. The grouping of the nonlinearity parameters was used for crack
detection. Figure 32 illustrates group 1, with one nonlinearity parameter per frequency.
The parameters δf 4 − f 1, δ2f 4 − f 1, δ3f 1, δf 4 + f 3, δ2f 4, δ2f 4 + f 3, and δ3f 4 reveal a clear
increase in the nonlinearity parameters and allow a positive crack prognosis.

Figure 32. Nonlinearity parameter—δG1.

If two parameters decrease on one frequency (Figure 33), the results are strong, show-
ing that detecting cracks was possible with this group evaluation alone.

Figure 33. Nonlinearity parameter—δG2.

This behaviour continues and is also shown in the nonlinearity group 3 (Figure 34).
Only δ3f 2 failed to clearly detect the crack on the blade B046.

As in Section 4, the differences between the various parameter values have become
smaller (Figure 35). Because the signal energies of four fundamental, harmonic, and
modulated response parameters each coincide on one frequency, this group approach
provides the strongest informative value.

In Figure 36, the normalised Nindex values for the different processes are used for
evaluation again. If only one frequency is used for excitation, a crack forecast with these
values is hardly possible; if two frequencies are used, both constant excitation and excitation
by means of swept signals reveal a comparable, increasing behaviour; with four frequency
excitations, these values increase continuously.

In most of the measurements, the B254 blade revealed the highest values. Although
this blade had the longest crack with a crack length of 6.8 mm, the high nonlinearities can
have various causes. Compared to the plate metal samples, the position of the cracks on the
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blades is variable. The crack of the blades B046 is only 5 mm behind the sensors, and the
distance increases accordingly up to blade B286. In addition, real cracks behave differently,
and many factors can lead to an increase of nonlinearities. The decisive factor is whether
the crack is closed or open, and it is furthermore crucial how the asperities of the crack
topography are in contact and how much of them are in interaction [39,40].

Figure 34. Nonlinearity parameter—δG3.

Figure 35. Nonlinearity parameter—δG4.

Figure 36. Comparison Nindex values.
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6. Conclusions

A comparison of various nonlinear ultrasonic wave modulation techniques was pre-
sented. The tests were conducted on metal plates, with artificially generated cracks, and on
turbine blades with real cracks.

When using one excitation frequency, the results for both the plate samples and
turbine blades were not convincing and showed that selecting the appropriate fundamental
frequency is crucial to the success of the measurement.

The parallel excitation with two frequencies provides a total of 12 nonlinearity param-
eters to evaluate the components, and the new Nindex values were used as a comparison
with the other excitation techniques. For the plate samples, some nonlinearity parameters
revealed a clear increase depending on the crack size. With the two-frequency excitation
with a linearly increasing signal, the informative value of the failures had not improved
in comparison.

The four-frequency excitation was analytically solved using the extended one-dimensional
wave equation. A total of 64 individual nonlinearity parameters were derived. Furthermore,
the four fundamental frequencies were chosen so that as many different fundamental frequen-
cies, harmonic frequencies, and sidebands as possible meet at one frequency. The concept
of grouping nonlinear parameters simplifies the evaluation with a total of 30 nonlinearity
parameters, which facilitates identifying a defect in the material. This behaviour and advan-
tages were proven experimentally. The Nindex values of these measurements demonstrated
behaviour as a function of the crack size. It was shown that, especially with the quasi-chaotic
frequency evaluation, detecting the failure is possible without calculating dispersion curves.

The use of four fundamental frequencies offers clear advantages in detecting defects
in materials by pairing with the frequency grouping method.
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Appendix A

This section includes the further derivation for the solution of the one-dimensional
wave equation with four excitation frequencies up to the third-order of nonlinearity
(Section 2.1).
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Substituting Equation (7) in the right side of Equation (5) with the second-order
nonlinearity parameter β and making further transformations with trigonometric formulas
lead to:

∂2u
∂t2 − c2 ∂2u

∂x2 =

c2β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Based on this expression and according to [17], the following solution results for u(2):
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The solution of Equation (5) should now be extended by the cubic nonlinearity param-
eter γ to obtain an encompassing description of the nonlinearity parameters. Substituting
Equation (7) into the right side of Equation (5) in the third-order nonlinearity parameter
γ gives:
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Transformation with binominal and trigonometric formulas leads to:
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Based on [17], this results in the following solution:
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Appendix B

Table A1 summarises the derived nonlinearity parameters with an increasing number
of fundamental frequencies. If only one frequency is used, the second and third harmonic
frequencies are available for evaluation. With two fundamental frequencies, 12 nonlinearity
parameters were derived, including the linear-dependent parameter δfn, the harmonic
parameters δ2fn, δ3fn, and the modulated response parameters δfn ± fm and δ2fn ± fm.
If four frequencies are transmitted in parallel, the number of harmonics and sidebands
increases to a maximum of 64. New parameters of the type δfn + fm ± fp were added.

The second harmonic parameters δ2fn and sideband δfn ± fm were derived from the
second-order nonlinearity parameter β. All others have their origin in the third-order
nonlinearity parameter, γ.

Table A1. Comparison—nonlinearity parameters.

One Excitation Frequency Two Excitation Frequencies Four Excitation Frequencies

Frequencies Number Frequencies Number Frequencies Number

- - fn 2 fn 4
2fn 1 2fn 2 2fn 4
3fn 1 3fn 2 3fn 4
- - fn ± fm 2 fn ± fm 12
- - 2fn ± fm 4 2fn ± fm 24
- - - - fn + fm ± fp 16

∑2 ∑12 ∑64
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Abstract: Metamaterials are engineered periodic structures designed to have unique properties
not encountered in naturally occurring materials. One such unusual property of metamaterials
is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens
made of negative refractive index metamaterials can achieve resolution beyond the diffraction limit.
This paper presents the design of a metamaterial lens and its use in far-field microwave imaging
for subwavelength defect detection in nondestructive evaluation (NDE). Theoretical formulation
and numerical studies of the metamaterial lens design are presented followed by experimental
demonstration and characterization of metamaterial behavior. Finally, a microwave homodyne
receiver-based system is used in conjunction with the metamaterial lens to develop a far-field
microwave NDE sensor system. A subwavelength focal spot of size 0.82λ was obtained. The system
is shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive positions of
the defect with a separation of 0.23λ was resolvable using the proposed system.

Keywords: metamaterial; lenses; refractive index; microwave sensors; nondestructive testing

1. Introduction

In 1968, V. Veselago theoretically introduced the electrodynamics of materials having
simultaneous negative values of permittivity ε and permeability μ [1]. He showed that such
materials will exhibit unusual properties such as negative refraction, reversal of Doppler
shift and backward Cherenkov radiation. The electric field, magnetic field, and wave vector
of a plane wave form a left-handed triplet in such a medium, instead of the conventional
right-handed one. The word “metamaterial” was coined for such materials, alluding to their
unusual properties, not generally encountered in nature. The first left-handed metamaterial
(LHM) structure was realized by Smith et al., in their seminal paper of 2000, where they
showed that an alternating periodic array of split-ring resonators (SRRs), and thin wires
can produce an effective medium having a negative refractive index in the microwave
regime [2]. Extensive research demonstrating and characterizing the left-handed behavior
of such structures followed [3–5]. Early on, negative refractive index structures were a
controversial topic, and their existence was disputed by researchers [6,7]. However, over
the past two decades, there has been significant evidence that certain periodic structures can
indeed have an effective negative refractive index over a limited range of frequencies [8–10].
Such periodic structures, even though inhomogeneous, can behave as a homogeneous
medium in response to electromagnetic (EM) waves with appropriately long wavelength.
The homogenized negative index behavior of inhomogeneous metamaterial structures has
been described by an effective negative ε and μ of the periodic arrays [11].

Metamaterials have inspired many novel applications based on their negative refrac-
tive index. One of the most ingenious applications of LHM structures was put forward
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by J.B. Pendry, where he showed that a negative refractive index material can act as a
“super lens”, capable of achieving subwavelength focusing in the far field by restoring
the amplitude of evanescent wave components [12]. The highest resolution that can be
obtained using a conventional lens in the far field is limited by the operating wavelength,
due to the physics of diffraction. The breaking of this diffraction limit using point source
focusing (Figure 1a) and evanescent wave amplification of a LHM lens has been one of
the significant driving factors for metamaterial research. Various metamaterial designs,
operating from radio to optical frequencies, have been developed and shown to achieve
subwavelength focusing [13–17].

 
(a) (b) 

Figure 1. (a) Ray diagram showing reversal of Snell’s law in a metamaterial medium. For a conventional medium, the
diverging beams from a point source will not come into focus. (b) Printed circuit board (PCB) implementation of a
metamaterial consisting of alternating periodic arrangement of SRRs and wires. The structure will exhibit an effective
negative refractive index over a range of frequencies under specific incident wave polarization.

This paper reports the design of a metamaterial lens and its experimental implementa-
tion for far-field microwave detection of subwavelength defects. Far-field microwave NDE
offers the advantage of rapid scan times, but is constrained by the diffraction limit from de-
tecting smaller subwavelength defects [18]. A single SRR coupled with a transmission line
behaves as a LC tank circuit, whose resonant frequency can be changed in the presence of a
load. Although extensive research on such metamaterial-inspired near-field sensors have
been described in literature, they do not offer the advantages of far-field systems [19–22].
While numerical studies of LHMs as lenses in the far field have been undertaken [23–26],
the practical feasibility of their use has not been widely demonstrated. One study of far-
field microwave imaging is reported by Shrieber et al., who present subwavelength defect
detection in fiberglass composites [27]. An LHM lens-based microwave hyperthermia
scheme for treatment of tumors is proposed in [28]. The metamaterial lens concept has
been extended to ultrasonics as well [29], with various studies demonstrating subwave-
length imaging using acoustic LHM lenses being reported [30–32]. The authors of the
present paper recently reported a numerical study on enhancement of far-field microwave
time-reversal imaging resolution using a homogenized model of a metamaterial lens [33].
Preliminary studies on the physical design of a metamaterial lens were presented by the
authors in [34]. The present contribution focuses on detailed numerical and experimental
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characterization of the lens design and its feasibility for far-field subwavelength defect
detection. Existing literature on using LHMs in the far field employs electromagnetic
windowing techniques to realize subwavelength focusing or defect detection. In this paper,
a homodyne receiver-based architecture is proposed to be used in conjunction with the
metamaterial lens for far-field measurements. The high SNR associated with such syn-
chronous detection allows the lens to be characterized in free space and, hence, provides a
system that can be used in the field under practical conditions.

