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Polynomial Sequences and Their Applications †

Francesco Aldo Costabile, Maria Italia Gualtieri and Anna Napoli *

Department of Mathematics and Computer Science, University of Calabria, 87036 Rende, CS, Italy
* Correspondence: anna.napoli@unical.it
† This book is dedicated to Prof. Francesco Aldo Costabile on the occasion of his 75th birthday.

The purpose of this Special Issue is to present, albeit partially, the state of the art on
the theory and application of polynomial sequences.

Polynomials are incredibly useful mathematical tools, as they are simply defined and
can be calculated quickly on computer systems. They can be differentiated and integrated
easily and can be pieced together to form spline curves.

Stemming from Weierstrass’s well-known approximation theorem (1885) [1], se-
quences of polynomials perform an important role in several branches of science: mathe-
matics, physics, engineering, etc. For example, polynomial sequences arise in physics and
approximation theory as the solutions of certain ordinary differential equations. Among
these sequences of polynomials, we highlight orthogonal polynomials. In statistics, Her-
mite polynomials are very important, and they are also orthogonal polynomials and
Sheffer A-type zero polynomials [2]. In algebra and combinatorics, umbral polynomials
are used, such as rising factorials, falling factorials and Abel, Bell, Bernoulli, Euler, Boile,
ciclotomic, Dickson, Fibonacci, Lucas and Touchard polynomials. Finally, in computa-
tional and numerical mathematics, polynomial sequences are particularly important and
frequently used.

This volume contains both theoretical works and practical applications in the field
of polynomial sequences and their applications. In the following, a brief overview of the
published papers is presented.

Contributions

In [3], Extended Dynamic Mode Decomposition (EDMD) is used for the approximation
of the Koopman operator in the form of a truncated (finite dimensional) linear operator
in a lifted space of nonlinear observable functions. Orthogonal polynomials are used
for the expression of the observable functions, in conjunction with an order-reduction
procedure called p-q quasi-norm reduction. The authors present a Matlab library to
automate the computation of the EDMD. The performance of this library is illustrated with
a few representative examples.

Motivated by the improvements of Bernstein polynomials in computational disci-
plines, Özger et al. [4] propose a new generalization of Bernstein–Kantorovich operators
involving shape parameters λ, α and a positive integer as an original extension of Bern-
stein–Kantorovich operators. Some approximation and convergence results are presented.
Finally, illustrative graphics that demonstrate the approximation behavior and consistency
of the proposed operators are provided by a computer program.

In [5], odd and even polynomial sequences associated with the δ2(·) operator are
determined, being δ(·) the known central difference operator. Many aspects, including
matrix and determinant forms, recurrence formulas, generating functions and an algorithm
for effective calculation, are covered. New examples of odd and even central polynomial
sequences are presented.

In [6], the authors address the problem associated with the construction of polynomial
complexity computer programs. One of the new approaches to the problems is representing
a class of polynomial algorithms as a certain class of special logical programs. One of the

Mathematics 2022, 10, 4804. https://doi.org/10.3390/math10244804 https://www.mdpi.com/journal/mathematics
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main contributions of this paper is the construction of a new logical programming language
describing the class of polynomial algorithms. Particularly, the authors find p−iterative
terms that simulate the work of the Turing machine. This language allows one to create
fast and reliable programs and describes any algorithms of polynomial complexity. Its
main limitation is that the implementation of algorithms of complexity is not higher than
polynomial.

Niu et al. [7] give some important approximation results of Chebyshev polynomials in
the Legendre norm. Particularly, interpolation operators at the Chebyshev–Gauss–Lobatto
points are studied. The single-domain and multidomain cases for both one dimension and
multi-dimensions are analyzed.

In [8], the authors focus on the coefficients of the block tridiagonal matrices in linear
systems obtained from block iterative cyclic reductions. They examine the roots of charac-
teristic polynomials by regarding each block cyclic reduction as a composition of two types
of matrix transformations and then examining changes in the existence range of roots. The
fact that the roots are not very scattered allows one to accurately solve linear systems in
floating-point arithmetic.

A general method for proving whether a certain set is p−computable or not is pro-
posed in [9]. The method is based on a polynomial analogue of the classical Gandy
fixed-point theorem. Gandy’s theorem deals with the extension of a predicate through a
special operator and states that the smallest fixed point of this operator is a Σ-set. In this
paper, a new type of operator is used which extends predicates so that the smallest fixed
point remains a p−computable set. Polynomial algorithms for checking if a certain element
belongs to a given data type or not are used.

Paper [10] deals with the general linearization problem of Jacobi polynomials. The
authors provide two approaches for finding closed analytical forms of the linearization
coefficients of these polynomials. An application of some of the derived linearization for-
mulas to the solution of the non-linear Riccati differential equation based on the application
of the spectral tau method is presented.

In paper [11], the authors analyze some manuscript documents of Peter Winn that
came to their knowledge after his death. They concern continued fractions, rational (Padé)
approximation, Thiele interpolation, orthogonal polynomials, moment problems, series,
and abstract algebra. The authors think that these works are valuable additions to the
literature on these topics and that they can lead to new research and results.

A matrix calculus-based approach to general bivariate Appell polynomials is proposed
in [12]. This approach, which is new in the literature, generates a systematic, simple theory
which is in perfect analogy with the theory in the univariate case. Known and new basic
results are given, such as recurrence relations, the generating function, determinant forms
and differential equations.

Paper [13] deals with monic orthogonal polynomials with respect to the perturbed
Meixner–Pollaczek measure. By introducing a time variable to the Meixner–Pollaczek
measure, the authors find some interesting properties such as some recursive relations,
moments of finite order, concise hypergeometric formulae and orthogonality relations.
Moreover, certain analytic properties of the zeros of the corresponding monic perturbed
Meixner–Pollaczek polynomials are studied. Finally, some practical applications
are considered.

Kruchinin et al. in [14] study methods for obtaining explicit formulas for the coeffi-
cients of generating functions. These methods are based on using the powers of generating
functions. The concept of compositae is generalized to the case of generating functions
in two variables. Basic operations on such compositae are defined, such as composition,
addition, multiplication, reciprocation and compositional inversion. These operations
allow obtaining explicit formulas for compositae and coefficients of bivariate generating
functions. Some applications are presented.

In paper [15], an extension of the two-variable Fubini polynomials is introduced by
means of the polyexponential function. Some new relations are derived, including the
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Stirling numbers of the first and second kinds, the usual Fubini polynomials, and the higher-
order Bernoulli polynomials. Two-variable unipoly-Fubini polynomials are introduced
and some relationships between the two-variable unipoly-Fubini polynomials, the Stirling
numbers and the Daehee polynomials are derived.

In [16], as the centenary of the publication of I.M. Sheffer’s famous paper approaches [2],
the authors want to honor his memory by recalling some old and recent results. In particular,
the classification of polynomials by means of suitable linear differential operators and
Sheffer’s method for the study of A-type zero polynomials. Moreover, the theory of Rota
and his collaborators, the isomorphism between the group of Sheffer polynomial sequences
and the so-called Riordan matrices group are considered. The interesting problem of
orthogonality in the context of Sheffer sequences is also reported, recalling the results of
Sheffer, Meixner, Shohat, and the very recent ones of Galiffa et al. and Costabile et al.

Some classes of multivalue methods for the numerical solution of ordinary and frac-
tional differential equations are considered in [17]. Particularly, the authors focus on
two-step and mixed collocation methods, Nordsieck GLM collocation methods for ordinary
differential equations, and on two-step spline collocation methods for fractional differential
equations. The convergence and stability of the proposed methods are reported and some
numerical experiments are carried out to show the efficiency of the methods.

Acknowledgments: The Guest Editors would like to thank all the authors of the papers for their
quality contributions to this Special Issue and also all the reviewers for their valuable comments
towards the improvement of the submitted works. Moreover, a thanks to mathematics editorial office
for their technical and administrative support.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In the present work, a new extension of the two-variable Fubini polynomials is introduced
by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini
polynomials. Then, some useful relations including the Stirling numbers of the second and the
first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived.
Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials
are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the
unipoly function, and diverse properties involving integral and derivative properties are attained.
Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling
numbers of the second and the first kinds, and the Daehee polynomials are acquired.

Keywords: polyexponential function; Fubini polynomials; poly-Fubini polynomials; unipoly func-
tion; Stirling numbers

1. Introduction

Throughout the paper, we use N := {1, 2, 3, · · · } and N0 = N∪ {0}. Let C denote the
set of complex numbers, R denote the set of real numbers, and Z denote the set of integers.

The usual Euler En(x) and Bernoulli polynomials Bn(x) are defined via the following
exponential generating functions (cf. [1–6]):

2
ez + 1

exz =
∞

∑
n=0

En(x)
zn

n!
(|z| < π) and

z
ez − 1

exz =
∞

∑
n=0

Bn(x)
zn

n!
(|z| < 2π). (1)

The two-variable Fubini polynomials are defined as follows (cf. [1,2,4,7–10]):

exz

1− y(ez − 1)
=

∞

∑
n=0

Fn(x, y)
zn

n!
. (2)

Substituting x = 0 in (2), we have Fn(0, y) := Fn(y) called the usual Fubini polynomials
given by

1
1− y(ez − 1)

=
∞

∑
n=0

Fn(y)
zn

n!
. (3)

It is easy to see from (1) and (2) that

Fn

(
x,−1

2

)
= En(x).

Mathematics 2021, 9, 281. https://doi.org/10.3390/math9030281 https://www.mdpi.com/journal/mathematics
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Upon letting y = 1 in (3), we get the Fubini numbers as follows

1
2− ez =

∞

∑
n=0

Fn
zn

n!
. (4)

For more detailed information of the Fubini polynomials with applications,
see [1,2,4,7–10].

The Bernoulli polynomials of the second kind are defined as follows (cf. [5,11,12]):

z
log(1 + z)

(1 + z)x =
∞

∑
n=0

bn(x)
zn

n!
(5)

The Bernoulli polynomials of order α ∈ N are defined by (cf. [5,6,11–13])
(

z
ez − 1

)α

exz =
∞

∑
n=0

B(α)
n (x)

zn

n!
. (6)

By (5) and (6),
B(n)

n (x + 1) := bn(x). (7)

The polyexponential function Eik(x) is introduced by Kim-Kim [12] as follows

Eik(x) =
∞

∑
n=1

xn

(n− 1)!nk , (k ∈ Z) (8)

as inverse the polylogarithm function Lik(z) (cf. [6,13–15]) given by

Lik(z) =
∞

∑
n=1

zn

nk , |z| < 1. (9)

Using the polyexponential function Eik(x), Kim-Kim [12] considered type 2 poly-Bernoulli
polynomials, given by

Eik(log(1 + z))
ez − 1

exz =
∞

∑
n=0

β
(k)
n (x)

zn

n!
, (k ∈ Z) (10)

and attained several properties and formulas for these polynomials. Upon setting x = 0
in (10), β

(k)
n (0) := β

(k)
n are called type 2 poly-Bernoulli numbers.

We also notice that Ei1(z) = ez − 1. Hence, when k = 1, the type 2 poly-Bernoulli
β
(k)
n (x) polynomials reduce to the Bernoulli polynomials Bn(x) in (1).

Some mathematicians have considered and examined several extensions of special
polynomials via polyexponential function, cf. [5,11,13,16,17] and see also the references
cited therein. For example, Duran et al. [11] defined type 2 poly-Frobenius-Genocchi
polynomials by the following Maclaurin series expansion (in a suitable neighborhood of
z = 0):

Eik(log(1 + (1− u)z))
ez − u

exz =
∞

∑
n=0

G(F,k)
n (x; u)

zn

n!
(k ∈ Z)

and Lee et al. [17] introduced type 2 poly-Euler polynomials given by

Eik(log(1 + 2z))
z(ez + 1)

exz =
∞

∑
n=0
E (k)n (x)

zn

n!
.

Kim-Kim [12] also introduced unipoly function uk(x|p) attached to p being any arithmetic
map which is a complex or real-valued function defined on N as follows:

5
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uk(x|p ) =
∞

∑
n=1

p(n)
nk xn, (k ∈ Z). (11)

It is readily seen that

uk(x|1 ) =
∞

∑
n=1

xn

nk = Lik(x)

is the ordinary polylogarithm function in (9). By utilizing the unipoly function uk(x|p),
Kim-Kim [12] defined unipoly-Bernoulli polynomials as follows:

∞

∑
n=0

B(k)
n,p(x)

zn

n!
=

uk(1− e−z|p )
1− e−z exz. (12)

They derived diverse formulas and relationships for these polynomials, see [12].
The Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k) are

given below:

(log(1 + z))k

k!
=

∞

∑
n=0

S1(n, k)
zn

n!
and

(ez − 1)k

k!
=

∞

∑
n=0

S2(n, k)
zn

n!
. (13)

From (13), for n ≥ 0, we obtain

(x)n =
n

∑
k=0

S1(n, k)xk and xn =
n

∑
k=0

S1(n, k)(x)k, (14)

where (x)0 = 1 and (x)n = x(x− 1)(x− 2) · · · (x− n + 1), cf. [1–4,6–9,12–15].
From (3) and (13), we get

Fn(y) =
n

∑
k=0

S2(n, k)k!yk. (15)

In the following sections, we introduce a new extension of the two-variable Fubini
polynomials by means of the polyexponential function, which we call two-variable type
2 poly-Fubini polynomials. Then, we derive some useful relations including the Stirling
numbers of the first and the second kinds, the usual Fubini polynomials, and the Bernoulli
polynomials of higher-order. Also, we investigate some summation formulas and an
integral representation for type 2 poly-Fubini polynomials. Moreover, we introduce two-
variable unipoly-Fubini polynomials via unipoly function and acquire diverse properties
including derivative and integral properties. Furthermore, we provide some relationships
covering the Stirling numbers of the first and the second kinds, the two-variable unipoly-
Fubini polynomials, and the Daehee polynomials.

2. Two-Variable Type 2 Poly-Fubini Polynomials and Numbers

Inspired and motivated by the definition of type 2 poly-Bernoulli polynomials in (10)
given by Kim-Kim [12], here, we introduce two-variable type 2 poly-Fubini polynomials
by Definition 1 as follows.

Definition 1. For k ∈ Z, we define two-variable type 2 poly-Fubini polynomials via the following
exponential generating function (in a suitable neighborhood of z = 0) as given below:

Eik(log(1 + z))
z(1− y(ez − 1))

exz =
∞

∑
n=0

F(k)
n (x; y)

zn

n!
. (16)

Upon setting x = 0 in (16), we have F(k)
n (0; y) := F(k)

n (y) which we call type 2
poly-Fubini polynomials possessing the following generating function:

6
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Eik(log(1 + z))
z(1− y(ez − 1))

=
∞

∑
n=0

F(k)
n (y)

zn

n!
. (17)

We note that, for k = 1, the two-variable type 2 poly-Fubini polynomials reduce to the
usual two-variable Fubini polynomials in (2) because of Ei1(z) = ez − 1.

Now, we develop some relationships and formulas for two-variable type 2 poly-Fubini
polynomials as follows.

Theorem 1. The following relationship

F(k)
n (x; y) =

n

∑
l=0

(
n
l

)
F(k)

n−l(y)(u)xl (18)

holds for k ∈ Z and n ≥ 0.

Proof. By (16) and (17), we consider that

∞

∑
n=0

F(k)
n (x; y)

zn

n!
=

Eik(log(1 + z))
z(1− y(ez − 1))

exz

=
∞

∑
n=0

xnzn

n!

∞

∑
n=0

F(k)
n (y)

zn

n!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
F(k)

n−l(y)(u)xl

)
zn

n!
,

which gives the asserted result (18).

A relationship involving Stirling numbers of the first kind, the two-variable Fubini
polynomials, and two-variable type 2 poly-Fubini polynomials is stated by the follow-
ing theorem.

Theorem 2. For k ∈ Z and n ≥ 0, we have

F(k)
n (x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

(m + 1)k−1
Fn−l(x; y)

l + 1
. (19)

Proof. From (13) and (17), we observe that

∞

∑
n=0

F(k)
n (x; y)

zn

n!
=

exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

(m− 1)!mk

=
exz

z(1− y(ez − 1))

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k
1

m!

=
∞

∑
n=0

Fn(x; y)
zn

n!

∞

∑
n=0

∞

∑
n=m

1
n + 1

S1(n + 1, m + 1)

(m + 1)k−1
zn

n!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

(m + 1)k−1
Fn−l(x; y)

l + 1

)
zn

n!
,

which means the desired result (19).

Some special cases of Theorem 2 are examined below.

Corollary 1. For k ∈ Z and n ≥ 0, we get

7
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F(k)
n (y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

l + 1
Fn−l(y)

(m + 1)k−1 .

Corollary 2. For k = 1 and n ≥ 0, we acquire

Fn(x; y) =
n

∑
l=0

l

∑
m=0

(
n
l

)
Fn−l(x; y)

l + 1
S1(l + 1, m + 1).

The following differentiation property holds (cf. [12])

d
dx

Eik(log(1 + x)) =
1

(1 + x) log(1 + x)
Eik−1(log(1 + x). (20)

and also, the following integral representations are valid for k > 1:

Eik(log(1 + x)) =
∫ x

0

1
(1 + z) log(1 + z)

×
∫ z

0

1
(1 + z) log(1 + z)

· · ·
∫ z

0

z
(1 + z) log(1 + z)︸ ︷︷ ︸

(k−2) times

dzdz...dz

= x
∞

∑
m=0

∑
m1+···+mk−1=m

(
m

m1, · · · , mk−1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk−1)

mk−1

m1 + · · ·+ mk−1 + 1
xm

m!
. (21)

Theorem 3. The following relationship

F(k)
n (y) =

n

∑
m=0

(
n
m

)
∑

m1+···+mk−1=m

(
m

m1, · · · , mk−1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk−1)

mk−1

m1 + · · ·+ mk−1 + 1
Fn−m(y)

holds for n ∈ N0 and k > 1.

Proof. From (17) and (21), for k > 1, we can write

∞

∑
n=0

F(k)
n (y)

zn

n!
=

Eik(log(1 + z))
z(1− y(ez − 1))

=
z

z(1− y(ez − 1))

∞

∑
m=0

∑
m1+···+mk−1=m

(
m

m1, · · · , mk−1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · ·

B(mk−1)
mk−1

m1 + · · ·+ mk−1 + 1
xm

m!
,

Theorem 4. The following relationship

F(k)
n (y) =

1
1 + y

(
y

n

∑
m=0

(
n
m

)
F(k)

n−m(y) +
n

∑
m=0

1
(m + 1)k−1

S1(n + 1, m + 1)
n + 1

)
(22)

holds for n ≥ 0.

8
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Proof. From (17), we attain

Eik(log(1 + z))
z

=
∞

∑
n=0

F(k)
n (y)

zn

n!
(1− y(ez − 1))

=
∞

∑
n=0

F(k)
n (y)

zn

n!
− y

∞

∑
n=0

n

∑
m=0

(
n
m

)
F(k)

n−m(y)
zn

n!
+ y

∞

∑
n=0

F(k)
n (y)

zn

n!

=
∞

∑
n=0

(
(1 + y)F(k)

n (y)− y
n

∑
m=0

(
n
m

)
F(k)

n−m(y)

)
zn

n!

and, also, we have

Eik(log(1 + z)) =
1
z

∞

∑
m=1

(log(1 + z))m

mk
1

(m− 1)!

=
1
z

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k
1

m!
=

1
z

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k−1
1

(m + 1)!

=
1
z

∞

∑
m=0

∞

∑
n=m+1

S1(n, m + 1)
(m + 1)k−1

zn

n!
,

which implies the asserted result (22).

For s ∈ C and k ∈ Z with k ≥ 1, let

ηk(s) :=
1

Γ(s)

∫ ∞

0

zs−1

z(1− y(ez − 1))
Eik(log(1 + z))dz, (23)

where Γ(s) is the classical gamma function given below:

Γ(s) =
∫ ∞

0
zs−1ezdz (<(s) > 0).

From (23), we see that ηk(s) is a holomorphic map for <(s) > 0, since Eik(log(1 + z)) ≤
Ei1(log(1 + z)) with z ≥ 0. Thus, we have

ηk(s) =
1

Γ(s)

∫ 1

0

zs−2

1− y(ez − 1)
Eik(log(1 + z))dz +

1
Γ(s)

∫ ∞

1

zs−2

1− y(ez − 1)
Eik(log(1 + z))dz. (24)

We see that the second integral in (24) converges absolutely for any s ∈ C and hence,
the second term on the right hand side vanishes at non-positive integers. Therefore,
we obtain

lim
s→−m

∣∣∣∣
1

Γ(s)

∫ ∞

1

zs−2

1− y(ez − 1)
Eik(log(1 + z))dz

∣∣∣∣ ≤
1

Γ(−m)
M = 0,

since
Γ(s)Γ(1− s) =

π

sin(πs)
. (25)

Also, for <(s) > 0, the first integral in (24) can be written as

1
Γ(s)

∫ 1

0

zs−1

z(1− y(ez − 1))
Eik(log(1 + z))dz =

1
Γ(s)

∞

∑
n=0

F(k)
n (y)

n!

∫ 1

0
zn+s−1dz

=
1

Γ(s)

∞

∑
n=0

F(k)
n (y)

n!
1

n + s
, (26)

which defines an entire function of s. Therefore, we derive that ηk(s) can be continued to
an entire map of s.

9
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Theorem 5. For k ∈ N, the map ηk(s) has an analytic continuation to a map of s ∈ C, and the
special values at non-positive integers are as follows

ηk(−m) = (−1)mF(k)
m (y), (m ∈ N0). (27)

Proof. By means of (24)–(26), we acquire

ηk(−m) = lim
s→−m

1
Γ(s)

∫ 1

0

zs−1

z(1− y(ez − 1))
Eik(log(1 + z))dz

= · · ·+ · · ·+ 0 + lim
s→−m

1
Γ(s)

F(k)
m

m!(m + s)
+ 0 + 0 + · · ·

= lim
s→−m

1
m + s

Γ(1− s) sin(πs)
π

F(k)
m (y)
m!

=
Γ(1 + m)

m!
cos(πm)F(k)

m (y) = (−1)mF(k)
m (y),

which is the desired relation in (27).

Now, we state a summation formula for F(k)
n (x; y) as given below.

Theorem 6. The following formula

F(k)
n (x1 + x2; y) =

n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y)xm
2 . (28)

holds for k ∈ Z and n ≥ 0.

Proof. By (17), we observe that

∞

∑
n=0

F(k)
n (x1 + x2; y)

zn

n!
=

(
Eik(log(1 + z))
z(1− y(ez − 1))

)
e(x1+x2)z

=

(
∞

∑
n=0

F(k)
n (x1; y)

zn

n!

)(
∞

∑
m=0

xm
2

zm

m!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y)xm
2

)
zn

n!
,

which means the claimed result (28).

Theorem 7. The following formula

yF(k)
n (x + 1; y) = (1 + y)F(k)

n (x; y)−
n

∑
l=0

l

∑
m=0

(
n
l

)
1

(m + 1)k−1
S1(l + 1, m + 1)

l + 1
xn−l (29)

is valid for k ∈ Z and n ≥ 0.

Proof. By (14) and (17), we consider that

10
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∞

∑
n=0

(
F(k)

n (x + 1; y)− F(k)
n (x; y)

) zn

n!
= exz(ez − 1)

Eik(log(1 + z))
z(1− y(ez − 1))

=

(
exz

1− y(ez − 1)
− exz

)
Eik(log(1 + z))

yz

=
1
y

(
∞

∑
n=0

F(k)
n (x; y)−

n

∑
l=0

l

∑
m=0

(
n
l

)
xn−l

l + 1
S1(l + 1, m + 1)
(m + 1)k−1

)
zn

n!
,

which means the desired result (29).

Theorem 8. The following formula

n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y1)F(k)
m (x2; y2) =

y2F(k)
n (x1 + x2; y2)− y1F(k)

n (x1 + x2; y1)

y2 − y1
(30)

holds for k ∈ Z and n ≥ 0.

Proof. By means of (17), we acquire

Υ =
∞

∑
n=0

F(k)
n (x1; y1)

zn

n!

∞

∑
n=0

F(k)
n (x2; y2)

zn

n!
=

Eik(log(1 + z))
z(1− y1(ez − 1))

ex1z Eik(log(1 + z))
z(1− y2(ez − 1))

ex2z

=
Eik(log(1 + z))

z

(
ex1z

1− y1(ez − 1)
ex2z

1− y2(ez − 1)

)

=
Eik(log(1 + z))

z

(
y2

y2 − y1

e(x1+x2)z

1− y2(ez − 1)
− y1

y2 − y1

e(x1+x2)z

1− y1(ez − 1)

)

=
∞

∑
n=0

(
y2F(k)

n (x1 + x2; y2)− y1F(k)
n (x1 + x2; y1)

y2 − y1

)
zn

n!

and

Υ =
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
F(k)

n−m(x1; y1)F(k)
m (x2; y2)

)
zn

n!
,

which means the claimed result (30).

Theorem 9. The following relationship

F(k)
n (y) =

n

∑
l=0

n−l

∑
m=0

l

∑
r=0

(
n
l

)
S1(n− l + 1, m + 1)S2(l, r)

n− l + 1
yrr!

(m + 1)k−1 (31)

holds for k ∈ Z and n ≥ 0.

Proof. Using (18), we get

∞

∑
n=0

F(k)
n (y)

zn

n!
=

Eik(log(1 + z))
z

∞

∑
m=0

ym
∞

∑
l=m

m!S2(l, m)
zl

l!

=

(
∞

∑
n=0

n

∑
m=0

S1(n + 1, m + 1)
(m + 1)k−1

zn

(n + 1)!

)(
∞

∑
l=0

l

∑
r=0

yrr!S2(l, r)
zl

l!

)

=
∞

∑
n=0

(
n

∑
l=0

n−l

∑
m=0

l

∑
r=0

(
n
l

)
S2(l, r)

S1(n− l + 1, m + 1)
n− l + 1

yrr!
(m + 1)k−1

)
zn

n!
,

which means the desired result (31).

11
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Theorem 10. The following correlation

n

∑
m=0

F(k)
m (y)S2(n, m) =

n

∑
q=0

q

∑
i=0

i

∑
p=0

(
q
i

)(
n
q

)
Fp(y)S2(i, p)Bq−i

1
(n− q + 1)k (32)

hold for k ∈ Z and n ≥ 0.

Proof. Using (18), replacing z by ez − 1, we acquire that

∞

∑
n=0

F(k)
n (y)

(ez − 1)n

n!
=

1
1− y(eez−1 − 1)

z
ez − 1

Eik(z)
z

=
∞

∑
p=0

Fp(y)
∞

∑
p=i

S2(i, p)
zi

i!

∞

∑
q=0

Bq
zq

q!

∞

∑
n=0

zn

n!(n + 1)k

=
∞

∑
i=0

(
i

∑
p=0

Fp(y)S2(i, p)

)
zi

i!

∞

∑
q=0

Bq
zq

q!

∞

∑
n=0

zn

n!(n + 1)k

=
∞

∑
n=0

(
n

∑
q=0

q

∑
i=0

i

∑
p=0

(
n
q

)(
q
i

)
Fp(y)S2(i, p)Bq−i

1
(n− q + 1)k

)
zn

n!

and

∞

∑
m=0

F(k)
m (y)

(ez − 1)m

m!
=

∞

∑
m=0

F(k)
m (y)

∞

∑
n=m

S2(n, m)
zn

n!
=

∞

∑
n=0

(
n

∑
m=0

F(k)
m (y)S2(n, m)

)
zn

n!
,

which provides the asserted result (32).

3. Two-Variable Unipoly-Fubini Polynomials

Using the unipoly function uk(z|p) in (11), we introduce two-variable unipoly-Fubini
polynomials attached to p via the following generating function:

uk(log(1 + z)|p)
z(1− y(ez − 1))

exz =
∞

∑
n=0

F(k)
n,p (x; y)

zn

n!
. (33)

Upon setting x = 0 in (33), we have F(k)
n,p (0; y) := F(k)

n,p (y) which we call unipoly-Fubini
polynomials attached to p as follows

uk(log(1 + z)|p)
z(1− y(ez − 1))

=
∞

∑
n=0

F(k)
n,p (y)

zn

n!
. (34)

We now investigate some properties of two-variable unipoly-Fubini polynomials
attached to p as follows.

Theorem 11. The following relationship

F(k)
n,p (x; y) =

n

∑
l=0

(
n
l

)
F(k)

n−l,p(y)xl (35)

holds for k ∈ Z and n ≥ 0.

Proof. By (33) and (34), we consider thatwhich gives the asserted result (35).

Theorem 12. The following derivative rule

d
dx

F(k)
n,p (x; y) = nF(k)

n−1,p(x; y) (36)

12
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holds for k ∈ Z and n ≥ 1.

Proof. From (33), we observe that

∞

∑
n=1

d
dx

F(k)
n,p (x; y)

zn

n!
=

1
z(1− y(ez − 1))

uk(log(1 + z)|p) d
dx

exz =
∞

∑
n=0

F(k)
n,p (x; y)

zn+1

n!
,

which means the desired result (36).

Theorem 13. The following integral representation

∫ β

α
F(k)

n,p (x; y)dx =
F(k)

n+1,p(β; y)− F(k)
n+1,p(α; y)

n + 1
(37)

holds for n ≥ 0 and k ∈ Z.

Proof. By Theorem 12, we derive that

∫ β

α
F(k)

n,p (x; y)dx =
1

n + 1

∫ β

α

d
dx

F(k)
n+1,p(x; y)dx =

F(k)
n+1,p(α; y)− F(k)

n,p (β; y)

n + 1
,

which means the asserted result (37).

Taking p(n) = 1
Γ(n) in (11) gives

uk

(
log(1 + z)| 1

Γ

)
=

∞

∑
m=1

(log(1 + z))m

mk(m− 1)!
,

by which we get

∞

∑
n=0

F(k)
n, 1

Γ
(x; y)

zn

n!
=

1
z(1− y(ez − 1))

exzuk

(
log(1 + z)| 1

Γ

)
(38)

=
exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

mk(m− 1)!
.

Especially, for k = 1 in (38), we obtain

∞

∑
n=0

F(1)
n, 1

Γ
(x; y)

zn

n!
=

exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

m!
=

∞

∑
n=0

Fn(x; y)
zn

n!
,

which gives the following equality

F(1)
n, 1

Γ
(x; y) = Fn(x; y). (39)

Theorem 14. The following correlation

F(k)
n,p (x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
m!p(m + 1)
(m + 1)k−1

Fn−l(x; y)
l + 1

S1,λ(l + 1, m + 1) (40)

holds for n ≥ 0 and k ∈ Z. Moreover, for p(n) = 1
Γ(n) ,

F(k)
n, 1

Γ
(x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

l + 1
Fn−l(x; y)
(m + 1)k−1 . (41)

13
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Proof. From (33), we have

∞

∑
n=0

F(k)
n,p (x; y)

zn

n!
=

exz

z(1− y(ez − 1))

∞

∑
m=1

(log(1 + z))m

mk p(m)

=
exz

z(1− y(ez − 1))

∞

∑
m=0

(log(1 + z))m+1

(m + 1)k p(m + 1)

=
exz

z(1− y(ez − 1))

∞

∑
m=0

m!p(m + 1)
(m + 1)k−1

∞

∑
l=m+1

S1(l, m + 1)
zl

l!

=
∞

∑
n=0

Fn(x; y)
zn

n!

∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m

S1(l + 1, m + 1)
l + 1

zl

l!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
m!p(m + 1)
(m + 1)k−1

Fn−l(x; y)
l + 1

S1(l + 1, m + 1)

)
zn

n!
,

which is the desired result (40).

Theorem 15. For n ≥ 0 and k ∈ Z, we have

F(k)
n,p (x; y) =

n

∑
l=0

l

∑
m=0

(
n
l

)
F(k)

n−l,p(y)S2(l, m)(x)m. (42)

Proof. By (33), we attain

∞

∑
n=0

F(k)
n,p (x; y)

zn

n!
= (ez − 1 + 1)x uk(log(1 + z)|p)

z(1− y(ez − 1))

=

(
∞

∑
m=0

(x)m
(ez − 1)m

m!

)
uk(log(1 + z)|p)
z(1− y(ez − 1))

=

(
∞

∑
l=0

l

∑
m=0

(x)mS2(l, m)
zl

l!

)(
∞

∑
n=0

F(k)
n,p (y)

zn

n!

)

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
F(k)

n−l,p(y)S2(l, m)(x)m

)
zn

n!
,

which provides the claimed result (42).

Lastly, we state the following theorem.

Theorem 16. Let k ∈ Z and n ≥ 0. We have

F(k)
n,p (y) =

n

∑
l=0

n−l

∑
r=0

l

∑
m=0

(
n
l

)(
n− l

r

)
DrFn−r−l(y)S1(l, m)

(m + 1)k p(m + 1)m!, (43)

where Dr is r-th Daehee number given by (cf. [18])

log(1 + z)
z

=
∞

∑
r=0

Dr
zr

r!
.

14
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Proof. From (14), (17), and (34), we have

∞

∑
n=0

F(k)
n,p (y)

zn

n!
=

∞
∑

m=1

p(m)
mk (log(1 + z))m

z(1− y(ez − 1))

=
log(1 + z)

z
1

1− y(ez − 1)

∞

∑
m=0

p(m + 1)m!
(m + 1)k

∞

∑
l=m

S1(l, m)
zl

l!

=
∞

∑
r=0

Dr
zr

r!

∞

∑
n=0

Fn(y)
zn

n!

∞

∑
l=0

(
l

∑
m=0

p(m + 1)m!
(m + 1)k S1(l, m)2l

)
zl

l!

=
∞

∑
n=0

n

∑
r=0

r

∑
l=0

(
n
r

)(
r
l

)
DrFn−r−l(y)

l

∑
m=0

p(m + 1)m!
(m + 1)k S1(l, m)

zn

n!
.

Therefore, we obtain the claimed correlation (43).

4. Conclusions

Inspired and motivated by the definition of the type 2 poly-Bernoulli given by Kim-
Kim [12], in the present paper, we have introduced a new extension of the two-variable
Fubini polynomials using the polyexponential function, which we call two-variable type 2
poly-Fubini polynomials. Then, we have acquired some useful relations including the Stir-
ling numbers of the first and the second kinds, the Bernoulli polynomials of higher-order,
and the usual Fubini polynomials. Also, we have developed some summation formulas
and an integral representation for type 2 poly-Fubini polynomials. Moreover, we have
considered two-variable unipoly-Fubini polynomials via unipoly function and have inves-
tigated diverse properties including derivative and integral properties. Furthermore, we
have provided some relationships covering the two-variable unipoly-Fubini polynomials,
the Stirling numbers of the first and the second kinds, and the Daehee polynomials.
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Abstract: In this paper, we study methods for obtaining explicit formulas for the coefficients of
generating functions. To solve this problem, we consider the methods that are based on using
the powers of generating functions. We propose to generalize the concept of compositae to the case of
generating functions in two variables and define basic operations on such compositae: composition,
addition, multiplication, reciprocation and compositional inversion. These operations allow obtaining
explicit formulas for compositae and coefficients of bivariate generating functions. In addition,
we present several examples of applying the obtained results for getting explicit formulas for
the coefficients of bivariate generating functions. The introduced mathematical apparatus can
be used for solving different problems that are related to the theory of generating functions.

Keywords: formal power series; composition of generation functions; bivariate generating function;
composita; explicit formula
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1. Introduction

Generating functions are a widely used and powerful tool for solving problems in
combinatorics, mathematical analysis, statistics, etc. For example, methods of the theory
of generating functions are used for solving problems in combinatorics, since generating
functions allow obtaining a compact representation of discrete structures and process
them. For the first time, methods of generating functions were applied by de Moivre to
solve recurrence equations. Next, Euler expanded the methods of generating functions
for solving research problems related to partitions. In this case, a generating function
through its coefficients shows the value for some special numbers that have combinatorial
interpretations. Great contributions to the development of methods of generating functions
and their application for solving mathematical problems in combinatorics were made by
Riordan [1], Comtet [2], Flajolet and Sedgewick [3], Wilf [4], Stanley [5], Egorychev [6],
Lando [7] and other scientists.

Moreover, generating functions are the main means of describing polynomials. Poly-
nomials are one of the basic mathematical objects, and they are used in different areas
of pure and applied mathematics. In this case, the coefficients of the generating function
for a polynomial show the form of the polynomial for the fixed values of its parameters.
Many studies present various properties of polynomials and their generating functions
(e.g., those by Boas and Buck [8], Roman [9], Srivastava [10–12] and Simsek [13–15]).

The development of new methods for obtaining explicit formulas for the coefficients
of generating functions is relevant research trend. The solution of this problem allows
finding explicit formulas for special numbers and polynomials that are described by these
generating functions. Different approaches for solving this problem can be found in

Mathematics 2021, 9, 428. https://doi.org/10.3390/math9040428 https://www.mdpi.com/journal/mathematics
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papers by the following authors: Srivastava [16,17], Boyadzhiev [18], Cenkci [19] and other
scientists.

Note that many research papers that are devoted to combinatorial problems and
generating functions use the coefficients of the powers of generating functions. The coeffi-
cients of the powers of generating functions were first obtained by Euler when he obtained
the coefficient function for (1 + x + x2 + . . . + xn + . . .)k. The Binomial theorem, which is
also the power of the generating function (x + y), was known even before de Moivre and
Euler’s works were published. In addition, the coefficients of the powers of generating
functions play an important role in performing the composition of the generating functions.

The following concepts are related to the coefficients of the powers of generating
functions:

1. Potential polynomials introduced by Comtet [2]: The potential polynomial P(k)
n is

the kth power of an exponential generating function (k is a complex number):

(
1 + ∑

n>0
gn

xn

n!

)k

= 1 + ∑
n>0

P(k)
n

xn

n!
.

For the coefficients of potential polynomials, there is a relationship with the Bell
polynomials, but operations on such polynomials are not defined.

2. Riordan arrays introduced by Shapiro et al. [20]: A Riordan array is a pair of gener-
ating functions D = (F(x), G(x)) where F(x) = ∑

n≥0
f (n)xn and G(x) = ∑

n>0
g(n)xn.

It forms an infinite matrix D = (dn,k)n,k≥0 where dn,k = [xn]F(x)G(x)k. If we con-
sider the associated subgroup of the Riordan group D = (1, G(x)), then we get
dn,k = [xn]G(x)k or

G(x)k = ∑
n≥k

dn,kxn.

However, there are no universal rules for obtaining explicit formulas for dn,k.
3. Power matrices introduced by Knuth [21]: The power matrix of a given power series

V(x) = V1x + V2x2 + . . . is the infinite array of coefficients vn,k =
n!
k! [x

n]V(x)k. Thus,
the kth power of V(x) can be presented in the form

V(x)k = ∑
n≥k

k!
n!

vn,kxn.

In addition, there are formulas for obtaining the coefficients wn,k for the composition
of power series W(z) = U(V(z)) and for a power series of the form W(x) = αU(βx).
However, the development of this mathematical apparatus is not presented.

4. Compositae introduced by Kruchinin [22,23]: The composita F∆(n, k) of a generating
function F(x) = ∑

n>0
f (n, k)xn is a coefficients function of its kth power:

F(x)k = ∑
n≥k

F∆(n, k)xn.

For two generating functions F(x) and G(x) and their compositae F∆(n, k) and
G∆(n, k), we can find the composita A∆(n, k) of the generating function A(x) for
the following cases:

• addition of generating functions: A(x) = F(x) + G(x);
• multiplication of generating functions: A(x) = F(x) · G(x);
• composition of generating functions: A(x) = G(F(x));
• reciprocation of generating functions: A(x) · F(x) = 1;
• compositional inversion of generating functions: F(A(x)) = x.

In this way, it is possible to obtain an explicit formula for the composita for various
types of generating functions.
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It is also worth noting the results derived by M. Drmota [24] and aimed at obtaining
an asymptotic expansion of the coefficients of the powers of generating functions.

However, all these concepts mainly consider generating functions in one variable,
while there are many problems associated with generating functions in several variables
(multivariate generating functions). Attempts to systematize the process of finding the co-
efficients of multivariate generating functions were made by Pemantle et al. [25], but they
also investigated asymptotic methods for solving this problem. More on asymptotics
derived from multivariate generating functions can be found in [26].

To solve this problem explicitly, we propose to generalize the concept of composi-
tae to the case of generating functions in two variables (bivariate generating functions).
The effectiveness of applying compositae is shown in obtaining explicit formulas for the co-
efficients of many ordinary generating functions that are related to special numbers and
polynomials [27–34]. This research aims to improve and extend the original method.

The organization of this paper is as follows. Section 2 is devoted to a brief description
of the proposed generalization of the concept of compositae. In Section 3, we introduce
basic operations on compositae of bivariate generating functions: composition, addition,
multiplication, reciprocation and compositional inversion. To confirm the effectiveness
of using the proposed generalization of the concept of compositae, we present several
examples of finding explicit formulas for coefficients of bivariate generating functions.
The obtained results are shown in Section 4.

2. Composita of a Multivariate Generating Function

A multivariate generating function is the following formal power series:

F(x, y, . . . , z) = ∑
n≥0

∑
m≥0

. . . ∑
l≥0

f (n, m, . . . , k)xnym · · · zl .

By ord(F), we denote the order of a formal power series F(x, y, . . . , z), which is defined
as follows [35]:

ord(F) =

{
min{r = n + m + . . . + l : f (n, m, . . . , l) 6= 0}, if F(x, y, . . . , z) 6= 0;
+∞, if F(x, y, . . . , z) = 0.

For two formal power series F(x, y, . . . , z) and G(x, y, . . . , z) with ord(F) > 0 and
ord(G) > 0, the order of F(x, y, . . . , z) · G(x, y, . . . , z) is

ord(F · G) = ord(F) + ord(G). (1)

For a formal power series F(x, y, . . . , z) with ord(F) > 0, the order of F(x, y, . . . , z)k,
k ∈ N, satisfies the inequality

ord(Fk) ≥ k. (2)

Next, we consider the coefficients of the kth power of a multivariate generating
function

F(x, y, . . . , z)k = ∑
n≥0

∑
m≥0

. . . ∑
l≥0

f (n, m, . . . , l, k)xnym · · · zl ,

where k ∈ N0.
In general, to calculate the coefficients f (n, m, . . . , l, k), we can use the method based

on the following formula:

f (n, m, . . . , l, k) = ∑
η1+η2+...+ηk=n

(
∑

µ1+µ2+...+µk=m

(
. . .

(
∑

λ1+λ2+...+λk=l

(
k

∏
i=1

f (ηi, µi, . . . , λi)

))
. . .

))
,

where ηi, µi, . . . , λi ∈ N0.
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Definition 1. The composita F∆(n, m, . . . , l, k) of a multivariate generating function

F(x, y, . . . , z) = ∑
n≥0

∑
m≥0

. . . ∑
l≥0

f (n, m, . . . , k)xnym · · · zl , ord(F) ≥ 1,

is a coefficients function of the kth power of the generating function F(x, y, . . . , z):

F(x, y, . . . , z)k = ∑
n≥0

∑
m≥0

. . . ∑
l≥0

F∆(n, m, . . . , l, k)xnym · · · zl .

In addition, we set the following condition: F(x, y, . . . , z)0 = 1.
Hence, the composita F∆(n, m, . . . , l, k) for k = 0 is defined as follows:

F∆(n, m, . . . , l, 0) =

{
1, if n = m = . . . = l = 0;
0, otherwise.

We can also write a recurrence for calculating compositae for k > 0

F∆(n, m, . . . , l, k) =





f (n, m, . . . , l), if k = 1;
n
∑

i=0

m
∑

j=0
. . .

l
∑

s=0
f (i, j, . . . , s)F∆(n− i, m− j, . . . , l − s, k− 1), if k > 1,

that is based on using the convolution operation for

F(x, y, . . . , z)k = F(x, y, . . . , z)F(x, y, . . . , z)k−1, F(x, y, . . . , z)0 = 1.

3. Operations on Compositae of Bivariate Generating Functions

A bivariate generating function is the following formal power series:

F(x, y) = ∑
n≥0

∑
m≥0

f (n, m)xnym.

Using the concept of compositae, the kth power of the bivariate generating function
F(x, y), with ord(F) ≥ 1, can be presented as follows:

F(x, y)k = ∑
n≥0

∑
m≥0

F∆(n, m, k)xnym.

Next, we introduce basic operations on compositae of bivariate generating functions:
composition, addition, multiplication, reciprocation and compositional inversion. These
operations allow obtaining explicit formulas for compositae and coefficients of bivariate
generating functions.

3.1. Composition of Bivariate Generating Functions

Theorem 1. Suppose that:

H(x, y) = ∑
n≥0

∑
m≥0

h(n, m)xnym,

A(x, y)k = ∑
n≥0

∑
m≥0

A∆(n, m, k)xnym, ord(A) ≥ 1,

B(x, y)k = ∑
n≥0

∑
m≥0

B∆(n, m, k)xnym, ord(B) ≥ 1.
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Then, the coefficients g(n, m) of the composition of the bivariate generating functions

G(x, y) = H(A(x, y), B(x, y)) = ∑
n≥0

∑
m≥0

g(n, m)xnym

are equal to

g(n, m) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

h(ka, kb)
n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, kb). (3)

Proof. Consider the given composition of bivariate generating functions

G(x, y) = H(A(x, y), B(x, y)) = ∑
n≥0

∑
m≥0

h(n, m)A(x, y)nB(x, y)m.

Next, we represent the end part of this generating function as follows:

C(x, y) = A(x, y)ka B(x, y)kb = ∑
n≥0

∑
m≥0

c(n, m, ka, kb)xnym.

To obtain an explicit formula for the coefficients c(n, m, ka, kb), we apply the convolu-
tion operation and get

c(n, m, ka, kb) =
n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, kb). (4)

Using Equation (1) and Inequality (2), we also have

ord(A(x, y)nB(x, y)m) ≥ n + m.

Then, taking into account the restriction for the indices of summation

ka + kb ≤ n + m,

we can construct the following two summation schemes for obtaining the coefficients
g(n, m):

g(n, m) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

h(ka, kb)c(n, m, ka, kb)

or

g(n, m) =
n+m

∑
kb=0

n+m−kb

∑
ka=0

h(ka, kb)c(n, m, ka, kb).

Combining the formula for g(n, m) with Equation (4), we obtain the desired result
presented in Equation (3).

Table 1 presents the obtained results for special cases of using the results of Theorem 1
for a bivariate generating function G(x, y) that is presented as the composition of bivariate
and ordinary generating functions.

Next, we consider the process of finding coefficients for the kth power of a bivariate
generating function that is obtained using the composition of bivariate generating functions.
This result can be derived by generalizing the bivariate generating function H(x, y) from
Theorem 1 to the case of its kth power. The obtained result is presented in Theorem 2.
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Table 1. Special cases of using the results of Theorem 1.

Composition Coefficient

G(x, y) = H(A(x, y), B(x, y)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)
n
∑

i=0

m
∑

j=0
A∆(i, j, ka)B∆(n− i, m− j, kb)

G(x, y) = H(A(x, y), B(y)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)
m
∑

j=0
A∆(n, j, ka)B∆(m− j, kb)

G(x, y) = H(A(y), B(x, y)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)
m
∑

j=0
A∆(j, ka)B∆(n, m− j, kb)

G(x, y) = H(A(x, y), B(x)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)
n
∑

i=0
A∆(i, m, ka)B∆(n− i, kb)

G(x, y) = H(A(x), B(x, y)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)
n
∑

i=0
A∆(i, ka)B∆(n− i, m, kb)

G(x, y) = H(A(x, y), y) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)A∆(n, m− kb, ka)

G(x, y) = H(y, B(x, y)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)B∆(n, m− ka, kb)

G(x, y) = H(A(x, y), x) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)A∆(n− kb, m, ka)

G(x, y) = H(x, B(x, y)) g(n, m) =
n+m
∑

ka=0

n+m−ka

∑
kb=0

h(ka, kb)B∆(n− ka, m, kb)

G(x, y) = H(A(x), B(y)) g(n, m) =
n
∑

ka=0

m
∑

kb=0
h(ka, kb)A∆(n, ka)B∆(m, kb)

G(x, y) = H(A(x), y) g(n, m) =
n
∑

k=0
h(k, m)A∆(n, k)

G(x, y) = H(x, B(y)) g(n, m) =
m
∑

k=0
h(n, k)B∆(m, k)

G(x, y) = H(A(x, y)) g(n, m) =
n+m
∑

k=0
h(k)A∆(n, m, k)

Theorem 2. Suppose that:

H(x, y)k = ∑
n≥0

∑
m≥0

h(n, m, k)xnym,

A(x, y)k = ∑
n≥0

∑
m≥0

A∆(n, m, k)xnym, ord(A) ≥ 1,

B(x, y)k = ∑
n≥0

∑
m≥0

B∆(n, m, k)xnym, ord(B) ≥ 1.

Then, the coefficients g(n, m, k) of the kth power of the composition of the bivariate generating
functions

G(x, y)k = H(A(x, y), B(x, y))k = ∑
n≥0

∑
m≥0

g(n, m, k)xnym

are equal to

g(n, m, k) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

h(ka, kb, k)
n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, kb). (5)

Proof. The proof of Theorem 2 is similar to the proof of Theorem 1.

Corollary 1. Suppose that:

H(x, y)k = ∑
n≥0

∑
m≥0

H∆(n, m, k)xnym, ord(H) ≥ 1,
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A(x, y)k = ∑
n≥0

∑
m≥0

A∆(n, m, k)xnym, ord(A) ≥ 1,

B(x, y)k = ∑
n≥0

∑
m≥0

B∆(n, m, k)xnym, ord(B) ≥ 1.

Then, the composita G∆(n, m, k) of the composition of the bivariate generating functions

G(x, y) = H(A(x, y), B(x, y)) = ∑
n≥0

∑
m≥0

g(n, m)xnym

is equal to

G∆(n, m, k) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

H∆(ka, kb, k)
n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, kb). (6)

Corollary 1 can be applied for calculating the composita of a given bivariate generating
function based on its decomposition into simpler functions. For example, it can be used for
addition or multiplication of bivariate generating functions.

3.2. Addition of Bivariate Generating Functions

Theorem 3. Suppose that:

A(x, y)k = ∑
n≥0

∑
m≥0

A∆(n, m, k)xnym, ord(A) ≥ 1,

B(x, y)k = ∑
n≥0

∑
m≥0

B∆(n, m, k)xnym, ord(B) ≥ 1.

Then, the composita G∆(n, m, k) of the addition of the bivariate generating functions

G(x, y) = A(x, y) + B(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym

is equal to

G∆(n, m, k) =
n+m

∑
ka=0

(
k
ka

) n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, k− ka). (7)

Proof. Consider a bivariate generating function

H(x, y) = x + y

and its kth power, that is based on the binomial theorem,

H(x, y)k = (x + y)k = ∑
n≥0

∑
m≥0

H∆(n, m, k)xnym = ∑
n≥0

∑
m≥0

(
k
n

)
δ(m, k− n)xnym,

where δ(i, j) is the Kronecker delta function:

δ(i, j) =

{
0, if i 6= j;
1, if i = j.

Applying Equation (6) for the composition of generating functions

G(x, y) = A(x, y) + B(x, y) = H(A(x, y), B(x, y)),
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we obtain

G∆(n, m, k) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

(
k
ka

)
δ(kb, k− ka)

n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, kb).

Using the properties of the Kronecker delta function, we get kb = k− ka.
Simplifying the formula for G∆(n, m, k), we obtain the desired result presented in

Equation (7).

3.3. Multiplication of Bivariate Generating Functions

Theorem 4. Suppose that:

A(x, y)k = ∑
n≥0

∑
m≥0

A∆(n, m, k)xnym, ord(A) ≥ 1,

B(x, y)k = ∑
n≥0

∑
m≥0

B∆(n, m, k)xnym, ord(B) ≥ 1.

Then, the composita G∆(n, m, k) of the addition of the bivariate generating functions

G(x, y) = A(x, y) · B(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym

is equal to

G∆(n, m, k) =
n

∑
i=0

m

∑
j=0

A∆(i, j, k)B∆(n− i, m− j, k). (8)

Proof. Consider a bivariate generating function

H(x, y) = xy

and its kth power

H(x, y)k = (xy)k = ∑
n≥0

∑
m≥0

H∆(n, m, k)xnym = ∑
n≥0

∑
m≥0

δ(n, k)δ(m, k)xnym.

Applying Equation (6) for the composition of generating functions

G(x, y) = A(x, y) · B(x, y) = H(A(x, y), B(x, y)),

we obtain

G∆(n, m, k) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

δ(ka, k)δ(kb, k)
n

∑
i=0

m

∑
j=0

A∆(i, j, ka)B∆(n− i, m− j, kb).

Using the properties of the Kronecker delta function, we get ka = k, kb = k.
Simplifying the formula for G∆(n, m, k), we obtain the desired result presented in

Equation (8).

3.4. Reciprocation of Bivariate Generating Functions

A reciprocal generating function G(x, y) of a bivariate generating function

F(x, y) = ∑
n≥0

∑
m≥0

f (n, m)xnym

is a formal power series such that satisfies the condition

F(x, y) · G(x, y) = 1.
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Theorem 5. Suppose that:

F(x, y) = ∑
n≥0

∑
m≥0

f (n, m)xnym, f (0, 0) 6= 0, F(x, y)k = ∑
n≥0

∑
m≥0

f (n, m, k)xnym,

G(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym, g(0, 0) 6= 0, G(x, y)k = ∑
n≥0

∑
m≥0

g(n, m, k)xnym,

F(x, y) · G(x, y) = 1.

Then, the coefficients g(n, m, k) are equal to

g(n, m, k) =
n+m

∑
i=0

(
n + m + k

i + k

)(
i + k− 1

i

)
(−1)i

f (0, 0)i+k f (n, m, i). (9)

Proof. Consider the kth power of the generating function G(x, y) as the following compo-
sition of generating functions:

G(x, y)k =

(
1

F(x, y)

)k
=

1
f (0, 0)k


 1

1 +
(

F(x,y)
f (0,0) − 1

)




k

=
1

f (0, 0)k H(A(x, y))k,

where
H(x) =

1
1 + x

, H(x)k = ∑
n≥0

h(n, k)xn,

A(x, y) =
F(x, y)
f (0, 0)

− 1, A(x, y)k = ∑
n≥0

∑
m≥0

A∆(n, m, k)xnym.

The coefficients h(n, k) can be calculating by

h(n, k) = (−1)n
(

n + k− 1
n

)
.

Using the binomial theorem, the composita A∆(n, m, k) is equal to

A∆(n, m, k) =
k

∑
i=0

(
k
i

)
f (n, m, i)
f (0, 0)i (−1)k−i.

Applying Equation (5) for G(x, y), we obtain

g(n, m, k) =
1

f (0, 0)k

n+m

∑
ka=0

h(ka, k)A∆(n, m, ka) =
n+m

∑
ka=0

ka

∑
i=0

(
ka + k− 1

ka

)(
ka

i

)
f (n, m, i)
f (0, 0)i+k (−1)i.

Then, we change the order of summation and get

g(n, m, k) =
n+m

∑
i=0

n+m−i

∑
ka=0

(
ka + i + k− 1

ka + i

)(
ka + i

i

)
f (n, m, i)
f (0, 0)i+k (−1)i.

To remove the coefficient ka from the right binomial coefficient, we transform the bi-
nomial coefficient and obtain

g(n, m, k) =
n+m

∑
i=0

n+m−i

∑
ka=0

(
ka + i + k− 1

ka

)(
i + k− 1

i

)
f (n, m, i)
f (0, 0)i+k (−1)i.
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Next, we can simplify this formula by using the following identity (Identity (1.49) in [36]):

n+m−i

∑
ka=0

(
ka + i + k− 1

ka

)
=

(
n + m + k
n + m− i

)
.

Thus, we obtain the desired result presented in Equation (9).

3.5. Compositional Inversion of Bivariate Generating Functions

A compositional inverse F(x, y) of a bivariate generating function

F(x, y) = ∑
n≥0

∑
m≥0

f (n, m)xnym

with respect to the variable x is a formal power series such that satisfies the condition

F(F(x, y), y) = x.

Theorem 6. Suppose that:

F(x, y) = ∑
n≥0

∑
m≥0

f (n, m)xnym, f (0, 0) = 0, F(x, y)k = ∑
n≥0

∑
m≥0

F∆(n, m, k)xnym,

F(x, y) = ∑
n≥0

∑
m≥0

f (n, m)xnym, f (0, 0) = 0, F(x, y)k = ∑
n≥0

∑
m≥0

F∆
(n, m, k)xnym,

F(F(x, y), y) = x.

Then, the composita F∆
(n, m, k) is equal to

F∆
(n, m, k) =

k
n

n+m

∑
i=0

(
2n + m− k

i + n

)(
i + n− 1

i

)
(−1)i

f (1, 0)i+n F∆(i + n− k, m, i). (10)

Proof. Using the Lagrange inversion theorem [37] for the functional equation

F(x, y) = xG(F(x, y), y),

where

G(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym, g(0, 0) 6= 0, G(x, y)k = ∑
n≥0

∑
m≥0

g(n, m, k)xnym,

we obtain
F∆

(n, m, k) =
k
n

g(n− k, m, n). (11)

In addition, we can represent this functional equation as follows:

x =
F(x, y)

G(F(x, y), y)
= F(F(x, y), y),

F(x, y) =
x

G(x, y)
.

Applying Equation (9) for G(x, y), we get the coefficients of its kth power

g(n, m, k) =
n+m

∑
i=0

(
n + m + k

i + k

)(
i + k− 1

i

)
(−1)i

f (1, 0)i+k F∆(i + n, m, i). (12)

Combining Equation (11) with Equation (12), we obtain the desired result presented
in Equation (10).
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4. Application of Compositae for Obtaining Coefficients of Bivariate Generating
Functions

Next, we present several examples of applying the obtained results for getting explicit
formulas for coefficients of bivariate generating functions.

Example 1. First, let consider the following simple composition of generating functions:

G(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym = H(A(x, y)) = H(x + y).

The composita of the generating function A(x, y) = x + y is

A∆(n, m, k) =
(

k
n

)
δ(m, k− n).

Applying Theorem 1, we can obtain the coefficients g(n, m) of the generating function G(x, y)

g(n, m) =
n+m

∑
k=0

h(k)A∆(n, m, k) =
n+m

∑
k=0

h(k)
(

k
n

)
δ(m, k− n) = h(n + m)

(
n + m

n

)
.

If we have the generating function

H(x) = ∑
n≥0

h(n)xn = ∑
n≥0

xn =
1

1− x
,

then we get

G(x, y) = H(x + y) =
1

1− x− y
,

g(n, m) = h(n + m)

(
n + m

n

)
=

(
n + m

n

)
.

If we have the generating function

H(x) = ∑
n≥0

h(n)xn = ∑
n≥0

1
n!

xn = ex,

then we get
G(x, y) = H(x + y) = ex+y,

g(n, m) = h(n + m)

(
n + m

n

)
=

1
(n + m)!

(
n + m

n

)
=

1
n!m!

.

If we have the generating function

H(x) = ∑
n>0

h(n)xn = ∑
n>0

(−1)n−1

n
xn = log(1 + x),

then we get
G(x, y) = H(x + y) = log(1 + x + y),

g(n, m) = h(n + m)

(
n + m

n

)
=

(−1)n+m−1

n + m

(
n + m

n

)
, g(0, 0) = 0.

If we have the generating function of the Catalan numbers (the sequence A000108 in OEIS [38])

H(x) = ∑
n≥0

Cnxn = ∑
n≥0

1
n + 1

(
2n
n

)
xn =

1−
√

1− 4x
2x

,
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then we get

G(x, y) = H(x + y) =
1−

√
1− 4(x + y)

2(x + y)
,

g(n, m) = h(n + m)

(
n + m

n

)
= Cn+m

(
n + m

n

)
=

1
n + m + 1

(
2n + 2m

n + m

)(
n + m

n

)
.

Example 2. Let consider the generating function of the Eulerian numbers (the sequence A173018
in OEIS [38])

E(x, y) = ∑
n≥0

∑
m≥0

En,m

n!
xnym =

y− 1
y− ex(y−1)

.

Consider this generating function E(x, y) as the following composition of generating functions:

E(x, y) =
y− 1

y− ex(y−1)
=

x(y− 1)
x(y− 1)− x(ex(y−1) − 1)

=
1

1− x ex(y−1)−1
x(y−1)

= H(A(x, y)),

where
H(x) = ∑

n≥0
h(n)xn = ∑

n≥0
xn =

1
1− x

,

A(x, y) = x
ex(y−1) − 1

x(y− 1)
= B(x, C(x, y)),

B(x, y) =
x
y
(ey − 1),

C(x, y) = x(y− 1).

Using the identity for the Stirling numbers of the second kind

(ex − 1)k = ∑
n≥k

{n
k

} k!
n!

xn,

we get the composita of the generating function B(x, y)

B∆(n, m, k) =
{

m + k
k

}
k!

(m + k)!
δ(n, k).

Using the binomial theorem for

(xy− x)k = ∑
m≥0

(
k
m

)
(xy)m(−x)k−m = ∑

m≥0

(
k
m

)
xkym(−1)k−m,

we get the composita of the generating function C(x, y)

C∆(n, m, k) =
(

k
m

)
(−1)k−mδ(n, k).

Combining the obtained results and applying Theorem 1 for the composition B(x, C(x, y)),
we obtain the composita of the generating function A(x, y)

A∆(n, m, k) =
n+m

∑
ka=0

n+m−ka

∑
kb=0

B∆(ka, kb, k)C∆(n− ka, m, kb)

=
n+m

∑
ka=0

n+m−ka

∑
kb=0

{
kb + k

k

}
k!

(kb + k)!
δ(ka, k)

(
kb
m

)
(−1)kb−mδ(n− ka, kb).

Using the properties of the Kronecker delta function, we get ka = k, kb = n− k.
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Simplifying the formula for A∆(n, m, k), we obtain

A∆(n, m, k) =
{n

k

}(n− k
m

)
k!
n!
(−1)n−k−m.

Applying Theorem 1 for the composition H(A(x, y)), we can obtain the following well-known
explicit formula for the Eulerian numbers ([39], Equation (6.40)):

En,m = n!
n+m

∑
k=0

h(k)A∆(n, m, k) =
n

∑
k=0

{n
k

}(n− k
m

)
(−1)n−k−mk!.

Example 3. Let consider the generating function of the Euler–Catalan numbers [40] (the sequence
A316773 in OEIS [38])

EC(x, y) = ∑
n≥0

∑
m≥0

ECn,m

n!
xnym =

y− 1
y− eC(x)(y−1)

,

where

C(x) =
1−
√

1− 4x
2

is the generating function of the Catalan numbers.
Consider this generating function EC(x, y) as the following composition of generating func-

tions:
EC(x, y) = E(C(x), y),

where E(x, y) is the generating function of the Eulerian numbers.
The composita of the generating function C(x) is (cf. [22])

C∆(n, k) =
k
n

(
2n− k− 1

n− 1

)
.

Applying Theorem 1 for the composition EC(C(x), y), we can obtain the following explicit
formula for the Euler-Catalan numbers:

ECn,m = n!
n

∑
k=0

E(k, m)C∆(n, k) = n!
n

∑
k=0

Ek,m

k!
k
n

(
2n− k− 1

n− 1

)
=

n

∑
k=m+1

Ek,m
(2n− k− 1)!

(k− 1)!(n− k)!
.

Example 4. Let consider the generating function of the number triangle that forms the sequence
A064189 in OEIS [38]

G(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym =
2

1− x− 2xy +
√

1− 2x− 3x2
=

M(x)
1− xyM(x)

,

where

M(x) =
1− x−

√
1− 2x− 3x2

2x2

is the generating function of the Motzkin numbers (the sequence A001006 in OEIS [38]).
The elements g(n, m) of this number triangle define the number of lattice paths from (0, 0) to

(n, m), staying weakly above the x-axis and consisting of steps (1, 1), (1,−1) and (1, 0).
Consider this generating function G(x, y) as the following composition of generating functions:

G(x, y) =
H(x, y)

xy
=

B(Mxy(x, y))
xy

,
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where

H(x, y) = ∑
n>0

∑
m>0

h(n, m)xnym =
xyM(x)

1− xyM(x)
=

Mxy(x, y)
1−Mxy(x, y)

= B(Mxy(x, y)),

B(x) = ∑
n>0

b(n)xn = ∑
n>0

xn =
x

1− x
,

Mxy(x, y) = xyM(x).

The generating function M(x) satisfies the following functional equation:

M(x) = 1 + xM(x) + x2M(x).

This functional equation can be transformed into

Mx(x) = xA(Mx(x)), (13)

where
A(x) = 1 + x + x2,

Mx(x) = xM(x).

Using the binomial theorem for

(1 + x + x2)k =
k

∑
j=0

(
k
j

)
(x + x2)j =

k

∑
j=0

(
k
j

)
xj

j

∑
n=0

(
j
n

)
xn = ∑

n≥0

k

∑
j=0

(
k
j

)(
j

n− j

)
xn,

we get the coefficients of the kth power of the generating function A(x)

a(n, k) =
k

∑
j=0

(
k
j

)(
j

n− j

)
.

Using the Lagrange inversion theorem for (13), we obtain the composita of the generating
function Mx(x)

M∆
x (n, k) =

k
n

a(n− k, n).

Hence, the composita of the generating function Mxy(x, y) is

M∆
xy(n, m, k) = M∆

x (n, k)δ(m, k).

Applying Theorem 1 for the composition B(Mxy(x, y)), we obtain the coefficients h(n, m) of
the generating function H(x, y)

h(n, m) =
n+m

∑
k=0

b(k)M∆
xy(n, m, k) =

n+m

∑
k=1

M∆
x (n, k)δ(m, k) = M∆

x (n, m).

Finally, we get the coefficients g(n, m) of the generating function G(x, y)

g(n, m) = h(n + 1, m + 1) =
m + 1
n + 1

n−m

∑
j=0

(
n + 1

j

)(
j

n−m− j

)
.

Example 5. Let consider the generating function of the number triangle that forms the sequence
A336524 in OEIS [38]

G(x, y) = ∑
n≥0

∑
m≥0

g(n, m)xnym =
1−

√
1− 4x− 4xy

2x
.
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The elements g(n, m) of this number triangle define the number of unlabeled binary trees with
n internal nodes and exactly m distinguished external nodes.

Consider this generating function G(x, y) as the following composition of generating functions:

G(x, y) =
H(x, y)

x
=

C(A(x, y))
x

,

where

H(x, y) = ∑
n>0

∑
m≥0

h(n, m)xnym =
1−

√
1− 4x− 4xy

2
= C(A(x, y)),

C(x) = ∑
n>0

c(n)xn = ∑
n>0

Cn−1xn =
1−
√

1− 4x
2

,

A(x, y) = x + xy.

Using the binomial theorem for

(x + xy)k = ∑
m≥0

(
k
m

)
xk−m(xy)m = ∑

m≥0

(
k
m

)
xkym,

we get the composita of the generating function A(x, y)

A∆(n, m, k) =
(

k
m

)
δ(n, k).

Applying Theorem 1 for the composition C(A(x, y)), we obtain the coefficients h(n, m) of
the generating function H(x, y)

h(n, m) =
n+m

∑
k=0

c(k)A∆(n, m, k) =
n+m

∑
k=1

Ck−1

(
k
m

)
δ(n, k) = Cn−1

(
n
m

)
.

Finally, we get the coefficients g(n, m) of the generating function G(x, y)

g(n, m) = h(n + 1, m) = Cn

(
n + 1

m

)
=

1
n + 1

(
2n
n

)(
n + 1

m

)
.

5. Conclusions

This paper is devoted to the study of methods for obtaining explicit formulas for
the coefficients of generating functions. To solve this problem, we consider the methods
that are based on using the powers of generating functions. We propose to generalize
the concept of compositae to the case of generating functions in two variables and define
basic operations on such compositae: composition, addition, multiplication, reciprocation
and compositional inversion. These operations allow obtaining explicit formulas for com-
positae and coefficients of bivariate generating functions. In addition, we present several
examples of applying the obtained results for getting explicit formulas for coefficients of
bivariate generating functions.

The introduced mathematical apparatus can be used for solving different problems
that are related to the theory of generating functions. For example, it contributes to
obtaining new explicit formulas for polynomials and special numbers. In addition, it can
be applied for obtaining explicit formulas for the cardinality functions of combinatorial
sets. This task is relevant in combinatorics, discrete mathematics and computer science
when it is necessary to develop combinatorial generation algorithms [41].
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Abstract: This paper deals with monic orthogonal polynomials orthogonal with a perturbation
of classical Meixner–Pollaczek measure. These polynomials, called Perturbed Meixner–Pollaczek
polynomials, are described by their weight function emanating from an exponential deformation
of the classical Meixner–Pollaczek measure. In this contribution, we investigate certain properties
such as moments of finite order, some new recursive relations, concise formulations, differential-
recurrence relations, integral representation and some properties of the zeros (quasi-orthogonality,
monotonicity and convexity of the extreme zeros) of the corresponding perturbed polynomials.
Some auxiliary results for Meixner–Pollaczek polynomials are revisited. Some applications such
as Fisher’s information, Toda-type relations associated with these polynomials, Gauss–Meixner–
Pollaczek quadrature as well as their role in quantum oscillators are also reproduced.

Keywords: orthogonal polynomials; Meixner; perturbed Meixner–Pollaczek; moments; recurrence coef-
ficients; difference equations; differential equations; zeros

1. Introduction

First, let us define some terminologies, notations and conventions that we will use
throughout this paper. The set of complex numbers will be denoted by C and i will stand
for the imaginary number (i2 = −1); the set of positive integers will be denoted by N,
and N0 will denote the set of non-negative integers. All polynomials considered will
be real-valued in one real variable, and P will stand for the set of all such polynomials.
For each n ∈ N0, the subset of P of all polynomials of degree not greater than n will be
denoted by Pn. By a system of monic polynomials, we will mean a sequence {Φn}∞

n=0 of

polynomials satisfying Φ(n)
n = n! for each n ∈ N0.

A sequence of real polynomials {Φn}∞
n=0, where Φn is of exact degree n, is orthogonal

with respect to a (positive) measure µ supported on an interval [a, b], if the scalar product

〈Φm, Φn〉 =
∫ b

a
Φm(x) Φn(x) dµ(x) = 0, m 6= n.

If µ(x) is absolutely continuous, then it can be represented by a real weight function
w(x) > 0 so that dµ(x) = w(x)dx. If µ(x) is discrete with support in N0, then it can be
represented by a discrete weight w(x) ≥ 0 (x ∈ N0), and the scalar product given by

〈Φm, Φn〉 =
∞

∑
x=0

Φm(x)Φn(x)w(x) .

The orthogonal polynomial families under consideration in this paper are the follow-
ing ones (see [1]):

Mathematics 2021, 9, 955. https://doi.org/10.3390/math9090955 https://www.mdpi.com/journal/mathematics
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• Meixner polynomials ([1], Section 9.10)

Mn(x; β, c) = 2F1


 −n,−x

β

∣∣∣∣∣∣
1− 1

c


 , (1)

are orthogonal with respect to the discrete weight ρ(x) = cx(β)x
x! on (0, ∞), for 0 < c < 1

and β > 0, with β 6= −1,−2, . . . ,−n + 1. Here, 2F1 is the hypergeometric function
defined by

2F1

( p, q
r

∣∣∣ s
)
=

∞

∑
k=0

(p)k(q)k
(r)k

sk

k!
, (2)

where the Pochhammer symbol, or rising factorial, (z)n, takes the form

(z)n := (z)(z + 1) · · · (z + n− 1) =
n

∏
i=1

(z + i− 1). (3)

• Monic Meixner polynomials ([1], Section 9.10) are given by

Mn(x; β, c) = (β)n

(
c

c− 1

)n

2F1


 −n,−x

β

∣∣∣∣∣∣
1− 1

c


 = (β)n

(
c

c− 1

)n
Mn(x; β, c).

(4)

• Meixner–Pollaczek polynomials ([1], Section 9.7)

p(λ)n (x; φ) =
(2λ)n

n!
einφ

(
e2iφ

e2iφ − 1

)n

2F1


 −n, λ + ix

2λ

∣∣∣∣∣∣
1− 1

e2iφ


, (5)

are orthogonal with respect to the continuous weight

w(x; φ) = |Γ(λ + ix)|2 e(2φ−π)x, (6)

on the interval (−∞, ∞), for n ∈ N, λ > 0 and 0 < φ < π. Note that the complex
Gamma function in Equation (6) takes the form [2]

∣∣∣Γ(λ + ix)
∣∣∣
2
= Γ(λ + ix) Γ(λ− ix).

• Monic Meixner–Pollaczek polynomials ([1], Section 9.7) are given by

P(λ)
n (x; φ) = in(2λ)n

(
e2iφ

e2iφ − 1

)n

2F1


 −n, λ + ix

2λ

∣∣∣∣∣∣
1− 1

e2iφ


 =

n! in

einφ
p(λ)n (x; φ). (7)

For some properties of Meixner–Pollaczek polynomials including asymptotics, we
refer to [3–9].

We recall the following essential facts.

Definition 1 ([8]). Let {ηn}∞
n=0 be a sequence of complex numbers and let L be a complex valued

function on the linear space of all polynomials by
{

L [xn] = ηn, n ∈ N0,
L [α f1(x) + β f2(x)] = L [α f1(x)] +L [β f2(x)],
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for α, β ∈ C and fi(x) (i = 1, 2). Then L is said to be the moment functional determined by the
moments ηn of order n.

Let P(x; t) denote R(t)[x], the linear space of all polynomials with rational function
(in t) coefficients in one variable x. We call such polynomials, parameterized polynomials.
We extend the classical orthogonality results in [3,8,10] to parameterized polynomials. We
denote the linear subspace of degree m parameterized polynomials by Pm[t]. The following
is an extension of ([8], Theorem 2.1).

Lemma 1. Consider a moment functional L and a parameterized polynomial sequence {Ψn(x; t)}∞
n=0.

