
mdpi.com/journal/mathematics

Special Issue Reprint

Current Trends in Natural
Language Processing (NLP)
and Human Language
Technology (HLT)

Edited by

Florentina Hristea

Current Trends in Natural Language
Processing (NLP) and Human
Language Technology (HLT)

Current Trends in Natural Language
Processing (NLP) and Human
Language Technology (HLT)

Editor

Florentina Hristea

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Editor

Florentina Hristea

University of Bucharest

Bucharest

Romania

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/si/mathematics/NLP HLT).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0085-8 (Hbk)

ISBN 978-3-7258-0086-5 (PDF)

doi.org/10.3390/books978-3-7258-0086-5

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

Contents

About the Editor . vii

Preface . ix

Jesus-German Ortiz-Barajas, Gemma Bel-Enguix and Helena Gómez-Adorno

Sentence-CROBI: A Simple Cross-Bi-Encoder-Based Neural Network Architecture for
Paraphrase Identification
Reprinted from: Mathematics 2022, 10, 3578, doi:10.3390/math10193578 1

Gabriel Bercaru, Ciprian-Octavian Truică, Costin-Gabriel Chiru and Traian Rebedea

Improving Intent Classification Using Unlabeled Data from Large Corpora
Reprinted from: Mathematics 2023, 11, 769, doi:10.3390/engproc2023030004 17

Wejdan Alkaldi and Diana Inkpen

Text Simplification to Specific Readability Levels
Reprinted from: Mathematics 2023, 11, 2063, doi:10.3390/math11092063 37

Valentin Barriere and Alexandra Balahur

Multilingual Multi-Target Stance Recognition in Online Public Consultations
Reprinted from: Mathematics 2023, 11, 2161, doi:10.3390/math11092161 49

Minhyeok Lee

A Mathematical Interpretation of Autoregressive Generative Pre-Trained Transformer and
Self-Supervised Learning
Reprinted from: Mathematics 2023, 11, 2451, doi:10.3390/math11112451 69

Jani Dugonik, Mirjam Sepesy Maučec, Domen Verber and Janez Brest

Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine
Translation
Reprinted from: Mathematics 2023, 11, 2484, doi:10.3390/math11112484 88

Andrei-Marius Avram, Verginica Barbu Mititelu, Vasile Păis, , Dumitru-Clementin Cercel and

S, tefan Trăus, an-Matu

Multilingual Multiword Expression Identification Using Lateral Inhibition and Domain
Adaptation
Reprinted from: Mathematics 2023, 11, 2548, doi:10.3390/math11112548 110

Ze Shi, Hongyi Li, Di Zhao and Chengwei Pan

Research on Relation Classification Tasks Based on Cybersecurity Text
Reprinted from: Mathematics 2023, 11, 2598, doi:10.3390/math11122598 128

Yunho Mo, Joon Yoo and Sangwoo Kang

Parameter-Efficient Fine-Tuning Method for Task-Oriented Dialogue Systems
Reprinted from: Mathematics 2023, 11, 3048, doi:10.3390/math11143048 144

Yanbing Xiao, Guorong Chen, Chongling Du, Lang Li, Yu Yuan, Jincheng Zou and

Jingcheng Liu

A Study on Double-Headed Entities and Relations Prediction Framework for Joint Triple
Extraction
Reprinted from: Mathematics 2023, 11, 4583, doi:10.3390/math11224583 158

Adrian-Gabriel Chifu and Sébastien Fournier

Sentiment Difficulty in Aspect-Based Sentiment Analysis
Reprinted from: Mathematics 2023, 11, 4647, doi:10.3390/math11224647 171

v

Mihailo Škorić, Miloš Utvić and Ranka Stanković

Transformer-Based Composite Language Models for Text Evaluation and Classification
Reprinted from: Mathematics 2023, 11, 4660, doi:10.3390/math11224660 204

José Antonio Garcı́a-Dı́az, Ronghao Pan and Rafael Valencia-Garcı́a

Leveraging Zero and Few-Shot Learning for Enhanced Model Generality in Hate Speech
Detection in Spanish and English
Reprinted from: Mathematics 2023, 11, 5004, doi:10.3390/math11245004 229

vi

About the Editor

Florentina Hristea

Florentina Hristea, Ph.D., is currently a Full Professor in the Department of Computer Science at

the University of Bucharest, Romania. At this same institution, she received both her B.S. degree in

Mathematics and Computer Science and her Ph.D. in Mathematics in 1984 and 1996, respectively. She

received her habilitation in Computer Science from this same university in 2017 with the habilitation

thesis “Word Sense Disambiguation with Application in Information Retrieval”. Her current field of

research is artificial intelligence, with specialization in knowledge representation, natural language

processing (NLP), human language technologies (HLT), and computational linguistics, as well as

computational statistics and data analysis with applications in NLP. She has been a principal

investigator of several national and international interdisciplinary research development projects

and is an expert evaluator of the European Commission in the fields of NLP and HLT. Professor

Hristea is the author or co-author of nine books, two chapters in books, and various scientific

papers, of which 32 comprise articles in peer-reviewed scholarly journals. She is the author of

an outlier detection algorithm which is named after her (Outlier Detection, Hristea Algorithm.

Encyclopedia of Statistical Sciences, Second Edition, Vol. 9, N. Balakrishnan, Campbell B. Read,

and Brani Vidakovic, Editors-in-Chief. Wiley, New York, p. 5885–5886, 2005) and is an elected

member of the ISI (International Statistical Institute). She is also a member of the GWA (Global

WordNet Association). Professor Hristea was a Fulbright Research Fellow at Princeton University,

USA, an Invited Professor at the University of Toulouse, France, and has been a visiting scientist

at Heidelberg Institute for Theoretical Studies, Germany; the University of Toulouse Paul Sabatier

III, France; Institut de Recherche en Informatique de Toulouse, France; and L’ école Polytechnique

“Polytech Montpellier”, France.

vii

Preface

As often noted, AI-powered text processing continues to represent a strong trend in artificial

intelligence (AI), primarily due to the genuine explosion of texts on the World Wide Web. Natural

language processing (NLP) is one of the most important technologies in use today, especially due to

the large and growing amount of online text, which needs to be understood in order for its enormous

value to be fully asserted. NLP can make sense of the unstructured data that are produced by social

platforms and other social data sources and can help organize them into a more structured model

that supports various types of tasks and applications. Human language technology (HLT) poses

a significant challenge for computing, requiring advanced NLP and the availability of big data to

create large-scale systems and applications. The large size, unrestrictive nature, and ambiguity of

natural language have led to substantial developments in the NLP field in various ways and from

different perspectives, all of which were of interest to this Special Issue. Although numerous machine

learning models have been developed for NLP applications, recently, deep learning approaches have

achieved notable results across many NLP tasks. This Special Issue also contributes to the use

and exploration of current advances in machine learning and deep learning for a great variety of

NLP topics, belonging to a broad spectrum of research areas that are concerned with computational

approaches to natural language and, specifically, with processing human language in the form of text.

The paper authored by Ortiz-Barajas et al. (2022) represents a first approach that combines

bi-encoder and cross-encoder representations for sentence pair tasks. It proposes a simple

language model-based architecture that combines cross-encoders and bi-encoders to compute a

vector representation, suggesting that the model’s performance in sentence pair tasks could thus

be improved without any auxiliary technique. The success of the proposed model does not rely on

adding more pre-training tasks, modifying the transformer architecture, or creating new fine-tuning

algorithms. The model is easy to implement using existing tools, and it is possible to adapt it to

different tasks by performing minor changes only.

The paper authored by Bercaru et al. (2023) examines the problem of intent classification as part

of a conversational agent pipeline. The authors propose a novel pipeline for efficiently analyzing

large, unlabeled corpora and extracting examples similar to a user-supplied query. The aim is to

minimize the retrieval time while maintaining a high similarity between the query and the retrieved

example. Moreover, the authors examine how the proposed example retrieval system improves the

intent classification accuracy in several few-shot learning scenarios, where intent examples are scarce.

The experimental results show that using the proposed corpus augmentation methods enables an

increase in text classification accuracy in few-shot settings. Specifically, the gains in accuracy increase

up to 16% when the number of labeled examples is very low (e.g., two examples). We believe that

the proposed method is important for any natural language processing (NLP) or natural language

understanding (NLU) task in which labeled training data are scarce or expensive to obtain.

The paper authored by Alkaldi and Inkpen (2023) introduces a system that uses deep learning

techniques to simplify texts in order to match a reader’s level. Text simplification (TS) techniques

that are currently available do not use the readability level as a required feature for the output text.

Instead, they typically simplify the given text to whatever readability level it can reach. In contrast

with this current trend, the model proposed here takes a complex text with a low readability level

and produces a simplified version of the text that considers a required readability level. This ensures

that every simplified text will be readable and understandable by its targeted audience. This research

brings novelty in the area of TS in the way the deep learning models are trained, using augmented

data, and in the way the reinforcement learning loop is performed, using a readability classifier. The

ix

proposed text simplification models achieve better performance than state-of-the-art techniques for

this task.

The paper authored by Barriere and Balahur (2023) aims to contribute to the field of multilingual

stance recognition by addressing the challenges and opportunities presented when analyzing online

multilingual debates. Specifically, the paper focuses on developing models and methods for

recognizing the stance of users in different languages on a given topic and how to make use of

the cross-lingual information present in the debates. The proposed setting makes the task of stance

detection more difficult due to the high variability in terms of topics and languages. The research

addresses the problem of ternary stance classification, i.e., whether a comment is pro, against, or other

towards the proposal it is commenting on. It additionally proposes a series of methods to learn with

a limited number of labels, by pre-training over similar datasets and leveraging information from

non-annotated data with the help of self-training methods.

The paper authored by Lee (2023) represents a mathematical examination of generative

pre-trained transformer (GPT) models and their autoregressive self-supervised learning mechanisms.

The author formalizes key concepts, definitions, assumptions, and theorems to provide a rigorous

understanding of these models’ underlying mechanisms. The study starts by defining natural

language space and knowledge space, which are two key concepts for understanding the

dimensionality reduction process in GPT-based large language models (LLMs). By exploring

projection functions and their inverses, a framework for analyzing the language generation

capabilities of these models is established. The GPT representation space is investigated afterward,

with the author examining its implications for the models’ approximation properties. The proposed

exploration of GPT, as an approximation of the projection function and its inverse, has potential

implications for the development of more efficient, effective, and robust LLMs, hopefully driving

future advancements in the fields of language understanding and generation.

The paper authored by Dugonik et al. (2023) proposes a hybrid machine translation (HMT)

system that improves the quality of neural machine translation (NMT) by incorporating statistical

machine translation (SMT). The main contributions of the paper are to improve NMT translation

quality by using SMT and to represent the source sentence and both translations as vectors in the

same vector space, using a multilingual language model—in this case, mBERT—that supports over

100 languages. The translation, in both directions, between English and the highly inflected language

Slovene is examined. However, the suggested framework is language-independent and can be

applied to other languages supported by the multilingual language model as well. The proposed

method of combining SMT and NMT in the hybrid system is novel.

The paper authored by Avram et al. (2023) deals with the issue of correctly identifying multiword

expressions (MWEs), which represents an important task for most natural language processing

systems. This work leverages the knowledge developed in the two research areas (i.e., MWEs and

multilingual NLP) to improve the results obtained with the PARSEME 1.2 shared task. The authors

have analyzed the performance of MWE identification in a multilingual setting, training the mBERT

model on the combined PARSEME 1.2 corpus, using all of the 14 languages found in its composition.

In addition, to boost the performance of their system, they have employed lateral inhibition

and language adversarial training in their methodology, intending to create embeddings that are

as language independent as possible and to improve their capabilities in identifying multiword

expressions. We note here that this research is the first to experiment with and show the advantages

of lateral inhibition in multilingual adversarial training. The approach employed in this research

achieves better results compared to the best system of the PARSEME 1.2 competition, MTLB-STRUCT,

on 11 out of 14 languages for global MWE identification and on 12 out of 14 languages for unseen

x

MWE identification.

The paper authored by Shi et al. (2023) concentrates on relation classification, which represents

a classical problem within the domain of relation extraction and a crucial task in natural language

processing. Specifically, the paper focuses on investigating the task of relation classification in

the field of cybersecurity. To address this issue, the authors first construct a manually annotated

cybersecurity dataset called CS13K. This research proposes a new relation classification model

that achieves exceptional performance on the SemEval-2010 task 8 dataset, surpassing previous

approaches with a remarkable F1 value of 92.3%.

The paper authored by Mo et al. (2023) is concerned with task-oriented dialogue (TOD)

systems and proposes PEFTTOD, a novel structure for solving TOD systems using a large-scale

pre-trained language model. The proposal leverages the parameter-efficient fine-tuning method

(PEFT), which incorporates an adapter layer and prefix tuning into the pre-trained language model.

It significantly reduces the overall parameter count used during training and efficiently transfers

dialogue knowledge. We note that, despite utilizing only around 4% of the parameters compared to

the baseline model, notable efficiency gains were achieved, including a 20% improvement in training

speed and an approximately 96% reduction in storage space requirements.

The paper authored by Xiao et al. (2023) addresses a fundamental procedure in knowledge

graph construction, namely that of relational triple extraction. The authors propose a double-headed

entities and relations prediction (DERP) framework, which divides the entity recognition process

into two stages—head entity recognition and tail entity recognition—using the obtained head and

tail entities as inputs. By utilizing the corresponding relation and the corresponding entity, the DERP

framework further incorporates a triple prediction module to improve the accuracy and completeness

of the joint relation triple extraction. A good foundation is constructed for subsequent natural

language processing and knowledge graph construction efforts. An extensive empirical evaluation is

organized: experiments were conducted on two English datasets and two Chinese datasets, with the

English dataset’s experimental results being compared with those derived from ten baseline models.

The experimental results demonstrated the effectiveness of the proposed DERP framework for triple

extraction.

The paper authored by Chifu and Fournier (2023) initiates the discussion around the definition

of sentence difficulty in the context of aspect-based sentiment analysis. Two strategies for defining

sentence difficulty are proposed and a great number of experiments are carried out in order to better

understand where the difficulties lie in the sentiment classification task based on aspects. Thorough

experiments are conducted on three well-known aspect-based sentiment analysis datasets, testing

more than 20 classification models on two different textual representations: TF-IDF and BERT. In

studying performance enhancement, fine-tuned BERT representations are considered and ensemble

learning (majority vote) is also applied. Although difficulty detection is a key area of research,

the notion of difficulty in aspect-based sentiment analysis has not been studied so far. From this

perspective, the paper raises a new, important research question and initiates a discussion that should

be both promising and challenging for future research.

The paper authored by Škorić et al. (2023) aims to present the advantages of using

composite language models in the processing and evaluation of texts written in highly inflective

and morphologically rich natural languages, particularly in Serbian. The performed investigation

employs the most common intrinsic metric used in computational linguistics, perplexity, which

ultimately represents a measure of how much the model is surprised by seeing new input text. The

paper describes a comparative analysis of calculated perplexities in order to measure the classification

capability of different models on two binary classification tasks: low-quality sentence detection

xi

and machine translation detection. On both tasks, the improvements achieved using composite

language models (built upon the perplexity outputs of several language models) over the accuracy of

standalone models, which is taken as the baseline, were tested. In conclusion, composite models

were shown to improve upon the accuracy of standalone models for classification tasks, with a

composite language model based on a stacked classifier architecture that uses properties extracted

from perplexity vectors as features being singled out as the best option for the detection of both

machine translations and low-quality sentences. Other contributions of this research pertain to the

development of a perplexity-based dataset for the testing and validation of composite and standalone

language models using existing models and parallel language corpora, as well as the creation of

composite Serbian language models that can be used in natural language processing tasks, including

document classification and text evaluation. We especially note the development of a detailed model

of the composite systems for the parallel unification of created models which can be applied to both

future models and other languages. This study opens new research avenues, since the question of

whether the composition of a few smaller models is better than a large standalone model in terms of

both training and execution speed, as well as in terms of accuracy, still remains.

The paper authored by Garcı́a-Dı́az et al. (2023) explores the advantages of zero and few-shot

learning over supervised training, with a particular focus on hate speech detection datasets covering

different domains and levels of complexity. The generalization capabilities of generative models such

as T5, BLOOM, and Llama-2 are evaluated on both Spanish and English datasets. The conducted

investigation offers insight into their cross-lingual applicability and versatility, thus contributing to a

broader understanding of generative models in natural language processing. The obtained results

highlight the potential of generative models to bridge the gap between data scarcity and model

performance across languages and domains. These research efforts have equally provided valuable

insights into the evolving field of hate speech detection strategies. The obtained results suggest that

the selection of the best strategy for hate speech detection is highly dependent on the dataset and

model. Therefore, further research should be conducted to determine the similarities and differences

of the evaluated linguistic models and strategies.

This Special Issue presents innovative research in the domain of NLP and HLT while opening

new, challenging research avenues for future investigations. We note the large range of research

topics that have been covered, showing the diversity and the dynamic of a permanently evolving

field, which is giving one of the most important technologies in use today. It is our hope that the

presented research results will contribute to fostering future research in NLP and inspiring future

studies in all related fields.

As the Guest Editor of this Special Issue, I would like to express my gratitude to the 43 authors

who contributed their articles. I am equally grateful to a great number of wonderful reviewers whose

valuable comments and suggestions helped improve the quality of the submitted manuscripts, as

well as to the dedicated MDPI editorial staff who helped greatly during the entire process of creating

this Special Issue.

Florentina Hristea

Editor

xii

Citation: Ortiz-Barajas, J.-G.;

Bel-Enguix, G.; Gómez-Adorno, H.

Sentence-CROBI: A Simple

Cross-Bi-Encoder-Based Neural

Network Architecture for Paraphrase

Identification. Mathematics 2022, 10,

3578. https://doi.org/10.3390/

math10193578

Academic Editor: Florentina Hristea

Received: 24 August 2022

Accepted: 27 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Sentence-CROBI: A Simple Cross-Bi-Encoder-Based Neural
Network Architecture for Paraphrase Identification

Jesus-German Ortiz-Barajas 1, Gemma Bel-Enguix 2,* and Helena Gómez-Adorno 3

1 Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México,
Mexico City 04510, Mexico

2 Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
3 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de

México, Mexico City 04510, Mexico
* Correspondence: gbele@iingen.unam.mx

Abstract: Since the rise of Transformer networks and large language models, cross-encoders have
become the dominant architecture for various Natural Language Processing tasks. When dealing
with sentence pairs, they can exploit the relationships between those pairs. On the other hand,
bi-encoders can obtain a vector given a single sentence and are used in tasks such as textual similarity
or information retrieval due to their low computational cost; however, their performance is inferior
to that of cross-encoders. In this paper, we present Sentence-CROBI, an architecture that combines
cross-encoders and bi-encoders to obtain a global representation of sentence pairs. We evaluated
the proposed architecture in the paraphrase identification task using the Microsoft Research Para-
phrase Corpus, the Quora Question Pairs dataset, and the PAWS-Wiki dataset. Our model obtains
competitive results compared with the state-of-the-art by using model ensembles and a simple model
configuration. These results demonstrate that a simple architecture that combines sentence pair and
single-sentence representations without using complex pre-training or fine-tuning algorithms is a
viable alternative for sentence pair tasks.

Keywords: paraphrase identification; transformers; cross-encoders; bi-encoders

MSC: 68-04

1. Introduction

“Paraphrase” refers to sentences that have the same meaning as other sentences but
use different words [1]. The problem of paraphrase identification is a binary classifica-
tion task in which, given two texts S1 and S2, it must be determined whether they have
the same meaning or not. Developing paraphrase identification systems is challenging
because defining what constitutes a paraphrase is complex. Previous works define the
paraphrase as an approximate equivalence between texts; in addition, there are different
types of paraphrasing based on the level of changes that the texts could have [2]: the low
paraphrase, which consists of substituting synonyms, hypernyms, hyponyms, meronyms
and holonyms; and the high paraphrase, which consists of the realization of the phenomena
of the low paraphrase, in addition to the morphological, lexical, semantic, syntactic and
discursive phenomena. Because of the above, one option is to develop deep-learning-based
approaches, which allow us to identify paraphrases of any type without extracting complex
linguistic features to define text pairs.

The Transformer architecture [3] introduced a new era of Natural Language Processing
(NLP) with the rise of pre-trained large language models. As a result of pre-training, they
can learn universal representations of language that can be fine-tuned to specific tasks,
without the need to train each model from scratch [4].

The cross-encoder model is one of the most popular approaches based on pre-trained
language models. This model encodes the two texts together and applies full self-attention

Mathematics 2022, 10, 3578. https://doi.org/10.3390/math10193578 https://www.mdpi.com/journal/mathematics1

Mathematics 2022, 10, 3578

to both texts at once [5]. Another pre-trained language model approach is the bi-encoder
model. This approach applies self-attention separately for each text using a Siamese
network and then compares them using a similarity metric [6].

Following the introduction of the BERT model [7], many approaches have emerged
to increase its performance, from the modification of the pre-training stage [8] to modifi-
cations to the attention mechanisms [9], knowledge distillation [10], and other complex
approaches. Our work proposes Sentence-CROBI, a simple architecture that combines the
representations of cross-encoders and bi-encoders for sentence pair tasks. The results show
competitive performance with state-of-the-art models when using model assembly and
when using a simple approach, which offers a simple alternative for these types of tasks.

The structure of the paper is the following. In Section 2, we describe related work,
where we consider previous BERT-based approaches applied to the paraphrase identi-
fication task. Section 3 describes the corpora that we used to train and evaluate the
Sentence-CROBI architecture. In Section 4, we explain the proposed architecture and the
experimental setup. Finally, in Sections 5 and 6, we present the results and conclusions,
respectively.

2. Related Work

The Transformer network [3] is an architecture that can encode texts in parallel by
using attention mechanisms instead of a sequential mechanism such as Recurrent Neural
Networks. This feature enables researchers to train models with large amounts of text
efficiently, marking the beginning of a new era in the artificial intelligence field where
pre-trained large language models are used to solve several Natural Language Processing
tasks [4].

The BERT model [7] is the most well-known language model based on the Transformer
architecture using a cross-encoder approach, and it has obtained state-of-the-art results
in a wide variety of tasks [11]. It consists of two versions: the base version and the large
version, made up of 12 and 24 Transformer encoder blocks, respectively. The pre-training
of the model consists of two tasks. The first task is the Masked Language Model, in which
the [MASK] token replaces a portion of the input tokens, and the model learns to predict
the actual values of those tokens. The second task is the Next Sentence Prediction, in which,
from two texts A and B, the model must identify whether B is the text that comes after A
or not. After pre-training, the model can be fine-tuned for any NLP problem by appending
an additional layer to the top of the model, using a small number of epochs and a low
learning rate. After the emergence of the BERT model, the NLP community proposed
different approaches to improve the performance of large language models based on the
Transformer architecture using the two-stage scheme: pre-training and fine-tuning. There
are four axes for these approaches.

The first axis consists of modifying the pre-training stage. The RoBERTa model [8] was
proposed as an optimized configuration of BERT. The modifications consist of performing
dynamic masking of the input tokens to the model in each epoch, eliminating the auxiliary
loss function for the Masked Language Model task, using longer sequences and a more
extensive dataset, and training for more epochs. Similarly, the StructBERT [12] model
adds two tasks to this stage to learn the structure of the language both at the word level
and the sentence level. The first task consists of changing the order of the masked tokens
to predict the correct word order. The second task consists of changing the order of the
statements in the Next Sentence Prediction task to predict the order of the statements. The
last example in this axis is the Ernie 2.0 model [13]. The authors propose a continuous
multi-task learning framework to learn lexical, syntactic, and semantic information in this
work. This framework allows the use of the knowledge of previous tasks for new tasks
during the pre-training phase. To check the effectiveness of the proposed model, they
propose a set of seven pre-training tasks divided into three sets. The first set consists of
word-level tasks. The first task is knowledge masking, in which the [MASK] token replaces
some named entities and phrases of the text, and the model predicts its actual value. The
second task is to predict whether a word begins with a capital letter, and, finally, the last

2

Mathematics 2022, 10, 3578

task of this set consists of predicting whether a token appears in other document segments
or not. The second set consists of structure-level tasks. These tasks are sentence reordering
and sentence distance prediction. Sentence reordering consists of finding the correct order
of segment permutations of the original text. Sentence distance prediction is a multi-class
classification problem. The model predicts whether two text segments are adjacent in a
document, whether they are in the same document but not adjacent, or whether they do not
belong to the same document. The last set consists of semantic-level tasks, where the model
predicts the semantic relationship of two texts and the relevance of a text in an information
retrieval system.

The second axis of modifications consists of reducing the size of the models. The
ALBERT model [14] uses the factorized embedding parameterization technique. This
technique splits the model vocabulary into two matrices: one for the embedding layer’s
vocabulary and the other for the hidden layer’s vocabulary. ALBERT also implements
parameter sharing between layers to prevent the model’s growth in depth. Another
proposed approach for model reduction is the BORT model [10]. It is an optimal sub-
architecture of BERT obtained using a fully polynomial time approximation scheme based
on three evaluation metrics: inference time, model size, and error rate. However, since
the resulting model is 95% smaller than the large BERT, it is more prone to overfitting.
Therefore, the authors use the Agora algorithm [15], which combines data augmentation
and knowledge distillation techniques, for the fine-tuning stage.

The third axis consists of modifying the fine-tuning stage of the model to achieve better
performance in the target tasks. The SMART algorithm [16] was proposed as an alternative
when target task data are limited. The method uses a smoothness-inducing adversarial
regularization technique to control the capacity of the model and its high complexity by
adding a small perturbation to the input data. In addition, to prevent the aggressive model’s
parameter update, the authors present a class of Bregman proximal point optimization
techniques. These methods use a confident-region-based regularization; therefore, the
model updates its parameters only based on a small neighborhood of the previous iteration.
The authors apply the proposed algorithm to fine-tune the RoBERTa [8] and MT-DNN [17]
models to evaluate their performance in ensemble and single model approaches.

Finally, the fourth axis consists of modifications to the Transformer architecture. In
the DeBERTa model [9], the authors propose a new attention mechanism that encodes the
words in two vectors: the first vector encodes the word, and the other encodes its relative
location. In contrast, the vanilla Transformer architecture encodes the words by summing
the content vector and the position vector. The attention mechanism calculates the attention
weights in separate arrays based on both representations by separating the words into
content and relative position vectors. In addition, the authors incorporate the absolute
position information for the Masked Language Model task; therefore, the model takes into
account the content of the word, its relative position, and its absolute position to predict
the actual value of the masked token. In the same field, the Funnel-Transformer model [18]
was proposed to reduce the computational cost of pre-training a language model on a vast
dataset. The authors add a pooling layer after some Transformer encoder blocks to achieve
this goal, reducing the hidden representations’ size by half. In the case of token-level tasks
such as the Masked Language Model task during the pre-training stage, the authors add
a decoder to reconstruct the final vector to the original size. In the case of sentence-level
tasks, the decoder is unnecessary, and the fine-tuning process only applies to the encoder.

Additionally, there is a different axis where researchers use pre-trained large language
models to obtain sentence-level representations from texts and combine them with features
that do not rely on neural network models. The Lexical, Syntactic, and Sentential Encodings
(LSSE) learning model [19] is a unified framework that incorporates Relational Graph
Convolutional Networks (R-GCNs) to obtain different features from local contexts through
word encoding, position encoding, and full dependency structures, as well as sentence-
level representations obtained using the BERT model. The authors use the [CLS] token
as the sentence pair representation, while the graph network learns the syntactic context
by capturing the dependency structure and word order. Each context vector is compared

3

Mathematics 2022, 10, 3578

using a distance metric and is concatenated to the sentence pair vector to obtain the global
representation.

Unlike the works described above, there is another approach based on pre-trained
language models called bi-encoders. For example, in sentence pair tasks, each text is
encoded by a Siamese neural network [20] separately. The Sentence-BERT model [21]
uses two instances of the BERT model with shared weights, where each text is encoded
independently. At the output of each BERT instance, a pooling operation is applied to the
last hidden state to obtain the vectors of each text; the global representation for the sentence
pair consists of some combination of the individual vectors. Although this is a more efficient
approach, its performance is lower than that of cross-encoder-based approaches [5,6].

In this work, we propose Sentence-CROBI, a simple architecture that combines cross-
encoder and bi-encoder approaches for sentence pair tasks.

3. Corpora

This section describes the characteristics of the corpora that we used to evaluate
our architecture. We selected these datasets based on the Papers with Code (https://
paperswithcode.com/ accessed on 1 February 2022) platform. It is possible to search
research papers based on the task that they solve, the datasets that they use, or the proposed
approach. We selected the three datasets with the highest citations for the paraphrase
identification task: the Microsoft Research Paraphrase Corpus (MRPC) [22], the Quora
Question Pairs (QQP) corpus, and the PAWS corpus [23].

The Microsoft Research Paraphrase Corpus (MRPC) [22] consists of 5801 sentence
pairs, collected over two years from various news websites and manually classified into two
classes: Paraphrase and No Paraphrase. The corpus is partitioned into train and test subsets.
The training set contains 4076 sentence pairs, where 2753 examples are paraphrases—that
is, 67.5% of the pairs correspond to the Paraphrase class—and the remaining 1323 pairs
of this set are non-paraphrase examples. On the other hand, the testing set consists
of 1725 sentence pairs, where 66.5% are paraphrases—that is, 1147 sentence pairs. The
remaining 578 pairs are non-paraphrase examples. Besides the paraphrase identification
task, this corpus has been used in various tasks, such as sentence embedding computation
using contrastive learning [24], zero-shot learning techniques [25], and the explainability of
pre-trained language models [26].

The Quora Question Pairs (QQP) corpus consists of 795,241 question pairs labeled
in a binary manner as Duplicated or Not Duplicated. It is divided into three subsets:
the training set contains 363,846 question pairs, the validation set 40,430, and the testing
set 390,965. The validation and training subsets have a distribution of 37% for duplicate
questions and 63% for non-duplicate questions; the distribution of the test set is unknown
because its labels are not publicly available. Therefore, the evaluation was performed using
the GLUE Benchmark [27] server by uploading the output of our model on the test set
using a specific format. To ensure the consistency of our results, we downloaded the corpus
version provided by the GLUE Benchmark on their website (https://gluebenchmark.com/
tasks accessed on 1 April 2022). This dataset has been used in tasks such as adversarial
reprogramming [28] and model pre-training with limited resources [29].

The PAWS corpus [23]—specifically, the PAWS-Wiki subset—contains sentence pairs
from Wikipedia (https://dumps.wikimedia.org accessed on 5 February 2022). It consists of
65,401 sentence pairs divided into three subsets: the training set with 49,401 instances and
validation and testing sets with 8000 instances each. The distribution of the corpus includes
44% of examples labeled as Paraphrase and 56% labeled as No Paraphrase. This corpus
contains examples with high lexical overlap, even for non-paraphrase sentence pairs. This
characteristic makes it a challenging corpus when evaluating paraphrase detection models.
Although it has been recently created, this dataset has been used in tasks such as in-context
learning [30], condescending language detection [31], and intent detection [32].

Table 1 displays the statistics of the datasets described above.

4

Mathematics 2022, 10, 3578

Table 1. Statistics for the MRPC, QQP, and PAWS-Wiki datasets.

Corpus Paraphrase Instances Non-Paraphrase Instances Total Instances

MRPC (train) 2753 1323 4076
MRPC (test) 1147 578 1725

QQP (train) 134,623 229,223 363,846
QQP (val) 14,959 25,471 40,430
QQP (test) - - 390,965

PAWS-Wiki (train) 21,829 27,572 49,401
PAWS-Wiki (val) 3539 4461 8000
PAWS-Wiki (test) 3536 4464 8000

Additionally, we used the Multi-Genre NLI corpus [33], which consists of labeled
sentence pairs with textual entailment information in three classes: Neutral, Contradiction,
and Entailment. It is composed of two subsets of training and testing. The training set
contains 391,164 examples, with 130,375 examples for the Neutral class, 130,379 for the
Contradiction class, and 130,411 for the Entailment class; the testing set is composed of
9714 pairs of statements, with 3094 examples of the class Neutral, 3180 for Contradiction,
and 3440 labeled as Entailment. Following a two-stage fine-tuning approach, [34], we used
this dataset to perform an intermediate fine-tuning stage for the proposed architecture
before tuning the model in the target task.

4. Methodology

This section describes in detail the proposed architecture, the preprocessing steps that
we performed to train and evaluate the model, and, finally, the experimental configuration.

4.1. Text Preprocessing

The preprocessing performed on the sentence pairs is detailed below. We converted
each text to a sequence of IDs based on the BERT model [7] vocabulary. Similarly, we con-
verted the sentence pairs to a sequence of IDs based on the ROBERTa model vocabulary [8].
Then, after encoding each text and the sentence pair, we added the classification [CLS]
token and the separation [SEP] token. Following the preprocessing process, we added
padding for individual texts and sentence pairs to normalize inputs to a single size. Finally,
we obtained the attention mask for each text and sentence pair. This mask allows the model
to distinguish between word tokens and padding tokens.

4.2. Model

In this section, we present the Sentence-CROBI architecture and its implementation.
The bi-encoder component of our approach is based on the Sentence-BERT model [21];
we use a modification of the BERT model through a Siamese neural network [20] that is
capable of obtaining individual vectors of fixed size from each text. We apply a pooling
operation to the last hidden state of the BERT model to obtain a sentence vector for each
text. We represent these sentence vectors as u and v, respectively. We use an instance
of the RoBERTa model for the cross-encoder component. This model receives the joint
encoding of the sentence pair. To obtain the final representation of the sequence, we use the
classification token [CLS].

After obtaining the individual representation of each text and its joint representation,
we compute the Euclidean distance D between the vectors u and v. Finally, we obtain the
global vector representation of the sentence pair by concatenating the classification token
[CLS] from the cross-encoder representation, the vectors u and v, and the Euclidean distance
D. This vector is the input to a classifier composed of two fully connected networks.

We use the BERT base version composed of 12 Transformer blocks for the bi-encoder
component of our architecture. Meanwhile, we use the RoBERTa large version composed
of 24 Transformer blocks for the cross-encoder component.

5

Mathematics 2022, 10, 3578

Figure 1 shows the structure of the Sentence-CROBI architecture.

Figure 1. Diagram of the Sentence-CROBI model. CLS corresponds to the classification token of the
cross-encoder component. U and V correspond to the individual vector representations of each text,
denoted by Sentence 1 and Sentence 2, respectively. D is the Euclidean distance between vectors U
and V.

The Siamese component of the Sentence-CROBI architecture produces contextual word
vectors. We obtain sentence vectors by applying a mean pooling operation to the contextual
word embedding matrix, where each row represents a word in the input text. The proposed
architecture takes the last hidden state of BERT as contextual word embeddings.

The final component of our proposed model is the classifier. It is a fully connected
network with two layers. First, it receives the global sentence pair representation as input,
and a dropout layer is applied with a probability of 0.1. Dropout is a regularization
technique to avoid overfitting of the network; it consists of randomly setting some values
of its input to zero. Then, it passes through a fully connected layer of 1793 units with a
hyperbolic tangent as the activation function. Finally, the output layer consists of 2 neurons
with a linear function as an activation function.

We use the cross-entropy as a loss function during the training of the Sentence-CROBI
architecture. The function’s objective is to compare the probability of the predicted class
to that of the actual class of the training instance. The model’s prediction is then penal-
ized based on the distance from the actual value. Equation (1) defines the cross-entropy
function, where

• yi is the actual label;
• ŷi denotes the probability predicted by the model;
• N is the size of the test set.

CE =
N

∑
i=1

yi log (ŷi) + (1 − yi) log (1 − ŷi) (1)

4.3. Fine-Tuning

To fine-tune the model, we use two approaches. The first is the original approach
proposed for the BERT model: it consists of initializing the model’s parameters based on

6

Mathematics 2022, 10, 3578

the pre-training stage and training the model for a few epochs on the target task using a
small learning rate. However, one of the issues with this approach is that when the target
task dataset is small, the model is prone to overfitting [35]. Because the Microsoft Research
Paraphrase Corpus has only 4076 training examples, we apply a second approach by using
an intermediate-related target task to fine-tune the model. The intermediate target task has
more labeled data [34] and allows the model to increase its robustness and effectiveness. In
this work, we use the Multi-Genre NLI described in Section 3 for intermediate training of
the Sentence-CROBI architecture before fine-tuning on the Microsoft Paraphrase corpus.

4.4. Ensemble Learning

To improve the classifier’s performance in the paraphrase identification task, we use
the Bagging technique [36], which reduces the generalization error by combining several
models. This technique consists of training different models separately and combining
each output set to vote on test data and obtain the final prediction.

In the case of neural networks, differences in random initialization or in batch genera-
tion cause independent errors in each member of the ensemble; therefore, the ensemble
will perform significantly better than its members [37].

In this work, we perform the ensemble learning technique by fine-tuning several
instances of the Sentence-CROBI architecture using different random seeds to initialize
each model. After the fine-tuning stage, we compute the output probabilities of each
test example for each independent instance of the Sentence-CROBI model. We obtain k
output matrices, where k is the number of independent instances of the model, and the
dimension of each matrix is N × 2, where N is the number of examples on the test set,
and 2 corresponds to the number of classes. We compute the probability average of the k
predictions, and the classification is based on the class with the highest probability.

4.5. Training Details

Following the fine-tuning procedure in the ROBERTa model [8], we train our models
with a batch size in the range of {16,32}. We use a learning rate in the range of {1 × 10−5,
2 × 10−5, 3 × 10−5} with the Adam optimizer, with a warm-up ratio of 0.06 and a linear
decay to zero. We train all models for a maximum of 10 epochs and perform pseudo early
stopping to use the model with the best performance on the validation data. The maximum
length is 35 for individual texts and 128 for text pairs. We use HuggingFace’s Transformers
library to implement the Sentence-CROBI model [38]. Our code implementation is pub-
licly available on Github (https://github.com/jgermanob/Sentence-CROBI created on 14
September 2022).

5. Results

We present the Sentence-CROBI model’s results for the corpora described in Section 3
and their comparison with the state-of-the-art models described in Section 2. The evaluation
metrics used are Accuracy and F1-score in the Paraphrase class.

Tables 2 and 3 report the results obtained from each paper for the BORT, StructBERT,
Funnel-Transformer, ALBERT, and Ernie 2.0 models. In the case of the SMART algorithm,
we use the results reported by the authors when fine-tuning the RoBERTa and MT-DNN
models using their approach.

Tables 4 and 5 report the results that we obtained using the public implementation
for each model in the state-of-the-art. We report the average of five runs using different
random seeds.

Table 2 shows the state-of-the-art results obtained from the GLUE Benchmark leader-
board on the Microsoft Research Paraphrase Corpus and the results with the Sentence-CROBI
architecture. We order the different approaches based on the F1-score metric in descend-
ing order. The state-of-the-art results correspond to some ensemble learning approaches;
nevertheless, the authors do not provide details on their ensemble learning process.

For the case of the Sentence-CROBI architecture, we use 15 different models for
the Bagging algorithm as an ensemble learning technique. All models correspond to an

7

Mathematics 2022, 10, 3578

independent run using different random seeds. Five models correspond to fine-tuning the
model on the MRPC corpus after performing intermediate fine-tuning of the model on the
MNLI corpus—that is, we initialize the model’s weights based on the pre-training stage,
fine-tune the model on the intermediate task, and finally fine-tune the model on the target
task. Another five models are analogous but use the PAWS-Wiki dataset as the intermediate
task. The remaining five models correspond to the MRPC corpus’s fine-tuning without any
intermediate fine-tuning. After completing all runs, we average the output probabilities to
obtain the final prediction.

Our model obtains competitive results in comparison to the state-of-the-art. There is
only a difference of 1.23 in Accuracy and 0.75 in F1-score with the BORT model [10].

Table 2. Results on the Microsoft Research Paraphrase Corpus obtained from the GLUE Benchmark
leaderboard.

Model Accuracy F1-Score
Difference Compared
with Sentence-CROBI

(Accuracy/F1-Score)

BORT [10] 92.30 94.10 1.23/0.75
MT-DNN SMART [16] 91.60 93.70 0.53/0.35
RoBERTa SMART [16] 91.60 93.70 0.53/0.35

StructBERTRoBERTa [12] 91.50 93.60 0.43/0.25
Funnel-Transformer [18] 91.20 93.40 0.13/0.05

ALBERT [14] 91.20 93.40 0.13/0.05
Sentence-CROBI 91.07 93.35 -

Ernie 2.0 [13] 87.40 90.20 −3.67/−3.15

Table 3 shows the state-of-the-art and the Sentence-CROBI results in the Quora Ques-
tion Pairs dataset. Our proposed model obtains competitive results. However, there is a
more significant gap compared to the best approach, with a difference of 0.6 in Accuracy
and 1.6 in F1-score. The main difference with this corpus is the evaluation process, because
all the state-of-the-art approaches follow a single-task fine-tuning approach. We use the
Bagging algorithm as an ensemble learning technique and five runs with different random
seeds to obtain the final prediction. In addition, the dataset is challenging because of the
difference between the distributions in the subsets.

Table 3. Results on the Quora Question Pairs dataset obtained from the GLUE Benchmark leaderboard.

Model Accuracy F1-Score
Difference Compared
with Sentence-CROBI

(Accuracy/F1-Score)

Funnel-Transformer [18] 90.70 75.40 0.6/1.6
StructBERTRoBERTa [12] 90.70 74.40 0.6/0.6

ALBERT [14] 90.50 74.20 0.4/0.4
RoBERTa SMART [16] 90.01 74.00 −0.09/0.2
MT-DNN SMART [16] 90.20 73.90 0.1/0.1

Ernie 2.0 [13] 90.10 73.80 0.0/0.0
Sentence-CROBI 90.10 73.80 -

BORT [10] 85.90 66.00 −4.2/−7.8

Table 4 shows the results for the PAWS-Wiki corpus. The authors do not originally use
this corpus in their work; for this reason, we use the public implementation of each of the
state-of-the-art models. In this configuration, we do not use any intermediate fine-tuning
task, and we report the mean over five runs with different random seeds. Our proposed
model obtains the second-best performance using this dataset, with a small difference of
0.13 in both Accuracy and F1-score.

8

Mathematics 2022, 10, 3578

Figure 2 displays a bar chart showing each model’s best performance on the Microsoft
Research Paraphrase Corpus and Quora Question Pair dataset. We obtain these perfor-
mance metrics from the GLUE Benchmark leaderboard for the state-of-the-art models.
The Sentence-CROBI model corresponds to the ensemble learning technique described
above in the case of MRPC and a single fine-tuning approach for the QQP dataset. All
models achieve a higher F1-score than 90 in MRPC. However, in the QQP dataset, only
the BORT model obtained an F1-score lower than 70. The difference in the BORT model’s
performance on both datasets suggests instability in its fine-tuning algorithm because of
the model’s size.

Figure 2. Best performance metrics of the proposed architecture and the state-of-the-art on the
Microsoft Research Paraphrase Corpus and the Quora Question Pairs dataset using intermediate
fine-tuning and ensemble learning techniques.

Table 4. Results on the PAWS-Wiki dataset.

Model Accuracy F1-Score
Difference Compared
with Sentence-CROBI

(Accuracy/F1-Score)

RoBERTa SMART [16] 94.93 94.34 0.13/0.13
Sentence-CROBI 94.80 94.21 -

DeBERTa [9] 94.69 94.12 −0.11/−0.09
ALBERT [14] 94.70 94.08 −0.1/−0.13

MT-DNN SMART [16] 94.16 93.52 −0.64/−0.69
Ernie 2.0 [13] 93.86 93.18 −0.94/−1.03

StructBERT [12] 93.13 92.41 −1.67/−1.8

Finally, Table 5 shows the results obtained in the Microsoft Paraphrase corpus with a
simple model configuration—that is, without intermediate fine-tuning tasks or ensemble
learning strategies. We report the mean over five runs with different random seeds. Under
these conditions, the Sentence-CROBI architecture obtains the third-best performance com-
pared to state-of-the-art models. The difference regarding the best performance, obtained
by the DeBERTa model [9], is 0.21 in Accuracy and 0.08 in F1-score.

9

Mathematics 2022, 10, 3578

Table 5. Results on the Microsoft Research Paraphrase Corpus following a single-model approach.

Model Accuracy F1-Score
Difference Compared
with Sentence-CROBI

(Accuracy/F1-Score)

DeBERTa [9] 89.30 91.96 0.21/0.08
Ernie 2.0 [13] 89.11 91.89 0.02/0.01

Sentence-CROBI 89.09 91.88 -
RoBERTa SMART [16] 88.83 91.75 −0.26/−0.13
MT-DNN SMART [16] 87.71 90.84 −1.38/−1.04

ALBERT [14] 87.58 90.83 −1.51/−1.05
StructBERT [12] 86.56 90.06 −2.53/−1.82

Figure 3 displays a bar chart showing each model’s average performance over five runs
using different random seeds on the Microsoft Research Paraphrase Corpus and PAWS-
Wiki corpus. The configuration for all the models is a single fine-tuning approach, without
any intermediate task or ensemble learning technique. BORT and Funnel-Transformer do
not appear in this chart because there is no public implementation. The Sentence-CROBI
architecture is 0.56 above the average in F1-score for MRPC, which is 91.31. In the same
corpus, 4 of 7 models, our approach included, have performance higher than 91. Meanwhile,
the average F1-score for the PAWS-Wiki dataset is 93.69, and our proposed model achieves
a value 0.51 above this. Similar to MRPC, our model is one of the four models with an
F1-score higher than 94.

Figure 3. Average performance metrics over five runs with different random seeds of the proposed
architecture and the state-of-the-art on the Microsoft Research Paraphrase Corpus and the PAWS-
Wiki corpus, using a single-model configuration without intermediate fine-tuning and ensemble
learning techniques.

5.1. Statistical Significance Tests

We perform a statistical significance test to compare the performance of the Sentence-
CROBI architecture with the state-of-the-art. We select the non-parametric Wilcoxon signed
test [39] because the distribution of our data is unknown [40]. To compute the significance
tests, we use the Python library SciPy [41]. The null hypothesis is that the differences
follow a symmetric distribution around zero. First, the absolute values of the differences
are ranked. Then, each rank is given a sign according to the sign of the difference. The

10

Mathematics 2022, 10, 3578

threshold that we use to accept or reject the null hypothesis is α = 0.05. We use the MRPC
and PAWS-Wiki corpora to perform this test, without intermediate fine-tuning or ensemble
learning. Table 6 shows the results of the Wilcoxon signed test between the proposed
architecture and the state-of-the-art methods. It is possible to observe that none of the
comparisons is statistically significant, since the p-values of all the comparisons are not less
than the threshold α.

Table 6. Significance tests using the Wilcoxon signed test between the proposed architecture and the
state-of-the-art models. We compare the p-values with a threshold α = 0.05 to accept or reject the
null hypothesis.

Model 1 Model 2 MRPC p-Value PAWS-Wiki p-Value

Sentence-CROBI

ALBERT [14] 0.0625 0.3125
Ernie 2.0 [13] 0.8125 0.0625

StructBERT [12] 0.0625 0.0625
RoBERTa SMART [16] 0.3125 0.3125
MT-DNN SMART [16] 0.0625 0.0625

Additionally, we performed a statistical significance test using the Wilcoxon signed test
with the methods described in the state-of-the-art. As in the tests with the Sentence-CROBI
architecture, we used a threshold of α = 0.05 to accept or reject the null hypothesis. The
datasets used are MRPC and PAWS-Wiki. Following the same approach as the significance
tests with our model, we do not perform any intermediate fine-tuning stage or ensemble
learning strategy. Table 7 shows the results of the tests. In the same way, it is possible
to observe that, for the two datasets used, there is no significant difference between the
results.

Table 7. Significance tests using the Wilcoxon signed test between the state-of-the-art models. We
compare the p-values with a threshold α = 0.05 to accept or reject the null hypothesis.

Model 1 Model 2 MRPC p-Value PAWS-Wiki p-Value

ALBERT [14]

DeBERTa [9] 0.0625 1.0
Ernie 2.0 [13] 0.0625 0.0625

StructBERT [12] 0.1875 0.0625
RoBERTa SMART [16] 0.0625 0.0625
MT-DNN SMART [16] 1.0 0.0625

DeBERTa [9]

Ernie 2.0 [13] 0.8125 0.0625
StructBERT [12] 0.0625 0.0625

RoBERTa SMART [16] 0.4375 0.125
MT-DNN SMART [16] 0.0625 0.0625

Ernie 2.0 [13]
StructBERT [12] 0.0625 0.0625

RoBERTa SMART [16] 0.8125 0.0625
MT-DNN SMART [16] 0.0625 0.125

StructBERT [12] RoBERTa SMART [16] 0.0625 0.0625
MT-DNN SMART [16] 0.0625 0.0625

RoBERTa SMART [16] MT-DNN SMART [16] 0.0625 0.0625

Since there is no statistical significance between our proposed approach and the
state-of-the-art models, the Sentence-CROBI architecture has an advantage due to two
factors. The first one is its implementation facility that relies only on using two pre-trained
models, one with a cross-encoder approach and the other with a bi-encoder approach, and
combining both representations to obtain a global vector; there are no modifications to the
pre-trained models’ architecture or during the pre-training stage. The second one is the
fine-tuning procedure: our model takes the most straightforward scheme, with only a few
epochs and a low learning rate, to adjust the model to the target task, using a standard loss
function as the cross-entropy for classification tasks.

11

Mathematics 2022, 10, 3578

5.2. Error Analysis

We perform a quantitative error analysis of our architecture’s performance on the
Microsoft Research Paraphrase Corpus, which we report in Table 2; in this setting, we
perform ensemble learning by using the Bagging technique and 15 instances of our model
with different random seeds. Five correspond to an intermediate fine-tuning stage using the
MNLI corpus; five correspond to an intermediate fine-tuning stage using the PAWS-Wiki
corpus, and the remaining instances correspond to fine-tuning the model on MRPC without
using intermediate tasks. Figure 4 shows the confusion matrix obtained by our model
using the configuration described above. The Sentence-CROBI model correctly predicts
1081 of 1147 paraphrase instances, corresponding to 94.24% of the examples of this class.
On the other hand, it correctly predicts 490 of 578 non-paraphrase samples, corresponding
to 84.77% instances of this class.

Figure 4. Sentence-CROBI’s confusion matrix on the Microsoft Research Paraphrase Corpus using an
intermediate-task fine-tuning approach and ensemble learning.

We also perform a qualitative error analysis based on the first five false positive and
false negative examples predicted by the Sentence-CROBI model.

Table 8 shows the false positive examples. In general, it is possible to notice that all
examples share the subject. For instance, in the first pair is “Ballmer”. In the second pair,
the first sentence refers to a female subject, while the second refers to a person who plays
a schoolgirl character, and both subjects go to see a specialist because they are sick. The
difference between the sentences in the third to fifth pairs is the specificity in describing the
performed actions, but the subjects are the same.

Table 8. False positive examples predicted by the Sentence-CROBI model. False positives correspond
to non-paraphrase instances classified by the model as paraphrases.

Text 1 Text 2

Ballmer has been vocal in the past warning that Linux is a threat
to Microsoft.

“In the memo, Ballmer reiterated the open-source threat
to Microsoft”.

“She first went to a specialist for initial tests last Monday,
feeling tired and unwell”.

“The star, who plays schoolgirl Nina Tucker in Neighbours,
went to a specialist on 30 June feeling tired and unwell”.

“Garner said the self-proclaimed mayor of Baghdad,
Mohammed Mohsen al-Zubaidi, was released after two days in

coalition custody”.

Garner said self-proclaimed Baghdad mayor Mohammed
Mohsen Zubaidi was released 48 h after his detention

in late April.
“It appears from our initial report that this was a textbook

landing considering the circumstances”, “ Burke said”.
“Said Mr. Burke: It was a textbook landing considering the

circumstances”.
“Powell recently changed the story, telling officers that Hoffa’s

body was buried at his former home, where the search was
conducted Wednesday”.

“Powell changed the story earlier this year, telling officers that
Hoffa’s body was buried at his former home, where the

aboveground pool now sits”.

12

Mathematics 2022, 10, 3578

Table 9 shows the false negative examples predicted by our model. Our approach
struggles with sentences with a high word overlapping rate between them. For instance, in
the first pair, the first sentence talks about the possibility of a man becoming sick, while the
second talks about the fact that there is only a sick man. The third pair is different because
of the number of bodies that they refer to. Finally, in the fourth and fifth examples, the
model cannot identify correctly that the subjects are different.

Table 9. False negative examples predicted by the Sentence-CROBI model. False negatives correspond
to paraphrase instances classified by the model as non-paraphrases.

Text 1 Text 2

“A Washington County man may have the countys first human
case of West Nile virus, the health department said Friday”.

The countys first and only human case of West Nile this year
was confirmed by health officials on 8 September.

“Snow’s remark “has a psychological impact”, said Hans
Redeker, head of foreign-exchange strategy at BNP Paribas”.

“Snow’s remark on the dollar’s effects on exports “has a
psychological impact”, said Hans Redeker, head of foreign-

exchange strategy at BNP Paribas”.
“Another body was pulled from the water on Thursday and two
seen floating down the river could not be retrieved due to the

strong currents, local reporters said”.

“Two more bodies were seen floating down the river on
Thursday, but could not be retrieved due to the strong currents,

local reporters said”.
“Amgen shares gained 93 cents, or 1.45 percent, to $65.05 in

afternoon trading on Nasdaq”.
Shares of Allergan were up 14 cents at $78.40 in late trading on

the New York Stock Exchange.
“In his speech, Cheney praised Barbour’s accomplishments as

chairman of the Republican National Committee”.
Cheney returned Barbour’s favorable introduction by touting

Barbour’s work as chair of the Republican National Committee.

6. Conclusions

We present the Sentence-CROBI model, a simple language-model-based architec-
ture that combines cross-encoders and bi-encoders to compute a vector representation in
sentence pair tasks. Our model works by combining the output representations of cross-
encoders and bi-encoders. Therefore, it does not rely on complex architecture modifications,
adding more tasks to the pre-training stage, reducing the model’s size, or modifying the
fine-tuning algorithm.

Our proposed architecture achieved competitive results with the state-of-the-art mod-
els in all the evaluated datasets. The most significant difference is when we evaluate the
Quora Question Pairs dataset. The Funnel-Transformer model outperforms our model by
1.6 regarding the F1-score. On the other hand, the least significant difference is concerning
the PAWS-Wiki dataset, where the RoBERTa model fine-tuned using the SMART algorithm
outperformed our model by 0.13 in terms of the F1-score.

The proposed model performs best when no intermediate fine-tuning tasks or ensem-
ble learning techniques are used. These results suggest that combining cross-encoders and
bi-encoders could improve the model’s performance in sentence pair tasks without any
auxiliary technique. Moreover, there is no statistical significance between our proposed
approach and the state-of-the-art models. These results represent our model’s advantage,
because its success does not rely on adding more pre-training tasks, modifying the Trans-
former architecture, or creating new fine-tuning algorithms. In the same way, it is easy
to implement using existing tools, and it is possible to adapt the model to different tasks
with minor changes. The changes only consist of replacing the combination strategy of
the cross-encoder and bi-encoder representations, the last layer on the model, and the
loss function. This configuration follows the current paradigm of the Natural Language
Processing field, where pre-trained models are adapted to a wide variety of tasks without
designing each model from scratch.

This paper is the first approach that combines bi-encoder and cross-encoder repre-
sentations for sentence pair tasks. Therefore, future work includes exploring different
combinations of these two models and measuring their impact on the current state-of-the-
art datasets and new scenarios.

13

Mathematics 2022, 10, 3578

Author Contributions: Conceptualization, J.-G.O.-B.; methodology, J.-G.O.-B., G.B.-E. and H.G.-A.;
software, J.-G.O.-B.; validation, G.B.-E. and H.G.-A.; formal analysis, J.-G.O.-B.; investigation,
J.-G.O.-B.; resources, J.-G.O.-B.; data curation, J.-G.O.-B., G.B.-E., and H.G.-A.; writing—original draft
preparation, J.-G.O.-B.; writing—review and editing, G.B.-E. and H.G.-A.; visualization, J.-G.O.-B.;
supervision, G.B.-E. and H.G.-A.; project administration, G.B.-E. and H.G.-A.; funding acquisition,
G.B.-E. and H.G.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by PAPIIT projects TA400121 and TA101722, CONACYT
CB A1-S-27780, and CONACYT PNPC scholarship with No. CVU 1086461.

Data Availability Statement: Publicly available datasets were used in this study: The Microsoft
Research Paraphrase Corpus (https://www.microsoft.com/en-us/download/details.aspx?id=52
398 accessed on 1 March 2022), the Quora Question Pairs Corpus (https://gluebenchmark.com/
tasks accessed on 1 March 2022), the PAWS-Wiki Corpus (https://github.com/google-research-
datasets/paws accessed on 1 March 2022), and the Multi-Genre NLI Corpus (https://cims.nyu.edu/
~sbowman/multinli/ accessed on 1 March 2022).

Acknowledgments: The authors thank CONACYT for the computing resources provided through
the Plataforma de Aprendizaje Profundo para Tecnologías del Lenguaje of the Laboratorio de Super-
cómputo del INAOE.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Bhagat, R.; Hovy, E. What is a Paraphrase? Comput. Linguist. 2013, 39, 463–472. [CrossRef]
2. Montoya, M.M.; da Cunha, I.; López-Escobedo, F. Un corpus de paráfrasis en español: Metodología, elaboración y análisis. Rev.

Lingüíst.Teor. Apl. 2016, 54, 85–112. [CrossRef]
3. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need.

Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.
4. Qiu, X.; Sun, T.; Xu, Y.; Shao, Y.; Dai, N.; Huang, X. Pre-trained models for natural language processing: A survey. Sci. China

Technol. Sci. 2020, 63, 1872–1897. [CrossRef]
5. Humeau, S.; Shuster, K.; Lachaux, M.A.; Weston, J. Poly-encoders: Architectures and pre-training strategies for fast and accurate

multi-sentence scoring. arXiv 2019, arXiv:1905.01969.
6. Peng, Q.; Weir, D.; Weeds, J.; Chai, Y. Predicate-argument based Bi-encoder for paraphrase identification. In Proceedings of the

60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May
2022; Association for Computational Linguistics: Dublin, Ireland, 2022; pp. 5579–5589. [CrossRef]

7. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational
Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [CrossRef]

8. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A robustly
optimized BERT pretraining approach. arXiv 2019, arXiv:1907.11692.

9. He, P.; Liu, X.; Gao, J.; Chen, W. DeBERTa: Decoding-enhanced Bert with disentangled attention. arXiv 2020, arXiv:2006.03654.
10. de Wynter, A.; Perry, D.J. Optimal subarchitecture extraction for bert. arXiv 2020, arXiv:2010.10499.
11. Rogers, A.; Kovaleva, O.; Rumshisky, A. A Primer in bertology: What we know about how bert works. Trans. Assoc. Comput.

Linguist. 2020, 8, 842–866. [CrossRef]
12. Wang, W.; Bi, B.; Yan, M.; Wu, C.; Xia, J.; Bao, Z.; Peng, L.; Si, L. StructBERT: Incorporating language structures into pre-training

for deep language understanding. arXiv 2020, arXiv:1908.04577.
13. Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Tian, H.; Wu, H.; Wang, H. Ernie 2.0: A Continual Pre-training framework for language

understanding. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 8968–8975.

14. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A lite BERT for Self-supervised learning of language
representations. arXiv 2020, arXiv:1909.11942.

15. de Wynter, A. An Algorithm for Learning Smaller Representations of Models with Scarce Data. arXiv 2020, arXiv:2010.07990.
16. Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Zhao, T. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language

Models through Principled Regularized Optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, 5–10 July 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020;
pp. 2177–2190. [CrossRef]

14

Mathematics 2022, 10, 3578

17. Liu, X.; He, P.; Chen, W.; Gao, J. Multi-task deep neural networks for natural language understanding. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for
Computational Linguistics: Florence, Italy, 2019; pp. 4487–4496. [CrossRef]

18. Dai, Z.; Lai, G.; Yang, Y.; Le, Q. Funnel-transformer: Filtering out sequential redundancy for efficient language processing. Adv.
Neural Inf. Process. Syst. 2020, 33, 4271–4282.

19. Xu, S.; Shen, X.; Fukumoto, F.; Li, J.; Suzuki, Y.; Nishizaki, H. Paraphrase Identification with Lexical, Syntactic and Sentential
Encodings. Appl. Sci. 2020, 10, 4144. [CrossRef]

20. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “Siamese” time delay neural network. Adv.
Neural Inf. Process. Syst. 1993, 6, 737–744. [CrossRef]

21. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence embeddings using siamese BERT-networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics:
Hong Kong, China, 2019; pp. 3982–3992. [CrossRef]

22. Dolan, W.B.; Brockett, C. automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International
Workshop on Paraphrasing (IWP2005), Jeju Island, Korea, 14 October 2005.

23. Zhang, Y.; Baldridge, J.; He, L. PAWS: Paraphrase adversaries from word scrambling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Minneapolis, MN, USA,
2019; pp. 1298–1308. [CrossRef]

24. Wei, J.; Bosma, M.; Zhao, V.; Guu, K.; Yu, A.W.; Lester, B.; Du, N.; Dai, A.M.; Le, Q.V. finetuned language models are zero-shot
learners. arXiv 2022, arXiv:2109.01652.

25. Gao, T.; Yao, X.; Chen, D. SimCSE: Simple contrastive learning of sentence embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, Online, 7–11 November 2021; Association for Computational Linguistics:
Punta Cana, Dominican Republic, 2021; pp. 6894–6910. [CrossRef]

26. Sinha, K.; Jia, R.; Hupkes, D.; Pineau, J.; Williams, A.; Kiela, D. Masked language modeling and the distributional hypothesis:
order word matters pre-training for little. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, Online, 7–11 November 2021; Association for Computational Linguistics: Punta Cana, Dominican Republic, 2021;
pp. 2888–2913. [CrossRef]

27. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA,
USA, 6–9 May 2019.

28. Hambardzumyan, K.; Khachatrian, H.; May, J. WARP: word-level adversarial reProgramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Online, 1–6 August 2021; Association for Computational Linguistics: Stroudsburg, PA, USA,
2021; pp. 4921–4933. [CrossRef]

29. Izsak, P.; Berchansky, M.; Levy, O. How to train BERT with an academic budget. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, Online, 7–11 November 2021; Association for Computational Linguistics:
Punta Cana, Dominican Republic, 2021; pp. 10644–10652. [CrossRef]

30. Min, S.; Lewis, M.; Zettlemoyer, L.; Hajishirzi, H. MetaICL: Learning to learn in context. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, WA,
USA, July 2022; Association for Computational Linguistics: Seattle, WA, USA, 2022; pp. 2791–2809. [CrossRef]

31. Perez-Almendros, C.; Espinosa-Anke, L.; Schockaert, S. SemEval-2022 task 4: Patronizing and condescending language detection.
In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), Seattle, WA, USA, 14–15 July 2022;
Association for Computational Linguistics: Seattle, WA, USA, 2022; pp. 298–307. [CrossRef]

32. Dopierre, T.; Gravier, C.; Logerais, W. PROTAUGMENT: Unsupervised diverse short-texts paraphrasing for intent detection
meta-learning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, August 2021; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 2454–2466. [CrossRef]

33. Williams, A.; Nangia, N.; Bowman, S. A Broad-coverage challenge corpus for sentence understanding through Inference. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2018; pp. 1112–1122.

34. Phang, J.; Févry, T.; Bowman, S.R. Sentence Encoders on STILTs: Supplementary training on intermediate labeled-data tasks.
arXiv 2018, arXiv:1811.01088.

35. Chen, Y.; Kou, X.; Bai, J.; Tong, Y. Improving BERT with self-supervised attention. IEEE Access 2021, 9, 144129–144139. [CrossRef]
36. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
37. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 15 June 2022).

15

Mathematics 2022, 10, 3578

38. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2020; pp. 38–45. [CrossRef]

39. Wilcoxon, F. Individual comparisons of grouped data by ranking methods. J. Econ. Entomol. 1946, 39, 269–270. [CrossRef]
[PubMed]

40. Dror, R.; Baumer, G.; Shlomov, S.; Reichart, R. The Hitchhiker’s guide to testing statistical significance in natural language
processing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics: Melbourne, Australia, 2018; pp. 1383–1392.
[CrossRef]

41. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

16

Citation: Bercaru, G.; Truică, C.-O.;

Chiru, C.-G.; Rebedea, T. Improving

Intent Classification Using Unlabeled

Data from Large Corpora. Mathematics

2023, 11, 769. https://doi.org/

10.3390/math11030769

Academic Editor: Florentina

Hristea

Received: 27 December 2022

Revised: 24 January 2023

Accepted: 26 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improving Intent Classification Using Unlabeled Data from
Large Corpora

Gabriel Bercaru 1,2,*, Ciprian-Octavian Truică 1,2,*, Costin-Gabriel Chiru 1,2,* and Traian Rebedea 2,*

1 SoftTehnica, RO-030128 Bucharest, Romania
2 Computer Science and Engineering Department, Faculty of Automatic Control and Computers,

University Politehnica of Bucharest, RO-060042 Bucharest, Romania
* Correspondence: gabriel.bercaru@upb.ro (G.B.); ciprian.truica@upb.ro (C.-O.T.);

costin.chiru@upb.ro (C.-G.C.); traian.rebedea@upb.ro (T.R.)

Abstract: Intent classification is a central component of a Natural Language Understanding (NLU)
pipeline for conversational agents. The quality of such a component depends on the quality of
the training data, however, for many conversational scenarios, the data might be scarce; in these
scenarios, data augmentation techniques are used. Having general data augmentation methods that
can generalize to many datasets is highly desirable. The work presented in this paper is centered
around two main components. First, we explore the influence of various feature vectors on the task of
intent classification using RASA’s text classification capabilities. The second part of this work consists
of a generic method for efficiently augmenting textual corpora using large datasets of unlabeled
data. The proposed method is able to efficiently mine for examples similar to the ones that are
already present in standard, natural language corpora. The experimental results show that using
our corpus augmentation methods enables an increase in text classification accuracy in few-shot
settings. Particularly, the gains in accuracy raise up to 16% when the number of labeled examples is
very low (e.g., two examples). We believe that our method is important for any Natural Language
Processing (NLP) or NLU task in which labeled training data are scarce or expensive to obtain. Lastly,
we give some insights into future work, which aims at combining our proposed method with a
semi-supervised learning approach.

Keywords: intent classification; chatbot; few-shot learning; data augmentation; online clustering;
data projection

MSC: 68T50

1. Introduction

In the present day, conversational agents (or chatbots) are a core component of many
applications, ranging from online reservations to customer support. The quality of the
chatbot replies depends on its ability to accurately understand the user query. To ensure
that, the user intention must be understood. Thus, the chatbot designer has to provide
multiple alternatives on how the user may formulate a query. This is often performed by
specialists and it is a time-consuming task. Automating this process will highly benefit
chatbot designers, reducing iteration time.

In order to obtain chatbot training examples in a semi or fully automated manner,
one could leverage large volumes of unlabeled data available in various online corpora
(e.g., movie subtitles, translation datasets, etc.). The only impediment is that the unlabeled
corpora are usually large enough such that a simple search for semantically similar exam-
ples within them becomes unpractical. As a result, efficient retrieval of similar examples is
highly desirable.

Driven by such motivation, we propose a novel pipeline for efficiently analyzing large,
unlabeled corpora and extracting examples similar to a user-supplied query. We aim to

Mathematics 2023, 11, 769. https://doi.org/10.3390/engproc2023030004 https://www.mdpi.com/journal/mathematics
17

Mathematics 2023, 11, 769

minimize the retrieval time while maintaining a high similarity between the query and
the retrieved example. Moreover, we examine how the proposed example retrieval system
improves the intent classification accuracy in several few-shot learning scenarios, where
intent examples are scarce.

As the results of this research will show, our proposed method is highly beneficial in
the few-shot intent classification scenario. In such a setup, the number of labeled examples
is very small (e.g., 2, 3, 5, or 10 examples per class). Using our similar example retrieval
pipeline, we expand the number of examples per class, while increasing the classification
accuracy with significant rates, up to 16%. To our knowledge, at the time of writing this
article, there is no open-source service that can be used to augment textual datasets based
on online clustering of movie conversations. Our method allows relatively quick and cheap
dataset augmentation, making use of only open-source components.

The research questions that guide our research can be summarized as follows:

(Q1)How do existing chatbots perform in terms of intent classification?
(Q2)How can we use unlabeled data to improve the intent detection phase of conversational

agents?
(Q3)How can we efficiently extract meaningful examples from large, unlabeled corpora?
(Q4)To what extent does the proposed system benefit in a few-shot learning scenario?

Our objectives can be stated as follows:

(O1)Analyze current intent classification performance for existing systems to address Q1;
(O2)Process large, unlabeled corpora such that they become suitable for our similarity-

based example retrieval system to address Q2;
(O3)Achieve low example retrieval duration to address Q3;
(O4)Evaluate our example retrieval system in few-shot learning scenarios to address Q4.

The contributions of this work can be summarized as follows:

(C1) An analysis of standard intent detection systems and their performance;
(C2) An efficient, similarity-based retrieval system that is used for augmenting intent

classification datasets;
(C3) An extensive experimental performance analysis of our proposed system in few-shot

learning scenarios using real-world datasets.

The rest of this paper is structured as follows. Section 2 presents previous work done
with respect to intent classification, in both standard and few-shot scenarios. Section 3
shows the general structure of a RASA-based conversational agent. Section 4 describes
the experiments performed on the RASA NLU component, for analyzing Transformer
models’ accuracy in intent classification. Section 5 provides details on the work done for
retrieving similar examples in a large corpus. Section 6 presents the evaluation methods
and the results obtained for corpus clustering. Section 7 discusses our findings and their
implications. Lastly, Section 8 summarizes and concludes our work and hints at possible
future directions.

2. Related Work

The first component of our contribution consists of an analysis of existing Transformer
embedders in the context of intent classification. Balakrishnan et al. [1] provided a similar
analysis for disaster classification in tweets. As their results show, using Transformer-based
embedders is beneficial and increases the accuracy, compared to other embedding options,
e.g., bag-of-words, Word2Vec, GloVe, etc.

As already mentioned, one of the crucial aspects regarding the quality of a chatbot is
related to the datasets that it uses. Related to this, Larson et al. [2] and Casanueva et al. [3]
introduced two datasets for intent classification, namely CLINC150 and BANKING77.
CLINC150 is designed for benchmarking models meant to distinguish in-domain queries
from out-of-domain queries, thus its structure is more complex compared to BANKING77.
CLINC150 queries span 150 intents over 10 different domains, while BANKING77 queries

18

Mathematics 2023, 11, 769

span 77 intents over a single domain, namely banking-related operations. In this paper, we
use these two datasets to evaluate the performance of our models.

Another important aspect of a chatbot is the framework used for its development. In
this sense, Liu et al. [4] presented an analysis of several conversational agents designing
frameworks, including RASA. Their study focuses on a dataset created by the authors,
which includes queries belonging to 21 domains, with 64 intents and 54 annotated entity
types. The queries belonging to the mentioned dataset contain tasks that can be given to a
house-cleaning robot. Compared to this dataset, the ones used in this paper contain more
intents, namely 77 for BANKING77 and 150 for CLINC150.

Most of the current literature is centered around two axes: intent identification and
data augmentation. Regarding intent identification, Ahmadvand et al. [5] performed
dialogue act classification in the context of open-domain conversational agents. Unlike
our subject, open-domain dialogue cannot divide the intents into well-defined classes
simply by looking at the current utterance. Consequently, the authors tackled the problem
by incorporating dialogue history information. The information is encoded by including
features from the lexical, syntactic, and system state information layers. The information
is captured through pre-trained Word2Vec embedding vectors. The training procedure is
split across two distinct phases: (1) the dialogue act system is trained on human-to-human
conversations, and (2) the human-to-machine conversations are fine-tuned. Their results,
evaluated on Switchboard data and Alexa Prize data, show that the proposed Context-
aware Dialogue Act Classification system outperforms state-of-the-art models trained on
each dataset.

Zhan et al. [6] designed an out-of-scope (OOS) intent detection method, modeling
the distribution of out-of-scope intents. Their work splits OOS intents into (1) ‘hard’ OOS
intents that are close to the decision boundary, and (2) ‘easy’ intents that are distant from
the in-scope intents. Their research is focused on a rather binary classification task, namely
separating in-scope from out-of-scope intents. Nonetheless, the datasets used for carrying
out the research include BANKING77 and CLINC150, the same as our work does. The
authors tested their models by using only 25%, 50% or 75% of the classes (in three different
setups), while leaving the rest of the classes unseen. The models are subsequently used to
predict whether an example is in-scope or out-of-scope. The best results are obtained in
the 75% seen–25% unseen classes setup, with 88.08% accuracy for CLINC150 and 81.07%
accuracy for BANKING77.

In intent classification, out-of-scope intents can be further divided into two classes [7]:
(1) in-distribution out-of-scope examples (ID-OOS), and (2) out-of-distribution out-of-scope
examples (OOD-OOS). Zhang et al. [7] showed that pre-trained Transformer models (e.g.,
BERT, RoBERTa, etc.) are vulnerable to mispredicting OOD-OOS examples. However,
existing intent classification datasets, such as CLINC150 and BANKING77 do not contain
any ID-OOS data. Particularly, CLINC150 contains an OOS class, but most of the examples
are easily distinguishable from the in-domain ones, thus OOD. Besides the performance
analysis of pre-trained Transformer based models on the OOD-OOS examples, the authors
contributed with two datasets for OOS intent detection. These datasets feature both ID-OOS
and OOD-OOS data.

Liu et al. [8] tackled the problem of intent classification when the number of available
examples per intent is limited. They reconstructed capsule network models (such as
IntentCapsNet [9]) in order to include information regarding the possible polysemy of the
words which contribute to the features of the semantic capsules. Moreover, their proposed
method, IntentCapsNet-ZS, behaves better than previous models with respect to unseen
intents, in the zero-shot setting.

Yan et al. [10] designed a Gaussian Mixture Model (GMM) method for out-of-domain
intent detection. Their research shows that previous intent outlier detection methods project
sentence embeddings into a latent space in which the class (intent) label is the centroid
and all examples are scattered across a long and narrow domain. In such representation,
detecting out-of-scope intents is error-prone. Their proposed method alleviates this problem

19

Mathematics 2023, 11, 769

by regularizing the projection space such that the class label remains the centroid, but the
examples are distributed more evenly around it. The output of such a scenario can be paired
with an anomaly detection algorithm in order to separate in-domain intents from unknown
out-of-domain intents. Moreover, the authors demonstrated that their method (SEG—
Semantic-Enhanced Gaussian Mixture Model) can be paired with previously developed
zero-shot intent classification methods (i.e., ReCapsNet [11]), in order to improve their
performance.

In terms of data augmentation, Chatterjee and Sengupta [12] performed a corpus
clustering operation, with the goal of grouping together similar sentences in a corpus, for
manual intent annotation. With their technique, the resulting corpus may be used for manu-
ally augmenting the dataset of any intent classification task. Their intent discovery pipeline
comprises 4 main steps: (1) the extraction of conversation utterances using a pre-trained
dialogue act classifier, (2) grouping together similar utterances, (3) manual labeling of the
clusters, and (4) re-classifying utterances that have not been previously assigned to any
cluster. The experimental results show that a clustering algorithm such as ITER-DBSCAN
performs better than previous methods when it comes to intent coverage. Unlike their work,
our proposed corpus augmentation method does not require any manual intervention of
the designer of the conversational agent. Similarly, Kuchlous and Kadaba [13] performed
intent classification in the context of a therapy and mental wellness-oriented chatbot. Their
dataset is of rather limited size, containing only 4 classes (intents), with approximately
400 examples in total. The authors used this dataset to benchmark several non-neural based
models: Multinomial Naïve Bayes, Logistic Regression, SVM, and Random Forest. Due to
the limited dataset, the authors resorted to several processing steps, i.e., artificially aug-
menting the training set and building a custom English stop words list. By applying these
steps, the accuracy of the classification is increased. Unlike their work, in our experiments,
we use a standard English language stop words list.

Sahu et al. [14] designed a method of augmenting datasets for intent classification
that employs large language models (such as GPT-3 [15]) for generating artificial training
examples, given a context containing the original intents for a specific class. However,
their method requires the execution of two expensive stages in the pipeline: (1) using a
large language model for performing inference on all the available examples, and (2) the
possibility of including a manual verification stage, in order to filter out unrelated, retrieved
examples. Furthermore, the authors investigated the effect of their corpus augmentation
method in few-shot learning scenarios. Compared to their method, our experiments do not
require large language models to augment the corpus and the post-processing filtering is
performed automatically.

3. RASA Components for Building Conversational Agents

RASA [16] is one of the most successful frameworks for building conversational agents.
Its architecture is composed of several interconnected modules, which can function both
independently or as a whole.

A powerful feature of RASA is the possibility to integrate state-of-the-art, pre-trained
Transformer models, via the Huggingface library [17] (https://huggingface.co/ (last ac-
cessed on 7 November 2022)). These Transformers can increase the intent prediction
accuracy, in the NLU phase, by providing their own embedding vectors for the supplied
tokens, at the cost of a larger memory footprint.

In the context of task-oriented dialogue, RASA emerged as the preferred solution, due
to its ability to handle both simple (query-answer) and complex (multiple turns needed to
obtain the required information) conversational scenarios. Its structure is composed of two
loosely coupled sub-systems: the natural language understanding (NLU) component and
the dialogue management component.

The NLU component is responsible for extracting information at a single dialogue
turn, e.g., the intent associated with the turn and possible entities in the sentence. This
process is divided throughout a pipeline consisting of several stages: (1) a tokenizer (which

20

Mathematics 2023, 11, 769

splits the raw input text into tokens), (2) one or several featurizers (which encode and
extract meaningful information from the tokens), and (3) a classification method, which
produces the final intent and entities associated with the input sentence. One of the more
important stages in the pipeline is the featurizer stage where multiple methods of encoding
the tokens are available. The encoding mechanism can employ either ‘standard’ text-based
metrics (TF-IDF scores) or embedding vectors obtained through neural models (e.g., word
embeddings, Transformer-based models, etc.).

Furthermore, the dialogue management component dictates how the conversation
evolves. This component utilizes three main policies which choose the next agent action,
given the dialogue context:

(1) Rule policy. If the current user input matches one of the agent’s known rules, the
corresponding action is executed immediately, without taking into consideration the
conversation history or the known scenarios.

(2) Memorization policy. Unless the current turn matches any rule, the agent tries to fit it
inside one of the conversational scenarios. A scenario consists of several exchanges
between the user and the agent.

(3) TED policy (Transformer Embedding Dialogue policy) [18]. When the input text does not
match any of the predefined rules or scenarios, the agent attempts to choose the most
probable of the known actions, given the context. This is achieved by (i) generating the
embedding of the input text using a Transformer encoder, (ii) computing the similarity
between the resulting embedding vector and known actions embeddings, and (iii)
extracting any possible entities in the user text through a Conditional Random Field
(CRF) layer.

4. RASA NLU Intent Classification

In RASA, the NLU and dialogue management components are loosely coupled—the
RASA NLU component can function independently of the latter one. As a result, the intent
classification experiments are conducted using only the NLU stage.

4.1. Datasets Used

There are many public datasets (https://github.com/clinc/nlu-datasets (last accessed
on 7 November 2022)) available online for benchmarking the intent classification task. For
our experiments, we use both CLINC150 and BANKING77 datasets.

CLINC150 [2] is a dataset proposed for evaluating the performance of out-of-scope
classification systems. The main version of the dataset (full) contains 150 in-domain classes
and one class for out-of-domain examples. Each of the 150 domain classes contains 100 train-
ing examples, 20 validation examples, and 30 test examples. The out-of-domain class is
split into 100 training examples, 100 validation examples, and 1000 test examples.

Besides the full dataset, Larson et al. [2] proposed 3 more datasets as sub-samples of
the original large one. The small version of CLINC150 follows the same class distribution.
However, it contains fewer examples for training, i.e., 50 examples per class. The imbalanced
version of the dataset poses additional challenges since training examples are no longer
equally distributed across classes. Thus, intents have either 25, 50, 75, or 100 training
examples. The plus version features more training examples per class, i.e, 250.

BANKING77 [3] is another dataset introduced for benchmarking text classification
methods. However, this dataset contains only queries from the banking domain. These
banking queries are divided across 77 in-scope classes. It is a balanced set, as all intents
contain the same number of examples.

4.2. Intent Classification

Within the RASA framework, accurately classifying the intent encoded inside a user
query is critical for a correct dialogue flow. Consequently, RASA provides numerous
options for analyzing the input text and extracting meaningful features, which ultimately
determine the intent.

21

Mathematics 2023, 11, 769

While most of the RASA pipeline components are customizable, the used featurizers
deserve more attention as choosing one type of featurizer may have implications beyond
classification accuracy. The memory footprint of the featurizer and the overall response
time of the system are also metrics to consider.

One of the simpler featurizers tested is the CountVectorsFeaturizer (https://rasa.com/
docs/rasa/components/#countvectorsfeaturizer (last accessed on 7 November 2022)),
which analyzes the user text and creates a bag-of-words representation based on it. The
result is a sparse representation of the input sequence, which disregards token sequentiality.
In the case of a task such as intent classification, sequentiality might not prove to be as
important as for other NLP/NLU tasks (i.e., machine translation, named entity recognition,
part of speech tagging), as in many cases the intent of a sentence is determined by a keyword
irrespective to the position it is located. Sparse tokenizers are able to extract features at
multiple n-gram granularity (standard n values range between 1 and 4), working either at
word or character level. For evaluation, we featurize the text based on character n-grams
with sizes between 2 and 4 characters. Note that n-gram extraction is performed on each
word’s lemma rather than on the original word.

In order to better capture semantic similarities between words, several types of dense
featurizers can be used, e.g., featurizers that produce embedding vectors based on the
user utterance. We test the following dense featurizers: (1) SpacyFeaturizer, and (2) mul-
tiple LanguageModelFeaturizers. In the case of SpacyFeaturizer, the intent classifier used
is SklearnIntentClassifier (implemented through Scikit-learn [19]). SklearnIntentClassifier is
based on a linear SVM classification algorithm for which the parameters are determined
via GridSearchCV. The LanguageModelFeaturizers component allows embedding integration
mechanisms from state-of-the-art Transformer-based language models. To this extent,
our experiments employ 6 models: (1) BERT [20], (2) ConveRT [21], a Transformer-based
encoder designed for conversations, (3) RoBERTa [22], (4) GPT [23], (5) GPT-2 [24], and
(6) XLNet [25]. For all the language model featurizers, the extracted features are used as
input for DIETClassifier [18], a multi-task model for intent classification and entity extrac-
tion. DIETClassifier uses a single Transformer model for both intent detection and entity
extraction and it produces entities by processing a Transformer’s output layer with a CRF
layer.

For both CLINC150 and BANKING77, we use the training subset to fine-tune the
models. The test subset is used to compute the accuracy metrics. In all our experiments, the
models are fine-tuned for 50 epochs using the training set, except for the SpaCy embeddings
setup where fine-tuning is performed for 100 epochs.

The results are presented separately, depending on the used classifier. For this set
of experiments, we use the following hardware configuration: a system with an Intel(R)
Core(TM) i7-9850H CPU @ 2.60GHz processor, 32 GB RAM, and a NVIDIA Quadro T1000
GPU with 4 GB VRAM. The results from Table 1 are obtained without using the Transformer
architecture (SklearnIntentClassifier and MitieClassifier). For all the scores in Table 2, the
DIETClassifier was used.

Table 1. Intent classification accuracy obtained through non-Transformer-based methods. Best
performing models for each dataset have their results in bold.

CLINC150 BANKING77

SpaCy Embeddings 0.8271 0.8867
CountVectorsFeaturizer 0.7418 0.9026

22

Mathematics 2023, 11, 769

Table 2. Intent classification accuracy obtained by using different language model features extracted
from the user input text. Best performing models for each dataset have their results in bold.

CLINC150 BANKING77

BERT Embeddings 0.8104 0.9282
ConveRT Embeddings 0.8242 0.9237
RoBERTa Embeddings 0.7651 0.9192

GPT Embeddings 0.7956 0.9081
GPT-2 Embeddings 0.7656 0.9019
XLNet Embeddings 0.7627 0.9006

The accuracy rates obtained by the featurizer based on word counts are slightly lower
than those obtained by the featurizers that use neural models pre-trained on English texts
(both SpaCy and language model based featurizers).

To better understand classification accuracy and which types of examples are misclassi-
fied, we computed the precision, recall, and macro-F1 scores for the language model-based
methods. The scores were computed for both individual intent classes and globally for
all classes. Table 3 presents the average scores by metric for RASA NLU intent classifica-
tion. A sample plot of the resulting scores obtained by using the BERT featurizer for the
BANKING77 set is presented in Figure A1 in Appendix A.

Table 3. Recall, precision, and F1 classification scores obtained using different types of language
model featurizers (LMF). Best performing models, in terms of macro-F1 average score, have their
results in bold.

LMF

CLINC150 BANKING77

Recall Precision
Macro-F1

(avg.)
Recall Precision

Macro-F1
(avg.)

BERT 0.9455 0.8236 0.8735 0.9282 0.9317 0.9283
ConveRT 0.9475 0.8369 0.8816 0.9237 0.9277 0.9241
RoBERTa 0.9107 0.7856 0.8349 0.9191 0.9220 0.9192

GPT 0.9311 0.8169 0.8614 0.9081 0.9122 0.9084
GPT-2 0.9066 0.7868 0.8332 0.9019 0.9056 0.9018
XLNet 0.8986 0.7813 0.8272 0.9006 0.9052 0.9003

Similar to the accuracy scores presented in Table 2, the highest F1 scores are obtained
by using the ConveRT (for CLINC150) and BERT (for BANKING77) language model
featurizers. To check which intents are specifically mistaken for other intents, we plot
the confusion matrix of the test set for the BANKING77 dataset when using the ConveRT
featurizer (Figure 1). The full confusion matrix is presented in Figure A2 in Appendix B.

The confusion matrix reveals that some of the incorrectly classified examples, i.e.,
the light-purple hue, denote semantically similar intent labels, which in turn contain
semantically similar examples in the training set. In this sense, some examples of similar
intents are:

• card_arrival vs. order_physical_card;
• pending_top_up vs. top_up_reverted;
• declined_transfer vs. declined_card_payment;
• balance_not_updated_after_bank_transfer vs. transfer_timing;
• virtual_card_not_working vs. card_not_working.

23

Mathematics 2023, 11, 769

Figure 1. Selected section of the confusion matrix obtained for classifying BANKING77 test instances,
with a model using the ConveRT language model featurizer. The yellow-green hue represents
correctly classified test instances and it represents the main diagonal of the full matrix.

We do not include the confusion matrix for the CLINC150 test set, as the corresponding
plot is not easily readable. However, it is plotted and interpreted with the help of a tool
that renders it inside a scrollable webpage. Unlike BANKING77, where all test set classes
contain exactly 40 instances, for CLINC150, the test set is unbalanced. There are many more
OOS (out-of-scope) intents compared to the other ones (1000 vs. 30 for each other intent).
As a result, most of the misclassifications occur when classifying an OOS example.

5. Corpus Clustering

As stated before, a standard RASA conversational agent relies on two distinct pipeline
stages in order to converse with a user: (1) the NLU component and (2) the dialogue
management component. At both levels, the chatbot designer has to provide multiple

24

Mathematics 2023, 11, 769

learning examples in terms of intents and conversational scenarios and, in order to obtain
a robust agent, the examples must be as diverse and numerous as possible. Even though
RASA automates to some extent the process of capturing training data through the RASA
interactive mode, obtaining an adequate list of examples still remains a tedious and time-
consuming task.

On the other hand, there exist many datasets containing conversations that could be
used for acquiring the necessary data (e.g., Cornell Movie-Dialogs Corpus (https://www.cs.
cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html (last accessed on 7 November
2022)) [26], OpenSubtitles (https://opus.nlpl.eu/OpenSubtitles-v2018.php (last accessed
on 7 November 2022)) [27], etc.). Being able to process them in order to query for simi-
lar examples, given a designer’s chosen example, would drastically reduce the chatbot
design time.

The similarity could be exploited either at local level (utterance level) or at global level
(conversation level), with the latter option being more difficult to tackle. Moreover, standard
text similarity metrics (such as cosine distance) could be used to retrieve similar examples.
The current impediment is given by the size of each such dataset, which makes a linear
search prohibitively slow even for a single example. A possibility for an efficient example
retrieval system would rely on pre-computations and searches performed within a subset
of the complete dataset. Thus, offloading the intensive computations to a preprocessing
step would ensure a smaller retrieval time for a single example.

5.1. Method Description

Our method can be regarded as a pipeline which processes raw transcripts, embeds
individual sentences in order to obtain dense feature representations, and clusters them in
order to shorten similar sentence retrieval time.

5.1.1. Data Preprocessing

The proposed system uses the subset of English subtitles from the OpenSubtitles [27]
corpus as the training set. The subtitles are encoded as XML files. Each subtitle contains
additional markdown data necessary for displaying specific parts of the subtitle at the
correct moment. For this set of experiments, we only use the raw text of the subtitles. The
timestamps are not necessary and, therefore, are discarded.

The initial set, including time annotations, contains 123 GB of data split across ap-
proximately 446,000 subtitle files. The first stage consists of aggregating the text of several
files into larger ‘record’ files to ensure that dataset loading times are minimized. After
this step, the dataset’s size is reduced to approximately 11 GB of raw subtitles text split
across 105 record files, each holding 100 MB of data. The total number of utterances in
the resulting corpus is approximately 381 million and each file holds between 3.4 and
3.9 million examples. After manual examination, it was noticed that some movies contain
multiple versions of the same transcript, which are most of the time identical. After filtering
out duplicate subtitles, the final corpus is reduced to only 140,000 subtitle files, or 4 GB
of raw text, split into 37 record files, approximately 100 MB of data each. The number of
sentences per record remains unchanged. However, the total number of examples available
is lowered to 131 million. The process of creating the record files considers that transcript
lines being part of the same movie scene in the initial dataset to not be split across different
record files.

5.1.2. Embedding, Clustering, and Data Projection

Local level similarity can be computed based on either sparse or dense features of
the text. Following the success of the Transformer architecture in numerous NLP tasks,
several types of embedding vectors obtained through the encoder modules of different
Transformer models may be used. Two such options might be:

• A BERT [20] model from Huggingface (bert-base-uncased);
• An SBERT (Sentence BERT) [28] model (all-mpnet-base-v2).

25

Mathematics 2023, 11, 769

The BERT model is used by Devlin et al. [20] to demonstrate that for a Named Entity
Recognition (NER) task, state-of-the-art accuracy in terms of F1 score is obtained without
fully fine-tuning a pre-trained BERT model on the training set at hand. However, the
authors extracted contextual embeddings from several hidden layers and used them as
input to two BiLSTM layers before applying the final classification layer. The results
show that using embedding vectors obtained by concatenating the last four hidden layers
produces the best results.

SBERT [28] is based on a pre-trained MPNet language understanding model [29] and
fine-tuned on 1 billion pairs of sentences. The objective of pre-training is to predict to
which pair a randomly given sentence belongs. In this case, the computed sentence-level
embedding vectors have a lower dimensionality of 768 units compared to the solution
offered by Devlin et al. [20]. This makes SBERT the preferred alternative when the dataset
used is large, as in the case of OpenSubtitles, because precomputed embeddings would
require at least four times less storage.

Given an input sentence x, retrieving semantically similar instances from a learning
set D of N instances can be achieved by retrieving the sentence y, yielding the maximum
cosine similarity between the corresponding embedding vectors:

y = argmax
t∈D

embx · embt

‖embx‖ · ‖embt‖ (1)

From Equation (1), we observe that embx is compared against each instance in the
dataset D, which becomes unfeasible as the size N of D increases. In order to speed up the
linear search by a constant factor K, the current approach proposes to divide all the N learn-
ing instances into K disjoint groups. Separation is performed based on embedding vectors
embt of each sentence in D. For small sizes of N, any standard clustering algorithm may
be used to aggregate similar embedding vectors into the same cluster [30]. This becomes,
however, impractical as N grows, due to large memory requirements in the clustering
method. For instance, standard K-means clustering requires to have all data which are to be
fitted in memory at once which, in turn, slows the algorithm performance [31]. Considering
the dimensions of the gathered dataset, K-means would require 131 × 106 × 768 × 4 ≈ 375
GB of memory (4 represents the size in bytes for a standard float).

Instead, online clustering algorithms could be used to cluster sentences. One such
example is mini-batch K-means [32]. Similar to standard K-means, it optimizes the same
non-convex objective function, while iteratively processing batches of the input data X.
Equation (2) presents the mini-batch K-means optimization function, where X contains the
embeddings of the instances in D and ct represents the embedding of the centroid of the
cluster where t is assigned.

L = ∑
t∈X

‖t − ct‖2 (2)

Even though processing data in batches allows to construct and process of large
amounts of embedding vectors, in a streaming manner, it might also have the disadvantage
of possibly invalidating previous cluster assignments, e.g., t assigned to cluster ct at
timestep T might need to be reassigned to a different cluster after processing the next batch
at timestep T + 1 since ct might suffer significant modifications. However, depending on
the sampled subset of instances, t might incorrectly remain assigned to the same cluster ct.
In practice, both standard K-means and mini-batch K-means converge to similar cluster
assignments. During the cluster center update step, mini-batch K-means attempts to
move the cluster centers as little as possible away from the previous cluster centers, by
considering them as well in the update equation.