The theory governing the working principles of metamaterials is briefly discussed
in the Section 2. The Section 3 provides a numerical study and EM parameter retrieval of
the lens design using the commercial software HFSS. The Section 4 presents the experi-
mental characterization of the metamaterial lens and its implementation for detection of
subwavelength defects using the homodyne system.

2. Theory

A periodic array of conducting elements can act as an effective medium for EM
scattering when the wavelength is much longer than the element dimensions, i.e.,

a � λ (1)

where a is the dimension of a unit cell of the periodic array, and λ is the operating wave-
length in the effective medium. The EM response of an effective medium is determined
by the configuration of the unit cell and can be characterized by an effective relative per-
meability μe f f and effective relative permittivity εe f f . Metamaterials with simultaneous
negative μe f f and εe f f over a specific range of frequencies are termed as “double negative”
metamaterials. One typical example of a unit cell comprises two distinct structures: an
SRR element with dominant magnetic response and a thin wire element with dominant
electric response.

A periodic array of the SRR elements can exhibit an effective magnetic behavior,
similar to that of magnetic plasmas, in the microwave regime [35]. Under excitation by an
external magnetic field parallel to the axis of the SRRs, the array behaves as a bulk medium
having an effective relative permeability given by

μe f f (ω) = 1− Fω2

ω2 −ω2
0 + jωΓ

(2)

where F is the fractional volume of the unit cell occupied by the rings, Γ is the dissi-
pation factor, ω0 is the resonant frequency of the SRRs, and ω is the frequency of the
excitation field. Equation (2) shows that the real part of μe f f is negative for frequencies ω
greater than resonant frequency ω0 and less than magnetic plasma frequency ωmp given by
ωmp = ω0/

√
1− F. Propagating wave modes are prohibited in this frequency band due to

negative μe f f of the SRR medium.
A periodic array of the thin metallic wire elements, under the influence of a time-

varying electric field, can mimic an electric plasma at microwave frequencies [36]. The
effective relative permittivity of such an array in the presence of an external electric field
parallel to the wires is given by

εe f f (ω) = 1− ω2
ep

ω2 (3)

where ωep is the electric plasma frequency, and ω is the frequency of the excitation field.
Equation (3) shows that the real part of εe f f has negative values for frequencies ω < ωep.
This causes the wire medium to prohibit propagating modes in that frequency regime.

Combining both the SRR and wire elements in a periodic array gives rise to a meta-
material medium having simultaneous negative μe f f and εe f f over a certain range of
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frequencies. Assuming that there is no direct interaction between the SRR and wire media,
the refractive index n of the resulting metamaterial is given through

n2 = μe f f (ω)εe f f (ω) (4)

The negative square root in the calculation of n is chosen in (4) when both μe f f (ω) and
εe f f (ω) are negative to account for propagation of left-handed waves in a metamaterial [37].
A left-handed transmission band occurs within the previously overlapping forbidden bands
of negative μe f f and negative εe f f . The combined array behaves as a medium having an
effective negative refractive index in this transmission band, and the transmission peak
is referred to as a left-handed peak. Such a negative index medium not only focuses
propagating waves but also enhances the evanescent wave component of the angular
spectrum of the incident field, which contains high-resolution information. Subwavelength
focusing beyond the diffraction limit is, thus, made possible by using a negative index
metamaterial lens. As shown in Figure 1a, for an ideal lossless LHM lens of thickness t and
refractive index n = −1, a diverging beam from a point source at a distance d1 from the lens
focuses first inside the lens and, then, outside the lens at a distance d2 given by [12]

d2 = t− d1 (5)

Although the presence of losses associated with fabricated LHMs causes them to
deviate from perfect focusing capabilities of an ideal metamaterial lens, subwavelength
focusing is still achievable using a lossy negative index lens [38].

3. Simulation

A metamaterial can be designed by simulating an infinite array of metamaterial unit
cells using periodic boundary conditions. Figure 2a shows an HFSS model of the proposed
unit cell along with incident field polarization and direction of propagation. The Perfect E
and Perfect H boundary conditions of HFSS were applied on the y-z and x-y boundaries,
respectively, to mimic an infinite array of unit cells and ensure correct polarization of the
incident wave. FR4 (εr = 4.4, tan δ = 0.02) of thickness 1.6 mm was used as the substrate for
the PCB. Copper of thickness 35 micron was used as the conducting material. Wave ports
were assigned on the z-x boundary to excite the model with a plane wave and obtain the
S-parameters of the metamaterial medium. Figure 2b shows the dimensions of the unit cell.
The dimensional parameters for the proposed design at 3.45 GHz are as follows: r = 1.5 mm,
c = g = 0.2 mm, t = w = 0.9 mm, and a = 9.3 mm. The distance between consecutive PCB
layers (length of unit cell model along z direction) is 6.5 mm. The dimensions were adapted
from previous works by Aydin et al., where they demonstrated negative refraction and
left handed focusing by a metamaterial lens in the 3–4 GHz regime [39]. Although the
principal objective of designing a negative index LHM lens is high spatial resolution, which
can be achieved by improving the losses in the design, the primary purpose of this work
is to demonstrate the viability of using an LHM lens for subwavelength defect detection.
Hence, optimization of the performance of the unit cell by parameterizing its dimensions
was left for future work.
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(a) (b) 

Figure 2. (a) HFSS unit cell model. (b) Schematic of the metamaterial unit cell showing both sides of the PCB.

3.1. Scattering Parameters

Figure 3 shows the simulated S-parameters for three cases—an SRR-only medium, a
wire-only medium, and a medium that combines both wires and SRRs. For the SRR-only
medium, a dip in the transmission parameter S21 is observed around the resonant frequency
of 3.45 GHz of the SRR (Figure 3a). This is due to the prohibition of propagating waves
by the negative μe f f of the medium. Figure 3b shows that the wire-only medium allows
transmission (with less than 10 dB of insertion loss) above 5.5 GHz, which is the electric
plasma frequency ωep. Propagating waves below this frequency are prohibited due to the
negative εe f f of the wire medium. Figure 3c shows that after combining both the SRR and
wire, a transmission band is observed around 3.45 GHz. Left-handed waves are allowed to
propagate in the frequency region where both μe f f and εe f f are simultaneously negative.

 
(a) (b) 

 
(c) 

Figure 3. HFSS S-parameter results for (a) SRR-only medium, (b) wire-only medium, and (c) SRR
and wire combined metamaterial medium. The respective HFSS models are shown in the insets of
the figures.
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3.2. Electromagnetic Parameter Retrieval

Extraction of the EM parameters from S-parameter data of the metamaterial design
was done to verify left-handed nature of the transmission band. The procedure to determine
the EM properties of the metamaterials is presented in Appendix A.

The extracted material properties for the combined SRR and wire medium simulation
results are shown in Figure 4. From the normalized impedance curve in Figure 4a, a
resonance near the two plasma frequencies (3.45 GHz and 5.5 GHz) of the metamaterial
medium is observed as expected. Figure 4b shows that the real part of the extracted
refractive index is negative, thus verifying the left-handed transmission band in this
frequency region. The value of real part of n at the resonant frequency of 3.45 GHz is
−2.18. The real parts of the extracted μe f f and εe f f are also simultaneously negative in
the frequency region, as expected (Figure 4c,d). It should be noted that above 5.5 GHz,
both μe f f and εe f f are simultaneously positive, rendering the refractive index to be positive
above this frequency.

 
(a) (b) 

 
(c) (d) 

Figure 4. Extracted simulated EM parameters of the metamaterial design: (a) impedance, (b) refractive index, (c) permeabil-
ity, and (d) permittivity.
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4. Experiment

A metamaterial lens, consisting of Nx = 20, Ny = 10 and Nz = 31 unit cells, was
fabricated for experimental validation. Figure 5 presents the fabricated metamaterial lens.
An amount of 20 × 10 unit cells in the x-y plane were printed in a single FR4 PCB of
thickness 1.6 mm, and 31 such boards were stacked in the z direction at an interval of
6.5 mm. The magnetic and electric field vectors are polarized along the z and x axes,
respectively, while the wave propagation vector is along the y axis. The thickness of the
lens, t, in direction of propagation is 100 mm. Frequency sweep measurements were done
to confirm the presence of left-handed transmission peak. A homodyne detection-based
scheme was used to experimentally validate the negative refractive index and determine
the subwavelength focal spot at the left-handed transmission peak frequency. NDE results
for a set of dielectric test samples are presented in Section 4.2.3 to show the feasibility of
using an LHM lens for the detection of subwavelength defects.

  

Figure 5. Fabricated metamaterial lens.

4.1. Transmission Characteristics

A large metallic screen (~10λ) with an aperture was used to obtain the transmission
characteristics of the fabricated metamaterial lens. The metallic screen was implemented
by attaching aluminum sheets to a Styrofoam board. An aperture of the size of the lens
was cut in the middle of the board to allow for waves to pass through the lens only [40].
Wideband (675 MHz to 12 GHz) Vivaldi antennas were used as transmitter and receiver
to illuminate the lens with a uniform plane wave. The antennas were placed 40 cm apart
to ensure far-field measurements. The frequency sweep measurements were done using
an Agilent EB070B vector network analyzer (VNA). Figure 6a shows the schematic of
experimental set up. The measurements of S21 clearly indicate the presence of a left-handed
transmission band with a peak transmission of −16 dB around 3.5 GHz (Figure 6b). The
slight shift in frequency between the simulated and experimental results can be attributed
to fabrication tolerances. Above 5.5 GHz, the metamaterial acts as a conventional medium
having positive μe f f and εe f f . Conventional right handed waves are allowed to propagate
in this frequency regime, and hence, the transmission band is observed.
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(a) (b) 

Figure 6. (a) Free space transmission experiment schematic. (b) Experimental transmission response of the metamaterial
lens. The measurements were calibrated with respect to transmission in free space.

4.2. Left-Handed Characteristics

After experimentally confirming the left-handed transmission peak at 3.5 GHz, single
frequency measurements using a homodyne receiver architecture were used to facilitate
fast characterization of the metamaterial lens at 3.5 GHz. The schematic of the homodyne
architecture is shown in Figure 7. The RF signal generator produces a continuous sinusoidal
wave of frequency 3.5 GHz. The generated signal is passed through a splitter with one
channel to the transmitting antenna and the other channel to the LO port of the mixer. The
RF port of the mixer is connected to the receiver antenna. The DC signal produced at the
IF of the mixer is read by a digital multimeter (DMM) and is proportional to the strength
of the received signal. The high SNR associated with such synchronous detection allows
the lens to be characterized in free space without the need for the windowing used in the
frequency sweep measurements. Moreover, using homodyne detection circumnavigates
the use of expensive RF instruments such as a VNA.