Then the following are equivalent (cf. [8], Theorem 2.1):

(i) {Ψn(x; t)}∞
n=0 is an orthogonal polynomial sequence with respect to L ,

(ii) L [π(x; t) Ψn(x; t)] = 0 for every polynomial π(x; t) of degree m < n; while
L [π(x; t) Ψn(x; t)] 6= 0 if m = n,

(iii) L [xm Ψn(x; t)] = ζn(t) δm,n where ζn(t) 6= 0, for 0 ≤ m ≤ n.

In [11], Meixner–Pollaczek polynomials are used to explore thermodynamic suscep-
tibilities in the thermodynamic relations of Hermitian Ensembles. One can apply an
exponential modification of the measure µ and to investigate orthogonal polynomials for
the measure dµt(x) = e−xt dµ(x), whenever all the moments of this modified measure
exist, and this leads to a new class of semi-classical (non-classical) orthogonal polynomials
with respect to the modified measure.

Definition 2. Perturbed Meixner–Pollaczek polynomials {Q(λ,ϕ)
n (x; t)}∞

n=0 are monic real poly-
nomials which are orthogonal with respect to the weight function

w(λ,ϕ)(x; t) :=
1

2π
e(2ϕ−π)x |Γ(λ + ix)|2 e−axt, x ∈ R, (8)

with parameters λ > 0, a > 0 and 0 ≤ t < 2ϕ
a .

Chen and Ismail [11] also discussed Toda lattice equations in the context of Coulomb
fluid relations. Perturbed Meixner–Pollaczek polynomials have some applications as shown
in ([11], pp. 12–13). In the context of Physics literature, the parameter ϕ in Equation (8) is
the phase of an oscillation, t is time and a can be perceived as a positive angular frequency
(in Hertz) (angular velocity or angular speed) of a wave, an oscillation (in cycle per second
or 2π rad per second) or a field (electromagnetic). For example, a > 0 in the mathematical
model of (nonlinear) tornado system as the wave speed of frequency of tornadoes is
so huge.

The objective of this paper is to unravel some properties of monic orthogonal polyno-
mials with respect to the perturbed Meixner–Pollaczek measure (8) and to explore some of
their practical applications.

The structure of the paper is as follows. In Section 1, certain properties and auxiliary
results of Meixner–Pollaczek polynomials are given. This section also introduces perturbed
Meixner–Pollaczek polynomials with some properties. Section 2 gives the relation between
Meixner–Pollaczek and Perturbed Meixner–Pollaczek polynomials. In Section 3, we investigate
some results of perturbed Meixner–Pollaczek polynomials with proofs. Certain properties
of these polynomials such as orthogonality, concise formulation, new recursive relations
and some properties of the zeros (convexity and monotonicity of the extreme zeros) are
discussed. Section 4 provides some practical applications; in particular, the applicability
of the monic perturbed Meixner-Pollaczek polynomials in the study of Toda lattices in
Random Matrix theory, Fisher information, Gaussian quadrature using Meixner-Pollaczek
weight and solution to a quantum oscillator in quantum physics [12]. Section 5 ends with
conclusions of this work.
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1.1. Some Auxiliary Results for the Meixner and Meixner–Pollaczek Weight

In this Subsection, we revisit some properties of Meixner and Meixner–Pollaczek
polynomials. The following proposition gives some properties of Meixner polynomials.

Proposition 1. For Meixner polynomials, we have

(i) Orthogonality:

〈Mm, Mn〉 :=
∞

∑
x=0

(β)x

x!
cx Mm(x; β, c)Mn(x; β, c) =

c−n n!
(β)n(1− c)β

δm,n , m, n ∈ N0 ;

(ii) Forward shift operator identity:

∆Mn(x; β, c) := Mn(x + 1; β, c)−Mn(x; β, c) =
n
β

c− 1
c

Mn−1(x; β + 1, c) ;

(iii) Three-term recursion relation:

(n + β)Mn(x; β + 1, c) = β Mn(x; β, c) + n Mn−1(x; β + 1, c);

(iv) Expansion formula:

Mn(x; β + 1, c) =
n!

(β + 1)n

n

∑
k=0

(β)k
k!

Mk(x; β, c) , n ∈ N0 . (9)

Proof. • For the proof of (i) and (ii), we refer to ([1], (1.9.2), (1.9.6)).
• Property (iii) follows, by considering z = 1− 1

c , from the formulae for Mn(x; β + 1, c)
and Mn(x; β, c):

Mn(x; β + 1, c) = 1 +
n

∑
k=1

(
n
k

)
x(x− 1) · · · (x− k + 1)
(β + 1)(β + 2) · · · (β + k)

zk (10)

Mn(x; β, c) = 1 +
n

∑
k=1

(
n
k

)
x(x− 1) · · · (x− k + 1)
β(β + 1) · · · (β + k− 1)

zk (11)

If we take β multiplied by Equation (11) and then subtract it from Equation (10)
multiplied by n + β, the required result immediately follows.

• For the proof of property (iv), we use mathematical induction on n. One can see
easily that Equation (9) holds for n = 0. We assume it holds true for some n ∈ N0.
By applying induction hypothesis and Equation (9), we have

Mn+1(x; β + 1, c) =
β

n + 1 + β
Mn+1(x; β, c) +

n + 1
n + 1 + β

Mn(x; β + 1, c)

=
β

n + 1 + β
Mn+1(x; β, c) +

(n + 1)!
(β + 1)n+1

n

∑
k=0

(β)k
k!

Mk(x; β, c)

=
(n + 1)!

(β + 1)n+1

n+1

∑
k=0

(β)k
k!

Mk(x; β, c) .

This completes the inductive result.

We note from Equation (4) that

P(λ)
n (x; φ) = inMn(−λ− ix; 2λ, e2iφ), (12)
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and Meixner polynomials and Meixner–Pollaczek polynomials are the same polynomials,
with a discrete variable in the first case and a continuous variable in the second (cf. [13]).
Monic Meixner polynomials satisfy the three-term recurrence relation

Mn(x; β, c) =
(

x +
c(β + n− 1) + n− 1

c− 1

)
Mn−1(x; β, c)− c(n− 1)(β + n− 2)

(c− 1)2 Mn−2(x; β, c)

and when we substitute x with −λ− ix, β with 2λ and c with e2iφ, multiply by in and apply
Equation (12), we obtain the three-term recurrence relation for the Meixner–Pollaczek polynomials

P(λ)
n (x; φ) =

(
x + α

(λ,φ)
n

)
P(λ)

n−1(x; φ)− CnP(λ)
n−2(x; φ). (13)

where

α
(λ,φ)
n :=

λ + n− 1
tan φ

; Cn := C(λ,φ)
n =

(n− 1)(2λ + n− 2)
4 sin2 φ

, (14)

with Pλ
−1(x) = 0, P(λ)

0 (x) = 1 and α
(λ, π

2 )
n = lim

φ→ π
2

α
(λ,φ)
n = 0. We note that the coeffi-

cient of P(λ)
n−2(x; φ), behaves like O(n2) as n → ∞ and using Carleman’s condition [8],

the uniqueness of the orthogonality measure holds ([1], Section 9.7).
Let’s recall the following result [14] (see also [6]).

Proposition 2 ([14]). For λ > 0, the moments for Meixner–Pollaczek measure are finite; i.e.,
∫

R
xn e(2φ−π)x|Γ(λ + ix)|2dx < ∞.

Proof. The finiteness of the moments follow from [14]

∫ ∞

−∞
e(2φ−π)x|Γ(λ + ix)|2dx =

πΓ(2λ)

(2 sin φ)2λ
, (15)

and by differentiating Equation (15) n-times with respect to φ ([15], Lemma 1); i.e.,

∫

R
xn e(2φ−π)x|Γ(λ + ix)|2dx = 2−n π Γ(2λ)

dn

dφn (2 sin φ)−2λ.

We now consider some results on quasi-orthogonality and interlacing of the zeros of
the Meixner–Pollaczek polynomials.

Definition 3. A polynomial Φn of exact degree n ≥ r, is quasi-orthogonal of order r on [a, b] with
respect to a weight function w(x) > 0, if (cf. ([16], p. 159))

∫ b

a
xjΦn(x)w(x)dx

{
= 0, for j = 0, 1, . . . , n− r− 1,
6= 0, for j = n− r.

For a more general definition of quasi-orthogonality, we refer to [8].
Since the Meixner–Pollaczek polynomials are orthogonal on the real line, zeros de-

parting from the interval of orthogonality will do so in complex conjugate pairs. (This
fact is later checked with numerical experiments of the zeros of these polynomials). The
quasi-orthogonality of the monic Meixner-Pollaczek polynomials is therefore of even order,
as detailed in the next result ([17], Theorem 3.3).

Theorem 1. Let n ∈ N, k ∈ {1, 2, . . . , b n
2 c} and 0 < φ < π. For 0 < λ < 1, the sequence

of polynomials {Pλ−k
n }∞

n=1 is quasi-orthogonal of order 2k with respect to the weight function
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e(2φ−π)x|Γ(λ + ix)|2 on (−∞, ∞) and the polynomials have at least n − 2k real zeros on the
real line.

By a change in the variable λ, the result in Theorem 1 can be rephrased by stating
that P(λ)

n (x; φ), with −k < λ < −k + 1, is quasi-orthogonal of order 2k with respect to
e(2φ−π)x|Γ(λ + k + ix)|2 on the interval (−∞, ∞).

We can say the following about the interlacing of the zeros of polynomials P(λ−1)
n and

P(λ)
n−1, λ > 0.

Lemma 2. Let n ∈ N, λ > 0 and 0 < φ < π.

(a) If λ > 1, the n zeros of P(λ−1)
n (x; φ) interlace with the (n− 1) zeros of P(λ)

n−1(x; φ).

(b) If 0 < λ < 1, then (n− 2) zeros of the order two quasi-orthogonal polynomial P(λ−1)
n (x; φ)

interlace with the (n− 1) zeros of P(λ)
n−1(x; φ).

Proof. The polynomial P(λ−1)
n (x; φ) can be expressed as follows ([17], Equation (2).2):

P(λ−1)
n (x; φ) = P(λ)

n (x; φ)− n
tan φ

P(λ)
n−1(x; φ) + bnP(λ)

n−2(x; φ) (16)

with bn = n(n−1)
4 sin2 φ

.

(a) Let λ > 1. Then the polynomial P(λ−1)
n (x; φ) is part of an orthogonal sequence and all

its zeros are real. Furthermore, bn < Cn, where Cn, given in (14), is obtained from the
three-term recurrence relation satisfied by the Meixner–Pollaczek polynomials and
the result follows from (16) and ([18], Theorem 15 (i)).

(b) Let 0 < λ < 1. From Theorem 1 we see that at least (n− 2) zeros of P(λ−1)
n (x; φ) are

real. Furthermore, bn > Cn when 0 < λ < 1, and the result follows from (16) and
([18], Theorem 15 (i)).

For a detailed discussion on the quasi-orthogonality and location of the zeros of the
Meixner polynomials, we refer the reader to [19].

1.1.1. Some Numerical Experiment on the Zeros of P(λ)
n (x; δ), δ ∈ R

We now validate the above results related to the zeros of Meixner–Pollaczek polynomi-
als by considering pictorial representations of the first few polynomials. Let δ = cot φ ∈ R
and φ ∈ (0, π), the first few polynomials P(λ)

n (x; δ) are obtained from Equation (13) using
symbolic packages (Maple) as follows.

P(λ)
0 (x; δ) = 1;

P(λ)
1 (x; δ) = x + δλ;

P(λ)
2 (x; δ) = x2 + (δ λ + λ + 1)x− 2 δ2λ + δ λ2 + δ λ− 2 λ;

P(λ)
3 (x; δ) = x3 + (δ λ + 2 λ + 3)x2 +

(
−6 δ2λ + 2 δ λ2 − 2 δ2 + 3 δ λ + λ2 − 3 λ

)
x

− 4 δ3λ2 − 2 δ3λ− 2 δ2λ2 + δ λ3 − 4 δ2λ− δ λ2 − 2 λ2 − 4 λ.

Let’s consider the following cases:
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Case I: When φ = π
6 , (δ = cot(π

6 ) =
√

3 ≈ 1.73) and λ = 0.55.

The first few Meixner–Pollaczek polynomials in this case are given by

P(0.55)
1 (x;

√
3) = x + 0.95262,

P(0.55)
2 (x;

√
3) = x2 + 2.502627944 x− 2.923426687,

P(0.55)
3 (x;

√
3) = x3 + 5.052627944 x2 − 13.34172543 x,

P(0.55)
4 (x;

√
3) = x4 + 8.602627944 x3 − 32.60489624 x2 − 163.9197723 x + 25.47242210,

P(0.55)
5 (x;

√
3) = x5 + 13.15262794 x4 − 59.06293911 x3 − 643.7244434 x2 + 154.8546466 x + 1654.802543,

and their corresponding real zeros are tabulated as follows.
Table 1 and Figure 1 show that the zeros of {P(0.55)

n (x;
√

3)}5
n=1 are real and simple,

which confirms the classical result for φ ∈ (0, π) and λ > 0 [6].

Table 1. Real zeros for P(λ)
n (x; δ) for λ = 0.55 and δ =

√
3.

P(0.55)
n (x;

√
3) Corresponding (Real) Zeros

P(0.55)
1 (x;

√
3) −0.95262

P(0.55)
2 (x;

√
3) [−3.370090351, 0.8674624068]

P(0.55)
3 (x;

√
3) [−6.5436518550, − 1.2893767698, 2.7804006808]

P(0.55)
4 (x;

√
3) [−10.1996365410, − 3.40704030, 0.1510418707, 4.853007027]

P(0.55)
5 (x;

√
3)

[−14.088331505, − 6.1197704981,
− 1.6483271898, 1.650996725, 7.052804527]

(a) (b)

Figure 1. Plots for the real zeros of P(λ)
n (x; δ) (with λ = 0.55, and δ =

√
3) for n = 2, 3. (a) Plots for

the (real) zeros of P(0.55)
2 (x;

√
3). (b) Plots for the (real) zeros of P(0.55)

3 (x;
√

3).

Case II: When φ = π
8 ∈ [0, π

4 ], (δ = cot(π
8 ) = 1 +

√
2 ≈ 2.41) and λ = −2.75.

For λ < 0 and δ > 0, we see that real orthogonality fails as complex zeros appear in
conjugate pairs for the first few polynomials. For extended orthogonality, see [20] for more
details. The first few monic polynomials for case II are given by

P(0.55)
1 (x; 2.41) = x− 6.6275,

P(−2.75)
2 (x; 2.41) = x2 − 8.389087296 x + 49.17475195,

P(−2.75)
3 (x; 2.41) = x3 − 9.139087296 x2 + 116.9224115 x,

P(−2.75)
4 (x; 2.41) = x4 − 8.889087296 x3 + 186.3361245 x2 − 1017.146023 x + 3414.532260,
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and their corresponding zeros with plots in the complex plane are given as follows.
Figure 2 demonstrates the pictorial representation of the complex zeros of P(−2.75)

n (x; 2.41)
for n = 2, 3, whereas Table 2 shows that the zeros of the polynomials {P(−2.75)

n (x; 2.41)}4
n=1

exhibit one real and remaining complex zeros in conjugate pairs except P(−2.75)
1 (x; 2.41).

This may likely suggest that for λ < 0 and δ > 0, complex zeros appear in conjugate pairs
for n > 1.

Table 2. The zeros for P(λ)
n (x; δ) when λ = −2.75 and δ = 2.41.

P(−2.75)
n (x; 2.41) Corresponding (Real/Complex) Zeros

P(−2.75)
1 (x; 2.41) 6.6275

P(−2.75)
2 (x; 2.41) [4.194543648− 5.619657955I, 4.194543648 + 5.619657955I]

P(−2.75)
3 (x; 2.41) [2.253498955− 9.537679842I, 2.2534989556 + 9.5376798424I, 4.6320893848]

P(−2.75)
4 (x; 2.41)

[1.188253595− 12.0969643912I, 1.1882535946 + 12.096964391I, 3.2562900534−
3.5365254217I, 3.25629005341 + 3.5365254217I]

(a) (b)

Figure 2. Plots for the complex zeros of P(λ)
n (x; δ) (with λ = −2.75 and δ ≈ 2.41) for n = 2, 3. (a) Plots

for the complex zeros of P(−2.75)
2 (x; 2.41). (b) Plots for the complex zeros of P(−2.75)

3 (x; 2.41).

Case III: When φ = −π
3 ∈ [−π

2 , 0], (δ = cot(−π
3 ) = 0.577), λ = −3.67.

The first few polynomials in this case are

P(−3.67)
1 (x;−0.577) = x + 3.8412,

P(−3.67)
2 (x;−0.577) = x2 − 0.551124512 x + 4.129269119,

P(−3.67)
3 (x;−0.577) = x3 − 2.221124512 x2 + 21.95631373 x + 28.92724218,

P(−3.67)
4 (x;−0.577) = x4 − 2.891124512 x3 + 44.80446716 x2 + 2.44449240 x + 68.81993616,

and their corresponding zeros are given as follows.
Table 3 shows that all the zeros of {P(−3.67)

n (x;−0.577)}4
n=1 are complex in conjugate

pairs, and plots for the complex zeros of P(−3.67)
n (x;−0.577) for n = 2, 3 are given below in

Figure 3.
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Table 3. Complex zeros for P(λ)
n (x; δ) for λ = −3.67 and δ = −0.577.

P(−3.67)
n (x;−0.577) Corresponding Zeros

P(−3.67)
2 (x;−0.577) [4.194543648− 5.619657955I, 4.194543648 + 5.619657955I]

P(−3.67)
3 (x;−0.577)

[2.25349895559073−
9.53767984236043I, 2.25349895559073 +
9.53767984236043I, 4.63208938481853]

P(−3.67)
4 (x;−0.577)

[1.188253590− 12.09696440I, 1.1882536 +
12.0969644I, 3.256290053− 3.53652542I, 3.25629005 +

3.5365254I]

(a) (b)

Figure 3. Plots for complex zeros of P(λ)
n (x; δ) (with λ = −3.67 and δ ≈ −0.577) for n = 2, 3. (a) Plots

for the complex zeros of P(−3.67)
2 (x;−0.577). (b) Plots for the complex zeros of P(−3.67)

3 (x;−0.577).

Remark 1. The above numerical experiments elaborate how the restriction of parameter values
influence real orthogonality and these numerical findings also likely verify the results given in
Lemma 1 and Theorem 1.

2. Relation between the Monic Polynomials P(λ)
n and Q(λ,ϕ)

n

It is known that classical orthogonal polynomials, namely the polynomials of Jacobi,
Laguerre, and Hermite, obey numerous well-known properties corresponding to their
several explicit relations [3]; nevertheless, when the conditions on such relations are less
restricted, semi-classical (non-classical) orthogonal polynomials [21] are obtained. For
mathematical completeness and applications of polynomials in numerous fields, one
requires polynomials that are orthogonal with respect to shifting of the weight function in
transcendental forms. For semi-classical measure modification from classical weights, we
refer to some works [21–24].

It is known that the classical polynomial P(λ)
n is orthogonal with respect to the

weight [1,3]

w(x; λ, φ) =
1

2π
e(2φ−π)x|Γ(λ + ix)|2, x ∈ R, λ > 0, ϕ ∈ (0, π). (17)

However, the polynomial Q(λ,ϕ)
n is orthogonal with the weight in Equation (17) per-

turbed by e−axt. This perturbation leads to the phase shift from phase ϕ to (ϕ− at
2 ), which

likely turns out to guarantee certain shared properties such as orthogonality, three-term
recurrence relation, generating functions, etc. In this sense, P(λ)

n and Q(λ,ϕ)
n behave like the

same polynomials with different parameters involved in their respective weight function
as parameter restrictions in the weight greatly affect some properties of the corresponding
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polynomials; for e.g., certain properties of the zeros (such as monotonicity, convexity,
quasi-orthogonality, etc.), concise formulation of the recurrence coefficients, etc are some
that may deviate as shown in literature [22,25–27]. This work also signifies the need for
time-dependent orthogonal polynomials, mainly in terms of their practical applications.
We believe that there are few works in related literature that treated certain properties and
applications of perturbed classical weights and we hope this work would then contribute
to filling this gap.

3. Main Results of the Perturbed Meixner–Pollaczek Weight
3.1. Finite Moments

It is shown in Proposition 2 that the moments of the Meixner–Pollaczek measure
are finite. We now present a result proving the finiteness of moments of the perturbed
Meixner–Pollaczek measure.

Theorem 2. Suppose a > 0, t > 0, ϕ ∈ (0, π) and x ∈ R. The moments ηj(t; ϕ) associated with
the weight Equation (8) are finite of all orders.

Proof. For the weight given in Equation (8), the moments ηj(t; ϕ) take the form

ηk

(
w(λ,ϕ)

)
=

1
2π

∫ ∞

−∞
xk e(2ϕ−π)x|Γ(λ + ix)|2 e−axtdx, k ∈ N0. (18)

Now, using the fact that
∫ ∞

−∞
f (x)dx =

∫ ∞

0
[ f (x) + f (−x)]dx, Equation (18) gives

ηk

(
w(λ,ϕ)

)
=

1
2π

∫ ∞

0
xk|Γ(λ + ix)|2

(
e(2ϕ−π−at)x + (−1)k e−(2ϕ−π−at)x

)
dx, k ∈ N0. (19)

From Stirling’s approximation (cf. [28]) for the complex Gamma function, we have

Γ(z) ≈
√

2π

z

( z
e

)z
,

and from the fact that Γ(z) is a holomorphic function for <(z) > 0, Γ(z̄) = Γ(z), we obtain

|Γ(z)|2 = Γ(z)Γ(z̄) ≈ 2π√
zz̄

( z
e

)z
(

z̄
e

)z̄
=

2π

|z|
( z

e

)z
(

z̄
e

)z̄
.

By employing z = reiθ = λ + ix, we have

|Γ(z)|2 ≈ 2π

r
(re−1+iθ)z(re−1−iθ)z̄ = 2πrz+z̄−1 exp(z(−1 + iθ)− z̄(1 + iθ)).

Using z + z̄ = 2λ, z− z̄ = 2ix and r2 = λ2 + x2, we obtain

|Γ(z)|2 ≈ 2π
(

λ2 + x2
) (2λ−1)

2 exp(−2λ− 2xθ).

By assuming that x � λ & x � 1, we have λ2 + x2 ≈ x2 and using θ ≈ π

2
gives

|Γ(z)|2 = |Γ(λ + ix)|2 ≈ 2πx2λ−1 exp(−πx),

in which the term 2λ in the argument of the exponential vanishes since 2λ is negligible
compared to πx. Since 2 cosh x = ex + e−x ≈ ex for large x, we finally attain that

|Γ(λ + ix)|2 ≈ πx2λ−1

cosh(πx)
. (20)
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Substituting Equation (20) into Equation (19) yields

ηk

(
w(λ,ϕ)

)
≈ 1

2π

∫ ∞

0
xk πx2λ−1

cosh(πx)

(
e(2ϕ−π−at)x + (−1)k e−(2ϕ−π−at)x

)
dx ≈ 1

2

∫ ∞

0

xk+2λ−1

cosh(πx)

(
eMx + (−1)k e−Mx

)
dx, (21)

where M := 2ϕ− π − at, with M < 0 for the weight to be defined.
By using Equation (21), the even and odd moments are given as follows.

(i) The even moments (η2n):

η2n

(
w(λ,ϕ)

)
≈ 1

2

∫ ∞

0

x2n+2λ−1

cosh(πx)

(
eMx + e−Mx

)
dx ≈ 1

2

∫ ∞

0
x2n+2λ−1 2 cosh(Mx)

cosh(πx)
dx, (22)

By employing the following cosh inequality: ex−e−x

2 = cosh x ≤ e
x2
2 , ∀ x ∈ R, we write

cosh(Mx)
cosh(πx)

≤ eM2x2/2

eπ2x2/2
= e(M2−π2)x2/2,

so that Equation (22) reduces to

η2n

(
w(λ,ϕ)

)
≈ 1

2

∫ ∞

0
x2n+2λ−1 2 cosh(Mx)

cosh(πx)
dx ≤

∫ ∞

0
x2n+2λ−1e(M2−π2)x2

dx =
1

(M2 − π2)(n+λ)
Γ(n + λ) < ∞. (23)

(ii) Similarly, for the odd moments (η2n+1), we use the following sinh inequality:

sinh(x) =
ex − e−x

2
≤ ex

2
, as e−x > 0, ∀ x ∈ R,

to obtain

η2n+1

(
w(λ,ϕ)

)
≈ 1

2

∫ ∞

0

x2n+2λ

cosh(πx)

(
eMx − e−Mx

)
dx =

∫ ∞

0
x2n+2λ sinh(Mx)

cosh(πx)
dx,

≤ 1
2

∫ ∞

0
x2n+2λeMx− π2 x2

2 dx =
1
2

∫ ∞

0
x2n+2λ e−

π2
2

(
− M

π4 +(x− M
π2 )

2
)

dx < ∞. (24)

Thus, from Equations (22)–(24), we see that the moments associated with the weight
in Equation (8) are finite of all orders.

3.2. Orthogonality and Generating Function

We now present some result related to orthogonality of the perturbed Meixner–
Pollaczek weight given in (8).

Proposition 3. Let λ > 0, t > 0 and ϕ > 0. The orthogonality relation of the monic perturbed
Meixner–Pollaczek polynomials is given by

L [xmQ(λ,ϕ)
n (x; t)] =

∫ ∞

−∞
Q(λ,ϕ)

n (x; t) xm w(λ,ϕ)(x; t) dx = ζ
(λ,ϕ)
n (t) δn,m, n, m ∈ N0, (25)

where the weight w(λ,ϕ)(x; t) is as given in Equation (6) with

ζ
(λ,ϕ)
n (t) = L

[
xnQ(λ,ϕ)

n (x; t)
]
6= 0, n ≥ 0. (26)

Proof. The result immediately follows from Lemma 1 together with fact that the param-
eter t, which likely leads to shifting the phase ϕ to ϕ − at

2 . Equation (26) also follows

from the positivity condition of the coefficient β
(λ,ϕ)
n (t) > 0 of the recurrence relation for

orthogonality to occur [3]. The constant ζ
(λ,ϕ)
n (t), n ≥ m ≥ 0, takes the form

ζ
(λ,ϕ)
n (t) =

∫ ∞

−∞

(
Q(λ,ϕ)

n (x; t)
)2

w(λ,ϕ)(x; t) dx = ζ
(λ,ϕ)
m (t)

n

∏
j=m+1

β j(t) = ζ
(λ,ϕ)
0 (t)

n

∏
j=1

β j(t), (27)
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where ζ
(λ,ϕ)
0 > 0; in particular, ζ

(λ,ϕ)
0 = 1. We see, for λ > 0, that

ζ
(λ,ϕ)
n (t) =

n

∏
j=1

β j(t) =
n

∏
j=1

1
4

j(j + 2λ− 1) csc2
(

ϕ− at
2

)
= (n!)

(
1
2

csc
(

ϕ− at
2

))2n n

∏
j=1

(j + k) > 0,

with k = 2λ − 1, and using the fact that
n

∏
j=1

j = n! and
n

∏
j=1

j2 = (n!)2 and hence the

result holds.

It now follows that the sequence of monic polynomials
{
Q(λ,ϕ)

n (x; t)
}∞

n=0 obey the
three-term recurrence relation

xQ(λ,ϕ)
n (x; t) = Q(λ,ϕ)

n+1 (x; t) + α
(λ,ϕ)
n (t) Q(λ,ϕ)

n (x; t) + β
(λ,ϕ)
n (t) Q(λ,ϕ)

n−1 (x; t), n ≥ 1, (28)

with initial conditionsQ(λ,ϕ)
−1 = 0; Q(λ,ϕ)

0 = 1, where the recurrence coefficients are given by





αn(t) := α
(λ,ϕ)
n (t) = −(λ + n) cot

(
ϕ− at

2
)
,

βn(t) := β
(λ,ϕ)
n (t) = 1

4 n(n + 2λ− 1) csc2(ϕ− at
2
)
.

(29)

Lemma 3. Let λ > 0, a > 0, 0 ≤ t < 2ϕ
a , fixed. The following holds for the monic perturbed

Meixner-Pollaczek polynomials Q(λ,ϕ)
n (x; t):

(i) The generating function

∞

∑
n=0
Q(λ,ϕ)

n (x; t) sn = (1− ei(ϕ− at
2 )s)−λ+ix(1− e−i(ϕ− at

2 )s)−λ−ix, |e±i(ϕ− at
2 )s| < 1, (30)

(ii) The hypergeometric representation

Q(λ,ϕ)
n (x; t) =

ein(ϕ− at
2 ) (2λ)n

n! 2F1


 −n, λ + ix

2λ

∣∣∣∣∣∣
1− e−2i(ϕ− at

2 )


. (31)

Proof. (i) This result follows from the modification of the weight

W(λ,ϕ)(x) := e(2ϕ−π)x|Γ(λ + ix)|2 −→W(λ,ϕ)(x)e−axt := w(λ,ϕ)(x; t),

which leads to the modification P(λ)
n (x; ϕ)→ P(λ)

n (x; ϕ− at
2 ) := Q(λ,ϕ)

n (x; t), and hence
Equation (30) is immediate from the hypergeometric formulation of Meixner–Pollaczek
polynomials ([1], Section 9.7).

(ii) In order to prove the result in Equation (31), we employ the generating function (30)
together with the identity ([29], p. 82)

(1− u)a−b(1− u + uz)−a =
∞

∑
n=0

(b)n

n! 2F1

(
−n, a

b

∣∣∣∣∣z
)

un,

with u = sei(ϕ− at
2 ), a = λ + ix, b = 2λ, z = 1− e−2i(ϕ− at

2 ) to obtain

(
1− ei(ϕ− at

2 )s
)−λ+ix(

1− e−i(ϕ− at
2 )s
)−λ−ix

=
∞

∑
n=0

ei(n+1)(ϕ− at
2 ) (2λ)n

n! 2F1



−n, λ + ix

2λ

∣∣∣∣∣∣∣
1− e−2i(ϕ− at

2 )


 sn ,

and later comparing the coefficients of the power series of both sides to arrive at the
desired result.
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3.3. Concise Formulation

In the sequel, we use Lemma 3 to obtain concise formulations of the perturbed
Meixner–Pollaczek polynomials.

Theorem 3. Let λ > 0, a > 0, 0 ≤ t < 2ϕ
a , fixed. The following formulations hold for the monic

perturbed Meixner–Pollaczek polynomials Q(λ,ϕ)
n (x; t):

(i) Q(λ,ϕ)
n (x; t) = (−1)nein(ϕ− at

2 )
n

∑
k=0

(−λ + ix
n− k

)(−λ− ix
k

)
e−2ik(ϕ− at

2 )

=
n

∑
k=0

(
n
k

)
(λ− ix)n−k (λ + ix)k

n!
ei(n−2k)(ϕ− at

2 ),

(ii) Q(λ,ϕ)
n (x; t) =

n

∑
`=0

1
n!

(
n
`

)
(λ + ix)n−` (2λ + n− `)` ei(n−`)ϕe−

i(n−`)at
2

[
e−2i(ϕ− at

2 ) − 1
]n−`

ei(ϕ− at
2 )`.

Proof. (i) The proof for (i) uses generalized binomial Theorem

(1 + x)α =
∞

∑
n=0

(
α

n

)
xn

on the generating function in Equation (30) and applying Cauchy’s product of the
series by using the identity

(−a
n

)
=

(−1)n (a)n

n!
, a ∈ C,

where (a)n is the Pochhammer symbol given in Equation (3).

(ii) By considering ([1], Equation (1.7.11)) and upon some rearrangement as in ([10],
p. 172), the generating function takes the form

∞

∑
n=0

P(λ)
n (x; ϕ) sn =

∞

∑
n=0

(λ + ix)k
k!

eikϕ
(

e−2iϕ − 1
)k(

1− seiϕ
)−2λ−k

sk, (32)

where P(λ)
n (x; ϕ) is the Meixner–Pollaczek polynomial. Since Q(λ,ϕ)

n (x; t) := P(λ)
n (x,

ϕ− at
2 ), it follows that

∞

∑
n=0
Q(λ,ϕ)

n (x; t) sn =
∞

∑
n=0

(λ + ix)k
k!

eik(ϕ− at
2 )
(

e−2i(ϕ− at
2 ) − 1

)k(
1− sei(ϕ− at

2 )
)−2λ−k

sk

=
∞

∑
n=0

(λ + ix)k
k!

eikϕe
−ikat

2

(
e−2i(ϕ− at

2 ) − 1
)k(

1− sei(ϕ− at
2 )
)−2λ−k

sk. (33)

Expanding
(

1− sei(ϕ− at
2 )
)−2λ−k

using Pochhammer’s identity (−λ)k = (−1)k (λ)k
k! gives

(
1− sei(ϕ− at

2 )
)−2λ−k

=
∞

∑
`=0

(−2λ− k
`

)(
−sei(ϕ− at

2 )
)`

=
∞

∑
`=0

(−1)`(2λ + k)`
`!

(−1)`ei(ϕ− at
2 )`s` =

∞

∑
`=0

(2λ + k)`
`!

eiϕ`e−
iat`

2 s`. (34)

By substituting Equations (34) into (33) and using the summation identity

∞

∑
n=0

∞

∑
k=0

f (k, n) =
∞

∑
n=0

n

∑
k=0

f (k, n− k),
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we obtain

∞

∑
n=0
Q(λ,ϕ)

n (x; t) sn =
∞

∑
k=0

∞

∑
`=0

(λ + ix)k
k!

(2λ + k)`
`!

eikϕe−
ikat

2

[
e−2i(ϕ− at

2 ) − 1
]k

eiϕ`e−
iat`

2 s`sk

=
∞

∑
k=0

k

∑
`=0

(λ + ix)k−`
(k− `)!

(2λ + k− `)`
`!

ei(k−`)ϕe−
i(k−`)at

2

[
e−2i(ϕ− at

2 ) − 1
](k−`)

eiϕ`e−
iat`

2 sk. (35)

By writing n instead of k in Equation (35), we may write

∞

∑
n=0
Q(λ,ϕ)

n (x; t)sn =
∞

∑
n=0

n

∑
`=0

(λ + ix)n−`
(n− `)!

(2λ + n− `)`
`!

ei(n−`)ϕe−
i(n−`)at

2

[
e−2i(ϕ− at

2 ) − 1
]n−`

eiϕ`e−
iat`

2 sn

=
∞

∑
n=0

(
n

∑
`=0

1
n!

(
n
`

)
(λ + ix)n−` (2λ + n− `)` ei(n−`)ϕe−

i(n−`)at
2

[
e−2i(ϕ− at

2 ) − 1
]n−`

ei(ϕ− at
2 )`

)
sn. (36)

Thus, the required result follows by comparing the coefficients of s on both sides of
the last equality.

3.4. Some New Recursive Relations

In this Subsection, let’s now denote, for notational convenience, the perturbed Meixner–
Pollaczek polynomials by Q(λ,a)

n (x; ϕ, t) in order to show the role of the parameters in
Equation (8). We may also sometimes omit some parameters for simplicity. We can now
state one of our main results giving new recursive relations fulfilled by the perturbed
polynomials using hypergoemetric identities.

Theorem 4. Let a > 0, ϕ > 0 and t > 0. Then the following recursive relations hold for monic
perturbed Meixner–Pollaczek polynomials Q(λ,a)

n (x; ϕ, t):

(i)

2i(λ + ix) sin ϕ Q(λ+ 1
2 ,a)

n

(
x− 1

2
i; ϕ, t

)
= eiϕ(n + 2λ) Q(λ,a)

n (x; ϕ, t)− 2 sin ϕ Q(λ,a)
n+1 (x; ϕ, t), (37)

(ii)

eiϕ Q(λ+ 1
2 ,a)

n

(
x− 1

2
i; ϕ, t

)
− eiϕQ(λ,a)

n (x; ϕ, t) =
n

2 sin ϕ
Q(λ+ 1

2 ,a)
n−1

(
x− 1

2
i; ϕ, t

)
. (38)

Proof. (i) In order to prove the result in (37), let’s rewrite the monic perturbed Meixner–
Pollaczek polynomials

Q(λ,a)
n (x; ϕ, t) =

n!
(2 sin ϕ)n P(λ)

n

(
x; ϕ− at

2

)
=

(2λ)n

(2 sin ϕ)n einϕ
2F1



−n, λ + ix

2λ

∣∣∣∣∣∣∣
1− e−2iϕ


. (39)

Now, by using the 2F1-hypergeometric formulation given in Equation (39), we rewrite
Equation (37) as

2i(λ + ix) sin ϕ

{
(2λ + 1)n

(2 sin ϕ)n einϕ
2F1



−n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣
1− e−2iϕ



}

= eiϕ(n + 2λ)

{
(2λ)n

(2 sin ϕ)n einϕ
2F1



−n, λ + ix

2λ

∣∣∣∣∣∣∣
1− e−2iϕ



}

− 2 sin ϕ

{
(2λ)n+1

(2 sin ϕ)n+1 einϕeiϕ
2F1



−n, λ + ix

2λ

∣∣∣∣∣∣∣
1− e−2iϕ



}

. (40)
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Simplifying Equation (40) and using the identities in ([30], Theorem 9.2)

(2λ + 1)n = n+2λ
2λ (2λ)n,

(2λ)n = (2λ)n+1
n+2λ ,

sin ϕ = 1
2i
(
eiϕ − e−iϕ),





(41)

we obtain the following relations:

(λ + ix) (1− e−2iϕ) (2λ + 1)n 2F1



−n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣
1− e−2iϕ




= (n + 2λ) (2λ)n 2F1



−n, λ + ix

2λ

∣∣∣∣∣∣∣
1− e−2iϕ


− (2λ)n+1 2F1



−n− 1, λ + ix

2λ

∣∣∣∣∣∣∣
1− e−2iϕ


. (42)

Thus, the result in Equation (37) immediately follows from Equation (42) together
with the 2F1-contagious hypergeometric identity (cf. [31], Equation (2.11))

2F1


 a, b

c

∣∣∣∣∣∣
z


 = 2F1


 a− 1, b

c

∣∣∣∣∣∣
z


+

bz
c 2F1


 a, b + 1

c + 1

∣∣∣∣∣∣
z


, (43)

where a = −n, b = λ + ix, and c = 2λ.

(ii) To prove the second, we rewrite the left hand side of Equation (38), using Equation (39),
to obtain

eiϕ Q(λ+ 1
2 ,a)

n

(
x− 1

2
i; ϕ, t

)
− eiϕQ(λ,a)

n (x; ϕ, t)

=
ei(n+1)ϕ

(2 sin ϕ)n

{
(2λ + 1)n 2 F1



−n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣∣
1− e−2iϕ


− (2λ)n+1 2 F1



−n, λ + ix

2λ

∣∣∣∣∣∣∣∣
1− e−2iϕ




}
. (44)

Besides, the right hand side of Equation (38) also takes the form

n
2 sin ϕ

Q(λ+ 1
2 ,a)

n−1

(
x− 1

2
i; ϕ, t

)
=

n
2 sin ϕ

{
(2λ + 1)n−1

(2 sin ϕ)n−1 ei(n−1)ϕ
2 F1



−n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣∣
1− e−2iϕ




}

=
n

(2 sin ϕ)n (2λ + 1)n−1ei(n−1)ϕ
2 F1



−n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣∣
1− e−2iϕ


. (45)

We now see that the result in Equation (38) follows by combining Equations (44) and
(45) together with the 2F1 hypergoemetric contagious identity (cf. ([31], Equation (2.6))

(a− c + 1) 2 F1




a, b

c

∣∣∣∣∣∣∣∣
z


+ (c− 1) 2 F1




a, b− 1

c− 1

∣∣∣∣∣∣∣∣
z


− a(1− z) 2 F1




a + 1, b

c

∣∣∣∣∣∣∣∣
z


 = 0, (46)

where a = −n, b = λ + ix + 1, c = 2λ + 1 and z = 1− e−2iϕ.

Our next proposition gives some properties of the perturbed Meixner–Pollaczek
polynomials.

3.5. Addition Formulation and Integral Representation

Proposition 4. Let λ > 0, a > 0 and 0 ≤ t < 2ϕ
a . The following properties hold for Q(λ,ϕ)

n (x; t):
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(i) Addition formulation

Q(α+β,ϕ)
n (x + y; t) =

n

∑
k=0
Q(α,ϕ)

n−k (x; t) Q(β,ϕ)
k (y; t). (47)

(ii) Integral representation

Q(λ,ϕ)
n (x; t) =

1
n!

ein(ϕ− at
2 )

|Γ(λ + ix)|2
∫ ∞

0

∫ ∞

0
e−(s+r) (sr)λ−1

(
s + e−2i(ϕ− at

2 )r
)n( r

s

)ix
ds dr. (48)

Proof. (i) By replacing λ → α + β, (α > 0, β > 0) and x → x + y in Equation (30) and
then applying Cauchy’s product, we obtain

∞

∑
n=0
Q(α+β,ϕ)

n (x + y; t) sn =

[
1− ei(ϕ− at

2 )s

]−(α+β−ix−iy)[
1− e−i(ϕ− at

2 )s

]−(α+β+ix+iy)

=

(
∞

∑
n=0
Q(α,ϕ)

n (x; t) sn

)(
∞

∑
n=0
Q(β,ϕ)

n (y; t) sn

)

=
∞

∑
n=0

∞

∑
k=0
Q(α,ϕ)

n (x; t)Q(β,ϕ)
k (y; t) sk+n

=
∞

∑
n=0

n

∑
k=0
Q(α,ϕ)

n−k (x; t)Q(β,ϕ)
k (y; t) sn . (49)

Thus, Equation (47) follows by comparing the coefficients of s on both sides of the
last equality.

(ii) In order to prove (48), we use the generating function in ([1], Equation (9.7.13)) (by
setting γ = 2λ) and by applying the definition of Gamma function

Γ(z) b−z =
∫ ∞

0
e−bttz−1dt, [<(z) > 0],

to obtain

∞

∑
n=0

e−in(ϕ− at
2 )Q(λ,ϕ)

n (x; t) un = (1− u)−(λ−ix)
(

1− ue−2i(ϕ− at
2 )
)−(λ+ix)

=
1

Γ(λ− ix)
1

Γ(λ + ix)

∫ ∞

0

∫ ∞

0
e−(1−u)ssλ−1−ixds e−(1−ue−2i(ϕ− at

2 )
)r rλ−1+ixdr

=
1

|Γ(λ + ix)|2
∫ ∞

0

∫ ∞

0
e−(s+r) (sr)λ−1 eu(s+e−2i(ϕ− at

2 )r) (sr)λ−1
( r

s

)ix
ds dr

=
∞

∑
n=0

1
n!

[
1

|Γ(λ + ix)|2
∫ ∞

0

∫ ∞

0
e−(s+r) (sr)λ−1

(
s + e−2i(ϕ− at

2 )r
)n( r

s

)ix
ds dr

]
un . (50)

Thus, (48) follows by comparing the coefficients of un on both sides of Equation (50).

3.6. Some Properties of the Zeros Associated with the Perturbed Weight in (8)

For ϕ ∈ (0, π) and λ > 0, the zeros of the Meixner–Pollaczek polynomials, {P(λ)
n (x; ϕ)}∞

n=0,
are simple and real, and consequently, the zeros interlace [3]. The monotonicity properties
of all the zeros with respect to a parameter of orthogonal polynomials associated with an
even weight function, specifically, the symmetric Meixner–Pollaczek case, are given in [26]
(see also [32]). In what follows, we state some fresh results related to certain properties of
the zeros of the perturbed Meixner–Pollaczek polynomials.

3.6.1. Monotonicity of the Zeros

Proposition 5. Let λ > 0, a > 0 and x ∈ R. The zeros
{

x(λ,ϕ)
nk (t)

}n

k=1
of the monic perturbed

Meixner–Pollaczek polynomials Q(λ,a)
n (x; ϕ, t) are

(i) monotone decreasing functions of t on the interval 2ϕ− 2π < at < 2ϕ, t > 0.
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(ii) monotone increasing functions of ϕ for 0 < ϕ− at
2 < π and fixed t > 0.

Proof. (i) By applying Markov’s monotonicity Theorem (cf. [10], Theorem 7.1.1), it is
easy to check that for the weight in Equation (8), we have

ln w(λ,ϕ)(x; t) = (2ϕ− π)x + ln
(
|Γ(λ + ix)|2

)
− axt, a > 0, x ∈ R. (51)

Differentiating Equation (51) with respect to t gives G(x; t) =
∂ ln w(λ,ϕ)(x; t)

∂t
= −ax,

and hence G(x; t) is decreasing function of x for x ∈ R since
∂G
∂x

= −a < 0 for
a > 0 and x ∈ R. We can easily infer from (cf. [10], Theorem 7.1.1) that the zeros of
Q(λ,a)

n (x; ϕ, t) decrease as a function of t, for t ∈ ( 2ϕ−2π
a , 2ϕ

a ).
(ii) It is easy to check that for the perturbed weight in Equation (8), we have

ln w(λ,ϕ)(x; t) = (2ϕ− π)x + ln
(
|Γ(λ + ix)|2

)
− axt, a > 0, x ∈ R. (52)

Differentiating Equation (52) with respect to t gives H(x; t) =
∂ ln w(λ,ϕ)(x; t)

∂ϕ
= 2x.

Since H(x; t) is monotone increasing of x for x ∈ R, as
∂H
∂x

> 0 for a > 0 and x ∈ R,

it is easy to deduce from ([10], Theorem 7.1.1) that the zeros of Q(λ,a)
n (x; ϕ, t) increase

as a function of ϕ, for ϕ ∈
( at

2 , π + at
2
)
, a > 0, with t ∈ ( 2ϕ−2π

a , 2ϕ
a ).

Our next result gives the connection between Hellmann–Feynman Theorem [33] and
the monotonicity of the zeros associated with the perturbed weight given in Equation (8).

Theorem 5. Let λ > 1
2 ,
{

xn,k(ϕ, t)
}n

k=1 be the zeros of Q(λ,a)
n (x; ϕ, t) in such a way that

xn,1(ϕ, t) > xn,2(ϕ, t) > · · · > xn,n(ϕ, t).

The following monotone properties of the zeros hold true for t ∈ [0, 2ϕ
a ):

(i) ∂xn,1(ϕ,t)
∂ϕ > 0 for π

2 < ϕ− at
2 < π, a > 0.

(ii) ∂xn,n(ϕ,t)
∂ϕ > 0 for 0 < ϕ− at

2 < π
2 , a > 0.

(iii) ∂xn,1(ϕ,t)
∂t < 0 for π

2 < ϕ− at
2 < π, a > 0.

(iv) ∂xn,n(ϕ,t)
∂t < 0 for ϕ− at

2 ∈
(
0, π

2
)
, a > 0.

Proof. To apply Hellmann–Feynman’s Theorem in terms of the three-term recurrence
relation (cf. [34], Theorem 1.1), we have to consider recurrence coefficients of the monic
perturbed Meixner–Pollaczek polynomials in Equation (28),

α
(λ,ϕ)
n (t) = −(λ + n) cot

(
ϕ− at

2

)
; β

(λ,ϕ)
n (t) =

n(n + 2λ− 1)
4

csc2
(

ϕ− at
2

)
.

(i) We now first consider the derivative of the coefficient αn(λ, ϕ); i.e., α′n(λ, ϕ) as

α′n(ϕ) :=
∂α

(λ,ϕ)
n (t)
∂ϕ

= −(λ + n) csc2
(

ϕ− at
2

)
, n ≥ 0, (53)

and we see from (53) that α′n(ϕ) < 0 for ϕ− at
2 ∈ (kπ, π + kπ), k ∈ Z. Hence the

coefficient αn(λ, ϕ), n ≥ 0 is a monotone decreasing function of ϕ in the interval
ϕ− at

2 ∈ (0, π) + kπ for k ∈ Z and fixed t > 0.
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Next, we examine the derivative of β′n(λ, ϕ). For n ≥ 1,

β′n(ϕ) :=
∂β

(λ,ϕ)
n (t)
∂ϕ

= −1
2
(n)(λ + n− 1) csc

(
ϕ− at

2

)
cot
(

ϕ− at
2

)
. (54)

From Equation (54), we see that β′n(ϕ) < 0 for ϕ− at
2 ∈

(
kπ, π

2 + kπ
)
, k ∈ Z with

fixed parameter t > 0; and β′n(ϕ) > 0 for ϕ− at
2 ∈

(
π
2 + kπ, kπ

)
, k ∈ Z. In particular,

for k = 0, we see that β′n(ϕ) < 0 if ϕ− at
2 ∈ (0, π

2 ) and β′n(ϕ) > 0 if ϕ− at
2 ∈ (π

2 , π)
for fixed positive t. Thus, the coefficient βn(λ, ϕ), n ≥ 0 is a monotone decreasing
function of the parameter ϕ in the interval ϕ ∈ (at, π

2 + at) for k ∈ Z and for fixed
positive t; and βn(λ, ϕ), n ≥ 0 is a monotone increasing function of ϕ in the interval
ϕ ∈ (π

2 + at, π + at), k ∈ Z and fixed t > 0. Thus, the assumptions of Hellman-
Feynman Theorem are fulfilled, and so is Theorem 5.

(ii) The proofs for (ii), (iii) and (iv) share similar approach.

3.6.2. Convexity of the Extreme Zeros

In the following, we shall now prove the convexity of zeros related to the perturbed
Meixner–Pollaczek weight (8).

Theorem 6. Let λ > 1
2 ,
{

xn,k(ϕ, t)
}n

k=1 be the zeros of Q(λ,a)
n (x; ϕ, t) in such a way that

xn,1(ϕ, t) > xn,2(ϕ, t) > · · · > xn,n(ϕ, t). The following convexity results of the extreme ze-
ros hold true:

(i) ∂2xn,1(ϕ,t)
∂ϕ2 > 0 and ∂2xn,1(ϕ,t)

∂t2 > 0 for ϕ− at
2 ∈

(
π
2 , π

)
, a, t > 0.

(ii) ∂2xn,1(ϕ,t)
∂ϕ2 < 0 and ∂2xn,1(ϕ,t)

∂t2 < 0 for ϕ− at
2 ∈

(
0, π

2
)
, a, t > 0.

Proof. (i) By following the idea of Dimitrov (cf. [35], Lemma 1), the convexity of the
extreme zeros follows from the derivatives

d2α
(λ,ϕ)
n

dt2 = −(n + λ)
d2

dϕ2

(
cot
(

ϕ− at
2

))

= −2(n + λ)a2 csc2
(

ϕ− at
2

)
cot
(

ϕ− at
2

)

=




< 0, if 0 < ϕ− at

2 < π
2 ,

> 0, if π
2 < ϕ− at

2 < π,
(55)

and

d2β
(λ,ϕ)
n

dϕ2 =
d2

dϕ2

(
csc2

(
ϕ− at

2

))

=
n(n + 2λ− 1)a2

4

[
4 csc2

(
ϕ− at

2

)
cot2

(
ϕ− at

2

)
+ 2 csc4

(
ϕ− at

2

)]

= n(n + 2λ− 1) a2

[
csc2

(
ϕ− at

2

)
cot2

(
ϕ− at

2

)
+

1
2

csc4
(

ϕ− at
2

)]
> 0, (56)

for all values of ϕ− at
2 , and in particular, 0 < ϕ− at

2 ∈ π for fixed t > 0 and a > 0. By com-
bining Equations (55) and (56) and applying ([35], Lemma 1), the above convexity result of
the largest zero of the perturbed Meixner–Pollaczek polynomials follows immediately.

(ii) The concavity of the smallest zero of the perturbed Meixner–Pollaczek polynomials also
follows from Equations (55) and (56), in a similar manner, by applying ([35], Lemma 1).
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Remark 2. A similar numerical experimentation of the zeros of the perturbed Meixner–Pollaczek
polynomials can be done to give analog results to the ones in Section 1.1.1 with careful restriction of
involved parameters.

4. Some Applications of the Polynomial Q(λ,a)
n (x;ϕ, t)

In this Section, certain applications of the perturbed Meixner-Pollaczek polynomials
are explored. These polynomials have wider applicability in the Random matrix theory
of level statistics using partition functions (via Toda molecule equation) [11], wave func-
tions in Quantum Mechanics, the Fisher information theory and in the study of Gaussian
quadrature (cf. [36]), to mention a few.

4.1. Exposition of Toda-Type Lattice/Molecule Equation

Toda lattice is a system of particles on the line with exponential interaction of nearest
neighbours [37]. Toda was the first to study such a system for infinitely many particles on
the line [38]. The Toda lattice equations are investigated from the Newtonian equations of
motion (see, for example, [37])

ẍn = exn−1−xn − exn−xn+1 , n ≥ 1,

when one takes αn = ẋn and βn = exn−1−xn for n ∈ N. (Note that αn and βn are the
recurrence coefficients for corresponding monic orthogonal polynomials on the real line [3,8]).

The fact that perturbed Meixner–Pollaczek polynomials are time-dependent orthogo-
nal polynomials, allows us to study the time-evolution equation related to Toda lattices.
The Perturbed Meixner–Pollaczek weight in (8) is obtained from deformation of classi-
cal Meixner–Pollaczek weight by exp(−axt). For similar measure deformation, we refer
to [21,23,27] (See also [39]). We now mention in the following result of the perturbed
Meixner–Pollaczek polynomials satisfying a similar scaled Toda lattice/molecule equation.

Proposition 6. The recurrence coefficients αn(t) and βn(t) in (29) associated with the monic
perturbed Meixner–Pollaczek polynomials Q(λ,ϕ)

n (x; t) for ϕ ∈
( at

2 , π + at
2
)
, obey a scaled Toda

molecule equation





∂αn

∂t
= a(βn − βn+1),

∂βn

∂t
= aβn(αn−1 − αn), a > 0.

(57)

Proof. This result immediately follows from orthogonality and iterated recurrences,
see [21,39].

The proof of this result is given in Appendix A.1 of Appendix A just for the reader’s
convenience.

Remark 3. We now see that Equation (29) solves the differential-recurrence (Toda) equation in
Equation (57) associated with the monic perturbed Meixner–Pollaczek polynomials.

4.2. Fisher Information of the Monic Polynomial Q(λ,a)
n (x; ϕ, t)

Following the approach given in [36], the Fisher information of the Meixner–Pollaczek
polynomials is computed using the concept introduced for general orthogonal polynomials
by Sanchéz-Ruiz and Dehesa in [40]. They considered a sequence of real polynomials
orthogonal with respect to the weight function ρ(x) on the interval [a, b]

b∫

a

Pn(x) Pm(x) ρ(x) dx = ζn δn,m, n, m = 0, 1, . . . ,
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with deg(Pn) = n. Introducing the normalized density functions

ρn(x) =
[Pn(x)]2ρ(x)

ζn
, (58)

they in fact defined the Fisher information corresponding to the densities in Equation (58)

I(n) =
b∫

a

[ρ′n(x)]2

ρn(x)
dx. (59)

Applying the formula in Equation (59) to the classical hypergeometric polynomials,
the authors in [41] evaluated I(n) for Jacobi, Laguerre and Hermite polynomials. We quote
the following result by Dominici from [36]:

Theorem 7 ([36]). The Fisher information of the Meixner–Pollaczek polynomials is given by

Iϕ

(
P(λ)

n

)
=

∞∫

−∞

[
∂

∂ϕ
ρn(x)

]2 1
ρn(x)

dx =
2
[
n2 + (2n + 1)λ

]

sin2(ϕ)
, n ∈ N0,

where the normalized function ρn(x) is as defined in Equation (58).

Based on the above discussion, we shall now reproduce the following application of
the monic perturbed Meixner–Pollaczek polynomials.

Theorem 8. The Fisher information of the monic perturbed Meixner–Pollaczek polynomials with
respect to the parameter ϕ is given, in terms of the recurrence coefficients, by

Iϕ

(
Q(λ,ϕ)

n (x; t)
)
=

∞∫

−∞

[
∂

∂ϕ
ρn(x; t)

]2 1
ρn(x; t)

dx = 4
(

β
(λ,ϕ)
n + β

(λ,ϕ)
n + [α

(λ,ϕ)
n ]2

)

+ 4(2n + 2λ− 1)α(λ,ϕ)
n + (2n + 2λ− 1)2

(
cot
(

ϕ− at
2

))2

, (60)

where the normalized function ρn(x; t) is as given in Equation (58).

Proof. By employing the three-term recurrence relation in Equation (28) associated with
the weight in (8) and using the orthogonality relation in Equation (25) with its (monic)
normalization constant, we have normalized function

ρn(x; t) =

[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t)

ζ
(λ,ϕ)
n

=
e(2ϕ−π)x |Γ(λ + ix)|2 e−axt[2 sin(ϕ− at

2 )
]2n+2λ

[
Q(λ,ϕ)

n (x; t)
]2

2πΓ(n + 2λ)Γ(n + 1)
(61)

and we note that
∫

R
ρn(x; t) = 1 for n ∈ N0.

By taking the derivatives of ρn with respect to ϕ and using the perturbed weight (8)

∂w(λ,ϕ)

∂ϕ
= (2x) w(λ,ϕ), (62)

together with the result in ([36], Equation (12)) gives

∂Q(λ,ϕ)
n (x; t)

∂ϕ
=

∂

∂ϕ

(
n!

(2 sin ϕ)n P
(λ)
n

(
x; ϕ− at

2

))
=
−n(n + 2λ− 1)
2 sin2(ϕ− at

2

) Q(λ,ϕ)
n−1 (x; t). (63)
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Using Equation (61), it follows that

∂ρn(x; t)
∂ϕ

=
Q(λ,ϕ)

n (x; t)w(λ,ϕ)(x; t)

ζ
(λ,ϕ)
n

{
−n(n + 2λ− 1)

sin2(ϕ− at
2

) Q(λ,ϕ)
n−1 (x; t) + 2xQ(λ,ϕ)

n (x; t)−
(

1

ζ
(λ,ϕ)
n

∂ζ
(λ,ϕ)
n

∂ϕ

)
Q(λ,ϕ)

n (x; t)

}
(64)

From the orthogonality of Meixner-Pollaczek polynomials [1], we note here that

ζ
(λ,ϕ)
n (t) =

2π(n!)Γ(n + 2λ)
[
2 sin(ϕ− at

2 )
]2n+2λ

=
2πΓ(n + 1)Γ(n + 2λ)
[
2 sin(ϕ− at

2 )
]2n+2λ

, (65)

for the perturbed Meixner-Pollaczek polynomials. It then follows from Equation (65) that

1

ζ
(λ,ϕ)
n

∂ζ
(λ,ϕ)
n

∂ϕ
=

(−2π)(2n + 2λ− 1)Γ(n + 1)Γ(n + 2λ)
( 1

2

)2n+2λ[
2 csc(ϕ− at

2 )
]2n+2λ cot(ϕ− at

2 )

Γ(n + 1)Γ(n + 2λ)
( 1

2

)2n+2λ[
2 csc(ϕ− at

2 )
]2n+2λ

= −(2n + 2λ− 1) cot
(

ϕ− at
2

)
. (66)

By using Equations (66) and (61), Equation (64) becomes

∂ρn(x; t)
∂ϕ

=
1

ζ
(λ,ϕ)
n

Q(λ,ϕ)
n (x; t)w(λ,ϕ)(x; t)

{
−n(n + 2λ− 1)

sin2
(

ϕ− at
2

) Q(λ,ϕ)
n−1 (x; t) + 2xQ(λ,ϕ)

n (x; t)−
(

1

ζ
(λ,ϕ)
n

∂ζ
(λ,ϕ)
n
∂ϕ

)
Q(λ,ϕ)

n (x; t)

}

=
ρn(x; t)

Q(λ,ϕ)
n (x; t)

{
−n(n + 2λ− 1)

sin2
(

ϕ− at
2

) Q(λ,ϕ)
n−1 (x; t) + 2xQ(λ,ϕ)

n (x; t) + (2n + 2λ− 1) cot
(

ϕ− at
2

)
Q(λ,ϕ)

n (x; t)

}

=
ρn(x; t)

Q(λ,ϕ)
n (x; t)

{[
2x + (2n + 2λ− 1) cot

(
ϕ− at

2

)]
Q(λ,ϕ)

n (x; t)− 4β
(λ,ϕ)
n Q(λ,ϕ)

n−1 (x; t)

}
. (67)

Thus, using Equation (67), we attain that

(
∂ρn

∂ϕ

)2 1
ρn

=
ρn(x; t)

[
Q(λ,ϕ)

n (x; t)
]2

{[
2x + (2n + 2λ− 1) cot

(
ϕ− at

2

)]2[
Q(λ,ϕ)

n (x; t)
]2

− 8β
(λ,ϕ)
n [2x + (2n + 2λ− 1) cot

(
ϕ− at

2

)
]Q(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t) + 16

[
β
(λ,ϕ)
n

]2[
Q(λ,ϕ)

n−1 (x; t)
]2
}

=
w(λ,ϕ)(x; t)

ζ
(λ,ϕ)
n

{[
4x2 + 4(2n + 2λ− 1) cot

(
ϕ− at

2

)
x + (2n + 2λ− 1)2

(
cot
(

ϕ− at
2

))2
][
Q(λ,ϕ)

n (x; t)
]2

− 16β
(λ,ϕ)
n xQ(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t)− 8β

(λ,ϕ)
n (2n + 2λ− 1) cot

(
ϕ− at

2

)
Q(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t)

+ 16
[

β
(λ,ϕ)
n

]2[
Q(λ,ϕ)

n−1 (x; t)
]2
}

. (68)

By integrating Equation (68) and using the orthogonality relation in Equation (25) and
iterating the recurrence (28)

xQ(λ,ϕ)
n (x; t) = Q(λ,ϕ)

n+1 (x; t) + αn(t)Q(λ,ϕ)
n (x; t) + βn(t)Q(λ,ϕ)

n−1 (x; t),

x2Q(λ,ϕ)
n (x; t) = Q(λ,ϕ)

n+2 (x; t)(αn + αn+1)Q(λ,ϕ)
n+1 (x; t) +

(
βn+1 + βn + α2

n

)
Q(λ,ϕ)

n (x; t)

+ βnαn−1Q(λ,ϕ)
n−1 (x; t) + βnβn−1Q(λ,ϕ)

n−2 (x; t), (69)

we obtain
(

∂ρn
∂ϕ

)2 1
ρn

=
1

ζ
(λ,ϕ)
n

∫
4x2
[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t) dx

+
1

ζ
(λ,ϕ)
n

∫
4(2n + 2λ− 1) cot

(
ϕ− at

2

)
x
[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t) dx

+
1

ζ
(λ,ϕ)
n

∫
(2n + 2λ− 1)2

(
cot
(

ϕ− at
2

))2[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t) dx

− 16β
(λ,ϕ)
n

1

ζ
(λ,ϕ)
n

∫
xQ(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t)w(λ,ϕ)(x; t) dx + 16

[
β
(λ,ϕ)
n

]2 1

ζ
(λ,ϕ)
n

∫ [
Q(λ,ϕ)

n−1 (x; t)
]2

w(λ,ϕ)(x; t) dx

= 4
(

β
(λ,ϕ)
n + β

(λ,ϕ)
n + [α

(λ,ϕ)
n ]2

)
+ 4(2n + 2λ− 1)α(λ,ϕ)

n + (2n + 2λ− 1)2
(

cot
(

ϕ− at
2

))2
, (70)
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and this completes the proof.

Remark 4. The Fisher information of the classical orthogonal polynomials with respect to a pa-
rameter is given in [41]. In our case, the Fisher information of the perturbed Meixner-Pollaczek
polynomials with respect to the parameter a > 0 can also be obtained in a similar procedure, using
the fact that

∂w(λ,ϕ)

∂a
= (−tx) w(λ,ϕ).

4.3. Guass–Meixner–Pollaczek Quadrature

Let’s first recall a quadrature rule,

∫

R
f (x)dµ(x) ≈

n

∑
ν=1

ωj f (xj),

where the integral of a function f relative to some (in general positive) measure dµ is
approximated by a finite sum involving n values of f at suitably selected distinct nodes xj,
where these nodes are obtained from the zeros of orthogonal polynomials Φn(x; w) and
the quadrature weights ωj, j = 1, 2, . . . , n can also be given by [42]

ωj =
〈Φn−1, Φn−1〉w

Φn−1(xj) Φ′n(xj)
. (71)

where the prime denotes differentiation with respect to x.
Just for simplicity, this Subsection emphasizes to explore Gaussian quadrature rule

related to symmetric monic Meixner-Pollaczek polynomials, which are special cases of the
perturbed Meixner-Pollaczek polynomials Q(λ,ϕ)

n (x; t) when t = 0 and ϕ = π
2 . As given in

([1], Section 9.7), symmetric monic Meixner-Pollaczek polynomials, are defined by

S (λ)n (x) := P(λ)
n

(
x;

π

2

)
=

(2λ)n

n! 2F1


 −n, λ + ix

2λ

∣∣∣∣∣∣
2


 , (72)

and are orthogonal on R for λ > 0 with respect to the continuous weight

W(x; λ) =
1

2π
| Γ(λ + ix)|2, λ > 0, x ∈ R. (73)

Since the sequence of monic polynomials {S (λ)n }∞
n=0 defined in Equation (72) are

symmetric with respect to the origin, it follows from orthogonality that they obey symmetric
recurrence relation [6]

{
xS (λ)n (x) = S (λ)n+1(x) + βn(λ) S (λ)n−1(x), n ∈ N,

S (λ)0 (x) ≡ 1, S (λ)−1 (x) ≡ 0,
(74)

where the coefficient βn(λ) from Equation (74) is given by [6]

βn(λ) =
(n)(2λ + n− 1)

4 sin2(π
2 )

=
(n)(n + 2λ− 1)

4
, n ≥ 1. (75)

It now follows from [1] that the normalization constant associated with the weight in
(73) is given by

ζ
(λ)
n =

2π Γ(n + 1) Γ(n + 2λ)

22n+2λ
. (76)
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We note that, for λ = 1
2 , taking into account of Euler’s duplication formula ([2],

Equation (5.5.5)), we have from (73)

W
(

x;
1
2

)
=

1
2π

∣∣∣Γ
(

1
2
+ ix

)∣∣∣
2
=

1
2π

(
π

cosh(πx)

)
=

1
2 cosh(πx)

.

Similarly, if we take λ = 1, again using Euler’s duplication formula [2], we obtain

W(x; 1) =
1

2π

∣∣∣Γ(1 + ix)
∣∣∣
2
=

1
2π

Γ(1 + ix) Γ(1− ix) =
1

2π

(
πx

sin(πx)

)
=

x
2 sin(πx)

.

We now establish the following result, which is an application of Gaussian quadrature
formula based on (symmetric) Meixner-Pollaczek weight (74).

Proposition 7. The Gauss quadrature rule for a continuous function f (x) associated with sym-
metric Meixner-Pollaczek weight in (73) is given by

∫ ∞

−∞
f (x) W(x; λ) dx ≈

j

∑
k=1

ω
(λ)
j,k f (x(λ)j,k ) , (77)

where f (x) can be a polynomial, and the quadrature weights are given by

ω
(λ)
j,n =

∫

R

∣∣∣Γ(λ + ix)
∣∣∣
2
[

j

∏
n 6=k
k=1


 x− x(λ)j,k

(x(λ)j,n − x(λ)j,k



]

dx ,

for n = 1, 2, 3, . . . , j and
{

x(λ)j,1 , x(λ)j,2 , . . . , x(λ)j,j

}
are the zeros of Meixner-Pollaczek polynomials S (λ)j .

Proof. Suppose f ∈ P2j−1. Then, by using division algorithm, we have

f = S (λ)j (x) V(x) + Rj(x) , (78)

where the degree of Rj(x) is (j− 1) and S (λ)j (x) is orthogonal to any polynomials of degree

<j, and V(x) is of degree (j − 1) and then we have 〈S (λ)j , V(x)〉 = 0. Now, by using
orthogonality property and Equation (78), we have

∫

R
f (x) W(x; λ) dx =

∫

R
W(x; λ)

[
S (λ)j (x) V(x) + Rj(x)

]
dx

=
∫

R
W(x; λ) S (λ)j (x) V(x) dx +

∫

R
W(x; λ) Rj(x) dx

=
∫

R
W(x; λ)Rj(x) dx .

However, by orthogonality, and since Rj(x), a polynomial of degree (j− 1), is approx-
imated by using Lagrange interpolating polynomial, Lj(x), and it is given as ,

Rj(x) ≈ Lj(x) =
j

∑
k=1

`j,k(x) Rj(x) , where `j,k(x) =
j

∏
`=1
k 6=`


 x− x(λ)j,`

x(λ)j,k − x(λ)j,`


 .

Now,
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∫

R
W(x; λ) f (x) dx =

∫

R
W(x; λ) Rj(x) dx =

∫

R
W(x; λ)

[ j

∑
k=1

`j,k(x) Rj(xk)

]
dx

=
j

∑
k=1

∫

R
W(x; λ) `j,k(x) Rj(xk) dx =

j

∑
k=1

Rj(xk)
∫

R
W(x; λ) `j,k(x) dx

=
j

∑
k=1

Rj(xk) ω
(λ)
j,k

(
where ω

(λ)
j,k =

∫

R
W(x; λ) `j,k(x) dx

)

=
j

∑
k=1

ω
(λ)
j,k f (x(λ)j,k )

(
since f (x(λ)j,k ) = Rj(xk)

)
.

Therefore,
∫

R
f (x) W(x; λ) dx =

j

∑
k=1

ω
(λ)
j,k f (x(λ)j,k ) where ω

(λ)
j,k =

∫

R
`j,k(x) W(x; λ) dx .

In order to implement Proposition 7, the first few monic polynomials S (λ)n (x), for some
values of λ, are shown in the following Table 4.

Table 4. S (λ)n (x) for 0 ≤ n ≤ 4 and λ = 1, 1
2 , 1

4 .

λ = 1 λ = 1
2 λ = 1

4

n = 0 1 1 1

n = 1 x x x

n = 2 x2 − 1
2 x2 − 1

4 x2 − 1
8

n = 3 x3 − 2x x3 − 5
4 x x3 − 7

8 x

n = 4 x4 − 5x2 + 3
2 x4 − 7

2 x2 + 9
16 x4 − 11

4 x2 + 15
64

n = 5 x5 − 10x3 +
23
2

x x5 − 15
2 x3 + 89x

16 x5 − 25 x3

4 + 211 x
64

The following example elaborates the applicability of Proposition 7.

Example 1. Construct a two-point Gauss quadrature rule for the symmetric Meixner-Pollaczek

weight W(x; λ) =
∣∣∣Γ(1 + ix)

∣∣∣
2

with parameters (λ = 1
2 and λ = 1) and also compute the specific

zeros x(λ)j,k and the quadrature weights ω
(λ)
j,k of this quadrature rule.

Solution: By considering the zeros of symmetric Meixner-Pollaczek polynomials, S (λ)n (x)
with parameter (λ = 1

2 and λ = 1) and by recalling that f ∈ P2j−1, we compute the Gauss
quadrature rule, as given in (77), as follows.

The case when λ = 1:
The zeros of S (1)2 (x) = x2 − 1

2 are x(1)2,1 = 1√
2

and x(1)2,2 = − 1√
2

and the corresponding
quadrature weights are given by

ω
(1)
2,1 =

∫

R

∣∣∣Γ(1 + ix)
∣∣∣
2[ 2

∏
n 6=k
k=1




x− x(1)2,k

(x(1)2,1 − x(1)2,k



]

dx =
∫ ∞

−∞
πx

sin πx




x− x(1)2,2

(x(1)2,1 − x(1)2,2


dx =

∫ ∞

−∞
πx

sin πx




x + 1√
2√

2


dx, (79)

and

ω
(1)
2,2 =

∫

R

∣∣∣Γ(1 + ix)
∣∣∣
2[ 2

∏
n 6=k
k=1




x− x(1)2,k

(x(1)2,2 − x(1)2,k



]

dx =
∫ ∞

−∞
πx

sin πx




x− x(1)2,1

(x(1)2,2 − x(1)2,1


dx =

∫ ∞

−∞
πx

sin πx




x− 1√
2

−
√

2


dx. (80)
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In order to determine the quadrature weights in Equations (79) and (80), we use Equations (71)
and (76) and Table 4 together with orthogonality, to obtain





ω
(1)
2,1 =

〈P1, P1〉W
2
(

1√
2

)2 =
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ
,

ω
(1)
2,2 =

〈P1, P1〉W
2
(
− 1√

2

)2 =
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ
.

(81)

Hence,
∫

R
f (x) W(x; λ) dx =

(
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ

)
f (x(1)2,1 ) + f (x(1)2,2 )

(
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ

)
.

The case when λ = 1
2 : The computation of Gaussian nodes and weights can be done in a

similar manner.

Remark 5. For numerical computation of Gauss weights and nodes for an arbitrary weight function
using Matlab, see [43] and also [42].

4.4. Meixner-Pollaczek Polynomials as Solution for Cauchy Problem

It is shown in [12] that the Cauchy problem for the n-dimensional Schrödinger equa-
tion for a free particle

iψt + ∆ψ = 0

with

i
∂ψ

∂t
= Hψ, H = −∆ =

1
2

n

∑
s=1

(
as + a†

s

)2
, (82)

and the HamiltonianH takes the form

Hψ =

[
1
2

n

∑
s=1

(
−(1 + cos 2t)

∂2

∂x2
s
+ (1− cos 2t) x2

s

)
− i

2
sin 2t

n

∑
s=1

(
2xs

∂

∂xs
+ 1
)]

ψ,

the particular solution for Equation (82) is explained in terms of Meixner-Pollaczek polyno-
mials, which satisfies conditions in quantum mechanics (orthogonality and normalizability).
The result in [12] generalizes time-dependent simple harmonic motion oscillator and an-
gular momentum problem oscillator of quantum mechanics in a Cartesian and spherical
coordinate system.

5. Conclusions

By introducing a time variable to the Meixner–Pollaczek measure, we have found
certain interesting properties such as some recursive relations, moments of finite order,
concise hypergeometric formulae and orthogonality relation, certain analytic properties of
the zeros of the corresponding monic perturbed Meixner–Pollaczek polynomials. As prac-
tical applications, we have reproduced the scaled Toda molecule equation in Random
matrix theory, Fisher’s information with respect to some new parameter, and Gaussian-
type quadrature related to the perturbed Meixner–Pollaczek polynomials and also their
role as a solution to quantum oscillators.
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Appendix A

In this appendix, we provide the proof to Proposition 6 to aid the reader.