In the current implementation, fitting the data through mini-batch K-means is done for
a fixed number of steps rather than until a given convergence criterion is met. After fitting
the current examples, the embedding vectors and corresponding cluster labels are stored on
the disk, to allow the processing of the next batch of embedding vectors. Furthermore, the
fitted K-means object is also stored. Fitting the next batch of data must consider previously

26

Mathematics 2023, 11, 769

fitted data and the K-means object must also be persisted for later usage in the inference
phase.

Having the instances from the learning set embedded and clustered, performing
inference for a given test instance q consists of the steps described in Algorithm 1:

• Obtain the embedding vector embq for q based on the embedder E used for performing
clustering (Line 1).

• Identify the closest cluster center cq (bin) to embq, as computed through mini-batch
K-means, i.e., compute the cosine similarity against all K clusters and return the most
similar cluster center (bin) (Line 2).

• Identify the closest embedding vector to embq, in the current cluster cq (bin), i.e.,
compute the cosine similarity against all learning examples assigned to cluster cq
(bin), and return the most similar example (Line 3). Note that the comparison is
performed only within a restricted number of subsets of the initial data as we assume
roughly uniform splitting of the initial N examples across the K clusters. Thus, the
computations involve only N

K cosine similarity computations.
• Lookup in the original corpus and retrieve p the natural language sentence paired

with the index based on the embedding vector index (Lines 4 and 5).

Algorithm 1 Inference steps for a given test example q
Input: E embedder, q inference sentence
Output: p the <sentence, index> pair

1: embq ← E(q) � Obtain the embedding vector
2: cq ← closest cluster to embq � Identify the closest cluster
3: mq ← closest example to embq in cq
4: p ← index(mq) � Index in the original corpus
5: Return p

Due to the online nature of the clustering algorithm and to counteract the possibility
of early learning instances being assigned to a wrong bin, the second and third steps
above can check more than one bin and example. This idea is inspired by Beam Search, a
greedy decoding algorithm used in other NLP tasks (e.g., dialogue generation, machine
translation, etc.), where multiple candidates in an implicit graph structure are explored in
a breadth-first search manner. This might prove useful for detecting embedding vectors
falling under a very similar bin, which might rank just below the closest bin in terms of
cosine similarity to the inference embedding vector.

It is certain that not all of the sentences retrieved through the method described above
would positively impact the quality of the corpus which is to be augmented. However,
given a limited set of hand-chosen learning examples, one can train a weak classifier with
the initial set of examples. The additional examples retrieved by the system can be filtered
based on the classifier class output probabilities, i.e., if an example is assigned to a specific
class with a probability greater than a threshold, then the example will be further considered
for augmenting the corpus; otherwise, the low probability will lead to the dismissal of the
example.

This initial technique of example filtering might not drastically improve classification
accuracy, i.e., for high values of the confidence threshold (e.g., 0.9), the model might choose
only examples which do not bring any additional information. A different approach would
be to filter examples according to a semi-supervised approach, treating the initial learning
set as labeled, and the set of retrieved examples as unlabeled. This idea is inspired by
FixMatch, a method initially developed and applied for computer vision tasks [33].

While storing precomputed sentence embedding vectors decreases the lookup time,
storage requirements are particularly high; i.e, the entire set of 131 million, 768-dimensional
vectors requires approximately 390 GB of storage space. In order to reduce the amount of
storage needed, dimensionality reduction algorithms can be used in order to downsample
the embedding vectors. A different approach could be to use a different embedder, which

27

Mathematics 2023, 11, 769

produces lower dimensional embeddings. However, the main issue remains, as we do not
know any embedder that might output vectors of only 32 or 64 dimensions, so we do not
follow this path of experiments.

Similar to the clustering algorithm limitations, one requirement for the dimensionality
reduction algorithm is that it must be able to process the data iteratively since they would
not fit into the memory all at once. As a result, IPCA (Incremental PCA) is successfully
used to downsample the set of vectors to 64 and 32 dimensions, while preserving semantic
similarity [34]. The resulting sets take only 76 GB and 43 GB of storage, respectively.

5.2. Few-Shot Learning

A natural use case of this similar example retrieval system is the few-shot training
scenario. Such a setup examines the performance of a model trained with a limited,
small number of examples. Models may either make use of transfer learning or corpus
augmentation techniques in order to increase the desired performance metric.

Considering a learning set D with C classes, each class has nC examples. The augmen-
tation process consists of retrieving K × L additional examples for each of the nC examples,
with K being the number of clusters to check and L being the ‘beam’ size in each cluster.
The retrieved examples may be subject to further filtering or post-processing step, in order
to minimize the noise introduced in the dataset. In our experiments, we test two different
methods for filtering:

(1) Use a model trained on the initial data to classify the retrieved examples. The examples
classified with confidence exceeding a fixed threshold (i.e., 0.8 or 0.9) are kept, while
the others are discarded.

(2) Remove stop words from both the initial examples and the retrieved examples. Then,
compute the set intersection over the tokens of a candidate sentence and the complete
set of tokens of the initial examples. Only examples producing an intersection size
over a given threshold (i.e., 1 or 2) are kept. Intuitively, this method forces to some
extent the retrieved examples to be lexically similar to the initial examples.

6. Evaluation and Results

To evaluate the proposed similar sentence retrieval system, we use it to augment
the intent classification training sets and, then, we evaluated the models trained with
the augmented data on the unmodified test sets, using RASA’s DIETClassifier. The first
scenario aimed to verify to what extent does the number of clusters impact the classification
accuracy. Thus, we experiment with 512 and 1024 clusters. In both setups, the complete
training sets of BANKING77 and CLINC150 are used to train initial DIETClassifier models.
These classifiers are subsequently used for classifying the additionally extracted examples.
Only examples classified with at least 0.9 confidence are used for augmenting the training
sets. For this set of experiments, we use the same hardware configuration as for the intent
classification experiments (Section 4.2). For result reproducibility, we will make the code
publicly available on GitHub, in the following repository: https://github.com/Gabriel-
Bercaru/CorpusClustering.

For each example in the initial training sets, the top K = 1 cluster is inspected,
retrieving the L = 1 similar example. In each setup, the initial training set sizes were
10,080 examples for BANKING77 and 15,251 examples for CLINC150. For augmentation,
in the first phase 10,080 and 15,251 examples are retrieved. Out of these, only 3% and,
respectively, 20% of them are classified with a confidence of at least 0.9 (294 for BANKING77
and 3043 for CLINC150), resulting in augmented set sizes of 10,374 and 18,294 examples.
For each setup, 30 DIETClassifier models with different randomly initialized parameters
are trained on the initial and augmented datasets. We measure the mean accuracy and the
standard deviation for each setup (Table 4). We should note that for each setup, the BERT
featurizer is kept fixed throughout all the experiments. Figure 2 presents the clustering
results.

28

Mathematics 2023, 11, 769

Table 4. Mean accuracy and standard deviation for the first augmentation method, in which a pre-
trained classifier is used for classifying additional examples. Bold text denotes the best performing
model.

CLINC150 BANKING77

Original data 0.8037 ± 0.0039 0.9305 ± 0.0031
Augmented data—1024

clusters 0.8036 ± 0.0046 0.9296 ± 0.0027

Augmented data—512
clusters 0.8058 ± 0.0052 0.9305 ± 0.0022

Figure 2. Box and whisker plots obtained when training an ensemble of 30 models for each combi-
nation of dataset and augmentation method. Augmented training sets do not improve the mean
accuracy on the test set, but reduce variance across models. Whiskers extend from the lower to the
upper quartile of the data.

As expected, the results are approximately the same because, firstly, the retrieved
examples are selected to be as similar as possible to the ones already in the dataset and
secondly, at least in the case of BANKING77, the number of retrieved examples is rather
small. As already mentioned, a semi-supervised approach might help in future research to
extract more meaningful examples out of the ‘unlabeled’ automatically retrieved set.

The second set of experiments is conducted to evaluate the sentence retrieval system
in a few-shot scenario. In this setup, the training sets of BANKING77 and CLINC150 are
sequentially restricted to only k ∈ {2, 3, 5, 10} examples per class. The corpus clustering
method is then used to artificially increase the number of examples available, based on
the initial, limited number of examples. For each initial example xi, a similar sentence yi is
retrieved. In the end, all retrieved yi are aggregated and combined with the initial learning
set and the duplicates are removed.

To minimize the number of noisy examples which are added to the learning set, the
following heuristic is tested. When attempting to add a retrieved candidate yi to a class
C, first compute its set of unique tokens. Stop words are removed before set computation.
Next, perform a set intersection with the set of tokens corresponding to all initial examples

29

Mathematics 2023, 11, 769

xi in the class C. Only add the example if the set intersection size exceeds a given threshold
t ∈ {0, 1, 2}. This heuristic attempts to include only examples which are somewhat similar
to the initial ones. During testing without the heuristic filtering, we observed that some
unrelated examples are added to the learning set and, thus, we introduce this heuristic to
avoid this issue. Evaluation of the few-shot setups is performed by training an ensemble
of 10 different DIETClassifier models in each configuration. Table 5 presents the mean
accuracy and its standard deviation.

Table 5. Mean accuracy and standard deviation obtained for the corpus augmentation method in
the few-shot scenario. In each augmentation setup, t denotes the stop word (SW) filtering threshold.
Note: bold marks the model with the highest mean accuracy.

Few-Shot-Scenario Filtering CLINC150 BANKING77

k = 2

no augmentation 0.2127 ± 0.0150 0.1983 ± 0.0205
augmentation, t = 0 0.3734 ± 0.0087 0.3336 ± 0.0169
augmentation, t = 1 0.2302 ± 0.0107 0.2618 ± 0.0216
augmentation, t = 2 0.2347 ± 0.0123 0.2379 ± 0.0162

k = 3

no augmentation 0.3941 ± 0.0098 0.3875 ± 0.0155
augmentation, t = 0 0.4793 ± 0.0128 0.4562 ± 0.0157
augmentation, t = 1 0.4575 ± 0.0106 0.4371 ± 0.0115
augmentation, t = 2 0.3850 ± 0.0236 0.4204 ± 0.0159

k = 5

no augmentation 0.5273 ± 0.0144 0.6007 ± 0.0145
augmentation, t = 0 0.5617 ± 0.0088 0.6199 ± 0.0130
augmentation, t = 1 0.5572 ± 0.0088 0.6140 ± 0.0117
augmentation, t = 2 0.5491 ± 0.0094 0.6028 ± 0.0158

k = 10

no augmentation 0.6622 ± 0.0125 0.7667 ± 0.0074
augmentation, t = 0 0.6570 ± 0.0063 0.7544 ± 0.0062
augmentation, t = 1 0.6657 ± 0.0077 0.7648 ± 0.0059
augmentation, t = 2 0.6681 ± 0.0058 0.7669 ± 0.0086

7. Discussion

Regarding the first set of experiments, in which we test different featurizers, it can
be observed that embeddings provided by Transformer neural models help improve the
intent classification accuracy, with BERT and ConveRT embeddings performing the best
for both BANKING77 and CLINC150 datasets.

For the corpus clustering part, two sets of experiments are conducted. The first
one consists in analyzing whether augmenting the training sets of BANKING77 and
CLINC150 helps improve intent classification accuracy. As the results in Table 4 show, the
method brings minor improvements in terms of classification mean accuracy, also with a
reduction in variance. Moreover, the number of clusters used for grouping together similar
examples seems to bring little influence, as in both cases, the classification means accuracy
is approximately equal, with a small improvement when using 512 clusters.

For the second set of experiments regarding the few-shot scenario, we restrict the
training sets of BANKING77 and CLINC150 to only 2, 3, 5, or 10 examples per intent.
The corpus clustering method is then used to artificially increase the training set sizes. In
the best-case scenario, the sizes are doubled. However, in most cases, duplicate similar
examples are retrieved and, therefore, they are removed. Moreover, additional examples
are removed according to the heuristic described in Section 6. In this setup, we observe that
the proposed corpus clustering method helps improve the classification accuracy, in the
best case leading to 16% accuracy increase for CLINC150 when k = 2 (Table 5) and a 14%
accuracy increase for BANKING77 when k = 2 (Table 5). As more of the original training
examples become available, the proposed method still increases the mean classification
accuracy, but to a smaller extent. Including additional original training data will most likely
result in even smaller improvements and will ultimately produce results similar to those
presented in Table 4.

30

Mathematics 2023, 11, 769

When interpreting the results, one should consider that they reflect the scores obtained
when clustering based on reduced versions of the sentence embedding vectors, i.e., 32 di-
mensions, are used. The used sentence embedder (SBERT) produces 768-dimensional
vectors. We hypothesize that using the full embedding vectors, with no dimensionality
reduction applied, would lead to the retrieval of more meaningful examples, increasing the
reported accuracy values. However, the retrieval time per example increases as well. In the
32-dimensional embedding vectors setup, the retrieval time per example is approximately
0.2–0.3 s, while for the 768-dimensional embeddings, the retrieval time is approximately
0.6 s. The exploration of this hypothesis is left as part of a future investigation.

8. Conclusions

In this work, we examine the problem of intent classification as part of a conversa-
tional agent pipeline. First, we discuss how existing systems perform in terms of intent
classification—answering (Q1) and achieving objective (O1). Then, we define a method for
clustering large corpora, to efficiently retrieve examples that are similar to a user-supplied
query. Our method consists of several preprocessing stages, such as embedding movie
transcripts, online clustering, and data projection. By making use of precomputations and
data partitioning into clusters, we achieve low inference duration—answering (Q2) and
achieving objective (O2). We automatically process 123 GB of raw movie subtitles data,
available as part of the OpenSubtitles dataset—answering (Q3) and achieving objective
(O3). The corpus clustering method is shown to bring minor improvements in terms of
classification accuracy when the full training sets are available. Moreover, we also examine
to what extent the method helps improve the accuracy when a limited number of examples
are available. Our results have shown that the intent classification accuracy is raised by
up to 16%, in the most favorable case, where only two labeled examples per class are
available. Our proposed method achieves retrieval times as low as 0.2–0.3 s per example
and is shown to bring statistically relevant improvements in intent classification scenarios
in which training data are scarce—answering (Q4) and achieving objective (O4).

For tasks in which large datasets are available, our method does not introduce sig-
nificant improvements; this is due to the fact that large datasets expose a high degree of
example diversity and additional retrieved examples might not bring in additional useful
information. However, for small datasets, our method helps improve the diversity of the
examples, leading to larger accuracy scores, as shown by our research.

In future work, we plan to expand the corpus clustering method in order to further
reduce the retrieval time per example. One such possibility would be to move to a hierar-
chical clustering approach. During the experiments, it was observed that some clusters are
considerably larger than others; the loading time for such clusters becomes a bottleneck.
A solution would be to identify the large clusters and further group their elements into
smaller sub-clusters, in order to minimize the cluster loading time during the example
retrieval phase.

Another possible direction that we will investigate is to use a semi-supervised learning
approach in order to filter retrieved examples. In this work, we investigated the effect of
filtering all the retrieved examples based on a pre-trained classifier confidence threshold.
However, as the results show, this does not lead to major improvements in classification
accuracy. Using a semi-supervised approach, in which the full set of retrieved examples is
regarded as unlabeled, would possibly lead to better choices when filtering the examples,
yielding more meaningful augmentations.

As a possible future application, we plan to evaluate how our proposed pipeline
performs in augmenting real-world conversational scenarios. We plan to implement a
conversational agent focused on the interaction during interviews. Its learning set is an
ideal candidate for evaluating our data augmentation method. Since our method mainly
deals with dataset augmentation, there is currently no plan to use it in a real-time scenario.

31

Mathematics 2023, 11, 769

Author Contributions: Conceptualization, G.B., C.-O.T., C.-G.C. and T.R.; methodology, G.B.,
C.-O.T., C.-G.C. and T.R.; software, G.B.; validation, G.B., C.-O.T., C.-G.C. and T.R.; formal analysis,
G.B., C.-O.T., C.-G.C. and T.R.; investigation, G.B., C.-O.T., C.-G.C. and T.R.; resources, G.B., C.-O.T.,
C.-G.C. and T.R.; data curation, G.B.; writing—original draft preparation, G.B., C.-O.T., C.-G.C. and
T.R.; writing—review and editing, G.B., C.-O.T., C.-G.C. and T.R.; visualization, G.B.; supervision,
C.-O.T., C.-G.C. and T.R.; project administration, C.-G.C. and T.R.; funding acquisition, T.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Romanian Ministry of European Investments and Projects
through the Competitiveness Operational Program (POC) project “HOLOTRAIN” (grant no. 29/
221_ap2/07.04.2020, SMIS code: 129077).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The CLINC150 and BANKING77 datasets used in this study are
publicly available at https://github.com/clinc/nlu-datasets (last accessed 15 December 2022). The
OpenSubtitles dataset is publicly available at https://opus.nlpl.eu/OpenSubtitles-v2018.php (last
accessed 15 December 2022).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
CRF Conditional Random Field
DIET Dual Intent-Entity Transformer
GPT Generative Pre-Training
ID In-Domain
LMF Language Model Featurizer
NER Named Entity Recognition
NLP Natural Language Processing
NLU Natural Language Understanding
OOD Out-of-Domain
OOS Out-of-Scope
RoBERTa Robustly Optimized BERT pretraining Approach
SBERT Sentence BERT
SVM Support Vector Machines
SW Stop Word
TED Transformer Embedding Dialogue
TF-IDF Term Frequency-Inverse Document Frequency

32

Mathematics 2023, 11, 769

Appendix A. Intent Classification: Recall, Precision, and F1 Scores

Figure A1. Recall, precision, and F1 scores obtained for intent classification on the BANKING77 test
set using the BERT model as a language featurizer.

33

Mathematics 2023, 11, 769

Appendix B. Intent Classification: Confusion Matrix

Figure A2. Full confusion matrix obtained for classifying BANKING77 test instances, with a model
using the ConveRT language model featurizer. The yellow-green hue represents correctly classified
test instances and it represents the main diagonal of the full matrix.

34

Mathematics 2023, 11, 769

References

1. Balakrishnan, V.; Shi, Z.; Law, C.L.; Lim, R.; Teh, L.L.; Fan, Y.; Periasamy, J. A Comprehensive Analysis of Transformer-Deep
Neural Network Models in Twitter Disaster Detection. Mathematics 2022, 10, 4664.

2. Larson, S.; Mahendran, A.; Peper, J.J.; Clarke, C.; Lee, A.; Hill, P.; Kummerfeld, J.K.; Leach, K.; Laurenzano, M.A.; Tang, L.; et al.
An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp.
1311–1316. [CrossRef]

3. Casanueva, I.; Temčinas, T.; Gerz, D.; Henderson, M.; Vulić, I. Efficient Intent Detection with Dual Sentence Encoders. In
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, Online, 9 July 2020; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 38–45. [CrossRef]

4. Liu, X.; Eshghi, A.; Swietojanski, P.; Rieser, V. Benchmarking Natural Language Understanding Services for Building Conversational
Agents; Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; pp. 165–183. [CrossRef]

5. Ahmadvand, A.; Choi, J.I.; Agichtein, E. Contextual Dialogue Act Classification for Open-Domain Conversational Agents. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris,
France, 21–25 July 2019; pp. 1273–1276. [CrossRef]

6. Zhan, L.M.; Liang, H.; Liu, B.; Fan, L.; Wu, X.M.; Lam, A.Y. Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1–6 August 2021; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 3521–3532. [CrossRef]

7. Zhang, J.; Hashimoto, K.; Wan, Y.; Liu, Z.; Liu, Y.; Xiong, C.; Yu, P. Are Pre-trained Transformers Robust in Intent Classification? A
Missing Ingredient in Evaluation of Out-of-Scope Intent Detection. In Proceedings of the 4th Workshop on NLP for Conversational
AI, Dublin, Ireland, 22–27 May 2022; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 12–20.
[CrossRef]

8. Liu, H.; Zhang, X.; Fan, L.; Fu, X.; Li, Q.; Wu, X.M.; Lam, A.Y. Reconstructing Capsule Networks for Zero-shot Intent Classification.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4799–4809. [CrossRef]

9. Xia, C.; Zhang, C.; Yan, X.; Chang, Y.; Yu, P.S. Zero-shot user intent detection via capsule neural networks. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp.
3090–3099. [CrossRef]

10. Yan, G.; Fan, L.; Li, Q.; Liu, H.; Zhang, X.; Wu, X.M.; Lam, A.Y. Unknown Intent Detection Using Gaussian Mixture Model with an
Application to Zero-shot Intent Classification. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Online, 5–10 July 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 1050–1060.
[CrossRef]

11. Fei, G.; Liu, B. Breaking the Closed World Assumption in Text Classification. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17
June 2016; Association for Computational Linguistics: San Diego, CA, USA, 2016; pp. 506–514. [CrossRef]

12. Chatterjee, A.; Sengupta, S. Intent Mining from past conversations for Conversational Agent. In Proceedings of the 28th
International Conference on Computational Linguistics, Barcelona, Spain (Online), 8–13 December 2020; International Committee
on Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 4140–4152. [CrossRef]

13. Kuchlous, S.; Kadaba, M. Short Text Intent Classification for Conversational Agents. In Proceedings of the 2020 IEEE 17th India
Council International Conference (INDICON), New Delhi, India, 11–13 December 2020; pp. 1–6. [CrossRef]

14. Sahu, G.; Rodriguez, P.; Laradji, I.; Atighehchian, P.; Vazquez, D.; Bahdanau, D. Data Augmentation for Intent Classification with
Off-the-shelf Large Language Models. In Proceedings of the 4th Workshop on NLP for Conversational AI, Dublin, Ireland, 22–27
May 2022; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 47–57. [CrossRef]

15. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [CrossRef]

16. Bocklisch, T.; Faulkner, J.; Pawlowski, N.; Nichol, A. Rasa: Open source language understanding and dialogue management.
arXiv 2017, arXiv:1712.05181.

17. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2020. [CrossRef]

18. Vlasov, V.; Mosig, J.E.; Nichol, A. Dialogue transformers. arXiv 2019, arXiv:1910.00486.
19. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

35

Mathematics 2023, 11, 769

20. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4171–4186. [CrossRef]

21. Henderson, M.; Casanueva, I.; Mrkšić, N.; Su, P.H.; Wen, T.H.; Vulić, I. ConveRT: Efficient and Accurate Conversational
Representations from Transformers. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP
2020, Online, 16–20 November 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 2161–2174.
[CrossRef]

22. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

23. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. OpenAI
Preprints 2018.

24. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

25. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language
understanding. Adv. Neural Inf. Process. Syst. 2019, 32. [CrossRef]

26. Danescu-Niculescu-Mizil, C.; Lee, L. Chameleons in Imagined Conversations: A New Approach to Understanding Coordination
of Linguistic Style in Dialogs. In Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics,
Portland, OR, USA, 23 June 2011; Association for Computational Linguistics: Portland, OR, USA, 2011; pp. 76–87.

27. Lison, P.; Tiedemann, J. Opensubtitles2016: Extracting large parallel corpora from movie and tv subtitles. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; European
Language Resources Association: Paris, France, 2016; pp. 923–929.

28. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2019; pp. 3982–3992. [CrossRef]

29. Song, K.; Tan, X.; Qin, T.; Lu, J.; Liu, T.Y. Mpnet: Masked and permuted pre-training for language understanding. Adv. Neural Inf.
Process. Syst. 2020, 33, 16857–16867.

30. Rădulescu, I.M.; Boicea, A.; Truică, C.O.; Apostol, E.S.; Mocanu, M.; Rădulescu, F. DenLAC: Density Levels Aggregation
Clustering—A Flexible Clustering Method. In Proceedings of the International Conference on Computational Science (ICCS2021),
Kraków, Poland, 16–18 June 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 316–329. [CrossRef]

31. Arthur, D.; Vassilvitskii, S. How slow is the k-means method? In Proceedings of the Twenty-Second Annual Symposium on
Computational Geometry (SCG’06), Sedona, AZ, USA, 5–7 June 2006; ACM Press: New York, NY, USA, 2006; pp. 144–153.
[CrossRef]

32. Sculley, D. Web-scale k-means clustering. In Proceedings of the 19th International Conference on World Wide Web (WWW’10),
Raleigh, NC, USA, 26–30 April 2010; ACM Press: New York, NY, USA, 2010; pp. 1177–1178. [CrossRef]

33. Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.L. FixMatch: Simplifying
Semi-Supervised Learning with Consistency and Confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608.

34. Radu, R.G.; Rădulescu, I.M.; Truică, C.O.; Apostol, E.S.; Mocanu, M. Clustering Documents using the Document to Vector Model
for Dimensionality Reduction. In Proceedings of the 2020 IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR), Cluj-Napoca, Romania, 21–23 May 2020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

36

Citation: Alkaldi, W.; Inkpen, D. Text

Simplification to Specific Readability

Levels. Mathematics 2023, 11, 2063.

https://doi.org/10.3390/

math11092063

Academic Editor: Catalin Stoean

Received: 23 March 2023

Revised: 16 April 2023

Accepted: 19 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Text Simplification to Specific Readability Levels

Wejdan Alkaldi 1,* and Diana Inkpen 2,*

1 Department of Information Technology, College of Computer and Information Sciences, King Saud University,
Riyadh 11451, Saudi Arabia

2 School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward,
Ottawa, ON K1N 6N5, Canada

* Correspondence: walkaldi@ksu.edu.sa (W.A.); diana.inkpen@uottawa.ca (D.I.); Tel.: +96-650-620-8504 (W.A.);
+1-613-56258000 (ext. 6711) (D.I.)

Abstract: The ability to read a document depends on the reader’s skills and the text’s readability
level. In this paper, we propose a system that uses deep learning techniques to simplify texts in order
to match a reader’s level. We use a novel approach with a reinforcement learning loop that contains a
readability classifier. The classifier’s output is used to decide if more simplification is needed, until
the desired readability level is reached. The simplification models are trained on data annotated with
readability levels from the Newsela corpus. Our simplification models perform at sentence level, to
simplify each sentence to meet the specified readability level. We use a version of the Newsela corpus
aligned at the sentence level. We also produce an augmented dataset by automatically annotating
more pairs of sentences using a readability-level classifier. Our text simplification models achieve
better performance than state-of-the-art techniques for this task.

Keywords: text simplification; deep learning; reinforcement learning; readability level; data augmentation

MSC: 68T50

1. Introduction

The ultimate goal of writing a text is to communicate. Any written text must be
readable and understandable to its targeted audience. However, readers might have a low
level of reading skills and cannot understand a given text. The organization of the text and
the vocabulary used affects the text readability level. Manipulating these features could
increase the readability of the text to a certain level that allows poor literacy readers or
children to read and understand the written text.

Text Simplification (TS) techniques available now do not use the readability level as
a required feature for the output text. Instead, they typically simplify the given text to
whatever readability level it can reach. For instance, consider readability levels from 1
to 4 (as used in Newsela dataset to classify documents to their readability level), where
level 1 represents a very complex text to read and level 4 represents a very simple text
to read. If a reader with reading level 3wants to read a text with readability level 1, the
text must be simplified to the reader’s level at least, i.e., level 3 or 4. However, using
the available simplification techniques, the original text could be simplified to a simple
text with a readability level that cannot be controlled. In the example, if the output text
readability is at level 2, then the text is still difficult for the reader to grasp and comprehend,
despite being simplified from its original state. So, the original text must be re-simplified
to represent the readability level of at least 3. Unfortunately, this scenario cannot be
executed with the available techniques since the readability level of a text does not play
a role in the present simplification models. To fill this gap, we create a novel state-of-the-
art simplification model that is trained over aligned sentences from the Newsela dataset
(https://newsela.com/data/ accessed on 6 November 2019) [1].

Mathematics 2023, 11, 2063. https://doi.org/10.3390/math11092063 https://www.mdpi.com/journal/mathematics
37

Mathematics 2023, 11, 2063

Also, we produce additional data in an automatic way, to improve the performance
of the simplification. The model takes a complex text with a low readability level, and
produces a simplified version of the text that considers the required readability level.
This will ensure that every simplified text will be readable and understandable by its
targeted audience.

We start with related works in Section 2, where we express simplification projects
available in non-English languages, followed by deep learning techniques used in current
TS projects. Then, we explain the framework of our simplification in Section 3. We start
with the datasets used, the simplification models, and the evaluation measures applied.
After that, we discuss the experiments in Section 4, including training and testing setup,
examining samples of generated simplified sentences, and presenting the results for the
experiments. Section 5 compares and analyses the performance of all the trained models
on the same test set followed by the limitations we faced in Section 6. Finally, in Section 7,
we conclude our paper and present directions for future work.

2. Related Work

2.1. Natural Language Simplification

In Natural Language Processing (NLP) applications, early Text Simplification (TS)
systems are built based on statistical machine translation models like PBMT-R [2] and
Hybrid [3]. While most TS researches are done for the English language, TS is also applied
across many other languages. Every language has its own specific characteristics. It is
non-trivial to re-implement existing TS techniques into other languages. Every language
has different characteristics that need to be handled differently. Languages like Latin and
Swedish, use complex verb conjugations; e.g. specific forms of verbs express passive voice
sentences. While Mandarin Chinese, have unchangeable verb forms when expressing
passive voice sentences. This means their verbs do not have any tenses. Several projects
focus on re-implementing existing TS techniques and adapting them to their own language.
TS is a major challenge in all languages. We found many projects and tools in TS for
different languages. Most of them were developed to assist people with disabilities or
learning difficulties.

The KURA project [4] is a Japanese project and one of the earliest works found in TS. It
aims to simplify Japanese language text for deaf students by developing a lexico-structural
paraphrasing engine. KURA introduced the concept of phrase-based simplification which
identifies then simplifies complex terms [5]. SIMPLIFICA [6] is another tool for producing
simplified texts in Portuguese. It helps authors write simple texts for poor literate readers.
The author writes a text and receives a simplified version. SIMPLIFICA uses lexical and
syntactic simplification features to assist the readability of the text targeting Brazilian Por-
tuguese. The tool performs simplification on the sentence level. Similarly, the PorSimples
project [7] developed text adaptation tools for Brazilian Portuguese. The tools developed
serve both people with poor literacy levels and authors who produce texts for this audience.
It is one of the largest TS projects with three main systems and many types of simplification
techniques investigated in [8]. Its main purpose is to increase the comprehension of written
texts through the simplification of their linguistic structure. It replaces uncommon words
with more usual words. It also changes the sentence syntactic structure to an easier form to
avoid ambiguity. The Simplext project [9] develops tools that produce a simplified text for
the Spanish language. It has a particular focus on producing applications of TS for dyslexic
readers [8].

Another work [10] developed a pioneering TS model that can control the sentence
level. It trained a TS model on a corpus of sentences with tags referring to 11 grade levels
(2–12) [11]. The trained model generates sentences of a desired level specified by a tag
attached to the input. This model controls the syntactic complexity but often produces
difficult words for the target grade level [12]. It uses the Naive Bayes classifier from scikit-
learn toolkit [13] with extra few features which could be improved. To enhance this TS
work, an Auto-Regressive Transformers (AR) model is proposed [12] that controls the

38

Mathematics 2023, 11, 2063

lexical complexity using weights. The model is trained on a dataset with weights added to
training loss according to the levels of words from [10]. Therefore, it generates only the
words with the desired level. Both [10,12] use only Sequence-to-Sequence (Seq2Seq) model
as the main TS component.

Later, EDITOR was proposed [14] which is a Non Auto-Regressive transformer (NAR)
where the decoder layer is used to apply a sequence of edits on the initial input sequence.
The sequence can be empty or has repositioning and insertion commands. The model never
learns to delete tokens from the source, instead learning to delete tokens inserted by the
model. An enhanced version of this work is found [15] that identifies complex words from
the source that are too complex for the target grade. These words are deleted from the
initial sequence before getting refined by EDITOR. All these models [10,12,14,15] focus on
grades “2–12” as the main levels to simplify to. Focusing on only 4 simplified versions
gives more balanced dataset to train on.

There are other TS works that are developed for a specific domain. One of these
domains is medical and biomedical fields using TS across many languages like English,
Spanish, and French [16–19]. Another domain is the legal field. TS can be used to simplify
legal documents for individuals to help in understand and comprehend any required legal
text [20–23].

2.2. Deep Learning in Text Simplification

Deep Learning (DL) is the state-of-the-art approach for solving many NLP problems.
It uses neural networks as the central component to process and analyze written text,
then produce the output results. There are only few tools that we found for TS using
DL techniques. DRESS [24] is one of the few NLP systems that provides a reinforcement
learning-based TS model. It allows only one level of simplification instead of several
simplified levels of a given text, as we do in our task.

Another state-of-the-art sentence simplification system that uses DL methods is
EditNTS [25]. Its model learns explicit edit operations (ADD, DELETE, and KEEP) via
a neural programmer-interpreter approach. It is trained to predict a series of edit operations
for each word of the original complex sentence. Then, using this series of operations, it
generates the simplified sentence. EditNTS favors generating short sentences with big
semantic deviation [26]. It produces only one level of simplification, as all other simplifica-
tion systems except the one we are proposing in this paper. However, we are able to train
EditNTS on our data for multiple levels for comparison purposes.

3. Simplification Framework

3.1. Dataset

We use the Newsela Corpus that contains 10,786 documents with readability levels
varying from 0 to 4 that targets students of grades between 2 and 12. The corpus contains
2154 original complex documents labeled with Level 0 which means that they are not
simplified and they are difficult to read. For every complex document, it provides four
simplified versions written by expert editors. Each version represents a readability level
that varies from Level 1 (representing the first level of simplification) to Level 4 (the most
readable version of the document). The higher the readability level number, the simpler
the document text.

We used sentence alignment on Newsela dataset as found in [27], which uses a neural
CRF model. The aligned pairs of sentences are labeled with the readability level of the
target sentence. We excluded pairs that had non-English words or consisted less than three
words in a sentence (not a proper complete sentence) and obtained 464,555 pairs of Newsela
Aligned Sentences (hereafter, the NAS dataset).

We also classified more sentences to enrich our dataset. Several works were put
together to help determine the text readability level [6,28–37]. However, we decided to
use a DL classifier that classifies text into five readability levels (0–4) found in [38]. We
modified the document classification features from that system by removing paragraph

39

Mathematics 2023, 11, 2063

features in order to be able to classify the simplicity level of a text at the sentence level.
Then we trained and tested the modified sentence classifiers on the NAS dataset (split into
80% for training and 20% for test) to find the best classification model. Table 1 shows the
classification results on the sentence level. Similar to the document classification results,
the best sentence classification model was using CNN classifier with an accuracy of 85.52%.
Using the trained classifier against Wikipedia Corpus and Mechanical Turk Corpus, we
produced 238,019 pairs of automatically Classified Simplified Sentences (hereafter CSS).
We used CSS to augment the NAS dataset and obtained 702,574 pairs of sentences as our
Augmented Simplification Dataset (hereafter ASD), in order to be able to provide more
training data for our models. All three datasets are divided into four categories (level 1
to level 4) based on the readability level of the target sentences (simple sentences). For
every category, we split the datasets into 90% for training (10% of it for validation) and 10%
for test.

Table 1. Sentence classifiers results using aligned sentences.

Dataset Classifier Model Accuracy

Training (xval)
CNN 85.69%
SVM 81.02%

Random Forest 85.64%

Test
CNN 85.52%
SVM 80.68%

Random Forest 85.48%

3.2. Simplification Models
3.2.1. Seq2seq Model with Attention

We use the model Seq2Seq with Attention layer (S2SA) as a base for our work. Seq2seq
models are used in solving most of text-to-text generation problems, including TS. The
model takes a sequence of items (words) as an input, and generates another sequence of
items as an output. The model consists at least two Recurrent Neural Networks (RNNs), an
Encoder, and a Decoder [39]. A simple illustration of S2SA model we used in this work is
shown in Figure 1 with a simplification sentence example. Our model uses Gated Recurrent
Units (GRU) as RNN units, since GRU requires less memory units than Long Short Term
Memory (LSTM); thus, it trains faster. Besides, according to [40], when using long text and
a small dataset, GRU performance surpassed that of LSTM. Therefore, using GRU is more
appropriate for our work. Both the encoder and the decoder have an embedding layer
with 256 dimensions, 256 hidden states, GRUs unites with dropout equals to 10%, and a
linear layer to pass the output through. To enhance the performance when dealing with
long sentences, we added an attention layer [41] to the decoder to find where to focus for
better-predicted outputs. The layer contains two linear layers with 256 hidden dimensions.
With this layer, our S2SA model can deal with all sentences of any length without forgetting
the source input.

Figure 1. Illustration of S2SA model with a simple simplification example.

40

Mathematics 2023, 11, 2063

3.2.2. Reinforcement Learning

Reinforcement Learning (RL) is the state-of-the-art technology in DL for TS. To further
boost our simplification model results, we used the S2SA model with Reinforcement
Learning loop (S2SARL), Figure 2 shows a simple illustration of our RL model with an
example. RL is a machine learning technique that enables an agent to learn in an interactive
environment by trial and error using rewards earned from its own actions [42]. The main
components of a RL system are the environment and the agent. We start the model by
creating the vocabulary dictionary table using the words found in the dataset. Then for
the agent, we set up our S2SA model introduced earlier in Section 3.2.1 to produce set
of actions (words) using the dictionary table created. We initialized the reward, status,
total loss, and the vocabulary dictionary table to zeros. Then we built a step function that
uses the environment tools to perform a simplification for a given sentence (sequence of
input words).

Figure 2. Simple Reinforcement Learning model.

After performing every step, the agent updates the reward, status, loss, and the
vocabulary dictionary values with new values based on the predicted simplified sentence
(sequence of actions).

To prepare the environment, we set up the Target Level number (1 to 4) and provide
tools to help the agent during training like: observe current status, get all possible outputs
for an action (predicted word), and give appropriate rewards based on a set of chosen
actions (predicted simplified sentence). The reward value is determined by the readability
level of the predicted sentence (PrdS). For every (PrdSt), we use the adapted readability
level classifier (Rcl f) found in [38] to classify the PrdSt sentence into its readability level.
Then we calculate the reward Rt as follows:

Rt =

⎧⎪⎨
⎪⎩
−0.5 if Rcl f (PrdSt) < Target
+2.0 if Rcl f (PrdSt) == Target
+1.0 if Rcl f (PrdSt) > Target

Using the reward function, if the predicted sentence readability level is less than the
Targeted Level, the environment gives −0.5 as a penalty. This encourages the agent to
predict simpler sentences for their next step. If the predicted sentence readability level
matches the Targeted Level, the reward will be +2.0 to encourage the agent to keep this
level of simplicity. However, if the output is too simple, i.e., the readability level is more
than the Targeted Level, the reward will be only +1.0. Penalizing the agent with negative
rewards for exceeding the Targeted Level did not improve the output. Yet giving a smaller
reward like +1.0, improved the results.

Figure 3 shows the structure of our S2SARL model, with a simple simplification
example. The RL loop aims to maximize the reward given to the agent at every step during
training stage. Therefore, the agent chooses the actions that influence the environment to
produce higher rewards. Our RL loop is different from the one in the DRESS system. It is
designed specifically for our task of simplifying a sentence to a specified readability level.

41

Mathematics 2023, 11, 2063

Figure 3. Illustration of S2SARL model with a simple simplification example.

3.3. Evaluation Method

To evaluate our work, we use EditNTS [25] as a notable simplification model to
compare our work with. EditNTS uses DL to produce a series of edit operations (delete,
keep, and add) to operate on the original sentence. The evaluation will consider 12 trained
versions of each model: EditNTS, S2SA, and S2SARL. Each model will be trained against
the datasets NAS, CSS, and ASD including the categories from Level 1 to Level 4 for
each dataset.

After training each model, we report the results using System output Against Refer-
ences and against the Input sentence (SARI) and BiLingual Evaluation Understudy (BLEU)
scores since they are popularly used in measuring the quality of TS models. SARI measures
the simplicity of a sentence by focusing on the words added, deleted and kept [43]. While
BLEU score is more related to the meaning preservation as shown in [44]. Then, we apply
the 36 resulted trained models against one common test data. We choose the test part
of the ASD dataset, Level 1 to Level 4, since they are not automatically classified and
rather assigned by professional editors as mentioned in Section 3.1. We then compare the
reported scores.

4. Experiments

4.1. Training and Testing

We train our simplification models S2SA and S2SARL along with EditNTS against
every readability category, labeled from level 1 to level 4, from the training parts of NAS
and CSS datasets. We also train them against ASD categories, which includes both NAS
and CSS datasets as an augmented simplification dataset. To avoid memory problems due
to the vocabulary dictionary size for each dataset, we use a batch size of 128 for training
the models to level 1 and 4, and batch size of 64 for training the models to level 2 and 3.
The number of epochs are set to 20 for training all the models over all four categories. We
record SARI and BLEU scores for all the experiments to measure the simplification models’
performance on the set aside test sets.

4.2. Examples of Generated Sentences

Examples of simplified sentences using the S2SARL model that was trained against
NAS with targeted readability level 3 are shown in Table 2. Generated and target sentences
could have the same words but with different word spelling, e.g., honour and honor. This
is due to the available spelling found in the dictionary table during training phase. Also,
some words are annotated as <unk> which means that the word was not present during
training in the dictionary table.

42

Mathematics 2023, 11, 2063

Table 2. Simplified sentences using S2SARL trained against NAS and readability level set to 3.

Sentence Text Readability Level

Source volterra is a town in the tuscany region of italy. 0
Target volterra is a town in italy. 3
Predicted volterra is a town in tuscany, <eos> 3

Source he was appointed cbe in 1969. 0
Target he was given the honour of cbe in 1969. 3
Predicted he was given the honor of cbe in 1969. <eos> 3

Source the seat of the district is the town of cossonay. 0
Target the capital is the town of cossonay. 3
Predicted the capital is the town of <unk>.<eos> 4

Source
punctuation, capitalization, and spacing are usually ignored,
although some (such as “rats live on no evil star”)
include the spacing.

0

Target rats live on no evil star. 3
Predicted rats live on no evil star. <eos> 3

The S2SARL model aims to produce sentences with readability matching the target
level. The table shows the readability level for the predicted sentences. Most of them
are level 3 to match the target level as expected, but sometimes the sentence has higher
readability level like level 4 in Table 2. That is due to the reward function in the RL loop
introduced in Section 3.2.2. We did not penalize the agent for exceeding the target level, +2
for reaching target level and +1 when exceeding the level.

Comparing the performance of the two models S2SARL and S2SA, Table 3 shows the
prediction of the two models using the CSS with readability level of 4. The table shows how
S2SA sometimes produce sentences with lower readability level than we anticipated, which
is level 4 in these sentences. This is because S2SA does not take into consideration the
readability level when simplifying. Also, if we look at the Target sentences in Table 3 and
compare it with the generated sentences, we see an improvement in the simplified sentences
generated with S2SARL model compared with the ones generated with S2SA model.

Table 3. Simplification using S2SA and S2SARL with level 4 augmented data.

Sentence Text Readability Level

Source thank you for your contributions.
Target thank you for your changes.
S2SA thank you for your changes. <eos> 4
S2SARL thank you for your changes. <eos> 4

Source the capital of the state is aracaju (pop 664,908).
Target the state ’s capital is aracaju.
S2SA the capital of the state is . . <eos> 3
S2SARL the capital of the state is aracaju. <eos> 4

Source the birthstone for july would be a red ruby.
Target its birthstone is the ruby.
S2SA july ’s birthstone is the ruby. <eos> 3
S2SARL its birthstone is the ruby. <eos> 4

Source boynton beach was originally incorporated in 1920 as the town of boynton.
Target boynton beach was founded in 1920.
S2SA boynton was part of the town of boynton. <eos> 4
S2SARL boynton beach was founded in 1920. <eos> 4

4.3. Results

After training and validating the models, we apply them on the test data that was
split from each dataset category. The results on the test data are shown in Tables 4–6. The

43

Mathematics 2023, 11, 2063

tables show that S2SARL model always gives the best BLEU score compared with S2SA
and EditNTS for all readability levels. However, when the dataset is small, like shown
for level 1 and level 4 in Table 5, the S2SA model obtains better SARI scores. The model
S2SARL gives better SARI results only when trained on a bigger dataset, and that is why we
augmented the simplification dataset (to produce the ASD set). EditNTS prefers to generate
short sentences with big semantic deviation. It usually deletes important information of
the original sentences and generates shorter sentences, as discussed in [26]. This explains
the low EditNTS scores in the tables.

Table 4. Test scores for TS models trained on Newsela Aligned Sentences (NAS) using NAS test data.

Dataset Model SARI BLEU

To Level 1 EditNTS 26.48 65.23
5129 pairs S2SA 31.76 65.61

S2SARL 31.57 70.22

To Level 2 EditNTS 20.62 46.81
9780 pairs S2SA 27.18 53.95

S2SARL 31.56 60.53

To Level 3 EditNTS 20.26 33.28
13,922 pairs S2SA 30.83 45.24

S2SARL 32.27 53.85

To Level 4 EditNTS 23.21 23.97
17,626 pairs S2SA 31.69 42.60

S2SARL 32.42 50.97

Table 5. Test scores for TS models trained on Classified Simplified Sentences (CSS) using CSS test data.

Dataset Model SARI BLEU

To Level 1 EditNTS 21.92 49.45
1350 pairs S2SA 28.12 51.23

S2SARL 26.34 67.67

To Level 2 EditNTS 21.89 49.30
10,652 pairs S2SA 30.97 65.79

S2SARL 32.57 70.92

To Level 3 EditNTS 17.12 35.13
9380 pairs S2SA 31.56 59.26

S2SARL 32.50 64.50

To Level 4 EditNTS 21.60 27.35
2422 pairs S2SA 29.79 65.78

S2SARL 29.36 69.70

Table 6. Test scores for TS models trained on Augmented Simplification Dataset (ASD) using ASD
test data.

Dataset Model SARI BLEU

To Level 1 EditNTS 25.32 61.25
6478 pairs S2SA 32.07 69.18

S2SARL 30.75 70.23

To Level 2 EditNTS 20.99 46.94
20,432 pairs S2SA 28.43 60.31

S2SARL 32.30 65.22

To Level 3 EditNTS 19.89 33.77
23,301 pairs S2SA 30.67 50.24

S2SARL 32.47 56.43

To Level 4 EditNTS 23.06 24.86
20,048 pairs S2SA 31.62 44.08

S2SARL 32.62 51.10

44

Mathematics 2023, 11, 2063

5. Comparison and Analysis

The TS models applied in this work (EditNTS, S2SA, and S2SARL) are trained on
12 different datasets: NAS (Level-1 to Level-4), CSS (Level-1 to Level-4), and ASD (Level-1
to Level-4). The experiments produced 36 trained models: 12 EditNTS, 12 S2SA, and
12 S2SARL models as shown in the Tables 4–6. To compare the performance of all those
models, we test them on the same test data that should not include any automatically
classified sentences as targets, i.e, CSS and ASD. Therefore, we tested all the models on the
NAS test data (Level-1 to Level-4) since all its target sentences are classified and labeled by
expert editors as explained in Section 3.1.

The test results are compared as shown in Table 7. Looking at the table, S2SARL
model outperforms the other two simplification models across all readability levels. That
is due to the involvement of the output sentence readability level during the training
phase of the model (in the RL loop). As shown in Table 7, S2SARL models give the best
BLEU scores across all four readability levels when trained with ASD since it is the largest
simplification dataset (in term of the number of training sentence pairs) compared with
NAS and CSS. However, for SARI scores, S2SARL models report the best scores throughout
all four readability levels when trained against the CSS dataset. Although ASD is larger
than CSS since it contains the CSS and the NAS datasets, training S2SARL model over
ASD did not increase the SARI scores. This could be due to the alignment technique used
for aligning Newsela sentences (NAS) in [27]. The alignment includes sentence splitting,
merging, and paraphrasing with deletion which resulted in more meaningful sentences,
while the sentences found in CSS do not include sentence splitting or merging.

To summarise the analysis, S2SARL gives better BLEU scores when trained with ASD
(which includes CSS and NAS with sentence splitting, merging, and paraphrasing). That is
because BLEU score focuses on grammar and meaning [18]. On the other hand, SARI score
pays more attention to the lexical aspects of the sentences [43]. Therefore, S2SARL returns
good SARI scores when trained against CSS only, where the lexical part is not changed as
much compared with the NAS dataset.

Table 7. Testing 36 simplification models on ASD test data across all four readability levels.
NAS: Newsela Aligned Sentences, CSS: Classified Simplified Sentences, and ASD: Augmented
Simplification Dataset.

Test on NAS Level 1 (5129 Pairs)

Trained on Model SARI BLEU

NAS-Level1 EditNTS 26.48 65.23
S2SA 31.76 65.61

S2SARL 31.57 70.22
CSS-Level1 EditNTS 26.41 65.37

S2SA 34.07 33.35
S2SARL 34.08 36.25

ASD-Level1 EditNTS 26.81 65.70
S2SA 31.36 73.11

S2SARL 31.26 76.47

Test on NAS Level 2 (9780 pairs)

Trained on Model SARI BLEU

NAS-Level2 EditNTS 20.62 46.81
S2SA 27.18 53.95

S2SARL 31.56 60.53
CSS-Level2 EditNTS 15.66 46.15

S2SA 31.36 35.07
S2SARL 32.51 43.67

ASD-Level2 EditNTS 20.63 46.82
S2SA 25.23 61.78

S2SARL 31.73 68.69

45

Mathematics 2023, 11, 2063

Table 7. Cont.

Test on NAS Level 3 (13,922 pairs)

Trained on Model SARI BLEU

NAS-Leve3 EditNTS 20.26 33.28
S2SA 30.83 45.24

S2SARL 32.27 53.85
CSS-Leve3 EditNTS 15.72 32.36

S2SA 33.23 23.30
S2SARL 33.24 23.27

ASD-Leve3 EditNTS 20.52 33.77
S2SA 32.21 52.96

S2SARL 32.23 61.88

Test on NAS Level 4 (17,626 pairs)

Trained on Model SARI BLEU

NAS-Leve4 EditNTS 23.21 23.97
S2SA 31.69 42.60

S2SARL 32.42 50.97
CSS-Leve4 EditNTS 12.71 24.22

S2SA 33.23 12.32
S2SARL 33.24 12.41

ASD-Leve4 EditNTS 23.32 24.86
S2SA 32.31 61.22

S2SARL 32.32 61.38

6. Limitations

Working on a dataset that consists four levels of simplification was limited to the
sentences available by Newsela dataset. Although we automatically augmented the dataset
with more labeled simplified sentences, it would be more efficient if we work on a larger
dataset labeled by expert users like Newsela. Also, applying reinforcement learning during
training phase is time-consuming compared with a plain S2SA model. Therefore, we
applied only one method to reward the agent using the output readability level.

7. Conclusions and Future Work

The goal of our simplification method was to produce simple sentences at a cer-
tain readability level using DL models. We used aligned sentences from the Newsela
dataset (NAS) and augmented the corpus with automatically classified sentences from the
Wikipedia and the Mechanical Turk datasets (CSS), creating a novel augmented simplifica-
tion dataset (ASD) that we used later for simplification. Then we created the simplification
models, S2SA and S2SARL, where the S2SARL model employs the readability level as part
of the simplification process using the reinforcement learning loop to produce simplified
sentence to the desired readability level. We trained EditNTS and the created models
with the same datasets NAS, CSS, and ASD, to compare their performance. We found
that S2SARL always outperform the other two models for every dataset used. We also
compared all the simplification models (S2SA, S2SARL, and EditNTS), that were trained on
different datasets, by testing them on the same test data, the test part of NAS. The results of
SARI and BLEU scores were compared and analysed.

Our work brings novelty in the area of TS in the way we train our deep leaning models
using augmented data, and in the way we perform the reinforcement leaning loop using a
readability classifier.

In future work, other evaluation measures could be incorporated in the RL loop as a
part of the reward function, for example the SARI score to measure simplicity, or the cosine
between the generated and and the target sentences vectors to measure their similarity,
in addition to the readability level given by the classifier. Also, the simplification models
could be trained on paragraph level using the Newsela aligned paragraphs. Another
direction of future work is to develop a similar system for other languages, for specific
level of simplification targeted.

46

Mathematics 2023, 11, 2063

Author Contributions: W.A. wrote the article and implemented and tested the system. D.I. helped
with the design and with revisions to the article. All authors have read and agreed to the published
version of the manuscript

Funding: The first author was funded by the Research Center of College of Computer and Information
Sciences, Deanship of Scientific Research in King Saud University; and the second author was funded
by the Natural Science and Engineering Research Council of Canada (NSERC).

Data Availability Statement: We are making our dataset available to other researchers, upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Newsela Inc. Newsela Dataset. 2019. Available online: http://newsela.com/data/ (accessed on 1 May 2020).
2. Wubben, S.; Van Den Bosch, A.; Krahmer, E. Sentence simplification by monolingual machine translation. In Proceedings of the

50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Jeju Island, Republic of Korea,
8–14 July 2012; pp. 1015–1024.

3. Narayan, S.; Gardent, C. Hybrid simplification using deep semantics and machine translation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, 23–24 June 2014; pp. 435–445.

4. Takahashi, T.; Iwakura, T.; Iida, R.; Fujita, A.; Inui, K. KURA: A transfer-based lexico-structural para-phrasing engine. In
Proceedings of the 6th Natural Language Processing Pacific Rim Symposium (NLPRS 2001) Workshop on Automatic Paraphrasing:
Theories and Applications, Tokyo, Japan, 27–30 November 2001; pp. 37–46.

5. Inui, K.; Fujita, A.; Takahashi, T.; Iida, R.; Iwakura, T. Text Simplification for Reading Assistance: A Project Note. In Proceedings
of the Second International Workshop on Paraphrasing-Volume 16, Sapporo, Japan, 11 July 2003; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2003; PARAPHRASE ’03, pp. 9–16. [CrossRef]

6. Scarton, C.; de Oliveira, M.; Candido, A.; Gasperin, C.; Aluísio, S.M. SIMPLIFICA: A tool for authoring simplified texts in
Brazilian Portuguese guided by readability assessments. In Proceedings of the NAACL HLT 2010 Demonstration Session,
Los Angeles, CA, USA, 2 June 2010.

7. Aluisio, S.; Gasperin, C. PorSimples: Simplification of Portuguese Texts Fostering Digital Inclusion and Accessibility. In Proceed-
ings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas, Los
Angeles, CA, USA, 6 June 2010.

8. Shardlow, M. A Survey of Automated Text Simplification. Int. J. Adv. Comput. Sci. Appl. 2014, 4, 58–70. [CrossRef]
9. Saggion, H.; Gómez-Martínez, E.; Etayo, E.; Anula, A.; Bourg, L. Text Simplification in Simplext. Making Text More Accessible.

Proces. Leng. Nat. 2011, 47, 341–342.
10. Scarton, C.; Specia, L. Learning simplifications for specific target audiences. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, 15–20 July 2018; pp. 712–718.
11. Xu, W.; Callison-Burch, C.; Napoles, C. Problems in Current Text Simplification Research: New Data Can Help. Trans. Assoc.

Comput. Linguist. 2015, 3, 283–297. [CrossRef]
12. Nishihara, D.; Kajiwara, T.; Arase, Y. Controllable text simplification with lexical constraint loss. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Florence, Italy, 28 July–2 August
2019; pp. 260–266.

13. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

14. Xu, W.; Carpuat, M. EDITOR: An edit-based transformer with repositioning for neural machine translation with soft lexical
constraints. Trans. Assoc. Comput. Linguist. 2021, 9, 311–328. [CrossRef]

15. Agrawal, S.; Xu, W.; Carpuat, M. A non-autoregressive edit-based approach to controllable text simplification. In Proceedings of
the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online Event, 1–6 August 2021; pp. 3757–3769.

16. Štajner, S. Automatic text simplification for social good: Progress and challenges. In Proceedings of the Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, Online Event, 1–6 August 2021; pp. 2637–2652.

17. Van, H.; Kauchak, D.; Leroy, G. AutoMeTS: The autocomplete for medical text simplification. arXiv 2020, arXiv:2010.10573.
18. Van den Bercken, L.; Sips, R.J.; Lofi, C. Evaluating neural text simplification in the medical domain. In Proceedings of the World

Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 3286–3292.
19. Cardon, R.; Grabar, N. French biomedical text simplification: When small and precise helps. In Proceedings of the 28th

International Conference on Computational Linguistics, Online, 8–13 December 2020.
20. Collantes, M.; Hipe, M.; Sorilla, J.L.; Tolentino, L.; Samson, B. Simpatico: A text simplification system for senate and house bills.

In Proceedings of the 11th National Natural Language Processing Research Symposium, Manila, Philippines, 24–25 April 2015;
pp. 26–32.

21. Bhatia, V.K. Simplification v. easification—The case of legal texts1. Appl. Linguist. 1983, 4, 42–54. [CrossRef]

47

Mathematics 2023, 11, 2063

22. Garimella, A.; Sancheti, A.; Aggarwal, V.; Ganesh, A.; Chhaya, N.; Kambhatla, N. Text Simplification for Legal Domain:{I}
nsights and Challenges. In Proceedings of the Natural Legal Language Processing Workshop, Abu Dhabi, United Arab Emirates,
8 December 2022; pp. 296–304.

23. Rubab, I. Investigating the Effect of Text Simplification to Speed the Justice in Pakistan. Ph.D. Thesis, Islamia University,
Bahawalpu, Pakistan, 2018.

24. Zhang, X.; Lapata, M. Sentence Simplification with Deep Reinforcement Learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; Association for Computational
Linguistics: Copenhagen, Denmark, 2017; pp. 584–594. [CrossRef]

25. Dong, Y.; Li, Z.; Rezagholizadeh, M.; Cheung, J.C.K. EditNTS: An neural programmer-interpreter model for sentence simplification
through explicit editing. arXiv 2019, arXiv:1906.08104.

26. Lin, X.W.Z.; Wan, X. Neural sentence simplification with semantic dependency information. In Proceedings of the AAAI
Workshop on Deep Learning on Graphs: Methods and Applications, Virtual, 28 February 2021.

27. Jiang, C.; Maddela, M.; Lan, W.; Zhong, Y.; Xu, W. Neural CRF model for sentence alignment in text simplification. arXiv 2020,
arXiv:2005.02324.

28. Kincaid, J.P.; Fishburne, R.P.J.; Rogers, R.L.; Chissom, B.S. Derivation of New Readability Formulas (Automated Readability Index,
Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel; Technical Report; Institute for Simulation and Training,
University of Central Florida: Millington, TN, USA, 1975.

29. Gunning, R. The Fog Index After Twenty Years. J. Bus. Commun. 1969, 6, 3–13.
30. Aluisio, S.; Specia, L.; Gasperin, C.; Scarton, C. Readability assessment for text simplification. In Proceedings of the NAACL

HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications, Association for Computational
Linguistics, Los Angeles, CA, USA, 5 June 2010; pp. 1–9.

31. Bessou, S.; Chenni, G. Efficient Measuring of Readability to Improve Documents Accessibility for Arabic Language Learners.
arXiv 2021, arXiv:2109.08648.

32. Marvin Imperial, J.; Ong, E. Under the Microscope: Interpreting Readability Assessment Models for Filipino. arXiv 2021,
arXiv:2110.00157.

33. Yeakel, K.; Tzeng, S. Autograder: Classifying Documents to Grade School Level; Stanford University: Stanford, CA, USA, 2019.
34. Štajner, S.; Ponzetto, S.P.; Stuckenschmidt, H. Automatic assessment of absolute sentence complexity. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; Volume 17, pp. 4096–4102.
35. Larson, R.R. Introduction to Information Retrieval. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 852–853.
36. Giovanelli, C.; Liu, X.; Sierla, S.; Vyatkin, V.; Ichise, R. Towards an aggregator that exploits big data to bid on frequency

containment reserve market. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics
Society, Beijing, China, 29 October–1 November 2017; pp. 7514–7519. [CrossRef]

37. Li, H. Deep learning for natural language processing: Advantages and challenges. Natl. Sci. Rev. 2018, 5, 24–26. [CrossRef]
38. Alkaldi, W.; Inkpen, D. Classifying Documents to Multiple Readability levels. In Proceedings of the AAAI 2021 Spring

Symposium on Artificial Intelligence for K-12 Education, Virtual, 22–24 March 2021.
39. Sojasingarayar, A. Seq2Seq AI Chatbot with Attention Mechanism. arXiv 2020, arXiv:2006.02767. Available online: http:

//xxx.lanl.gov/abs/2006.02767 (accessed on 1 January 2021).
40. Yang, S.; Yu, X.; Zhou, Y. LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an

Example. In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI),
Shanghai, China, 12–14 June 2020; pp. 98–101. [CrossRef]

41. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015,
arXiv:1508.04025.

42. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
43. Alva-Manchego, F.; Martin, L.; Scarton, C.; Specia, L. EASSE: Easier Automatic Sentence Simplification Evaluation. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP): System Demonstrations; Association for Computational Linguistics: Hong Kong, China,
2019; pp. 49–54. [CrossRef]

44. Xu, W.; Napoles, C.; Pavlick, E.; Chen, Q.; Callison-Burch, C. Optimizing Statistical Machine Translation for Text Simplification.
Trans. Assoc. Comput. Linguist. 2016, 4, 401–415. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

48

Citation: Barriere, V.; Balahur, A.

Multilingual Multi-Target Stance

Recognition in Online Public

Consultations Mathematics 2023, 11,

2161. https://doi.org/10.3390/

math11092161

Academic Editor: Florentina Hristea

Received: 21 February 2023

Revised: 29 March 2023

Accepted: 14 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multilingual Multi-Target Stance Recognition in Online
Public Consultations

Valentin Barriere 1,* and Alexandra Balahur 2

1 Centro Nacional de Inteligencia Artificial, Santiago 4860, Chile
2 European Commission, Joint Research Center, 1050 Bruxelles, Belgium
* Correspondence: valentin.barriere@cenia.cl

Abstract: Machine Learning is an interesting tool for stance recognition in a large-scale context, in
terms of data size, but also regarding the topics and themes addressed or the languages employed
by the participants. Public consultations of citizens using online participatory democracy platforms
offer this kind of setting and are good use cases for automatic stance recognition systems. In this
paper, we propose to use three datasets of public consultations, in order to train a model able to
classify the stance of a citizen within a text, towards a proposal or a debate question. We studied
stance detection in several contexts: using data from an online platform without interactions between
users, using multilingual data from online debates that are in one language, and using data from
online intra-multilingual debates, which can contain several languages inside the same unique debate
discussion. We propose several baselines and methods in order to take advantage of the different
available data, by comparing the results of models using out-of-dataset annotations, and binary or
ternary annotations from the target dataset. We finally proposed a self-supervised learning method
to take advantage of unlabelled data. We annotated both the datasets with ternary stance labels and
made them available.

Keywords: stancerecognition; multilingual models; online debates; public consultations; natural
language processing; transformers

MSC: 68T50

1. Introduction

Stance recognition is a Natural Language Processing (NLP) task that has as its objective
the automatic detection and classification of the opinions and attitudes expressed by users
in different languages on a wide range of topics. The task has gained momentum in Natural
Language Processing during the past few years. As such, different methods have been
proposed to tackle it, and various corpora have been developed and employed to train and
test stance recognition classification models. Additionally, the increasing availability of
multilingual online platforms and social media platforms such as the “Conference for the
Future of Europe” and other large-scale citizen consultation projects such as Decidim (https:
//decidim.org/, accessed on 20 February 2023) or Make.org (https://make.org/, accessed
on 20 February 2023) have led to a growing need for methods to analyse and understand
the attitudes and opinions expressed in multiple languages. These platforms provide a
unique opportunity to study public opinion on political, societal, and economic issues,
which are becoming increasingly important in the context of participatory democracy.

The analysis of multilingual online debates has the potential to provide valuable
insights into the attitudes and opinions of citizens from different backgrounds, as well as to
identify commonalities and differences among these attitudes across languages and cultures.
Furthermore, it can also provide a means to identify and address potential language barriers
in democratic processes, by fostering more significant participation in these processes with
citizens from different geographical, sociological, and cultural backgrounds. Nevertheless,

Mathematics 2023, 11, 2161. https://doi.org/10.3390/math11092161 https://www.mdpi.com/journal/mathematics
49

Mathematics 2023, 11, 2161

there remains a series of important aspects related to this task that have not yet been tackled
in the literature. The work presented in this article and the corresponding contributions is
motivated by the need to fill existing gaps in research on stance classification, in view of a
real-life application of this task in a large-scale citizen consultation project.

Stance recognition algorithms are of interest for multiple reasons. They can be easily
deployed on social media or debating platforms [1]. They are heavily used for misin-
formation and disinformation detection [2–4], but also to predict poll results [5], users
polarisation [6], or in order to analyse citizen contributions in a consultation project [7].
Another essential aspect of stance detection is the use of rhetorical strategies, such as
hedging, attributions, or denials, that can be used to display varying degrees of certainty
or uncertainty [8]. These strategies are particularly relevant in the context of political
discourse, where participants may use them to express their stance in a nuanced manner.

Many of the works have focused on data from Twitter, incorporating conversational
and interactional context [9,10] in order to better classify the stances of the users in a thread
of tweets or simply by taking the tweets in an independent way [11–14]. The SemEval-2017
task 8 [15] proposes to use the interactional context of Twitter threads, focusing on rumour-
oriented stance classification, where the objective is to identify support towards a rumour
and an entire statement, rather than individual target concepts.

Foundation works were made before Twitter, and hence based on online debate
websites [16–18] or more rarely on Congress [19]. The authors proposed to model the
text using linguistics features, crafted regarding the targets of the stances, that were fixed,
pre-defined, and opposed, such as “Windows vs. Mac”. Typical debates were also created
around hot social topics in the form of ideological debates on subjects such as “public
healthcare” or “gun control” [17], but also on playful ones such as “cats” vs. “dogs” [20].
Most of those papers were about hybrid methods mixing statistical learning tools with
high-level linguistic features [21,22]. Since then, the conversation has been integrated with
graphical models that allow taking into account its dynamics [22–24] through the different
successive speech turns of the participants. Neural networks [12,25–27] fall into this type
of model and can even be pre-trained for the conversation setting [10] to understand better
the conversational context to analyse stances in Twitter threads.

Recently, there have been a few efforts to tackle multilingual stance recognition. Lai
et al. [28] presented a model for stance analysis over tweets using mainly high-level linguis-
tic features scuh as stylistic, structural, affective, or contextual knowledge, but no dense
contextual vectors. Hardalov et al. [29] proposed a few-shot cross-lingual neural model
by aggregating different language datasets together. The TW-10 Referendum Dataset [30]
contains tweets in Catalan and Spanish with stance annotation towards the independence
of Catalonia. All of them are tweet datasets.

Stance-annotated datasets containing highly varying targets are rare. They usually
focus on a set of defined targets or concepts [14,29]. Building on seminal work on stance,
the SemEval 2016 task [11] was capable of targeting abstract concepts (e.g., “atheism” or
“abortion”), as well as persons (e.g., “Hillary Clinton” or “Donald Trump”). One example
of a dataset with highly varying targets is Stanceosaurus [31], which contains tweets in
English, Hindi, and Arabic annotated with stance towards 251 misinformation claims over
a diverse set of global and regional topics. Sobhani et al. [32] proposed multi-target stance
classification that includes two targets per instance, such as classifying the stances of a
tweet in relation to both Sanders and Trump. While the framework permits more than two
targets, it is still limited to a specific and defined set of targets. It has been extended when
the targets can be a written concept or proposal [12,33]. Finally, Deng et al. [34] proposed
complex models for cross-target stance recognition, applied to a small set of specific targets.

In Vamvas and Sennrich [33], the authors proposed the X-stance dataset, containing
67k comments over 150 political issues in three languages. Their approach was to reformu-
late the target in a natural question in order to train one multilingual multi-target model
on the entire dataset easily. Similarly, in the procon dataset, containing 6019 comments
over 419 controversial issues, each target was also reformulated as a question [35]. This

50

Mathematics 2023, 11, 2161

allows using the semantic knowledge encoded inside a pre-trained language model [36]
and implicitly captures relationships between topics [25]. Hardalov et al. [37] combined this
technique with label embedding [38] in order to train on 16 English datasets from various
domains. However, none of these datasets contain interactional data from multilingual
online political debates. On the contrary, Barriere et al. [39] presented the Debating Europe

(DE) dataset, a multi-target, multi-lingual stance classification over online debates, inte-
grating the interactional context inside a model. In all the presented works, the language
of the comments and propositions is the same, which can be seen as intra-monolingual.
Finally, Barriere and Jacquet [7] presented the CoFE dataset, which was collected from
an online debating platform that contains 4.2k proposals and 20k comments in various
languages. A particularity of this dataset is that the comments and the propositions in
the same discussion can be written in different languages because of the use of a machine
translation system on the online platform, making it intra-multilingual.

Another classical issue is that, when the labels are scarce because of the difficulty or
time needed to annotate, it is possible to use several techniques to take advantage of the
available resources [40]. Hardalov et al. [29] proposed a novel noisy sentiment-based stance
detection pre-training leveraging Wikipedia data, for cross-language few-shot learning.
Semi-supervised learning methods such as self-training [41], label propagation, or label
spreading [42,43] are also profitable options. Giasemidis et al. [44] used the latter methods
for rumour-related stance recognition over Twitter data. A recent work on the domain
is that of [45], which used knowledge distillation on COVID tweets for the same type of
task. On other types of data, Wei et al. [46] proposed an interesting self-training method for
imbalanced images on CIFAR, but they assumed the distributions of the unlabelled and
labelled datasets were the same, which is a strong assumption that is not true every time.

In this work, we focused on studying models that analyse the stances of a comment
on a target formulated in natural language, not necessarily with the same language. This
setting makes the task more difficult due to the high variability in terms of topics and in
terms of languages. It is also important to note that restricting a dataset to one language
could induce nationality or cultural bias. To the best of the authors’ knowledge, having
several different languages inside the same online debate is specific and could only be
found in the literature in [7]. Here, we address the problem of ternary stance classification,
i.e., whether a comment is pro, against, or other towards the proposal it is commenting
on. Moreover, we propose to use two approaches to learn even with limited labels: a
pre-training over other similar datasets [40] and a semi-supervised learning self-training
method [41] to take advantage of large available datasets that are not annotated.

This research aimed to contribute to the field of multilingual stance recognition by
addressing the challenges and opportunities presented by analysing online multilingual
debates. In particular, the paper focuses on developing models and methods for recognising
the stance of users in different languages on a given topic and how to make use of the
cross-lingual information present in the debates. Section 2 refers to the three stance datasets
mainly used in this work and especially the collection and annotation of two of them.
Section 3 refers to the Machine Learning experiments and Section 4 to the results and
discussions of these experiments.

2. Materials and Methods

In this section, we describe all the datasets we used in our experiments, the methods
employed to collect and annotate them when applicable, as well as the details of the training
models. The datasets used were the X-stance dataset [33], the Debating Europe dataset [39],
and the CoFE dataset [7].

2.1. Debating Europe Dataset

We released the Debating Europe (DE) dataset, composed of online debates annotated
with stance annotations at the comment level.

51

Mathematics 2023, 11, 2161

2.1.1. Data Extraction

The DE dataset consists of debates collected in September 2020 from the “Debating
Europe” platform (https://www.debatingeurope.eu/, accessed on 20 February 2023). Most
of the debates revolve around questions such as “Should we have a European healthcare system?”
or “Do the benefits of nuclear power outweigh the risks?”, which can typically be rephrased as
yes/no questions. Each debate includes a topic tag, a text paragraph providing the context
of the debate, and comments about either the main context or previous comments.

We used a scraped version of the “Debating Europe” website containing all the debate
questions with their associated presentation texts, comments, and replies to comments.
Examples of conversations can be seen in Figure 1.

The dataset contains 125,798 comments for 1406 debates. Additional statistics are
provided in Table 1. More information about the general distribution of the words is
available in Appendix B, Table A1.

Table 1. Low-level statistics on the DE dataset, regarding the presence or absence of label anno-
tation. μcom/μdeb is the average mean of the respective units (comments or words) at the com-
ment/debate level.

Label % DE Unit μcom μdeb Σ

� 100% Comments ∅ 89.5 125,798
Words 51.7 4623 6,499,625

� 2.0% Comments ∅ 140 2523
Words 33.4 4683 84,289

Figure 1. Examples of comments from 3 debates of the Debating Europe Dataset.

2.1.2. Annotation
Subset Selection

We annotated 18 debates from the entire dataset scraped from Debating Europe.
The criteria for selecting these debates were the number of comments associated with
each debate and their relevance to one or more of the new “European Green Deal” policy
areas. These policy areas are biodiversity, from farm to fork, sustainable agriculture, clean
energy, sustainable industry, building and renovating, sustainable mobility, eliminating
pollution, and climate action. More information is available online (https://tinyurl.com/
GreenDealEC, accessed on 20 February 2023).

To filter the debates, we used the metadata from the “Debating Europe” website, keeping
only those with the “Greener” tag, resulting in 150 debates. Finally, we selected the ones
with at least 25 comments. When necessary, the debate question was reformulated into a
closed question to make it compatible with our framework. Additional information about
the debates and policy areas can be found in the Appendix A.

52

Mathematics 2023, 11, 2161

Annotation Scheme

The annotation scheme and guidelines were developed to identify citizens’ stance
toward the debate question at the comment level. To achieve this, four labels were defined:
Yes, No, Neutral, and Not answering. Each comment was annotated to indicate whether the
user responded to the answer and, if so, whether they were in favour of, against, or neutral
with respect to the original question. The questions of the annotated debates can be found in
Appendix A. The annotation task was carried out by a single expert using the INCEpTION
software [47].

Final Annotations

We obtained 2523 labels for the 18 debates, with four classes: Yes (40.1%), No (19.4%),
Neutral (11.2%), and Not answering (29.3%). We included the last category to determine
whether the commenter was interested in answering the debate question. In the following
experiments, we merged the Neutral and Not answering classes into a single class to simplify
the work [11,48]. Since a single expert performed the annotation, validating the dataset
using classical inter-annotator agreement metrics was impossible. Instead, we validated
the dataset by demonstrating its usefulness for cross-datasets, cross-topics, and cross-
lingual transfer learning. The results are presented in Section 3.1.1. The annotated dataset
consisted of 2523 comments, totalling 84,289 words. Additional information about the
overall distribution of words can be found in Table 1 and in Appendix B, Table A1.

2.2. CoFE

We released the CoFE dataset, which is composed of multilingual online debates over
contemporary hot topics. It has been partially annotated in stance at the comment level by
the commenters themselves when they were posting their comments or by external coders
afterwards. The text of the proposals and comments have been automatically translated so
that participants can interact with each other in their native languages. Here, we present
the data collection process and the annotation plus the validation of the annotation, used
to create the several subdatasets used in this study: CFS, CFU , CFE-D, and CFE-T .

2.2.1. CoFE Participatory Democracy Platform

The raw data used in this study consisted of current questions being debated at
the Conference on the Future of Europe (CoFE) (https://futureu.europa.eu/?locale=en,
accessed on 20 February 2023). The CoFE is an online platform where users can write
proposals in any of the EU24 languages (and more: Catalan and Esperanto have been
observed to be used on the platform). Users can also comment on and endorse proposals or
like other comments. All texts are automatically translated into any of the EU24 languages.

The dataset includes more than 20,000 comments on 4200 proposals in 26 languages,
with English, German, and French being the most-commonly used languages on the
platform. The language distribution is shown in Figure 2.

Figure 2. Number of posts and comments per language, using ISO 3166-1 (https://en.wikipedia.org/
wiki/ISO_3166-1, accessed on 20 February 2023) alpha-2 country codes.

53

Mathematics 2023, 11, 2161

The proposals in the dataset have been dispatched into one of ten topics by the
participants, as shown in Figure 3. As can be seen in the figure, some topics, such as
“European Democracy” and “Values, Rights, and Security” have generated more discussion
than others. The topic with the largest number of proposals is “Climate Change and the
Environment”. Table 2 provides examples of the proposals, comments, and stance labels.

Table 2. Examples of comments and proposals with the associated stance (url links in the appendix).

Title Topic Proposal Comment Stance Url

Focus on
Anti-Aging and
Longevity research

Health

The EU has
presented their
green paper on

ageing,
and correctly

named the
aging. . .

The idea of
prevention being
better than a cure
is nothing new or

revolutionary.
Rejuvenation. . .

Pro

Set up a program
for returnable food
packaging. . .

Climate change
and the

environment

The European
Union could set up

a program for
returnable food
packaging made

from. . .

Bringing our own
packaging to stores

could also be a
very good option.

People would
be. . .

Pro

Impose an IQ or
arithmetic-logic
test to immigrants

Migration

We should impose
an IQ test or at

least several
cognitive tests
making sure
immigrants

have. . .

On ne peut pas
trier les migrants

par un simple
score sur les

capacités
cognitives.

Certains fuient la
guerre et vous. . .

Against

Un Président de la
Commission
directement élu. . .

European
democracy

Les élections,
qu’elles soient

présidentielles ou
législatives, sont

au coeur du
processus. . .

I prefer sticking
with a

representative
system and have
the President of

the. . .

Against

Europa sí, pero no
así

Values and rights,
rule of law,

security

En los últimos
años, las naciones
que forman parte
de la UE han visto
como su soberanía

ha sido. . .

Zdecydowanie nie
zgadzam się z

pomysłem, aby
interesy

indywidualnych
Państw miały. . .

Against

2.2.2. Online Debates with Intra-Multilingual Interactions

The CoFE dataset includes long debates with comments organised into threads, al-
lowing for the study of interactions between users responding to each other in different
languages. The full dataset consists of 4247 debates with a total of over 15,961 threads,
including 1 to 4 comments in response to each other and 5085 threads with 2 or more
comments. The distribution of threads by length is shown in Table 3. The debates have gen-
erated a range of interests among the participants, with 3576 debates containing 5 comments
or fewer and 382 debates having 10 or more comments, reaching a total of 11,942 comments.

In terms of multilingual aspects, more than 40% of the proposal/comment pairs,
as well as 46% of the threads include at least two languages, and 684 debates contain
three or more distinct languages. Finally, the dataset also includes the number of likes and
dislikes for each comment and the number of endorsements for each proposal (a user can
endorse a proposal without commenting).

54

Mathematics 2023, 11, 2161

Table 3. Number of threads regarding their length in term of comments.

Length 1 2 3 4 All

Number 10,876 2365 1920 800 15,961

Figure 3. Topics’ distribution in the propositions (a), comments (b), and the ratio of comments over
propositions (c) regarding the differnt topics (d).

2.2.3. Annotation

A portion of the data (more than 7 k comments, in 24 languages) has already been
annotated by the commenters with a self-tag assessing whether they are in favour of or
against the proposal. We refer to this set as CFS (as Self-annotated). Two other subparts
of the data (without a self-tag) have been manually annotated: one to be used for testing
purposes and another one to be used for training purposes. The subset of 1283 comments in
six morphologically different languages (fr, de, en, el, it, hu) was tagged using the Inception
platform [47]. We refer to this set as CFE-T (as Externally annotated-Test). Another subset
of 1500 comments in the most-common languages of the platform (fr, de, en, es) was
tagged by using the Inception platform [47]. We refer to this set as CFE-D (as Externally
annotated-Test).

Annotation Scheme

Annotating the stance of a comment on an entire proposition can be challenging,
in particular when the participant expresses multiple stances within his/her comment.
To address this issue, we asked the coders to label not only the prominent stance of the
comment, but also any secondary stance they believed to be present. This allows for the
consideration of cases where multiple contradictory stances are present within the same
comment in order to determine the stance that is most-commonly agreed upon by the
coders. In the end, the secondary stances were used to aggregate in 1.0% of the cases.

For CFE-T , we collected a total of 3814 annotations that were distributed among 15 dif-
ferent people. More than 95% of the examples were tagged three times, and the others were
tagged two times only. For CFE-D, we collected a total of 3500 annotations that were dis-

55

Mathematics 2023, 11, 2161

tributed among four different people. The French and English comments (1000 comments)
were tagged three times, and the German and Spanish (300 + 200 comments) were tagged
by only one annotator, which is reliable since they were not used for testing purposes. We
manually removed four proposals that were not real debates and 61 of the 200 annotated
Spanish comments that were judged of bad quality.

Annotation Validation and Aggregation

The inter-annotator agreement for a three-class stance annotation task was evaluated
using Krippendorff’s α [49] using only the prominent stance annotations. It yielded a value
of 0.68 for CFE-T , which is considered satisfactory for this type of task. It should be noted
that the level of agreement among annotators can vary greatly depending on the specific
target of the stance detection task and the annotators’ confidence in their annotations [50].
For CFE-D, the obtained Krippendorff’s α was 0.61, which is less good. This is not a problem
since these data are considered and used as the silver standard and not the gold standard.

The stances were aggregated through a majority vote using the primary stances.
The secondary stances were included in cases where there was no consensus using the
primary stance (3.4% of the time), and they helped to reach a consensus in 1.0% of cases.
Comments without consensus in the annotations were discarded for both cases. A total of
1228 annotated comments were obtained for CFE-T : 600 English, 241 French, 230 German,
88 Italian, 37 Hungarian, and 32 Greek. A total of 1414 comments were obtained for CFE-D:
675 English, 300 French, 300 German, and 139 Spanish.

Final Datasets

We obtained three labelled datasets and one unlabelled dataset. The first labelled
dataset, called CFS, consists of 6985 stances with binary annotations that were self-annotated.
The second and third labelled datasets, called CFE-T (this version is slightly bigger than
the one from [7]) and CFE-D (as Test and as Development, respectively), consist of, respec-
tively, 1226 and 1414 multilingual comments with ternary annotations that were externally
annotated. The fourth dataset, called CFU , is the remaining unlabelled comments.

2.3. Dataset Generalities

All the datasets used in this paper have common properties: they contain short texts
written in the context of, or answering to, a controversial question of political range. In this
layout, the targets of the stance are not a defined person or subject. They vary greatly and
are expressed in the form of text in natural language. Table 4 compares the three datasets
of stance recognition where the targets are political proposals or questions formulated as
text. The CF datasets have the most targets, are intra-multilingual with many languages,
and contain interactions between users in the form of threads.

Table 4. Comparison with other annotated datasets.

Dataset X-Stance DE CFS CFE CFU

Classes 2 3 2 3 ∅

Languages 3 2 25 22 26
Targets 150 18 2724 757 4274
Comments 67,271 2523 6985 1206 12,024
Debate � � � � �
Intra Mult. � � � � �

2.4. X-Stance Dataset

The X-stance (XS) dataset [33] is a collection of 67,271 comments in French, German,
and Italian on more than 150 political issues (referred to as targets) extracted from the Swiss
application Smartvote. Each of the comments is associated with a label. To leverage the
semantics information contained in a pre-trained model [51], the authors proposed incor-

56

Mathematics 2023, 11, 2161

porating the target into a natural language question, such as “La Suisse devrait-elle conclure
un accord de libre-échange avec les Etats-Unis?”, which can be interpreted as a debate title.
This allows the model to learn across targets and perform effectively in a zero-shot learning
setting. Indeed, this approach in which the target can be viewed as a debate title enables
the model to learn across targets, maintains efficiency in a zero-shot learning scenario,
and leverages the knowledge transfer capability of transformer-based language models [51]
(this method has also been used by others [25,37] for zero-shot stance classification).

The annotations from the annotators were consolidated into two classes: in favour of
and against the proposition, which can be represented as yes or no when the proposition is
phrased as a question.

3. Experiments

We ran two different sets of experiments of very similar model types, detecting the
stances of comments toward a proposal formulated in natural language. The first set
presented in Section 3.1 targeted the Debating Europe as the test dataset, focusing on cross-
lingual transfer learning, integrating context and semi-supervised learning. The second
set of experiments presented in Section 3.2 targeted the CoFE dataset as the test dataset,
proposing several baselines on multilingual data.

3.1. Debating Europe

The three experiments below are complementary. The first experiment focused on
transfer learning across topics, targets, and languages. The second one focused on the inter-
active aspect of online debates. The last experiment highlights the value of the unlabelled
DE dataset, by presenting a self-training method handling unlabelled and imbalanced data.

3.1.1. Multilingual Stance Detection Using Transfer Learning

It is well known that when the source and target domains are dissimilar, standard
transfer learning may fail and result in negative transfer [52]. Therefore, demonstrating
that the small DE dataset can improve the performance on the 25-times larger non-English
XS dataset through transfer learning across topics and languages is a way to validate
the annotations. The XS dataset, which consists of multilingual comments responding to
political debate questions from various topics, is an ideal candidate for transfer learning.
The DE dataset consists of comments from the online debate forum Debating Europe, so
the targets of the stances are closely related to those in the multilingual XS dataset. For
these reasons, we first investigated the potential of using our labels to enhance performance
across different topics and languages.

3.1.2. Data Augmentation with Semi-Supervised Learning

As mentioned in Section 2.1, we annotated only a small portion of the available DE
dataset, leaving a large amount of data unlabelled, which could potentially be useful in
improving model performance. To maximise the potential of this unlabelled data, we
propose to use a self-training method [41]. The general principle we followed was to
leverage some of the model’s own predictions on unlabelled data by adding pseudo-
examples to the training set in an iterative way. Typically, new unlabelled examples were
selected regarding how confident the prediction of their label is, and they were added to
the training set for the supervised step of the next iteration. We compared two classical
methods: using a threshold on the model’s class probability and selecting the k predictions
with the highest probability (respectively referred to as thresh and k-best in Section 4.1.2). We
are aware of the potential drawbacks of self-training, such as the inability of the model to
correct its own mistakes and the amplification of errors [53]. Thus, if the unlabelled dataset
is imbalanced, the classifier bias may be amplified by the pseudo-labels, exacerbating the
class imbalance issue [46].

To mitigate this risk, we propose a technique that combines both methods by adding
a definite and balanced number of kmax examples chosen randomly from those with a

57

Mathematics 2023, 11, 2161

probability above the threshold, at each iteration of the ST algorithm. Our technique makes
no assumptions about the label distribution of the unlabelled dataset and, at the same
time, can help to prevent the training set from being flooded with pseudo-examples from
outer domains.

3.2. Experiences on CoFE
3.2.1. Multilingual Stance Detection Using Transfer Learning

A set of several baselines is proposed over the CFE-T dataset, which is the subpart that
had been externally annotated to be used as a test set. X-stance and CFS are big datasets
annotated in a binary way. However, they cannot be used to train a model for a ternary
classification. Moreover, the small size of the tri-class DE dataset makes it difficult to
naively aggregate the datasets altogether (the model called All-1 training).

Several configurations were compared. First, we compared the models that do not
use any comments from the CoFE dataset. Subsequently, we compared the models that
use only binary annotation from the CoFE dataset and, finally, the models that use ternary
annotations during the training. First, we trained a cross-datasets model that does not use
any of the CoFE data during the training, and we compared it to two strong baselines
trained on stance recognition from various domains: an English model [37] trained over 16
English stance datasets from various domains and a multilingual model [29] pre-trained
over the same 16 English datasets and fine-tuned over 14 non-English datasets. Second,
we present a cross-debates model trained on X-stance and the subpart of CFS not containing
debates from the test and two models that use the three datasets (All-2 trainings and All-
1 training). Third, we present models trained with the CFE-D dataset of ternary stance
annotations from the CoFE, alone (CFE-D-1 training) or with other data using a one-step
(All-1 training) or a two-step (All-2 trainings) training process.

If not specified, all of our models were trained using a two-step training process:
trained over binary data, then fine-tuned over ternary data. Cross-datasets was pre-trained
over X-stances and fine-tuned with Debating Europe. Cross-debates was trained with X-
stances and Debating Europe, plus CFS minus all debates included in CFE. All-2 trainings
was trained over X-stances and CFS, then Debating Europe (and CFE-D when the case is
warranted). All-1 training was trained over X-stances and CFS and Debating Europe (and
CFE-D when the case is warranted).

3.2.2. Data Augmentation with Semi-Supervised Learning

As in Section 3.1.2, we ran experiments with self-supervised learning. We used
the model that gave the best results of the transfer learning experiments, by adding the
unlabelled CFU dataset during the second step of the learning phase. We followed the same
protocol as specified before.

3.3. Methodological Protocol

In our study, the protocol of [36,54] was followed for training transformers, which
had previously been used for multilingual sentiment analysis and text classification.
The transformers library [55] was used to access pre-trained models and to train our mod-
els. XLM-R [56] was employed as a multilingual learning model, referred to as XLM-R f t
when it had been previously trained on a dataset (as described in Section 3.1).

For optimisation, the Adam algorithm [57] with early stopping based on the training
loss was used. The learning rate was set to 2 × 10−6 for the first training of the model on
a stance task and to 5 × 10−7 when fine-tuning on another dataset for transfer learning.
Performance on the development set was evaluated after each training epoch, and the
model that achieved the best performance was kept. The batch size was set to 32. Un-
like [33], no hyperparameter optimisation was performed on the development set, and a
shorter maximum sequence length (128 instead of 512) was used to speed up training
and evaluation.

58

Mathematics 2023, 11, 2161

The transformer encoding of the debate and comments was carried out according to
the protocol of [33], in which each transformer was used as follows:

[CLS] Target [SEP] Comment [SEP]

For X-stance and Debating Europe, closed questions were used as the target text.
For the CoFE, the debate title was simply used.

For the transfer learning, a multilingual pre-trained transformer XLM-R [56] was
pre-trained on a 2-class dataset, then fine-tuned over a 3-class dataset with a different
classification head in order to obtain a ternary classifier. For the ST, a maximum of five
iterations was set out, with a probability threshold of 0.99 and 600 and 2000 as the maximum
number of examples added at each iteration when applicable.

Metrics widely employed for this kind of task were computed in order to compare our
models: the accuracy, precision, recall, as well as macro-F1 score, in order to reflect both
the global and per-class model’s performances and take into account class imbalance. The
DE dataset was divided into three training/validation/test sets in a stratified way with
a ratio of 75/5/20. To compare the results, the same partition as [33] was carried out for
the XS dataset. CFET was used as the test set for the CoFE. Experiments were run using
Tensorflow 2.4.1 [58], transformers 3.5.1 [55], a GPU Nvidia RTX-8000, and CUDA 12.0.

4. Results and Discussion

This section presents the results of the experiments over the Debating Europe
(Section 4.1) and CoFE datasets (Section 4.2). It highlights how models can take advantage
of datasets, even though the regimes are cross-lingual, cross-topics, and even cross-tasks in
the case of binary labelled data. It also shows the efficiency of multilingual self-supervised
learning for this kind of data and task.

4.1. Results on Debating Europe

The experiments were complementary. The first one gave an insight into the effect of
pre-training a classification model over a non-English multilingual dataset from another
domain. The second experiment used a self-training method applicable to a dataset of
unlabelled and imbalanced data.

4.1.1. Cross-Datasets Transfer Learning

Here, we investigated the effects of pre-training over one dataset before fine-tuning
over another one. Table 5 shows the results of applying transfer learning from Debating
Europe to X-stance, while Table 6 shows the results of applying transfer learning from
X-stance to Debating Europe. The former gave an insight into the effect of pre-training over
a non-English multilingual dataset from another domain. The latter gave an insight into
the effect of pre-training on English and specialised data from an online debate.

Table 5. Results over X-stance dataset for a binary classification, best result in bold. The M-BERT
results came from [33].

Intra-Target X-Question X-Topic X-Lingual
DE FR Mean DE FR Mean DE FR Mean IT

M-BERT [33] 76.8 76.6 76.6 68.5 68.4 68.4 68.9 70.9 69.9 70.2
XLM-R 76.3 78.0 77.1 71.5 72.9 72.2 71.2 73.7 72.4 73.0
XLM-R f t 77.3 79.0 78.1 71.5 74.8 73.1 72.2 74.7 73.4 73.9

As can be seen in Tables 5 and 6, the transfer learning approach was efficient for
both datasets, even though they had different languages, topics, and targets. Pre-training
over Debating Europe allowed for reaching higher results on the X-stance dataset. It is
important to note that this worked even if the DE dataset is very small compared to X-

59

Mathematics 2023, 11, 2161

stance. Moreover, it is a way to validate the annotation that has been made by one expert
only, without the possibility of calculating an inter-annotator agreement.

4.1.2. Self-Training Setting

The results of the ST setups are presented in Table 6. Analysing the results, we can
see that not all settings led to satisfactory results. In order to understand the causes
of this failure, we analysed the distribution of the pseudo-labels (see Figure 4), along
with the number of pseudo-labels. By analysing the distribution, it is possible to gain an
understanding of the weaknesses of each method and to conclude on the reason why our
method performed well: it did not overwhelm the gold labels with weak labels and offered
a balanced distribution.

Table 6. Results over the Debating Europe dataset for a 3-class classification using ST. kmax is the
number of examples added at each iteration.

Unsupervised Method Threshold kmax Balanced Model Prec. Rec. F1 Acc

� � � �
XLM-R 68.6 69.3 68.9 70.1
XLM-R f t 70.7 69.9 70.2 72.1

thresh-0.99 0.99 � �
XLM-R 68.6 69.8 69.1 70.7
XLM-R f t 68.9 69.6 69.0 70.9

k-best-2000 � 2000 �
XLM-R 67.5 68.3 67.8 69.3
XLM-R f t 70.4 69.9 69.8 71.9

k-best-600 � 600 �
XLM-R 69.4 68.5 68.0 69.5
XLM-R f t 72.5 70.3 71.1 73.3

our-2000 0.99 2000 �
XLM-R 69.5 69.4 69.4 71.3
XLM-R f t 70.5 69.9 69.3 71.7

our-600 0.99 600 �
XLM-R 70.9 71.6 71.1 72.7
XLM-R f t 71.5 71.5 71.4 73.5

Figure 4. Distribution of the pseudo-labels.

The threshold method did not improve the model’s performance due to the small
size of our dataset and the lack of model calibration. Specifically, the non-calibration of
the model led to the addition of too many pseudo-examples at each iteration (more than
30-times the number of labels in pseudo-labels in the end), which significantly decreased
the model’s performance. On the other hand, the k-best method was able to reduce the
number of examples added at each iteration and performed well with the XLM-R f t, as this
latter model was trained on a larger number of examples and appeared to be more robust.