Figure 7. Schematic of homodyne architecture-based setup for single frequency measurements.
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4.2.1. Negative Refraction

An imaging experiment was carried out to demonstrate negative refraction by the
metamaterial lens and calculate its effective refractive index [33]. A standard gain horn
antenna at 3.5 GHz was used as the transmitter, while a quarter wavelength monopole was
used as the receiving probe. Outgoing spherical waves from the horn are incident at an
angle θi at the first air-LHM interface. After undergoing negative refraction through the
LHM of thickness t, the waves are shifted towards the side of the transmitter by a distance
d at the second LHM–air interface. The angle of refraction can be determined by scanning
the received signal amplitude can be calculated as θr = tan−1(d/t). The top view of the
experimental setup is shown schematically in Figure 8.

Figure 8. Negative refraction experiment schematic top view.

The receiving probe was mounted on a 2D scanner, moved in the y-z plane, and the
received amplitude distribution was measured. A step size of 5 mm was used in both
the z and y directions. The transmitting horn was placed at a distance of 12 cm (1.4λ)
from the first air–LHM interface with an angle of incidence θi = 10◦. The normalized
measured amplitude distribution is shown in Figure 9a. The outgoing wave from the
metamaterial lens has a beam profile centered towards the transmitting antenna. The
angle of refraction, θr, through the fabricated lens of thickness t = 100 mm and beam shift
d = 15 mm is calculated to be 8.53◦. The real part of effective refractive index is thereby
computed using Snell’s law and is equal to −1.17 at 3.5 GHz.
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(a) 

(b) 

Figure 9. (a) Normalized received signal amplitude scan. The outgoing wave from the LHM has a
beam profile centered at 85 mm. (b) Normalized line scan of the received signal amplitude at y = 0.
The beam shift d is measured to be equal to 15 mm.

4.2.2. Subwavelength Focusing

The presence of negative refraction allows the possibility of using the fabricated meta-
material structure as a lens for subwavelength focusing. A monopole antenna produces
an azimuthally symmetric field pattern, as does an ideal isotropic radiator. Therefore, a
monopole with a resonant frequency of 3.5 GHz was used as the transmitter to demonstrate
subwavelength focusing. Due to the negative refractive index of the metamaterial lens,
diverging beams from the monopole antenna, placed at an appropriate distance, will be
brought to focus outside the lens according to (5). Figure 10 presents the schematic top
view of the experimental setup.

A quarter wavelength monopole was used as the probe for measuring the received
signal. The receiving probe was mounted on a 2D scanner and moved on the y-z plane
and the received amplitude distribution was measured. A step size of 5 mm was used in
both the z and y directions. The transmitting monopole was placed at 60 mm (d1) from the
air–LHM interface. Figure 11a shows normalized received signal amplitude. A focal point
is observed at a distance 30 mm (d2) from the second LHM–air interface. The measured
focal spot distance satisfies the relation in (5) for the fabricated lens of thickness 100 mm (t).
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Figure 11b shows the normalized line scan at the focal plane (y = 30 mm). The full width at
half maxima (FWHM) for the focal spot is found to be 70 mm (0.82λ).

Figure 10. Subwavelength focusing experiment schematic top view.

(a) 

(b) 

Figure 11. (a) Normalized received signal amplitude. A focal spot is observed at a distance of
d2 = 30 mm from the lens. (b) Normalized line scan at y = 30 mm. The dashed lines indicate
−3 dB point.
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4.2.3. Microwave NDE

Next, the capability of the LHM lens for detection of subwavelength defects with far-
field microwave NDE data is demonstrated. The experimental setup is shown in Figure 12,
and the schematic top view is shown in Figure 13a. Figure 13b shows the schematic of the
sample under test. Teflon samples are used as the dielectrics for testing. A groove of size
15 mm (0.17λ) × 5 mm (0.06λ) is machined along the length of the sample. A similar Teflon
sample with no machined groove is treated as the healthy sample. The samples are placed
at the focal spot of the lens, and line scans are performed to obtain the scattered data. The
contribution due to the defect is measured by the changes in the test signal relative to the
baseline signal (found by measuring the healthy sample). The calibration and detection
procedure is shown in Figure 14. The position of the defect can be determined by the
minima in the line scans [26]. Three sets of measurements were taken at three positions
of the sample. The distance p between consecutive defect positions was set to be 20 mm
(0.23λ).

 

Figure 12. Proposed microwave NDE sensor. The sample is kept at the focal point of the LHM lens to allow for subwave-
length defect detection.
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(a) (b) 

Figure 13. (a) NDE experiment schematic top view. (b) Sample under test schematic. All dimensions are given in mm.

 

Figure 14. Calibration and defect detection flowchart.

Figure 15a shows the defect signal for the three measurements. The received line
scans were fitted with smooth curves to obtain the minima. The minima in the three line
scans are shifted with repositioning of the defect location, thus indicating the position
of the subwavelength defect. This demonstrates the proposed system is sensitive to a
0.17λ × 0.06λ defect and can determine consecutive defect positions with a separation of
0.23λ. The NDE measurements were repeated without the LHM lens to illustrate that the
subwavelength defects are not detectable without the lens. Figure 15b shows the resulting
received line scan signals without the lens. Since waves from the monopole transmitter are
not focused, the received signal strengths are dominated by edge effects and scattering from
the background. Therefore, no minima, as in the case of the LHM lens, are observed. Hence,
these initial results clearly demonstrate that subwavelength defects, which are undetectable
in free space in the far field, can be detected using a properly designed metamaterial lens.

 
(a) (b) 

Figure 15. NDE line scan results. (a) Measurements using the LHM lens. The minimum of the plot gives the defect position.
(b) Measurements without the LHM lens. Waves are not focused in free space. Subwavelength defects position cannot
be determined.
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5. Discussion

This paper presents the design of a metamaterial lens and its application as a far-field
microwave sensor. Numerical studies of the metamaterial unit cell design are presented.
A fabricated metamaterial lens was used for experimental verification of the left-handed
propagation characteristics of the lens. A homodyne detection setup was used with the
LHM lens for NDE of subwavelength defects. Initial results demonstrate that a negative
refractive index metamaterial lens can achieve resolution beyond the diffraction limit
for far-field microwave NDE. The subwavelength resolution capability of a metamaterial
lens is limited by the inherent losses associated with a fabricated LHM. Therefore, future
work will involve the design of low loss LHMs to mitigate this issue. Moreover, work is
in progress to design active metamaterials that can provide tunability that is lacking in
passive metamaterial lens designs such as the one reported in this study. Finally, more
extensive testing of experimental imaging of subwavelength defects is also underway to
demonstrate the full potential of LHMs.
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Appendix A

Estimation of permittivity and permeability of an engineered material from its S-
parameters is a well-established method, first proposed in the original work of Nicolson
and Ross [41] and Weir [42]. Using this approach, an inhomogeneous metamaterial struc-
ture, assumed to be a homogenous medium under the effective medium theory, can be
characterized by a refractive index n and normalized impedance z [43,44].

The normalized impedance z of a metamaterial unit cell is related to its S parameters
by the equation

z = ±
√√√√ (1 + S11)

2 − S2
21

(1 + S11)
2 + S2

21

(A1)

Since the metamaterial is a passive device, the reflected power cannot exceed the
incident power. Therefore, the real part of z is positive, which in turn resolves the sign
ambiguity in (A1).

The refractive index of a metamaterial unit cell of dimension d is related to the S-
parameters by the following equation

ejnk0d =
S21

1− S11
z−1
z+1

(A2)

The value of refractive index n can be evaluated from (A2) as

n =
1

k0d

[{
Re
(

ln
(

ejnk0d
))

+ 2mπ
}
− j

{
Im
(

ln
(

ejnk0d
))}]

(A3)
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where Re(.) and Im(.) are the real and imaginary operators, respectively, k0 is the free space
wavenumber, and m is an integer. The ambiguity in the branch selection of the multi-valued
complex logarithmic function in (A3) can be resolved by choosing correct integer value
m, which is dependent on the electrical length of the unit cell. Due to the small electrical
length of the proposed unit cell design (9.3 mm) compared to the homogenized wavelength
(38 mm), the fundamental branch (m = 0) is chosen for calculation of material parameters
from the simulation model [45].

The effective permittivity and permeability of the metamaterial are computed from z
and n using the following relations

μe f f = nz; εe f f = n/z (A4)
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Abstract: A coherent optical fiber sensor with adequate sensitivity for detecting the acoustic emission
(AE) during the propagation of a crack in a ferrous material is presented. The proposed fiber optic
sensor is successfully compared in terms of the SNR (Signal to Noise Ratio) and detectable AE energy
levels to commercially available AE piezo-transducers sensors and is proven to be an effective and
advantageous alternative for sensing and monitoring fatigue damage in structural applications.

Keywords: fiber optic sensor; guided waves; acoustic emission; fatigue crack propagation

1. Introduction

Acoustic Emissions (AE) are an established real-time structural health monitoring
approach for detecting, localizing, and monitoring damage initiation and development
in many structural applications, for example in the mechanical, civil, automotive and
aerospace fields made of different technical materials, such as metals, polymers, ceramics
and composites. The onset and development of damaging events, such as cracks, delamina-
tion, corrosion, and debonding, release energy in terms of transient high-frequency elastic
(ultrasonic) waves, which travel into the involved materials assuming the shape of either
spherical volumetric waves or guided waves depending on the given boundary conditions.

By acquiring and suitably analyzing such sound waves, it is possible to detect and
locate faults in complex structures, exactly as it happens in seismology from which the
industrial application of AE was directly derived, even if adapted to a different scale. AE
sensors based on piezoelectric transducers (PZT) are the most widespread sensor types
currently adopted, featuring high-sensitivity and suitable bandwidth [1,2]. However, PZT
transducers work with electric charges, which are low in intensity, and thus an electronic
circuitry is needed close to the sensor transducer (e.g., a couple of meters) in order to avoid
severe propagation losses as well as bandwidth limitations.