Appendix A.1. Proof for Proposition 6

Proof. The proof follows from orthogonality and the corresponding recurrence coefficients
for monic polynomials that are orthogonal with respect to the weight w(λ,ϕ)(x; t) given in
(8). Now, by considering the three-term recurrence relation in (29) and taking derivatives
of the coefficients in Equation (29) with respect to t, we have that

x
dQ(λ,ϕ)

n (x; t)
dt

=
dQ(λ,ϕ)

n+1 (x; t)
dt

+ α
(λ,ϕ)
n (t)

dQ(λ,ϕ)
n (x; t)

dt
+

dαn

dt
Q(λ,ϕ)

n (x; t) +
dβn

dt
Q(λ,ϕ)

n−1 + β
(λ,ϕ)
n

dQ(λ,ϕ)
n−1 (x; t)

dt
. (A1)

Multiplying Equation (A1) by Q(λ,ϕ)
n (x; t) and integrating with respect to the measure

w(λ,ϕ)(x; t) yields

dα
(λ,ϕ)
n

dt
ζ
(λ,ϕ)
n =

∫ dQ(λ,ϕ)
n (x; t)

dt
(xQn(x) w(λ,ϕ)(x; t) dx−

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx

− α
(λ,ϕ)
n

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t) dx− β
(λ,ϕ)
n

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n−1 (x; t)
dt

w(λ,ϕ)(x; t)dx, (A2)

where we have used the orthogonality of
dQ(λ,ϕ)

n−1
dt

and Q(λ,ϕ)
n .

Again, employing the recurrence relation (29) and the orthogonality relation, (A2) is
equivalently given as

dαn

dt
ζ
(λ,ϕ)
n =

∫ dQ(λ,ϕ)
n (x; t)

dt

(
Q(λ,ϕ)

n+1 + α
(λ,ϕ)
n Q(λ,ϕ)

n + β
(λ,ϕ)
n Q(λ,ϕ)

n−1

)
w(λ,ϕ)(x; t) dx

−
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx− α
(λ,ϕ)
n

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t) dx

= β
(λ,ϕ)
n

∫
Q(λ,ϕ)

n−1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx−
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t) dx. (A3)

Now, if we consider the weight given in Equation (8) and if we differentiate the orthogonality
condition ∫

Q(λ,ϕ)
n (x; t)Q(λ,ϕ)

n±1 (x; t)w(λ,ϕ)(x; t) dx = 0

with respect to t, we obtain the following relations respectively:

∫
Q(λ,ϕ)

n−1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx +
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n−1 (x; t)
dt

w(λ,ϕ)(x; t)dx−
∫

xQ(λ,ϕ)
n (x; t)Q(λ,ϕ)

n−1 (x; t) w(λ,ϕ)(x; t)dx = 0, (A4)

∫
Q(λ,ϕ)

n+1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx +
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx−
∫

xQ(λ,ϕ)
n+1 (x; t)Q(λ,ϕ)

n (x; t) w(λ,ϕ)(x; t)dx = 0. (A5)
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Now using iterated three -term recurrences, Equations (A4) and (A5) lead to

∫
Q(λ,ϕ)

n−1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx =
∫

x Q(λ,ϕ)
n−1 (x; t)Q(λ,ϕ)

n (x; t)w(λ,ϕ)(x; t) dx = β
(λ,ϕ)
n ζ

(λ,ϕ)
n−1 . (A6)

and

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx =
∫

xQ(λ,ϕ)
n+1 (x; t) Q(λ,ϕ)

n (x; t) w(λ,ϕ)(x; t) dx

= β
(λ,ϕ)
n+1 ζ

(λ,ϕ)
n . (A7)

Thus, using orthogonality, (A6) and (A7) into Equation (A3), we obtain the first equation
in (57).

Similarly, if we differentiate the normalization constant

ζ
(λ,ϕ)
n =

∫
Q(λ,ϕ)

n (x; t) w(λ,ϕ)(x; t) dx, where

(w(λ,ϕ)(x; t))′ = −xw(λ,ϕ)(x; t)

with the prime denoting differentiation with respect to x and if we use the orthogonality
relation and the recurrence relation, we find that

dζ
(λ,ϕ)
n
dt

= α
(λ,ϕ)
n ζ

(λ,ϕ)
n . (A8)

Now using (A8) and considering the derivative of β
(λ,ϕ)
n (t) with respect to t, we have that

dβ
(λ,ϕ)
n
dt

=
d
dt


 ζ

(λ,ϕ)
n

ζ
(λ,ϕ)
n−1


 =

1
ζ2

n−1


ζ

(λ,ϕ)
n−1

dζ
(λ,ϕ)
n
dt

−−ζ
(λ,ϕ)
n

dζ
(λ,ϕ)
n−1
dt




=
1

ζ2
n−1

(
ζ
(λ,ϕ)
n−1 α

(λ,ϕ)
n ζ

(λ,ϕ)
n − ζ

(λ,ϕ)
n α

(λ,ϕ)
n−1 ζ

(λ,ϕ)
n−1

)
= α

(λ,ϕ)
n β

(λ,ϕ)
n − α

(λ,ϕ)
n−1 β

(λ,ϕ)
n ,

which yields the second equation in Equation (57) and this completes the proof.
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Abstract: An approach to general bivariate Appell polynomials based on matrix calculus is proposed.
Known and new basic results are given, such as recurrence relations, determinant forms, differential
equations and other properties. Some applications to linear functional and linear interpolation are
sketched. New and known examples of bivariate Appell polynomial sequences are given.

Keywords: Polynomial sequences; Appell polynomials; bivariate Appell sequence

1. Introduction

Appell polynomials have many applications in various disciplines: probability the-
ory [1–5], number theory [6], linear recurrence [7], general linear interpolation [8–12],
operators approximation theory [13–17]. In [18], P. Appell introduced a class of polynomi-
als by the following equivalent conditions: {An}n∈IN is an Appell sequence (An being a
polynomial of degree n) if either





d An(x)
dx

= nAn−1(x), n ≥ 1,

An(0) = αn, α0 6= 0, αn ∈ IR, n ≥ 0,

A0(x) = 1,

or

A(t)ext =
∞

∑
n=0

An(x)
tn

n!
,

where A(t) =
∞

∑
k=0

αk
tk

k!
, α0 6= 0, αk ∈ IR, k ≥ 0.

Subsequentely, many other equivalent characterizations have been formulated. For
example, in [19] [p. 87], there are seven equivalences.

Properties of Appell sequences are naturally handled within the framework of modern
classic umbral calculus (see [19,20] and references therein).

Special polynomials in two variables are useful from the point of view of applications,
particularly in probability [21], in physics, expansion of functions [22], etc. These poly-
nomials allow the derivation of a number of useful identities in a fairly straightforward
way and help in introducing new families of polynomials. For example, in [23] the au-
thors introduced general classes of two variables Appell polynomials by using properties
of an iterated isomorphism related to the Laguerre-type exponentials. In [24], the two-
variable general polynomial (2VgP) family pn(x, y) has been considered, whose members
are defined by the generating function

extφ(y, t) =
∞

∑
n=0

pn(x, y)
tn

n!
,

Mathematics 2021, 9, 964. https://doi.org/10.3390/math9090964 https://www.mdpi.com/journal/mathematics
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where φ(y, t) =
∞

∑
k=0

φk(y)
tk

k!
.

Later, the authors considered the two-variable general Appell polynomials (2VgAP)
denoted by p An(x, y) based on the sequence {pn}b

n∈IN, that is

A(t)extφ(y, t) =
∞

∑
n=0

p An(x, y)
tn

n!
,

where A(t) =
∞

∑
k=0

αk
tk

k!
, α0 6= 0, αk ∈ IR, k ≥ 0.

These polynomials are framed within the context of monomiality principle [24–27].
Generalizations of Appell polynomials can be also found in [22,28–31] (see also the

references therein).
In this paper, we will reconsider the 2VgAP, but with a systematic and alternative

theory, that is matrix calculus-based. To the best of authors knowledge, a systematic
approach to general bivariate Appell sequences does not appear in the literature. New
properties are given and a general linear interpolation problem is hinted. Some applications
of the previous theory are given and new families of bivariate polynomials are presented.
Moreover a biorthogonal system of linear functionals and polynomials is constructed.

In particular, the paper is organized as follows: in Section 2 we give the definition and
the first characterizations of general bivariate Appell polynomial sequences; in Sections 3–5
we derive, respectively, matrix form, recurrence relations and determinant forms for the
elements of a general bivariate Appell polynomial sequence. These sequences satisfy some
interesting differential equations (Section 6) and properties (Section 7). In Section 8 we
consider the relations with linear functional of linear interpolation. Section 9 introduces
new and known examples of polynomial sequences. Finally, Section 10 contains some
concluding remarks.

We point out that the first recurrence formula and the determinant forms, as well
as the relationship with linear functionals and linear interpolation, to the best of authors’
knowledge, do not appear in the literature.

We will adopt the following notation for the derivatives of a polynomial f

f (i,j) =
∂i+j f
∂xi∂yj , f (0,0) = f (x, y), f (i,j)(α, β) = f (i,j)(x, y)

∣∣∣
(x,y)≡(α,β)

.

A set of polynomials is denoted, for example, by {p0, . . . , pn | n ∈ IN}, where the sub-
scripts 0, . . . , n represent the (total) degree of each polynomial. Moreover, for polynomial
sequences, we will use the notation {an}n∈IN for univariate sequence and {rn}b

n∈IN in the
bivariate case. Uppercase letters will be used for particular and well-known sequences.

2. Definition and First Characterizations

Let A(t) be the power series

A(t) =
∞

∑
k=0

αk
tk

k!
, α0 6= 0, αk ∈ IR, k ≥ 0, (1)

(usually α0 = 1) and let φ(y, t) be the two-variable real function defined as

φ(y, t) =
∞

∑
k=0

ϕk(y)
tk

k!
, (2)

where ϕk(y) are real polynomials in the variable y, with ϕ0(y) = 1.
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It is known ([19], p. 78) that the power series A(t) generates the univariate Appell
polynomial sequence {An}n∈IN such that

A0(x) = 1, An(x) =
n

∑
k=0

(
n
k

)
αn−kxk, n ≥ 1. (3)

Now we consider the bivariate polynomals rn with real variables. We denote by
A(φ, A), or simplyAwhere there is no possibility of misunderstanding, the set of bivariate
polynomial sequences {rn}b

n∈IN such that




r0(x, y) = 1 (4a)

r(1,0)
n (x, y) = n rn−1(x, y), n ≥ 1 (4b)

rn(0, y) =
n

∑
k=0

(
n
k

)
αn−k ϕk(y). (4c)

In the following, unless otherwise specified, the previous hypotheses and notations
will always be used.

Remark 1. We observe that in [21,32] a polynomial sequence {Pi}b
n∈IN is said to satisfy the Appell

condition if
∂

∂t
Pi(t, x) = Pi−1(t, x), P0(t, x) = 1.

This sequence in [32] is used to obtain an expansion of bivariate, real functions with integral
remainder (generalization of Sard formula [33]. Nothing is said about the theory of this kind
of sequences.

Proposition 1. A bivariate polynomial sequence {rn}b
n∈IN is an element of A if and only if

rn(x, y) =
n

∑
k=0

(
n
k

)
An−k(x)ϕk(y), n ≥ 1. (5)

Proof. If {rn}b
n∈IN ∈ A, relations (4a) hold. Then, by induction and partial integration

with respect to the variable x ([19] p. 93), we get relation (5), according to (3). Vice versa,
from (5), we easily get (4a).

Proposition 2. A bivariate polynomial sequence {rn}b
n∈IN is an element of A if and only if

A(t)extφ(y, t) =
∞

∑
n=0

rn(x, y)
tn

n!
. (6)

Proof. If {rn}b
n∈IN ∈ A, from Proposition 1 the identity (5) holds. Then

∞

∑
n=0

rn(x, y)
tn

n!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
An−k(x)ϕk(y)

)
tn

n!
.

From the Cauchy product of series, according to (1) and (2), we get (6). Vice-versa,
from (6) we obtain (5). Therefore relations (4a) hold.

We call the function F(x, y; t) = A(t)extφ(y, t) exponential generating function of the
bivariate polynomial sequence {rn}b

n∈IN.

Remark 2. From Propositions 1 and 2 we note explicitly that relations (4a) are equivalent to the
identity (6).
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Example 1. Let φ(y, t) = 1, that is ϕ0(y) = 1, ϕk(y) ≡ 0, k > 0. Then {rn}b
n∈IN, constructed

as in Proposition 1, or, equivalently, Proposition 2, is a polynomial sequence in one variable,
with elements

rn(x, y) ≡ rn(x) = An(x).

Therefore {rn}b
n∈IN is a univariate Appell polynomial sequence [18,19].

Example 1 suggests us the following definition.

Definition 1. A bivariate polynomial sequence {rn}b
n∈IN ∈ A, that is a polynomial sequence

satisfying relations (4a) or relation (6), is called general bivariate Appell polynomial sequence.

Remark 3. (Elementary general bivariate Appell polynomial sequences) Assuming A(t) = 1, that
is α0 = 1, αi = 0, i ≥ 1, relations (4a) become





r0(x, y) = 1 (7a)

r(1,0)
n (x, y) = n rn−1(x, y), n > 1 (7b)

rn(0, y) = ϕn(y). (7c)

Moreover, the univariate Appell sequence is An(x) = xn, n ≥ 0. Hence, from (5),

rn(x, y) =
n

∑
k=0

(
n
k

)
xn−k ϕk(y), n ≥ 1. (8)

Relation (6) becomes

extφ(y, t) =
∞

∑
n=0

rn(x, y)
tn

n!
. (9)

In this case, we call the polynomial sequence {rn}b
n∈IN elementary bivariate Appell se-

quence. We will denote it by {pn}b
n∈IN, that is

pn(x, y) =
n

∑
k=0

(
n
k

)
xn−k ϕk(y), ∀n ∈ IN. (10)

The set of elementary bivariate Appell sequences will be denoted by A(φ, 1), or Ae. Of course,
Ae ⊂ A. We observe that the set Ae coincides with the set of 2VgP considered in [24].

We note that {p0, . . . , pn|n ∈ IN} is a set of n + 1 linearly independent polynomials in Ae.

Proposition 3. Let {rn}b
n∈IN ∈ A(φ, A) and {pn}b

n∈IN ∈ A(φ, 1). Then, the following identi-
ties hold

n

∑
k=0

(
n
k

)
An−k(x)ϕk(y) = rn(x, y) =

n

∑
k=0

(
n
k

)
αn−k pk(x, y). (11)

Proof. From (9), extφ(y, t) =
∞

∑
n=0

pn(x, y)
tn

n!
. Hence the result follows from (1), (6) and the

Cauchy product of series.

It is known that ([19] p. 11) the power series A(t) is invertible and it results

1
A(t)

≡ A−1(t) =
∞

∑
k=0

βk
tk

k!
,

with βk, k ≥ 0, defined by
n

∑
k=0

(
n
k

)
αn−kβk = δn0. (12)
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The identity (9) (with rn = pn) yelds

A−1(t)extφ(y, t) =
∞

∑
n=0

r̂n(x, y)
tn

n!
,

with

r̂n(x, y) =
n

∑
k=0

(
n
k

)
βn−k pk(x, y). (13)

The polynomial sequence {r̂n}b
n∈IN is called conjugate bivariate Appell polynomial

sequence of {rn}b
n∈IN.

Observe that the bivariate polynomial sequence {r̂n}b
n∈IN is an element of the set A.

3. Matrix Form

We denote by A =
(
ai,j
)

i,j∈IN the infinite lower triangular matrix [19,34] with

ai,j =

(
i
j

)
αi−j, i, j = 0, . . . , j ≤ i, α0 6= 0, αk ∈ IR, k ≥ 0,

and let B =
(
bi,j
)

i,j∈IN be the inverse matrix. It is known ([19] p. 11) that

bi,j =

(
i
j

)
βi−j, i, j = 0, . . . , j ≤ i,

where βk are defined as in (12).
Observe that the matrices A and B can be factorized ([19] p. 11) as

A = D1TαD−1
1 , B = D1TβD−1

1 ,

where D1 = diag(i!)i≥0 is a factorial diagonal matrix and Tα, Tβ are lower triangualar

Toeplitz matrices with entries, respectively, tα
i,j =

αi−j

(i− j)!
and tβ

i,j =
βi−j

(i− j)!
, i ≥ j.

We denote by An and Bn the principal submatrices of order n of A and B, respectively.

Let P and R be the infinite vectors

P = [p0(x, y), . . . , pn(x, y), · · · ]T and R = [r0(x, y), . . . , rn(x, y), · · · ]T .

Moreover, for every n ∈ IN, let

Pn = [p0(x, y), . . . , pn(x, y)]T and Rn = [r0(x, y), . . . , rn(x, y)]T . (14)

Proposition 4. The following matrix identities hold:

R = A P, and ∀n ∈ IN Rn = An Pn; (15a)

P = B R, and ∀n ∈ IN Pn = Bn Rn. (15b)

Proof. Identities (15a) follow directly from (11). The relations (15b) follow from (15a).

The identities (15a) are called matrix forms of the bivariate general Appell sequence
and we call A the related associated matrix.

Now, we consider the vectors

R̂ = [r̂0(x, y), . . . , r̂n(x, y), · · · ]T , and, ∀n ∈ IN, R̂n = [r̂0(x, y), . . . , r̂n(x, y)]T .
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From (13) we get

R̂n = Bn Pn, (16a)

Pn = An R̂n. (16b)

By combining (16a) and the second in (15a) we obtain

R̂n = B2
n Rn and Rn =

(
B2

n

)−1
R̂n = A2

n R̂n.

If B2
n =

(
b2

i,j

)
i,j∈IN

and A2
n =

(
a2

i,j

)
i,j∈IN

, we get the inverse formulas

rn(x, y) =
n

∑
j=0

a2
n,j r̂j(x, y), r̂n(x, y) =

n

∑
j=0

b2
n,jrj(x, y).

Remark 4. For the elementary Appell sequence {pn}b
n∈IN with pn given in (10), we observe that

the associated matrix is

A∗ =
(

a∗i,j
)

i,j∈IN
with a∗i,j =

(
i
j

)
,

that is the known Pascal matrix [12]. Hence the inverse matrix is

B∗ =
(

b∗i,j
)

i,j∈IN
with b∗i,j =

(
i
j

)
(−1)i−j.

Then we can obtain the conjugate sequence, { p̂n}b
n∈IN. Therefore, from (16a) and (16b),

we get

p̂n(x, y) =
n

∑
k=0

(
n
k

)
(−1)n−k pk(x, y), (17a)

pn(x, y) =
n

∑
k=0

(
n
k

)
p̂k(x, y). (17b)

If we introduce the vectors

P̂ = [ p̂0(x, y), . . . , p̂i(x, y), · · · ]T , and ∀n ∈ IN, P̂n = [ p̂0(x, y), . . . , p̂n(x, y)]T ,

we get the matrix identities

P = A∗ P̂, and ∀n ∈ IN, Pn = A∗n P̂n,

P̂ = B∗ P, and ∀n ∈ IN, P̂n = B∗n Pn.
(18)

Combining this with (15a) we get

Rn = (An A∗n)P̂n = Cn P̂n, with Cn = An A∗n, (19)

From (19) we have

∀n ∈ IN, rn(x, y) =
n

∑
j=0

cn,j p̂j(x, y) (20)

with cn,j =
n

∑
k=j

(
n
k

)(
k
j

)
αn−k.
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Since the matrix Cn is invertible, we get from (10)

P̂n = C−1
n Rn (21)

that is,

∀n ∈ IN, p̂n(x, y) =
n

∑
j=0

ĉn,jrj(x, y), (22)

with

ĉn,j =
n

∑
k=j

(
n
k

)(
k
j

)
(−1)n−kβk−j, (23a)

ĉn,j =

(
n
j

)
ĉn−j,0 =

(
n
j

)
ĉn−j, with ĉn−j ≡ ĉn−j,0. (23b)

Formulas (20) and (22) are the inverse each other.
In order to determine the generating function of the sequence { p̂n}b

n∈IN we observe that

1
A(t)

=
∞

∑
k=0

βk
tk

k!
, and hence βk = (−1)k.

Consequently, the generating function of { p̂n}b
n∈IN is

G(x, y; t) = e−textφ(y, t). (24)

that is { p̂n}b
n∈IN is an element of A(φ, A).

Proposition 5. For the conjugate sequence { p̂n}b
n∈IN the following identity holds

∀n ∈ IN, p̂n(x, y) =
n

∑
k=0

(
n
k

)
(x− 1)kφn−k(y). (25)

Proof. From (24) and (17a) we get

e−textφ(y, t) =
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
(−1)k pn−k(x, y)

)
tn

n!
. (26)

By applying the Cauchy product of series to the left-hand term in (26), and substitut-
ing (17a) in the right-hand term, we obtain (25).

Corollary 1.

∀n ∈ IN,
n

∑
k=0

(
n
k

)
(−1)k pn−k(x, y) =

n

∑
k=0

(
n
k

)
(x− 1)kφn−k(y). (27)

4. Recurrence Relations

In [35] has been noted that recurrence relations are a very interesting tool for the study
of the polynomial sequences.

Theorem 1 (Recurrence relations). Under the previous hypothesis and notations for the elements
of {rn}b

n∈IN ∈ A(φ, A) the following recurrence relations hold:

r0(x, y) = 1, rn(x, y) = pn(x, y)−
n−1

∑
j=0

(
n
j

)
βn−jrj(x, y), n ≥ 1; (28)
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r0(x, y) = 1, rn(x, y) = p̂n(x, y)−
n−1

∑
j=0

(
n
j

)
ĉn−jrj(x, y), n ≥ 1, (29)

with βk defined as in (12) and ĉk given as in (23b).

Proof. The proof follows easily by identities (15a) and (21).

We call relations (28) and (29), first and second recurrence relations, respectively.

The third recurrence relations can be obtained from the generating function.

Theorem 2 (Third recurrence relation). For the elements of {rn}b
n∈IN ∈ A(φ, A) the following

identity holds: ∀n ≥ 0

rn+1(x, y) = [x + b0 + c0(y)]rn(x, y) +
n−1

∑
k=0

(
n
k

)
[bn−k + cn−k(y)]rk(x, y), (30)

where bk and ck are such that

A′(t)
A(t)

=
∞

∑
k=0

bk
tk

k!
,

φ(0,1)(y, t)
φ(y, t)

=
∞

∑
k=0

ck(y)
tk

k!
. (31)

Proof. Partial differentiation with respect to the variable t in (6) gives
[

x +
A′(t)
A(t)

+
φ(0,1)(y, t)

φ(y, t)

]
A(t)extφ(y, t) =

∞

∑
n=1

n rn(x, y)
tn−1

n!
=

∞

∑
n=0

rn+1(x, y)
tn

n!
(32)

Hence we get

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
[bn−k + cn−k(y)]rk(x, y) + xrn(x, y)

)
tn

n!
=

∞

∑
n=0

rn+1(x, y)
tn

n!
,

and from this, relation (30) follows.

The same techniques used previously can be used to derive recurrence relations for
the conjugate sequence. Particularly, the third recurrence relation is similar to (30) by
exchanging bk with dk, k = 0, . . . , n, being dk such that

(
A−1(t)

)′

A−1(t)
=

∞

∑
k=0

dk
tk

k!
. (33)

Remark 5. Observe that if
n−2

∑
k=0

(
n
k

)
[bn−k + cn−k(y)]rk(x, y) = 0, the recurrence relation (30)

becomes a three-terms relation.

5. Determinant Forms

The previous recurrence relations provide determinant forms [36,37], which can be
useful for both numerical calculations and new combinatorial identities.

Theorem 3 (Determinant forms). For the elements of {rn}b
n∈IN ∈ A(φ, A) the following

identities hold:

69



Mathematics 2021, 9, 964

r0(x, y) = 1, rn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p0(x, y) p1(x, y) p2(x, y) · · · pn(x, y)
β0 β1 β2 · · · βn

0 β0 (2
1)β1 · · · (n

1)βn−1
...

. . . . . . . . .
...

...
. . . . . .

...
0 · · · 0 β0 ( n

n−1)β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n > 0. (34)

r0(x, y) = 1, rn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p̂0(x, y) p̂1(x, y) p̂2(x, y) · · · p̂n(x, y)
ĉ0 ĉ1 ĉ2 · · · ĉn

0 ĉ0 (2
1)ĉ1 · · · (n

1)ĉn−1
...

. . . . . . . . .
...

...
. . . . . .

...
0 · · · 0 ĉ0 ( n

n−1)ĉ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n > 0. (35)

Proof. For n > 1 relation (28) can be regarded as an infinite lower triangular system in the
unknowns r0(x, y), . . . , rn(x, y), . . .. By solving the first n + 1 equations by Cramer’s rule,
after elementary determinant operations we get (34). Relation (35) follows from (29) by the
same technique.

We note that the determinant forms are Hessenberg determinants. It is known ([19] p. 28)
that Gauss elimination for the calculation of an Hessenberg determinant is stable.

Theorem 4 (Third determinant form). For the elements of {rn}b
n∈IN ∈ A(φ, A) the following

determinant form holds:

r0(x, y) = 1,

rn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + b0 + c0(y) −1 0 · · · 0
b1 + c1(y) x + b0 + c0(y) −1 · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
bn + cn(y) (n

1)[bn−1 + cn−1(y)] · · · ( n
n−1)[b1 + c1(y)] x + b0 + c0(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 0.
(36)

Proof. The result follows from (30) with the same technique used in the previous Theorem.

We point out that the first and second recurrence relations and the determinant
forms (34)–(36) do not appear in the literature. They will be fundamental in the relationship
with linear interpolation.

Remark 6. For the elements of {r̂n}b
n∈IN ∈ A(φ, A) an expression similar to (36) is obtained by

exchanging bk with dk, k = 0, . . . , n, dk being defined as in (33).

Remark 7. For the elements of {pn}b
n∈IN ∈ A(φ, 1), from (17a), we get the recurrence relation

pn(x, y) = p̂n(x, y)−
n−1

∑
k=0

(
n
k

)
(−1)n−k pk(x, y). (37)

By the same technique used in the proof of Theorem 3 we obtain the following determinant form
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p0(x, y) = 1, pn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p̂0(x, y) p̂1(x, y) p̂2(x, y) p̂3(x, y) · · · p̂n(x, y)
1 −1 1 −1 · · · (−1)n

0 1 −2 3 · · · (n
1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · · · · 0 1 −( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n > 0. (38)

From (30) we obtain

pn+1(x, y) = x pn(x, y) +
n

∑
k=0

(
n
k

)
cn−k(y)pk(x, y),

where ck are defined as in (31). The related determinant form is

p0(x, y) = 1,

pn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + c0(y) −1 0 · · · 0
c1(y) x + c0(y) −1 · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
cn(y) (n

1)cn−1(y) · · · ( n
n−1)c1(y) x + c0(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 0.

6. Differential Operators and Equations

The elements of a general bivariate Appell sequence satisfy some interesting differen-
tial equations.

Proposition 6. For the elements of {rn}b
n∈IN ∈ A(φ, A) the following identity holds

∀n, k ∈ IN, k < n, rn−k(x, y) =
1

n(n− 1) . . . (n− k + 1)
r(k,0)

n (x, y). (39)

Proof. The proof follows easily after k partial differentiation of (7b) with respect to x.

Theorem 5 (Differential equations). The elements of {rn}b
n∈IN ∈ A(φ, A) satisfy the following

differential equations

βn

n!
∂n

∂xn f (x, y) +
βn−1

(n− 1)!
∂n−1

∂xn−1 f (x, y) + . . . + f (x, y) =
n

∑
i=0

(
n
i

)
xi ϕn−i(y);

ĉn
∂n

∂xn f (x, y) +
n ĉn−1
(n− 1)!

∂n−1

∂xn−1 f (x, y) +
n(n− 1)ĉn−2

2(n− 2)!
∂n−2

∂xn−2 f (x, y) + . . . + f (x, y) =
n

∑
i=0

(
n
i

)
(x− 1)i ϕn−i(y).

Proof. The results follow by replacing relation (39) in the first recurrence relation (28) and
in the second recurrence relation (29), respectively.

Theorem 6. The elements of {pn}b
n∈IN ∈ A(φ, 1) satisfy the following differential equation

(−1)n

n!
∂n

∂xn f (x, y) +
(−1)n−1

(n− 1)!
∂n−1

∂xn−1 f (x, y) + . . . + f (x, y) =
n

∑
i=0

(
n
i

)
(x− 1)i ϕn−i(y).

Proof. The result follows by replacing relation (39) in (27).

We observe that the results in Theorems 5 and 6 are new in the literature.
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In order to make the paper as autonomous as possible, we remind that a polyno-
mial sequence {qn}n∈IN is said to be quasi-monomial if two operators M̃ and P̃, called
multiplicative and derivative operators respectively, can be defined in such a way that

P̃{qn(x)} = nqn−1(x), (40a)

M̃{qn(x)} = qn+1(x). (40b)

If these operators have a differential realization, some important consequences follow:

• differential equation: M̃P̃{qn(x)} = nqn(x);
• it q0(x) = 1, then qn(x) = M̃n{1}, and this yields the series definition for qn(x);

• the exponential generating function of qn(x) is etM̃{1} =
∞

∑
n=0

qn(x)
tn

n!
.

For the general bivariate Appell sequence {rn}b
n∈IN we also have multiplicative and

derivative operators.

Theorem 7 (Multiplicative and derivative operators [24]). For {rn}b
n∈IN ∈ A(φ, A) multi-

plicative and derivative operators are respectively

M̃r = x +
A′(Dx)

A(Dx)
+

φ′(y, Dx)

φ(y, Dx)
, (41a)

P̃r = Dx. (41b)

where φ′(y, t) = φ(0,1)(y, t) and Dx =
∂

∂x
.

Thus the set {rn}b
n∈IN is quasi-monomial under the action of the operators M̃r and P̃r.

Proof. Relations (41a) and (41b) follow from (32) and (4b), respectively [24,38].

Theorem 8 (Differential identity). The elements of a general bivariate Appell sequence {rn}b
n∈IN

satisfy the following differential identity

n

∑
k=0

bk + ck(y)
k!

r(k,0)
n (x, y) + xrn(x, y) ≡ M̃r{rn(x, y)} = rn+1(x, y).

Proof. From (41a) we get the first identity. The second equality follows by (40b), according
to Theorem 7.

Remark 8. The operators (41a) and (41b) satisfy the commutation relation [24] P̃r M̃r− M̃r P̃r = I,
and this shows the structure of a Weyl group.

Remark 9. From Theorem 7 and Remark 8 we get M̃r P̃r{rn(x, y)} = n rn(x, y) that can be
interpreted as a differential equation.

7. General Properties

The general bivariate Appell polynomial sequences satisfy some properties.

Proposition 7 (Binomial identity). Let {rn}b
n∈IN ∈ A(φ, A). The following identity holds

∀n ∈ IN, rn(x1 + x2, y) =
n

∑
k=0

(
n
k

)
rk(x1, y)xn−k

2 . (42)
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Proof. From the generating function

A(t)e(x1+x2)tφ(y, t) = A(t)ex1tφ(y, t)ex2t =
∞

∑
n=0

[
n

∑
k=0

(
n
k

)
rk(x1, y)xn−k

2

]
tn

n!
.

Thus the result follows.

Corollary 2. For n ∈ IN we get

n

∑
k=0

(
n
k

)
rk(x, y)(−x)n−k =

n

∑
k=0

(
n
k

)
αn−k ϕk(y).

Proof. The proof follows from Proposition 7 for x2 = −x1 and x1 = x and from (4c).

Corollary 3 (Forward difference). For n ∈ IN we get

∆xrn(x, y) ≡ rn(x + 1, y)− rn(x, y) =
n−1

∑
k=0

(
n
k

)
rk(x, y).

Remark 10. Proposition 7 suggests us to consider general Appell polynomial sequences with three
variables. In fact, setting in (42) x1 = x, x2 = z and

vn(x, y, z) =
n

∑
k=0

(
n
k

)
rk(x, y)zn−k,

the sequence {vn}n can be consider a general Appell polynomial sequence in three variables.
Analogously, we can consider Appell polynomial sequences in d variables with d ≥ 3.

Proposition 8 (Integration with respect to the variable x). For n ∈ IN we get
∫ x

0
rn(t, y)dt =

1
n + 1

[rn+1(x, y)− rn+1(0, y)] (43)

∫ 1

0
pn(x, y)dx =

1
n + 1

n

∑
k=0

(
n + 1

k

)
ϕk(y). (44)

Proof. Relation (43) follows from (4b). The (44) is obtained from (7c), (7b) and Proposition 7
for x1 = 0, x2 = 1.

Proposition 9 (Partial matrix differentiation with respect to the variable x). Let Rn be the
vector defined in (14). Then

R(1,0)
n = D Rn,

where D is the matrix with entries

di,j =

{
i i = j + 1
0 otherwise

i, j = 0, . . . , n.

Proof. The proof follows from (4b).

In order to give an algebraic structure to the setA, we consider two elements {rn}b
n∈IN

and {sn}b
n∈IN. From (11) we get, ∀n ∈ IN,

rn(x, y) =
n

∑
k=0

(
n
k

)
αn−k pk(x, y), sn(x, y) =

n

∑
k=0

(
n
k

)
αn−k pk(x, y).
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That is, An =
(
ai,j
)

i,j≤n with ai,j =

(
i
j

)
αi−j is the associated matrix to {rn}b

n∈IN, and

An =
(
ai,j
)

i,j≤n with ai,j =

(
i
j

)
αi−j is the associated matrix to {sn}b

n∈IN.

Then we define

(rn ◦ sn)(x, y) = rn(sn(x, y)) :=
n

∑
k=0

(
n
k

)
αn−ksk(x, y)

and we set
zr,s

n (x, y) = (rn ◦ sn)(x, y). (45)

Proposition 10 (Umbral composition). The polynomial sequence
{

zr,s
n
}b

n∈IN, with zr,s
n defined

as in (45), is a general bivariate Appell sequence and we call it umbral composition of {rn}b
n∈IN ∈

A(φ, A) and {sn}b
n∈IN ∈ A(φ, A).

Proof. It’s easy to verify that the matrix associated to the sequence
{

zr,s
n
}b

n∈IN is V = A A.
In fact

zr,s
n (x, y) =

n

∑
k=0

(
n
k

)
αn−k

k

∑
i=0

(
k
i

)
αk−i pi(x, y) =

n

∑
k=0

(
n
k

)
vn,k pk(x, y)

with vn,k =
n−k

∑
i=0

(
n− k

i

)
αn−i−kαi.

Moreover V is an Appell-type matrix [19]. In fact

V = D1TαD−1
1 D1TαD−1

1 = D1TαTαD−1
1 .

The set A(φ, A) with the umbral composition operation is an algebraic structure
(A(φ, A), ◦).

Let (L, ·) be the group of infinite, lower triangular matrix with the usual prod-
uct operation.

Proposition 11 (Algebraic structure). The algebraic structure (A(φ, A), ◦) is a group isomor-
phic to (L, ·).

Proof. We have observed that A(φ, A) is an algebraic structure. Then we have

(i) the elementary Appell sequence {pn}b
n∈IN is the identity in (A(φ, A), ◦).

(ii) for every {rn}b
n∈IN ∈ A(φ, A) the conjugate sequence {r̂n}b

n∈IN is its inverse.

Remark 11. Given λ, µ ∈ IR, with (λ, µ) 6= (0, 0), if {rn}b
n∈IN and {sn}b

n∈IN are two elements
of A(φ, A), the sequence {λrn + µsn}b

n∈IN is also an element of A(φ, A). Hence the algebraic
structure (A(φ, A), ◦,+, ·) is an algebra on IK(IR or IC).

8. Relations with Linear Functional and Linear Interpolation

Let {pn}b
n∈IN ∈ A(φ, 1). We consider the set of polynomials

Sn = span{p0, . . . , pn | n ∈ IN}.

where pi, i = 0, . . . , n, are defined as in (10). Let L be a linear functional on S∗n . If we set

L(pk) = βk, k = 0, . . . , n, β0 = 1, βk ∈ IR, k ≥ 1, ∀pk ∈ S ,
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we can consider the general bivariate Appell polynomial sequence inA(φ, A) as in (34) and

we call it the polynomial sequence related to the functional L. We denote it by
{

rL,p
n

}b

n∈IN
.

Now we define the n + 1 linear functionals Li, i = 0, . . . , n, in S∗n as

L0(pk) = L(pk) = βk, Li(pk) = L
(

p(i,0)k

)
= i!

(
k
i

)
βk−i, i = 1, . . . , k, k = 0, . . . , n,

where in the second relation we have applied (7b).

Theorem 9. For the elements of the bivariate general Appell sequence
{

rL,p
n

}b

n∈IN
the following

identity holds
Li

(
rL,p

n

)
= n!δni, i = 0, . . . , n,

where δni is the known Kronecker symbol.

Proof. The proof follows from the first determinant form (Theorem 3).

Corollary 4. The bivariate general Appell polynomial sequence
{

rL,p
n

}b

n∈IN
is the solution of the

following general linear interpolation problem on Sn

Li(zn) = n!δni, i = 0, . . . , n, zn ∈ Sn.

Proof. The proof follows from Theorem 9 and the known theorems on general linear
interpolation problem [39] since Li, i = 0, . . . , n, are linearly independent functionals.

Theorem 10 (Representation theorem). For every zn ∈ Sn the following relation holds

zn(x, y) =
n

∑
k=0

L
(

z(k,0)
n

) rL,p
k (x, y)

k!
.

Proof. The proof follows from Theorem 9 and the previous definitions.

9. Some Bivariate Appell Sequences

In order to illustrate the previous results, we construct some two variables Appell
sequences. As we have shown, to do this, for each sequence we need two power series
A(t) and φ(y, t), where y is considered as a parameter.

Example 2. Let φ(y, t) = eyt. There are several choices for A(t).

(1) A(t) = 1.
In this case, the elementary bivariate Appell sequence is the classical bivariate monomials.
These polynomials are known in the literature also as Hermite polynomials in two variables
and denoted by H(1)

n (x, y) [40,41]:

H(1)
n (x, y) = (x + y)n.

Figure 1 provides the graphs of the first four polynomials.
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(a) H(1)
1 (b) H(1)

2

(c) H(1)
3 (d) H(1)

4

Figure 1. Plot of H(1)
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

The matrix form is obtained by using the known Pascal matrix [34].
From (25) we get the conjugate sequence

Ĥ(1)
n (x, y) =

n

∑
k=0

(
n
k

)
(x− 1)n−kyk = [(x− 1) + y]n,

hence, from (17a) and (17b), the inverse relations are

(x + y)n =
n

∑
k=0

(
n
k

)
[(x− 1) + y]k (46a)

[(x− 1) + y]n =
n

∑
k=0

(
n
k

)
(−1)n−k(x + y)k. (46b)

Note that from (46a) and (46b) we obtain the basic relations for binomial coefficients ([42] p. 3).
From (46b) we get the second recurrence relation

(x + y)n = (x + y− 1)n −
n−1

∑
j=0

(
n
j

)
(−1)n−j(x + y)j, n ≥ 1.

and the related determinant form for n > 0

(x + y)n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y− 1 (x + y− 1)2 · · · (x + y− 1)n

1 −1 1 · · · (−1)n

0 1 −2 · · · (−1)n−1n
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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From this we can derive many identities. For example, for n > 0,

1 = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 −1 · · · (−1)n

1 −2 · · · · · · (−1)n−1n
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and

xn = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x− 1 (x− 1)2 · · · (x− 1)n

1 −1 1 · · · (−1)n

0 1 −2 · · · (−1)n−1n
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2) A(t) =
t

et − 1
.

It is known ([19] p. 107) that this power series generates the univariate Bernoulli polynomials.
Hence, directly from (11) we obtain a general bivariate Appell sequence which we call natural
bivariate Bernoulli polynomials and denote it by {Bn}b

n∈IN, where

Bn(x, y) =
n

∑
k=0

(
n
k

)
Bn−k(x)yk =

n

∑
k=0

(
n
k

)
(x + y)kBn−k. (47)

Bj(x) and Bj are, respectively, the Bernoulli polynomial of degree j and the j-th Bernoulli
number ([19] p. 109).
We note that

Bn(x, 0) = Bn(x), Bn(0, 0) = Bn, n ≥ 1.

From the second equality in (47) and the known properties of Bernoulli polynomials ([19] p. 109)
we have

Bn(x, y) = Bn(x + y), n ≥ 1.

The first natural bivariate Bernoulli polynomials are

B0(x, y) = 1, B1(x, y) = x + y− 1
2

, B2(x, y) = (x + y)2 − (x + y) +
1
6

,

B3(x, y) = (x + y)3 − 3
2
(x + y)2 +

1
2
(x + y),

B4(x, y) = (x + y)4 − 2(x + y)3 + (x + y)2 − 1
30

.

Figure 2 shows the graphs of the first four polynomials Bi, i = 1, . . . , 4.
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(a) B1 (b) B2

(c) B3 (d) B4

Figure 2. Plot of Bi, i = 1, . . . , 4, in [−1, 1]× [−1, 1].

From (11), (12) and (47) we get αk = Bk and βk =
1

k + 1
, k = 0, 1, . . .

Therefore the first recurrence relation is

B0(x, y) = 1, Bn(x, y) = (x + y)n −
n−1

∑
j=0

(
n
j

) Bj(x, y)
n− j + 1

, n ≥ 1.

The related determinant form for n > 0 is

Bn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y (x + y)2 (x + y)3 · · · (x + y)n

1 1
2

1
3

1
4 · · · 1

n+1

0 1 1 1 · · · 1
0 0 1 3

2 (n
2)

1
n−1

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 1 n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (48)

For the coefficients of
A′(t)
A(t)

=
∞

∑
k=0

bk
tk

k!
we find b0 = B1, bk = − Bk+1

k + 1
, k ≥ 1. Moreover,

c0(y) = y, ck(y) = 0, k ≥ 1. Hence the third recurrence relation is

Bn+1(x, y) =
(

x + y− 1
2

)
Bn(x, y)−

n−1

∑
k=1

(
n
k

)
Bk+1
k + 1

Bn−k(x, y).
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The related determinant form for n > 0 is

Bn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1
2 + y −1 0 · · · · · · 0
− 1

2 x− 1
2 + y −1 · · · · · · 0

− B3
3

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1
− Bn+1

n+1 −(n
1)

Bn
n · · · · · · −( n

n−1)
1
2 x− 1

2 + y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3) A(t) =
2

et + 1
.

This power series generates the univariate Euler polynomials ([19] p. 123). Hence, directly
from (11) we obtain a general bivariate Appell sequence which we call natural bivariate Euler
polynomials and denote it by {En}b

n∈IN, where

En(x, y) =
n

∑
k=0

(
n
k

)
En−k(x)yk =

n

∑
k=0

(
n
k

)
(x + y)kEn−k(0). (49)

Ej(x) is the Euler polynomial of degree j ([19] p. 124).
We note that

En(x, 0) = En(x), n ≥ 1,

and
En(x, y) = En(x + y), n ≥ 1.

The first natural bivariate Euler polynomials are

E0(x, y) = 1, E1(x, y) = x + y− 1
2

, E2(x, y) = (x + y)2 − (x + y),

E3(x, y) = (x + y)3 − 3
2
(x + y)2 +

1
4

, E4(x, y) = (x + y)4 − 2(x + y)3 + x + y.

Figure 3 shows the graphs of the first four polynomials Ei, i = 1, . . . , 4.

(a) E1 (b) E2

(c) E3 (d) E4

Figure 3. Plot of Ei, i = 1, . . . , 4, in [−1, 1]× [−1, 1].
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From (11), (12) and (49) we get αk = Ek(0), hence ([19] p. 124) β0 = 1 and βk =
1
2

, k ≥ 1.
Therefore the first recurrence relation is

E0(x, y) = 1, En(x, y) = (x + y)n − 1
2

n−1

∑
j=0

(
n
j

)
Ej(x, y), n ≥ 1.

The related determinant form for n > 0 is

En(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y (x + y)2 · · · (x + y)n

1 1
2

1
2 · · · 1

2

0 1 1
2 (

2
1) · · · 1

2 (
n
1)

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 1

2 (
n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For the coefficients of the power series
A′(t)
A(t)

=
∞

∑
k=0

bk
tk

k!
we find b0 = −1

2
, bk = −Ek(0)

2
,

k ≥ 1. Hence the third recurrence relation becomes

En+1(x, y) =
(

x + y− 1
2

)
En(x, y) +

1
2

n−1

∑
k=1

(
n
k

)
En−k(0)Ek(x, y).

The related determinant form for n > 0 is

En+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1
2 + y −1 0 · · · 0

− E1(0)
2 x− 1

2 + y −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
− En(0)

2 −(n
1)

En−1(0)
2 · · · −( n

n−1)
E1(0)

2 x− 1
2 + y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For other choices of A(t) we proceed in a similar way.

Example 3. Let φ(y, t) = eyt2
. We can consider the power series A(t) as in the previous example.

(1) A(t) = 1.
In this case we obtain the Hermite-Kampé de Fériet polynomials. They are denoted by
H(2)

n (x, y), n ≥ 0 [23,28,40]. From (9) we get

H(2)
n (x, y) = n!

b n
2 c

∑
k=0

xn−2kyk

k!(n− 2k)!
.

The first polynomials are:

H(2)
0 (x, y) = 1, H(2)

1 (x, y) = x, H(2)
2 (x, y) = x2 + 2y,

H(2)
3 (x, y) = x3 + 6xy, H(2)

4 (x, y) = x4 + 12x2y + 12y2.

Their graphs are displayed in Figure 4.
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(a) H(2)
1 (b) H(2)

2

(c) H(2)
3 (d) H(2)

4

Figure 4. Plot of H(2)
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

Particular cases are

(a) H(2)
n

(
x,−1

2

)
= He

n(x), known as probabilistic Hermite univariate polynomials [19]

(p. 134);
(b) H(2)

n (2x,−1) = Hn(x), known as physicist Hermite or simply Hermite polynomials [19]
(p. 134);

(c) H(2)
n (x, 0) = xn;

(d) H(2)
n (0, y) = sn(y) =





n!( n
2
)
!
y

n
2 n even

0 n odd.
From (13) we obtain the conjugate sequence

Ĥ(2)
n (x, y) = n!

b n
2 c

∑
k=0

(x− 1)n−2kyk

k!(n− 2k)!
,

and the second recurrence relation:

H(2)
n (x, y) = Ĥ(2)

n (x, y)−
n−1

∑
j=0

(
n
j

)
(−1)n−jH(2)

j (x, y), n ≥ 1.

The related determinant form for n > 0 is

H(2)
n (x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ĥ(2)
0 (x, y) Ĥ(2)

1 (x, y) Ĥ(2)
2 (x, y) · · · Ĥ(2)

n (x, y)
1 −(1

0) (2
0)(−1)2 · · · (n

0)(−1)n

0 1 −(2
1) · · · (n

1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 −( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (50)
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From (50) for x = 1 and n > 0 we have

n!
b n

2 c
∑
k=0

yk

k!(n− 2k)!
= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s1(y) s2(y) · · · sn(y)
1 −(1

0) (2
0)(−1)2 · · · (n

0)(−1)n

0 1 −(2
1) · · · (n

1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 −( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (51)

Observe that
φ(0,1)(y, t)

φ(y, t)
= 2yt. Therefore the third recurrence relation becomes

H(2)
n+1(x, y) = x H(2)

n (x, y) + 2nyH(2)
n−1(x, y).

The related determinant form for n > 0 is

H(2)
n (x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0
2y x −1 · · · 0

. . .
. . .

. . .
...

. . .
. . . −1

· · · 2y( n
n−1) x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

To the best of authors knowledge the first recurrence relation, the first determinant form and
the last determinant form are new.
For x = 1 and n > 0 we get the identity

n!
b n

2 c
∑
k=0

yk

k!(n− 2k)!
= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
2y 1 −1 · · · 0

. . .
. . .

. . .
...

. . .
. . . −1

· · · 2y( n
n−1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From the comparison with (51) the following identity is obtained:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s1(y) s2(y) · · · sn(y)
1 −(1

0) (2
0)(−1)2 · · · (n

0)(−1)n

0 1 −(2
1) · · · (n

1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 −( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
2y 1 −1 · · · 0

. . .
. . .

. . .
...

. . .
. . . −1

· · · 2y( n
n−1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The Hermite-Kampé de Fériet polynomials H(2)
n (x, y) satisfy the following differential equations

1.
(−1)n

n!
∂n

∂xn f (x, y) + · · ·+ f (x, y) =
b n

2 c
∑
k=0

n! (x− 1)n−2kyk

k!(n− 2k)!
;

2.
∂

∂y
H(2)

n (x, y) =
∂2

∂x2 H(2)
n (x, y) (heat equation);

3.
(

2y
∂2

∂x2 + x
∂

∂x
− n

)
H(2)

n (x, y) = 0.

(2) A(t) =
t

et − 1
.
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In this case we get the bivariate Appell sequence whose elements can be called Bernoulli–
Hermite–Kampé de Fériet polynomials and denoted by KB

n .
From (6) and (11) we obtain

KB
n (x, y) =

n

∑
k=0

(
n
k

)
Bn−k(x)ϕk(y) =

n

∑
k=0

(
n
k

)
H(2)

k (x, y)Bn−k,

with

ϕk(y) =
wkk!
b k

2c!
yb

k
2 c, being wk =

{
1 even k
0 odd k.

(52)

The first bivariate Bernoulli–Hermite–Kampé de Fériet polynomials are

KB
0 (x, y) = 1, KB

1 (x, y) = x− 1
2

, KB
2 (x, y) = x2 − x + 2y +

1
6

,

KB
3 (x, y) = x3 − 3

2
x2 +

1
2

x− 3y + 6xy,

KB
4 (x, y) = x4 − 2x3 + x2 + 2y− 12xy + 12x2y + 12y2 − 1

30
.

Their graphs are in Figure 5.

(a) KB
1 (b) KB

2

(c) KB
3 (d) KB

4

Figure 5. Plot of KB
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

In this case we observe that KB
n (x, 0) = Bn(x).

The first recurrence relation is

KB
0 (x, y) = 1, KB

n (x, y) = Hn(x, y)−
n−1

∑
j=0

(
n
j

)KB
j (x, y)

n− j + 1
, n ≥ 1.

The related determinant form is obtained from (48) by replacing (x + y)k by H(2)
k (x, y),

k = 0, . . . , n.
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As we observed, for φ(y, t) = eyt2
, c0(y) = 0, c1(y) = 2y, ck(y) = 0, k ≥ 2. Moreover, as in

the Example 2, case 2), b0 = B1, bk = −
Bk+1
k + 1

, k ≥ 1. Hence the third recurrence relation is

KB
n+1(x, y) =

(
x− 1

2

)
KB

n (x, y) + n
(

2y− 1
12

)
KB

n−1(x, y)−
n−2

∑
k=1

(
n
k

)
Bn−k+1

n− k + 1
KB

k (x, y).

The related determinant form for n > 0 is

KB
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1
2 −1 0 · · · · · · 0

2y− 1
2 x− 1

2 −1 · · · · · · 0

− B3
3

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1

− Bn+1
n+1 −(n

1)
Bn
n · · · · · · ( n

n−1)
(

2y− 1
2

)
x− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3) A(t) =
2

et + 1
.

In this case we get the bivariate Appell sequence whose elements can be called Euler–Hermite–
Kampé de Fériet polynomials and denoted by KE

n .

KE
n (x, y) =

n

∑
k=0

(
n
k

)
En−k(x)ϕk(y) =

n

∑
k=0

(
n
k

)
H(2)

k (x, y)En−k(0).

with ϕk(y) as in (52).

The first polynomials of the sequence
{
KE

n
}b

n∈IN are

KE
0 (x, y) = 1, KE

1 (x, y) = x− 1
2

, KE
2 (x, y) = x2 − x + 2y,

KE
3 (x, y) = x3 − 3

2
x2 − 3y + 6xy +

1
4

, KE
4 (x, y) = x4 − 2x3 + 12x2y− 12xy + 12y2 + x.

Their graphs are in Figure 6.

(a) KE
1 (b) KE

2

(c) KE
3 (d) KE

4

Figure 6. Plot of KE
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].
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Since αk = Ek(0), k = 0, . . . , n, from (12) we get β0 = 1, βk =
1
2

, k = 1, . . . , n. Therefore,
the first recurrence relation is

KE
0 (x, y) = 1, KE

n (x, y) = H(2)
n (x, y)− 1

2

n−1

∑
j=1

(
n
j

)
KE

j (x, y), n ≥ 1.

Since in this case b0 = −1
2

, bk =
Ek(0)

2
, k ≥ 1, the third recurrence relation is

KE
n+1(x, y) =

(
x− 1

2

)
KE

n (x, y) + n
(

2y− 1
4

)
KE

n−1(x, y) +
1
2

n−2

∑
k=0

(
n
k

)
En−k(0)KE

k (x, y).

The related determinant form for n > 0 is

KE
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y− 1
2 −1 0 · · · 0

E1(0)
2 x + y− 1

2 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
En(0)

2 (n
1)

En−1(0)
2 · · · ( n

n−1)
E1(0)

2 x + y− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Example 4. Let φ(y, t) =
1

1− yt
.

(1) A(t) = 1.

Being φ(y, t) =
∞

∑
k=0

k!yk tk

k!
, from (10) we get the elementary bivariate Appell sequence

pn(x, y) =
n

∑
k=0

n!
k!

xkyn−k,

and from (25) the conjugate sequence

p̂n(x, y) =
n

∑
k=0

n!
k!
(x− 1)kyn−k.

The first polynomials of the sequence {pn}b
n∈IN are

p0(x, y) = 1, p1(x, y) = x + y, p2(x, y) = x2 + 2xy + 2y2,

p3(x, y) = x3 + 3x2y + 6xy2 + 6y3, p4(x, y) = x4 + 4x3y + 12x2y2 + 24xy3 + 24y4.

Their graphs are in Figure 7.

(a) p1 (b) p2

Figure 7. Cont.
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(b) p3 (c) p4

Figure 7. Plot of polynomials pi, i = 1, . . . , 4, in [−1, 1]× [−1, 1].

For pn(x, y) relations (37) and (38) hold. Furthermore, since
φ(0,1)(y, t)

φ(y, t)
=

y
1− yt

, then

ck(y) = k! yk+1, k ≥ 0. Hence, from Remark (7), for n > 0

pn+1(x, y) = x pn(x, y) + n!
n

∑
k=0

yk+1

(n− k)!
pn−k(x, y),

and

pn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y −1 0 · · · 0
y2 x + y −1 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . . −1

n!yn+1 (n
1)(n− 1)!yn · · · ( n

n−1)y
2 x + y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2) A(t) =
t

et − 1
.

In this case we obtain

rB
n (x, y) =

n

∑
k=0

n!
k!

Bk(x)yn−k.

We note that
rB

n (x, 0) = Bn(x), rB
n (0, 0) = Bn, n ≥ 1,

Moreover, αk = Bk and from (12) βk =
1

k + 1
, k = 0, 1, . . .

Hence the first recurrence relation is

rB
0 (x, y) = 1, rB

n (x, y) = pn(x, y)−
n−1

∑
j=0

(
n
j

) rB
j (x, y)

n− j + 1
, n ≥ 1,

and the conjugate sequence is

r̂B
n (x, y) =

n

∑
k=0

n!
k!(n− k + 1)!

pk(x, y).

The first polynomials of the sequence
{

rB
n
}b

n∈IN are

rB
0 (x, y) = 1, rB

1 (x, y) = −1
2
+ x + y, rB

2 (x, y) =
1
6
− x + x2 − y + 2xy + 2y2,

rB
3 (x, y) =

x
2
− 3

2
x2 + x3 +

y
2
− 3xy + 3x2y− 3y2 + 6xy2 + 6y3,

rB
4 (x, y) = − 1

30
+ x2 − 2x3 + x4 + 2xy− 6x2y + 4x3y + 2y2 − 12xy2

+12x2y2 − 12y3 + 24xy3 + 24y4.
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Their graphs are in Figure 8.

(a) rB
1 (b) rB

2

(c) rB
3 (d) rB

4
Figure 8. Plot of rB

i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

As in the case (2) of the previous Examples, b0 = B1, bk = −
Bk+1
k + 1

, k ≥ 1. Hence the third

recurrence relation is

rB
n+1(x, y) =

(
x + y− 1

2

)
rB

n (x, y) + n!
n−1

∑
k=0

(
yn−k+1 − Bn−k+1

(n− k + 1)!

)
rB

k (x, y)
k!

.

The related determinant form for n > 0 is

rB
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y− 1
2 −1 0 · · · 0

b1 + y2 x + y− 1
2 −1 · · · 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1
bn + n!yn+1 (n

1)(bn−1 + (n− 1)!yn) · · · ( n
n−1)

(
b1 + y2) x + y− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3) A(t) =
2

et + 1
. In this case we obtain

rE
n (x, y) =

n

∑
k=0

n!
k!

Ek(x)yn−k.

The first polynomials of the sequence
{

rE
n
}b

n∈IN are

rE
0 (x, y) = 1, rE

1 (x, y) = −1
2
+ x + y, rE

2 (x, y) = −x + x2 − y + 2xy + 2y2,

rE
3 (x, y) =

1
4
− 3

2
x2 + x3 − 3xy + 3x2y− 3y2 + 6xy2 + 6y3,

rE
4 (x, y) = x− 2x3 + x4 + y− 6x2y + 4x3y− 12xy2 + 12x2y2 − 12y3 + 24xy3 + 24y4.

Their graphs are in Figure 9.
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(a) rE
1 (b) rE

2

(c) rE
3 (d) rE

4
Figure 9. Plot of rE

i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

Moreover, since β0 = 1, βk =
1
2

, k = 1, . . . , n, the first recurrence relation is

rE
0 (x, y) = 1, rE

n (x, y) =
n

∑
j=0

n!
j!

xjyn−j − 1
2

n−1

∑
j=0

(
n
j

)
rE

j (x, y), n ≥ 1,

and the conjugate sequence is

r̂E
n (x, y) =

1
2

n

∑
k=0

(
n
k

)
pk(x, y).

As in the case (3) of the previous Examples, b0 = −1
2

, bk =
Ek(0)

2
, k ≥ 1. Hence the third

recurrence relation is

rE
n+1(x, y) =

(
x + y− 1

2

)
rE

n (x, y) +
n−1

∑
k=0

(
n
k

)(
(n− k)!yn−k+1 +

En−k(0)
2

)
rE

k (x, y).

The related determinant form for n > 0 is

rE
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y− 1
2 −1 0 · · · 0

y2 + E1(0)
2 x + y− 1

2 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1

n!yn+1 + En(0)
2 (n

1)
(
(n− 1)!yn + En−1(0)

2

)
· · · ( n

n−1)
(

y2 + E1(0)
2

)
x + y− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Remark 12. In [29,30] the authors introduced the functions φ(y, t) = cos yt, φ(y, t) = sin yt.
They studied the related elementary sequences and respectively the Bernoulli and Genocchi sequences
but matricial and determinant forms are not considered. Most of their results are a consequence of
our general theory.
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10. Concluding Remarks

In this work, an approach to general bivariate Appell polynomial sequences based on
elementary matrix calculus has been proposed.

This approach, which is new in the literature [3,22,24,27,28], generated a systematic,
simple theory. It is in perfect analogy with the theory in the univariate case (see [19] and
the references therein). Moreover, our approach provided new results such as recurrence
formulas and related differential equations and determinant forms. The latter are useful
both for numerical calculations and for theoretical results, such as combinatorial identities
and biorthogonal systems of linear functionals and polynomials. In particular, after some
definitions, the generating function for a general bivariate Appell sequence is given. Then
matricial forms are considered, based on the so called elementary bivariate Appell polyno-
mial sequences. These forms provide three recurrence relations and the related determinant
forms. Differential definitions and recurrence relations generate differential equations. For
completeness of discussion the multiplicative and derivatives differential operators are
hinted. A linear functional on Sn = span{p0, . . . , pn | n ∈ IN} is considered. It generates a
general bivariate Appell sequence. Hence, an interesting theorem on representation for
any polynomial belonging to Sn is established. Finally, some examples of general bivariate
Appell sequences are given.

Further developments are possible. In particular, the extension of the considered linear
functional to a suitable class of bivariate real functions and the related Appell interpolant
polynomial. These interpolant polynomials can be applied not only as an approximant of a
function, but also to generate new cubature and summation formulas. It would also be
interesting to consider the bivariate generating functions for polynomials.
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Abstract: After the death of Peter Wynn in December 2017, manuscript documents he left came to our
knowledge. They concern continued fractions, rational (Padé) approximation, Thiele interpolation,
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1. Introduction

Peter Wynn (1931–2017) was a mathematician, a numerical analyst, and a computer sci-
entist (see in Figure 1 a photo of him taken in 1975). In his scientific life he produced 109 pub-
lications (see References [1–109]), and he translated two books from Russian [110,111]. He
is mostly known for his discovery of the ε-algorithm [3], a recursive method for the imple-
mentation of the Shanks transformation for scalar sequences [112], for its extensions to the
vector, matrix, and confluent cases [12,13,23,24], and for his numerous reports and papers
on Padé approximants and continued fractions. His works influenced a generation of pure
and numerical analysts, with an important impact on the creation of new methods for the
acceleration of scalar, vector, matrix, and tensor sequences, on the approximation of func-
tions, and on iterative procedures for the solution of fixed point problems. Volume 80, No.
1 of the journal Numerical Algorithms was dedicated to him with his full biography. More
recently, a complete analysis of all his works was provided in Reference [113], together
with those of other scientists who worked and are still working on these domains.

Figure 1. Peter Wynn in 1975. © C. Brezinski.

Thus, one can wonder why it was necessary to publish an additional paper on Wynn’s
work. During the last years of his life, Peter Wynn was living in Zacatecas, Mexico. Each
year, he had to come back to the United States for some administrative reasons. On
one occasion, he was visiting friends in San Antonio and left them boxes containing
mathematical documents he did not want, for some unknown reason, to keep with him in
Mexico. In January 2020, C.B. was contacted by F.A.N., a colleague of these friends, who
informed him of the existence of these documents. This is how Wynn’s legacy came to
light. Then, the authors of this paper decided to analyze these unpublished works.

As everyone can understand, it was a quite difficult task. Only a part of the documents
have been extracted from the boxes and studied. The handwritten lists made by Wynn for
indicating the contents of the boxes show that he put together several kinds of documents.
What he named “rough notes” are very difficult to read and understand. In these lists,
he often indicated what he called “notes” and, in this case, they are usually well written
and understandable. The best documents are designated as “paper”. Moreover, Wynn
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sometimes wrote new notes on the back of another document! In addition, he also made
Xerox copies of documents, and inserted them into the boxes. However, his lists help us to
try to identify the kind of document we were considering. But, sometimes, this was quite
impossible. Moreover, most of the documents we found have no date and, often, pages
are not numbered. When unnumbered sheets of paper are stacked on top of each other,
without any separation, it has sometimes been difficult to know where a document begins
and where it ends. It is also possible that Wynn himself mixed up some texts. For these
reasons, certain groupings of pages may be questionable. Thus, we apologize in advance
for all possible mistakes contained in this paper.

Let us motivate the potential reader by giving an idea of the main themes covered by
Wynn. The most important documents left by Wynn, which are almost complete and in
a good shape are the following. One of them concerns Bürmann series over a field; they
generalize Taylor series and are used in the reversion of series. Another one (187 pages)
is on stability and F-functions that play a role in the solution of the differential equation
y′(t) = Ay(t), variation diminishing functions, interpolating rational functions, exponen-
tial fitting forms. The Hamburger-Pick-Nevanlinna problem is treated in a document of
179 pages. There is a document on continued fraction transformations of the Euler-Mclaurin
series that has 202 pages; it contains applications to various series. The convergence of
associated continued fractions, and truncation error bounds for Thiele’s continued fractions
are the topics of another document. Then, we analyze various documents on interpolation.
The first one is about functional interpolation, in which a recursive algorithm, which seems
to be new, is given for constructing interpolating rational functions. Interpolation by the use
of rational functions is studied in another document. Wynn gave two recursive algorithms
for their computation. They also seem to be new. A document extends a report of Wynn
on the abstract theory of the ε-algorithm [69]. The ε-algorithm is applied to sequences of
elements of a ring. An interesting pedagogical document is on iterated complex number
spirals. We present some numerical experiments illustrating Wynn’s ideas. There is a
document that looks like a book project on extrapolation, Padé approximation, continued
fractions, and orthogonal polynomials. It can certainly serve as a basis for lectures on
continued fractions, Padé approximation, and the ε-algorithm. Other documents are on
algebra. One of them (266 pages) is on S-rings. It is quite theoretical, without any applica-
tion nor reference to the literature. A second one treats factorisations of a triangular matrix.
There are also unfinished manuscripts on various topics, which can be of interest. Two
unpublished papers of Wynn are also mentioned here for the first time. The documents
left by Wynn show the intellectual process leading to the elaboration of new results until
their publication. They are also a testimony on the human side of research by describing
the friendship and the collaboration between researchers, and their mutual influence.

The purpose of this paper is to make this legacy available to the international math-
ematical community. It contains a description of the unpublished manuscripts of Wynn.
They offer many new results and developments. Despite the fact that not all documents
have been sorted yet, we decided to propose them immediately since we think that the
research must go on. We hope to encourage some readers to resume the work of Wynn and
bring it to an end. We are sure that several of his ideas are worth pursuing.

All the documents extracted up to now from the boxes left by Wynn have been digi-
tized, and they can be downloaded from the following URL (Legacy Archive: Peter Wynn).
The main material is mentioned in this paper. The unusable or incomplete documents we
found are not listed here, but they are also inserted in the same website together with a
small description. Other information on Peter Wynn can also be found in the site Mathemat-
ics Research of the Department of Mathematics at the University of Texas at San Antonio
(UTSA) https://mathresearch.utsa.edu/Legacy/Peter-Wynn/ (accessed on 30 April 2021).

The history of the discovery of these documents is told in Section 2 with the testimony
of F.A.N. and of the friends of Wynn who inherited them. For readers who are not familiar
with the topics touched upon by Wynn, a short mathematical introduction is provided in
Section 3. More details can easily be found in the literature, particularly in Reference [113].
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Some of the documents left by Wynn in San Antonio are analyzed and commented in
Section 4. Some others will be analyzed in a second paper if they are of interest.

All quotations from Wynn are in italics. Inside a quotation, our own comments (when
necessary) are in roman characters into square brackets. When Wynn mentions a reference
given at the end of his text, we replaced it by that of our own bibliography numbered in
arabic figures between square brackets [·]. The documents of Wynn are numbered in bold
italics arabic figures. For referring to them in the text, these numbers are placed between
curly brackets {·} to distinguish them from the bibliographical references. Concerning the
references of Wynn, we were able to update them, by inserting new DOI, MR (Mathematical
Reviews) and Zbl (Zentralblatt reviews) numbers, and by adding newly discovered papers.
Let us also mention that in 1960, the journal Mathematical Tables and Other Aids to Computation
(known in short as MTAC) changed its name and became Mathematics of Computation, and
that from its Volume 5, the journal Revue française de traitement de l’information, Chiffres
became simply Chiffres. Several papers and communications of Wynn, when he was at
the Stichting Mathematisch Centrum (now Centrum Wiskunde & Informatica) in Amsterdam,
from 1960 to 1964, can also be found at the CWI’s Institutional Repository at the address
https://ir.cwi.nl/ (accessed on 30 April 2021).

2. The Discovery

On 14 January 2020, C.B. received the following message from F.A.N.:

I have just now read your recent remembrance of Peter Wynn appearing in Numerical Algorithms.
I was charmed—thank you for that. But I am also very much interested because, serendipitously,
I have just today “inherited” from a retired colleague several rather heavy boxes of Wynn’s papers
which had been left with my colleague for safekeeping (or convenience) some years earlier.

I have not yet opened the boxes, but I will begin examining the contents soon. The reason
I am writing you is to ask if you would be willing to answer a couple of questions, which I
pose below.

As I begin looking at the material, I could find (1) drafts of papers that might be of interest
to mathematicians, (2) personal items that might be of interest to family or friends, (3) miscellany
that would be of little interest to anyone, or (4) items for which I am at a loss to know whether to
keep or discard [. . . ]

Here are my questions to you:
In case I find material that looks as if it might have some mathematical import, would you

be willing to take look at it, or could you suggest someone who would be?

The colleague he was speaking about is Manuel Philip Berriozábal. He was born in
1931. He was awarded the Bachelor of Science degree in mathematics from Rockhurst
College in 1952, a Master of Science degree in mathematics from the University of Notre
Dame in 1956, and a Ph.D. in mathematics from the University of California at Los Angeles
(UCLA) in 1961. After serving for one year as a lecturer at UCLA, he joined the faculty at
Tulane University as an Assistant Professor. Four years later, he moved to the University of
New Orleans as an Associate Professor. He was promoted to Professor six years later. In
1975, Manuel Berriozábal married Maria Antonietta Rodriguez (see Figure 2). He joined
the faculty at the University of Texas at San Antonio (UTSA) in 1976, and in 1979, he
started the now nationally recognized Prefreshman Engineering Program (PREP) at UTSA.
San Antonio PREP received a Presidential Award for Excellence in Science, Mathematics
and Engineering Mentoring and a La Promesa Program Award from the National Latino
Children’s Institute. Several years ago, TexPREP (Texas Prefreshman Engineering Program)
received a special commendation from the Texas Senate. These accomplishments caught
the attention of the Washington, DC-based Quality Education for Minorities Network and
resulted in Berriozábal being named one of the six Giants in Science at a conference held
in February 1998. In May 1998, he was a recipient of the San Antonio “I Have a Dream”
Foundation Endeavors Award. PREP has also been replicated on eight college campuses
in eight states outside of Texas. It was during his professorship at the Louisiana State
University in New Orleans that he became a close friend of Peter Wynn.
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Figure 2. Maria Antonietta and Manuel Philip Berriozábal. ©M.A. and M.P. Berriozábal.

Of course, C.B. and M.R.-Z. were very much interested in the contents of these boxes
since they were in the final preparation of their book which contains, among others, an
analysis of all the publications of Peter Wynn [113]. F.A.N. began to look at them, to scan a
lot of their material, and to send it to us. The correspondence with him was completely
taken up by M.R.-Z., since the same day C.B. received F.A.N.’s first message, he had to
enter a hospital for a health problem.

On 15 January, F.A.N. wrote to C.B. and M.R.-Z.:

I have opened two of the four boxes, looking thoroughly through the contents of one of them.
FIRST BOX

The first box was a smaller one containing several hundreds of pages of handwritten notes
and a few other random items. In this and the next message, I have attached several of the smaller
items that might be indicative of material to come. Nothing is dated so I have no idea whether
this material simply anticipates papers that have been completed and published or represents
new work. In addition, not much is paginated, so I generally presume that the order in which
pages appear is the order in which they were completed and assembled. Some of this material
was left with Dr. Berriozábal here in San Antonio after Peter had visited Mexico and there are
some suggestions (e.g., written accounts of receipts) that suggest that some of the material was
produced while he was living in Mexico. Whether this was after his last publication in 1981, I do
not know.

To Do List: The first document above appears to be a list of various topics he wished to
address, mainly through the construction of relevant notes.

Projects: This document lists a number of projects that he had planned and may well have
completed. Whether these “projects” have found their way into the literature as published papers,
I do not know. I’ve copied a snapshot from the document and you will note that some of the items
have been denoted with a “D__” . Perhaps this is Peter’s shorthand for “Done” or fait accompli. I
didn’t see in his publications any that specifically included, for example, “stratified commutative
ring” or “Bürmann series”, so perhaps this represents some work that hasn’t yet been published,
but will appear somewhere in his collection of notes. I did find the beginnings of what looks to be
a monograph on Interpolation Theory–the first in his list of projects and one that doesn’t seem to
have been completed at that time.

Duplicate List: This may reflect a list of some of the items that Peter included in his boxes
of documents.

The next messages will include 2 larger documents, one a bibliography and the other a
more extensive list of documents.

Other items in this first box include the aforementioned piece of a monograph on Interpola-
tion Theory, as well as a couple of hundred pages of paginated notes of another document. In
that case, I see pages 70–300+ so I can’t be sure of the initial title. There is another paginated
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treatment of a topic (I don’t recall exactly what at the moment), a book review, and some hundreds
of other pages of notes that do not appear to fit together well.
SECOND BOX

I’ll mention here that the second box, one that originally held a dozen reams of office paper,
now holds about 20 kg of handwritten notes. I have not yet examined these notes in detail, and
when I do, I want to be careful not to disturb the assembly of any documents.

Bibliography: This is likely not anything that you would use. I imagine Peter kept this
bibliography simply for reference purposes.

List of documents: This seems to be a list of documents and/or things he felt he needed
to do, such as copy this or Xerox that. I don’t know if it has any intrinsic value, but it might
reflect documents included among his papers.

In a message to F.A.N., 17 January 2020, Maria Antonietta Berriozábal wrote:

We liked his visits. Each time he came it was without much notice and we would just go out to
eat. For me I was so very busy for so many years and so was Manny [her husband Manuel]
that a surprise visit took creativity to get the three of us together, but we did it for Peter. He liked
nice places. And I loved hearing he and Manny talk old times. He would also talk about living in
Mexico which he loved.

He was such a mystery to me because he was pretty much alone and he liked it that way.
I do not recall meeting Peter when we were in New Orleans which was August 1975 to

June 1976 [. . .]
What I do recall is that after we married I was sorting and clearing papers for Manny from

our apartment which he had lived in for many years and I came across a letter from Peter written
around the time Manny and I met. In that letter I gathered Peter was a bachelor friend of Manny
who was not the marrying kind and he was commenting that Manny had met “the one”. He was
happy for Manny but it seemed to me Peter was happy being alone. Now that I think of it I don’t
think I ever got to know who Peter was. He had a wonderful smile. He liked to laugh and joke
and was very very blond.

C.B. and M.R.-Z. wrote to Maria Berriozábal and sent her the photo of Wynn in-
serted above (also see References [113,114]). She answered on 21 January 2020:

[. . .] The photos are valuable. I met Peter when he was a much older man but still had that
incredibly beautiful smile and lots and lots of hair!