4.2. Results on CoFE
4.2.1. Baselines for Scarce Annotation Regimes

We present the results in a cross-datasets setting and without or with manually anno-
tating data from the target dataset for the target task.

The results of the models trained without access to the three-class labelled data can be
found in Table 7. We evaluated the performance of our proposed configurations using the
F1, macro-F1, and accuracy metrics over the externally annotated dataset CFE-T . The first
column shows the different configurations we used, and the next columns show the

60

Mathematics 2023, 11, 2161

annotation used during the training: OODataset means annotations Out-Of-Dataset; CoFE-
2 means binary annotations from the CoFE; CoFE-3 means ternary annotations from the
CoFE. The following columns show the results for each class (− for the negative class, ∼
for the neutral class, and + for the positive class), and the last columns show the accuracy
and macro-F1 of the configurations.

Table 7. F1, macro-F1 and accuracy of the different baselines over the externally annotated
dataset CFE-T .

Model
Annotations Used − ∼ + Acc. M-F1

CoFE-3 CoFE-2 OODataset

Hardalov et al. [37] + MT � � � 7.7 29.5 61.4 46.3 32.8
Hardalov et al. [29] � � � 20.7 19.1 58.9 43.2 32.9
Cross-datasets � � � 45.3 44.0 62.6 52.7 50.6

All-1 training � � � 56.8 00.6 77.9 62.9 45.1
Cross-debates � � � 54.3 41.4 77.3 63.0 57.6
All-2 trainings � � � 52.9 45.0 76.3 63.1 58.1

CFE-D-1 training � � � 42.1 39.9 75.6 62.3 52.5
All-1 training � � � 57.9 30.0 78.5 65.4 55.5
All-2 trainings � � � 57.3 40.2 80.5 67.3 59.3

The first section of the table lists models that used only annotations from the Out-
Of-Domain (OODataset) dataset. The first two models, Hardalov et al. [37] + MT and
Hardalov et al. [29], both use only OODataset annotations from 16 English stance datasets
and 10 multilingual stance datasets from various domains and had an accuracy of 46.3 and
43.2, respectively, with a macro-F1 of 32.8 and 32.9, respectively. The third model in this
section, cross-datasets, also uses only OODataset annotations from X-stance and Debating
Europe and had an accuracy of 52.7 and a macro-F1 of 50.6.

The table’s second section lists models that add binary annotations from the target
dataset (CoFE-2) in the training set. The first three models in this section, “All-1 training”,
cross-debates, and “All-2 trainings”, use binary annotations from the target dataset. The
first configuration, “All-1 training”, showed an F1 of 59.7 for the negative class, 00.7 for
the neutral class, and 79.5 for the positive class. The accuracy of this configuration was
65.5, and the macro-F1 was 46.6. The second configuration, “cross-datasets”, showed
an F1 of 54.3 for the negative class, 30.5 for the neutral class, and 73.9 for the positive
class. The accuracy of this configuration was 59.6, and the macro-F1 was 52.9. The third
configuration, “cross-debates”, showed an F1 of 55.3 for the negative class, 40.4 for the
neutral class, and 76.6 for the positive class. The accuracy of this configuration was 63.2,
and the macro-F1 was 57.4. Finally, the fourth configuration, “All-2 trainings” showed an
F1 of 55.4 for the negative class, 44.6 for the neutral class, and 77.3 for the positive class.
The accuracy of this configuration was 64.3, and the macro-F1 was 59.1.

The last section of the table lists models that use ternary annotations from the target
dataset (CoFE-3). The first two models in this section, CFE-D-1 training and All-1 training,
use ternary annotations from the target dataset and had accuracy scores of 62.3 and 65.4,
respectively, with macro-F1 scores of 52.5 and 55.5, respectively. The last model in the table,
“All-2 trainings”, had the best macro-F1 score of 59.3 and the highest accuracy score of 67.3
among all models in the table.

4.2.2. Self-Training Setting

The results of the three-class classification using self-training with the CFU dataset
on the CFE-T dataset are presented in Table 8. The model uses an unlabelled dataset, CFU ,
to augment the training data through the ST process. The columns in the table represent
the unsupervised method used, the threshold applied during the ST process, the maximum

61

Mathematics 2023, 11, 2161

number of examples (kmax) added at each iteration, whether the distribution of pseudo-
labels was balanced, and the precision results for the negative (−), neutral (∼), and positive
(+) classes, as well as the overall accuracy (Acc) and the macro-weighted F1-score (m-
F1). The results showed that using a balanced distribution of pseudo-labels led to better
performance compared to the models without this balance. Specifically, the best results
in terms of the macro-F1 were obtained by the unsupervised method with a threshold
of 0.99, a maximum number of examples added of 2000, and a balanced distribution of
pseudo-labels. This model achieved a macro-weighted F1-score of 63.2, which was the
highest among the models compared.

Table 8. Results of the best model over the CFE-T dataset for a 3-class classification using ST with the
unlabelled CFU dataset. kmax is the number of examples added at each iteration.

Unsupervised Method Threshold kmax Balanced − ∼ + Acc M-F1

� � � � 57.3 40.2 80.5 67.3 59.3

thresh-0.99 0.99 � � 43.6 55.8 77.3 65.2 58.9

k-best-2000 � 2000 � 59.6 42.6 79.9 66.2 60.4
k-best-600 � 600 � 51.8 50.4 78.8 66.4 60.3

our-2000 0.99 2000 � 57.6 52.7 79.2 67.8 63.2
our-600 0.99 600 � 56.8 51.5 76.4 65.1 61.6

4.3. Analysis of the Results

In this part, we focused our analysis on the experiments using the CoFE data. From the
results, we can draw different conclusions regarding the three different parts of Table 7:
using only out-of-dataset annotations, using binary annotations from the target dataset,
or using ternary annotations from the target dataset. We also discuss the results of the
self-training experiments briefly.

Cross-Datasets Data

Our cross-datasets model trained over X-stance and Debating Europe allowed results
that were better than two strong cross-datasets baselines. The first baseline is a model
trained on English data, using English as the pivot language and machine translation. It
gave poor performances on the negative class. The second baseline is a multilingual model,
also using the X-stance dataset during its learning phase, making the low results surprising.
The gain in performance of our model must come from the training data, which are online
debates on political topics.

Binary Labels’ Annotations from CoFE

The first conclusion came from the poor performances of the “All-1 training” config-
uration on the neutral class (0.06): the two-step learning process is mandatory to obtain
proper results on the neutral class when tackling ternary stance classification and using only
the large binary labelled datasets available. The second conclusion is that it was possible
to achieve better results with our method even if we completely dropped the examples
from the target dataset (macro-F1 rising to 50.6). Third, the “cross-debates” configuration
obtained far better results than the “cross-datasets”; hence, the adaptation towards the
domain and languages, which are contained in the target dataset, seems to be important
(50.6 to 57.6). Fourth, the results of the “cross-debates” configuration, which is zero-shot
regarding the target, were still good compared to the model that had seen examples from
the test debates (57.6 vs. 58.1). Finally, we can see that our last proposed configuration,
“All-2 trainings”, achieved the best performance, with the highest macro-F1 of 58.1. This
suggested that the use of both debates and languages from the target dataset during the
training improved the performance of the overall stance classification. Interestingly, it also

62

Mathematics 2023, 11, 2161

improved the performance on the neutral class, even though the labels used during training
were only binary.

Ternary Labels’ Annotations from CoFE

We can draw two main conclusions from the last section of Table 7. The first one
would be that the best results came from the model using the more annotated data (“All-2
trainings” with CoFE-3 reaching the highest macro-F1). The second conclusion came from
looking at the performance of CFE-D-1 training being a bit higher than the cross-datasets
one (52.5 vs. 50.6). This gap between the two results means that, even if costly, annotating
data from the target dataset in a ternary way is not enough to reach high performances.

The results of our model on the dataset used by [29,37] can be seen in Appendix C.

Self-Training

All the self-training methods allowed for the improvement of the results, contrary
to the experiments on the Debating Europe dataset (Section 3.1.2). The threshold method
was the only one that was harmful to the performances. As the model was not calibrated,
the first iteration already pseudo-labelled almost all of the unlabelled data (15% of negative,
39% of neutral, and 46% of positive). Hence, the pseudo-labelling only depended on the
network trained at the first iteration: all the biases were inserted in the pseudo-labelled
data, which overflowed the real training data.

5. Conclusions and Future Work

In this work, we focused on the task of ternary stance recognition, using data from
public consultations and digital democracy platforms. We addressed the issue of multi-
target stance recognition as defined in [33], where the target can also be expressed like a
comment, in natural language. We can point out several contributions. We define dthe
concept of intra-multilinguality, where the target and the comment can come in different
languages, by using a platform that automatically translates the textual content so that
the users can interact in their native languages. We collected and annotated parts of the
dataset presented and made them available online for two shared tasks [59,60]. Finally,
we proposed a series of methods to learn with a limited amount of labels, by pre-training
over similar datasets and leveraging information from non-annotated data with the help of
self-training methods.

Future work in this context will include studying the interactions between the par-
ticipants of the debates, firstly within the different debates, by studying conversation
dynamics [6] in the form of the threads that are available in the CoFE dataset and, secondly,
within the platform, by looking at the group of topics each user is interested in to cluster
political views at the user level. Another interesting way to study political debates would
be to use multimodal content in several forms. Within the CoFE dataset, some descriptions
contain multimodal data such as photos or videos, making this integration possible. A step
further would be to use virtual video conference meetings to add real-time multimodal
content and interactions between the participants to study the dynamics of a real-time
debate. Ultimately, an embodied conversational agent [61] could be used as a moderator
of the multimodal debates [62]. Finally, it would be interesting to look at the cultural
and national biases that we can find in this dataset, by analysing the data separately in
a monolingual way both at the semantic and linguistic levels, to understand how these
biases influence the quality of the data and the classification performances.

Author Contributions: Conceptualisation—DE, A.B. and V.B.; conceptualisation—CoFE, V.B.;
methodology, V.B.; software, V.B.; validation, V.B.; formal analysis, V.B.; investigation, V.B.; writing—
original draft preparation, V.B.; writing—review and editing, V.B. and A.B.; visualisation, V.B. All
authors have read and agreed to the published version of the manuscript.

Funding: V.B. research was funded by the National Center for Artificial Intelligence CENIA FB210017,
Basal ANID.

63

Mathematics 2023, 11, 2161

Data Availability Statement: The CoFE datasets CFU , CFS, and CFE-D are already available in the
context of the Touché Lab @ CLEF 2023 (https://touche.webis.de/clef23/touche23-web/multilingual-
stance-classification.html (accessed on 20 February 2023)). The Debating Europe dataset will be
available online after publication.

Acknowledgments: We would like to thank Brian Ravenet, Léo Hemamou, and Simon Luck for
helping to annotate CFE-D and Guillaume Jacquet for helping in managing the annotation phase
performed at the Joint Research Center during the annotation process of a subpart of CFE-T . We thank
the Big Data Analytics Platform of the JRC.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning
NLP Natural Language Processing
DA Data Augmentation
SSL Self-Supervised Learning
ST Self-Training
CoFE Conference on the Future of Europe
DE Debating Europe

Appendix A. Targets of the Annotated Debates from Debating Europe

The debates chosen for the annotation are the ones below: Should we consume less
energy?, Should we make the cities greener?, Can renewables ever replace fossil fuels 100?, Should
we invest more in clean energies to avoid an energy crisis?, Should we cut CO2 emission and invest
into clean energies?, Should we think about the real cost of the food we eat?, Should all cars be
electric by 2025?, Does organic food really make a difference?, Should Europeans be encouraged
to eat more sustainably?, Sustainable agriculture: With or without pesticides?, Should all EU
countries abandon nuclear power?, Should we stop flying to help the environment?, Should plastic
packaging be banned?, Should we all eat less meat?, Should we invest in cheap and clean energies?,
Should we move towards a low-carbon economy or invest into clean energies?, Should the European
Union ban plastic bags?, and Should plastic water bottles be banned?.

Appendix B. Statistics on Debating Europe Annotated Dataset

Statistics on the Debating Europe annotated dataset can be found in Table A1.

Table A1. Low-level statistics on the Debating Europe dataset. Here, μ represents the average mean,
σ the standard deviation, med the median, and Σ the sum.

Aggregation-Level Debate Comment All

Units Label μ σ Med μ σ Med Σ

Comments

All 140 99 101 1 0 1 2523
Yes 56 37 39 1 0 1 1012
No 29 39 14 1 0 1 489
Neutral 18 18 11 1 0 1 282
Not answering 41 23 35 1 0 1 740

Words

All 4683 2721 3794 33 60 16 84,289
Yes 1933 1221 1772 34 74 13 34,790
No 942 1157 554 33 43 19 16,012
Neutral 814 808 478 46 73 23 13,023
Not answering 1137 627 972 28 39 16 20,464

64

Mathematics 2023, 11, 2161

Appendix C. Results of the Stance Models over Other Datasets

This section contains the results of the cross-datasets model we trained over data
related to political topics: pre-trained over X-stance and fine-tuned over Debating Europe.
We applied them on the stance datasets used in [37]. We only used the datasets with three
or two labels, so we could achieve hard mapping using our model, and we removed the
scd dataset, which has no target.

Table A2. Results of our cross-datasets model over binary annotated English datasets from [37].

Model Perspectrum Poldeb Snopes Argmin Ibmcs All

Hardalov et al. [37] 29.6 22.8 29.28 34.16 72.93 37.8
Cross-dataset 63.8 46.3 52.3 61.6 20.3 48.9

Table A3. Results of our cross-datasets model over ternary annotated English datasets from [37].

Model Iac1 Emergent Mtsd Semeval16 Vast All

Hardalov et al. [37] 35.2 58.49 23.34 37.01 22.89 35.4
Cross-dataset 15.5 21.6 16.7 13.0 29.1 19.2

When analysing the results from the ternary annotated stance datasets, we noticed
that our network was struggling to predict things other than the neutral class for all the
ternary datasets, leading to very poor results (see Table A3). Nevertheless, in the binary
setting, where we discarded the neutral class to keep only the positive and negative, we
could obtain higher competitive results (see Table A2). This result is interesting since our
network was trained on online debates, but tested on data not only from debates, but also
from news (Snopes) or other sources (IBMCS and Argmin).

References

1. ALDayel, A.; Magdy, W. Stance detection on social media: State of the art and trends. Inf. Process. Manag. 2021, 58, 102597.
[CrossRef]

2. Hardalov, M.; Arora, A.; Nakov, P.; Augenstein, I. A Survey on Stance Detection for Mis- and Disinformation Identification. arXiv
2021, arXiv:2103.00242.

3. De Magistris, G.; Russo, S.; Roma, P.; Starczewski, J.T.; Napoli, C. An Explainable Fake News Detector Based on Named Entity
Recognition and Stance Classification Applied to COVID-19. Information 2022, 13, 137. [CrossRef]

4. Yang, R.; Ma, J.; Lin, H.; Gao, W. A Weakly Supervised Propagation Model for Rumor Verification and Stance Detection with Multiple
Instance Learning; Association for Computing Machinery: New York, NY, USA, 2022; Volume 1, pp. 1761–1772. [CrossRef]

5. Beauchamp, N. Predicting and Interpolating State-Level Polls Using Twitter Textual Data. Am. J. Political Sci. 2017, 61, 490–503.
[CrossRef]

6. Sakketou, F.; Lahnala, A.; Vogel, L.; Flek, L. Investigating User Radicalization: A Novel Dataset for Identifying Fine-Grained
Temporal Shifts in Opinion. In Proceedings of the LREC, Marseille, France, 20–25 June 2022; pp. 3798–3808.

7. Barriere, V.; Jacquet, G. CoFE: A New Dataset of Intra-Multilingual Multi-target Stance Classification from an Online European
Participatory Democracy Platform. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, Online, 21–24
November 2022.

8. Gupta, A.; Blodgett, S.L.; Gross, J.H.; O’Connor, B. ExPRES: Examining Political Rhetoric with Epistemic Stance Detection. arXiv
2022, arXiv:2212.14486v2.

9. Gorrell, G.; Bontcheva, K.; Derczynski, L.; Kochkina, E.; Liakata, M.; Zubiaga, A. RumourEval 2019: Determining rumour veracity
and support for rumours. In Proceedings of the SemEval 2019, Minneapolis, MN, USA, 6–7 June 2019; pp. 845–854.

10. Matero, M.; Soni, N.; Balasubramanian, N.; Schwartz, H.A. MeLT: Message-Level Transformer with Masked Document
Representations as Pre-Training for Stance Detection. In Proceedings of the Findings of the Association for Computational
Linguistics, Findings of ACL: EMNLP 2021, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 2959–2966. [CrossRef]

11. Mohammad, S.M.; Kiritchenko, S.; Sobhani, P.; Zhu, X.; Cherry, C. A Dataset for Detecting Stance in Tweets. In Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016.
[CrossRef]

65

Mathematics 2023, 11, 2161

12. Augenstein, I.; Rocktäschel, T.; Vlachos, A.; Bontcheva, K. Stance detection with bidirectional conditional encoding. In
Proceedings of the EMNLP 2016—Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5
November 2016; pp. 876–885. [CrossRef]

13. Dos Santos, W.R.; Paraboni, I. Moral stance recognition and polarity classification from twitter and elicited text. In Proceedings
of the International Conference Recent Advances in Natural Language Processing, RANLP, Varna, Bulgaria, 2–4 September 2019;
pp. 1069–1075. [CrossRef]

14. Li, Y.; Sosea, T.; Sawant, A.; Nair, A.J.; Inkpen, D.; Caragea, C. P-Stance: A Large Dataset for Stance Detection in Political Domain.
In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Punta Cana, Dominican
Republic, 1–6 August 2021; pp. 2355–2365. [CrossRef]

15. Derczynski, L.; Bontcheva, K.; Liakata, M.; Procter, R.; Hoi, G.W.S.; Zubiaga, A. SemEval-2017 Task 8: RumourEval: Determining
rumour veracity and support for rumours. arXiv 2017, arXiv:1704.05972.

16. Somasundaran, S.; Wiebe, J. Recognizing stances in online debates. In Proceedings of the ACL-IJCNLP 2009—Joint Conference
of the 47th Annual Meeting of the Association for Computational Linguistics and 4th Internation Joint Conference on Natural
Language Processing of the AFNLP, Singapore, 2–7 August 2009; pp. 226–234. [CrossRef]

17. Somasundaran, S.; Wiebe, J. Recognizing Stances in Ideological On-Line Debates. In Proceedings of the NAACL Workshop, Los
Angeles, CA, USA, 2 June 2010.

18. Walker, M.A.; Anand, P.; Tree, J.E.; Abbott, R.; King, J. A corpus for research on deliberation and debate. In Proceedings of the 8th
International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, 21–27 May 2012; pp. 812–817.

19. Thomas, M.; Pang, B.; Lee, L. Get out the vote: Determining support or opposition from Congressional floor-debate transcripts. In
Proceedings of the COLING/ACL 2006—EMNLP 2006: 2006 Conference on Empirical Methods in Natural Language Processing,
Sydney, Australia, 22–23 July 2006; pp. 327–335.

20. Anand, P.; Walker, M.; Abbott, R.; Tree, J.E.F.; Bowmani, R.; Minor, M. Cats Rule and Dogs Drool!: Classifying Stance in Online
Debate. In Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA
2011), Portland, OR, USA, 24 June 2011; pp. 1–9.

21. Abbott, R.; Walker, M.; Anand, P.; Fox Tree, J.E.; Bowmani, R.; King, J. How can you say such things?!?: Recognizing disagreement
in informal political argument. In Proceedings of the Workshop on Languages in Social Media, Portland, OR, USA, 23 June 2011;
pp. 2–11.

22. Walker, M.A.; Anand, P.; Abbott, R.; Grant, R. Stance classification using dialogic properties of persuasion. In Proceedings of the
NAACL HLT 2012—2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies—Proceedings, Montreal, QC, Canada, 3–8 June 2012; pp. 592–596.

23. Sridhar, D.; Foulds, J.; Huang, B.; Getoor, L.; Walker, M. Joint Models of Disagreement and Stance in Online Debate. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing, Beijing, China, 27–31 July 2015; pp. 116–125.

24. Barriere, V. Hybrid Models for Opinion Analysis in Speech Interactions. In Proceedings of the ICMI, Glasgow, UK, 13–17
November 2017; pp. 647–651.

25. Allaway, E.; McKeown, K. Zero-Shot Stance Detection: A Dataset and Model Using Generalized Topic Representations. arXiv
2020, arXiv:2010.03640.

26. Villa-Cox, R.; Kumar, S.; Babcock, M.; Carley, K.M. Stance in Replies and Quotes (SRQ): A New Dataset For Learning Stance in
Twitter Conversations. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020.

27. Hazarika, D.; Poria, S.; Zimmermann, R.; Mihalcea, R. Emotion Recognition in Conversations with Transfer Learning from
Generative Conversation Modeling. arXiv 2019, arXiv:1910.04980.

28. Lai, M.; Cignarella, A.T.; Hernández Farías, D.I.; Bosco, C.; Patti, V.; Rosso, P. Multilingual stance detection in social media
political debates. Comput. Speech Lang. 2020, 63, 101075. [CrossRef]

29. Hardalov, M.; Arora, A.; Nakov, P.; Augenstein, I. Few-Shot Cross-Lingual Stance Detection with Sentiment-Based Pre-Training.
arXiv 2022, arXiv:2109.06050.

30. Zotova, E.; Agerri, R.; Nuñez, M.; Rigau, G. Multilingual stance detection: The catalonia independence corpus. In Proceedings
of the LREC 2020—12th International Conference on Language Resources and Evaluation, Marseille, France, 11–16 May 2020;
pp. 1368–1375.

31. Zheng, J.; Baheti, A.; Naous, T.; Xu, W.; Ritter, A. STANCEOSAURUS: Classifying Stance Towards Multicultural Misinformation.
In Proceedings of the EMNLP, Abu Dhabi, United Arab Emirates, 7–11 December 2022.

32. Sobhani, P.; Inkpen, D.; Zhu, X. A Dataset for Multi-Target Stance Classification. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Volume 2, pp. 551–557.

33. Vamvas, J.; Sennrich, R. X-stance: A Multilingual Multi-Target Dataset for Stance Detection. In Proceedings of the SwissText,
Zurich, Switzerland, 23–25 June 2020.

34. Deng, R.; Panl, L.; Clavel, C. Domain Adaptation for Stance Detection towards Unseen Target on Social Media. In Proceedings
of the 2022 10th International Conference on Affective Computing and Intelligent Interaction, ACII 2022, Nara, Japan, 18–21
October 2022. [CrossRef]

35. Hosseinia, M.; Dragut, E.; Mukherjee, A. Stance Prediction for Contemporary Issues: Data and Experiments. arXiv 2020,
arXiv:2006.00052.

66

Mathematics 2023, 11, 2161

36. Barriere, V.; Jacquet, G. How does a pre-trained transformer integrate contextual keywords? Application to humanitarian
computing. In Proceedings of the International ISCRAM Conference, Blacksburg, VA, USA, May 2019 2021; pp. 766–771.

37. Hardalov, M.; Arora, A.; Nakov, P.; Augenstein, I. Cross-Domain Label-Adaptive Stance Detection. In Proceedings of the EMNLP,
Virtual, 7–11 November 2021; Volume 19.

38. Augenstein, I.; Ruder, S.; Søgaard, A. Multi-Task learning of pairwise sequence classification tasks over disparate label spaces.
In Proceedings of the NAACL HLT 2018—2018 Conference North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1, pp. 1896–1906.

39. Barriere, V.; Balahur, A.; Ravenet, B. Debating Europe: A Multilingual Multi-Target Stance Classification Dataset of Online
Debates. In Proceedings of the First Workshop on Natural Language Processing for Political Sciences (PoliticalNLP), LREC,
Marseille, France, 20–25 June 2022; European Language Resources Association: Marseille, France, 2022; pp. 16–21.

40. Bai, F.; Ritter, A.; Xu, W. Pre-train or Annotate? Domain Adaptation with a Constrained Budget. In Proceedings of the EMNLP
2021—2021 Conference on Empirical Methods in Natural Language Processing, Virtual, 7–11 November 2021; pp. 5002–5015.

41. Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of the ACL, Cambridge,
MA, USA, 26–30 June 1995; pp. 189–196. [CrossRef]

42. Zhu, X.; Ghahramani, Z. Learning from Labeled and Unlabelled Data with Label Propagation; Technical Report; Technical Report
CMU-CALD-02-107; Carnegie Mellon University: Pittsburgh, PA, USA, 2002.

43. Zhou, D.; Bousquet, O.; Navin Lal, T.; Weston, J.; Schölkopf, B. Learning with Local and Global Consistency. In Proceedings of
the Advances in Neural Information Processing Systems, Vancouver, Canada, 8–13 December 2003. [CrossRef]

44. Giasemidis, G.; Kaplis, N.; Agrafiotis, I.; Nurse, J.R. A Semi-Supervised Approach to Message Stance Classification. IEEE Trans.
Knowl. Data Eng. 2020, 32, 1–11. [CrossRef]

45. Glandt, K.; Khanal, S.; Li, Y.; Caragea, D.; Caragea, C. Stance Detection in COVID-19 Tweets. In Proceedings of the ACL-IJCNLP,
Virtual, 1–6 August 2021; pp. 1596–1611. [CrossRef]

46. Wei, C.; Sohn, K.; Mellina, C.; Yuille, A.; Yang, F. CReST: A Class-Rebalancing Self-Training Framework for Imbalanced
Semi-Supervised Learning. In Proceedings of the CVPR, Nashville, TN, USA, 20–25 June 2021.

47. Klie, J.C.; Bugert, M.; Boullosa, B.; de Castilho, R.E.; Gurevych, I. The INCEpTION Platform: Machine-Assisted and Knowledge-
Oriented Interactive Annotation. In Proceedings of the International Conference on Computational Linguistics, Santa Fe, NM,
USA, 20–26 August 2018; pp. 5–9.

48. Küçük, D.; Fazli, C.A. Stance detection: A survey. ACM Comput. Surv. 2020, 53, 1–37. [CrossRef]
49. Krippendorff, K. Content Analysis: An Introduction to Its Methodology; SAGE Publications: Los Angeles, CA, USA, 2013. [CrossRef]
50. Joseph, K.; Shugars, S.; Gallagher, R.; Green, J.; Mathé, A.Q.; An, Z.; Lazer, D. (Mis)alignment Between Stance Expressed in Social

Media Data and Public Opinion Surveys. In Proceedings of the EMNLP 2021—2021 Conference on Empirical Methods in Natural
Language Processing, Virtual, 7–11 November 2021; pp. 312–324. [CrossRef]

51. Yin, W.; Hay, J.; Roth, D. Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach. In Proceedings
of the EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019; pp. 3914–3923. [CrossRef]

52. Rosenstein, M.T.; Marx, Z.; Kaelbling, L.P.; Dietterich, T.G. To transfer or not to transfer. In Proceedings of the NIPS 2005
Workshop Transfer Learning, Vancouver, BC, Canada, 5–8 December 2005; Volume 898, p. 3.

53. Ruder, S. Neural Transfer Learning for Natural Language Processing. Ph.D. Thesis, University of Galway, Galway, Ireland, 2019 .
54. Barriere, V.; Balahur, A. Improving Sentiment Analysis over non-English Tweets using Multilingual Transformers and Automatic

Translation for Data-Augmentation. In Proceedings of the COLING, Barcelona, Spain, 12 December 2020.
55. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s

Transformers: State-of-the-art Natural Language Processing. arXiv 2019, arXiv:1910.03771.
56. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov, V.

Unsupervised Cross-Lingual Representation Learning at Scale. arXiv 2020, arXiv:1911.02116. [CrossRef]
57. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations, Banff, AB, Canada, 14–16 April 2014; pp. 1–13. http://arxiv.org/abs/1412.6980 .
58. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

59. Bondarenko, A.; Fröbe, M.; Kiesel, J.; Schlatt, F.; Barriere, V.; Ravenet, B.; Hemamou, L.; Luck, S.; Reimer, J.H.; Stein, B.; et al.
Overview of Touché, 2023: Argument and Causal Retrieval. In Proceedings of the ECIR, Dublin, Ireland, 2–6 April 2023.

60. Mirzakhmedova, N.; Kiesel, J.; Alshomary, M.; Heinrich, M.; Handke, N.; Cai, X.; Barriere, V.; Dastgheib, D.; Ghahroodi,
O.; Sadraei, M.A.; et al. The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments. arXiv 2023,
arXiv:2301.13771.

67

Mathematics 2023, 11, 2161

61. Pelachaud, C. Multimodal Expressive Embodied Conversational Agents. In Proceedings of the 13th annual ACM International
Conference on Multimedia, Singapore, 6–11 November 2005; pp. 683–689. [CrossRef]

62. Argyle, L.P.; Busby, E.; Gubler, J.; Bail, C.; Howe, T.; Rytting, C.; Wingate, D. AI Chat Assistants can Improve Conversations about
Divisive Topics. arXiv 2023, arXiv:2302.07268v1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

68

Citation: Lee, M. A Mathematical

Interpretation of Autoregressive

Generative Pre-Trained Transformer

and Self-Supervised Learning.

Mathematics 2023, 11, 2451. https://

doi.org/10.3390/math11112451

Academic Editor: Florentina Hristea

Received: 29 April 2023

Revised: 23 May 2023

Accepted: 23 May 2023

Published: 25 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Mathematical Interpretation of Autoregressive Generative
Pre-Trained Transformer and Self-Supervised Learning

Minhyeok Lee

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
mlee@cau.ac.kr

Abstract: In this paper, we present a rigorous mathematical examination of generative pre-trained
transformer (GPT) models and their autoregressive self-supervised learning mechanisms. We begin
by defining natural language space and knowledge space, which are two key concepts for under-
standing the dimensionality reduction process in GPT-based large language models (LLMs). By
exploring projection functions and their inverses, we establish a framework for analyzing the lan-
guage generation capabilities of these models. We then investigate the GPT representation space,
examining its implications for the models’ approximation properties. Finally, we discuss the limita-
tions and challenges of GPT models and their learning mechanisms, considering trade-offs between
complexity and generalization, as well as the implications of incomplete inverse projection func-
tions. Our findings demonstrate that GPT models possess the capability to encode knowledge into
low-dimensional vectors through their autoregressive self-supervised learning mechanism. This com-
prehensive analysis provides a solid mathematical foundation for future advancements in GPT-based
LLMs, promising advancements in natural language processing tasks such as language translation,
text summarization, and question answering due to improved understanding and optimization of
model training and performance.

Keywords: generative pre-trained transformer; GPT; ChatGPT; self-supervised learning; deep
learning; natural language processing; NLP

MSC: 68T27

1. Introduction

The recent advent of generative pre-trained transformer (GPT) models [1–4], a class
of large-scale deep learning models, has led to an increasing focus on their applica-
tions in the field of natural language processing (NLP) [5–11] and artificial intelligence
(AI) [12–15]. These GPT-based models, including notable instances such as ChatGPT [2],
have demonstrated remarkable capabilities in generating human-like text and understand-
ing intricate linguistic patterns. As a result, their potential to transform various domains,
ranging from machine translation to question-answering systems, has garnered significant
attention from both academia and industry. Despite the widespread interest in GPT-based
large language models (LLMs) and their impressive performance [16,17], the mathematical
underpinnings of these models and their training methods, specifically autoregressive
self-supervised learning, remain relatively unexplored.

This paper aims to bridge the gap between the empirical success of GPT-based LLMs
and the theoretical understanding of their fundamental properties. To this end, we delve
into the mathematical framework that underlies GPT models and autoregressive self-
supervised learning [18–20], seeking a mathematical interpretation of the mechanisms that
contribute to their impressive language generation capabilities. By providing a formal
analysis of GPT-based LLMs, we hope to lay the groundwork for a more systematic
exploration of their properties, limitations, and potential improvements.

Mathematics 2023, 11, 2451. https://doi.org/10.3390/math11112451 https://www.mdpi.com/journal/mathematics
69

Mathematics 2023, 11, 2451

In order to establish a comprehensive mathematical foundation, we begin by defining
the concept of a natural language space, which encompasses all possible human language
expressions. We then introduce the notion of a knowledge space, a lower-dimensional
space containing abstract representations of the information conveyed by expressions in
the natural language space. By considering projection functions and their inverses, we
develop a framework for understanding the process of dimensionality reduction in the
context of GPT-based LLMs while preserving the meaning of linguistic expressions.

Furthermore, we examine the representation space of GPT models, which is used to
encode input sentences or expressions as high-dimensional vectors. We discuss the smoothness
of this space and its implications for the functionality of GPT models as approximations of
projection functions. By considering the interplay between the natural language space, the
knowledge space, and the GPT representation space, we provide insights into the inner
workings of these models and their capacity to capture and manipulate linguistic information.

Additionally, we address the challenges and limitations of GPT models and autore-
gressive self-supervised learning, focusing on the trade-offs between model complexity
and generalization capabilities. We also investigate the implications of incomplete inverse
projection functions, which may hinder the ability of GPT-based models to accurately
represent certain types of knowledge or meaning.

Given the context, this paper is dedicated to exploring several critical research aspects:

• First, it seeks to formally define the natural language space and the knowledge space
to foster an understanding of the dimensionality reduction process in GPT-based
LLMs.

• Second, it aims to elucidate the role of projection functions and their inverses in the
language generation capabilities of these models.

• Third, it endeavors to identify the properties of the GPT representation space and
analyze how these properties affect the models’ approximation capabilities.

• Lastly, it contemplates the limitations and challenges of GPT models and autoregres-
sive self-supervised learning, with a special focus on aspects such as model complexity,
generalization capabilities, and the completeness of inverse projection functions.

Through this comprehensive analysis, we hope to contribute to the ongoing discourse
surrounding GPT-based LLMs and provide a solid mathematical foundation for future
advancements in the field.

2. Preliminaries

In this section, we establish a solid foundation on the underlying principles and
mechanics of deep learning and GPT models, which is vital for readers who may not
be intimately familiar with these concepts. This understanding is indispensable for the
more advanced discourse that follows in the subsequent sections, where we delve into
the functional intricacies of GPT models in the context of autoregressive self-supervised
learning. We introduce formalized definitions and concepts, which are instrumental in
these discussions, to provide a rigorous, mathematical depiction of how GPT-based models
work. This includes a thorough understanding of how GPT models, comprised of stacked
non-linear neural network layers with attention mechanisms, map the natural language
space into the knowledge space via the intermediate layers, thus enabling these models to
effectively capture and represent the semantic essence of natural language.

2.1. Deep Learning Models

Deep learning models are a class of machine learning models that consist of multiple
layers of interconnected artificial neurons [21]. These models are designed to learn hierar-
chical representations from input data by minimizing a loss function that quantifies the
discrepancy between the model’s predictions and the ground truth. A deep learning model
f : X → Y is a function that maps input data from a space X to a target space Y . The
model is composed of L layers, and each layer l ∈ {1, . . . , L} consists of a set of neurons
Nl = {nl

1, . . . , nl
kl
}, where kl is the number of neurons in layer l.

70

Mathematics 2023, 11, 2451

Definition 1 (Activation function [21]). An activation function σ : R → R is a non-linear func-
tion applied element-wise to the output of a neuron. It is assumed to be differentiable and monotonic.

For each neuron nl
i ∈ Nl , let al

i denote its pre-activation value and zl
i denote its post-

activation value. The pre-activation value is a linear combination of the outputs from the
neurons in the previous layer, and the post-activation value is obtained by applying the
activation function to the pre-activation value:

al
i =

kl−1

∑
j=1

wl
ijz

l−1
j + bl

i , (1)

zl
i = σ(al

i), (2)

where wl
ij is the weight connecting neuron nl−1

j to neuron nl
i , and bl

i is the bias term for

neuron nl
i . In this context, σ(·) represents the activation function as defined in Definition 1.

A deep learning model can be viewed as a composition of functions f = f L ◦ · · · ◦ f 1,
where each function f l : Rkl−1 → Rkl represents the operation performed by layer l. The
model’s parameters, Θ = {Wl , bl}L

l=1, where Wl ∈ Rkl×kl−1 is the weight matrix for layer
l and bl ∈ Rkl is the bias vector for layer l, are optimized by minimizing a loss function
L(Θ;D), where D denotes the training dataset.

Remark 1. The backpropagation algorithm computes the gradient of the loss function with respect
to the model’s parameters, ∇ΘL(Θ;D), by applying the chain rule of differentiation. This gradient
is used to update the model’s parameters iteratively via gradient-based optimization methods, such
as stochastic gradient descent (SGD) or variants thereof.

Theorem 1 (Universal Approximation Theorem [22]). Let σ : R → R be a continuous and
nonconstant activation function. Given any continuous function g : Rd → R defined on a compact
set C ⊆ Rd and any ε > 0, there exists a feedforward neural network with one hidden layer and
width k1, using activation function σ(·), such that the neural network can approximate g(·) with
an error less than ε, i.e.,

sup
x∈K

| f (x)− g(x)| < ε. (3)

Theorem 1 states that a sufficiently wide neural network with a single hidden layer
can approximate any continuous function with arbitrary accuracy. This theorem highlights
the expressive power of deep learning models.

2.2. Generative Pre-Trained Transformer

A GPT model is composed of several layers of neural network modules, each consist-
ing of layer normalization, multi-head attention, and dropout functionalities. The model
integrates L number of transformer blocks, each of which houses a residual module encap-
sulating layer normalization, multi-head attention, dropout, and a fully connected layer.
This systematic arrangement and interaction of modules and layers contribute to the robust
performance of the GPT model. Figure 1 illustrates the architecture of the GPT model, and
Definition 2 provides a formal description of the GPT model.

71

Mathematics 2023, 11, 2451

Figure 1. Neural Network Architecture of GPT.

Definition 2 (Generative Pre-trained Transformer (GPT) [4]). A GPT is an autoregressive
self-supervised learning model that employs the Transformer architecture for natural language
processing tasks. Given an input sequence of tokens x = (x1, x2, . . . , xT), where xt ∈ X for
t = 1, 2, . . . , T, the GPT model learns a probability distribution P(xt|x<t) over the vocabulary X ,
which is conditioned on the preceding tokens x<t = (x1, x2, . . . , xt−1). The conditional probability
distribution P(xt|x<t) esimated by a GPT can be represented by

P(xt|x<t) = fΘ(xt|x<t), ∀t = 1, 2, . . . , T. (4)

In the GPT model, the position information of tokens in the input sequence is crucial
for maintaining the autoregressive property and capturing the sequential dependencies
between tokens. To incorporate this information, the GPT model utilizes a technique called
positional encoding, which adds a fixed sinusoidal encoding to the input embeddings.

Definition 3 (Positional Encoding [23]). The positional encoding function PE : N×N → R

computes the position encoding for each position p ∈ N and each dimension i ∈ N in the input
embedding space as follows [24,25]:

PE(p, i) =

⎧⎪⎪⎨
⎪⎪⎩

sin
(

p

10000
2i
d

)
if i is even,

cos
(

p

10000
2i−1

d

)
if i is odd.

(5)

The positional encoding function incorporates a 10,000 constant, which serves as a
hyperparameter. This value was determined empirically during the original development
of the Transformer model. It is designed to create a balance between the higher and lower
frequency components of the positional encoding. To facilitate the optimization process,
the GPT model employs layer normalization, which is applied to the input of both the
multi-head self-attention and position-wise feedforward sublayers. Layer normalization
helps alleviate the vanishing and exploding gradient problems and accelerates training.

72

Mathematics 2023, 11, 2451

Definition 4 (Layer Normalization [26]). Given an input matrix H ∈ RT×d, layer normaliza-
tion computes the normalized output matrix Ĥ ∈ RT×d as follows:

Ĥij =
Hij − μj√

σ2
j + ε

, (6)

where μj =
1
T ∑T

i=1 Hij and σ2
j = 1

T ∑T
i=1(Hij − μj)

2 are the mean and variance of the j-th feature
across all positions, respectively, and ε > 0 is a small constant for numerical stability.

Definition 5 (Scaled Dot-Product Attention [23]). The scaled dot-product attention function
Attention : RT×d × RT×d × RT×d → RT×d takes as input a query matrix Q ∈ RT×d, a key
matrix K ∈ RT×d, and a value matrix V ∈ RT×d, and it computes the output as follows:

Attention(Q, K, V) = softmax

(
QK�
√

d

)
V, (7)

where
√

d is a scaling factor that prevents the dot products from becoming too large.

In addition to the scaled dot-product attention mechanism, the GPT model employs
the multi-head attention mechanism to capture different aspects of the input sequence.
By having multiple attention heads, the model can learn different types of relationships
between tokens in parallel.

The GPT model consists of a stack of L identical layers, each containing a multi-
head self-attention mechanism, followed by position-wise feedforward networks. The
self-attention mechanism computes a weighted sum of the input embeddings, where the
weights are determined by the compatibility between input tokens.

Definition 6 (Multi-Head Attention [23]). The multi-head attention function MultiHead :
RT×d ×RT×d ×RT×d → RT×d takes as input a query matrix Q ∈ RT×d, a key matrix K ∈ RT×d,
and a value matrix V ∈ RT×d, and it computes the output as follows [27,28]:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO, (8)

where headi = Attention(QWQ
i , KWK

i , VWV
i) for i = 1, 2, . . . , h, with WQ

i , WK
i , WV

i ∈ R
d× d

h

being learnable weight matrices, h being the number of attention heads, and WO ∈ Rd×d being a
learnable output weight matrix.

Beyond the attention mechanism, the GPT model utilizes position-wise feedforward
networks (FFNs) within each layer. These FFNs consist of two linear layers with a non-
linear activation function in between, which allows the model to learn complex non-linear
transformations of the input sequence.

Definition 7 (Position-wise Feedforward Networks [23]). Given an input matrix H ∈ RT×d,
the position-wise feedforward network computes the output matrix H′ ∈ RT×d as follows:

H′ = σH(HW1 + b1)W2 + b2, (9)

where W1 ∈ Rd×d′ , W2 ∈ Rd′×d are learnable weight matrices, and b1 ∈ Rd′ , b2 ∈ Rd are
learnable bias vectors. The activation function σH introduces non-linearity.

The GPT model is trained to maximize the likelihood of the target tokens given the
context tokens. The objective function is the negative log-likelihood of the target tokens:

L(Θ;D) = − ∑
(x,y)∈D

T

∑
t=1

log P(yt|x<t; Θ), (10)

73

Mathematics 2023, 11, 2451

where D is the dataset of input-target pairs (x, y) with y = (y1, y2, . . . , yT) being the
target sequence.

A multitude of research endeavors have been undertaken to investigate the architec-
ture of GPT models and their practical applications. However, the majority of these studies’
pursuits emphasize the exploration of architectural alterations and the development of
fine-tuning methodologies that enhance empirical results [1,3,4,29].

For instance, Radford et al. [4] revealed that language models, when subjected to
training on a novel dataset consisting of millions of webpages, exhibit an inherent ability
to learn specific tasks without the need for any explicit supervision. They identified the
significance of the language model’s capacity in the success of zero-shot task transfer, with
performance improving in a log-linear fashion across tasks. Their most extensive model,
GPT-2, showcased an unparalleled performance on a majority of tested language modeling
datasets, underscoring the potential of language processing systems that learn to perform
tasks via naturally occurring demonstrations.

Similarly, Brown et al. [3] discovered that scaling up language models substantially en-
hances task-agnostic, few-shot, and GPT-3. They trained an autoregressive language model
with a large parameter set, which was significantly larger than any previous non-sparse
language model, and tested its performance in the few-shot setting. Despite acknowledg-
ing certain areas where GPT-3’s few-shot learning struggles, their findings attest to the
remarkable performance of GPT-3 across a range of NLP tasks.

Kaplan et al. [29] investigated the empirical scaling laws pertinent to language model
performance on the cross-entropy loss, observing that the loss scales as a power-law with
model, dataset size, and the amount of computation used in the training process. They
noted the minimal effects of other features such as network width, despite the fact that
larger models are significantly more sample-efficient.

However, notwithstanding the compelling empirical results of these studies, there
exists a conspicuous gap in our understanding of the model’s behavior from a mathematical
perspective. This gap is exactly what our research aspires to fill. We aim to provide
a functional analysis of GPT, contributing to a deeper comprehension of the model’s
properties and elucidating the mechanisms that drive its performance.

2.3. Autoregressive Self-Supervised Learning

Definition 8 (Autoregressive Self-Supervised Learning [4]). Autoregressive self-supervised
learning is a learning paradigm in which a model is trained to predict the next token in a se-
quence, given the preceding tokens, without using any labeled data [19]. The model learns a
probability distribution P(xt|x<t; Θ) over the vocabulary X , conditioned on the context tokens
x<t = (x1, x2, . . . , xt−1), where Θ denotes the model’s parameters.

Definition 9 (Token Probability Estimation [4]). In autoregressive self-supervised learning,
token probability estimation refers to the process of computing the probability of a token xt ∈ X
given the context tokens x<t. Given a model with parameters Θ, the token probability estimation
can be defined as:

P̂(xt|x<t; Θ) = fΘ(x<t), (11)

where fΘ is a function parameterized by Θ that maps the context tokens x<t to the estimated
probability distribution over the vocabulary X .

In the context of autoregressive self-supervised learning, the function fΘ in Definition 9
is often implemented using deep neural networks, such as transformers or recurrent neural
networks (RNNs). These architectures are designed to capture complex dependencies
between tokens and are capable of representing a wide range of probability distributions
over the vocabulary X . In particular, the choice of the function fΘ and its parameterization
can have a significant impact on the model’s ability to learn the true underlying data-
generating process.

74

Mathematics 2023, 11, 2451

Assumption 1 (Markov Assumption). For autoregressive self-supervised learning, it is assumed
that the conditional probability of a token xt depends only on a fixed number of preceding tokens x<t.
This is also known as the Markov assumption, which simplifies the modeling of the joint probability
distribution over token sequences.

Assumption 2 (Smoothness). For autoregressive self-supervised learning, we assume that the
function fΘ in Definition 9 is smooth with respect to the model parameters Θ. This implies that
small changes in the model parameters will result in small changes in the estimated probability
distribution over the vocabulary X .

A key implication of Assumption 2 is that the optimization landscape of the autoregres-
sive self-supervised learning problem is characterized by a continuous and differentiable
space with respect to the model parameters Θ. This property allows the use of gradient-based
optimization techniques, such as Adam and RMSProp, to iteratively update the model param-
eters and minimize the objective function in Equation (15). Furthermore, under appropriate
conditions, convergence to a local minimum or stationary point can be guaranteed.

Definition 10 (Token Context Window [4]). A token context window of size w ∈ N is a fixed-
size sliding window that captures the w most recent tokens in a sequence. Given a sequence
x = (x1, x2, . . . , xT), the token context window Cw

t (x) at position t ∈ 1, . . . , T is defined as
Cw

t (x) = (xt−w+1, xt−w+2, . . . , xt), where 1 ≤ t − w + 1.

Remark 2. In practice, the token context window size w is often chosen to balance the trade-off
between computational complexity and the capacity to capture long-range dependencies in the
input sequences.

It is important to note that the choice of the token context window size w in
Definition 10 can be influenced by the inherent structure and dependencies in the data. A
larger context window can potentially capture longer-range dependencies, but it may also
increase the computational complexity of the model and lead to overfitting. Conversely, a
smaller context window reduces computational complexity but may fail to capture impor-
tant dependencies between tokens. In practice, the optimal context window size is often
determined using model selection techniques, such as cross-validation.

Definition 11 (Token Autocorrelation). Token autocorrelation is a measure of the dependency
between tokens at different positions in a sequence. Given a sequence x = (x1, x2, . . . , xT), the
token autocorrelation at lag k ∈ 1, 2, . . . , T − 1 is defined as:

ρk(x) =
∑T

t=k+1(xt − x̄)(xt−k − x̄)

∑T
t=1(xt − x̄)2

, (12)

where x̄ denotes the mean of the sequence x.

Remark 3. The token autocorrelation can be used to analyze the statistical dependencies be-
tween tokens in a sequence, which can inform the choice of the token context window size w in
Definition 10.

Token autocorrelation, as defined in Definition 11, can also provide insights into the ap-
propriate choice of the function fΘ in Definition 9. For example, if the token autocorrelation
decays rapidly with increasing lag, it may indicate that a simpler model, such as an RNN
with a small hidden state, could be sufficient to capture the dependencies between tokens.
On the other hand, if the token autocorrelation decays slowly or exhibits periodic patterns,
more complex models, such as transformers with multiple layers and attention mechanisms,
might be necessary to accurately represent the underlying data-generating process.

75

Mathematics 2023, 11, 2451

Definition 12 (Conditional Entropy [30]). The conditional entropy H(Xt|X<t) is a measure of
the uncertainty in a random variable Xt given the values of X<t. The conditional entropy is defined as

H(Xt|X<t) = − ∑
xt∈X

∑
x<t∈X t−1

P(xt, x<t) log P(xt|x<t), (13)

where P(xt, x<t) denotes the joint probability of observing the sequence (x<t, xt), and P(xt|x<t)
represents the conditional probability of xt given x<t.

Definition 13 (Perplexity [31]). Perplexity is a measure of the average uncertainty in predicting
the next token in a sequence given the context tokens. The perplexity of a probability distribution
P(xt|x<t; Θ), given the context tokens x<t, is defined as the exponential of the conditional entropy:

Perplexity(P(xt|x<t; Θ)) = exp(H(Xt|X<t)), (14)

where H(Xt|X<t) denotes the conditional entropy as defined in Definition 12.

Remark 4. Lower perplexity values indicate a better model fit, as the model assigns higher proba-
bilities to the observed sequences. Perplexity is often used as a performance metric for autoregressive
self-supervised learning models.

Given Definition 8, Assumption 1, and Definition 10, the objective function for training
an autoregressive self-supervised learning model can be formulated as follows:

L(Θ;D) = − ∑
x∈D

T

∑
t=1

log P(xt|Cw
t (x); Θ), (15)

where D is the dataset of input sequences x and Θ denotes the model’s parameters.

Proposition 1. Under the Markov assumption in Assumption 1 and given a token context window
of size w as in Definition 10, the autoregressive self-supervised learning objective in Equation (15)
converges to the true conditional probability distribution of the underlying data-generating process
as the size of the dataset D goes to infinity, provided that the model has sufficient capacity and
appropriate optimization techniques are employed.

Proposition 2. The conditional entropy H(Xt|X<t) of the true data-generating process is upper-
bounded by the logarithm of the size of the vocabulary X , i.e., H(Xt|X<t) ≤ log |X |.

Proof. The conditional entropy H(Xt|X<t) is a function of the joint probability distri-
bution P(xt, x<t) and the conditional probability distribution P(xt|x<t). By definition,
0 ≤ P(xt|x<t) ≤ 1, and the maximum value of the conditional entropy occurs when
P(xt|x<t) =

1
|X | for all xt ∈ X . In this case, the conditional entropy becomes H(Xt|X<t) =

log |X |. Therefore, H(Xt|X<t) ≤ log |X |.
It is worth noting that the bound on the conditional entropy in Proposition 2 has

important implications for the optimization of autoregressive self-supervised learning
models. Since the conditional entropy is upper-bounded by the logarithm of the size of
the vocabulary X , it follows that the perplexity, as defined in Definition 13, is also upper-
bounded by |X |. This provides an absolute reference point for comparing the performance of
different models as well as a theoretical limit on the achievable perplexity. In practice, however,
the true conditional entropy of the data-generating process may be much lower than the bound,
and the choice of an appropriate model and optimization technique can lead to significant
improvements in perplexity over a naïve uniform distribution over the vocabulary.

Definition 14 (GPT Autoregressive Self-Supervised Learning [4]). Let G be a GPT model as
defined in Definition 2. The autoregressive self-supervised learning of G is the process of training

76

Mathematics 2023, 11, 2451

the model by optimizing the objective function in Equation (15), where Θ represents the parameters
of G and D is the dataset of input sequences.

Assumption 3 (Stationary Data-generating Process). We assume that the dataset D is generated
by a stationary data-generating process; i.e., the joint probability distribution of the tokens in the
sequences does not change over time.

Remark 5. Assumption 3 simplifies the analysis of the convergence properties of autoregressive
self-supervised learning. In practice, the data-generating process may be non-stationary, and the
model may need to adapt to the changing distribution over time.

Proposition 3. Under the Markov assumption in Assumption 1 and given a token context window
of size w as in Definition 10, the GPT autoregressive self-supervised learning process in Definition 14
converges to the true conditional probability distribution of the underlying data-generating process
as the size of the dataset D goes to infinity, provided that the model has sufficient capacity and
appropriate optimization techniques are employed.

Proof. Given Definition 8 and Definition 14, the objective function for training a GPT
model using autoregressive self-supervised learning can be formulated as in Equation (15).
The proof of Proposition 3 follows directly from Proposition 1.

Example 1 (GPT and Autoregressive Self-Supervised Learning). Let G be a GPT model and
D be a dataset of text sequences. We can train G using autoregressive self-supervised learning, as
described in Definition 14. By optimizing the objective function in Equation (15), we can learn a
conditional probability distribution over the vocabulary X that captures the statistical dependencies
between tokens in the input sequences. Consider a GPT model, G, trained on the dataset D that
contains English sentences. When the model encounters the sentence "The quick brown fox jumps
over the lazy dog", it predicts the next word in the sentence given the previous words. For example,
after processing "The quick brown fox jumps", the model predicts "over" as the most likely next
word. This demonstrates the use of autoregressive self-supervised learning, where the model learns
the conditional probability distribution over the vocabulary that captures the statistical dependencies
between words in a sentence.

3. Natural Language Space

Definition 15 (Natural Language Space). The natural language space L is a high-dimensional
space that contains all possible human language sentences or expressions, where each point in the
space corresponds to a unique sentence or expression. Each point can be represented as a vector in a
high-dimensional space with dL being the dimensionality of the natural language space.

Definition 16 (Vector Representation of Sentences). A vector representation function f : L →
RdL maps sentences or expressions in the natural language space L to points in a high-dimensional
space, typically RdL , where each point is represented as a unique vector. The function f ensures that
each sentence or expression s ∈ L has a corresponding vector vs ∈ RdL .

Definition 17 (Knowledge Space). The knowledge space K is a lower-dimensional space that
contains abstract representations of the information or meaning conveyed by sentences or expressions
in the natural language space L. Each point in the knowledge space can be represented as a vector in a
relatively lower-dimensional space with DK < DL being the dimensionality of the knowledge space.

Assumption 4 (Smoothness of Natural Language Space). We assume that the natural language
space L is smooth, meaning that small changes in the coordinates of a point in the space correspond to
small changes in the meaning or information content of the corresponding sentence or expression.

77

Mathematics 2023, 11, 2451

Assumption 5 (Smoothness of Knowledge Space). We assume that the knowledge space K is
smooth, meaning that small changes in the coordinates of a point in the space correspond to small
changes in the underlying information or meaning represented by the point.

Assumption 6 (Locality of Projection Function). We assume that the projection function p :
L → K is local, meaning that if two sentences or expressions s1, s2 ∈ L are similar in meaning
or information content, then their projections p(s1), p(s2) ∈ K are also similar in their abstract
representations of information or meaning.

Definition 18 (Projection Function). A projection function p : L → K maps points in the
natural language space L to points in the knowledge space K, such that the information or meaning
conveyed by a sentence or expression in L is preserved as an abstract representation in K.

Lemma 1 (Existence of a Projection Function). There exists a projection function p : L → K
that maps points in the natural language space L to points in the knowledge space K, preserving the
information or meaning conveyed by the corresponding sentence or expression.

Proof. Under Assumptions 4 and 5, both the natural language space L and the knowledge
space K are smooth. Thus, it is possible to define a continuous mapping between these
spaces. Furthermore, since the dimensionality of the knowledge space is lower than that
of the natural language space, there exists a projection function p : L → K that maps
points in L to points in K while preserving the information or meaning conveyed by the
corresponding sentence or expression.

This lemma establishes the foundational existence of the projection function, facilitating
Lemma 2, which discusses the composition of this projection function and its inverse.

Example 2 (Projection of Natural Language Space to Knowledge Space). Consider a sentence
in the natural language space L. Let s ∈ L represent a specific sentence or expression, with vector
representation vs ∈ RdL . We can define a projection function p : L → K that maps the sentence s to
a point k ∈ K, with vector representation vk ∈ RdK , such that vk = p(vs). Consider the sentence
"London is the capital of England" in the natural language space L. This sentence or expression
s ∈ L can be represented as a vector vs ∈ RdL . Using a projection function p : L → K, we map
this sentence to a point k ∈ K in the knowledge space, which is, indeed, challenging to illustrate,
but it might be a set of relationships of ("London", "is capital of", "England"). This illustrates
how a projection function can convert a sentence from the natural language space to a more formal
representation in the knowledge space.

Definition 19 (Similarity Metric [32]). A similarity metric d : K×K → R≥0 is a function that
measures the similarity between two points in the knowledge space K. It satisfies the following
properties for all k1, k2, k3 ∈ K:

1. d(k1, k2) ≥ 0 (non-negativity);
2. d(k1, k2) = 0 if and only if k1 = k2 (identity of indiscernibles);
3. d(k1, k2) = d(k2, k1) (symmetry); and
4. d(k1, k3) ≤ d(k1, k2) + d(k2, k3) (triangle inequality).

Remark 6. Under the smoothness Assumptions 4 and 5, the projection function p preserves the
similarity between sentences or expressions in L as measured by the similarity metric d in K. In
other words, if s1, s2 ∈ L are similar in meaning or information content, then d(p(s1), p(s2)) will
be small.

Definition 20 (Inverse Projection Function). An inverse projection function p−1 : K → L
maps points in the knowledge space K back to points in the natural language space L, such that the
information or meaning represented by a point in K is transformed into a corresponding sentence or
expression in L.

78

Mathematics 2023, 11, 2451

Assumption 7 (Existence of an Inverse Projection Function). We assume that there exists an
inverse projection function p−1 : K → L that maps points in the knowledge space K back to points
in the natural language space L, transforming the information or meaning represented by a point in
K into a corresponding sentence or expression in L.

Remark 7. A human can be considered as an example of an inverse projection function p−1 : K →
L. When a person is given an abstract representation of information or meaning from the knowledge
space K, they can generate a corresponding sentence or expression in the natural language space L.
This process involves the cognitive ability to understand the meaning or information represented by
a point in K and to transform it into a coherent and comprehensible sentence or expression in L.
Thus, the human ability to communicate and express information can be viewed as an instantiation
of the inverse projection function p−1.

Lemma 2 (Projection-Inverse Projection Composition). Given a projection function p : L → K
and an inverse projection function p−1 : K → L, the composition of these functions, denoted by
p−1 ◦ p : L → L, is an approximate identity mapping on the natural language space L.

Proof. Let s ∈ L be an arbitrary sentence or expression, and let k = p(s) ∈ K be the
projection of s into the knowledge space. Since p−1 : K → L is an inverse projection
function, it maps k back to a sentence or expression s′ = p−1(k) ∈ L.

Now, consider the composition of the projection and inverse projection functions: p−1 ◦
p(s) = p−1(k) = s′. By Assumption 7, the information or meaning represented by k is trans-
formed into the corresponding sentence or expression s′. Under
Assumptions 4 and 5, we can deduce that s′ is similar in meaning or information con-
tent to the original sentence s.

While s′ might not be identical to s, their similarity in meaning or information content
implies that the composition p−1 ◦ p is an approximate identity mapping on the natural
language space L. This holds for any arbitrary s ∈ L.

This lemma builds upon Lemma 1 and forms the underpinning of Theorem 2, which
uses this approximate identity mapping for dimensionality reduction.

Theorem 2 (Dimensionality Reduction of Natural Language Space). Given a natural language
space L with dimensionality DL and a knowledge space K with dimensionality DK, where DK <
DL, there exists a projection function p : L → K and an inverse projection function p−1 : K → L
that allows for dimensionality reduction while preserving the information or meaning conveyed by
sentences or expressions in L.

Proof. By Lemma 1, we have the existence of a projection function p : L → K that maps
points in the natural language space L to points in the knowledge space K, preserving the
information or meaning conveyed by the corresponding sentence or expression.

By Assumption 7, there exists an inverse projection function p−1 : K → L that
maps points in the knowledge space K back to points in the natural language space L,
transforming the information or meaning represented by a point in K into a corresponding
sentence or expression in L.

As shown in the proof of Lemma 2, the composition p−1 ◦ p is an approximate identity
mapping on the natural language space L. Therefore, the information or meaning conveyed
by sentences or expressions in L is approximately preserved through the projection to K
and the inverse projection back to L.

We now introduce a new assumption concerning the preservation of information or
meaning when points are mapped between the natural language space and the knowl-
edge space.

79

Mathematics 2023, 11, 2451

Assumption 8 (Preservation of Information). We assume that for any sentence or expression
s ∈ L and its projection k ∈ K, the inverse projection function p−1 preserves the information or
meaning conveyed by s such that p−1(k) ≈ s.

This assumption implies that the projection function p and the inverse projection
function p−1 can be used to perform dimensionality reduction on the natural language
space L while preserving the information or meaning conveyed by sentences or expressions
in L.

We proceed to show that the composition of the projection function p and the inverse
projection function p−1 can be used to approximately recover the original sentence or
expression in L.

Proposition 4 (Approximate Recovery). Given a sentence or expression s ∈ L, its projection
k ∈ K, and the inverse projection p−1(k), under Assumption 8, the composition p−1 ◦ p(s) ≈ s.

Proof. By Assumption 8, the inverse projection function p−1 preserves the information
or meaning conveyed by s such that p−1(k) ≈ s. Therefore, the composition p−1 ◦ p(s) =
p−1(p(s)) = p−1(k) ≈ s.

The above proposition demonstrates that the dimensionality reduction can be achieved
while approximately preserving the information or meaning conveyed by sentences or
expressions in the natural language space L. This result justifies the use of the projection
function p and the inverse projection function p−1 for dimensionality reduction in the
natural language space, allowing for a compact representation of human language in a
lower-dimensional knowledge space K.

4. Representation Space of GPT

Definition 21 (Representation Space of GPT). The representation space of a GPT model, denoted
by R, is a high-dimensional space that contains vector representations of tokens or sequences
typically obtained from an intermediate layer of the GPT model, such as the decoder output. Each
point in the representation space can be represented as a vector in a high-dimensional space, typically
RdR , with dR being the dimensionality of the representation space.

In the representation space of a GPT model, tokens and sequences from the natural
language space L are mapped to high-dimensional vectors. This mapping allows for the
manipulation and processing of language data in a continuous and differentiable space,
which is particularly useful for training deep learning models. Importantly, the structure of
the representation space should ideally capture the semantic and syntactic properties of
the language so that similar meanings or structures are represented by nearby points in
the space.

Definition 22 (GPT Vector Representation Function). A GPT vector representation function
h : L → R maps sentences or expressions in the natural language space L to points in the
representation space R, where each point is represented as a unique vector. The function h ensures
that each sentence or expression s ∈ L has a corresponding vector vs ∈ RdR in the representation
space R.

The GPT vector representation function h should be designed to preserve the semantic
and syntactic properties of the language in the representation space. This often involves the
use of continuous embeddings, which can be learned during the training process. As the
GPT model is trained to optimize the autoregressive self-supervised learning objective, the
model implicitly learns a mapping that captures the structure and relations between tokens
and sequences in the natural language space. The resulting representation space should
thus enable the GPT model to reason about and generate natural language text based on
the learned representations.

80

Mathematics 2023, 11, 2451

Assumption 9 (Smoothness of Representation Space). We assume that the representation space
R is smooth, meaning that small changes in the coordinates of a point in the space correspond to
small changes in the information or meaning conveyed by the corresponding token or sequence in
the GPT model.

The smoothness assumption on the representation space implies that the GPT model
can generalize well to unseen examples, as the learned representations of similar tokens
and sequences are expected to be close in the representation space. This smoothness
property is crucial for the GPT model to perform well on a wide range of natural language
understanding and generation tasks, as it allows the model to exploit the structure of
the representation space and make meaningful predictions even for previously unseen
combinations of tokens and sequences.

Definition 23 (GPT Inverse Projection Function). A GPT inverse projection function g : K →
R maps points in the knowledge space K to points in the representation space R, such that the
information or meaning represented by a point in K is transformed into a corresponding vector
representation in R, which can be decoded into a sentence or expression in the natural language
space L by the GPT model.

The GPT inverse projection function g serves as a bridge between the knowledge
space K and the representation space R. By mapping points in the knowledge space
to corresponding vector representations in the representation space, the GPT model can
leverage its learned representations to reason about and manipulate information in the
knowledge space. The existence of such an inverse projection function is essential for
establishing a connection between the GPT model’s representation space and the underlying
knowledge space, allowing the model to effectively access and generate knowledge in the
form of natural language text.

Assumption 10 (Existence of a GPT Inverse Projection Function). We assume that there exists
a GPT inverse projection function g : K → R that maps points in the knowledge space K to points
in the representation space R, transforming the information or meaning represented by a point in K
into a corresponding vector representation in R, which can be decoded into a sentence or expression
in the natural language space L by the GPT model.

Lemma 3 (GPT as an Approximation of p−1 ◦ p). Under Assumptions 9 and 10, a GPT model
trained using autoregressive self-supervised learning, as described in Definition 14, can be considered
as an approximation of the function p−1 ◦ p : L → L.

Proof. Let x ∈ L be a sentence or expression in the natural language space. By Definition 18,
we have p(x) ∈ K, which is the corresponding point in the knowledge space.

Now, consider the GPT inverse projection function g as defined in Definition 23. We
have g(p(x)) ∈ R, which is a point in the representation space. Since GPT is trained
using autoregressive self-supervised learning as described in Definition 14, it learns to
approximate the function p−1 ◦ p : L → L by minimizing the difference between its own
output and the original input.

Let x̂ ∈ L be the output of the GPT model for the input x. By the assumption of the
existence of the GPT inverse projection function (Assumption 10), there exists a function
g : K → R such that g(p(x)) ∈ R.

Under the assumption of smoothness of the representation space (Assumption 9),
small changes in the coordinates of a point in the space correspond to small changes in
the information or meaning conveyed by the corresponding token or sequence in the GPT
model. Since the GPT model is trained to minimize the difference between its output and
the input, we have x̂ ≈ x.

Therefore, the GPT model can be considered as an approximation of the function
p−1 ◦ p : L → L.

81

Mathematics 2023, 11, 2451

Lemma 3 suggests that a well-trained GPT model can approximate the composition of
the projection function p and its inverse p−1. This approximation enables the GPT model to
effectively learn the structure and relations in the natural language space by transforming
input sentences and expressions into a suitable representation space, processing them,
and then transforming the resulting representations back into the natural language space.
This capability allows the GPT model to perform a wide range of natural language under-
standing and generation tasks, as it can manipulate and reason about language data in a
continuous and differentiable space.

Theorem 3 (GPT Representation Space as an Approximation of Knowledge Space). Under
Assumptions 9 and 10, the representation space R of a GPT model trained using autoregressive
self-supervised learning can be considered as an approximation of the knowledge space K, where the
GPT model serves as an approximation of the function p−1 ◦ p.

Proof. Let x ∈ L be a sentence or expression in the natural language space. By Lemma 3,
the GPT model serves as an approximation of the function p−1 ◦ p : L → L, meaning that
the GPT model learns to approximate the transformation from the natural language space
to the knowledge space and back to the natural language space.

By Definition 18, we have p(x) ∈ K, which is the corresponding point in the knowl-
edge space. Now, consider the GPT inverse projection function g as defined in Definition 23.
We have g(p(x)) ∈ R, which is a point in the representation space.

As the GPT model is an approximation of p−1 ◦ p : L → L, it should also learn to
approximate the inverse projection function g that maps points from the knowledge space
to the representation space. Thus, the GPT model learns to approximate the transformation
from the knowledge space to the representation space. Since the GPT model is trained to
minimize the difference between its output and the input, we have g(p(x)) ≈ p(x).

Therefore, under Assumptions 9 and 10, the representation space R of a GPT model
trained using autoregressive self-supervised learning can be considered as an approxima-
tion of the knowledge space K.

Theorem 3 serves as a crucial mathematical underpinning in our exploration of GPT-
based models. It enables us to unravel the internal mathematical workings of these models
by positing the GPT representation space R as an approximation of the knowledge space
K. This formalized definition brings a mathematical rigor to the understanding of the
transformation process that the GPT model performs in mapping the natural language space
L to the knowledge space K and vice versa through its layers of non-linear transformations
and attention mechanisms. The proof of the theorem further buttresses this interpretation.

This assertion can be viewed as an encapsulation of the intuition prevalent among
experts studying GPT-based models. The GPT model is essentially learning to transform
natural language inputs into a dense representation space and vice versa. This dense
representation is what we are referring to as the GPT representation space R. Thus, the
R serves as an approximation of K, capturing the semantic essence of the sentences or
expressions in the natural language space L.

5. Challenges and Limitations of GPT and Autoregressive Self-Supervised Learning

Definition 24 (Incomplete Inverse Projection Function). An incomplete inverse projection
function is an inverse projection function p−1 : K → L that may not perfectly map all points in the
knowledge space K to their corresponding points in the natural language space L. This implies that
certain types of information or meaning may not be adequately represented in L using the inverse
projection function p−1.

The projection function limitation refers to the inability of the projection function
p : L → K and its inverse p−1 : K → L to accurately capture and represent specific
knowledge or meaning within the natural language space L and knowledge space K. This

82

Mathematics 2023, 11, 2451

limitation could be attributed to the complexity of the relationship between these spaces or
the insufficiency of the model’s architecture in representing certain types of knowledge.

Assumption 11 (Incomplete Inverse Projection Function). We assume that the inverse pro-
jection function p−1 : K → L, as described in Assumption 7, may be incomplete in the sense
that it may not adequately map certain types of knowledge or meaning from K to L, as defined in
Definition 24.

Assumption 12 (Projection Function Limitation Impact). We assume that the projection func-
tion limitation could adversely affect the performance of GPT-based models, such as ChatGPT, in
tasks that require precise mapping between the knowledge space K and the natural language space
L. This limitation could manifest as inaccuracies, ambiguities, or inconsistencies in the generated
responses, particularly when dealing with complex or nuanced information.

The impact of the projection function limitation on GPT-based models, as described
in Assumption 12, not only influences the quality of the generated responses but can also
affect the model’s ability to make reliable inferences. In particular, when the projection
function and its inverse fail to accurately map between the knowledge space and the natural
language space, the model may encounter difficulties in synthesizing relevant information,
comprehending contextual clues, and adapting to new or evolving concepts. This limitation
may be exacerbated when handling specialized domains or interdisciplinary subjects where
a precise understanding of terminology, relationships, and dependencies is paramount for
generating coherent and contextually accurate responses.

Remark 8 (Calculation Limitation). Assumption 11 implies that certain types of knowledge,
such as calculation, may be difficult to represent in the natural language space L using the inverse
projection function p−1. Consequently, GPT-based models may face challenges in performing
accurate calculations due to the limitations of their inverse projection function.

Another potential challenge arising from the limitations of the inverse projection
function in GPT-based models is the difficulty in processing and reasoning about abstract
concepts, particularly when they involve logical, mathematical, or scientific principles. Due
to the inherent complexity and often non-linear nature of these concepts, it can be difficult
for the inverse projection function to effectively represent the associated knowledge within
the natural language space. This may lead to suboptimal performance when attempting to
generate responses that require reasoning about abstract or complex ideas, as the model
may struggle to accurately represent and manipulate the relevant information within its
internal representations.

Assumption 12 suggests that GPT-based models might face challenges in accurately
understanding and interpreting certain types of information due to the limitations of
the projection function and its inverse. This could result in a lack of understanding
of the underlying meaning or context of the input data, leading to inappropriate or
irrelevant responses.

Definition 25 (Model Complexity). Model complexity refers to the number of parameters or the
depth of a deep learning model. A model with a higher complexity generally has more parameters or
deeper layers, enabling it to capture more intricate patterns and relationships within the input data.

Corollary 1 (Complexity and Approximation). Given Theorem 1, a deep learning model with a
larger complexity, as defined in Definition 25, is more likely to satisfy the conditions of the Universal
Approximation Theorem, allowing it to approximate a target function with higher accuracy.

Corollary 2 (Complexity and Efficiency Trade-off). Given Definition 25, there exists a trade-off
between model complexity and model efficiency in deep learning models. Increasing the complexity
of a model may improve its ability to approximate a target function, as stated in Corollary 1, but

83

Mathematics 2023, 11, 2451

it may also lead to increased computational costs and resource requirements, thereby reducing the
model’s efficiency.

Moreover, the trade-off between model complexity and efficiency, as described in
Corollary 2, has implications for the practicality and accessibility of GPT-based models.
As these models grow in size and complexity to better approximate target functions, their
computational requirements can become increasingly demanding, making them more diffi-
cult to deploy and maintain in real-world applications. This can be particularly challenging
for smaller organizations or individuals with limited resources who may struggle to harness the
full potential of these large-scale models. Additionally, the increased computational demands
can lead to higher energy consumption and environmental concerns, further highlighting the
need to balance complexity and efficiency in the development of GPT-based models.

Corollary 3 (Model Complexity and Generalization). While increasing model complexity, as
defined in Definition 25, may improve the ability of a deep learning model to approximate a target
function, as stated in Corollary 1, it may also lead to overfitting, resulting in reduced generalization
capabilities. This trade-off between complexity and generalization is an important consideration
when designing and training GPT-based models.

Example 3 (Large Language Models and Universal Approximation). Large language models,
such as GPT-based models, have gained popularity due to their ability to satisfy the conditions of
the Universal Approximation Theorem. The large number of parameters in these models enables
them to capture intricate patterns and relationships within the input data, allowing them to perform
tasks such as natural language understanding and generation with high accuracy. Consider a
large language model such as GPT-3 being utilized for translation tasks. Given a complex sentence
in English, the model, due to its extensive parameter space, is able to understand the intricate
relationships between words and their context, translating it accurately to another language such
as French. This capability demonstrates how the large number of parameters enables GPT-3 to
approximate the intricacies of language translation.

The advantages of large language models, such as GPT-based models, in terms of their
ability to satisfy the conditions of the Universal Approximation Theorem, as described
in Example 3, should not overshadow the potential pitfalls associated with their scale.
As these models grow in size, they may become increasingly susceptible to overfitting,
noise, or biases present in the training data. This can manifest as a heightened sensitivity
to specific patterns, phrases, or concepts within the input data, potentially leading to the
generation of responses that are less adaptable, less diverse, or less contextually appropriate.
Consequently, it is important to carefully consider the impact of model size and complexity
on both the benefits and potential drawbacks associated with GPT-based models.

Example 4 (Large Language Models and Generalization Challenges). While large language
models, such as GPT-based models, excel at capturing intricate patterns and relationships within
input data, they may also face challenges related to generalization. As discussed in Corollary 3, the
trade-off between complexity and generalization can result in overfitting, limiting the model’s ability
to generalize to new, unseen data or contexts. Despite the impressive capabilities of large language
models, generalization remains a challenge. For instance, a GPT-3 model trained predominantly
on English literature might struggle to accurately generate text in the style of an obscure, regional
dialect or an emerging online slang despite its vast parameter space. This example illustrates the
trade-off between complexity and generalization and the resultant risk of overfitting to familiar data
at the expense of novel contexts.

6. Conclusions

In this paper, we have explored the mathematical foundations of GPT-based models
such as ChatGPT, delving into the intricate relationships between the natural language
space L, knowledge space K, and the representation space R. We have formalized key

84

Mathematics 2023, 11, 2451

concepts, definitions, assumptions, and theorems to provide a rigorous understanding of
these models’ underlying mechanisms.

Our investigation has revealed that GPT-based models, when trained using autore-
gressive self-supervised learning, can be considered as approximations of the composition
of the projection function p : L → K and the inverse projection function p−1 : K → L (refer
to the second research aspect in the introduction). Consequently, the GPT representation
space R serves as an approximation of the knowledge space K, capturing and preserving
the information or meaning conveyed by sentences or expressions in L (pertaining to the
first and third research aspects in the introduction).

Notwithstanding their remarkable capabilities, we have identified certain limitations
of GPT-based models stemming from incomplete inverse projection functions, which may
not adequately map all points in the knowledge space K to their corresponding points in
the natural language space L (as outlined in the fourth research aspect in the introduction).
This shortcoming results in challenges, such as difficulties in performing accurate calcu-
lations, which are inherently problematic for models such as ChatGPT (as illustrated in
Examples 3 and 4).

In the pursuit of elucidating the complex mathematical foundations underpinning the
GPT model, particularly its functional aspects denoted as p−1 ◦ p(s), we concede the inher-
ent challenge of directly validating these findings through empirical experimentation due
to their abstract nature. Nonetheless, our endeavor was not solely confined to the construc-
tion of mathematical arguments; instead, we endeavored to make these abstractions more
comprehensible to the readers. To this end, we integrated illustrative examples within our
discourse wherever feasible. These examples, coalesced with our theoretical discourse, are
aimed at providing the readers with a more tangible grasp of the mathematical constructs
that govern the GPT model. The objective of our study was twofold: firstly, to maintain the
requisite mathematical rigor, and secondly, to enhance the accessibility of our exposition to
a broad spectrum of readers. We trust that our efforts have been successful in striking a
harmonious balance between these two critical aspects of academic writing.

This study has provided a mathematical characterization of GPT-based LLMs, estab-
lishing a framework that can serve as a launchpad for future investigations in this domain.
Our findings, particularly the mathematical underpinnings of how GPT models capture and
represent the semantic essence of natural language, present avenues for the optimization
and expansion of these models. By unveiling the limitations of GPT-based models, we open
doors for future research to focus on addressing these challenges, potentially advancing
the development of LLMs that offer more accurate and comprehensive mappings between
natural language and knowledge spaces. Our exploration of GPT as an approximation of
the projection function and its inverse has potential implications for the development of
more efficient, effective, and robust LLMs, thereby driving advancements in the field of
language understanding and generation.

In the broader context, this work has several potential implications for future advance-
ments in the field of GPT-based LLMs. Firstly, our formal definition of the natural language
space L and the knowledge space K, along with the associated projection functions, pro-
vides a strong mathematical foundation for understanding the complex mechanisms under-
lying these models. This understanding can guide future efforts to develop more efficient
dimensionality reduction techniques, which could significantly improve the computational
efficiency of these models.

Moreover, our theoretical analysis of the projection function p and its inverse p−1 may
provide valuable insights for enhancing the language generation capabilities of GPT-based
LLMs. Specifically, our observations regarding the limitations of the inverse projection
function could spur research toward methods for improving these models’ ability to
generate accurate and contextually appropriate responses.

Funding: This work was supported by a research grant funded by Generative Artificial Intelligence
System Inc. (GAIS).

85

Mathematics 2023, 11, 2451

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. In
OpenAI Technical Report; OpenAI Inc.: San Francisco, CA, USA, 2019.

2. OpenAI. GPT-4 Technical Report. In OpenAI Technical Report; OpenAI Inc.: San Francisco, CA, USA, 2023.
3. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
4. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. In

OpenAI Technical Report; OpenAI Inc.: San Francisco, CA, USA, 2018.
5. Tirumala, K.; Markosyan, A.; Zettlemoyer, L.; Aghajanyan, A. Memorization without overfitting: Analyzing the training

dynamics of large language models. Adv. Neural Inf. Process. Syst. 2022, 35, 38274–38290.
6. Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.; Chi, E.H.; Le, Q.V.; Zhou, D. Chain-of-Thought Prompting Elicits Reasoning

in Large Language Models. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA,
29 November 2022.

7. Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.;
Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models.
PLoS Digit. Health 2023, 2, e0000198. [CrossRef] [PubMed]

8. Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper, J.; Catanzaro, B. Megatron-lm: Training multi-billion parameter language
models using model parallelism. arXiv 2019, arXiv:1909.08053.

9. Lee, M. A Mathematical Investigation of Hallucination and Creativity in GPT Models. Mathematics 2023, 11, 2320. [CrossRef]
10. Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-Voss, A.; Lee, K.; Roberts, A.; Brown, T.B.; Song, D.; Erlingsson, U.;

et al. Extracting Training Data from Large Language Models. In Proceedings of the USENIX Security Symposium, Virtual, 11–13
August 2021; Volume 6.

11. Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. Lora: Low-rank adaptation of large language
models. arXiv 2021, arXiv:2106.09685

12. Ko, K.; Yeom, T.; Lee, M. Superstargan: Generative adversarial networks for image-to-image translation in large-scale domains.
Neural Netws. 2023, 162, 330–339. [CrossRef]

13. Ku, H.; Lee, M. TextControlGAN: Text-to-Image Synthesis with Controllable Generative Adversarial Networks. Appl. Sci. 2023,
13, 5098. [CrossRef]

14. Kim, J.; Lee, M. Class-Continuous Conditional Generative Neural Radiance Field. arXiv 2023, arXiv:2301.00950.
15. Kim, I.; Lee, M.; Seok, J. ICEGAN: Inverse covariance estimating generative adversarial network. Mach. Learn. Sci. Technol. 2023,

4, 025008. [CrossRef]
16. Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.Y. BioGPT: Generative pre-trained transformer for biomedical text

generation and mining. Briefings Bioinform. 2022, 23, bbac409. [CrossRef] [PubMed]
17. Zhu, Q.; Zhang, X.; Luo, J. Biologically Inspired Design Concept Generation Using Generative Pre-Trained Transformers. J. Mech.

Des. 2023, 145, 041409. [CrossRef]
18. Albelwi, S. Survey on self-supervised learning: Auxiliary pretext tasks and contrastive learning methods in imaging. Entropy

2022, 24, 551. [CrossRef]
19. Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. IEEE Trans.

Knowl. Data Eng. 2021, 35, 857–876. [CrossRef]
20. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies

2020, 9, 2. [CrossRef]
21. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
22. Lu, Y.; Lu, J. A universal approximation theorem of deep neural networks for expressing probability distributions. Adv. Neural

Inf. Process. Syst. 2020, 33, 3094–3105.
23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.
24. Xu, R.; Wang, X.; Chen, K.; Zhou, B.; Loy, C.C. Positional encoding as spatial inductive bias in gans. In Proceedings of the

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 13569–13578.

25. Zheng, J.; Ramasinghe, S.; Lucey, S. Rethinking positional encoding. arXiv 2021, arXiv:2107.02561
26. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450
27. Li, J.; Wang, X.; Tu, Z.; Lyu, M.R. On the diversity of multi-head attention. Neurocomputing 2021, 454, 14–24. [CrossRef]

86

Mathematics 2023, 11, 2451

28. Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing multi-head self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. arXiv 2019, arXiv:1905.09418.

29. Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws
for neural language models. arXiv 2020, arXiv:2001.08361.

30. Orlitsky, A. Information Theory. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press:
New York, NY, USA, 2003; pp. 751–769. [CrossRef]

31. Brown, P.F.; Della Pietra, S.A.; Della Pietra, V.J.; Lai, J.C.; Mercer, R.L. An estimate of an upper bound for the entropy of English.
Comput. Linguist. 1992, 18, 31–40.

32. Santini, S.; Jain, R. Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 871–883. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

87

Citation: Dugonik, J.; Sepesy Maučec,

M.; Verber, D.; Brest, J. Reduction of

Neural Machine Translation Failures

by Incorporating Statistical Machine

Translation. Mathematics 2023, 11,

2484. https://doi.org/10.3390/

math11112484

Academic Editor: Florentina Hristea

Received: 21 April 2023

Revised: 24 May 2023

Accepted: 25 May 2023

Published: 28 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Reduction of Neural Machine Translation Failures by
Incorporating Statistical Machine Translation

Jani Dugonik *, Mirjam Sepesy Maučec, Domen Verber and Janez Brest

Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia
* Correspondence: jani.dugonik@um.si; Tel.: +386-2-220-7432

Abstract: This paper proposes a hybrid machine translation (HMT) system that improves the quality
of neural machine translation (NMT) by incorporating statistical machine translation (SMT). Therefore,
two NMT systems and two SMT systems were built for the Slovenian–English language pair, each for
translation in one direction. We used a multilingual language model to embed the source sentence
and translations into the same vector space. From each vector, we extracted features based on the
distances and similarities calculated between the source sentence and the NMT translation, and
between the source sentence and the SMT translation. To select the best possible translation, we used
several well-known classifiers to predict which translation system generated a better translation of
the source sentence. The proposed method of combining SMT and NMT in the hybrid system is
novel. Our framework is language-independent and can be applied to other languages supported by
the multilingual language model. Our experiment involved empirical applications. We compared the
performance of the classifiers, and the results demonstrate that our proposed HMT system achieved
notable improvements in the BLEU score, with an increase of 1.5 points and 10.9 points for both
translation directions, respectively.

Keywords: neural machine translation; statistical machine translation; sentence embedding; similarity;
classification; hybrid machine translation

MSC: 68T50

1. Introduction

The statistical machine translation (SMT) paradigm was the primary approach used in
machine translation (MT) research for many years. About a decade ago, neural machine
translation (NMT) emerged and produced remarkable results. As a result, SMT systems
were largely replaced by NMT systems in practical applications. Today, SMT systems are
rarely used, with NMT architectures dominating both research and practical applications
of machine translation. While NMT generally outperforms SMT, there are certain cases
where SMT remains superior. Research has shown that the errors made by NMT and SMT
systems are complementary [1]. For instance, NMT outputs are more prone to accuracy-
related errors, such as mistranslation and omission errors, while both systems tend to
make word-form errors in morphologically rich languages, with NMT performing slightly
better [2].

Languages that share similarities tend to be easier to translate due to the presence of
equivalent linguistic structures. In machine translation, languages are often paired with
English, due largely to the availability of bilingual corpora. The English language is an
analytic language that employs helper words (such as particles and prepositions) and
word order to express relationships between words. As such, the linguistic structures are
relatively simple. Conversely, morphologically rich languages tend to have more complex
linguistic structures, with inflectional languages using inflections to express relationships
between words and having a more relaxed word order. While NMT approaches generally

Mathematics 2023, 11, 2484. https://doi.org/10.3390/math11112484 https://www.mdpi.com/journal/mathematics
88

Mathematics 2023, 11, 2484

outperform SMT for the majority of language phenomena, there are still cases that are
handled better by SMT. For instance, according to [2], SMT may, in some cases, be preferable
for highly inflected languages.

In this paper, we examine the translation between English and the highly inflected
Slovenian language in both directions. We propose a hybrid machine translation sys-
tem that combines both approaches in order to capitalize on their respective strengths.
The main contributions of this paper are to improve NMT translation quality by using
SMT, and to represent the source sentence and both translations as the vectors in the same
vector space, using a multilingual language model. The used multilingual language model,
mBERT [3], supports more than 100 languages, making it versatile across multiple lan-
guages. The source and translation vectors are then utilized to extract features, which are
subsequently fed into classifiers that predict which translation system produced a superior
translation. The proposed method of combining SMT and NMT in the hybrid system is
novel. Our framework is language-independent and can be applied to other languages
supported by the multilingual language model.

The remainder of the paper is organized as follows. Section 2 presents the background
of our research. It contains related work, preliminaries of NMT and SMT, the classification
task, and our aims and research contributions. Section 3 presents the methodology of the
proposed HMT. The experiments and results are described in Section 4. We discuss the
obtained results in Section 5, and conclude the paper with Section 6.

2. Background

In this section, we present the related work and provide the necessary preliminaries
for a better understanding of this paper.

2.1. Related Work

There is no doubt that NMT is currently the prevalent approach to MT. Before NMT,
the most effective SMT systems were based on phrase-based models [4,5]. In these systems,
different models (the translation model, reordering model, language model, etc.) were
trained independently and combined in a log-linear scheme, in which each model was
assigned a different weight by a tuning algorithm [6].

In NMT, there are no separate models; instead, a large network is trained as a
whole [7,8]. This network is trained to transform the source sentence directly into the
target sentence, and words are represented as continuous vectors called word embeddings.
The learned word embeddings capture morphological, syntactic, and semantic similarity
across words [9]. Methods for training word embeddings on raw text often consider the
context in which the word frequently occurs. For MT, it is desirable to embed whole
phrases or sentences instead of single words. To accomplish this, self-attention is used to
find sentence representations [10].

Different NMT architectures have been developed over time, and they generally
exhibit comparable performance. The first standalone architecture was Long Short-Term
Memory (LSTM), which is a sequence-to-sequence encoder–decoder architecture that
uses two Recurrent Neural Networks (RNNs) [7,8]. An encoder network produces a
representation of the source sentence, and a decoder network generates the target sentence
from that representation. LSTM is used as a gated activation function to address the
vanishing gradient problem, which makes it difficult to train RNNs to capture long-range
dependencies [8]. The first architectures represented the source sentence as a fixed-length
vector and different word orders were examined in the source sentence. Bidirectional
RNNs are able to capture both directions and are most commonly used [11]. The concept
of attention was introduced in [11] to avoid a fixed-length source sentence representation.
The attention decoder can place its attention on the parts of the source sentence that are
useful for generating the next word in the translation using time-dependent context vectors.
The attention mechanism is the interface between the encoder and decoder. Afterwards,
convolutional architectures were introduced [12], which have several potential advantages

89

Mathematics 2023, 11, 2484

over RNN models. They reduce sequential computation, and their hierarchical structure
connects distant words via a shorter path. For the translation of long sentences, multiple
convolutional layers are used, which increase the effective context size. Convolutional
models are deeper and often more difficult to train. The attention mechanism called
self-attention relates several positions in the source and target sentences without using
sequence-aligned RNNs or convolutions [10]. The Transformer architecture uses multi-
headed self-attention and is currently one of the most widely used NMT architectures [10].

The authors in [13,14] provide an overview of the literature and approaches to combin-
ing NMT and SMT paradigms. They highlight that, while NMT has become the dominant
approach in recent years, NMT and SMT have complementary strengths. Two categories
of hybrid approaches are discussed. The first category includes methods that incorporate
key ideas or components from SMT into NMT, such as combining NMT scores with SMT
features and incorporating symbolic SMT-style lexical translation tables into the NMT
decoder. The second category involves system combination, where a fully trained SMT
system is combined with an independently trained NMT system, often using rescoring and
reranking methods or minimum Bayes risk (MBR)-based approaches. Various combinations
and cascades of NMT and SMT are explored, demonstrating the flexibility and potential
for improving translation quality through hybrid approaches. Ensembling different NMT
models has been shown to outperform single ones. The number of different NMT models
in ensemble architectures ranges from 2 to up to 72 translation models [8,15]. However,
the decoding speed is significantly worse when using many translation models. The de-
coder needs to apply multiple models rather than only one. It makes sense if the models
complement each other. Models are either trained independently [8] or they share some
training iterations [16]. The ensemble decoder computes predictions for each model, which
are then combined using the arithmetic or geometric average [8,17]. The authors in [18]
proposed a hybrid MT system that combines NMT and rule-based MT (RBMT) to compen-
sate for the inadequacy of NMT in rare-resource domains. They used a classifier to predict
which translation from the two systems was more reliable, and to do so, they explored a
set of features that reflected the reliability of the translation. They also made a comparison
between feature- and text-based classification, and the results showed that the feature-
based classification achieved better classification accuracy. In our paper, we combine NMT
and SMT for translation in both directions. We also use different sets of feature vectors,
where we first transform our source sentence and both translations into the same vector
space. Then, we use similarity and distance measures to obtain feature vectors. The authors
in [19] address the challenge of improving NMT systems in low-resource scenarios, where
large-scale parallel corpora are not readily available. The proposed approach leverages
an SMT system to extract parallel phrases from the original training data, augmenting the
training data for the NMT system. The approach utilizes gated recurrent unit (GRU) and
Transformer architecture, and is evaluated on Hindi–English and Hindi–Bengali datasets
in the domains of Health, Tourism, and Judicial.

2.2. Preliminaries

This section describes the basics of two MT paradigms: NMT and SMT. Both ap-
proaches belong to supervised approaches to MT based on machine learning technology,
where training is conducted using sentence-aligned (human) translations. Given a large
number of source/target language sentence pairs, the MT system learns how to translate
fully automatically. NMT is described first since it is the dominant approach today, followed
by the description of SMT, as it is used as the complementary approach. In this paper, we
propose the HMT architecture as a two-engine combination in which the selection between
NMT and SMT is made by the classification algorithm. Therefore, a short description of the
classification algorithms that we used is also given in this section.

90

Mathematics 2023, 11, 2484

2.2.1. Neural Machine Translation

NMT is an approach to MT that uses an artificial neural network. The state-of-the-art
NMT systems use the Transformer architecture [10], which is shown in Figure 1, to produce
high-quality translations. The Transformer architecture relies on the attention mechanism
and remains the dominant architecture for several language pairs. Self-attention is an
attention mechanism that connects different positions of a single sequence to compute a
sequence representation. The self-attention mechanism is used successfully in various tasks,
such as text summarization and textual integration. The self-attention layers of this archi-
tecture learn the dependencies between words in a sequence by studying the connections
between all the words in the matching sequences and by directly modeling these relation-
ships. This approach is simpler than the gating mechanism used by RNNs. The simplicity
of this architecture has allowed for researchers to develop high-quality translation models
with the Transformer architecture, even for languages with few resources. The Transformer
architecture was the first to rely entirely on the self-attention mechanism to compute input
and output representations, without using feed-forward or sequence-aligned convolutional
neural networks. The encoder and decoder can be stacked N layers high, with each layer
taking inputs from the encoder and the previous layers. By stacking layers, the model can
learn to extract and focus on different combinations of attention from its attention heads,
boosting prediction power.

During training, the model is optimized to minimize the difference between its pre-
dicted translations and the true translations in the training data. This is typically achieved
using maximum likelihood estimation, where the model is trained to maximize the likeli-
hood of generating the correct target sentence given the source sentence.

Overall, NMT with the Transformer architecture has shown great promise in pro-
ducing high-quality translations across a wide range of language pairs [20]. It is now
used widely in many real-world translation applications and continues to be an active area
of research [21–24].