Moreover, the connecting cable must be electrically shielded in order to avoid electro-
magnetic noise (e.g., a coaxial cable), and the results are very sensitive to environmental
perturbation (e.g., vibrations and acoustic noise) [3]. These “interface” limitations have
shrunk the deployment of PZT sensors in applications that require a remote measurement,
such as field applications.

In such a context, fiber-optic sensors, FOS, have been investigated through the years
as a possible alternative. The greatest advantages of FOS are the total electromagnetic
immunity, the possibility to easily have the interrogation unit remote from the transducer
unit, the capability of withstanding harsh environments, and the availability of many
multiplexing options (time, space, as well as wavelength). In front to these recognized
advantages, it is not yet well established if FOS offer the same high-sensitiviy of PZT
transducers in practical applications. The aim of this paper is to prove this, i.e., to prove in
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real experimental conditions that a FOS system achieves the same sensitivity to the acoustic
emission as the standard PZT system.

Hence, the paper is organized in order to compare the PZT and the FOS sensor under
the same experimental conditions. The AE events are generated by considering the case
of fatigue crack propagation in a HEM220 carbon steel beam submitted to fatigue cycles.
After a description of the FOS schemes, details of the FOS transducer are given. In the
second half of the paper, the conventional and novel sensors are applied to the same
experimental conditions, and the results are finally discussed.

2. The Coherent Fiber Optic Sensor

The detection of acoustic waves in solids emitted during fatigue and crack propagation
phenomena dates back to the dawn of the invention of fiber optic sensors. An important
paper appeared at the beginning of the 1990s [4], where the authors attempted to develop
a fiber optic sensor dedicated not only to the detection but also to the localization of
acoustic events. Starting from these years, a large number of contributions appeared in the
literature for all the following decades. Over the first decade of the 2000s, the detection
and localization of AE events has been assessed in different materials. In [5], an embedded
optical-fiber sensor was proven to monitor crack propagation in concrete beams.

The sensing of AEs at a number of selected points on an optical fiber is achieved by the
several fiber-optic transducer placed along the sensing fiber. The proposed sensor proved
to be effective in localization of AE events, even though the collected signals are of high
energy content and amplitude. The sensor sensitivity is not assessed in the paper, which
limits the comparison with other systems. In [6], a fiber-optic interferometric sensor is
proposed to detect and localize AE events on a steel plate, while a similar approach was
adopted in [7] where AE events were studied on an aluminum plate.

In particular, AE have been simulated via steel ball-dropping on a plate, which
produces high intensity signals. In [8], a fiber optic sensor for the detection of precursory
acoustic emissions in rockfall events was proposed and experimentally characterized.
The sensor, based on an interferometric scheme, was compared to a commercial PZT sensor.
Another interferometric scheme was adopted in [9], where a fiber-optic based acoustic
emission sensor was proposed to detect the vibrations produced by ultrasonic waves
propagating in a solid body.

Similarly, in [10], a fiber-optic interferometric sensor was addressed to detect ultra-
coustic guided waves in pipes. In [11], a novel fiber-optic sensor based on a polarization
modulation was presented for AE detection in large structures and compared to PZT trans-
ducers.

In more recent years, Fiber Bragg Gratings (FBG)-based techniques have also been
investigated: for example, in [12], a FBG-based AE measurement technique was employed
to monitor crack activity in civil engineering structures and sites. In [13–15], FBG sensors
with high sensitivity over broad bandwidths were proposed for AE detection in composite
plates. AE generated by crack formation in an aluminum panel was investigated through
a FBG-based sensor in [16], while in [17], the performances of a FBG AE sensor on the
surface of a thin polymer-bonded explosive (PBX) material were analyzed.

The localization of AE events, in addition to other acoustic events due to fretting
within joints, was also demonstrated in [18] with a multiplexed array of three sensors. Even
though these results are promising and, for the first time, a fiber-optic spatial resolution
was investigated in AE sensing, the layout presented comprises a distributed-fiber laser
sensor, which contributes to creating a complex and expensive solution, which suffers from
directional sensitivity of the measurand. This angle-dependency is one of the limiting
intrinsic factors correlated to FBG-based solutions.

One of the most recent contributions, presented by the authors in a previous work [19],
analyzed a novel fiber-optic based solution for impact detection on an aluminum plate.
In this case, the sensor showed promising resulta when compared with commercial PZT
sensors. In the following year, in [20], another fiber-optic sensor wAs proposed for ultra-
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sonic stress wave detection: the optical sensor was used to detect guided wave signals on
an aluminum plate, and subsequently it was tested on a reinforced concrete beam.

In this case, as in most of the previous work here presented, the sensitivity of the
proposed sensors was not fully assessed. Moreover, the analyzed signals were of high-
intensity content. The topical interest of a fiber-optic based alternative for AE sensing was
not, heretofore, fully addressed. The aim of the proposed work is to meet the need of a
fiber-optic based solution for AE sensing, which can ensure comparable performance with
respect to the current state-of-the art PZT sensors in detecting AE events.

When a light beam propagates along an optical fiber, some of its features, such as the
propagating wave vector, are modulated according to the external influences, such as me-
chanical and thermal deformation, acting on the fiber itself [21]. Fiber optic interferometric
sensors are designed to measure these external perturbations by looking at light phase
changes induced by the propagation of wave vector modulation.

Surface-bonded sensors, such as the one proposed in this research work, read the
strain transferred from the structure to the fiber: the strain field produces a fiber-optic
perturbation, which, in turn, produces an optical response. The amount of phase changes
in phase-based sensors is linearly proportional to the strain field transferred to the fiber,
the fiber-optic material properties, and the configuration by which the optical fiber is
bonded to the specimen. The optical phase delay φ (in radians) of light passing through a
fiber is given by [21]:

Δφ(t) = nβ0(1− n2

2
[p12 − μ(p11 + p12)])

∫ l

0
εxx(x, t) dx, (1)

where n is the effective optical fiber refractive index, β0 is the vacuum propagaction wave-
vector, pij are the photo-elastic constant, μ is the Poisson’s ratio of silica, εxx is the strain in
the optical fiber axis direction, and l is the optical fiber sensing length. Equation (1) shows
that the optical phase change Δφ(t) is a function of integral deformation.

In particular, the overall phase modulation Δφ(t) of the light beam propagating into
the sensing fiber is obtained by summing all the infinitesimal phase-change contributions
dφ(x, t) along the length dl of the sensor; for this reason, it can be seen as an integral
phase sensor.

Without loss of generality, it can be assumed that p11 = +0.121, p12 = +0.270,
μ = 0.17, n = 1.45 [21], and, if the sensor is operating at 1550 nm, Equation (1) becomes
simply:

Δφ(t) = 4.57 · 106
∫ l

0
εxx(x, t) dx, (2)

which shows the extreme sensitivity that the coherent optical fiber sensor can reach.
The interferometric fiber optic sensor proposed in this work relies on a coherent

detection scheme [22]. The coherent receiver comprises a 3 × 3 coupler in which two
ports were chosen as the reference and sensing arm of the interferometer. These ports
are terminated with Faraday-Rotator-Mirrors (FRMs), which guarantee the retracing of
signal polarizations and, thus, fixed polarizations at the splitter in order to avoid signal
fading in interferometric detection schemes [23]. The 3 × 3 coupler performs a passive
stable homodyne demodulation where the output signals are 120◦ phase shifted and the
corresponding receiver photo-currents I1 and I2 as depicted in the schematic of Figure 1.
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Figure 1. Michelson interferometer layout.

As the output of a 3 × 3 coupler, I1 and I2 can be written as [24]:

I1 = C + B cos(Δφ(t)− 2/3π),

I2 = C + B cos(Δφ(t) + 2/3π),
(3)

where Δφ(t) is the phase difference induced by the dynamic event between the sensing and
reference arms of the interferometer, and C and B are constants depending on the coupling
coefficient of the 3 × 3 coupler.

I1 and I2 can be digitally sampled by an opportune Analog to Digital Converter (ADC),
properly normalized, and processed to retrieved the desired Δφ(t) through the atan of
(I1 + I2)/(I1 − I2) [25]. Due to the adopted coherent demodulation scheme, based on a
3 × 3 coupler, the phase signal Δφ(t) can be retrieved in a completely passive way without
the need for an active feedback for quadrature point stabilization as in conventional fiber
optic interferometry.

The minimum phase detection is established by the minimum achievable signals.
Considering the spectral content of Acoustic Emission, we decided to adopt low-noise
PIN photo-receivers with Bel = 200 kHz electrical bandwidth and Noise Equivalent Power
NEP = 0.19 pW/

√
Hz. Since the minimum detectable signal power is :

Pmin
s = NEP

√
Bel , (4)

this resulted in an expected Pmin
s = 0.12 nW, corresponding to a minimum detectable

phase of:

Δφmin =
ΔPmin

s
Pπ

s
, (5)

where Pπ
s is the power corresponding to a half-fringe excursion, which is equal to 250 μW

in our set-up. By introducing this value in Equation (5), the expected Δφmin ≈ 0.5 μrad can
be obtained.

3. Fiber Optic Transducer

In acoustic sensing, the fiber optic transducer design is important because it has the
task of transferring the ultra-acoustic perturbation of the material in a strain of the optical
fiber. The evaluated Δφmin of the previous chapter sets the minimum resolution of the
fiber optic interferometer. However, this does not take into account the sensitivity of the
fiber-optic transducer, which describes the smallest absolute amount of strain-induced
phase change that can be detected by the sensor. In order to increase the sensitivity and
to design a fiber-optic transducer able to read small perturbations, one has to increase the
fiber sensing length. Intuitively, from Equation (2), it is clear that the longer the fiber length,
the higher the integral strain value.

There are two main approaches to lengthen the sensing fiber: by wrapping the fiber in
a coil around a solid cylinder (solid cylinder transducer, SCT) or by arranging it in multiple
loops (stand alone spiral, SAS). The first approach is the one adopted in [26], in which the
fiber was wrapped around an acrylic skeleton and tested for AE sensing with an aluminum
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plate. This solution offers the possibility to wrap meters of fiber and, thus, to easily increase
the sensing fiber length; however, since this type of transducer does read the strain induced
by the acoustic wave traveling in the cylinder, it suffers from energy dissipation due to the
interface between the cylinder and the metallic plate under test.