Each time he came to the US for many years, he would call Manny and we would go to
dinner. If I recall correctly, it was mostly on Peter’s nickel and as I stated to Sandy [F.A.N.] we
went to nice restaurants, although Manny may have won some times and we would go to our
famous Luby’s Cafeteria—always the frugal Manny.

I do not recall Peter in New Orleans when I lived there with Manny the first nine months
of our marriage. I left San Antonio to join him as he was waiting and hoping to join UTSA. The
New Orleans scholars community from the four universities and colleges there met socially and
regularly at people’s homes but I do not recall Peter in any of that circle. It could have been that
he was no longer in New Orleans. This was August 1975 to June 1976.

This morning when I read your note the words that rang in my head is how youth is wasted
on the young. I wish I had paid more attention and had retained the conversations with Peter,
but at that time my life was incredibly full and so was Manny’s. There were times when I had
to make major changes in my schedule to join Manny and Peter and I always did and looked
forward to those dinners. My questions to Peter were always about Mexico and his life there.
That is what I wish I could recall more. I just know that he was very happy there. I do not recall
what his conversations with Manny were all about and now Manny is forgetting a lot of things.

On one of these trips which had to occur every six months, I believe, because that is how he
kept his US citizenship active he said he had some boxes with him and asked if we could store
them for him for safekeeping. I recall his taking them out of his car. When I looked at them again
seriously in recent years I saw how big the boxes were and soon learned how heavy they were.
Yet, I seem to recall Peter carrying them by himself. Maybe a Dolly helped. I just know he trusted
us with them.

One of my last year’s resolutions was to clean the garage and I did. It took some weeks but
with some help I did it. Peter’s boxes were the only things that were still in there without any
resolution. We had been telling each other for a couple of years that Peter had probably died since
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we did not hear from him anymore. He quit coming. Manny and I would comment from time to
time that we still had those boxes and that we needed to do something about them.

A year ago when the boxes were the last unsettled things in the garage I told our gardener
who was helping me with the project the story of the boxes. He said what if it is money. Since
it had been so long that Peter had left the boxes with us I gave myself permission to open them.
Hilario, my helper, even wondered if they were full of money! I only opened two boxes and all I
saw were reams of papers with math problems. Pages and pages and pages. When Sandy [F.A.N.]
helped us with Manny’s papers after he retired I decided to ask him to go over the papers and
determine what they were. Manny looked at them but had no idea what the material was. When
Sandy [F.A.N.] took the boxes out I saw how at least one of them had folders of some kind so the
papers were not only sheets of math problems. I hope someone who has Peter’s interest and his
career uppermost in their mind will continue to review it and possibly record it for posterity.

To close, thank you again for honoring Peter’s work.

3. Mathematical Background

Some documents written by Wynn are pure algebra or complex analysis. They require,
at least for some of them, quite a good knowledge of these fields. However, it is impossible
to give herein a full account of the definitions and notions necessary for their complete
understanding. We will restrict ourselves to the most specialized topics addressed by
Wynn in the domain of numerical analysis, namely the Shanks transformation and the
ε-algorithms, Padé approximation, continued fractions, and rational interpolation. In
this section, we only present the definitions and the main algebraic properties that are
sufficient for understanding most of the documents analyzed. The fundamental question
of convergence is not addressed. We refer to References [113,115–119] for more details.

3.1. The Shanks Transformation and the ε-Algorithms

When a sequence (Sn) of numbers is slowly converging to its limit S, and when
one has no access to the process building it, it can be transformed into a new sequence
(or a set of new sequences), which, under some assumptions, converge(s) faster to the
same limit. Many such sequence transformations exist and have been studied; see Refer-
ences [115,117–119]. Among them, one of the most well known, studied, and used is due
to Shanks [112]. It consists in transforming (Sn) into a set of sequences denoted {ek(Sn)},
indexed by k and n, and defined by

ek(Sn) =

∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+k
∆Sn ∆Sn+1 · · · ∆Sn+k

...
...

...
∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
∆Sn ∆Sn+1 · · · ∆Sn+k

...
...

...
∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣

, k, n = 0, 1, . . . . (1)

These numbers can be recursively computed by the scalar ε-algorithm of Wynn [3], whose
rule is

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k, n = 0, 1, . . . , (2)

with ∀n, ε
(n)
−1 = 0 and ε

(n)
0 = Sn, and it holds ε

(n)
2k = ek(Sn), k, n = 0, 1, . . . The ε

(n)
2k+1 are only

intermediate results with no interest for our purpose. In fact, quantities with a different
parity can be eliminated from (2), thus leading to the cross-rule of Wynn [48] which only
links those of the same parity

(ε
(n)
k+2 − ε

(n+1)
k )−1 + (ε

(n+2)
k−2 − ε

(n+1)
k )−1 = (ε

(n+2)
k − ε

(n+1)
k )−1 + (ε

(n)
k − ε

(n+1)
k )−1,

with the initial conditions ε
(n)
−2 = ∞, ε

(n)
−1 = 0, and ε

(n)
0 = Sn for n = 0, 1, . . .
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It can be proved that ∀n, ε
(n)
2k = S if and only if the sequence (Sn) satisfies a linear

difference equation of order k

a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0, n = 0, 1, . . . ,

where the coefficients ai are such that a0ak 6= 0 and a0 + · · ·+ ak 6= 0. In other words, if
and only if Sn has the form

Sn = S +
p

∑
i=1

Ai(n)rn
i +

q

∑
i=p+1

[Bi(n) cos(bin) + Ci(n) sin(bin)]eωin +
m

∑
i=0

ciδin,

where Ai, Bi and Ci are polynomials in n such that, if di is the degree of Ai plus 1 for
i = 1, . . . , p, and the maximum of the degrees of Bi and Ci plus 1 for i = p + 1, . . . , q,
one has

m + 1 +
p

∑
i=1

di + 2
q

∑
i=p+1

di = k,

with the conventions that the second sum vanishes if there are no complex zeros, and
m = −1 if there is no term in δin (Kronecker’s symbol). The set of such sequences is named
the kernel of the transformation. Since many sequences produced by iterative methods
have this form or are close to it, it explains the success of this algorithm.

In Reference [24], Wynn extended his algorithm to the case where the Sn are vectors
or square matrices. In the matrix case, the significance of the power −1 in (2) is clear. For
vectors, the inverse y−1 of a vector y is defined as y−1 = y/(y, y), thus leading to the vector
ε-algorithm.

Similarly, when a function f (t) is slowly converging to its limit S when t tends to
infinity, it can be transformed into a set of functions converging faster to S under certain
assumptions. For that purpose, Wynn extended his algorithm to that case by proposing the
first confluent form of the ε-algorithm whose rule is, for all t,

εk+1(t) = εk−1(t) + (ε′k(t))
−1, k = 0, 1, . . . ,

with ε−1(t) = 0 and ε0(t) = f (t). Again the ε2k+1(t) are intermediate computation. It can
be proved that, for all t, ε2k(t) = S if and only if f satisfies the differential equation of order k

a0( f (t)− S) + a1 f ′(t) + · · ·+ ak f (k)(t) = 0,

with a0ak 6= 0, that is, in other words,

f (t) = S +
p

∑
i=1

Ai(t)erit +
q

∑
i=p+1

[Bi(t) cos(bit) + Ci(t) sin(bit)]eωit,

where Ai, Bi and Ci are polynomials in t such that, if di is the degree of Ai plus 1 for
i = 1, . . . , p, and the maximum of the degrees of Bi and Ci plus 1 for i = p + 1, . . . , q, one has

p

∑
i=1

di + 2
q

∑
i=p+1

di = k.

Moreover, the ε2k(t) can be expressed by a ratio of determinants quite similar to (1), but in
which the derivatives of f are replacing the powers of the difference operator ∆ (see, for
example, Reference [113] (p. 24) or Reference [115] (p. 257)).
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3.2. Padé Approximation

Let f be a formal power series

f (t) =
∞

∑
i=0

citi,

in which the coefficients ci and the variable t can be complex. A Padé approximant of f is a
rational function with a numerator of degree p at most and a denominator of degree q at most
such that its power series expansion agrees with f as far as possible, that is up to the degree
p + q inclusively. Such an approximant is denoted [p/q] f and, by construction, it holds

[p/q] f (t)− f (t) = O(tp+q+1), (t→ 0).

Let us set [p/q] f (t) = Np(t)/Dq(t) with

Np(t) = a0 + a1t + · · ·+ aptp and Dq(t) = b0 + b1t + · · ·+ bqtq.

Then, linearizing the conditions of the definition as f (t)Dq(t)− Np(t) = O(tp+q+1) leads
to the relations

a0 = c0b0

a1 = c1b0 + c0b1
...

ap = cpb0 + cp−1b1 + · · ·+ cp−qbq

0 = cp+1b0 + cpb1 + · · ·+ cp−q+1bq

...

0 = cp+qb0 + cp+q−1b1 + · · ·+ cpbq

with the convention that ci = 0 for i < 0 which allows to treat simultaneously the cases
p ≤ q and p ≥ q.

Setting b0 = 1 allows to solve the system formed by the preceding last q equations for
the coefficients b1, . . . , bq. Knowing the bi’s, the first p + 1 equations directly provide the ai’s.

It holds

[p/q] f (t) =

∣∣∣∣∣∣∣∣∣

tqfp−q(t) tq−1fp−q+1(t) · · · fp(t)
cp−q+1 cp−q+2 · · · cp+1

...
...

...
cp cp+1 · · · cp+q

∣∣∣∣∣∣∣∣∣

/
∣∣∣∣∣∣∣∣∣

tq tq−1 · · · 1
cp−q+1 cp−q+2 · · · cp+1

...
...

...
cp cp+1 · · · cp+q

∣∣∣∣∣∣∣∣∣
,

where fm denotes the partial sum of f up to the term of degree m inclusively.
It is easy to see from (1) that, applying the ε-algorithm to Sn = ∑n

i=0 citi leads to

ε
(n)
2k = [n + k/k] f (t). Let g be the reciprocal series of f defined by f (t)g(t) = 1 (it exists if

and only if c0 6= 0). If the ε-algorithm is applied to the sequence of the partial sums of g,
then ε

(n)
2k = [n + k/k]g(t) = 1/[k/n + k] f (t).

3.3. Continued Fractions

A continued fraction is an expression of the form

C = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

.
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For evident typographical reasons, it is written as

C = b0 +
a1
b1

+
a2
b2

+
a3
b3

+ · · ·

The numbers ak and bk are called the kth partial numerator and partial denominator, respec-
tively, ak/bk is the kth partial quotient, and

Cn = b0 +
a1
b1

+ · · ·+ an−1
bn−1

+
an
bn

is called the nth convergent of the continued fraction C (even if the sequence (Cn) does not
converge). A continued fraction is said to converge if the sequence (Cn) converges when n
tends to infinity.

After reducing to the same denominator, Cn can be written as Cn = An/Bn. It can be
computed by the recurrence relationships

Ak = bk Ak−1 + ak Ak−2

Bk = bkBk−1 + akBk−2, k = 1, 2, . . .

with

A0 = b0, A−1 = 1

B0 = 1, B−1 = 0.

Let (Cn) be the sequence of convergents of the continued fraction C and let (Cpn) be a
subsequence. The continued fraction

C′ = b′0 +
a′1
b′1

+
a′2
b′2

+
a′3
b′3

+ · · ·

whose convergents satisfy C′n = Cpn is given by

a′n =
Cpn−1 − Cpn

Cpn−1 − Cpn−2

, b′n =
Cpn − Cpn−2

Cpn−1 − Cpn−2

,

with b′0 = Cp0 , b′1 = 1 and a′1 = Cp1 − Cp0 . This operation is called a contraction of the
continued fraction. Usually, pn = 2n.

The analytic theory of continued fractions is concerned with continued fractions whose
partial numerators and/or denominators are functions of the complex variable z. Let us
consider the continued fraction

C = b0 +
a1z
1

+
a2z
1

+
a3z
1

+ · · ·

From the recurrence relations, we see that A2k−1, A2k and B2k are polynomials of degree
k in z and that B2k−1 is a polynomial of degree k − 1. The expansions of Ck and Ck−1
in ascending powers of z agree up to the term of degree k − 1 inclusively. It is possi-
ble to choose b0, a1, a2, . . . so that the expansion of Ck agrees with that of a given series
f (z) = c0 + c1z + c2z2 + · · · up to the term of degree k. This continued fraction is called
the continued fraction corresponding to the series f . By a contraction of this continued
fraction, with pk = 2k as explained above, we obtain a continued fraction whose conver-
gent C′k agrees with that of f up to the term of degree 2k. This is the continued fraction
associated to the series f . Thus, by the uniqueness property of Padé approximants, we have
C2k = [k/k] f (z) and C2k+1 = [k + 1/k] f (z).
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3.4. Rational Interpolation

Consider the continued fraction

C(n)(x) = α
(n)
0 +

x− xn

α
(n)
1

+
x− xn+1

α
(n)
2

+ · · · ,

with α
(n)
k = $

(n)
k − $

(n)
k−2 for k = 1, 2, . . ., and α

(n)
0 = $

(n)
0 = f (xn), and where the scalars $

(n)
k

are recursively computed by

$
(n)
k+1 = $

(n+1)
k−1 +

xn+k+1 − xn

$
(n+1)
k − $

(n)
k

(3)

with $
(n)
−1 = 0 and $

(n)
0 = f (xn). The quantities $

(n)
2k can be expressed as a ratio of two

determinants.
The kth convergent C(n)

k of this continued fraction satisfies the interpolation conditions

C(n)
k (xi) = f (xi) for i = n, . . . , n + k. The quantities $

(n)
k+1 are the reciprocal differences of f .

They formed the $-algorithm used by Wynn for rational extrapolation at infinity [2].
Let us now consider the confluent reciprocal differences of a function f defined by

$k+1(t) = $k−1(t) +
k + 1
$′k(t)

with $−1(t) = 0 and $0(t) = f (t). This formula will be used as an extrapolation method
for functions by Wynn, and named the confluent form of the $-algorithm [12].

Thiele’s expansion of a function f consists in the continued fraction

f (t + h) = f (t) +
h

α1(t)
+

h
α2(t)

+ · · · ,

with αk(t) = $k(t)− $k−2(t) for k = 1, 2, . . . Replacing t by 0 and h by x, we get

f (x) = f (0) +
x

α1(0)
+

x
α2(0)

+ · · ·

The successive convergents Ck(x) = Ak(x)/Bk(x) of this continued fraction are such that
f (x)− Ck(x) = O(xk+1). Since Padé approximants are uniquely defined, it holds

C2k(x) = [k/k] f (x), C2k+1(x) = [k + 1/k] f (x).

4. The Legacy

Let us now describe the various documents contained in the boxes left by Wynn at his
friends’ house in San Antonio. All, except two, are handwritten.

4.1. Main Documents

We tried to sort the documents by themes. However, our classification is only an
attempt since there are many connections between the topics, the documents are not dated,
and, maybe, some of them contain pages coming out from various sources since they are
not numbered and, maybe, inserted by Wynn in disorder into the boxes.

4.1.1. Complex Analysis and Continued Fractions

1 Bürmann series over a field
These titled notes (52 pages) are devoted to Bürmann series. They are mentioned in
documents {26–28}, and were probably written at the same time as {14}, since both
titles are listed together.
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The Bürmann series of a function f is a generalized form of a Taylor series in which,
instead of a series in powers of z − z0, we have a series in powers of the analytic
function φ(z) − φ(z0). It is used in the reversion of series which consists, starting
from z = f (w), in expressing w as w = g(z). The problem was considered by
Joseph Louis Lagrange (1736–1813) in 1770 [120] and generalized by Hans Heinrich
Bürmann (?–1817). A report on Bürmann’s theorem by Joseph-Louis Lagrange and
Adrien-Marie Legendre (1752–1833) appeared in Rapport sur deux mémoires d’analyse
du professeur Bürmann, Mémoires de l’Institut National des Sciences et Arts: Sciences
Mathématiques et Physiques, vol. 2, pages 13–17 (1799). An exhaustive treatment
of this topics is given in Reference [121] (pp. 55 ff.). The Lagrange-Bürmann series,
as it is often called, also allows for two functions f and g, both holomorphic in the
neighborhood of a point, to be expanded in a power series of the other one in two
overlapping regions. Series reversion related to Hankel determinants, continued
fractions, and combinatorics as explained in Section 6.10.4 of Reference [113] about
combinatorics; also see Reference [122]. Wynn wrote:

This paper is directed towards the transformation of series expansions [...]
The general results derived are illustrated by application to a problem concerning the trans-
formation of asymptotic relationships.
Notation. Let n > 0 be fixed finite integer.
(1) With w a fixed point in C, the finite part of the complex plane, Ω(w) an open set of
points in C\{w} with limit point at w, Ω̄(w) ≡ {w}⋃Ω(w), and p, q mappings of Ω̄(w)
into C,

p(z) '(w,Ω) q(z)

means that p(z)− q(z) = o{(z− w)n} as z tends through Ω(w) to w.
(2) Let M be a nonvoid set of points in C. For each w ∈ M, let Ω(w), Ω̄(w) be as in (1) and
p(w, ·), q(w, ·) : Ω̄(w)→ C.

p(w, z) '[M,Ω] q(w, z)

means that for each w ∈ M, p(w, z) '(w,Ω) q(z). [We have] Ω̄ =
⋃

w∈M Ω̄(w) and
Ω′ =

⋃
w∈M Ω′(w) where {Ω′(w) : z− w for all z ∈ Ω̄(w)}.

The main problem considered has a simple form as follows: let aj, f j ∈ C (j : n) [This
notation means that j runs from 1 to n. The notation (j : 0, n) means that j goes from
0 to n] with a1 6= 0 and, with w ∈ C fixed, let a, f : Ω̄(w)→ C be such that

a(z) '(w,Ω) a(w) +
n

∑
j=1

aj(z− w)j

f (z) '(w,Ω) f (w) +
n

∑
j=1

f j(z− w)j.

Determine gi ∈ C for which

f (z) '(w,Ω) f (w) +
n

∑
i=1

gi{a(z)− a(w)}j.

In the general form of the problem aj, f j : M→ C (j : n) are mappings with a1(w) 6= 0 for
all w ∈ M; for each w ∈ M, a(w, ·) : Ω̄(w)→ C is such that

a(w, z) '[M,Ω] a(w, w) +
n

∑
j=1

aj(w)(z− w)j

the mapping f : Ω̄→ C satisfies the relationship

f (z) '[M,Ω] f (w) +
n

∑
j=1

f j(w)(z− w)j
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and gi : M→ C for which

f (z) '[M,Ω] f (w) +
n

∑
i=1

gi(w){a(w, z)− a(w, w)}i

are to be determined.

Then, Wynn described three variants of the problem corresponding to various properties
of the function a. The particular case of polynomials is treated. The text ends by:

The function c(z) = ln(1 + z) is inverse to a(z) = ez − 1. c(eiθ) = ln{2(1 + cos θ)}+
iθ/2 maps the segment −π ≤ θ ≤ π onto a curve C, symmetric about the real axis,
enclosing its nonpositive part, containing the real point ln(z), the imaginary points ±iπ/3,
and having as asymptotes the lines z = ±iπ/2, D being the open domain bounded by C, a
maps D bijectively onto the unit open disc.

2 On Stability Functions
The handwritten paper On stability functions (mentioned in {26} as “Paper, latest
version”) contains 187 pages with a bibliography at the end. Its first section is an
introduction and a presentation of the notations:

This paper is concerned with functions of the form

(1) f (z) = 1 +
az

1− az/2 + z2s(z)

where 0 < a < ∞, and

(2) s(z) =
∫ ∞

0

dψ(t)
1 + z2t

where ψ(t) is a nondecreasing function of bounded variation for 0 ≤ t ≤ ∞ such that all
moments

(3) cν =
∫ ∞

0
tν dψ(t)

for ν = 0, 1, . . . exist.
A function f of this form will be called an F-function. If the context permits, the notation
f ∈ F or, where convenience dictates, f (z) ∈ F, will be used. The function s in the
representation (1) plays a significant role in the theory of the function f . A function of
the form (2) with ψ as described will be called an S-function; again the notations s ∈ S or
s(z) ∈ S will be used.
The mapping properties of F- and S-functions, in particular, will be investigated.

Then, Wynn stated that an F-function f is real for finite negative values of z with
f (z) > 0 for all sufficiently small negative values of z, is asymptotically represented
as z tends to zero over an open set in the sector π/2, 3π/2 with the limit point 0,
and that the function f can be asymptotically represented by a series of the form
f (z) = ∑∞

ν=0 cνzν (formula scratched) which generates an associated continued frac-
tion whose even convergents map the closed infinite left half-plane L into the closed
unit disc D if and only if f is an F-function. The proof is given with a reference to his
paper (Reference [98]) for details. An example of an F-function is ez, and Wynn added:

The study of F-functions was motivated by the following consideration: With A a bounded
linear operator, the solution of the differential equation

(9)
dy(t)

dt
= Ay(t)

with y(0) prescribed, satisfies the relationship

(10) y(nh + h) = exp(Ah)y(nh)

for n = 0, 1, . . . If 0 < h < ∞ and the eigenvalues of A lie in L, those of exp(Ah) lie in
D. ‖y(nh)‖ remains bounded and, indeed, decreases to zero as n increases indefinitely. An
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approximation y∗(t) to the solution of Equation (9) may be obtained by use of a Taylor series
method based upon use of an approximate identity

(11)
m

∑
i=0

ai
diy∗(t + h)

dti =
n

∑
i=0

bi
diy∗(t)

dti .

Setting m = n = r and taking the ai and bi to be the denominator and numerator coefficients
of powers of z in C2r(hz), where C2r(z), with r ≥ 1 fixed, is a convergent of the continued
fraction associated with the exponential series, and setting t = nh, the special form of the
approximate identity (11) applied to Equation (10) yields the relationship

(12) y∗(nh + h) = C2r(Ah)y∗(nh)

for n = 0, 1, . . . As a consequence of the mapping properties of C2r(t) described above, the
eigenvalues of C2r(Ah) lie in D, and the remarks concerning the behaviour of ‖y(nh)‖ apply
with equal force to ‖y∗(nh)‖: the exact and approximate solutions of Equation (9) behave in
the same way. The practical details of the way in which relation (12) is implemented are not
of immediate concern; any method for the approximate solution of Equation (9) based upon
use of recursion (12) is stable.

Let us remember that the convergent C2r of the associated continued fraction to a
series is its [r/r] Padé approximant. Since the computation of Padé approximants to
the exponential function are highly numerically unstable (see References [123,124])
one can doubt the practical usefulness of the procedure mentioned.
Other examples of F-functions are given. Wynn claimed that they open up the possi-
bility of constructing stable schemes for the approximate solution of certain nonlinear
differential equations. A characterisation of F-functions which is independent of the
continued fraction theory is given. Based on the proof of this result, Wynn asserted that
it is possible to demonstrate the existence of functions with mapping properties less
specific than those of F-functions. Indeed, a number of F-functions can be derived from
a given F-function. This remark reminds the way some totally monotone sequences
can be derived from a totally monotone one as explained in Reference [125]. Then,
Wynn proved that F-functions are closed with respect to multiplication. Meromorphic
F-functions are then considered.
The next part of the work deals with variation diminishing functions. Let (xi) be a
sequence of real numbers. The transformation (xi) 7−→ (yj) given by yj = ∑n

i=0 an−ixi,
j = 0, 1, . . . (it seems that n should be replaced by j), is said to be variation diminishing
if the number of changes of sign of the yj is less than or equal to the number of
changes of sign of the xi. Wynn wrote: Transformations of this type underly the theory
of many smoothing operations, and also occur in the numerical solution of certain partial
differential equations by iterative methods, and he referred to Reference [126]. Several
results are proved.
The next section of this manuscript is devoted to interpolation. Wynn wrote:

It is possible to construct a rational F-function whose derivative values agree with those of
a generating F-function up to prescribed orders not only at the origin but at a prescribed
sequence of points in L; furthermore this rational function may be derived by the use of
purely algebraic methods of rational function interpolation.

A theorem is proved and recurrences for the coefficients occurring in the interpolating
rational F-function are given. A long discussion, where orthogonal polynomials
play a role, follows. The algebraic problem of determining a rational function with
denominator and numerator of degrees equal to m and m − 1 respectively, which
satisfies the interpolation conditions may be solved by a recursive process which
is described and justified in his Appendix 3 Extremal solutions of the Pick-Nevanlinna
problem. It could be of interest to code and test this algorithm, and to compare it with
the other existing ones.
Exponential fitting forms the topic of the following section. Since differential systems
of the form (9) constitute a very restricted class, Wynn now considered the system
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dy(x)/dx = f (y(x)). Linearizing it yields dy(x)/dx = f (0) + Jy(x) where J is the
Jacobian matrix of f . Assuming its nonsingularity, we have

y(x + h) = eJh[y(x) + J−1 f (0)]− J−1 f (0).

Assuming that the eigenvalues λj of J are distinct, and . . . what follows is not clearly
stated and it seems that one page of the manuscript is missing. Anyway, Wynn
constructed a rational function such that its derivatives of prescribed orders agree
with those of eJh at the points λjh, and he wrote:

It is eminently desirable that a method for the construction of general rational functions
mapping L into D and having prescribed orders of contact with the exponential function
at the origin and other specified points in L should be made available. This is precisely the
service offered by Section [not identified] of this paper. In Theorem 4 [not identified],
the F-function producing the interpolation data is taken to be the exponential function; the
results of that theorem then show that the required function is obtained simply by means of
rational function interpolation.

A section on meromorphic F-functions follows in which the properties of the corre-
sponding continued fractions they generate are studied. The even and odd convergents
are examined.
The first Appendix has the title The asymptotic expansion of positive real functions. Ap-
pendix two is on The construction of functions belonging to certain classes. It deals with a
general theory of the derivation of functions of the form

F(λ) =
∫ ∞

−∞
(λ− t)−1 dσ(t)

from others of the same form. In a previous Appendix (without a number) Wynn
already treated the same problem for S-functions. The third Appendix, already men-
tioned above, considers the Pick-Nevanlinna problem in a wider setting. Let us
remember that this problem consists in finding a holomorphic function ϕ that inter-
polates the data λ1, . . . , λn ∈ D subject to the constraint |ϕ(λ)| < 1 for all λ ∈ D; see
Reference [127]. Wynn wrote:

It is clear from the above conspectus of results from the Pick-Nevanlinna theory, that the
solution of the problem of determining a rational function which satisfies the mapping and
interpolation conditions described above differs from that of constructing a rational function
which satisfies interpolation conditions alone in at least two respects: in the solution of the
first problem a combination of function-theoretic and algebraic methods is involved, while in
that of the second, algebraic methods are exclusively deployed; furthermore, each stage of the
solution of the first problem results, not in the construction of a single interpolating function
as is the case for the second problem, but in that of a family of functions with the required
properties.

Developments and theoretical results follow. A bibliography of 26 items ends the
paper. One can wonder why Wynn never published it.

3 The Hamburger-Pick-Nevanlinna problem
This manuscript contains 179 pages but with many portions scratched (it probably
contains a mixing of a draft of a paper, notes and rough notes all cited in {26,28}).
Let p, q, r be finite positive integers, let aν (ν : 0, 2p− 2) be finite real numbers, let
xk (k : q) be distinct real argument values, T(1, k) (k : q) be the corresponding
finite positive integers, and bk,ν (k : q | ν : 0, 2T(1, k)− 1) sets of finite real valued
coefficients, let λk (k : r) be distinct argument values in L, T(2, k) (k : r) be the
corresponding finite positive integers, and ck,τ (k : r | τ : 0, T(2, k)− 1) sets of finite
complex valued coefficients. The problem is to determine a function G which satisfies
the asymptotic relationship
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λ2p−1

{
G(λ)−

2p−2

∑
ν=0

aνλ−ν−1

}
= O(1)

as λ tends to infinity in a sector of the form π < γ ≤ arg(λ) ≤ δ < 2π, and satisfies
also the asymptotic relationship for k : q

(λ− xk)
−2T(1,k)

{
G(λ)−

2T(1,k)−1

∑
ν=0

bk,ν(λ− xk)
ν

}
= O(1)

as λ tends to xk over an open set contained in L with limit point at xk, for k : r, and
moreover satisfies the interpolation conditions λτG(λk)/τ! = ck,τ for τ : 0, T(2, k)− 1,
and finally maps L into D (or U?). According to Wynn The proof of the principal theorem
of this section is largely based upon results, due to M. Riesz, in the theory of linear functionals.
Since this part is a draft in quite bad shape, we will not pursue its analysis.
The document contains another interesting section

Matrix criteria
In this section Akhiezer’s treatment of the simple Pick-Nevanlinna problem is extended to
the diminished Hamburger-Pick-Nevanlinna problem; conditions that are necessary and
sufficient for the solubility of the latter problem are established and, assuming this problem
to be nondegenerate, inclusion discs for its solutions are located.

As a preliminary, a Hermitian matrix is constructed from the data which leads to an
extension of a theorem on the existence of inclusion discs for the values of all solutions
to the Hamburger problem and the simple Pick-Nevanlinna problem.
Wynn concluded:

The results of the above theorem are exclusively concerned with the diminished version of
the Hamburger-Pick-Nevanlinna problem. It is possible to extend the method of proof to the
treatment of the Hamburger-Pick-Nevanlinna problem itself, to examine the structure of
the rational function solutions to this problem and its diminished form, and to describe the
relative positions of the inclusion discs deriving from a sequence of subordinate problems.
These matters are, however, more conveniently dealt with methods described in the following
section, in which explicit expressions for the general solutions to the interpolation problems
concerned are described.

Unfortunately, this following section of the manuscript is not under a form which allows
to give a clear account of it.

4 Continued fraction transformations of the Euler-Mclaurin series
The document is 202 pages long. It dates from December 1976. The first part of the
document is in a quite good shape (probably a draft of the paper mentioned in {26},
with an abstract and a bibliography) with some corrections done with a pencil. Not all
pages have been written with the same pen. Some of them are missing or not in the
right order since all of them are not numbered (they could be some additional notes on
integral transform and analytic continuation). Moreover, references to some formulas
are missing, and some authors quoted in the text are not listed into the bibliography
given at the end. An in-depth study of this document is needed to fully understand it
if possible to exploit it.
It begins by a long abstract from which we extract the main points.

Results concerning the convergence of forward diagonal sequences of quotients in the Padé
table are given. In particular, it is shown that, if (∗) fν =

∫ ∞
0 tν dσ(t) (ν = 0, 1, . . .),

σ being a bounded nondecreasing real valued function such that all moments (∗) exist,
and (∗∗) fν = O{(χν)!ξν} (0 < χ ≤ 2, 0 < ξ < ∞) then all forward diagonal se-
quences of Padé quotients derived from the series ∑∞

ν=0 fνzν converge uniformly over any
bounded region in the z-plane not containing any point of the nonnegative real axis to (∗ ∗ ∗)
f (z) =

∫ ∞
0 (1− zt)−1 dσ(t), f (z) being the le Roy or (B, χ) sum of the given series for all

finite z in the sector χπ/2 ≤ arg(z) ≤ (4− χ)π/2.
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This result extends results given by various authors, and it can also be extended to
the case where the lower limit in (∗) and (∗ ∗ ∗) is replaced by −∞. These results are
applied to the delayed Euler-Mclaurin series

∞

∑
ν=0

bj+νD2j+ν+1Ψ(µ)k2ν,

(j ≥ 0, and D being d/dµ) regarded as a series expansion in ascending powers of
k2. Convergence results for the Padé approximants of this series are derived, and
also for the same series in which single zeros are inserted between its successive
terms. Applications to Stirling’s asymptotic expansion of the logarithm of the gamma
function, and to the asymptotic expansion of the generalised Riemann zeta-function
are presented.

5 Convergence and truncation error bounds for associated continued fractions
This is a short document (13 pages), probably only the notes mentioned in {26}.
In this work, he proposes to give a convergence theorem for the functions $2r{ψ(µ)},
where, presumably, $2r is the 2rth convergent of Thiele’s continued fraction. He begins
to prove other results (not reproduced herein since they contain too many erasures)
upon which the proof of the theorem is based. It is:

Theorem 3. Let [α, β] be a fixed interval of the finite real axis, and ξ(s) be a bounded
nondecreasing real valued function for α ≤ s ≤ β, and not a step function with a finite
number of salti. Let µ ∈ (−∞, ∞)× [α, β] be fixed and

ψ(µ) =
∫ β

α
(µ− s)−2 dξ(s)

${ψ(µ)} =
∫ β

α
(µ− s)−1 dξ(s).

Then limr=∞ $2r{ψ(µ)} = ${ψ(µ)}, and

|${ψ(µ)} − $2r{ψ(µ)}| ≤ (β− α)|ψ(µ)|p(µ; α, β)2r−1, r = 1, 2, . . .

where p(µ; α, β) =
∣∣∣|µ− α|1/2 − |µ− β|1/2

∣∣∣/
∣∣∣|µ− α|1/2 + |µ− β|1/2

∣∣∣.

According to what precedes, it seems that the sign that looks like× in µ ∈ (−∞, ∞)× [α, β]
has to be replaced by /∈ [α, β]. We do not know if this result had been later rediscovered
by other researchers. Thus, it was interesting to reproduce it here.

4.1.2. Interpolation

6 Functional Interpolation
This very well handwritten manuscript has 52 pages and seems to be the paper
mentioned several times in all the list of documents, projects and activities, with a
bibliography with a last reference dating from 1984. The first section is Interpolation
and extrapolation with a subsection 1.1–Procrustean technique. This word was already
used by Wynn in the title of the published paper of Reference [2] where he introduced
a particular form of the $-algorithm for extrapolation at infinity by a rational function
in n (see Reference [113]). It describes situations where different properties are fitted
to an arbitrary standard. In the Greek myth, Procrustes was a son of Poseidon. He
compelled travelers to lie on a bed, he cut off their legs that were longer than bed, and
stretched the feet of those who were too small. The manuscript begins by:

Most general theories arise from investigations of particular problems, and in this respect the
theory to be described is not exceptional. By way of motivation, the problem of deriving an
extrapolation method from an interpolatory formula and its converse are considered.
It is first supposed that an interpolatory function of complex variables

(1) F(m)
r (d | y; λ) = F(m)

r (dm, . . . , dm+r | ym, . . . , ym+r; λ)
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is available for which (a) F(m)
r (d | y; yν) = dν (ν ∈ Im,m+r; throughout the paper Ii,j is

the sequence i, i + 1, . . . , i + j; Ii is the sequence i, i + 1, . . .; I is I0) and (b) for certain
distributions of the dν and yν

G(m)
r (d | y) = lim F(m)

r (d | y; λ) (λ→ ∞)

exists. The function F(m)
r serves as the basis of an extrapolation method: given the sequence

Sν(ν ∈ I) the number G(m)
r (d | y) obtained by setting dν = Sν(ν ∈ Im,m+r) in G(m)

r (d | y)
is an estimate of lim Sν(ν → ∞). (The numbers yν used are suggested by the process
producing the sequence {Sν}: the choice yν = ν(ν ∈ I) is natural; the choice yν = 2ν

arises, for example, in Romberg’s method of integration [2 references] in which the number
of integration subranges is doubled at each stage, F(m)

r being a polynomial in λ−1.)

Then, Wynn illustrates the method by taking F(m)
2i as the quotient of two polyno-

mials of degree i in λ. Subject to certain existence conditions, the coefficient of λi

in the denominator is 1, and that in the numerator is $
(m)
2i (d | y) which can be ex-

pressed as the quotient of two determinants involving dτ , yτ , τ ∈ Im,m+2i. In this

case G(m)
2i = $

(m)
2i (d | y). Replacing dτ by Sτ , the determinantal formula for $

(m)
2i (d | y)

gives the extrapolated limit. These numbers can be recursively computed by Thiele’s
reciprocal difference algorithm (see (3) in Section 3.4), and they can be displayed in a
two dimensional array for which Wynn does not use the usual notation but a new one,
and he writes:

[The process] involves numbers εi,j which may be set at the intersections of the full rows
and columns and of the half rows and columns of a chipped triangular array in which the
row index i ranges over Ī−1/2 (Īk is the sequence k, k + 1/2, k + 1, . . . ; Ī is Ī0) and the
column index j over the range Ii, the number ε−1/2,−1/2 being missing. The numbers εi,j
are constructed from the initial vales ε0,j = Sj (j ∈ I), ε′0,j = 0 (j ∈ I) (the dash is used
to indicate a displacement operation acting upon numbers with two suffixes, whose effect
is illustrated by the relationships ε′0,j = ε−1/2,j+1/2 and ε′i,j = εi−1/2,j+1/2) by use of
the relationship

(3) (∆jεi,j)(∆iε
′
i,j) = wi,j

for i ∈ Ī, j ∈ Ii where ∆j is the difference operator ∆jεi,j = εi,j+1 − εi,j and ∆i is similarly
defined. With

wi,j = (yi+j+1 − yj−i)
−1 (i ∈ Ī, j ∈ Ii)

[it holds]
$
(m)
2i (S | y) = εi,i+m (i, m ∈ I).

And he concludes with his personal sense of humor:

We have called an extrapolation method of the above type a Procrustean technique [2],
although in fitting function values to a sequence, i.e. the bed to the victim, we are a little
kinder than Procrustes is reputed to have been.

He continues:

If in formula (1) λ is fixed and one of the yν is very large, eν [not defined] is approxi-
mately equal to lim F(m)

r (λ) (λ → ∞): if λ is fixed and the yτ 6= yν are fixed and finite,
lim F(m)

r (λ) = eν (λ → ∞). This observation may be made in terms of the behaviour of
G(m)

r (d | y) as yν tends to infinity, the other yτ remaining finite; expressed in terms of the
Sτ it is that, under suitable conditions, lim G(m)

r (S | y) = Sν (yν → ∞).

There should be an error in what Wynn wrote. Since he states that λ is fixed, λ→ ∞
should be replaced by yν → ∞ (remark of one of the reviewers). Wynn concludes
that this property is, for example, satisfied by the ratio of determinants expressing
G(m)

r (S | y) which, thus, tends to Sν as yν tends to infinity.
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The second subsection is named 1.2–Interpolatory functions. He claims that The steps taken
in the above derivation of an extrapolation method from an interpolatory formula may be reversed.
Then, he shows how to reverse the recursive rule given in the preceding subsection.

[. . . ] set dν = d(yν), eν(z) = e(yν, z) and fν(z) = f (yν, z) (ν ∈ I). Suppose that a
function of complex variables

G(m)
r (S | y) = G(m)

r (Sm, . . . , Sm+r | ym, . . . , ym+r)

for which lim G(m)
r (S | y) = Sν as yν → ∞ (ν ∈ Im,m+r), obtained either from an

interpolatory or from an extrapolation method or in some other way is available. Set

H(m)
r (e, f | z) = G(m)

r (em(z), . . . , em+r(z) | fm(z)−1, . . . , fm+r(z)−1).

[. . . ] Thus in view of the property attributed to G(m)
r (S | y) just described, lim H(m)

r (e, f | z) =
dν as z → yν over Z (ν ∈ Im,m+r): [Z is an open set of points in C] H(m)

r (e, f | z) is
an interpolatory function. If the G(m)

r (S | y) (r, m ∈ I) may be computed by means of a
recursive process, appropriate modification yields a process for computing numerical values
of the H(m)

r (e, f | z) (r, m ∈ I).

Then, Wynn develops the particular case of the extrapolation estimate $2i(S | y), and
he obtains a set of rational functions r(m)

i,j (z). He proves that lim r(m)
i,j (z) = dν as

z→ yν (ν ∈ Im,m+i+j). Imposing the further condition

eν(z)− dν = O{ fν(z)} (z→ yν; ν ∈ I)

it follows that

(7) r(m)
i,j (z)− dν = O{ fν(z)} (z→ yν; ν ∈ Im,m+i+j; m, i, j ∈ I).

The interpolatory function derived from the extrapolation estimate $
(m)
2i (d | y) is

r(m)
i,i (z). He proves that lim r(m)

i,j (z) = dν as z→ yν (ν ∈ Im,m+i+j). Then

Setting now ε′0,j = 0, ε0,j = ej(z) (j ∈ I) and wi,j = { f j−i(z)−1 − fi+j+1(z)−1} (i ∈
Ī, j ∈ I1), r(m)

i,i (z) = εi,i+m(z) (i, m ∈ I).
In this result, the conditions of the simple case in which

(8) e(y, z) = d(y), f (y, z) = z− y

may be imposed upon e and f . Now eν(z) = dν is a constant, independent of z (ν ∈ I) and
fν(z) is the difference z− yν (ν ∈ I). In this case, r(m)

i,i is the quotient of two ith degree

polynomials in z, the rational function from which the extrapolation limit $
(m)
2i (S | y) was

derived. The above process now reduces to an algorithm for rational function interpolation
due to Brezinski [128] of which a generalisation has been proposed by Cordellier [129].
The discussion of interpolatory formulæ and extrapolation methods is terminated by the
remark that under appropriate conditions cyclic derivation of extrapolation methods from
interpolatory formulæ and conversely may be repeated indefinitely.

Section 2 of this document is entitled Approximants of general order. In the simple case
(8), r(m)

i,j is a ratio of two polynomials of degree i. In this Section, he proposes to study

the more general system of approximants r(m)
i,j . The first subsection is Nonuniform

approximation. Under the condition (8), the relationship (7) reduces to r(m)
i,j (z)− dν =

O(z− yν): approximation is uniform, the form of the function z− yν being the same
for all relevant yν. Wynn notices that a suitable choice of the functions fν in the non
simplified case, non uniform approximation is possible.
The next subsection is Remainder term formulæ. Wynn explains that
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In certain circumstances an interpolation property of the form (7) holding at points induces
on the function possessing it a corresponding property of approximation over a set containing
the points. By imposing severe restrictions upon the functions e and f it is possible in a
few lines to exhibit the r(m)

i,j as approximations to a function defined over Z, and to provide
associated remainder terms.

He imposes the conditions

e(y, z) = d(y), f (y, z) = φ(z)− φ(y)

with φ′(y) 6= 0 for all y in Z. By a straightforward (as he writes) adaptation of an
argument of Nörlund [130] (Ch. 15, §3), Wynn obtains the expression of the error.
The following subsection is on Algorithms for approximation evaluation in which Wynn
gives formulæ for the recursive computation of the approximant values r(m)

i,j (z) for a
fixed z ∈ Z. After quite long developments involving Lagrange forms and divided dif-
ferences, Wynn shows that his relationship (3) can be applied with wi,j = fm+i+j+1(z)−1

to yield r(m)
i,j (z) = εi,j (i, j ∈ I) starting from two different sets of initializations. How-

ever, in (3), the ε′i,j are intermediate computations which can be eliminated, and he
arrives at the rule

(23) ∆j{wi,j(∆jεi,j)
−1} = ∆i{w′i,j(∆iεi−1,j+1)

−1},

where εi,−1 = 0 (i ∈ I), ε−1,j = ∞ (j ∈ I). The initializations are ε0,j = L(m)
j (z) in

the row by row order i ∈ I, j ∈ I−1 or εi,0 = M(m)
i (z) (i ∈ I) in the column order

j ∈ I−1, i ∈ I with

L(m)
j (z) =

j

∑
ν=0

em+ν(z)
j

∏
τ=0
τ 6=ν

fm+τ(z)
fm+τ(z)− fm+ν(z)

(m, j ∈ I)

and

M(m)
i (z) =





i

∑
ν=0

em+ν(z)−1
i

∏
τ=0
τ 6=ν

fm+τ(z)
fm+τ(z)− fm+ν(z)





−1

(m, j ∈ I).

Recursive relations for the L(m)
j ’s and the M(m)

i (z)’s are also given. Using divided
differences, they are also expressed in Newton form. Determinantal formulæ are
related to the recursive rules given.
It is showed that particular cases for the eν and the fν give back the usual Lagrange
interpolation formula, the Neville-Aitken scheme, and Newton series. The work of
Stoer on interpolation by rational functions [131] and the variant of the ε-algorithm
due to Claessens [132] are also recovered as special cases.
The next subsection is named Termination. When e(y, z) is a polynomial or rational
function of f (y, z), termination of the algorithms previously given is proved.
The following subsection treats Confluence that is when some argument values coincide.
Wynn examines what happens to the previous formulæ and recursions. In that case,
for n ∈ I2,

(31) f (y, z)−
n−1

∑
ν=1

cν(y, z)x(y, z)ν = O{x(y, z)n}

(32) e(y, z)− d(y)−
n−1

∑
ν=1

bν(y, z)x(y, z)ν = O{x(y, z)n},
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and formulæ for the computation of the coefficients cν and dν are given. They im-
plement a truncated composition of polynomials. The dν’s are the coefficients of the
Newton series representations of the corresponding Lagrange forms, which are con-
fluent forms of the functional divided differences. They are related to the bν, but all
details are too complex to be given herein.
Then, comes a subsection on Zero finding algorithms. Under suitable conditions, the
above algorithm for the truncated composition of polynomials can be used for the
inversion of formal power series. Moreover

In so doing it serves as the basis of a number of algorithms for determining the zeros
of a function and motivates the use of the approximants r(m)

i,j (z) for the same purpose.
Setting e(y, z) = z− y and f (y, z) = φ(z)− φ(y), φ being the function under treatment,
relationships of the form (31,32) hold with x(y, z) = z− y, cν(y, z) = φ(ν)(y)/ν! (ν ∈ I1)
are Taylor series coefficients, d(y) = 0, b1(y, z) = 1 and bν(y, z) = 0 (ν ∈ I2).
[. . . ] Taking the points y0, y1 and y2 to be confluent, the Lagrange forms [. . . ] are

L(0)
0 = z− y0

L(0)
1 = L(0)

0 − (φ′0)
−1{φ(z)− φ0}

L(0)
2 = L(0)

1 − (φ′0)
−3φ

′′
0{φ(z)− φ0}2/2

where φ0 = φ(y0), . . . , φ
′′
0 = φ

′′
(y0). Newton’s process z = y0 − φ0/φ′0 is obtained

from L(0)
1 (z) by equating the latter to zero after setting φ(z) = 0. The third order process

z = y0 − {φ0/φ′0} − { 1
2 φ2

0φ
′′
0/φ

′3
0 } is obtained from L(0)

2 in the same way. Applying

relationship (3) to the initial values ε0,j = L(0)
j (z) (j ∈ I0,2 with w0,0 = w1,1 = w1/2,1/2 =

{φ(z)− φ0}−1 (since y1 = y2 = y0) and using ε1,1 = r(0)1,1 (z) as just described, the further
third order process z = y0 − φ0φ′0/{φ′2 − 1

2 φ0φ
′′
0} is obtained.

The artifice described above is capable of further application.

For example, if y1 6= y2, L(1)
1 (z) leads to the method regula falsi z = (y2φ1 −

y1φ2)/(φ1 − φ2). If y0 = y1, then Wynn obtains two combinations of Newton’s
method and regula falsi

z = y− (φ0/φ′0)− {φ2
0(φ2 − φ0 − (y2 − y0)φ

′
0}/{(φ2 − φ0)

2φ′0}
z = y0 + φ0/{[φ0/(y2 − y0)]− [φ′0φ2/(φ2 − φ0)]}.

In the same way, an nth order single point iteration process can be obtained. The
subsection ends by

The more general theory yields multipoint processes (for a further application of the ε-
algorithm to the problem of finding the zeros of a function, see [133,134]).

The last subsection of this document is entitled Extensions of the Lagrange-Bürmann
expansion. Wynn claims that The above treatment of the confluent case offers an interpretation
of the theory of this paper. He first gives the Lagrange-Bürmann expansion of d(z) in
powers of φ(z)−φ(yµ) where yµ belongs to a close contour in the complex plane. Then,
he obtains an algorithm for determining the coefficients in the Lagrange-Bürmann
expansion and in an asymptotic version of it from the Taylor series coefficients of
d(z)− d(y) and φ(z)− φ(y) at the point y = yµ. The case of confluence is also treated.
In addition, in this case, we do not know why Wynn never published this work since
it was ready to be submitted.

7 Interpolation by the use of rational functions
This handwritten complete paper of 90 pages with a bibliography of 27 items, the last
one dated 1979, is present in the projects and in the Lists of documents, and it was
never published. It seems to be related to the previous manuscript {6}.
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In the Section 1 of this document, titled The Thiele-Nörlund interpolation theory, Wynn
reminds how to construct rational interpolating functions C(m)

2s in which the numerator

and the denominator have degree s, and C(m)
2s+1 with a numerator of degree s + 1 and

a denominator of degree s and such that C(m)
r (xi) = fi for i = m, . . . , m + r, where

the xi and the fi are assumed to be complex numbers. After having constructed the
reciprocal differences $

(m)
r by Thiele process (this is the $-algorithm (3), where now r

and m are arbitrary indexes)

$
(m)
r+1 = $

(m+1)
r−1 + (xm+r+1 − xm)($

(m+1)
r − $

(m)
r )−1

for r, m = 0, 1, . . . with $
(m)
−1 = 0 (m = 1, 2, . . .) and $

(m)
0 = fm (m = 0, 1, . . .), it holds

C(m)
r (λ) =

N(m)
r (λ)

D(m)
r (λ)

=
λ− xm

$
(m)
1 − $

(m)
−1

+
λ− xm+1

$
(m)
2 − $

(m)
0

+ · · ·+ λ− xm+r−1

$
(m)
r − $

(m)
r−2

.

The successive numerators and denominators are recursively computed by

N(m)
r (λ) = ($

(m)
r − $

(m)
r−2)N(m)

r−1(λ) + (λ− xm+r−1)N(m)
r−2(λ)

D(m)
r (λ) = ($

(m)
r − $

(m)
r−2)D(m)

r−1(λ) + (λ− xm+r−1)D(m)
r−2(λ)

with
N(m)
−1 (λ) = 1, N(m)

0 (λ) = fm, D(m)
−1 (λ) = 0, D(m)

0 (λ) = 1.

Wynn asserts that conditions to ensure that all rational functions C(m)
r can be con-

structed by the above scheme and that they have the required interpolation properties
can be formulated in terms of determinants, and that determinantal formulæ can also
be given for the numbers and the functions involved, and he claims that Such formulae
are made more concise by the use of a special notation. It takes 6 pages to establish these
notations. After quoting a remark in German by Nörlund [130] (Ch. 15, p. 420) that
Wynn finds perhaps a little exuberant, he writes that:

It is the principal purpose of this paper to point out that, using another very simple relationship
(namely, in particular, that, if xi is replaced by (λ− xi)

−1, $
(m)
2r becomes C(m)

2r (λ)) many
results suggested by the behaviour of reciprocal differences may be obtained for convergents.

These procedures are described in Section 2 of this document, titled The σ- and µ-
algorithms. After explaining how to obtain them, Wynn writes

Theorem 1. Let λ be a fixed finite complex number unequal to xi (i = 0, 1, . . .). Set zi =

(λ− xi)
−1 for i = 0, 1, . . . [. . . ] Numbers σ

(m)
r (λ) (r, m = 0, 1, . . .) can be constructed

from the initial values σ
(m)
−1 (λ) = 0 (m = 1, 2, . . .), σ

(m)
0 (λ) = fm (m = 0, 1, . . .) by use

of the relationship

(16) σ
(m)
r+1(λ) = σ

(m+1)
r−1 (λ) + {zm+r+1(λ)− zm(λ)}{σ(m+1)

r (λ)− σ
(m)
r (λ)}−1

with r, m = 0, 1, . . . and, in particular,

σ
(m)
2s (λ) = C(m)

2s (λ)

for s, m = 0, 1, . . .

Then, the document becomes unclear. It seems that replacing in the above recurrence,
zi by zi fi (this is the unclear point), and renaming µ

(m)
r ’s the σ

(m)
r ’s, Wynn obtains

µ
(m)
2s+1(λ) = C(m)

2s+1(λ)
−1. A proof of this result is given.

Section 3 of this document is entitled Interpolation and extrapolation. It is interesting to
quote its introduction which contains general comments by Wynn on these topics.
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The simple observation that, if the argument values xi are replaced by functions (λ− xi)
−1

the reciprocal differences $
(m)
2s become interpolating functions C(m)

2s (λ) has already produced
the σ-algorithm of relationship (16), the simplest and most economical method, subject to
the stated conditions, for evaluating these functions; the observation also leads directly, as
will be shown below, to new interpolatory theory. Once made, the observation is trivial, and
its implications are not difficult to work out; perhaps its most interesting feature is that it
has not been made before. The simple relationship between reciprocal differences and rational
interpolating functions was not so much discovered as forced upon the author’s attention
while working out the consequences of principles underlying the process of interpolation
and the transformation of divergent series. These two subjects have recently became in-
creasingly important in computational mathematics; new theory in what once might have
been considered dead subjects is constantly being developed (mention may be made of recent
generalisations of polynomial interpolation described in [135–138]); it is highly probable
that the principles concerned will find further applications, and for this reason they are
now outlined.

It is difficult to summarize what follows without quoting large parts of the document.
Moreover, some notations and their inferences are not clear enough. Basically, Wynn
comes back to the link between interpolation and extrapolation already discussed in
the document {6}, that he named Functional Interpolation. In particular, he considered
the following extended ε-algorithm (which contains the $-algorithm and some other
extensions [128])

(25) ε
(m)
r+1 = ε

(m+1)
r−1 + γ

(m)
r (ε

(m+1)
r − ε

(m)
r )−1,

with γ
(m)
r = ψ(m + r + 1)− ψ(m). He considers the particular case γ

(m)
r = 1, which

corresponds to the ε-algorithm. He reminds that, when applied to the partial sums of
a formal power series, this algorithm furnishes the Padé approximants belonging to
the lower half, diagonal included, of the Padé table, and that he derived (no reference)
various determinantal formulæ from a more general form of approximating fractions
given by Jacobi [139]. He also mentions that, in its special form, the problem was also
studied by Frobenius [140] and Padé [141], and he adds the following remark in which
he explains how he obtained his ε-algorithm

While idly investigating the formulæ resulting from the choice γ
(m)
r = 1 in the relationship

(25) [. . . ] the author noted that expressions obtained for the numbers ε
(m)
2r were equivalent to

extrapolatory determinantal expressions, simplified versions of those due to Jacobi and used
by Frobenius, previously published by Schmidt [142] and republished by Shanks [112]. In
this way the ε-algorithm was discovered.

Then, Wynn notices that (25) has been used by Claessens with γ
(m)
r = (λ− xm+r+1)

−1,
and applied to the partial sums of the Newton interpolation series, for obtaining ratio-
nal interpolating functions [132], and he explains the theoretical basis of this algorithm

Claessens was led to the discovery of the extended ε-algorithm by the consideration of interpo-
latory continued fractions not of Thiele form, but of a form introduced by Kronecker [143] in
connection with a process initiated by Rosenhain [144] and Borchardt [145] for constructing
the resolvent of two polynomials from systems of their numerical values.

If all the xi tend to a common value x, the interpolation fractions tend to the Padé
approximants and the extended ε-algorithm (25) tends to the usual one. When
γ
(m)
r = m + r + 1, (25) gives back the $-algorithm studied by Wynn in Reference [2].

The following Section is on Lozenge algorithms, which are algorithms relating quantities
located at the four corners of a lozenge in a table where the lower index indicates
a columns and the upper index a descending diagonal. The ε-algorithm and its
generalizations [146], the $-algorithm, and the algorithms numbered by Wynn (23)
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(see the manuscript {6}), (16) and (25) (see above in this manuscript) enter into this class.
They share some algebraic properties when, instead of applying them to a sequence
(Sn), they are applied to (aSn + b), when γ

(m)
r in (25) is multiplied by a constant, and

when a fractional linear transformation is applied to the elements with an even lower
index (property named homographic invariance). In these algorithms, the quantities with
an odd lower index are only intermediate results with no interest for their purpose.
They can be eliminated and a new rule relating five quantities disposed at the center
and at the extremities of a cross are obtained. The first algorithm to have been treated
in that way is the ε-algorithm for which Wynn obtained this cross rule [48]. Concerning
this rule, he writes in the document under consideration Despite the author’s pianissimo
protests, this relationship and others of its kind have been referred to by various writers as
Wynn identities. This extended cross rule and the homographic invariance property
were independently presented by Cordellier in his Doctoral Thesis [147]. They were
also published by the same author in Reference [129] without, of course, knowing this
unpublished document by Wynn. On the contrary, Wynn was knowing Cordellier’s
results through his correspondence with C.B., and he indeed refers to Reference [129]
for the extension of his cross rule. The homographic invariance for the σ’s and the µ’s
presented above is treated. In the same document, Wynn also discusses the possible
breakdown of these relations when a denominator becomes zero. Singular rules for
continuing the computations in the case of only one isolated singularity are given.
They extend the singular rules he gave in References [20,36] for the usual ε-algorithm.
All these results are gathered into Theorem 2 in which Wynn also gives the cross
rule for formulæ (16) and (25). If the relationship γ

(m)
2s + γ

(m+1)
2s = γ

(m+1)
2s−1 + γ

(m)
2s+1 is

satisfied between the γ, then the cross rule also holds as described with the five ε’s
replaced by (αε + β)(γε + δ)−1. Then, if an extended cross rule holds between five
numbers as explained above, Wynn looks at which conditions a recurrence relationship
of the form (25) holds between them.
The following Section deals with Invariance properties. Denoting by $

(m)
r (x, f ) the

reciprocal differences obtained by Thiele’s formula (that is the $-algorithm given by
(3)) from the argument and functions values xi, fi, i = 0, 1, . . ., and setting yi = Axi + B
and gi = (α fi + β)/(γ fi + δ) with αδ− βγ 6= 0, Wynn proves that

$
(m)
2s (y, g) =

α$
(m)
2s (x, f ) + β

γ$
(m)
2s (x, f ) + δ

.

If γ = 0, a property for $
(m)
2s (y, g) is also given. These invariance properties have their

counterparts for the convergents C(m)
s .

Section 4 is on Confluent algorithms. Up to now, all the xi have been assumed to
be distinct. Now Wynn sets xi = x + ih and allows h to tend to zero. The func-
tions C(m)

r (λ) evolve, in particular, to a confluent form Cr(λ, x) and become the
successive convergents of the continued fraction corresponding to the Taylor series
∑∞

i=0 f (i)(x)(λ− x)i/i!. The coefficients of this continued fraction may be expressed
in terms of Thiele’s reciprocal derivatives. He refers to Reference [130] (Ch. 15) for
the corresponding theory, and explains that the confluent forms of the algorithms of
formulæ (16) are

σr+1(λ, x) = σr−1(λ, x) + (r + 1)(λ− x)−2{dσr(λ, x)/dx}−1,

with σ−1(λ, x) = 0 and σ0(λ, x) = f (x). Determinantal formulæ for these σ’s are
given. The functions µ are treated similarly. Complete proofs are given.
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4.1.3. The ε-Algorithm

8 Sequel to the abstract theory of the ε-algorithm
In February 1971, when he was working at the Centre de Recherches Mathématiques
of the Université de Montréal, Wynn published a report on the abstract theory of the
ε-algorithm [69]. In the boxes he left with his friends, we found a document with
the title Notes on sequel to the abstract theory of the ε-algorithm. All topics treated are
in the noncommutative case. It probably corresponds to the rough notes indicated
in {26}. It consists of 153 pages including numerous corrections and additions as well
as strikethrough passages, and pages from Reference [69] intercalated. In the lists, a
corresponding paper is also mentioned, but, unfortunately, we have not found it yet.
The document begins with a discussion about the application of Euclid’s algorithm to
rational functions in a ring with a zero and a unit element. Another one on noncom-
mutative continued fractions follows. Recurrence relations for the numerators and
the denominators of their successive convergents are given. They are the same as the
usual ones. Wynn claims that:

the theory of continued fractions may be used to recover the original rational function from
the sequence of polynomials {Br(z)} produced by means of Euclids’ algorithm. [. . . ] The
above theorem offers a method for determining the rational function of the form Ñ(z)D̃(z)−1

equivalent to a given function D(z)−1N(z).

Then, he discusses Euclid’s algorithm for formal power series with coefficients over
a ring. Wynn proves that they have two sided reciprocal series. It is difficult to
extract some results from this part without much work. Then, he considers systems of
continued fractions derived from a single power series. Notions on C-regularity and
semi-normality are introduced. Applying a recursive algorithm whose rule is that of
the vector ε-algorithm, that is E(m)

r+1 = E(m+1)
r−1 + (E(m+1)

r − E(m)
r )−1, but without giving

the definition of the inverse, to the partial sums of a semi-normal series he proves that
E(m)

2r = D(z)−1N(z) for a certain value of r. Other theoretical results are given, but
they are difficult to exploit. Then, pages 93–96 of Reference [69] are reproduced which
leads to think that what precedes is a complement to that report. Wynn then shows
that both halves of the Padé table can be constructed via this algorithm under certain
assumptions. A cross-rule is given for each half.
Pages on vector continued fractions follow. Arithmetic operations upon vectors and
formal power series with vector coefficients are first explained. But the pages, the
concepts (vector valued rational functions, McLeod isomorphism [148], . . . ), and the
results are so entangled that it seems difficult to extract something coherent. There are
pages on Euclid’s algorithm for formal power series with vector valued coefficients,
a vector qd-algorithm, and the vector ε-algorithm. However, an interesting result is
given but it needs to be verified. Let us give it after a simplification of the notations.
Summations are over ν:

Theorem. If the finite dimensional vectors of the sequence { fν} satisfy a system of relation-
ships of the form

r′

∑
0

dr′−ν fm+ν = 0, m = 0, 1, . . . ,

where the {dν} are real numbers, then the series ∑ fνzν is generated by a vector values
rational function f (z). If vector value rational functions ε

(m)
r (r = 1, . . . , 2r′; m = 0, 1, . . .)

can be constructed from the initial values

ε
(m)
−1 = 0 ε

(m)
0 =

m−1

∑
0

fνzν (m = 1, 2, . . .)

by means of the recursion

ε
(m)
r+1 = ε

(m+1)
r−1 + {ε(m+1)

r − ε
(m)
r }−1
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for r = 0, . . . , 2r′ − 1, m = 0, 1, . . ., then ε
(m)
2r′ = f (z), m = 0, 1, . . .

Looking at the proof, which is not complete, one can understand that the words the
series ∑ fνzν is generated by the rational function f (z) means that

f (z) = (
r′

∑
0

dνzν)−1
r′−1

∑
0

ηνzν,

where ∑r
0 dν fr−ν = ηr (r = 0, . . . , r′ − 1).

The vector valued Padé table is presented. Then, Wynn gives some elementary results in
the theory of ε-algorithm as applied to sequences of elements of a ring. In particular, a cross
rule is obtained. Rational functions with coefficients over a ring are discussed.
Then, Wynn studies the application of the ε-algorithm to a sequence of numbers
satisfying an inhomogeneous linear difference equation. He proves the following
result (notations slightly changed)

Theorem. Let the numbers Sν satisfy the recursion ∑r
0 dνSm+ν = H, m = 0, 1, . . . and no

recursion of a similar form with r replaced by a smaller integer; set ∑r
0 dν = D. It is not

possible that both D and H are both factors of zero.

It is then proved that, for such a sequence, ε
(m)
2r = D−1H for all m. Other results of

a lower interest are given. Then, Wynn looks at the properties of the hierarchies of
ε-arrays, as defined in Reference [79], that are obtained for such sequences. Since
pages 23–28 of his report from the Université de Montréal corresponding to the paper of
Reference [79] are inserted here between the pages of the manuscript, and preceded by
If followed by a difference equation, what precedes can be considered as an addition
to them. Using the vector-matrix isomorphism of McLeod [148], Wynn writes that, for
recursions involving vectors, it is a relatively simple matter to derive results analogous to
those of the preceding section. Further notes end the document.

9 How to find the centre of a spiral
This handwritten document contains 49 pages that correspond to the slides for a talk.
There are parts in the text separated by numbers in bold from 1 to 30 in large square
boxes (see {28}). Its title could be How to find the centre of a spiral, and it was delivered
by Wynn after 1987 since a book dating 1987 is quoted. After there are 30 pages where
the same content is detailed and illustrated very carefully, probably some notes to
copy and distribute.
The document gives an interesting new interpretation of extrapolation by the ε-algorithm.

We start with a fixed complex number λ. If the modulus of λ is less than 1, λ lies inside the
unit circle. If the modulus of λ is greater than 1, λ lies outside the unit circle.
Next, we form the successive powers λ0, λ1, λ2, . . . of λ. They lie on a spiral in the complex
plane. The argument of λ2 is twice arg(λ), the argument of λ3 is three times arg(λ) and so
on. If the modulus of λ is less than 1, the powers of |λ| tend to zero and the spiral contracts
to the origin. If the modulus of λ is greater than 1, the spiral expands away from the origin.
Then, we multiply each of the points λ0, λ1, λ2, . . . by a constant complex number b. This
does no more than rotate the spiral through arg(b) and magnify or diminish it by a factor of
|b|. But a contracting spiral remains contracting and an expanding spiral remains expanding.
Lastly we add a constant C to each of the transformed points and produce members

si = C + bλi (i = 0, 1, . . .)

of a first order spiral sequence. In the case in which |λ| < 1, the sequence converges to C
and the spiral upon which its members lie contracts toward C. In the case in which |λ| > 1,
the spiral expands away from C. If limi→∞ si is finite, limi→∞ si = C.
Already we may pose a problem in connection with first order spiral sequences. It is known
that three successive members Sk, Sk+1 and Sk+2 of a sequence have the form

Sk = C + bλk, Sk+1 = C + bλk+1, Sk+2 = C + bλk+2
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but the values of C, b, λ and k are unknown. Find the value of C alone. If we can solve this
problem then what we are able to do is fit a first order spiral sequence to the subsequence
Sk, Sk+1 and Sk+2 and find its centre.

Then, Wynn shows that the problem can be solved by computing ε
(k)
2 by a rule which

is that of the ε-algorithm (without mentioning its name). He gave the formulæ for ε
(k)
1

and ε
(k+1)
1 . Then, he computes ε

(k)
2 , and shows that it holds ε

(k)
2 = C. Thus, the spiral

has been fitted without the determination of the values of b and λ. Then, he considers
three other members Sk+1, Sk+2 and Sk+3 having the form

Sk+1 = C′ + b′λ
′k+1, Sk+2 = C′ + b′λ

′k+2, Sk+3 = C′ + b′λ
′k+3.

Another spiral can be fitted through these three numbers, and a similar computation
leads to ε

(k+1)
2 = C′. He mentions that ε

(k+1)
1 is identical to the one computed before.

The same process can be continued with Sk+2, Sk+3 and Sk+4, and so on. For each
value of the upper index, the center of the spiral can be computed by the rule

ε
(m)
r+1 = ε

(m+1)
r−1 +

1

ε
(m+1)
r − ε

(m)
r

from ε
(m)
−1 = 0, and ε

(m)
0 = Sm, m = 0, 1, . . . This is the ε-algorithm [3]. Wynn mentions

that, if S0, S1, S2, . . . are successive members of the same first order spiral sequence,
that is Si = C + bλi for i = 0, 1, . . ., then ε

(i)
2 = C for all i. This set of sequences is the

kernel of the sequence transformation (Sm) 7−→ (ε
(m)
2 ) which is, in fact, Aitken’s ∆2

process. Then, Wynn considers a second spiral entangled into the first one.

The members of a second order spiral sequence have the representation

si = C +
h

∑
j=1

λi
j

{
τ(j)

∑
ν=0

bj,νiν

}
;

h

∑
j=1
{τ(j) + 1} = 2

(i = 0, 1, . . .). This sequence has two forms: either
(a) only one geometric term accompanied by a linear function of i is present and

si = C + λi
1(b1,0 + b1,1i)

or
(b) two geometric terms accompanied by constant coefficients are present and

si = C + b1,0λi
1 + b2,0λi

2

In the latter case a second order spiral sequence may be regarded as a first order spiral
sequence whose members are represented by b2,0λi

2 whose center moves on a further first
order spiral upon which the points C + b1,0λi

1 lie.

In these forms, the kernel of the transformation (Sm) 7−→ (ε
(m)
4 ) is recognized.

Then, Wynn considers nth order spirals with the si satisfying the same formula but
now with the condition ∑h

j=1{τ(j) + 1} = n, and he discusses their various special
forms. The center C of such spirals can be obtained via the ε-algorithm which, starting
from Sk, . . . , Sk+2n, delivers ε

(k)
2n = C. Since he writes that: There is no time to give a

proof of this result this confirms that these notes were written for lectures. The same
process is repeated with Sk+1, . . . , Sk+2n+1, and it gives ε

(k+1)
2n = C′. As before, the two

schemes have some ε in common, and, if S0, S1, . . . are successive members of the same
nth order spiral, then, for all m, ε

(m)
2n = C. This is a known property of the ε-algorithm

since the sequence (Sn) belongs to the kernel of the transformation (Sm) 7−→ (ε
(m)
2n ).
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If the parameters C, b and λ in the equation of the first order spiral are real, the
si = C + bλi, i = 0, 1, . . ., still lie on a spiral in the complex plane, but the numbers si
themselves lie on the real axis. In that case, the ε are also real.
Then, Wynn explains how the process for finding the centres of spirals which we have
described serve as the basis of a method for obtaining estimates of the limit of a sequence.
Starting from S0, S1 and S2, the center ε

(0)
2 of the corresponding first order spiral is an

estimate of the limit. Then, from S1, S2 and S3, a second estimate ε
(1)
2 is obtained, and

so on. Now, from S0, . . . , S4, the center ε
(0)
4 of the second order spiral passing through

these numbers furnishes another estimate of the limit. The process can be repeated
by increasing the number of terms of the sequence (Sm) used in the construction of
the successive spirals. And Wynn writes This method of estimating the limit of a sequence
is known as the ε-algorithm [...]A question now arises: does this method work? Wynn
gives two numerical examples: partial sums of the series 1− 1/2 + 1/3− 1/4 + · · ·
which converge to ln 2, and those of the series ∑i Ci

−1/21/(i + 1) (Ci
−1/2 represents the

binomial coefficient) which tends to 2(21/2 − 1). He tentatively explains the success of
the process:

Perhaps a happier interpretation is to suggest that a great deal of information lies lurking
in the first few members of a sequence: we have only to think of a way of getting it out.
This interpretation serves us a little better when we come to consider the transformation of
divergent sequences.

In saying that, Wynn is too much optimistic. Indeed, the behavior of a sequence can
completely change after a certain number of terms, and change again later. As proved
in Reference [149], an algorithm to accelerate the convergence of all sequences cannot
exist. It is the same even for restricted classes of sequences [150]. Then, Wynn gives
examples of divergent series and explains that the reasons why the ε-algorithm works
in these examples are found in the classical theory of continued fractions.
After that, he describes the use of the algorithm in the solution of the fixed point
problem x = f (x). He explains graphically the convergence of the Picard iterates,
and what the notion of order of convergence of a sequence is. Since Newton’s and
higher order methods require the use of the derivatives of f , he explains how this
drawback can be avoided. He starts from an initial estimate C(0) of the fixed point,
sets S0 = C(0), performs the iterations Si+1 = f (Si) for i = 0, . . . , 2r− 1, and finds the
center C(1) = ε

(0)
2r of the spiral constructed from these iterates, and restarts the Picard

iterates from S0 = C(1). When r = 1, this is exactly Steffensen’s method which has
order 2. Wynn claims that under suitable conditions C(k+1) − x = O((C(k) − x)r). Let
us mention that this claim has never been proved.
Then, Wynn explains that the ε-algorithm can be applied to sequences of functions, of
vectors, of a field or of any mathematical system over which addition, subtraction and the
formation of an inverse are defined, and that the theory of continued fractions has been
developed for such cases.
The continuous case of the preceding method is considered. It is aimed at the estima-
tion of limt→∞ S(t). In what precedes, i is replaced by t and λi

j by e−αjt, and he names
an rth order spiral function, the expression

S(t) = C +
h

∑
j=1

e−αjt

{
τ(j)

∑
ν=0

bj,νtν

}
;

h

∑
j=1
{τ(j) + 1} = r.

Wynn proposes to estimate limt→∞ S(t) by fitting a spiral function s(t) to S(t) at one
value x of t, and to take its center as this estimate. For that purpose, he assumes that
limt→x S(i)(t) are given for i = 0, . . . , 2n, but that the value of x itself is unknown. For
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finding the center C of the nth order spiral function, Wynn gives the following lozenge
algorithm (defined in Reference [88,89]):

ω
(m)
2r+1 = ω

(m+1)
2r−1 +

ω
(m)
2r

ω
(m+1)
2r

, ω
(m)
2r+2 = ω

(m+1)
2r (ω

(m)
2r+1 −ω

(m+1)
2r+1 ),

with ω
(m)
−1 = 0 and ω

(m)
0 = S(m), he obtains ω

(0)
2n = C, and writes This method of

estimating the limit of a function is known as the ω-algorithm. He adds:

This method has application in estimating the end-point of the trajectory of an aerodynamic
vehicle, given its position, velocity components, etc. [. . . ]
Since Texas is an oil-producing state the last problem we consider is that of the owner of a
well producing oil with cast price c per barrel who wishes to determine
(a) the price P par barrel which maximizes his profit
and
(b) his profit at the optimal price P.
We now describe a solution and hasten to say that the economic part of the argument is
taken directly from the mid nineteenth century French economist Cournot who considered
the problem of the owner of a spring producing mineral water at zero cost per bottle.

After giving the solution of this problem, Wynn proposes some references for those
who are interesting in studying the matter further. Among them, the book of Antoine
Augustin Cournot (1801–1877) [151]. As said before, at the end, there are 30 particularly
nicely written pages with figures about spirals (see Figure 3), implementation schemes
for the ε and the ω algorithms, an illustration of Picard iterates, numerical results,
illustrations for the order of convergence, details about the problem of oil pricing policy,
and references. It seems that these pages were ready to be copied for distribution to
participants. Since the application was about an oil problem in Texas, this document
could have been prepared for a seminar at the University of Texas at San Antonio.

Figure 3. Second order spiral of form (b) drawn by Wynn.