2.2.2. Statistical Machine Translation

Phrase-based SMT, shown in Figure 2, is a traditional approach to MT that has been
used widely for many years. It is based on the idea of breaking down the input sentence
into smaller phrases or sequences of words, translating them independently, and then
recombining them to form the final translation. Phrase-based SMT systems learn depen-
dencies between words, phrases, or sequences of words in both languages, as well as
dependencies between words in the target language and local reorderings, among other
things [4]. These learned dependencies are stored in the various models of the SMT system.
M denotes a number of models used in SMT.

2.2.3. Classification

In a classification task [25,26], the goal is to assign a set of input instances to predefined
categories or classes. A binary classification task [27] specifically involves dividing the
instances into two distinct classes. The task aims to determine to which class a given
instance belongs based on its features or attributes.

91

Mathematics 2023, 11, 2484

Figure 1. The Transformer architecture for training NMT systems.

In our framework, a vital part of the hybridization approach is the classification task
that is used to choose either SMT or NMT translation as the final translation. Therefore, we
used and compared some of the well-known algorithms for binary classification:

• Logistic Regression (LR) [28] is a simple and widely used algorithm for binary classifica-
tion. It works by modeling the probability of the positive class using a logistic function.

• Decision Tree (DT) [29] is a simple algorithm for binary classification. It works by
splitting the data recursively, based on the features that are most informative for the
classification task.

• Gradient-Boosted Decision Tree (GBDT) [30] is an algorithm that sequentially builds
decision trees to correct errors made by previous trees, making it effective for binary
classification tasks. It combines the predictions of multiple trees to provide accurate

92

Mathematics 2023, 11, 2484

binary classification results, capturing complex patterns in the data while mitigating
overfitting through regularization techniques.

• Random Forest (RF) [31] is an ensemble learning method that combines multiple
decision trees to improve the accuracy and stability of the model. It works by selecting
a subset of features randomly at each node in the decision tree.

• Naive Bayes (NB) [32] is a probabilistic algorithm that assumes independence between
features and works by calculating the probability of the observation belonging to each
class based on the likelihood and prior probabilities.

• K-Nearest Neighbors (kNN) [33] is a non-parametric algorithm that works by finding
the k-nearest data points to a new observation and assigning the label based on the
majority of the neighbors.

• Multilayer Perceptron (MLP) [28] is a type of neural network (NN) that can be used
for binary classification problems. It works by building a network of interconnected
nodes that process input data and produce an output.

• Convolutional Neural Network (CNN) [34] is a type of neural network that excels at
analyzing and extracting features from structured data-like images. Layers of convo-
lutional filters are used to automatically learn hierarchical representations, making
them highly effective for binary classification tasks where they can capture intricate
patterns and relationships in the data to make accurate predictions.

• Support Vector Machine (SVM) [28] is a powerful machine learning algorithm that is
commonly used for binary classification problems. It works by finding a hyperplane
that separates the two classes with the largest possible margin.

Figure 2. The SMT architecture for training SMT systems.

Equation (1) represents the obtaining of translations for a given source sentence s,
where t1 and t2 are the translations generated by the NMT and SMT systems, respectively.
The use of the trained models (obtained as shown in Figures 1 and 2) in the translation
procedure is shown in Figure 3.

t1 = NMT(s), t2 = SMT(s) (1)

93

Mathematics 2023, 11, 2484

(a) The NMT translation. (b) The SMT translation.

Figure 3. NMT generates the translation t1 using one large model, while SMT generates the translation
t2 using multiple models.

The classification task can be formalized as:

f : (xt1 , xt2) → {0, 1}, f ∈ {LR, DT, GBDT, RF, NB, kNN, MLP, CNN, SVM}, (2)

where xt1 and xt2 are the feature vectors of translations t1 and t2, respectively, and 0 denotes
translation t2 and 1 denotes translation t1. The feature vectors fed into the classifier should
reflect the adequacy of the translations. Therefore, they are constructed depending on the
source sentence s. The construction of feature vectors is important for the accuracy of the
classification task.

2.3. Aim and Research Contribution

The goal of this paper is to reduce translation failures in NMT by integrating SMT,
and the source sentence and translations are represented as the vectors in the same vector
space, using the multilingual language model. These source and translation vectors are
then utilized to extract features, which are subsequently fed into classifiers that predict
which translation system will produce a superior translation. Although NMT generally
outperforms SMT, there are specific cases in which the SMT remains more competitive.
HMT combines the strengths of both the SMT and NMT systems. By leveraging the best
features of each system, HMT can offer improved translation quality compared to when
either system is used independently.

3. Methodology

This section describes the proposed framework in detail, as shown in Figure 4. The core
idea of our framework is to compare SMT and NMT translations and choose the better
translation of the source sentence. All three sentences should be represented as vectors
that can be compared in terms of semantic and syntactic similarities between the source
and translation, and express the differences between the different translations. Sentence
embedding is used to encode sentences into vectors. In the process of feature extraction,
different measures are applied to determine the similarities and differences between vectors.
Each measure provides the value of one feature in the vector. After obtaining informative
feature vectors, various classifiers are trained to deduce which one has the better prediction
power to select SMT or NMT translation. The following subsections will outline some of
the relevant methods used in our framework.

94

Mathematics 2023, 11, 2484

Figure 4. The HMT architecture.

3.1. Sentence Embeddings

Sentence embeddings in Natural Language Processing (NLP) refer to techniques that
capture the semantic meaning of entire sentences by representing them as dense numerical
vectors, enabling a wide range of downstream tasks such as sentence similarity, para-
phrase detection, and text classification. BERT (Bidirectional Encoder Representations from
Transformers) [35–37] embeddings capture rich contextual information and have revolu-
tionized NLP tasks such as text classification, named entity recognition, and sentiment
analysis. BOW and TF-IDF [38] embeddings are simpler but still useful for tasks such
as document classification or information retrieval, where word frequency or presence is
crucial. In our framework, three sentence embeddings were constructed for the source
sentence and both translations. Because all three sentences could have different lengths,
that makes them difficult to compare using similarity or distance measures. One of the
most popular methods for generating sentence embeddings is to use pre-trained language
models such as BERT. mBERT (Multilingual BERT) [3,39] is an extension of the original
BERT model developed by Google, which was trained on a large corpus of text from more
than 100 different languages. mBERT can learn to understand the meaning and context of
words and sentences in multiple languages, and can be applied to a variety of NLP tasks,
including text classification, question answering, and MT. One of the advantages of using
mBERT is that it allows developers to build NLP applications that can work with multiple
languages, without having to train separate models for each language. This can save time
and resources, while also improving the overall accuracy and performance of the model.
However, it is important to note that mBERT is not perfect and may not perform as well as
language-specific models for certain languages. Additionally, it may not be able to capture
all the nuances of each language, especially those with complex grammar or syntax.

3.2. Feature Extraction

Feature extraction is the process of transforming raw data into a set of meaningful fea-
tures that are used as input to a machine learning algorithm. We are looking for informative

95

Mathematics 2023, 11, 2484

features that would allow the learning algorithm to build a model that accurately predicts
which translation is better, SMT or NMT. Feature extraction also helps to reduce the dimen-
sionality of the input data, improve model performance, and increase the interpretability
of the results. Features are extracted from sentence embeddings. To provide as accurate a
classification as possible, we explore the following 11 features [18,40–43]: cosine similarity,
Jensen–Shannon divergence, Euclidean distance, Cityblock distance, Squared Euclidean
distance, Chebyshev distance, Canberra distance, Dice coefficient, Kulczynski distance,
Russel–Rao similarity, and Sokal–Sneath similarity. Each feature has a value between 0 and
1. The full list of features and their positions in the feature vector can be seen in Table 1.
We end up with two feature vectors: xt1 represents the feature vector between the source
sentence and the NMT translation, and xt2 represents the feature vector between the source
sentence and the SMT translation.

Table 1. The full list of features and their positions in the feature vector.

Feature Name

x1 Cosine similarity
x2 Jensen–Shannon divergence
x3 Euclidean distance
x4 Cityblock distance
x5 Squared Euclidean distance
x6 Chebyshev distance
x7 Canberra distance
x8 Dice coefficient
x9 Kulczynski distance
x10 Russell–Rao similarity
x11 Sokal–Sneath similarity

3.2.1. Cosine Similarity

The cosine similarity [44,45] is a measure of the similarity between two non-zero
vectors of an inner product space that measures the cosine of the angle between them.
In the context of comparing two real-valued vectors, cosine similarity is a popular feature
similarity measure that is used commonly in machine learning and information retrieval.
Cosine similarity is often used in text analysis applications, such as document similarity
and clustering, but it can also be used in other domains where feature vectors are used to
represent objects or entities.

3.2.2. Jensen–Shannon Divergence

The Jensen–Shannon divergence [46] is a measure of similarity or dissimilarity between
two probability distributions. It is often used to compare two probability density functions
or two sets of discrete probabilities. To use the Jensen–Shannon divergence to compare two
real-valued vectors, we can first interpret them as probability distributions by normalizing
them to sum to 1.

3.2.3. Euclidean Distance

The Euclidean distance [47] is a commonly used metric for comparing two real-valued
vectors in machine learning and data analysis. It measures the straight-line distance
between two points in the Euclidean space. The Euclidean distance can be used for a
variety of tasks, such as clustering, classification, and anomaly detection. It is a useful
metric for comparing vectors in many machine learning applications.

96

Mathematics 2023, 11, 2484

3.2.4. Cityblock Distance

The cityblock distance [48], also known as the Manhattan distance, is a way to measure
the distance between two points in a two-dimensional space (or higher dimensions). In the
context of comparing two real-valued vectors, the cityblock distance is a way to measure the
similarity or dissimilarity between two vectors based on the sum of the absolute differences
between their corresponding elements. The resulting distance is a non-negative value
that represents the total distance between the two vectors. In other words, the larger the
distance, the more dissimilar the vectors. The cityblock distance can be useful in many
applications, such as image processing, clustering, and data analysis.

3.2.5. Squared Euclidean Distance

The squared Euclidean distance [49] metric is a way of measuring the distance between
two real-valued vectors of equal length. This metric is sometimes preferred to the standard
Euclidean distance, which calculates the square root of the sum of squared differences.
The squared Euclidean distance can be useful in certain applications where the computation
of square roots is computationally expensive or unnecessary, such as in some clustering or
classification algorithms. It is worth noting that the squared Euclidean distance is always
non-negative and symmetric, and satisfies the triangle inequality, which are all properties
of a valid distance metric.

3.2.6. Chebyshev Distance

The Chebyshev distance [50] is a metric that can be used to compare two real-valued
vectors. It is defined as the maximum absolute difference between the corresponding
elements of the two vectors. The Chebyshev distance is a useful distance metric in many
applications, such as image processing, pattern recognition, and clustering, where one
wants to compare objects based on their maximum deviation in any one dimension.

3.2.7. Canberra Distance

The Canberra distance [51] is a measure of the distance between two points in a multi-
dimensional space. It considers the magnitude of the differences between corresponding
elements of two vectors, as well as their absolute values. The Canberra distance is a popular
feature in data analysis and machine learning because it is robust to outliers and can handle
sparse data. It is used commonly in clustering, classification, and regression problems.

3.2.8. Dice Coefficient

The Dice coefficient [52] is a similarity measure used to compare the similarity between
two sets or vectors. The Dice coefficient ranges from 0 to 1, with 1 indicating that the two
vectors are identical and 0 indicating that they are completely dissimilar. A higher Dice
coefficient value indicates a higher degree of similarity between the two vectors. It is
commonly used in clustering, classification, and information retrieval tasks where the
similarity between two vectors needs to be computed.

3.2.9. Kulczynski Distance

The Kulczynski distance [53] is a statistical measure used to compare two real-valued
vectors. It is a measure of similarity that considers the proportion of shared values between
the two vectors. The Kulczynski distance has been used in a variety of applications,
including information retrieval, data mining, and machine learning.

3.2.10. Russell-Rao Similarity

The Russell–Rao similarity [54] is a measure that can be used to compare two real-
valued vectors. The Russell–Rao similarity is a simple and intuitive similarity measure
that ranges from 0 to 1, where 0 indicates that the vectors have no coordinates in common,
and 1 indicates that the vectors are identical. However, it does not consider the magnitude
or direction of the vectors, and it can be sensitive to outliers.

97

Mathematics 2023, 11, 2484

3.2.11. Sokal–Sneath Distance

The Sokal–Sneath distance [55] is a measure of similarity between two real-valued
vectors. It is used commonly in cluster analysis and classification problems. Intuitively,
the Sokal–Sneath distance measures the proportion of non-matching values in the two
vectors, considering the sparsity of the vectors. The Sokal–Sneath distance is useful when
comparing sparse vectors, such as those that arise in text analysis or the analysis of high-
dimensional data. It has the property of being symmetric and satisfying the triangle
inequality, which makes it suitable for use in hierarchical clustering algorithms.

3.3. Classification

Before classification is applied, the feature vector x is constructed, in which each
dimension j = 1, . . . , 11 contains a value of a specific distance or similarity measure. Two
feature vectors, xt1 and xt2 , are constructed: one for the NMT translation and one for
SMT translation. These feature vectors are used as input for a classification algorithm to
determine which translation is more accurate or appropriate for a given input sentence.
The construction of these feature vectors is crucial in determining the accuracy of the
classification algorithm. Careful selection of the measures is required to ensure that they
capture the relevant features of the input data.

As shown in Figure 4, a classification is adopted to select the best translations generated
by NMT and SMT systems. Since the performance of SMT is lower than that of NMT in
general cases, the classification accuracy becomes more important to prevent the hybridized
results from being lower than the accuracy of NMT, which we consider as a baseline.

4. Experiments

In this section, we present experiments conducted on the Slovenian–English language
pair. The Slovenian language is a Slavic language with rich inflectional morphology and
a relaxed word order. English is an analytic language with very little inflection, where
word order is very important for understanding the meaning. Considering this, we are
translating between two structurally very different languages. The experiments were
conducted in both translation directions, and we describe the corpora and tools used for
data preprocessing and training the MT systems. The experimental settings are provided,
and we present the results of the HMT systems, comparing them with the baseline NMT
systems. Additionally, we show the results obtained with various well-known binary
classification algorithms.

4.1. Corpora and Tools

The ParaCrawl corpus [56] is a valuable resource for researchers and developers
working in the fields of MT and NLP, providing a large and diverse set of parallel texts
that can be used to train and evaluate models in a variety of languages (more than 80).
The corpus was created by crawling and scraping multilingual content from the web, using
a combination of automated and manual methods to filter and clean the data.

The corpus used was tokenized and lowercased, and sentences longer than 80 words
were removed. To obtain a representative sample, sentences were chosen from different
parts of the corpus to create the training, development, and test sets. The training set
consisted of 9,000,000 sentences, the development set had 90,000 sentences, and the test
set also had 90,000 sentences. The training set was used to train both the SMT and NMT
systems. The development set was split into two parts, with 45,000 sentences each. For the
NMT systems, the first part was used during the training as a validation set, and for the
SMT systems, we used 500 sentences for optimization. In Ref. [57], the authors recommend
using a maximum of 1000 sentences for optimization, and in Refs. [58,59], 500–700 sentences
were used for optimization. We used the second part of the development set to train the
classifiers and augmented the data to obtain 90,000 sentences. To test the SMT, NMT,
and HMT systems, we used 3000 sentences from the test set. The final corpus sizes of all
the sets are shown in Table 2.

98

Mathematics 2023, 11, 2484

Table 2. The ParaCrawl corpus division for the training, development, and test sets.

Training
Development

Test
SMT NMT HMT

Sentences 9,000,000 500 45,000 90,000 3000

To evaluate the MT systems, we used various evaluation metrics. Bilingual Evaluation
Understudy (BLEU) [60] is a metric that operates on the principle of n-gram matching,
which involves comparing sequences of words (or sometimes characters) between the
machine translation and the reference translations. It considers both precision and brevity
in its evaluation. The BLEU score is calculated by computing the precision of n-grams
(usually up to a certain maximum length) in the translation and comparing this to the
precision of the same n-grams in the reference translations. The precision values are then
combined using a geometric mean. Additionally, BLEU incorporates a brevity penalty to
discourage excessively short translations that may inflate the precision score. The resulting
BLEU score ranges from 0 to 100, with a higher score indicating better translation quality.
It is important to note that BLEU is a relatively simple metric that primarily measures
lexical similarity and does not capture other aspects of translation quality, such as fluency,
adequacy, or word order. Despite its limitations, BLEU remains widely used as a quick
and automatic evaluation metric, especially when comparing different machine translation
systems or evaluating improvements during system development. It provides a rough
estimate of translation quality but should be used in conjunction with other evaluation
metrics for a more comprehensive evaluation. Additional metrics have been included for
more information about the quality. Character n-gram F-score (chrF) [61] is a metric that
evaluates the translation quality based on character-level n-gram matches. It considers the
precision and recall of character n-grams in both the machine translation and the reference
translations. By considering character-level matches, chrF can capture the adequacy and
fluency of the translation, even in cases where word order or word choice may differ. The re-
sulting chrF score ranges from 0 to 100, with a higher score indicating better translation
quality. Translation Edit Rate (TER) [62] is a metric that captures more global changes
in the translation and is less sensitive to minor lexical variations. It aims to assess the
overall fluency and adequacy of the translation by considering the broader context and
number of changes needed to align it with the reference. The resulting TER score ranges
from 0 to 100, with a lower score indicating better translation quality. For BLEU, chrF,
and TER metrics, we utilized SacreBLEU [63], which provides a hassle-free computation
of shareable, comparable, and reproducible scores. The Metric for Evaluation of Transla-
tion with Explicit ORdering (METEOR) [64] is a metric that primarily focuses on lexical
similarity. METEOR incorporates more linguistic features and considers synonyms, stem-
ming, and the reordering of words. It uses a combination of unigram matching, stemming,
and WordNet synonym matching to compute an alignment score. Additionally, METEOR
also incorporates a penalty for incorrect word order, rewarding translations that have a
more similar word order to the references. The resulting METEOR score ranges from 0 to
100, with a higher score indicating better translation quality. The Consistent Translation
Evaluation Metric (COMET) [65] is a metric that utilizes a pre-trained neural network
model that is trained on a large parallel corpus of human translations. It compares the
machine-generated translation against the human reference translations to compute a score
that reflects the quality and similarity of the translation. The resulting COMET score ranges
from 0 to 100, with a higher score indicating better translation quality.

In NMT, Byte Pair Encoding (BPE) [66] is used to address the out-of-vocabulary (OOV)
words problem. Since NMT models learn from a fixed vocabulary, any word not present
in the vocabulary is considered as an OOV word, and its translation cannot be learned.
By applying BPE to the source and target language texts, we can split unknown words into
subword units that are already present in the vocabulary. This helps the NMT model to

99

Mathematics 2023, 11, 2484

translate sentences with OOV words accurately. For example, the rare word “petrichor”
would be split into more common subwords, such as “pet”, “rich”, and “or”.

4.2. Experimental Settings for Models’ Training and Classification

To train NMT systems, we used Marian NMT [67], which is an efficient and free NMT
framework written in pure C++ with minimal dependencies. Using toolkits such as Marian
NMT, it is relatively straightforward to construct end-to-end NMT systems, which only
require a little preprocessing of the training corpora and post-processing of the system
output. We trained two NMT systems for both translation directions. The hyperparameters
used for training are shown in Table 3.

Table 3. Marian NMT training parameters. For the description of parameters and their values,
see [68].

Parameter Value

type transformer
workspace GPU memory 10 GB
max–length 100
mini–batch–fit True
maxi–batch 1000
early–stopping 10
after–epochs 50
valid–metrics cross–entropy and perplexity
valid–mini–batch 64
beam–size 6
normalize 0.6
enc–depth 6
dec–depth 6
transformer–heads 8
transformer–postprocess–emb d
transformer–postprocess dan
transformer–dropout 0.1
label–smoothing 0.1
learn–rate 0.0003
lr–warmup 16,000
lr–decay–inv–sqrt 16,000
optimizer–params 0.9, 0.98, 1 × 10−9

clip–norm 5
tied–embeddings–all True
sync–sgd True
exponential–smothing True

To train the SMT systems, we used the Moses toolkit [69], which is an open-source
toolkit with a wide variety of tools for the training and optimization of MT systems. We
trained two independent phrase-based SMT systems for both translation directions. Each
SMT system had six models and 14 parameters (model weights). To improve the SMT
systems’ translation quality, model weights were optimized by the DE algorithm. In our
previous research [59], we showed the competitive performance of the DE algorithm in
comparison with MERT, MIRA, and PRO optimizers, which are commonly used in SMT
optimization. The hyperparameters used to train and optimize the SMT systems are shown
in Table 4.

100

Mathematics 2023, 11, 2484

Table 4. Moses SMT training parameters [70]. The last three parameters are for DE optimization.

Parameter Value

alignment grow-diag-final-and
reordering msd-bidirectional-fe
smoothing improved-kneser-ney
evaluation metric BLEU
n-gram language model order 5
number of generations 50
population size 25
dimension 14

4.3. Results

As NMT is the dominant approach, we used NMT as the baseline in our experiments.
To evaluate the translation quality, the primary metric was the BLEU metric. We also
included chrF, TER, METEOR, and COMET metrics for additional information. The ↑ and
↓ symbols in the tables indicate which values are better.

The results for the baseline (NMT) are shown in Table 5 for the BLEU, chrF, TER,
METEOR, and COMET metrics. For translations from Slovenian to English, the baseline
(NMT) achieved a BLEU score of 46.4, a chrF score of 65.5, a TER score of 40.1, a METEOR
score of 70.5, and a COMET score of 83.3. For translations from English to Slovenian,
the baseline (NMT) achieved a BLEU score of 32.0, a chrF score of 54.1, a TER score of 54.4,
a METEOR score of 55.3, and a COMET score of 80.7.

Table 5. The results of baseline (NMT) for both translation directions.

Baseline (NMT)
BLEU ↑ chrF ↑ TER ↓ METEOR ↑ COMET ↑

Slovenian ⇒ English 46.4 65.6 40.1 70.5 83.3
English ⇒ Slovenian 32.0 54.1 54.4 55.3 80.7

Note: The ↑ and ↓ symbols in the table indicate which values are better.

The results for HMT are presented in Tables 6 and 7 for the BLEU, chrF, TER, METEOR,
and COMET metrics.

Table 6. The results of HMT for translation from Slovenian to English. The best results are in bold.

Classifiers in HMT
Slovenian ⇒ English

BLEU ↑ chrF ↑ TER ↓ METEOR ↑ COMET ↑
Logistic Regression (LR) 46.8 65.9 41.9 70.3 83.0
Decision Tree (DT) 47.1 65.9 42.4 69.9 82.2
Gradient-Boosted Decision Tree (GBDT) 47.8 66.4 40.2 70.5 83.8
Random Forest (RF) 47.7 66.4 40.4 70.5 83.5
Naive Bayes (NB) 47.7 66.3 40.1 70.5 83.8
K-Nearest Neighbor (kNN) 45.7 65.0 44.4 69.1 81.6
Multilayer Perceptron (MLP) 46.3 65.5 43.2 69.8 82.2
Convolutional Neural Network (CNN) 46.8 65.8 42.3 70.0 82.6
Support Vector Machine (SVM) 47.9 66.6 39.9 70.9 83.9

Note: The ↑ and ↓ symbols in the table indicate which values are better.

101

Mathematics 2023, 11, 2484

Table 7. The results of HMT for translation from English to Slovenian. The best results are in bold.

Classifiers in HMT
English ⇒ Slovenian

BLEU ↑ chrF ↑ TER ↓ METEOR ↑ COMET ↑
Logistic Regression (LR) 41.5 62.0 48.8 60.8 81.6
Decision Tree (DT) 40.4 60.8 50.6 59.2 80.1
Gradient-Boosted Decision Tree (GBDT) 42.4 62.5 47.5 61.4 82.4
Random Forest (RF) 41.5 62.0 48.6 60.8 81.8
Naive Bayes (NB) 42.4 62.6 47.4 61.5 82.5
K-Nearest Neighbor (kNN) 40.7 61.3 50.3 60.0 80.6
Multilayer Perceptron (MLP) 42.9 63.1 48.8 61.5 80.9
Convolutional Neural Network (CNN) 42.5 62.7 48.6 61.3 81.3
Support Vector Machine (SVM) 42.3 62.5 47.9 61.3 82.0

Note: The ↑ and ↓ symbols in the table indicate which values are better.

For the translation from Slovenian to English, seven classifiers achieved a better BLEU
score than the baseline by a range of 0.4 to 1.5 points. The two classifiers achieved a worse
or almost equal BLEU score compared to the baseline. Five classifiers achieved a better
chrF score than the baseline by a range of 0.3 to 1.0 points. Four classifiers achieved a
worse or almost equal chrF score compared to the baseline. One classifier achieved a
better TER score than the baseline by 0.2 points. Eight classifiers achieved a worse or
equal TER score compared to the baseline. One classifier achieved a better METEOR score
than the baseline by 0.4 points. Eight classifiers achieved a worse or equal METEOR score
compared to the baseline. Four classifiers achieved a better COMET score than the baseline
by 0.2 to 0.6 points. Five classifiers achieved a worse or equal COMET score compared to
the baseline.

For the translation from English to Slovenian, all nine classifiers achieved a better
BLEU score than the baseline by a range of 8.4 to 10.9 points, a better chrF score than the
baseline by a range of 6.7 to 9.0 points, a better TER score than the baseline by a range of 3.9
to 7.1 points, and a better METEOR score than the baseline by a range of 3.9 to 6.2 points.
Seven classifiers achieved a better COMET score than the baseline by 0.3 to 1.8 points. Two
classifiers achieved a worse COMET score compared to the baseline.

5. Discussion

We consider the NMT translation quality as our baseline. While NMT generally
outperforms SMT, there are certain cases where SMT remains more competitive. As can
be seen from the results, for translation from Slovenian to English, NMT achieved a
better translation quality than SMT, while for the translation from English to Slovenian,
SMT achieved a better translation quality. By using the best features of each system,
HMT can offer an improved translation quality. HMT translates the source sentence
using both systems and selects the more reliable translation depending on the features.
In our experiment, the primary metric was the BLEU metric, while the other metrics were
calculated as additional information. The results indicated similar conclusions to those
obtained with the BLEU metric. For translation from Slovenian to English, SVM classifier
achieved better scores according to all five metrics, with a BLEU score of 47.9, a chrF
score of 66.6, a TER score of 39.9, a METEOR score of 70.9, and a COMET score of 83.9.
For translation from English to Slovenian, two classifiers achieved the best scores. The MLP
classifier achieved better scores according to BLEU and chrF metrics with a BLEU score of
42.9 and a chrF score of 63.1, while the NB classifier achieved better scores according to
TER and COMET metrics, with a TER score of 47.4 and a COMET score of 82.5. Both MLP
and NB classifiers achieved the same, better score according to the METEOR metric, with a
METEOR score of 61.5. The results for the classifiers are shown in Tables 6 and 7 for the
BLEU, chrF, TER, COMET, and METEOR metrics. The upper bound for the BLEU metric
is presented so we can see the maximum potential improvement in the classification task.

102

Mathematics 2023, 11, 2484

It should be noted that the upper bound is only achievable if the classification is perfect,
which is difficult to attain in reality.

To better understand the potential of HMT, Table 8 shows the maximum BLEU scores
that can be achieved with perfect classification. For translation from Slovenian to English,
this is 53.5, and for translation from English to Slovenian, this is 49.5. It also shows the
percentage of translations where SMT or NMT is better based on their BLEU scores.

Table 8. The test set BLEU scores for SMT, NMT, and the maximum score of ideal classification (upper
limit). The last three columns show the percentage of translations in the test set where SMT (NMT) is
better and when they are equal.

BLEU ↑ Distribution [%]

SMT NMT Upper SMT NMT Equal

Slovenian ⇒ English 41.9 46.4 53.5 29.2 55.5 15.3
English ⇒ Slovenian 41.6 32.0 49.5 44.2 43.8 12.0

Note: The ↑ symbol in the table indicate which values are better.

The contribution of the proposed system to translation quality is evident in the case
of English to Slovenian translation, where NMT achieved a BLEU score of 32.0, and HMT
achieved a BLEU score of 42.9, showing an improvement of 10.9 points. On the other hand,
in the case of Slovenian to English, NMT achieved a BLEU score of 46.4, and HMT achieved
a BLEU score of 47.9, showing an improvement of 1.5 points. Improving translation quality
by 0.5 points or more can be a challenging task, especially if the initial translation quality is
already high. Even small improvements in the translation quality can require significant
effort and experimentation. In general, as the quality of the baseline system improves, it
becomes increasingly difficult to make further gains in translation quality. However, this
also depends on the specific language pair, the quality of the training data, the complexity
of the target language, and other factors. Many MT systems already exist, and instead of
spending months training new ones, we should consider reusing and combining them with
one or more systems.

The limitation of the proposed system is the multilingual language model. Al-
though multilingual language model supports many languages, there are still languages
that are not included in its support. Additionally, the coverage of supported languages
might be sparse, depending on the data upon which it was built.

Translation Examples

In Tables 9 and 10, we present translation examples where SMT outperformed NMT.
It is important to note that the ParaCrawl corpus used in our experiments was obtained
through web crawling and filtering, resulting in a corpus that contains a significant amount
of noise.

Table 9 shows some translation examples for translations from Slovenian to English.
In the first example, we can see that the word order is different in the SMT and NMT
translations. The NMT translation keeps the word order from the source sentence, while
the SMT translation changes the word order and was closer to the reference translation.
In the second example, we can see that the NMT translation literally translated the phrase
as “golden wedding”, while the SMT translation translated it as “50th wedding anniversary”
and was closer to the reference translation. In the fourth example, we show that the SMT
used the simple present tense, while the NMT used an expression with a modal verb.
Additionally, all three translations used different units: SMT used feet, NMT used meters,
and the reference used yards.

Table 10 shows some translation examples for translations from English to Slovenian.
In the first example, we can see that the NMT translation uses the singular form instead of
the plural form, probably because of the noun that follows, which is in the singular form.
In the second example, we can see that the length of the NMT translation is much shorter

103

Mathematics 2023, 11, 2484

than that of the reference, source, and even SMT translation. In the fourth example, we
can see that although both translations look good, the SMT translation provides a more
accurate translation.

Table 9. Translation examples generated by NMT and SMT systems from Slovenian to English, where
SMT performed better than NMT.

BLEU ↑ chrF ↑ TER ↓
REF single market month: sharing ideas online to change europe
SRC mesec enotnega trga: spremenimo evropo z izmenjavo zamisli
SMT single market month: sharing ideas online to change europe 100.0 100.0 0.0
NMT single market month: changing europe by sharing ideas 33.0 67.7 50.0

REF that ’s what they say when they need a card:) for some 50th wedding
anniversary, or a special birthday.

SRC tako mi rečejo, ko želijo voščilnico:) za kakšno zlato poroko, pa okrogel
rojstni dan.

SMT that ’s what they say when they need a card:) for some 50th wedding
anniversary, or a special birthday.

100.0 100.0 0.0

NMT they tell me when they want a card:) for a golden wedding and a
round birthday.

18.1 38.0 52.2

REF a newly designed terrace lies in the comfortable shades of trees and
shrubs, only a few meters from the sea, and offers an impressive view
on the old part of the marina.

SRC na novo urejena terasa, le nekaj metrov oddaljena od morja, nudi v
prijetnem hladu zelenja impresivni pogled na stari del marine.

SMT a newly designed terrace lies, only a few meters from the sea, and offers
the comfortable shades of trees and shrubs in an impressive view on
the old part of the marina.

83.1 94.2 5.7

NMT the newly renovated terrace, only a few meters away from the sea,
offers an impressive view of the old part of the marina in the pleasant
shade of greenery.

39.6 60.0 45.7

REF the old town of dubrovnik is easily reachable by a direct bus line
departing 50 yards from the hotel.

SRC do starega mestnega jedra dubrovnika se lahko enostavno odpeljete z
direktnim avtobusom, ki ustavlja 50 m stran.

SMT the old town of dubrovnik is easily reachable by a direct bus line
departing 150 feet from the.

72.3 82.9 15.0

NMT the old town of dubrovnik can be easily reached by direct bus,
50 m away.

23.1 48.6 50.0

Note: The ↑ and ↓ symbols in the table indicate which values are better.

Table 10. Translation examples generated by NMT and SMT systems from English to Slovenian,
where SMT performed better than NMT.

BLEU ↑ chrF ↑ TER ↓
REF apartmaji mirko staničič, v lasti družine staničič, se nahajajo v mestu

brela (splitsko-dalmatinska županija).
SRC apartments mirko stanicic, owned by the stanicic family, are located in

brela (split-dalmatia county).
SMT apartmaji mirko staničič, v lasti družine staničič, se nahajajo v mestu

brela (splitsko-dalmatinska županija).
100.0 100.0 0.0

NMT apartma mirko staničič, v lasti družine staničič, se nahaja v mestu brela
(splitsko-dalmatinska županija).

79.1 91.2 10.5

104

Mathematics 2023, 11, 2484

Table 10. Cont.

BLEU ↑ chrF ↑ TER ↓
REF da bi s svojo družino preživeli kvaliteten in nepozaben dopust, smo

v našo ponudbo uvrstili počitniške hiše v tkon—otok pasman, ki so
kompletno opremljene z vsem, kar vam je potrebno za popolne po-
letne počitnice.

SRC in order to spend quality and unforgettable holiday with your family,
we have included in our accommodation offer the holiday houses in
tkon—island pasman, which are fully equipped with everything you
need for a perfect summer vacation.

SMT da bi preživeli kvaliteten in nepozaben dopust z družino, je v našo
ponudbo uvrstili počitniške hiše v tkon—otok pasman, ki so kompletno
opremljene z vsem, kar vam je potrebno za popolne poletne počitnice.

80.7 91.0 12.5

NMT da bi s svojo družino našli kvaliteten in nepozaben dopust, smo v našo
ponudbo uvrstili počitniške hiše v tkon—otok pasman.

43.6 59.1 42.5

REF ko ste na opravilu, pritisnite tipko enter, da ga izberete in odprete v
pogledu s podrobnostmi.

SRC use the down arrow key to browse through the results, press enter to
select one.

SMT s tipko s puščico dol lahko brskate po rezultatih iskanja. pritisnite tipko
enter, da izberete enega od njih.

19.1 44.5 89.5

NMT če želite med rezultati brskati s puščičnimi tipkami dol, pritisnite enter. 4.9 25.5 89.5

REF zaradi jasnosti bi bilo treba navedeno uredbo prenoviti.
SRC in the interests of clarity, that regulation should be recast.
SMT zaradi jasnosti bi bilo treba navedeno uredbo prenoviti. 100.0 100.0 0.0
NMT zaradi jasnosti bi bilo treba to uredbo prenoviti. 59.7 81.5 11.1

Note: The ↑ and ↓ symbols in the table indicate which values are better.

6. Conclusions

The main contributions of this paper involve enhancing NMT translation quality
through the integration of SMT and representing the source sentence and translations as
vectors in a shared vector space using a multilingual language model. These features were
utilized to capture and quantify the differences between the two translation approaches.
To determine the best possible translation, the classification algorithm predicts which
translation system produced a superior translation. Several classifiers were used to select
the best possible translation, and the results showed that the proposed HMT system
improved the BLEU score by 1.5 and 10.9 points for both translation directions, respectively.
The proposed method of combining SMT and NMT in the hybrid system is novel. Our
framework is language-independent and can be applied to other languages supported by
the multilingual language model. As seen from the results, the proposed HMT system
successfully combined the strengths of both NMT and SMT and, by using the best features
of each system, can offer an improved translation quality.

For future work, researchers can explore novel approaches to integrate additional
models or even incorporate domain-specific models for an improved translation perfor-
mance. Another idea worth exploring is the development of an even larger multilingual
language model, expanding its coverage and potentially enhancing translation quality.

Author Contributions: Conceptualization, J.D.; methodology, J.B. and M.S.M.; software, J.D. and
D.V.; validation, J.B., M.S.M., and D.V.; formal analysis, J.D. and J.B.; investigation, J.D. and M.S.M.;
resources, J.D. and M.S.M.; writing—original draft preparation, J.D., J.B., M.S.M., and D.V.; writing—
review and editing, J.D., J.B., M.S.M., and D.V.; visualization, J.D.; supervision, J.B. All authors have
read and agreed to the published version of the manuscript.

105

Mathematics 2023, 11, 2484

Funding: This work was supported by the Slovenian Research Agency (research core funding No.
P2-0069— Advanced Methods of Interaction in Telecommunications, P2-0041—Computer Systems,
Methodologies, and Intelligent Services, and P2-0057—Information systems).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: https://opus.nlpl.eu/ParaCrawl.php (accessed on 14 April 2023).

Acknowledgments: The authors thank the authors of the ParaCrawl parallel corpora, the authors
of the Marian NMT and Moses SMT toolkits, and the authors of mBERT for making all of these
publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MT Machine Translation
NMT Neural Machine Translation
SMT Statistical Machine Translation
HMT Hybrid Machine Translation
NLP Natural Language Processing
LR Logistic Regression
DT Decision Tree
GBDT Gradient-Boosted Decision Tree
RF Random Forest
NB Naive Bayes
kNN K-Nearest Neighbors
MLP Multilayer Perceptron
CNN Convolutional Neural Network
SVM Support Vector Machine
BLEU BiLingual Evaluation Understudy
chrF Character F-score
TER Translation Edit Rate
BERT Bidirectional Encoder Representations from Transformers
mBERT Multilingual Bidirectional Encoder Representations from Transformers
DE Differential Evolution
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
OOV Out-of-vocabulary
WMT Workshop on Machine Translation

References

1. Popović, M. Comparing Language Related Issues for NMT and PBMT between German and English. Prague Bull. Math. Linguist.
2017, 108, 209–220. [CrossRef]

2. Popović, M. Language-related issues for NMT and PBMT for English–German and English–Serbian. Mach. Transl. 2018,
32, 237–253. [CrossRef]

3. Pires, T.; Schlinger, E.; Garrette, D. How Multilingual is Multilingual BERT? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics:
Cedarville, OH, USA; pp. 4996–5001. [CrossRef]

4. Koehn, P.; Och, F.J.; Marcu, D. Statistical phrase-based translation. In Proceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the Association for Computational Linguistics, Edmonton, AB, Canada, 27 May–1
June 2003.

5. Koehn, P. Statistical Machine Translation; Cambridge University Press: Cambridge, UK, 2010.
6. Lopez, A. Statistical machine translation. ACM Comput. Surv. (CSUR) 2008, 40, 1–49. [CrossRef]

106

Mathematics 2023, 11, 2484

7. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv 2014, arXiv:1409.1259.

8. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 2,
3104–3112.

9. Vashishth, S.; Bhandari, M.; Yadav, P.; Rai, P.; Bhattacharyya, C.; Talukdar, P. Incorporating syntactic and semantic information
in word embeddings using graph convolutional networks. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Cedarville, OH,
USA, 2019; pp. 3308–3318.

10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

11. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
12. Meng, F.; Lu, Z.; Wang, M.; Li, H.; Jiang, W.; Liu, Q. Encoding Source Language with Convolutional Neural Network for Machine

Translation. arXiv 2015, arXiv:1503.01838. [CrossRef]
13. Stahlberg, F.; Hasler, E.; Byrne, B. The edit distance transducer in action: The University of Cambridge English-German system at

WMT16. arXiv 2016, arXiv:1606.04963.
14. Stahlberg, F. Neural Machine Translation: A Review. J. Artif. Intell. Res. 2020, 69, 343–418. [CrossRef]
15. Wang, X.; Pham, H.; Dai, Z.; Neubig, G. SwitchOut: An efficient data augmentation algorithm for neural machine translation.

arXiv 2018, arXiv:1808.07512.
16. Sennrich, R.; Haddow, B.; Birch, A. Edinburgh neural machine translation systems for WMT 16. arXiv 2016, arXiv:1606.02891.
17. Cromieres, F.; Chu, C.; Nakazawa, T.; Kurohashi, S. Kyoto university participation to WAT 2016. In Proceedings of the 3rd

Workshop on Asian Translation (WAT2016), Osaka, Japan, 11–16 December 2016; pp. 166–174.
18. Huang, J.X.; Lee, K.S.; Kim, Y.K. Hybrid Translation with Classification: Revisiting Rule-Based and Neural Machine Translation.

Electronics 2020, 9, 201. [CrossRef]
19. Sen, S.; Hasanuzzaman, M.; Ekbal, A.; Bhattacharyya, P.; Way, A. Neural machine translation of low-resource languages using

SMT phrase pair injection. Nat. Lang. Eng. 2021, 27, 271–292. [CrossRef]
20. Yan, R.; Li, J.; Su, X.; Wang, X.; Gao, G. Boosting the Transformer with the BERT Supervision in Low-Resource Machine Translation.

Appl. Sci. 2022, 12, 7195. [CrossRef]
21. Bacanin, N.; Zivkovic, M.; Stoean, C.; Antonijevic, M.; Janicijevic, S.; Sarac, M.; Strumberger, I. Application of Natural Language

Processing and Machine Learning Boosted with Swarm Intelligence for Spam Email Filtering. Mathematics 2022, 10, 4173.
[CrossRef]

22. Fuad, A.; Al-Yahya, M. Cross-Lingual Transfer Learning for Arabic Task-Oriented Dialogue Systems Using Multilingual
Transformer Model mT5. Mathematics 2022, 10, 746. [CrossRef]

23. Baniata, L.H.; Kang, S.; Ampomah, I.K.E. A Reverse Positional Encoding Multi-Head Attention-Based Neural Machine Translation
Model for Arabic Dialects. Mathematics 2022, 10, 3666. [CrossRef]

24. Alokla, A.; Gad, W.; Nazih, W.; Aref, M.; Salem, A.B. Retrieval-Based Transformer Pseudocode Generation. Mathematics 2022,
10, 604. [CrossRef]

25. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep Learning–Based Text Classification: A
Comprehensive Review. ACM Comput. Surv. 2021, 54, 62. [CrossRef]

26. Chen, L.C.; Chang, K.H.; Yang, S.C.; Chen, S.C. A Corpus-Based Word Classification Method for Detecting Difficulty Level of
English Proficiency Tests. Appl. Sci. 2023, 13, 1699. [CrossRef]

27. Canbek, G.; Taskaya Temizel, T.; Sagiroglu, S. PToPI: A Comprehensive Review, Analysis, and Knowledge Representation of
Binary Classification Performance Measures/Metrics. SN Comput. Sci. 2023, 4, 13. [CrossRef] [PubMed]

28. Hsu, B.M. Comparison of Supervised Classification Models on Textual Data. Mathematics 2020, 8, 851. [CrossRef]
29. Panigrahi, R.; Borah, S.; Bhoi, A.K.; Ijaz, M.F.; Pramanik, M.; Kumar, Y.; Jhaveri, R.H. A Consolidated Decision Tree-Based

Intrusion Detection System for Binary and Multiclass Imbalanced Datasets. Mathematics 2021, 9, 751. [CrossRef]
30. Ding, W.; Chen, Q.; Dong, Y.; Shao, N. Fault Diagnosis Method of Intelligent Substation Protection System Based on Gradient

Boosting Decision Tree. Appl. Sci. 2022, 12, 8989. [CrossRef]
31. Lučin, I.; Lučin, B.; Čarija, Z.; Sikirica, A. Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data

for Random Forest Classifier. Mathematics 2021, 9, 672. [CrossRef]
32. Gan, S.; Shao, S.; Chen, L.; Yu, L.; Jiang, L. Adapting Hidden Naive Bayes for Text Classification. Mathematics 2021, 9, 2378.

[CrossRef]
33. Kang, S. k-Nearest Neighbor Learning with Graph Neural Networks. Mathematics 2021, 9, 830. [CrossRef]
34. Nadeem, M.I.; Ahmed, K.; Li, D.; Zheng, Z.; Naheed, H.; Muaad, A.Y.; Alqarafi, A.; Abdel Hameed, H. SHO-CNN: A

Metaheuristic Optimization of a Convolutional Neural Network for Multi-Label News Classification. Electronics 2023, 12, 113.
[CrossRef]

35. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2018, arXiv:1810.04805. [CrossRef]

36. Savini, E.; Caragea, C. Intermediate-Task Transfer Learning with BERT for Sarcasm Detection. Mathematics 2022, 10, 844.
[CrossRef]

107

Mathematics 2023, 11, 2484

37. Patil, R.; Boit, S.; Gudivada, V.; Nandigam, J. A Survey of Text Representation and Embedding Techniques in NLP. IEEE Access
2023, 11, 36120–36146. [CrossRef]

38. Dash, G.; Sharma, C.; Sharma, S. Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural
Language Processing (NLP). Sustainability 2023, 15, 5443. [CrossRef]

39. de Lima, R.R.; Fernandes, A.M.R.; Bombasar, J.R.; da Silva, B.A.; Crocker, P.; Leithardt, V.R.Q. An Empirical Comparison of
Portuguese and Multilingual BERT Models for Auto-Classification of NCM Codes in International Trade. Big Data Cogn. Comput.
2022, 6, 8. [CrossRef]

40. Gomaa, W.H.; Fahmy, A.A. A Survey of Text Similarity Approaches. Int. J. Comput. Appl. 2013, 68, 13–18.
41. Dzisevič, R.; Šešok, D. Text Classification using Different Feature Extraction Approaches. In Proceedings of the 2019 Open

Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2019; pp. 1–4. [CrossRef]
42. Magalhães, D.; Pozo, A.; Santana, R. An empirical comparison of distance/similarity measures for Natural Language Processing.

In Proceedings of the Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional, SBC, Porto Alegre, Brasil,
15–18 October 2019; pp. 717–728. [CrossRef]

43. Wang, J.; Dong, Y. Measurement of Text Similarity: A Survey. Information 2020, 11, 421. [CrossRef]
44. Ristanti, P.Y.; Wibawa, A.P.; Pujianto, U. Cosine Similarity for Title and Abstract of Economic Journal Classification. In Proceedings

of the 2019 5th International Conference on Science in Information Technology (ICSITech), Jogjakarta, Indonesia, 23–24 October
2019; pp. 123–127. [CrossRef]

45. Park, K.; Hong, J.S.; Kim, W. A Methodology Combining Cosine Similarity with Classifier for Text Classification. Appl. Artif.
Intell. 2020, 34, 396–411. [CrossRef]

46. Eligüzel, N.; Çetinkaya, C.; Dereli, T. A novel approach for text categorization by applying hybrid genetic bat algorithm through
feature extraction and feature selection methods. Expert Syst. Appl. 2022, 202, 117433. [CrossRef]

47. Kadhim, A.I. Survey on Supervised Machine Learning Techniques for Automatic Text Classification. Artif. Intell. Rev. 2019,
52, 273–292. [CrossRef]

48. Berciu, A.G.; Dulf, E.H.; Micu, D.D. Improving the Efficiency of Electricity Consumption by Applying Real-Time Fuzzy and
Fractional Control. Mathematics 2022, 10, 3807. [CrossRef]

49. Inyang, U.; Akpan, E.; Akinyokun, O. A Hybrid Machine Learning Approach for Flood Risk Assessment and Classification. Int.
J. Comput. Intell. Appl. 2020, 19, 2050012. [CrossRef]

50. Krivulin, N.; Prinkov, A.; Gladkikh, I. Using Pairwise Comparisons to Determine Consumer Preferences in Hotel Selection.
Mathematics 2022, 10, 730. [CrossRef]

51. Machado, J.A.T.; Mendes Lopes, A. Fractional Jensen–Shannon analysis of the scientific output of researchers in fractional
calculus. Entropy 2017, 19, 127. [CrossRef]

52. Shamir, R.R.; Duchin, Y.; Kim, J.; Sapiro, G.; Harel, N. Continuous dice coefficient: A method for evaluating probabilistic
segmentations. arXiv 2019, arXiv:1906.11031.

53. Cha, S.H. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. Int. J. Math. Model.
Meth. Appl. Sci. 2007, 1, 300–307.

54. Ibrahim, H.; El Kerdawy, A.M.; Abdo, A.; Eldin, A.S. Similarity-based machine learning framework for predicting safety signals
of adverse drug–drug interactions. Inform. Med. Unlocked 2021, 26, 100699. [CrossRef]

55. Gutiérrez-Reina, D.; Sharma, V.; You, I.; Toral, S. Dissimilarity metric based on local neighboring information and genetic
programming for data dissemination in vehicular ad hoc networks (VANETs). Sensors 2018, 18, 2320. [CrossRef] [PubMed]

56. Bañón, M.; Chen, P.; Haddow, B.; Heafield, K.; Hoang, H.; Esplà-Gomis, M.; Forcada, M.L.; Kamran, A.; Kirefu, F.; Koehn, P.;
et al. ParaCrawl: Web-Scale Acquisition of Parallel Corpora. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, 5–10 July 2020; pp. 4555–4567. [CrossRef]

57. Neubig, G.; Watanabe, T. Optimization for Statistical Machine Translation: A Survey. Comput. Linguist. 2016, 42, 1–54. [CrossRef]
58. Lü, Y.; Huang, J.; Liu, Q. Improving Statistical Machine Translation Performance by Training Data Selection and Optimization. In

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; pp. 343–350.

59. Dugonik, J.; Bošković, B.; Brest, J.; Sepesy Maučec, M. Improving Statistical Machine Translation Quality Using Differential
Evolution. Informatica 2019, 30, 629–645. [CrossRef]

60. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, 7–12 July 2002; pp. 311–318.
[CrossRef]

61. Popović, M. chrF: Character n-gram F-score for automatic MT evaluation. In Proceedings of the Tenth Workshop on Statistical
Machine Translation, Lisbon, Portugal, 17–18 September 2015; Association for Computational Linguistics: Cedarville, OH, USA,
2015; pp. 392–395. [CrossRef]

62. Snover, M.; Dorr, B.; Schwartz, R.; Micciulla, L.; Makhoul, J. A Study of Translation Edit Rate with Targeted Human Annotation.
In Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, Cambridge,
MA, USA, 8–12 August 2006; pp. 223–231.

108

Mathematics 2023, 11, 2484

63. Post, M. A Call for Clarity in Reporting BLEU Scores. In Proceedings of the Third Conference on Machine Translation: Research
Papers, Belgium, Brussels, 31 October–1 November 2018; Association for Computational Linguistics: Cedarville, OH, USA, 2018;
pp. 186–191.

64. Banerjee, S.; Lavie, A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 29 June 2005; Association for Computational Linguistics: Cedarville, OH, USA, 2005; pp. 65–72.

65. Rei, R.; Stewart, C.; Farinha, A.C.; Lavie, A. COMET: A Neural Framework for MT Evaluation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; Association for
Computational Linguistics: Cedarville, OH, USA, 2020; pp. 2685–2702. [CrossRef]

66. Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016;
pp. 1715–1725. [CrossRef]

67. Junczys-Dowmunt, M.; Grundkiewicz, R.; Dwojak, T.; Hoang, H.; Heafield, K.; Neckermann, T.; Seide, F.; Germann, U.;
Fikri Aji, A.; Bogoychev, N.; et al. Marian: Fast Neural Machine Translation in C++. In Proceedings of the ACL 2018, System
Demonstrations, Melbourne, Australia, 15–20 July 2018; pp. 116–121.

68. Marian NMT Documentation. Online. 2018. Available online: https://marian-nmt.github.io/docs/cmd/marian/ (accessed on
14 April 2023).

69. Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Federico, M.; Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.; Zens, R.; et al.
Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, Prague, Czech Republic,
23–30 June 2007; pp. 177–180.

70. Moses SMT Documentation. Online. 2017. Available online: http://www2.statmt.org/moses/ (accessed on 14 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

109

Citation: Avram, A.-M.; Mititelu,

V.B.; Păis, , V.; Cercel, D.-C.;

Trăus, an-Matu, S, . Multilingual

Multiword Expression Identification

Using Lateral Inhibition and Domain

Adaptation. Mathematics 2023, 11,

2548. https://doi.org/10.3390/

math11112548

Academic Editor: Chengjie Sun

Received: 1 May 2023

Revised: 26 May 2023

Accepted: 29 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multilingual Multiword Expression Identification Using Lateral
Inhibition and Domain Adaptation

Andrei-Marius Avram 1,*, Verginica Barbu Mititelu 2, Vasile Păis,
2, Dumitru-Clementin Cercel 1,*

and S, tefan Trăus, an-Matu 1,2

1 Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University
Politehnica of Bucharest, 060042 Bucharest, Romania

2 Research Institute for Artificial Intelligence “Mihai Drăgănescu”, Romanian Academy,
050711 Bucharest, Romania

* Correspondence: andrei_marius.avram@stud.acs.upb.ro (A.-M.A.); dumitru.cercel@upb.ro (D.-C.C.)

Abstract: Correctly identifying multiword expressions (MWEs) is an important task for most natural
language processing systems since their misidentification can result in ambiguity and misunderstand-
ing of the underlying text. In this work, we evaluate the performance of the mBERT model for MWE
identification in a multilingual context by training it on all 14 languages available in version 1.2 of the
PARSEME corpus. We also incorporate lateral inhibition and language adversarial training into our
methodology to create language-independent embeddings and improve its capabilities in identifying
multiword expressions. The evaluation of our models shows that the approach employed in this work
achieves better results compared to the best system of the PARSEME 1.2 competition, MTLB-STRUCT,
on 11 out of 14 languages for global MWE identification and on 12 out of 14 languages for unseen
MWE identification. Additionally, averaged across all languages, our best approach outperforms
the MTLB-STRUCT system by 1.23% on global MWE identification and by 4.73% on unseen global
MWE identification.

Keywords: multiword expression identification; multilingual; lateral inhibition; domain adaptation;
PARSEME corpus

MSC: 68T50

1. Introduction

Natural language processing (NLP) is a significant domain of artificial intelligence,
with applications ranging from language translation to text classification and information
retrieval. NLP allows computers to interpret and process human language, enabling
them to perform tasks such as understanding and responding to questions, summarizing
texts, and detecting sentiments. Some phenomena present in language can preclude its
correct understanding by machines (and even humans sometimes). Such a phenomenon is
represented by multiword expressions (MWEs), which are groups of words that function as
a unit and convey a specific meaning that is not the sum of the meanings of the component
words (i.e., the expression lacks compositionality). Examples of MWEs include idioms
(e.g., “break a leg” is used to wish someone good luck), collocations (e.g., “take an exam”),
or compounds (e.g., “ice cream”), different authors assuming a more comprehensive or
a narrower meaning of this term. The number of MWEs in a language is relatively high.
The authors of [1] synthesized papers reporting the number or proportion of MWEs in
different languages: English—with an almost equal number of MWEs and single words;
French—with 3.3 times greater number of MWE adverbs than that of single adverbs and
1.7 times greater number of MWE verbs than that of single verbs; and Japanese—in which
44% of the verbs are MWEs. Despite being so numerous in the dictionary, MWEs’ frequency
in corpora is low [2].

Mathematics 2023, 11, 2548. https://doi.org/10.3390/math11112548 https://www.mdpi.com/journal/mathematics
110

Mathematics 2023, 11, 2548

Identifying and processing MWEs is crucial for various NLP tasks [3]. In machine
translation, for instance, the correct translation of an MWE often depends on the specific
context in which it appears. Suppose an MWE is translated rather than appropriately
localized for the target language. In that case, the resulting translation may be difficult to
understand for native speakers or may convey a wrong meaning [4]. In text classification
tasks, MWEs are considered essential clues regarding the sentiment or topic of a text [5].
Additionally, to improve the accuracy of search engines in information retrieval, MWEs
can help disambiguate the meaning of a query [6].

Acknowledged recent progress in the field has been made by the PARSEME commu-
nity [7], which evolved from the COST action with the same name, where the topics of
interest were parsing and MWEs (https://typo.uni-konstanz.de/parseme/ last accessed
on 21 April 2023). There are two significant outcomes of their activity, (i) a multilingual
corpus annotated for verbal MWEs (VMWEs) in 26 languages by more than 160 native an-
notators, with three versions so far (https://lindat.mff.cuni.cz/repository/xmlui/handle/
11372/LRT-2282, https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2842,
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3367 last accessed on 21
April 2023) [8–10]; and (ii) a series of shared tasks (also three editions so far) dedicated to
the automatic and semi-supervised identification of VMWEs in texts [11–13], in which the
previously mentioned corpora were used for training and testing the participating systems.

Developing systems that can handle multiple languages is another important NLP
area. In particular, the ability to accurately process and analyze text in various languages is
becoming increasingly important as the world becomes more globalized and interconnected.
For example, multilingual NLP systems can improve machine translation, allowing comput-
ers to translate text from one language to another accurately. This can be particularly useful
in situations where there is a need to communicate with speakers of different languages,
such as in global business or international relations. In addition to its practical applications,
multilingual NLP is an important area of study from a theoretical perspective. Research in
this field can help shed light on the underlying principles of language processing and how
these principles differ across languages [14,15].

Multilingual Transformer models have become a popular choice for multilingual NLP
tasks due to their ability to handle multiple languages and achieve strong performance on
a wide range of tasks. Based on the Transformer architecture [16], these models are pre-
trained on large amounts of multilingual data and can be fine-tuned for specific NLP tasks,
such as language translation or text classification. Some models that have become influential
in this area include the multilingual bidirectional encoder from transformers (mBERT) [17],
cross-lingual language model (XLM) [18], XLM-RoBERTa (XLM-R) [19], and multilingual
bidirectional auto-regressive transformers (mBART) [20]. One of the essential benefits of
multilingual Transformer models is their ability to transfer knowledge between languages.
These models can learn common representations of different languages, allowing them to
perform well on tasks in languages that they have yet to be specifically trained on. Thus,
multilingual Transformer models are a good choice for NLP tasks that involve multiple
languages, such as machine translation or cross-lingual information retrieval [21].

In this work, we leverage the knowledge developed in the two research areas (i.e.,
MWEs and multilingual NLP) to improve the results obtained at the PARSEME 1.2 shared
task [13]. We explore the benefits of combining them in a singular system by jointly fine-
tuning the mBERT model on all languages simultaneously and evaluating it separately.
In addition, we try to improve the performance of the overall system by employing two
mechanisms, (i) the newly introduced lateral inhibition layer [22] on top of the language
model and (ii) adversarial training [23] between languages. For the last mechanism, other
researchers have experimented with this algorithm and have shown that it can provide
better results with the right setting [24]; however, we are the first to experiment with and
show the advantages of lateral inhibition in multilingual adversarial training.

Our results demonstrate that by employing lateral inhibition and multilingual adver-
sarial training, we improve the results obtained by MTLB-STRUCT [25], the best system

111

Mathematics 2023, 11, 2548

in edition 1.2 of the PARSEME competition, on 11 out of 14 languages for global MWE
identification and 12 out of 14 languages for unseen MWE identification. Furthermore,
averaged across all languages, our highest-performing methodology achieves F1-scores
of 71.37% and 43.26% for global and unseen MWE identification, respectively. Thus, we
obtain an improvement of 1.23% for the former category and a gain of 4.73% for the latter
category compared to the MTLB-STRUCT system.

The rest of the paper is structured as follows. Section 2 summarises the contributions
of the PARSEME 1.2 competition and the main multilingual Transformer models. The
following section, Section 3, outlines the methodology employed in this work, including
data representation, lateral inhibition, adversarial training, and how they were employed
in our system. Section 4 describes the setup (i.e., dataset and training parameters) used to
evaluate our models. Section 5 presents the results, and Section 6 details our interpretation
of their significance. Finally, our work is concluded in Section 7 with potential future
research directions.

2. Related Work

2.1. Multilingual Transformers

This subsection will present the most influential three multilingual language models
(MLLMs): mBERT, XLM, and XLM-R. The mBERT model, similar to the original BERT
model [17], is a Transformer model [16] with 12 hidden layers. However, while BERT was
trained solely on monolingual English data with an English-specific vocabulary, mBERT is
trained on the Wikipedia pages of 104 languages and uses a shared word-piece vocabulary.
mBERT has no explicit markers indicating the input language and no mechanism specifi-
cally designed to encourage translation-equivalent pairs to have similar representations
within the model. Although simple in its architecture, due to its multilingual represen-
tations, mBERT’s robustness to generalize across languages is often surprising, despite
needing to be explicitly trained for cross-lingual generalization. The central hypothesis is
that using word pieces common to all languages, which must be mapped to a shared space,
may lead to other co-occurring word pieces being mapped to this shared space [26].

XLM resulted from various investigations made by the authors in cross-lingual pre-
training. They introduce the translation language modeling objective (TLM), which extends
the masked language modeling (MLM) objective to pairs of parallel sentences. The reason
for doing that is sound and straightforward. Suppose the model needs to predict a masked
word within a sentence from a given language. In that case, it can consider that sentence
and its translation into a different language. Thus, the model is motivated to align the
representations of both languages in a shared space. Using this approach, XLM obtained
state-of-the-art (SOTA) results on supervised and unsupervised machine translation using
the WMT’16 German–English and WMT’16 Romanian–English datasets [27], respectively.
In addition, the model also obtained SOTA results on the Cross-lingual Natural Language
Inference (XNLI) corpus [28].

In contrast to XLM, XLM-R does not use the TLM objective and instead trains
RoBERTa [29] on a large, multilingual dataset extracted from CommonCrawl (http://co
mmoncrawl.org/ last accessed on 21 April 2023) datasets. In 100 languages, totaling 2.5 TB
of text. It is trained using only the MLM objective, similar to RoBERTa, the main difference
between the two being the vocabulary size, with XLM-R using 250,000 tokens compared to
RoBERTa’s 50,000 tokens. Therefore, XLM-R is significantly larger, with 550 million param-
eters, compared to RoBERTa’s 355 million parameters. The main distinction between XLM
and XLM-R is that XLM-R is fully self-supervised, whereas XLM requires parallel examples
that may be difficult to obtain in large quantities. In addition, this work demonstrated for
the first time that it is possible to develop multilingual models that do not compromise
performance in individual languages. XLM-R obtained similar results to monolingual
models on the GLUE [30] and XNLI benchmarks.

112

Mathematics 2023, 11, 2548

2.2. PARSEME 1.2 Competition

We present the results obtained by the systems participating in edition 1.2 of the
PARSEME shared task [13] on discovering VMWEs that were not present (i.e., were not
seen) in the training corpus. We will not focus on the previous editions of this shared task
for two reasons, (i) the corpora were different, on the one hand, concerning the distribution
of seen and unseen VMWEs in the train/dev/test sets, and, on the other hand, smaller
for some languages; and (ii) the focus in the last edition, unlike the first two, was on
the systems’ ability to identify VMWEs unseen in the train and dev corpora, exploring
alternative ways of discovering them. Thus, in a supervised machine learning approach,
the systems were supposed to learn some characteristics of seen VMWEs and, based on
those, find others in the test dataset.

The competing systems used recurrent neural networks [25,31–33], but also exploited
the syntactic annotation of the corpus [34,35], or association measures [34,35]. The shared
task was organized on two tracks, closed and open. The former allowed only for the use of
the train and dev sets provided by the organizers, as well as of the raw corpora provided for
each language, with sizes between 12 and 2474 million tokens. The latter track allowed for
the use of any existing resource for training the system, and examples of such resources are
as follows, VMWEs lexicons in the target language or another language (exploited due to
their translation in the target language) or language models (monolingual or multilingual
BERT [25,33], XLM-RoBERTa [32]). Only two systems participated in the closed track, while
seven participated in the open one.

The best-performing system in the open track is MTLB-STRUCT [25]. It is a neural
language model relying on pre-trained multilingual BERT and learning both MWEs and
syntactic dependency parsing, using a tree CRF network [36]. The authors explain that the
joint training of the tree CRF and a Transformer-based MWE detection system improves
the results for many languages.

The second and third place in the same track is occupied by the model called TRAVIS [33]
that came in two variants, TRAVISmulti (ranked second), which employs multilingual
contextual embeddings, and TRAVISmono (ranked third), which employs monolingual
ones. These systems rely solely on embeddings, and no other feature is used. The author
claims that the monolingual contextual embeddings are much better at generalizations
than the multilingual ones, especially concerning unseen MWEs.

3. Methodology

In this work, we perform two kinds of experiments, (i) train a model using only the
data for a specific language (referred to as monolingual training) and (ii) put multiple
corpora from different languages in one place, train the multilingual model on it and then
evaluate the trained model on the test set of each language (referred to as multilingual
training). For the latter, we also perform additional experiments to improve the results by
employing lateral inhibition and adversarial training mechanisms, as depicted in Figure 1.

3.1. Data Representation

BERT has significantly impacted the field of NLP and has achieved SOTA performance
on various tasks. Its success can be attributed to the training process, which involves
learning from large amounts of textual data using a Transformer model and then fine-tuning
it on a smaller amount of task-specific data. The masked language modeling objective used
during pre-training allows the model to learn effective sentence representations, which
can be fine-tuned for improved performance on downstream tasks with minimal task-
specific training data. The success of BERT has led to the creation of language-specific
versions of the model for various languages, such as CamemBERT (French) [37], AfriBERT
(Afrikaans) [38], FinBERT (Finnish) [39], and RoBERT (Romanian) [40].

113

Mathematics 2023, 11, 2548

Figure 1. Domain adversarial training algorithm. We have the mBERT feature extractor F with
green, whose role is to generate the token embeddings, the MWE label classifier C with blue, and the
language classifier LD with orange, whose gradient is reversed and scaled by λ before it is fed into the
feature extractor. Additionally, C has incorporated in its architecture the lateral inhibition mechanism.

The scarceness of data and resources has resulted in recent advances in NLP being
limited to English and a few high-resource languages rather than being more widely appli-
cable across languages. To address this issue, MLLMs have been developed and trained
using large amounts of unlabeled textual data collected from multiple languages. These
models are designed to benefit lower resource languages by leveraging their shared vocab-
ulary, genetic relatedness, or contact relatedness with higher resource languages [41,42].
Many different MLLMs are available, which vary in terms of their architecture, training
objective, data used for pre-training, and the number of languages covered. However, in
our experiments, we employ only the mBERT model because it allows us to provide a
cleaner comparison with the monolingual BERT models and thus emphasizes the strengths
of our approach.

3.2. Lateral Inhibition

The biological process of lateral inhibition represents the capacity of excited neurons to
reduce the activity of their neighbors [43]. In the visual cortex, this process is associated with
an increased perception under challenging environments, such as low-lighting conditions.
Previously, we proposed implementing the lateral inhibition mechanism in artificial neural
networks (ANN) to improve the named entity recognition task [22,44]. The intuition behind
introducing this mechanism is that it reduces noise associated with word representations
in some instances, such as less frequent words or contexts.

The implementation uses an additional ANN layer that filters the values of a neuron
from a previous layer (the word embedding representation) based on values from other
adjacent neurons in the previous layer. Equation (1) describes the new layer’s forward pass.
Here, X is the layer’s input vector (a token embedding representation), Diag is a matrix
with the diagonal set to the vector given as a parameter, ZeroDiag produces a matrix with
the value zero on the main diagonal, and W and B represent the weights and bias. Θ is the
Heaviside function, described in Equation (2). The derivative of the Heaviside function in
the backward pass is approximated with the sigmoid function using a scaling parameter
k [45] (see Equation (3)), a method known as surrogate gradient learning [46].

114

Mathematics 2023, 11, 2548

F(X) = X ∗ Diag(Θ(X ∗ ZeroDiag(WT) + B)) (1)

Θ(x) =
{

1, x > 0
0, x ≤ 0

(2)

σ(x) =
1

1 + e−kx (3)

3.3. Adversarial Training

In recent years, adversarial training of neural networks had a significant influence,
particularly in computer vision, where generative unsupervised models have demonstrated
the ability to generate new images [47]. A crucial challenge in adversarial training is finding
the proper balance between the generator and the adversarial discriminator. As a result,
several methods have been proposed in recent times to stabilize the training process [48–50].
Therefore, Joty et al. [51] introduced cross-lingual adversarial neural networks designed to
learn discriminative yet language-invariant representations. In this work, we use the same
methodology to learn task-specific representations in a cross-lingual setting and improve
the predictive capabilities of a multilingual BERT model.

Our approach is rooted in the Domain Adversarial Neural Network (DANN) algo-
rithm, initially designed for domain adaptation [52]. DANN consists of a deep feature
extractor F, responsible for extracting relevant features f from the input data, and a deep
label classifier C, which uses those features to make predictions about the label of the input
x. Together, these two components form a standard feed-forward architecture. In order to
improve the performance of the model on a target domain where labeled data are scarce,
an additional component is added to the architecture, called a domain classifier D, which is
responsible for distinguishing between samples from the source and target domains d. This
domain classifier is connected to the feature extractor via a gradient reversal layer, which
multiplies the gradient by a negative constant during training. The gradient reversal layer
helps ensure that the feature distributions over the two domains are as similar as possible,
resulting in domain-invariant features that can better generalize to the target domain. The
overall training process minimizes the label prediction loss on the source examples and the
domain classification loss on all samples. Thus, we have the following equations that are
used to update the parameters of each of the three components:

θC = θC − α
∂Ly
∂θC

θD = θD − α ∂Ld
∂θD

θF = θF − α(
∂Ly
∂θF

− λ ∂Ld
∂θF

)

(4)

where θC are the parameters of the label classifier, Ly is the loss obtained by the label
classifier when predicting the class labels y, θD are the parameters of the domain classifier,
Ld is the loss obtained by the domain classifier when predicting the domain labels d, θF are
the parameters of the feature extractor, λ is the hyperparameter used to scale the reverse
gradients, and α is the learning rate.

3.4. Monolingual Training

In the monolingual training experiments, we treat the MWE task as sequence tagging,
so we try to predict a label for each input token. To attain that, we employ a feed-forward
layer that maps the embeddings produced by a BERT model into the specific MWE class
logits and then apply the softmax activation function to obtain the probabilities. This
mechanism is succinctly described in the following equation:

pi = so f tmax(eiWT + b) (5)

115

Mathematics 2023, 11, 2548

where pi are the class MWE probabilities for the token i, ei are the embeddings produced
by the language model, WT is the transpose of the feed-forward layer, and b is its bias. We
use the same BERT models for each language as in [25]).

3.5. Multilingual Training

We fine-tune the mBERT model for multilingual training using the same methodology
as in the monolingual case. However, we improve the predictions by first employing
the lateral inhibition layer on top of the embeddings. The lateral inhibition layer has
been shown to improve the performance of language models in named entity recognition
tasks [22,44,53], and we believe that it would do the same for MWE identification since
the methodology is similar for the two tasks. Therefore, the equation that describes the
resulting system becomes:

pi = so f tmax(LI(ei)WT + b) (6)

where LI is the lateral inhibition layer and the rest of the terms are the same as in
Equation (5).

We also adapt the multilingual training by employing the DANN algorithm with a
language discriminator instead of the domain discriminator. Thus, we create language-
independent features out of the mBERT model by reversing the gradient that comes out
of the language discriminator when backpropagating through the language model. The
gradient reversal mechanism in our system is described using the following equations

θC = θC − α
∂Ly
∂θC

θLD = θLD − α ∂Lld
∂θLD

θF = θF − α(
∂Ly
∂θF

− λ ∂Lld
∂θF

)

(7)

where θC are the parameters of the MWE classifier, Ly is the loss obtained by the MWE
classifier when predicting the MWE labels y, θLD are the parameters of the language
discriminator, Lld is the loss obtained by the language discriminator when predicting the
language labels ld, θF are the parameters of the mBERT model (i.e., the feature extractor
in DANN), λ is the hyperparameter used to scale the reversed gradients, and α is the
learning rate.

Finally, we employ the lateral inhibition layer and the DANN methodology with
a language discriminator on the mBERT model for multilingual training. The forward
procedure of this approach, which is used to compute the loss between the predicted MWE
probabilities for a given text and the corresponding ground truths, and the loss between
the predicted language probabilities and the corresponding ground truths of the given text,
is described in Algorithm 1 as follows:

• Tokenize the text using the mBERT tokenizer, obtaining the tokens toki (Line 1).
• Generate the multilingual embeddings embi for each of the above tokens toki using

the mBERT model (Line 2).
• Apply the lateral inhibition layer on each of the embeddings embi (Line 3).
• Use the MWE classifier composed of lateral inhibition layer output to produce the

probabilities ŷi of a token to belong to a certain MWE class (Line 4).
• Use the language discriminator on the embedding emb[CLS] corresponding to the

token [CLS] to produce the probabilities ˆldi of the text to belong to a certain language
(Line 5).

• Compute the loss Ly between the predicted MWE probabilities and the ground truth
MWE labels (Line 6) and the loss Lld between the predicted language probabilities
and the ground truth language labels (Line 7).

In Algorithm 2, we outline the backward procedure used to update the parameters of
our models as follows:

116

Mathematics 2023, 11, 2548

• Compute the gradients ∇C for the MWE classifier using the MWE loss Ly (Line 1).
• Compute the gradients ∇LD for the language discriminator using the language dis-

criminator loss Lld (Line 2).
• Compute the gradients ∇F of the mBERT model using ∇C and −∇LD multiplied by λ

(Line 3).
• Update the model parameters (i.e., θC, θLD, and θF) using the gradient descent algo-

rithm (Lines 4-6).

Algorithm 1: Algorithm describing the forward pass of the multilingual training
with lateral inhibition and language adversarial training.

Input: text, ground truth MWE labels yi, and ground truth language labels ldi
Output: MWE identification loss Ly and language discrimination loss Lld
toki ← tokenize(text)
embi ← mbert(toki)
hi ← lateral_inhibition(embi)
ŷi ← mwe_classifier(hi)
ˆldi ← language_discriminator(emb[CLS])
Ly ← cross_entropy_loss(yi, ŷi)
Lld ← cross_entropy_loss(ldi, ˆldi)

Algorithm 2: Algorithm describing the backward pass of the multilingual train-
ing with lateral inhibition and language adversarial training.

Input: MWE identification loss Ly, language discrimination loss Lld, and reversed
gradient scaling factor λ

Output: Parameters θC, θLD, and θF
∇C ← compute_gradients(Ly)
∇LD ← compute_gradients(Lld)
∇F ← compute_gradients(∇C − λ∇LD)
θC ← update_parameters(∇C)
θLD ← update_parameters(∇LD)
θF ← update_parameters(∇F)

4. Experimental Settings

4.1. Dataset

The corpus used to evaluate our models is the PARSEME dataset version 1.2. The
corpus was manually annotated with VMWEs of several types. Some are universal because
they exist and were annotated in all languages in the project. These universal types are
verbal idioms (e.g., the Romanian “a face din t,ânt,ar armăsar”—eng. “to make a mountain
out of a molehill”) and light verb constructions (e.g., the Romanian “a face o vizită”—eng.
“to pay a visit”) in which their verb is light in the sense that its semantic contribution to the
meaning of the whole expression is almost null, its role being rather only that of carrying
the verb specific morphological information, such as tense, number, or person. There
are also light verb constructions in which the verb carries a causative meaning (e.g., the
Romanian “a da bătăi de cap”—eng. “to give a hard time”), and they are also annotated
in all languages. The types of VMWEs that apply only to some of the languages in the
project are called quasi-universal: inherently reflexive verbs (e.g., the Romanian “a-s, i
imagina”—eng. “to imagine (oneself)”), verb-particle constructions (e.g., “to give up”),
multi-verb constructions (e.g., “make do”), and inherently adpositional verbs (e.g., “to rely
on”). For Italian, a language-specific type was defined, namely inherently clitic verbs (e.g.,
“prendersela”—eng. “to be angry”).

The dataset used in the PARSEME shared task edition 1.2 contains 14 languages,
including German (DE), Basque (EU), Greek (EL), French (FR), Irish (GA), Hebrew (HE),

117

Mathematics 2023, 11, 2548

Hindi (HI), Italian (IT), Polish (PL), Brazilian Portuguese (PT), Romanian (RO), Swedish
(SV), Turkish (TR), and Chinese (ZH). The number of tokens ranges from 35 k tokens (HI)
to 1015 k tokens (RO), while the number of annotated VMWEs ranges from 662 (GA) to
9164 (ZH). The dataset split was made to ensure a higher number of unseen VMWEs in the
dev (100 unseen VMWEs with respect to the train set) and test (300 unseen VMWEs with
respect to the train + dev files) sets. More statistics regarding the PARSEME 1.2 dataset are
depicted in Table 1.

In addition to the annotation with VMWEs, the multilingual PARSEME corpus is also
tokenized, morphologically, and syntactically annotated, mostly with UDPipe [54]. Thus,
the syntactic analysis follows the principles of Universal Dependencies (https://universa
ldependencies.org/ last accessed on 21 April 2023) [55].

Table 1. The statistics of PARSEME 1.2: number of sentences (#Sent.), of tokens (#Tok.), and the
sentence average length (Len.) on each of the three splits: training, validation, and test.

Lang.
Training Validation Test

#Sent. #Tok. Len. #Sent. #Tok. Len. #Sent. #Tok. Len.

DE 6.5 k 126.8 k 19.3 602 11.7 k 19.5 1.8 k 34.9 k 19.1
EL 17.7 k 479.6 k 27.0 909 23.9 k 26.3 2.8 k 75.4 k 26.7
EU 4.4 k 61.8 k 13.9 1.4 k 20.5 k 14.4 5.3 k 75.4 k 14.2
FR 14.3 k 360.0 k 25.0 1.5 k 39.5 k 25.1 5.0 k 126.4 k 25.2
GA 257 6.2 k 24.2 322 7.0 k 21.8 1.1 k 25.9 k 23.1
HE 14.1 k 286.2 k 20.2 1.2 k 25.3 k 20.2 3.7 k 76.8 k 20.2
HI 282 5.7 k 20.4 289 6.2 k 21.7 1.1 k 23.3 k 21.0
IT 10.6 k 282.0 k 27.4 1.2 k 32.6 k 27.1 3.8 k 106.0 k 27.3
PL 17.7 k 298.4 k 16.8 1.4 k 23.9 k 16.8 4.3 k 73.7 k 16.7
PT 23.9 k 542.4 k 22.6 1.9 k 43.6 k 22.1 6.2 k 142.3 k 22.8
RO 10.9 k 195.7 k 17.9 7.7 k 134.3 k 17.4 38.0 k 685.5 k 18.0
SV 1.6 k 24.9 k 15.5 596 8.8 k 14.9 2.1 k 31.6 k 15.0
TR 17.9 k 267.5 k 14.9 1.0 k 15.9 k 15.0 3.3 k 48.7 k 14.7
ZH 35.3 k 575.5 k 16.2 1.1 k 18.2 k 16.0 3.4 k 55.7 k 16.0

Total 175.7 k 3512.7 k 20.1 29.3 k 522.2 k 19.8 k 81.9 k 1581.6 k 20.0

4.2. Fine-Tuning

We followed the fine-tuning methodology employed by MTLB-STRUCT (the corre-
sponding configuration files for each language are available at https://github.com/shivaat
/MTLB-STRUCT/tree/master/code/configs last accessed on 21 April 2023) with the tree
conditional random fields [56] disabled. Thus, we trained our models for 10 epochs using
a batch size of 32 and the Adam optimizer [57] with a learning rate of 3 × 10−5. We set
the maximum input sequence length to 150, the scaling parameter k, used in the gradient
approximation of the lateral inhibition Heaviside function, to 10, which was empirically
shown to create a good enough surrogate gradient [22], and the hyperparameter λ to
0.01 in the DANN algorithm for scaling the reversed gradient. We did not employ k-fold
cross-validation in our experiments, and we measured the model performance in terms of
precision, recall, and F1-score at the token level using the following equations:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1-score =
2 · Precision · Recall
Precision + Recall

(10)

where TP is the number of true positives, FP is the number of false positives, and FN is
the number of false negatives. As suggested by the PARSEME 1.2 competition evaluation

118

Mathematics 2023, 11, 2548

methodology (https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evalu
ation/ last accessed on 21 April 2023), we compute the strict variant of the F1-score. Thus,
we consider the predicted label of a group of tokens as true positive only if it perfectly
matches the ground truth [58].

5. Results

The results of our evaluation for both monolingual and multilingual training, with and
without lateral inhibition and adversarial training, for all the 14 languages, are displayed in
Table 2. We improved the performance of MTLB-STRUCT, the best overall system according
to the competition benchmark (https://multiword.sourceforge.net/PHITE.php?sitesig=CO
NF&page=CONF_02_MWE-LEX_2020___lb__COLING__rb__&subpage=CONF_40_Shared
_Task last accessed on 21 April 2023), on 11 out of 14 languages for global MWE predic-
tion (the three remaining languages are German, Italian, and Romanian) and on 12 out of
14 languages for unseen MWE prediction (the two remaining languages are German and
Greek). Out of all the cases where our methods underperformed, the only high difference
was obtained in the German language, our best system being behind the MTLB-STRUCT
system by approximately 3.43% on global MWE prediction and approximately 6.57% on
unseen MWE prediction. We believe that this is due to the employment of the German
BERT (https://huggingface.co/bert-base-german-cased last accessed on 21 April 2023) by
the MTLB-STRUCT team, while we still used the mBERT model for this language.

For the global MWE prediction, we managed to improve the performance in 11 languages,
the highest F1-score was obtained by the monolingual training once (i.e., Chinese), by the
simple multilingual training three times (i.e., Greek, Irish, and Turkish), by the multilingual
training with lateral inhibition three times (i.e., French, Hebrew, and Polish), by the multi-
lingual adversarial training once (i.e., Basque), and by the multilingual adversarial training
with the lateral inhibition three times (i.e., Hindi, Portuguese, and Swedish). On the other
hand, for the unseen MWE prediction, we managed to achieve better results in 12 languages.
The simple multilingual training obtained the highest F1-score only once (i.e., Swedish),
the multilingual training with the lateral inhibition three times (i.e., French, Turkish, and
Chinese), the multilingual adversarial training five times (i.e., Irish, Hebrew, Hindi, Polish,
and Romanian), and the multilingual adversarial training with lateral inhibition three times
(i.e., Basque, Italian, and Portuguese).

Table 2. The results obtained by the monolingual and multilingual training, together with the
results obtained by the best system of the PARSEME 1.2 competition, MTLB-STRUCT. LI is the
lateral inhibition component, while Adv is the domain adaptation technique for cross-lingual MWE
identification. We measure the precision (P), recall (R), and F1-score (F1) for each global and unseen
MWE identification experiment. The best results in each language are highlighted in bold.

Language Method
Global MWE-Based Unseen MWE-Based

P R F1 P R F1

DE

MTLB-STRUCT [25] 77.11 75.24 76.17 49.17 49.50 49.34
Monolingual 74.26 72.82 73.53 40.35 41.79 41.06
Multilingual 77.26 68.47 72.60 37.85 43.22 40.35

Multilingual + LI 69.07 66.38 67.70 39.15 43.85 41.37
Multilingual + Adv 69.00 68.33 68.66 39.18 45.11 41.94

Multilingual + LI + Adv 71.37 68.08 69.69 41.47 43.85 42.77

EL

MTLB-STRUCT [25] 72.54 72.69 72.62 38.74 47.00 42.47
Monolingual 72.33 73.00 72.66 38.30 46.75 42.11
Multilingual 74.60 72.38 73.48 38.92 42.21 40.50

Multilingual + LI 72.52 72.90 72.71 37.90 45.78 41.47
Multilingual + Adv 73.23 72.18 72.70 38.81 44.48 41.45

Multilingual + LI + Adv 73.42 72.59 73.00 38.64 44.16 41.21

119

Mathematics 2023, 11, 2548

Table 2. Cont.

Language Method
Global MWE-Based Unseen MWE-Based

P R F1 P R F1

EU

MTLB-STRUCT [25] 80.72 79.36 80.03 28.12 44.33 34.41
Monolingual 81.61 80.40 81.00 34.94 49.29 40.89
Multilingual 86.49 77.03 81.49 33.32 45.04 39.17

Multilingual + LI 84.07 78.66 81.28 37.38 44.48 40.62
Multilingual + Adv 82.77 78.71 80.69 36.46 48.44 41.61

Multilingual + LI + Adv 84.80 78.42 81.48 39.71 46.46 42.82

FR

MTLB-STRUCT [25] 80.04 78.81 79.42 39.20 46.00 42.33
Monolingual 79.84 79.54 79.69 38.89 44.87 41.67
Multilingual 81.80 77.04 79.35 43.17 44.55 43.85

Multilingual + LI 81.85 78.96 80.37 45.48 48.40 46.89
Multilingual + Adv 80.12 78.59 79.35 41.60 48.40 44.74

Multilingual + LI + Adv 80.47 78.22 79.33 40.87 45.19 42.92

GA

MTLB-STRUCT [25] 37.72 25.00 30.07 23.08 16.94 19.54
Monolingual 33.67 23.17 27.45 24.02 17.28 20.10
Multilingual 54.91 34.63 42.48 45.91 28.61 35.25

Multilingual + LI 55.31 34.63 42.60 45.79 27.76 34.57
Multilingual + Adv 56.12 35.78 43.70 48.42 30.31 37.28

Multilingual + LI + Adv 55.72 34.63 42.72 45.79 27.76 34.57

HE

MTLB-STRUCT [25] 56.20 42.35 48.30 25.53 15.89 19.59
Monolingual 54.09 40.76 46.49 26.02 15.94 19.77
Multilingual 61.38 40.76 48.98 34.76 17.81 23.55

Multilingual + LI 61.63 42.54 50.23 34.46 19.06 24.55
Multilingual + Adv 58.40 42.15 48.96 35.35 21.88 27.03

Multilingual + LI + Adv 59.89 42.74 49.88 34.92 20.62 25.93

HI

MTLB-STRUCT [25] 72.25 75.04 73.62 48.75 58.33 53.11
Monolingual 66.53 70.28 68.35 49.35 61.35 54.70
Multilingual 77.78 71.77 74.65 62.72 58.65 60.61

Multilingual + LI 77.08 68.95 72.78 61.83 56.49 59.04
Multilingual + Adv 75.46 73.11 74.26 60.95 62.43 61.68

Multilingual + LI + Adv 75.53 73.85 74.68 60.31 62.43 61.35

IT

MTLB-STRUCT [25] 67.68 60.27 63.76 20.23 21.33 20.81
Monolingual 64.53 59.59 61.96 20.81 24.06 22.32
Multilingual 69.37 56.40 62.21 22.22 19.38 20.70

Multilingual + LI 71.27 56.01 62.72 23.02 20.12 21.28
Multilingual + Adv 65.65 58.33 61.78 20.83 21.88 21.43

Multilingual + LI + Adv 69.18 57.85 63.01 25.51 23.44 24.43

PL

MTLB-STRUCT [25] 82.94 79.18 81.02 38.46 41.53 39.94
Monolingual 81.89 79.33 80.85 38.30 41.99 40.06
Multilingual 84.02 77.03 80.37 40.34 37.50 38.87

Multilingual + LI 85.14 79.26 82.09 44.48 41.33 42.84
Multilingual + Adv 82.55 79.85 81.18 40.75 45.19 42.86

Multilingual + LI + Adv 83.19 78.74 80.90 41.01 41.67 41.34

PT

MTLB-STRUCT [25] 73.93 72.76 73.34 30.54 41.33 35.13
Monolingual 74.81 70.94 73.01 33.81 39.05 35.98
Multilingual 75.93 70.94 73.35 34.06 39.18 36.44

Multilingual + LI 77.15 71.89 74.43 35.61 39.18 37.31
Multilingual + Adv 73.36 73.48 73.42 30.33 40.13 34.55

Multilingual + LI + Adv 75.51 73.53 74.49 33.76 41.78 37.36

120

Mathematics 2023, 11, 2548

Table 2. Cont.

Language Method
Global MWE-Based Unseen MWE-Based

P R F1 P R F1

RO

MTLB-STRUCT [25] 89.88 91.05 90.46 28.84 41.47 34.02
Monolingual 90.39 90.11 90.25 46.82 51.09 48.86
Multilingual 91.34 88.46 89.88 49.90 48.12 48.99

Multilingual + LI 90.78 88.85 89.81 45.06 45.15 45.10
Multilingual + Adv 89.14 90.13 89.63 46.27 56.44 50.85

Multilingual + LI + Adv 89.95 88.78 89.36 45.44 50.30 47.74

SV

MTLB-STRUCT [25] 69.59 73.68 71.58 35.57 53.00 42.57
Monolingual 73.01 73.68 73.34 44.32 54.62 48.93
Multilingual 78.92 70.79 74.63 50.78 54.62 52.63

Multilingual + LI 75.48 73.68 74.57 46.77 52.66 49.54
Multilingual + Adv 75.42 74.41 74.91 46.70 53.50 49.87

Multilingual + LI + Adv 77.62 74.10 75.82 49.47 51.82 50.62

TR

MTLB-STRUCT [25] 68.41 70.55 69.46 42.11 45.33 43.66
Monolingual 69.11 72.89 70.95 43.75 47.88 45.72
Multilingual 67.52 73.27 71.18 41.83 47.56 44.51

Multilingual + LI 69.92 72.28 71.08 47.94 49.19 48.55
Multilingual + Adv 68.41 70.37 69.38 43.54 47.23 45.31

Multilingual + LI + Adv 68.22 69.77 68.99 43.04 44.30 43.66

ZH

MTLB-STRUCT [25] 68.56 70.74 69.63 58.97 53.67 56.20
Monolingual 72.33 72.88 72.60 59.74 58.03 58.87
Multilingual 72.03 71.32 71.67 62.30 55.87 58.91

Multilingual + LI 69.82 70.36 70.09 62.50 57.31 59.79
Multilingual + Adv 69.29 69.47 69.38 62.42 54.73 58.32

Multilingual + LI + Adv 70.64 68.58 69.59 65.41 54.73 59.59

Also, the monolingual training has not achieved the highest F1-score for unseen MWE
prediction for any language. These findings are summarized in Table 3).

Table 3. The number of times we managed to obtain the highest F1-score with each system developed
in this work for both global MWE (#Highest Global MWE) and unseen MWE (#Highest Unseen
MWE) predictions.

Method
#Highest #Highest

Global MWE Unseen MWE

MTLB-STRUCT [25] 3 2

Monolingual 1 0
Multilingual 3 1

Multilingual + LI 3 3
Multilingual + ADV 1 5

Multilingual + LI + ADV 3 3

Total (ours) 11 12

We further compared the average scores across all languages obtained by our systems.
In Table 4, we compared our results with the ones obtained by each system at the latest edi-
tion of the PARSEME competition (https://multiword.sourceforge.net/PHITE.php?sitesig=
CONF&page=CONF_02_MWE-LEX_2020___lb__COLING__rb__&subpage=CONF_50_Shared
_task_results last accessed on 21 April 2023): MTLB-STRUCT [25], Travis-multi/mono [33],
Seen2Unseen [34], FipsCo [10], HMSid [35], and MultiVitamin [32]. For the global MWE
identification, we outperformed the MTLB-STRUCT results with all the multilingual train-
ing experiments, the highest average F1-score being obtained by the simple multilingual
training without lateral inhibition or adversarial training. It achieved an average F1-score
of 71.37%, an improvement of 1.23% compared to the MTLB-STRUCT F1-score (i.e., 70.14%).

121

Mathematics 2023, 11, 2548

For unseen MWE identification, we improved the average results obtained by MTLB-
STRUCT using all the methodologies employed in this work. The highest average F1-score
was obtained by the multilingual adversarial training with 43.26%, outperforming the
MTLB-STRUCT system by 4.73%.

Table 4. The average precision (AP), recall (AR), and F1-scores (AF1) over all languages obtained by
our systems are compared with the results obtained by each system at the PARSEME 1.2 competition
on global and unseen MWE identification. We also depict the number of languages used to train each
system (#Lang). The best results are highlighted in bold.

Method #Lang.
Global MWE-Based Unseen MWE-Based

AP AR AF1 AP AR AF1

MTLB-STRUCT [25] 14/14 71.26 69.05 70.14 36.24 41.12 38.53
TRAVIS-multi [33] 13/14 60.65 57.62 59.10 28.11 33.29 30.48
TRAVIS-mono [33] 10/14 49.50 43.48 46.34 24.33 28.01 26.04
Seen2Unseen [34] 14/14 63.36 62.69 63.02 16.14 11.95 13.73

FipsCo [10] 3/14 11.69 8.75 10.01 4.31 5.21 4.72
HMSid [35] 1/14 4.56 4.85 4.70 1.98 3.81 2.61

MultiVitaminBooster [32] 7/14 0.19 0.09 0.12 0.05 0.07 0.06

Monolingual 14/14 70.60 68.52 69.54 38.52 42.42 40.38
Multilingual 14/14 75.23 67.88 71.37 42.72 41.60 42.15

Multilingual + LI 14/14 74.36 68.24 71.17 43.48 42.20 42.78
Multilingual + Adv 14/14 72.78 68.92 70.80 42.26 44.30 43.26

Multilingual + LI + Adv 14/14 73.96 68.56 71.16 43.24 42.75 43.00

6. Discussion

According to our experiments, the average MWE identification performance can be
improved by approaching this problem using a multilingual NLP system, as described in
this work. An interesting perspective of our results on this task is how much improvement
we brought compared to the PARSEME 1.2 competition’s best system. These results are
shown at the top of Figure 2 for global MWE prediction and at its bottom for unseen
MWE prediction. In general, the most significant relative improvements were achieved
in the Irish language by employing multilingual training that, combined with adversarial
training, boosted the performance by 45.32% for the global MWE prediction and by 90.78%
for the unseen MWE prediction. On the other hand, for the same language, by using the
monolingual training, we decrease the system’s performance on global MWE prediction
by 8.71% and slightly increase it by 2.86% on unseen MWE prediction. We believe that
these improvements in Irish were due to the benefits brought by the multilingual training
since this language contained the least amount of training sentences (i.e., 257 sentences),
and it has been shown in previous research that superior results are obtained when such
fine-tuning mechanisms are employed [59]. However, the Hindi language also contains a
small number of training samples (i.e., 282 sentences), but our multilingual training results
are worse when compared to Irish. We assume that this is the outcome of the language
inequalities that appeared in the mBERT pre-training data [60] and the linguistic isolation
of Hindi since there are no other related languages in the fine-tuning data [61].