In the second configuration instead, the fiber optic is wound like a spiral, and this
latter is set at 90◦ with respect to the metal surface in order to be adhesively bonded directly
onto the structure. This solution was investigated by the authors in a previous work [19],
in which this layout showed promising results in impact detection on an aluminum plate.
Regarding this configuration, the advantages include the direct detection of waves traveling
in the metal and the possibility to increase the sensitivity by adding more loops to the ring,
which, however, could compromise the sensor punctuality in the case of a high number
of loops.

In order to properly design the fiber-optic transducer, two layouts were compared: the
SCT and the SAS were directly compared by varying only the geometry while maintaining
the same length of sensing fiber. By using a cylinder of 10 mm in height and a 10 mm
radius, it is possible to wrap as much as 30 fiber loops in total for both configurations.
However, while, in the first configuration, a solid quartz cylinder was adopted to better
match the acoustic wave impedance at the interface between metal and cylinder, in the
latter, a 3D printed polymeric ring was chosen to lighten the supporting structure.

The detailed layout for both configurations is depicted in Figure 2. Since both con-
figurations present a sensitivity that is a function also of the bonded fiber section, 5 mm
was selected as the sensing fiber length, being a good compromise between sensitivity and
resolution, as will be discussed later in this section.

Figure 2. Fiber optic ultrasonic transducer (a) quartz cylinder (SCT) and (b) 3D-printed ring (SAS).

The sensitivity comparison was investigated by generating an AE signal and com-
paring the amplitude of the collected signals of the two configurations. The cylinder and
the spiral were placed on a metal plate at a 100-mm distance from a PZT actuator. The
AE signals were obtained by driving a PZT actuator with a five-cycle toneburst, shaped
with a Hamming window, at 100 kHz. The results are shown in Figure 3. In particular,
in Figure 3a,b, an example of the collected signal is reported, in the case of 180 V applied
to the PZT actuator for the SCT and the SAS configurations. Both detected signals in
Figure 3a,b refer to the same anti-symmetric A0 wave mode propagating in the metal plate
as the respective Time-of-Arrivals of the five-cycle toneburst.

Several experiments were performed by sweeping the voltage applied to the PZT
actuator, and the results are reported in Figure 3c. The spiral configuration overdoes the
cylinder performance: it is evident that the sensitivity obtained by the SCT was signifi-
cantly lower than with the SAS. In the authors’ opinions, this difference can be ascribed
to the transducing process: in the SCT, the optical fiber wrapped read the cylinder de-
formations, which means that the acoustic wave energy had to be sufficient to strain the
significant cylinder mass; on the contrary, in the SAS, the optical fiber read the acoustic
wave strain directly.
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Figure 3. The recovered signal in the case of the (a) SCT configuration and (b) SAS configuration,
(c) comparison between the detected amplitude as a function of different five-cycle toneburst ampli-
tudes.

To conclude, the SAS configuration appeared as the most promising in detecting
AE signals.

As stated in [19], a further key parameter affecting the FOS response was the ratio
between the ultrasonic wavelength and the actual fiber length bonded to the structure.
In fact, the sensor performed a spatial integration of the ultrasonic signals over the entire
sensing length: if an excessive sensing length was chosen, the overall integration drastically
degraded the sensor sensitivity.

On the other hand, if the number of loops is increased, the signal bending losses can
become too high, and the sensor results may not be punctual, leading to an inaccurate
time of arrival evaluation. An optimal choice in terms of the number of loops and bonded
sensing fiber length, thus, resulted in a coil of 30 loops, each with a 5-mm bonded section,
which guaranteed a good sensitivity in the whole acoustic wavelength range of interest of
[18–110] mm.

4. Preliminary Tests: Pencil Lead Break

The experimental set up is shown in Figure 4. Only the fiber-optic sensor transducer
is bonded on the metallic structure under test, which is the sensing arm of the MI, while
the reference arm is kept close to the sensor interrogator. The signals coming from the
photoreceivers are sampled by a 10 MS/s real-time oscilloscope board from Picoscope
model 5442D, with 16 resolution bits and a dynamic range of ±0.2 V. These characteristics
guarantee an effective overall noise of about 20 μrad on the reconstructed and filtered
phase. This noise contribution, thus, represented the actual noise level of the overall FOS
detection system.

To recover the phase information Δφ(t), signal I1 and I2 from the photodetectors were
normalized and demodulated in real-time with the algorithm described in [25] developed
in LabVIEW. For the AE signals in the band of [30–150] kHz, a digital band-pass filter was
also applied on the recovered phase to reduce the environmental noise contribution. The
acquisition algorithm implemented in LabVIEW is schematized in Figure 5.

Figure 4. Experimental layout of the FOS sensor.
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Figure 5. LabVIEW SW steps schematic implemented for the FOS demodulation algorithm.

The metallic structure under test is a 15-mm thick, 2-m long, and zinc-coated HEM220
beam (EN 10025:1990/A1:1993) made of S355 carbon steel. Its sketch and picture are
reported in Figure 6. In this kind of slender and plate-like structures, AE events generate
elastic waves propagating in terms of guided waves, i.e., multimodal (dispersive) waves
whose number of excited modes depends on the excitation frequency. For most practical
purposes, only the fundamental symmetric (compressive) S0 and anti-symmetric (flexural)
A0 wave modes are used.

These fundamental wave modes are independent of each other and propagate at
different velocities, depending on the thickness-frequency product, based on their relative
dispersion curves [27]. Group and phase velocities values were calculated by Vallen AE-
Suite Software R2017.0504.1, according to the parameters of the metallic structure. The
chosen features for the simulations were the Young modulus E = 210,000 MPa, Poisson
ratio ν = 0.30, and density ρ = 7.85 kg/dm3.

Figure 6. H-Shaped HEM220 beam: (a) sketch, (b) picture.

Before performing AE detection during a fatigue crack growth test, the proposed FOS
was tested to detect guided waves generated by Pencil Lead Break (PLB) tests, also known
as the Hsu–Nielsen source. The Hsu–Nielsen source is an artificial method of generating
AE signals, which can roughly represent an acoustic emission damage source [28]. PLB
tests have been conducted by increasing the distance between the spiral fiber and the PLB
breaking point. As reported in Figure 7, PLB tests were performed at 100, 200, and 300 mm
on the carbon steel beam.

Both the S0 and the A0 times of arrival could be identified, even at the greatest distance.
The FOS was able to detect signals up to 300 mm distance with a good Signal-to-Noise Ratio
(SNR), which also allowed the detection of the S0 wave packets, which had a lower energy
content with respect to the A0 waves. The Δt between the S0 and the A0 times of arrival
are in agreement with the theoretically evaluated wave group velocities for the carbon steel
of Table 1. In particular, the theoretical cg(S0) = 5011 m/s and cg(A0) = 3090 m/s were
measured at f ≈ 70 kHz as the main frequency of the recorded waves.
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Figure 7. Detail of the recovered signals of FOS during PLB tests on the HEM220 beam: (a) 100 mm
distance, (b) 200 mm distance, and (c) 300 mm distance.

Table 1. The theoretical and measured Δt between the S0 and A0 times of arrival, for the 100, 200,
and 300 mm distances.

L [mm] cg(S0) [m/s] cg(A0) [m/s] ΔtTH [μs] ΔtEVAL [μs]

100 5011 3090 12.4 14.6
200 5011 3090 24.8 28.0
300 5011 3090 37.3 40.2

5. Fatigue Crack Propagation Test

A fatigue crack propagation test was run on a 500 mm long chunk cut from the
HEM220 beam described in Section 4. A general view of the experimental set up for
the fatigue crack propagation test and of the final result are summarized in Figure 8. In
particular, an MTS servo-hydraulic actuator model 244.31, equipped with an MTS load-
cell model 661.22D-01 with a maximum nominal load equal to 250 kN and a specifically
designed and manufactured structural frame were adopted (Figure 8a) for carrying out the
test. More details are described in the following.
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Figure 8. The experimental set up for the fatigue crack propagation test. The experimental set up for
the fatigue crack propagation test. (a) MTS servo-hydraulic actuator, (b) rotational hinges, (c) sharp
notch at the crack tip and (d) final path and morphology of the fatigue crack.

In order to induce crack initiation within the desired region of the beam, i.e., its web,
and to decrease the crack initiation time, a sharp notch (Figure 8b,c) was manufactured,
in the HEM220 beam by mechanical machining (milling) and sharpening through a razor
blade. Then, the fatigue crack was initiated and propagated by subjecting the HEM beam
to mode-I (opening) loading with respect to the prospective crack plane.

This loading configuration was achieved reproducing the same boundary conditions
(Figure 8b, where the presence of the two required rotational hinges is highlighted) char-
acterizing the standardized small-scale fracture mechanics specimen known as “compact
tension” [29]. The test was carried out under load-controlled conditions applying a constant
amplitude sinusoidal fatigue load with a frequency of 1 Hz, a maximum load level equal
to 100 kN, and a minimum one equal to 10 kN, i.e., with a stress ratio R = 0.1. Finally,
Figure 8d reports the final path and morphology of the fatigue crack at the end of the test.

Figure 9 shows the PZT sensors and FOS applied to acquire AE events during the
fatigue crack propagation. As can be seen, the former were secured on the structures by
means of magnetic holders, while the latter was protected by a 3D-printed case together
with a protective tube for the fibers. The complete PZT measurement chain was composed
of four Vallen VS150-M piezoelectric sensors, each equipped with a 34-dB Vallen AEP5 pre-
amplifier and connected to an eight-channel Vallen ASMY-6 acoustic emission acquisition
unit. Moreover, the rules for the acquisition of AE events and for the management of the
acquired data were defined using Vallen AE-Suite Software R2017.0504.1.

In particular, the acquisition threshold was set at 50 dB (with respect to a reference
voltage amplitude of 1 μV) based on the analysis of the background noise (≈40 μV)
observed during the fatigue test, and a digital passband filter [25–300] kHz was adopted to
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further skim meaningless signals. The AE events fulfilling the requirements defined by
the acquisition threshold and the digital filter were recorded in terms of the traditional
parametric features of the AE transient hits (amplitude, energy, duration, counts, and rise
time) and in terms of the full waveform sampled at 5 MS/s.

Figure 9. Layout for acoustic emission sensing by PZT sensors and the proposed FOS.

Figure 10 reports the signals recovered by the FOS sensor when the crack was ap-
proximately 100 mm long. AEs cannot be assumed as repeatable sources both in terms
of the energy content and time duration, as noticeable from Figure 10. In fact, AE events
typically show up as a random burst of pulses produced after a rapid release of energy
from localized sources within the material. Therefore, the acquisition SW developed in
LabVIEW requires the implementation of a specific threshold on the recovered phase only
after filtering to select only the useful signals.