Let us mention that the interpretation of the scalar and vector Aitken’s process
and ε-algorithm by means of spirals was independently rediscovered in 2014 by
Berlinet [152], together with other interesting geometrical analyses of them.
We did some numerical experiments with the spirals introduced by Wynn, and, in partic-
ular, we wanted to test his drawing reproduced in Figure 3. Remember that, according to
Wynn’s nomenclature, a first order spiral has the form (our notation) Sn = C + a1λn

1 ,
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and that a second order spiral can have two forms (a) Sn = C + λn
1 (a1 + b1n) or (b)

Sn = C + a1λn
1 + a2λn

2 . If the ε-algorithm is applied to a first order spiral, then,

∀n, ε
(n)
2 = C, which is Aitken’s ∆2 process. Applied to a second order spiral of form

(a) or (b), this algorithm gives ∀n, ε
(n)
4 = C, while the iterated ∆2 process (that is the ∆2

process applied to the sequence (ε
(n)
2 )) does not possess this property.

Wynn’s drawing of Figure 3 corresponds to the case (b). He wanted to illustrate the
fact that Sn = C + a1λn

1 + a2λn
2 can be written as Sn = Cn + a2λn

2 , with Cn = C + a1λn
1 ,

which he described as the spiral a2λn
2 with center moving on spiral C + a1λn

1 .
In our numerical experiments, we always took C = 1.5 + i. In Figure 4, we show two
first order spirals with a1 = 1− i: the one on the left is obtained with λ1 = 0.8− 0.5i,
and it converges to C, the one on the right is with λ1 = −0.8 + 0.6i and does not
converge or diverge since |λ1| = 1.
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Figure 4. First order spirals with λ1 = 0.8− 0.5i (left) and λ1 = −0.8 + 0.6i (right).

Now, we consider second order spirals of forms (a) and (b). We took, for the form (a),
a1 = 2− 4i, b1 = 2.3− 0.3i, λ1 = 0.92 + 0.2i, and, for the form (b), a1 = 1− i, λ1 =
0.8 + 0.5i, a2 = 1.2 + 2i, λ2 = 0.7 + 0.65i. All spirals are converging to C since |λ1| < 1
and |λ2| < 1. Figure 5 shows the corresponding second order spirals: (a) on the left
and (b) on the right.
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Figure 5. Second order spirals: (a) on the left and (b) on the right.

In Figure 6, we see the results obtained by the ∆2 process applied to second order
spirals: (a) on the left and (b) on the right. Comparing these curves with those of
Figure 5 shows that, in fact, Aitken’s process acts as if it was suppressing one of the
spirals of the curve (which contains two of them) since the sequence (ε

(n)
2 ) still looks

like another spiral, and is not reduced to a single point as in the case where only one
spiral was present.
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Figure 6. ∆2 process applied to second order spirals: (a) on the left and (b) on the right.

Indeed, if (Sn) has the form (b) with |λ2| > |λ1|, we have Sn − C = O(λn
2 ). It is easy

to see that

ε
(n)
2 = C +

a1a2λn
1 λn

2 (λ2 − λ1)
2

a1λn
1 (λ1 − 1)2 + a2λn

2 (λ2 − 1)2

= C +
a1a2λn

1 (λ2 − λ1)
2

a1(λ1/λ2)n(λ1 − 1)2 + a2(λ2 − 1)2 = O(λn
1 ),

which shows the gain brought by Aitken’s process by almost suppressing the role
played by λ2, the most important one.
If (Sn) has the form (a), that is Sn = C+(a1 + b1n)λn, then Sn−C = O(nλn). Aitken’s
process leads to

ε
(n)
2 = C− b2

1λn+2

(λ− 1)((a1 + b1n)(λ− 1) + 2b1λ)
= O(λn),

which shows the acceleration brought by suppressing the leading error term.
In Figure 7, we see the results obtained by the iterated ∆2 process applied twice to
second order spirals: (a) on the left and (b) on the right. Thus, the iterated ∆2 process
does not gives the exact value of C, which should be a single point and not a curve
although (ε

(n)
2 ) is a spiral (see Figure 6), while (ε(n)4 ), in exact arithmetic, gives exactly

C. However, the iterated ∆2 process has a faster convergence, and it also has the form
of a spiral.
Spirals with different values of the parameters can have various shapes. It is sufficient,
for instance, to change one sign in λ1 or λ2. We intend to deepen this subject in a
forthcoming paper.
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Figure 7. Iterated ∆2 process applied to second order spirals: (a) on the left and (b) on the right.
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4.1.4. Project for a Book

We separated this document from the others since it treats a large range of topics and
seems to be an advanced skeleton for a book.

10 Book on ε-algorithm
This 120 pages document is clearly a preparatory work for a book. Looking at its
contents, it is probably the Resumé of book on the ε-algorithm, mentioned by Wynn
in {26}, and also at the end of his document {28}, with an O (ongoing) in front of the
name. In this manuscript, he stated in detail what he intended to treat. It contains
an incredible succession of theorems whose proofs are not given, and comments and
explanations between them are missing. It is divided into chapters.
Chapter 1: Theorem concerning determinants. It contains identities for compound deter-
minants, Schweins’ lemmata, simple and extended Hankel determinants.
Chapter 2: Prediction based upon a linear model. Its sections are on exponential extrapola-
tion (that is, the Aitken ∆2 process), and extrapolation using a linear recursion (that is
the Shanks transformation).
Chapter 3: The epsilon algorithm. The sections are on the auxiliary numbers ε

(m)
2r+1, the

fundamental formulæ, and the algebraic theory of the epsilon algorithm (invariance
properties and the cross rule).
Chapter 4: The Padé table. Sections are on the Padé quotients and the Padé table.
Chapter 5: The epsilon algorithm and the Padé table. The first section is on the even order
epsilon numbers and the Padé table. The second section studies the epsilon array
associated with a rational function. The next one is on the extended epsilon array,
that is the second half of the Padé table. Recursions for primitive Padé quotients are
then given.
Chapter 6: Continued fractions. The chapter begins by the general theory (definitions, re-
currences, equivalence transformation, contraction and extension, the Euler-Minding
formulæ). The second section is about continued fractions derived from power series
(corresponding and associated continued fractions). Then, the connection between
continued fractions and the Padé table is studied. The continued fractions of the even
order epsilon array are then discussed, and again those derived from power series.
Transformations of corresponding continued fractions are presented, and a method of
deriving an associated continued fraction is explained.
Chapter 7: The epsilon algorithm and orthogonal polynomials. Definition, determinantal
formula, associated polynomials, recurrence relationships in the case of formal orthog-
onality are first given. The qd-algorithm and Bauer’s bridge are presented.
Chapter 8: The convergence behaviour of the row and column sequences of the Padé table.
There is a section on Hadamard’s theory of the Taylor series, and two sections on the
convergence of the rows and columns of the Padé table. Another section deals with
the construction and convergence of the even order epsilon-array.
Chapter 9: The convergence of the sequence {ε(n)2 }. It presents Samuel Lubkin’s lemmata,
and consequences.
Chapter 10: Some analysis. The chapter gives classical results on functions of a real vari-
able, definition and properties of the Stieltjes integral, theorems of choice, orthogonal
polynomials derived from a positive distribution, the problem of moments, the Haus-
dorff moment problem, completely monotonic functions, complex variable theory.
Chapter 11: Integral transforms. The first section is on the Riesz-Herglotz theorem, fol-
lowed by one on Hamburger-Nevanlinna functions. Then, Wynn gives results on the
Laplace transform, the Stieltjes inversion formula, the Riesz-Herglotz-Wall functions.
Chapter 12: Power series. The chapter begins by the series generated by Hamburger-
Nevanlinna and Stieltjes functions. Then, asymptotic series are discussed. The next
section is on the transformation of divergent power series (Borel integrals and Watson-
Nevanlinna lemma).
Chapter 13: The convergence of associated and corresponding continued fractions. The
first section considers the associated continued fractions generated by Hamburger-
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Nevanlinna functions. It is followed by a study of nested circular value regions.
Convergence criteria expressed in terms of the coefficients of the continued fraction
and of those of the series are then given. The next section is on what Wynn names
theorems of access (logarithmic derivatives and Laplace transforms). The equivalence
between the method of Borel and the use of continued fractions is then discussed. A
characterisation of Stieltjes fractions is proposed.
Chapter 14: The diagonal sequences of the Padé table and the even order ε-array. Wynn
begins by the structure of the Padé table associated with a Hamburger-Nevanlinna
and a Stieltjes function. The convergence of the diagonals of the Padé table for such
functions is discussed, and, then, the construction and the convergence of the diagonal
sequences of the even order epsilon array. There is a section on the Padé table derived
from a Stieltjes series. A comparison between the epsilon algorithm and the gener-
alised Euler transformation is proposed. Then, Wynn considers the epsilon algorithm
and the transformation of trigonometric series, and that of operational formulæ in
numerical analysis.
Chapter 15: The operator epsilon algorithm. The chapter treats noncommutative continued
fractions and orthogonal polynomials, the operator qd-algorithm, the noncommutative
version of Bauer’s bridge. Wynn gives a fundamental theorem concerning operator
valued orthogonal polynomials.
Chapter 16: The vector epsilon algorithm. McLeod’s isomorphism and Clifford algebra
are explained. Then, come the vector valued and the functional Padé tables.
Chapter 17: The first confluent form of the epsilon algorithm: the rational function limit and
the continued fraction limit. This chapter has two sections where these topics are treated.
Chapter 18: The second confluent form of the epsilon algorithm: the definition of an integral
as the limit of a continued fraction. After defining this second confluent form, Wynn
explains the connection between both forms. Then, he treats the rational function and
the continued fractions integrals. Euler integration ends the chapter.
Chapter 19: The rational function integral. The degenerate theory in treated in the first
section, and the general theory in the second one. A special convergence result is
then given.
Chapter 20: The continued fraction integral. The chapter begins by the degenerate theory
before coming to a remarkable equivalence.
Chapter 21: The third and fourth confluent forms of the epsilon algorithm. The fourth one is
given but not the third one.
Chapter 22: A partial differential equation associated with the epsilon algorithm. The first
section is about a so-called φ-array. Then, partial differential equations are derived
for it. The cases of the epsilon algorithm and that of the Padé surface are then treated.
The following section is about self conjugate systems of partial differential equations
for symmetric algorithms. Adjoint partial differential equations are discussed, and
special solutions of the partial differential equation of the Padé surface are given.
Chapter 23: Error analyses of the epsilon algorithm. The chapter begins by a perturbation
analysis. Then, the convergence and stability of the epsilon algorithm are studied. The
singular rule for the algorithm is given.
This preparatory work for a book is in an advanced form since the results are well
positioned in it. It only remains to link them by explanations and to give the proofs of
the theoretical results (or the corresponding references to the literature).

4.1.5. Algebra

11 Theory of stratified commutative field
This document presents a total of 266 pages. These notes, mentioned in many of the
lists of Wynn, seem in a final form because they contain no erasures.
After defining his notations for the ranges of the indexes, Wynn writes (all indexes are
in Z):
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Definition. A stratified commutative ring, or S-ring, is a system S of numbers arranged into
strata S{j} such that
(i) the members of S{j} form an additive Abelian group;
(ii) commutative and associative multiplication is defined between elements of the various
S{j}: with a ∈ S{j}, b ∈ S{k}, ab = ba ∈ S{j + k} and (ab)c = a(bc) for such products;
(iii) multiplication is distributive with respect to addition within appropriate strata: with
a, b ∈ S{j}, c ∈ S{k}, (a + b)c = ac + bc, addition on the left being within S{j}, that on
the right within S{j + k}.
A number belonging to the above system is an S-number and the S{j} to which it belongs is
its stratum.
S is the class of S-rings.
It is not assumed in the above definition that addition and subtraction between disparate
strata should be possible, although in special cases this may be so. It is so, for example, when
all S{j} are the same additive Abelian group; S is then simply a commutative ring. More
generally, it is also possible between congruent strata if S{j} ≡ S{k} when j = k mod m,
m being a prescribed integer.

Two special S-rings are described, and then:

The above examples serve to draw attention to a salient feature of theory to follow. It will
be shown that the end results of certain computations involving S-numbers are members of
fixed strata–for example that certain bilinear forms with S-number coefficients are expressible
as linear sums of squares with coefficients that are S-numbers.

The rest of the document cannot be summarized without going into detail. It is a
purely theoretical work. No practical application is given, and there are no references
to the literature.

12 Stratified field, determinantal identities and LU decomposition in such field
This document of 105 pages probably follows the preceding document {11}. It contains
theoretical notes about determinantal identities and LU decomposition over stratified
commutative ring. He defines the so-called P-numbers that, in fact, have the same
definition of the S-number of the document {11}. He defines the P-array and the P-
matrices that are different in their definition. Several result were proved, concerning,
for instance Jacobi’s theorem on the adjugate, product of determinants, Sylvester’s and
Schweins’ determinantal identities, and so on. A LU decomposition is also proposed.
This document, purely theoretical, is in almost good shape, and it seems to be complete
since the numbered pages correspond to what Wynn indicates in {26}.

13 Equations in field extensions
This theoretical document, without title, contains 37 pages numbered from 1 to 37.
Probably it is also intended to follow the work {11}, since inside there are references to
that theory. It is perhaps what Wynn called Last notes (see {26}).

14 Factorisations of a triangular matrix
This document contains 43 pages of well written notes with this title. This work is
mentioned in {26–28}, together with the notes {1} on Bürmann series.
As usual in many of his works, Wynn begins by introducing a plethora of notations
which makes the results more difficult to apprehend. However, we need to give some
of them.

[. . . ] (2a) (i : j; k) indicates that the integer i should take the values i = j, . . . , k. (b) If
the lower limit j is unity, it and the subsequent semi-colon are omitted, thus (i : k) is an
abbreviation for i = 1, . . . , k. Conjoint descriptions are separated by a vertical bar, thus
(i : n | j : i) is an abbreviation for i = 1, . . . , n; j = 1, . . . , i. [. . . ]
For (i : n | j : n− i + 1), a(i, j) is the jth order determinant formed from the array whose
τth row contains the elements ai+τ−1,ν (ν : j) for (τ : j); when j < 1, a(i, j) = 1 (i : n).

A bunch of results are then presented but without any explanation on their purpose.
However, it seems that the final goal is the following one:
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Notation. A being a lower triangular n× n matrix with elements ai,j ∈ K, a(i, k; j) is, for
(i, k : n | j : min(n− i + 1, n− k + 1), the jth order determinant formed from the array
whose τth row (τ : j) contains the elements ai+τ−1,k+ν−1 (ν : j). Also, a(i, k; 0) = 1 (i :
n | k : i) [. . . ]
Theorem. Let ai,j (i : n | j : i) be the elements of a nonsingular lower triangular matrix, and
ci,j (i : n | j : i) those of its inverse. Then

c(i, k; j) =
(−1)i+ka(j + k, k; i− k)

∏
i+j−1
τ=k aτ,τ

(i : n | k : i | j : min(n− i + 1, n− k + 1).

Proof. The formula

ci,k = c(i, k; 1) =
(−1)i+ka(k + 1, k; i− k)

∏i
τ=k aτ,τ

is obtained from the system of equations

ak,kck,k = 1,
µ

∑
ν=k

aµ,νcν,k = 0 (µ : k + 1; i).

The result is correct when j = 1. A short inductive proof based upon the use of the formula,
suffices to show that the result is true as stated.

The last page of the document is a list of possible applications, not all of them being in-
telligible. But Wynn also mentions: Examine band matrix decomposition for ai,j deriv-
ing from differential equation; Partial sum transformation ∑i

τ=0 fτxτ 7−→ ∑i
τ=0 gτa(x).

Convergence acceleration; Integral transform of transformation as in motivation of
γ-algorithm; Band matrix decomposition of C{a} and Newton series extension; Exten-
sion of Bernoulli polynomials {a(xy) + 1}β(x)j = ∑ β

(j)
ν (y)xν, etc.

4.1.6. Software

15 Numal in FORTRAN
Numal was a library of numerical algorithms written in Algol 60 and developed by
members of the Mathematical Center in Amsterdam. Remember that Wynn belonged
to this Center from 1960 to 1964. During his stay in München, he privately partici-
pated actively to the development of Algol 60 and used it for his programmes (see,
i.e., References [33,44,55]). When he was in North America, he supervised a transla-
tion of the library into a FORTRAN version suitable for mini-computers and wrote a
detailed documentation. As he wrote [. . . ] the translation it self was carried out almost
single-handedly by H.T. Lau. It is interesting to remark that Hang T. Lau made the same
for C-language and Java, and published two books on that, respectively in 1994 and
in 2003. According to the Wynn explanation, this is a translation into Fortran of a
Numerical Algorithms Library written in Algol 60. Its table of contents shows that it
covers the main domains of numerical analysis: computer arithmetic, linear algebra,
polynomials, series, numerical solution of differential equations, numerical integra-
tion, Fourier series, zero finding algorithms, minimisation, parameter estimation and
special functions. The document found, submitted on 11 February 1981 has 29 pages
and a preface, and it is the first part of this work and it is entitled 0. Introduction and
Summary. The titles and contents of the other parts are given. This part begins by a
comparison of the respective merits of Algol and FORTRAN. Then, Wynn describes
the modifications he did and the improvements he brought. He also explains how the
translation was performed and that the FORTRAN versions of the Algol procedures
are far longer because the petty restrictions with which FORTRAN is afflicted cannot di-
rectly be overcome. Finally, he describes the machine and compiler dependent features
which had to be taken into consideration.
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4.2. Unpublished Typewritten Documents

We found two typewritten documents which seem to be ready for publication. They
are reproduced in the website.

16 Commuting Cayley numbers
This is a one page note but complete with abstract and references. It can be downloaded
from our website. A necessary and sufficient conditions are given for α and β, belonging
to a division algebra of generalized Cayley numbers, to satisfy the relationship αβ = βα.
References and the AMS subject classifications are given. Cayley numbers, also known
as octonions, are elements of the 8-dimensional normed division algebra over the field
of real numbers. It is the only 8-dimensional real alternative algebra without zero
divisors. The Cayley algebra is an algebra with unique division and with an identity;
it is alternative, non-associative and non-commutative.
Octonions were discovered by John Thomas Graves (1806–1870) in December 1843,
two months after the discovery of quaternions by Hamilton. Graves communicated
his discovery to Hamilton in a letter dated 4 January 1844 but it was only published in
1848 after having been rediscovered by Arthur Cayley (1821–1895) in 1845. Since then
they have been called Cayley numbers; see Reference [153]. Wynn already discussed
them in several of his publications [65,66,69,99].

17 On rational approximations to the exponential function
This is a 8 pages paper that can be downloaded from our website. In the personal
document {25}, this paper is mentioned as to appear in 1981 or after. It seems that it
was never published. It is on the precise locations for the roots with large modulus of
the equation [ν/µ]ez = ez. Notice that the approximants [ν/µ]ez were given in closed
form by Padé [141].

4.3. Other Documents
4.3.1. Drafts on Analysis

18 Connections between various classes of functions of a complex variable
The first page of this document of 18 pages only contains the title. It seems to be a
copy of Wynn’s original notes, and unfortunately it is incomplete since it contains
only pages 8–14, 21–25, 28–32. Only the first two theorems are exploitable:

Th 1. f (z) maps Re(z) < 0 into | f (z)| < 1 iff

f (z) = eiφ

{
1 +

2z
A + (ic′ − 1)z + iz

∫ ∞
−∞

z−it
zt+i dσ′(t)

}

where −∞ < φ < 0, 0 ≤ A < ∞,−∞ < c′ < ∞, σ′ bounded nondecreasing over
(−∞, ∞).
Th 2. f (z) maps Re(z) < 0 into | f (z)| < 1 and f (z) ∼ ∑ tνzν as z → 0 in π/2 + δ <
arg(z) < 3π/2− δ (for δ < (0, π/2) fixed) iff

f (z) = eiφ



1 +

2z

A + (ic− 1)z + z2
∫ ∞
−∞

dσ(t)
1−itz





where −∞ < φ < 0, 0 ≤ A < ∞,−∞ < c < ∞, σ bounded nondecreasing over (−∞, ∞)
such that all moments

∫ ∞
−∞ tνdσ(t) exist.

The following pages are not in a sufficiently good shape to be analyzed.
19 Generalization of the β- and γ-algorithm integration processes

Unfortunately these notes (may be a copy of the original) start from the page numbered
8 and, thus, it is difficult to analyze them. Perhaps the other pages have not yet been
found in the boxes left by Wynn. As the title explains, they contain an attempt to
generalize the β- and γ-algorithm integration processes. This generalization consists
in considering I(ψ, µ) = f (µ)J(µ) =

∫ ∞
µ ψ(µ′) dµ′, where J(µ) is approximately
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constant (slowly varying), and −ψ(µ) = f ′(µ)J(µ) + f (µ)J′(µ), and he assumes that
the sequence (eν) such that ψ(µ)/ f ′(µ) = ∑ eν( f (µ))ν is known. Then, he introduces
many notations and conditions upon them, but after 20 pages, no clear conclusion
follows from this work.
In the same document, there is the original review of 11 pages written by Wynn himself
of his paper in Reference [106]. It appeared, shortened, in Zentralblatt MATH, as Zbl
0531.40002. Wynn almost surely put these pages together since they both concern the
computation of integrals of the form

∫ ∞
µ ψ(µ′) dµ′.

20 Extraction of totally monotone sequences from convergents of a continued fraction
This document is a partial copy (pages 31–35) of original notes. There are some pages
on an attempt to extract a totally oscillating sequence from the successive convergents
of a continued fraction

Ci =
a1
b1

+ · · ·+ ai
bi

.

If ∀i, ai = $($ − 1) with $ ∈ (1, ∞), then Ci tends to $ − 1, and the sequence
(C2i+1 − C2i+3) is totally monotone. No other interesting result can be extracted
from this partial document.
Then, there are 2 pages of rough notes on “Auxiliary sequence transformation before
application of the ε-algorithm”, which could be related to what precedes, and 3 pages
on “Transformation of monotonic sequences by means of the ε-algorithm”, which seem to be
independent of the topic.

4.3.2. Drafts on Algebra

21 Interpolation Theory
This is an unfinished document of 60 pages, not numbered but in a good shape,
entitled Interpolation theory. It is probably a part of a monograph (an important project)
referenced in several documents (see {26,28}).
Wynn wrote:

The following notes concern interpolation in a field by the use of polynomials and rational
functions, the interpolatory argument values being assumed to be discrete. The notes
serve both as a basis for subsequent more general theory concerning interpolation in the
presence of confluent arguments and as a framework for the theory of the transformation of
Schweins’ series.
I. Notations, definitions and classes of matrices and mappings
II. Formulae from the calculus of finite differences
III. Matrix formulations of finite difference formulae
IV. Interpolation by the use of polynomials and rational functions

Only the part I. has been found. It is a list of notations and it is too vague to be
of interest. A Schweins’ series is related to minor identities for quasi-determinants
of noncommutative matrices; see, for example, Reference [154]. Schweins obtained
it in 1825 for the quotient of two n-rowed determinants which differ only in one
column [155].

22 Linear equations in a commutative ring
This untitled document of 38 pages (numbered from the 9th one) begins by a first
list of 7 topics he wanted to treat. Then, 8 pages that look like two tables of contents
with several topics covered follow. After that, these items are detailed and, hopefully,
Wynn also inserted in front of them the number of the pages where each subitem can
be found. In the first page, Wynn inserted also a sketch of the following notes {23}.
The first section begins by

1. Linear equations in a commutative ring.
It is proposed to study the systems of solutions of equations of the form

bx = a mod I
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where, W being a prescribed commutative ring, a, b, x ∈ W, and I being a system of
numbers in W, the above equation is to be interpreted in the sense that u ∈ I exists for which
bx− a = u.

The other main sections are:

2. Systems of numbers
3. Divisibility
4. Numerator systems
5. Solution systems
6. Square free ideals
7. The ideal reduction

A complete analysis of this first section, also if it looks quite complete, seems to
be difficult.

23 Mapping
This only theoretical handwritten draft of 81 pages (there is a page 18 followed by
page 18’) and is about what Wynn named Aggregates. A sketch of these notes can be
found in {22}. It is quite difficult to understand what it is about since the manuscript
is not entirely well written, and seems not to have been finished.
Let R, S ⊆W. A nonvoid aggregate σ in (R, S) is composed of a nonvoid set I(σ) ⊆ R
and a system of nonvoid sets M(σ, a) ⊆ S defined for each a ∈ I(σ). Then, other
definitions and properties follow. Parts of the document are on mappings and classes
of aggregates. There is no indication of the purpose of this work, and, searching on
internet, nothing similar or related was found.

24 Factor relationships of the form c = Ed
This is a long theoretical text of 115 pages, entitled Factor relationships of the form c = Ed,
where c, E, and d are mapping systems. At the beginning, there is a sketch of the topics
that are developed in the sequel.
After introducing a lot of notations, Wynn treated the existence of domains of con-
stancy and intersection mapping systems. Then, there is a section on invariance of
spaces with respect to sequence rearrangement, one on the properties of domains of
constancy, another one on properties of prequotient spaces with respect to domains
of constancy and intersection systems, a section giving complete factorisation results,
and one on spaces of ordered pairs of mapping systems.

4.3.3. Personal Documents

25 Curriculum vitæ of Peter Wynn
This document is a typewritten curriculum vitæ by Wynn himself (born 1 September
1931; Hoddesdon, Herts (U.K.)). Then, he reports his education, his professional
experience from 1952 to 1980 (thus, it does not contain his positions after that). In this
curriculum, we can see that he occupied several positions in different countries in the
World. Moreover, we were able to confirm his date and place of birth with certainty.
This curriculum contains a bibliography with publications from 1956 to 1981. In this
bibliography, Wynn mentioned two references that we did not know: a paper
On rational approximations to the exponential function, 1981, to appear, which was found
in the boxes and is reproduced at the end of this paper, and a monograph, Numal in
Fortran. 0, Comunicaciones Técnicas, Universidad Nacional Autónoma de México,
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), México.
The number of the reports written by Wynn were 48.0–48.11. Certainly it is a completed
project (he mentioned it in {28}, with an O) and, looking into the web, we found that
the report 48.0 was published in Serie azul, monografías–Instituto de Investigaciones en
Matemáticas Aplicadas y en Sistemas. UNAM, México, 1981, Pag. 1–93. On the URL
https://biblat.unam.mx/en/buscar/wynn-p/ (accessed on 30 April 2021) the part
48.0 is cited (93 pages). We found the number 48.0 in one of the boxes (see {15}).

128



Mathematics 2021, 9, 1240

26 Lists of documents
In each of the two opened boxes, we found a list of documents (one of them with the
title Duplicate list. They are probably the lists of documents (xerox copies, handwritten
notes and papers, reviews, and so on) that Wynn holds, and that he inserted into
the boxes, since we also found a (sometime) partial correspondence mixed with the
documents found and analyzed in this paper. There are plenty of what Wynn named
“rough notes”. Among these rough notes, we find the ones showed in Figure 8, that
lead us to think he was looking for a determinantal expression for the even vectors
obtained by the vector ε-algorithm.
Since the text could be difficult to read, we reproduce below what Wynn wrote:

Rough notes on extensions of determinantal relationships, algorithmic recursions, etc. to noncom-
mutative, possibly nonassociative elements, by use of linear algebraic equations.
Rough notes of derivation of expressions representing ε-algorithm vectors by differentiation of
scalar expressions involving inner product.
Rough notes on expression in closed form of vectors produced by vector ε-algorithm & other forms.

Thus, one can wonder if Wynn was trying to express the vectors computed by his
vector ε-algorithm as ratios of some kind of (generalized) determinants. Such a result
would be of great interest for the understanding of this algorithm, but, unfortunately,
it has not been obtained yet. In any case, these rough notes are difficult to read and
understand!

Figure 8. Notes of Peter Wynn on the vector ε-algorithm.

27 List of activities
This is a list of activities that have to be accomplished: construct notes and Resumé
on different topics. The activities are structured in subitems of an itemized list (from
(A) to (J)). Are they separated subjects or the skeleton of a book or for other papers? It
is difficult to say. The itemized main topics are: Preparatory algebraic theory; Poly-
nomials and rational functions; Interpolation theory; Moment problem and stability
functions; Anti-derivative theory; An array of functions; Functions defined by an
integral transform; the Euler-Maclaurin and Boole series; Sequence transformations
(a subtopic is about auxiliary transformation before application of the ε-algorithm,
a problem addressed in Reference [156]). The item (J) Low priority seems to contains
activities having another scope (documentation for Algol programmes, preparation of
talks, and another Resumé).
This document was probably written after 1981 since Reference [109] is mentioned.

28 List of projects
There are 3 pages containing a list of projects. Some of them were probably realized
(those preceded by a D) and some of them, with an O, perhaps meaning Ongoing. But
we are not sure that some other remained in the state of projects, although some of them
are preceded by a D. Among this list, we find: theory of stratified commutative ring,
functional interpolation, variants of the remainder terms in the Euler Maclaurin and

129



Mathematics 2021, 9, 1240

Boole series, auxiliary sequence transformation before application of the ε-algorithm
(such a pre-processing or preconditioning as already evoked in References [56,72]),
extension of determinantal identities and algorithmic recursions to noncommutative
and nonassociative forms by use of linear algebraic equations, numerical experiments
in nonassociative algebras, numerical experiments in optimisation, vector ε-algorithm,
etc., the analytic continuation of functions defined by an integral transform. And,
finally, there is a mention of a book on the ε-algorithm.

29 Bibliography of various authors
It is a list of references by various authors, probably a list of Xerox copied papers.

30 Reviews of Wynn for zbMATH
This document contains two papers published in the journal Ukrainskii Matematich-
eskii Zhurnal (Ukrainian Mathematical Journal) in Russian. The first one is authored
by R. I. Mikhal’chuk & M. S. Syavavko and its title (in English) is A continual analog
of continued fraction (Vol. 34, No. 5, pp. 559–564, September–October (1982), doi:
10.1007/BF01093130 for English translation). The second one is the paper by Y.R.
Batyuk & M.S. Syavavko entitled Integral continued fractions, Dokl. Akad. Nauk Ukrain.
SSR Ser.A7, 6–8 (1984), also in Russian. This is not strange since Wynn knew Russian
(and also German, Duch, Spanish, and some French) and translated two books in this
language [110,111]. There are also four handwritten reviews written for zbMATH.
The first two are related to the papers (Zbl 0579.40001, Zbl 0571.40003) on continued
fractions previously indicated, and the last one (Zbl 0554.65003) to a paper by Naoyuki
Tokuda (A new application of Lagrange-Bürmann expansions. I. General principle, Z. Angew.
Math. Phys. 34, 697–727 (1983)). Wynn, during his stay in Mexico, was a very active
mathematical reviewer for zbMATH (145 reviews) by analyzing papers and books
published from 1971 to 2011, some of them in Russian. The last one, very detailed,
contains a review of a paper on rational function interpolation and the ε-algorithm,
but it is not present in zbMATH.
The first three handwritten reviews have been shortened when published in zbMATH.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: C.B. acknowledges support from the Labex CEMPI (ANR-11-LABX-0007-01). The work of
M.R.-Z. was partially supported by the University of Padua, Project No. DOR2007788/20 Numerical
Linear Algebra and Extrapolation methods with applications. M.R.-Z. is a member of the INdAM
(Istituto Nazionale di Alta Matematica “Francesco Severi”) Research group GNCS.

Acknowledgments: We would like to thank Manuel Berriozábal and Maria Antonietta Berriozábal,
Manuel’s wife, whose friendship with Peter Wynn and safekeeping of his works were invaluable.
Special thanks are due to Maria, who was kind enough to share with us her memories of Peter. They
made this paper still more alive, and a personal human testimony. We thank Andrea Rosolen who
helps us to develop the website as part of his B.S. thesis at Padua University (IT). We are grateful to
Juan B. Gutiérrez, Chair of Mathematics at the University of Texas at San Antonio (USA) who agreed
to host the web site at his department. Finally, we thank the reviewers for their very careful reading
and the constructive comments they made.

Conflicts of Interest: The authors declare no conflict of interest.

References

The first part of the bibliography concerns the works of Wynn, numbered in chronological order from [1–109], and
his two translations [110,111], while the second one contains the general bibliography.

References of Peter Wynn
1. Wynn, P. A note on Salzer’s method for summing certain convergent series. J. Math. Phys. 1956, 35, 318–320. MR0086910,

Zbl 0075.12802, Submitted 19 July 1955. [CrossRef]
2. Wynn, P. On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Math. Proc.

Camb. Philos. Soc. 1956, 52, 663–671. MR0081979, Zbl 0072.33802, Submitted 31 October 1955. [CrossRef]

130



Mathematics 2021, 9, 1240

3. Wynn, P. On a device for computing the em(Sn) transformation. Math. Tables Aids Comput. 1956, 10, 91–96. MR0084056,
Zbl 0074.04601. [CrossRef]

4. Wynn, P. On a cubically convergent process for determining the zeros of certain functions. Math. Tables Aids Comput. 1956, 10,
97–100. MR0081547, Zbl 0073.10703. [CrossRef]

5. Wynn, P. Central difference and other forms of the Euler transformation. Quart. J. Mech. Appl. Math. 1956, 9, 249–256. MR0080782,
Zbl 0074.29004, Submitted 28 July 1955. [CrossRef]

6. Wynn, P. On the propagation of error in certain non-linear algorithms. Numer. Math. 1959, 1, 142–149. MR0107988, Zbl 0087.32502,
Submitted 26 February 1959. [CrossRef]

7. Wynn, P. A sufficient condition for the instability of the q-d algorithm. Numer. Math. 1959, 1, 203–207. MR0109426, Zbl 0096.09501,
Submitted 25 March 1959. [CrossRef]

8. Wynn, P. Converging factors for continued fractions, I. Numer. Math. 1959, 1, 272–307. MR0116158, Zbl 0092.05101, Submitted 25
March 1959. [CrossRef]

9. Wynn, P. Converging factors for continued fractions, II. Numer. Math. 1959, 1, 308–320, MR0116158, Zbl 0092.05101, Submitted 25
March 1959. [CrossRef]

10. Wynn, P. Über einen Interpolations-algorithmus und gewisse andere Formeln, die in der Theorie der Interpolation durch rationale
Funktionen bestehen. Numer. Math. 1960, 2, 151–182. MR0128597, Zbl 0222.65007, Submitted 31 July 1959. [CrossRef]

11. Wynn, P. The rational approximation of functions which are formally defined by a power series expansion. Math. Comp. 1960, 14,
147–186. MR0116457, Zbl 0173.18803, Submitted 5 November 1959. [CrossRef]

12. Wynn, P. Confluent forms of certain non-linear algorithms. Arch. Math. 1960, 11, 223–236. MR0128068, Zbl 0096.09502, Submitted
5 October 1959. [CrossRef]

13. Wynn, P. A note on a confluent form of the ε-algorithm. Arch. Math. 1960, 11, 237–240. MR0128069, Zbl 0096.09601, Submitted
27 March 1959. [CrossRef]

14. Wynn, P. On the tabulation of indefinite integrals. BIT 1961, 1, 286–290, Zbl 0114.07003. [CrossRef]
15. Wynn, P. L’ε-algoritmo e la tavola di Padé. Rend. Mat. Roma 1961, 20, 403–408. MR0158206, Zbl 0104.34205.
16. Wynn, P. The epsilon algorithm and operational formulas of numerical analysis. Math. Comp. 1961, 15, 151–158. MR0158513,

Zbl 0102.33205. [CrossRef]
17. Wynn, P. On repeated application of the epsilon algorithm. Rev. Fr. Trait. Inf. Chiffres 1961, 4, 19–22. MR0149145, Zbl 0102.33301.
18. Wynn, P. A comparison between the numerical performances of the Euler transformation and the ε-algorithm. Rev. Fr. Trait. Inf.

Chiffres 1961, 4, 23–29. Zbl 0102.33302.
19. Wynn, P. The numerical transformation of slowly convergent series by methods of comparison, Part I. Rev. Fr. Trait. Inf. Chiffres

1961, 4, 177–210. MR0162350, Zbl 0113.04601.
20. Wynn, P. A sufficient condition for the instability of the ε-algorithm. Nieuw Arch. Wiskd. 1961, 9, 117–119. MR0139252,

Zbl 0154.40305.
21. Wynn, P. Upon the Expression of an Integral as the Limit of a Continued Fraction; Report DR 24/61; Sticht. Math. Centrum. Rekenafd.:

Amsterdam, The Netherlands, 1961. Available online: https://ir.cwi.nl/pub/9537 (accessed on 30 April 2021).
22. Wynn, P. A note on a method of Bradshaw for transforming slowly convergent series and continued fractions. Am. Math. Mon.

1962, 69, 883–889. [CrossRef]
23. Wynn, P. Upon a second confluent form the ε-algorithm. Proc. Glasgow Math. Assoc. 1962, 5, 160–165. MR0139253, Zbl 0118.32502,

Submitted 21 July 1961. [CrossRef]
24. Wynn, P. Acceleration techniques for iterated vector and matrix problems. Math. Comp. 1962, 16, 301–322. MR0145647,

Zbl 0105.10302. [CrossRef]
25. Wynn, P. A comparison technique for the numerical transformation of slowly convergent series based on the use of rational

functions. Numer. Math. 1962, 4, 8–14. MR0136500, Zbl 0138.09901, Submitted 17 July 1961. [CrossRef]
26. Wynn, P. Numerical efficiency profile functions. Koninkl. Nederl. Akad. Wet. 1962, 65A, 118–126. MR0139257, Zbl 0105.10002,

Submitted 30 September 1961. [CrossRef]
27. Wynn, P. The numerical efficiency of certain continued fraction expansions, IA. Koninkl. Nederl. Akad. Wet. 1962, 65A, 127–137.

MR0139254, Zbl 0105.10003, Submitted 30 September 1961. [CrossRef]
28. Wynn, P. The numerical efficiency of certain continued fraction expansions, IB. Koninkl. Nederl. Akad. Wet. 1962, 65A, 138–148.

MR0139255, Zbl 0105.10003, Submitted 30 September 1961. [CrossRef]
29. Wynn, P. On a connection between two techniques for the numerical transformation of slowly convergent series. Koninkl. Nederl.

Akad. Weten. 1962, 65A, 149–154. MR0139256, Zbl 0138.09902, Submitted 30 September 1961. [CrossRef]
30. Wynn, P. Una nota su un analogo infinitesimale del q-d algoritmo. Rend. Mat. Roma 1962, 21, 77–85. MR0144127, Zbl 0107.28203,

Submitted 11 September 1961.
31. Wynn, P. A note on fitting certain types of experimental data. Stat. Neerl. 1962, 16, 145–150. MR0150517. [CrossRef]
32. Wynn, P. Note on the solution of a certain boundary-value problem. BIT 1962, 2, 61–64. MR0155445, Zbl 0105.32103. [CrossRef]
33. Wynn, P. An arsenal of Algol procedures for complex arithmetic. BIT 1962, 2, 232–255. MR0166945, Zbl 0113.11605. [CrossRef]
34. Wynn, P. The numerical transformation of slowly convergent series by methods of comparison. Part II. Rev. Fr. Trait. Inf. Chiffres

1962, 5, 65–88. MR0149146, Zbl 0221.65007.

131



Mathematics 2021, 9, 1240

35. Wynn, P. Acceleration technique in numerical analysis with particular reference to problems in one independent variable. In
Information Processing 1962, Proceedings of the IFIP Congress 62, Munich, Germany, 27 August–1 September 1962; Popplewell, C.M.,
Ed.; North-Holland: Amsterdam, The Netherlands, 1963; pp. 149–156. Zbl 0146.14201.

36. Wynn, P. Singular rules for certain non-linear algorithms. BIT 1963, 3, 175–195. MR0166946, Zbl 0123.11101. [CrossRef]
37. Wynn, P. Note on a converging factor for a certain continued fraction. Numer. Math. 1963, 5, 332–352.

MR0166902, Zbl 0117.10802, Submitted 5 February 1963. [CrossRef]
38. Wynn, P. On a connection between the first and the second confluent forms of the ε-algorithm. Niew. Arch. Wisk. 1963, 11, 19–21.

MR0149147, Zbl 0116.33101, Submitted 29 October 1962.
39. Wynn, P. Continued fractions whose coefficients obey a non-commutative law of multiplication. Arch. Rat. Mech. Anal. 1963, 12,

273–312. MR0145231, Zbl 0122.30604, Submitted 13 August 1962. [CrossRef]
40. Wynn, P. A numerical study of a result of Stieltjes. Rev. Fr. Trait. Inf. Chiffres 1963, 6, 175–196. MR0157470, Zbl 0116.09202.
41. Wynn, P. Converging factors for the Weber parabolic cylinder function of complex argument, IA. Proc. Kon. Nederl. Akad. Weten.

1963, 66, 721–736.
MR0158514, Zbl 0235.65015, Submitted 29 June 1963. [CrossRef]

42. Wynn, P. Converging factors for the Weber parabolic cylinder function of complex argument, IB. Proc. Kon. Nederl. Akad. Weten.
1963, 66, 737–754. MR0158515, Zbl 0235.65015, Submitted 29 June 1963. [CrossRef]

43. Wynn, P. Partial differential equations associated with certain non-linear algorithms. Z. Angew. Math. Phys. 1964, 15, 273–289.
MR0166944, Zbl 0252.65096, Submitted 1 September 1963. [CrossRef]

44. Wynn, P. General purpose vector epsilon-algorithm Algol procedures. Numer. Math. 1964, 6, 22–36. MR0166947, Zbl 0113.32609,
Submitted 12 July 1963. [CrossRef]

45. Wynn, P. On some recent developments in the theory and application of continued fractions. SIAM J. Numer. Anal. Ser. B 1964, 1,
177–197. MR0178269, Zbl 0143.17804, Submitted 4 November 1963. [CrossRef]

46. Wynn, P. Four lectures on the numerical application of continued fractions. In Alcune Questioni di Analisi Numerica; Ghizzetti, A.,
Ed.; Series: C.I.M.E. Summer Schools; Springer: Heidelberg, Germany, 1965; Volume 35, pp. 111–251. Zbl 0202.43904. [CrossRef]

47. Wynn, P. A note on programming repeated application of the epsilon-algorithm. Rev. Fr. Trait. Inf. Chiffres 1965, 8, 23–62; Errata,
156, MR0181081, Zbl 0132.36903.

48. Wynn, P. Upon systems of recursions which obtain among the quotients of the Padé table. Numer. Math. 1966, 8, 264–269.
MR0215499, Zbl 0163.39502, Submitted 5 May 1965. [CrossRef]

49. Wynn, P. On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 1966, 3, 91–122. MR0207180,
Zbl 0299.65003, Submitted 16 September 1965. [CrossRef]

50. Wynn, P. Upon a Conjecture Concerning a Method for Solving Linear Equations, and Certain Other Matters; MRC Technical Summary
Report 626; University of Wisconsin: Madison, WI, USA, 1966.

51. Wynn, P. Complex Numbers and Other Extensions to the Clifford Algebra with an Application to the Theory of Continued Fractions; MRC
Technical Summary Report 646; University of Wisconsin: Madison, WI, USA, 1966.

52. Wynn, P. Upon the Diagonal Sequences of the Padé Table; MRC Technical Summary Report 660; University of Wisconsin: Madison,
WI, USA, 1966.

53. Wynn, P. Upon an Invariant Associated with the Epsilon Algorithm; MRC Technical Summary Report 675; University of Wisconsin:
Madison, WI, USA, 1966.

54. Wynn, P. On the computation of certain functions of large argument and parameter. BIT 1966, 6, 228–259. MR0203912,
Zbl 0196.48301. [CrossRef]

55. Wynn, P. An arsenal of Algol procedures for the evaluation of continued fractions and for effecting the epsilon algorithm. Rev. Fr.
Trait. Inf. Chiffres 1966, 9, 327–362. MR0203963.

56. Wynn, P. Accelerating the Convergence of a Monotonic Sequence by a Method of Intercalation; MRC Technical Summary Report 674;
University of Wisconsin: Madison, WI, USA, 1967.

57. Wynn, P. A general system of orthogonal polynomials. Quart. J. Math. Oxf. 1967, 18, 81–96. MR0210963, Zbl 0185.30001,
Submitted 8 September 1966. [CrossRef]

58. Wynn, P. Transformations to accelerate the convergence of Fourier series. In Gertrude Blanch Anniversary Volume; Wright Patterson
Air Force Base, 1967; pp. 339–379; MRC Technical Summary Report 673; Mond, B., Blanch, G., Eds.; University of Wisconsin:
Madison, WI, USA, 1966; MR0215553, Zbl 0242.65004.
MRC Technical Summary Report 673; University of Wisconsin: Madison, WI, USA, 1966; MR0215553, Zbl 0242.65004.

59. Wynn, P. A Note on the Convergence of Certain Noncommutative Continued Fractions; MRC Technical Summary Report 750; University
of Wisconsin: Madison, WI, USA, 1967.

60. Wynn, P. Upon the Padé table derived from a Stieltjes series. SIAM J. Numer. Anal. 1968, 5, 805–834. MR0239734, Zbl 0175.36102,
Submitted 22 March 1968, Revised 5 July 1968. [CrossRef]

61. Wynn, P. Vector continued fractions. Linear Algebra Appl. 1968, 1, 357–395. MR0231848, Zbl 0164.18503, Submitted 5 March 1968.
[CrossRef]

62. Wynn, P. Upon the definition of an integral as the limit of a continued fraction. Arch. Rat. Mech. Anal. 1968, 28, 83–148.
MR0221152, Zbl 0162.37202, Submitted 24 May 1967. [CrossRef]

132



Mathematics 2021, 9, 1240

63. Wynn, P. Zur Theorie der mit gewissen speziellen Funktionen verknüpften Padéschen Tafeln. Math. Z. 1969, 109, 66–70.
MR0243242, Zbl 0175.36103, Submitted 17 April 1968. [CrossRef]

64. Wynn, P. Five Lectures on the Numerical Application of Continued Fractions; Orientation Lecture Series 5; Mathematical Research
Center, University of Wisconsin: Madison, WI, USA, 1970; 183p.

65. Wynn, P. Upon a Recursive System of Flexible Rings Permitting Involution; Report CRM-50; Centre de Recherches Mathématiques,
Université de Montréal: Montréal, QC, Canada, 1970.

66. Wynn, P. Upon the Inverse of Formal Power Series over Certain Algebra; Report CRM-53; Centre de Recherches Mathématiques,
Université de Montréal: Montréal, QC, Canada, 1970.

67. Wynn, P. Upon a Hierarchy of Epsilon Arrays; Technical Report 46; Louisiana State University: New Orleans, LA, USA, 1970.
68. Wynn, P. A note on the generalised Euler transformation. Comput. J. 1971, 14, 437–441.; Erratum in 1972, 15, 175; MR0321266,

Zbl 0227.65002. [CrossRef]
69. Wynn, P. The Abstract Theory of the Epsilon Algorithm; Report CRM-74; Centre de Recherches Mathématiques, Université de

Montréal: Montréal, QC, Canada, 1971.
70. Wynn, P. Upon a Class of Functions Connected with the Approximate Solution of Operator Equations; Report CRM-103; Centre de

Recherches Mathématiques, Université de Montréal: Montréal, QC, Canada, 1971.
71. Wynn, P. A note Upon Totally Monotone Sequences; Report CRM-139; Centre de Recherches Mathématiques, Université de Montréal:

Montréal, QC, Canada, 1971.
72. Wynn, P. A transformation of series. Calcolo 1971, 8, 255–272. MR0303675, Zbl 0236.65006, Submitted 1 September 1971. [CrossRef]
73. Wynn, P. Difference-differential recursions for Padé quotients. Proc. Lond. Math. Soc. 1971, 3, 283–300. MR0313682, Zbl 0221.40005,

Submitted 4 May 1970. [CrossRef]
74. Wynn, P. Upon the generalized inverse of a formal power series with vector valued coefficients. Compos. Math. 1971, 23, 453–460.

MR306224, Zbl 0239.15003, Submitted 13 January 1971. Available online: www.numdam.org/item/CM_1971__23_4_453_0
(accessed on 30 April 2021).

75. Wynn, P. Über orthonormale Polynome und ein assoziiertes Momentproblem. Math. Scand. 1971, 29, 104–112. MR0308406, Zbl
0231.30037, Submitted 27 April 1971. [CrossRef]

76. Wynn, P. On an extension of a result due to Pólya. J. Reine Angew. Math. 1971, 248, 127–132. MR0289771, Zbl 0219.30002,
Submitted 22 November 1969. [CrossRef]

77. Wynn, P. Convergence acceleration by a method of intercalation. Computing 1972, 9, 267–273. MR0315861, Zbl 0248.65003,
Submitted 6 August 1971. [CrossRef]

78. Wynn, P. Invariants associated with the epsilon algorithm and its first confluent form. Rend. Circ. Mat. Palermo 1972, 21, 31–41.
MR0346367, Zbl 0268.65076, Submitted January 1972. [CrossRef]

79. Wynn, P. Hierarchies of arrays and function sequences associated with the epsilon algorithm and its first confluent form. Rend.
Mat. Roma Ser. VI 1972, 5, 819–852. MR0355405, Zbl 0278.65002, Submitted 15 May 1972.

80. Wynn, P. A Note on a Partial Differential Equation; Report CRM-22; Centre de Recherches Mathématiques, Université de Montréal:
Montréal, QC, Canada, 1972.

81. Wynn, P. Sur les suites totalement monotones. CR Acad. Sci. Paris 1972, 275A, 1065–1068. MR0310480, Zbl 0251.40001, Accepted
6 November 1972.

82. Wynn, P. Transformation de séries à l’aide de l’ε-algorithm. CR Acad. Sci. Paris 1972, 275A, 1351–1353. MR0311068, Zbl 0257.65005,
Accepted 18 December 1972.

83. Wynn, P. Upon a convergence result in the theory of the Padé table. Trans. Am. Math. Soc. 1972, 165, 239–249. MR0293106,
Zbl 0236.30013, Received 26 October 1970, Revised 21 May 1971. [CrossRef]

84. Wynn, P. A Convergence Theory of Some Methods of Integration; Report CRM-193; Centre de Recherches Mathématiques, Université
de Montréal: Montréal, QC, Canada, 1972.

85. Wynn, P. The Partial Differential Equation of the Padé surface; Report CRM-197; Centre de Recherches Mathématiques, Université de
Montréal: Montréal, QC, Canada, 1972.

86. Wynn, P. The Algebra of Certain Formal Power Series; Report CRM-216; Centre de Recherches Mathématiques, Université de
Montréal: Montréal, QC, Canada, 1972.

87. Wynn, P. On Some Extensions of Euclid’s Algorithm, and Some Consequences Thereof ; Report CRM; Centre de Recherches Mathéma-
tiques, Université de Montréal: Montréal, QC, Canada, 1972.

88. Wynn, P. Upon some continuous prediction algorithms. I. Calcolo 1973, 9, 197–234. MR0362820, Zbl 0248.65007, Submitted 20 June
1972. [CrossRef]

89. Wynn, P. Upon some continuous prediction algorithms. II. Calcolo 1973, 9, 235–278. MR0362821, Zbl 0281.65001, Submitted 20 June
1972. [CrossRef]

90. Wynn, P. On the zeros of certain confluent hypergeometric functions. Proc. Am. Math. Soc. 1973, 40, 173–183. MR0318529,
Zbl 0268.33004, Submitted 7 July 1972, Revised 26 October 1972. [CrossRef]

91. Wynn, P. Accélération de la convergence de séries d’opérateurs en analyse numérique. CR Acad. Sci. Paris 1973, 276A, 803–806.
MR0317519, Zbl 0268.65001, Accepted 12 March 1973.

92. Wynn, P. On the intersection of two classes of functions. Rev. Roum. Math. Pures Appl. 1974, 19, 949–959. MR0390195,
Zbl 0302.30011.

133



Mathematics 2021, 9, 1240

93. Wynn, P. Extremal properties of Padé quotients. Acta Math. Hung. 1974, 25, 291–298. MR0352431, Zbl 0323.30043, Submitted
14 July 1972. [CrossRef]

94. Wynn, P. Sur l’équation aux dérivées partielles de la surface de Padé. CR Acad. Sci. Paris 1974, 278A, 847–850. MR0341910,
Zbl 0276.35015.

95. Wynn, P. A Numerical Method for Estimating Parameters in Mathematical Models; Report CRM-443; Centre de Recherches Mathéma-
tiques, Université de Montréal: Montréal, QC, Canada, 1974.

96. Wynn, P. Some recent developments in the theories of continued fractions and the Padé table. Rocky Mt. J. Math. 1974, 4, 297–324.
MR0340880, Zbl 0302.65005, Submitted 8 February 1973. [CrossRef]

97. Wynn, P. How to integrate without integrating. In Proceedings of the Euromech 58 Conference on Padé Method and Its
Applicatons in Mechanics, Toulon, France, 12–14 May 1975; Unpublished.

98. Wynn, P. Upon a class of functions connected with the approximate solution of operator equations. Ann. Mat. Pura Appl. 1975,
104, 1–29. MR0387553, Zbl 0315.65015, Submitted 10 October 1972. [CrossRef]

99. Wynn, P. Distributive rings permitting involution. Math. Balk. 1975, 5, 299–318; Report CRM-281; Centre de Recherches
Mathématiques, Université de Montréal: Montréal, QC, Canada, 1973; MR0506478, Zbl 0381.17001.

100. Wynn, P. The algebra of certain formal power series. Riv. Mat. Univ. Parma 1976, 2, 155–176. MR0447220, Zbl 0369.16002,
Submitted 28 August 1974. Available online: www.rivmat.unipr.it/fulltext/1976-2/1976-2-155.pdf (accessed on 30 April 2021).

101. Wynn, P. An Array of Functions; Report; School of Computer Science, McGill University: Montreal, QC, Canada, 1976.
102. Wynn, P. A Continued Fraction Transformation of the Euler-MacLaurin Series; Report; School of Computer Science, McGill University:

Montreal, QC, Canada, 1976.
103. Wynn, P. A convergence theory of some methods of integration. J. Reine Angew. Math. 1976, 285, 181–208. MR0415119, Zbl 0326.40005,

Submitted 22 March 1974. [CrossRef]
104. Wynn, P. The calculus of finite differences over certain systems of numbers. Calcolo 1977, 14, 303–341. MR0503568, Zbl 0379.65005,

Submitted 30 August 1976. [CrossRef]
105. Wynn, P. The transformation of series by the use of Padé quotients and more general approximants. In Padé and Rational

Approximation. Theory and Applications; Saff, E.B., Varga, R.S., Eds.; Academic Press: New York, NY, USA, 1977; pp. 121–144.
MR0473660, Zbl 0368.41014. [CrossRef]

106. Wynn, P. The evaluation of singular and highly oscillatory integrals by use of the anti-derivative. Calcolo 1978, 15, 1–123; Report;
School of Computer Science, McGill University: Montreal, QC, Canada, 1976; Zbl 0531.40002, Submitted 17 July 1977.

107. Wynn, P. The work of E.B. Christoffel on the theory of continued fractions. In E.B. Christoffel: The Influence of His Work on
Mathematics and the Physical Sciences; Butzer, P.L., Fehér, F., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1981; pp. 190–202.
MR0661065, Zbl 0476.30004, Submitted 9 October 1979. [CrossRef]

108. Wynn, P. Remark upon developments in the theories of the moment problem and of quadrature, subsequent to the work of
Christoffel. In E.B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences; Butzer, P.L., Fehér, F., Eds.;
Birkhäuser Verlag: Basel, Switzerland, 1981; pp. 731–734. MR0661114, Zbl 0484.41040, Submitted 28 April 1980. [CrossRef]

109. Wynn, P. The convergence of approximating fractions. Bol. Soc. Mat. Mex. 1981, 26, 57–71. MR0742016, Zbl 0479.40004.

Translations by Peter Wynn
110. Khintchine, A.Y. Continued Fractions; Translated from Russian by Peter Wynn; P. Noordhoff N.V.: Groningen, The Netherlands, 1963.
111. Khovanskii, A.N. The Application of Continued Fractions and their Generalizations to Problems in Approximation Theory; Translated

from Russian by Peter Wynn; P. Noordhoff N.V.: Groningen, The Netherlands, 1963.

General Bibliography
112. Shanks, D. Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 1955, 34, 1–42. [CrossRef]
113. Brezinski, C.; Redivo-Zaglia, M. Extrapolation and Rational Approximation. The Works of the Main Contributors; Springer Nature:

Cham, Switzerland, 2020.
114. Brezinski, C.; Redivo-Zaglia, M. The genesis and early developments of Aitken’s process, Shanks’ transformation, the ε-algorithm,

and related fixed point methods. Numer. Algorithms 2019, 80, 11–133. [CrossRef]
115. Brezinski, C.; Redivo-Zaglia, M. Extrapolation Methods. Theory and Practice; North-Holland: Amsterdam, The Netherlands, 1991.
116. Lorentzen, L.; Waadeland, H. Continued Fractions with Applications; North-Holland: Amsterdam, The Netherlands, 1992.
117. Sidi, A. Practical Extrapolation Methods. Theory and Applications; Cambridge University Press: Cambridge, UK, 2003.
118. Weniger, E.J. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series.

Comput. Phys. Rep. 1989, 10, 189–371. [CrossRef]
119. Wimp, J. Sequence Transformations and Their Applications; Academic Press: New York, NY, USA, 1981.
120. Lagrange, J.L. Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mém. Acad. R. Sci. Berl. 1770, 24,

251–326.
121. Henrici, P. Applied and Computational Complex Analysis; Wiley: New York, NY, USA, 1974; Volume 1.
122. Bacher, R.; Lass, B. Développements limités et réversion des séries. Enseign. Math. 2006, 52, 267–293.
123. Moler, C.; van Loan, C. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 1978, 20, 801–836. [CrossRef]
124. Moler, C.; van Loan, C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 2003,

45, 3–49. [CrossRef]

134



Mathematics 2021, 9, 1240

125. Brezinski, C. Génération de suites totalement monotones et oscillantes. CR Acad. Sci. Paris 1975, 280A, 729–731.
126. Schoenberg, I.J. On smooting operations and their generating functions. Bull. Am. Math. Soc. 1953, 59, 199–230. [CrossRef]
127. Donoghue, W.F. Monotone Matrix Functions and Analytic Continuation; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1974.
128. Brezinski, C. Généralisation des extrapolations polynomiales et rationnelles. RAIRO 1972, R1, 61–66.
129. Cordellier, F. Utilisation de l’invariance homographique dans les algorithmes de losange. In Padé Approximation and Its Applications

Bad Honnef 1983; Werner, H., Bünger, H.J., Eds.; Lecture Notes in Mathematiques; Springer: Berlin, Germany, 1984; Volume 1071,
pp. 62–94.

130. Nörlund, N.E. Vorlesung über Differenzenrechnung; Springer: Berlin/Heidelberg, Germany, 1937.
131. Stoer, J. Über zwei Algorithmen zur Interpolation mit rationalen Funktionen. Numer. Math. 1961, 3, 285–304. [CrossRef]
132. Claessens, G. A useful identity for the rational Hermite interpolation table. Numer. Math. 1978, 29, 227–231. [CrossRef]
133. Brezinski, C. Sur un algorithme de résolution des systèmes non linéaires. CR Acad. Sci. Paris 1971, 272 A, 145–148.
134. Gekeler, E. Über den ε-Algorithmus von Wynn. ZAMM 1971, 51, 53–54.
135. Håvie, T. Generalized Neville type extrapolation schemes. BIT 1979, 19, 204–213. [CrossRef]
136. Lyche, T. A Newton form for trigonometric Hermite interpolation. Nord. Tids. Inf. Beh. (BIT) 1979, 19, 229–235. [CrossRef]
137. Mühlbach, G. The general Neville-Aitken algorithm and some application. Numer. Math. 1978, 31, 97–110. [CrossRef]
138. Mühlbach, G. The general recurrence relation for divided differences and the general Newton interpolation algorithm with

application to trigonometric interpolation. Numer. Math. 1979, 32, 393–408. [CrossRef]
139. Jacobi, C.G.J. Über die Darstellung einer Reihe gegebener Werthe durch einer gebrochnen rationale Funktion. J. Reine Angew.

Math. 1845, 30, 127–156.
140. Frobenius, G. Ueber Relationen zwischen den Näherungsbruchen von Potenzreihen. J. Reine Angew. Math. 1881, 90, 1–17.
141. Padé, H. Sur la représentation approchée d’une fonction par des fractions rationnelles. Ann. Sci. L’École Norm. Supérieure 1892, 9,

3–93. [CrossRef]
142. Schmidt, R.J. On the numerical solution of linear simultaneous equations by an iterative method. Lond. Edinb. Dublin Philos. Mag.

J. Sci. 1941, 7, 369–383. [CrossRef]
143. Kronecker, L. Zur Theorie der Elimination einer Variablen aus zwei Algebraischen Gleichungen. Monat. Kön. Preuss. Akad. Wiss.

Berl. 1881, 535–600.
144. Rosenhain, G. Neue Darstellung der Resultante der Elimination von z aus zwei algebraischen Gleichungen f (z) = 0 und φ(z) = 0

vermittelst der Werthe welche fie Funktionen f (z) und φ(z) für gegebne Werthe von z annehmen. J. Reine Angew. Math. 1846, 30,
157–165.

145. Borchardt, C.W. Ueber eine Interpolation entsprechende Darstellung der Eliminations-Resultante. J. Reine Angew. Math. 1860, 57,
111–121.

146. Brezinski, C. Review of methods to accelerate the convergence of sequences. Rend. Mat. Roma. 1974, 7, 303–316.
147. Cordellier, F. Interpolation Rationnelle et autres Questions: Aspects Algorithmiques et Numériques. Thèse de Doctorat d’État ès

Sciences Mathématiques, Université des Sciences et Techniques de Lille, Lille, France, 1989.
148. McLeod, J.B. A note on the ε-algorithm. Computing 1971, 7, 17–24. [CrossRef]
149. Delahaye, J.P.; Germain-Bonne, B. Résultats négatifs en accélération de la convergence. Numer. Math. 1980, 35, 443–457. [CrossRef]
150. Delahaye, J.P. Sequence Transformations; Springer: Berlin, Germany, 1988.
151. Cournot, A.A. Recherches sur les Principes Mathématiques de la Théorie des Richesses; L. Hachette: Paris, France, 1838. Available

online: https://gallica.bnf.fr/ark:/12148/bpt6k6117257c.texteImage (accessed on 30 April 2021).
152. Berlinet, A.F. Geometric approach to the parallel sum of vectors and application to the vector ε-algorithm. Numer. Algorithms

2014, 65, 783–807. [CrossRef]
153. Koecher, M.; Remmert, R. Cayley numbers or alternative division algebras. In Numbers; Ewing, J.H., Ed.; Springer: New York, NY,

USA, 1991.
154. Krob, D.; Leclerc, D. Minor identities for quasi-determinants and quantum determinants. Commun. Math. Phys. 1995, 169, 1–23.

[CrossRef]
155. Schweins, F. Theorie der Differenzen und Differentiale, der Gedoppelten Verbindungen, der Producte mit Versetzungen, der Reihen, der

Wiederholenden Functionen, der Allgemeinsten Facultäten und der Fortlaufenden Brüche; Verlag der Universitäts—Buchhandlung
von C.F. Winter: Heidelberg, Germany 1825. Available online: https://babel.hathitrust.org/cgi/pt?id=mdp.39015068512063
(accessed on 30 April 2021).

156. Brezinski, C.; Delahaye, J.P.; Germain-Bonne, B. Convergence acceleration by extraction of linear subsequences. SIAM J. Numer.
Anal. 1983, 20, 1099–1105. [CrossRef]

135



mathematics

Article

New Approaches to the General Linearization Problem of
Jacobi Polynomials Based on Moments and
Connection Formulas

Waleed Mohamed Abd-Elhameed 1,2,* and Badah Mohamed Badah 2

Citation: Abd-Elhameed, W.M.;

Badah, B.M. New Approaches to the

General Linearization Problem of

Jacobi Polynomials Based on

Moments and Connection Formulas.

Mathematics 2021, 9, 1573. https://

doi.org/10.3390/math9131573

Academic Editors: Francesco Aldo

Costabile, Maria I. Gualtieri and

Anna Napoli

Received: 10 June 2021

Accepted: 30 June 2021

Published: 4 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2 Department of Mathematics, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia;

BALDOSARI0001.stu@uj.edu.sa
* Correspondence: waleed@sci.cu.edu.eg

Abstract: This article deals with the general linearization problem of Jacobi polynomials. We
provide two approaches for finding closed analytical forms of the linearization coefficients of these
polynomials. The first approach is built on establishing a new formula in which the moments of the
shifted Jacobi polynomials are expressed in terms of other shifted Jacobi polynomials. The derived
moments formula involves a hypergeometric function of the type 4F3(1), which cannot be summed in
general, but for special choices of the involved parameters, it can be summed. The reduced moments
formulas lead to establishing new linearization formulas of certain parameters of Jacobi polynomials.
Another approach for obtaining other linearization formulas of some Jacobi polynomials depends
on making use of the connection formulas between two different Jacobi polynomials. In the two
suggested approaches, we utilize some standard reduction formulas for certain hypergeometric
functions of the unit argument such as Watson’s and Chu-Vandermonde identities. Furthermore,
some symbolic algebraic computations such as the algorithms of Zeilberger, Petkovsek and van
Hoeij may be utilized for the same purpose. As an application of some of the derived linearization
formulas, we propose a numerical algorithm to solve the non-linear Riccati differential equation
based on the application of the spectral tau method.

Keywords: Jacobi polynomials; generalized hypergeometric functions; Chebyshev polynomials;
linearization coefficients; connection formulas; moments formulas; symbolic computation;
Riccati differential equation; tau method

1. Introduction

Special functions are crucial in several disciplines such as mathematical physics and
numerical analysis. A large number of researchers are interested in investigating different
special functions from numerical and practical points of view; see, for example, [1–3].

Jacobi polynomials are of basic importance in mathematical analysis from both the-
oretical and practical points of view. There are six important particular classes of Jacobi
polynomials. In fact, ultraspherical, Legendre, and Chebyshev polynomials of the first-
and second- kinds are symmetric Jacobi polynomials, while the two classes of Chebyshev
polynomials of third- and fourth- kinds are non-symmetric Jacobi polynomials (see, for
example, [4–6]). The linearization and connection problems of different orthogonal polyno-
mials are of fundamental importance. They play a role in the computation of physical and
chemical properties of quantum-mechanical systems [7]. The standard linearization for-
mula is applied in the calculation of the position and momentum information entropies of
quantum systems (see Dehesa et al. [8]). Furthermore, they are useful in treating some kinds
of differential equations. For example, Abd-Elhameed [9] has employed some linearization
formulas to solve a non-linear Riccati differential equation. Recently, Abd-Elhameed in [10]
employed the linearization formula of the shifted Chebyshev polynomials of the sixth-kind
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along with some other formulas to develop a spectral solution to the one-dimensional
non-linear Burgers’ equation. Due to the importance of the linearization formulas, intensive
studies regarding these problems have been performed. Linearization and connection
problems for a variety of classical continuous and discrete orthogonal polynomials have
been established by many methods (see, for instance, [11–20]).

If we assume three families of polynomials {φi(x)}i≥0 {ψj(x)}j≥0 and {θk(x)}k≥0,
then to solve the general linearization problem

φi(x)ψj(x) =
i+j

∑
k=0

Ak,i,j θk(x),

we have to find the linearization coefficients Ak,i,j.
It is worth mentioning here that among the important problems that are related to the

linearization problems are the problems concerned with summing the finite products of
several special functions. In this direction, the authors of [21], developed some results for
the sums of finite products of the second, third, and fourth kinds Chebyshev polynomials.
In [22], the authors studied the connection problem for sums of finite products of Chebyshev
polynomials of the third and fourth kinds. Expressions for sums of finite products of
Legendre and Laguerre polynomials can be found in [23]. In [24], the authors established
representations by several orthogonal polynomials for sums of finite products of Chebyshev
polynomials of the first kind and Lucas polynomials. Fourier series expansions for functions
related to sums of finite products of Chebyshev polynomials of the first kind, and those
of Lucas polynomials are derived in [25]. In [26], the authors represented by orthogonal
polynomials the sums of finite products of Fubini polynomials. Some new formulas that
express the sums of finite products of balancing polynomials can be found in [27]. In the
series of papers [28–31], the authors developed specific linearization formulas of Jacobi
polynomials of certain parameters. The linearization coefficients were often expressed
in terms of certain terminating hypergeometric functions of unit argument that can be
reduced for some particular cases. In [28], the authors derived new linearization formulas
of Chebyshev polynomials of the third and fourth kinds. The authors in [32,33] established
some formulas of the squares of certain Jacobi polynomials. In addition, in [30], the author
derived a product formula of two certain Jacobi polynomials in terms of the squares of
ultraspherical polynomials. The coefficients are expressed in terms of a certain terminating
6F5(1). This product formula led to some simplified linearization formulas for certain
choices of the involved parameters. In [34], the authors established some specific and
general linearization formulas of some classes of Jacobi polynomials based on the reduction
of certain hypergeometric functions of unit arguments. For some other articles concerned
with linearization problem, one can refer to [35–39]. The principal aim of the current paper
is to derive new expressions for the linearization coefficients Bp,i,j in the problem

R(α,β)
i (x) R(λ,µ)

j (x) =
i+j

∑
p=0

Bp,i,j R(γ,δ)
i+j−p(x), (1)

where R(α,β)
i (x) is the normalized Jacobi polynomial defined in [15] for certain choices of

the involved parameters.
We point out here that the main difference between our study in the current paper

and the study in the recent paper [34] is that the authors in [34] investigated the lineariza-
tion formula

R(α,β)
i (x) R(λ,µ)

j (x) =
i+j

∑
p=0

Bp,i,j R(α+λ,β+µ)
i+j−p (x). (2)

It is clear that the linearization formula in (2) is a special case of the linearization
Formula (1).
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The linearization coefficients of problem (2) were found in terms of a product of two
terminating hypergeometric functions of the type 3F2(1) (see [17]). In [34], the authors
found closed forms for one or two of the appearing 3F2(1) for some specific choices of
the involved parameters, and therefore, some new reduced linearization formulas were
developed. In the current paper, we follow two different approaches to develop some
linearization formulas in the form of (1). In fact, we follow the following two approaches:

• An approach based on deriving a new formula of the moments of the shifted normal-
ized Jacobi polynomials in terms of their original shifted Jacobi polynomials but with
different parameters;

• An approach based on making use of the connection formulas between two different
normalized Jacobi polynomials.

We comment here that the main advantages of our two presented methods to establish
the linearization formulas in this paper compared with some of the previously published
papers can be listed as follows:

• In the articles [28,31,34], the linearization formulas were established by reducing some
exiting ones in the literature with the aid of some celebrated reduction formulas or
via some symbolic algorithms; however, in the current article, we establish two new
approaches for deriving some linearization formulas, and after that reduce these
linearization formulas by symbolic computation.

• The articles [9,29,30] deal with some special linearization formulas. In fact, the ap-
proaches followed were based on expressing products of hypergeometric functions
in terms of a single generalized hypergeometric function using some suitable trans-
formation formulas; however, the current article deals with some general lineariza-
tion formulas.

• We do believe that the approach based on the moments formulas can be followed to
establish linearization formulas of different orthogonal polynomials and not restricted
to Jacobi polynomials.

The rest of the paper is as follows. Section 2 presents some properties of Jacobi
polynomials and their shifted ones. Section 3 is interested in establishing a new unified
formula for the moments of the four kinds of Chebyshev polynomials. Furthermore, in
this section, a general moments formula of the shifted normalized Jacobi polynomials of
general parameters is given explicitly in terms of a certain terminating 4F3(1). Section 4
is devoted to presenting new linearization formulas based on employing the moments
formulas derived in Section 3. Another approach based on making use of the connection
formulas between two different Jacobi polynomials is followed in Section 5. To show the
importance and applicability of the presented formulas, we propose a numerical algorithm
in Section 6 to solve the non-linear Riccati differential equation based on the application of
the spectral tau method. Finally, the conclusion is given in Section 7.

2. Some Elementary Properties of the Classical Jacobi Polynomials and Their
Shifted Ones

In this section, we display some properties of the classical Jacobi polynomials and their
shifted ones, which are useful in the following. The sequence of orthogonal polynomials
P(γ,δ)

j (x), x ∈ [−1, 1], j ≥ 0, and γ > −1, δ > −1, (see Olver et al. [40], Andrews et al. [41]
and Rainville [42]), may be constructed by means of the following Rodrigues’ formula:

P(γ,δ)
j (x) =

(−1)j

2j j!
(1− x)−γ(1 + x)−δDj

[
(1− x)γ+j(1 + x)δ+j

]
,

where D ≡ d
dx .

They also may be represented by means of the following hypergeometric form:

P(γ,δ)
j (x) =

(γ + 1)j

j! 2F1

( −j, j + γ + δ + 1
γ + 1

∣∣∣∣
1− x

2

)
.
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It is useful to use the normalized Jacobi polynomials, which were introduced in [15]
and used in [43]. They are given by the following formula:

R(γ,δ)
j (x) = 2F1

( −j, j + γ + δ + 1
γ + 1

∣∣∣∣
1− x

2

)
. (3)

The definition in (3) has the advantage that

R(γ,δ)
j (1) = 1, j = 0, 1, 2, . . . .