The second highest improvements for global MWE prediction were achieved in the
Swedish language with 2.45% for the monolingual training, 4.26% for the multilingual
training, 4.17% for the multilingual training with the lateral inhibition, 4.65% for the multi-
lingual adversarial training, and 5.92% for the multilingual adversarial training with lateral
inhibition. We observe a relatively high difference between the first and the second place,
but we believe again that this is due to the small number of sentences for Irish compared
to Swedish. On the other hand, the results for unseen MWE prediction outline that the
second highest improvements were attained in Romanian with 43.62% for the monolingual
training, 44.00% for the multilingual training, 32.56% for the multilingual training with
lateral inhibition, 49.47% for the multilingual adversarial training, and 40.32% for the

122

Mathematics 2023, 11, 2548

multilingual adversarial training with lateral inhibition. In addition, the improvements are
more uniform on the unseen MWE prediction than the global one.

Figure 2. Improvements brought by our methodologies (i.e., Monolingual, Multilingual, Multilin-
gual+LI, Multilingual+Adv, and Multilingual+LI+Adv) on global (top) and unseen (bottom) MWE
prediction compared to the results of MTLB-STRUCT, the best system in the PARSEME shared task
edition 1.2.

7. Conclusions and Future Work

Failure to identify MWEs can lead to misinterpretation of text and errors in NLP
tasks, making this an important area of research. In this paper, we analyzed the perfor-
mance of MWE identification in a multilingual setting, training the mBERT model on the
combined PARSEME 1.2 corpus using all the 14 languages found in its composition. In
addition, to boost the performance of our system, we employed lateral inhibition and
language adversarial training in our methodology, intending to create embeddings that are
as language-independent as possible. Our evaluation results highlighted that through this
approach, we managed to improve the results obtained by MTLB-STRUCT, the best system
of the PARSEME 1.2 competition, on 11 out of 14 languages for global MWE identification
and 12 out of 14 for unseen MWE identification. Thus, with the highest average F1-scores of
71.37% for global MWE identification and 43.26% for unseen MWE identification, we class
ourselves over MTLB-STRUCT by 1.23% for the former task and by 4.73% for the latter.

Possible future work directions involve analyzing how the language-independent
features produced by mBERT are when lateral inhibition and adversarial training are
involved, together with an analysis of more models that produce multilingual embeddings,

123

Mathematics 2023, 11, 2548

such as XLM or XLM-R. In addition, we intend to analyze these two methodologies, with
possible extensions, for multilingual training beyond MWE identification, targeting tasks,
such as language generation or named entity recognition. Finally, since the languages in
the PARSEME 1.2 dataset may share similar linguistic properties, we would like to explore
how language groups improve each other’s performance in the multilingual scenario.

Author Contributions: Conceptualization, A.-M.A., V.B.M., V.P. and D.-C.C.; methodology, A.-M.A.
and V.P.; software, A.-M.A.; validation, A.-M.A., V.B.M., D.-C.C. and S, .T.-M.; formal analysis, A.-M.A.;
investigation, A.-M.A., V.B.M. and D.-C.C.; resources, A.-M.A. and V.B.M.; data curation, A.-M.A.;
writing—original draft preparation, A.-M.A., V.B.M. and V.P.; writing—review and editing, A.-M.A.,
V.B.M., D.-C.C. and S, .T.-M.; visualization, A.-M.A.; supervision, D.-C.C. and S, .T.-M.; project admin-
istration, D.-C.C.; funding acquisition, D.-C.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has been funded by the University Politehnica of Bucharest through the
PubArt program.

Data Availability Statement: The PARSEME 1.2 dataset used in this work has been open-sourced by
the competition organizers and is available for public usage at https://lindat.mff.cuni.cz/repository
/xmlui/handle/11234/1-3367 (last accessed on 21 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shudo, K.; Kurahone, A.; Tanabe, T. A comprehensive dictionary of multiword expressions. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011;
pp. 161–170.

2. Savary, A. Computational inflection of multi-word units: A contrastive study of lexical approaches. Linguist. Issues Lang. Technol.
2008, 1, 1–53. [CrossRef]

3. Avram, A.; Mititelu, V.B.; Cercel, D.C. Romanian Multiword Expression Detection Using Multilingual Adversarial Training and
Lateral Inhibition. In Proceedings of the 19th Workshop on Multiword Expressions (MWE 2023), Dubrovnik, Croatia, 2–6 May
2023; pp. 7–13.

4. Zaninello, A.; Birch, A. Multiword expression aware neural machine translation. In Proceedings of the 12th Language Resources
and Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 3816–3825.

5. Najar, D.; Mesfar, S.; Ghezela, H.B. Multi-Word Expressions Annotations Effect in Document Classification Task. In Proceedings
of the International Conference on Applications of Natural Language to Information Systems, Paris, France, 13–15 June 2018;
pp. 238–246.

6. Goyal, K.D.; Goyal, V. Development of Hybrid Algorithm for Automatic Extraction of Multiword Expressions from Monolingual
and Parallel Corpus of English and Punjabi. In Proceedings of the 17th International Conference on Natural Language Processing
(ICON): System Demonstrations, Patna, India, 18–21 December 2020; pp. 4–6.

7. Savary, A.; Candito, M.; Mititelu, V.B.; Bejček, E.; Cap, F.; Čéplö, S.; Cordeiro, S.R.; Eryiğit, G.; Giouli, V.; van Gompel, M.;
et al. PARSEME multilingual corpus of verbal multiword expressions. In Multiword Expressions at Length and in Depth: Extended
Papers from the MWE 2017 Workshop; Markantonatou, S., Ramisch, C., Savary, A., Vincze, V., Eds.; Language Science Press: Berlin,
Germany, 2018; pp. 87–147. [CrossRef]

8. Savary, A.; Ramisch, C.; Cordeiro, S.R.; Sangati, F.; Vincze, V.; QasemiZadeh, B.; Candito, M.; Cap, F.; Giouli, V.; Stoyanova, I.; et al.
Annotated Corpora and Tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions, 1.0 ed.;
LINDAT/CLARIAH-CZ Digital Library at the Institute of Formal and Applied Linguistics (ÚFAL); Faculty of Mathematics and
Physics, Charles University: Staré Město, Czech Republic, 2017.

9. Ramisch, C.; Cordeiro, S.R.; Savary, A.; Vincze, V.; Barbu Mititelu, V.; Bhatia, A.; Buljan, M.; Candito, M.; Gantar, P.; Giouli, V.; et al.
Annotated Corpora and Tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions, 1.1 ed.;
LINDAT/CLARIAH-CZ Digital Library at the Institute of Formal and Applied Linguistics (ÚFAL); Faculty of Mathematics and
Physics, Charles University: Staré Město, Czech Republic, 2018.

10. Ramisch, C.; Guillaume, B.; Savary, A.; Waszczuk, J.; Candito, M.; Vaidya, A.; Barbu Mititelu, V.; Bhatia, A.; Iñurrieta, U.;
Giouli, V.; et al. Annotated Corpora and Tools of the PARSEME Shared Task on Semi-Supervised Identification of Verbal Multiword
Expressions, 1.2 ed.; LINDAT/CLARIAH-CZ Digital Library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University: Staré Město, Czech Republic, 2020.

11. Savary, A.; Ramisch, C.; Cordeiro, S.; Sangati, F.; Vincze, V.; QasemiZadeh, B.; Candito, M.; Cap, F.; Giouli, V.; Stoyanova, I.; et al.
The PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions. In Proceedings of the 13th Workshop
on Multiword Expressions (MWE 2017), Valencia, Spain, 4 April 2017; pp. 31–47. [CrossRef]

124

Mathematics 2023, 11, 2548

12. Ramisch, C.; Cordeiro, S.R.; Savary, A.; Vincze, V.; Barbu Mititelu, V.; Bhatia, A.; Buljan, M.; Candito, M.; Gantar, P.; Giouli, V.; et al.
Edition 1.1 of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions. In Proceedings of the
Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018), Santa Fe, NM,
USA, 25–26 August 2018; pp. 222–240.

13. Ramisch, C.; Savary, A.; Guillaume, B.; Waszczuk, J.; Candito, M.; Vaidya, A.; Barbu Mititelu, V.; Bhatia, A.; Iñurrieta, U.;
Giouli, V.; et al. Edition 1.2 of the PARSEME Shared Task on Semi-supervised Identification of Verbal Multiword Expressions. In
Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons, Online, 13 December 2020; pp. 107–118.

14. Ponti, E.M.; O’horan, H.; Berzak, Y.; Vulić, I.; Reichart, R.; Poibeau, T.; Shutova, E.; Korhonen, A. Modeling language variation and
universals: A survey on typological linguistics for natural language processing. Comput. Linguist. 2019, 45, 559–601. [CrossRef]

15. Arroyo González, R.; Fernández-Lancho, E.; Maldonado Jurado, J.A. Learning Effect in a Multilingual Web-Based Argumentative
Writing Instruction Model, Called ECM, on Metacognition, Rhetorical Moves, and Self-Efficacy for Scientific Purposes. Mathematics
2021, 9, 2119. [CrossRef]

16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 6000–6010.

17. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

18. Conneau, A.; Lample, G. Cross-lingual language model pretraining. In Proceedings of the Advances in Neural Information
Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 7059–7069.

19. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, É.; Ott, M.; Zettlemoyer, L.; Stoyanov, V.
Unsupervised Cross-lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, 5–10 July 2020; pp. 8440–8451.

20. Liu, Y.; Gu, J.; Goyal, N.; Li, X.; Edunov, S.; Ghazvininejad, M.; Lewis, M.; Zettlemoyer, L. Multilingual Denoising Pre-training for
Neural Machine Translation. Trans. Assoc. Comput. Linguist. 2020, 8, 726–742. [CrossRef]

21. Kalyan, K.S.; Rajasekharan, A.; Sangeetha, S. Ammus: A survey of transformer-based pretrained models in natural language
processing. arXiv 2021, arXiv:2108.05542.

22. Pais, V. RACAI at SemEval-2022 Task 11: Complex named entity recognition using a lateral inhibition mechanism. In Proceedings
of the 16th International Workshop on Semantic Evaluation (SemEval-2022), Seattle, WA, USA, 14–15 July 2022; pp. 1562–1569.
[CrossRef]

23. Lowd, D.; Meek, C. Adversarial learning. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 641–647.

24. Dong, X.; Zhu, Y.; Zhang, Y.; Fu, Z.; Xu, D.; Yang, S.; De Melo, G. Leveraging adversarial training in self-learning for cross-lingual
text classification. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual, 25–30 July 2020; pp. 1541–1544.

25. Taslimipoor, S.; Bahaadini, S.; Kochmar, E. MTLB-STRUCT@ Parseme 2020: Capturing Unseen Multiword Expressions Using
Multi-task Learning and Pre-trained Masked Language Models. In Proceedings of the Joint Workshop on Multiword Expressions
and Electronic Lexicons, Online, 13 December 2020; pp. 142–148.

26. Pires, T.; Schlinger, E.; Garrette, D. How Multilingual is Multilingual BERT? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 4996–5001.

27. Bojar, O.; Graham, Y.; Kamran, A.; Stanojević, M. Results of the wmt16 metrics shared task. In Proceedings of the First Conference
on Machine Translation: Volume 2, Shared Task Papers; Association for Computational Linguistics: Cedarville, OH, USA, 2016;
pp. 199–231.

28. Conneau, A.; Rinott, R.; Lample, G.; Williams, A.; Bowman, S.; Schwenk, H.; Stoyanov, V. XNLI: Evaluating Cross-lingual
Sentence Representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, 31 October–4 November 2018; pp. 2475–2485.

29. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

30. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, Brussels, Belgium, 1 November 2018; pp. 353–355.

31. Yirmibeşoğlu, Z.; Güngör, T. ERMI at PARSEME Shared Task 2020: Embedding-Rich Multiword Expression Identification. In
Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons, Online, 13 December 2020; pp. 130–135.

32. Gombert, S.; Bartsch, S. MultiVitaminBooster at PARSEME Shared Task 2020: Combining Window-and Dependency-Based
Features with Multilingual Contextualised Word Embeddings for VMWE Detection. In Proceedings of the Joint Workshop on
Multiword Expressions and Electronic Lexicons, Online, 13 December 2020; pp. 149–155.

33. Kurfalı, M. TRAVIS at PARSEME Shared Task 2020: How good is (m) BERT at seeing the unseen? In Proceedings of the Joint
Workshop on Multiword Expressions and Electronic Lexicons, Online, 13 December 2020; pp. 136–141.

125

Mathematics 2023, 11, 2548

34. Pasquer, C.; Savary, A.; Ramisch, C.; Antoine, J.Y. Seen2Unseen at PARSEME Shared Task 2020: All Roads do not Lead to
Unseen Verb-Noun VMWEs. In Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons, Online,
13 December 2020; pp. 124–129.

35. Colson, J.P. HMSid and HMSid2 at PARSEME Shared Task 2020: Computational Corpus Linguistics and unseen-in-training
MWEs. In Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons, Online, 13 December 2020;
pp. 119–123.

36. Rush, A. Torch-Struct: Deep structured prediction library. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, Online, 5–10 July 2020; pp. 335–342.

37. Martin, L.; Muller, B.; Suárez, P.J.O.; Dupont, Y.; Romary, L.; De La Clergerie, É.V.; Seddah, D.; Sagot, B. CamemBERT: A Tasty
French Language Model. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Seattle,
WA, USA, 5–10 July 2020; pp. 7203–7219.

38. Ralethe, S. Adaptation of deep bidirectional transformers for Afrikaans language. In Proceedings of the 12th Language Resources
and Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 2475–2478.

39. Virtanen, A.; Kanerva, J.; Ilo, R.; Luoma, J.; Luotolahti, J.; Salakoski, T.; Ginter, F.; Pyysalo, S. Multilingual is not enough: BERT for
Finnish. arXiv 2019, arXiv:1912.07076.

40. Dumitrescu, S.; Avram, A.M.; Pyysalo, S. The birth of Romanian BERT. In Proceedings of the Findings of the Association for
Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; pp. 4324–4328.

41. Doddapaneni, S.; Ramesh, G.; Kunchukuttan, A.; Kumar, P.; Khapra, M.M. A primer on pretrained multilingual language models.
arXiv 2021, arXiv:2107.00676.

42. Draskovic, D.; Zecevic, D.; Nikolic, B. Development of a Multilingual Model for Machine Sentiment Analysis in the Serbian
Language. Mathematics 2022, 10, 3236. [CrossRef]

43. Cohen, R.A. Lateral inhibition. Encyclopedia of Clinical Neuropsychology; Springer: New York, NY, USA, 2011; pp. 1436–1437.
44. Mitrofan, M.; Pais, V. Improving Romanian BioNER Using a Biologically Inspired System. In Proceedings of the 21st Workshop

on Biomedical Language Processing, Dublin, Ireland, 26 May 2022; pp. 316–322. [CrossRef]
45. Wunderlich, T.C.; Pehle, C. Event-based backpropagation can compute exact gradients for spiking neural networks. Sci. Rep.

2021, 11, 12829. [CrossRef] [PubMed]
46. Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-

Based Optimization to Spiking Neural Networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [CrossRef]
47. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. arXiv

2020, arXiv:2001.06937.
48. Wiatrak, M.; Albrecht, S.V.; Nystrom, A. Stabilizing generative adversarial networks: A survey. arXiv 2019, arXiv:1910.00927.
49. Nam, S.H.; Kim, Y.H.; Choi, J.; Park, C.; Park, K.R. LCA-GAN: Low-Complexity Attention-Generative Adversarial Network for

Age Estimation with Mask-Occluded Facial Images. Mathematics 2023, 11, 1925. [CrossRef]
50. Zhang, X.; Wang, J.; Cheng, N.; Xiao, J. Metasid: Singer identification with domain adaptation for metaverse. In Proceedings of

the 2022 International Joint Conference on Neural Networks (IJCNN), Queensland, Australia, 18–23 June 2022; pp. 1–7.
51. Joty, S.; Nakov, P.; Màrquez, L.; Jaradat, I. Cross-language Learning with Adversarial Neural Networks. In Proceedings of the 21st

Conference on Computational Natural Language Learning (CoNLL 2017), Vancouver, BC, Canada, 3–4 August 2017; pp. 226–237.
. [CrossRef]

52. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial
training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35.

53. Avram, A.M.; Păis, , V.; Mitrofan, M. Racai@ smm4h’22: Tweets disease mention detection using a neural lateral inhibitory
mechanism. In Proceedings of the Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task,
Gyeongju, Republic of Korea, 12–17 October 2022; pp. 1–3.

54. Straka, M.; Straková, J. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, Vancouver, BC, Canada, 3–4 August 2017;
pp. 88–99.

55. de Marneffe, M.C.; Manning, C.D.; Nivre, J.; Zeman, D. Universal Dependencies. Comput. Linguist. 2021, 47, 255–308. [CrossRef]
56. Bradley, J.K.; Guestrin, C. Learning tree conditional random fields. In Proceedings of the 27th International Conference on

Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 127–134.
57. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
58. Sang, E.T.K.; De Meulder, F. Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. In

Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, Edmonton, AB, Canada, 31 May–1
June 2003; pp. 142–147.

59. Eisenschlos, J.; Ruder, S.; Czapla, P.; Kadras, M.; Gugger, S.; Howard, J. MultiFiT: Efficient Multi-lingual Language Model Fine-
tuning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 5702–5707.

126

Mathematics 2023, 11, 2548

60. Wu, S.; Dredze, M. Are All Languages Created Equal in Multilingual BERT? In Proceedings of the 5th Workshop on Representation
Learning for NLP, Online, 9 July 2020; pp. 120–130.

61. Dhamecha, T.; Murthy, R.; Bharadwaj, S.; Sankaranarayanan, K.; Bhattacharyya, P. Role of Language Relatedness in Multilingual
Fine-tuning of Language Models: A Case Study in Indo-Aryan Languages. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 8584–8595.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

127

Citation: Shi, Z.; Li, H.; Zhao, D.; Pan,

C. Research on Relation Classification

Tasks Based on Cybersecurity Text.

Mathematics 2023, 11, 2598. https://

doi.org/10.3390/math11122598

Academic Editor: Florentina Hristea

Received: 21 April 2023

Revised: 3 June 2023

Accepted: 5 June 2023

Published: 6 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Relation Classification Tasks Based on
Cybersecurity Text

Ze Shi 1, Hongyi Li 1,2, Di Zhao 1,2,* and Chengwei Pan 3,4,*

1 School of Cyber Science and Technology, Beihang University, Beijing 100191, China;
zb2039107@buaa.edu.cn (Z.S.); lihongyi@buaa.edu.cn (H.L.)

2 School of Mathematical Sciences, Beihang University, Beijing 100191, China
3 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
4 Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education,

Beijing 100191, China
* Correspondence: zdzz@buaa.edu.cn (D.Z.); pancw@buaa.edu.cn (C.P.)

Abstract: Relation classification is a significant task within the field of natural language processing.
Its objective is to extract and identify relations between two entities in a given text. Within the
scope of this paper, we construct an artificial dataset (CS13K) for relation classification in the realm
of cybersecurity and propose two models for processing such tasks. For any sentence containing
two target entities, we first locate the entities and fine-tune the pre-trained BERT model. Next, we
utilize graph attention networks to iteratively update word nodes and relation nodes. A new relation
classification model is constructed by concatenating the updated vectors of word nodes and relation
nodes. Our proposed model achieved exceptional performance on the SemEval-2010 task 8 dataset,
surpassing previous approaches with a remarkable F1 value of 92.3%. Additionally, we propose the
integration of a ranking-based voting mechanism into the existing model. Our best results are an
F1 value of 92.5% on the SemEval-2010 task 8 dataset and a value 94.6% on the CS13K dataset. These
findings highlight the effectiveness of our proposed models in tackling relation classification tasks.

Keywords: relation classification; graph neural network; cybersecurity; natural language processing

MSC: 68T50

1. Introduction

In light of the dynamic evolution of the cybersecurity field and the exponential ex-
pansion of cybersecurity data, traditional analysis methods became inadequate to fulfill
the demands of the cybersecurity industry. Considering how to timely and accurately
analyze and process massive amounts of data, extract key elements and relations, and
mine potential valuable information emerged as pressing issues that require immediate
resolution. The use of natural language processing technology can help cybersecurity
experts quickly and accurately process and analyze large amounts of cybersecurity data
and textual information, thereby better understanding and applying cybersecurity knowl-
edge. Therefore, scholars attempted to leverage natural language processing techniques,
including named entity recognition [1], relation extraction [2], and attribute extraction [3];
as well as mathematical representation methods, including quantization [4], dimensionality
reduction [5], and interpolation [6,7]; as means of identifying, analyzing, defending against,
and mitigating various cybersecurity attacks.

Relation classification is a classical problem within the domain of relation extraction
and a crucial task in natural language processing (NLP). It primary objective is to identify
the pre-defined relations between two target entities in a given sentence and represent these
relations as triples with “subject, predicate, object” forms, which serve as foundational

Mathematics 2023, 11, 2598. https://doi.org/10.3390/math11122598 https://www.mdpi.com/journal/mathematics
128

Mathematics 2023, 11, 2598

data sources for constructing knowledge graphs. BERT [8,9], which is a Transformer-
based bidirectional language model, demonstrated impressive performance across diverse
NLP tasks. Unlike conventional unidirectional language models, BERT stands out as it
is trained in both left-to-right and right-to-left directions. This enables BERT to capture
contextual information effectively, resulting in dynamic word vectors that adapt to the
context, thereby capturing contextual semantics more effectively. The model attained
state-of-the-art outcomes in various classification and sequence labeling tasks and was
adopted and applied in various fields, including relation extraction, question answering,
text representation, and natural language inference [8,10].

Graph Neural Networks (GNNs) are types of neural network specifically designed
to handle graph-structured data. Due to their ability to handle data with arbitrary topol-
ogy, GNNs found extensive applications in diverse fields, such as graph classification,
node classification, relation prediction, object tracking, etc. [11]. Compared to traditional
graph-based methods, GNNs can directly learn the representations of nodes and graphs
from their topological structures. Meanwhile, Graph Attention Networks (GATs) inte-
grate GNNs and attention mechanisms. In the GATs model, relationships between nodes
are captured through attention weights, which are subsequently employed to perform
weighted aggregation of the features of neighboring nodes. This process, in turn, updates
the nodes’ representations, enhancing the model’s expressive power.

In this paper, we constructed a cybersecurity dataset named CS13K specifically for
relation classification tasks using manual annotation. Given that the relation classification
task requires high position information for the two entities, we inserted special markers
before and after the target entities to identify their positions and transmit the information
to the BERT model. Next, we located the positions of the two target entities within the
output embeddings of the BERT model, allowing the model to capture the semantics of the
sentence and the semantics of the entities in a simultaneous manner. Based on this method,
we used GATs to iteratively update word nodes and relation nodes, and constructed a
new GATs-based relation classification model (Bert-GAT). Furthermore, based on the work
in the literature [12], we introduced a voting mechanism in the Bert–GAT and the R-Bert
models, and constructed a new ensemble model called Bert–Vote, which was specifically
tailored for relation classification tasks. In summary, the key contributions of this paper are:

(1) Based on our current understanding, the CS13K dataset we constructed is the first
manually annotated text dataset for relation classification in the field of cybersecurity.

(2) To encode the entities and sentences, we inserted special marker symbols before and
after the target entities to identify their positions, and utilized the BERT pre-training
model. Additionally, we iteratively updated word nodes and relation nodes using
GATs, resulting in the development of a novel relation classification model, named
Bert–GAT. The proposed model attained a remarkable state-of-the-art performance,
obtaining an F1 score of 92.3% on the SemEval-2010 task 8 dataset and a 94.1% score
on the CS13K dataset.

(3) We employed an ensemble learning approach to construct a new relation classification
model, known as Bert–Vote, which achieved a state-of-the-art performance of 92.5%
in terms of F1 score on the SemEval-2010 task 8 dataset, as well as a 94.6% score on
the CS13K dataset.

The remaining content of this paper is organized as follows: Section 2 discusses
related work in terms of relation classification datasets, relation classification tasks, graph
neural networks, and voting mechanisms; Section 3 provides a detailed introduction to
the proposed cybersecurity relation classification dataset and relation classification model;
in Section 4, the experiments and evaluation are presented and Section 5 provides the
conclusions and future works of the article.

129

Mathematics 2023, 11, 2598

2. Related Work

In this section, we will conduct a comprehensive review of previous work on relation
classification datasets, relation classification tasks, GNNs, voting mechanisms, and other
related research, providing a comprehensive overview of these studies.

2.1. Relation Classification Datasets

Relation classification is a highly challenging problem in NLP. In recent years, sig-
nificant progress was made in relation classification tasks in various fields. Common
relation classification datasets include SemEval 2010 Task 8, DDRel, FewRel, TACRED, and
MATRES [13–15]. SemEval 2010 Task 8 is a dataset for multi-dimensional relation classifi-
cation in the general domain. DDRel is a dataset for interpersonal relation classification
in binary dialogues. FewRel is a relation classification dataset containing 100 categories
and 7836 sentences constructed from Wikipedia. The TACRED dataset contains approxi-
mately 90,000 sentences from news articles, each of which contains information about the
relations between two entities. These relations are divided into 42 different types, such as
“author”, “organization member”, “birthplace”, etc. The MATRES dataset contains nearly
1000 news articles, with over 2000 events annotated with temporal relations to other events.
This dataset has high annotation accuracy, and provides an important foundation for re-
search on time relation recognition and event extraction. Although significant progress was
made in relation classification in general domains, it has been slow in the field of cybersecu-
rity. This issue is largely because the data in the field of cybersecurity are highly specialized,
and there is a lack of open-source datasets for relation classification. Furthermore, existing
publicly available datasets are of poor data quality, which has become one of the main
obstacles in research on relation classification tasks in cybersecurity, particularly in the
development of deep learning-based relation classification algorithms. Therefore, building
a relation classification dataset that is as close to real-world situations as possible is crucial
for promoting research in the field of cybersecurity.

2.2. Relation Classification

In current studies on relation classification, the main methods can be classified into
three distinct categories: feature-, kernel-, and neural network-based approaches. Among
them, feature-based methods excessively rely on expert knowledge, face difficulties in
feature selection, and have poor transferability to new domains. In contrast, kernel-based
methods have the advantage of automatically extracting a multitude of useful features,
which can be obtained from syntax trees or strings, avoiding the trouble of manually
constructing the feature space. Bunescu et al. [16] proposed a relation extraction kernel
based on the shortest path between two entities by comparing the number of identical nodes
in the paths. Culotta et al. [17] obtained a tree kernel by weighting and summing common
subtrees, migrated the tree kernel to dependency trees, and then added syntactic parsing
information, significantly improving the classification accuracy. The problem with these
methods is that their recall rate is relatively low; therefore, many scholars subsequently
focused on improving the recall rate.

Although neural network-based relation classification methods have constraints, such
as high model complexity or the need for large-scale training corpus, they are still the most
effective relation classification methods currently available, and scholars are still focusing on
optimizing and improving the model’s generalization ability. Liu et al. [18] were pioneers in
utilizing neural networks to automatically extract features for relation classification, propos-
ing a relation classification method based on convolutional neural networks (CNN). The
network architecture consists of a single convolutional layer, followed by a fully connected
layer, and a softmax layer, with a relatively simple structure. Based on this approach, schol-
ars successively proposed many CNN-based improved methods [19,20]. Socher et al. [21]
first attempted to use recursive neural networks to solve relation classification problems,
and other scholars used recurrent neural networks to solve relation classification problems.
Thang et al. [22] integrated CNN and RNN in their approach, utilizing both models to

130

Mathematics 2023, 11, 2598

perform relation classification to identify connections between two entities, and then using
a voting mechanism to filter out the final relation classification result, where the CNN and
RNN voting weights can be adjusted. Recently, some scholars attempted to introduce the
BERT model into relation classification tasks and combined it with information about target
entities to handle relation classification problems, proposing the R-BERT model, which
effectively integrates text features and semantic features of sentences, achieving an F1 value
of 89.25% on the SemEval2010 task 8 relation classification dataset [12]. By constructing
a heterogeneous graph to model entities and relations, the RIFRE model achieves out-
standing performance in the joint extraction of entities and relations [23]. The CorefBERT
model uses entity recognizers and coreference resolvers as two important components.
The entity recognizer first identifies entities in the text and marks them, and then embeds
their representations into the BERT model. The coreference resolver uses the output of the
entity recognizer to determine to which entity each reference refers, and then embeds their
representations into the BERT model. Finally, the model uses these embeddings to perform
relation classification tasks, achieving an F1 value of 89.2% [24]. In the QA model, the input
text is initially encoded using a bidirectional LSTM. Subsequently, an attention mechanism
is employed to identify and select potential relation segments between the two entities
of interest. Following that method, a span prediction layer is utilized to predict whether
these segments contain a relation. During the prediction process, the model simultaneously
predicts the label of each relation and the starting and ending positions of the relation
text segment, enabling direct prediction of the relation text segment without the need for
manual feature extraction [25]. The writing style and format of the translation should
adhere to the conventions of academic papers written in English, and there should be no
grammatical errors.

2.3. GNNs

In the research on GNNs, Xie et al. [26] proposed a method that uses sentence nodes
and entity nodes as the basic units of the heterogeneous GNNs and captures the neigh-
borhood information between relation nodes and sentence nodes. The advantage of this
method is its ability to capture diverse data from various types of nodes and integrate
them into a common node classification task. Sahu et al. [27] introduced a method for
cross-sentence relation extraction, which utilizes document-level GNNs, considering the
dependency relations between sentences as edges and capturing the interaction between
sentences by constructing a document-level graph model, thus achieving accurate and
effective cross-sentence relation extraction results. Mandya et al. [28] introduced a graph
convolutional neural network model that incorporates multi-dependency subgraphs for
relation extraction tasks in sentences. The model can capture semantic information from
different parts of the sentence and fuse it to improve the efficiency and accuracy of rela-
tion extraction. Zhao et al. [29] proposed a new entity-pair-based graph neural network
model called EPGNN. EPGNN uses GNNs to model the relations between entities and
uses a combination of semantic features and graph topology features for relation clas-
sification. Compared to traditional feature-based methods, GNNs can handle complex
relations between nodes and edges and use graph structural information to extract more
accurate features.

2.4. Voting Mechanisms

The voting mechanism is a commonly used model ensemble method that combines
the predictions of multiple models to improve the accuracy and robustness of the model. In
classification problems, the voting mechanism is typically used to determine the ultimate
classification outcome of each sample, with the basic idea of selecting the class with
the most votes or highest scores as the sample’s classification label. Mushtaq et al. [30]
used a range of machine learning algorithms to train and optimize multiple biomedical
features, and then integrated the output results of these algorithms using the voting
mechanism to improve the accuracy of diabetes prediction. Bhati et al. [31] introduced a

131

Mathematics 2023, 11, 2598

new voting-based ensemble method for intrusion detection systems (IDS). This method
uses multiple separate IDS models, each of which is trained using different feature subsets
and classifiers. Next, by voting on the results of each model, the outcomes of the conducted
experiments showed that this method can significantly improve the performance of IDS.
Khan et al. [32] constructed an IoT network intrusion detection method based on a voting
classifier, which is composed of multiple classifiers to form a voting ensemble model, with
each classifier using different feature sets and algorithms for training. When a new data
sample is input into the system, each classifier generates a prediction result, which is
then determined using the voting mechanism to achieve the final classification result. By
employing this approach, different classifiers can be integrated to enhance the accuracy
of intrusion detection. Maheshwari et al. [33] introduced a refined ensemble model that
employs weighted voting for the purpose of detecting and mitigating DDoS attacks in SDN
environments. The ensemble model consists of multiple base classifiers, each of which
classifies data and then merges their classification results into a final classification result.
The authors also introduced an optimized weighted voting strategy to enhance the accuracy
and robustness of the model.

3. Methodology

In this section, we will offer a comprehensive introduction to the cybersecurity dataset
that we constructed. Moreover, we will provide an in-depth elucidation of the architecture
underlying our relation classification model.

3.1. Dataset

To advance research on relation classification tasks in the field of cybersecurity, we
collected data from over 440 publicly available security reports and manually constructed
a cybersecurity relation classification dataset, which is named CS13K. Each security report
was published by internationally recognized security firms or government agencies, in-
cluding cybersecurity blogs, research papers, and technical documents. The reports were
analyzed, extracted, and annotated by multiple doctoral students from the Cybersecurity
Institute, who possess good domain knowledge in the field of cybersecurity. The CS13K
dataset comprises 12 relation types, namely belongTo, cause, exploits, hasAttackLocation,
hasAttackTime, hasCharacteristics, hasVulnerability, indicates, mitigates, targets, use, and
associate. The dataset contains 13,027 sentences, each of which includes two entities and
the relation type between them.

The relations in the dataset exhibit directionality, meaning that relation(entity1, entity2)
and relation(entity2, entity1) are distinct. Therefore, in this task, it is necessary not only
to predict the relations between entities, but also to predict the direction of the relations.
Hence, there are 24 relation types in the actual relation classification dataset. Table 1
shows examples of the exploits and hasVulnerability relation types. exploits(e1, e2) and
exploits(e2, e1) represent two distinct relation types. For each sentence containing the target
entities e1 and e2, we marked the entities with special symbols.

The statistical characteristics of the CS13K dataset are shown in Table 2. For training
purposes, we utilized 11,500 samples, while 1527 samples were reserved for testing.

We validated the effectiveness of the relation classification model using the CS13K
dataset and conducted comparative evaluations with the SemEval-2010 Task 8 dataset. The
evaluation metric employed for these comparisons was the macro-averaged F1 score.

3.2. Relation Classification Models

In order to ensure that the model effectively incorporated the positional information
of these two entities, for any sentence containing two target entities, we inserted special
markers “$” at the initial and final positions of the first entity, entity 1, and “#” at the initial
and final positions of the second entity, entity 2. In addition, at the beginning of each
sentence, we included the token “[CLS]”, and at the end, we append the token “[SEP]”.
Based on the work in the literature [12], we used the BERT model to encode each word

132

Mathematics 2023, 11, 2598

in the sentence. Assuming that entity 1 was embedded as a vector from Vj to Vk and
entity 2 was embedded as a vector from Vp to Vq, we obtain the mean vector E1 of entity 1
by averaging the vectors from Vj to Vk, and similarly, we obtained the mean vector E2 of
entity 2 by averaging the vectors from Vp to Vq, where Ei∈ R

k. Similarly, we embedded
each pre-defined relation label as a high-dimensional vector ri with the same dimension as
the entity vectors using a relation encoder, where ri∈ R

k.

E1 =
1

k − j + 1

k

∑
n=j

Vn (1)

E2 =
1

q − p + 1

q

∑
n=p

Vn (2)

Table 1. Examples of CS13K dataset.

Relation Text

exploits(e1, e2) In September, researchers alleged that <e1> APT27 </e1> was behind an attack campaign
exploiting the vulnerability <e2> CVE-2021-40539 </e2> in Zoho’s ManageEngine product.

exploits(e2, e1) <e1> CVE-2013-2465 </e1>, which involves insufficient bounds checks in the storeImageArray
function. This vulnerability is used by <e2> White Lotus </e2> and other exploit kits.

hasVulnerability(e1, e2) APT28 exploited <e1> Microsoft Office </e1> vulnerability <e2> CVE-2017-0262 </e2>
for execution.

hasVulnerability(e2, e1) Apparently, the most dangerous vulnerability addressed in this update pack is <e1>
CVE-2022-26925 </e1>, which is contained in the <e2> Windows Local Security Authority </e2>.

Table 2. Relation types in CS13K dataset and their statistical characteristics.

Relation Proportion

belongTo 7.59%
cause 7.09%

exploits 6.08%
hasAttackLocation 15.88%

hasAttackTime 5.28%
hasCharacteristics 7.30%
hasVulnerability 7.75%

indicates 3.40%
mitigates 5.76%

targets 17.34%
use 11.43%

associate 5.10%
total 100.00%

Building on the work of [9,21], we denoted all entity nodes as {Ei}N
i=1 and all relation

nodes as
{

rj
}M

j=1. We treated entity nodes and relation nodes as neighbors and updated
their node representations through a message-passing mechanism. We incorporated a multi-
head attention mechanism to augment the model’s capability to attend and concentrate
on node features. For each attention head H ∈ [

H1, . . . , Hj
]
, we first constructed the query

matrix Q, key matrix K, and value matrix V:

QHi = W1Ei
KHj = W2rj

VHj = W3rj

(3)

where W1, W2, and W3 are trainable weight parameters.

133

Mathematics 2023, 11, 2598

Next, we calculated the attention weights.

xij =

QHi

(
KHj

)T

√
dk

(4)

αij =
exp

(
xij
)

∑l∈Ni
exp

(
xij
) (5)

where dk is the dimension of the key matrix K.
Next, we utilized the attention weights to update the nodes and obtain the output of

each attention head.
E′

Hi
= Ei + ∑

j∈Ni

αijW3rj (6)

We concatenated the outputs of all attention heads, E′
Hi

, together, and then multiplied
the concatenated output vector by the weight matrix W4 to obtain the final multi-head
attention output.

E′
i = W4

[
concat(E ′

H1
, E′

H2
, ..., E′

Hj

)
] (7)

where W4 is a trainable weight parameter, Ni, is a neighbor of node i, and αij is the attention
weight between the entity node Ei and the relation node ri.

A gating mechanism was used to calculate weight vectors for each node and edge,
enabling the model to maintain its non-linear capacity.

yi = sigmod
(
W5

[
concat

(
Ei, E′

i
)])

(8)

∼
Ei = yi

⊙
E′

i + (1 − yi)
⊙

Ei (9)

where W5 is a trainable weight parameter and
∼
Ei is the final output of node representation.

We simplify the above node update process as follows:

∼
Ei = GAT

(
Ei,
{

rj
}

j∈Ni

)
(10)

where GAT refers to the mechanism employed to update the node Ei,
{

rj
}

j∈Ni
are all the

neighboring nodes of the entity node Ei, and
∼
Ei is the updated node representation of the

node Ei.
The exchange in information between entity nodes and relation nodes can be illustrated

as the message-passing process:

∼
E

1

i = GAT
(

E0
i ,

{
r0

j

}
j∈Ni

)
(11)

E1
i =

∼
E

1

i + E0
i (12)

where E0
i is the node representation before the update,

∼
E

1

i is the updated node representa-
tion of E0

i , and E1
i is the final entity node representation.

Similarly, based on the update of entity nodes, the update process of relation nodes
can be represented as:

∼
r

1
j = GAT

(
r0

j ,
{

E1
i

}
i∈Nj

)
(13)

r1
j =

∼
r

1
j + r0

j (14)

134

Mathematics 2023, 11, 2598

where r0
j is the representation of the relation node before the update and r1

j is the updated

representation of r0
j . When the model contains multiple layers of GAT, the node update

process of other layers is similar.
After obtaining the updated entity nodes and relation nodes, we applied a Dropout

layer and introduce a fully connected layer in the model architecture to obtain output
vectors V′

1 and V′
2 for entity nodes, as well as V′

3 for relation nodes. Finally, we concatenated
V′

1, V′
2, and V′

3, and added a fully connected layer to obtain V. We then applied a Softmax
classification layer for the final relation classification. This process is represented as follows:

V = W6
[
concat

(
V′

1, V′
2, V′

3,
)]

+ b (15)

f = so f tmax(V) (16)

where W6 and b are trainable parameters. We denoted the relation classification model that
used special marker symbols for entity tagging and iteratively updated the word nodes and
relation nodes using graph neural networks as the Bert–GAT model. Figure 1 illustrates the
model architecture.

Figure 1. Bert–GAT model.

In addition, given that voting mechanisms can fully utilize the advantages of multiple
models, thus enabling them to complement each other and enhance the robustness and
generalization ability of the models, we introduced a new relation classification model
called Bert–Vote. It was based on a ranking-based voting mechanism that combined the
strengths of Bert–GAT and R-Bert models to determine the final classification result, aiming
to achieve better performance in relation classification.

Specifically, for all sentences that comprise two target entities, the Bert–GAT and R-Bert
models calculated the probability of the sentence belonging to any pre-defined relations.
Firstly, we sorted the predicted results of the R-Bert and Bert–GAT models in descending
order of probability and select the top three as candidate results, forming a candidate result
list. We supposed that the anticipated candidate outcomes of the R-Bert and Bert–GAT
models were A, B, C and B, D, E, respectively. Subsequently, the combined candidate result
list was A, B, C, D, E. Secondly, we compared the candidate results of the R-Bert and Bert–
GAT models. For each candidate result, we checked whether it existed in the candidate
results of the other model. If it did exist, both models had the same prediction result; if it
did not exist, the prediction outcomes of the two models were different. For the results
predicted by both models, their probabilities were added to obtain the integrated result.
For the results predicted by only one model, they were directly taken as the integrated

135

Mathematics 2023, 11, 2598

result. Finally, we designated the type associated with the highest probability as the final
classification result.

In the above process, we denoted the probabilities calculated via the Bert–GAT model
as pBert−GAT , and similarly, we denoted the probabilities predicted using the R-Bert model
as pR−Bert. We integrated pBert−GAT and pR−Bert by allocating a voting weight to each
model, which can be adjusted according to the classifier’s performance.

pBert−Vote = αpBert−GAT + (1 − α)pR−Bert (17)

where the probability of a sentence being classified as a certain type of relation by the
Bert–Vote model is denoted as pBert−Vote. α > 0 is an adjustable parameter. Figure 2 depicts
the architecture of the Bert–Vote model.

Figure 2. Schematic diagram of Bert–Vote model.

In addition, to compare them with the Bert–Vote model, we referred to the models
that use a simple weighted voting mechanism as W-Vote and A-Vote. The W-Vote model
selected the class with the maximum probability value among the predicted results of
Bert–GAT and R-Bert as the final prediction result. In contrast, A-Vote performed weighted
addition on the predicted results of Bert–GAT and R-Bert, before selecting the type with
the maximum average probability value as the final prediction result.

4. Experiments and Evaluation

In this section, we will separately assess the effectiveness of the Bert–GAT and Bert–
Vote models on the general dataset SemEval-2010 Task 8, and verify the performance of the
two models on the cybersecurity dataset CS13K.

4.1. Experimental Settings and Evaluating Metrics

For the dataset of SemEval-2010 Task 8, we employ the Macro F1 value as the evalua-
tion metric and the official scoring script to assess our model’s performance on the relation
classification task. The dataset includes nine pre-defined semantic relation types, along with
one manually defined relation type called “Other”. It contains a total of 10,717 sentences,
which are further split into 8000 sentences for training purposes and 2717 sentences for
testing purposes. The official scoring script calculates the Macro F1 score for the nine
pre-defined actual relations and considers directionality. On the cybersecurity dataset
CS13K, besides reporting the Macro F1 value, we also report the precision and recall values
for a more comprehensive evaluation of the model’s performance. Table 3 showcases the
key parameter settings for the Bert–GAT model.

136

Mathematics 2023, 11, 2598

Table 3. Key parameter settings.

Batch size 6
Number of heads 8

Learning rate 0.1
Epochs 100

Dropout rate 0.1
Graph attention layers 2

4.2. Comparison with Other Models

On the dataset of SemEval-2010 Task 8, we conducted comparisons between our
models and other baseline models, including RNN, CNN, Bi-LSTM, Att-Pooling-CNN,
R-BERT, SPOT, and RIFRE. Macro F1 was used as the evaluation metric for all methods,
and the results of these comparisons are presented in Table 4. It is noticeable that both the
Bert–GAT model and Bert–Vote model exhibited superior performance compared to all
baseline models, as indicated via the F1 score. Specifically, the Bert–GAT model achieved
an F1 score of 92.3% on the dataset of SemEval-2010 Task 8, exhibiting a 3.0% increase
compared to the R-BERT model. This finding suggests that by inserting special tokens
before and after the target entities and using GATs to iteratively update the word nodes
and relation nodes, the model excels at capturing intricate relationships within the text,
leading to improved classification results.

Table 4. Results of relation classification tasks based on SemEval-2010 Task 8 dataset.

Method Macro F1 (%)

RNN [34] 77.6
Bi-LSTM [35] 82.7

CNN [36] 82.7
FCM [37] 83.0

CR-CNN [38] 84.1
Entity Attention Bi-LSTM [39] 85.2

Attention CNN [2] 85.9
Att-Pooling-CNN [40] 88.0
KnowBert-W+W [41] 89.1

R-BERT [12] 89.3
BERTEM+MTB [42] 89.5

SPOT [24] 90.6
RIFRE [23] 91.3

W-Vote 91.6
A-Vote 92.1

Bert–GAT 92.3
Bert–Vote 92.5

On the dataset of SemEval-2010 Task 8, the F1 scores of the W-Vote and A-Vote models
are 91.6% and 92.1%, respectively. This result may be due to the fact that the simple
weighted voting mechanism cannot accurately capture the complex relationship between
models, and cannot effectively combine the strengths of the Bert–GAT and R-Bert models.
In contrast, the Bert–Vote model achieved an F1 score of 92.5%, surpassing the F1 score of
the R-Bert model by 3.2% and the F1 score of the Bert–GAT model by 0.2%. This finding
indicates that the ranking-based voting mechanism can increase the diversity of candidate
results and enable models to complement each other, thereby improving the performance
of relation classification.

4.3. Relation Classification in Cybersecurity

Furthermore, we performed relation classification experiments on the CS13K dataset
utilizing the Bert–GAT and Bert–Vote models, and compared their performance to that of
the baseline R-BERT model. The outcomes are presented in Table 5. Table 5 reveals that the

137

Mathematics 2023, 11, 2598

F1 scores of the Bert–GAT and Bert–Vote models on the CS13K dataset are 94.1% and 94.6%,
respectively, which both outperform the R-BERT model. Compared to the outcomes on the
SemEval-2010 Task 8, the classification accuracies of the two models slightly improved. This
result may be due to the fact that the CS13K dataset was constructed by domain experts
who have in-depth knowledge and experience in the field. Through careful data annotation,
they were able to better control data quality, effectively reducing noise and redundant
information in the dataset. As a result, the models’ classification accuracy experienced
notable improvement.

Table 5. Relation classification results on CS13K dataset.

Dataset Method Macro F1 (%)

CS13K

R-BERT 90.2
Bert–GAT 94.1

W-Vote 93.3
A-Vote 93.9

Bert–Vote 94.6

In addition, we reported the Precision, Recall, and F1 scores of the Bert–GAT model
for each specific relation type, which are displayed in Table 6. By analyzing the Precision,
Recall, and F1 scores for each distinct relation type, we can gain a deeper understanding of
the model’s classification performance under different relations. We found that the model
exhibited different precision and recall rates in different relation types. For example, rela-
tions such as “cause(e2, e1)” and “hasCharacteristics(e2, e1)” had relatively high precision
and recall rates, while the relation “associate(e2, e1)” had a relatively low one. This result
suggests that the model’s classification ability varies under different relation types, possibly
due to differences in sample quality and features among different relations in the dataset.

4.4. Ablation Experiments

To examine the influence of individual components on the model’s performance,
we conducted a series of experiments to investigate the influence of various factors on
the performance of our relation classification model. During the experiments, we set
all parameters, except for the component being tested to their optimal values.

To verify the influence of GATs on the performance of the model, we conducted four
groups of experiments with GATs layers set to 0, 1, 2, and 3, respectively. The 0 layer
indicates the removal of the GATs layer in the model to verify the influence of adding
GATs layers on the model’s relation classification performance. The 1, 2, and 3 layers
are used to assess the influence of the number of GATs layers on the performance of the
model. We denote the settings with GATs layers set to 0, 1, 2, and 3 as Bert–GAT-layer-0,
Bert–GAT-layer-1, Bert–GAT-layer-2, and Bert–GAT-layer-3, respectively.

The multi-head attention mechanism allows the capture of multiple interactions and
dependencies among different neighboring nodes, thus enhancing the model’s performance.
However, the appropriate number of attention heads may vary depending on the dataset
and task. Therefore, we investigated the influence of different numbers of attention heads
on the model’s effectiveness. In our experiments, we varied the number of attention
heads used, specifically setting it to 0, 2, 4, 8, and 12, which we denote as Bert–GAT-
head-0, Bert–GAT-head-2, Bert–GAT-head-4, Bert–GAT-head-8, and Bert–GAT-head-12,
respectively. Here, Bert–GAT-head-0 refers to the configuration where the multi-head
attention mechanism is removed.

In addition, we examined the impact of padding methods on the model’s performance.
One option is to process all sentences at a constant length, and we selected 512 as the
length. If a sentence is shorter than 512, it is padded with zeros. We denote this method
as Bert–GAT-padding-512. Another option is to use dynamic padding for each batch of
sentences, where the padded length is equal to the maximum length of sentences in the
batch. We denote this method as Bert–GAT-Dynamic-padding.

138

Mathematics 2023, 11, 2598

Table 6. Results for different relation types in CS13K dataset.

Relation Precision (%) Recall (%) Macro F1 (%)

associate(e1, e2) 85.9 90.2 88.0
associate(e2, e1) 80.5 83.1 81.8

belongsTo(e1, e2) 95.0 73.1 82.6
belongsTo(e2, e1) 100.0 94.6 97.2

cause(e1, e2) 88.9 84.2 86.5
cause(e2, e1) 100.0 100.0 100.0

exploits(e1, e2) 95.0 96.2 95.6
exploits(e2, e1) 100.0 90.9 95.2

hasAttackLocation(e1, e2) 97.5 98.8 98.2
hasAttackLocation(e2, e1) 100.0 90.0 94.7

hasAttackTime(e1, e2) 93.8 95.8 94.8
hasAttackTime(e2, e1) 95.5 100.0 97.7

hasCharacteristics(e1, e2) 91.7 96.1 93.8
hasCharacteristics(e2, e1) 100.0 100.0 100.0
hasVulnerability(e1, e2) 100.0 94.9 97.4
hasVulnerability(e2, e1) 100.0 100.0 100.0

indicates(e1, e2) 100.0 95.7 97.8
indicates(e2, e1) 100.0 90.9 95.2
mitigates(e1, e2) 100.0 75.0 85.7
mitigates(e2, e1) 100.0 100.0 100.0

targets(e1, e2) 99.4 98.0 98.7
targets(e2, e1) 86.7 100.0 92.9

use(e1, e2) 97.2 97.9 97.5
use(e2, e1) 82.4 93.3 87.5

average 95.4 93.3 94.1

Meanwhile, we investigated the impact of the entity itself on the relation classification
performance. We removed the special symbols ‘$’ and ‘#’ used to mark entities in the
sentences and replaced both Entity1 and Entity2 with “[UNK]”. We denote this method
as Bert–GAT-UNK.

Finally, in order to further evaluate the performance of our proposed relation classifi-
cation model under different BERT variants, we conducted comparative experiments with
lightweight BERT models, such as DistillBERT, TinyBERT, and ALBERT. These lightweight
BERT models reduce model complexity by reducing embedding dimensions, parameter
sizes, or utilizing parameter-sharing schemes. We evaluated these models using the same
experimental settings, and employed F1 score as the evaluation metric.

Table 7 presents the outcomes of the ablation experiments. Indeed, the number of
layers in the GATs exhibits a substantial influence on the performance of the model, as
evident from our observations. On the dataset of SemEval-2010 Task 8, when the number
of layers in the GATs is 0, there is a 2.9% decrease in the F1 score compared to when the
number of layers is 2, and a 3.8% decrease in the score for the CS13K dataset. As the number
of layers in the GATs increases, we observe an improvement in the model’s classification
performance. When the number of layers is greater than 1, the model’s performance tends
to stabilize.

The inclusion of the multi-head attention mechanism also contributes to the improve-
ment of the model’s performance to some extent. Within a certain range, increasing the
number of attention heads leads to improved model performance, and the best perfor-
mance is achieved when the number of heads is 8. This trend is observed in both the
SemEval-2010 Task 8 and CS13K datasets.

The padding method also has a certain impact on the model’s performance. Using
the dynamic padding method leads to slightly better results than using constant padding.
This result may be due to the burden imposed on the model when the sentence length
is too long. In addition, the meaning of the entities themselves has a significant impact
on the model’s performance. When Entity1 and Entity2 in the sentence are replaced with

139

Mathematics 2023, 11, 2598

“[UNK]”, the model’s classification performance decreases significantly compared to the
optimal results.

Table 7. Influence of different components on the model performance.

Dataset Method Macro F1 (%)

SemEval-2010 Task 8

Bert–GAT-layer-0 89.4
Bert–GAT-layer-1 91.4
Bert–GAT-layer-2 92.3
Bert–GAT-layer-3 92.2
Bert–GAT-head-0 91.8
Bert–GAT-head-2 92.0
Bert–GAT-head-4 92.1
Bert–GAT-head-8 92.3

Bert–GAT-head-12 92.3
Bert–GAT-Dynamic padding 92.3

Bert–GAT-padding-512 91.7
Bert–GAT-UNK 87.8

CS13K

Bert–GAT-layer-0 90.3
Bert–GAT-layer-1 92.5
Bert–GAT-layer-2 94.1
Bert–GAT-layer-3 93.9
Bert–GAT-head-0 93.1
Bert–GAT-head-2 93.5
Bert–GAT-head-4 94.0
Bert–GAT-head-8 94.1

Bert–GAT-head-12 94.0
Bert–GAT-Dynamic padding 94.1

Bert–GAT-padding-512 92.9
Bert–GAT-UNK 89.5

As shown in Table 8, the performance and convergence time differences among
DistillBERT, TinyBERT, and ALBERT can be attributed to their architectural variances and
parameter settings. DistillBERT and TinyBERT achieve a balance between performance
and model size reduction, while ALBERT sacrifices some performance for a more compact
parameter configuration. In contrast, our Bert–GAT model combines the strengths of BERT,
resulting in enhanced relational modeling capabilities.

Table 8. Performance of lighter BERT-based models.

Dataset Method Macro F1 (%) Time

SemEval-2010 Task 8

DistillBERT 89.1 1.12 h
TinyBERT 87.7 0.98 h
ALBERT 85.9 0.95 h
Bert-GAT 92.3 1.35 h

4.5. LIME Explanations for Relation Classification Results

We employed LIME to explain the relation classification results for both general
text and cybersecurity text. Table 9 showcases examples of a general domain text and
a cybersecurity domain text, along with their corresponding explanations obtained through
as shown LIME in Figure 3. These explanations highlight the impact of different words on
the classification results.

140

Mathematics 2023, 11, 2598

Table 9. Examples of Texts and Relations.

Type Relation Texts

General Text Entity-Destination(e1, e2) A <e1> woman </e1> has been placed into the <e2> house </e2> as well.

Cybersecurity Text exploits(e1, e2) <e1> Mustang Panda </e1> has exploited <e2> CVE-2017-0199 </e2> in
Microsoft Word to execute code.

Figure 3. Weights Distribution of General Text (left) and Cybersecurity Text (right).

Specifically, LIME computes the weights of each word in the relation classification
results, contributing to our understanding of the model’s decision-making process. In
Figure 3, we use green markers to indicate words that have a positive influence on the
classification results, while red markers indicate words that have a negative influence.
These visualizations provide an intuitive way of comprehending the model’s decision-
making process in relation classification to some extent.

5. Conclusions and Future Works

This paper focuses on investigating the task of relation classification in the field of
cybersecurity, which involves discerning the relations between entities from texts. To
address this issue, we first constructed a manually annotated cybersecurity dataset called
CS13K, and proposed two new relation classification models: Bert-GAT and Bert-Vote.
Experimental results showed that Bert-GAT attained an impressive F1 value of 92.3% on
the SemEval-2010 task 8 dataset and a 94.1% value on the CS13K dataset, which verified the
effectiveness of special entity position tags and the introduction of GATs in dealing with
relation classification problems. We introduced a ranking-based voting mechanism in the
Bert–Vote model, which achieved the best performance of 92.5% on the SemEval-2010 task 8
dataset and a 94.6% value on the CS13K dataset. This result demonstrates that the method
based on the voting mechanism can integrate different classifier results to enhance the
performance of the relation classification models. While our proposed models showed
impressive performance, there is still room for further improvement. Future research can
explore techniques to optimize these models, such as experimenting with different architec-
tures or exploring diverse GNNs models to enhance the encoding of node representations.

Author Contributions: Conceptualization, Z.S. and H.L.; methodology, Z.S. and C.P.; software,
Z.S.; validation, D.Z.; formal analysis, H.L. and C.P.; investigation, Z.S.; writing—original draft
preparation, Z.S.; writing—review and editing, C.P. and D.Z.; visualization, Z.S.; supervision, H.L.;
funding acquisition, H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
no. 61771001).

141

Mathematics 2023, 11, 2598

Data Availability Statement: Publicly available datasets were analyzed in this research. The SemEval-
2010 task 8 dataset can be found here (https://huggingface.co/datasets/sem_eval_2010_task_8;
accessed on 1 January 2023). The CS13K dataset that supports the findings of this study is available
from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, X.; Liu, X.; Ao, S.; Li, N.; Jiang, Z.; Xu, Z.; Xiong, Z.; Xiong, M.; Zhang, X. Dnrti: A large-scale dataset for named entity
recognition in threat intelligence. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; pp. 1842–1848.

2. Wang, Y.; Wang, Y.; Peng, Z.; Zhang, F.; Yang, F. A Concise Relation Extraction Method Based on the Fusion of Sequential and
Structural Features Using ERNIE. Mathematics 2023, 11, 1439. [CrossRef]

3. Shen, G.; Qin, Y.; Wang, W.; Yu, M.; Guo, C. Distant Supervision for Relations Extraction via Deep Residual Learning and
Multi-instance Attention in Cybersecurity. In Proceedings of the Security and Privacy in New Computing Environments: Third
EAI International Conference, SPNCE 2020, Lyngby, Denmark, 6–7 August 2020; Proceedings 3. Springer: Berlin/Heidelberg,
Germany, 2021; pp. 151–161.

4. Li, H.; Hu, K.; Zhao, D. The Golden Quantizer in Complex Dimension Two. IEEE Commun. Lett. 2021, 25, 3249–3252. [CrossRef]
5. Peng, Z.; Li, H.; Zhao, D.; Pan, C. Reducing the Dimensionality of SPD Matrices with Neural Networks in BCI. Mathematics 2023,

11, 1570. [CrossRef]
6. Li, H.; Qin, X.; Zhao, D. An improved empirical mode decomposition method based on the cubic trigonometric B-spline

interpolation algorithm. Appl. Math. Comput. 2018, 332, 406–419. [CrossRef]
7. Li, H.; Gao, Z.; Zhao, D. Least squares solutions of the matrix equation AXB+ CYD= E with the least norm for symmetric

arrowhead matrices. Appl. Math. Comput. 2014, 226, 719–724. [CrossRef]
8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
9. Xiong, H.; Yan, Z.; Zhao, H.; Huang, Z.; Xue, Y. Triplet Contrastive Learning for Aspect Level Sentiment Classification. Mathematics

2022, 10, 4099. [CrossRef]
10. Joshi, M.; Chen, D.; Liu, Y. Spanbert: Improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist.

2020, 8, 64–77. [CrossRef]
11. Velickovic, P.; Cucurull, G.; Casanova, A. Graph attention networks. Stat 2017, 1050, 10-48550.
12. Wu, S.; He, Y. Enriching pre-trained language model with entity information for relation classification. In Proceedings of the 28th

ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 2361–2364.
13. Jia, Q.; Huang, H.; Zhu, K.Q. Ddrel: A new dataset for interpersonal relation classification in dyadic dialogues. In Proceedings of

the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; pp. 13125–13133.
14. Hendrickx, I.; Kim, S.N.; Kozareva, Z.; Nakov, P. Semeval-2010 task 8: Multi-way classification of semantic relations between

pairs of nominals. arXiv 2019, arXiv:1911.10422.
15. Han, X.; Zhu, H.; Yu, P.; Wang, Z.; Yao, Y.; Liu, Z.; Sun, M. Fewrel: A large-scale supervised few-shot relation classification dataset

with state-of-the-art evaluation. arXiv 2018, arXiv:1810.10147.
16. Bunescu, R.; Mooney, R. A shortest path dependency kernel for relation extraction. In Proceedings of the Human Language

Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver, BC, Canada, 6–8
October 2005; pp. 724–731.

17. Culotta, A.; Sorensen, J. Dependency tree kernels for relation extraction. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, Barcelona, Spain, 21–26 July 2004; pp. 423–429.

18. Sekine, S. On-demand information extraction. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,
Sydney, Australia, 17–18 July 2006; pp. 731–738.

19. Qin, P.; Xu, W.; Guo, J. An empirical convolutional neural network approach for semantic relation classification. Neurocomputing
2016, 190, 1–9. [CrossRef]

20. Liu, Y.; Wei, F.; Li, S.; Ji, H.; Zhou, M.; Wang, H. A dependency-based neural network for relation classification. arXiv 2015,
arXiv:1507.04646.

21. Zhang, D.; Wang, D. Relation classification via recurrent neural network. arXiv 2015, arXiv:1508.01006.
22. Nguyen, T.H.; Grishman, R. Combining neural networks and log-linear models to improve relation extraction. arXiv 2015,

arXiv:1511.05926.
23. Zhao, K.; Xu, H.; Cheng, Y.; Li, X.; Gao, K. Representation iterative fusion based on heterogeneous graph neural network for joint

entity and relation extraction. Knowl.-Based Syst. 2021, 219, 106888. [CrossRef]
24. Li, J.; Katsis, Y.; Baldwin, T.; Kim, H.C.; Bartko, A.; McAuley, J.; Hsu, C.N. SPOT: Knowledge-Enhanced Language Representations

for Information Extraction. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management,
Atlanta, GA, USA, 17–21 October 2022; pp. 1124–1134.

25. Cohen, A.D.; Rosenman, S.; Goldberg, Y. Relation classification as two-way span-prediction. arXiv 2020, arXiv:2010.04829.

142

Mathematics 2023, 11, 2598

26. Xie, Y.; Xu, H.; Li, J.; Yang, C.; Gao, K. Heterogeneous graph neural networks for noisy few-shot relation classification. Knowl.-Based
Syst. 2020, 194, 105548. [CrossRef]

27. Sahu, S.K.; Christopoulou, F.; Miwa, M.; Ananiadou, S. Inter-sentence relation extraction with document-level graph convolutional
neural network. arXiv 2019, arXiv:1906.04684.

28. Mandya, A.; Bollegala, D.; Coenen, F. Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction. In
Proceedings of the COLING, International Committee on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp.
6424–6435.

29. Zhao, Y.; Wan, H.; Gao, J.; Lin, Y. Improving relation classification by entity pair graph. In Proceedings of the Asian Conference
on Machine Learning, Nagoya, Japan, 17–19 November 2019; pp. 1156–1171.

30. Mushtaq, Z.; Ramzan, M.F.; Ali, S.; Baseer, S.; Samad, A.; Husnain, M. Voting classification-based diabetes mellitus prediction
using hypertuned machine-learning techniques. Mob. Inf. Syst. 2022, 2022, 1–16. [CrossRef]

31. Bhati, N.S.; Khari, M. A new ensemble based approach for intrusion detection system using voting. J. Intell. Fuzzy Syst. 2022, 42,
969–979. [CrossRef]

32. Khan, M.A.; Khan Khattk, M.A. Voting classifier-based intrusion detection for iot networks. In Advances on Smart and Soft
Computing: Proceedings of the ICACIn 2021; Springer: Singapore, 2022; pp. 313–328.

33. Maheshwari, A.; Mehraj, B.; Khan, M.S.; Idrisi, M.S. An optimized weighted voting based ensemble model for DDoS attack
detection and mitigation in SDN environment. Microprocess. Microsyst. 2022, 89, 104412. [CrossRef]

34. Socher, R.; Huval, B.; Manning, C.D.; Ng, A.Y. Semantic compositionality through recursive matrix-vector spaces. In Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, Jeju, Republic of Korea, 12–14 July 2012; pp. 1201–1211.

35. Zhang, S.; Zheng, D.; Hu, X.; Yang, M. Bidirectional long short-term memory networks for relation classification. In Proceedings
of the 29th Pacific Asia Conference on Language, Information and Computation, Shanghai, China, 30 October–1 November 2015;
pp. 73–78.

36. Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation classification via convolutional deep neural network. In Proceedings of the
COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, 23–29 August
2014; pp. 2335–2344.

37. Yu, M.; Gormley, M.; Dredze, M. Factor-based compositional embedding models. In Proceedings of the NIPS Workshop on
Learning Semantics, Montreal, QC, Canada, 8–13 December 2014; pp. 95–101.

38. Santos CN, D.; Xiang, B.; Zhou, B. Classifying relations by ranking with convolutional neural networks. arXiv 2015,
arXiv:1504.06580.

39. Lee, J.; Seo, S.; Choi, Y.S. Semantic relation classification via bidirectional lstm networks with entity-aware attention using latent
entity typing. Symmetry 2019, 11, 785. [CrossRef]

40. Wang, L.; Cao, Z.; De Melo, G.; Liu, Z. Relation classification via multi-level attention cnns. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1298–1307.

41. Peters, M.E.; Neumann, M.; Logan, R.L., IV; Schwartz, R.; Joshi, V.; Singh, S.; Smith, N.A. Knowledge enhanced contextual word
representations. arXiv 2019, arXiv:1909.04164.

42. Soares, L.B.; FitzGerald, N.; Ling, J.; Kwiatkowski, T. Matching the blanks: Distributional similarity for relation learning. arXiv
2019, arXiv:1906.03158.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

143

Citation: Mo, Y.; Yoo, J.; Kang, S.

Parameter-Efficient Fine-Tuning

Method for Task-Oriented Dialogue

Systems. Mathematics 2023, 11, 3048.

https://doi.org/10.3390/

math11143048

Academic Editor: Florentina Hristea

Received: 28 May 2023

Revised: 5 July 2023

Accepted: 7 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Parameter-Efficient Fine-Tuning Method for Task-Oriented
Dialogue Systems

Yunho Mo, Joon Yoo * and Sangwoo Kang *

School of Computing, Gachon University, 1342, Seongnam-daero, Sujeong-gu,
Seongnam-si 13120, Republic of Korea; ahdbsgh@gmail.com
* Correspondence: joon.yoo@gachon.ac.kr (J.Y.); swkang@gachon.ac.kr (S.K.)

Abstract: The use of Transformer-based pre-trained language models has become prevalent in
enhancing the performance of task-oriented dialogue systems. These models, which are pre-trained
on large text data to grasp the language syntax and semantics, fine-tune the entire parameter set
according to a specific task. However, as the scale of the pre-trained language model increases, several
challenges arise during the fine-tuning process. For example, the training time escalates as the model
scale grows, since the complete parameter set needs to be trained. Furthermore, additional storage
space is required to accommodate the larger model size. To address these challenges, we propose a
new new task-oriented dialogue system called PEFTTOD. Our proposal leverages a method called
the Parameter-Efficient Fine-Tuning method (PEFT), which incorporates an Adapter Layer and prefix
tuning into the pre-trained language model. It significantly reduces the overall parameter count used
during training and efficiently transfers the dialogue knowledge. We evaluated the performance
of PEFTTOD on the Multi-WOZ 2.0 dataset, a benchmark dataset commonly used in task-oriented
dialogue systems. Compared to the traditional method, PEFTTOD utilizes only about 4% of the
parameters for training, resulting in a 4% improvement in the combined score compared to the
existing T5-based baseline. Moreover, PEFTTOD achieved an efficiency gain by reducing the training
time by 20% and saving up to 95% of the required storage space.

Keywords: natural language processing; task-oriented dialogue system; PEFT; fine-tuning; training
efficiency

MSC: 68T50

1. Introduction

In task-oriented dialogue systems, the primary objective is to enable user–system
communication to accomplish specific tasks, such as a restaurant search, hotel reservation,
or schedule management. These systems generally focus on understanding the user input,
tracking dialogue states, and generating appropriate responses.

The conventional task-oriented dialogue system follows a pipelined structure, con-
sisting of several interconnected modules: the Natural Language Understanding (NLU)
module, the Dialogue State Tracking (DST) module, the Dialogue Policy Learning (POL)
module, and the Natural-Language-Generation (NLG) module, as shown in Figure 1 [1].
First, the NLU module is responsible for extracting semantic information from user inputs.
The DST module utilizes the previous conversation history to update the belief state at
the time of the current utterance. The belief state is a structured expression method that
represents the user’s conversational goals and information gathered thus far. The system
then searches the database for relevant information based on the belief state. The POL
module determines the system action based on the knowledge retrieved from the database
and the current belief state. Finally, the NLG module generates a system response based on
the decision made by the POL module. In general, this pipelined architecture facilitates the
flow of information in a task-oriented dialogue system, enabling efficient understanding

Mathematics 2023, 11, 3048. https://doi.org/10.3390/math11143048 https://www.mdpi.com/journal/mathematics
144

Mathematics 2023, 11, 3048

of the user input, tracking dialogue states, determining system actions, and generating
appropriate responses.

Figure 1. Conventional structure of the task-oriented dialogue system.

The conventional pipelined structure of task-oriented dialogue systems, however,
suffers from error propagation between independent modules and limited adaptability to
new domains. To address these problems, recent studies have proposed structures that
integrate independent modules using pre-trained language models [2–4].

Recent language models have widely adopted the Transformer-based model [5] and
have shown a dramatic increase in performance, in tasks such as object name recognition,
natural language inference, and machine translation. Theses language models generally
employ transfer learning [6], where knowledge is first learned from a source domain and
then transferred to the target domain. The Transformer-based language model consists of a
pre-training step, which first learns the syntax and semantics of the language from large
text data, and a fine-tuning step, which adjusts the model’s parameters for downstream
tasks. Therefore, pre-trained language models that capture the syntax and semantics of
a language render better performance compared to learning data from scratch. During
fine-tuning, the entire parameter set of the pre-trained language model is adjusted to fit the
downstream task.

A recent study [7] showed that larger pre-trained language models, with more param-
eters, tend to achieve better performance in downstream tasks. This trend also applies to
task-oriented dialogue systems, where the parameter count of the pre-trained language
models has reached tens of billions. However, fine-tuning such large-scale models poses
challenges. First, the training time increases as the number of parameters grows since the
entire parameter set is updated during fine-tuning. Second, fine-tuning a large-scale pre-
trained language model requires significant storage space due to the increased model size.

In this paper, we propose PEFTTOD (the name PEFTTOD comes from integrating the
PEFT method into TOD systems), a novel structure for solving task-oriented dialogue (TOD)
systems using a large-scale pre-trained language model. PEFTTOD efficiently utilizes the
parameters by employing the Adapter Layer [8] and prefix tuning [9] techniques from the
Parameter-Efficient Fine-Tuning (PEFT) method [10]. The PEFT method incorporates a
trainable layer into the pre-trained language model while freezing the parameters of the
existing model and learning only the newly added layer. The PEFT method offers several
advantages. First, although the PEFT method is trained with a much smaller parameter
count than the pre-trained language model, it achieves performance comparable to fine-
tuning. Second, by freezing the weight of the pre-trained language model and training only
the added trainable layers, the original state of the pre-trained model is preserved. Third,
whereas fine-tuning requires saving the entire model, the PEFT method only necessitates
saving the parameters of the trainable layer, resulting in significantly reduced storage space.
Lastly, since the parameters of the pre-trained language model remain frozen, the weight
update process of the frozen layers is skipped, leading to faster training speeds.

PEFTTOD utilizes PPTOD [2] as its pre-trained language model, which integrates an
extensive knowledge conversational domain based on T5 [11] and combines it with the
PEFT method [10]. The performance of PEFTTOD was evaluated using the Multi-WOZ

145

Mathematics 2023, 11, 3048

2.0 benchmark dataset [12]. Compared to the conventional fine-tuning method, PEFTTOD
uses only 4% of the parameters of the existing model during the training process. This
leads to improvement in training time by 20% and storage space savings by up to 95%.
Moreover, PEFTTOD demonstrated 4% improvement in the combined score compared to
the baseline, despite using only 4% from the parameters of the previous model.

The main contribution of this paper is three-fold. Firstly, existing pre-trained language
models typically employ billions of parameters, which leads to longer training times, as
well as significant storage space due to the larger model size. In our proposed approach,
PEFTTOD, we adopted the Adapter Layer and PEFT-based prefix tuning to decrease the
number of parameters. Secondly, PEFTTOD was trained with a substantially smaller
parameter count and, thus, requires less storage space. Consequently, as the parameters of
the pre-trained language model remain frozen, the training speed is accelerated. Thirdly,
we conducted extensive experiments using the Multi-WOZ 2.0 benchmark dataset to prove
our advantages.

The remainder of the paper is organized as follows. In Section 2, we provide an
overview of the related work. Section 3 presents the details and design of our proposed
approach, and Section 4 presents the evaluation results. Finally, we conclude our paper in
Section 5.

2. Related Work

This section describes technologies related to PEFTTOD: the pre-trained language
model, the task-oriented dialogue system, and various PEFT methods.

2.1. Pre-Trained Language Models

In the field of natural language processing, since the advent of Transformer technology,
the grammar and vocabulary of a language are first learned from a large corpus in order to
apply transfer learning. This method of fine-tuning the pre-trained language model shows
good performance in all tasks of natural language processing. Transformer’s encoder-
based models (BERT [13], RoBERTa [14], DeBERTa [15]) perform fine-tuning for natural-
language-understanding tasks and show high performance. The parameters of the model
are increased in the order of BERT (110 M)-RoBERTa (125 M)-DeBERTa (1.5 B). Transformer’s
decoder-based models (GPT-1 [16], GPT-2 [17], GPT-3 [7], LaMDA [18], OPT [19]) are
fine-tuned for natural language generation and show high performance. The number
of parameters for GPT-1 (117 M)-GPT-2 (1.5 B)-GPT-3 (175 B) are increasing, and the
recently published LaMDA (137 B) and OPT (175 B) also have a very large number of
parameters. Transformer’s encoder–decoder-based models (BART [20], T5 [11]) are used
after fine-tuning for the translation and summary tasks, which require natural language
understanding and natural language generation. BART (400 M) and T5 (11 B) also have the
problem of increasing parameters.

2.2. Task-Oriented Dialogue System

In the task-oriented dialogue system, the structure typically consists of three main
components: Dialogue State Tracking (DST), Dialogue Policy Learning (POL), and Nat-
ural Language Generation (NLG). These components work together to understand user
utterances, determine the dialogue objectives, and generate appropriate responses [1].

Before the emergence of pre-trained language models, several approaches were used
in task-oriented dialogue systems. Some of these approaches include the following. First,
the LSTM+CNN structure [21] combines Long Short-Term Memory (LSTM) networks
with Convolutional Neural Networks (CNNs) for dialogue understanding. Second, the
Sequence-to-Sequence (Seq2Seq) model [22–24] is used for generating responses in dia-
logue systems. Sequicity [22] is an example of Seq2Seq-based models applied to dialogue
systems; DAMD [23] extended a single-domain dialogue system to multiple domains;
LABES-S2S [24] attempted semi-supervised learning. Third, several studies have explored
the application of reinforcement learning in dialogue systems, including models such as

146

Mathematics 2023, 11, 3048

JOUST [25], LAVA [26], DORA [27], SUMBT+LaRL [28], and CASPI [29]. With the advent
of pre-trained language models, models such as DoTS [30] used Bidirectional Encoder
Representations from Transformers (BERT) and Gated Recurrent Unit (GRU) for dialogue
state tracking. Regarding the decoder structure, some models introduced specific methods.
SimpleTOD [31] used special tokens and delexicalization [21] for domain adaptation, while
SOLOIST [32] employed contrastive learning [33] and negative data samples. UBAR [34]
uses the entire conversation history to generate an answer, as opposed to the traditional
single-answer methods. The combination of encoder and decoder structure has also been
explored. Models such as MinTL [3], PPTOD [2], and MTTOD [4] use pre-trained mod-
els such as BART and T5. In MTTOD, span prediction was applied as an auxiliary loss.
GALAXY [35] used UNILM and unified reconciliation for multiple datasets as ISO norms.

2.3. Parameter-Efficient Fine-Tuning Method

Transformer-based pre-trained language models have become the foundation for
natural language processing by learning the syntax and semantics in advance. It has
become a common approach to fine-tune the entire model for transfer learning. However,
recent studies have proposed more-efficient methods for utilizing pre-trained models:
learning without adding parameters or learning by adding more parameters.

2.3.1. PEFT Method without Adding Parameters

One approach is to fine-tune only the top layer or prediction head of the pre-trained
language model while keeping the remaining layers frozen. This partial fine-tuning method,
as described by Lee et al. (2019) [36], achieves lower performance compared to fine-tuning
all parameters. Another method called BitFit [37] trains only the bias term of the pre-
trained language model, which has shown on-par performance with fine-tuning on certain
resource-constrained tasks.

2.3.2. PEFT Method with Added Parameters

The PEFT method involves adding learnable parameters inside the pre-trained lan-
guage model. During the learning process, the parameters of the pre-trained language
model are frozen, and only the added parameters are trained. This method achieves
performance similar to conventional fine-tuning.

Adapters have been introduced as an efficient way to incorporate additional param-
eters into pre-trained language models. Houlsby Adapter [8] was the pioneering work
to apply the Adapter concept, featuring a bottleneck structure that can be added to the
pre-trained model. It adds two Adapter Layers within one layer of the Transformer, one
after the Attention Layer and another after the Feed-Forward layer.

AdapterFusion [38] proposed a structure called Pfeiffer Adapters and using the
Adapters in parallel before merging. It adds an Adapter in one layer of the Transformer
after the last Feed-Forward Network after the Add and Norm. Zhu et al. [39] proposed
a parallel Adapter structure that uses the value before passing the input to the Attention
Layer as the input in the existing Adapter structure.

Additionally, studies have explored Adapters for specific purposes. In the work
in [40], a domain Adapter for domain adaptation in machine translation was proposed.
MAD-X [41] proposed a language Adapter, a task Adapter, and an invertible Adapter,
which are effective for learning the multilingual language models. LoRA [42] proposed a
method to decompose the attention weight update process during fine-tuning in the pre-
trained language model and applying it to the Adapter. He et al. [43] experimented with
multiple adaptors on various downstream tasks to propose an effective Adapter structure.
UniPELT [44] proposed an integration framework that integrates the PELT method into
submodules and enables utilizing the best method for the current data or task setup through
a gating mechanism.

Prefix tuning [9], inspired by the prompt methodology, aims to improve the per-
formance of pre-trained language models. It involves modifying the input data format

147

Mathematics 2023, 11, 3048

according to the learning method of the pre-trained language model. Prefix tuning adds a
prefix vector, which can be trained within the pre-trained language model, allowing the
treatment of prompts as if they were combined with a virtual token created by the learnable
prefix vector, without directly modifying the input data.

3. Design

This paper proposes PEFTTOD, a Transformer-based task-oriented dialogue system
that leverages a parameter-efficient language-model-tuning method. This system combines
a Transformer-based language model with an efficient learning structure for conversational
knowledge. PEFTTOD’s pre-trained language model uses PPTOD [2], which is trained on a
large amount of conversational domain knowledge, based on T5 [11]. In PPTOD, a prompt
corresponding to the downstream task of the task-oriented dialogue system is combined
with the input data. For example, prompts such as “translate dialogue to belief state:”,
“translate dialogue to dialogue action:”, and “translate dialogue to system response:” are
used. However, a prompt attached to the data may not be optimized for the model’s
performance [9]. To address this issue, the proposed PEFTTOD system incorporates a
structure that enables the model to learn the prompt directly through prefix tuning.

3.1. End-to-End Dialogue Modeling

PEFTTOD incorporates a structured framework that effectively learns conversational
knowledge by leveraging PPTOD [2], a T5-based language model trained on a substantial
amount of information specific to the conversational domain.

The system architecture of PEFTTOD is based on a sequence-to-sequence architecture
model, as shown in Figure 2. At each dialog turn, the encoder takes input consisting of the
dialogue history and the user’s utterance. On the basis of the encoded conversation infor-
mation, the decoder generates a belief state, which represents the system’s understanding
of the user’s intentions and requirements.

Figure 2. Structure of PEFTTOD.

The generated belief state is used for database search, enabling the system to obtain
the corresponding DB state from the database. Additionally, based on the encoded dialog

148

Mathematics 2023, 11, 3048

information and DB state, the decoder generates a system action and a system response.
The system action determines the decision or action the dialogue system should take, while
the system response represents the system’s generated reply to the user.

PEFTTOD was trained on the Multi-WOZ 2.0 dataset, specifically on the task of the
end-to-end dialogue modeling [45]. The proposed system was trained using the maximum
likelihood method, a common approach in machine learning, which aims to optimize the
model’s parameters by maximizing the likelihood of generating the correct outputs given
the inputs.

Say that D = (x, y) (here, D is the data and x = {Ht, Ut}, {Ht, Ut, DBt}, y = Bt, At, Rt),
then the loss (L) becomes:

L = −logP(yt|xt) (1)

3.2. The Proposed Model

Figure 3 shows the encoder and decoder parts of Figure 2 in detail. PEFTTOD incorpo-
rates a PEFT method within a pre-trained language model. The left part of Figure 3 shows
the structure of the existing system, while the right part represents the structure of PEFT-
TOD. PEFTTOD effectively compresses the hidden state information as it passes through
the Attention Layer and Feed-Forward Layer and then transfers it to the subsequent layers.
It then adds an Adapter, i.e., a trainable bottleneck layer, to each layer. In addition, within
the attention mechanism, prefix tuning is performed to learn PK and PV . This allows the
model to directly learn the prompt information within the language model itself, making
the structure task-independent. Unlike the existing system, which combines prompts with
input data on a task-specific basis, PEFTTOD learns and utilizes prompt information within
the language model itself. In the following subsection, we describe the parallel Adapter
and prefix tuning in more detail.

Figure 3. Combining the Transformer structure and PEFT method.

Figure 4 shows the structure with the parallel Adapter [39] applied in PEFTTOD.
PEFTTOD is a Transformer-based architecture that incorporates two Adapter Layers within
a single layer and input value x, replacing the input of the hidden state. The value x
represents the value before passing through the Attention Layer.

h ← Wup · f (Wdown · x) + h (2)

149

Mathematics 2023, 11, 3048

In Equation (2), Wdown down-projects the incoming hidden state h, f is a non-linear
activation function, Wup up-projects the hidden state, and r is the residual network. Here,
Wdown ∈ RDhidden×Dbottle and Wup ∈ RDbottle×Dhidden , where Dhidden is the hidden size and
Dbottle is the bottleneck size. During training, the pre-trained language model combined
with these Adapters freezes the parameters corresponding to the pre-trained language
model, and only the Adapter is fine-tuned. Thus, the conversational knowledge can be
efficiently forwarded within the pre-trained language model.

Figure 4. Structure of the parallel Adapter.

Figure 5 illustrates the structure of prefix tuning [9] in PEFTTOD. We combined the key
(K) and value (V) of the Transformer’s multi-head attention block with the prefix vectors P′

k
and P′

v each of length l. P′
k and P′

v are defined as P′
k, P′

v ∈ Rl×hidden. However, if we use the
combined prefix vector as a direct parameter, then the performance will degrade. To solve
this problem, we stabilized P by reparameterizing P′ through a neural network identical to
the structure of the Adapter, as shown in Equation (3) [46].

P = Wup · f (Wdown · P′) (3)

where Wdown ∈ RDhidden×Dbottle , Wup ∈ RDbottle×Dhidden , f denotes the non-linear activation
function, Dhidden is the hidden size, and Dbottle is the bottleneck size. This neural network
only maintains the matrix corresponding to the reparameterized P and can be removed
after training. In the training step, the query of the Transformer’s attention block is defined
as Q ∈ RM×hidden, the key is K ∈ RM×hidden, and the value is V ∈ RM×hidden. Here, M
is the max sequence length. During training, as shown in Equation (4), we concatenate
the prefix vectors P′

k and P′
v in K and V, respectively, where Pk + K ∈ R(l+M)×hidden and

Pv + VR(l+M)×hidden.

headi = Attention(QWi
q, concat(Pi

k, KWi
k), concat(Pi

v, VWi
v)) (4)

In PEFTTOD, the prefix tuning is trained by inserting a prefix vector into the attention
mechanism of the pre-trained language model. This differs from the existing model where
the prompt is combined with the input data in an arbitrary manner [2]. In contrast, the
prefix vectors Pk and Pv inserted inside the model allow for the learning of the prompt that
is optimized specifically for the entire conversation system.

150

Mathematics 2023, 11, 3048

Figure 5. Structure of prefix tuning. (The parameters of the layer inside the dotted-line box can be
removed after reparametrization).

3.3. Domain Adaptation

The proposed system uses two methods for domain adaptation. The first way is to use
a special token. Special tokens are specifically designed to identify different components of
the inputs corresponding to different subtasks. As demonstrated by SimpleTOD [31], the
absence of special tokens can lead to the generation of much longer belief states, system
actions, and system responses. Therefore, it is important to clearly distinguish between the
user and the text of the system within the dialogue history of the system. To identify the
user’s utterance, the system’s utterance, the dialogue state (belief state), the DB state, and
the system action, the proposed system uses <sos_u>, <eos_u>, <sos_r>, <eos_r>, <sos_b>,
<eos_b>, <sos_db>, <eos_db>, and <sos_a>, <eos_a>, respectively.

The second method employs delexicalization. The delexicalization method is a prepro-
cessing method that groups specific slot values into categories [21]. For example, if there is
a slot called “Food” with various food options, the corresponding slots related to food are
pre-processed and categorized as “Food”. During the generation process, the actual values
are retrieved from the database and filled accordingly.

4. Evaluation

We evaluated the performance of PEFTTOD in the context of task-oriented dialogue
systems for end-to-end dialogue modeling [45]. The evaluation was conducted using the
benchmark dataset Multi-WOZ 2.0 [12]. The baseline model, PPTOD, which is described
as a language model based on T5 [11], was trained to acquire a significant amount of
knowledge about the conversation domain. We conducted a comparative experiment
according to the structure of the system combined with the PEFT method.

PPTOD uses a smaller model, and it was trained directly to replicate the same experi-
mental setup as the proposed system. In Tables 1–3, the baseline performance is indicated
as “Fine-tuning”, while the performance of direct training is indicated as “Fine-tuning (our
run)”. Additionally, “params” represents the trainable parameters of the language model
with the PEFT method applied.

4.1. Dataset and Evaluation Metrics

The experiments used the Multi-Woz 2.0 dataset, which is widely used as a benchmark
dataset for the task-oriented dialogue system. The dataset is a multi-domain dataset,

151

Mathematics 2023, 11, 3048

which consists of 8438 conversations for seven domains: tourism, attractions, hospitals,
police stations, hotels, restaurants, taxis, and trains. The experiment focused on five of
these domains, excluding hospitals and police stations, due to the absence of dev and
test data for these domains. Note that a single conversation can involve conversations
from multiple domains and databases associated with the belief state are organized based
on their respective domains. Therefore, the database state uses the dialogue state (belief
state) generated through dialogue state tracking as a query to search from a predefined
database and obtain the search result. The proposed system first predicts the dialogue state
(belief state) through DST and searches the DB at the time of inference. Next, based on the
DB state and dialogue history obtained as a search result, the system action and system
response results are generated sequentially. To evaluate the performance of the model,
an end-to-end dialogue modeling evaluation was conducted, which measured the quality
of the generated belief state, system action, and system response when a user utterance
is input. The model’s evaluation metrics followed the automatic evaluation metrics [12].
The automatic evaluation metrics are widely used in dialogue system research utilizing
the MultiWOZ 2.0 dataset. Inform measures whether the system has provided the correct
entity, and success measures whether it has responded to all the requested information.
Additionally, BLEU [47] was used to assess the quality of the generated response. The
combined score was the performance evaluation index proposed in [48] and is shown as
Equation (5).

Combined Score = (In f orm + Success)× 0.5 + BLEU (5)

4.2. Adapter Types

This experiment evaluated the performance of the Adapters with different structures,
namely the Houlsby Adapter and Parallel Adapter. These Adapters were compared with
PPTOD, a model that was pre-trained on the conversation knowledge. The results are
presented in Table 1, indicating that the Parallel Adapter structure demonstrated the best
performance among the evaluated options. Therefore, the paper leveraged this parallel
Adapter structure for further experiments and analysis. Furthermore, we also explored
the usage of prefix tuning on the dialogue system. When only prefix tuning was used, it
resulted in a lack of communication knowledge within the language model. To address
this limitation, the experiments in Section 4.5 combined the use of prefix tuning with the
Adapter structure.

Table 1. Experimental results for Adapter types. In this and the following tables, the bold numbers
indicate the highest performance for each criteria.

Method Inform Success BLEU Comb. Params

Fine-tuning 87.8 75.3 19.89 101.44 100%
Fine-tuning (our run) 83.7 75.4 19.07 98.62 100%

Prefix tuning 58.5 42.7 12.28 62.88 0.30%
Houlsby Adapter 82.0 71.8 17.50 94.40 1.32%
Parallel Adapter 83.4 74.0 19.14 97.84 1.32%

4.3. Performance Comparison for the Number of Adapters

Generally, in a pre-trained language model, as more parameters are trained, the
performance tends to improve [7]. Therefore, this experiment investigated the impact of
increasing the number of Adapter Layers. Table 2 presents the results of this comparison
for both the Houlsby Adapter and the Parallel Adapter. The numbers in the parentheses
denote the number of Adapters connected in series. It was observed that, as the number
of Adapter Layers increased, the performance of both Adapter structures improved. This
suggested that incorporating more Adapter Layers enhanced the overall performance of
the model. Notably, even when the parameters corresponding to the pre-trained language
model were not trained, but the parameters related to the PEFT method increased, there

152

Mathematics 2023, 11, 3048

was still a performance improvement. This indicated that the Adapter Layer played a
crucial role. However, note that, when the Adapter number reached seven, we observed a
performance degradation; thus, it is important to find the optimal number of Adapters to
achieve the best performance.

Table 2. Experimental results for the number of Adapters.

Method Inform Success BLEU Comb. Params

Fine-tuning 87.8 75.3 19.89 101.44 100%
Fine-tuning (our run) 83.7 75.4 19.07 98.62 100%

Houlsby Adapter 82.0 71.8 17.50 94.40 1.32%
Houlsby Adapter (3) 87.8 77.3 17.73 100.28 3.96%
Houlsby Adapter (5) 89.4 76.9 17.58 100.73 6.60%
Houlsby Adapter (7) 85.6 77.7 17.62 99.27 9.24%

Parallel Adapter 83.4 74.0 19.14 97.84 1.32%
Parallel Adapter (3) 87.4 76.1 17.58 99.33 3.96%
Parallel Adapter (5) 86.7 76.9 19.15 100.95 6.60%
Parallel Adapter (7) 87.0 75.4 19.61 100.81 9.24%

4.4. Prefix-Tuning Performance Comparison

In this experiment, we used the T5-based PPTOD-Small, which was trained to acquire
conversation knowledge, in order to evaluate the performance of prefix tuning. PPTOD [2]
is a trained model that incorporates a prompt with the input data. Therefore, for the
models that use prefix tuning, we excluded the combination of prompts with the input data
during training. Table 2 shows that the model with a combination of the Houlsby Adapters
and Parallel Adapters in series for three and five times, respectively, achieved the highest
performance. Hence, we incorporated prefix tuning into these Adapters in the experiments.
In Table 3, we observe that the model combining prefix tuning after connecting the Parallel
Adapter three times in series yielded the best performance. Consequently, we named this
proposed model PEFTTOD. The inclusion of prefix tuning in the model’s structure enhanced
the performance by allowing the model to learn information related to specialized prompts
within the conversation system, without explicitly combining prompts in the input data.

Table 3. Experimental results for prefix tuning.

Method Inform Success BLEU Comb. Params

Fine-tuning 87.8 75.3 19.89 101.44 100%
Fine-tuning (our run) 83.7 75.4 19.07 98.62 100%

Houlsby Adapter (3) 87.8 77.3 17.73 100.28 3.96%
Houlsby Adapter (3) + prefix tuning 84.5 74.1 18.38 97.68 4.27%
Houlsby Adapter (5) 89.4 76.9 17.58 100.73 6.60%
Houlsby Adapter (5) + prefix tuning 88.3 77.4 18.01 100.86 6.90%

Parallel Adapter (3) 87.4 76.1 17.58 99.33 3.96%
Parallel Adapter (3) + prefix tuning 88.3 78.4 19.38 102.73 4.27%
Parallel Adapter (5) 86.7 76.9 19.15 100.95 6.60%
Parallel Adapter (5) + prefix tuning 86.5 75.2 18.92 99.77 6.90%

4.5. Low-Resource Conditions

This experiment examined how effectively PEFTTOD can transfer conversational
knowledge under low-resource conditions. The MultiWOZ 2.0 dataset was used, with
training conducted using 1%, 5%, 10%, and 20% of the available training data. As presented
in the results in Table 4, when utilizing PEFTTOD with only 4.27% of the parameters
compared to the baseline, the performance decreased at low-resource levels of 1% and 5%,

153

Mathematics 2023, 11, 3048

but improved at higher-resource levels of 10% and 20%. This indicated that, even when
PEFTTOD learns from a small number of parameters, if it exceeds the threshold of 10% on
MultiWOZ 2.0, the performance begins to show improvement.

Table 4. Experimental results for low-resource conditions. MultiWOZ 2.0 was tested on 1%, 5%, 10%,
and 20% of the training data (PEFTTOD is a proposed model that uses prefix tuning after connecting
a parallel Adapter three times in series).

Model Inform Success BLEU Comb.