Figure 10. Example of a burst of AE signals detected by the FOS sensor during fatigue crack growth
testing.
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In Figure 11, the detailed AE signals recovered by the FOS and the PZT sensors are
depicted, showing the typical temporal behavior of an AE event registered during a fatigue
growth crack test. AE durations can be comparable, while the frequency content is different
mainly due to the resonant frequency response of PZT that enhances the higher AE frequen-
cies. To assess and compare the performance of the proposed FOS sensor with respect to
PZT, the SNR of the two detected AE signals was evaluated, assumed as the ratio between
the average background noise level and the maximum peak amplitude of the AE signal.
In particular, the resulting SNRs were SNRFOS = 26.19 dBV and SNRPZT = 27.88 dBV,
respectively, for the FOS sensor and the PZT sensor.

Figure 11. Comparison of the recovered signal during the fatigue growth crack test: (a,c) FOS-
registered AE signal and (b,d) PZT-registered AE signal.

To further confirm this result, a z-test was run over 1000 recovered SNR samples,
which were collected during a portion of the fatigue growth crack test. This type of test
is suitable to determine whether two population means, that is the two evaluated SNR
samples, are different when the variance is known and the number of sample is large. The
results reported in Table 2 confirm that the two sensors guaranteed an almost equal SNR
mean value and similar confidence interval of 95%, thus, proving comparable performance
in AE monitoring. The large confidence interval calculated for both type of sensors is due
to the random nature of AE events, which cannot be assumed as repeatable sources.

Table 2. The mean value and critical value at 95% for FOS- and PZT-collected SNRs.

Sensor Mean Value μ [dB] Confidence Interval at 95% [dB]

FOS 24.68 8.13
PZT 25.95 7.40

In addition to SNR assessment, a comparison of the detected energy levels was carried
out, showing that PZT and FOS detected signals featuring similar energy peaks in time.
The energy was calculated in the same time span of 6 ms as the integral of the modulus
square of the signal. This statement holds if the compared signals are of the same AE event.
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The energy values were evaluated in dB with respect to the reference voltage amplitude of
1 μV and phase of 1 μrad for PZT and FOS, respectively.

Part of the results from the comparison of the two sensors are reported in Figure 12,
where, for the sake of clarity, only 1 min of registered high-energy signal values is detailed.
Indeed, similar behavior to that depicted in Figure 12 was observed during the whole
fatigue test, though with different energy levels depending on the position of the crack tip
along its propagation path. As an example, Figure 13 shows the energy signals recovered
when the crack tip was only 15-mm long.

In this case, the peak energy values were much lower with respect to those in Figure 12.
Indeed, during the initial part of its propagation, the crack was typically not very energetic,
while, after about 100 mm, in correspondence with the area where the crack began to
deviate from its straight path, the emissions started to be highly energetic.

Figure 12. The evaluated energy during 1 min of the fatigue growth crack test at L = 100 mm
crack length.

Figure 13. The evaluated energy during 1 min of the fatigue growth crack test at L = 15 mm
crack length.

To further confirm this result, a z-test was performed on the evaluated energies from
the two sensors. Table 3 reports the evaluated mean value μ and confidence interval of
95%, which gave α = 0.05, for the FOS and the PZT, calculated over 1000 recovered energy
samples, collected during the fatigue growth crack test when the crack length was both
15 and 100 mm. In spite of the resulting large confidence interval due to the AE events
random nature, a good agreement was found between FOS and PZT, both in terms of the
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mean energy value and confidence interval, thus, confirming that the two sensors collected
similar energy values.

Table 3. The mean value and critical value at 95% for the FOS- and PZT-collected energies.

Crack Length Sensor Mean Value μ [dB] Confidence Interval at 95% [dB]

15
mm

FOS 64.26 13.10
PZT 65.72 14.2

100
mm

FOS 79.36 20.57
PZT 76.05 20.43

For the 100-mm case, the mean value difference of 3.31 dB might be ascribed to the
fact that the FOS sensor was, in this case, closer, with respect to PZT1, to the crack tip as
shown in Figure 9, and thus the A0 wave modes arrived less attenuated. For the 15 mm, the
difference was lower as the FOS and PZT1 sensors were at similar distance from the crack
tip. The two confidence intervals, on the contrary, were almost equal, confirming that the
two sensors collected similar signal energies. The large confidence interval calculated for
both types of sensor endorses the random nature of AE events, which cannot be assumed
as repeatable sources.

6. Summary and Comments

In this paper, a novel fiber optic AE sensor with detection characteristics comparable
with the conventional PZT sensor was presented. Two configurations were taken into
consideration for the fiber-optic transducer—a solid cylindrical structure (SCT) and a
stand-alone spiral (SAS)—and the latter proved to have the highest sensitivity in detecting
ultracoustic signals.

The SAS configuration was chosen as a suitable FOS transducer, and thus it was further
tested with PLB preliminary measurements and demonstrated a good SNR in detecting
symmetric and anti-symmetric wave modes propagating in a HEM220 carbon steel beam.
The time of arrivals of the two wave modes were theoretically calculated using Vallen
AE-Suite Software according to the parameters of the metallic structure and were compared
with the evaluated time of arrivals. Good agreement was found in the comparison of the
theoretical and evaluated time of arrivals.

The FOS performance was compared to the standard PZT AE sensor that is commer-
cially available in crack monitoring during a fatigue growth crack test, run on a 500-mm
long chunk cut of a carbon steel beam. A direct relationship between PZT and FOS was
found: recovered signals of the same event showed similar time durations and a com-
parable SNR, even though the two sensors had different frequency responses. To better
compare them, an energy analysis of the detected event was performed: a good agreement
was found between the PZT and FOS pulse energy behavior.

To conclude, the novel FOS sensor exhibited performances comparable to the standard
commercially available PZT when tested during fatigue crack growth tests, thus, proving
to be a valid alternative to PZT in AE sensing while holding all the advantages of being
fiber-optic-based with a competitive cost of about half of the current PZT transducer control
units. The authors believe that these early results may open up remarkable prospects for
applying fiber optic sensors in AE detection. This optical fiber transducer is very simple to
manufacture and can be easily multiplexed, thus, forming the basis for the construction of
complex sensor networks that can be remotely installed in field applications.
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Abstract: Hole-edge crack quantification of bolt joints is critical for monitoring and estimating
structural integrity of aircraft. The paper proposes a new triangle eddy current sensor array for the
purpose of increasing the level of quantifying hole-edge crack parameters, especially, the crack angle.
The new senor array consists of triangular coils instead of planar rectangular coils. The configuration
of the novel sensor array, including the excitation current directions and the excitation winding shape,
is optimized by simulation. The ability of the proposed sensing film to identify the crack parameters
has been verified by finite element simulations and experiments. Results shows that triangular coils
with same current directions in circumferentially adjacent coils and opposite current directions in
axially adjacent coils achieve better performance in sensor linearity and resolution compared to
rectangular coils. In addition, it has also been proved that the sensing film has a good potential to
identify the crack depth and length.

Keywords: structural health monitoring; crack quantification; triangle eddy current coils; sensing film

1. Introduction

Bolt joints are the most important connection types of key structures for aircraft,
meanwhile, they are also the weak link due to the stress concentration caused by the
opening bolt hole. Eighty percent of structural mechanical failures are caused by failure
of jointed structures [1]. It is critical to monitor and prevent the damage and failure of
bolt joints around the hole to ensure the structural integrity and the operational safety of
advanced equipment.

In addition to the bolt-loosening failure, there are three typical hole-edge failure modes:
shear failure, tensile failure and bearing failure [2,3]. According to the characteristics of
structural force, the crack distribution of three failures along the circumferential angle of
the bolt hole is obviously different (shear failure [30◦, 60◦], tensile failure [75◦, 105◦] and
bearing failure [−15◦, 15◦]), which can be used to distinguish failure modes by crack angle.

In the service process of aircraft, if the damage initiation and growth in the early
stage of bolt joint structure failure is monitored online and real-time by sensor network
integrated with the structure, it will be helpful to monitor the failure evolution process
of bolt joints and predict the hole-edge failure mode of the jointed structure, and provide
technical and data support for optimizing the design of bolted joints. Structural health
monitoring (SHM) technology can conduct real-time quantitative monitoring of the struc-
ture state and possible damage by using the sensor network integrated with the structure.
SHM is a revolutionary innovation technology to determine the structural integrity and
a key technology to improve the operation safety of advanced equipment, and moreover
can improve the present design concept of damage tolerance [4]. There are some SHM
technologies which have been used for the damage monitoring of bolted joints, such as
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ultrasonic guided wave [5–7], electromechanical impedance [8,9], comparative vacuum
monitoring sensor [10], vibration [11], acoustic emission [12] and so on. However, these
technologies have the following problems: (1) It is difficult to identify the cracks in the
non-surface layer of a multi-layer jointed structure; (2) It is difficult to accurately quantify
the angle of hole edge cracks, and then identify the failure mode.

Eddy current (EC), which is low cost and efficient for dealing with conductive bodies,
has been the focus of many researchers. There are three main types of flexible EC array
sensor films developed for monitoring the crack growth around the bolt hole. The first is
meandering winding magnetometer arrays (MWM) proposed by JENTEK Sensors Inc. [13],
which is actually designed specifically to measure the electrical conductivity and perme-
ability of the material first and is further applied by Goldfine et al. [13–17] to detect fatigue
cracks on metal structures. It is found that MWM is able to track crack growth with a
resolution of 50 um. However, the output signal of the MWM is too small to be detected.
The second one is the rosette-like eddy current array (RECA) sensor, which is composed of
circular drive wingdings periodically deposited on the flexible film and pickup winding
array distributed between the adjacent drive windings. Li et al. [18] enhanced the sensitiv-
ity of the sensor by placing a magnetic membrane washer on the surface-mounted sensor
film. As found in [19], mutual interference between the channels affects the amplitude
and phase of the transimpedance. Chen et al. [20] proposed a new layout of the pickup
coils. Sensing channels in the outer layer and in the inner layer are misaligned to improve
the angular resolution of the RECA sensor. They also discovered that exciting currents in
adjacent wingdings flowing in same directions instead of opposite directions can increase
the output signal and sensitivity. Fan et al. [21] further studied the effect of the excitation
layout on the sensor sensitivity and the results show that the sensitivity was increased
up to 43.1 times in simulation and 23.7 times in an experiment when the co-directional
excitation coil layout was applied. Furthermore, research projects into the temperature
compensation for RECA sensor have also been conducted in [22,23]. The RECA sensors
perform well in tracking crack propagation and crack angle identifying. Nevertheless, it is
hard for them to discover cracks deep in the plate due to the limit of the skin effect which
is unavoidable when applying eddy current.