All relations and formulas of P(γ,δ)
j (x) can be easily transformed to give their counter-

parts for R(γ,δ)
j (x). The polynomials R(γ,δ)

j (x) satisfy the following orthogonality relation:

∫ 1

−1
(1− x)γ(1 + x)δ R(γ,δ)

j (x) R(γ,δ)
k (x) dx =

{
0, k 6= j,
hγ,δ

j , k = j,
(4)

where

hγ,δ
j =

2γ+δ+1 j! Γ(j + δ + 1) (Γ(γ + 1))2

(2j + γ + δ + 1) Γ(j + γ + δ + 1) Γ(j + γ + 1)
. (5)

It is worth mentioning that the six special families of polynomials of the normalized
Jacobi polynomials R(γ,δ)

j (x) are given by the following relations:

Tj(x) = R(− 1
2 ,− 1

2 )
j (x), Uj(x) = (j + 1) R( 1

2 , 1
2 )

j (x),

Vj(x) = R(− 1
2 , 1

2 )
j (x), Wj(x) = (2j + 1) R( 1

2 ,− 1
2 )

j (x),

C(α)
j (x) = R(α− 1

2 ,α− 1
2 )

j (x), Lj(x) = R(0,0)
j (x),

where Tj(x), Uj(x), Vj(x), Wj(x) represent, respectively, the first, second, third, and

fourth kinds Chebyshev polynomials, while C(α)
j (x) and Lj(x) denote, respectively, the

ultraspherical and Legendre polynomials.
Regarding the four kinds of Chebyshev polynomials, they have the following trigonometric
representations (see, [44]):

Tj(x) = cos(j θ), Uj(x) =
sin((j + 1) θ)

sin θ
,

Vj(x) =
cos
((

j + 1
2

)
θ
)

cos
(

θ
2

) , Wj(x) =
sin
((

j + 1
2

)
θ
)

sin
(

θ
2

) ,

where θ = cos−1(x).
It can be noted that the polynomials Wj(x) are linked with the polynomials Vj(x) by

the relation:
Wj(x) = (−1)j Vj(−x),

and therefore any relation of Vj(x) has a corresponding one of Wj(x).
In what follows, we will denote by φj(x) any Chebyshev polynomial of degree j of the
well-known four kinds, and let φ∗j (x) denote the shifted Chebyshev polynomial on [0, 1],
defined as

φ∗j (x) = φj(2x− 1).
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One of the important properties of Chebyshev polynomials is that they can be con-
structed by a unified recurrence relation but with different initials. In fact, the polynomials
φj(x) satisfies the following recurrence relation:

φj(x) = 2 x φj−1(x)− φj−2(x), j ≥ 2, (6)

but with the following different initial values:

T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x,

V0(x) = 1, V1(x) = 2x− 1, W0(x) = 1, W1(x) = 2x + 1.

Furthermore, note that the polynomials φ−j(x), j ≥ 0 can be defined in terms of φj(x).
In fact, we have the following explicit relations

T−j(x) = Tj(x), U−j(x) = −Uj−2(x),

V−j(x) = Vj−1(x), W−j(x) = −Wj−1(x).

The shifted normalized Jacobi polynomials R̃(γ,δ)
j (x) on [0, 1] are defined by:

R̃(γ,δ)
j (x) = R(γ,δ)

j (2x− 1).

All relations of the normalized Jacobi polynomials R(γ,δ)
j (x) can be transformed to

give their counterparts of their shifted ones. The orthogonality relation of R̃(γ,δ)
j (x) is

given by
∫ 1

0
(1− x)γ xδ R̃(γ,δ)

j (x) R̃(γ,δ)
k (x) dx =

{
0, k 6= j,
h̃γ,δ

j , k = j,
(7)

where

h̃γ,δ
j =

k! Γ(γ + 1)2 Γ(k + δ + 1)
(2k + γ + δ + 1) Γ(k + γ + 1) Γ(k + γ + δ + 1)

. (8)

In addition, among the most important properties of the shifted normalized Jacobi
polynomials R̃(γ,δ)

j (x) are their power form and inversion formulas ([41]). The power from
representation is

R̃(γ,δ)
j (x) =

j

∑
r=0

(−1)r j! Γ(γ + 1) (δ + 1)j (γ + δ + 1)2j−r

r! (j− r)! Γ(j + γ + 1) (γ + δ + 1)j (δ + 1)j−r
xj−r, (9)

while the inversion formula is

xj =
j

∑
r=0

( j
r)(γ + 1)j−r(j− r + δ + 1)r

(2j− 2r + γ + δ + 2)r(j− r + γ + δ + 1)j−r
R̃(γ,δ)

j−r (x). (10)

Furthermore, the Rodrigues’ formula of R̃(γ,δ)
j (x) is given by

R̃(γ,δ)
j (x) =

(−1)j Γ(γ + 1)
Γ(j + γ + 1)

(1− x)−γ x−δDj
[
(1− x)γ+j xδ+j

]
. (11)

For more properties of Jacobi polynomials in general and their special polynomials in
particular, one can be referred to the useful books of Andrews et al. [41] and Mason and
Handscomb [44].
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3. New Moments Formulas of the Shifted Normalized Jacobi Polynomials

In this section, we develop a unified formula for computing the moments of any one
of the four kinds of the shifted Chebyshev polynomials in terms of their original shifted
polynomials. In addition, we establish a new formula that expresses the moments of the
shifted normalized Jacobi polynomials of any degree in terms of their original shifted
polynomials but with other parameters. We show that the moments coefficients involve
a hypergeometric function of the type 4F3(1), which can be summed in closed analytical
formulas for special choices of the involved parameters. In this regard, we state and prove
the following two main theorems.

Theorem 1. Let φ∗n(x) be any kind of the four kinds of shifted Chebyshev polynomials. For every
non-negative integers r and n, one has

xr φ∗n(x) =
1

22r

2r

∑
`=0

(
2r
`

)
φ∗n+r−`(x). (12)

Proof. We will proceed by induction on r. For r = 1, if x is replaced by (2x − 1) in the
recurrence relation (6), then it is easy to see that

x φ∗n(x) =
1
4
{

φ∗n+1(x) + 2 φ∗n(x) + φ∗n−1(x)
}

, (13)

and therefore, the result is true for r = 1. Now assume the validity of relation (12); hence,
to complete the proof of Theorem 1, we have to prove the following formula:

xr+1 φ∗n(x) =
1

22r+2

2r+2

∑
`=0

(
2r + 2

`

)
φ∗n+r+1−`(x).

If we make use of the valid relation (12) along with relation (13), then we get

xr+1 φ∗n(x) =
1

22r

2r

∑
`=0

(2r
` ) x φ∗n+r−`(x)

=
1

22r+2

2r

∑
`=0

(2r
` )
{

φ∗n+r−`+1(x) + 2 φ∗n+r−`(x) + φ∗n+r−`−1(x)
}

=
1

22r+2

(
2r

∑
`=0

(2r
` ) φ∗n+r−`+1(x) + 2

2r+1

∑
`=1

( 2r
`−1) φ∗n+r−`+1(x) +

2r+2

∑
`=2

( 2r
`−2) φ∗n+r−`+1(x)

)

=
1

22r+2

(
2r

∑
`=2

{
(2r
` ) + 2 ( 2r

`−1) + ( 2r
`−2)

}
φ∗n+r−`+1(x) + (2r + 2)φ∗n+r(x)

+ (2r + 2)φ∗n−r(x) + φ∗n+r+1(x) + φ∗n−r−1(x)

)
.

With the aid of the simple combinatorial identity:

(2r
` ) + 2 ( 2r

`−1) + ( 2r
`−2) = (2r+2

` ), ` ≥ 2,

it is easy to see that

xr+1 φ∗n(x) =
1

22r+2

2r+2

∑
`=0

(2r+2
` ) φ∗n+r+1−`(x).

Theorem 1 is now proved.
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Now, we shall state and prove a new important theorem in which the moments of the
shifted normalized Jacobi polynomials R̃(α,β)

i (x) are expressed in terms of R̃(γ,δ)
i (x).

Theorem 2. For all non-negative integers r and i, one has the following moments relation:

xr R̃(α,β)
i (x) =

(i + r)! Γ(α + 1) Γ(2i + α + β + 1) Γ(i + r + δ + 1)
Γ(γ + 1) Γ(i + α + 1) Γ(i + α + β + 1)

×
i+r

∑
m=0

(γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + 1) Γ(i−m + r + γ + δ + 1)
m! (i−m + r)! Γ(i−m + r + δ + 1) Γ(2i−m + 2r + γ + δ + 2)

× 4F3

( −m,−i,−β− i,−γ− δ− 2i + m− 2r− 1
−i− r,−α− β− 2i,−δ− i− r

∣∣∣∣1
)

R̃(γ,δ)
i+r−m(x).

(14)

Proof. First, since xr R̃(α,β)
i (x) is a polynomial of degree (i + r), we can assume the formula

xr R̃(α,β)
i (x) =

i+r

∑
m=0

Am,i,r R̃(γ,δ)
i+r−m(x),

where Am,i,r are the moments coefficients to be determined. The orthogonality relation of

R̃(γ,δ)
i (x) over [0, 1] enables one to express Am,i,r in the following integral form:

Am,i,r =
1

hγ,δ
i−m+r

1∫

0

(1− x)γ xδ R̃(γ,δ)
i+r−m(x)

(
xr R̃(α,β)

i (x)
)

dx,

and with the aid of Rodrigues’ formula of the shifted normalized Jacobi polynomials (11),
the last integral form turns into

Am,i,r =
(−1)i−m+r Γ(γ + 1)

hγ,δ
i−m+r Γ(i−m + r + γ + 1)

1∫

0

Di−m+r
{
(1− x)γ+i−m+rxδ+i−m+r

} (
xr R̃(α,β)

i (x)
)

dx, (15)

where hγ,δ
k is given by (5).

If we integrate the right-hand side of (15) by parts (i + r−m) times, then we get

Am,i,r =
(γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + δ + 1)

Γ(γ + 1) (i−m + r)! Γ(i−m + r + δ + 1)

×
1∫

0

(1− x)γ+i−m+rxδ+i−m+r Di−m+r
(

xr R̃(α,β)
i (x)

)
dx.

The power form representation of R̃(α,β)
i (x) in (9), together with the simple identity

Dsx` = (`− s + 1)s x`−s,

leads to the following formula for Am,i,r

Am,i,r =
i! Γ(α + 1) (γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + δ + 1) (β + 1)i
(i−m + r)! Γ(γ + 1) Γ(i + α + 1) Γ(i−m + r + δ + 1) (α + β + 1)i

×
i

∑
`=0

(−1)` (−`+ m + 1)i−m+r (α + β + 1)2i−`
`! (i− `)! (β + 1)i−`

1∫

0

(1− x)γ+i−m+rxδ+i+r−` dx.
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It is easy to show the validity of the following identity:

1∫

0

(1− x)γ+i−m+rxδ+i−m+r−` dx =B(γ + i−m + r + 1, δ + i− `+ r + 1)

=
Γ(γ + i−m + r + 1) Γ(δ + i− `+ r + 1)

Γ(γ + δ + 2i− `−m + 2r + 2)
,

and therefore, the coefficients Am,i,r are given by

Am,i,r =
i! Γ(α + 1) (β + 1)i (γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + δ + 1)
(i−m + r)! Γ(γ + 1) Γ(i + α + 1) Γ(i−m + r + δ + 1) (α + β + 1)i

×
m

∑
`=0

(−1)` (−`+ m + 1)i−m+r (α + β + 1)2i−` Γ(i− `+ r + δ + 1) Γ(i−m + r + γ + 1)
`! (i− `)! (β + 1)i−` Γ(2i− `−m + 2r + γ + δ + 2)

.
(16)

The sum that appears in the right-hand side of (16) can be written in the following
hypergeometric representation

m

∑
`=0

(−1)` (−`+ m + 1)i−m+r (α + β + 1)2i−` Γ(i− `+ r + δ + 1) Γ(i−m + r + γ + 1)
`! (i− `)! (β + 1)i−` Γ(2i− `−m + 2r + γ + δ + 2)

=

(i + r)! Γ(β + 1) Γ(2i + α + β + 1) Γ(i + r + δ + 1) Γ(i−m + r + γ + 1)
i! m! Γ(α + β + 1) Γ(i + β + 1) Γ(2i−m + 2r + γ + δ + 2)

× 4F3

( −m,−i,−β− i,−γ− δ− 2i + m− 2r− 1
−i− r,−α− β− 2i,−δ− i− r

∣∣∣∣1
)

,

and this leads to the desired moments relation (14).

Corollary 1. For all non-negative integers r and i, the following moments relation of the normalized
Jacobi polynomials is obtained:

xr R̃(α,β)
i (x) =

(i + r)! Γ(α + 1) Γ(2i + α + β + 1) Γ(i + r + δ + 1)
Γ(γ + 1) Γ(i + α + 1) Γ(i + α + β + 1)

×
i+r

∑
m=0

(γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + 1) Γ(i−m + r + γ + δ + 1)
m! (i−m + r)! Γ(i−m + r + δ + 1) Γ(2i−m + 2r + γ + δ + 2)

× 4F3

( −m,−i,−β− i,−γ− δ− 2i + m− 2r− 1
−i− r,−α− β− 2i,−δ− i− r

∣∣∣∣1
)

R̃(α,β)
i+r−m(x).

(17)

Proof. If we set γ = α, δ = β in Formula (14), then Formula (17) can be obtained.

Remark 1. For some particular choices of α, β, γ, δ, the hypergeometric series that appears in
(14) can be summed, and hence some moments relations can be obtained in reduced forms. In the
following, we give some of these cases.

Corollary 2. For all non-negative integers i and r, one has

xr T∗i (x) =
(2r + 1)!

22r+1

2r+1

∑
m=0

1
m! (−m + 2r + 1)!

V∗i+r−m(x). (18)
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Proof. The substitution by α = β = γ = − 1
2 , and δ = 1

2 , into relation (14) yields

xr T∗i (x) =
(2i + 2r + 1)!

22r+1

i+r

∑
m=0

1
m! (2i−m + 2r + 1)!

× 4F3

( −m,−i, 1
2 − i,−2i + m− 2r− 1

1− 2i,−i− r− 1
2 ,−i− r

∣∣∣∣1
)

V∗i+r−m(x).

(19)

We note that the terminating 4F3(1) that appears in (19) involves the two non-negative
integers i and m in the numerator parameters. In order to reduce it, we set

Sm,i,r = 4F3

( −m,−i, 1
2 − i,−2i + m− 2r− 1

1− 2i,−i− r− 1
2 ,−i− r

∣∣∣∣1
)

,

and we consider the following two cases:
(i) If m ≤ i, and then the ue Zeilberger’s algorithm [45], it can be shown that Sm,i,r satisfies
the following recurrence relation

(1 + m)(−1 + m− 2r)Sm,i,r + (1 + i(2 + 4m− 4r)− 2m(1 + m− 2r) + 6r) Sm+1,i,r

+ (−2 + 2i−m)(2i−m + 2r) Sm+2,i,r = 0, S0,i,r = 1, S1,i,r =
2r + 1
2r + 3

,

which can be solved exactly to give

Sm,i,r = 4F3

( −m,−i, 1
2 − i,−2i + m− 2r− 1

1− 2i,−i− r− 1
2 ,−i− r

∣∣∣∣1
)
=

(2r + 1)! (2i−m + 2r + 1)!
(2i + 2r + 1)! (2r−m + 1)!

. (20)

(ii) If m > i, then it can be shown that Sm,i,r satisfies the following recurrence relation:

(−4 + 2i−m)(−3 + 2i−m)(−1 + 4i− 2m + 2r)(−2 + 2i−m + 2r)(−1 + 2i−m + 2r)Sm,i−2,r

− 4(−1 + i + r)(−1 + 2i + 2r)(−3 + 4i− 2m + 2r)

×
(

2− 6i + 4i2 + 3m− 4im + m2 − r + 4ir− 2mr + 2r2
)

Sm,i−1,r

+ 4(−1 + i + r)(i + r)(−1 + 2i + 2r)(1 + 2i + 2r)(−5 + 4i− 2m + 2r)Sm,i,r = 0,

Sm,0,r = 1, Sm,1,r =
m2 − 2mr− 3m + 2r2 + 5r + 3

(r + 1)(2r + 3)
.

which can be exactly solved to give

Sm,i,r =
(2r + 1)!

(
m!

(m−2i)! +
(2i−m+2r+1)!
(2r−m+1)!

)

(2i + 2r + 1)!
.

Now, if we take into consideration the reduction of Sm,i,r for the two cases (i) and (ii),
then we can write the following two formulas

xr T∗i (x) =
r+i

∑
`=0

B`,r,iV∗` (x), r ≥ i,

and

xr T∗i (x) =
r+i

∑
`=0

B̄`,r,iV∗` (x), r < i,

where the coefficients B`,r,i and B̄`,r,i are given by
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B`,r,i =
(2r + 1)!

22r+1

×





1
(i− `+ r)!(`+ r− i + 1)!

+
1

(−i− `+ r)!(`+ r + i + 1)!
, 0 ≤ ` ≤ r− i,

1
(i− `+ r)! (1− i + `+ r)!

, r− i + 1 ≤ ` ≤ r + i,

(21)

and

B̄`,r,i =
(2r + 1)!

22r+1 (i− `+ r)! (1− i + `+ r)!
, 0 ≤ ` ≤ r + i. (22)

For the case corresponding to r ≥ i. Based on (21), relation (19) turns into

xr T∗i (x) =
(2r + 1)!

22r+1

r−i

∑
`=0

(
1

(i− `+ r)! (1− i + `+ r)!
+

1
(−i− `+ r)! (1 + i + `+ r)!

)
V∗` (x)

+
(2r + 1)!

22r+1

r+i

∑
`=r−i+1

1
(i− `+ r)! (1− i + `+ r)!

V∗` (x)

=
(2r + 1)!

22r+1

(
i+r

∑
`=0

1
(i− `+ r)! (1− i + `+ r)!

V∗` (x) +
r−i

∑
`=0

1
(−i− `+ r)! (1 + i + `+ r)!

V∗` (x)

)

=
(2r + 1)!

22r+1

(
i+r

∑
m=0

1
m! (2r−m + 1)!

V∗i+r−m(x) +
2r+1

∑
m=i+r+1

1
m! (2r−m + 1)!

V∗m−i−r−1(x)

)
.

Based on the well-known identity:

Vp(x) = V−p−1(x), p ≥ 0,

we can write

xr T∗i (x) =
(2r + 1)!

22r+1

(
i+r

∑
m=0

1
m! (2r−m + 1)!

V∗i+r−m(x) +
2r+1

∑
m=i+r+1

1
m! (2r−m + 1)!

V∗i+r+m(x)

)
.

=
(2r + 1)!

22r+1

2r+1

∑
m=0

1
m! (−m + 2r + 1)!

V∗i+r−m(x).

In addition, for the case that corresponds to i > r, we can see that

xr T∗i (x) =
(2r + 1)!

22r+1

2r+1

∑
m=0

1
m! (−m + 2r + 1)!

V∗i+r−m(x).

Therefore, the unified moments relation (18) is proved for all i and r.

Corollary 3. For all non-negative integers i and r, one has

xr T∗i (x) =
(2r + 1)!

22r

2r+2

∑
m=0

(−m + r + 1)
m! (−m + 2r + 2)!

U∗i+r−m(x). (23)

Corollary 4. For all non-negative integers i and r, one has

xr V∗i (x) =
(2r)!
22r

2r+1

∑
m=0

2r− 2m + 1
m! (−m + 2r + 1)!

U∗i+r−m(x). (24)
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Proof. Proofs of Corollaries 3 and 4 are similar to the proof of Corollary 2.

Remark 2. When employing Zeilberger’s algorithm for the reduction of certain hypergeometric
functions of the unit argument, a recurrence relation is obtained. The exact solution of this
recurrence relation can be found by a suitable computer algebra algorithm. Petkovsek’s and van
Hoeij algorithms may be useful for obtaining the desired solutions (see, [45,46]).

4. A New Approach for Solving Jacobi Linearization Problem via Moments Formulas

This section is confined to developing new linearization formulas of the normalized
Jacobi polynomials of different parameters based on utilizing the new moments formulas
derived in Section 3.

Theorem 3. Let i and j be any two non-negative integers, and let φk(x) be any polynomial of the
four kinds of Chebyshev polynomials. The following linearization formula is valid

R(α,β)
i (x) φj(x) =

(2i)! Γ(α + 1) Γ(2i + α + β + 1)
22i Γ(i + α + 1) Γ(i + α + β + 1)

×
2i

∑
p=0

1
p! (2i− p)! 3F2

( −p, p− 2i,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1
)

φi+j−p(x).
(25)

Proof. The power form representation of R̃(α,β)
i (x) (9) together with the result of Theorem 1

yield

R̃(α,β)
i (x) φ∗j (x) =

i! Γ(α + 1) (β + 1)i
Γ(i + α + 1) (α + β + 1)i

i

∑
r=0

(−1)r 4r−i (α + β + 1)2i−r
r! (i− r)! (β + 1)i−r

2i−2r

∑
s=0

(2i−2r
s ) φ∗j+i−r−s(x).

Expanding the right-hand side of the last relation and performing some algebraic
calculations lead to the following relation:

R̃(α,β)
i (x) φ∗j (x) =

i! Γ(α + 1) (β + 1)i
Γ(i + α + 1) (α + β + 1)i

2i

∑
p=0

p

∑
r=0

(−1)r 4r−i (2 i−2 r
p−r ) (α + β + 1)2i−r

r! (i− r)! (β + 1)i−r
φ∗j+i−p(x),

but it can be shown that

p

∑
r=0

(−1)r 4r−i (2 i−2 r
p−r ) (α + β + 1)2i−r

r! (i− r)! (β + 1)i−r
=

(2i)! Γ(β + 1) Γ(2i + α + β + 1)
22 i p! (2i− p)! Γ(α + β + 1) Γ(i + β + 1)

× 3F2

( −p, p− 2i,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1
)

,

and therefore, the following linearization formula is obtained:

R̃(α,β)
i (x) φ∗j (x) =

(2i)! Γ(α + 1) Γ(2i + α + β + 1)
22i Γ(i + α + 1) Γ(i + α + β + 1)

×
2i

∑
p=0

1
p! (2i− p)! 3F2

( −p, p− 2i,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1
)

φ∗i+j−p(x).

In the last formula, if x is replaced by 1+x
2 , then the linearization Formula (25) is

obtained.
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Corollary 5. For all non-negative integers i and j, the following linearization formula holds

C(α)
i (x) φj(x) =

i! 22α−1 Γ
(

α + 1
2

)

√
π Γ(α)Γ(i + 2α)

i

∑
p=0

Γ(p + α) Γ(i− p + α)

p! (i− p)!
φj+i−2 p(x). (26)

Proof. If we set β = α in (25), and each of them is replaced by
(

α− 1
2

)
, then we get

C(α)
i (x) φj(x) =

22 α−1 (2i− 1)! Γ
(

α + 1
2

)
Γ(i + α)

√
π Γ(i + 2α)

2i

∑
p=0

1
p! (2i− p)!

× 3F2

( −p, p− 2i,−α− i + 1
2

1
2 − i,−2α− 2i + 1

∣∣∣∣1
)

φj+i−p(x).

(27)

The 3F2(1) in (27) can be summed with the aid of Watson’s identity to give

3F2

( −p, p− 2i,−α− i + 1
2

1
2 − i,−2α− 2i + 1

∣∣∣∣1
)
=





Γ
(

p+1
2

)
(α) p

2√
π
(

i− p
2 + 1

2

)
p
2

(
i− p

2 + α
)

p
2

, p even,

0, p odd,

and accordingly, relation (26) can be obtained.

Corollary 6. For all non-negative integers i and j, the following linearization formulas hold

Li(x) φj(x) =
1
π

i

∑
p=0

Γ(p + 1
2 ) Γ(i− p + 1

2 )

p! (i− p)!
φj+i−2p(x), (28)

Ui(x) φj(x) =
i

∑
p=0

φj+i−2p(x), (29)

Ti(x) φj(x) =
1
2
(
φj+i(x) + φj−i(x)

)
. (30)

Proof. The above three formulas can be easily obtained if we substitute by α = 1
2 , 1, 0,

respectively, in Formula (26).

Corollary 7. For all non-negative integers i and j, the following linearization formula holds

J(α,− 1
2 )

i (x) φj(x) =
(2i)! Γ(α + 1) Γ

(
2i + α + 1

2

)

22i Γ
(

i + α + 1
2

)
Γ(i + α + 1)

2i

∑
p=0

(
−p− α + 1

2

)
p

p! (2i− p)!
(
−2i− α + 1

2

)
p

φj+i−p(x). (31)

Proof. Setting β = − 1
2 in (25) yields

R̃(α,− 1
2 )

i (x) φj(x) =
(2i)! Γ(α + 1) Γ

(
2i + α + 1

2

)

22i Γ
(

i + α + 1
2

)
Γ(i + α + 1)

2i

∑
p=0

2F1

( −p, p− 2i
−2i− α + 1

2

∣∣∣∣1
)

p!(2i− p)!
φj+i−p(x).

The last 2F1(1) can be summed with the aid of Chu-Vandermonde identity, and
consequently, formula (31) can be obtained.

Corollary 8. For all non-negative integers i and j, the following linearization formula holds
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J(α,α+1)
i (x) φj(x) =

(2i)! Γ(α + 1) Γ(2 i + 2 α + 2)√
π 22 i Γ(i + α + 1) Γ(i + 2α + 2)

×
i

∑
p=0

Γ
(

p + 1
2

) (
α + 3

2
)

p

(2p)! (2i− 2p)!
(

i− p + 1
2

)
p

(
i− p + α + 3

2
)

p

{
φi+j−2p(x)− 2 (i− p)

2α + 2i− 2p + 1
φi+j−2p−1(x)

}
.

(32)

Proof. Substitution by β = α + 1 into the linearization Formula (25) yields

R̃(α,α+1)
i (x) φj(x) =

(2i)! Γ(α + 1) Γ(2i + 2 α + 2)
22 i Γ(i + α + 1) Γ(i + 2 α + 2)

×
2i

∑
p=0

1
p! (2i− p)! 3F2

( −p, p− 2i,−α− i− 1
1
2 − i,−2α− 2i− 1

∣∣∣∣1
)

φj+i−p(x).

Regarding the 3F2(1) that appears in the last formula, and to the best of our knowledge,
no standard formula exists in the literature to sum it. Therefore, we resort to Zeilberger’s
algorithm for summing it, so we set

Ap,i = 3F2

( −p, p− 2i,−α− i− 1
1
2 − i,−2α− 2i− 1

∣∣∣∣1
)

,

it can be shown that Ap,i satisfies the following recurrence relation of order two:

(2i− p− 1) (2α + 2i− p) Gp+2,i + 2 (i− p− 1) Gp+1,i − (p + 1)(2α + p + 2) Gp,i = 0,

with the initial values:
G0,i = 1, G1,i =

−1
2i + 2α + 1

,

whose exact solution is given by

Ap,i = 3F2

( −p, p− 2i,−α− i− 1
1
2 − i,−2α− 2i− 1

∣∣∣∣1
)
=





Γ
(

p+1
2

)(
α + 3

2
)

p
2√

π
(

i− p
2 + 1

2

)
p
2

(
i− p

2 + α + 3
2
)

p
2

, p even,

−Γ
( p

2 + 1
)
Γ
(
i− p

2 + 1
)(

α + 3
2
)

p−1
2√

π Γ
(

i + 1
2

)(
i− p

2 + α + 1
)

p+1
2

, p odd.

Making use of the above reduction and performing some calculations yield the fol-
lowing linearization formula

R̃(α,α+1)
i (x) φ∗j (x) =

(2i)! Γ(α + 1) Γ(2(i + α + 1))√
π 22 i Γ(i + α + 1) Γ(i + 2α + 2)

×
i

∑
p=0

Γ
(

p + 1
2

)(
α + 3

2
)

p

(2p)! (2i− 2p)!
(

i− p + 1
2

)
p

(
i− p + α + 3

2
)

p

{
φ∗i+j−2p(x)− 2(i− p)

2α + 2i− 2p + 1
φ∗i+j−2p−1(x)

}
.

In the last formula, if x is replaced by 1+x
2 , then Formula (32) is obtained.

The proof of Corollary 8 is now complete.

Now, and based on the general formula of the moments of the shifted normalized
Jacobi polynomials, we will state and prove a theorem in which a general linearization
formula of Jacobi polynomials is given.
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Theorem 4. For all non-negative integers i and j, the following linearization formula holds

R(α,β)
i (x) R(λ,µ)

j (x) =
i! Γ(α + 1) Γ(λ + 1) Γ(2j + λ + µ + 1) (β + 1)i

Γ(γ + 1) × Γ(i + α + 1) Γ(j + λ + 1) Γ(j + λ + µ + 1) (α + β + 1)i

×
i+j

∑
p=0

(γ + δ + 2i + 2j− 2p + 1) Γ(i + j− p + γ + 1) Γ(i + j− p + γ + δ + 1)
(i + j− p)! Γ(i + j− p + δ + 1)

×
p

∑
m=0

(−1)p+m (i + j + m− p)! Γ(i + j + m− p + δ + 1) (α + β + 1)2i+m−p

m! (p−m)! (i + m− p)! (β + 1)i+m−p Γ(2i + 2j + m− 2p + γ + δ + 2)

× 4F3

( −j,−m,−γ− δ− 2i− 2j−m + 2p− 1,−j− µ
−i− j−m + p,−δ− i− j−m + p,−2j− λ− µ

∣∣∣∣1
)

R(γ,δ)
i+j−p(x).

(33)

Proof. Starting with the power form representation of the shifted normalized Jacobi poly-
nomials (9) enables one to write

R̃(α,β)
i (x) R̃(λ,µ)

j (x) =
i

∑
r=0

Ar,i xi−r R̃(λ,µ)
j (x), (34)

where

Ar,i =
(−1)r i! Γ(α + 1) (β + 1)i (α + β + 1)2i−r

r! (i− r)! Γ(i + α + 1) (α + β + 1)i (β + 1)i−r
.

Theorem 2 enables one to convert (34) into the following formula

R̃(α,β)
i (x) R̃(λ,µ)

j (x) =
i

∑
r=0

j+i−r

∑
m=0

Ar,i Bm,i,r,j R̃(γ,δ)
j+i−r−m(x), (35)

and

Bm,i,r,j =
(i + j− r)! Γ(λ + 1) Γ(2j + λ + µ + 1)(γ + δ + 2i + 2j− 2m− 2r + 1)

m! (i + j−m− r)! Γ(γ + 1) Γ(j + λ + 1)

× Γ(i + j− r + δ + 1)Γ(i + j−m− r + γ + 1)Γ(i + j−m− r + γ + δ + 1)
Γ(j + λ + µ + 1)Γ(i + j−m− r + δ + 1)Γ(2i + 2j−m− 2r + γ + δ + 2)

× 4F3

( −j,−m,−γ− δ− 2i− 2j + m + 2r− 1,−j− µ
−i− j + r,−δ− i− j + r,−2j− λ− µ

∣∣∣∣1
)

.

(36)

Performing some lengthy manipulations on the right-hand side of (35) enables one to
rewrite Equation (35) as

R̃(α,β)
i (x) R̃(λ,µ)

j (x) =
j+i

∑
p=0

(
p

∑
m=0

Am,i Bp−m,i,m,j

)
R̃(γ,δ)

j+i−p(x).

The last relation leads to Formula (33), replacing x by 1+x
2 .

The following corollary gives the general linearization formula of ultraspherical
polynomials of different parameters. This relation of course generalizes the well-known
formula of Dougall [41].

Corollary 9. For all non-negative integers i and j, the following linearization formula holds
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C(α)
i (x)C(λ)

j (x) =
4j+λ i! Γ

(
α + 1

2

)
Γ
(

λ + 1
2

)
Γ(j + λ)

√
π Γ
(

γ + 1
2

)
Γ(i + 2α)Γ(j + 2λ)

i+j

∑
p=0

(γ + i + j− p) Γ(i + j− p + 2γ)

(i + j− p)!

×
p

∑
m=0

(−1)p−m (i + j + m− p)! Γ(2i + m− p + 2α) Γ
(

i + j + m− p + γ + 1
2

)

m! (p−m)! (i + m− p)! Γ
(

i + m− p + α + 1
2

)
Γ(2i + 2j + m− 2p + 2γ + 1)

× 4F3

( −j,−m,−2γ− 2i− 2j−m + 2p,−j− λ + 1
2

−i− j−m + p,−γ− i− j−m + p + 1
2 ,−2j− 2λ + 1

∣∣∣∣1
)

C(γ)
i+j−p(x).

(37)

Now, we shall give some new linearization formulas based on the general formula in
Theorem 4.

Theorem 5. For all non-negative integers i and j, the following linearization formula holds:

R(α,β)
i (x) Tj(x) =

(2i + 1)! Γ(1 + α) Γ(1 + 2i + α + β)

22i Γ(1 + i + α) Γ(1 + i + α + β)

×
2i+2

∑
p=0

i− p + 1
p! (2i− p + 2)! 3F2

( −p,−2i + p− 2,−β− i
−i− 1

2 ,−α− β− 2i

∣∣∣∣1
)

Ui+j−p(x).
(38)

Proof. The result of Theorem 5 is a special result of Theorem 4 for the case that corresponds
to the values: λ = µ = − 1

2 , γ = δ = 1
2 .

Corollary 10. For all non-negative integers i and j, the following linearization formula holds:

C(α)
i (x) Tj(x) =

22 α−2 i! Γ
(

1
2 + α

)

√
π Γ(i + 2α)

i+1

∑
p=0

(1 + i− 2p) Γ(i− p + α)(α− 1)p

p! (i− p + 1)!
Uj+i−2p(x). (39)

Proof. Setting β = α in (38) and replacing each with
(

α− 1
2

)
yields the following relation:

C(α)
i (x) Tj(x) =

22α−1 (2i + 1)! Γ
(

α + 1
2

)
Γ(i + α)

√
π Γ(i + 2α)

2i+2

∑
p=0

(i− p + 1)
p! (2i− p + 2)!

× 3F2

( −p,−2i + p− 2,−α− i + 1
2

−i− 1
2 ,−2α− 2i + 1

∣∣∣∣1
)

Uj+i−p(x).

It can be shown with the aid of Watson’s identity that

3F2

( −p,−2i + p− 2,−α− i + 1
2

−i− 1
2 ,−2α− 2i + 1

∣∣∣∣1
)
=





Γ
(

p+1
2

)
(α− 1) p

2
Γ
(
i− p

2 + α
)

√
π Γ(i + α)

(
i− p

2 + 3
2
)

p
2

, p even,

0, p odd,

and hence Formula (39) can be obtained.
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Corollary 11. For all non-negative integers i and j, the following linearization formulas hold:

Li(x) Tj(x) =
1

4 π

i+1

∑
p=0

(−i + 2p− 1) Γ
(

p− 1
2

)
Γ
(

i− p + 1
2

)

p! (i− p + 1)!
Ui+j−2 p(x), (40)

Ui(x) Tj(x) =
1
2
(
Uj+i(x)−Uj−i−2(x)

)
, (41)

Ti(x) Tj(x) =
1
4
(
Uj+i(x) + Uj−i(x)

)
− 1

4
(
Uj+i−2(x) + Uj−i−2(x)

)
. (42)

Proof. Formulas (40), (41), and (42) can be obtained as direct special cases of Formula (39)
by setting α = 1

2 , 1, 0, respectively.

Theorem 6. For all non-negative integers i and j, the following linearization formula holds:

R(α,β)
i (x)Vj(x) =

(2i)! Γ(α + 1) Γ(2i + α + β + 1)
22i Γ(i + α + 1) Γ(i + α + β + 1)

×
2i+1

∑
p=0

2i− 2p + 1
p! (2i− p + 1)! 3F2

( −p,−2i + p− 1,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1
)

Ui+j−p(x).
(43)

Proof. The result of Theorem 6 is a special result of Theorem 4 for the case that corresponds
to the values λ = − 1

2 , µ = γ = δ = 1
2 .

Corollary 12. For all non-negative integers i and j, the following linearization formula holds

C(α)
i (x)Vj(x) =

22α−1 i! Γ
(

α + 1
2

)

√
π Γ(α) Γ(i + 2α)

i

∑
p=0

Γ(p + α) Γ(i− p + α)

p! (i− p)!

×
(
Uj+i−2p(x) + Uj+i−2p−1(x)

)
.

(44)

Proof. From (43), we get the following relation:

C(α)
i (x)Vj(x) =

22α−1 (2i)! Γ
(

α + 1
2

)
Γ(i + α)

√
π Γ(i + 2α)

×
i+j

∑
p=0

2i− 2p + 1
p! (2i− p + 1)! 3F2

( −p,−2i + p− 1,−α− i + 1
2

1
2 − i,−2α− 2i + 1

∣∣∣∣1
)

Ui+j−p(x).

(45)

It can be shown with the aid of Zeilberger’s algorithm that

3F2

( −p,−2i + p− 1,−α− i + 1
2

1
2 − i,−2α− 2i + 1

∣∣∣∣1
)
=

2
√

π(2i− 2p + 1)Γ
(

i + 1
2

)
Γ(i + α)

×





Γ
(

p+1
2

)
Γ
(
i− p

2 + 3
2
)

Γ
(
i− p

2 + α
)
(α) p

2
, p even,

−Γ
( p

2 + 1
)

Γ
(
i− p

2 + 1
)

Γ
(

p−1
2 + α

)
Γ
(

i− p
2 + α + 1

2

)

Γ(α)
, p odd.

Finally, some calculations lead to (44).
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Corollary 13. For all non-negative integers i and j, the following linearization formulas hold:

Li(x)Vj(x) =
1
π

i

∑
p=0

Γ
(

1
2 + i− p

)
Γ
(

1
2 + p

)

p! (i− p)!
(
Uj+i−2p(x)−Uj+i−2p−1(x)

)
, (46)

Ui(x)Vj(x) =
i

∑
p=0

(
Uj+i−2p(x)−Uj+i−2p−1(x)

)
, (47)

Ti(x)Vj(x) =
1
2
(
Uj−i(x)−Uj−i−1(x) + Uj+i(x)−Uj+i−1(x)

)
. (48)

Proof. Formulas (46), (47), and (48) can be obtained as direct special cases of the Formula (44)
by setting α = 1

2 , 1, 0, respectively.

Theorem 7. For all non-negative integers i and j, the following linearization formula holds:

R(α,β)
i (x) Tj(x) =

i! Γ(α + 1) Γ
(
i + 3

2
)

Γ(2i + α + β + 1)√
π Γ(i + α + 1) Γ(i + α + β + 1)

×
2i+1

∑
p=0

1
p! (2i− p + 1)! 3F2

( −p,−1− 2i + p,−i− β

− 1
2 − i,−2i− α− β

∣∣∣∣1
)

Vi+j−p(x).

Proof. The result of Theorem 7 is a special result of Theorem 4 for the case that corresponds
to the values λ = µ = γ = − 1

2 , δ = 1
2 .

Corollary 14. For all non-negative integers i and j, the following linearization formula holds

C(α)
i (x) Tj(x) =

22 α−2 (2i + 1)! Γ
(

α + 1
2

)

π Γ(α) Γ
(
i + 3

2
)

Γ(i + 2α)

i

∑
p=0

Γ
(

p + 1
2

)
Γ(i− p + α) Γ(α + p) Γ

( 3
2 + i− p

)

(2p)! (2i− 2p + 1)!

×
(
Vj+i−2p(x) + Vj+i−2p−1(x)

)
.

(49)

Proof. Directly from Theorem 7.

Corollary 15. For all non-negative integers i and j, the following linearization formulas hold:

Li(x) Tj(x) =
1

2 π

i

∑
p=0

Γ
(

1
2 + i− p

)
Γ
(

1
2 + p

)

p!(i− p)!
(
Vj+i−2p(x)−Vj+i−2p−1(x)

)
, (50)

Ui(x) Tj(x) =
1
2

2i+1

∑
p=0

Vj−i+p−1(x), (51)

Ti(x) Tj(x) =
1
4
(
Vj−i(x) + Vj−i−1(x) + Vj+i(x) + Vj+i−1(x)

)
. (52)

Proof. Direct from Corollary 14, taking into consideration the three well-known special
classes of C(α)

i (x).
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Remark 3. Many linearization formulas developed in this section can be translated into their
trigonometric representations. For example, the linearization Formulas (47) and (51) are, respec-
tively, identical to the following trigonometric identities:

i

∑
p=0

{
sin(j + i− 2p + 1)θ − sin(j + i− 2p)θ

}
=

sin((i + 1)θ) cos
((

j + 1
2

)
θ
)

cos
(

θ
2

) ,

2i+1

∑
p=0

cos
(

j− i + p− 1
2

)
θ =

2 sin((i + 1)θ) cos
(

θ
2

)
cos(j θ)

sin θ
.

5. Some New Linearization Formulas of Chebyshev Polynomials Using the
Connection Coefficients Approach

In this section, we give other new linearization formulas of the products of Chebyshev
polynomials based on some connection formulas. First, the following theorem and corollary
serve in deriving the desired linearization formulas.

Theorem 8. For every non-negative integer j, the following connection formula holds

R(α,β)
j (x) =

j! Γ(α + 1) Γ(j + δ + 1) Γ(2j + α + β + 1)
Γ(γ + 1) Γ(j + α + 1) Γ(j + α + β + 1)

×
j

∑
p=0

(γ + δ + 2j− 2p + 1) Γ(j− p + γ + 1) Γ(j− p + γ + δ + 1)
p! (j− p)! Γ(j− p + δ + 1) Γ(2j− p + γ + δ + 2)

× 3F2

( −p,−β− j,−γ− δ− 2j + p− 1
−α− β− 2j,−δ− j

∣∣∣∣1
)

R(γ,δ)
j−p (x).

(53)

Corollary 16. For every non-negative integer j, the following connection formula holds

C(λ)
j (x) =

j! 4λ−µ Γ
(

λ + 1
2

)
Γ(j + λ)

Γ
(

µ + 1
2

)
Γ(j + 2λ)

×

⌊
j
2

⌋

∑
p=0

(j + µ− 2p) Γ(j− 2p + 2µ) (λ− µ)p

p! (j− 2p)! Γ(j− p + µ + 1)(j− p + λ)p
C(µ)

j−2p(x).

(54)

Proof. For the proof of Theorem 8 and Corollary 16, one can refer to [41].

Theorem 9. For all non-negative integers i and j, and j ≥ i, the following linearization for-
mula holds:

Ti(x)Uj(x) =
j+i

∑
r=0

Fr,j,i R(γ,δ)
j+i−r(x) +

j−i

∑
r=0

Gr,j,i R(γ,δ)
j−i−r(x), (55)

where

Fr,i,j =
22i+2j−1 (i + j)! Γ(i + j + δ + 1) (γ + δ + 2(i + j)− 2r + 1)

Γ(γ + 1) r! (i + j− r)!

× Γ(i + j− r + γ + 1)Γ(i + j− r + γ + δ + 1)
Γ(i + j− r + δ + 1)Γ(2(i + j)− r + γ + δ + 2)

× 3F2

( −r,−i− j− 1
2 ,−γ− δ− 2i− 2j + r− 1

−2i− 2j− 1,−δ− i− j

∣∣∣∣1
)

,
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and

Gr,i,j =
2−2i+2j−1 (j− i)! Γ(−i + j + δ + 1) (γ + δ− 2i + 2j− 2r + 1)

r! Γ(γ + 1) (−i + j− r)!

× Γ(−i + j− r + γ + 1) Γ(−i + j− r + γ + δ + 1)
Γ(−i + j− r + δ + 1) Γ(−2i + 2j− r + γ + δ + 2)

× 3F2

( −r, i− j− 1
2 ,−γ− δ + 2i− 2j + r− 1

2i− 2j− 1,−δ + i− j

∣∣∣∣1
)

.

Proof. Relation (55) can be followed with the aid of linearization Formula (29) along with
Theorem 8.

Theorem 10. For all non-negative integers i and j, and j ≥ i, the following linearization for-
mula holds:

Ti(x)Uj(x) =
√

π

22µΓ
(

µ + 1
2

)×




⌊
j+i
2

⌋

∑
r=0

(−1)r (i + j− r)! (µ− r)r (i + j + µ− 2r) Γ(i + j− 2r + 2µ)

r! (i + j− 2r)! Γ(i + j− r + µ + 1)
C(µ)

j+i−2r(x)

+

⌊
j−i
2

⌋

∑
r=0

(−1)r (−i + j− r)! (µ− r)r (−i + j + µ− 2r)Γ(−i + j− 2r + 2µ)

r! (−i + j− 2r)! Γ(−i + j− r + µ + 1)
C(µ)

j−i−2r(x)


.

(56)

Proof. Relation (56) can be followed with the aid of linearization Formula (29) along with
Corollary 16.

Corollary 17. For all non-negative integers i and j with j ≥ i, the following linearization for-
mula holds

Ti(x)Uj(x) = θi,j + 2

⌊
j−i
2

⌋

∑
k=0

Tj−i−2 k(x) +
i−1

∑
k=0

Tj+i−2k(x),

and

θi,j =

{
−1, (i + j) even,
0, (i + j) odd.

Proof. The last formula can be obtained as a direct special case of the linearization Formula
(56) for the special case corresponding to µ = 0.

Remark 4. Some other linearization formulas can be derived using Formula (29) together with the
two connection Formulas (53) and (54).

Theorem 11. For all non-negative integers i and j with j ≥ i, one has

Ti(x) Tj(x) =
j+i

∑
p=0

ξp,i,j R(α,β)
j+i−p(x) +

j−i

∑
p=0

ηp,i,j R(α,β)
j−i−p(x), (57)

where
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ξp,i,j =
4−1+i+j (i + j)! (1 + 2i + 2j− 2p + α + β) Γ(1 + i + j− p + α) Γ(1 + i + j + β)

p! (i + j− p)! Γ(1 + α) Γ(1 + i + j− p + β)

× Γ(1 + i + j− p + α + β)

Γ(2 + 2i + 2j− p + α + β) 3F2

( −p, 1
2 − i− j,−1− 2i− 2j + p− α− β

1− 2i− 2j,−i− j− β

∣∣∣∣1
)

,
(58)

and

ηp,i,j =
4−1−i+j (1− 2i + 2j− 2p + α + β) (j− i)! Γ(1− i + j− p + α) Γ(1− i + j + β)

p! (j− i− p)! Γ(α + 1) Γ(1− i + j− p + β)

× Γ(1− i + j− p + α + β)

Γ(2− 2i + 2j− p + α + β) 3F2

( −p, 1
2 + i− j,−1 + 2i− 2j + p− α− β

1 + 2i− 2j, i− j− β

∣∣∣∣1
)

.

(59)

Proof. In view of the well-known linearization formula

Ti(x) Tj(x) =
1
2
(
Tj−i(x) + Tj+i(x)

)
,

together with the connection formula in (53), the linearization Formula (57) can be ob-
tained.

Remark 5. The two hypergeometric functions appearing in the coefficients (58) and (59) can be
summed by Watson’s identity, and hence a reduced linearization formula of Chebyshev polynomials
of the first kind in terms of ultraspherical polynomials can be deduced. The following corollary
exhibits this result.

Corollary 18. For all non-negative integers i and j with j ≥ i, one has

Ti(x) Tj(x) =

2−1−2α (i + j)
√

π Γ(1 + α)

Γ
(

1
2 + α

)
j+i
2

∑
p=0

(−1)p (i + j− 2p + α) (1 + i + j− 2p)−1+2α

p! Γ(1− p + α) (i + j− p)1+α
C(α)

j+i−2p(x)

+
2−1−2α (i− j)

√
π Γ(1 + α)

Γ
(

1
2 + α

)
j−i
2

∑
p=0

(−1)p (i− j + 2p− α) (1− i + j− 2p)−1+2α

p! Γ(1− p + α) (−i + j− p)1+α
C(α)

j−i−2p(x).

(60)

Proof. If we set β = α in (57) and each is replaced by (α− 1
2 ), then the following formula

is obtained

Ti(x) Tj(x) =
2−1+2i+2j (i + j)! Γ

(
1
2 + i + j + α

)

Γ
(

1
2 + α

)
j+i

∑
p=0

(i + j− p + α) Γ(i + j− p + 2α)

p! (i + j− p)! Γ(1 + 2i + 2j− p + 2α)

× 3F2

( −p, 1
2 − i− j,−2i− 2j + p− 2α

1− 2i− 2j, 1
2 − i− j− α

∣∣∣∣1
)

C(α)
j+i−p(x)

+
2−1−2i+2j(j− i)! Γ

(
1
2 − i + j + α

)

Γ
(

1
2 + α

)
j−i

∑
p=0

(−i + j− p + α) Γ(−i + j− p + 2α)

p! (−i + j− p)! Γ(1− 2i + 2j− p + 2α)

× 3F2

( −p, 1
2 + i− j, 2i− 2j + p− 2α

1 + 2i− 2j, 1
2 + i− j− α

∣∣∣∣1
)

C(α)
j−i−p(x).

(61)
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Based on Watson’s formula, it can be shown that

3F2

( −p, 1
2 − i− j,−2i− 2j + p− 2α

1− 2i− 2j, 1
2 − i− j− α

∣∣∣∣1
)
=





(−1)
p
2
(
i + j− p

2 − 1
)
! Γ
(

1+p
2

)(
1− p

2 + α
)

p
2√

π (i + j− 1)!
(

1
2 + i + j− p

2 + α
)

p
2

, p even,

0, p odd,

and

3F2

( −p, 1
2 − i + j, 2i− 2j + p− 2α

1 + 2i− 2j, 1
2 i− j− α

∣∣∣∣1
)
=





(−1)
p
2
(
−i + j− p

2 − 1
)
! Γ
(

1+p
2

)(
1− p

2 + α
)

p
2√

π (−i + j− 1)!
(

1
2 − i + j− p

2 + α
)

p
2

, p even,

0, p odd,

and therefore, Formula (60) can be obtained.

Corollary 19. For all non-negative integers i and j with j ≥ i, the following two linearization
formulas are valid

Ti(x) Tj(x) =
(i + j)π

16

j+i
2

∑
p=0

(−1)p(1 + 2i + 2j− 4p)(i + j− p− 1)!
Γ
( 3

2 − p
)
Γ
( 3

2 + i + j− p
)

p!
Lj+i−2p(x)

+
(i− j)π

16

j−i
2

∑
p=0

(−1)p(−1 + 2i− 2j + 4p)(−i + j− p− 1)!
Γ
( 3

2 − p
)
Γ
( 3

2 − i + j− p
)

p!
Lj−i−2p(x),

(62)

and
Ti(x) Tj(x) =

1
4
(
Uj+i(x)−Uj+i−2(x) + Uj−i(x)−Uj−i−2(x)

)
. (63)

Proof. Setting α = 1
2 , 1, respectively, in Formula (60) yields the two special linearization

Formulas (62) and (63).

6. Numerical Application on the Non-Linear Riccati Equation

In this section, and aiming to illustrate the importance and applicability of the lin-
earization formulas presented in this paper, we shall present a numerical application to
a certain non-linear differential equation. More precisely, we will apply the tau spec-
tral method to solve the non-linear Riccai differential equation using some linearization
formulas that are established in this paper.

6.1. Tau Algorithm for the Non-Linear Riccati Differential Equation

Here, we are interested in proposing a spectral tau solution for the following non-linear
Riccati differential equation:

ξ ′(x) = b1 + b2 ξ(x) + b3 (ξ(x))2, x ∈ [0, 1], (64)

subject to the initial condition:
ξ(0) = ξ0, (65)

where b1, b2 and b3 are known real constants.
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We suggest the following approximate solution to ξ(x)

ξ(x) ≈ ξN(x) =
N

∑
k=0

ak C̃(α)
k (x); C̃(α)

k (x) = C(α)
k (2x− 1).

In order to proceed in our proposed tau method for solving (64)–(65), the following
two lemmas that are concerned with the shifted ultraspherical polynomials are required.

Lemma 1. For every k ≥ 1, the following derivative formula holds [47]:

D C̃(α)
k (x) =

k−1

∑
`=0

d`,k,α C̃(α)
` (x), (66)

where

d`,k,α =
4 θ`,k (`+ α) (1 + `)2α−1

(1 + k)2α−1
, (67)

and

θ`,k =

{
1, (`+ k) odd,
0, (`+ k) even.

Lemma 2. For all non-negative integers i and j, the following linearization formula holds

C̃(α)
i (x) C̃(α)

j (x) =
i+j

∑
p=0

p

∑
m=0

Lp,i,j,α,m C̃(α+ 1
2 )

i+j−p (x), (68)

where the coefficients Lp,i,j,α,m are given by

Lp,i,j,α,m =
(−1)−m+p 22(j+α)

(
1
2 + i + j− p + α

)
i! (i + j + m− p)!

(
Γ
(

1
2 + α

))2
Γ(j + α)

√
π m! (i + j− p)! (i + m− p)! (−m + p)! Γ(i + 2α) Γ(j + 2α)

× Γ(1 + i + j + m− p + α) Γ(1 + i + j− p + 2α) Γ(2i + m− p + 2α)

Γ(1 + α) Γ
(

1
2 + i + m− p + α

)
Γ(2 + 2i + 2j + m− 2p + 2α)

× 4F3

( −j,−m,−1− 2i− 2j−m + 2p− 2α, 1
2 − j− α

−i− j−m + p, 1− 2j− 2α,−i− j−m + p− α

∣∣∣∣1
)

.

(69)

Proof. From Corollary 9, if x is replaced by (2x− 1), and if we set λ = α and γ = α + 1
2 ,

then Formula (68) can be obtained.

Now, our strategy to solve (64) governed by (65) is to apply the spectral tau method.
Therefore, first, we have to compute the residual of Equation (64). Based on the two
expressions in (66) and (68), the residual R(x) can be written in the following form:

R(x) =ξ
′
N(x)− b3 (ξN(x))2 − b2 ξN(x)− b1

=
N

∑
k=1

k−1

∑
`=0

ak d`,k,α C̃(α)
` (x)− b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

ai aj Lp,i,j,α,m C̃(α+ 1
2 )

i+j−p (x)− b2

N

∑
k=0

ak C̃(α)
k (x)− b1,

(70)

where d`,k,α and Lp,i,j,α,m are as given, respectively, in (67) and (69).
Now, by replacing x by (2x− 1) in Formula (39), the following linearization formula

can be obtained

C̃(α)
m (x) T∗s (x) =

m+1

∑
r=0

χr,m,s,α U∗m+s−2r(x), (71)
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where

χr,m,s,α =
4−1+α (1 + m− 2r)m! Γ

(
1
2 + α

)
Γ(m− r + α)Γ(−1 + r + α)

√
π (1 + m− r)! r! Γ(−1 + α) Γ(m + 2α)

.

Now, Formula (71), along with (70), enables one to get the following formula :

R(x) T∗s (x) =
N

∑
k=1

k−1

∑
`=0

`+1

∑
r=0

ak d`,k,α χr,m,s,α U∗`+s−2r(x)

−b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

i+j−p+1

∑
r=0

ai aj Lp,i,j,α,m χr,i+j−p,s,α+ 1
2

U∗i+j+s−p−2r(x)

−b2

N

∑
k=0

k+1

∑
r=0

ak χr,k,s,α U∗k+s−2r(x)− b1 T∗s (x), s ≥ 0.

(72)

If we make use of the connection formula: ([44]):

T∗s (x) =
1
2
(
U∗s (x)−U∗s−2(x)

)
, s ≥ 0,

then Equation (72) can be written alternatively as

R(x) T̃s(x) =
N

∑
k=1

k−1

∑
`=0

`+1

∑
r=0

ak d`,k,α χr,m,s,α U∗`+s−2r(x)

−b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

i+j−p+1

∑
r=0

ai aj Lp,i,j,α,m χr,i+j−p,s,α+ 1
2

U∗i+j+s−p−2r(x)

−b2

N

∑
k=0

k+1

∑
r=0

ak χr,k,s,α U∗k+s−2r(x)− b1

2
(U∗s (x)−U∗s−2(x)).

Based on the application of the spectral tau method, we can assume that

∫ 1

0
R(x) T∗s (x)w(x) dx = 0, s = 0, 1, · · · , N − 1; w(x) =

√
x− x2,

and accordingly, the orthogonality relation of U∗n(x) yields the following non-linear system
of equations:

N

∑
k=1

k−1

∑
`=0

`+1

∑
r=0

ak d`,k,α χr,m,s,α δ`+s−2r,0 − b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

i+j−p+1

∑
r=0

ai aj Lp,i,j,α,m χr,i+j−p,s,α+ 1
2

δi+j+s−p−2r,0

−b2

N

∑
k=0

k+1

∑
r=0

ak χr,k,s,α δk+s−2r,0 −
b1

2
(δs,0 − δs−2,0) = 0, s = 0, 1, · · · , N − 1,

(73)

where δk,j denotes the well-known Kronecker delta function.
Furthermore, the initial condition (65) yields

N

∑
k=0

(−1)k ak = ξ0. (74)

Equation (73), together with Equation (74), yields a non-linear system of equations of
dimension N. This system can be solved numerically through a suitable technique such as
Newton’s iterative technique, and hence the numerical solution ξN(x) can be obtained.
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6.2. Numerical Tests

Now, we give two numerical examples accompanied by some comparisons to show
the effectiveness and applicability of the proposed ultraspherical tau method (UTM).

Example 1. Consider the non-linear Riccati differential Equation ([9,48–51]):

ξ ′(x) = 1 + 2 ξ(x)− ξ(x)2, x ∈ [0, 1], ξ(0) = 0, (75)

with the following exact solution:

ξ(x) =
√

2 tanh
(√

2 x− tanh−1 ( 1√
2

))
+ 1.

In Table 1, the maximum absolute error E is listed for various values of N and for α = 1
2 .

Furthermore, Table 2 illustrates a comparison between the errors resulting from the application of
our algorithm for the case corresponding to N = 16 and α = 1

2 with the best errors obtained by the
application of the following four methods:

• Optimal homotopy asymptotic method (OHAM) [48],
• Modified homotopy perturbation method (MHPM) [49],
• Variational iteration method (VIM) [50],
• Iterative reproducing kernel Hilbert space method (IRKHSM) [51],
• The method in [9].

The errors are calculated at xi = 0.1 i, 0 ≤ i ≤ 10. The findings of Table 2 demonstrate that
our method is extremely accurate when compared to the above-mentioned methods. The generated
numerical solutions are in good agreement with the precise one when just a few of the retained modes
are used. In addition, different errors of Example 1 for different values of α are displayed in Figure 1.

Table 1. Maximum absolute error E for Example 1 (α = 1
2 ).

N 6 8 10 12 14 16

E 2.358 .10−6 3.264 .10−7 6.382 .10−10 5.943 .10−13 2.975 .10−15 6.241 .10−16

Table 2. Comparison between different methods for Example 1.

x OHAM
[48]

MHPM
[49] VIM [50] IRKHSM

[51]
The Method

in [9]
UTM

(N = 16, α = 1
2 )

0 0 0 0 0 0 0
0.1 3.20 ×10−5 1.00 ×10−6 1.98 ×10−8 3.58 ×10−5 1.52 ×10−15 1.27 ×10−17

0.2 2.90 ×10−4 1.20 ×10−5 1.03 ×10−6 7.58 ×10−5 1.27 ×10−15 2.23 ×10−17

0.3 1.10 ×10−3 1.00 ×10−6 8.85 ×10−6 1.20 ×10−4 2.57 ×10−15 1.34 ×10−16

0.4 2.50 ×10−3 3.03 ×10−4 3.33 ×10−5 1.66 ×10−4 3.27 ×10−15 2.31 ×10−16

0.5 4.40 ×10−3 1.55 ×10−3 7.26 ×10−5 2.12 ×10−4 3.57 ×10−15 3.68 ×10−16

0.6 5.50 ×10−3 4.69 ×10−3 9.98 ×10−5 2.52 ×10−4 4.15 ×10−15 4.32 ×10−16

0.7 5.50 ×10−3 1.05 ×10−2 8.84 ×10−5 2.87 ×10−4 4.21 ×10−15 4.95 ×10−16

0.8 3.80 ×10−3 1.88 ×10−2 1.54 ×10−5 3.40 ×10−4 4.31 ×10−15 5.62 ×10−16

0.9 3.20 ×10−3 2.80 ×10−2 4.99 ×10−4 4.90 ×10−4 4.35 ×10−15 5.94 ×10−16

1.0 3.40 ×10−3 3.43 ×10−2 3.47 ×10−3 9.22 ×10−4 4.42 ×10−15 6.24 ×10−16
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|�-�N |

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-16

4.×10-16

6.×10-16

8.×10-16

1.×10-15

α=0

α=
1

2

α=1

Figure 1. Different errors of Example 1 for different values of α.

Example 2. Consider the non-linear Riccati differential Equation [52]:

ξ ′(x) =
1
4
+

x2

64
− 1

4
(ξ(x))2, x ∈ [0, 1], ξ(0) = 1. (76)

The exact solution of (76) is ξ(x) = x
4 +

4 e−
x2
16

4 +
∫ x

0 e−
t2
16 dt

.

Table 3 displays the maximum absolute errors resulting from the application of the UTM for
α = 0, 1

2 , 1 and for different values of N. Furthermore, different errors for the cases corresponding
to N = 16 and α = 0, 1

2 , 1 are shown in Figure 2.

Table 3. Maximum absolute error for Example 2.

N 8 10 12 14 16

α = 0 3.51 ×10−8 2.45 ×10−9 2.39 ×10−11 5.94 ×10−13 5.37 ×10−16

α = 1
2 1.38 ×10−8 3.27 ×10−10 8.36 ×10−12 4.62 ×10−12 3.74 ×10−16

α = 1 4.58 ×10−8 3.19 ×10−9 4.94 ×10−11 6.84 ×10−13 2.22 ×10−16

ξ - ξN |

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-17

4.×10-17

6.×10-17

8.×10-17

1.×10-16

1.2×10-16

α=0

α=
1

2

α=1

Figure 2. Different errors of Example 2 for different values of α.

Remark 6. We report here that, the best error obtained by Lakestani and Dehghan is O(10−9), from
the results depicted in Figure 2, we have a major superiority with few number of retained modes.

7. Conclusions

In this paper, we have considered two different approaches for solving the lineariza-
tion problems of Jacobi polynomials. The first approach is based on making use of the
moments formulas of the shifted Jacobi polynomials and the unified moments formula
for the four kinds of Chebyshev polynomials. This approach enables one to derive new
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general linearization formulas of some Jacobi polynomials in terms of certain terminating
hypergeometric functions of a unit argument. Symbolic algebra serves to simplify the
linearization formulas of Jacobi polynomials for certain choices of the involved parameters.
We also followed another approach to establish some linearization formulas. This approach
depends on employing the connection formula between two different Jacobi polynomials.
Again, the presented formulas were expressed in different terminating hypergeometric
functions of unit argument. In many cases, and using some well-known reduction formulas
or some symbolic computation, the appearing hypergeometric functions can be summed in
closed analytical forms. The main advantage of using the moments formulas in establishing
the linearization formulas is that this approach can be employed to derive the linearization
formulas of different polynomials and not restricted to the Jacobi polynomials. To the best
of our knowledge, most of the theoretical results of this paper are new and are very useful.
To ensure the importance of the presented formulas, a numerical application is analyzed in
detail to solve the non-linear Riccati differential equation with the aid of employing the
spectral tau method. The presented numerical results and comparisons showed the high
accuracy and applicability to the proposed numerical algorithm. We believe that other
types of differential equations can be treated based on utilizing the presented linearization
formulas.
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Abstract: The paper suggests a general method for proving the fact whether a certain set is p-
computable or not. The method is based on a polynomial analogue of the classical Gandy’s fixed
point theorem. Classical Gandy’s theorem deals with the extension of a predicate through a special
operator ΓΩ∗

Φ(x) and states that the smallest fixed point of this operator is a Σ-set. Our work uses
a new type of operator which extends predicates so that the smallest fixed point remains a p-
computable set. Moreover, if in the classical Gandy’s fixed point theorem, the special Σ-formula Φ(x)
is used in the construction of the operator, then a new operator uses special generating families of
formulas instead of a single formula. This work opens up broad prospects for the application of the
polynomial analogue of Gandy’s theorem in the construction of new types of terms and formulas, in
the construction of new data types and programs of polynomial computational complexity in Turing
complete languages.

Keywords: polynomial computability; p-computability; Gandy’s fixed point theorem; semantic
programming; polynomial operators; ∆p

0 -operators; computer science

1. Introduction

In both mathematics and programming, we are increasingly confronted with induc-
tively given constructs. These constructs can be, for example, new types of terms and
formulas in logic or programs and new data types in high-level programming languages
that are inductively defined using basic tools. All these inductively generated sets can be
viewed as the smallest fixed points of a suitable operator. Classical Gandy’s theorem [1,2]
allows us to inductively define some abstract set through the special operator ΓΩ∗

Φ(x) [1]
where the smallest fixed point will be a Σ-set. The Σ-set is most often not a computable set
and, moreover, not a p-computable set. Therefore, the question arises of how to modify
Gandy’s theorem so that the smallest fixed point be a computable or a p-computable set. In
this paper, we just talk about the construction of a ∆p

0 -operator with the smallest fixed point
being a p-computable set, which allows us to consider many inductive formulas definable
constructions as some polynomially computable set.

2. P-Computability

Let Σ be a finite alphabet and A, B ⊆ Σ∗ where Σ∗ is the set of finite words over
the alphabet Σ. We say that a function f : A → B is p-computable [3–5] if there exists a
one-tape/multi-tapes deterministic Turing machine T over the alphabet Σ and numbers
C, p ∈ N such that for all a from A the value of the function f (a) is computed on T in at
most C · |a|p steps, where |a| ≥ 1. The set A is called p-computable if its characteristic
function χA : Σ∗ → {0, 1} is p-computable. The class P of problems which can be solved
in polynomial time will often be denoted by ∆p

0 (accepted notation for the polynomial
hierarchy). Therefore, the notation ∆p

0 -function for a p-computable function and ∆p
0 -set

for a p-computable set will also be used. A partial function f : A → B is called a partial
p-computable function, if there exists a set D ⊆ A such that f : D → B is a p-computable
function (the Turing machine which represents f computes f (a) and stops at the final state
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q0) and f (a) is undefined (notation f (a) ↑p or simple ↑p) if a ∈ A\D, while the Turing
machine on the element a ∈ A\D stops at the final state q1 and number of steps does not
exceed C ∗ |a|p steps. As we can see, the partial p-computable function is a p-computable
function, but sometimes it is convenient to assume that the value of a p-computable
function is undefined. We will also denote partial p-computable functions as ∆p

0 -functions.

3. Word Splitting

Now let Σ0 be some finite alphabet and Σ = Σ0 ∪ {<,>} ∪ {, } is a new alphabet
obtained by adding new symbols (brackets and comma) to Σ0. Word splitting is the
following partial function R : Σ∗ → (Σ ∪ {#})∗ such that:

R(w) =

{
w1#...#wn, where w =< w1, . . . , wn > and every wi ∈ Σ∗ satisfies (1) or (2)
↑, otherwise

(1) wi ∈ Σ∗0
(2) wi starts with a left bracket and the number of left brackets in the word is equal to the
number of right brackets, while for any initial subword αi such that wi = αiβi it is not
implemented, where the word wi can be represented as some concatenation of the words
αi, βi ∈ Σ∗ and |αi| ≥ 1.

Proposition 1. The word splitting is unique.

Proof. Prove by contradiction. Let there be two different splittings R(w) = w1# . . . #wn
and R(w) = l1# . . . #lk such that w =< w1, . . . , wn > and w =< l1, . . . , lk >. Then, by
definition, either w1, l1 ∈ Σ∗0 , or w1 and l1 start with a left bracket and the number of right
and left brackets for each word is the same. In the first case, w1 and l1 are the same. In
the second case, w1 is the subword of l1 or l1 is the subword of w1. Then, by definition,
no proper subword starting with a left bracket can have an equal number of right and left
brackets. Equality of words was also obtained. Further, in a similar way, we show that the
remaining wi = li and at the same time n = k.

Proposition 2. R(w) is ∆p
0 -function.

Proof. Consider a Turing machine T with two semi-tapes (hereafter called tapes) over the
alphabet Σ ∪ {1, B, #} where B is an empty symbol:
(1) The 1st tape: we will store the word w.
(2) The 2nd tape: we will store the difference between the number of left and right brackets
of the word w.
Algorithm of the multi-tapes machine:
(1) If the first symbol on the first tape is not a left bracket, then T stops the work in the final
state q1. Otherwise, T replaces it on B symbol and goes on to the next steps.
(2) If the second symbol in the word w is from Σ0, then T reads the word w until it meets a
symbol, not from Σ0. If it is not a comma or a right bracket then T stops the work in state q1.
(3) If the second symbol is not from Σ0 and is not a left bracket, then T stops the work in
the state q1.
(4) When T reads the left bracket of the word w, then T adds 1 on the second tape and shifts
the head of the second tape to the right and when T reads the right bracket of the word w,
then T replaces symbol 1 with B of the second tape and shifts the head of the second tape
to the left.
(5) If there are no more symbols 1 on the second tape when T reads the right bracket from
the first tape, then the machine replaces the right bracket with B on the first tape. If there
are no other symbols from Σ after this right bracket, then the machine stops work in the
final state q0, otherwise, in the final state q1.
(6) If T meets a comma on the first tape and there are no symbols 1 on the second tape, then
T replaces this comma with # symbol.
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Computational complexity R(w):
(1) T reads the word w on the first tape periodically replacing the comma or brackets with
symbol #. The number of such steps does not exceed |w|.
(2) On the second tape T writes or erases symbols 1. The number of such additions and
removals does not exceed |w|.
(3) Steps from (1) and (2) taken simultaneously. It turns out that the computational com-
plexity t(R(w)) ≤ |w|.

Inductively define the notion rank of element r(w) for w ∈ Σ∗:

r(w) =

{
0, if R(w) ↑p

sup{r(w1), . . . , r(wk)}+ 1, if R(w) = w1# . . . #wk

4. Generating Formulas and Families. False Element

Let M be a model of signature σ = {c1, . . . , cr, f (m1)
1 , . . . , f (ms)

s , R(p1)
1 , . . . , R(pt)

t , P(1)
1 , . . . ,

P(1)
n } with the basic set M ⊆ Σ∗0 , where cl is constant symbols (l ∈ [1, . . . , r]), fi is func-

tional symbols (i ∈ [1, . . . , s]), Rj is predicate symbols (j ∈ [1, . . . , t]), Pk is unary predicate
symbols, k ∈ [1, . . . , n]. P(Σ∗) is the set of all subsets of the set Σ∗. FP+

1
, . . . , FP+

n
is fam-

ilies(generating families) positive quantifier-free formulas (hereafter called generating
formulas) of signature σ which can include unary predicates P1,. . . ,Pn with inputs of the
form Pj(xi). Moreover, we require that for any free variable xi in the formula ϕm ∈ FP+

k
there should be no occurrences of the form Pj(xi) and Ph(xi) for each xi, where j 6= h. This
property will be called predicate separability.

The idea is to generate new elements in the form of lists < a1, . . . , anm > obtained
from a1, . . . , anm ∈ M such that M |= ϕm(a1, . . . , anm) and then add this set of elements Qi
to the main set of the model where:

Qi = ∪ϕm(x1,...,xnm )∈FP+i
{< a1, . . . , anm > |M |= ϕm(a1, . . . , anm)}

If we are to extend the main set of elements M of the model M to this new set of
elements Qi, then we need to redefine the functions on these new elements and redefine
the truth of the predicates. It is clear that the functions on new elements will not be defined,
so we will expand the basic set of elements M of the M model of signature σ with a special
f alse-element to M∪ { f alse}. Next, we define the semantic meaning of terms and formulas
in the M f alse model for all elements from Σ∗ ∪ { f alse} and not only for M ∪ { f alse}.

Since everywhere below only positive quantifier-free formulas with a positive occur-
rence in the form of Pi(xj) for some Pi and xj appear, then for these formulas on the model
M f alse we inductively define the values of functions and the truth of predicates as well as
the truth of positive quantifier-free formulas ϕi, i ∈ I:
(1) M |= ϕi(a1, . . . , ak) if and only if M f alse |= ϕi(a1, . . . , ak) where a1, . . . , ak ∈ M.
(2) the function value f j(a1, . . . , anj) equal f alse, if at least one ai ∈ Σ∗ ∪ { f alse}\M,
j ∈ [1, . . . , s]
(3) the function value f j(t1(a), . . . , tn(a)) equal f alse if at least the value of one of the terms
tj(a) equals f alse.
(4) the formulas of the form f alse = t(a1, . . . , an) including f alse = f alse will be consid-
ered false.
(5) the formulas of the form a = a will be considered true for a ∈ M and false otherwise.
(6) the formulas of the form Ri(t1(a), . . . , tni (a)) will be considered false if at least one of
the terms tj(a) has value f alse.
(7) M |= P(a) if and only if M f alse |= P(a) where a ∈ M.
(8) Φ&Ψ, Φ ∨Ψ retain their standard definitions of truth.
Let us denote enrichment of the model M f alse by < M f alse, Q > such that:
(1) M ∪ { f alse} ∪Q is a new main set.
(2) All predicates Ri(t1, . . . , tni ) remain unchanged if the values of the terms t1, . . . , tni are
from M and are f alse otherwise.
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(3) All predicates Pj(a) remain unchanged if a ∈ M and Pj(a) are f alse otherwise.
(4) All functions fi(a1, . . . , an) remain unchanged for a1, . . . , an ∈ M and have a f alse
value otherwise.

Denote the expression < M f alse, Q, Pi > it is < M f alse, Q > enrichment at which the

truth set of the predicate Pi is extended to P
M f alse
i ∪Q.

5. Fixed Points of Monotone Locally Finite Operators

Let M f alse be a model of signature σ and Q = (Q1, . . . , Qn), Qi ⊆ Σ∗, i ∈ [1, . . . , n].

Then we introduce the notation: M(Q1,...,Qn)
f alse =<< · · · < M f alse, Q1, P1 > · · · >, Qn, Pn >.

Construct an operator:

ΓM
FP+1

,...,FP+n
: P(Σ∗)× · · · × P(Σ∗)→ P(Σ∗)× ...× P(Σ∗), (1)

which transfers n-th sets (Q1, . . . , Qn) to n-th sets (Q′1, . . . , Q′n) according to the following

rule: Q′i = Qi ∪
⋃

ϕm(x1,...,xkm )∈FP+i
{< a1, . . . , akm > | M(i−1)

f alse |= ϕm(a1, . . . , akm)}.

where ϕm ∈ FP+
i

, a1, . . . , akm ∈ M(i−1) and M
(i−1)
f alse is built on the model M f alse of signature

σ in the following way:

M
(0)
f alse = M f alse, . . . , M(i)

f alse =< M
(i−1)
f alse , Q′i, Pi >, where i ∈ [1, . . . , n].