1% of training data
Baseline 66.5 51.1 12.05 70.85
PEFTTOD 51.3 34.7 9.64 52.64

5% of training data
Baseline 80.0 63.1 14.82 86.37
PEFTTOD 76.6 54.3 17.03 82.48

10% of training data
Baseline 79.5 65.6 16.73 89.28
PEFTTOD 84.5 69.7 15.98 93.08

20% of training data
Baseline 85.4 69.0 15.77 92.97
PEFTTOD 82.9 70.9 17.17 94.07

4.6. Prefix Length

In this experiment, we investigated the optimal length of the learnable vectors Pk and
Pv, in the prefix tuning, as illustrated in Figure 5. We explored the range of lengths for Pk
and Pv from 3 to 15 to determine the optimal value. The results revealed that the optimal
prefix length for PEFTTOD was 10. The results indicated that the optimal prefix length for
PEFTTOD was 10. Therefore, finding the optimal prefix length was crucial to achieving the
best performance (Figure 6).

Figure 6. Experimental results for prefix length.

4.7. Efficiency

In order to evaluate the efficiency of PEFTTOD, we conducted experiments focusing
on the training time and storage space. PEFTTOD takes advantage of the PEFT method by
training only the Adapter Layers, without updating the baseline parameters. As a result,
the training process is faster compared to traditional methods. Additionally, since only
the parameters corresponding to the trained Adapter Layers are stored, significant storage
space is saved.

154

Mathematics 2023, 11, 3048

The evaluation results in Table 5 show that PEFTTOD improved the training time
by over 20%, while utilizing only 4% of the parameters compared to the baseline model.
Additionally, it achieved a remarkable 96% savings in the storage space requirement. These
findings highlight the efficiency gains achieved by adopting PEFTTOD in task-oriented
dialogue systems.

Table 5. Experimental results for Efficiency (PEFTTOD uses prefix tuning after connecting a parallel
Adapter three times in series).

Model Training Time Storage Space Trainable Parameter

Baseline 1109 s (100%) 240 M (100%) 60.5 M (100%)

PEFTTOD 882 s (79.5%) 10 M (4.27%) 2.5 M (4.27%)

5. Conclusions and Future Work

This paper proposed a novel task-oriented dialogue system, called PEFTTOD, which
incorporates the parameter-efficient language-model-tuning method. PEFTTOD leverages
parallel Adapters and prefix tuning to efficiently train the conversation knowledge within
a task-oriented dialogue system. Through experiments, we obtained the optimal Adapter
structure and the number of stacks, and the effectiveness of combining the prefix tuning
was demonstrated. The evaluation results revealed an improvement in the combined score,
an evaluation metric of the Multi-Woz dataset, by 4% compared to the existing T5-based
baseline model. Furthermore, despite utilizing only around 4% of the parameters compared
to the baseline model, notable efficiency gains were achieved, including a 20% improvement
in training speed and an approximately 96% reduction in storage space requirements.

As future work, we intend to extend our proposal to the open-domain dialogue
systems rather than being limited to the task-oriented dialogue systems. Additionally, we
plan to explore Adapters suitable for the ever-increasing large-scale pre-trained languages,
in order to validate their effectiveness.

Author Contributions: Conceptualization, Y.M. and S.K.; methodology, Y.M.; validation, Y.M.;
investigation, Y.M. and S.K.; resources, Y.M. and S.K.; data curation, Y.M.; writing—original draft
preparation, Y.M. and J.Y.; writing—review and editing, Y.M. and J.Y.; visualization, Y.M. and J.Y.;
supervision, S.K. and J.Y.; project administration, S.K.; funding acquisition, S.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was in part supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (2022R1A2C1005316 and 2021R1F1A1063640) and in
part by the Gachon University research fund of 2021 (GCU-202106470001).

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NLU Natural Language Understanding
DST Dialogue State Tracking
POL Dialogue Policy Learning
NLG Natural Language Generation
PEFT Parameter-Efficient Fine-Tuning method
TOD Task-Oriented Dialogue system

155

Mathematics 2023, 11, 3048

References

1. Young, S.J. Probabilistic methods in spoken–dialogue systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2000,
358, 1389–1402. [CrossRef]

2. Su, Y.; Shu, L.; Mansimov, E.; Gupta, A.; Cai, D.; Lai, Y.A.; Zhang, Y. Multi-task pre-training for plug-and-play task-oriented
dialogue system. arXiv 2021, arXiv:2109.14739.

3. Lin, Z.; Madotto, A.; Winata, G.I.; Fung, P. Mintl: Minimalist transfer learning for task-oriented dialogue systems. arXiv 2020,
arXiv:2009.12005.

4. Lee, Y. Improving end-to-end task-oriented dialog system with a simple auxiliary task. Findings of the Association for Computa-
tional Linguistics. In Proceedings of the EMNLP 2021, Punta Cana, Dominican Republic, 7 November 2021; pp. 1296–1303.

5. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Advances in Neural Information Processing Systems 30, Proceedings of the NIPS, Long Beach, CA, USA, 4–9 December 2007; MIT Press:
Cambridge, MA, USA, 2007; pp. 5998–6008.

6. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
7. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. In Advances in Neural Information Processing Systems 33, Proceedings of the NIPS 2020,
Vancouver, BC, Canada, 6–12 December 2020; MIT Press: Cambridge, MA, USA, 2020; pp. 1877–1901.

8. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-
efficient transfer learning for NLP. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA,
USA, 9–15 June 2019; pp. 2790–2799.

9. Li, X.L.; Liang, P. Prefix tuning: Optimizing continuous prompts for generation. arXiv 2021, arXiv:2101.00190.
10. Mangrulkar, S.; Gugger, S.; Debut, L.; Belkada, Y.; Paul, S. PEFT: State-of-the-Art Parameter-Efficient Fine-Tuning Methods. 2022

Available online: https://github.com/huggingface/peft (accessed on 6 July 2023).
11. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer

learning with a unified text-to-text Transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.
12. Budzianowski, P.; Wen, T.H.; Tseng, B.H.; Casanueva, I.; Ultes, S.; Ramadan, O.; Gašić, M. MultiWOZ—A large-scale multi-domain

wizard-of-oz dataset for task-oriented dialogue modeling. arXiv 2018, arXiv:1810.00278.
13. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional Transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
14. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
15. He, P.; Liu, X.; Gao, J.; Chen, W. Deberta: Decoding-enhanced bert with disentangled attention. arXiv 2020, arXiv:2006.03654.
16. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training.

Technical Report. OpenAI. 2018. Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on
6 July 2023).

17. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

18. Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.T.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. Lamda:
Language models for dialog applications. arXiv 2022, arXiv:2201.08239.

19. Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.; Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X.V.; et al. Opt: Open pre-trained
Transformer language models. arXiv 2022, arXiv:2205.01068.

20. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv 2019 arXiv:1910.13461.

21. Wen, T.H.; Vandyke, D.; Mrksic, N.; Gasic, M.; Rojas-Barahona, L.M.; Su, P.H.; Ultes, S.; Young, S. A network-based end-to-end
trainable task-oriented dialogue system. arXiv 2016, arXiv:1604.04562.

22. Lei, W.; Jin, X.; Kan, M.Y.; Ren, Z.; He, X.; Yin, D. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-
sequence architectures. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 1437–1447.

23. Zhang, Y.; Ou, Z.; Yu, Z. Task-oriented dialog systems that consider multiple appropriate responses under the same context.
In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton, NY, USA, 7–12 February 2020; Volume 34, pp. 9604–9611.

24. Zhang, Y.; Ou, Z.; Wang, H.; Feng, J. A probabilistic end-to-end task-oriented dialog model with latent belief states towards
semi-supervised learning. arXiv 2020, arXiv:2009.08115.

25. Tseng, B.H.; Dai, Y.; Kreyssig, F.; Byrne, B. Transferable dialogue systems and user simulators. arXiv 2021, arXiv:2107.11904.
26. Lubis, N.; Geishauser, C.; Heck, M.; Lin, H.c.; Moresi, M.; van Niekerk, C.; Gašić, M. LAVA: Latent action spaces via variational

auto-encoding for dialogue policy optimization. arXiv 2020, arXiv:2011.09378.
27. Jeon, H.; Lee, G.G. DORA: Towards policy optimization for task-oriented dialogue system with efficient context. Comput. Speech

Lang. 2022, 72, 101310. [CrossRef]
28. Lee, H.; Jo, S.; Kim, H.; Jung, S.; Kim, T.Y. Sumbt+ larl: Effective multi-domain end-to-end neural task-oriented dialog system.

IEEE Access 2021, 9, 116133–116146. [CrossRef]

156

Mathematics 2023, 11, 3048

29. Ramachandran, G.S.; Hashimoto, K.; Xiong, C. Causal-aware safe policy improvement for task-oriented dialogue. arXiv 2021,
arXiv:2103.06370.

30. Jeon, H.; Lee, G.G. Domain state tracking for a simplified dialogue system. arXiv 2021, arXiv:2103.06648.
31. Hosseini-Asl, E.; McCann, B.; Wu, C.S.; Yavuz, S.; Socher, R. A simple language model for task-oriented dialogue. In Advances in

Neural Information Processing Systems 33, Proceedings of the Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, Virtual, 6–12 December 2020; MIT Press: Cambridge, MA, USA, 2020; pp. 20179–20191.

32. Peng, B.; Li, C.; Li, J.; Shayandeh, S.; Liden, L.; Gao, J. Soloist: Building task bots at scale with transfer learning and machine
teaching. Trans. Assoc. Comput. Linguist. 2021, 9, 807–824. [CrossRef]

33. Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 539–546.

34. Yang, Y.; Li, Y.; Quan, X. Ubar: Towards fully end-to-end task-oriented dialog system with gpt-2. In Proceedings of the AAAI
Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 14230–14238.

35. He, W.; Dai, Y.; Zheng, Y.; Wu, Y.; Cao, Z.; Liu, D.; Jiang, P.; Yang, M.; Huang, F.; Si, L.; et al. Galaxy: A generative pre-trained
model for task-oriented dialog with semi-supervised learning and explicit policy injection. In Proceedings of the AAAI Conference
on Artificial Intelligence, Virtual Event, 22 February–1 March 2022; Volume 36, pp. 10749–10757.

36. Lee, J.; Tang, R.; Lin, J. What would elsa do? freezing layers during Transformer fine-tuning. arXiv 2019, arXiv:1911.03090.
37. Ravfogel, S.; Ben-Zaken, E.; Goldberg, Y. Bitfit: Simple parameter-efficient fine-tuning for Transformer-based masked language-

models. arXiv 2021, arXiv:2106.10199.
38. Pfeiffer, J.; Kamath, A.; Rücklé, A.; Cho, K.; Gurevych, I. AdapterFusion: Non-destructive task composition for transfer learning.

arXiv 2020, arXiv:2005.00247.
39. Zhu, Y.; Feng, J.; Zhao, C.; Wang, M.; Li, L. Counter-interference Adapter for multilingual machine translation. arXiv 2021,

arXiv:2104.08154.
40. Bapna, A.; Arivazhagan, N.; Firat, O. Simple, scalable adaptation for neural machine translation. arXiv 2019, arXiv:1909.08478.
41. Pfeiffer, J.; Vulić, I.; Gurevych, I.; Ruder, S. Mad-x: An Adapter-based framework for multi-task cross-lingual transfer. arXiv 2020,

arXiv:2005.00052.
42. Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. Lora: Low-rank adaptation of large language

models. arXiv 2021, arXiv:2106.09685.
43. He, J.; Zhou, C.; Ma, X.; Berg-Kirkpatrick, T.; Neubig, G. Towards a unified view of parameter-efficient transfer learning. arXiv

2021, arXiv:2110.04366.
44. Mao, Y.; Mathias, L.; Hou, R.; Almahairi, A.; Ma, H.; Han, J.; Yih, W.t.; Khabsa, M. Unipelt: A unified framework for parameter-

efficient language model tuning. arXiv 2021, arXiv:2110.07577.
45. Nekvinda, T.; Dušek, O. Shades of BLEU, flavours of success: The case of MultiWOZ. arXiv 2021, arXiv:2106.05555.
46. Aghajanyan, A.; Zettlemoyer, L.; Gupta, S. Intrinsic dimensionality explains the effectiveness of language model fine-tuning.

arXiv 2020, arXiv:2012.13255.
47. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.
48. Mehri, S.; Srinivasan, T.; Eskenazi, M. Structured fusion networks for dialog. arXiv 2019, arXiv:1907.10016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

157

Citation: Xiao, Y.; Chen, G.; Du, C.;

Li, L.; Yuan, Y.; Zou, J.; Liu, J. A Study

on Double-Headed Entities and

Relations Prediction Framework for

Joint Triple Extraction. Mathematics

2023, 11, 4583. https://doi.org/

10.3390/math11224583

Academic Editor: Florentina Hristea

Received: 23 October 2023

Revised: 7 November 2023

Accepted: 7 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Study on Double-Headed Entities and Relations Prediction
Framework for Joint Triple Extraction

Yanbing Xiao 1, Guorong Chen 1,*, Chongling Du 1, Lang Li 1, Yu Yuan 1, Jincheng Zou 1 and Jingcheng Liu 2

1 Department of Intelligent Technology and Engineering, Chongqing University of Science and Technology,
Chongqing 401331, China; 2021208022@cqust.edu.cn (Y.X.); 2022208004@cqust.edu.cn (C.D.);
2021208019@cqust.edu.cn (L.L.); 2022208050@cqust.edu.cn (Y.Y.); 2023208002@cqust.edu.cn (J.Z.)

2 China Academy of Liquor Industry, Luzhou Vocational and Technical College, Luzhou 646608, China;
liujingcheng1980@126.com

* Correspondence: cgr@cqust.edu.cn

Abstract: Relational triple extraction, a fundamental procedure in natural language processing
knowledge graph construction, assumes a crucial and irreplaceable role in the domain of academic
research related to information extraction. In this paper, we propose a Double-Headed Entities and
Relations Prediction (DERP) framework, which divides the entity recognition process into two stages:
head entity recognition and tail entity recognition, using the obtained head and tail entities as inputs.
By utilizing the corresponding relation and the corresponding entity, the DERP framework further
incorporates a triple prediction module to improve the accuracy and completeness of the joint relation
triple extraction. We conducted experiments on two English datasets, NYT and WebNLG, and two
Chinese datasets, DuIE2.0 and CMeIE-V2, and compared the English dataset experimental results
with those derived from ten baseline models. The experimental results demonstrate the effectiveness
of our proposed DERP framework for triple extraction.

Keywords: triple extraction; entity recognition; relation extraction; joint extraction

MSC: 68T50 Natural language processing

1. Introduction

With the development of natural language processing and knowledge graphs, data
storage and presentation methods for structured text have become more mature, but there
are still many unsolved problems in the processing of unstructured and semi-structured
text [1]. Extracting triple groups is crucial in natural language processing and knowledge
graph construction. In constructing knowledge graphs, unstructured texts usually extract
entities and form correspondences by forming a (head entity, relation, tail entity) triple.

Existing triple extraction methods mainly include two major kinds, pipeline extraction
methods and joint extraction methods. Traditional pipeline extraction methods divide
knowledge extraction into two subtasks [2]: named entity recognition and relation extrac-
tion. However, this approach ignores potential information interactions between entities
and relations, leading to incorrect relation extractions or failure to recognize entity relations.
Many previous experiments have demonstrated that a joint learning approach greatly
improves the effectiveness of entity and relation extraction due to the consideration of the
information interactions between the two subtasks, so most of the current research for the
task of entity and relation extraction adopts the joint learning approach.

In recent scholarship, there has been a notable surge in research attention directed
toward the intricacies of overlapping triples, as shown in Figure 1. This phenomenon is
exemplified in sentences wherein there is the potential presence of both entity pair overlap
(EPO) triples and single entity overlap (SEO) triples. This burgeoning area of inquiry

Mathematics 2023, 11, 4583. https://doi.org/10.3390/math11224583 https://www.mdpi.com/journal/mathematics
158

Mathematics 2023, 11, 4583

underscores the escalating interest in dissecting and comprehending the complexities
inherent to overlapping triples in textual data.

Normal

EPO

SEO

[Chongqing] is a beautiful city in [China].

([Chongqing],city of,[China])

[Washington] is the capital city of [the United States].

([Washington],capital of,[the United States])
([Washington],city of,[the United States])

[Facebook] founder [Mark Zuckerberg] was born in [New York].

([Mark Zuckerberg],founder of,[Facebook])
([Mark Zuckerberg],born in,[New York])

Text

Triple

Text

Triple

Text

Triple

Figure 1. Normal, entity pair overlap (EPO) triple, and single entity overlap (SEO) triple cases. In
each example, overlapping entities are marked with the same color.

Previous research has revealed several shortcomings in the extraction of multiple
relationships (overlapping triples) within the same entity. For example, the NovelTagging
method uses a joint decoding of sequence annotations to treat entity and relation extraction
as a sequence annotation problem [3]; however, this method only assigns a single label
to each token, rendering it incapable of handling overlapping triples in the data. In
contrast, the CasRel framework models relations as functions that map subject to object [4],
successfully overcoming the issue of poor handling of overlapping triples by previous
models. Nevertheless, the CasRel framework suffers from the disadvantage of incorrectly
identifying the head entity, leading to failure in identifying the relation and the tail entity.
An overview of the CasRel framework structure is shown in Figure 2.

BERT Encoder

0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1

h+vk

0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Start

End
Subject

h

v1 v2 v3

Relation_1

Relation_2

Relation_n

Relations

Start

End
Object

Subject
Tagger

Relation-Specific
Object Taggers

Figure 2. Overview of the CasRel framework structure.

159

Mathematics 2023, 11, 4583

In this study, a head entity recognition module is used to predict the triple related to
the head entity and a tail entity recognition module is added to predict the triple related to
the tail entity. Combining the information from the two modules results in a triple of higher
accuracy. Experimental results show that the performance of the framework is improved
by combining the BERT encoder. This work contributes as follows:

1. A double-headed entities and relations prediction framework for joint triple extrac-
tion based on the BERT encoder is proposed. The named entity recognition task is
decomposed into head entity recognition and tail entity recognition.

2. To ensure recognition accuracy, a triple prediction module, which gives different
weights to the triple derived from the head entity recognition and the triple extracted
from the tail entity recognition, is set up to improve the accuracy of triple extraction.

3. To validate the method, experiments were conducted on two English public datasets,
NYT and WebNLG, and two Chinese datasets, DuIE2.0 and CMeIE-V2, and the
proposed framework was compared with ten baselines.

2. Related Work

In recent years, many methods have been proposed to accomplish knowledge extrac-
tion that can be categorized into pipeline extraction methods and joint learning methods
based on the learning process.

2.1. Pipeline Extraction Methods

Usually, pipeline extraction methods consist of the entity recognition stage and the
relation extraction stage, where the output of the previous stage becomes the input of the
next stage. This approach has the advantage that a specific model can handle a responding
task, but it may also lead to errors accumulating in each stage.

The primary objective of named entity recognition (NER) is to identify and classify
named entities within textual content, such as people, places, time, purpose, etc., with
specific meanings. It is mainly responsible for automatically extracting the basic element
entities in the knowledge graph from the unstructured and semi-structured. In order to
uphold the quality of the knowledge graph, it is imperative to ascertain the precision and
comprehensiveness of the entities extracted therein. Li et al. proposed a meta-learning
method, integrating distributed systems with a meta-learning approach to extract relations
among Chinese entities [5]. Through the utilization of machine learning and neural network
methodologies, particularly leveraging the attention mechanism within the domain of
natural language processing, Li et al. proposed a combination of conditional random
fields (CRF) and bidirectional long short-term memory (BILSTM) for extracting information
in a mathematical language [6]. Luo et al. introduced a neural network model, known
as the attention-based bidirectional long short-term memory with a conditional random
field layer (Att-BiLSTM-CRF), for document-level chemical entity recognition [7]. Li et al.
advocated the utilization of distinct layers, specifically long short-term memory (LSTM) for
text feature extraction and conditional random field (CRF) for label prediction decoding [8].
Ren proposed a method to enhance entity recognition by transforming text into a vector
representation combining contextual and global features through a pretrained model and a
graph neural network GCN [9].

Relation extraction refers to extracting relations between connecting basic element
entities from the unstructured and semi-structured. The mesh structure of the knowledge
graph is similar to the structure of the brain for storing knowledge. Neurons represent
entities and record basic information, and the process of extracting relations activates some
of the neurons (entities) and adds them to the brain structure (knowledge graph), using
relations to connect the entities to the whole knowledge graph. Zeng et al. conducted
an analysis of the pivotal role played by the order of relation extraction and employed
reinforcement learning techniques to ameliorate the efficiency of relation extraction [10].
Han et al. proposed a one pass model based on BERT, capable of predicting entity relations
by processing the text in a single pass [11]. Chen et al. utilized a neutralized feature engi-

160

Mathematics 2023, 11, 4583

neering approach for entity relation extraction, namely, enhancing neural networks with
manually designed features [12]. Yuan et al. proposed a relation-aware attention network to
construct relation-specific sentence representations [13]. Wan et al. proposed a span-based
multi-modal attention network (SMAN) for joint entity and relation extraction [14].

2.2. Joint Learning Methods

In pipeline learning methods of relation extraction, the intrinsic connection between
entities and relations is often overlooked, and the federated model is an excellent solution
to this problem. Huang et al. suggested using soft label embedding as an effective means
to facilitate information exchange between entity recognition and relation extraction [15].
Wei et al. proposed a novel cascade binary tagging framework (CASREL), which models
relations as functions that map subjects to objects [4]. Liu et al. introduced an attention-
driven integrated model, primarily comprising an entity extraction module and a relation
detection module, as a means to effectively confront the prevailing challenges [16]. Yu
et al. decomposed the comprehensive extraction task into two mutually interconnected
subtasks: one subtask handles the head entities, and the other subtask deals with the
tail entities related to the head entities and their respective relations [17]. Guo et al.
introduced an integrated model for the extraction of entities and relations pertaining to
concepts within the realm of cybersecurity (CyberRel) [18], and they adopted a perspective
wherein the triple is conceived as a sequence of entity relations. Subsequently, Lv et al.
constructed the joint extraction of entity mentions and relations model, which was based
on the bidirectional long short-term memory and maximum entropy Markov model (Bi-
MEMM) [19]. Zheng et al. introduced an integrated framework for extracting relational
triples, underpinned by the principles of potential relation and global correspondence
(PRGC) [20]. Li et al. proposed a relation-aware embedding mechanism (RA) for relation
extraction, with attention mechanisms being used to merge relational tags into sentence
embeddings, which are used to distinguish the importance of relational tags for each
word [21]. Huang et al. proposed a novel translation-based unified framework, which
is used to solve redundant predictions, overlapping triples, and relation connections
problems [22]. Liu et al. presented a model referred to as the bidirectional encoder
representation from transformers–multiple convolutional neural network (BERT–MCNN),
which has demonstrated a high level of accuracy and stability [23].

3. CasRel Framework

The goal of triple extraction is to identify all possible triples (head entity, relation,
tail entity) in a sentence, which may contain some overlapping and shared entities. The
structure of the CasRel framework is shown in Figure 2. The CasRel framework presents
a fresh perspective on the task of triple extraction. It introduces a novel cascade binary
tagging framework, known as CasRel, that effectively addresses the complex challenge of
managing overlapping relations by systematically establishing subject–object mappings
within sentences [4]. This framework consists of a set of functions that identify entities and
their related relations in an entity tagger and relation-specific object taggers. By employing
the CasRel framework, the issue of sharing the same entity in multiple triples is addressed
effectively, providing multiple related relations and corresponding entities for each entity.
However, in the CasRel framework, if the subject tagger does not recognize an entity, the
associated triad will be missed.

To solve the triple extraction omission that occurs in the CasRel framework, we
propose an improved DERP framework based on the CasRel framework. Which improves
the entity recognition accuracy by adding a tail entity recognition module in the entity
tagger, and adding a triple prediction module after relation-specific object taggers. This
framework will combine head entities, tail entities and relations to make predictions and
comes up with a more accurate triple.

161

Mathematics 2023, 11, 4583

4. The DERP Framework

Entity recognition and relation extraction are the design priorities for triple extraction.
The primary objective of this DERP framework is to ascertain the complete set of potential
triples within a given sentence, acknowledging the potential existence of entities with
overlapping attributes in some instances.

The ultimate prediction of the (head entity, relation, tail entity) triple is achieved
through the recognition and forecasting of the acquired triples within the triple prediction
layer. The DERP framework is shown in Figure 3.

BERT Encoder

0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1

HS+vE

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

Start

End
Entity

HS

HeadEntity_h1 TailEntity_t1 TailEntity_t2

Relation_1

Relation_2

Relation_n

Relations

Start

End
Entity

Entity
Tagger

Relation-Specific
Entity Taggers

HeadEntity_h2 HeadEntity_h3TailEntity_t3

(HeadEntity_h1, Relation_2,
TailEntity_t3)

(HeadEntity_h3, Relation_1,
TailEntity_t1)

(HeadEntity_h2, Relation_n,
TailEntity_t2)

Triple Prediction Layer

Triples

Figure 3. The architecture of the proposed DERP framework. In the framework, the start and end
positions of predicted entities and relations are color-marked, with entities belonging to the same
group marked with the same color.

In the DERP framework, we model relations as functions that map topics to objects.
We optimize the previously commonly used learning relation classifiers f (E1, E2) → R , to
learning relation-specific taggers fR(E1) → E2 . Each tagger will identify entities that may
exist under a specific relationship, or entities that may not be returned. If the entity is not
returned, it indicates that there is no triple in the current entity and relation.

When dealing with overlapping triples, the DERP framework uses an entity tagger
for entity recognition and allows multiple relationship representations in relation-specific
entity taggers. Within relation-specific entity taggers, multiple relationships and their
corresponding entities can be obtained. By using the DERP framework, different types of
data structures, including EPO triples and SEO triples, can be effectively handled.

162

Mathematics 2023, 11, 4583

We used an entity tagger to identify head entities at the very beginning of the research
on framework development and used the identified head entities to find related relations
and tail entities. During the experiments, it was found that if there is a head entity in
the entity tagger that is missing, this triple will be missed in the final triple prediction,
especially in the case of overlapping triples where a head entity corresponds to more than
one related tail entity. There are also cases where some of the tail entities related to this head
entity are missed when performing the triple extraction; in this case, we can better find
these missing tail entities by adding a tail entity recognition module to the entity tagger.
So, two matching entities and accurate relations between entities are achieved by adding a
tail entity recognition module to the entity tagger, and by looking up the corresponding
relation and another matching entity in the relation-specific entity taggers.

During the experiment, by learning and improving the previous model, we added
the tail entity recognition module. If the probability of recognizing the correct triple by
the head entity module only is P(Head) and the probability of recognizing the correct
triple by the tail entity module only is P(Tail), we will increase the probability of finally
recognizing the correct triple by combining the two entity modules with the following
probability equation:

P(Triple) = P(Head) ∪ P(Tail)
= P(Head) + P(Tail)− P(Head ∩ Tail)

(1)

where P(Triple) is the probability of obtaining the correct triple, P(Head) is the probability
of obtaining the correct triple by only using a single head entity recognition module, P(Tail)
is the probability of obtaining the correct triple by only using a single tail entity recognition
module, and P(Head ∩ Tail) is the probability of duplicate triples obtained by the head
entity recognition module and tail entity recognition module.

4.1. BERT Encoder

BERT mainly consists of N layers of transformer block. A BERT encoder extracts
sentence feature information from sentence S and inputs the feature information into the
entity tagger.

h0 = OhotWn + Wp (2)

Sri = BERT(ri) (3)

where Ohot is the one-hot vector matrix indexed in the input sentence, Wn is the word
embedding matrix, Wp is the positional embedding matrix, p in Wp denotes the positional
index in the input sequence, and Sri is the i-th relation type embedding.

4.2. Entity Tagger

Compared with the CasRel framework, the entity recognition is divided into head
entity recognition and tail entity recognition in the entity tagger, which reduces the situation
of missing triples due to the omission of the first stage of entity recognition, and also
improves the accuracy of the extraction of overlapping triples [24].

The BERT encoded sentence is entered in the entity tagger to extract head and tail
entities by the binary method.

Within the entity tagger, the identification of entity positions within sentences encoded
by the BERT encoder is achieved. In this module, two binary classifiers are designed
to check for the start and end positions of entity words. By setting specific thresholds,
if the probability surpasses the designated threshold, the token is marked as 1; other-
wise, it is marked as 0. The following is specific to the head entity recognizer and tail
entity recognizer:

pHE_start
i = sigmoid

(
WHE

startx
HE
i + bHE

start

)
(4)

163

Mathematics 2023, 11, 4583

pHE_end
i = sigmoid

(
WHE

end xHE
i + bHE

end

)
(5)

pTE_start
i = sigmoid

(
WTE

startx
TE
i + bTE

start

)
(6)

pTE_end
i = sigmoid

(
WTE

endxTE
i + bTE

end

)
(7)

where pHE_start
i , pHE_end

i , pTE_start
i , and pTE_end

i are the probability of the marker position
being predicted to be the start and end positions of the head entity and the tail entity, xi
denotes the i-th marker in sentence S, WHE

start, WHE
end , WTE

start, and WTE
end denote the training

weights of the head entities and tail entities, and bHE
start, bHE

end , bTE
start, and bTE

end denote the bias of
the head entities and tail entities. In the use of the model, we need to keep the dimensions
of the start binary classifier and the end binary classifier the same.

The entity recognition module uses the following likelihood function to recognize the
range of sentences that have been encoded by the encoder:

pθ(EHead | XHE) = ∏t∈{HE_start,HE_end} ∏L
i=1

(
pt

i
)I{yt

i=1}(1 − pt
i
)I{yt

i=0} (8)

pθ(ETail | XTE) = ∏t∈{TE_start,TE_end} ∏L
i=1

(
pt

i
)I{yt

i=1}(1 − pt
i
)I{yt

i=0} (9)

where L is the length of the sentence, I{z} = 1 if z is true and 0 otherwise, yHE_start
i , yHE_end

i ,
yTE_start

i , and yTE_end
i are the i-th tag in the sequence that marks the start position and the

end position.

4.3. Relation-Specific Entity Taggers

In the relation-specific entity taggers, an entity tagger is assigned to each relation
word. The relation terms are used to correspond to the head entity or tail entity extracted
in the previous layer to extract the entity in satisfying the relations. The calculations are
shown below:

pHR_start
i = sigmoid

(
WHR

start

(
xHE

i + vk
E

)
+ bHR

start

)
(10)

pHR_end
i = sigmoid

(
WHR

end

(
xHE

i + vk
E

)
+ bHR

end

)
(11)

pTR_start
i = sigmoid

(
WTR

start

(
xTE

i + vk
E

)
+ bTR

start

)
(12)

pTR_end
i = sigmoid

(
WTR

end

(
xTE

i + vk
E

)
+ bTR

end

)
(13)

where pHR_start
i , pHR_end

i , pTR_start
i , and pTR_end

i are the probabilities that the head entity and
the tail entity at the labeled position are predicted to be the entity start position and end
position, vk

E is the relation-specific entity tagger’s vector of coded representations of the kth
subject detected in the module, WHE

start, WHE
end , WTE

start, and WTE
end denote the training weights

of the head entities and tail entities, and bHE
start, bHE

end, bTE
start, and bTE

end indicate deviations of
head entities and tail entities.

Relation-specific entity taggers use the following likelihood function to identify the
range of sentences that the encoder has encoded:

pθ(ETail | EHead, XHE) = ∏t∈{HE_start,HE_end} ∏L
i=1

(
pt

i
)I{yt

i=1}(1 − pt
i
)I{yt

i=0} (14)

pθ(EHead | ETail , XTE) = ∏t∈{TE_start,TE_end} ∏L
i=1

(
pt

i
)I{yt

i=1}(1 − pt
i
)I{yt

i=0} (15)

164

Mathematics 2023, 11, 4583

where L is the length of the sentence, I{z} = 1 if z is true and 0 otherwise, and yHE_start
i ,

yHE_end
i , yTE_start

i , and yTE_end
i are the i-th tags in the sequence that marks the start position

and the end position.

4.4. Triple Prediction

The relation-specific entity taggers identify the head entity, tail entity, and the cor-
responding relations and use the method of entity relation prediction to match the head
entities and tail entities identified in the entity tagger using the following method:

fHE_start =

{
1, pHR_start

i ≥ λ1
0, pHR_start

i < λ1
(16)

fHE_end =

{
1, pHR_end

i ≥ λ2

0, pHR_end
i < λ2

(17)

fTE_start =

{
1, pTR_start

i ≥ λ3

0, pTR_start
i < λ3

(18)

fTE_end =

{
1, pTR_end

i ≥ λ4

0, pTR_end
i < λ4

(19)

When fHE_start, fHE_end, fTE_start, and fTE_end equal to 1, the head entity or tail entity
corresponding to the entity extracted in entity tagger and the corresponding relation is
obtained, and if the value is equal to 0, the triple is excluded. λ1, λ2, λ3, and λ4 are the
set thresholds.

gHE_TE = {HeadEntity, Relation, TailEntity} (20)

gTE_HE = {HeadEntity, Relation, TailEntity} (21)

g = gHE_TE ∪ gTE_HE (22)

where gHE_TE represents the triplets of the tail entity and the relation between entities
obtained based on the head entity, gTE_HE represents the triplets of the head entity and
the relation between entities obtained based on the tail entity, and g denotes the final
predicted triplets.

4.5. Loss Function

The training loss is defined as below:

L =
|D|
∑

j=1

[
∑

E∈Tj

log pθ

(
EHead

∣∣∣XHE
j

)
+ ∑

E∈Tj

log pθ

(
ETail

∣∣∣XTE
j

)
+ ∑

r∈Tj |E
log pφr

(
ETail | EHead, XHE

j

)
+ ∑

r∈Tj |E
log pφr

(
EHead | ETail , XTE

j

)
+ ∑

r∈R�Tj |E
log pφr

(
ETail∅ | EHead, xj

)

+ ∑
r∈R�Tj |E

log pφr

(
EHead∅ | ETail , xj

)]
(23)

where parameters θ =
{

θ, {∅r}r∈R
}

, pθ(EHead | XHE), and pθ(ETail | XTE) are defined in
Equations (7) and (8), and pφr (ETail | EHead, XHE) and pφr (EHead | ETail , XTE) are defined in
Equations (13) and (14).

165

Mathematics 2023, 11, 4583

5. Experiments

The effectiveness of the proposed framework is validated with experiments. The
datasets and evaluation metrics are first introduced, and then the model names are com-
pared with different baseline models.

5.1. Experiment Setup and Experiment Description

As most of the previous studies conducted experiments using English datasets, this
study conducted experiments using two publicly English available datasets, NYT [25]
and WebNLG [26], and compared the results of the experiments with 10 baseline models.
Due to the specificity of the Chinese language, the complexity and difficulty of Chinese
triple extraction is considerably greater than that of English relations [27]. We used two
Chinese datasets, DuIE2.0 [28] and CMeIE-V2 [29]. DuIE2.0 is the most comprehensive
Chinese relational extraction dataset in the industry [30]. CMeIE-V2 is a Chinese medical
information extraction dataset, specifically designed for pediatrics and covering more than
a hundred common diseases.

This model performs head entity recognition and tail entity recognition in the entity
recognition part and performs the corresponding triple extraction based on the experimental
results. In the experiments, the head entity recognition model and the tail entity recognition
model are used individually for comparison experiments to verify the reliability and
validity of the experiments. The schematic diagram of the head entity recognition module
and the tail entity recognition module is shown in Figure 4.

HS+vE

Relation-Specific Entity Taggers

Head Entity

Tail Entity

HS+vE

Relation-Specific Entity Taggers

Head Entity

Tail Entity
(a) (b)

Figure 4. (a) Schematic diagram of the head entity recognition module. (b) Schematic diagram of the
tail entity recognition module.

The DERP framework is implemented using TensorFlow. In the BERT encoder section,
the framework is implemented on English datasets using the cased_L-12_H-768_A-12
model and on Chinese datasets using the RoBERTa model. Dropout is applied to word
embeddings and hidden states with a rate of 0.1. Network weights are optimized with
Adam. The learning rate is set as 1 × 10−5. The max length of the input sentence is set
to 100. The batch size is set as 6. We use 100 epochs and choose the model with the best
performance on the validation set to output results on the test set.

In our experimental procedures, for the sake of maintaining consistency with prior
research, an extracted triple is deemed accurate if the head entity, the relation, and the
tail entity are each validated as correct. The study reports standard metrics, including
micro-precision (Prec.), recall (Rec.), and F1 score (f1), in line with the established baselines.

5.2. Baseline

To evaluate the performance of the DERP Framework, it is compared with ten baseline
models: NovelTagging [3], CopyRE [31], GraphRel [32], ETL-Span [17], CopyMTL [33],
CasRel [4], TPLinker [34], RSAN [13], CGT [35], and RIFRE [36].

Unless otherwise noted, the results of these baseline models were taken from the
original papers.

166

Mathematics 2023, 11, 4583

5.3. Results

Table 1 shows the results of our model relative to other baselines extracted from entities
and relations on both datasets. On the WebNLG dataset, DERP outperformed all baselines
in both recall and F1 score, and on the NYT dataset, DERP achieved the second highest F1
score. These results directly validate the utility of the proposed DERP framework.

Table 1. Precision (%), recall (%) and F1 score (%) of the compared models on the NYT and WebNLG
databases. * marks results quoted directly from the original papers.

Model
NYT WebNLG

Prec. Rec. f1 Prec. Rec. f1

NovelTagging* [3] 61.5 41.4 49.5 - - -
CopyRE* [31] 61.0 56.6 58.7 37.7 36.4 37.1

GraphRel* [32] 63.9 60.0 61.9 44.7 41.1 42.9
ETL-Span* [17] 53.8 65.1 59.0 84.3 82.9 83.1
CopyMTL* [33] 75.7 68.7 72.0 58.0 54.9 56.4

CasRel* [4] 89.7 89.5 89.6 93.4 90.1 91.8
TPLinker* [34] 91.3 92.5 91.9 91.8 92.0 91.9

RSAN* [13] 85.7 83.6 84.6 80.5 83.8 82.1
CGT* [35] 94.7 84.2 89.1 92.9 75.6 83.4

RIFRE* [36] 93.6 90.5 92.0 93.3 92.0 92.6

DERP 92.05 89.94 90.98 92.82 92.90 92.86
DERP_HeadEntity 91.12 90.47 90.80 92.10 92.18 92.28
DERP_TailEntity 92.03 72.49 81.10 93.42 86.70 90.35

Table 2 shows the experimental results of DERP on the DuIE2.0 and CMeIE-V2 datasets,
which shows an improvement over CasRel in terms of F1 score results. The F1 score of
DERP_HeadEntity is also higher than CasRel when experiments are conducted using
DERP_HeadEntity.

Table 2. Precision (%), recall (%) and F1 score (%) of the compared models on the DuIE2.0 and
CMeIE-V2 databases. * marks results of reproduced experiments.

Model
DuIE2.0 CMeIE-V2

Prec. Rec. f1 Prec. Rec. f1

CasRel* 69.56 65.54 67.49 47.56 42.56 44.91
DERP 71.06 65.35 68.09 47.51 46.11 46.80

DERP_HeadEntity 70.38 65.80 68.01 47.27 45.15 46.19
DERP_TailEntity 73.97 53.50 62.09 49.10 43.01 45.85

We conducted experiments on CasRel under the same experimental conditions as the
DERP framework. On the NYT dataset, CasRel* scored precision 88.87%, recall 90.34%,
and F1 score 89.60%; on the WebNLG dataset, CasRel* scored precision 91.92%, recall
91.39%, and F1 score 91.65%. Compared with the replicated CasRel* framework, DERP
has 1.38 percent improvement in F1 score on the NYT dataset, 1.21 percent improvement
in F1 score on the WebNLG dataset, 0.6 percent improvement in F1 score on the DuIE2.0
dataset, and 1.98 percent improvement in F1 score on the CMeIE-V2 dataset. On the four
datasets of NYT, WebNLG, DuIE2.0, and CMeIE-V2, in the experiments using head entity
recognition and tail entity recognition alone for triple prediction, DERP_HeadEntity has
higher precision, recall and F1 score than the original CasRel model in the experiments.
In the DERP tail entity experiment, the features of the tail entity are not as easy to recog-
nize as the features of the head entity, resulting in weaker F1 experimental results than
DERP_HeadEntity on the four datasets.

Table 1 also presents that in the experiments on the two English datasets, with the
existing models compared, a significant gap in processing performance between the models

167

Mathematics 2023, 11, 4583

is found, which proves that DERP performs better in dealing with redundant entities
and overlapping triples. In the comparison experiments on four datasets, NYT, WebNLG,
DuIE2.0, and CMeIE-V2, it is demonstrated that dividing entity recognition into head
entity recognition and tail entity recognition, as in the DERP framework, can effectively
improve the accuracy of entity recognition, and can produce more accurate results in
relation extraction and triple prediction.

6. Conclusions

In this study, a double-headed entities and relations prediction framework for joint
triple extraction is proposed. The entity recognition part is decomposed into head entity
recognition and tail entity recognition. Specifically, relation prediction and tail entity recog-
nition are executed for the head entities, and in parallel, relation prediction and head entity
recognition are performed for the tail entities. In addition, a triple prediction module is
designed to solve the entity overlapping problem in previous joint triple extractions. We
systematically conducted experiments across four distinct datasets and compared them
with ten baseline models. By proceeding with joint triple extraction, a good foundation
is constructed for subsequent natural language processing or knowledge graph construc-
tion efforts. The results of these rigorous investigations substantiate that the conceptual
framework introduced in this paper exhibits certain improvements when juxtaposed with
prior models.

In the DERP framework, we have only improved the case of missing triple extraction,
and in future work, we will conduct research on the case of error in triple extraction. We will
also conduct research on Chinese text triple extraction to study the special characteristics of
Chinese text triple extraction and improve the accuracy and effectiveness of Chinese text
triple extraction.

Author Contributions: Conceptualization, Y.X. and G.C.; methodology, Y.X.; software, Y.X. and C.D.;
validation, Y.Y., L.L. and J.Z.; formal analysis, J.L.; investigation, Y.X.; resources, Y.X.; data curation,
L.L.; writing—original draft preparation, Y.X.; writing—review and editing, G.C.; visualization, C.D.;
supervision, C.D.; project administration, Y.Y.; funding acquisition, G.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by cooperative projects between universities in Chongqing
and the Chinese Academy of Sciences, grant number Grant HZ2021015; the Chongqing Technology
Innovation and Application Development Special Project, grant number cstc2019jscxmbdxX0016; the
General Project of the Chongqing Municipal Science and Technology Commission, grant number
cstc2021jcyjmsxm3332; the Sichuan Science and Technology Program 2023JDRC0033; the Young
Project of Science and Technology Research Program of the Chongqing Education Commission of
China, number KJQN202001513 and number KJQN202101501; the Luzhou Science and Technology
Program 2021-JYJ-92; the Chongqing Postgraduate Scientific Research Innovation Project, grant
number CYS23752; and the Chongqing University of Science and Technology Master and Doctoral
Student Innovation Project, grant number YKJCX2120811.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, Z.; Chi, C.; Zhan, Y. Research on Medical Question Answering System Based on Knowledge Graph. IEEE Access 2021, 9,
21094–21101. [CrossRef]

2. Ma, L.; Ren, H.; Zhang, X. Effective Cascade Dual-Decoder Model for Joint Entity and Relation Extraction. arXiv 2021. [CrossRef]
3. Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4
August 2017; pp. 1227–1236.

4. Wei, Z.; Su, J.; Wang, Y.; Tian, Y.; Chang, Y. A Novel Cascade Binary Tagging Framework for Relational Triple Extraction. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 1476–1488.

5. Li, L.; Zhang, J.; Jin, L.; Guo, R.; Huang, D. A Distributed Meta-Learning System for Chinese Entity Relation Extraction.
Neurocomputing 2015, 149, 1135–1142. [CrossRef]

168

Mathematics 2023, 11, 4583

6. Li, H.; Xu, T.; Zhou, J. Mathematical Subject Information Entity Recognition Method Based on BiLSTM-CRF. In Machine Learning
for Cyber Security, Proceedings of the Third International Conference, ML4CS 2020, Guangzhou, China, 8–10 October 2020; Proceedings,
Part III 3; Springer International Publishing: Cham, Switzerland, 2020; pp. 259–268.

7. Luo, L.; Yang, Z.; Yang, P.; Zhang, Y.; Wang, L.; Lin, H.; Wang, J. An Attention-Based BiLSTM-CRF Approach to Document-Level
Chemical Named Entity Recognition. Bioinformatics 2018, 34, 1381–1388. [CrossRef] [PubMed]

8. Li, X.; Zhang, H.; Zhou, X.-H. Chinese Clinical Named Entity Recognition with Variant Neural Structures Based on BERT Methods.
J. Biomed. Inform. 2020, 107, 103422. [CrossRef] [PubMed]

9. Ren, Z. Joint Entity and Relation Extraction Based on Specific-Relation Attention Mechanism and Global Features. In Proceedings
of the Second International Conference on Electronic Information Technology (EIT 2023), Wuhan, China, 31 March–2 April 2023;
Volume 12719, pp. 685–691.

10. Zeng, X.; He, S.; Zeng, D.; Liu, K.; Liu, S.; Zhao, J. Learning the Extraction Order of Multiple Relational Facts in a Sentence with
Reinforcement Learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019;
pp. 367–377.

11. Han, X.; Wang, L. A Novel Document-Level Relation Extraction Method Based on BERT and Entity Information. IEEE Access
2020, 8, 96912–96919. [CrossRef]

12. Chen, Y.; Yang, W.; Wang, K.; Qin, Y.; Huang, R.; Zheng, Q. A Neuralized Feature Engineering Method for Entity Relation
Extraction. Neural Netw. 2021, 141, 249–260. [CrossRef] [PubMed]

13. Yuan, Y.; Zhou, X.; Pan, S.; Zhu, Q.; Song, Z.; Guo, L. A Relation-Specific Attention Network for Joint Entity and Relation
Extraction. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama,
Japan, 7–15 January 2021; ISBN 978-0-9992411-6-5.

14. Wan, Q.; Wei, L.; Zhao, S.; Liu, J. A Span-Based Multi-Modal Attention Network for Joint Entity-Relation Extraction. Knowl.
-Based Syst. 2023, 262, 110228. [CrossRef]

15. Huang, W.; Cheng, X.; Wang, T.; Chu, W. BERT-Based Multi-Head Selection for Joint Entity-Relation Extraction. In Natural
Language Processing and Chinese Computing, Proceedings of the 8th CCF International Conference, NLPCC 2019, Dunhuang, China, 9–14
October 2019; Proceedings, Part II; Springer: Cham, Switzerland, 2019; pp. 713–723.

16. Liu, J.; Chen, S.; Wang, B.; Zhang, J.; Li, N.; Xu, T. Attention as Relation: Learning Supervised Multi-Head Self-Attention for
Relation Extraction. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20),
Yokohama, Japan, 7–15 January 2021; pp. 3787–3793.

17. Yu, B.; Zhang, Z.; Shu, X.; Wang, Y.; Liu, T.; Wang, B.; Li, S. Joint Extraction of Entities and Relations Based on a Novel
Decomposition Strategy. In Proceedings of the 24th European Conference on Artificial Intelligence—ECAI 2020, Santiago de
Compostela, Spain, 29 August–8 September 2020.

18. Guo, Y.; Liu, Z.; Huang, C.; Liu, J.; Jing, W.; Wang, Z.; Wang, Y. CyberRel: Joint Entity and Relation Extraction for Cybersecurity
Concepts. In Information and Communications Security; Gao, D., Li, Q., Guan, X., Liao, X., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2021; Volume 12918, pp. 447–463. ISBN 978-3-030-86889-5.

19. Lv, C.; Pan, D.; Li, Y.; Li, J.; Wang, Z. A Novel Chinese Entity Relationship Extraction Method Based on the Bidirectional Maximum
Entropy Markov Model. Complexity 2021, 2021, e6610965. [CrossRef]

20. Zheng, H.; Wen, R.; Chen, X.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhang, N.; Qin, B.; Xu, M.; Zheng, Y. PRGC: Potential Relation and
Global Correspondence Based Joint Relational Triple Extraction. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Online, 1–6 August
2021; pp. 6225–6235.

21. Li, X.; Li, Y.; Yang, J.; Liu, H.; Hu, P. A Relation Aware Embedding Mechanism for Relation Extraction. Appl. Intell. 2022, 52,
10022–10031. [CrossRef]

22. Huang, H.; Shang, Y.-M.; Sun, X.; Wei, W.; Mao, X. Three Birds, One Stone: A Novel Translation Based Framework for Joint Entity
and Relation Extraction. Knowl.-Based Syst. 2022, 236, 107677. [CrossRef]

23. Liu, C.; Zhang, X.; Xu, Y.; Xiang, B.; Gan, L.; Shu, Y. Knowledge Graph for Maritime Pollution Regulations Based on Deep
Learning Methods. Ocean Coast. Manag. 2023, 242, 106679. [CrossRef]

24. Zhuang, C.; Zhang, N.; Jin, X.; Li, Z.; Deng, S.; Chen, H. Joint Extraction of Triple Knowledge Based on Relation Priority. In
Proceedings of the 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Exeter,
UK, 17–19 December 2020; pp. 562–569.

25. Riedel, S.; Yao, L.; McCallum, A. Modeling Relations and Their Mentions without Labeled Text. In Machine Learning and Knowledge
Discovery in Databases; Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6323, pp. 148–163. ISBN 978-3-642-15938-1.

26. Gardent, C.; Shimorina, A.; Narayan, S.; Perez-Beltrachini, L. Creating Training Corpora for Nlg Micro-Planning. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017.

27. Huang Xun, Y.H. A Review of Relation Extraction. Data Anal. Knowl. Discov. 2013, 29, 30–39. [CrossRef]

169

Mathematics 2023, 11, 4583

28. Li, S.; He, W.; Shi, Y.; Jiang, W.; Liang, H.; Jiang, Y.; Zhang, Y.; Lyu, Y.; Zhu, Y. DuIE: A Large-Scale Chinese Dataset for
Information Extraction. In Natural Language Processing and Chinese Computing; Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H., Eds.;
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11839, pp. 791–800,
ISBN 978-3-030-32235-9.

29. Zhang, N.; Chen, M.; Bi, Z.; Liang, X.; Li, L.; Shang, X.; Yin, K.; Tan, C.; Xu, J.; Huang, F.; et al. CBLUE: A Chinese Biomedical
Language Understanding Evaluation Benchmark. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 7888–7915.

30. Cheng, D.; Song, H.; He, X.; Xu, B. Joint Entity and Relation Extraction for Long Text. In Knowledge Science, Engineering and
Management; Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y., Eds.; Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2021; Volume 12816, pp. 152–162. ISBN 978-3-030-82146-3.

31. Zeng, X.; Zeng, D.; He, S.; Liu, K.; Zhao, J. Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne,
Australia, 15–20 July 2018; pp. 506–514.

32. Fu, T.-J.; Li, P.-H.; Ma, W.-Y. GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 1409–1418.

33. Zeng, D.; Zhang, H.; Liu, Q. CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning.
Proc. AAAI Conf. Artif. Intell. 2020, 34, 9507–9514. [CrossRef]

34. Wang, Y.; Yu, B.; Zhang, Y.; Liu, T.; Zhu, H.; Sun, L. TPLinker: Single-Stage Joint Extraction of Entities and Relations Through
Token Pair Linking. In Proceedings of the 28th International Conference on Computational Linguistics, International Committee
on Computational Linguistics, 2020, Online, 8–13 December 2020; pp. 1572–1582.

35. Ye, H.; Zhang, N.; Deng, S.; Chen, M.; Tan, C.; Huang, F.; Chen, H. Contrastive Triple Extraction with Generative Transformer.
Proc. AAAI Conf. Artif. Intell. 2021, 35, 14257–14265. [CrossRef]

36. Zhao, K.; Xu, H.; Cheng, Y.; Li, X.; Gao, K. Representation Iterative Fusion Based on Heterogeneous Graph Neural Network for
Joint Entity and Relation Extraction. Knowl.-Based Syst. 2021, 219, 106888. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

170

Citation: Chifu, A.-G.; Fournier, S.

Sentiment Difficulty in Aspect-Based

Sentiment Analysis. Mathematics

2023, 11, 4647. https://doi.org/

10.3390/math11224647

Academic Editor: Xiang Li

Received: 14 October 2023

Revised: 9 November 2023

Accepted: 10 November 2023

Published: 14 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Sentiment Difficulty in Aspect-Based Sentiment Analysis

Adrian-Gabriel Chifu * and Sébastien Fournier

Aix-Marseille Université, Université de Toulon, CNRS, LIS, 13007 Marseille, France;
sebastien.fournier@univ-amu.fr
* Correspondence: adrian.chifu@univ-amu.fr

Abstract: Subjectivity is a key aspect of natural language understanding, especially in the context of
user-generated text and conversational systems based on large language models. Natural language
sentences often contain subjective elements, such as opinions and emotions, that make them more
nuanced and complex. The level of detail at which the study of the text is performed determines the
possible applications of sentiment analysis. The analysis can be done at the document or paragraph
level, or, even more granularly, at the aspect level. Many researchers have studied this topic exten-
sively. The field of aspect-based sentiment analysis has numerous data sets and models. In this work,
we initiate the discussion around the definition of sentence difficulty in this context of aspect-based
sentiment analysis. To assess and quantify the difficulty of the aspect-based sentiment analysis,
we conduct an experiment using three data sets: “Laptops”, “Restaurants”, and “MTSC” (Multi-
Target-dependent Sentiment Classification), along with 21 learning models from scikit-learn. We also
use two textual representations, TF-IDF (Terms frequency-inverse document frequency) and BERT
(Bidirectional Encoder Representations from Transformers), to analyze the difficulty faced by these
models in performing aspect-based sentiment analysis. Additionally, we compare the models with a
fine-tuned version of BERT on the three data sets. We identify the most challenging sentences using a
combination of classifiers in order to better understand them. We propose two strategies for defining
sentence difficulty. The first strategy is binary and considers sentences as difficult when the classifiers
are unable to correctly assign the sentiment polarity. The second strategy uses a six-level difficulty
scale based on how many of the top five best-performing classifiers can correctly identify sentiment
polarity. These sentences with assigned difficulty classes are then used to create predictive models for
early difficulty detection. The purpose of estimating the difficulty of aspect-based sentiment analysis
is to enhance performance while minimizing resource usage.

Keywords: sentiment analysis; aspect-based sentiment analysis; difficulty; sentiment polarity;
text representation

MSC: 68T50; 68T07

1. Introduction

Sentiment analysis, also known as opinion mining, is a field of natural language
processing that aims to automatically identify and extract subjective information from texts.
Sentiment analysis has numerous applications, ranging from marketing to politics, and it
has become an increasingly popular topic of research in the past decade [1,2]. Sentiment
analysis can be used to identify the sentiments of customers towards a particular product,
the opinions of voters towards a political candidate, or the emotions of patients towards
their medical condition, among other applications.

Despite recent advancements in sentiment analysis, the detection and analysis of sen-
timents remain challenging due to several factors. One of the most significant challenges in
sentiment analysis is the ambiguity of language [3–5]. For example, the word “hot” can
refer to temperature, attractiveness, or anger, and it may be difficult for algorithms to deter-
mine which meaning is intended in a particular text. In the sentence “This new restaurant

Mathematics 2023, 11, 4647. https://doi.org/10.3390/math11224647 https://www.mdpi.com/journal/mathematics
171

Mathematics 2023, 11, 4647

has some hot dishes”, the sentiment may be positive because the dishes are delicious or
negative because they are too spicy. Ambiguity in language is further complicated by the
use of slang, idioms, and regional dialects, which can vary widely even within the same
language. For instance, the phrase “cool beans” means “excellent” in American English,
but it may be meaningless or confusing to non-native speakers.

Another challenge in sentiment analysis is the detection of tone and sarcasm [6–8].
Texts often contain tones that can be difficult for algorithms to detect, and sarcasm can
be especially challenging. For example, a person might say “great” in a sarcastic tone to
indicate the opposite of what the word usually means. In the sentence “I love spending
hours in traffic every day”, the sentiment may be negative despite the positive connotation
of the word “love” because the text is sarcastic. Detecting the tone of a text is crucial in
understanding the sentiment, as the same words can have different meanings depending
on the tone in which they are expressed.

Cultural and contextual differences also pose a challenge to sentiment analysis [9].
Sentiments can vary based on culture and context, and what might be considered positive
in one culture may not be the same in another. For example, in some cultures, being direct
and blunt is considered a positive trait, while in others, it may be seen as negative. Let us
analyze the sentence “The government imposed a strict lockdown to prevent the spread of
COVID-19”. This sentence expresses a positive sentiment towards the aspect of lockdown,
as it implies that the government is taking proactive measures to protect the public health
and safety. However, this sentiment may not be shared by people from cultures that value
individual freedom and autonomy more than collective welfare and security. For them,
the lockdown may be seen as a negative aspect that infringes on their personal rights and
choices. Sentiment analysis algorithms must be trained on diverse data sets to overcome
such differences.

Data quality and quantity are also crucial factors in the effectiveness of sentiment
analysis algorithms. Sentiment analysis algorithms require large amounts of high-quality
data to train effectively. However, it can be challenging to gather such data, especially for
less common languages or topics. Additionally, data quality issues such as noise, missing
data, or bias [10] can affect the accuracy of sentiment analysis. In the sentence “I bought
a phone from XYZ company, and it’s terrible”, the sentiment may be negative towards
the phone, but it could also be negative towards the company or the customer service.
Without additional context or information, it may be difficult for algorithms to determine
the sentiment accurately.

One way to perform sentiment analysis is to examine different levels of granularity:
the whole document, a single paragraph, a sentence, or even a specific aspect. How-
ever, each level of analysis may encounter the challenges that are discussed previously in
this introduction. In this work, we will focus on the most fine-grained level, the aspect
level. Indeed, apsect-based is the level for which research is currently the most produc-
tive, and consequently also generates the production of corpora whose expressiveness of
sentiment is more subtle and therefore potentially more difficult to analyze.

Finally, sentiment analysis algorithms may exhibit bias [10] and subjectivity due to
the training data used or the biases of the developers. For example, if a sentiment analysis
algorithm was trained on texts from a particular political perspective, it may not perform
well on texts from other perspectives. Bias and subjectivity can also arise from the choice of
sentiment lexicons, which are dictionaries of words and phrases that are labeled.

Recent years have seen advances in language models, particularly the emergence of
BERT [11] and GPT [12]. These have enabled algorithms to better capture the semantics
of texts, resulting in a marked improvement in performance. This raises the question of
whether the challenges mentioned above still exist, and if so, how algorithms manage to
overcome them. In this article, we explore how algorithms handle these difficulties and
which subjective sentences pose the greatest challenge.

Contrary to the usual focus in current aspect-based sentiment analysis research, our
aim does not involve achieving better results or introducing a new classification model.

172

Mathematics 2023, 11, 4647

Rather, it is to comprehend why existing models are not working in some cases and why
some data sets are “simpler” than others. The aim is therefore to observe the behavior of
classification models in the aspect-based sentiment analysis task and to estimate the degree
of difficulty of the analyzed sentences. Thus, estimating the difficulty of sentiment analysis
could enhance performance while minimizing resource usage.

In order to better understand the aspect-based sentiment analysis difficulty, we raise
the following research questions:

• RQ1: How to define difficulty in aspect-based sentiment analysis?
• RQ2: Is difficulty data set-dependent?
• RQ3: What is the impact of text representation on performance?
• RQ4: What is the impact of classification models on performance?
• RQ5: Are we able to predict difficulty?
• RQ6: How to better understand difficult sentences (qualitative analysis on difficult

sentences)?

To summarize, in order to answer these six research questions, we propose in our
work to:

• Select 3 data sets whose purpose is to perform aspect-based classification. The data
sets have been created at a 6–7 year time distance, and choosing three data sets that
span over such a large period of time would reflect the evolution of the field;

• Select 21 models and two different text representations in order to analyze their re-
spective behavior and performance when faced with aspect-based sentiment analysis;

• Conduct numerous experiments in order to better understand the challenges faced by
the models;

• Investigate automatic sentence difficulty definition and estimation using learning-
based models.

The remainder of this paper is organized as follows. Section 2 provides an overview of
aspect-based sentiment analysis, text representation models and the concept of difficulty in
Information Retrieval. Section 3 presents three different data sets used in the experiments.
Then, Section 4 presents the 2 text representations that have been used and Section 5
presents the different used models and the employed implementations. Section 6 explains
the experimental protocol and presents the aspect-based sentiment polarity classification
results. Section 7 proposes difficulty definitions and tests if the difficulty may be predicted,
while Section 8 discusses the results and answers the research questions. Finally, Section 9
concludes the paper and suggests directions for future work.

2. Related Work

We further divide our related work into themes that influence our analysis, including
Sentiment Analysis, Aspect-based Sentiment Analysis, Text Representation, and Query
Difficulty in Information Retrieval.

2.1. Sentiment Analysis and Aspect-Based Sentiment Analysis

The goal of sentiment analysis is to identify and categorize emotions and sentiments
expressed in written text automatically. Sentiment analysis is a fairly broad area of research
and can be defined at several levels—at a document level, paragraph level, or sentence
level—but also at a much finer level, at an aspect level, which is the element on which sub-
jectivity is focused. In the literature research works are often classified into three categories:
machine learning, deeplearning, and ensemble learning. Among the most effective machine
learning techniques for this task are naive Bayes [13–15] and SVM [16–18]. Algorithms
based on deeplearning [19] include RNNs [20,21], LSTMs [22–24], and transformers [25,26].
Ensemble-based methods [27] combine multiple classifiers, which can fall into either of the
previous categories. In response to the large amount of work on the subject of sentiment
analysis, a number of surveys have been carried out recently [27–30]. However, for several

173

Mathematics 2023, 11, 4647

years now, research has been more focused on multimodal, multilingual sentiment analysis
and on the finest level of sentiment analysis: the aspect-based level.

The finesse of the analysis at the aspect level means that in the vast majority of cases
we can be sure of having a uniqueness of subjectivity. In other words, there are not two
opposite degrees of subjectivity for the same aspect. This aspect of sentiment analysis is
often divided into two distinct tasks; the first consists of finding and extracting the aspects.
The second is to estimate the subjectivity, generally reducing the problem of estimating the
degree of subjectivity to a simpler problem of classification. This involves classifying the
sentences or nominal phrases containing the aspects as neutral (no subjectivity), positive
(the author speaks positively about the aspect), and negative (the author speaks negatively
about the aspect). Sometimes the scale of values used is broader (often 5 classes) and
sometimes there are other classes, as is the case for the data we are going to use (e.g.,
conflict). In this document, we will only deal with the second task, i.e., the classification
of subjectivity by taking aspects into account. To carry out this task, the methods and
models used are relatively similar to those used in sentiment analysis at a coarser level.
This research was introduced by the seminal work of [31] and has been developed with
the production of numerous models and data sets in various languages. As in the more
general context of sentiment analysis, we found similar algorithms but adapted them to
the task. Among these algorithms, we can cite the use of SVMs [32] and Naïve Bayes [33].
More recently, the advent of deeplearning has considerably improved model performance.
For example, there are models using RNNs, LSTMs [34–36], and transformers [37,38]. For
further reading, one can also refer to surveys on the subject [39–41]. As the most recent
work has focused on aspect-based analysis, the recent corpora produced for this task seem
to us to have a more subtle expressivity of sentiment. This is why, in order to have a more
thorough study of the difficulty in sentiment analysis, we have focused in this work on the
aspect-based sentiment analysis, although the conclusions and models we obtain can be
applied to sentiment analysis in a general way.

2.2. Text Representation

Text representation for machine learning models has always been a major issue. Ini-
tially, the vector representation of documents was only done by taking into account the
presence or absence of terms in the document. This representation was then improved
by taking into account the frequency of terms in the documents and in the collection [42].
However, such representations take no account of the semantics expressed in the sentences.
With the arrival of deeplearning and the emergence of less sparse representations, semantic
aspects have been better taken into account. These representations were democratized
thanks to the work of [43] and then improved through the work of [44]. The emergence of
transformers has also made it possible to obtain new, more efficient representations [11].

2.3. Difficulty in Information Retrieval

As we have already noted, the various existing challenges in aspect-based sentiment
analysis make it difficult to classify sentences. Therefore, it is important to detect such
difficult sentences to choose a different strategy in order to extract the expressed sentiment.
Having multiple strategies in order to classify sentiment based on the detected difficulty
helps to reduce the use of resource-intensive algorithms. Thus, we reduce the economic and
ecological costs of the models. Difficulty detection is a key area of research, especially in
information retrieval. In the 2000s, research on query difficulty began and many predictors
were defined based on distribution [45], ambiguity [46], and complexity [47]. In the field of
information retrieval, models predicting difficulty are divided according to whether they
use pre- or post-retrieval predictors. Models using pre-retrieval predictors include those
presented in [48–50]. These models use statistics on the occurrence of query terms. Among
the models using post-retrieval predictors we find the work of [51–55]. These models will
use the results of the information retrieval models to make their predictions. With the
advent of deep neural networks, recent work has used such models to predict difficulty.

174

Mathematics 2023, 11, 4647

These studies notably include [55,56]. Recently, [57,58] have raised the question of the
effectiveness of evaluating the difficulty of Neural Information Retrieval based on PLM
(Pre-trained Language Models).

Predicting the difficulty of a sentence in sentiment classification can not only im-
prove the performance of the algorithms by selecting models according to the difficulty
encountered, but can also make the systems more resource-efficient.

The notion of difficulty in aspect-based sentiment analysis has not yet been studied.
Inspired by the work that has been conducted on information retrieval, particularly inspired
by works on post-retrieval predictors, we are conducting experiments that will enable us to
gain a better understanding of the notion of difficulty in this specific case. In addition, we
have also sought to automate the estimation of difficulty for aspect-based sentiment analysis.
In the remaining part of this paper we present the experiments that have been carried out
in order to better understand where the difficulties lie in the sentiment classification task
based on aspects.

3. Reference Data Sets Used for Corpus Building

In this section, we will introduce the reference data sets. These data sets have been
essential because they provided the data for our corpus. Following that, we will explain
the process of building the corpus. After that, we will move on to an exploratory analysis.

We used three data sets for our experiments: “Laptops”, “Restaurants”, and “MTSC”.
We provide details on the data sets below. In order to perceive the temporal evolution of
the difficulty of the task, we selected three corpora, each spaced about 6–7 years apart. We
also chose two different objects of study: reviews and political news. The first and second
corpora concern Laptop and restaurant reviews, respectively. They were published in 2009
and 2014. The third concerns political news and was published in 2021.

On each of these corpora and two different representations (TF-IDF and BERT), we
carried out experiments with 21 learning models in order to discover on which corpus the
models had the most difficulty. We consider a model to have difficulty if its performance is
below the median of model performance for a given corpus. We also consider difficulty at
a more micro level, by looking at the sentences and paragraphs posing the most difficulty
for the selected models.

3.1. Laptops

The SemEval Laptop Reviews data set [59] is often associated with the laptops data
set for aspect-based sentiment analysis. It was first used in the SemEval-2014 Task 4:
Aspect-Based Sentiment Analysis challenge. This data set is used for two subtasks: aspect
identification (Subtask 1) and aspect-oriented sentiment polarity classification (Subtask 2).

It contains more than 3000 English sentences from customer reviews of laptops. It
focuses on analyzing sentiments at a more granular level, targeting various aspects or
attributes of laptops such as performance, battery life, design, and usability. Expert human
annotators have labeled the aspect terms of the sentences and their sentiment. A part of
this data set was kept as test data by the organizers of the SemEval-2014 competition.

This data set enables researchers to analyze sentiment polarities towards specific
aspects of laptops. It provides insights into customers’ preferences and satisfaction levels.

Each review may contain one or multiple aspects. Each aspect is assigned one of four
possible labels: “positive”, “negative”, “neutral”, or “conflict”.

3.2. Restaurants

The restaurant data set for aspect-based sentiment analysis consists of more than
3000 English sentences from restaurant reviews initially proposed by Ganu et al. [60]. As it
has already been pointed out, aspect-based sentiment analysis is different from traditional
sentiment analysis which focuses on overall sentiment of reviews. The original data set
includes annotations for coarse aspect categories and overall sentence polarities. It has
been modified for SemEval-2014 [59] to include annotations for aspect terms occurring in

175

Mathematics 2023, 11, 4647

the sentences (Subtask 1), aspect term polarities (Subtask 2), and aspect category-specific
polarities (Subtask 4). Some errors in the original data set have been corrected. Human
annotators identified the aspect terms of the sentences and their polarities (Subtasks 1 and
2). Additional restaurant reviews, not present in the original data set, have been annotated
in the same manner and kept by the organisers of SemEval-2014 as test data.

This data set covers reviews related to various aspects of restaurants such as food
quality, service, ambiance, price, and cleanliness. Each review is labeled with sentiment
ratings for each aspect. The polarities that may be identified are “positive”, “negative”,
“neutral”, and “conflict”.

3.3. MSTC

NewsMTSC is an aspect-based sentiment analysis data set proposed by the authors
of [61]. It focuses on news articles about policy issues and contains over 11,000 labeled
sentences sampled from online US news outlets.

Most of the sentences contain several aspects that are mentioned in the data set. The
conflict class does not exist, so only three polarity levels may be encountered: “positive”,
“negative”, and “neutral”.

Next, we will describe how our corpus was constructed.

3.4. Corpus Preparation

There are several files formats across the considered data sets and each data set
contains multiple files. The number of attributes per data set may also vary. We have
unified the data into one file per corpus, in csv format.

We have kept one id generated by us, the id from the original data set (for tracing
purposes), the sentences, the start position of the aspect, the end position of the aspect, the
aspect, and the polarity class. We will make the data sets publicly available upon acceptance.

For the “Laptops” corpus, there are several files in the original data set. These files
come in both csv and xml formats. We excluded the files Laptops_Test_Data_PhaseA

and Laptops_Test_Data_PhaseB as they do not contain annotations. We used the anno-
tated sentences from Laptop_Train_v2 as training data and the annotated sentences from
laptops-trial as test data. We merged all the data into one file named laptops.csv. It
has 2407 rows in total.

The “Restaurants” corpus has the same structure as the Laptops corpus. We selected the
same corresponding elements, which resulted in our restaurants.csv file with 3789 rows.

The MTSC data from the NewsMTSC corpus is in json format. The files containing
the data are train, devtest_mt, and devtest_rw. We did not consider devtest_mt since it
is designed to evaluate a model’s classification performance only on sentences with at least
two target mentions, which is out of the scope of our research. Thus, we used train as the
train data and devtest_rw (w stands for “real-world”) as the test data. The resulting data
file, called MTSC.csv, contains 9885 rows in total.

This last data set contains polarity scores that we have encoded as classes. There are
three possible scores: 2.0 = “negative”, 4.0 = “neutral”, and 6.0 = “positive”. We have
converted the scores to their corresponding strings. The “conflict” class is not present in
this corpus. Sentences with multiple aspects have been duplicated the same number of
times as the number of aspects. For example, a sentence with three aspects will appear
three times in the data set, one time for each aspect.

The statistics of the data sets used for the experiments are shown in Table 1.

Table 1. Summary of the data set information.

Data Sets Total Train Test # of Classes

Laptops 2407 2358 49 4
Restaurants 3789 3693 96 4
MTSC 9885 8739 1146 3

176

Mathematics 2023, 11, 4647

In the following, we present our exploratory analysis conducted on the three data sets.

3.5. Exploratory Analysis

We analyzed the three data sets briefly to gain insight into their structure, detect any
biases, and form hypotheses.

We first examined the polarity ratios in each data set. Figure 1 shows these ratios.
The most balanced data set is “MTSC”, with 37.9% of the data belonging to the negative
class. The other two data sets are more unbalanced, with “Restaurants” being the most
unbalanced, having 58.9% of the data in the positive class and only 2.4% in the conflict
class. The conflict class is the rarest across all three data sets, with 1.9% in “Laptops” and
none in “MTSC”.

Figure 1. Polarity distributions for the three data sets.

First, we look at the polarity distributions for each data set, taking into account the
train/test splits.

Figure 2 shows the class occurrences in the “Laptops” data set with respect to the train
and test splits. Notably, the conflict class has no occurrences in the test set. Additionally,
the data set relatively maintains the positive/negative/neutral ratios in the train set (41.0%,
36.0%, 19.1%) as compared to the test set (1.2%, 0.7%, 0.2%).

Figure 3 illustrates the “Restaurants” data set class occurrences. The remarks for
“Laptops” are concurrent with this data set as well, and we underline once more that the
positive class is significantly more represented than the others.

Figure 4 shows the class occurrences for the “MTSC” data set. This data set is balanced
in both the train and test splits. The conflict class does not appear in this data set.

We have decided to keep the conflict class, even though it is not found in all data
sets and there is no occurrence of it in any test data. This is to preserve the original data
distributions for each data set as much as possible.

We now focus on analyzing the tokens and sentences from the data sets. The results
are summarized in Table 2. It is common to find duplicate sentences in the data set, as one
sentence may contain multiple aspects and thus may appear more than once, by design.
However, the number of unique aspects is even lower than the number of unique sentences,
meaning there may be multiple sentences for one aspect. Additionally, the maximum
number of tokens per aspect ranges from 6 to 31 on the Laptops and MTSC data sets,
respectively. This indicates that aspects may be lengthy and not necessarily composed of
only one or two words.

Following this interesting observation, we continued analyzing the number of tokens
from the aspects. Figure 5a depicts the frequency of the aspects by their length in terms
of the number of tokens. One may notice that the vast majority of the tokens have one or
two aspects. This holds for the three data sets. There is a long-tail distribution starting
from aspects with four tokens per aspect and going up to 31 tokens per aspect in the case
of MTSC. The maximum number of aspects for the Restaurants data set is 19. This long-tail
distribution is illustrated in Figure 5b.

177

Mathematics 2023, 11, 4647

Figure 2. Class occurrences (Train vs. Test) for the “Laptops” data set.

Figure 3. Class occurrences (Train vs. Test) for the “Restaurants” data set.

178

Mathematics 2023, 11, 4647

Figure 4. Class occurrences (Train vs. Test) for the MTSC data set.

Table 2. Token and sentence statistics for the data sets.

Data Set # of Observations # of Unique
Aspects

of Unique
Sentences

Max # of Tokens
per Aspect

Laptops 2407 1044 1484 6
Restaurants 3789 1289 2022 19
MTSC 9885 3525 8802 31

To gain a better understanding of the data sets, we conducted a linguistic analysis of
sentiment polarity for each data set. We calculated the average number of tokens, nouns,
verbs, named entities, and adjectives per instance. The results are shown in Table 3. One
may notice that the sentences from MTSC are usually longer than the sentences from the
other data set. However, it has been proven for query difficulty prediction that the query
length is not correlated with the Average Precision performance measure [62]. Another
interesting observation is that the average number of named entities in the MTSC corpus is
significantly higher than for the other two data sets. This may add up to the difficulty of
aspect-based polarity classification.

We wanted to investigate if the amount of nouns, verbs, or adjectives differs depending
on the sentiment class. The statistics show that the positive classes have fewer nouns and
verbs than the negative classes in the three data sets. However, if we normalize the number
of tokens, the negative classes have the lowest values, except for “MTSC” where the
ratio is almost the same. Moreover, these values are very close and the difference is not
significant enough.

179

Mathematics 2023, 11, 4647

(a) The number of tokens per aspect, for the three data sets.

(b) Focus on the number of tokens per aspect (from 4 to 31 tokens), for
the three data sets.

Figure 5. Number of tokens per aspect, for the three data sets.

180

Mathematics 2023, 11, 4647

Table 3. Average number of tokens, nouns, verbs, named entities, and adjectives per sentence.

Data Set/Class Tokens Nouns Verbs Named Entities Adjectives

Laptops
Positive 20.04 3.72 1.98 0.64 1.94

Negative 22.76 4.04 2.81 0.82 1.42
Neutral 25.24 4.54 2.83 1.33 1.43
Conflict 23.84 3.82 2.69 0.84 2.02

Restaurants
Positive 18.81 3.77 1.41 0.54 2.20

Negative 22.50 4.10 2.18 0.50 1.99
Neutral 21.62 4.14 2.26 0.74 1.48
Conflict 22.31 3.60 1.76 0.48 2.67

MTSC
Positive 30.12 5.07 3.29 2.95 1.99

Negative 31.58 5.31 3.55 3.27 1.94
Neutral 27.63 4.13 3.03 3.30 1.40
Conflict 0.00 0.00 0.00 0.00 0.00

4. Text Representations

To assess the effect of text representations on the accuracy of classification, we selected
two different text representation models: TF-IDF and BERT.

4.1. TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) [63] is a widely used technique
in natural language processing. It assigns weights to words in a document based on their
frequency in the document and their rarity across all documents in a corpus. TF-IDF captures
the importance of words by emphasizing both their local and global significance. The term
frequency component measures the occurrence of a word within a document, while the inverse
document frequency factor highlights the rarity of a word across the corpus. By multiplying
these values, TF-IDF assigns higher weights to terms that are both frequent within a document
and unique across the entire corpus. This approach has been successful in various text mining
tasks, such as information retrieval, text classification, and recommendation systems.

Thus, TF-IDF can be calculated following this formula: TF− IDFi,j = t fi,j · log(N/d fi),
where t fi,j is the number of occurrences of the term i in the document j, d fi is the number
of documents containing the term i, and N is the total number of documents in the data set.

We normalized the texts by removing HTML tags and non-alphabetic characters,
transforming it into lowercase, tokenizing it with the nltk tokenizer (https://www.nl
tk.org/api/nltk.tokenize.html (accessed on 10 October 2023)), removing the stopwords
with the nltk stopword list (https://www.nltk.org/api/nltk.corpus.html#module-nltk.
corpus (accessed on 10 October 2023)), and stemming the tokens with Porter Stemmer
(https://www.nltk.org/_modules/nltk/stem/porter.html (accessed on 10 October 2023)).

4.2. BERT

Bidirectional Encoder Representations from Transformers (BERT) [64] is a cutting-edge
natural language processing technique. It uses transformer-based neural networks to gen-
erate contextualized word representations, instead of relying on fixed word embeddings.
By pre-training on large amounts of text data and then fine-tuning on specific downstream
tasks, BERT models can capture intricate semantic relationships between words and sen-
tences. This leads to effective text vectorization, where each word or sentence is mapped
to a dense representation in a high-dimensional vector space. BERT text vectorization has
revolutionized many NLP tasks and opened up new possibilities in areas like sentiment
analysis, question answering, and language translation.

We combined sentences and aspects into a list in the format [sentence, aspect], and
then fed it to the tokenizer (https://huggingface.co/transformers/v3.0.2/model_doc/a
uto.html#autotokenizer (accessed on 10 October 2023)). We used the AutoModel from the
transformers module (https://huggingface.co/transformers/v3.0.2/model_doc/auto.html
#automodel (accessed on 10 October 2023)) to vectorize the tokens. Both the tokenizer and
the model are based on distilbert-base-uncased, a pretrained model. A basic illustration

181

Mathematics 2023, 11, 4647

of the sentence processing pipeline based on BERT is depicted in Figure 6. We tried marking
the aspect inside the sentence at its corresponding position instead of adding it at the end,
but the resulting representation was less effective.

Figure 6. Sentence processing pipeline based on pretrained BERT.

5. Classification Models

This section presents the different models we used for our experiments. We have used
the models proposed by the LazyText python module (https://github.com/jdvala/lazytext
(accessed on 10 October 2023)) for text classification tasks. This module makes it easy to
build and train text classification models. It provides a user-friendly interface and automates
tedious tasks. With LazyText, users can preprocess their text data, apply feature extraction
techniques such as TF-IDF or word embeddings, and train different classification models in a
few lines of code. The module also offers functions to evaluate model performance and make
predictions on new data. The LazyText model does not store details like the predicted class
labels. To access elements such as class labels and confusion matrices, we created the models
with Scikit-learn (https://scikit-learn.org/stable/supervised_learning.html (accessed on 10
October 2023)). Scikit-learn is also used internally by LazyText to train models and make
predictions. The DummyClassifier is one of the classifiers. It makes predictions without
considering the input features. This classifier serves as a baseline to compare with other
complex classifiers. We applied the default strategy for this classifier, which always returns
the most frequent class label in the data given to fit.

Next, we present the classification results using BERT and TF-IDF representations.

6. Experiments and Results

In this section, we present the results of our experiments on the three data sets pre-
sented while varying the textual representations and models used. Table 4 summarizes the
hardware and software environments used for our experiments.

Table 4. Hardware and software specifications.

Hardware (Computing Cluster Node) Specification

CPU 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz
RAM 354 GB
GPU 8 (7 Nvidia A40 and 1 Nvidia GeForce RTX 3090)

Software (Conda virtual environment) Version

python 3.11

Python modules Version

huggingface_hub 0.14.1
lazy-text-predict 0.0.11
lazypredict 0.2.12
lazytext 0.0.2
matplotlib-base 3.7.1
nltk 3.7
numpy 1.24.3
pandas 1.3.5
scikit-learn 1.3.1
scipy 1.10.1
spacy 3.5.3
torch 2.0.1
transformers 4.29.2

182

Mathematics 2023, 11, 4647

6.1. Classification Results with TF-IDF Representations

We used the scikit-learn vectorizer (https://scikit-learn.org/stable/modules/generated/
sklearn.feature_extraction.text.TfidfVectorizer.html (accessed on 10 October 2023)) with default
parameters to vectorize the sentences and the aspects separately. Then, we combined
the sentence and aspect vectorizations columnwise, by placing the sentence vector first,
followed by the aspect vector.

We used 20 supervised classifiers from Scikit-learn and a DummyClassifier as de-
scribed in Section 5. The DummyClassifier predicts the most frequent class. We report
the macro-averaged metric and weighted-averaged metric results, for all the three data
sets. The macro-averaged and weighted-averaged measure, respectively, are computed by
the classification_report function from the scikit-learn python module, as follows:
“The reported averages include macro average (averaging the unweighted mean per label)”
and “weighted average (averaging the support-weighted mean per label)” (https://scikit-l
earn.org/stable/modules/generated/sklearn.metrics.classification_report.html (accessed
on 10 October 2023)).

Tables 5 and 6 show the classification results of macro and weighted metrics respec-
tively, for the “Laptops” data set. These results are based on the TF-IDF text representations.

Analyzing Table 5, it is evident that CalibratedClassifierCV is the best classi-
fier, achieving results higher than 90% in F1 measure. This is significantly better than
DummyClassifier, indicating that the model was able to accurately distinguish between
classes without any bias due to their distribution. Table 6 shows that six models achieved
F1 scores of over 98%. This suggests that, even with a simple TF-IDF representation that
does not capture advanced language semantics, the models can easily classify the corpus.
Thus, we can conclude that this corpus is relatively easy to classify.

Table 5. Macro Metrics of Classification Models (“Laptops”, TF-IDF representations).

Model Precision (Macro) Recall (Macro) F1 (Macro)

AdaBoostClassifier 0.351852 0.356681 0.333003
BaggingClassifier 0.734375 0.725754 0.729989
BernoulliNB 0.888616 0.613506 0.663075
CalibratedClassifierCV 0.968750 0.875000 0.913765
DecisionTreeClassifier 0.750000 0.734375 0.741935
DummyClassifier 0.197279 0.333333 0.247863
ExtraTreeClassifier 0.750000 0.734375 0.741935
ExtraTreesClassifier 0.750000 0.734375 0.741935
GradientBoostingClassifier 0.648674 0.542026 0.567858
KNeighborsClassifier 0.604725 0.544540 0.560063
LinearSVC 0.725000 0.656250 0.685855
LogisticRegression 0.783127 0.801006 0.786207
LogisticRegressionCV 0.620202 0.571839 0.584436
MLPClassifier 0.750000 0.734375 0.741935
NearestCentroid 0.410417 0.382543 0.377963
PassiveAggressiveClassifier 0.750000 0.734375 0.741935
Perceptron 0.700000 0.718750 0.705556
RandomForestClassifier 0.750000 0.734375 0.741935
RidgeClassifier 0.671371 0.640625 0.653305
SGDClassifier 0.725000 0.656250 0.685855
SVC 0.740385 0.717672 0.725551

In Tables 7 and 8, we present the precision, recall, and F1-score results for the “Restau-
rants” data set. These results are based on the same text representation, TF-IDF, and are
macro-averaged and weighted, respectively.

Table 7 shows that five models achieved an excellent score of 100% in F1 measure.
Table 8 also reveals that the same models achieved a score of 100% when using TF-IDF.
These results demonstrate that the models can easily distinguish between classes, even
though the classes are imbalanced. Thus, the “Restaurants” data set is easier to classify
than the “Laptops” data set.

183

Mathematics 2023, 11, 4647

Table 6. Weighted Metrics of Classification Models (“Laptops”, TF-IDF representations).

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

AdaBoostClassifier 0.695389 0.612245 0.615577
BaggingClassifier 0.979592 0.959184 0.969209
BernoulliNB 0.826355 0.795918 0.776692
CalibratedClassifierCV 0.944515 0.938776 0.937463
DecisionTreeClassifier 1.000000 0.979592 0.989467
DummyClassifier 0.350271 0.591837 0.440084
ExtraTreeClassifier 1.000000 0.979592 0.989467
ExtraTreesClassifier 1.000000 0.979592 0.989467
GradientBoostingClassifier 0.856602 0.795918 0.808693
KNeighborsClassifier 0.671202 0.673469 0.668267
LinearSVC 0.958503 0.938776 0.946707
LogisticRegression 0.859837 0.857143 0.854516
LogisticRegressionCV 0.738157 0.755102 0.734680
MLPClassifier 1.000000 0.979592 0.989467
NearestCentroid 0.684864 0.551020 0.602253
PassiveAggressiveClassifier 1.000000 0.979592 0.989467
Perceptron 0.983673 0.959184 0.969161
RandomForestClassifier 1.000000 0.979592 0.989467
RidgeClassifier 0.941409 0.918367 0.926085
SGDClassifier 0.958503 0.938776 0.946707
SVC 0.834969 0.836735 0.831855

Table 7. Macro Metrics of Classification Models (“Restaurants”, TF-IDF representations).

Model Precision (Macro) Recall (Macro) F1 (Macro)

AdaBoostClassifier 0.798309 0.413617 0.416818
BaggingClassifier 0.995169 0.981481 0.988043
BernoulliNB 0.828750 0.613617 0.672518
CalibratedClassifierCV 0.912913 0.791394 0.836613
DecisionTreeClassifier 1.000000 1.000000 1.000000
DummyClassifier 0.236111 0.333333 0.276423
ExtraTreeClassifier 1.000000 1.000000 1.000000
ExtraTreesClassifier 1.000000 1.000000 1.000000
GradientBoostingClassifier 0.936508 0.600000 0.674314
KNeighborsClassifier 0.724537 0.674292 0.696110
LinearSVC 0.924901 0.919826 0.920608
LogisticRegression 0.866234 0.702505 0.756657
LogisticRegressionCV 0.873585 0.819826 0.843531
MLPClassifier 1.000000 1.000000 1.000000
NearestCentroid 0.482186 0.450817 0.445678
PassiveAggressiveClassifier 0.930936 0.839542 0.879074
Perceptron 0.688576 0.700980 0.689108
RandomForestClassifier 1.000000 1.000000 1.000000
RidgeClassifier 0.924984 0.824728 0.865804
SGDClassifier 0.924901 0.919826 0.920608
SVC 0.933455 0.707407 0.771812

Finally, we summarize the classification results of the “MTSC” data set using TF-
IDF text representations in Tables 9 and 10. Both macro-averaged and weighted results
are presented.

Table 9 shows different results from the previous two data sets. BernoulliNB has the
highest F1 measure of 61%. Table 10 also reveals that BernoulliNB is the best model with
an F1 measure of 62.6%. This indicates that it is more challenging to differentiate classes in
the “MTSC” data set than in the “Restaurants” and “Laptops” corpora. Table 1 reveals that
sentences in this data set are longer and the text is from newspapers instead of reviews. The
sentiment vocabulary is likely to be more subtle and less direct than in the case of the other
two data sets. This raises the question of how to incorporate semantics into the models.
In this experiment, we used TF-IDF, which does not capture the semantics intrinsically.
Therefore, using BERT to represent the text may be a solution or may at least improve the
results. This is what we will explore in the next section.

184

Mathematics 2023, 11, 4647

Table 8. Weighted Metrics of Classification Models (“Restaurants”, TF-IDF representations).

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

AdaBoostClassifier 0.772796 0.729167 0.645017
BaggingClassifier 0.989734 0.989583 0.989473
BernoulliNB 0.834485 0.833333 0.810978
CalibratedClassifierCV 0.915634 0.916667 0.910002
DecisionTreeClassifier 1.000000 1.000000 1.000000
DummyClassifier 0.501736 0.708333 0.587398
ExtraTreeClassifier 1.000000 1.000000 1.000000
ExtraTreesClassifier 1.000000 1.000000 1.000000
GradientBoostingClassifier 0.865079 0.833333 0.806849
KNeighborsClassifier 0.803964 0.812500 0.806575
LinearSVC 0.950264 0.947917 0.948238
LogisticRegression 0.873782 0.875000 0.862497
LogisticRegressionCV 0.913046 0.916667 0.913535
MLPClassifier 1.000000 1.000000 1.000000
NearestCentroid 0.824674 0.562500 0.650863
PassiveAggressiveClassifier 0.928760 0.927083 0.924641
Perceptron 0.965389 0.947917 0.953627
RandomForestClassifier 1.000000 1.000000 1.000000
RidgeClassifier 0.926900 0.927083 0.923168
SGDClassifier 0.950264 0.947917 0.948238
SVC 0.895795 0.885417 0.871685

Table 9. Macro Metrics of Classification Models (“MTSC”, TF-IDF representations).

Model Precision (Macro) Recall (Macro) F1 (Macro)

AdaBoostClassifier 0.536569 0.511031 0.511124
BaggingClassifier 0.546274 0.539847 0.542036
BernoulliNB 0.620338 0.609301 0.613077
CalibratedClassifierCV 0.598696 0.590106 0.591621
DecisionTreeClassifier 0.483979 0.483880 0.482779
DummyClassifier 0.124782 0.333333 0.181587
ExtraTreeClassifier 0.449816 0.446374 0.446124
ExtraTreesClassifier 0.610337 0.597893 0.601791
GradientBoostingClassifier 0.584919 0.547793 0.550139
KNeighborsClassifier 0.483402 0.473172 0.474578
LinearSVC 0.589215 0.584575 0.586015
LogisticRegression 0.605643 0.594484 0.597691
LogisticRegressionCV 0.609529 0.602939 0.605218
MLPClassifier 0.539425 0.537760 0.538246
NearestCentroid 0.480083 0.437883 0.416298
PassiveAggressiveClassifier 0.562594 0.558242 0.559689
Perceptron 0.569177 0.551341 0.554123
RandomForestClassifier 0.582065 0.564524 0.567516
RidgeClassifier 0.602595 0.597642 0.599191
SGDClassifier 0.599942 0.602576 0.600953
SVC 0.578846 0.562540 0.565638

Table 10. Weighted Metrics of Classification Models (“MTSC”, TF-IDF representations).

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

AdaBoostClassifier 0.544459 0.537522 0.527558
BaggingClassifier 0.556988 0.560209 0.557818
BernoulliNB 0.626705 0.629145 0.626609
CalibratedClassifierCV 0.610622 0.615183 0.610546
DecisionTreeClassifier 0.497215 0.496510 0.495555
DummyClassifier 0.140135 0.374346 0.203929
ExtraTreeClassifier 0.463308 0.465969 0.462460
ExtraTreesClassifier 0.617598 0.620419 0.617156
GradientBoostingClassifier 0.586393 0.586387 0.573521
KNeighborsClassifier 0.494559 0.500000 0.494082
LinearSVC 0.602032 0.605585 0.603095

185

Mathematics 2023, 11, 4647

Table 10. Cont.

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

LogisticRegression 0.614704 0.618674 0.614889
LogisticRegressionCV 0.621267 0.624782 0.622249
MLPClassifier 0.554007 0.556719 0.555062
NearestCentroid 0.500953 0.457243 0.430506
PassiveAggressiveClassifier 0.575761 0.579407 0.577021
Perceptron 0.578566 0.583770 0.576333
RandomForestClassifier 0.590895 0.595986 0.588793
RidgeClassifier 0.615804 0.619546 0.616933
SGDClassifier 0.617770 0.615183 0.616206
SVC 0.587705 0.592496 0.586000

6.2. Classification Results with BERT Representations

As in Section 6.1, we present here the classification results, macro-averaged and
weighted, for the three data sets. The difference is that the text representations are based on
BERT instead of TF-IDF.

Tables 11 and 12 present the classification results for the “Laptops” data set, with BERT
text representations.

Eleven out of twenty-one models showed an increase (and even a great increase
for some) in results when using BERT, compared to TF-IDF. Four models stayed the
same, while six models (BernoulliNB, CalibratedClassifierCV, BaggingClassifier,
DecisionTreeClassifier, Perceptron, and PassiveAgressiveClassifier) experienced
a decrease. These models did not take into account the new representation or the semantic
dimension. The best model was MLPClassifier, with an F1 measure of 98%. This result
was 7 points higher than the best result previously observed. On the other hand, results
presented in Table 12 showed the same maximum as with TF-IDF, but for different models
and only for four of them.

Next, Tables 13 and 14 summarize the classification results with BERT text representa-
tions for the “Restaurants” data set.