The third type of flexible EC array sensor is the intelligent bolt with flexible sensing
film integrated on the surface of the bolt, which can detect the crack deep in thick plates or
multi-layer jointed structure, as shown in Figure 1. Rakow and Chang [24] firstly proposed
the concept of eddy current-based intelligent bolt and studied the capacity of the film
to track flaw depth. Sun et al. [25–27] optimized the coil layout in order to offer more
accurate information about the crack. First, an EC sensing array uniformly distributed
along the axial direction was proposed to monitor the crack depth [25]. Furthermore, a 2D
EC array-based sensing film [26] consisting of a 3 × 3 coil array was developed to identify
the failure mode by providing the crack positions on the joint structure. However, although
this proved to have the ability to identify the cracks in different sensing regions, planar
rectangular coils are unable to provide a precise crack angle for the fact that there are blind
zones existing in the interface between two adjacent sensing coils. Thus, this paper presents
a new sensing array which is composed of triangular coils, and it also provides inspiration
for sensor design in other areas.

The rest of the paper is organized as follows: the capability of the proposed sensing
array to identify crack angle is demonstrated by the combination of the simulation in
Section 2 where the triangular exciting coils and the rectangular exciting coils are compared
and the experiment in Section 3; conclusions are drawn in Section 4.
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Figure 1. An eddy current (EC) sensing film-based intelligent bolt.

2. Design and Analysis of 2D-Triangular Eddy Current (EC) Sensing Film

For the purpose of improving the hole-edge crack angle identification ability, a novel
2D EC sensing array film that consists of triangular sensing coils instead of rectangular
sensing coils used in [25] is proposed in this paper, and a distribution schematic of its
pickup coil array is presented in Figure 2. As is shown in the picture, there are 4 triangular
pickup coils in the circumferential direction and each coil covers half of the bolt hole
perimeter. As depicted in the red dashed box, each pair of the circumferentially adjacent
coils share a same circumferential monitoring area (a quarter of the bolt hole perimeter)
and distribute separately in the axial direction after the flexible sensing film is winded by
adhesive on the bolt surface. Although only one layer of the sensing coil array is plotted in
the picture for the sake of brevity, the axial dimension of the sensing array is set as 3 in this
paper, which should be decided by the actual demand.

Figure 2. The simplified triangular sensing coil array configuration.

The part highlighted by a red dashed box at the lower part of Figure 2 describes half
of the simplified winding model of the adjacent circumferential receiving coils. As has
been demonstrated, the induced voltage of one sensing coil will change if and only if the
crack reaches and extends in its area. Thus, as a result of the wingding configuration of
the triangular coil, the effective coil turns feeling the change of the EC field at a specified
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circumferential position from the left to right decrease for S1, while increase for S2. For
example, when the crack is at the blue line, there are 5 effective turns for S1 and 2 effective
turns for S2. It is expected that the induced voltage of the sensing coil will vary linearly
with the circumferential position of the crack.

2.1. Finite Element Simulation Model

The triangular coil winding on the bolt and the crack on the hole edge make the
geometry of the structure more complex. It is difficult to obtain an analytical solution.
Thus, finite element method was employed to solve the electromagnetic field equations
and calculate magnetic vector potential A and electric scale potential ϕ

∇2 ϕ− με
∂2 ϕ

∂t2 = −ρ

ε
(1)

∇2A− με
∂2A

∂t2 = −μJ (2)

where ρ denotes free charge bulk density, μ is permeability, ε is dielectric constant, and J is
conduction current density.

The finite element simulations are conducted in Ansoft Maxwell. There are two
kinds of the exciting coil considered in the paper, the rectangular one in Model 1 and the
triangular one in Model 2. All of the parameters other than the exciting coils are same
in both models, including the sensing coils, the joint layers and the running parameters.
The joint layer with an electrical conductivity of 38 MS/m and a relative permeability of
1.00021 measures 6 mm in length, 4 mm in width and 9 mm in height, shown in Figure 3.
To demonstrate the ability of the sensing coils to identify the crack angle and to track the
crack growth in the radial direction, crack elements with a dimension of 1 mm × 0.2 mm ×
3 mm are adopted to switch the crack position and to give rise to a mesh consistent in each
crack state. Five circumferential positions marked from C1 to C5 are set from the left side
to the upper middle of the model with a step of 0.55 mm. At each circumferential position,
there are 3 crack elements in the radial direction, marked from R1 to R3. When the crack is
at CiRj, which means the crack is at the circumferential position Ci and its radial length is
jmm, the corresponding crack elements’ material will be set as air.

Figure 3. The simulation model.

In order to reduce the computational burden, a quarter model is selected for the
simulation according to the fine symmetry in the sensing coils when it is wound on the bolt.
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The turns distance and width are both 0.1 mm for the triangular coils and are set as 0.1 mm
and 0.2 mm, respectively, for the rectangular exciting coils. Sensing coils are denoted as
S1 to S6 from up to down. A sinusoidal exciting signal with a frequency of 1 MHz and an
amplitude of 2 V is applied in the simulation. The induced voltage of each sensing coil is
calculated for crack state analysis.

The exciting current direction, which has a significant influence on the crack detec-
tion, needs to be determined first. Shown in Figure 4, according to the current directions
(same or opposite) between the axially/circumferentially adjacent triangular coils, there
are 4 configurations compared in the simulation, numbered from configuration I to config-
uration IV. For example, in configuration II, the current directions of the axially adjacent
coils are opposite and those of the circumferentially adjacent coils are same. The best
exciting mode is determined by comparing the induced voltage variation of S1 and S2
when a crack is set at C5R1. The simulation results are plotted in Figure 5. It can be
found that for both S1 and S2, the induced voltage variation is obviously greater when
the circumferentially adjacent coils have same excitation current directions at the adjacent
position (Configuration I, Configuration II). To explain the above result, the front view of
the EC density when the test specimen is integrated and the side view when there is a crack
at C5R1 are displayed in Figure 6 draw by Matlab.

Figure 4. Four exciting configurations.

Figure 5. Simulation results for determining the best exciting configuration. (a) Voltage variations of
the S1 and S2 when the crack is set at C5R1. (b) Voltage variations of S2 when the crack propagates in
the radial direction at C5.

Figure 6. Current density distribution.
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Figure 6 shows that the EC vanishes between the S1 and S2 (highlighted by a dashed
box on the side view) in configuration III and configuration IV, which leads to less EC
flowing along the radial direction (highlighted by a dashed box on the side view). Therefore,
the induced voltages of the S1 and S2 in configuration III, Configuration IV change less
than that of the configuration I and Configuration II.

However, the similar effects of configuration I and configuration III make it impossible
to decide which is better to use to detect cracks. To address this problem, additional
simulations in which the crack grows from C5R1 to C5R3 are performed to further deter-
mine the best exciting mode. The results are shown in Figure 5b where only the voltage
variation of S2 is plotted because S2 is more spatially correlated with the exciting current
direction between the axially adjacent coils. Although the induced voltage of configuration
II changes less at first, it changes greater than that of Configuration I when the radial length
of the crack is 2 mm and 3 mm, which indicates that Configuration II has better capability
to track crack growth in the radial direction. Likewise, the reason for the phenomenon
is given by the combination of the EC cloud picture and the EC vector on the surface of
the test specimen when the crack is at C5R3, as shown in Figure 7. From the EC cloud
picture, it can be seen that EC flows slightly more in the radial direction, which can be
explained as follows. First of all, it is worth stressing that there are 3 modes when EC flows
conductively: (1) EC flows over the crack tip when the EC flows in the same direction
around the crack tip (red arrow); (2) a local EC loop is built because of the opposite EC
direction under two adjacent coils (blue arrow); (3) EC flows in the radial direction, which
causes a decrease of EC on the surface of the conductive test specimen (side view). EC
always finds the shortest way to flow. Therefore, when the crack tip is at the middle of two
adjacent coils with the same exciting direction, it is easier for EC to flow over the crack tip,
leading to less EC flowing along the radial direction especially when the radial length of
the crack is long enough, which results in less voltage variation in Configuration I when
the crack is at C5R2 and C5R3. As for Configuration II, compared to flowing over the crack
tip by overcoming the original EC direction, it seems more easier for EC to flow along the
radial direction. In conclusion, Configuration II is selected as the final exciting form for
Model 2. For Model 1, opposite exciting current directions are applied in axially adjacent
coils, and there is no need to consider the current directions in circumferentially adjacent
coils because of the space configuration of the rectangular coils.

Figure 7. EC vector and cloud picture when the crack is at C5R1.

2.2. Simulation Results
2.2.1. Crack Angle Identification

Figure 8a and 8b present the crack angle identification results for Model 1 and Model
2 respectively. As shown in Figure 8a, the induced voltage variation of S1 decreases linearly
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and that of the S3–S6 keeps stable when the circumferential position of the crack changes
from C1 to C5, which meets the expected design goal. However, compared to Model 2,
the inducted voltage of S2 in Model 1 changes little until the crack is at C4 and C5, which
indicates that the rectangular exciting coil deteriorates the crack angle identifying ability
of the triangular sensing coil. This phenomenon can be explained by Figures 9 and 10. It
can be seen from Figure 9 that a single turn can be divided into 3 parts according to the
exciting direction bounded by a dashed line. It should be noted that the induced voltage of
the whole single-turn coil can be represented by the sum of the 3 parts and the direction of
the voltage variation caused by the crack is same for the 3 parts. Assuming the exciting
direction and the induced voltage direction at a certain time is as shown in Figure 10, it
is obvious that the effects of the part 1 and part 3 offset, while those of part 2 and part 3
should be summed up. As a result, the induced voltage of the S1 changes little when the
crack is at C1–C3, though there is much EC flowing in the radial direction shown in the
cloud picture in Figure 10, which actually contributes to the increasing induced voltage at
a macroscopic level.

Figure 8. Simulation results of the crack angle detection. (a) Model 1 (rectangular exciting coils); (b)
Model 2 (triangular exciting coils).

Figure 9. A schematic diagram of the inductive current directions in one triangular turn in Model 1.