We fix a partial order ≤n: (Q1, . . . , Qn) ≤n (R1, . . . , Rn), if Qi ⊆ Ri for all i ∈ [1, . . . , n]

Remark 1. Operator ΓM
FP+1

,...,FP+n
is monotone with respect to the order ≤n, i.e.,

(Q1, . . . , Qn) ≤n (R1, . . . , Rn)⇒ ΓM
FP+1

,...,FP+n
(Q1, . . . , Qn) ≤n ΓM

FP+1
,...,FP+n

(R1, . . . , Rn).

Remark 2. Operator ΓM
FP+1

,...,FP+n
possesses the property of a fixed point, i.e.:

(Q1, . . . , Qn) ≤n ΓM
FP+1

,...,FP+n
(Q1, . . . , Qn).

Associate the operator ΓM
FP+1

,...,FP+n
with the sequence: Γ0, Γ1, . . . , Γt, . . . :

Γ0 = {∅, . . . , ∅} ≤n · · · ≤n Γt+1 = ΓM
FP+1

,...,FP+n
(Γt) ≤n · · · ≤n Γw = ∪k<wΓk. (2)

Let us denote projection onto the j-th coordinate by Ij(Γk) = Qj.

We will say that operator Γ : P(Σ∗) × ...× P(Σ∗) → P(Σ∗) × ...× P(Σ∗) is locally
finite if for any X1, . . . , Xn ⊆ Σ∗ and any j ∈ [1, . . . , n] is done:

Ij(Γ(X1, . . . , Xn)) = ∪X′1⊆X1
· · · ∪X′n⊆Xn

Ij(Γ(X′1, . . . , X′n)), (3)

where X′1, . . . , X′n are finite sets.

Proposition 3. Operator ΓM
FP+1

,...,FP+n
is locally finite.

Proof. Let X1, . . . , Xn ⊆ Σ∗, where X′i are finite sets.
⇐ Inclusion in equality (3) for operator ΓM

FP+1
,...,FP+n

in one way is fulfilled by construction of

our operator ΓM
FP+1

,...,FP+n
.
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⇒ Let w be from Ij(ΓM
FP+1

,...,FP+n
(X1, . . . , Xn)). We get that w is a finite list made up of a

finite number of elements from M ∪ X1 ∪ · · · ∪ Xn. Mark all the elements involved in
constructing w from Xj as Cj for all j ∈ [1, . . . , n]. Note that all sets Cj are finite and Cj ⊆ Xj.
Therefore, narrowing our sets Xi to Ci we get w ∈ Ij(ΓM

FP+1
,...,FP+n

(C1, . . . , Cn)).

Proposition 4. The smallest fixed point of the operator ΓM
FP+1

,...,FP+n
is reached in w steps.

Proof. Claim that the fixed point of the operator ΓM
FP+1

,...,FP+n
is reached in w steps following

automatically from the fact that the operator ΓM
FP+1

,...,FP+n
is monotone, has the fixed point

property and is locally finite.

6. Formulas Families F∗
P+

i

Further, we will consider generating families of formulas of the form
FP+

i
= {ϕm(x1, ..., xnm)}|m ∈ N} where xi is encoding the variable xi with a string of

v symbols length i. Let ε be a string of symbols above the alphabet {0, 1} length nm. Then
the formula ϕε

m(x1, . . . , xnm) is obtained from ϕm(x1, ..., xnm) replacing all occurrences of
the form Pj(xi) on i-th symbol in word ε. The number of free variables in this formula may
be less, nevertheless we leave their number in the notation for ϕε

m as before.

F∗
P+

i
= {ϕε

m(x1, . . . , xnm)| ϕm(x1, . . . , xnm) ∈ FP+
i

, ε ∈ {0, 1}∗ and |ε| = nm}

The formula ϕε
m(l1, . . . , lnm) is obtained from ϕε

m(x1, . . . , xnm) substituting free vari-
ables xi by the corresponding values li for all i ∈ [1, . . . , nm]. Due to the predicate separa-
bility of the formula ϕm the maximum number of such occurrences in ϕε

m may not be more
than nm.

Define Ω = Σ ∪ σ ∪ {0, 1} ∪ {v} ∪ {#} ∪ {∨, &} ∪ {(, )} as a set of symbols such that
any formula of the form ϕm(x1, . . . , xnm), ϕm(l1, . . . , lnm), ϕε

m(x1, . . . , xnm), ϕε
m(l1, . . . , lnm)

∈ Ω∗, where l1, . . . , lnm ∈ Σ∗, ϕm ∈ FP+
j

for some j ∈ [1, . . . , n].

Define a potentially generating formula as a formula ϕm(x1, . . . , xk) potentially gener-
ating an element l ∈ Σ∗ such that R(l) = l1# . . . #lk and the following holds:

M f alse |= ϕε
m(l1, . . . , lk)

for some signification ε. If for any l ∈ Σ∗ there is only one potentially generating formula
in the family, then we can define a partial function γi : Σ∗ → Ω∗ that constructs from an
element l ∈ Σ∗ its potentially generating formula ϕm(x1, . . . , xk) if such a formula exists
and is undefined otherwise γi(l) ↑. In the next chapter we will require for functions γi to
be p-computable.

7. ∆
p
0 -Models and ∆

p
0 -Operators

Model M of the finite signature σ will be called a p-computable model (∆p
0 -model)

[4–7] if all functions are p-computable functions, all predicates and the main set are ∆p
0 -sets.

If we want to mark the degree of the polynomial n and the constant C, we will write
C-n-∆p

0 -model instead of writing ∆p
0 -model. Sometimes, there will be records of the form

C-p-∆p
0 . In the first case, p is the degree of the polynomial and in the second, ∆p

0 is the
designation for the first level of the polynomial hierarchy. Designation of C-p-∆p

0 -function
will be also applied for functions and C-p-∆p

0 -set will be also applied for sets. Note that
M f alse will be a C-p-∆p

0 -model if such is the model M.
Let us call ∆p

0 -operator the operator ΓM
FP+1

,...,FP+n
from (1) if for some C, p ∈ N the fol-

lowing four properties hold:
(1) p-computable model: M is a C-p-∆p

0 -model.
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(2) predicate separability, quantifier-free and positivity: each family FP+
1

, . . . , FP+
n

is either a
finite or countable family of formulas, all formulas ϕj ∈ FP+

i
are positive, quantifier-free,

predicate-separable.
(3) uniqueness of the generating formula: for any two formulas ϕ1(x1, . . . , xk), ϕ2(x1, . . . , xk)
∈ FP+

i
with the same number of free variables and for any signification E : Pj(xi)→ {0, 1},

i ∈ [1, . . . , k], j ∈ [1, . . . , n] it is not true that there exists such significations as ε1 and ε2
consistent with E such that:

there exists l1, . . . , lk from M such that M f alse |= ϕε1
1 (l1, . . . , lk)&ϕε2

2 (l1, . . . , lk)

(4) p-computability of element: we also require that all functions γi should be C-(p-1)-∆p
0 -

functions and families F∗
P+

i
- C-p-∆p

0 -families (time for checking t(M f alse |= ϕε
m(l1, . . . , lk)) ≤

C · |l|p, for all ϕm ∈ FP+
i

and li ∈ Σ∗ ∪ { f alse}), i ∈ [1, ..., k].

Note that the ∆p
0 -operator thus defined retains all the original properties: it is mono-

tone, has a fixed point property and is locally finite, and therefore the smallest fixed point
of the operator is reached in w steps.

We say that the smallest fixed point Γw = (P1, . . . , Pn) will be ∆p
0 -set if any Pi is a

∆p
0 -set, where i ∈ [1, . . . , n]. Let γi be the C-(p-1)-∆p

0 -function for ∆p
0 -operator ΓM

FP+1
,...,FP+n

and ϕm(x1, . . . , xk) ∈ FP+
i

- potential generating formula for l, where R(l) = l1# . . . #lk and
all l1, . . . , lk ∈ Σ∗. Then the following lemma is true for any signification ϕε

m(x1, . . . , xk):

Lemma 1. ϕε
m(x1, . . . , xk) is built according to the formula ϕm(x1, . . . , xk) and by signification ε

for the time not exceeding 12 · C · |l|p−1.

Proof. Consider the Turing machine T over Ω alphabet consisting of five semi-tapes (here-
after called tapes):
(1) the 1st tape: the formula ϕm(x1, . . . , xk) is written out.
(2) the 2nd tape: the word ε of length k is written out.
(3) the 3rd tape: for variables.
(4) the 4th tape: remembers the last position of the first tape.
(5) the 5th tape: builds a new formula ϕε

m(x1, . . . , xk).

Let the formula ϕm(x1, . . . , xk) be written out on the first tape and the second tape
should contain the word ε. The machine T starts to work in the extreme left position and
reads the formula from the first tape. As soon as T reaches the word of the form Pj(xi), T
begins to read this word and writes out in parallel symbol 1 on the fourth tape for each
symbol of Pj(xi) and symbol 1 for each symbol v of Pj(xi) on the third tape, moving in
parallel, the machine head on the second tape containing the word ε with a single delay.
When all the symbols v...v (xi) are read, the head on the second tape will observe symbol
εi1 which must be substituted for the word Pj(xi). Since the head position of the first tape
is recorded on the fourth tape, T starts to overwrite on the first tape the word Pj(xi) on
symbols # and reduce in parallel the number of symbols 1 on the fourth tape. One as soon
as there are no one-symbols left on the fourth tape, then T write the symbol εi1 to the first
tape. Then T returns the heads of second, third and fourth tapes to the extreme left position
and continue to sequentially find and replace the remaining occurrences of the form Pj(xr)
on the first tape and replace them with symbols # and εr. After all the replacements T must
return the head of the first tape to the extreme left position and starts copying the formula
of the first tape to the fifth tape while skipping the symbols #.

Calculate the total operating time of such a machine T:
(1) The machine T works with the formula ϕm(x1, . . . , xnm) on the first tape which includes
words such as Pj(xi). The length of this formula does not exceed C · |l|p−1. In total, the
number of steps does not exceed three lengths of ϕm(x1, . . . , xnm).
(2) On the second tape, the machine does not change the word ε, simply reads it in parallel
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with the symbols v from the first tape and periodically returns the head to the extreme left
position. The total number of shifts to the right of the machine head of the second tape
does not exceed the length of the word on the first tape. The same goes for the number
of the machine head shifts to the left. Therefore, on this tape, there will be no more than
2 · C · |l|p−1 steps.
(3) On the third tape, the last monitored variable is written out. The number of the machine
head shifts to the right and to the left does not exceed 2 · C · |l|p−1 on this tape.
(4) For the fourth tape it is also does not exceed 2 · C · |l|p−1.
(5) To copy the final word from the first tape to the fifth and taking into account the
preliminary setting of the head of the first tape to the extreme left position, it will also take
no more than 2 · C · |l|p−1.

Let ϕm(x1, . . . , xk) ∈ FP+
i

be potentially generative formula for an element l.

Lemma 2. ϕε
m(l1, . . . , lk) is built by word l and the formula ϕε

m(x1, . . . , xk) for the time not
exceeding 4 · C · |l|p.

Proof. Consider a Turing machine T over alphabet Ω that also consists of three semi-tapes
(hereafter called tapes):
(1) the 1st tape: the formula ϕε

m(x1, . . . , xk) is written out, where the length of the formula
does not exceed C · |l|p−1.
(2) the second tape: the word w2 = #R(l) = #l1# . . . #lk written out, where the length of the
word does not exceeding |l|.
(3) the third tape: builds a new formula ϕε

m(l1, . . . , lk).
The machine starts to work with the formula of the first tape, if necessary simultane-

ously copying the result to the third tape. If the machine T on the first tape reads a symbol
that is not v, then T copies it to the third tape. If T reads the symbol v on the first tape, then
T starts the process of finding the corresponding li for replacement. When the machine T
reads the i-th symbol v successively from the first tape, T transfers the machine head of
second tape to the i-th symbol # that comes before the corresponding li. When T reads all
symbols v successively from first tape, then the machine will write the corresponding ls
from second tape to the third tape. By repeating this algorithm on the third tape the word
ϕε

m(l1, . . . , lk) will eventually be written.
Calculate the total operating time of such a machine T:

(1) the machine T reads a word from the first tape or just stands and waits for further
reading. The number of movements to the right does not exceed C · |l|p−1

(2) on the second tape, the machine head moves both to the right and to the left, but again
only reading. Therefore, the number of steps does not exceed C · |l|p−1× 2 · |l| ≤ 2 ·C · |l|p.
(3) the third tape: the number of steps does not exceed C · |l|p−1.

8. A Polynomial Analogue of Gandy’s Theorem

Let Γw from equality (2) be the smallest fixed point of ∆p
0 -operator ΓFP+1

,...,FP+n
, then the

next theorem is true:

Theorem 1 (polynomial analogue of Gandy’s theorem). The smallest fixed point Γw of ∆p
0 -

operator ΓFP+1
,...,FP+n

is a ∆p
0 -set.

Proof. The main idea of the proof is to show that the time for checking the truth of the
formula Pi(l) on MΓw

f alse does not exceed the time k · C · r(l) · |l|p, where k and C are fixed
constants and r(l) is the rank of the element l and r(l) ≥ 1, i ∈ [1, . . . , n]. Since the rank
r(l) < |l|, we get that for any l the complexity does not exceed k · C · |l|p+1.

Without loss of generality, we show this for P1(l), assuming in the induction step that
this estimate is true for all Pi(lj), where r(lj) < r(l) and i ∈ [1, . . . , n].
Using the induction by complexity r(l) we show that t(P1(l)) ≤ 25 ·C · r(l) · |l|p, where the
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constant C is the maximum for all constants that participate in the splitting function R(l),
in functions γi and in the algorithm for checking the truth of the formula ϕε

m(l1, . . . , lnm).
Induction base r(l) = 1:

Case 1: γi(l) ↑p, then the formula P1(l) is false.
Case2: γi(l) = ϕm(x1, . . . , xk), then R(l) = l1# . . . #lk and all elements of li (where i ∈
[1, . . . , k]) are either elements of the base set M or elements from Σ∗ for which R(li) ↑p.
Given all Pi(lj) are false on MΓw

f alse, we can create ϕε
m(x1, . . . , xk) from the potentially gener-

ating formula ϕm(x1, . . . , xk) for element l, where ε = 0 . . . 0 and |ε| = k. We get:

MΓw
f alse |= P1(l) if and only if MΓw

f alse |= ϕm(l1, . . . , lk) if and only if MΓw
f alse |= ϕε

m(l1, . . . , lk)
if and only if M f alse |= ϕε

m(l1, . . . , lk)

The time required to construct a potentially generating formula ϕm(x1, . . . , xk) using
l does not exceed C · |l|p−1. Next, we build ϕε

m(x1, . . . , xk) and ϕε
m(l1, . . . , lk). The time

required for this does not exceed 12 ∗C ∗ |l|p−1 and 4 ∗C ∗ |l|p (Lemmas 1 and 2). Verifying
the truth of the last formula for M f alse does not exceed C ∗ |l|p. Summing everything up,
we get that the verification time does not exceed 25 ∗ C ∗ r(l) ∗ |l|p.

The induction step: let our assumption be true for r(l) = s. We will show this for
s + 1:
Case 1: γi(l) ↑p, then the formula P1(l) is false. We get it in time:

t(P1(l)) ≤ C · |l|p−1 ≤ 25 · C · r(l) · |l|p

Case 2: γi(l) = ϕm(x1, . . . , xk)

MΓw
f alse |= P1(l) if and only if MΓw

f alse |= ϕm(l1, . . . , lk) if and only if MΓw
f alse |= ϕε

m(l1, . . . , lk)
if and only if M f alse |= ϕε

m(l1, . . . , lk)

where ε string of symbols εi such that εi = 1 if formula Pj(li) is true on MΓw
f alse and 0

otherwise.
Let’s calculate the time spent on all transitions:

(1) constructing a potentially generating formula ϕm(x1, . . . , xk) using l in time C · |l|p−1

(2) determining the truth of all predicates Pi1(l1), . . . , Pik (lk) which are included in the
formula. By the induction hypothesis, we obtain:

∑k
j=1 t(Pij(lj)) ≤ ∑k

j=1 25 · C · r(lj) · |lj|p ≤ 25 · C · (r(l)− 1) · |l|p.

(3) further, we fix the signification ε : Pij(xi)→ {0, 1} considering whether the predicate
Pij(li) is true or false, if the formula does not include any of the predicates Pji for the
variable xi, then we determine the truth for P1(xi) by default.
(4) By the formula ϕm(x1, . . . , xk) and by the signification ε we construct ϕε

m(x1, . . . , xk).
The time required for this does not exceed 12 · |l|p−1 ≤ 12 · |l|p.
(5) By the formula ϕε

m(x1, . . . , xk) and l we construct ϕε
m(l1, . . . , lk). The time required for

this does not exceed 4 · C · |l|p.
If we sum up all the time of calculations, then we get the following:

t(P1(l)) ≤ ∑k
i=1(25 · C · r(li) · |li|p) + 25 · C · |l|p ≤

≤ 25 · C · (r(l)− 1) · |l|p + 25 · C · |l|p ≤ 25 · C · r(l) · |l|p

We have shown that for any element l of rank r(l) in time 25 ·C · r(l) · |l|p we determine
the fact whether it belongs to the predicate P1. Since r(l) is always less than |l|, we can
write the following:

t(P1(l)) ≤ 25 · C · r(l) · |l|p ≤ 25 · C · |l|p+1.
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9. Corollaries and Applications

For the ∆p
0 -model M as an application of the polynomial analogue of Gandy’s theorem,

we present several corollaries. Some of these corollaries have already been proven earlier
by other authors using other methods, some are presented for the first time.

Let the model M have a one-place predicate U that selects the elements of the main
set M and a distinguished one-place predicate List = ∅ (a predicate that will select list
elements), then we will show how easy it is to prove the following statement on hereditarily
finite lists HW(M) which was already proven earlier in [8] but using a different technique:

Corollary 1. If M is a ∆p
0 -model, then HW(M) is a ∆p

0 -set.

Proof. A countable generating family of formulas FList+ is as follows:

ϕn : &n
i=1(U(xn) ∨ List(xn)), n ∈ N

This family of formulas is predicate-separable, all formulas are positive quantifier-free,
and the predicate List is included in formulas positively. We can easily see that the operator
ΓM

FList+
is a ∆p

0 -operator.

Let the signature σ have the form: σ = {c0, . . . , ck, f (m1)
1 , . . . , f (ms)

s , R(p1)
1 , . . . , R(pt)

t }.
Consider the model N with the basic set of elements N and signatures σ = {1, s(1)}. The
interpretation of the constant 1 will be 1 and s-the standard successor function. Further, an
entry of the form n + 1 will mean a term of the form n-fold application of the function s to 1.

Corollary 2. The set of quantifier-free formulas of signature σ is a ∆p
0 -set.

Proof. The process of constructing auxiliary ∆p
0 -sets using generating families for the

corresponding predicates in the ∆p
0 -model N is as follows:

(1) Constants: FCons+ : ϕi : (x1 = 1)&(x2 = i), i ∈ [1, . . . , k]
(2) Variables: FVar+ : ϕi : (x1 = 2)&(x2 = i), i ∈ N
(3) Function symbols: FFunc+ : ϕi : (x1 = 3)&(x2 = i), i ∈ [1, . . . , s]
(4) Predicate symbols: FR+ : ϕi : (x1 = 4)&(x2 = i), i ∈ [1, . . . , t].
(5) Terms that are not constants and variables:

FTerm+
1

: ϕi : (x1 = 5)&Func(x2)&
ni+2
i=3 (Term1(xi) ∨ Cons(xi) ∨Var(xi))

(6) The set of standard terms: FTerm+ : FTerm+
1
∪ FCons+ ∪ FVar+

Generating family for quantifier-free formulas FFree+ :
(1) ϕ1(Ri) : (x1 = 8)&R(x2)&

pi+2
i=3 Term(xi)

(2) ϕ2(Pi) : (x1 = 9)&P(x2)&Term(xi)
(3) ϕ3(=) : (x1 = 10)&Term(x2)&Term(x3)
(4) ϕ4(&) : (x1 = 11)&Free(x2)&Free(x3)
(5) ϕ5(∨) : (x1 = 12)&Free(x2)&Free(x3)
(6) ϕ6(→) : (x1 = 13)&Free(x2)&Free(x3)
(7) ϕ7(¬) : (x1 = 14)&Free(x2)&Free(x3)

Define the signature σ′ = σ ∪ {Cons, Var, Func, Term, Free} ∪ {∈(2),⊆(2)}.

Corollary 3. The set of ∆0-formulas [9] signature σ′ is a ∆p
0 -set.

Proof. Define a family of ∆0-formulas FD0+ . Just as in Corollary 2, we write out generating
formulas for terms and formulas, with the only difference that we also add formulas for
the above predicates:
(8) ϕ8(∈) : (x1 = 15)&Term(x2)&Term(x3)
(9) ϕ9(⊆) : (x1 = 16)&Term(x2)&Term(x3)
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We also write out generating formulas for (∃xk ∈ t)ϕ(x), (∀xm ∈ t)ϕ(x), (∃xt ⊆
t)ϕ(x), (∀xt ⊆ t)ϕ(x):
(10) ϕ10(∃xk ∈ t(x)) : (x1 = 17)&Var(x2)&Term(x3)&D0(x4)
(11) ϕ11(∀xm ∈ t(x)) : (x1 = 18)&Var(x2)&Term(x3)&D0(x4)
(12) ϕ12(∃xt ⊆ t(x)) : (x1 = 19)&Var(x2)&Term(x3)&D0(x4)
(13) ϕ13(∀xt ⊆ t(x)) : (x1 = 20)&Var(x2)&Term(x3)&D0(x4)

Corollary 4. The set of conditional terms of signature σ′ and ∆∗0-formulas is a ∆p
0 -sets [9].

Proof. This is where the approach gets more interesting. We need to simultaneously gen-
erate both conditional terms and formulas containing these conditional terms. Therefore,
we construct two generating families: FTCond+ , FFCond+ . In addition to generating formulas
for standard terms in FTCond+ , we add countably many generating formulas for condi-
tional terms:
(8) ϕk+8: (x1 = 21)&k

i=1(TCond(x2i)&FCond(x2i+1))&TCond(x2k+2), k ∈ N.
The family FFCond+ is defined by the same generating formulas as the family FD0+ , with

the only difference that the predicates Term must be replaced with TCond everywhere.

10. Conclusions

This work is a starting point for building a methodology for developing fast and
reliable software. In this work, we study sufficient conditions for the ∆p

0 -operator under
which the smallest fixed point remains a ∆p

0 -set. This allows us to create new elements
and data types. Moreover, there are polynomial algorithms for checking the fact whether
a certain element belongs to a given data type or not. The question of programming
methodology is also of interest: which constructs can be used and which not for creating
programs, if we want our programs to be polynomially computable. With the help of
the main theorem of our paper and the theorems from the works [8–14] it is already
possible to develop logical programming languages, with programs being of polynomial
computational complexity.
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Abstract: The block cyclic reduction method is a finite-step direct method used for solving linear
systems with block tridiagonal coefficient matrices. It iteratively uses transformations to reduce the
number of non-zero blocks in coefficient matrices. With repeated block cyclic reductions, non-zero off-
diagonal blocks in coefficient matrices incrementally leave the diagonal blocks and eventually vanish
after a finite number of block cyclic reductions. In this paper, we focus on the roots of characteristic
polynomials of coefficient matrices that are repeatedly transformed by block cyclic reductions. We
regard each block cyclic reduction as a composition of two types of matrix transformations, and
then attempt to examine changes in the existence range of roots. This is a block extension of the idea
presented in our previous papers on simple cyclic reductions. The property that the roots are not
very scattered is a key to accurately solve linear systems in floating-point arithmetic. We clarify that
block cyclic reductions do not disperse roots, but rather narrow their distribution, if the original
coefficient matrix is symmetric positive or negative definite.

Keywords: block cyclic reduction; block tridiagonal matrix; characteristic polynomial; linear system

1. Introduction

Solving systems of linear equations is one of the most important subjects in numeri-
cal linear algebra. In particular, applied mathematics and engineering often require the
solution of linear systems with tridiagonal coefficient matrices. Solving tridiagonal lin-
ear systems generally involves finding N-dimensional vectors x, such that Ax = b for
given N-by-N tridiagonal matrices A and N-dimensional vectors b. The cyclic reduction
method is a finite-step direct method for computing solutions x [1,2]. The cyclic reduction
method first transforms tridiagonal coefficient matrices A to pentadiagonal matrices with
all subdiagonal (and superdiagonal) entries equal to 0. The right vectors b are, of course,
simultaneously changed. Two non-zero off-diagonals of the coefficient matrices gradually
leave the diagonals in the iterative cyclic reductions, with the coefficient matrices even-
tually being reduced to diagonal matrices. Error analysis of the cyclic reduction method
has been reported in [3], and a variant of the cyclic reduction method has been also pre-
sented, for example, in [4]. The stride reduction method is a generalization of the cyclic
reduction method that can solve problems where A are M-tridiagonal matrices, M is the
bandwidth, and there are two non-zero off-diagonals consisting of (1, M + 1), (2, M + 2),
. . . , (N −M− 1, N) and the (M + 1, 1), (M + 2, 2), . . . , (N, N −M− 1) entries [5]. Each
stride reduction, including cyclic reduction, narrows the distribution of the roots of charac-
teristic polynomials associated with the coefficient matrices if A are symmetric positive
definite [6,7]. This is a desirable property that does not increase the difficulty of solving
systems of linear systems.

Mathematics 2021, 9, 3213. https://doi.org/10.3390/math9243213 https://www.mdpi.com/journal/mathematics
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Here, we consider positive integers N1, N2, . . . , Nm satisfying N = N1 + N2 + · · ·+ Nm.
The cyclic reduction method is extended to solve a problem where coefficient matri-
ces A ∈ RN×N are block tridiagonal matrices [2,8] expressed using m square matrices
D1 ∈ RN1×N1 , D2 ∈ RN2×N2 , . . . , Dm ∈ RNm×Nm and 2m − 2 rectangular matrices
E1 ∈ RN1×N2 , E2 ∈ RN2×N3 , . . . , Em−1 ∈ RNm−1×Nm and F1 ∈ RN2×N1 , F2 ∈ RN3×N2 ,
. . . , Fm−1 ∈ RNm×Nm−1 as:

A :=




D1 E1

F1 D2
. . .

. . . . . . Em−1
Fm−1 Dm




. (1)

A block tridiagonal matrix can be regarded as a block matrix obtained by replacing
the diagonal entries in a tridiagonal matrix with square matrices and the subdiagonal
entries with rectangular matrices. This extended method is called the block cyclic reduction
method. The forward stability of iterative block cyclic reductions has been discussed in [9],
but changes in roots of characteristic polynomials of coefficient matrices have not been
studied. Block cyclic reductions do not work well in floating point arithmetic if they greatly
disperse the roots. Thus, the main purpose of this paper is to clarify whether block cyclic
reductions narrow the root distribution like stride reductions.

The remainder of this paper is organized as follows. Section 2 briefly explains the block
cyclic reduction method used for solving block tridiagonal linear systems. Section 3 shows
that block M-tridiagonal matrices can be transformed to block tridiagonal (1-tridiagonal)
matrices without changing the eigenvalues. Then, we interpret the transformation from
M-tridiagonal matrices to 2M-tridiagonal matrices in the block cyclic reduction as a com-
posite transformation of the block tridiagonalization, its inverse, and the transformation
from block tridiagonal to block 2-tridiagonal matrices. In Section 4, we find the relation-
ship between the inverses of block tridiagonal matrices and those of block 2-tridiagonal
matrices. Section 5 looks at the roots of characteristic polynomials of coefficient matrices
transformed by block cyclic reductions compared with those of original coefficient matrices
A in cases where A are block tridiagonal and symmetric positive definite or negative
definite. Section 6 gives two numerical examples for observing coefficient matrices and
the roots of their characteristic polynomials appearing in iterative block cyclic reductions.
Section 7 concludes the paper.

2. Block Cyclic Reduction

In this section, we briefly explain the block cyclic reduction method used for solving
linear systems with block tridiagonal coefficient matrices.

We consider the following N-by-N block-band matrix given using m square matrices
D(M)

1 ∈ RN1×N1 , D(M)
2 ∈ RN2×N2 , . . . , D(M)

m ∈ RNm×Nm and 2(m−M) rectangular matrices

E(M)
1 ∈ RN1×N1+M , E(M)

2 ∈ RN2×N2+M , . . . , E(M)
m−M ∈ RNm−M×Nm and F(M)

1 ∈ RN1+M×N1 ,

F(M)
2 ∈ RN2+M×N2 , . . . , F(M)

m−M ∈ RNm×Nm−M as:

A(M) :=




D(M)
1 E(M)

1
. . . . . .

F(M)
1 D(M)

1+M
. . .

. . . . . . . . .
. . . D(M)

m−M E(M)
m−M

. . . . . .

F(M)
m−M D(M)

m




, (2)
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where the superscript in parentheses appearing in A(M) specifies the position of non-zero
off-diagonal bands E(M)

i and F(M)
i . If D(M)

i , E(M)
i , and F(M)

i are all 1-by-1 matrices for

every i, then A(M) is the M-tridiagonal matrix [6] and D(M)
i , E(M)

i , and F(M)
i are the (i, i),

(i, i + M), and (i + M, i) entries of A(M), respectively. Thus, we hereinafter refer to A(M)

as the block M-tridiagonal matrix and D(M)
i , E(M)

i , and F(M)
i as the (i, i), (i, i + M), and

(i + M, i) blocks of A(M), respectively. Note that block 1-tridiagonal matrices are the usual
block tridiagonal matrices. In the case where D(M)

i , E(M)
i , and F(M)

i are not 1-by-1 matrices,

we must pay attention to the number of rows and columns of D(M)
i , E(M)

i , and F(M)
i . For

example, we can compute the matrix product D(M)
1 E(M)

1 but cannot define E(M)
1 D(M)

1 if

N1 6= N1+M, unlike in the case where D(M)
i , E(M)

i , and F(M)
i are all 1-by-1 matrices.

We hereinafter consider the case where D(M)
i are all nonsingular. Here, we prepare an

N-by-N block M-tridiagonal matrix involving non-zero blocks D(M)
i , E(M)

i , and F(M)
i :

T(M) :=



I1 −E(M)
1 (D(M)

1+M)−1

. . . . . .

−F(M)
1 (D(M)

1 )−1 I1+M
. . .

. . . . . . . . .
. . . Im−M −E(M)

m−M(D(M)
m )−1

. . . . . .
−F(M)

m−M(D(M)
m−M)−1 Im




, (3)

where Ii are the Ni-by-Ni identity matrices. The number of rows and columns of Ii,
−E(M)

i (D(M)
i+M)−1, and −F(M)

i (D(M)
i )−1 coincide with those of D(M)

i , E(M)
i , and F(M)

i , re-
spectively. In other words, T(M) has the same block structure as A(M). Then, we can
easily observe that the (i, i + M) and (i + M, i) blocks are all zero and the (i, i + 2M) and
(i + 2M, i) blocks of T(M)A(M) are all non-zero, meaning that T(M)A(M) becomes an N-
by-N block 2M-tridiagonal matrix A(2M), The non-zero blocks D(2M)

i , E(2M)
i , and F(2M)

i

appearing in the (i, i), (i, i + 2M), and (i + 2M, i) blocks are also expressed using D(M)
i ,

E(M)
i , and F(M)

i as:





D(2M)
i := D(M)

i − E(M)
i (D(M)

i+M)−1F(M)
i , i = 1, 2, . . . , M,

D(2M)
i := D(M)

i − F(M)
i−M(D(M)

i−M)−1E(M)
i−M − E(M)

i (D(M)
i+M)−1F(M)

i , i = M + 1, . . . , m−M,

D(2M)
i := D(M)

i − F(M)
i−M(D(M)

i−M)−1E(M)
i−M, i = m−M + 1, m−M + 2, . . . , m,

E(2M)
i := −E(M)

i (D(M)
i+M)−1E(M)

i+M, i = 1, 2, . . . , m− 2M,

F(2M)
i := −F(M)

i+M(D(M)
i+M)−1F(M)

i , i = 1, 2, . . . , m− 2M.

(4)

Thus, by multiplying the block M-tridiagonal linear system A(M)x = b(M) by T(M)

from the left on both sides, we transform it to the block 2M-tridiagonal linear system
A(2M)x = b(2M), where b(2M) := T(M)b(M). This transformation is the block cyclic reduc-
tion [2]. We can again apply the block cyclic reduction to the block 2M-tridiagonal linear
system A(2M)x = b(2M) if the diagonal blocks D(2M)

i in the block 2M-tridiagonal matrix
A(2M) are all nonsingular. The iterative block cyclic reductions therefore cause non-zero
off-diagonal blocks to gradually leave the diagonal blocks, eventually generating linear
systems with block diagonal matrices.
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3. Composite Transformation

In this section, we first show that block M-tridiagonal matrices can be transformed
into block tridiagonal (1-tridiagonal) matrices while preserving the eigenvalues. Next,
we consider the transformation from the block M-tridiagonal matrix A(M) to the block
2M-tridiagonal matrix A(2M) in terms of the transformation from the block tridiagonal
(1-tridiagonal) matrix to the block 2-tridiagonal matrix with two similarity transformations.

We consider N-by-Ni matrices:

Pi :=




O
...

O

Ii

O
...

O




1st
block

(i− 1)th
block
ith
block
(i + 1)th
block

mth
block

, i = 1, 2, . . . , m, (5)

where O denotes the zero matrix, whose entries are all 0, and the number of rows in the
1st, 2nd, . . . , mth blocks are equal to those in D(M)

1 , D(M)
2 , . . . , D(M)

m , respectively. Then, it
is obvious that A(M)P1 ∈ RN×N1 , A(M)P2 ∈ RN×N2 , . . . , A(M)Pm ∈ RN×Nm become the 1st,
2nd, . . . , mth block-columns of A(M), respectively. Furthermore, for i = 1, 2, . . . , m, it is
observed that P>1 (A(M)Pi) ∈ RN1×Ni , P>2 (A(M)Pi) ∈ RN2×Ni , . . . , P>m (A(M)Pi) ∈ RNm×Ni

coincide with the 1st, 2nd, . . . , mth block-rows of A(M)Pi, respectively. Thus, we see that
P>j A(M)Pi are the (j, i) blocks of A(M) for i, j = 1, 2, . . . , m—namely:

P>j A(M)Pi =





E(M)
i , j = i−M,

D(M)
i , j = i,

F(M)
i , j = i + M,

O, otherwise.

Here, we introduce N × (Ni + Ni+M + · · · + Ni+qM) matrices Pi := (Pi, Pi+M, . . . ,
Pi+qM) for i = 1, 2, . . . , r, where q and r are the quotient and the remainder after the
division of m by M, respectively. Then, it follows that:

P>i A(M)Pi =




D(M)
i

F(M)
i
O
...

O



∈ R(Ni+Ni+M+···+Ni+qM)×Ni , i = 1, 2, . . . , r.

P>i A(M)Pi+kM =




O
...

O
E(M)

i+(k−1)M

D(M)
i+kM

F(M)
i+kM
O
...

O




∈ R(Ni+Ni+M+···+Ni+qM)×Ni+kM ,

i = 1, 2, . . . , r, k = 1, 2, . . . , q− 1,
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P>i A(M)Pi+qM =




O
...

O
E(M)

i+(q−1)M

D(M)
i+qM



∈ R(Ni+Ni+M+···+Ni+qM)×Ni+qM , i = 1, 2, . . . , r.

Thus, by gathering these, we can derive:

P>i A(M)Pi =




D(M)
i E(M)

i

F(M)
i D(M)

i+M
. . .

. . . . . . E(M)
i+(q−1)M

F(M)
i+(q−1)M D(M)

i+qM




∈ R(Ni+Ni+M+···+Ni+qM)×(Ni+Ni+M+···+Ni+qM), i = 1, 2, . . . , r. (6)

Similarly, by letting Pi := (Pi, Pi+M, . . . , Pi+(q−1)M) ∈ RN×(Ni+Ni+M+···+Ni+(q−1)M) for
i = r + 1, r + 2, . . . , M, we obtain:

P>i A(M)Pi =




D(M)
i E(M)

i

F(M)
i D(M)

i+M
. . .

. . . . . . E(M)
i+(q−2)M

F(M)
i+(q−2)M D(M)

i+(q−1)M




∈ R(Ni+Ni+M+···+Ni+(q−1)M)×(Ni+Ni+M+···+Ni+(q−1)M),

i = r + 1, r + 2, . . . , M. (7)

See, also, Figure 1 for an auxiliary example of gathering a block tridiagonal part, as
shown in (6) and (7). Therefore, using the permutation matrix P := ( P1 P2 · · · PM ),
we can complete a block tridiagonalization of A(M) as:

P>A(M)P = diag(Ã(1)
1 , Ã(1)

2 , . . . , Ã(1)
M ), (8)

where Ã(1)
i := P>i A(M)Pi. Here, we may regard diag(Ã(1)

1 , Ã(1)
2 , . . . , Ã(1)

M ) as a block

diagonal matrix in terms of Ã(1)
1 , Ã(1)

2 , . . . , Ã(1)
M . However, we emphasize that Ã(1)

1 , Ã(1)
2 , . . . ,

Ã(1)
M are nothing but auxiliary matrices and are essentially block tridiagonal matrices in

terms of realistic blocks D(M)
i , E(M)

i , and F(M)
i . Furthermore, in the following sections, we

should recognize that (8) is a block tridiagonalization and not a block diagonalization of
A(M). Figure 2 gives a sketch of a block tridiagonalization of A(M). Noting that the P is an
orthogonal matrix—namely, P> = P−1, we can determine that diag(Ã(1)

1 , Ã(1)
2 , . . . , Ã(1)

M )

has the same eigenvalues as A(M). To summarize, we can divide a linear system with
the block M-tridiagonal coefficient matrix A(M) into M linear systems with the block
tridiagonal coefficient matrices Ã(1)

1 , Ã(1)
2 , . . . , Ã(1)

M without the loss of the eigenvalues
of A(M).
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Figure 1. Gathering the block tridiagonal parts of the block M-tridiagonal matrix A(M) with M = 4.

Recalling that A(2M) = T(M)A(M), we can decompose P−1 A(2M)P into:

P−1 A(2M)P = (P−1T(M)P)(P−1 A(M)P). (9)

Noting that T(M) has the same block structure as A(M), whose block tridiagonalization
is shown in Section 3, we can immediately derive:

P−1T(M)P = diag(T̃(1)
1 , T̃(1)

2 , . . . , T̃(1)
M ), (10)

where

T̃(1)
j :=



Ij −E(M)
j (D(M)

j+M)−1

−F(M)
j (D(M)

j )−1 Ij+M

. . .
. . . . . . −E(M)

j+(q−1)M(D(M)
j+qM)−1

−F(M)
j+(q−1)M(D(M)

j+(q−1)M)−1 Ij+(q−1)M




,

j = 1, 2, . . . , r, (11)
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T̃(1)
j :=



Ij −E(M)
j (D(M)

j+M)−1

−F(M)
j (D(M)

j )−1 Ij+M

. . .
. . . . . . −E(M)

j+(q−2)M(D(M)
j+(q−1)M)−1

−F(M)
j+(q−2)M(D(M)

j+(q−2)M)−1 Ij+(q−2)M




,

j = r + 1, r + 2, . . . , M.

Combining (8) and (10) with (9), we obtain:

P−1 A(2M)P = diag(T̃(1)
1 Ã(1)

1 , T̃(1)
2 Ã(1)

2 , . . . , T̃(1)
M Ã(1)

M ).

This implies that the transformation from A(M) to A(2M) can also be completed using
three transformations: (1) the block tridiagonalization from A(M) to P−1 A(M)P ; (2) the
transformations from the block 1-tridiagonal matrices Ã(1)

i to the block 2-tridiagonal ma-

trices T̃(1)
i Ã(1)

i ; and (3) the block 2M-tridiagonalization from P−1 A(2M)P to A(2M). See
Figure 3 for the relationships among the block tridiagonal (1-tridiagonal), 2-tridiagonal,
M-tridiagonal, and 2M-tridiagonal matrices.
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Figure 2. A block tridiagonalization of the block M-tridiagonal matrix A(M).
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Figure 3. Coefficient matrices in the block cyclic reduction.

4. Inverses of Block 1-Tridiagonal and 2-Tridiagonal Matrices

In this section, we express the inverse of the block 1-tridiagonal matrix A(1) using
that of the block 2-tridiagonal matrix A(2). This is useful for comparing the roots of the
characteristic polynomials of the block 1-tridiagonal matrix A(1) and the block 2-tridiagonal
matrix A(2) in the next section.

We introduce two auxiliary matrices D := diag(D(1)
1 , D(1)

2 , . . . , D(1)
m ) and A(1)

R :=
RA(1)R, where R := diag((−1)I1, (−1)2 I2, . . . , (−1)m Im) involving the Ni-dimensional
identity matrices Ii. Then, we derive the following lemma for an expression using D and
A(1)

R of transformation matrix T(1).

183



Mathematics 2021, 9, 3213

Lemma 1. The transformation matrix T(1) can be decomposed using D and A(1)
R into:

T(1) = A(1)
R D−1.

Proof. It is obvious that RA(1) and RA(1)R are both block 1-tridiagonal matrices. It is
easy to check that (RA(1))i,j = ((−1)j A(1))i,j where (·)i,j denotes the (i, j) blocks of a
matrix. Similarly, it turns out that (RA(1)R)i,j = ((−1)iRA(1))i,j. Thus, by noting that

(A(1)
R )i,j = ((−1)i+j A(1))i,j, we can derive:

A(1)
R =




D(1)
1 −E(1)

1

−F(1)
1 D(1)

2
. . .

. . . . . . −E(1)
m−1

−F(1)
m−1 D(1)

m




.

Furthermore, it can easily be observed that T(1)D = AR. Noting that D is nonsingular,
we obtain (1).

Since it is obvious that R−1 = R, it holds that A(1)
R = R−1 A(1)R. This implies that the

eigenvalues of A(1)
R coincide with those of A(1). Thus, A(1)

R is nonsingular if A(1) is nonsin-

gular. From Lemma 1, it immediately follows that det A(2) = (det A(1)
R )(det D−1)(det A(1)).

Therefore, the inverse of A(2) exists if A(1) is nonsingular. The following proposition gives
the relationship of (A(2))−1 to (A(1))−1 and (A(1)

R )−1.

Proposition 1. For the (i, j) blocks ((A(1))−1)i,j and ((A(2))−1)i,j, it holds that:

((A(2))−1)i,j =

{
((A(1))−1)i,j if i + j is even,

O if i + j is odd,

where O denotes the zero matrix whose entries are all 0 as shown previously. Accordingly,

(A(2))−1 =
1
2
((A(1))−1 + (A(1)

R )−1).

Proof. Observing the ith block-row on both sides of the trivial identity (A(1))−1 A(1) = IN ,
we can obtain m matrix equations:





((A(1))−1)i,1D(1)
1 + ((A(1))−1)i,2F(1)

1 = O,

((A(1))−1)i,1E(1)
1 + ((A(1))−1)i,2D(1)

2 + ((A(1))−1)i,3F(1)
2 = O,

...
...

...
...

((A(1))−1)i,i−1E(1)
i−1 + ((A(1))−1)i,iD

(1)
i + ((A(1))−1)i,i+1F(1)

i = Ii,
...

...
...

...
((A(1))−1)i,m−2E(1)

m−2 + ((A(1))−1)i,m−1D(1)
m−1 + ((A(1))−1)i,mF(1)

m−1 = O,

((A(1))−1)i,m−1E(1)
m−1 + ((A(1))−1)i,mD(1)

m = O.
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Multiplying both sides of the 1st, 2nd, . . . , mth equations in (4) from the right by
((A(1))−1)1,j, ((A(1))−1)2,j, . . . , ((A(1))−1)m,j, respectively, we can rewrite (4) as:





D̂(1)
1 + F̂(1)

1 = O,
Ê(1)

1 + D̂(1)
2 + F̂(1)

2 = O,
...

...
...

...
Ê(1)

i−1 + D̂(1)
i + F̂(1)

i = ((A(1))−1)i,j,
...

...
...

...
Ê(1)

m−2 + D̂(1)
m−1 + F̂(1)

m−1 = O,

Ê(1)
m−1 + D̂(1)

m = O,

where D̂(1)
k := ((A(1))−1)i,kD(1)

k ((A(1))−1)k,j, Ê(1)
k := ((A(1))−1)i,kE(1)

k ((A(1))−1)k+1,j and

F̂(1)
k := ((A(1))−1)i,k+1F(1)

k ((A(1))−1)k,j. Similarly, by focusing on the jth block column of
both sides of A(1)(A(1))−1 = IN and multiplying the 1st, 2nd, . . . , mth equations from the
left by ((A(1))−1)i,1, ((A(1))−1)i,2, . . . , ((A(1))−1)i,m, respectively, we can derive:





D̂(1)
1 + Ê(1)

1 = O,
F̂(1)

1 + D̂(1)
2 + Ê(1)

2 = O,
...

...
...

...
F̂(1)

j−1 + D̂(1)
j + Ê(1)

j = ((A(1))−1)i,j,
...

...
...

...
F̂(1)

m−2 + D̂(1)
m−1 + Ê(1)

m−1 = O,

F̂(1)
m−1 + D̂(1)

m = O.

Adding the kth equation of (4) to that of (4), multiplying this by (−1)k, and letting
G(1)

k := Ê(1)
k + F̂(1)

k , we can thus obtain:

(−1)k(G(1)
k−1 + 2D̂(1)

k + G(1)
k ) =





(−1)i((A(1))−1)i,j if k = i,

(−1)j((A(1))−1)i,j if k = j,

O otherwise,

where G(1)
0 := O and G(1)

m := O. The summation for k = 1, 2, . . . , m of (4) leads to:

2
m

∑
k=1

(−1)kD̂(1)
k = [(−1)i + (−1)j]((A(1))−1)i,j.

From Lemma 1, we can see that: (A(2))−1 = (A(1)
R D−1 A(1))−1 = (A(1))−1D(A(1)

R )−1.

Since it follows from (A(1)
R )−1 = (RA(1)R)−1 = R(A(1))−1R that ((A(1)

R )−1)k,j = (−1)k+j

((A(1))−1)k,j, we can obtain:

((A(2))−1)i,j =
m

∑
k=1

(−1)k+j((A(1))−1)i,kD(1)
k ((A(1))−1)k,j

=
m

∑
k=1

(−1)k+jD̂(1)
k .
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Consequently, by combining (4) with (4), we can derive:

((A(2))−1)i,j =
1 + (−1)i+j

2
((A(1))−1)i,j,

which implies (1). The matrix identity (A(1)
R )−1 = R(A(1))−1R also gives the relationship

of blocks in (A(1))−1 and (A(1)
R )−1:

((A(1)
R )−1)i,j =

{
((A(1))−1)i,j if i + j is even,

−((A(1))−1)i,j if i + j is odd.

Considering (4) and (4), we then have (1).

Proposition 1 plays a key role in understanding the change in the roots of characteristic
polynomials of coefficient matrices in linear systems after block cyclic reductions.

5. Roots of Characteristic Polynomial Sequence

In this section, we first investigate roots of characteristic polynomials of the block
2-tridiagonal matrix A(2) = T(1)A(1), which is transformed from the block 1-tridiagonal
matrix A(1) in the block cyclic reduction under the assumption that A(1) is symmetric
positive definite.

With the help of Proposition 1, we present a theorem for the roots of characteristic
polynomials of A(1) and A(2).

Theorem 1. Assume that the block tridiagonal matrix A(1) is symmetric positive definite. Then,
for the block 2-tridiagonal matrix A(2) = T(1)A(1), it holds that:

λN(A(1)) ≤ λk(A(2)) ≤ λ1(A(1)), k = 1, 2, . . . , N,

where λk(·) denotes the kth largest root of the characteristic polynomial of a matrix—namely, the
kth largest eigenvalue of a matrix.

Proof. Let u1 ∈ RN be a normalized eigenvector corresponding to λ1((A(1))−1 +(A(1)
R )−1).

Noting that (A(1))−1 and (A(1)
R )−1 are both symmetric and considering the Rayleigh

quotient [10], we can derive:

u>1 (A(1))−1u1 ≤ λ1((A(1))−1),

u>1 (A(1)
R )−1u1 ≤ λ1((A(1)

R )−1) = λ1((A(1))−1).

This equality holds in (5) if and only if u1 is the eigenvector of (A(1))−1 corresponding
to λ1((A(1))−1), while the equality holds in (5) if and only if u1 is also the eigenvector
of (A(1)

R )−1 corresponding to λ1((A(1)
R )−1) = λ1((A(1))−1). The inequalities (5) and (5)

immediately lead to:

u>1 ((A(1))−1 + (A(1)
R )−1)u1 ≤ 2λ1((A(1))−1).

Using Proposition 1, we can rewrite the Rayleigh quotient u>1 ((A(1))−1 + (A(1)
R )−1)u1

as:

u>1 ((A(1))−1 + (A(1)
R )−1)u1 = 2λ1((A(2))−1).

From (5) and (5), we can see that:

λk((A(2))−1) ≤ λ1((A(1))−1), k = 1, 2, . . . , N.
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Similarly, from a comparison of the Rayleigh quotient u>1 ((A(1))−1 + (A(1)
R )−1)u1

with the minimal eigenvalue λN((A(1))−1), it follows that:

λk((A(2))−1) ≥ λN((A(1))−1), k = 1, 2, . . . , N.

Thus, by combining (5) with (5), we can obtain:

λN((A(1))−1) ≤ λk((A(2))−1) ≤ λ1((A(1))−1), k = 1, 2, . . . , N.

Since the eigenvalues of a matrix are the reciprocals of eigenvalues of its inverse
matrix, we therefore have (1).

The following theorem is a specialization of Theorem 1.

Theorem 2. Assume that the block tridiagonal matrix A(1) is symmetric positive definite and that
its eigenvalues are distinct from each other. Furthermore, let the non-zero blocks all be nonsingular
square matrices with the same matrix size. Then, for the block 2-tridiagonal matrix A(2) = T(1)A(1),
it holds that:

λN(A(1)) < λk(A(2)) < λ1(A(1)), k = 1, 2, . . . , N.

Proof. We begin by reconsidering the proof of Theorem 1. The proof of (2) is completed
by proving λ1(A(1)) > λ1(A(2)) and λN(A(1)) < λN(A(2)). The equality in (5) does not
hold if the equality in (5) holds. We recall here that the equality in (5) does not hold if u1 is
not the eigenvector of at least either (A(1))−1 or (A(1)

R )−1 corresponding to λ1((A(1))−1) =

λ1((A(1)
R )−1). Noting that λN(A(1)) = λ1((A(1))−1) and λN(A(2)) = λ1((A(2))−1), we can

thus see that λN(A(1)) < λN(A(2)) if the eigenvector of A(1) corresponding to λN(A(1)) is
not equal to that of A(1)

R corresponding to λN(A(1)
R ) = λN(A(1)). Similarly, the inequality

λ1(A(1)) > λ1(A(2)) holds if the eigenvector of A(1) corresponding to λ1(A(1)) is not equal
to that of A(1)

R corresponding to λ1(A(1)
R ) = λ1(A(1)).

Let us assume here that v1 is the eigenvector of both A(1) and A(1)
R corresponding

to λ1(A(1)) = λ1(A(1)
R )—namely, A(1)v1 = λ1(A(1))v1 and A(1)

R v1 = λ1(A(1))v1. From

A(1)(Rv1) = R(A(1)
R v1), we can then derive:

A(1)(Rv1) = λ1(A(1))(Rv1).

This implies that Rv1 is also the eigenvector of A(1) corresponding to λ1(A(1)). Noting
that A(1) does not have multiple eigenvalues, we can thus obtain v1 = Rv1. Let v1(i) denote
the Ni-dimensional vector in the ith block-rows of v1. Then, by observing that:




v1(1)
v1(2)

...
v1(m)


 =




−I1
I2

. . .
(−1)m Im







v1(1)
v1(2)

...
v1(m)


,

we can specify v1 as:

v1 =




o
v1(2)

o
...

(−1)m−1v1(m− 1)
(−1)mv1(m)




,
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where o denotes the zero vector whose entries are all 0. Thus, by focusing on the 1st, 3rd,
. . . , mth block rows on both sides of A(1)v1 = λ1(A(1))v1 with odd m, we have:





E(1)
1 v1(2) = o,

E(1)>
2 v1(2) + E(1)

3 v1(4) = o,
...

E(1)>
m−3 v1(m− 3) + E(1)

m−2v1(m− 1) = o,

E(1)>
m−1 v1(m− 1) = o.

Since E(1)
1 , E(1)

2 , . . . , E(1)
m−1 are all nonsingular. (5) immediately leads to v1(2) = o,

v1(4) = o, . . . , v1(m− 1) = o. Namely, v1 is the zero vector. This contradicts the assump-
tion that v1 is the eigenvector of both A(1) and A(1)

R corresponding to λ1(A(1)) = λ1(A(1)
R ).

The contradiction is similarly derived in the case where m is even. Therefore, we conclude
that λ1(A(1)) > λ1(A(2)). We also have λN(A(1)) < λN(A(2)) along the same lines as the
above proof.

We recall here that the transformation A(2M) = T(M)A(M) from the block M-tridiagonal
matrix A(M) to the block 2M-tridiagonal matrix A(2M) can be regarded as a compos-
ite transformation of the transformations from the block tridiagonal matrices to the
block 2-tridiagonal matrices and two similarity transformations. By combining this with
Theorems 1 and 2, we can derive the following theorem concerning the roots of the charac-
teristic polynomials of A(M) and A(2M) = T(M)A(M).

Theorem 3. Assume that the block M-tridiagonal matrix A(M) is symmetric positive definite,
where M = 1, 2, . . . . Then, for the block 2M-tridiagonal matrix A(2M) = T(M)A(M), it holds that:

λN(A(M)) ≤ λk(A(2M)) ≤ λ1(A(M)), k = 1, 2, . . . , N.

Furthermore, let the roots of the characteristic polynomials of A(M) be distinct from each other,
the non-zero blocks all be nonsingular square matrices, and their matrix sizes all be the same. Then,
it holds that:

λN(A(M)) < λk(A(2M)) < λ1(A(M)), k = 1, 2, . . . , N.

It is obvious that A(2) = T(1)A(1), A(4) = T(2)A(2), . . . are symmetric if the block
tridiagonal matrix A(1) = A is also symmetric in the original linear system Ax = b. From
Theorem 3, we can recursively see that A(2), A(4), . . . are positive definite if the original
coefficient matrix A(1) = A is also positive definite. We then conclude that:

· · · ≤ λ1(A(2M))

λN(A(2M))
≤ λ1(A(M))

λN(A(M))
≤ · · · ≤ λ1(A(2))

λN(A(2))
≤ λ1(A(1))

λN(A(1))
,

or

· · · < λ1(A(2M))

λN(A(2M))
<

λ1(A(M))

λN(A(M))
< · · · < λ1(A(2))

λN(A(2))
<

λ1(A(1))

λN(A(1))
,

as long as the block cyclic reductions are repeated. The discussion in this section can easily
be changed for the case where the original coefficient matrix A(1) = A is negative definite.

6. Numerical Examples

In this section, we give two examples for observing changes in coefficient matrices
in the iterative block cyclic reductions for block tridiagonal linear systems A(1)x = b and
numerically verifying Theorems 1 and 2 with respect to the roots of the characteristic poly-
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nomials of coefficient matrices. The numerical illustration was carried out on a computer;
OS: Mac OS Monterey (ver. 12.0.1), CPU: 2.4 GHz Intel Core i9. For this, we employed the
MATLAB software (R2021a). Computed values are given in floating-point arithmetic.

We first consider the case where A(1) is the 9-by-9 symmetric block tridiagonal and pos-
itive definite matrix with λ1(A(1)) ≈ 11.3465, λ9(A(1)) ≈ 0.9931, and λ1(A(1))/λ9(A(1)) ≈
11.3465/0.9931 ≈ 11.4253:

A(1) =




2 1 0 0 1 0 0 0 0
1 3 1 0 0 1 0 0 0
0 1 4 1 0 0 1 0 0
0 0 1 5 0 1 0 0 0
1 0 0 0 6 1 0 1 0
0 1 0 1 1 7 1 0 1
0 0 1 0 0 1 8 0 1
0 0 0 0 1 0 0 9 1
0 0 0 0 0 1 1 1 10




,

where the values of λ1(A(1)), λ9(A(1)) and λ1(A(1))/λ9(A(1)) are computed using the
MATLAB function eig and rounded to 4 digits after the decimal point. The diagonal
blocks are all symmetric and their matrix sizes are distinct from one another. Since the
determinants of the (1, 1), (2, 2), and (3, 3) blocks are, respectively, 85, 322, and 89, the
diagonal blocks are all nonsingular. The non-zero subdiagonal (and superdiagonal) blocks
are not square matrices, but the transposes of the (1, 2) and (2, 3) blocks coincide with
those of the (2, 1) and (3, 2) blocks, respectively. After the 1st block cyclic reduction, A(1) is
transformed to the symmetric block 2-tridiagonal matrix:

A(2) =




1.8292 1.0248 −0.0031 0.0248 0 0 0 −0.1708 0.0217
1.0248 2.8509 1.0186 −0.1491 0 0 0 0.0248 −0.1304
−0.0031 1.0186 3.8727 1.0186 0 0 0 −0.0031 −0.1087

0.0248 −0.1491 1.0186 4.8509 0 0 0 0.0248 −0.1304
0 0 0 0 5.2759 1.2465 −0.0476 0 0
0 0 0 0 1.2465 6.1930 1.0753 0 0
0 0 0 0 −0.0476 1.0753 7.6048 0 0

−0.1708 0.0248 −0.0031 0.0248 0 0 0 8.8292 1.0217
0.0217 −0.1304 −0.1087 −0.1304 0 0 0 1.0217 9.7609




, (8)

where all non-zero entries are rounded to 4 digits after the decimal point. Using the
MATLAB function eig, we can see that λ1(A(2)) ≈ 10.4242 and λ9(A(2)) ≈ 1.0440. Thus,
λ1(A(2))/λ9(A(2)) ≈ 9.9849 < λ1(A(1))/λ9(A(1)). It is also easy to check that the diagonal
blocks of A(2) are all nonsingular. This implies that a block cyclic reduction can again be
applied to the linear system with the coefficient matrix A(2). The 2nd block cyclic reduction
then simplifies A(2) as the block diagonal matrix:

A =




1.8257 1.0259 −0.0027 0.0259 0 0 0 0 0
1.0259 2.8490 1.0171 −0.1510 0 0 0 0 0
−0.0027 1.0171 3.8715 1.0171 0 0 0 0 0

0.0259 −0.1510 1.0171 4.8490 0 0 0 0 0
0 0 0 0 5.2759 1.2465 −0.0476 0 0
0 0 0 0 1.2465 6.1930 1.0753 0 0
0 0 0 0 −0.0476 1.0753 7.6048 0 0
0 0 0 0 0 0 0 8.8052 1.0321
0 0 0 0 0 0 0 1.0321 9.7475




. (9)

The MATLAB function eig immediately returns λ1(A) ≈ 10.4109 and λ9(A) ≈ 1.0445.
Therefore, λ1(A)/λ9(A) ≈ 9.9674 < λ1(A(2))/λ9(A(2)).

189



Mathematics 2021, 9, 3213

Next, we deal with the case where A(1) is the 9-by-9 symmetric block tridiagonal and neg-
ative definite matrix with λ1(A(1)) = −1.172, λ9(A(1)) = −6.828 and λ1(A(1))/λ9(A(1)) ≈
6.828/1.172 ≈ 5.826,

A(1) =




−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4




. (10)

This is an example matrix appearing in the discretization of Poisson’s equation [11]. It is
different from the 1st example matrix in that all the blocks have the same matrix size. It is
obvious that the non-zero blocks are all 3-by-3 nonsingular. A block cyclic reduction then
transforms A(1) into the symmetric block 2-tridiagonal matrix:

A(2) =




−3.7321 1.0714 0.0179 0 0 0 0.2679 0.0714 0.0179
1.0714 −3.7143 1.0714 0 0 0 0.0714 0.2857 0.0714
0.0179 1.0714 −3.7321 0 0 0 0.0179 0.0714 0.2679

0 0 0 −3.4643 1.1429 0.0357 0 0 0
0 0 0 1.1429 −3.4286 1.1429 0 0 0
0 0 0 0.0357 1.1429 −3.4643 0 0 0

0.2679 0.0714 0.0179 0 0 0 −3.7321 1.0714 0.0179
0.0714 0.2857 0.0714 0 0 0 1.0714 −3.7143 1.0714
0.0179 0.0714 0.2679 0 0 0 0.0179 1.0714 −3.7321




, (11)

where λ1(A(2)) = −1.8123, λ9(A(2)) = −5.4142, and λ1(A(2))/λ9(A(2)) ≈ 2.9875. Since
the non-zero blocks in A(2) are all nonsingular, we can simplify A(2) as the block diago-
nal matrix:

A =




−3.7052 1.0932 0.0282 0 0 0 0 0 0
1.0932 −3.6770 1.0932 0 0 0 0 0 0
0.0282 1.0932 −3.7052 0 0 0 0 0 0

0 0 0 −3.4643 1.1429 0.0357 0 0 0
0 0 0 1.1429 −3.4286 1.1429 0 0 0
0 0 0 0.0357 1.1429 −3.4643 0 0 0
0 0 0 0 0 0 −3.7052 1.0932 0.0282
0 0 0 0 0 0 1.0932 −3.6770 1.0932
0 0 0 0 0 0 0.0282 1.0932 −3.7052




, (12)

with λ1(A) = −1.8123, λ9(A) = −5.2230, and λ1(A)/λ9(A) = 2.8820. Thus, it can
numerically be observed that: λ1(A(1))/λ9(A(1)) > λ1(A(2))/λ9(A(2)) > λ1(A)/λ9(A).

7. Concluding Remarks

This paper focused on coefficient matrices in linear systems obtained from block
iterative cyclic reductions. We showed that block M-tridiagonal coefficient matrices can
be transformed to block tridiagonal matrices without changing the eigenvalues. We inter-
preted transformations from block M-tridiagonal matrices to block 2M-tridiagonal matrices
as composite transformations of the block tridiagonalizations, with their inverses and trans-
formations from block tridiagonal matrices to block 2-tridiagonal matrices appearing in the
first step of the block cyclic reduction method. We then used this interpretation to consider
the other steps of the block cyclic reduction method. We found a relationship between
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the inverses of block tridiagonal matrices and block 2-tridiagonal matrices in the first step,
which helped us to clarify the main results of this paper—i.e., the first step narrows the
distribution of roots of characteristic polynomials associated with coefficient matrices, and
the other steps also do this if the original coefficient matrices are symmetric positive or
negative definite. This property suggests that each block cyclic reduction does not make
it difficult to solve a linear system with a symmetric positive or negative definite block
tridiagonal matrix, which will be useful for dividing a large-scale linear system into several
small-scale ones.

A remarkable point of our approach is, as a result, useful regardless of whether co-
efficient matrices are tridiagonal or block tridiagonal. However, the coefficient matrices
are currently limited to be symmetric positive or negative definite. For example, in the
nonsymmetric Toeplitz case [12], our approach cannot grasp root distribution of the char-
acteristic polynomial. Future work thus involves developing our approach so that root
distribution can be examined in the cases of various coefficient matrices.
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Abstract: In this paper, we present some important approximation properties of Chebyshev poly-
nomials in the Legendre norm. We mainly discuss the Chebyshev interpolation operator at the
Chebyshev–Gauss–Lobatto points. The cases of single domain and multidomain for both one di-
mension and multi-dimensions are considered, respectively. The approximation results in Legendre
norm rather than in the Chebyshev weighted norm are given, which play a fundamental role in
numerical analysis of the Legendre–Chebyshev spectral method. These results are also useful in
Clenshaw–Curtis quadrature which is based on sampling the integrand at Chebyshev points.
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1. Introduction

Orthogonal polynomials are useful in many areas of numerical analysis and are
powerful for function approximation, numerical integration and numerical solution of
differential and integral equations [1,2]. The core idea of spectral methods is that any nice
enough function can be expanded in a series of orthogonal polynomials so that orthogonal
polynomials play a fundamental role in spectral methods [3–6]. Particularly, Chebyshev
polynomials and Legendre polynomials are frequently used in spectral methods and are
two important sequences in numerical analysis.

The related approximation results of typical Chebyshev and Legendre spectral approx-
imation are discussed in many literatures [3,4,7–10]. These results of Chebyshev spectral
approximation are usually in the weighted norm forms. The Legendre–Chebyshev spectral
method is a popular numerical method, which enjoys advantages of better stability of the
Legendre method and easy implementation of the Chebyshev method. Therefore, it is
necessary to develop the approximation properties of Chebyshev polynomials in the Leg-
endre norm. In [11,12], the approximation result of the Chebyshev interpolation operator
without the Chebyshev weighted norm was first given. Some other valuable results related
to Chebyshev polynomials can be referred to [2,13–19] and references therein.

In addition, Chebyshev polynomials have a special connection with Clenshaw–Curtis
quadrature, which uses Chebyshev points instead of optimal nodes. Clenshaw–Curtis
quadrature can be implemented in O(N log N) operations using the fast Fourier transform
(FFT) and is used in numerical integration and numerical analysis [20–25]. As we known,
Gauss quadrature is a beautiful and powerful idea. Zeros of orthogonal polynomials are
chosen as the nodes of Gauss-type quadratures and used to generate computational grids
for spectral methods. Yet, the Clenshaw–Curtis formula has essentially the same perfor-
mance for most integrands and can be implemented effortlessly by the FFT [26]. Thus,
the Clenshaw–Curtis and Gauss formulas are employed in the numerical solution of Ordi-
nary differential equations and Partial differential equations by spectral methods [5,26–28].
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And, Chebyshev polynomials also have an important connection with the mock–Chebyshev
subset interpolation exploited to cutdown the Runge phenomenon [29,30], which takes
advantages of the optimality of the interpolation processes on Chebyshev–Lobatto nodes.

The purpose of this paper is to present some essential approximation results related
to Chebyshev polynomials in the Legendre norm. The first fundamental result of or-
thogonal polynomials is the Weierstrass Theorem, which is an important element of the
classical polynomial approximation theory [31,32]. In numerical analysis of the Legendre–
Chebyshev spectral method, we need to consider the stability and approximation proper-
ties of the Chebyshev interpolation operator in the L2-norm rather than in the Chebyshev
weighted norm [13]. In the paper, we consider the Chebyshev interpolation operator at the
Chebyshev–Gauss–Lobatto (CGL) points. The cases of single domain and multidomain for
both one dimension and multi-dimensions are discussed. Some approximation results in
the Legendre norm rather than in the Chebyshev weighted norm are given. These results
serve as preparations for polynomial-based spectral methods.

The rest of the paper is organized as follows. In Section 2, Chebyshev polynomials are
described, and some related notations are introduced. In Section 3, some approximation
properties of Chebyshev interpolation operators in one dimension are given. The cases of
single domain and multidomain are discussed, respectively. In Section 4, some approxima-
tion properties in multi-dimensions are given. The conclusion is given in Section 5.

2. Preliminaries and Notations

In this section, we give a brief description of Chebyshev polynomials and define the
Chebyshev interpolation operators. Some notations are also given, which will be used in
the following sections.

We consider orthogonal polynomials—Chebyshev polynomials, which are proportional

to Jacobi polynomials
{

J−
1
2 ,− 1

2
n

}
and are orthogonal with respect to the weight function

ω(x) = (1− x2)−
1
2 , x ∈ [−1, 1].

The three-term recurrence relation for the Chebyshev polynomials is as follows [6]:




T0(x) = 1,
T1(x) = x,
Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

which satisfies ∫ 1

−1
Ti(x)Tj(x)(1− x2)−

1
2 dx =

ci
2

δij,

where c0 = 2, ci = 1(i ≥ 1). As we known, there have been many useful properties of
Chebyshev polynomials [4,6,28].

Denote (·, ·)Q and ‖ · ‖Q be the inner product and the norm of the space L2(Q) ,
respectively. We will drop the subscript Q whenever Q = I = (−1, 1). Let PN(I) be the
space of polynomials with the degree at most N on an interval I. And let Hσ(Q)(σ > 0) be
the classical Sobolev space with norm ‖ · ‖Hσ(Q).

Define the Chebyshev interpolation operator at the CGL points by IC
N : C( Ī) →

PN(I) satisfying
IC
N ϕ(xj) = ϕ(xj), 0 ≤ j ≤ N, (1)

where xj = cos π j
N .

3. Approximation Properties of Chebyshev Interpolation Operator in One Dimension

In this section, some approximation properties of the Chebyshev interpolation operator
in one dimension are derived. The cases of both single domain and multidomain are
considered respectively.
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3.1. Case of Single Domain in One Dimension

Similar to the approximation results presented in [11] for the Chebyshev interpolation
operator IC

N , we give the following lemma.

Lemma 1 ([11,15]). If u ∈ H1(I), then

N‖IC
Nu− u‖+ ‖∂x IC

Nu‖ ≤ C‖∂xu‖. (2)

In addition, if u ∈ Hσ(I) and σ > 1/2, then

‖IC
Nu− u‖Hl(I) ≤ CNl−σ‖u‖Hσ(I), 0 ≤ l ≤ 1. (3)

We note that the norm in the approximation results (2) and (3) is already without
the Chebyshev weighted function and is in Legendre norm. The lemma is important in
numerical analysis of Legendre–Chebyshev spectral method.

Next, the applications of the result of interpolation (3) to connect with the Clenshaw-
Curtis quadrature are presented as follows. Given

I(u) =
∫ 1

−1
u(x)dx, IN(u) =

N

∑
k=0

ωku(xk),

where the nodes xk depend on N. Since the weights ωk are defined uniquely by the property
that IN is equal to the integral of the degree ≤ N polynomial interpolation through the
data points. Then we have

IN(u) =
N

∑
k=0

ωku(xk) =
∫ 1

−1
IC
Nu(x)dx.

For the Clenshaw-Curtis numerical integration in [26], the unique best approximation
to u on [−1, 1] of degree ≤ N with respect to the L∞-norm.

The following lemma shows that we simply use the L2-norm estimation result (3) to
get the desired error estimate.

Lemma 2. If u ∈ Hσ(I) and σ > 1/2, then

|IN(u)− I(u)| ≤ CN−σ‖u‖Hσ(I). (4)

3.2. Case of Multidomain in One Dimension

For 1 ≤ k ≤ K, we denote −1 = a0 < a1 < · · · < aK = 1, and set

Ik = (ak−1, ak], I = ∪K
k=0 Ik, hk = ak − ak−1, vk ≡ v|Ik .

Let PNk (Ik) be the space of polynomials with the degree at most Nk on the interval Ik.
Denote N = (N1, · · · , NK).

Define the following space

PN (I) = {u : u|Ik ∈ PNk (Ik), 1 ≤ k ≤ K}.

Set the relationship between Ik and I as follows:

v(x) = v̂(x̂), x =
1
2
(hk x̂ + ak−1 + ak), x ∈ Ik, x̂ ∈ I.

Define the operator IC
N : C( Ī)→ PN such that

(̂IC
N u)

k
= IC

Nk
ûk(x̂), 1 ≤ k ≤ K, (5)
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where IC
Nk

: C( Ī)→ PNk (I) is the CGL interpolation operator defined as (1).

Lemma 3. If v ∈ Hσ(Ik) (σ ≥ 0), then

‖v̂‖Hσ(I) ≤ Chσ− 1
2

k ‖v‖Hσ(Ik)
, (6)

‖v‖Hσ(Ik)
≤ Ch

1
2−σ

k ‖v̂‖Hσ(I). (7)

Denote h̄ = max1≤k≤K
{ hk

Nk

}
. We arrive at the following approximation result.

Theorem 1. If u ∈ Hσ(I)(σ ≥ 1), then

‖IC
N u− u‖Hl(I) ≤ Ch̄σ−l‖u‖Hσ(I), 0 ≤ l ≤ 1. (8)

Proof. Applying Lemma 1 and Lemma 3, we get

‖IC
N u− u‖2

Hl(I)= ∑
1≤k≤K

‖(IC
N u)k − uk‖2

Hl(Ik)

≤C ∑
1≤k≤K

h1−2l
k ‖IC

Nk
ûk − ûk‖2

Hl(I)

≤C ∑
1≤k≤K

h1−2l
k N2(l−σ)

k ‖ûk‖2
Hσ(I)

≤C ∑
1≤k≤K

h1−2l
k N2(l−σ)

k h2σ−1
k ‖uk‖2

Hσ(Ik)

≤Ch̄2(σ−l)‖u‖2
Hσ(I).

Thus, the theorem is proved.

4. Approximation Properties of Chebyshev Interpolation Operator
in Multi-Dimensions

Set Ii = (−1, 1)(i = 1, · · · , d), Ωd = I1 × I2 × · · · × Id. If d = 2, we use Ω = Ix × Iy

instead of Ω2 = I1 × I2.
Define the following space

PN(Ωd) = PN(I1)⊗ PN(I2)⊗ · · · ⊗ PN(Id).

Denote x = (x1, · · · , xd) ∈ Ωd. With each function v in C(Ω̄d), we associate the
d-function vj defined by

vj(xj)(x1, · · · , xj−1, xj+1, · · · , xd) = v(x1, · · · , xd), 1 ≤ j ≤ d.

Define the operator IC
N by

IC
N = IC

N,1 ◦ · · · ◦ IC
N,d, (9)

where IC
N,i is the CGL interpolation operator IC

N,i : C( Īi)→ PN(Ii) defined as (1).

4.1. Case of Single Domain in Multi-Dimensions

According to the one dimensional approximation results, we give some approximation
results of the Chebyshev interpolation operators for the case of single domain in multi-
dimensions (d ≥ 2).
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Theorem 2. If u ∈ Hσ(Ωd) and σ > d
2 , then

‖IC
Nu− u‖Ωd ≤ CN−σ‖u‖Hσ(Ωd)

. (10)

Proof. Applying (3) in Lemma 1 and noting L2(Ωd) = L2(I j; L2(Ωd−1)), we have
∥∥u− IC

Nu
∥∥

Ωd
=
∥∥u− IC

N,1 ◦ · · · ◦ IC
N,du

∥∥
Ωd

≤
∥∥u− IC

N,1u
∥∥

L2(I1;L2(Ωd−1))
+
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
L2(I1;L2(Ωd−1))

+
∥∥(I − IC

N,1)(u− IC
N,2 ◦ · · · ◦ IC

N,du)
∥∥

L2(I1;L2(Ωd−1))

≤CN−σ
∥∥u
∥∥

Hσ(I1;L2(Ωd−1))
+
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
L2(I1;L2(Ωd−1))

+ CN−
σ
d
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
H

σ
d (I1;L2(Ωd−1))

.