TF-IDF already gave excellent results. Four of the models that achieved the best score
with TF-IDF kept this score when using BERT-based representation. BaggingClassifier
improved and got the highest score, while MLPClassifier decreased slightly. Surprisingly,
most models saw a decrease in F1 measures. Twelve models dropped, four increased,
and five stayed the same. The models that stayed the same were the decision tree-based
models and the DummyClassifier, whose performance was unaffected by the textual repre-
sentation. The high performance of TF-IDF compared to a more complex representation
of the text using BERT may explain this drop. The relative simplicity of the sentences
in the corpus means a complex representation of the text is not necessary for classifica-
tion. This experiment suggests a hypothesis that can be tested further: a sentence can
be considered difficult if it requires a complex representation incorporating semantics.
Can we then construct an indicator of difficulty on this basis? We believe that a selective
model can be trained to determine sentence difficulty. When a sentence is deemed difficult,
its text can be represented using a complex model such as BERT instead of TF-IDF. This
increases the likelihood of accurately classifying the polarity. The benefit of this approach
is improved efficiency. Simple sentences can be processed quickly, while complex, time-,
and resource-consuming text representation is reserved for difficult sentences.

Finally, the classification results on the “MTSC” data set, based on BERT text represen-
tation, are shown in Tables 15 and 16, macro-averaged, and weighted, respectively.

186

Mathematics 2023, 11, 4647

Table 11. Macro Metrics of Classification Models (“Laptops”, BERT representations).

Model Precision (Macro) Recall (Macro) F1 (Macro)

AdaBoostClassifier 0.811111 0.597701 0.628514
BaggingClassifier 0.750000 0.734375 0.741935
BernoulliNB 0.579808 0.550647 0.563304
CalibratedClassifierCV 0.956944 0.884339 0.914598
DecisionTreeClassifier 0.741667 0.718750 0.729096
DummyClassifier 0.197279 0.333333 0.247863
ExtraTreeClassifier 0.750000 0.734375 0.741935
ExtraTreesClassifier 0.750000 0.734375 0.741935
GradientBoostingClassifier 0.741667 0.671875 0.701984
KNeighborsClassifier 0.707283 0.713362 0.709995
LinearSVC 0.967672 0.967672 0.967672
LogisticRegression 0.915535 0.738506 0.794381
LogisticRegressionCV 0.866071 0.778017 0.814312
MLPClassifier 0.988889 0.979167 0.983598
NearestCentroid 0.443548 0.394397 0.414286
PassiveAggressiveClassifier 0.752381 0.729167 0.686800
Perceptron 0.703680 0.808190 0.705096
RandomForestClassifier 0.750000 0.734375 0.741935
RidgeClassifier 0.915323 0.768678 0.813889
SGDClassifier 0.700893 0.692888 0.696820
SVC 0.840404 0.611351 0.649462

Table 12. Weighted Metrics of Classification Models (“Laptops”, BERT representations).

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

AdaBoostClassifier 0.753061 0.734694 0.724577
BaggingClassifier 1.000000 0.979592 0.989467
BernoulliNB 0.785871 0.755102 0.767912
CalibratedClassifierCV 0.940136 0.938776 0.937837
DecisionTreeClassifier 0.980272 0.959184 0.968200
DummyClassifier 0.350271 0.591837 0.440084
ExtraTreeClassifier 1.000000 0.979592 0.989467
ExtraTreesClassifier 1.000000 0.979592 0.989467
GradientBoostingClassifier 0.980272 0.959184 0.967774
KNeighborsClassifier 0.797805 0.795918 0.796472
LinearSVC 0.959184 0.959184 0.959184
LogisticRegression 0.870440 0.857143 0.850731
LogisticRegressionCV 0.819060 0.816327 0.813943
MLPClassifier 0.980272 0.979592 0.979436
NearestCentroid 0.703094 0.673469 0.683382
PassiveAggressiveClassifier 0.851895 0.795918 0.779637
Perceptron 0.828240 0.775510 0.783489
RandomForestClassifier 1.000000 0.979592 0.989467
RidgeClassifier 0.882818 0.877551 0.872789
SGDClassifier 0.916910 0.897959 0.907268
SVC 0.787384 0.775510 0.760764

We can observe from Table 15 that, in the case of “MTSC”, only BernouilliNB and
ExtraTreeClassifier have lower performances when using BERT representations com-
pared to TF-IDF. This indicates that the semantics in the textual representation significantly
enhance the model’s performance. The longer sentences and more subtle expressions of
sentiment in the data set require additional knowledge to better comprehend the sentences
to classify. This confirms our earlier hypothesis, namely that in order to better classify
sentiment polarity in the case of difficult sentences, a more complex text representation
would be better suited. The same trends can be seen in Table 16. The best-performing
model is LogisticegressionCV, with an F1 measure of 70.8%.

187

Mathematics 2023, 11, 4647

Table 13. Macro Metrics of Classification Models (“Restaurants”, BERT representations).

Model Precision (Macro) Recall (Macro) F1 (Macro)

AdaBoostClassifier 0.537594 0.456618 0.486397
BaggingClassifier 1.000000 1.000000 1.000000
BernoulliNB 0.512220 0.512418 0.508235
CalibratedClassifierCV 0.909456 0.585185 0.641217
DecisionTreeClassifier 1.000000 1.000000 1.000000
DummyClassifier 0.236111 0.333333 0.276423
ExtraTreeClassifier 1.000000 1.000000 1.000000
ExtraTreesClassifier 1.000000 1.000000 1.000000
GradientBoostingClassifier 0.968889 0.811111 0.870047
KNeighborsClassifier 0.718704 0.645861 0.674860
LinearSVC 0.926190 0.640741 0.688251
LogisticRegression 0.891105 0.598802 0.647447
LogisticRegressionCV 0.903175 0.566667 0.623642
MLPClassifier 0.923077 0.985294 0.949003
NearestCentroid 0.512138 0.395915 0.425557
PassiveAggressiveClassifier 0.879584 0.511111 0.563584
Perceptron 0.727431 0.720153 0.716450
RandomForestClassifier 1.000000 1.000000 1.000000
RidgeClassifier 0.918724 0.637037 0.702541
SGDClassifier 0.780556 0.529630 0.578348
SVC 0.900000 0.533333 0.571188

Table 14. Weighted Metrics of Classification Models (“Restaurants”, BERT representations).

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

AdaBoostClassifier 0.787320 0.791667 0.781311
BaggingClassifier 1.000000 1.000000 1.000000
BernoulliNB 0.778746 0.739583 0.756588
CalibratedClassifierCV 0.854942 0.833333 0.802002
DecisionTreeClassifier 1.000000 1.000000 1.000000
DummyClassifier 0.501736 0.708333 0.587398
ExtraTreeClassifier 1.000000 1.000000 1.000000
ExtraTreesClassifier 1.000000 1.000000 1.000000
GradientBoostingClassifier 0.933889 0.927083 0.922239
KNeighborsClassifier 0.800064 0.812500 0.802541
LinearSVC 0.880357 0.864583 0.837967
LogisticRegression 0.848726 0.833333 0.804811
LogisticRegressionCV 0.846329 0.822917 0.789030
MLPClassifier 0.975962 0.968750 0.970436
NearestCentroid 0.800187 0.614583 0.682193
PassiveAggressiveClassifier 0.818521 0.791667 0.746228
Perceptron 0.810547 0.791667 0.797258
RandomForestClassifier 1.000000 1.000000 1.000000
RidgeClassifier 0.870692 0.854167 0.832109
SGDClassifier 0.800174 0.802083 0.762642
SVC 0.839583 0.812500 0.769105

Table 15. Macro Metrics of Classification Models (“MTSC”, BERT representations).

Model Precision (Macro) Recall (Macro) F1 (Macro)

AdaBoostClassifier 0.617579 0.607600 0.611387
BaggingClassifier 0.583002 0.570900 0.574723
BernoulliNB 0.594007 0.599098 0.594284
CalibratedClassifierCV 0.717618 0.697904 0.704669
DecisionTreeClassifier 0.502683 0.506414 0.503590
DummyClassifier 0.124782 0.333333 0.181587
ExtraTreeClassifier 0.420560 0.422548 0.420626
ExtraTreesClassifier 0.652450 0.637024 0.641867
GradientBoostingClassifier 0.674504 0.659606 0.664726
KNeighborsClassifier 0.575093 0.552326 0.554446

188

Mathematics 2023, 11, 4647

Table 15. Cont.

Model Precision (Macro) Recall (Macro) F1 (Macro)

LinearSVC 0.706773 0.694961 0.699503
LogisticRegression 0.719955 0.700226 0.707067
LogisticRegressionCV 0.726826 0.700067 0.708159
MLPClassifier 0.692743 0.686242 0.688107
NearestCentroid 0.574224 0.574224 0.574224
PassiveAggressiveClassifier 0.657355 0.629713 0.582214
Perceptron 0.630884 0.547369 0.446289
RandomForestClassifier 0.670888 0.659953 0.663928
RidgeClassifier 0.710743 0.692509 0.698889
SGDClassifier 0.687735 0.672053 0.659408
SVC 0.720193 0.690442 0.698967

Table 16. Weighted Metrics of Classification Models (“MTSC”, BERT representations).

Model Precision (Weighted) Recall (Weighted) F1 (Weighted)

AdaBoostClassifier 0.619690 0.620419 0.619124
BaggingClassifier 0.587681 0.589878 0.587083
BernoulliNB 0.607692 0.602094 0.602517
CalibratedClassifierCV 0.718311 0.718150 0.715857
DecisionTreeClassifier 0.518598 0.513089 0.515090
DummyClassifier 0.140135 0.374346 0.203929
ExtraTreeClassifier 0.437334 0.431065 0.433455
ExtraTreesClassifier 0.654367 0.655323 0.652600
GradientBoostingClassifier 0.678232 0.679756 0.677239
KNeighborsClassifier 0.578520 0.575916 0.568944
LinearSVC 0.710757 0.710297 0.709302
LogisticRegression 0.720905 0.719895 0.717951
LogisticRegressionCV 0.726504 0.724258 0.721086
MLPClassifier 0.696425 0.696335 0.694988
NearestCentroid 0.579407 0.579407 0.579407
PassiveAggressiveClassifier 0.674502 0.608202 0.570665
Perceptron 0.648515 0.521815 0.417314
RandomForestClassifier 0.676899 0.678883 0.676761
RidgeClassifier 0.712000 0.712042 0.709899
SGDClassifier 0.698238 0.672775 0.661620
SVC 0.717385 0.715532 0.711701

6.3. Fine-Tuned BERT

Fine-tuned BERT models have become popular in natural language processing for
their capacity to improve performance on various text classification tasks. BERT, which is
pre-trained on a large corpus of unlabeled text data, provides a strong base for language
comprehension. The fine-tuning process involves training the model on domain-specific
labeled data to make it suitable for the target task. A basic illustration of the sentence
processing pipeline based on fine-tuned BERT is depicted in Figure 7. By changing the
model’s parameters, it learns task-specific patterns and increases its predictive accuracy.
This fine-tuning approach has been successful in achieving the best results in sentiment
analysis [65], named entity recognition [66], and other classification tasks.

Figure 7. Sentence processing pipeline based on fine-tuned BERT.

We fine-tuned three BERT models, one for each data set, using BertTokenizer and
BertForSequenceClassification (https://huggingface.co/docs/transformers/model_d

189

Mathematics 2023, 11, 4647

oc/bert (accessed on 10 October 2023)) from the transformers python module (https:
//github.com/huggingface/transformers (accessed on 10 October 2023)), starting from
the bert-base-uncased pre-trained model. We tried the distilled model as well, but the
results were very low. We trained the models for three epochs with a batch size of 8, using
the default parameters (Adam optimizer, padding, truncation, and a learning rate of 10−5).

We emphasize that we used the default parameter settings for all models and rep-
resentations. Our goal is to gain a better understanding of the difficulty in aspect-based
sentiment analysis, not to introduce a new model or enhance existing results.

Tables 17–19 show the classification report results of the fine-tuned BERT on the
“Laptops”, “Restaurants”, and “MTSC” data sets, respectively.

Comparing with previous experiments, fine-tuned BERT is better than TF-IDF for any
model in the “Laptops” data set for the same reasons mentioned in the comparison between
BERT and TF-IDF. We observe the same behavior in the “Restaurants” data set, where the
use of BERT does not improve the results. However, the improvement is greater in the
“MTSC” data set. Here, using the fine-tuned BERT model is even better than just using
BERT as a textual representation. This improvement shows that the model takes advantage
of the semantics embedded in the BERT model and also benefits from the adaptation of
BERT to the “MTSC” data set, particularly the adaptation to the numerous named entities
present in the “MTSC” data set.

Table 17. Classification report for fine-tuned BERT (“Laptops”).

Model Precision Recall F1-Score Support

negative 0.97 0.97 0.97 29
neutral 1.00 0.88 0.93 16
positive 0.67 1.00 0.80 4
conflict 0.00 0.00 0.00 0

Accuracy - - 0.94 49
Weighted Avg 0.88 0.95 0.90 49

Macro Avg 0.95 0.94 0.94 49

Table 18. Classification report for fine-tuned BERT (“Restaurants”).

Model Precision Recall F1-Score Support

negative 0.89 0.99 0.94 68
neutral 1.00 0.50 0.67 18
positive 0.64 0.70 0.67 10
conflict 0.00 0.00 0.00 0

Accuracy - - 0.86 96
Weighted Avg 0.63 0.55 0.57 96

Macro Avg 0.89 0.86 0.86 96

Table 19. Classification report for fine-tuned BERT (“MTSC”).

Model Precision Recall F1-Score Support

negative 0.57 0.79 0.66 262
neutral 0.93 0.68 0.79 429
positive 0.72 0.75 0.73 455

Accuracy - - 0.73 1146
Weighted Avg 0.74 0.74 0.73 1146

Macro Avg 0.77 0.73 0.74 1146

6.4. Ensemble Learning to Improve Performance

Ensemble learning is a machine learning technique that boosts prediction accuracy
and robustness. It combines the outputs of multiple models to make collective predic-
tions, leading to a more reliable result. Bagging, boosting, and stacking are popular
ensemble methods. This approach leverages the diversity of models, reducing biases and
variances, and improving overall model performance. It has been effective in various

190

Mathematics 2023, 11, 4647

domains, such as classification, regression, and anomaly detection, resulting in significant
advancements [67–69].

We used ensemble learning (majority vote) for the three collections with both TF-
IDF and BERT text representations. We employed two strategies: one that included all
the classification models, and the other that only included the top 5 models with the
highest accuracy.

6.4.1. Majority Vote for TF-IDF

Table 20 shows the majority vote classification report for the “Laptops” data set.
Table 21 lists the top 5 models based on accuracy. Table 22 displays the classification report
for these 5 models. In this scenario, we do not see any advantage in using a combination of
classifiers. The top classifiers have a very low error rate, and the error stays the same for all
classifiers. Because the outcomes are not diverse enough, the ensemble of classifiers has the
same error as the individual classifiers.

Table 20. Classification Report for Majority Vote (“Laptops”, TF-IDF representations, all models).

Model Precision Recall F1-Score Support

conflict 0.00 0.00 0.00 0
negative 1.00 0.88 0.93 16
neutral 1.00 1.00 1.00 4
positive 0.97 1.00 0.98 29

Accuracy - - 0.96 49
Weighted Avg 0.98 0.96 0.97 49

Macro Avg 0.74 0.72 0.73 49

Table 21. Top five models with respect to accuracy (“Laptops”, TF-IDF representations).

Model Accuracy

DecisionTreeClassifier 0.9796
ExtraTreeClassifier 0.9796
ExtraTreesClassifier 0.9796

MLPClassifier 0.9796
PassiveAggressiveClassifier 0.9796

Table 22. Classification report for majority vote (“Laptops”, TF-IDF representations, top five models).

Model Precision Recall F1-Score Support

conflict 0.00 0.00 0.00 0
negative 1.00 0.94 0.97 16
neutral 1.00 1.00 1.00 4
positive 1.00 1.00 1.00 29

Accuracy - - 0.98 49
Weighted Avg 1.00 0.98 0.99 49

Macro Avg 0.75 0.73 0.74 49

Similarly, Tables 23–25, referring to the “Restaurants” data set, present the classification
report for all the models, the top 5 models, and the classification report for the top 5 models,
respectively.

A perfect score is achieved by the top classifiers on the restaurant corpus. The overall
accuracy drops when all the classifiers are combined by majority vote, as the best ones
are outnumbered by the rest. However, when only the five best classifiers are chosen, the
resulting classifiers are flawless.

191

Mathematics 2023, 11, 4647

Table 23. Classification Report for Majority Vote (“Restaurants”, TF-IDF representations, all models).

Model Precision Recall F1-Score Support

negative 1.00 0.89 0.94 18
neutral 1.00 0.90 0.95 10
positive 0.96 1.00 0.98 68

Accuracy - - 0.97 96
Weighted Avg 0.97 0.97 0.97 96

Macro Avg 0.99 0.93 0.96 96

Table 24. Top five models with respect to accuracy (“Restaurants”, TF-IDF representations).

Model Accuracy

DecisionTreeClassifier 1.0000
ExtraTreeClassifier 1.0000
ExtraTreesClassifier 1.0000

MLPClassifier 1.0000
RandomForestClassifier 1.0000

Table 25. Classification report for majority vote (“Restaurants”, TF-IDF representations, top 5 models).

Model Precision Recall F1-Score Support

negative 1.00 1.00 1.00 18
neutral 1.00 1.00 1.00 10
positive 1.00 1.00 1.00 68

Accuracy - - 1.00 96
Weighted Avg 1.00 1.00 1.00 96

Macro Avg 1.00 1.00 1.00 96

Finally, Tables 26–28 present the classification report for all the models, the top five
models, and the classification report for the top five models, respectively, for the “MTSC”
data set.

The “MTSC” data set presents more challenges, resulting in diverse outcomes for
the models. Therefore, using an ensemble of classifiers is more appropriate compared to
the “Restaurants” and “Laptops” data sets. However, using all 21 classifiers leads to a
small decrease in results (around 1 point in F1 measure). On the other hand, using the
top five models as an ensemble improves accuracy and maintains the F1 measure. The
results from these five classifiers do not differ significantly to make a notable impact on the
overall outcome.

Table 26. Classification Report for Majority Vote (“MTSC”, TF-IDF representations, all models).

Model Precision Recall F1-Score Support

negative 0.64 0.67 0.66 429
neutral 0.62 0.69 0.65 455
positive 0.59 0.43 0.50 262

Accuracy - - 0.62 1146
Weighted Avg 0.62 0.62 0.62 1146

Macro Avg 0.62 0.60 0.60 1146

Table 27. Top five models with respect to accuracy (“MTSC”, TF-IDF representations).

Model Accuracy

BernoulliNB 0.6291
LogisticRegressionCV 0.6248
ExtraTreesClassifier 0.6204

RidgeClassifier 0.6195
LogisticRegression 0.6187

192

Mathematics 2023, 11, 4647

Table 28. Classification Report for Majority Vote (“MTSC”, TF-IDF representations, top 5 models).

Model Precision Recall F1-Score Support

negative 0.65 0.70 0.67 429
neutral 0.64 0.66 0.65 455
positive 0.56 0.45 0.50 262

Accuracy - - 0.63 1146
Weighted Avg 0.62 0.63 0.62 1146

Macro Avg 0.61 0.60 0.61 1146

6.4.2. Majority Vote for BERT

Similarly to the TF-IDF text representations, Tables 29–31 display the results for
the “Laptops” data set. Tables 32–34 show the results for the “Restaurants” data set.
Lastly, Tables 35–37 present the results for the “MTSC” data set. These results include
the classification report for all the models, the top 5 models based on accuracy, and the
classification report for the majority vote of the top 5 models corresponding to each data set.

Table 29. Classification Report for Majority Vote (“Laptops”, BERT representations, all models).

Model Precision Recall F1-Score Support

conflict 0.00 0.00 0.00 0
negative 1.00 0.81 0.90 16
neutral 1.00 0.75 0.86 4
positive 0.91 1.00 0.95 29

Accuracy - - 0.92 49
Weighted Avg 0.94 0.92 0.93 49

Macro Avg 0.73 0.64 0.68 49

Table 30. Top five models with respect to accuracy (“Laptops”, BERT representations).

Model Accuracy

ExtraTreesClassifier 0.9796
RandomForestClassifier 0.9796
DecisionTreeClassifier 0.9592

ExtraTreeClassifier 0.9592
GradientBoostingClassifier 0.9592

Table 31. Classification Report for Majority Vote (“Laptops”, BERT representations, top five models).

Model Precision Recall F1-Score Support

conflict 0.00 0.00 0.00 0
negative 1.00 0.94 0.97 16
neutral 1.00 1.00 1.00 4
positive 1.00 1.00 1.00 29

Accuracy - - 0.98 49
Weighted Avg 1.00 0.98 0.99 49

Macro Avg 0.75 0.73 0.74 49

The sentiment analysis task for the “Laptops” data set is relatively simple. This task
produces similar results across different models. Therefore, using majority voting with
TF-IDF does not improve performance. It does not matter if all the models are used or if
only the top five are used.

The majority vote method, using either all the models or the top five models, did not
improve the performance of the BERT-based text representation models on the “Restaurants”
data set, as it did not on the “Laptops” data set.

193

Mathematics 2023, 11, 4647

Table 32. Classification Report for Majority Vote (“Restaurants”, BERT representations, all models).

Model Precision Recall F1-Score Support

negative 0.92 0.61 0.73 18
neutral 1.00 0.30 0.46 10
positive 0.84 1.00 0.91 68

Accuracy - - 0.85 96
Weighted Avg 0.87 0.85 0.83 96

Macro Avg 0.92 0.64 0.70 96

Table 33. Top five models with respect to accuracy (“Restaurants”, BERT representations).

Model Accuracy

BaggingClassifier 1.0000
DecisionTreeClassifier 1.0000

ExtraTreeClassifier 1.0000
ExtraTreesClassifier 1.0000

RandomForestClassifier 1.0000

Table 34. Classification Report for Majority Vote (“Restaurants”, BERT representations, top five
models).

Model Precision Recall F1-Score Support

negative 1.00 1.00 1.00 18
neutral 1.00 1.00 1.00 10
positive 1.00 1.00 1.00 68

Accuracy - - 1.00 96
Weighted Avg 1.00 1.00 1.00 96

Macro Avg 1.00 1.00 1.00 96

Table 35. Classification Report for Majority Vote (“MTSC”, BERT representations, all models).

Model Precision Recall F1-Score Support

negative 0.71 0.84 0.77 429
neutral 0.75 0.70 0.73 455
positive 0.71 0.58 0.64 262

Accuracy - - 0.73 1146
Weighted Avg 0.73 0.73 0.72 1146

Macro Avg 0.72 0.71 0.71 1146

Table 36. Top five models with respect to accuracy (“MTSC”, BERT representations).

Model Accuracy

LogisticRegressionCV 0.7243
LogisticRegression 0.7199

CalibratedClassifierCV 0.7182
SVC 0.7155

RidgeClassifier 0.7120

Table 37. Classification Report for Majority Vote (“MTSC”, BERT representations, top five models).

Model Precision Recall F1-Score Support

negative 0.76 0.77 0.76 429
neutral 0.70 0.79 0.75 455
positive 0.73 0.57 0.64 262

Accuracy - - 0.73 1146
Weighted Avg 0.73 0.73 0.73 1146

Macro Avg 0.73 0.71 0.72 1146

194

Mathematics 2023, 11, 4647

When we apply the majority vote to the models on the “MTSC” data set, we can
improve performance. This is true whether we use all models or just the top five. It shows
that using text representations that are aware of meaning and having diverse model outputs
can lead to better results. We can make the task easier by using representations that have
semantic information and by combining multiple classifiers.

7. Sentence Difficulty Definition and Prediction

In this section, we first define the difficulty using two strategies. Following that, we
attempt to predict difficult sentences automatically using our data sets. We also present
two sampling strategies for the classification models. Additionally, we analyze difficult
sentences qualitatively and evaluate the outcomes of our difficulty predictions.

7.1. Defining Difficulty

Correctly predicting difficult sentences in the context of aspect-based sentiment anal-
ysis can lead to effective selective approaches. We can leave the easy sentences for light
models that do not require much computation, and submit the difficult sentences to heavy,
complex models. This way, we can achieve a balance between efficiency and effectiveness.

We propose two strategies to define the difficulty classes:

• Binary classification. For this strategy, we conducted an analysis of the incorrect
predictions across all data sets. To do this, we investigated the majority votes produced
by the top five classifiers using both TF-IDF and BERT text representations for each
data set. We identified the sentences that were incorrectly classified by both text
representations as ’difficult’. For instance, a sentence is assigned to the difficult class
if it is wrongly classified by the majority votes of both the BERT and TF-IDF models;
otherwise, it is assigned to the easy class. In terms of exact numbers, on the test
sets, we found one such difficult sentence in the “Laptops” data set, none in the
“Restaurants” data set, and 197 in the “MTSC” data set.

• Fine-grained (multi-class) classification. For this strategy, we established several
levels of difficulty, taking into account the number of correct classifications made by
each of the top 5 performing models, while considering both text representations.
For instance, the most difficult sentences are those of level 0, since no top 5 classifier
was able to correctly classify it. On the other hand, the easiest sentences are those
of level 5, for which all the top 5 classifiers had the correct polarity. Since “MTSC”
was the most difficult data set, we focused this strategy only on this data set. The
most represented classes for BERT are level 5, with 693 and level 0, with 217 sentences,
respectively. The remaining 236 sentences are relatively evenly distributed among the
four remaining classes.

One can easily notice that both strategies yield unbalanced test data, in terms of class
membership. Figure 8 depicts this lack of balance. This leads us to consider two types of
sampling, the default one, without any class balancing, and the SMOTE sampling [70], an
oversampling technique where the synthetic samples are generated for the minority class.

To begin our analysis, we first focus on qualitative aspects, and then we analyse the
difficulty prediction performance.

7.2. Qualitative Analysis of Difficult Sentences in the Chosen Data Sets

We examined the sentences that were incorrectly classified, with respect to the binary
strategy. In the “Laptops” data set, there is only one such sentence. This sentences is: “But
see the macbook pro is different because it may have a huge price tag but it comes with
the full software that you would actually need and most of it has free future updates”, its
aspect is “price tag”, and the polarity is “negative”. We have tried ChatGPT to predict
the polarity of this sentence and it yielded “positive”. The term “huge” usually has a
positive connotation. However, when it is used with “price tag”, it becomes negative.
This is because “huge” is a specialized vocabulary used to describe prices, and thus has

195

Mathematics 2023, 11, 4647

a negative connotation. This example demonstrates that when specialized terms are the
same as everyday language, it can make understanding more challenging.

Figure 8. Class repartition for the binary strategy and for the BERT fine-grained strategy, respectively.

The “Restaurants” data set contains no difficult sentences. However, the “MTSC” data
set has 197 difficult sentences. In order to observe the behavior of very large language
models on the most difficult sentences, we chose six of them to analyze and predict their
sentiment using ChatGPT. The sentences and predictions are summarized in Table 38.

We can observe that two of the six ChatGPT predictions are incorrect. The sentence
“His persona is generally adult” is difficult to classify as “positive” even for a human
annotator, due to the implicit reference “his”. Similarly, the last sentence about “President
Muhamadu Buhari” appears to be quite neutral.

7.3. Difficulty Prediction Results for MTSC

For both binary and fine-grained classification strategies, with or without SMOTE sam-
pling, we used the test data from MTSC and applied 10-fold cross-validation (https://scikit
-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html (ac-
cessed on 10 October 2023)) to make sure every observation passed as test data. We em-
ployed the same 21 classifiers as we did for the previous experiments. As well, both BERT
and TF-IDF text representations are considered. To summarize, there are 21 classifiers, two
class definition strategies, two text representations, and two sampling strategies. The mean
cross-validation scores are depicted in Figures 9 and 10, by the binary classification strategy
and by the fine-grained strategy, respectively.

We noticed that the best performing model in all the cases was the DummyClassifier

and we first hypothesized that this occurs because it predicts everything towards the
majority class. However, even with SMOTE oversampling, the situation does not change in
terms of the best performing models.

For the fine-grained strategy, the performance is significantly lower than for the
binary strategy, in general. This is justifiable, since it is more difficult to classify with
6 classes than with 2 classes. BERT is better performing with the fine-grained strategy,
while the performances with respect to the text representations are close in the case of the
binary classification.

The SMOTE oversampling method allows a better evaluation of the quality of the
classifiers for the proposed tasks. For instance, we noticed that the KNeighborsClassifier

constantly drops in performance when SMOTE is applied.

196

Mathematics 2023, 11, 4647

Table 38. Selected sentences from the “MTSC” data set that were wrongly classified by the majority
vote, with ChatGPT predicted polarities. The wrong predictions are in bold.

Sentence Aspect True Polarity
ChatGPT
Polarity

In an atmosphere where some
delegates remain anti-Trump
and party leaders like Paul
Ryan are barely mentioning

Trump in their speeches,
Hillary Clinton is a

unifying force.

Hillary Clinton positive positive

A new presidential cabinet
will be formed as well as a

national reconciliation
committee, which will include
youth movements that have

been behind anti-Morsi
demonstrations.

Morsi negative negative

His persona is generally adult. His positive neutral

The more left wing candidate
for deputy leader—Julie

Morgan, widow of former first
minister of Wales,

Rhodri—was defeated by
Carolyn Harris at the party’s

spring conference.

Carolyn Harris positive positive

In a statement Saturday,
London Moore, the president
of the Theta Gamma chapter

of Delta Delta Delta,
condemned the “racist,

offensive and disgraceful”
behavior seen in the video.

London Moore,
the president of

the Theta
Gamma chapter
of Delta Delta

Delta

positive positive

President Muhammadu
Buhari was poised to win a
second term despite falling

short on promises to recharge
the economy and defeat the

Boko Haram insurgents.

President
Muhammadu

Buhari
negative neutral

Decision tree-based models, logistic regressions, and SVC are generally the best-
performing models.

Even though the mean accuracy is high across the models for the binary classifica-
tion strategy, we cannot conclude that this is a good approach for difficulty prediction,
mainly due to the score of the DummyClassifier. This suggests that the models are hardly
learning to classify difficulty. However, this launches the discussion about the task of
predicting difficulty.

197

Mathematics 2023, 11, 4647

Figure 9. Mean cross-validation scores by model, by text representation, and by sampling, for diffi-
culty prediction as binary classification.

Figure 10. Mean cross-validation scores by model, by text representation, and by sampling, for diffi-
culty prediction as multi-class, fine-grained classification.

8. Discussion

In this section, we address the research questions outlined in the introduction. We do
this by examining the results of our experiments and analysis.

198

Mathematics 2023, 11, 4647

• RQ1: How to define difficulty in aspect-based sentiment analysis? This is not a straightfor-
ward question. If we extrapolate to the field of Information Retrieval, many studies
on difficulty prediction focus on the correlation between the predicted and actual
effectiveness, without requiring an exact definition of query difficulty [71]. We may
struggle to assign the right sentiment to a sentence, regardless of the text format, the
type of classifier, and so on. We suggest that the definition of “difficulty” could be
context dependent and inherently, the quality of an eventual difficulty prediction
depends on the criteria of the definition.

• RQ2: Is difficulty data set dependent? It appears to be. We have observed that on the
“Laptops” and “Restaurants” data sets, there are few or no test sentences for which
we fail to predict the polarity. However, this is not the case for the third data set,
“MTSC”. We believe that this takes place because the first two data sets are more
specific to their domain than the third, which is from the wider news domain. We
have noticed that the “MTSC” data set contains more named entities and implicit
references, which may contribute to the difficulty level. Expressing subjectivity is
less overt and more nuanced. We also note that some sentences from “MTSC” are
challenging, even for human annotators. Moreover, ”MTSC”, the most recent data set
is the most challenging. We hypothesize that this may correlate with the advances in
terms of performance of aspect-based sentiment analysis models that require more
challenging data sets to accurately quantify effectiveness.

• RQ3: What is the impact of text representation on performance? When we look at the
classification results from Section 6, we can see that BERT, the most advanced text
representation, usually performs better than TF-IDF. BERT captures more complex
semantics than TF-IDF. Fine-tuning also appears to be beneficial. But we must be
careful not to overfit and the fine-tuning process can be time-consuming. In conclusion,
the choice of text representation method can affect performance. Choosing the right
representation for a task depends on its difficulty. If the task is simple, selecting a
complex representation may lead to a decrease in performance and an increase in
IT costs.

• RQ4: What is the impact of classification models on performance? We observed a similar
pattern for the classification models as for the text representation in RQ3. The selection
of the classifier has a significant impact on the classification performance. Thus, we
proposed ensemble learning and a variety of classification methods of different types.
For instance, in the “MTSC” data set, we found the fine-tuned BERT model more
effective than just BERT, indicating its advantage in leveraging embedded semantics,
especially with the data set’s numerous named entities. Moreover, BERT is generally
better performing than TF-IDF, and the majority vote yields encouraging results.

• RQ5: Are we able to predict difficulty? We are far from being able to predict sentence
difficulty, as indicated by the results in Section 7.3. Nevertheless, we have several ideas
to enhance the prediction accuracy. Our initial attempts have started the discussion
on this topic, but we do not claim to propose the best models for predicting sentence
difficulty. We hope this work will stimulate the research community to pay more
attention to this topic.

• RQ6: How to better understand difficult sentences (qualitative analysis on difficult sentences)?
After looking at the difficult sentences that we identified, we noticed that the difficulty
may be raised by several aspects, such as ambiguity, subjectivity, implicit references,
and the presence of named entities. Some of the difficult sentences may be considered
challenging even for human annotators, and the annotation process may be subject
to subjectivity. For some difficult sentences, even advanced LLMs are not able to
correctly identify the sentiment polarity.

9. Conclusions and Future Work

The goal of this paper is to better understand sentence difficulty in aspect-based
sentiment analysis, and not to introduce new models or enhance current results. To our

199

Mathematics 2023, 11, 4647

knowledge, this topic has never been formally discussed before. We conducted thorough
experiments on three well-known aspect-based sentiment analysis data sets—“Laptops”,
“Restaurants” and “MTSC”—testing more than 20 classification models on two different
textual representations: TF-IDF and BERT. In studying performance enhancement, we
considered fine-tuned BERT representations and also applied ensemble learning (major-
ity vote).

On the “MTSC” data set, using the fine-tuned BERT model is more effective than just
using BERT as a textual representation. This shows that the model utilizes the semantics
embedded in the BERT model and benefits from adapting BERT to the “MTSC” data set,
particularly to the many named entities present in it. The “MTSC” data set presents further
challenges, resulting in diverse outcomes for the models. Using an ensemble of classifiers is
more suitable compared to the “Restaurants” and “Laptops” data sets. However, using all
21 classifiers results in a small decrease (around 1 point in F1 measure). However, utilizing
the top five models as an ensemble improves accuracy and maintains the F1 measure. The
performance results from these top five classifiers do not differ significantly, therefore their
collective contribution does not notably influence the overall result.

By applying majority vote to the models on the “MTSC” data set, we can improve
performance. This holds whether we use all models or just the top five best performing
classifiers. It is clear that using text representations that have a sense of meaning combined
with diverse model outputs can produce better results. We can simplify the task by using
representations with semantic information and combining multiple classifiers.

Regarding the difficulty of aspect-based sentiment analysis, we identified the sentences
as difficult which the classifiers did not judge correctly, implying a binary classification
strategy. From this viewpoint, only one sentence was considered difficult in the “Laptops”
corpus compared to 197 in the recent “MTSC” corpus, indicating that “MTSC” sentences
are more challenging. A different strategy for defining difficulty would be more nuanced,
considering six levels of difficulty regarding how many of the top five best performing
classifiers can correctly identify sentiment polarity. For instance, level 0 means all five
classifiers are wrong, while level 5 means all five were correct. In analyzing sentences
identified as difficult, we conclude that defining difficulty in this aspect-based sentiment
analysis context is not a straightforward task.

The classification difficulty seems to be reliant on the data set. The text representation
and the classification model also influence performance. Implicit references, intricate
semantics, ambiguity, and other factors make polarity classification difficult. For example,
of the six sentences we analyzed qualitatively, two were very difficult, even for a human.
The first contained an implicit reference and the second could have been classified as
neutral by a human being. Lastly, we assert that predicting difficulty is not an easy task,
but there are signs that it is feasible, at least partially.

As future work, we plan to extend our experiments to other data sets, perform domain
adaptation to validate model robustness and verify data set biases, and aim to propose
difficulty predictors that are correlated to classification performance, inspired by the works
of Query Performance Prediction (QPP) in Information Retrieval. We also intend to propose
and analyze various definitions of difficulty classes by adjusting the scale levels differently
than our binary proposal, or finer than the 6 level scale, based on the top five majority vote.

Author Contributions: Conceptualization, A.-G.C. and S.F.; methodology, A.-G.C. and S.F.; inves-
tigation, S.F.; data curation, A.-G.C.; writing—original draft, A.-G.C. and S.F.; writing—review &
editing, A.-G.C. and S.F.; visualization, A.-G.C.; funding acquisition, S.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will available at https://github.com/adrianchifu/sentimentdi
fficultyABSA, accessed on 10 October 2023.

Conflicts of Interest: The authors declare no conflict of interest.

200

Mathematics 2023, 11, 4647

References

1. van Atteveldt, W.; van der Velden, M.A.C.G.; Boukes, M. The Validity of Sentiment Analysis: Comparing Manual Annotation,
Crowd-Coding, Dictionary Approaches, and Machine Learning Algorithms. Commun. Methods Meas. 2021, 15, 121–140. [CrossRef]

2. Wankhade, M.; Rao, A.C.S.; Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev.
2022, 55, 5731–5780. [CrossRef]

3. Cambria, E.; Schuller, B.; Liu, B.; Wang, H.; Havasi, C. Knowledge-based approaches to concept-level sentiment analysis. IEEE
Intell. Syst. 2013, 28, 12–14. [CrossRef]

4. Deng, S.; Sinha, A.P.; Zhao, H. Resolving Ambiguity in Sentiment Classification: The Role of Dependency Features. ACM Trans.
Manage. Inf. Syst. 2017, 8, 1–13. [CrossRef]

5. Gref, M.; Matthiesen, N.; Hikkal Venugopala, S.; Satheesh, S.; Vijayananth, A.; Ha, D.B.; Behnke, S.; Köhler, J. A Study on
the Ambiguity in Human Annotation of German Oral History Interviews for Perceived Emotion Recognition and Sentiment Analysis;
Thirteenth Language Resources and Evaluation Conference; European Language Resources Association: Marseille, France, 2022;
pp. 2022–2031.

6. Maynard, D.G.; Greenwood, M.A. Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland,
26–31 May 2014.

7. Farias, D.H.; Rosso, P. Irony, sarcasm, and sentiment analysis. In Sentiment Analysis in Social Networks; Elsevier: Amsterdam, The
Netherlands, 2017; pp. 113–128.

8. Li, Q.; Zhang, K.; Sun, L.; Xia, R. Detecting Negative Sentiment on Sarcastic Tweets for Sentiment Analysis. In Artificial Neural
Networks and Machine Learning: Proceedings of the 2nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece,
26–29 Septembe 2023; Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C., Eds.; Springer: Cham, Switzerland, 2023; Volume 14263.

9. Kong, J.; Lou, C. Do cultural orientations moderate the effect of online review features on review helpfulness? A case study of
online movie reviews. J. Retail. Consum. Serv. 2023, 73, 103374. [CrossRef]

10. Asyrofi, M.H.; Yang, Z.; Yusuf, I.N.B.; Kang, H.J.; Thung, F.; Lo, D. Biasfinder: Metamorphic test generation to uncover bias for
sentiment analysis systems. IEEE Trans. Softw. Eng. 2021, 48, 5087–5101. [CrossRef]

11. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.;
Association for Computational Linguistics: : Toronto, ON, Canada, 2019; Volume 1 (Long and Short Papers), pp. 4171–4186.
[CrossRef]

12. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA 2020; Volume 33, pp. 1877–1901.

13. Villavicencio, C.; Macrohon, J.J.; Inbaraj, X.A.; Jeng, J.H.; Hsieh, J.G. Twitter sentiment analysis towards COVID-19 vaccines in the
Philippines using naïve bayes. Information 2021, 12, 204. [CrossRef]

14. Mubarok, M.S.; Adiwijaya.; Aldhi, M.D. Aspect-based sentiment analysis to review products using Naïve Bayes. AIP Conf. Proc.
2017, 1867, 020060. [CrossRef]

15. Goel, A.; Gautam, J.; Kumar, S. Real time sentiment analysis of tweets using Naive Bayes. In Proceedings of the 2016
2nd International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 14–16 October 2016;
pp. 257–261. [CrossRef]

16. Mittal, P.; Tiwari, K.; Malik, K.; Tyagi, M. Feedback Analysis of Online Teaching Using SVM. In International Conference on Recent
Trends in Computing; Mahapatra, R.P., Peddoju, S.K., Roy, S., Parwekar, P., Eds.; Springer Nature Singapore: Singapore, 2023;
pp. 119–128.

17. Ahmad, M.; Aftab, S.; Bashir, M.S.; Hameed, N. Sentiment analysis using SVM: A systematic literature review. Int. J. Adv. Comput.
Sci. Appl. 2018, 9, 182–188. [CrossRef]

18. Fikri, M.; Sarno, R. A comparative study of sentiment analysis using SVM and SentiWordNet. Indones. J. Electr. Eng. Comput. Sci.
2019, 13, 902–909. [CrossRef]

19. Li, D.; Rzepka, R.; Ptaszynski, M.; Araki, K. HEMOS: A novel deep learning-based fine-grained humor detecting method for
sentiment analysis of social media. Inf. Process. Manag. 2020, 57, 102290. [CrossRef]

20. Wang, X.; Jiang, W.; Luo, Z. Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In
Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka,
Japan, 11–16 December 2016; pp. 2428–2437.

21. Basiri, M.E.; Nemati, S.; Abdar, M.; Cambria, E.; Acharya, U.R. ABCDM: An attention-based bidirectional CNN-RNN deep model
for sentiment analysis. Future Gener. Comput. Syst. 2021, 115, 279–294. [CrossRef]

22. Ma, Y.; Peng, H.; Khan, T.; Cambria, E.; Hussain, A. Sentic LSTM: A hybrid network for targeted aspect-based sentiment analysis.
Cogn. Comput. 2018, 10, 639–650. [CrossRef]

23. Rehman, A.U.; Malik, A.K.; Raza, B.; Ali, W. A hybrid CNN-LSTM model for improving accuracy of movie reviews sentiment
analysis. Multimed. Tools Appl. 2019, 78, 26597–26613. [CrossRef]

201

Mathematics 2023, 11, 4647

24. Ahmed, A.; Yousuf, M.A. Sentiment Analysis on Bangla Text Using Long Short-Term Memory (LSTM) Recurrent Neural Network.
In International Conference on Trends in Computational and Cognitive Engineering; Kaiser, M.S., Bandyopadhyay, A., Mahmud, M.,
Ray, K., Eds.; Springer: Singapore, 2021; pp. 181–192.

25. Hoang, M.; Bihorac, O.A.; Rouces, J. Aspect-based sentiment analysis using bert. In Proceedings of the 22nd Nordic Conference
on Computational Linguistics, (NoDaLiDa), Turku, Finland, 30 September–2 October 2019; pp. 187–196.

26. Gao, Z.; Feng, A.; Song, X.; Wu, X. Target-dependent sentiment classification with BERT. IEEE Access 2019, 7, 154290–154299.
[CrossRef]

27. Tiwari, D.; Nagpal, B.; Bhati, B.S.; Mishra, A.; Kumar, M. A systematic review of social network sentiment analysis with
comparative study of ensemble-based techniques. Artif. Intell. Rev. 2023, 56, 13407–13461. [CrossRef] [PubMed]

28. Liu, R.; Shi, Y.; Ji, C.; Jia, M. A Survey of Sentiment Analysis Based on Transfer Learning. IEEE Access 2019, 7, 85401–85412.
[CrossRef]

29. Bordoloi, M.; Biswas, S.K. Sentiment analysis: A survey on design framework, applications and future scopes. Artif. Intell. Rev.
2023, 56, 12505–12560. [CrossRef]

30. Cui, J.; Wang, Z.; Ho, S.B.; Cambria, E. Survey on sentiment analysis: evolution of research methods and topics. Artif. Intell. Rev.
2023, 56, 8469–8510. [CrossRef]

31. Hu, M.; Liu, B. Mining and Summarizing Customer Reviews. In Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2004; KDD ’04, pp. 168–177. [CrossRef]

32. Varghese, R.; Jayasree, M. Aspect based Sentiment Analysis using support vector machine classifier. In Proceedings of the 2013
International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, India, 22–25 August
2013; pp. 1581–1586. [CrossRef]

33. Mubarok, M.S.; Adiwijaya, A.; Aldhi, M.D. Aspect-based sentiment analysis to review products using Naïve Bayes. In Proceedings
of the International Conference on Mathematics: Pure, Applied and Computation: Empowering Engineering using Mathematics,
Surabaya, Indonesia, 1 November 2016.

34. Ma, Y.; Peng, H.; Cambria, E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive
LSTM. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LA, USA, 2–7
February 2018.

35. Do, H.H.; Prasad, P.W.; Maag, A.; Alsadoon, A. Deep learning for aspect-based sentiment analysis: A comparative review. Expert
Syst. Appl. 2019, 118, 272–299. [CrossRef]

36. Liu, H.; Chatterjee, I.; Zhou, M.; Lu, X.S.; Abusorrah, A. Aspect-based sentiment analysis: A survey of deep learning methods.
IEEE Trans. Comput. Soc. Syst. 2020, 7, 1358–1375. [CrossRef]

37. Karimi, A.; Rossi, L.; Prati, A. Improving BERT Performance for Aspect-Based Sentiment Analysis. In Proceedings of the
International Conference on Natural Language and Speech Processing, Copenhagen, Denmark, 25–26 April 2020.

38. Mutlu, M.M.; Özgür, A. A Dataset and BERT-based Models for Targeted Sentiment Analysis on Turkish Texts. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Dublin, Ireland, 22–27
May 2022; Association for Computational Linguistics: Dublin, Ireland, 2022; pp. 467–472. [CrossRef]

39. Zhang, W.; Li, X.; Deng, Y.; Bing, L.; Lam, W. A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges.
IEEE Trans. Knowl. Data Eng. 2023, 35, 11019–11038. [CrossRef]

40. Brauwers, G.; Frasincar, F. A Survey on Aspect-Based Sentiment Classification. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]
41. Chauhan, G.S.; Nahta, R.; Meena, Y.K.; Gopalani, D. Aspect based sentiment analysis using deep learning approaches: A survey.

Comput. Sci. Rev. 2023, 49, 100576. [CrossRef]
42. Joachims, T. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization; Technical Report; Carnegie-Mellon

Univ Pittsburgh Pa Dept of Computer Science: Pittsburgh, PA, USA, 1996.
43. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.
44. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
45. de Loupy, C.; Bellot, P. Evaluation of Document Retrieval Systems and Query Difficulty. In Proceedings of the Second International

Conference on Language Resources and Evaluation (LREC 2000) Workshop, Athens, Greece, 31 May–2 June 2000; pp. 32–39.
46. Mothe, J.; Tanguy, L. Linguistic features to predict query difficulty. In Proceedings of the 28th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR 2005), Salvador de Bahia, Brazil, 15–19 August 2005;
pp. 7–10.

47. Goeuriot, L.; Kelly, L.; Leveling, J. An Analysis of Query Difficulty for Information Retrieval in the Medical Domain. In
Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast,
Australia, 6–11 July 2014; Association for Computing Machinery: New York, NY, USA, 2014; SIGIR ’14, pp. 1007–1010. [CrossRef]

48. Zhao, Y.; Scholer, F.; Tsegay, Y. Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evi-
dence. In Advances in Information Retrieval; Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 52–64.

202

Mathematics 2023, 11, 4647

49. Cronen-Townsend, S.; Zhou, Y.; Croft, W.B. A Language Modeling Framework for Selective Query Expansion; Technical Report,
Technical Report IR-338; Center for Intelligent Information Retrieval, University of Massachusetts Amherst: Amherst, MA, USA,
2004.

50. Scholer, F.; Williams, H.E.; Turpin, A. Query association surrogates for Web search. J. Am. Soc. Inf. Sci. Technol. 2004, 55, 637–650.
[CrossRef]

51. Carmel, D.; Yom-Tov, E. Estimating the Query Difficulty for Information Retrieval. In Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, Geneva, Switzerland, 19–23 July 2010; Association for
Computing Machinery: New York, NY, USA, 2010; SIGIR ’10, p. 911. [CrossRef]

52. Cronen-Townsend, S.; Zhou, Y.; Croft, W.B. Predicting Query Performance. In Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, 11–15 August 2002; Association for
Computing Machinery: New York, NY, USA, 2002; SIGIR ’02, pp. 299–306. [CrossRef]

53. Shtok, A.; Kurland, O.; Carmel, D.; Raiber, F.; Markovits, G. Predicting Query Performance by Query-Drift Estimation. ACM
Trans. Inf. Syst. 2012, 30, 1–15. [CrossRef]

54. Zhou, Y.; Croft, W.B. Query Performance Prediction in Web Search Environments. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007;
Association for Computing Machinery: New York, NY, USA, 2007; SIGIR ’07, pp. 543–550. [CrossRef]

55. Tao, Y.; Wu, S. Query Performance Prediction By Considering Score Magnitude and Variance Together. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 3–7 November
2014; Association for Computing Machinery: New York, NY, USA, 2014; CIKM ’14, pp. 1891–1894. [CrossRef]

56. Hashemi, H.; Zamani, H.; Croft, W.B. Performance Prediction for Non-Factoid Question Answering. In Proceedings of the 2019
ACM SIGIR International Conference on Theory of Information Retrieval, Santa Clara, CA, USA, 2–5 October 2019; Association
for Computing Machinery: New York, NY, USA, 2019; ICTIR ’19, pp. 55–58. [CrossRef]

57. Faggioli, G.; Formal, T.; Marchesin, S.; Clinchant, S.; Ferro, N.; Piwowarski, B. Query Performance Prediction For Neural IR: Are
We There Yet? In Proceedings of the Advances in Information Retrieval: 45th European Conference on Information Retrieval,
ECIR 2023, Dublin, Ireland, 2–6 April 2023; Proceedings, Part I; Springer: Berlin/Heidelberg, Germany, 2023; pp. 232–248.
[CrossRef]

58. Faggioli, G.; Formal, T.; Lupart, S.; Marchesin, S.; Clinchant, S.; Ferro, N.; Piwowarski, B. Towards Query Performance Prediction
for Neural Information Retrieval: Challenges and Opportunities. In Proceedings of the 2023 ACM SIGIR International Conference
on Theory of Information Retrieval, Taipei, Taiwan, 23–27 July 2023; Association for Computing Machinery: New York, NY, USA,
2023; ICTIR ’23, pp. 51–63. [CrossRef]

59. Pontiki, M.; Galanis, D.; Pavlopoulos, J.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S. SemEval-2014 task 4: Aspect
Based Sentiment Analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin,
Ireland, 23–24 August 2014; pp. 27–35.

60. Ganu, G.; Elhadad, N.; Marian, A. Beyond the stars: Improving rating predictions using review text content. WebDB 2009, 9, 1–6.
61. Hamborg, F.; Donnay, K. NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles. In Proceedings of the

16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021), Online, 19–23 April 2021.
62. He, B.; Ounis, I. Inferring query performance using pre-retrieval predictors. In Proceedings of the String Processing and

Information Retrieval: 11th International Conference, SPIRE 2004, Padova, Italy, 5–8 October 2004; Proceedings 11; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 43–54.

63. Salton, G.; Wong, A.; Yang, C.S. A vector space model for automatic indexing. Commun. ACM 1975, 18, 613–620. [CrossRef]
64. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
65. Geetha, M.; Renuka, D.K. Improving the performance of aspect based sentiment analysis using fine-tuned Bert Base Uncased

model. Int. J. Intell. Netw. 2021, 2, 64–69. [CrossRef]
66. Zhao, X.; Greenberg, J.; An, Y.; Hu, X.T. Fine-Tuning BERT Model for Materials Named Entity Recognition. In Proceedings of the

2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3717–3720.
67. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
68. Wang, G.; Sun, J.; Ma, J.; Xu, K.; Gu, J. Sentiment classification: The contribution of ensemble learning. Decis. Support Syst. 2014,

57, 77–93. [CrossRef]
69. Zhang, J.; Li, Z.; Nai, K.; Gu, Y.; Sallam, A. DELR: A double-level ensemble learning method for unsupervised anomaly detection.

Knowl.-Based Syst. 2019, 181, 104783. [CrossRef]
70. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
71. Mothe, J.; Laporte, L.; Chifu, A.G. Predicting query difficulty in IR: Impact of difficulty definition. In Proceedings of the 2019

11th International Conference on Knowledge and Systems Engineering (KSE), Da Nang, Vietnam, 24–26 October 2019; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

203

Citation: Škorić, M.; Utvić, M.;

Stanković, R. Transformer-Based

Composite Language Models for Text

Evaluation and Classification.

Mathematics 2023, 11, 4660. https://

doi.org/10.3390/math11224660

Academic Editor: Florentina Hristea

Received: 20 October 2023

Revised: 10 November 2023

Accepted: 13 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Transformer-Based Composite Language Models for Text
Evaluation and Classification

Mihailo Škorić 1, Miloš Utvić 2 and Ranka Stanković 1,*

1 Faculty of Mining and Geology, University of Belgrade, Djusina 7, 11120 Belgrade, Serbia;
mihailo.skoric@rgf.bg.ac.rs

2 Faculty of Philology, University of Belgrade, Studentski Trg 3, 11000 Belgrade, Serbia; milos.utvic@fil.bg.ac.rs
* Correspondence: ranka.stankovic@rgf.bg.ac.rs

Abstract: Parallel natural language processing systems were previously successfully tested on the
tasks of part-of-speech tagging and authorship attribution through mini-language modeling, for
which they achieved significantly better results than independent methods in the cases of seven
European languages. The aim of this paper is to present the advantages of using composite language
models in the processing and evaluation of texts written in arbitrary highly inflective and morphology-
rich natural language, particularly Serbian. A perplexity-based dataset, the main asset for the
methodology assessment, was created using a series of generative pre-trained transformers trained
on different representations of the Serbian language corpus and a set of sentences classified into three
groups (expert translations, corrupted translations, and machine translations). The paper describes a
comparative analysis of calculated perplexities in order to measure the classification capability of
different models on two binary classification tasks. In the course of the experiment, we tested three
standalone language models (baseline) and two composite language models (which are based on
perplexities outputted by all three standalone models). The presented results single out a complex
stacked classifier using a multitude of features extracted from perplexity vectors as the optimal
architecture of composite language models for both tasks.

Keywords: language modeling; language models; composite structures; machine learning; Serbian
language; text classification

MSC: 68T50

1. Introduction

Nearing the end of the twentieth century, the accelerated development of artificial
intelligence (especially machine learning methods) rekindled the idea that good results
are obtainable in a much faster way and in many engineering spheres, including language
modeling. In practice, it was established that one of the biggest disadvantages of formal
grammar (language modeling state-of-the-art at the time) was the high cost of their creation.
The extraction of grammatical rules from the corpus of texts can, of course, be carried out
simply by making a list, but this leads to the problem of over-fitting the model, where
individual rules are taken for general ones and the broader picture is lost. On the other
hand, the derivation of general rules from individuals must be carried out carefully and
requires an enormous amount of time. With new technological developments, however,
the researchers began to investigate the creation of completely new probability-based
models, which emulate automata and rule-based grammars. Instead of assigning a Boolean
response to input strings, these new systems, called language models, assign probabilities
based on a previously observed textual (training) corpus (Figure 1).

Mathematics 2023, 11, 4660. https://doi.org/10.3390/math11224660 https://www.mdpi.com/journal/mathematics204

Mathematics 2023, 11, 4660

Figure 1. A rough comparison of the functionality of a formal grammar (top) and a language model
(bottom) for some language L, where S represents a string, and P(S∈L) represents the probability
that S belongs to L.

Language models are thus defined as systems that assign probabilities to strings (based
on the context in which they occur), and the models are based on the previously collected
corpus. Input strings refer to sequences of tokens (w1, w2 . . . wn), usually representing
n-grams of words or characters.

In the previous couple of decades, language modeling was developed primarily using
artificial neural networks (ANNs), according to the inspiring idea of Elman [1,2], who,
while experimenting with time series as input data for machine learning (ML) models,
constructed an artificial neural network whose goal was to predict the next element in a se-
quence. Although the potential of using ANNs for language modeling was recognized early
on, the limitations imposed by this approach caused a stagger in development. A large
amount of training data necessary for the correct generalization of grammatical rules,
as well as satisfactory computing resources (especially working memory and processing
power), were not available (at least not to the general public) at the time of the methodol-
ogy’s development. In addition, the problem of the vanishing gradient, a consequence of
backpropagation when training multi-layer and recurrent ANNs, was observed often in
practice [3], especially on the task of natural language modeling.

Nevertheless, the exponential growth in the PC computing power that followed,
as well as the exponential increase in the amount of data available (via the Big Data
phenomenon), enabled the theory to finally be technologically supported, triggering a new
wave of fresh research, based on the idea of deep learning [4], which is currently the most
represented sub-field of machine learning research, and artificial intelligence in general.
The use of the long short-term memory method (LSTM) [5] in language modeling solved
the problem of the vanishing gradient at first glance, while also providing previously
unattainable results.

1.1. State-of-the-Art

Only with the emergence of the Transformer architecture by Google [6], as an adequate
alternative to LSTM models, a new step forward was made in the field of natural language
modeling. The main difference between transformers and LSTM models is that transformers
do not rely on recurrent structures, but have an improved model for attention, a special
parameter propagated during learning, which serves to separate relevant from irrelevant
information. Today, the most significant and widespread language models are built using
this architecture, i.e., an encoder-decoder structure for model training, supported by pre-
trained word vectorizations (word embeddings) for preprocessing.

The first outstandingly influential of the type models were BERT (bidirectional encoder
representations from transformers) by Google [7] and GPT (generative pre-trained transformer)
by OpenAI [8,9]. The former is an encoder-based model used primarily for text annotation
and classification and the latter is a decoder-based model used primarily for language
generation (prediction of the next token for some given left context). Fast forward to today,
decoder-based language models are most prominent in the field, with the OpenAI GPT
models (now in the fourth generation) being especially popular for instruction tuning [10].
However, their last model published in open code (and also the latest one available for

205

Mathematics 2023, 11, 4660

Serbian) is still GPT-2 [11], with the efforts still being focused mainly on the development
of encoder-based models both for Serbian [12] and similar Slavic languages [13–16].

1.2. Text Quality Evaluation and Perplexity

With the beginning of the twenty-first century and the emergence of the Big Data
phenomenon, the necessity to separate significant, quality data from unusable or non-
quality data became even more apparent. Machine-based classification methods that
rely on automatically collected attributes such as user ratings or predefined expressions
(e.g., [17]) are widely used today and represent the basis for web-originated data analysis.

Classical assessment methods such as evaluation by users or experts tend to be subjec-
tive, but an adequate alternative still does not exist. Evaluating the quality of a stimulus
(irrelevant of its nature) must be subjective because different people perceive it differently.
The evaluation metrics vary depending on the natural language processing (NLP) task,
the phase (the model building, deployment, production phase), the focus (intrinsic and
extrinsic, ML and business), etc. [18]. The extrinsic metric focuses on evaluating per-
formance on the final objective of the concrete NLP task, while the intrinsic focuses on
intermediary objectives.

Intrinsic evaluation metrics have the advantage of not relying on specific tasks or
reference texts, but rather on the (language) models previously trained on reference texts,
which are taken as the gold standard. A typical application of intrinsic metrics is to compare
two models and analyze how likely they are to generate the same text. The most common
intrinsic metric used in computational linguistics is perplexity, a measure of how much the
model is surprised by seeing new input text. Another way to think about perplexity is to
treat it as the weighted average branching factor of a language, i.e., the average number of possible
next words that can follow any word [19].

Definition 1. Let LM be a language model. Perplexity (PP) of a language model LM on a
string of tokens W = w1w2 . . . wn (sentence, text) is defined as the inverse probability that a model
LM will generate W, normalized by the number of tokens n. Accordingly, perplexity is calculated
as follows:

PPLM(W) = PLM(w1w2 . . . wn)
− 1

n (1)

where PLM(w1w2 . . . wn) is the probability that a model LM will generate W. If LLM represents
language generated by model LM and P is a probability function, then

PLM(w1w2 . . . wn) = P(w1w2 . . . wn ∈ LLM) (2)

This implies that the higher the value of perplexity, the poorer the fit of the tested input
string and the model. If we have text that is taken as a gold standard, we can use perplexity
as a measure of the quality of a model, or we can measure the quality of the generated text
if we take a model as the gold standard. In both cases, we want the measure of perplexity
to be as low as possible. In the worst case, if the model is completely unprepared and the
probability for each token is the same, then the perplexity is equal to the size of the lexicon
of tokens.

The aforementioned properties allow for perplexity to be used for automatically
distinguishing between the high- and low-quality data [20], with one of the motives being
the selection of data used to train new language models [21]. Perplexity can also be used
for text classification based on language [22], the detection of harmful content [23], and fact
checking [24].

1.3. Research Questions, Aims, Means, and Novelty

Recent developments in NLP (primarily statistically based language models) have
brought us numerous new methods and technologies of language modeling [25], with new
and arguably better language models appearing every so often. This paper constitutes

206

Mathematics 2023, 11, 4660

an expansion of prior scholarly investigations dedicated to processing and evaluating
texts written in arbitrary highly inflective and morphology-rich natural language, particu-
larly Serbian. Two prior investigations considering (Serbian) language processing tasks
are revisited, specifically, part-of-speech tagging [26] and literature authorship attribu-
tion [27] in order to inspect advantages of using composite language models. In these
papers, several feature combination techniques were tested (e.g., voting, weighted voting,
bidding), but it was concluded that the trained stacked classifier is the optimal method
of feature combination, with the main advantage of distinguishing between quality and
noise-inducing features. Additionally, if the trained stacked classifier’s complexity is kept
low, their explicitness is reasonable and the risk of overfitting them is minimal. The specific
aim of this research is to further develop the methodology for the creation of composite
intelligent systems to aid in solving the task of language modeling, particularly focusing on
the tasks of perplexity-based text evaluation and classification [20]. The main motivation of
the experiment was to support the distinction between high-quality and low-quality text,
particularly that acquired from the web, in order to secure the integrity of automatically
constructed corpora.

In order to achieve this goal, a group of standalone transformer-based language models
(GPT-2), previously trained on a corpus of texts in Serbian [28], were used to develop several
different composite language models. The expediency of the models will be illustrated in
the example of solving two binary classification tasks:

C1 Detection of low-quality sentences;
C2 Machine translation detection.

The first classification task was chosen because of its direct alignment with the goal of
the research (distinguishing between high-quality and low-quality text), while the second
task was chosen as an alternative, which is more difficult benchmark, especially with the
recent advances in the field of machine translation [29]. The ability of the standalone
models to classify the sentences will be tested using only the sentence perplexity value
outputted by the model. The obtained results will be used as a baseline for the evaluation
of the composite models. The first of the two envisioned composite models, CM1, will use
sentence perplexities outputted by each of the three standalone models (M1, M2, and M3,
Section 2.1) as classification features. Besides the CM1 features, the second composite model,
CM2, will use additional features extracted from standalone models M1, M2, and M3.

This paper will address three research questions:

RQ1 Are semantic and syntactic models justified tools to use for sentence classification
tasks, e.g., low-quality sentence or machine translation detection?

RQ2 Can composite language models based on outputted perplexities and the wisdom
of crowds-based compositions improve on the accuracy of standalone models on
classification tasks?

RQ3 Can features extracted from perplexity vectors be used to further improve the
classification accuracy of composite models?

The main contributions of this research are:

1. Development of a perplexity-based dataset for testing and validation of composite and
standalone language models using existing models and parallel language corpora;

2. Development of a detailed model of the composite systems for parallel unification of
created models (which can be applied to both future models and other languages);

3. Creation of composite Serbian language models that can be used in natural language
processing tasks, including document classification and text evaluation;

4. Evaluation of created models on two well-known binary classification problems.

The developed composite model architectures are to enable a more precise calculation
of fitness between models and texts (i.e., a more precise calculation of perplexity) which
could also induce performance improvement for generative language models. Additionally,
the knowledge gathered through the inspection of the results should enable researchers to
further develop the methodology of composite intelligent systems creation.

207

Mathematics 2023, 11, 4660

Section 2 of this paper will present the creation of the main evaluation dataset and its
merits, and Section 3 will describe the process of feature extraction and model compositions.
Section 4 will present the evaluation process and the results obtained, which will be
followed by the discussion and concluding remarks, together with plans for future research
in Section 5.

2. Dataset

The dataset used to evaluate the proposed methodology approach for this experiment
is envisioned as a series of matrices containing perplexity values obtained through stan-
dalone language model evaluation. In order to prepare the dataset, several standalone
language models (M1, M2, and M3) that output different perplexity values for the same text
were needed, and also several series of textual sentences (T1, T2, and T3) not previously
used for the training or fine-tuning of M1, M2, and M3. The final dataset is obtained by
evaluation of M1, M2, and M3 using T1, T2, and T3 as the test sets.

The textual dataset T was envisioned as a list of three separate sets:

T1 High-quality sentences in Serbian, obtained from the expert translation of appraised
novels written in other languages;

T2 List of low-quality sentences, i.e., a list of sentences from the dataset T1 corrupted
using several different methods in order to make them semantically or syntactically
incorrect;

T3 List of machine translations of the original literary sentences, as opposed to the expert
translations from the dataset (T1).

The final dataset D was generated by recording the perplexity values of prepared
language models against the prepared sets of sentences, and it was used to evaluate the
methodology on both envisioned classification tasks. The detection of low-quality sentences
(C1) is summed up as the classification between datasets T1 and T2, and the detection of
machine translations (C2) as the classification between datasets T1 and T3. The complete
process of the dataset generation can be summed up in three steps:

1. Preparation of pre-trained language models for Serbian that tend to output different
perplexity measures for textual input (M1, M2, and M3);

2. Preparation of textual data T1, T2, and T3 (based on text not used for the training or
fine-tuning of aforementioned language models), which will be used for the creation
of evaluation dataset for both classification tasks (C1 and C2);

3. Generation of the final dataset, based on perplexity outputs obtained via evaluation
of the prepared sentences from the previous step (T1, T2, and T3) using prepared
language models from the first step (M1, M2, and M3).

2.1. Language Models

A total of three standalone language models that were previously trained [28] on a
collected corpus of Serbian texts and based on a second-generation generative pre-trained
transformers architecture (GPT2, 137 million parameters) were used for this research:

M1 Control model trained using a standard corpus of contemporary Serbian texts
(1 billion tokens), and standard training configuration for GPT2-based models;

M2 Experimental semantic model, trained on a specially prepared corpus representation,
i.e., a corpus processed using latent semantic analysis methods [30], namely removal
of stop words and lemmatization;

M3 Experimental syntactic model, trained on a different corpus representation that was
processed using morphological dictionaries in such a way that the content words [31]
were replaced with their grammatical category.

The two experimental models were supposed to model two complementary aspects
of the text in natural language (semantics and syntax) and therefore produce potentially
different perplexities when faced with the same piece of input text. It should be noted that
when calculating perplexity using these models, input text must be preprocessed using the

208

Mathematics 2023, 11, 4660

same transformation that was used for the generation of the training corpus data for the
respective model in order to obtain correct readings. All three of these models are available
in open access on the Huggingface platform and linked in the Data Availability Statement at
the end of the paper. See Appendix A for the implementation details.

2.2. Textual Data

Textual data used to build the evaluation dataset for this research is based on a parallel
corpus of literary texts (novels originally written in German and Italian and their expert
translations into the Serbian language). The bigger share of the texts was pooled from
parallel Serbian–German corpus, SrpNemKor [32], where only the novels originally written
in German were used. The rest of the textual data represent the parallel translation of the
third part of the Naples stories series [33,34], prepared as the part of the parallel Serbian–
Italian corpus within the It-Sr-Ner project (supported by CLARIN ERIC “Bridging Gaps
Call 2022”) [35]. A total of seven novel translations were used (Table 1).

Table 1. A list of novels from which evaluation sentences were extracted.

Author Translator Title Sentences #

Tomas Bernhard B. Denić Meine Preise 1009
Elfride Jelinek T. Tropin Die Klavierspielerin 6679
Milo Dor T. Bekić Wien, Juli 1999 1249
Günter Grass A. G. Rajić Im Krebsgang 2868
Günter de Bruyn A. Bajazetov-Vučen Buridans Esel 2890
Christof Ransmayr Z. Krasni Die letzte Welt 3107
Elena Ferrante J. Brborić Storia di chi fugge e di chi resta 8316

The first envisioned set of 26,118 sentences (a set of expert translations, T1) was created
by simply extracting sentences from the translations listed in novels. The set contains
536,639 tokens (about 20.55 per sentence) and has a type-token ratio of 0.1124.

The second set (low-quality sentences, T2) was created by taking each sentence from
the first set and applying one of the following transformations at random:

• Lemmatization: Each word in the sentence is replaced with its lemma based on
Serbian Morphological Dictionaries, to make the sentences prone to morphosyntactic
incorrectness. Although it is possible that the lemmatized sentence is equal to the
original one (in case all words in the original sentence were already lemmas), a simple
equality comparison between them calculated that this happens less than 0.8% of
the time;

• Random mixing of word order within a sentence: A sentence was transformed into a
list of words and punctuation marks, which was then randomly shuffled and put back
together into text. This was also conducted to make the sentences prone to syntactical
incorrectness, especially regarding the position of prepositions and adjectives. As in
the previous case, this does not necessarily mean that the sentences are incorrect, but a
manual evaluation of a set of 400 sentences found that this happens in less than 0.6%
of the cases;

• Random replacement of words in the sentence: namely, each word in the sentence is
replaced by another, random word of the same grammatical category from the Serbian
Morphological dictionaries, in order to make it prone to semantic incorrectness.

The application of these transformations does not affect sentence lengths, but the type-
token ratio is decreased to 0.0902 (due to the lemmatization of one part of the sentences).

The third set of sentences (machine translations, T3) was obtained by running the orig-
inal sentences (in German and Italian) through the Google Translate service and translating
them into Serbian. Another simple equality comparison revealed that they differ from
expert translations about 98% of the time. These sentences are somewhat shorter (average

209

Mathematics 2023, 11, 4660

of 19.03 tokens per sentence and 496,989 total), but the type-token ratio of 0.1106 is quite
similar to the one of the first set.

The complete textual dataset T =
⋃3

j=1 Tj is a sequence comprising 78,354 sentences
divided into three subsequences Tj of equal size |Tj| = 26,118.

2.3. Sentence Perplexities and Perplexity Vectors

Definition 2. Let i, j ∈ Z. Integer interval [i . . j] is defined as {k ∈ Z | i ≤ k ≤ j}.

Definition 3. Let x = (xi)
n
i=1 ∈ Rn and ∏n

i=1 xi �= 0. The vector x◦−1 = (1
xi
)n

i=1 is the
element-wise inverse (also called Hadamard inverse) of vector x .

Definition 4. Perplexity vector (PPV) [36] of a language model LM on a sentence s = w1w2 . . . wn
is calculated applying the Equation (1) to each N-gram of tokens within a sentence (N fixed,
N ∈ [1 . . n]):

PPVLM(s) = PPVLM(w1w2 . . . wn) =

⎡
⎢⎢⎢⎢⎣

PLM(w1w2 . . . wN)
− 1

N

PLM(w2w3 . . . wN+1)
− 1

N

...
PLM(wn−N+1wn−N+2 . . . wn)

− 1
N

⎤
⎥⎥⎥⎥⎦ (3)

Size N = 5 is used during this experiment. The size of PPV for a given sentence s is
n − N + 1 and therefore varies depending on the number of tokens n in s.

Let i, j, k ∈ N, i, j ∈ [1 . . 3], k ∈ [1 . . m]. The final dataset D consists of:

D1 Subset containing three sequences of inverse perplexity triples, one for each dataset
Tj, i.e.,

(
1

pp(jk)[1]
,

1
pp(jk)[2]

,
1

pp(jk)[3]
)k (4)

where pp(jk)[i] represents perplexity of the model Mi on the kth sentence in the
dataset Tj, calculated using (1). See Appendix A for the implementation details.

D2 The subset comprised three sequences, one for each dataset Tj, where every sequence
element is a triple containing the Hadamard inverse of perplexity vectors, i.e.,

((ppv(jk)[1])◦−1, (ppv(jk)[2])◦−1, (ppv(jk)[3])◦−1)k (5)

and ppv(jk)[i] represents the perplexity vector of the model Mi on the kth sentence in
the dataset Tj, calculated using (3).

Values stored in sets D1 and D2 were used to measure the classification performance
of (both standalone and composite) language models on the tasks of detecting low-quality
sentences and machine translations (see Section 4).

Definition 5. Let (xi)
n
i=1 and (yi)

n
i=1 be two sequences of length n. The Pearson linear correlation

coefficient r is defined as

r =
∑n

i=1
(

xi − x
)(

yi − y
)

√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

, (6)

where x̄ = 1
n ∑n

i=1 xi represents the mean of x and analogously for ȳ.

Let i, j, k, l ∈ [1 . . 3] and MiTj be a sequence (pp(jk)[i])k such that |MiTj| = |Tj| = m,
i.e., a sequence of perplexity values obtained for sentences of dataset Tj using model Mi.
In order to ensure that the perplexity values differ between both different models and
different textual datasets, the Pearson coefficients rijkl were calculated using (6), as the

210

Mathematics 2023, 11, 4660

primary measure of linear correlation between every two pairs MiTj and MkTl , where pairs
share either a model (i = k) or a dataset (j = l).

Tables 2 and 3 contain the resulting rij coefficients between MiTj pairs, where pairs
share the same dataset in Table 2, while pairs in Table 3 share the same model.

Table 2. Pearson correlation coefficients between sequences of perplexities obtained using two
different pairs (model, dataset) MiTj with the mutual dataset.

Model M1T1 M2T1 M3T1

M1T1 0.265 0.044
M2T1 0.265 −0.019
M3T1 0.044 −0.019

M1T2 M2T2 M3T2

M1T2 0.166 0.174
M2T2 0.166 −0.116
M3T2 0.174 −0.116

M1T3 M2T3 M3T3

M1T3 0.225 0.065
M2T3 0.225 −0.060
M3T3 0.065 −0.060

Table 3. Pearson correlation coefficients between sequences of perplexities obtained using different
pairs (model, dataset) MiTj with the mutual model.

M1T1 M1T2 M1T3

M1T1 0.515 0.645
M1T2 0.515 0.369
M1T3 0.645 0.369

M2T1 M2T2 M2T3

M2T1 0.803 0.512
M2T2 0.803 0.419
M2T3 0.512 0.419

M3T1 M3T2 M3T3

M3T1 0.790 0.676
M3T2 0.790 0.544
M3T3 0.676 0.544

The results presented in Table 2 confirm the uniqueness of perplexities outputted
using the prepared models, with the highest correlation coefficient being 0.265 between the
models M1 (control) and M2 (semantic) and all of the other correlation coefficients being
less than 0.05. On the other hand, the much higher correlation was apparent in Table 3,
averaging at about 0.56, indicating that the models have trouble differing between the
datasets, especially model M2 between the datasets T1 and T2 (inability to distinguish
the control set from the artificially-defected, low-quality sentences), with a correlation
coefficient of over 0.8. In Section 3, we introduce composite models as a form of overcoming
this insufficiency.

Once the data were confirmed to be of value, all of the perplexity values in sets D1 and
D2 were converted to their inverse value, which concluded the creation of the dataset D
according to Equations (4) and (5). This was carried out for the sake of their easier input
into the machine learning algorithms afterwards in the experiment.

3. Features and Compositions

As mentioned in Section 1.3, two composite models, CM1 and CM2, built on the result-
ing perplexities were envisioned for this experiment. The first, simpler model (Section 3.1) is

211

Mathematics 2023, 11, 4660

based on a stacked classifier architecture which is directly derived from the previous research
on the subject [26,27]. The second, more complex model (Section 3.2) was designed specially
for this experiment and relies on features extracted using several different scenarios.

3.1. Simple Neural Network Classifier (CM1)

The stacked sentence classifier used in the first composition (CM1) is based on a simple
neural network architecture consisting of one fully connected layer—two perceptrons, one
for each class, sharing a triple of input values p = (P1, P2, P3), an element of dataset D1.
The triple p corresponds to a sentence being classified and each Pi is an inverse of the
perplexity value of model Mi, i, j ∈ [1 . . 3] (Figure 2).

Figure 2. A simple neural network for binary sentence classification, consisting of one fully connected
layer with input values (Pi)

3
i=1 (perplexities of the models Mi on an input sentence, i ∈ [1 . . 3]).

The CM1 output y is the predicted class of the sentence. The value of y can be either 0,
meaning expert translation, or 1, meaning an alternative class the network was trained to
recognize, depending on the classification task. The calculation of y can be described in the
following manner:

y = f (pWT + b) = pWT + b (7)

where:

• p = (P1, P2, P3) ∈ R3 is a triple containing inverse of perplexities corresponding to the
input sentence;

• W = (wij) ∈ R2×3 is a weight matrix. For a fixed i ∈ [1 . . 2], (wij)j ∈ R3 are learnable
weights of the ith perceptron in CM1, j ∈ [1 . . 3];

• b ∈ R2 components are learnable biases of the corresponding perceptrons in CM1;
• f is an activation function defined as identity f (z) = z, i.e., linear activation is used.

See Appendix A for the implementation details and Section 4 for training details.
The goal of this model was to confirm the advantages of using a stacked classifier on

the perplexity outputs of transformer-based language models, as was already confirmed
for using it on probabilistic outputs of part-of-speech taggers [26] and cosine similarities of
documents before that [27], in order to give an answer to RQ2.

3.2. Complex Multi-Featured Neural Network (CM2)

In contrast to CM1 (Section 3.1), the second composite model (CM2) was designed
to maximize the volume of inputted features at the expense of simplicity. The goal of
the feature extraction for this experiment was to create a large, determined, and finite list
of inputs for a binary classifier; hence, all of the features are represented as numerical
values in the range −1 to 1. In addition to the three features used by CM1, a multitude of
additional features are extracted from subset D2 (Section 2.3), using three separate neural
network components:

NN1 The time-and-frequency-domain-based component represents a small, single-layer
neural network used to extract eight features from a multitude of properties calcu-
lated using a set of prepared formulas over each vector from D2 (see Section 3.2.1);

212

Mathematics 2023, 11, 4660

NN2 The recurrent neural network (RNN) [37] component represents a small neural
network with a recurrent layer with four hidden states. Vector triples from dataset
D2 are inputted into this layer in order to extract four additional features for each
triple (see Section 3.2.2);

NN3 The convolutional neural network (CNN) [38] component represents a small neural
network with a convolutional and a pooling layer instead of a recurrent one, which
is used to extract eight more features from each vector triple of dataset D2 (see
Section 3.2.3).

For the purpose of training components NN2 and NN3, the length of the vector inputs
(extracted from the D2 set) for these two components was resized to the length � = 64,
employing either truncation (if the vector was longer) or zero-padding (if the vector was
shorter). This was conducted for the purpose of easier batching of vector inputs during the
training procedure for recurrent and convolutional layers. The NN1 component uses the
original vectors. All of the mentioned components are connected to one final component:

NN4 The classifying component represents a neural network with two fully connected
layers that takes all of the aforementioned features as input and then outputs the
class of the inspected sentence.

The four components are trained together as one binary classification system (for each
of two envisioned classification tasks) in order to give a definite answer to RQ3.

3.2.1. Time-and-Frequency-Domain-Based Component (NN1)

The first CM2 component is used to extract features from different time-domain and
frequency-domain properties of the vectors from dataset D2, while treating them as either
time-series (by using tokens as a unit of time and inspecting the perplexity value at each
point) or signals. In the case of time-domain (TD), the twelve properties TD1–TD12 were
examined using each vector as an input for twelve different formulas. Some of them are
reused to examine six frequency-domain (FD) properties FD1–FD6, but the input is changed
to be a power spectrum calculated using a fast Fourier transform of each vector.

The following time-domain properties were determined for vector x = (xi)
n
i=1:

TD1 Minimum value found in the inspected vector:

Min(x) = min
i∈[1..n]

xi; (8)

TD2 Maximum value found in the inspected vector:

Max(x) = max
i∈[1..n]

xi; (9)

TD3 Peak-to-peak, calculated as the difference between the maximum and minimum
value:

Pk(x) = Max(x)− Min(x); (10)

TD4 The arithmetic mean of the values in the inspected vector:

x̄ =
1
n

n

∑
i=1

xi; (11)

TD5 Root mean square:

RMS(x) =

√
1
n

n

∑
i=1

xi
2; (12)

213

Mathematics 2023, 11, 4660

TD6 Variance, i.e., the spread of data around the mean:

σ2 =
1
n

n

∑
i=1

(xi − x̄)2; (13)

TD7 The standard deviation of the inspected vector:

σ =

√
∑n

i=1(xi − x)2

n − 1
; (14)

TD8 Crest factor, i.e the quotient of the maximum value and the root mean square:

CF(x) =
Max(x)
RMS(x)

; (15)

TD9 Form factor, i.e., the quotient of the root mean square and mean:

FF(x) =
RMS(x)

x̄
; (16)

TD10 Pulse indicator, i.e., the quotient of the maximum value and the mean of the vector:

PI(x) =
Max(x)

x̄
; (17)

TD11 Vector (Pearson) kurtosis, i.e., the measure of the outlier presence in the inspected
vector:

β2 = E

[(
x − x̄

σ

)4
]

, (18)

where E is the expectation operator;
TD12 Vector skewness, i.e., the measure of the data symmetry around the mean:

γ1 = E

[(
x − x̄

σ

)3
]

, (19)

where E is the expectation operator.

As the second set of properties is based in the frequency domain, each vector was first
subjected to the fast discrete Fourier transform, calculating a new vector (Fk)k∈[0..n−1] ∈ Cn:

Fk =
n

∑
j=1

xje−
2iπ
n k(j−1), k ∈ [0 . . n − 1], (20)

where n is the length of the vector x that is being transformed and i ∈ C is the imaginary
unit, i2 = −1.

Afterwards, the power spectrum vector y = (yk)k∈[0..n−1] is calculated:

yk =
|Fk

2|
n

, k ∈ [0 . . n − 1]. (21)

With the calculated power spectrum of the vector, the following frequency-domain
properties were extracted:

FD1 Power spectrum maximum, calculated using Equation (9), where x is the power
spectrum of the inspected vector;

214

Mathematics 2023, 11, 4660

FD2 Power spectrum peak, calculated as the absolute maximum value found in the
power spectrum:

Pm = max
i∈[1..n]

|xi|, (22)

where x is the power spectrum of the inspected vector;
FD3 Power spectrum mean, calculated as an arithmetic mean of the values in the power

spectrum using Equation (11), where n is the length of the power spectrum x;
FD4 Power spectrum variance, calculated using Equation (13), where n is the length of

the power spectrum x and x̄ is its sample mean;
FD5 Power spectrum kurtosis, calculated using Equation (18), where x̄ is the mean of

the power spectrum vector x, σ its standard deviation, and E is the expectation
operator;

FD6 Power spectrum skewness, calculated using Equation (19), where x̄ is the mean of
the inspected vector x, σ its standard deviation, and E is the expectation operator.

These 54 properties (18 for each vector in a D2 dataset triple) are used as an input for a
simple fully connected layer in order to extract eight final features (Fj)

8
j=1 as depicted in

Figure 3. This was conducted in order to reduce the total number of features, as well as
to extract only their most important aspects. The rectified linear unit function (ReLU) is
applied to the output in order to prepare it for passing through the adjacent linear layer
in NN4. The neural network component is visualized in Figure 3. The calculation of the
features can thus be described as follows:

(Fj)
8
j=1 = ReLU(gWT + b) (23)

where:

• g ∈ R54 is a series of time-domain and frequency domain properties extracted from
the triple containing the Hadamard inverse of perplexity vectors using TD1–TD12 and
FD1–FD6, corresponding to the input sentence;

• W = (wij) ∈ R8×54 is a weight matrix; (wij)j ∈ R54 are learnable weights of the ith
perceptron of NN1, i ∈ [1 . . 8], j ∈ [1 . . 54];

• Components of b ∈ R8 are learnable biases of the corresponding perceptrons of NN1;
• If z = (zi)

8
i=1 ∈ R8, ReLU is a rectified linear unit function defined as ReLU(z) =

(ReLU(zi))
8
i=1 = (max(0, zi))

8
i=1.

See Appendix A for the implementation details.

Figure 3. Fully connected layer with an input size of 54 (for 18 vector properties extracted from each
of three input vectors) that is used to extract a total of eight time and frequency-domain features
F = (Fj)

8
j=1.

3.2.2. RNN Component (NN2)

A second set of features (Fj)
12
j=9 was extracted using a recurrent neural network com-

ponent (Figure 4). One recurrent layer with four hidden states h = (h(j))4
j=1 was used to

215

Mathematics 2023, 11, 4660

process each D2 dataset triple of vectors x = (x(1), x(2), x(3)), where x(i) ∈ R�, i ∈ [1 . . 3],
and � is the resized length of input vector, introduced at the beginning of Section 3.2.
For each t ∈ [1 . . �], a triple xt = (x(1)t , x(2)t , x(3)t) ∈ R3 is processed with hidden states

ht−1 = (h(1)t−1, h(2)t−1, h(3)t−1, h(4)t−1) ∈ R4 from the previous loop pass-through (if any) with the
goal to extract a number of recurrent features.

Figure 4. Visualization of neural network component based on a recurrent layer with four hidden

states h used to process input values xt = (x(1)t , x(2)t , x(3)t) ∈ R3, where x(i)t corresponds to time point
t ∈ [1 . . �] and language model Mi, i ∈ [1 . . 3].

The calculation of the hidden state values is performed as follows:

ht = tanh(xtWT
ih + bih + ht−1WT

hh + bhh), t ∈ [1 . . �], (24)

where:

• ht ∈ R4 is the hidden state at time t. The initial hidden state at time 0 is h0 = 0 ∈ R4;
• xt ∈ R3 is the input at time t;
• Wih ∈ R4×3 are the learnable input-hidden weights of the (only) layer (4 hidden states,

3 input values) of NN2;
• bih ∈ R4 is the learnable input-hidden bias of the (only) layer of NN2;
• Whh ∈ R4×4 are the learnable hidden-hidden weights of the (only) layer of NN2;
• bhh ∈ R4 is the learnable hidden-hidden bias of the (only) layer of NN2;
• tanh is the hyperbolic tangent activation function.

See Appendix A for the implementation details.
The recurrent layer outputs (from four hidden states after the final pass-through)

are taken as four extracted features (Fj)
12
j=9 = h�. The visualization of the component is

depicted in Figure 4.

3.2.3. CNN Component (NN3)

Definition 6. For finite discrete functions f , g ∈ CN, N ∈ N, the (circular) cross-correlation [39]
is defined as:

(f � g)[n] =
N−1

∑
m=0

f [m]g[(m + n)mod N] (25)

A somewhat more complicated process was the extraction of the final eight features
from the triples using the convolutional architecture, comprising three layers:

1. A one-dimensional convolutional layer with three input channels (Cin = 3), eight
output channels (Cout = 8), a size-five kernel (Kc = 5), and a stride of two (Sc = 2);

216

Mathematics 2023, 11, 4660

2. A one-dimensional max pooling layer [40] with a size-five kernel (Kp = 5) and stride
of two (Sp = 2);

3. A fully connected linear layer with an input layer with a size corresponding to the
number of features extracted using the previous (pooling) layer and the output size of
eight. Just like for NN1, a ReLU activation function was applied in order to prepare
features for passing through the first layer of the NN4 component.

During the processing of input x = (x(1), x(2), x(3)) using the first layer, the kernel
is sliding simultaneously across the values in all three vectors x(j) ∈ R�, j ∈ [1 . . 3],
extracting eight features for each inspection. The total number of inspections performed, m,
is calculated as follows:

m =

⌊
�− Kc

Sc

⌋
+ 1 (26)

where � is the resized and fixed length of the inputted sequences (� = 64), Kc the size of
the kernel (Kc = 5), and Sc stride length (Sc = 2). Features outputted for each inspection
co = (coij) ∈ Rm×Cout are calculated in the following manner:

coij = bj +
Cin

∑
k=1

Wjk � inputik, (27)

where:

• i ∈ [1 . . m] is the inspection index;
• j ∈ [1 . . Cout] = [1 . . 8] is the outputted feature index;
• k ∈ [1 . . Cin] = [1 . . 3] is the input channel index;
• Components of b ∈ R8 are learnable biases of the corresponding output channels for

the convolutional layer;
• W = (wjk) ∈ R8×3 is a weight matrix; (wjk)k ∈ R3 are learnable weights of the jth

output channel and kth input channel, j ∈ [1 . . 8], k ∈ [1 . . 3];
• Input = (inputik) ∈ R5 represents the inspected values for the ith inspection and for

kth input channel, with inspection being defined via the kernel size (Kc = 5) and stride
(Sc = 2).

Outputted values co are then processed using a max pooling layer, where a second
kernel of the same size is sliding across the values in each channel, performing the inspec-
tions and extracting the maximum value for each one. This step results in M number of
new features, where M is calculated as:

M =

(⌊
m − Kp

Sp

⌋
+ 1

)
∗ Cout, (28)

where m is the number of inspection of the convolutional layer (26), Kp the size of the
kernel (Kp = 5), Sp stride length (Sp = 2), and Cout the number of convolutional layer
output channels.

Values compiled using the max pooling layer po = (poi)
M
i=1 are calculated as follows:

poi = max
j∈[1..Kp]

inputi j, (29)

where:

• i ∈ [1 . . M] is the inspection index;
• j ∈ [1 . . Kp] is the index of values within inspections;
• Kp is the size of the kernel of the max pooling layer;
• Input = (inputi) ∈ RM represents the inspected values of the ith inspection, with in-

spection being defined via the kernel size (Kp = 5), stride (Sp = 2) and output channel
of the convolutional being inspected.

217

Mathematics 2023, 11, 4660

Lastly, values compiled using the max pooling layer po = (poi)
M
i=1 are used as an

input for a fully connected linear layer with input size M and output size of eight, which
is used to produce a final tally of eight features extracted by this specific method (Fj)

20
j=13,

where the feature values are calculated in the following manner:

(Fj)
20
j=13 = ReLU(po · WT + b) (30)

where:

• po is an array of features outputted from the max pooling layer, po = (poj)
M
j=1 ∈ RM;

• W = (wij) ∈ R8×M is a weight matrix; (wij)j ∈ RM are learnable weights of the ith
perceptron in the sole linear layer in NN3, i ∈ [1 . . 8], j ∈ [1 . . M];

• Components of b ∈ R8 are learnable biases of the corresponding perceptrons of the
sole linear layer in NN3;

• If z = (zi)
8
i=1 ∈ R8, ReLU is a rectified linear unit function defined as ReLU(z) =

(ReLU(zi))
8
i=1 = (max(0, zi))

8
i=1.

See Appendix A for the implementation details.
A complete neural network component used to extract them is visualized in Figure 5.

Figure 5. A neural network component featuring a single one-dimensional convolutional layer
(with three input channels, a size-five kernel, and a stride of two) used to process input values

x = (x(1)j , x(2)j , x(3)j) ∈ R3, where x(i)j corresponds to time point j ∈ [1 . . �] and language model

Mi, i ∈ [1 . . 3]. Outputs of this step (co = (coj)
8m
j=1) are inputted into a single one-dimensional max

pooling layer (with a size-five kernel and a stride of two), and the outputs of the max pooling layer
(po = (poj)

M
j=1) are used as inputs for a fully connected layer, which is used to extract the final

features (Fj)
20
j=13.

218

Mathematics 2023, 11, 4660

3.2.4. Classifying Component (NN4)

Eight features were extracted using the first component (NN1, Section 3.2.1), four
features were extracted using the second component (NN2, Section 3.2.2), and eight features
were extracted using the third component (NN3, Section 3.2.3) together with three values
that were used by the first composition (CM1, Section 3.1), which were used as an input
for one final fully connected neural network component for binary classification. This
final component consists of one input layer with input size 23 (20 for extracted features
F = (Fj)

20
j=1 and 3 for a triple of inverse perplexity values p = (P1, P2, P3)), connected to the

output layer via one hidden layer with eight neurons (Figure 6).

Figure 6. A neural network component consisting of one fully connected linear size-23 input layer
(20 for extracted features F = (Fj)

20
j=1 and 3 for a triple of inverse perplexity values p = (P1, P2, P3)),

and one fully connected linear size-8 hidden layer used to perform binary classification based on the
inputted features.

As is the same for CM1, the output y of CM2 is the predicted class of the sentence.
The value of y can be either 0 (expert translation) or 1 (alternative class the network was
trained to recognize, depending on the classification task). Calculation of the y for CM2
can be described in the following manner:

y = ReLU((p�F)W(1)T
+ b1)W(2)T

+ b2 (31)

where:

• p�F∈ R23 is a concatenation of p = (P1, P2, P3) ∈ R3, a triple containing inverse
of perplexities corresponding to the input sentence, and F = (Fj)

20
j=1 ∈ R20, a triple

containing the inverse of perplexities corresponding to the input sentence;
• W(1) = (w(1)

ij) ∈ R8×23 is a weight matrix; (w(1)
ij)j ∈ R23 are learnable weights of the

ith perceptron in the input layer, i ∈ [1 . . 8], j ∈ [1 . . 23];
• W(2) = (w(2)

ij) ∈ R2×8 is a weight matrix; (w(2)
ij)j ∈ R8 are learnable weights of the ith

perceptron in the hidden layer, i ∈ [1 . . 2], j ∈ [1 . . 8];
• Components of b1 ∈ R8 and b2 ∈ R2 are learnable biases of the corresponding

perceptrons in the first (b1) and second (b2) fully connected layer;
• If z = (zi)

8
i=1 ∈ R8, ReLU is a rectified linear unit function defined as ReLU(z) =

(ReLU(zi))
8
i=1 = (max(0, zi))

8
i=1.