Figure 10. The side view of EC in Model 1.
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The crack angle position is further represented by the difference of the induced voltage
of S1 and S2, as shown in Figure 11. A fine linearity can be found in the fitting curve with a
R-square of 0.9998. The simulation model consists of 3 layers in the axial direction. The
first layer and the third layer are axially symmetrical. Therefore, simulations when the
crack is at the second layer are also performed and the results are displayed in Figure 12.
This shows that the results are similar to the first layer.

Figure 11. The difference voltage of the S1 and S2 versus the crack circumferential position.

Figure 12. Simulation results for the second layer. (a) Voltage variation of each coil; (b) Difference value between
adjacent coils.

In conclusion, triangular exciting coils achieve a better ability to identify the crack
angle compared to rectangular exciting coils when triangular coils are applied as inductive
coils. Meanwhile, triangular coils achieve good linearity with the crack angle, which is a
very important property of a sensor.

2.2.2. Tracking Crack Growth in the Radial Direction

Simulations where the crack propagates along the radial direction are performed as
well. Figure 13a and 13b show the voltage variation of S1 and S2 respectively. The following
can be concluded from the picture: (1) the induced voltage of S1 increases gradually as the
radial length of the crack increases at the circumferential position C1–C4, while that of the
S2 increases only at C4 and C5; (2) the ability of the S1 to monitor the crack growth in the
radial direction deteriorates as the circumferential position changes from C1 to C5, which
can be attributed to the decrease of the effective coil turns; (3) S2 achieves a better effect at
C5 than S1, further demonstrating the fact that the opposite exciting current direction in
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adjacent coils is constructive to track the radial length of the crack. Furthermore, although
the voltage variation trends of the S2 shows an inability to track the crack growth at position
C1–C3, S1 alone is enough as long as the circumferential position is identified.

Figure 13. The induced voltage variation of S1 and S2 when the crack propagates along the radial direction at each
circumferential position. (a) S1; (b) S2.

2.2.3. Tracking Crack Growth along the Axial Direction

An early crack that initiates from the hole edge of the joint layer often propagates along
the axial direction at first. As a result, several simulations were carried out and the output
voltage of each sensing coils were extracted and analyzed to evaluate the applicability of
the triangular sensing film to monitor the crack growth in the axial direction. The crack
starts from the first layer at two typical circumferential positions, C1 and C3, respectively,
and propagates with a step of 1 mm along the axial direction. The results are presented
in Figure 14. This shows that the axial length of the crack can be acquired by comparing
the induced voltage of all sensing coils based on the following principles: (1) the induced
voltage increases compared to the baseline data when the crack is at its monitoring area; (2)
the induced voltage of the coil in accordance with principle (1) increases when the crack
propagates in its monitoring domain; (3) when the crack has covered its axial length at a
certain crack angle, the output voltage of the sensing coils in accordance with (1) and (2)
will stay at a stable level, which is enough to decide that the crack exists within its axial
length; (4) the space configuration of the sensing coils is settled. Taking 4 mm in Figure 14b
as an example, first, it shows in Figure 14b that only the induced voltage of the S1 and S3
greatly increases which means that the axial length of the crack is between 3 mm and 6 mm.
The crack angle can be obtained roughly by the nearly unchanged output value of the S2
and further deferred by S2 through the crack angle detection line in Figure 8. Second, the
axial range of the crack tip can be further narrowed by the current voltage variation (about
3.2 mV) of the S2 and the maximum one (about 6 mV) when the crack length covered the
S3 shown in Figure 12.
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Figure 14. Voltage variation versus axial length.

3. Experiments

The performance of the EC sensing film with triangular exciting coil and triangular
sensing coil array is evaluated by experiments, and the experimental setup is shown in
Figure 15. The exciting signal with an amplitude of 2 V and a frequency of 1 M was
generated by a signal generator made by Tektronic. The induced voltage of each coil is
acquired through a channel switch and signal receiver made by National Instruments with a
sample frequency of 20 M and a sample length of 20,000. Thus, the signal measurement and
processing can be automatically finished nearly real-time, which shows a good monitoring
efficiency similar to other SHM methods. With regard to the test specimen, three rectangular
aluminum (6061) plates, each of which has dimensions 75 mm (length) × 75 mm (width) ×
5 mm (thickness) and a bolt hole with diameter 13.5 mm at the center, were jointed by a
steel bolt. The triangle eddy current sensing film, with dimensions 40.7 mm × 15 mm ×
0.2 mm, was made by a flexible printed circuit process. In the real engineering applications,
a wear-resistant coating layer of SiO2 and Ta2O3 can be deposited on the surface of the
sensing film via electron beam physical vapor deposition to improve the friction-resistance
performance of the sensing film. As shown in Figure 14, there were 12 independent triangle
coils as receiving, while similar 12 triangle coils with same shapes were connected with
each other as transmitting according to Configuration II in Figure 4.

Figure 15. Experimental setup and sensor film. (a) Signal generator; (b) intelligent bolt; (c) signal
receiver; (d) signal displayer; (e) eddy current sensing film.

3.1. Crack Angle Identification

The crack was set at the hole edge of the uppermost plate by spark erosion and the
crack angle was changed by rotating the specimen from the middle of the S2 (0◦) to the
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middle of the S4 (180◦) with a step of 18◦. For the sake of accuracy, the reference voltage
under each crack angle was recorded. The positions of the crack represented by gray
lines are shown schematically on the top of Figure 16a. As seen in Figure 16a, the voltage
variation trends are consistent with the simulation: the output voltage is proportional to
the effective sensing turns at a certain circumferential position. The voltage variation of
S2 decreases as the crack angle changes from 0◦ to 90◦ and keeps stable when the crack is
at the position of S3 and S4, while that of the S4 increases when the crack angle changes
from the middle of S3 to the middle of S4, which allows the crack angle identification by
the sensing film. Furthermore, the voltage difference of the S2 and S3 as well as the S3
and S4 is calculated and plotted in Figure 16b, in which both achieve a good linearity with
the crack angle, showing that the proposed triangular sensing film performs well in crack
angle identification.

Figure 16. Crack angle detection results. (a) Voltage variation of the S2–S4 versus crack angle;
(b) Voltage difference of S3 (S2) and S4 (S3).

It can be seen from the above results that when there is only a single crack in the
circumferential angle monitoring area of a single crack, there is a linear relationship between
the circumferential angle of the crack and the induced voltage difference of the receiving coil

ϑ = kΔV + b (3)

where ϑ is the circumferential angle of the crack, k is the slope of a straight line, ΔV is
the difference of the induced voltage variation of the relevant receiving coil, and b is the
intercept of the straight line.

In the real engineering application, the linear relationship is easy to obtain as the
baseline for the crack angle quantification.
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3.2. Crack Growth in the Radial Direction

Two experiments in which two typical circumferential positions were considered
were conducted to verify the ability of the proposed sensing film to track crack growth
in the radial direction. The crack position was set at the middle of the S2 in the first
experiment and was set at the middle of two circumferentially adjacent coils (S2 and S3
in the experiment) in the second experiment. The results are given in Figure 17. First,
when the crack was at the middle of the S2, only the output voltage of the S2 increased
obviously when the radial length of the crack increased from 1 mm to 4 mm in a step of
1 mm. When the crack was at the middle of the S2 and S3, both the induced voltage of
the S2 and S3 increased and that of the S2 increased more than that of the S2, as a result of
more effective turns as shown in the crack position schematic in Figure 17b. Another point
worth mentioning is that the voltage variation changes in a smaller way with the increase
of the radial length of the crack, implying that the radial measuring rage of the film is not
very large (but at least 4 mm in this experiment) but enough to be taken seriously in real
engineering applications. It may be improved by increasing the exciting voltage amplitude,
reducing the exciting frequency or increasing the equipment accuracy. Results for the coil
voltage are in excellent agreement with those obtained with the finite-element method.

Figure 17. Experimental results when the crack grows in the radial direction at two circumferential positions. (a) Voltage
variation when the crack position is at the middle of the S2; (b) voltage variation when the crack position is in the middle of
the S2 and S3.

3.3. Crack Depth Identification

Three cracks, with angle at the circumferential center of Coils S2 and S1, were set
at the hole edge of three jointed plates, respectively. The radial length of the crack was
set as 1 mm. The results in Figure 18 show that the crack depth can be inferred by the
induced voltage. When one plate has a hole-edge crack, the induced voltage of the coil at
the axial location of this plate has an obvious change. For example, when one crack occurs
at the location of the uppermost plate, only the induced voltages of S1 and S2 are enhanced
significantly. When two cracks are present at the locations of both uppermost and middle
plates, only the induced voltages of coils S1, S2, S6 and S7 change considerably, while the
induced voltages of other coils change less. This indicates that the proposed sensing film
has a good capability of identifying crack depth, at least, identifying which plate has a
hole-edge crack for multi-layer bolted joints.
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Figure 18. Experimental results as the crack grows in the axial direction.

4. Conclusions

Enhancing the damage quantification level of bolted joints has been always the re-
search hotspot of aircraft structural health monitoring. In this paper, a novel triangle eddy
current sensing film is proposed to quantitatively identify the hole-edge crack of bolted
joints. The conclusions are as follows:

(1) The sensing film includes an exciting coil and multiple triangle sensing coils
distributed in the axial and circumferential directions of the bolt hole. By analyzing the
eddy current distribution and effect of crack quantification, five exciting-coil configurations
of the sensing film, including one rectangle-coil configuration and four types of triangle-
coil configuration, have been compared to give the best configuration of the eddy current
sensing array.

(2) There is an approximate linear relationship between the crack angle and the
difference of the induced voltage variation between two adjacent triangle sensing coils in
the same layer, which can be used to quantify the crack angle with a good accuracy.

(3) By simulation and experimental analysis, the proposed sensing film has a good
capacity not only to identify the crack angle, but also to quantify the crack length in the
radial direction and the crack depth in the axial direction of the bolt hole.

However, some further studies will be conducted in the future for real engineering
applications of this sensing technology:

(1) The configuration of the sensing film or the measuring parameters of the system
should be optimized to improve the measuring range of the crack radial dimension.

(2) The robustness of the sensing film should be further verified in real engineer-
ing applications, which may include the influence of environmental variation and bolt
looseness.

(3) In this paper, forward analysis between the induced voltage of eddy current coils
and the crack parameters has been conducted to show the capacity of the proposed sensing
film. The backward problem that the proposed sensing film is used to detect the crack will
be further studied and verified in future.
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