A complete stacked classifier that uses transformer outputs as inputs is composed
of all of the described components and is depicted in Figure 7. See Appendix A for the
implementation details and Section 4 for training details.

219

Mathematics 2023, 11, 4660

Figure 7. A visualization of the complete architecture of composite model CM2 where Hadamard
inverse perplexity vectors (depicted as yellow stadiums) are generated using standalone language
models (M1–M3) and are being used as input for NN1–NN3. All layers are denoted with a number
of input and output parameters, and stadiums of different colors: violet for the recurrent, red for the
convolutional, orange for the max pooling layer, and blue for fully connected linear ones. The gray
stadium represents vector properties extraction (not a trainable layer), where n is a variable sentence
length. The colored circles mark different features used for NN4 (yellow: inverse perplexities
calculated using M1–M3; gray: time-and-frequency-based features calculated using NN1; violet:
recurrent features calculated using NN2; red: convolutional features calculated using NN3).

4. Results

For the evaluation, we used five-fold cross-validation over dataset D, for which both
subsets were split into five (nearly) equal, class-balanced chunks. For each of the five folds,
a different chunk was used for testing, while the other four were used to train ten classifiers,
including five for each classification task (C1, C2). Three simple classifiers were based directly
on standalone models (M1, M2, and M3), while two composite classifiers (CM1 and CM2)
were trained on top of all three standalone models. Different training procedures were
deployed depending on the classifier being trained, where different levels of input data
complexity influenced the complexity of the models (Table 4).

220

Mathematics 2023, 11, 4660

Table 4. Five classifiers used for each classification task, input data they are using (middle)
(cf. Section 2), and the description of their architecture (right).

Model Input Data Stacked Classifier Type

M1
Values from D1 dataset originated from

model M1 An extension of the model in the form
of a single input perceptron for binary
classification, which uses that model’s
(inversed) perplexity output as input

M2
Values from D1dataset originated from

model M2

M3
Values from D1 dataset originated from

model M3

CM1

Value triples from D1 dataset, i.e., values
originated from all three standalone

models (M1, M2 and M3)

A simple neural network with two
perceptrons and three shared inputs

(cf. Section 3.1)

CM2 All of the triples from both D1 and D2 sets A complex neural network comprising
four different components (cf. Section 3.2)

For each training session, the Adam optimizer [41] with a learning rate of 0.01 and a
batch size of 64 was used, and the number of training epochs was limited to 50. In order
to measure the improvements achieved using the proposed composite models, the results
achieved using the standalone models (M1, M2, and M3) were marked as the baseline. More
precisely, the baseline was defined as the best result achieved by any of these Mi, i ∈ [1 . . 3]
for each classification task C1 and C2. The experiment was conducted to explore whether
the composite models would achieve a statistically significant improvement.

As already mentioned, during the preparation of the five data chunks for each of
the two binary classification tests, an equal number of samples for both classes (T1 and
T2 for task C1 or T1 and T3 for task C2) was prepared by stratifying the already balanced
data according to the output class. This resulted not only in the effective training but also
in the accuracy always being equal to the F1 score. For that reason, we will focus on the
classification accuracy metric when presenting the results of the cross-validation, or relative
accuracy increase when depicting the improvements the composite models achieved over
the baseline. The results of the evaluation will be presented in Section 4.1.

4.1. Quantitative Results

The cross-validation accuracy of all of the five inspected models (M1, M2, M3, CM1
and CM2) on the task of low-quality sentence detection (C1), as well as the highest achieved
accuracy and mean accuracy, are presented in Table 5. The accuracy results of the same
models, but on the task of machine translation detection (C2), are presented in the same
manner in Table 6.

Table 5. Cross-validation accuracy results achieved by three simple (left) and two composite models
(right) on the low-quality sentence detection task (C1). The upper part of the table depicts the results
for each of the five folds, while the lower part of the table depicts maximum (Max) and mean (μ)
accuracy. The highest accuracy among standalone models (baseline) and the best overall scores are
marked in bold.

M1 M2 M3 CM1 CM2

fold 1 0.8468 0.5599 0.6117 0.8528 0.8631
fold 2 0.8456 0.5559 0.6187 0.8548 0.8648
fold 3 0.8506 0.5617 0.6198 0.8564 0.8716
fold 4 0.8486 0.5576 0.6181 0.8592 0.8628
fold 5 0.8522 0.5572 0.6194 0.8616 0.8690

Max 0.8522 0.5617 0.6198 0.8616 0.8716
μ 0.8488 0.5584 0.6175 0.8569 0.8663

221

Mathematics 2023, 11, 4660

Table 6. Cross-validation accuracy results achieved by three simple (left) and two composite models
(right) on the machine translation detection task (C2). The upper part of the table depicts the results
for each of the five folds, while the lower part of the table depicts maximum (Max) and mean (μ)
accuracy. The highest accuracy among standalone models (baseline) and the best overall scores are
marked in bold.

M1 M2 M3 CM1 CM2

fold 1 0.5000 0.5000 0.5086 0.5077 0.5334
fold 2 0.5000 0.5000 0.5075 0.5157 0.5497
fold 3 0.5000 0.5000 0.5069 0.5242 0.5389
fold 4 0.5000 0.5000 0.5091 0.5205 0.5381
fold 5 0.5000 0.5000 0.5131 0.5176 0.5600

Max 0.5000 0.5000 0.5131 0.5242 0.5600
μ 0.5000 0.5000 0.5090 0.5171 0.5440

The average relative accuracy increase (RAI) and average error rate reduction (ERR)
compared to the baseline are calculated for both composite models (CM1 and CM2) on
both classification tasks (C1 and C2) using the equations:

RAI =
a′ − a

a
(32)

and

ERR =
a′ − a
1 − a

, (33)

where a is the baseline accuracy and a′ is the alleged improved accuracy.
These results, aiming to give a definite answer to the research questions RQ1–RQ3,

are presented in Table 7.

Table 7. Relative accuracy increase (RAI) and error rate reduction (ERR) achieved by each composite
model (CM1 and CM2) for each classification task (C1 and C2), relative to the baseline results (highest
achieved accuracy among the standalone models: M1, M2, and M3). The highest relative accuracy
increase and error rate reduction for each task are marked in bold.

Relative Accuracy Increase (RAI) Error Rate Reduction (ERR)
C1 C2 C1 C2

CM1 0.0095 0.0159 0.0536 0.0165
CM2 0.0206 0.0688 0.1157 0.0713

4.2. Qualitative Results

The improvement achieved by the composite model CM2 over the baseline (2.06%
relative accuracy increase on C1 and 6.88% relative accuracy increase on C2) is probably
not due to mere chance, but despite that, we cannot ascertain the statistical significance
via simple comparison. In order to check the integrity of the results, we used the corrected
repeated k-fold cross-validation test [42] to determine the actual statistical significance of the
achieved improvements. The t-score was calculated as:

t =
1
k ∑k

i=1 (a′i − ai)√
(1

k + r)σ2
, (34)

where k is the number of cross-validation folds (k = 5), ai the baseline accuracy at fold i, a′i
the improved accuracy at fold i, r the size ratio of test and training sets (r = 0.25), and σ2

the variance of the difference of a and a′ across folds.

222

Mathematics 2023, 11, 4660

For each composite model (CM1, CM2) and for each classification task (C1, C2), we
calculate the t-score using Equation (34) and from it the p-value using Student’s Cumulative
distribution function [43]. These results are presented in Table 8. Here, we observe a high
statistical significance of the accuracy increase in three out of four cases with the p-values
being below 0.05, in accordance with the standard confidence level of 0.95. The only outlier
represents what the improvements classifier CM1 achieved over the baseline for task C1
(machine translation detection), p = 0.5224, in which case the null hypothesis (stating that
no statistical significance exists) cannot be rejected.

Table 8. Calculated t-score and p-value, indicating statistical significance of accuracy improvements
the composite classifiers (CM1 and CM2) achieved over the determined baseline for each classification
task (C1 and C2).

t-Score p-Value
C1 C2 C1 C2

CM1 2.0674 0.6397 0.0387 0.5224
CM2 3.5974 2.0536 0.0003 0.0400

5. Discussion

In this paper, we experiment with two separate classification tasks: low-quality sen-
tence detection (C1) and machine translation detection (C2). On both tasks, we test the
improvements achieved using composite language models (built upon perplexity outputs
of several language models) over the accuracy of standalone models, which is taken as
a baseline.

From the results presented in previous section, precisely Table 5 (cross-validation
results on task C1), the following observations are made:

Q1 Model M1 is the best standalone model for low-quality sentence detection (average
accuracy of 84.88%), and should thus be taken as the baseline for C1;

Q2 Composite model CM1 outperforms this baseline on each cross-validation fold (with
an average accuracy of 85.69%;

Q3 Composite model CM2 outperforms the composite model CM1 across all cross-
validation folds with an average accuracy of 86.63%.

Additionally, from the results presented in Table 6 (cross-validation on task C2), we
note the following observations:

Q4 Model M3 (syntactic) is the best-performing standalone model for machine-translation
detection and should thus be taken as the baseline for C2, although with an accuracy
of only 50.9%;

Q5 None of the other standalone models managed to surpass the 50% accuracy score
(on any fold), indicating that perplexities outputted by the control (M1) and semantic
model (M2) are not indicators for machine translation detection;

Q6 Composite model CM1 slightly outperforms the baseline on four out of five cross-
validation folds, and also on average (accuracy of 51.71%);

Q7 Composite model CM2 outperforms the baseline, as well as composite model CM1
across all cross-validation folds, with an average accuracy of 54.4%.

Lastly, from the results presented in Table 7 (average relative accuracy increase and
error rate reduction per composite model and per task) and Table 8 (statistical significance
of achieved accuracy improvements per composite model and per task), the following is
observed:

Q8 Composite model CM1 achieved the average RAI of 0.95% for classification task C1
and 1.59% for classification task C2. The former is deemed statistically significant
for a confidence level of 95% (p = 0.0387), while the latter is deemed statistically
insignificant (p = 0.5224);

223

Mathematics 2023, 11, 4660

Q9 Composite model CM2 achieved the average RAI of 2.06% for C1, 6.88% for C2,
error rate reduction of 11.57% for C1, and 7.13% for C2. Both improvements are
deemed statistically significant for a confidence level of 95% (p = 0.0003 and p = 0.4,
respectively);

Q10 The results achieved by all tested models, and especially M1, CM1, and CM2, are
comparable to the state-of-the-art results achieved for low-quality sentence detection
for the English language [20].

Based on the collected cues, primarily Q4 and Q5, we conclude that there is indeed a
use for semantic and syntactic models in sentence classification. While the positive results
achieved using composite classifiers that incorporate these models indicate their importance
for refinement of the classification, the fact that syntactic model M3 outperformed the
control model M1 for classification task C2 indicates a positive answer to the research
question RQ1:

RQ1: Are semantic and syntactic models justified tools to use for sentence classification
tasks, e.g., low-quality sentence or machine translation detection?

This notion that models M2 and M3 provide additional information despite being
trained on the same text (just different representation) is additionally apparent through
results achieved by composite model CM1 (Q2, Q6, Q8). While there is not definite statistical
significance in its improvements over the baseline for the CM2 task (p > 0.05), it definitely
improved over the baseline on the CM1 task (p = 0.0387) as evident in Q8, confirming
a positive answer to the first research question and imploring a positive answer to the
research question RQ2:

RQ2: Can composite language models based on outputted perplexities and the wis-
dom of crowds-based compositions improve on the accuracy of standalone models on
classification tasks?

Finally, the improvements the composite model CM2 achieved over both the stan-
dalone models (M1, M2, and M3) and the composite model CM1 (Q3, Q7, Q9) undoubtedly
provide a positive answer to the final research question RQ3:

RQ3: Can features extracted from perplexity vectors be used to further improve the
classification accuracy of composite models?

This also furthers the indication of the value of semantic and syntactic models, but most
of all, it affirms the value of perplexity vectors [36] in perplexity-based sentence classification.

If we revisit the results for low-quality sentence detection task C1 (Q1, Q2, Q3), we
conclude that for the task, while partially solvable using a standard language model,
with an accuracy of nearly 85%, a significant improvement can be made via incorporating
other language models and perplexity vectors. No statistically significant improvements
over the baseline were found using the model CM1 for this task, which is probably caused
by the poor performance of the semantic and syntactic model (average accuracy of 55.84%
and 61.75% compared to the baseline of 84.88%). Due to this fact, we must contribute the
improvements achieved by model CM2 (total error rate reduction of over 11%, Q9) to the
usage of perplexity vectors, indicating that low-quality sentences are detectable via features
contained within them.

As for the task of machine translation detection (C2) and the observed results on it (Q4,
Q5, Q6, Q7), it is apparent that its difficulty is much higher. Two out of three standalone
models failed to outperform the 50% accuracy mark, which can be attributed to random
selection. The only standalone model that could even slightly differentiate between the
expert and machine translations was the syntactic one (but with very low accuracy), which
could mean that expert and machine translations differ mostly in the syntax used. However,
model CM1 which uses all three achieved better results (average accuracy of 51.71%) and
the improvements were found to be statistically significant, indicating that the combination
of syntax and semantics is a better indicator. Lastly, the results achieved by the CM2 model
(relative accuracy increase of 6.88% and error rate reduction of 7.13%, Q9), despite the

224

Mathematics 2023, 11, 4660

somewhat low achieved accuracy of 54.4%, indicate a high improvement through the usage
of features extracted from perplexity vectors for this quite difficult task.

In conclusion, composite models are shown to improve on the accuracy of standalone
models for classification tasks, with a composite language model based on a stacked
classifier architecture that uses properties extracted from perplexity vectors as features being
singled out as the best option for detection of both machine translations (low accuracy) and
low-quality sentences (high accuracy). It should be noted that the drawback of composite
models is higher training complexity and higher execution time. In future work, they
should also be compared to bigger standalone models, i.e., whether the composition of
a few smaller models is better than a large standalone model in terms of both training
and execution speed, as well as in accuracy. If composite models are shown to be feasible,
the research should focus on improving their quality through the improvement of the
standalone models that they are composed of.

Perplexity vectors are shown to mitigate the main limitation of perplexity-based
classification (the lack of dimensionality), but their limitations (aside from slightly higher
execution time) are yet to be determined through future research. For example, features
analysis should disclose the highest-value features of perplexity vectors, e.g., features
extracted using RNN or features extracted from frequency-domain-based properties of
perplexity vectors.

An inspection of further usages of both composite language models and perplexity
vectors should be performed in order to expand on the idea of this research. Lastly,
other methods should be tested for the examined tasks for the Serbian language, and a
comparative study should be performed for a better understanding of both previously
achieved and future results. Most prominently, BERT or a RoBERTa-based model for Serbian
should be fine-tuned for the aforementioned tasks and tested on the prepared dataset.

Author Contributions: Conceptualization, M.Š. and R.S.; Data curation, M.U. and R.S.; Formal
analysis, M.Š. and M.U.; Investigation, M.Š.; Methodology, M.Š. and M.U.; Project administration,
R.S.; Resources, M.Š., M.U. and R.S.; Software, M.Š.; Supervision, M.U. and R.S.; Validation, M.U.;
Visualization, M.Š.; Writing—original draft, M.Š.; Writing—review and editing, M.Š., M.U. and R.S.
All authors have read and agreed to the published version of the manuscript.

Funding: The research is inline with the preparation for the TESLA project (Text Embeddings—
Serbian Language Applications), Program PRIZMA, the Science Fund of the Republic of Serbia, grant
number 7276.

Data Availability Statement: All of the data produced by this experiment as well as the com-
plete code, which can be used to reproduce the results of the study, is publicly available as a
repository at https://github.com/procesaur/composite-lang-models (accessed on 29 September
2023). All of the pre-trained models are available on the web: Baseline language model https:
//huggingface.co/procesaur/gpt2-srlat (accessed on 29 September 2023); Semantic language model
https://huggingface.co/procesaur/gpt2-srlat-sem (accessed on 29 September 2023); Syntactic lan-
guage model https://huggingface.co/procesaur/gpt2-srlat-synt (accessed on 29 September 2023).

Acknowledgments: The authors thank numerous contributors to the Serbian Corpora collection,
especially the members of the Language Resources and Technologies Society JeRTeh.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

225

Mathematics 2023, 11, 4660

Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural network
BERT Bidirectional Encoder Representations from Transformers
CLARIN Common Language Resources and Technology Infrastructure
CNN Convolutional Neural Network
ERR Error rate reduction
GPT Generative Pre-trained
LSTM Long short-term memory
ML Machine Learning
NLP Natural Language Processing
PC Personal computer
RAI Relative accuracy increase
ReLU Rectified linear unit function
RNN Recurrent neural network

Appendix A. Implementation

Perplexity. The calculation of sequence (4) is based on the Equation (1) and imple-
mented using the transformers Python library (https://huggingface.co/docs/transformers,
accessed on 13 October 2023).

Perplexity vector. The calculation of sequence (5) is based on the Equation (3) and imple-
mented using the transformers Python library (https://huggingface.co/docs/transformers,
accessed on 13 October 2023).

GPT2 models. The training of the used language models was implemented using the
transformers Python library (https://huggingface.co/docs/transformers, accessed on 13
October 2023). The training of all models was based on the GPT2 training configuration
(https://huggingface.co/gpt2/raw/main/config.json, accessed on 11 November 2023),
and the tokenization of the dataset was performed using the tokenizers Python library
((https://huggingface.co/docs/tokenizers, accessed on 11 November 2023).

Fully connected layers. All fully connected layers for this research (used for com-
posite model CM1, as well as neural network components NN1 and NN4 for composite
model CM2) are implemented using PyTorch library and torch.nn.Linear class (https:
//pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear, accessed on
13 October 2023).

Recurrent layer. A recurrent layer used for the component NN2 of the compos-
ite model CM2 is implemented using PyTorch library and torch.nn.RNN class (https:
//pytorch.org/docs/stable//generated/torch.nn.RNN.html#torch.nn.RNN, accessed on
13 October 2023).

Convolutional layer. A (one-dimensional) convolutional layer employed in the
component NN3 of the composite model CM2 is implemented using PyTorch library,
torch.nn.Conv1d class (https://pytorch.org/docs/stable//generated/torch.nn.Conv1d.
html#torch.nn.Conv1d, accessed on 13 October 2023).

Max pooling layer. A (one-dimensional) max pooling layer is employed in the
component NN3 of the composite model CM2 is implemented using PyTorch library,
torch.nn.MaxPool1d class (https://pytorch.org/docs/stable//generated/torch.nn.MaxPool1
d.html#torch.nn.MaxPool1d, accessed on 13 October 2023).

Hyperbolic Tangent (Tanh) function. Tanh activation is used on the output of the re-
current layer in the NN2 component and implemented using PyTorch library, torch.nn.Tanh
class (https://pytorch.org/docs/stable/generated/torch.nn.Tanh.html, accessed on 13
October 2023).

Rectified linear unit function. After each non-terminal fully connected linear layer,
as well as after each convolutional and max pooling layer, a rectified linear unit (ReLU)
activation is implemented using PyTorch library, torch.nn.ReLU class (https://pytorch.

226

Mathematics 2023, 11, 4660

org/docs/stable//generated/torch.nn.ReLU.html#torch.nn.ReLU, accessed on 13 October
2023). The following layer use ReLU activation:

1. The sole layer NN1 component;
2. Each layer of the NN3 component;
3. The first layer of the NN4 component.

References

1. Elman, J.L. Finding Structure in Time. CRL Technical Report 9901; Technical Report, Center for Research in Language; University of
California: San Diego, CA, USA, 1988.

2. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
3. Hochreiter, J.S. Untersuchungen zu Dynamischen Neuronalen Netzen. Master’s Thesis, Institut für Informatik Technische

Universität München, München, Germany, 1991. Available online: https://people.idsia.ch/~juergen/SeppHochreiter199
1ThesisAdvisorSchmidhuber.pdf (accessed on 12 November 2023).

4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
5. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
6. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In

Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017.

7. Kenton, J.D.M.W.C.; Toutanova, L.K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019.

8. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training.
2018. Available online: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
(accessed on 12 November 2023).

9. Lee, M. A Mathematical Interpretation of Autoregressive Generative Pre-Trained Transformer and Self-Supervised Learning.
Mathematics 2023, 11, 2451. [CrossRef]

10. Peng, B.; Li, C.; He, P.; Galley, M.; Gao, J. Instruction Tuning with GPT-4. arXiv 2023, arXiv:2304.03277.
11. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI

Blog 2019, 1, 9.
12. Bogdanović, M.; Tošić, J. SRBerta-BERT Transformer Language Model for Serbian Legal Texts. In Proceedings of the Analysis,

Approximation, Applications (AAA2023), Vrnjačka Banja, Serbia, 21–24 June 2023.
13. Ljubešić, N.; Lauc, D. BERTić-The Transformer Language Model for Bosnian, Croatian, Montenegrin and Serbian. In Proceedings

of the 8th Workshop on Balto-Slavic Natural Language Processing, Online, 20 April 2021; pp. 37–42.
14. Dobreva, J.; Pavlov, T.; Mishev, K.; Simjanoska, M.; Tudzarski, S.; Trajanov, D.; Kocarev, L. MACEDONIZER-The Macedonian

Transformer Language Model. In Proceedings of the International Conference on ICT Innovations, Skopje, North Macedonia, 29
September–1 October 2022; Springer: Cham, Switzerland, 2022; pp. 51–62.

15. Šmajdek, U.; Zupanič, M.; Zirkelbach, M.; Jazbinšek, M. Adapting an English Corpus and a Question Answering System for
Slovene. Slov. 2.0 EmpiričNe Apl. Interdiscip. Raziskave 2023, 11, 247–274. [CrossRef]

16. Singh, P.; Maladry, A.; Lefever, E. Too Many Cooks Spoil the Model: Are Bilingual Models for Slovene Better than a Large
Multilingual Model? In Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, Dubrovnik, Croatia, 2–6 May 2023; pp. 32–39.

17. Agichtein, E.; Castillo, C.; Donato, D.; Gionis, A.; Mishne, G. Finding High-Quality Content in Social Media. In Proceedings
of the 2008 International Conference on Web Search and Data Mining, Palo Alto, CA, USA, 11–12 February 2008; WSDM ’08;
Association for Computing Machinery: New York, NY, USA, 2008; pp. 183–194. [CrossRef]

18. Vajjala, S.; Majumder, B.; Gupta, A.; Surana, H. Practical Natural Language Processing: A Comprehensive Guide to Building Real-World
NLP Systems; O’Reilly Media: Newton, MA, USA, 2020.

19. Jurafsky, D.; Martin, J.H. Speech and Language Processing, 3rd ed.; Draft; Pearson; Prentice Hall: Hoboken, NJ, USA, 2023.
20. Fernández-Pichel, M.; Prada-Corral, M.; Losada, D.E.; Pichel, J.C.; Gamallo, P. An Unsupervised Perplexity-Based Method for

Boilerplate Removal. Nat. Lang. Eng. 2023, 1–18. [CrossRef]
21. Toral, A.; Pecina, P.; Wang, L.; Van Genabith, J. Linguistically-Augmented Perplexity-Based Data Selection for Language Models.

Comput. Speech Lang. 2015, 32, 11–26. [CrossRef]
22. Gamallo, P.; Campos, J.R.P.; Alegria, I. A Perplexity-Based Method for Similar Languages Discrimination. In Proceedings of the

Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), Valencia, Spain, 3 April 2017; pp. 109–114.
23. Jansen, T.; Tong, Y.; Zevallos, V.; Suarez, P.O. Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content

Detection in Multilingual Heterogeneous Web Data. arXiv 2022, arXiv:2212.10440.
24. Lee, N.; Bang, Y.; Madotto, A.; Fung, P. Towards Few-Shot Fact-Checking via Perplexity. In Proceedings of the 2021 Conference

of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11
June 2021; pp. 1971–1981.

227

Mathematics 2023, 11, 4660

25. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, MD, USA, 22–27
June 2014; pp. 655–665.

26. Stanković, R.; Škorić, M.; Šandrih Todorović, B. Parallel Bidirectionally Pretrained Taggers as Feature Generators. Appl. Sci. 2022,
12, 5028. [CrossRef]

27. Škorić, M.; Stanković, R.; Ikonić Nešić, M.; Byszuk, J.; Eder, M. Parallel Stylometric Document Embeddings with Deep Learning
Based Language Models in Literary Authorship Attribution. Mathematics 2022, 10, 838. [CrossRef]

28. Škorić, M.D. Kompozitne Pseudogramatike Zasnovane na Paralelnim Jezičkim Modelima Srpskog Jezika. Ph.D. Thesis, University
of Belgrade, Belgrade, Serbia, 12 November 2023. Available online: https://nardus.mpn.gov.rs/handle/123456789/21587
(accessed on 12 November 2023).

29. Costa-jussà, M.R.; Cross, J.; Çelebi, O.; Elbayad, M.; Heafield, K.; Heffernan, K.; Kalbassi, E.; Lam, J.; Licht, D.; Maillard, J.; et al.
No Language Left Behind: Scaling Human-Centered Machine Translation. arXiv 2022, arXiv:2207.04672.

30. Landauer, T.K.; Dumais, S. Latent Semantic Analysis. Scholarpedia 2008, 3, 4356. [CrossRef]
31. Grace Winkler, E. Understanding Language; Continuum International: Danbury, CT, USA, 2008; pp. 84–85.
32. Andonovski, J.; Šandrih, B.; Kitanović, O. Bilingual Lexical Extraction Based on Word Alignment for Improving Corpus Search.

Electron. Libr. 2019, 37, 722–739. [CrossRef]
33. Perisic, O.; Stanković, R.; Ikonić Nešić, M.; Škorić, M. It-Sr-NER: CLARIN Compatible NER and GeoparsingWeb Services for

Italian and Serbian Parallel Text. In Proceedings of the Selected Papers from the CLARIN Annual Conference 2022, Prague,
Czech Republic, 10–12 October 2022; Linköping University Electronic Press: Linköping, Sweden, 2023; pp. 99–110. [CrossRef]

34. Perišić, O.; Stanković, R.; Ikonić Nešić, M.; Škorić, M. It-Sr-NER: Web Services for Recognizing and Linking Named Entities in
Text and Displaying Them on a Web Map. Infotheca—J. Digit. Humanit. 2023, 23, 61–77. [CrossRef]

35. Hinrichs, E.; Krauwer, S. The CLARIN Research Infrastructure: Resources and Tools for eHumanities Scholars. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, 26–31 May 2014;
Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S., Eds.; European
Language Resources Association (ELRA): Reykjavik, Iceland, 2014.

36. Škorić, M. Text Vectorization via Transformer-Based Language Models and N-Gram Perplexities. arXiv 2023, arXiv:2307.09255.
[CrossRef]

37. Amari, S.I. Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements. IEEE Trans. Comput. 1972,
100, 1197–1206. [CrossRef]

38. Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.J. Phoneme Recognition Using Time-Delay Neural Networks. In
Backpropagation; Lawrence Erlbaum Associates Inc.: Hillsdale, NJ, USA, 2013; pp. 35–61.

39. Rabiner, L.; Gold, B.; Yuen, C. Theory and Application of Digital Signal Processing. IEEE Trans. Syst. Man, Cybern. 1978, 8, 146.
[CrossRef]

40. Yamaguchi, K.; Sakamoto, K.; Akabane, T.; Fujimoto, Y. A Neural Network for Speaker-Independent Isolated Word Recognition.
In Proceedings of the ICSLP, Kobe, Japan, 18–22 November 1990.

41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Bouckaert, R.R.; Frank, E. Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. In Proceed-

ings of the Pacific-Asia conference on knowledge discovery and data mining, Sydney, Australia, 26–28 May 2004; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 3–12.

43. Student. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

228

Citation: García-Díaz, J.A.; Pan, R.;

Valencia-García, R. Leveraging Zero

and Few-Shot Learning for Enhanced

Model Generality in Hate Speech

Detection in Spanish and English.

Mathematics 2023, 11, 5004. https://

doi.org/10.3390/math11245004

Academic Editor: Florentina Hristea

Received: 9 November 2023

Revised: 11 December 2023

Accepted: 14 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Leveraging Zero and Few-Shot Learning for Enhanced Model
Generality in Hate Speech Detection in Spanish and English

José Antonio García-Díaz, Ronghao Pan * and Rafael Valencia-García

Facultad de Informática, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain;
joseantonio.garcia8@um.es (J.A.G.-D.); valencia@um.es (R.V.-G.)
* Correspondence: ronghao.pan@um.es

Abstract: Supervised training has traditionally been the cornerstone of hate speech detection models, but
it often falls short when faced with unseen scenarios. Zero and few-shot learning offers an interesting
alternative to traditional supervised approaches. In this paper, we explore the advantages of zero and few-
shot learning over supervised training, with a particular focus on hate speech detection datasets covering
different domains and levels of complexity. We evaluate the generalization capabilities of generative
models such as T5, BLOOM, and Llama-2. These models have shown promise in text generation and have
demonstrated the ability to learn from limited labeled data. Moreover, by evaluating their performance
on both Spanish and English datasets, we gain insight into their cross-lingual applicability and versatility,
thus contributing to a broader understanding of generative models in natural language processing. Our
results highlight the potential of generative models to bridge the gap between data scarcity and model
performance across languages and domains.

Keywords: hate speech detection; zero-shot learning; few-shot learning; fine-tuning; large language
models; natural language processing

MSC: 68T50

1. Introduction

Online social networks have evolved into vast interconnected communities that func-
tion as communication platforms, facilitating the exchange of information and social dis-
course. While these virtual spaces undoubtedly enhance global connectivity, they also raise
a troubling concern: the spread of hate speech. Hate speech encompasses a range of dis-
criminatory and biased behaviors, including homophobia, misogyny, racism, transphobia,
and other forms of intolerance, which affect individuals as well as online communities and
platforms that strive to create inclusive and safe environments. Identifying and mitigating
instances of hate speech on social media platforms is critical to protecting the digital sphere
from the harmful effects of prejudice, hostility, and harassment.

In the ongoing fight against hate speech in online spaces, the field of Natural Language
Processing (NLP) has evolved significantly in recent years. Traditional methods of hate
speech detection, often based on statistical approaches and conventional machine learning
classifiers, have been outpaced by advances in deep learning. In particular, Automatic
Document Classification (ADC) using Transformers has emerged as the new frontier in
the fight against online hate. These powerful models, with their ability to learn complex
patterns in language and context, have achieved unprecedented accuracy and efficiency in
distinguishing hate speech from benign content. Their success has led to a paradigm shift
in how we approach this multifaceted problem.

While Transformers have undoubtedly demonstrated exceptional performance in
controlled and simulated environments, their effectiveness has faced notable challenges
when applied to the unpredictable and dynamic landscape of real-world online social
networks. The discrepancy between idealized laboratory conditions and the complexity of

Mathematics 2023, 11, 5004. https://doi.org/10.3390/math11245004 https://www.mdpi.com/journal/mathematics
229

Mathematics 2023, 11, 5004

the online ecosystem has raised concerns about the generalizability of the models. These
discrepancies call for a deeper examination of their adaptability to diverse and evolving
hate speech contexts. However, the latest approaches in NLP, such as Large Language
Models (LLMs), have the ability to directly handle a wide range of NLP tasks and domains,
and they possess Zero-Shot Learning (ZSL) and Few-Shot Learning (FSL) capabilities.
Thus, the central motivation of this research is to evaluate the potential of ZSL and FSL
approaches, which are specifically designed to address the very issue of generalization
and adaptability. By subjecting generative models such as BLOOM [1] or LLAMA [2]
to a battery of real-world Spanish and English hate speech datasets, we seek to uncover
whether these models exhibit improved generalization and robustness in the fight against
hate speech compared to traditional fine-tuning approaches.

In this case, the evaluation of the datasets for English and Spanish was chosen because
English is the most spoken language and Spanish is the fourth [3], even though both are
typologically different languages, one belonging to the Germanic languages and the other
to the Romance languages [4].

To evaluate the performance of ZSL and FSL capabilities compared to fine-tuning
strategies, we defined the following research questions:

• RQ1. Do ZSL and FSL strategies improve the performance of fine-tuning an LLM for
hate speech detection?

• RQ2. Are current ZSL and FSL models equally good at detecting hate speech in
English and Spanish?

• RQ3. What are the best generative LLMs for performing ZSL and FSL classification in
hate speech detection?

• RQ4. Are the same models equally valid for ZSL and FSL in hate speech detection?

The rest of the manuscript is organized as follows. First, in Section 2 the reader will
find the state-of-the-art in hate speech detection and different strategies for performing
ZSL and FSL experiments. Next, Section 3 describes the evaluated dataset and the pipeline
for performing the comparisons between ZSL and FSL in comparison with fine-tuning
approaches. Next, Section 4 presents the results which are evaluated in Section 5. Finally,
the conclusions of the paper as well as and promising lines of research can be found in
Section 6.

2. State-of-the-Art

Hate speech can be defined as the use of language that promotes discrimination,
hostility, or violence against individuals or groups based on their race, ethnicity, religion,
gender, sexual orientation, disability, or other protected characteristic [5]. Hate speech can
take many forms and is often targeted at specific groups, resulting in types such as racism,
xenophobia, homophobia, misogyny, transphobia, and more. These types of hate speech
are characterized by their specific prejudices and discriminatory attitudes, highlighting
the diversity of groups that may be targeted or marginalized by such expressions. Hate
speech is an important social and ethical concern because it can contribute to real harm,
perpetuate stereotypes, and undermine inclusivity and tolerance in society.

Hate speech detection has undergone a paradigm shift, driven by the evolution of
NLP. Transformer-based models, which are the building blocks of Large Language Models
(LLMS), exemplified by BERT, RoBERTa, and their multilingual counterparts, have become
the focus of modern hate speech detection systems. Their ability to capture contextual
linguistic information has revolutionized the field. In contrast, earlier methods relied on
statistical features such as TF–IDF or non-contextual word embeddings such as GloVe [6]
or fastText [7].

In a survey published in 2018 in [5], the authors highlighted the lack of hate speech de-
tection systems for non-English languages. Since then, a few datasets have been published
on this topic, especially those published in shared tasks in workshops. However, in recent
surveys, such as the one published in [8], in which the authors evaluate the most important
datasets published in recent years on the topic of hate speech, the authors conclude that

230

Mathematics 2023, 11, 5004

several datasets in the bibliography do not have sufficient examples and are therefore not
reliable for hate speech detection. In Spanish, the authors of [9] evaluated which features
and which feature integration techniques are most effective for hate speech detection. They
focus mainly on transformers and linguistic features, and two strategies for combining the
features: knowledge integration and ensemble learning. The evaluation was carried out on
four Spanish datasets on different types of hate speech. Two of them were published in
workshops as shared tasks. They were the shared tasks (1) AMI 2018 [10], held at IberEval
2018 and which focused on the detection of misogyny; and (2) HatEval 2019 [11], held
at SemEval 2019 and which focused on the detection of hate speech against immigrants
and women. The other two datasets are (3) the full Spanish MisoCorpus 2020 [12], which
focused on misogyny; and (4) HaterNET [13], a binary dataset compiled from Twitter. The
authors concluded that the integration of linguistic features with the transformers using the
knowledge integration strategy outperformed other approaches in identifying hate speech
in Spanish.

Zero and Few-Shot Learning

In recent years, many studies have addressed the problem of so-called low-resource
languages and the possibilities of using multilingual approaches based on LLMs. In [14],
evidence was found that Multilingual BERT (mBERT), a multilingual masked language model
based on transformers, is capable of zero-shot cross-lingual transfer. Furthermore, in [15], the
ability of this model to transfer syntactic knowledge between languages was investigated by
examining whether and to what extent syntactic dependencies learned in one language are
maintained in others. In [16,17], the compressibility of the BERT model was verified, specifically
its ability to capture linguistic knowledge in word representations.

In particular, some have focused on the transfer of specific knowledge or phenomena
into phylogenetically different languages by ZSL and FSL of LLMs. For example, the
authors of [18] explored the problem of multilingual transfer in unseen languages where
no unlabeled data are available for pre-training a model. A sentiment analysis task in
12 languages, including 8 unseen languages, was used to analyze the effectiveness of
different few-shot learning strategies. Another similar paper [19], where the ability of the
pre-trained BERT neural model in Italian to embed syntactic dependency relations in its
layers by approximating a dependency parse tree was investigated. For this purpose, a
structural probe, a supervised model capable of extracting linguistic structures from a
language model, was trained using the contextual embeddings of BERT layers.

Regarding the evaluation of novel ZSL and FSL strategies in deep learning, the work
described in [20] measures the reliability of using state-of-the-art generative LLMs to build
knowledge graphs. In this sense, the authors propose a novel strategy for asking different
LLMs to extract the data to build the knowledge graph. This strategy is based on ZSL,
since no requirements are needed to guide the prompts. Another work evaluating ZSL
capabilities is [21], in which the authors propose ChatIE, which combines ZSL strategies
and ChatGPT for a question-answering task. The evaluated task is divided into several
subtasks, including the extraction and recognition of entities and their relations. The
authors evaluate a total of six datasets written in two languages. Their proposed model
outperforms models trained in the traditional way (i.e., full-shot models).

The paper published in [22] comes closest to our proposal. Among other research
objectives, the authors evaluate the ZSL performance of different LLMs and hate speech
using the HatEval 2019 dataset [11]. Five LLMs posing as different human annotators are
evaluated. While the results are promising, the authors conclude that human annotation is
still needed. The main differences with our work are that no few-shot learning capabilities
are evaluated and that hate speech is only evaluated in one dataset.

3. Materials and Methods

This section describes the experiments conducted to answer the proposed research
questions regarding the performance of ZSL and FSL in detecting hate speech. Therefore,

231

Mathematics 2023, 11, 5004

this section is divided into two parts. The first, Section 3.1, describes the datasets evaluated
in our proposal. These datasets are in Spanish and English. Next, Section 3.2 describes
the pipeline for carrying out the experiments. This pipeline includes three strategies: fine
tuning of an LLS, defined as baseline, and ZSL and FSL.

3.1. Datasets

This section describes the datasets used to evaluate the performance of the ZSL and
FSL features. In order to select the datasets that help us answer the RQs defined in this work,
we focus on hate speech datasets in two languages: Spanish and English. Another goal is
to cover different subtopics of hate speech, such as the detection of sexist or misogynistic
content, or racism, transphobia, and homophobia.

In order to make the results comparable across datasets, we focused on a unique task:
binary hate speech detection. That is, we select datasets that allow us to identify which
texts contain hate speech and which do not. It is worth noting that most of the selected
datasets come from shared tasks in workshops that defined a binary classification task.
However, there are a few datasets that we have adapted to meet this requirement. Another
important point is that not all datasets published in the workshops had the gold labels
published. In these cases, we reorganized the dataset to create a new test set from the
training split. Therefore, the results in these cases are not comparable to those published in
the official task rankings.

The selected datasets are described below, but a summary can be found in Table 1,
which includes their publication year, language, hate speech subdomain, and size.

• EXIST (EXIST 2021-es, EXIST 2022-es, EXIST 2022-es, EXIST 2022-en): These are a
series of shared tasks focused on identifying sexism in Spanish and English. There
are editions of EXIST in 2021 [23], 2022 [24], and 2023 [25] in different international
workshops such as CLEF or IberLEF. The challenges proposed to the participants
usually consist of a binary classification of sexist comments and multi-classification
problems to explain why the comments are sexist. In this work, we focus on the
binary classification task of 2021 and 2022, with the datasets of Spanish and English
separately. The golden labels are not published for these datasets, so we have chosen
a custom split for testing in this work.

• HaterNet 2019 (HaterNet). The HaterNet 2019 dataset [13] contains 6k documents an-
notated as hateful and non-hateful. The dataset can be accessed at 8 November 2023
(https://zenodo.org/record/2592149#.YNBqJGj7SUl). This dataset is unbalanced, since
only about 1.5k documents are annotated as hateful. The original evaluation of the dataset
focuses on the F1 score of the hateful class. This dataset has the gold labels of the test split.

• HatEval 2019 (HatEval). The HatEval [11] shared task took place in SemEval 2019,
and is about detecting hate speech against immigrants and women. The dataset is in
two languages: Spanish and English, and it was collected from Twitter. In our work,
we focus on the first subtask of the competition, which is about binary classification to
detect hate speech. This dataset has the gold labels of the test split.

• Spanish hate speech detection in football (Football) [26]. In this paper, the au-
thors published a dataset for hate speech detection in Spanish, consisting of almost
7.5k football-related tweets. These tweets were manually categorized as aggressive,
racist, misogynist, and safe. In the work, the authors proposed a multi-label approach,
and achieved a macro F1 score of 88.713% with the combination of LLM features
within the same neural network. This dataset has the gold labels of the test split.

• Spanish MisoCorpus 2020 (MisoCorpus). The Spanish MisoCorpus 2020 dataset [12]
focuses on the binary identification of misogyny. This dataset is almost balanced. It
can be downloaded in the full version or divided into three splits regarding different
categories. The first one focuses on the violence against relevant women; the second
one is about the messages from Spain and Latin America to understand cultural and
background differences; and the last one is about general characteristics related to
misogyny. This dataset has the gold labels of the test split.

232

Mathematics 2023, 11, 5004

• Explainable Detection of Online Sexism [27] (EDOS). This shared task was con-
ducted in SemEval 2023 and focused on detecting and explaining sexism in English.
The dataset was collected from Gab and Reddit. In this paper, we focus on the first
subtask, binary sexism detection. This dataset has the gold labels of the test split.

• Hate Speech and Offensive Content Identification in Indo-European Languages,

2020 (HASOC). The HASOC shared task was conducted in FIRE 2020, and it contains
documents in English, German, and Hindi for the identification of hateful, offensive
and profane content. This dataset has the gold labels of the test split.

It is worth noting that these datasets were selected based on their relation to hate
speech, rather than other common datasets for understanding assessment such as GLUE [28].
Furthermore, the selected datasets have been used in international workshops such as
IberLEF or CLEF.

Table 1. Year, language, hate speech subdomain, and size of the datasets.

Dataset Year Language Domain Size

EXIST-2021-es [23] 2021 Spanish Sexism 3436
EXIST-2022-es [24] 2022 Spanish Sexism 6233
HaterNet [13] 2019 Spanish Hate 6000
HatEval [11] 2019 Spanish Hate 6599
Football [26] 2023 Spanish Hate 8026
MisoCorpus [12] 2020 Spanish Misogyny 8390

EXIST-2021-en [23] 2021 English Sexism 3106
EXIST-2022-en [24] 2022 English Sexism 6170
HatEval [11] 2019 English Hate 13,000
EDOS [27] 2022 English Hate 20,000
HASOC 2020 English Hate 5124

3.2. Pipeline
3.2.1. Baseline: Fine-Tuning Models

For a fair comparison of the ZSL and FSL capabilities of generative models with
fine-tuning LLMs, we established a strong baseline by fine-tuning several popular LLMs
based on different architectures (BERT, RoBERTa) and different optimization strategies
(distillation) and focusing on a specific dataset or multilingual.

Fine-tuning an LLM for an ADC task involves the process of adapting a model, such
as BERT, to a specific classification objective. This is achieved by taking a well-trained
LLM and further training it on a labeled dataset containing documents annotated with
labels. During this fine-tuning process, the parameters of the LLM are adjusted to learn
the patterns and features relevant to the classification task. The goal is to optimize the
model’s performance in accurately categorizing new documents into predefined labels.
Fine-tuning LLMs is a powerful approach that leverages the model’s pre-trained language
understanding capabilities for ADC tasks such as sentiment analysis, topic categorization,
spam detection, and more.

Below is a comparison of the LLMs evaluated.

• Mono-lingual Transformers. The two most popular monolingual transformer archi-
tectures are BERT (Bidirectional Encoder Representations from Transformers) [29] and
RoBERTa (a Robustly Optimized BERT Pre-training Approach) [30]. These models
were trained on English data.
BERT is pre-trained on large amounts of text data to understand the contextual nu-
ances of language. BERT’s bidirectional architecture allows it to capture relationships
between words and their environment, making it highly effective for various NLP
tasks, from sentiment analysis to question answering and more. RoBERTa is an evo-
lution of the original BERT model. It has been trained on a larger and more diverse
dataset, using a longer training period and a dynamic masking strategy. Unlike BERT,

233

Mathematics 2023, 11, 5004

RoBERTa does not use the Next Sentence Prediction (NSP) task during pre-training.
It also uses a larger vocabulary and incorporates additional training techniques, all
of which contribute to its superior performance and robustness in various natural
language understanding tasks. Both general-purpose models can be adapted to solve
other tasks through a form of transfer learning called fine-tuning. In this process, a pre-
trained model is retrained on specific datasets and tasks, and the model’s parameters
are adjusted to perform well on these new tasks.
There are two LLMs in Spanish, MarIA and BETO. MarIA [31], on the one hand, is
trained with the RoBERTa architecture and BETO [32], on the other hand, is trained
with the BERT architecture.
We are also evaluating lightweight models: ALBERT [33] and DistilBERT [34]. AL-
BERT (A Lite BERT) is an optimized variant of the BERT model designed to improve
computational efficiency without sacrificing performance by significantly reducing
the number of parameters. DistilBERT, on the other hand, is a distilled version of
the BERT model. It achieves compactness and computational efficiency by using
distillation. Distilling involves compressing and simplifying its architecture to create a
lighter version while retaining its essential knowledge. The process typically involves
training a smaller model (known as the student) to mimic the behavior of the larger,
pre-existing model (the teacher). These models have also been adapted to Spanish [35].

• Multi-lingual Transformers. Multilingual LLMs are models that have been trained
on text from multiple languages, giving them the ability to understand and generate
text in different linguistic contexts. Some advantages are that these models facilitate
cross-lingual knowledge transfer because they can apply their understanding from
one language to another, reducing the need for language-specific models. Second, they
are resource efficient, allowing multiple languages to be handled by a single model,
thereby reducing computational overhead. In some scenarios, multilingual LLMs
require less labeled data to achieve competitive performance on some tasks. However,
dedicated monolingual models typically outperform multilingual models.
In this paper, we evaluate multilingual BERT, one of the first multilingual models,
but also two newer models: DeBERTa [36], and TwHIN [37]. DeBERTa stands for
Decoding-enhanced BERT with Disentangled Attention. It is a model that improves
BERT by enhancing its decoding capabilities and disentangling attention mechanisms,
resulting in better performance on various natural language processing tasks. TwHIN
is trained on 7 billion microblogging posts from Twitter, making it suitable for short,
noisy, and user-generated text often found in hate speech.

To obtain the best result for each dataset and language model, we perform a hyper-
parameter tuning step to perform the fine-tuning process. For this, we use the RayTune
library [38]. This step is as follows. For each dataset and language model, we train a total
of 10 models. Each model has different parameters to be evaluated. The hyperparameters
are as follows: (1) the training batch size, where 8 or 16 are the only alternatives; (2) the
weight decay, with values between 0.0 and 0.3 following a uniform distribution; (3) the
warm-up steps, with step values of 0, 250, 500, or 1000; (4) the number of epochs (between
1 and 5); and (5) the learning rate, with values between 1 × 10−5 and 5 × 10−5 following a
uniform distribution. The algorithm for selecting the next pair of hyperparameters is based
on HyperOptSearch, with the Tree of Parzen Estimators (TPE) and the ASHA scheduler.
The goal is to maximize the macro-weighted F1 score.

3.2.2. Generative Models

In terms of text generation models, we have conducted experiments with five state-
of-the-art fine-tuned instruction LLMs based mainly on three architectures: (1) T5 with an
encoder-–decoder, (2) Llama-2, and (3) BLOOMZ. We specifically chose these five models be-
cause they have extensive fine-tuning across a wide range of instructions, making them the
most representative of each architecture category. The selected models are described below.

234

Mathematics 2023, 11, 5004

• Flan-T5. It is the instruction fine-tuned version of T5 [39] that has achieved strong
few-shot performance, even compared to much larger models like PaLM 62B. It has
been fine-tuned on over 1000 tasks and covers 60 languages. For this study, we used
the XL version of Flan-T5, which contains a total of 3 billion parameters [40].

• Flan-alpaca. It is an encoder-–decoder model based on T5 [39] and has been fine-tuned
with the Alpaca instruction dataset and GPT4ALL [41].

• mT0. It is a model belonging to the BLOOMZ and mT0 family, a group of models
capable of understanding human instructions in dozens of languages through zero-
shot learning [42]. Specifically, these are fine-tuned models derived from BLOOM and
mT5 over a mixture of multilingual tasks. For this paper, we used the large version,
which has a total of 1.3 billion parameters.

• Llama v2. It is a family of pre-trained LLMs, fine-tuned over a range of 7B to 70B
parameters, capable of generating text and summarizing or rewriting existing text [2].
In this case, we used the Stable Beluga 7B and Stable Beluga 13B models, based on
Llama-2 with 7B and 13B parameters, fine-tuned with the Orca-style dataset [43]. Note
that due to hardware limitations, the Llama-2 13B is loaded with a 4-bit quantization
and this fact usually reduces the performance of the model.

3.2.3. ZSL and FSL Prompting

A prompt is a type of input or instruction that is inserted into an LLM to generate a
desired response. It can be a sentence, a phrase, or even an entire paragraph, and serves
as a starting point or guide for the language model to generate text. Therefore, the proper
design and customization of prompts can have a significant impact on the performance of
LLMs in specific tasks, such as sentiment analysis.

For ZSL in T5-based models (Flan-T5 and Flan-alpaca), we have defined a prompt
in the form of a paragraph consisting mainly of two parts: an instruction to the LLM and
the text to be analyzed. In the LLM instruction, to ensure that the models always return
one of the classification classes, we introduced a kind of control sequence, as shown in
Figure 1. We considered the classification of the aforementioned datasets from a binary
perspective. Thus, for the mT0 model, the best performance was achieved with a prompt
like “Is this a sexist tweet?” and the answer will always be yes or no. Instructed models
of Llama-2 require prompts to be constructed with specific fields: “system”, “user”, and
“assistant”. The “system” field is used to specify the instruction or guidance to the system,
“user” contains the instance to be classified, and “assistant” is the output indicator.

For the FSL approach, we randomly selected five examples of each label and included
them in the prompt using the Stormtrooper (https://github.com/centre-for-humanities-
computing/stormtrooper/tree/main/stormtrooper(accessed at 8 November 2023)) tool
approach, which consists of including the examples in the instruction part of the LLM with
the following format: “Please respond with a single label that you think fits the document
best. Here are some examples of labels given by experts: examples”. The “examples” part
is where the randomly extracted examples from the dataset are inserted.

Despite the inclusion of a control sequence in the model, there are still a few cases
where the model returns an unrelated response. In these cases, we replaced the response
with the most common label in the dataset.

235

Mathematics 2023, 11, 5004

Figure 1. Instructions formulated for ZSL in our study of LLMs for each classification task. The
“classes” part indicates the possible labels of the dataset and the “text” part is where the text to be
parsed is inserted.

4. Results

In this section, we present the results obtained for the comparison between the fine-
tuning and generative models. The results are divided into Spanish (see Section 4.1) and
English (see Section 4.2) datasets.

Since we only consider hate speech classification from a binary perspective, the com-
parison of all models is based only on the hate speech class, including precision, recall, and
F1 score. In this sense, we ignore the relevance of the class imbalance between the datasets
in our benchmark.

In terms of hardware resources, all experiments are performed on a GeForce RTX 4090
(24 GB). As mentioned earlier, the Llama-2 13B model is evaluated with 4-bit precision due
to hardware limitations.

236

Mathematics 2023, 11, 5004

4.1. Spanish Datasets

First, we report the results obtained with the Spanish split of the EXIST dataset in
Table 2 for 2021 (left) and 2022 (right) for the positive class (i.e., a document annotated
as sexist). Note that this evaluation is performed with a custom validation split, as the
gold labels were not released for this shared task. Looking at the results obtained with the
fine-tuning strategy, we can see that the two multilingual models, DeBERTa and TwHIN,
achieved very good performance on the 2021 dataset. On the other hand, these models
obtained more limited results in 2022, where DistilBETO obtained the best F1 score for the
sexist label (2022). In this sense, multilingual DeBERTa obtained an almost perfect recall
but very limited precision in 2022, which in binary classification indicates that the model
is not reliable, as it always predicts that all documents are sexist. It is worth noting that
EXIST 2022 is almost twice the size of EXIST 2021. However, monolingual LLMs such as
BETO and MarIA give consistent results in both 2021 and 2022, with MarIA slightly better
in both cases.

In terms of ZSL, the 7B version of the Llama-2 model achieved the best results in both
EXIST 2021 and EXIST 2022 datasets, with F1 scores of 69.883% and 69.872%, respectively.
Contrary to the zero-shot scenario, the FSL inference (five shots in our experiments) shows
that the performance of Flan-Alpaca, Flan-T5, and 13B Llama-2 did not improve in EXIST
2021 and even worsened due to the introduced examples being poorly correlated with
the training data of these models. In the FSL of EXIST 2022, we can see that the five
examples selected for each label have improved the performance of Flan-T5, Flan-Alpaca,
and Llama-2 13B. The largest absolute gains are obtained with mT0, with an improvement
of about 28%.

Table 2. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of EXIST 2021
(left) and 2022 (right) with the positive class. The results are calculated with a custom validation split.
The best results for each metric are shown in bold.

2021 2022

LLM Precision Recall F1 Score Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 78.4530 80.2260 79.3296 79.0484 75.3927 77.1773
BETO 80.5882 77.4011 78.9625 77.7597 83.5951 80.5719
DistilBETO 80.3815 83.3333 81.8308 78.0309 83.6823 80.7579
MarIA 80.5479 83.0508 81.7802 78.0130 83.5951 80.7077
mBERT 73.2240 75.7062 74.4444 73.4459 83.5078 78.1543
mDeBERTa 81.9718 82.2033 82.0874 50.2413 99.9127 66.8613
TwHIN 78.4615 86.4406 82.2581 50.0323 67.5393 57.4824

Z
er

o-
sh

ot

Flan-T5 67.1598 64.1243 65.6069 64.0981 63.8743 63.9860
Flan-alpaca 61.8943 79.3785 69.5545 60.8696 79.4066 68.9133
mT0 63.2653 8.75671 15.3846 58.6538 10.6457 18.0207
Llama-2 64.8910 75.7062 69.8827 55.2178 95.1134 69.8718
Llama-2 13B 72.3684 62.1469 66.8693 70.0397 61.6056 65.5525

Fe
w

-s
ho

t Flan-T5 69.8305 58.1912 63.4823 67.7686 64.3979 66.0403
Flan-alpaca 51.3828 99.7175 67.8194 53.6176 97.6440 69.2236
mT0 51.8868 77.6836 62.2172 52.2752 41.0995 46.0186
Llama-2 69.2547 62.9944 65.9763 64.1658 56.7190 60.2131
Llama-2 13B 71.2871 61.0169 65.7534 65.1969 72.2513 68.5430

Next, we evaluate the Spanish split of the HatEval 2019 shared task for discriminating
between documents labeled as hateful to immigrants and hateful to women. The results are
shown in Table 3. In this case, the performance is obtained with the test set, as the gold labels
were released. For the fine-tuning strategy, the best performance for the hateful comments
is achieved with DistilBETO, with an F1 score of 76.237%. Looking at the result of the other
lightweight model, ALBETO, its performance is also very competitive for detecting hateful
comments, with a performance of 75.334%. In general, all the fine-tuned LLMs achieve
a similar range of values. The most limited result is obtained with multilingual BERT
(70.240%). Nevertheless, the performance of the other multilingual models, mDeBERTA and

237

Mathematics 2023, 11, 5004

TwHIN, is very promising, as they both outperform the monolingual model BETO, although
the result of MarIA is slightly better (75.912%). Finally, to compare the performance with
the official results of the shared task [11], the overall macro averaged F1 score is 73% and
our best macro averaged F1 score (not shown in the table) is 78.45%, also with DistilBETO.

In the ZSL of the hate speech detection models, we can see that Llama-2 from the 7B
version achieved the best result with an F1 score of 65.369%, followed by Llama-2 from the
13B version with an F1 score of 64.100%. Regarding the FSL, the examples included in the
prompt did not improve the performance of the models. We suspect that this is because
the examples have little correlation with the test set, introducing noise into the hate speech
prediction. Nevertheless, the 13B version of the Llama-2 model improved its performance
by about 2%, achieving an F1 score of 66.283%, surpassing the best ZSL result.

Table 3. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of HatEval
2019 with the positive class. The results are calculated with the test split. The best results for each
metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 70.2490 81.2121 75.3338
BETO 66.4216 82.1212 73.4417
DistilBETO 70.5806 82.8787 76.2369
MarIA 71.2766 81.2121 75.9207
mBERT 65.6992 75.4545 70.2398
mDeBERTa 67.2393 83.0303 74.3051
TwHIN 72.8324 76.3636 74.5562

Z
er

o-
sh

ot

Flan-T5 65.8228 55.1515 60.0165
Flan-alpaca 50.8961 86.0606 63.9640
mT0 46.3177 79.0909 58.4219
Llama-2 53.5266 83.9394 65.3687
Llama-2 13B 47.8358 97.1212 64.1000

Fe
w

-s
ho

t Flan-T5 74.8428 36.0606 48.6708
Flan-alpaca 47.7702 95.7576 63.7418
mT0 41.2874 96.2121 57.7798
Llama-2 58.3110 65.9091 61.8777
Llama-2 13B 53.4323 87.2727 66.2831

The next evaluated dataset is the Spanish MisoCorpus 2020, the results of which are
shown in the Table 4. This dataset is about misogyny detection with tweets containing
hatred towards women with responsibility charges, tweets from different Spanish speaking
countries and tweets with different misogynistic characteristics. The strategy of fine-tuning
LLMs for the binary classification task yields very high results in terms of precision, recall,
and F1 score for the positive label, regardless of the language model. In fact, the difference
between the best (mDeBERTa) and the worst (multilingual BERT) is only 1.808% of the F1
score. Regarding ZSL in text generation models for the classification of misogyny texts,
we can see that the best result is obtained with the 13B version of Llama-2, with an F1
score of 69.60%. Furthermore, inference with few shots (five shots in our experiments)
shows an improvement in all models except mT0. This draws our attention to the large
performance loss compared to fine-tuning with ZSL and FSL. Especially in models such as
Flan-T5 in ZSL and FSL, or mT0 in FSL, with very limited recall, there is a suggestion that
these models give random predictions.

Table 5 shows the results obtained for the detection of hate speech in the football dataset.
In this sense, if we observe the results of the fine-tuning strategy, we can see that the best
precision and F1 score is obtained with the monolingual model MarIA (87.535% of precision,
85.175% of F1 score), while the multilingual DeBERTa achieved the best recall (85.302%).
Multilingual BERT achieved the lowest F1 score (80.926%), but this result is surpassed by
another multilingual model, TwHIN, with an F1 score of 83.974%). The lightweight models
ALBETO and DistilBETO also achieved very good results, with F1 scores of 84.888% and
84.375%, respectively. This table also shows the performance of different text generation
models in a ZSL and FSL scenario. The best result was achieved with the 13B version of

238

Mathematics 2023, 11, 5004

Llama-2, with an F1 score of 72.326% in ZSL. However, we can see that the examples selected
for FSL did not improve the performance of the models due to their quality, since FSL models
depend heavily on the composition and quality of the test set.

Table 4. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of Spanish
MisoCorpus 2020 with the positive class. The results are calculated with the test split. The best results
for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 90.1389 88.5402 89.3324
BETO 90.3581 89.4952 89.9246
DistilBETO 89.9587 89.2224 89.5890
MarIA 89.8649 90.7230 90.2919
mBERT 89.1185 88.2673 88.6909
mDeBERTa 90.6849 90.3138 90.4990
TwHIN 90.6207 89.6316 90.1235

Z
er

o-
sh

ot

Flan-T5 68.0581 51.1596 58.4112
Flan-alpaca 51.6817 85.9482 64.5492
mT0 51.1530 33.2879 40.3306
Llama-2 51.8270 94.8158 67.0203
Llama-2 13B 57.3959 88.4038 69.6026

Fe
w

-s
ho

t Flan-T5 72.0247 63.5744 67.5362
Flan-alpaca 46.5176 99.3179 63.3594
mT0 42.6172 83.0832 56.3367
Llama-2 64.2005 73.3970 68.4914
Llama-2 13B 62.0619 82.1282 70.6988

Table 5. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of Hate
Football Corpus 2023 with the racist class. The results are calculated with the test split. The best
results for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 85.0 84.7769 84.8883
BETO 85.2632 85.0394 85.1511
DistilBETO 83.7209 85.0394 84.3750
MarIA 87.5346 82.9396 85.1752
mBERT 84.1360 77.9528 80.9264
mDeBERTa 80.0493 85.3018 82.5921
TwHIN 84.7594 83.2021 83.9735

Z
er

o-
sh

ot

Flan-T5 80.2548 33.0709 46.8401
Flan-alpaca 57.8829 67.4541 62.3030
mT0 48.1061 66.6667 55.8856
Llama-2 50.9874 74.5407 60.5544
Llama-2 13B 64.3892 82.4934 72.3256

Fe
w

-s
ho

t Flan-T5 87.3016 14.4357 24.7748
Flan-alpaca 54.9729 79.7900 65.0964
mT0 26.3636 15.2231 19.3012
Llama-2 88.3041 39.6325 54.7101
Llama-2 13B 65.5629 78.7798 71.5663

Finally, for the Spanish datasets, we report the results of HaterNET 2019 in Table 6.
Regarding the fine-tuning strategy, the multilingual model DeBERTa achieved the best
performance with an F1 score of 68.858% with the positive (hateful) class. These results
outperform the experiments carried out when the dataset was compiled, which had an
F1 score of 61.1% [13] based on a neural network combining Long–Short Term Memory
(LSTM) and MultiLayer Perceptron (MLP) architectures with features related to words,
emoticons, and embeddings enriched with TF–IDF. Similar to other Spanish experiments
(see Tables 2 and 3), the most limited results are obtained with multilingual BERT, with
an F1 score of 58.519%. In these experiments, we also observed that most models achieve
better precision than recall, with the multilingual models DeBERTa and TwHIN being the
most notable exceptions. For ZSL on the HaterNET dataset, we can see that the best model

239

Mathematics 2023, 11, 5004

is Llama-2 from the 13B version, which achieved an F1 score of 50.741%. Regarding FSL,
we can see that it did not improve the performance of the Flan-T5 and mT0 models due
to the fact that the example set is poorly correlated with the training set of these models.
However, with the same examples, it improved the performance of Flan-Alpaca and both
the 7B and 13B versions of Llama-2, obtaining the best results in FSL with an F1 score of
56.350%, surpassing the best results in ZSL.

Table 6. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of Spanish
HaterNET 2019 with the positive class. The results are calculated with the test split. The best results
for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 64.8649 54.3689 59.1549
BETO 72.7612 63.1068 67.5910
DistilBETO 67.4193 67.6375 67.5283
MarIA 67.9054 65.0485 66.4463
mBERT 68.3983 51.1329 58.5185
mDeBERTa 66.6666 71.1974 68.8576
TwHIN 66.0436 68.6084 67.3016

Z
er

o-
sh

ot

Flan-T5 42.0245 44.3366 43.1496
Flan-alpaca 33.5535 82.2006 47.6548
mT0 36.7925 50.4854 42.5648
Llama-2 30.5328 96.4401 46.3813
Llama-2 13B 35.5383 88.6731 50.7407

Fe
w

-s
ho

t Flan-T5 54.0541 6.4725 11.5607
Flan-alpaca 36.1613 84.1424 50.5837
mT0 17.0683 27.5081 21.0657
Llama-2 42.0382 85.4369 56.3501
Llama-2 13B 37.0656 93.2039 53.0387

4.2. English Datasets

In this section, we report the results for the English datasets on the identification of
hate speech.

The first experiments use the English splits of the EXIST 2021 and 2022 datasets. The
results are shown in the Table 7. Regarding the fine-tuning strategy, BERT is the model that
achieves the best results in both datasets, reaching an F1 score of 79.769% in 2021 and 79.682%
in 2022. In 2021, BERT also achieves the best precision, but not the best recall, while TwHIN
achieves the best precision in 2022. In both cases, the best recall is obtained by the multilingual
model DeBERTa, but the low precision obtained indicates that the multilingual DeBERTa
always predicts the positive class, making this model useless compared to the others. The
lightweight models ALBERT and DistilBERT achieve very competitive results, as well as the
multilingual model TwHIN. Looking at the results of ZSL and FSL, we notice that these results
are much better than those obtained with the Spanish splits of EXISTS (see Table 2). In fact,
Llama-2 (13B) achieves 74.240% of the F1 score in 2021 and 73.962% in 2022 with ZSL. These
results are 5.529% below BERT in 2021 and 5.72% in 2022. The performance of FSL is slightly
worse in most of the evaluated models, except in the case of mT0.

The next evaluated comparison is with the HASOC 2019 dataset, the results of which
are shown in Table 8. Regarding the fine-tuning model strategy, the best performance is
achieved by the multilingual model TwHIN, with an F1 score of 86.760% and an almost
perfect recall of 93.609%; however, TwHIN is not the model with the best precision, as
DistilBERT achieves a precision of 84.754%. All the fine-tuned LLMs achieve similar
performance, but as observed with the Spanish datasets (see Section 4.1), the most limited
result is obtained with multilingual BERT. From the results obtained in ZSL, we can see
that the models perform better in classifying hate speech in English, achieving an F1 score
above 70% in all models. Regarding FSL, the performance of Flan-Alpaca has improved,
surpassing the best ZSL result with an F1 score of 84.602%.

240

Mathematics 2023, 11, 5004

Table 7. Benchmark of the fine-tuning, zero, and few-shot learning of English datasets of EXIST 2021
(left) and 2022 (right) with the positive class. The results are calculated with a custom validation split.
The best results for each metric are shown in bold.

2021 2022

LLM Precision Recall F1 Score Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 73.0337 78.7879 75.8017 73.9726 82.1109 77.8296
BERT 76.24309 83.6364 79.7688 74.8038 85.2415 79.6823
DistilBERT 74.4505 82.1212 78.0980 74.6479 80.5903 77.5054
mBERT 70.0831 76.6667 73.2272 73.8731 79.1592 76.4249
mDeBERTa 48.0349 100.0 64.8968 49.4681 99.8211 66.1529
RoBERTa 71.9895 83.3334 77.2472 74.7026 84.2576 79.1929
TwHIN 73.9612 80.9091 77.2793 75.6869 81.3059 78.3959

Z
er

o-
sh

ot

Flan-T5 67.1642 81.8182 66.7643 81.5742 73.4300 73.7705
Flan-alpaca 61.2159 88.4848 72.3668 61.0234 86.4043 71.5291
mT0 55.3672 29.6970 38.6588 61.7094 32.2898 42.3958
Llama-2 64.3373 80.9091 71.6779 56.2698 95.5277 70.8223
Llama-2 13B 65.8080 85.1515 74.2404 65.3187 85.2415 73.9620

Fe
w

-s
ho

t Flan-T5 73.6059 60.0000 66.1102 70.4825 66.6369 68.5057
Flan-alpaca 54.1176 97.5758 69.6216 54.7379 97.1377 70.0193
mT0 47.9279 80.6061 60.1130 49.0061 57.3345 52.8442
Llama-2 67.1598 68.7879 67.9641 66.5081 62.5224 64.4537
Llama-2 13B 67.5978 73.3333 70.3488 64.2755 80.1431 71.3376

Table 8. Benchmark of the fine-tuning, zero, and few-shot learning of English datasets of HASOC
2021 with the positive class. The results are calculated with the test split. The best results for each
metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 81.0872 89.7243 85.1874
BERT 82.6037 89.8496 86.0744
DistilBETO 84.7539 88.4712 86.5726
mBERT 80.7474 89.3484 84.8305
mDeBERTa 82.4074 89.2231 85.6799
RoBERTa 83.4313 88.9724 86.1128
TwHIN 80.8442 93.6090 86.7596

Z
er

o-
sh

ot

Flan-T5 81.1180 81.8296 81.4722
Flan-alpaca 74.3665 95.6140 83.6623
mT0 64.6825 81.7043 72.2038
Llama-2 70.6767 94.2356 80.7734
Llama-2 13B 72.4521 89.9749 80.2683

Fe
w

-s
ho

t Flan-T5 90.2527 31.3283 46.5116
Flan-alpaca 76.9231 93.9850 84.6024
mT0 59.7484 83.3333 69.5971
Llama-2 74.2553 87.4687 80.3222
Llama-2 13B 72.5198 91.6040 80.9524

The results with the EDOS 2023 dataset are shown in Table 9, where monolingual BERT
achieves the best performance for the fine-tuning strategy, with an F1 score of 73.795%.
It also achieves the best recall (75.773%), but not the best precision, which is achieved
by DistilBERT (77.203%). The most limited result is achieved by ALBERT (70.049% of
the F1 score), followed by multilingual BERT (70.192% of the F1 score). Compared to
BERT, RoBERTa also achieves a good performance with an F1 score of 71.680%, but the
multilingual TwHIN surpasses this result with an F1 score of 72.083%. The text generation
models for classifying sexist text in the EDOS dataset performed best in the ZSL scenario,
with Flan-T5 achieving an F1 score of 53.12%. In the FSL scenario, it improved this result
by about 8%, achieving an F1 score of 61.57%.

Table 10 shows the results of HatEval 2019 with the English dataset. Regarding the
fine-tuning strategy, the best result is obtained with the multilingual TwHIN, with an F1
score of 67.977% over the positive class. However, the precision of all the LLMs is very

241

Mathematics 2023, 11, 5004

limited for the positive class since the recall is almost perfect in every case. This behavior is
not observed in the Spanish part of the HatEval 2019 dataset, where the recall is around
75% and 83%. However, the maximum result obtained in the official ranking for the English
dataset was a macro average F1 score of 65.10% [11]. Regarding the ZSL and FSL strategies,
the performance of the models is very similar, as almost all models achieve limited precision
but high recall, but this suggests that these models also always predict the positive class.
However, Llama-2 is the best performer for both ZSL and FSL. Specifically, the best overall
result is achieved with Llama-2 for FSL, when the highest overall performance is achieved
(F1 score of 67.083%).

Table 9. Benchmark of the fine-tuning, zero, and few-shot learning of English datasets of EDOS 2023
with the positive class. The results are calculated with test split. The best results for each metric are
shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 74.3917 66.1856 70.0491
BERT 71.9178 75.7732 73.7952
DistilBERT 77.2033 67.7320 72.1581
mBERT 72.8381 67.732 70.1923
mDeBERTa 75.1412 68.5567 71.6981
RoBERTa 74.2541 69.2783 71.68
TwHIN 72.8421 71.3402 72.0833

Z
er

o-
sh

ot

Flan-T5 37.2007 92.8866 53.1250
Flan-alpaca 31.7258 94.9485 47.5600
mT0 31.1571 49.6907 38.2996
Llama-2 28.5887 97.3196 44.1948
Llama-2 13B 33.0914 93.8272 48.9270

Fe
w

-s
ho

t Flan-T5 50.1622 79.6907 61.5691
Flan-alpaca 27.3882 97.8351 42.7959
mT0 24.1716 91.7526 38.2631
Llama-2 39.9890 74.7423 52.1020
Llama-2 13B 40.0659 75.1029 52.2548

Table 10. Benchmark of the fine-tuning, zero, and few-shot learning of English dataset of HatEval
2019 with the positive class. The results are calculated with test split. The results are calculated with
test split. The best results for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 42.7975 97.6190 59.5065
BERT 47.0161 97.5397 63.4486
DistilBERT 45.6329 97.8571 62.2413
mBERT 45.3933 96.1905 61.6794
mDeBERTa 45.9650 98.0952 62.598
RoBERTa 46.1831 96.5079 62.4711
TwHIN 47.5988 97.5397 63.9771

Z
er

o-
sh

ot

Flan-T5 45.0873 98.3333 61.8263
Flan-alpaca 42.8523 99.6825 59.9380
mT0 44.6973 91.9841 60.1609
Llama-2 44.8768 99.7619 61.9059
Llama-2 13B 44.2918 99.7619 61.3470

Fe
w

-s
ho

t Flan-T5 50.8132 91.7460 65.4031
Flan-alpaca 42.1546 1.000000 59.3081
mT0 42.1414 97.4603 58.8404
Llama-2 62.3891 72.5397 67.0826
Llama-2 13B 48.4294 96.6667 64.5298

5. Discussion

Tables 11 and 12 present a comparison showing the best results obtained by different
datasets and approaches for the Spanish and English datasets, respectively. In general,
we can observe that the fine-tuning approach for transformer models in classification
has achieved better performance than ZSL and FSL, but at a higher computational cost.

242

Mathematics 2023, 11, 5004

These results answer RQ1, which asks whether zero and few-shot improve the results of
fine-tuning for hate speech detection. In the ZSL approach to hate speech classification
in Spanish, the models achieved competent results even though they were not explicitly
trained for it, as in the case of the fine-tuning approach. The best model for ZSL was
Llama-2 in its 7B and 13B versions.

Regarding FSL, we experimented with a prompt-based FSL using five random examples
for each label, and we inserted them into the prompts of the text generation models to guide
the model towards better performance. However, based on the results obtained, we can see
that the FSL approach did not improve the performance of ZSL, and this is largely due to the
quality of the selected few-shot dataset and its relationship with the pre-trained data of the
models. Furthermore, finding a set of examples that generalize the concept of hate speech is
quite challenging [44]. In this paper [45], an additional retrieval module based on sentence
transformers was used to maximize the few-shot performance in clinical and biomedical tasks.
However, there are still cases where few-shot learning has worsened the performance of ZSL.
Therefore, it would be convenient to select the examples using some kind of heuristic or a
method to search for phrases that are more related to a certain class.

If we compare the results obtained for the Spanish and English datasets, we can see
that the results obtained by the three strategies evaluated (fine-tuning, ZSL, FSL) are more
similar for the English datasets, but greater for the Spanish ones. For example, in EXISTS
2021, there is a 12.402% decrease in performance between the fine-tuning and ZSL strategies
in Spanish. However, this difference is only 5.529% in English. Moreover, if we look at
the results comparing monolingual and multilingual approaches to fine-tuning, we see
that there is a tie in Spanish, as DistilBETO and MarIA are the best performing models
in three datasets, while TwHIN and DeBERTa, two multilingual LLMS, achieve the best
results in the other three Spanish datasets. In the case of the English datasets, English BERT
performed best in both EXISTS 2021 and 2022 and in EDOS, and TwHIN performed best in
HatEval and HASOC. In the case of ZSL and FSL, all evaluated models are multilingual.
It was therefore expected that the difference in performance would be the same in both
languages. Since the results show the opposite, we answer RQ2 (are current ZSL and FSL
models equally good at detecting hate speech in English and Spanish?) that ZSL and FSL
are better at detecting hate speech in English than in Spanish. However, this comparison
must be made with caution, as English and Spanish are typologically different languages
with different roots.

With regard to RQ3, which asks about the best generative LLMs for performing ZSL
and FSL classification in hate speech detection, we observed that Llama-2 13B is the model
that obtained a better result in five of the evaluated datasets for ZSL: three Spanish and
two English. In the case of Spanish, the other evaluated version of Llama achieved the best
performance in the rest of the evaluated datasets and only one other dataset in English. For
the rest of the evaluated English datasets, Flan T5 and Alpaca performed best for EDOS
and HASOC. In the case of FSL, Llama-2 13B also achieved the best results in three of
the Spanish datasets (HatEval, Football and MisoCorpus), tying with ZSL in two of them
(Football and MisoCorpus). Flan-alpaca achieved the best results for the two Spanish EXIST
datasets, and Llama-2 for HaterNET. In the case of English, the same models that performed
best on ZSL also performed best on FSL. This behavior was not observed for the Spanish
datasets. Given these results, we can conclude that Llama-2 13B is the best performing
model for zero and few-shot classification in hate speech detection, but this model is not a
silver bullet, as there are six datasets where this model did not achieve the best results.

Finally, RQ4 asks whether the same generative LLMs are equally good for zero and few
shots. The results show that only two of the Spanish datasets agree (Llama-2 13B in soccer
and the MisoCorpus). In English, however, the same models are the best for both ZSL
and FSL. So, in this case, the results suggest that the answer to this RQ4 is that it depends
on the language. However, if we look at the results individually across all the datasets
and generative models evaluated, the difference between ZSL and FSL is usually small,
with ZSL performing better. There are exceptions. For example, mT0 shows a difference

243

Mathematics 2023, 11, 5004

of 46.832% between FSL and ZSL in the Spanish EXIST 2021 dataset and a difference of
27.998% in 2022 (see Table 2). In other cases, there are strong differences between ZSL and
FSL, both in Spanish and in English. This fact suggests that experiments are needed to
evaluate which strategy is better depending on the dataset.

Table 11. Resume of the results of fine-tuning, zero, and few-shot learning for the Spanish datasets.

Fine-Tuning ZSL FSL

Dataset F1 Score Model F1 Score Model F1 Score Model

EXIST-2021-es 82.2581 TwHIN 69.8827 Llama-2 67.8194 Flan-alpaca
EXIST-2021-es 80.7579 DistilBETO 69.8718 Llama-2 69.2236 Flan-alpaca

HatEval 76.2369 DistilBETO 65.3687 Llama-2 66.2831 Llama-2 13B
HaterNET 68.8576 mDeBERTa 50.7407 Llama-2 13B 56.3501 Llama-2
Football 85.1752 MarIA 72.3256 Llama-2 13B 71.5663 Llama-2 13B

MisoCorpus 90.4990 mDeBERTa 69.6026 Llama-2 13B 70.6988 Llama-2 13B

Table 12. Resume of the results of fine-tuning, zero, and few-shot learning for the English datasets.

Fine-Tuning ZSL FSL

Dataset F1 Score Model F1 Score Model F1 Score Model

EXIST-2021-en 79.7688 BERT 74.2404 Llama-2 13B 70.3488 Llama-2 13B
EXIST-2022-en 79.6823 BERT 73.9620 Llama-2 13B 71.3376 Llama-2 13B

HatEval 63.9771 TwHIN 61.9059 Llama-2 67.0826 Llama-2
EDOS 73.7952 BERT 53.1250 Flan-T5 61.5691 Flan-T5

HASOC 86.7596 TwHIN 83.6623 Flan-alpaca 84.6024 Flan-alpaca

6. Conclusions and Outlook

In this research, we compare and contrast different strategies for detecting hate speech.
In particular, we evaluate two alternatives based on prompting, known as zero and few-
shot, against a fine-tuning strategy. Our main goal is to test the generalization ability of
these models to detect hate speech in texts written in English or Spanish. Through rigorous
evaluation on diverse hate speech detection datasets spanning different domains and
languages, we uncovered key insights. The evaluation highlighted the robust generalization
capabilities of generative models such as T5, BLOOMZ, and Llama-2, underscoring their
potential to bridge the gap between data scarcity and model performance. However,
the results are still more limited in performance compared to fine-tuning strategies, but
with less time and hardware resources. Our research not only contributes to the evolving
landscape of hate speech detection, but also underscores the ability of generative models to
advance the fight against online intolerance and discrimination.

In order to unravel the potential of zero and few-shot learning strategies in the field of
hate speech detection, a number of core research questions were defined. First and foremost,
we investigated the impact of these strategies on fine-tuning language models (LLMs) to
improve performance (RQ1). In addition, our research ventured into the cross-lingual
landscape by investigating whether these strategies are equally effective for hate speech
detection in English and Spanish (RQ2). We delved into the intricacies of generative LLMs
to identify the best models for zero and few-shot classification in hate speech detection
(RQ3). Finally, we questioned the versatility of these models by exploring whether they are
equally valid in the context of zero- and few-shot learning for hate speech detection (RQ4).
Our research efforts have been driven by these questions and have provided valuable
insights into the evolving field of hate speech detection strategies.

The results show that the performance of models based on T5, BLOOMZ, and Llama-2
is still more limited than the fine-tuning of an LLM for hate speech detection, but the results
are more stable with English datasets compared to Spanish. The results also show the
potential of Llama-2 13B, which achieved the best performance in most of the datasets.
Moreover, we observe a large variability in terms of precision and recall, which suggests
that a deep experimentation is still needed for each case to determine which is the best per-
forming model to perform ZSL and FSL. Another interesting finding is that FSL strategies

244

Mathematics 2023, 11, 5004

usually do not outperform ZSL. These results may be due to a poor selection of examples
used as input to the FSL models.

These results also suggest that the selection of the best strategy for hate speech detec-
tion is highly dependent on the dataset and the model. Therefore, further research should
be conducted to find the similarities and differences of the evaluated linguistic models
and strategies. In this sense, we propose to combine the use of linguistic features [46] and
explicable machine learning tools, such as SHAP and LIME, [47] to analyze the results
across datasets. In particular, we propose to compare the results in similar datasets, such as
those of EXIST, which published a Spanish and an English variant in the same competition.

As a promising line of research, we propose to build a retrieval module based on
Sentence Transformers to identify the subset that generalizes the concept of hate speech
from the training set. The idea would be to fine-tune a Sentence Transformers model
through contrastive learning [48] for extracting examples for prompt-based FSL, thus
maximizing its performance. In this sense, we also propose to improve the quality of
the prompts used and to evaluate different strategies for selecting the examples for FSL.
Another line we propose is the use of hyperparameter optimization for text generation
models. It is also worth noting that, due to hardware limitations, the 7B version of the
Llama-2 model was loaded into the GPU with 8-bit precision, and the 13B version with
4-bit precision. In this sense, the comparison between the two models is unfair (although
Llama v2 achieved better performance in most experiments). Therefore, we recommend
evaluating both models with 8-bit and 4-bit precision.

Finally, we will also propose to evaluate FSL and ZSL capabilities in other domains. We
propose two domains. The first one is author profiling, where the number of publications
per author is quite large, so the capabilities of ZSL and FSL models will imply a large time
saving of resources if the results have the same performance. In this sense, we will evaluate
the generative models with the dataset published in [49], which contains demographic
and psychographic traits of politicians and journalists from Spain. The second domain is
subjective language. Therefore, we will evaluate these models with the Spanish SatiCorpus
2021 [50], which contains pairs of satirical and real digital news, in order to check which
models are better suited to discriminate between them. We also propose to evaluate
standard reference datasets for model evaluation, such as GLUE [28] and those similar.

Author Contributions: Conceptualization, J.A.G.-D. and R.V.-G.; data curation, R.P.; funding acquisi-
tion, R.V.-G.; investigation, R.P.; project administration, R.V.-G.; resources, R.V.-G.; software, J.A.G.-D.
and R.P.; supervision, R.V.-G.; visualization, J.A.G.-D.; writing—original draft, all. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is part of the research project LT-SWM (TED2021-131167B-I00) funded by
MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.

Data Availability Statement: Source code for training the zero and few-shot models is available at
https://github.com/NLP-UMUTeam/mathematics-zsl-fsl-hate-speech (accessed on 8 November
2023). No new data are created in this research. Therefore it is necessary to request the datasets from
the original authors of each paper evaluated in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scao, T.L.; Fan, A.; Akiki, C.; Pavlick, E.; Ilić, S.; Hesslow, D.; Castagné, R.; Luccioni, A.S.; Yvon, F.; Gallé, M.; et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv 2022, arXiv:2211.05100.

2. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al.
Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288.

3. Cong Khanh, L. English as a Global Language: An Exploration of EFL Learners’ Beliefs in Vietnam. Int. J. TESOL Educ. 2022,
3, 19–33. [CrossRef]

4. Nichols, J. Linguistic Diversity in Space and Time; University of Chicago Press: Chicago, IL, USA, 2018.
5. Fortuna, P.; Nunes, S. A survey on automatic detection of hate speech in text. ACM Comput. Surv. CSUR 2018, 51, 1–30. [CrossRef]
6. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

245

Mathematics 2023, 11, 5004

7. Mikolov, T.; Grave, É.; Bojanowski, P.; Puhrsch, C.; Joulin, A. Advances in Pre-Training Distributed Word Representations. In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12
May 2018.

8. Alkomah, F.; Ma, X. A literature review of textual hate speech detection methods and datasets. Information 2022, 13, 273.
[CrossRef]

9. García-Díaz, J.A.; Jiménez-Zafra, S.M.; García-Cumbreras, M.A.; Valencia-García, R. Evaluating feature combination strategies for
hate speech detection in spanish using linguistic features and transformers. Complex Intell. Syst. 2023, 9, 2893–2914. [CrossRef]

10. Fersini, E.; Rosso, P.; Anzovino, M. Overview of the Task on Automatic Misogyny Identification at IberEval 2018. IberEval SEPLN
2018, 2150, 214–228.

11. Basile, V.; Bosco, C.; Fersini, E.; Debora, N.; Patti, V.; Pardo, F.M.R.; Rosso, P.; Sanguinetti, M. Semeval-2019 task 5: Multilingual
detection of hate speech against immigrants and women in twitter. In Proceedings of the 13th International Workshop on
Semantic Evaluation, Minneapolis, MI, USA, 6–7 June 2019; pp. 54–63.

12. García-Díaz, J.A.; Cánovas-García, M.; Colomo-Palacios, R.; Valencia-García, R. Detecting misogyny in Spanish tweets: An
approach based on linguistics features and word embeddings. Future Gener. Comput. Syst. 2021, 114, 506–518. [CrossRef]

13. Pereira-Kohatsu, J.C.; Quijano-Sánchez, L.; Liberatore, F.; Camacho-Collados, M. Detecting and monitoring hate speech in Twitter.
Sensors 2019, 19, 4654. [CrossRef]

14. Chi, E.A.; Hewitt, J.; Manning, C.D. Finding Universal Grammatical Relations in Multilingual BERT. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, Virtual, 6–10 July 2020; pp. 5564–5577. [CrossRef]

15. Guarasci, R.; Silvestri, S.; De Pietro, G.; Fujita, H.; Esposito, M. BERT syntactic transfer: A computational experiment on Italian,
French and English languages. Comput. Speech Lang. 2022, 71, 101261. [CrossRef]

16. Jawahar, G.; Sagot, B.; Seddah, D. What Does BERT Learn about the Structure of Language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics; Florence, Italy, 28 July–2 August 2019; pp. 3651–3657. [CrossRef]

17. Hewitt, J.; Manning, C.D. A Structural Probe for Finding Syntax in Word Representations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis,
MI, USA, 2–7 June 2019; Volume 1: Long and Short Papers, pp. 4129–4138. [CrossRef]

18. Winata, G.; Wu, S.; Kulkarni, M.; Solorio, T.; Preotiuc-Pietro, D. Cross-lingual Few-Shot Learning on Unseen Languages.
In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing, Virtual, 20–23 November 2022; Volume 1: Long Papers,
pp. 777–791.

19. Guarasci, R.; Silvestri, S.; De Pietro, G.; Fujita, H.; Esposito, M. Assessing BERT’s ability to learn Italian syntax: A study on
null-subject and agreement phenomena. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 1–15. [CrossRef]

20. Carta, S.; Giuliani, A.; Piano, L.; Podda, A.S.; Pompianu, L.; Tiddia, S.G. Iterative Zero-Shot LLM Prompting for Knowledge
Graph Construction. arXiv 2023, arXiv:2307.01128.

21. Wei, X.; Cui, X.; Cheng, N.; Wang, X.; Zhang, X.; Huang, S.; Xie, P.; Xu, J.; Chen, Y.; Zhang, M.; et al. Zero-shot information
extraction via chatting with chatgpt. arXiv 2023, arXiv:2302.10205.

22. Plaza-del Arco, F.M.; Nozza, D.; Hovy, D. Leveraging Label Variation in Large Language Models for Zero-Shot Text Classification.
arXiv 2023, arXiv:2307.12973.

23. Rodríguez-Sánchez, F.; Carrillo-de Albornoz, J.; Plaza, L.; Gonzalo, J.; Rosso, P.; Comet, M.; Donoso, T. Overview of exist 2021:
Sexism identification in social networks. Proces. Leng. Nat. 2021, 67, 195–207.

24. Rodríguez-Sánchez, F.; Carrillo-de Albornoz, J.; Plaza, L.; Mendieta-Aragón, A.; Marco-Remón, G.; Makeienko, M.; Plaza, M.;
Gonzalo, J.; Spina, D.; Rosso, P. Overview of exist 2022: Sexism identification in social networks. Proces. Leng. Nat. 2022,
69, 229–240.

25. Plaza, L.; Carrillo-de Albornoz, J.; Morante, R.; Amigó, E.; Gonzalo, J.; Spina, D.; Rosso, P. Overview of exist 2023–learning with
disagreement for sexism identification and characterization. In Proceedings of the International Conference of the Cross-Language
Evaluation Forum for European Languages, Thessaloniki, Greece, 18–21 September 2023; pp. 316–342.

26. Montesinos-Cánovas, E.; Garcia-Sánchez, F.; Garcia-Díaz, J.A.; Alcaraz-Mármol, G.; Valencia-García-Sánchez, R. Spanish hate
speech detection in football. Proces. Leng. Nat. 2023, 71, 15–27.

27. Kirk, H.; Yin, W.; Vidgen, B.; Röttger, P. SemEval-2023 Task 10: Explainable Detection of Online Sexism. In Proceedings of the
17th International Workshop on Semantic Evaluation (SemEval-2023), Toronto, ON, Canada, 10–31 January 2023; pp. 2193–2210.
[CrossRef]

28. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP; Brussels, Belgium, 1 November 2018; pp. 353–355. [CrossRef]

29. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K.N. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the NAACL-HLT, Minneapolis, MI, USA, 2–7 June 2019; pp. 4171–4186.

30. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

31. Gutiérrez Fandiño, A.; Armengol Estapé, J.; Pàmies, M.; Llop Palao, J.; Silveira Ocampo, J.; Pio Carrino, C.; Armentano Oller, C.;
Rodriguez Penagos, C.; Gonzalez Agirre, A.; Villegas, M. MarIA: Spanish Language Models. Proces. Leng. Nat. 2022, 68, 1–22.

246

Mathematics 2023, 11, 5004

32. Cañete, J.; Chaperon, G.; Fuentes, R.; Ho, J.H.; Kang, H.; Pérez, J. Spanish Pre-Trained BERT Model and Evaluation Data. In
Proceedings of the PML4DC at ICLR 2020, Addis Ababa, Ethiopia, 26 April 2020.

33. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language
representations. arXiv 2019, arXiv:1909.11942.

34. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,
arXiv:1910.01108.

35. Cañete, J.; Donoso, S.; Bravo-Marquez, F.; Carvallo, A.; Araujo, V. ALBETO and DistilBETO: Lightweight Spanish Language
Models. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022;
pp. 4291–4298.

36. He, P.; Gao, J.; Chen, W. Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding
sharing. arXiv 2021, arXiv:2111.09543

37. El-Kishky, A.; Markovich, T.; Park, S.; Verma, C.; Kim, B.; Eskander, R.; Malkov, Y.; Portman, F.; Samaniego, S.; Xiao, Y.; et al.
Twhin: Embedding the twitter heterogeneous information network for personalized recommendation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 2842–2850.

38. Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez, J.E.; Stoica, I. Tune: A research platform for distributed model selection
and training. arXiv 2018, arXiv:1807.05118.

39. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.

40. Chung, H.W.; Hou, L.; Longpre, S.; Zoph, B.; Tay, Y.; Fedus, W.; Li, Y.; Wang, X.; Dehghani, M.; Brahma, S.; et al. Scaling
instruction-finetuned language models. arXiv 2022, arXiv:2210.11416.

41. Chia, Y.K.; Hong, P.; Bing, L.; Poria, S. INSTRUCTEVAL: Towards Holistic Evaluation of Instruction-Tuned Large Language
Models. arXiv 2023, arXiv:2306.04757.

42. Muennighoff, N.; Wang, T.; Sutawika, L.; Roberts, A.; Biderman, S.; Scao, T.L.; Bari, M.S.; Shen, S.; Yong, Z.X.; Schoelkopf, H.; et al.
Crosslingual generalization through multitask finetuning. arXiv 2022, arXiv:2211.01786.

43. Mukherjee, S.; Mitra, A.; Jawahar, G.; Agarwal, S.; Palangi, H.; Awadallah, A. Orca: Progressive Learning from Complex
Explanation Traces of GPT-4. arXiv 2023, arXiv:2306.02707.

44. Mozafari, M.; Farahbakhsh, R.; Crespi, N. Cross-Lingual Few-Shot Hate Speech and Offensive Language Detection Using Meta
Learning. IEEE Access 2022, 10, 14880–14896. [CrossRef]

45. Labrak, Y.; Rouvier, M.; Dufour, R. A zero-shot and few-shot study of instruction-finetuned large language models applied to
clinical and biomedical tasks. arXiv 2023, arXiv:2307.12114.

46. García-Díaz, J.A.; Vivancos-Vicente, P.J.; Almela, A. Umutextstats: A linguistic feature extraction tool for spanish. In Proceedings
of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022; pp. 6035–6044.

47. Nguyen, H.T.T.; Cao, H.Q.; Nguyen, K.V.T.; Pham, N.D.K. Evaluation of explainable artificial intelligence: Shap, lime, and cam.
In Proceedings of the FPT AI Conference, Ha Noi, Vietnam, 6–7 May 2021; pp. 1–6.

48. Gunel, B.; Du, J.; Conneau, A.; Stoyanov, V. Supervised Contrastive Learning for Pre-Trained Language Model Fine-Tuning. arXiv
2020, arXiv:2011.01403.

49. García-Díaz, J.A.; Jiménez-Zafra, S.M.; Valdivia, M.T.M.; García-Sánchez, F.; Ureña-López, L.A.; Valencia-García, R. Overview of
PoliticEs 2022: Spanish Author Profiling for Political Ideology. Proces. Leng. Nat. 2022, 69, 265–272.

50. García-Díaz, J.A.; Valencia-García, R. Compilation and evaluation of the spanish saticorpus 2021 for satire identification using
linguistic features and transformers. Complex Intell. Syst. 2022, 8, 1723–1736. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

247

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-7258-0086-5