Repeating the above discussion d times for
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
L2(I1;L2(Ωd−1))

and
∥∥u− IC

N,2 ◦ · · · ◦ IC
N,du

∥∥
H

σ
d (I1;L2(Ωd−1))

, and by the following imbedding relationship

Hs(Ωd) ⊂ Hk(I j; Hs−k(Ωd−1)), s ≥ k,

the desired result is obtained.

Theorem 3. If u ∈ Hσ(Ωd) and σ > d+1
2 , then

‖IC
Nu− u‖H1(Ωd)

≤ CN1−σ‖u‖Hσ(Ωd)
. (11)

Proof. For 1 ≤ j ≤ d, we have

‖u− IC
Nu‖2

H1(Ωd)
≤

d

∑
j=1
‖u− IC

N‖2
H1(I j ;L2(Ωd−1))

.

By (3) in Lemma 1 and Theorem 2, we get
∥∥u− IC

Nu
∥∥

H1(I j ;L2(Ωd−1))

≤
∥∥u− IC

N,ju
∥∥

H1(I j ;L2(Ωd−1))

+
∥∥IC

N,j(u− IC
N,1 ◦ · · · ◦ IC

N,j−1 ◦ IC
N,j+1 ◦ · · · ◦ IC

N,du)
∥∥

H1(I j ;L2(Ωd−1))

≤ CN1−σ
∥∥u
∥∥

Hσ(I j ;L2(Ωd−1))

+ C
∥∥u− IC

N,1 ◦ · · · ◦ IC
N,j−1 ◦ IC

N,j+1 ◦ · · · ◦ IC
N,du

∥∥
H1(I j ;L2(Ωd−1))

≤ CN1−σ
∥∥u
∥∥

Hσ(I j ;L2(Ωd−1))
+ CN1−σ

∥∥u
∥∥

H1(I j ;Hσ−1(Ωd−1))

≤ CN1−σ
∥∥u
∥∥

Hσ(Ωd)
.

Thus, the theorem is proved.

4.2. Case of Multidomain in Multi-Dimensions

In this subsection, we give some approximation properties of the CGL interpolation
operator for the case of multidomain in multi-dimensions (d ≥ 2).

For simplicity, we make the same subdivision in each direction of space. Similar to the
case of multidomain in one dimension, for 1 ≤ k ≤ K, denote−1 = a0 < a1 < · · · < aK = 1,
and set

Ii
k = (ak−1, ak], Ii = ∪K

k=0 Ii
k, i = 1, · · · , d.

Let PNk (Ii
k) be the space of polynomials with the degree at most Nk on the interval Ii

k.
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We introduce the space PN(Ωd) = PN (I1) ⊗ · · · ⊗ PN (Id). Define the Chebyshev-
Gauss–Lobatto interpolation operator IC

N by

IC
N = IC

N ,1 ◦ IC
N ,2 ◦ · · · ◦ IC

N ,d, (12)

where IC
N ,i : C( Īi)→ PN (Ii) is the CGL interpolation operator defined as (5).

By the assumption of the same subdivision in each direction of space, we set h̄ =

max1≤k≤K
{ hk

Nk

}
and give the following approximation results.

Theorem 4. Assume that d = 2. If u ∈ Hσ(Ω) and σ > 1, then

‖IC
N u− u‖Ω ≤ Ch̄σ‖u‖Hσ(Ω). (13)

Proof. By Theorem 1 and Lemma 1, we get
∥∥u− IC

N u
∥∥=
∥∥u− IC

N ,1 ◦ IC
N ,2u

∥∥

≤
∥∥u− IC

N ,1u
∥∥

L2(Ix ;L2(Iy))
+
∥∥u− IC

N ,2u
∥∥

L2(Ix ;L2(Iy))

+
∥∥(I − IC

N ,1)(u− IC
N ,2u)

∥∥
L2(Ix ;L2(Iy))

≤Ch̄σ
∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+
∥∥u− IC

N ,2u
∥∥

L2(Ix ;L2(Iy))

+ Ch̄
∥∥u− IC

N ,2u
∥∥

H1(Ix ;L2(Iy))

≤Ch̄σ
∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+ Ch̄σ

∥∥u
∥∥

L2(Ix ;Hσ(Iy))
+ Ch̄σ

∥∥u
∥∥

H1(Ix ;Hσ−1(Iy))

≤Ch̄σ‖u‖Hσ(Ω).

Thus, the proof is completed.

Theorem 5. Assume that d = 2. If u ∈ Hσ(Ω) and σ > d+1
2 = 3

2 , then

∥∥u− IC
N u
∥∥

H1(Ω)
≤ Ch̄σ−1‖u‖Hσ(Ω). (14)

Proof. By Theorem 1 and Lemma 1, we have
∥∥u− IC

N u
∥∥

H1(Ix ;L2(Iy))
≤
∥∥u− IC

N ,1u
∥∥

H1(Ix ;L2(Iy))
+
∥∥IC
N ,1(u− IC

N ,2u)
∥∥

H1(Ix ;L2(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+
∥∥(I − IC

N ,1)(u− IC
N ,2u)

∥∥
H1(Ix ;L2(Iy))

+
∥∥u− IC

N ,2u
∥∥

H1(Ix ;L2(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+ C

∥∥u− IC
N ,2u

∥∥
H1(Ix ;L2(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ix ;L2(Iy))
+ Ch̄σ−1∥∥u

∥∥
H1(Ix ;Hσ−1(Iy))

≤Ch̄σ−1∥∥u
∥∥

Hσ(Ω)
.

Therefore, the desired result is obtained.

5. Numerical Experiments

In this section, we give some numerical experiments to confirm the theoretical results.
The cases of continuous and discontinuous functions are considered, respectively.

The discrete L2-error used in the following experiments is defined as

Err(u) =
( n−1

∑
i=0

n−1

∑
j=0

∣∣u(xi, yj)− IC
N u(xi, yj)

∣∣2∆x∆y
) 1

2
, (15)

where xi = i∆x, yj = j∆y, ∆x = ∆y = 1
n , and n = 100.
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Example 1. We consider the following continuous function in Ω̄ = [0, 1]2:

u(x, y) =
ky

w
cos(kxπx) sin

(
kyπy

)
, w = (k2

x + k2
y)

1
2 , (16)

which is approximated by the multidomain Chebyshev-Gauss–Lobatto interpolation IC
N u.

We make the same subdivision in x and y directions as follows:

Ω̄ =
{
[0, 0.5] ∪ [0.5, 1]

}
×
{
[0, 0.5] ∪ [0.5, 1]

}
.

Figure 1 displays the shape of u(x, y) with low frequency kx = ky = 1 and high
frequency kx = ky = 5, respectively. Table 1 gives the discrete L2-errors of the Chebyshev-
Gauss–Lobatto interpolation for function u. The results show the spectral accuracy of the
multidomain interpolation.

(a) kx = ky = 1 (b) kx = ky = 5

Figure 1. The shapes of u(x, y) with low frequency kx = ky = 1 and high frequency kx = ky = 5.

Table 1. L2-errors of Chebyshev-Gauss–Lobatto interpolation for u(x, y).

kx = ky = 1 kx = ky = 5

Nx = Ny Err(u) Order Nx = Ny Err(u) Order

(7,7) 2.15× 10−8 - (14,14) 1.76× 10−8 -
(10,10) 1.28× 10−12 h̄27.28 (18,18) 2.93× 10−12 h̄34.62

(13,13) 1.61× 10−16 h̄34.23 (22,22) 6.31× 10−16 h̄42.07

Example 2. We consider the following discontinuous functions in Ω̄ = [0, 1]2:

u1(x, y) =
ky

εw
cos(kxπx) sin

(
kyπy

)
, (17)

u2(x, y) = − ky

εw
sin(kxπx) cos

(
kyπy

)
, (18)

where w =

(
k2

x + k2
y

ε

) 1
2

. The functions are approximated by the multidomain Chebyshev-Gauss–

Lobatto interpolation IC
N u.
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Suppose that the parameters ε and kx are piecewise constants:

ε =

{
1, 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 1,
4, 0.5 ≤ x ≤ 1, 0 ≤ y ≤ 1,

kx =

{
4, 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 1,
16, 0.5 ≤ x ≤ 1, 0 ≤ y ≤ 1,

and ky = 8. The functions are discontinuous at x = 0.5. The domain is decomposed as follows:

Ω̄ =
{
[0, 0.5] ∪ [0.5, 1]

}
×
{
[0, 1]

}
.

Figure 2 displays the shape of u1(x, y) and u2(x, y). It is clear that u1(x, y) is discontinuous
and u2(x, y) is weak discontinuous at x = 0.5. Table 2 gives the discrete L2-errors of the Chebyshev-
Gauss–Lobatto interpolation for functions u1, u2. The results show the spectral accuracy of the
multidomain interpolation for the discontinuous functions.

(a) u1 (b) u2

Figure 2. The shapes of u1(x, y) and u2(x, y).

Table 2. L2-errors of Chebyshev-Gauss–Lobatto interpolation for u1(x, y) and u2(x, y).

Nx Ny Err(u1) Order Err(u2) Order

(12,26) 26 8.30× 10−8 - 4.87× 10−8 -
(16,32) 32 8.32× 10−12 h̄32.00 4.99× 10−12 h̄31.93

(20,38) 38 7.52× 10−16 h̄54.18 7.74× 10−16 h̄51.04

6. Conclusions

In the paper, we have given some important approximation results of Chebyshev
interpolation operators in Legendre norm. The Chebyshev interpolation operators at
the Chebyshev–Gauss–Lobatto points is discussed mainly. Moreover, we considered the
cases of single domain and multidomain for both one dimension and multi-dimensions,
respectively. The approximation results in the Legendre norm are derived. These results
play an important role in numerical integration and numerical analysis of the Legendre–
Chebyshev spectral method and the Clenshaw–Curtis quadrature.
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Abstract: The problems associated with the construction of polynomial complexity computer programs
require new techniques and approaches from mathematicians. One of such approaches is representing
some class of polynomial algorithms as a certain class of special logical programs. Goncharov and
Sviridenko described a logical programming language L0, where programs inductively are obtained
from the set of ∆0-formulas using special terms. In their work, a new idea has been proposed to look
at the term as a program. The computational complexity of such programs is polynomial. In the
same years, a number of other logical languages with similar properties were created. However, the
following question remained: can all polynomial algorithms be described in these languages? It is
a long-standing problem, and the method of describing some polynomial algorithm in a not Turing
complete logical programming language was not previously clear. In this paper, special types of terms
and formulas have been found and added to solve this problem. One of the main contributions is
the construction of p-iterative terms that simulate the work of the Turing machine. Using p-iterative
terms, the work showed that class P is equal to class L, which extends the programming language L0

with p-iterative terms. Thus, it is shown that L is quite expressive and has no halting problem, which
occurs in high-level programming languages. For these reasons, the logical language L can be used to
create fast and reliable programs. The main limitation of the language L is that the implementation of
algorithms of complexity is not higher than polynomial.

Keywords: polynomiality; polynomial function; polynomial algorithm; Turing machine; logical
programming language; semantic programming; smart contract; blockchain; AI

1. Introduction

In the 1980s–1990s, Ershov, Goncharov, and Sviridenko presented the theory of seman-
tic programming [1]. The concepts of Σ-programs and Σ-specifications were introduced
in this work. The hereditary finite list superstructure was chosen as a base mathematical
model. The universe of this model is the hereditary finite lists generated by elements of the
universe of the base model [2], and some LISP-like functions were added. Special logical
Σ-formulas with input and output variables were used as Σ-programs [3]. This gave rise to
the study of programming language semantics from a mathematical point of view.

Cenzer and Remmel were among the first to study polynomial structures [4]. They
investigated the existence of computable isomorphisms between computable and polynomial
structures. Then, Lewis and Papadimitriou explored polynomial-time reductions [5]. Then,
for a long time, the open problem was to create a logical programming language, which
would have polynomial complexity. Mantsivoda developed a logical programming language
based on document models. Documents are the main elements of the model universe. Special
functions are defined for working with them. Mantsivoda and Ponomaryov formalized
this approach in their work [6]. This language is simple and efficient. All operations and
relations are polynomial. After that, another type of logical programming language, semantic
domain-specific languages, was developed [7]. This language is based on the ideas of semantic
programming where a truth-checking formula on the model replaced computability [1]. All
programs also have polynomial complexity, but the question of how well it described the
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class of polynomial algorithms remained. In the work [8], some interesting results were
presented. The authors found that the primitive recursive representation of the algorithm
with boundaries of the variables often had a polynomial complexity. Then, Alaev investigated
the questions of polynomial representability of various structures in his work [9]. This work
gave the key to understanding what polynomiality is. In parallel, Goncharov and Sviridenko
developed and presented a new logical programming language in which special terms were
used as logical programs [10]. All programs in this language have polynomial computational
complexity. However, the main question remains: can all polynomial algorithms be described
by this language? The result that will be proved in this work answers this question.

After proving the polynomial analogue of Gandy’s fixed point theorem [11], it became
clear that the language L0 is wide enough. This language is used to construct quite complex
constructions. In particular, this concerned the inductive construction of new types of data
and computer programs in programming.

2. Preliminaries

Let B be a p-computable model of the signature σ0. A p-computable hereditary finite
list superstructure HW(B) [11] was chosen as a mathematical model of the signature
σ. The universe of the model HW(B) consists of elements of the model universe B and
hereditarily finite lists HW(B). Signature σ extends σ0 with the next LISP-like list relations
∈ (to be an element of a list), ⊆ (to be an initial segment of a list) and the list operations
head, tail, cons, conc, and constant nil [12]. Define new unary list operations f irst, cons_l,
tail_l. The first operation f irst gets the first list element, the second cons_l adds the element
into the beginning of the list and the last operation tail_l removes the first element from
the list correspondingly. Define new unary operations strList, listStr. The first operation
strList based on the input string of the form l1 . . . lk builds a list of the form < l1, . . . , lk >,
where li ∈ Σ, i ∈ [1, . . . , k], the second operation listStr based on the input list of the
form < l1, . . . , lk > builds a string l1 . . . lk, where li ∈ Σ, i ∈ [1, . . . , ]. The signature σ
is an extension of σ0 with these new operation symbols. The main operations head, tail,
cons, conc, and relations ∈, ⊆ have polynomial complexity [12]. It is easy to see that other
operations f irst, cons_l, tail_l, strList, and listStr have polynomial complexity.

Define ∆0-formulas as first order formulas of the signature σ in which quantification
is of the following two types:

• a restriction onto the list elements ∀x ∈ t and ∃x ∈ t.
• a restriction onto the initial segments of list ∀x ⊆ t and ∃x ⊆ t.

The set of ∆0-formulas of the signature σ has been extended by induction with several
types of terms: conditional terms, b-while terms, bounded recursive terms, and etc. [10]
These formulas are denoted as ∆0(I)-formulas and new terms are denoted as ∆0(I)-terms.
Denote the resulting set of ∆0(I)-terms as a language L0.

Definition 1. Any ∆0(I)-term from the language L0 will be referred to as L0-program.

Definition 2. Any ∆0(I)-formula will be referred to as L0-formula.

L0-program property:

• any L0-program has a polynomial computation complexity on any p-computable
enrichment HW(B)∗ of the model HW(B).

L0-formula property:

• any L0-formula has a polynomial truth-checking algorithm on any p-computable
enrichment HW(B)∗ of the model HW(B).

In this work, to construct a suitable logical program for a polynomial function, the
concept of a conditional term from the work of Goncharov [13] is used. Let t0, t1, . . . , tn+1
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is L0-programs and θ0, . . . , θn is L0-formulae [10]. Define the concept of a conditional term
t(v) in the next interpretation:

t(v) =





t0(v), if HW(B) |= θ0(v)
t1(v), if HW(B) |= θ1(v)&¬θ0(v)
. . .
tn(v), if HW(B) |= θn(v)&¬θ0(v)& . . . &¬θn−1(v)
tn+1(v), otherwise

(1)

where v have a form (v1, . . . , vk) for some k ∈ N.
Conditional terms use a construction similar to the operator “if then else” in high-level

programming languages. Leave also the other types of terms from [10] for the expressiveness
of a new language. However, in the future, to construct a term describing a polynomial
function, only conditional terms from work [10] will be used.

3. Polynomial Functions and Turing Machines

Let Tf be a deterministic Turing machine over the alphabet Σ representing polynomial
function f . Let S be the set of symbols {1, B} and Q be the set of states of the Turing machine,
where q1 is the initial state and q0 is the final state. Let PTf be a Turing machine program
that implements the function f . Since any program of the Turing machine is implemented
through σ : Q× S→ Q× S×{R, L}, then all elements of the program PTf will be presented
in the form of a list < qi1 , sj1 , qi2 , sj2 , β >. Sequence of the symbols

ci : s−mi . . . s−2 s−1 qki
s0 s1 . . . sni (2)

is called the configuration of the Turing machine at the ith step.
Let β be the symbol from the set {R, L}. Let ci be some configuration of Tf and there is

a element < qi1 , sj1 , qi2 , sj2 , β > from the program PTf . Then, with the help of this element,
the configuration ci will switch to another configuration cj.

Since the Turing machine Tf represents a polynomial function f over the alphabet Σ,
the machine will work on any input x ∈ Σ∗ no more than

p(|x|) = Cp · |x|np (3)

steps for some fixed Cp, np ∈ N. Let r( f (x)) be the computational complexity of the
function f (x). From (3), it follows:

r( f (x)) ≤ p(|x|) (4)

If the Turing machine Tf changes configuration ci on ci+1, then:

|ci| − 1 ≤ |ci+1| ≤ |ci|+ 1 (5)

and from (5) the inequality follows for the final configuration c f inal :

|c f inal | ≤ |c0|+ p(|x|) ≤ d(|x|), for some polynomial d(|x|) (6)

It should be noted that if Tf reached the final configuration c f inal = cj for some jth
step and j ≤ p(|x|); then, all the remaining configurations cj+1, . . . , cp(|x|) would be equal
to c f inal .

Using the configuration ci of the form (2) define a machine word wci in the next form:

wci : << s−mi , . . . , s−1 >, qki
,< s0, . . . , sni >> (7)

where qki
is equal to a string q . . . q of the length ki + 1 and sk ∈ {B, 1}, k ∈ [−mi, ni].

Define wci ,k as the k-th element of the machine word wci , where k ∈ {1, 2, 3}.
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If configuration ci has a form qki
s0 . . . sni , then the machine word wci has a form:

wci : < nil, qki
,< s0, . . . , sni >> (8)

Remark 1.

(1) the state qki
is obtained from wci and equal head(tail(wci ))

(2) monitored symbol s0 is obtained from wci and equal f irst(head(wci )).

Remark 2.

(1) Equality (5) implies that

|wci | − C ≤ |wci+1 | ≤ |wci |+ C, for some fixed C ∈ N (9)

(2) Equalities (6) and (9) imply that

|wc f inal | ≤ |wc0 |+ p(|x|) · C ≤ r′(|x|) for some polynomial r′(|x|).

Define a new binary operation ⊗ using the machine word wci and the element
< q1, s1, q2, s2, β > from the program PTf :

Case 1: element equal < q1, s1, q2, s2, R >

wci⊗ < q1, s1, q2, s2, R >=

{
wcj , if head(tail(wci )) = q1 and f irst(head(wci )) = s1

nil, otherwise
(10)

and wcj =< wcj ,1, wcj ,2, wcj ,3 >, where

wcj ,1 = cons( f irst(wci ), s2); wcj ,2 = q2;
wcj ,3 = tail_l(head(wci ));

Case 2: element equal < q1, s1, q2, s2, L >

wci⊗ < q1, s1, q2, s2, L >=

{
wcj , if head(tail(wci )) = q1 and f irst(head(wci )) = s1

nil, otherwise
(11)

and wcj =< wcj ,1, wcj ,2, wcj ,3 >, where

wcj ,1 = tail( f irst(wci )); wcj ,2 = q2;
wcj ,3 = cons_l(cons_l(tail_l(head(wci )), s2), head( f irst(wci )));

Remark 3. Operation ⊗ is polynomial.

4. p-Iterative Terms

From the previous section, the length of the final machine word wc f inal does not exceed
the length of the initial machine word wc0 plus the length of some polynomial r′(|x|). The
main goal of this section is to construct a p-iterative term so that the length of the final
value should not exceed the length of the input value plus the value of some polynomial
v(|x|). Furthermore, it will be shown that such extension using p-iterative terms of the
language L0 does not take us beyond the polynomiality.

Let HW(B) be a p-computable model of the signature σ, g(x) be a L0-program, ϕ(x) be
a L0-formula. Require |g(x)| ≤ |x|+ Cg for some Cg ∈ N. Let u(|x|) be a polynomial such
that the complexity of checking the truth of the L0-formula ϕ(x) on model HW(B) should
not exceed u(|x|). Let computation complexity r(g(x)) of L0-program g(x) be bounded by
some polynomial s(|x|) = Cs · |x|ns . Define a p-iterative term t(x, n) using the following
iterative construction:
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g0(x) = g(x)
. . .

gi+1(x) = g(gi(x))
(12)

The p-iterative term has the form:

t(x, n) =
{

gi(x), if i ≤ n HW(B) |= ϕ(gi(x)) and ∀j < i HW(B) 6|= ϕ(gj(x)))
nil, otherwise

(13)

Remark 4. |gi+1(x)| ≤ |gi(x)|+ Cg.

Theorem 1. Let HW(B) be a p-computable model, ϕ(x) be a L0-formula, and g(x) be a L0-
program with the condition |g(x)| ≤ |x|+ Cg, Cg ∈ N. Then, p-iterative term from (13) is a
p-computable function.

Proof. Let t(x, n) be a p-iterative term. If the value of the term t(a, n0) equal gi+1(a); then,
HW(B) |= ϕ(gi+1(a)) for some a ∈ HW(B), n0 ∈ N, and i + 1 ≤ n0. It can be inferred that
the length of p-iterative term for i + 1 iteration:

|gi+1(a)| ≤ |gi(a)|+ Cg ≤ |g0(a)|+ (i + 1) · Cg ≤ |a|+ (i + 2) · Cg

and for any i ≤ n0:

|gi(a)| ≤ |g0(a)|+ n0 · Cg ≤ |a|+ (n0 + 1) · Cg ≤ (|a|+ n0) · (Cg + 1) + Cg ≤ z(|a|+ n0)

where
z(|x|) = (Cg + 1) · |x|+ Cg. (14)

The next step is to calculate the computational complexity r(t(x, n)) of the p-iterative
term. The algorithm is the following for some fixed a and n0:

step 0: Calculate g0(a) (it is necessary to calculate g(a)) and check the truth of the L0-
formula ϕ(g0(a)) on the model HW(B). If L0-formula is true, then leave the algo-
rithm running and send value g0(a); otherwise, go to the next step.

step 1: Calculate g1(a) (it is necessary to calculate g(g0(a))), where g0(a) is known on step 0
and check the truth of the L0-formula ϕ(g1(a)) on the model HW(B). If L0-formula
is true, then leave the algorithm running and send value g1(a); otherwise, go to the
next step.
. . .

step i: Calculate gi(a) (it is necessary to calculate g(gi−1(a))), where gi−1(a) is known on
step i− 1 and check the truth of the L0-formula ϕ(gi(a)) on the model HW(B). If
L0-formula is true, then leave the algorithm running and send value gi(a), otherwise
go to the next step.
. . .

step n: Calculate gn0(a) (it is necessary to calculate g(gn0−1(a))), where gn0−1(a) is known
on step n− 1 and check the truth of the L0-formula ϕ(gn0(a)) on the model HW(B).
If L0-formula is true, then leave the algorithm running and send value gn0(a),
otherwise send nil.

Let w be gi(a) and |gi(a)| ≤ z(|a|+ n0), as r(g(w)) ≤ s(|w|) it can be inferred that:

r(t(a, n0)) ≤
n0

∑
i=0

(s(z(|a|+ n0)) + u(z(|a|+ n0))) (15)

and get inequality:

r(t(a, n0)) ≤ (s(z(|a|+ n0)) + u(z(|a|+ n0))) · (n0 + 1) ≤ d(|a|+ n0)

for some polynomial d(|x|) and polynomial z(|x|) from (14).
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Corollary 1. Let the conditions of Theorem 1 be satisfied and f (|x|) be some polynomial. Then,
any p-iterative term of the form t(x, f (|x|)) is a p-computable function relative to variable x.

Proof. The condition of Theorem 1 implies that there exists a polynomial z(x) from (14)

r(t(x, f (|x|))) ≤ z(|x|+ f (|x|)) ≤ z(w(|x|)) ≤ v(|x|)
where polynomial w(|x|) has a form |x|+ f (|x|) and polynomial v(|x|) has a form z(w(|x|)).

Definition 3. Define a new language L. Language L extends L0 by p-iterative terms. Classes
L-formulas and L-programs extend the classes of L0-formulas and L0-programs, respectively.

Theorem 2. Let HW(B)∗ be a p-computable extension of the p-computable model HW(B) of the
signature σ∗. Then, any L-program has polynomial computational complexity on HW(B)∗.

Proof. To prove this statement, it is nessesary to use induction on the number of distinct
p-iterative terms for some L-program t(x):

Base of induction n = 0: t(x) does not contain a p-iterative term. Then computation
complexity of the t(x) is polynomial; this follows immediately from the work [10].

Induction step: Let the statement be true for n = k; show this for n = k + 1. Let t(x)
be a L-program with k + 1 distinct p-iterative terms. Let HW(B)∗∗ be enrichment of the
model HW(B)∗ of the signature σ∗∗ = σ∗ ∪ {t1}, where p-iterative term t1 is involved
in construction t(x). In the new model HW(B)∗∗, L-program t(x) has only k distinct p-
iterative terms and by induction step, the L-program t(x) has a polynomial complexity.

5. Polynomiality via p-Iterative Terms

Let f (x) be a p-computable function, and let h(|x|) be a polynomial, such that
r( f (x)) ≤ h(|x|).

Let the universe of the model HW(B) contain the natural numbers N in the main set.
Signature σ contains the constants 0 and 1, Σ alphabet, and R and L, contain multiplication
× and addition + operations on N, operation of string concatenation concat, and operation
of string length (| |).

Remark 5. The new operations ×, +, concat, and | | are polynomial.

For any polynomial h(|x|), there is a suitable L-program. Let qi1 be a L-program of the
form concat(concat(. . . concat(q, q) . . . ), q), where the function concat is used i1 + 1-times.
Then, for each element of the form < qi1 , sj1 , qi2 , sj2 , β > from the Turing machine program
PTf , there is a suitable L-program v(qi1 , sj1 , qi2 , sj2 , β) of the form:

v(qi1 , sj1 , qi2 , sj2 , β) = cons(cons(cons(cons(cons(nil, qi1), sj1), qi2), sj2), β) (16)

Theorem 3. For any p-computable function, there is an L-program defining this function.

Proof. Let f be some p-computable function, h(|x|) some polynomial such that:

r( f (x)) ≤ h(|x|) (17)

Consider the Turing machine Tf over alphabet Σ with program PTf that realizes the
function f . Let us construct a list l f of terms of the form v(qi1 , sj1 , qi2 , sj2 , β) use (16) from
the program PTf , where β ∈ {R, L}. Then, L-formula ϕ(x) has a form:

ϕ(x) : Final(x) (18)

where predicate Final(w) is true if w is a machine word of the form
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<< s−m, . . . , s−1 >, q0,< s1, . . . , sk >>

It is apparent that the predicate Final(x) has a polynomial complexity.
Define tailk(x) as applying tail operation k times to x. A conditional term g(x) [10]

will be used for constructing a final L-program:

g(x) =





x⊗ l1, where (l1 = f irst(l f ))&(x⊗ l1 6= nil)
. . .
x⊗ li, where (li = head(tailk−i(l f )))&(x⊗ li 6= nil)
. . .
x⊗ lk, where (lk = head(l f ))&(x⊗ lk 6= nil)
x, otherwise

(19)

Define mw(x) as the L-program that transforms a word w to the machine word of the
form < nil, q1, w >. This L-program has a form:

mw(x) = cons(cons_l(cons(nil, q1), nil), strList(x)) (20)

L-program mw(x) transforms the word x to the machine word for the initial configura-
tion c0 of the Turing machine Tf .

Define value(x) as the L-program that transforms a machine word w into the word on
the tape of the Turing machine Tf . This function is constructed as follows:

value(w) = listStr(conc( f irst(w), head(w))) (21)

Define p-iterative term t(mw(x), h(|x|)) using construction (12) with the L-program
g(x) of the form (19), the formula ϕ from (18), the polynomial h(|x|) from (17), and L-
programs from (20) and (21).

The final L-program representing the function f (x) has the form:

value(t(mw(x), h(|x|))) (22)

Note that the L-program t(mw(x), h(|x|)) satisfies the conditions of Theorem 1 and,
therefore, value(t(mw(x), h(|x|))) is a p-computable.

6. Conclusions

The work shows the equality of classes P and L. The main motivation was to create
a not Turing complete logical programming language describing the class of polynomial
algorithms. Programs in this language are logical terms and have polynomial complexity.
For any polynomial algorithm, there is a program describing it. One of the main contribu-
tions of this work is the construction of a new logical language L that is equal to the class P.
Another contribution is the construction of a p-iterative term for this. The main limitation
is that this language is not Turing complete. Therefore, it is impossible to realize algorithms
on it with the complexity being higher than polynomial.

Thus, language L is rich enough to describe any algorithms of polynomial complexity.
These results are one more step in the construction of high-level programming languages
based on logical language L. Moreover, programs in such languages will remain polyno-
mially computable. It means that programs stop running every time, work quickly, and
produce results. It is especially important during the development of blockchain technolo-
gies and smart contracts. Since smart contracts are programs in a distributed environment,
the correct functioning of the entire blockchain as a whole depends on the result of its
execution. Such smart contracts should be executed quickly and should not consume a lot
of computing resources.

The work has built a logical language that allows one to create fast and reliable programs.
These programs will be used in computer science, robotics, the Internet of things, blockchain
technologies, medicine, and artificial intelligence.
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High-quality artificial intelligence requires not only just neural networks and machine
learning, but also logical rules and their execution. An effective solution is the hybrid tech-
nologies of neural networks and logical rules that will make a breakthrough in the future.
To construct such logical rules, the semantic programming theory suits perfectly well.
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Abstract: The present paper illustrates some classes of multivalue methods for the numerical solution
of ordinary and fractional differential equations. In particular, it focuses on two-step and mixed
collocation methods, Nordsieck GLM collocation methods for ordinary differential equations, and
on two-step spline collocation methods for fractional differential equations. The construction of
the methods together with the convergence and stability analysis are reported and some numerical
experiments are carried out to show the efficiency of the proposed methods.
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1. Introduction

Numerical collocation is an effective technique for the approximation of solutions to
a given functional equation by means of a continuous approximate belonging to a finite
dimensional space spanned by functions chosen in accordance with the qualitative behavior
of the exact solution. This idea has successfully been applied in several contexts (a very
brief and far from being extensive, list of contributions in the existing literature can be
found in [1–36] and references therein).

In this paper, we aim to collect some of our recent results showing the effectiveness of
collocation in two selected cases:

• Firstly, the case of stiff differential problems [1–3,37,38], commonly arising from
spatially discretized time-dependent partial differential equations. This problem
commonly exposes numerical schemes to the order reduction phenomena, typically
characterizing low stage-order methods such as Runge–Kutta methods on Gaussian
collocation points [1]. It is worth highlighting that improving the numerics for stiff
problems has a direct impact on the numerical treatment of a wide class of problems
that is interesting in several applications. A relevant case is given, for instance, by
multiscale problems: Quoting from [39], “Stiff equations are multiscale problems” and
this situation typically characterizes coupled physical systems whose components
vary on different time-scales. It is the case, for instance, of epidemiological models
for influenza or pandemics (see, for instance, refs. [40–42] and references therein),
since multiscale models are an ideal framework to simultaneously simulate several
processes such as immune response, pharmacokinetics, and interactions between virus
and host.
Our proposal to remove order reduction in providing approximate solutions to stiff
problems is to employ multivalue numerical methods based on numerical collocation.

Mathematics 2022, 10, 185. https://doi.org/10.3390/math10020185 https://www.mdpi.com/journal/mathematics
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These methods are free from order reduction, as it happens for classical collocation
methods. This topic is the subject of Sections 2 and 3;

• Secondly, the case of fractional differential problems, representing a fundamental tool
to model anomalous diffusion [43], material hereditariness, viscoelastic materials [44],
and heat conduction [45]. For these problems, the analytical solution is generally
not available and the numerical treatment is not an easy task, due to the lack of
smoothness of the analytical solution and general methods for Ordinary Differential
Equations (ODEs), applied to Fractional Differential Equations (FDEs), generally
exhibit low order of convergence, e.g., predictor-corrector methods [46]. Therefore ad
hoc numerical methods should be formulated to obtain a higher degree of accuracy, as
for example fractional linear multistep methods [47], a class of product integration
methods [48]. In this scenario, an important role is played by collocation methods, as
for example B-spline wavelets collocation [28], Chebychev collocation [49], spectral
collocation [16,33,50,51], and non-polynomial collocation [25]. In this paper, we focus
on spline collocation methods, which were first introduced by Blank [52], however
the main contribution to the development and analysis of these methods has been
given in [19,29,30,53]. More recently, multivalue spline collocation methods have been
proposed [18,20,54]. This topic is the subject of Section 4.

2. Multivalue Collocation Methods

Multivalue methods for the numerical solution of ODEs [1,37,55–57]:
{

y′(t) = f (y(t)), t ∈ [t0, T],
y(t0) = y0,

(1)

with y : [t0, T]→ Rd f : Rd → Rd, and have the form:

Y[n]
i = h

m

∑
j=1

aij f
(

Y[n]
j

)
+

r

∑
j=1

uijy
[n]
j , i = 1, 2, . . . , m,

y[n+1]
i = h

m

∑
j=1

bij f
(

Y[n]
j

)
+

r

∑
j=1

vijy
[n]
j , i = 1, 2, . . . , r,

(2)

where tn = t0 + nh, n = 0, 1, . . . , N are the grid points and h = (T − t0)/N is a fixed
stepsize. The matrices:

A = [aij] ∈ Rm×m, U = [uij] ∈ Rm×r, B = [bij] ∈ Rr×m, V = [vij] ∈ Rr×r (3)

are the coefficients of the methods and the vector c = [c1, c2, . . . , cm]T is called the abscissa
vector. The parameters c1, c2, . . . , cm are usually included in [0, 1], but in some cases can be
taken outside this interval in order to obtain A-stability (see for example Figure 1).

The values Y[n]
i ∈ Rd are called internal stages and provide an approximation to

y(tn + cih), while y[n]i ∈ Rd are called external stages, and each y[n]i provides an approxima-
tion to a linear combination of the derivatives of y at the point tn. The number of internal
stages m and the number of external stages r, influence the order of convergence and the
computational cost of the method, as will be shown later for some classes of methods.

As usual, the coefficient matrices of the multivalue numerical method (2) can be
gathered in the Butcher tableau: [

A U
B V

]
. (4)
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Collocation multivalue numerical methods represent a continuous extension of mul-
tivalue numerical methods in the GLM (General Linear Method) form (2), by means of
following piecewise collocation polynomial:

Pn(tn + θh) =
r

∑
i=1

αi(θ)y
[n]
i + h

m

∑
i=1

βi(θ) f (Pn(tn + cih)), θ ∈ [0, 1], (5)

and by interpreting the internal stages in (2) as Y[n]
i = Pn(tn + cih). In (5), the polynomials

αi(θ) and βi(θ) have a degree equal to the order p of the method and are usually computed
by solving continuous order conditions, as will be described in the following.

Several kind of multivalue collocation methods have been introduced so far, with a
different form for the vector of external stages. We will describe in the next two subsections
two different choices which lead to two-step collocation methods and Nordsieck GLM
collocation methods.

2.1. Two-Step Collocation Methods

Two-step collocation collocation methods have been introduced in [5] and have
the form:

Y[n]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn + h

m

∑
j=1

(
ψj(ci) f

(
Y[n]

j

)
+ χj(ci) f

(
Y[n−1]

j

))
i = 1, 2, . . . , m,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn + h
m

∑
j=1

(
ψj(1) f

(
Y[n]

j

)
+ χj(1) f

(
Y[n−1]

j

))
.

(6)

with a collocation polynomial defined by:

Pn(tn + θh) = ϕ0(θ)yn−1 + ϕ1(θ)yn + h
m

∑
j=1

(
ψj(θ) f

(
P(tn + cjh)

)
+ χj(θ) f

(
P(tn−1 + cjh)

))
, (7)

with θ ∈ [0, 1] and Y[n]
j = P(tn + cjh), Y[n−1]

j = P(tn−1 + cjh).
We observe that such methods can be viewed as multivalue collocation methods (2)–(5),

by choosing r = m + 2,
α1(θ) = ϕ1(θ), α2(θ) = ϕ0(θ),

α2+i(θ) = χi(θ), βi(θ) = ψi(θ) i = 1, . . . , m

and

y[n] =




yn
yn−1

hF(Y[n−1])


 ∈ Rm+2, (8)

where,

Y[n] =




Y[n]
1
...

Y[n]
m


, F(Y[n]) =




f (Y[n]
1 )
...

f (Y[n]
m )


. (9)

With the choice (8) for the external approximation vector, the collocation polynomial (5)
is a global smooth extension of the GLM (2) with tableau (4) given by the following matrices:

A =
[
β j(ci)

]
i,j=1,...,m ∈ Rm×m, U =

[
αj(ci)

]
i=1,...,m,j=1,...,r ∈ Rm×r,

w =
[
αj(1)

]
j=1,...,r ∈ Rr, v =

[
β j(1)

]
j=1,...,m ∈ Rm

B =




vT

0
I


 ∈ Rr×m, V =




wT

1 0 0
0 0 0


 ∈ Rr×r,
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where I is the identity matrix of dimension m and 0 is a zero matrix or vector of suitable
dimensions.

Order conditions can be formalized by the following theorem [5].

Theorem 1. A multivalue collocation method (2) with collocation polynomial in (5) and vector of
external stages defined by (8) is an approximation of uniform order p to the solution of the well-
posed problem approximates in the solution of (1) with uniform order p, if the following conditions
are satisfied:

α1(θ) + α2(θ) = 1
θν

ν!
− (−1)ν

ν!
α2(θ)−

m

∑
i=1

(
(ci − 1)ν−1

(ν− 1)!
α2+i(θ) +

(ci)
ν−1

(ν− 1)!
βi(θ)

)
= 0, ν = 1, . . . , p. (10)

The maximum attainable order is p = m+ r− 1, as in this case of m+ r− 1 polynomials
αi(θ) and βi(θ), which are uniquely derived by solving the continuous order conditions (10),
and the corresponding collocation polynomial satisfies the conditions listed in the following
corollary [5].

Corollary 1. The maximum attainable uniform order of convergence for a multivalue colloca-
tion method (2) with collocation polynomial in (5) and vector of external stages defined by (8) is
p = 2m + 1 = m + r − 1. The corresponding collocation polynomial satisfies the following
interpolation and collocation conditions:

Pn(tn) = yn, Pn(tn−1) = yn−1, (11)

P′n(tn + cih) = f (Pn(tn + cih)), P′n(tn−1 + cih) = f (Pn(tn−1 + cih)), i = 1, 2, . . . , m. (12)

2.2. Nordsieck GLM Collocation Methods

Nordsieck GLM collocation methods have been introduced in [4] and rely on the
vector of external stages in the so-called Nordsieck form [37]:

y[n] =




y[n]1

y[n]2
...

y[n]r



≈




y(tn)
hy′(tn)

...
hr−1yr−1(tn).


 (13)

With this choice for an external approximation vector, the collocation polynomial (5) is
a global smooth extension of the GLM (2) with tableau (4) given by the following matrices:

A =
[
β j(ci)

]
i,j=1,...,m ∈ Rm×m, U =

[
αj(ci)

]
i=1,...,m,j=1,...,r ∈ Rm×r,

B =
[

β
(i−1)
j (1)

]
i=1,...,m,j=1,...,r

∈ Rr×m, V =
[
α
(i−1)
j (1)

]
i,j=1,...,r

∈ Rr×r,

Order conditions have been derived in [4], as stated in the following theorem.

Theorem 2. A multivalue collocation method (2) with collocation polynomial in (5) and vector
of external stages defined by (13) is an approximation of uniform order p to the solution of the
well-posed problem approximates of the solution of (1) with uniform order p, if and only if the
following conditions are satisfied:
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α1(θ) = 1
θν

ν!
− αν+1(θ)−

m

∑
i=1

cν−1
i

(ν− 1)!
βi(θ) = 0, ν = 1, . . . , r− 1,

θν

ν!
−

m

∑
i=1

cν−1
i

(ν− 1)!
βi(θ) = 0, ν = r, . . . , p.

(14)

Corollary 2. The maximum attainable uniform order of convergence for a multivalue collocation
method (2) with a collocation polynomial in (5) and vector of external stages defined by (13) is
m + r − 1. The corresponding collocation polynomial satisfies the following interpolation and
collocation conditions:

Pn(tn) = y[n]1 , P′n(tn) = y[n]2 , . . . P(r−1)
n (tn) = y[n]r−1, (15)

P′n(tn + cih) = f (Pn(tn + cih)), i = 1, 2, . . . , m. (16)

2.3. Derivation of A-Stable Multivalue Collocation Methods

We describe in this section the existing procedures for the derivation of A-stable
uniform order multivalue collocation methods. The advantages of deriving such methods
lies in their efficiency in the numerical treatment of stiff problem, as they do not suffer from
the order reduction phenomenon [1,2]. We recall that a numerical method is A-stable if its
region of absolute stability includes the entire complex half-plane with a negative real part.

As we observe from Corollaries 1 and 2, the maximum attainable uniform order
multivalue collocation methods with collocation polynomial in (5) and vector of external
stages defined by (8) or (13) is p = m + r− 1. With the aim of deriving A-stable methods,
according to the Daniel–Moore theorem [1], the order of the method cannot exceed 2m.
Therefore the following Theorem clarifies the restriction, on the number of external stages,
necessary for A-stability. The proof can be found in [4].

Theorem 3. An A-stable multivalue collocation method with collocation polynomial in (5) fulfills
the constraint r ≤ m + 1.

As a consequence, two-step collocation methods of Section 2.1 cannot be A-stable,
as for these methods r = m + 2, while A-stable Nordsieck GLM collocation methods of
Section 2.2 can be derived with a suitable choice for r.

In regards to two-step collocation methods, in the paper [5], A-stable methods of
uniform order p = m + s, s = 1, 2, . . . , m have been derived by imposing not all the order
conditions up to p = 2m + 1, but just requiring the fulfillment of the first m + s order condi-
tions in (10). This procedure corresponds to relaxing some of the interpolation/collocation
conditions in (11) and (12), and the corresponding methods are called two-step almost
collocation methods.

In regards to Nordsieck GLM collocation methods, in the paper [4], A-stable methods
of uniform order p = m + r− 1 with r = m + 1 have been provided.

Regarding the computational cost of multivalue collocation methods (2)–(5), it is
strongly related to the solution of the nonlinear system for the computation of the vector
Y[n] in (2), and depends on the matrix A =

[
β j(ci)

]
i,j=1,...,m. Two-step almost colloca-

tion methods having lower triangular or diagonal coefficient matrix A that have been
derived in [24]. Regarding Nordsieck GLM collocation methods, the requirement for a
structured coefficient matrix forces the relaxation of some of the interpolation/collocation
conditions (15) and (16), thus leading to Nordsieck GLM almost collocation methods with
r = m + 1, having order p = r or p = r− 1, i.e., obtained by imposing not all the order
conditions up to p = m + r− 1, but just requiring the fulfillment of the first r or r− 1 order
conditions in (14).
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We now provide examples of A-stable multivalue collocation and almost collocation
methods belonging to the class described in Section 2.2. We consider the case of m = 2 and
r = m + 1 = 3. The collocation polynomial assumes the form:

Pn(tn + ϑh) = y[n]1 + α2(ϑ)y
[n]
2 + α3(ϑ)y

[n]
3

+ h(β1(ϑ) f (P(tn + c1h)) + β2(ϑ) f (P(tn + c2h)))
(17)

and the corresponding Butcher tableau is given by:

[
A U
B V

]
=




β1(c1) 0
β1(c2) β2(c2)

1 α2(c1) α3(c1)
1 α2(c2) α3(c2)

β1(1) β2(1)
β′1(1) β′2(1)
β′′1 (1) β′′2 (1)

1 α2(1) α3(1)
0 α′2(1) α′3(1)
0 α′′2 (1) α′′3 (1)




.

We consider the following forms for the matrix A:

• Full matrix [4] (GLM-F);
• Lower triangular matrix (GLM-T);
• Singly lower triangular matrix (GLM-S);
• Diagonal matrix (GLM-D).

Polynomials αj(θ) and β j(θ) in (17) are constructed by imposing order conditions of
Theorem 2 with p = 4 in the case of GLM-F and p = 3 in the case of GLM-T, GLM-S, and
GLM-D. Figure 1 shows the region of A−stability in the (c1, c2) plane for all the classes
of methods.

Examples of A-stable methods have the following Butcher tableau:

• GLM-F:

c =
[

3/2
9/5

]
,
[

A U
B V

]
=




9
8

−125
288

162
125

− 3
10

1
233
288

7
32

1
201
250

27
125

14
27

−125
486

32
27

−125
243

8
9

0

1
359
486

5
27

0
80

243
4

27

0 −8
9
−1

3




.

• GLM-T:
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c =
[

22/10
9/10

]
,
[

A U
B V

]
=




11
15

0

− 243
1100

81
50

1
22
15

121
150

1 − 549
1100

− 567
1000

−103
429

24
13

− 2
13

28
13

118
143

−32
13

1 −20
33

−19
30

0 −1 −3
5

0
18
11

7
5




.

• GLM-S:

c =
[

22/10
9/10

]
,
[

A U
B V

]
=




11
15

0

− 351
4840

11
15

1
22
15

121
150

1
3473

14520
− 21

220

− 335
4719

880
1053

205
4719

3080
3159

2830
4719

−3520
3159

1
2306
9801

− 19
198

0 − 542
29403

8
297

0
15130
29403

203
297




.

• GLM-D:

c =
[

3
29/10

]
,
[

A U
B V

]
=




1 0

0
29
30

1 2
3
2

1
29
15

841
600

209
15

−37520
2523

−62
5

11260
841

−91
15

5660
841

1
24446
12615

1589
870

0
47

4205
− 91

145

0 − 8369
12165

− 46
145




.
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Figure 1. Regions of A-stability in the (c1, c2) plane.

2.4. Numerical Illustration

We now show the behavior of the methods listed in the previous section on the
Prothero–Robinson problem [1,2]:

{
y′(t) = λ(y(t)− sin(t)) + cos(t), t ∈ [0, 10],
y(0) = 0,

(18)

which is stiff when λ � 0. We compare the results of the aforementioned methods with
those obtained by the two-stage Gaussian Runge–Kutta (RK) method. We report in Table 1
the results obtained for λ = −106 in (18), by applying multivalue collocation and almost
collocation methods together with the Runge–Kutta (RK) method of Gauss:

1
2
−
√

3
6

1
4

1
4
−
√

3
6

1
2
+

√
3

6
1
4
+

√
3

6
1
4

1
2

1
2

(19)

The method (19), which has order 4 and uniform order 2, therefore suffers from
order reduction when applied to a stiff problem. Table 1 shows the error in the final step
point for different values of the step size and the experimental order of the methods for
λ = −106. We observe that the Runge–Kutta method exhibits order reduction, while this is
not the case for multivalue collocation and almost collocation methods, having order 4 but
uniform order 2, hence it suffers from order reduction on stiff problems, as is visible from
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Table 1. Multivalue collocation and almost collocation methods, instead, keep their order
of convergence.

Table 1. Absolute errors in the final step point and experimental orders of convergence for prob-
lem (18) with λ = −106.

h GLM-F GLM-T GLM-S GLM-D RK
Error p Error p Error p Error p Error p

1/10 2.41× 10−8 1.51× 10−7 1.51× 10−7 4.88× 10−5 1.52× 10−4

1/20 7.50× 10−10 5.01 9.21× 10−9 4.03 9.21× 10−9 4.03 3.04× 10−6 4.01 3.84× 10−5 1.98
1/40 2.21× 10−11 5.08 5.69× 10−10 4.02 5.70× 10−10 4.01 1.89× 10−7 4.01 9.99× 10−6 1.94
1/80 7.06× 10−13 4.97 3.45× 10−11 4.04 3.58× 10−11 3.99 1.18× 10−8 4.00 2.78× 10−6 1.85

3. Multivalue Mixed Collocation Methods

In this Section we describe the derivation of Nordsieck GLM mixed collocation meth-
ods of the form (2)–(5), with the vector of external stages in Nordsieck form (13). The idea
is, instead of considering a basis of polynomials {αi(θ), β j(θ), i = 1, . . . , r, j = 1, . . . , m},
to consider a basis constituted by a combination of trigonometric and polynomial func-
tions. Such methods are useful for problems of the form (1) for which the exact solution is
oscillatory with a known frequency of oscillation ω.

As a consequence of Theorem 2, the polynomials αi(θ) and β j(θ), associated to Nord-
sieck GLM collocation methods of uniform order p = m + r− 1, have a degree of at most
m + r− 1. Therefore, they can be written in the form:

α1(θ) = 1 αi+1(θ) =
m+r−1

∑
j=1

µi,j−1

j
θ j, i = 1, . . . , r− 1, (20)

βi(θ) =
m+r−1

∑
j=1

µi,j−1

j
θ j, i = 1, . . . , m. (21)

The idea of Nordsieck GLM mixed collocation methods introduced in [35] relies on
considering new basis functions:

{αT
i (θ, z), βT

j (θ, z), i = 1, . . . , r, j = 1, . . . , m},

which depend also on the frequency of oscillation of the problem, i.e., depending on z = ωh,
of the form:

αT
1 (θ, z) = 1, (22)

αT
i+1(θ, z) =

ai
z

sin(zθ)− bi
z

cos(zθ) +
bi
z
+

m+r−3

∑
j=1

γi,j−1

j
θ j i = 1, . . . , r− 1, (23)

βT
i (θ, z) =

ai
z

sin(zθ)− bi
z

cos(zθ) +
bi
z
+

m+r−3

∑
j=1

γi,j−1

j
θ j i = 1, . . . , m. (24)

The next theorem shows the expressions of coefficients ai, bi, γi,j in (23) and ai, bi, γi,j
in (24) in order to obtain the maximum attainable uniform order p = m + r− 1. The proof
can be found in [35].

Theorem 4. A multivalue mixed collocation method (2)–(5), with vector of external stages defined
by (13) and functional basis {αi(θ), β j(θ), i = 1, . . . , r, j = 1, . . . , m} defined in (22)–(24), has
order p = m + r− 1 if:

ai =
det Mi,1

det M
, bi =

det Mi,2

det M
, i = 1, . . . , m, (25)
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γij =





(−1)
j
2+1ai

zj

j!
j is even,

(−1)
j+1

2 bi
zj

j!
j is odd,

j = 0, . . . , r− 2,

det Mi,j−r+4

det M
, j = r− 1, . . . , m + r− 4,

, i = 1, . . . , m, (26)

ai =

m

∑
k=1

(−1)k+1 ci−1
k

(i− 1)!
det Mk,1

det M
, bi =

m

∑
k=1

(−1)k ci−1
k

(i− 1)!
det Mk,2

det M
, i = 1, . . . , r− 1, (27)

γij =





(−1)
j
2+1ai

zj + δi,j+1

j!
j is even,

(−1)
j+1

2 bi
zj + δi,j+1

j!
j is odd,

j = 0, . . . , r− 2,

m

∑
k=1

(−1)k+j−r+1 ci−1
k

(i− 1)!
det Mk,j−r+4

det M
, j = r− 1, . . . , m + r− 4,

, i = 1, . . . , r− 1, (28)

where M is a square non singular matrix of order m given by:

M =




cos(zc1)−
r1

∑
k=0

(−1)k (zc1)
2k

(2k)!
sin(zc1)−

r2

∑
k=0

(−1)k (zc1)
2k+1

(2k + 1)!
cr−1

1 cr
1 . . . cm+r−4

1

cos(zc2)−
r1

∑
k=0

(−1)k (zc2)
2k

(2k)!
sin(zc2)−

r2

∑
k=0

(−1)k (zc2)
2k+1

(2k + 1)!
cr−1

2 cr
2 . . . cm+r−4

2

...
...

...
...

...
...

cos(zcm)−
r1

∑
k=0

(−1)k (zcm)2k

(2k)!
sin(zcm)−

r2

∑
k=0

(−1)k (zcm)2k+1

(2k + 1)!
cr−1

m cr
m . . . cm+r−4

m




,

Mi,j is the submatrix obtained by deleting the i-th row and j-th column from matrix M, c1, . . . , cm
are the collocation points, δij is the usual Kronecker delta, and:

r1 =





r− 2
2

r is even,

r− 3
2

r is odd,
r2 =





r− 2
2
− 1 r is even,

r− 3
2

r is odd.

In order to show the performance of Nordsieck GLM mixed collocation methods, we
show the results obtained on the following test problems:

• Problem 1:

{
y′(t) = −(y(t)− sin(ωt)) + ω cos(ωt), t ∈ [0, 10]
y(0) = 0,

(29)

whose solution is y(t) = sin(ωt), so it is a function belonging to the basis.
• Problem 2:

{
y′(t) = −(y(t)− sin(ωt + t)) + (ω + 1) cos(ωt + t), t ∈ [0, 10]
y(0) = 0,

(30)

whose solution is y(t) = sin(ωt + t) = sin ωt cos t + cos ωt sin t, so it is a combination
of the basic functions sin ωt and cos ωt.

We put m = 2 and r = 3 and c1 = 3/2, c2 = 9/5 and we denote by MGLM-F, the
corresponding Nordsieck GLM mixed collocation method. In Table 2, we consider for a
comparison, the GLM-F method of Section 2.3. The table clearly shows the advantage of
mixed collocation versus polynomial collocation in the case of the oscillatory solution.
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Table 2. Absolute errors (in the final step point) and effective orders of convergence. Absolute errors
in the final step point and experimental orders of convergence with ω = 100.

h GLM-F on Problem (29) MGLM-F on Problem (29) GLM-F on Problem (30) MGLM-F on Problem (30)

Error Error Error p Error p

1/40 0.2764 1.4818× 10−12 0.3626 0.0133

1/80 0.0326 8.4277× 10−13 0.0436 3.0560 9.5762× 10−4 3.7958

1/160 0.0024 1.2212× 10−15 0.0031 3.8140 6.1966× 10−5 3.9499

1/320 1.5567× 10−4 8.9595× 10−14 1.9729× 10−4 3.9739 3.9064× 10−6 3.9876

1/640 9.8558× 10−6 1.4988× 10−14 1.2403× 10−5 3.9916 2.4468× 10−7 3.9969

4. Multivalue Spline Collocation Methods for FDEs

In this section, we review multivalue spline collocation methods [18,20,54], applied to
the IVP problem of type:

{
Dαy(t) = f (t, y(t)), t ∈ [0, b],
y(i)(0) = γi, i = 0, . . . , n− 1,

(31)

where n− 1 < α < n, n ∈ N, γi ∈ R, f : [0, b]×R → R. Here we consider the Caputo
fractional derivative [58–60]:

Dαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(s)
(t− s)α+1−n ds.

The convergence analysis of spline collocation methods is carried out in the functional
space Cq,ν(0, T], defined as follows [15].

Let q ∈ N and ν ∈ (−∞, 1), then y : [0, T]→ R belongs to the space Cq,ν(0, T] if it is q
times continuously differentiable in (0, T], and:

|y(i)(t)| ≤ c





1 if i < 1− ν,
1 + | log t| if i = 1− ν,
t1−ν−i if i > 1− ν,

t ∈ (0, T], i = 1, . . . , q.

Sufficient conditions for obtaining a solution in the space Cq,ν(0, T] are provided by
the following theorem.

Theorem 5 ([30]). Let f ∈ C([0, T]×R), q times continuously differentiable in (0, T]×R, and
∃ν ∈ [1− α, 1) such that:

∣∣∣∣
∂i+j

∂ti∂yj f (t, y)
∣∣∣∣ ≤ φ(|y|)





1 if i < 1− ν
1 + | log t| if i = 1− ν

t1−ν−i if i > 1− ν

, (t, y) ∈ (0, T]×R,

∀i, j ∈ N with i + j ≤ q. In addition, for α ∈ (0, 1) assume that:
∣∣∣∣

∂i+j

∂ti∂yj [ f (t, y1)− f (t, y2)]

∣∣∣∣ ≤ φ(max{|y1|, |y2|})|y1 − y2|
{

1 if i = 0
t1−ν−i if i > 0

,

(t, yi) ∈ (0, T] × R, i = 1, 2. The function φ : [0, ∞) → R is assumed to be monotonically
increasing. Let the fractional IVP (31) have a solution y ∈ C[0, T] with Dαy ∈ C[0, T]. Then
y ∈ Cq,ν(0, T] and Dαy ∈ Cq,ν(0, T].

By setting z = Dαy, we have:
y = Jαz + Q, (32)
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with,

(Jαz)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1z(s) ds, t > 0, (33)

Q(t) =
dαe−1

∑
i=0

γi
i!

ti, (34)

dαe being the smallest integer not less than α. With this position, we may rewrite the
IVP (31) as a nonlinear equation:

z = f (t, Jαz + Q). (35)

Once (35) is solved, y can be computed by (32).

4.1. One-Step Collocation Methods for FDEs

Let us introduce a graded mesh IN on [0, T] with grading exponent r ≥ 1:

tj = b
(

j
N

)r
, (36)

and collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1. Let,

S(−1)
k (IN) = {v : v|[tj−1,tj ]

∈ Πk, j = 1, . . . , N}. (37)

The one step collocation method approximates the solution z of (35) by a function
v ∈ S(−1)

m−1(IN). The collocation solution v is computed by imposing these collocation
conditions, for j = 1, . . . , N:

vj(tjk) = f (tjk, (Jαv)(tjk) + Q(tjk)), k = 1, . . . , m. (38)

where vj := v|[tj−1,tj ]
. Then, the approximate solution of (31) is the function yN , defined as:

yN = Jαv + Q. (39)

Collocation conditions (38) give rise to the nonlinear system in the unknowns
zjk := vj(tjk):

zjk = f

(
tjk,

m

∑
µ=1

zjµ(Jα ϕj,µ)(tjk) +
j−1

∑
λ=1

m

∑
µ=1

zλµ(Jα ϕλ,µ)(tjk) + Q(tjk)

)
, k = 1, . . . , m,

where ϕλ,µ is equal to the µ-th Lagrange fundamental polynomial corresponding to the
nodes tλ1, . . . , tλm in [tλ−1, tλ], and it is null outside this interval.

The error is analyzed in the following theorem, where this quantity is used:

EN(p, ν, r) =





N−r(1−ν) if 1 ≤ r ≤ p
1−ν

N−p(1 + log N) if r = p
1−ν = 1

N−p if r = p
1−ν > 1 or r > p

1−ν .

(40)

Theorem 6 ([30], [Th. 4.1]). Let the IVP (31) have a solution y ∈ C[0, b], with Dαy ∈ C[0, b]
and let f ∈ C([0, b]×R) such that its derivatives ∂

∂t f (t, y) and: ∂2

∂t2 f (t, y) are continuous
in (0, b]×R and

∣∣∣∣
∂j

∂yj f (t, y)
∣∣∣∣ ≤ ψ(|y|), (t, x) ∈ (0, b]×R, j = 0, 1, 2.
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ψ : [0, ∞)→ R is a monotonically increasing function.
Then there exist N0 ∈ N and δ0 > 0 such that, for all N ≥ N0, the one-step collocation method

possesses a unique solution v ∈ S(−1)
m−1(IN) in the ball ‖u− z‖∞ ≤ δ0, where z = Dαy ∈ C[0, b].

If, in addition, the assumptions of Theorem 5 with q := m and ν ∈ [1− α, 1) are fulfilled, then for
all N ≥ N0, the following error estimate holds:

‖yN − y‖∞ ≤ cEN(m, ν, r),

with yN given by Formula (39). Here c is a constant not depending on N, and EN is defined by (40).

4.2. Two-Step Collocation Methods for FDEs

Given the graded mesh IN defined in (36) and collocation parameters 0 ≤ η1 < · · · <
ηm ≤ 1, with (η1, ηm) 6= (0, 1), the two-step collocation method approximates the solution
z of (35) by a function v ∈ S(−1)

2m−1(IN). By defining the polynomial vj = v|[tj−1,tj ]
, we impose

these collocation and interpolation conditions, for j = 2, . . . , N:

vj(tjk) = f (tjk, (Jαv)(tjk) + Q(tjk)), k = 1, . . . , m (41)

vj(tj−1,k) = vj−1(tj−1,k), k = 1, . . . , m (42)

The collocation solution v(t) can be expressed as:

v(t) = v1(t) +
N

∑
λ=2

(
m

∑
k=1

zλkLλ,m+k(t) +
m

∑
k=1

zλ−1,kLλk(t)

)
, t ∈ [0, T], (43)

where v1 is obtained by a suitable starting procedure (cfr. [20]); Lλ,µ = Lµ in [tλ−1, tλ] and it
is null outside. Lµ is the µ-th Lagrange fundamental polynomial corresponding to the nodes
{tj−1,k, tj,k | k = 1, . . . , m}. The coefficients zλµ are the solution of the nonlinear system:

zjk = f
(

tjk, (Jαv)(tjk) + Q(tjk)
)

, k = 1, . . . , m.

A more explicit formulation of the above system is:

zjk = f

(
tjk, (Jαv1)(tjk) +

m

∑
µ=1

zjµ(JαLj,m+µ)(tjk) +
j−1

∑
λ=2

m

∑
µ=1

zλµ(JαLλ,m+µ)(tjk)

+
m

∑
µ=1

zj−1,µ(JαLjµ)(tjk) +
j−1

∑
λ=2

m

∑
µ=1

zλ−1,µ(JαLλµ)(tjk) + Q(tjk)

)
, (44)

k = 1, . . . , m. Although a number of fractional integrals must be computed, they may be
analytically evaluated, thus no further approximation is needed.

The main converge result is provided by the following theorem:

Theorem 7 ([20], [Th. 4.5]). Let hypothesis HP 1 of Theorem 6 hold. Then there exist N0 ∈ N
and δ0 > 0 such that, for all N ≥ N0, the two-step collocation method possesses a unique solution
v ∈ S(−1)

2m−1(IN) in the ball ‖u − z‖∞ ≤ δ0, where z = Dαy ∈ C[0, T]. If, in addition, the
assumptions of Theorem 5 with q := 2m and ν ∈ [1− α, 1) are satisfied, then for all N ≥ N0, the
error is bounded as follows:

‖yN − y‖∞ ≤ cEN(2m, ν, r),

with yN defined in (39). Here, the value of the constant c does not depend on N, and EN is defined
in (40).
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It is evident that a suitable choice of the grading exponent r is the basic step to obtain
a high accuracy. The best choice of r grows with m, i.e., with the number of collocation
abscissae and also depends on the degree of smoothness of the analytical solution.

By comparing one- and two-step collocation methods, we observe that they have the
same computational cost, since they both require the solution of a nonlinear system of
dimension m, nevertheless, the error of the two-step method decreases as O(N−2m), while
the error of the one-step method decreases as O(N−m) (for both methods we considered
the best case).

We provide a numerical illustration on the following test equation, taken from [61].

Dαy(t) =
40320

Γ(9− α)
t8−α − 3

Γ(5 + α
2 )

Γ(5− α
2 )

t4− α
2 +

(
3
2

t
α
2 − t4

)3

+
9
4

Γ(α + 1)− (y(t))
3
2 ,

t ∈ [0, 1],

y(0) = 0,

α = 1/2. The exact solution is y = t8 − 3t4+α/2 + 9
4 tα. The hypotheses of Theorem 5 are

satisfied by ν = 0.5 and any q ∈ N. In Figure 2, we plot the work-precision diagram
obtained by one- and two-step collocation methods, with collocation parameters equally

spaced in [0, 1] with η0 6= 0 and ηm 6= 1; with r =
m

1− ν
for the one-step methods and

r =
2m

1− ν
for the two-step methods. We observe that multivalue collocation obtain a

definite improvement of one-step collocation methods, except for low accuracy requests.
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Figure 2. Work-precision diagrams for one- and two-step collocation methods for FDEs, cd is the
number of correct digits, and f val is the number of function evaluations. (a) One-step methods with
m = 2 and m = 4, two-step methods with m = 2; (b) one-step methods with m = 3 and m = 6, two
step methods with m = 3.

5. Conclusions

We presented a concise selection of our recent results on collocation methods for ODEs
and FDE. This technique has exhibited a wide range of benefits in terms of accuracy and
efficiency. Moreover, the choice of collocation basis makes the numerics more adapted to
the problem, with meaningful improvements when qualitative behaviors of the solution
are merged in the numerical scheme. Adapted functional basis are relevant, for instance,
in the case of oscillatory problems [62–65]. Further developments of this research will be
oriented to the establishment of a theory of collocation methods for stochastic problems
(see, for instance, refs. [51,66–71] and references therein).
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1. Introduction

Polynomials are very useful mathematical tools, as they are defined in a simple
way and they can be easily differentiated and integrated. Moreover, they can be quickly
calculated on a computer system and are used to form spline functions.

One of the main problems in applied mathematics is the computation of real functions.
In general, functions that are given as integro-differential equations cannot be explicitly
expressed in terms of the so-called elementary functions. In addition, even elementary
functions can take real values that cannot be explicitly given.

For these reasons, we often need to approximate a given function using simpler func-
tions. In 1885, Weierstass [1] proved the approximation theorem according to which any
continuous function defined on a closed and bounded interval can be uniformly approxi-
mated by a polynomial function. After this theorem, sets or sequences of polynomials were
increasingly studied (see, for example, Refs. [2,3]).

Therefore, we find classes of polynomials in different sciences. For example, orthog-
onal polynomials are frequently used in physics, in the approximation theory [4–6] and
also in the solution of differential equations. Hermite polynomials are used in statistics—
umbral polynomials in algebra and combinatorics. Particularly, binomial, Appell and
Sheffer polynomials are widely used, including more important families as Bernoulli, Euler,
Boile, falling factorials, etc. (see [7–12] and the references therein).

In [13], Lidstone generalized an Aitken theorem on interpolation and proposed a
two-point expansion of polynomials, in which the polynomial basis, called Lidstone poly-
nomials, is expressed in powers of odd and, respectively, even canonical monomials. After,
in [14,15], the authors generalized Lidstone polynomials, introduced odd and even special
polynomial sequences and gave some applications to approximation functions, boundary
value problems and cubature formulas.

In this paper, we consider other odd and even special polynomial sequences that are
connected to the δ2(·) operator, with δ(·) being the central factorial difference operator ([16],
p. 7). These polynomials can be the basis for generalized interpolation Everett-type formulas.

The outline of this paper is as follows. In Section 2, we give some preliminary defini-
tions, results and characterizations, and we formalize the problem; in Section 3, we consider
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general odd central factorial polynomial sequences and, in Section 4, we consider general
even central factorial polynomial sequences. For each kind of sequence (odd and even),
we give the matrix form, the conjugate polynomials, recurrence relations and the related
determinant forms, the generating function. Finally, we give some examples of new odd
and even polynomial sequences. Concluding remarks close the paper.

We will adopt the following abbreviations:
p.s. polynomial sequence
OLPS: odd Lidstone-type p.s., ELPS: even Lidstone-type p.s.,
GOCPS: general odd central factorial p.s., GECPS: general even central factorial p.s.,

G̃OCPS: the algebra (GOCPS,+, ·, ◦), G̃ECPS: the algebra (GECPS,+, ·, ◦).

2. Preliminaries and Problem’s Position

In order to make the work as autonomous as possible, we give some preliminary
definitions and propositions.

Let
{

pn
}

n∈IN be a polynomial sequence (p.s. in the following) [17], such that p0(x) = 1
and, for n ≥ 1, pn is a polynomial of degree n on a field IK of characteristic 0 (typically
IK = IR or IK = IC).

Definition 1. A polynomial sequence is called symmetric if and only if

∀n ∈ IN, ∀x ∈ IK, pn(−x) = (−1)n pn(x). (1)

Proposition 1. Let
{

pn
}

n∈IN be a symmetric p.s. Then, for all n ∈ IN, pn has the decomposition
in classical monomial basis only with powers xn−2k, k = 0, 1, . . . , b n

2 c.

Proof. If we set

pn(x) =
n

∑
k=0

tn,kxk, tn,k ∈ IK, tn,n 6= 0, k = 0, . . . , n,

the result follows from (1).

This suggests us to give the following definition.

Definition 2. An odd (resp. even) polynomial sequence is a polynomial sequence whose elements
have only odd (resp. even) powers in the canonical decomposition.

Of course, a symmetric polynomial involves lower computational costs than a polyno-
mial of the same degree. Moreover, every polynomial of an odd (resp. even) p.s. is an odd
(resp. even) function.

In [14,15], the authors consider the so-called odd and, respectively, even Lidstone-type
polynomial sequences.

We remember that

(a)
{

pn
}

n∈IN is an odd Lidstone-type p.s. (OLPS) if and only if

{
p′′n(x) = 2n(2n + 1)pn−1(x)
pn(0) = 0, deg(pn) = 2n + 1, n ≥ 0.

(2)

(b)
{

pn
}

n∈IN is an even Lidstone-type p.s. (ELPS) if and only if

{
p′′n(x) = 2n(2n− 1)pn−1(x)

p′n(0) = 0, deg(pn) = 2n, n ≥ 0.
(3)

In [15], some applications of OLPS and ELPS were proposed.
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Now, we observe that the central factorial polynomials ([17], p. 67), ([18], p. 212),
Refs. [19,20], ([16], p. 6) are classically denoted by x[n] and are defined as

x[0] = 1,

x[n] = x
n−1

∏
j=1

(
x +

n
2
− j
)

, n ≥ 1.

They satisfy the identity

δx[n] = nx[n−1], n ≥ 1,

where δ is the central operator ([16], p. 7) defined by

δ f (x) = f
(

x +
1
2

)
− f

(
x− 1

2

)
,

with f being a real function of a real variable.
The first of these polynomials are

x[0] = 1, x[1] = x,

x[2] = x2, x[3] = x3 − 1
4

x,

x[4] = x4 − x2, x[5] = x5 − 5
2

x3 +
9

16
x.

Their plots are shown in Figure 1. The figure was made using Matlab/Octave software.

Figure 1. Central factorial polynomials.

In general, it results in ([16], p. 9)

x[2ν+1] = x
(

x2 − 1
4

)(
x2 − 9

4

)
. . .

(
x2 − (2ν− 1)2

4

)
, (4a)

x[2ν] = x2
(

x2 − 1
)

. . .
(

x2 − (ν− 1)2
)

. (4b)

229



Mathematics 2022, 10, 978

Remark 1. It is known that
{

x[ν]
}

ν∈IN
is a binomial type sequence ([17], p. 66). It has the

following decomposition:

x[ν] =
ν

∑
k=0

bν,kxk, ∀ν ∈ IN,

where the bν,k are calculated by Algorithm 2.1.1 in ([17], p. 7).
In the literature (see for example [17–19] and references therein), the numbers bν,k are denoted

by t(ν, k) and are called central factorial numbers of the first kind. There is a wide amount of
literature on these numbers (see, for example, [17,21–26] and references therein).

We note that the elements of the subsequence
{

x[2ν+1]}
ν∈IN satisfy the following

properties:

(1o) x[2ν+1] contains only odd powers of the variable x and deg x[2ν+1] = 2ν + 1;

(2o) δ2x[2ν+1] = δ
(

δx[2ν+1]
)
= 2ν(2ν + 1) x[2ν−1];

(3o) x[2ν+1](0) = 0, x[2ν+1]
(

1
2

)
= 0, ν ≥ 1.

Similarly, the elements of the subsequence
{

x[2ν]
}

ν∈IN satisfy:

(1e) x[2ν] contains only even powers of the variable x and deg x[2ν] = 2ν;

(2e) δ2x[2ν] = δ
(

δx[2ν]
)
= 2ν δx[2ν−1] = 2ν(2ν− 1) x[2ν−2];

(3e) x[2ν](0) = 0,
(

x[2ν]
)′
(0) = 0, x[2ν](1) = 0, ν ≥ 1.

Hence, the subsequences
{

x[2ν+1]}
ν∈IN and

{
x[2ν]

}
ν∈IN are respectively an odd and

an even p.s. We call the subsequences
{

x[2ν+1]}
ν∈IN and

{
x[2ν]

}
ν∈IN odd and even central

factorial p.s., respectively.
The previous considerations suggest generalizing the problem: we look for, if there

exists, the odd p.s.
{

dn
}

n∈IN such that

{
δ2dn(x) = 2n(2n + 1)dn−1(x), n ≥ 1,

dn(0) = 0, deg(dn) = 2n + 1, n ≥ 0.
(5)

Analogously, we look for, if there exists, the even p.s.
{

en
}

n∈IN such that

{
δ2en(x) = 2n(2n− 1)en−1(x), n ≥ 1,

e′n(0) = 0, deg(en) = 2n, n ≥ 0.
(6)

If these polynomial sequences exist, we call
{

dn
}

n∈IN general odd central factorial p.s.
(GOCPS) and

{
en
}

n∈IN general even central factorial p.s. (GECPS).

Remark 2. Note that (5) and (6) differ from (2) and (3) in the operator: in (5) and (6), there is the
discrete central finite difference operator δ2, while, in (2) and (3), there is the differential operator
d2

dx2 ≡ D2.

3. General Odd Central Factorial Polynomial Sequences

To study problem (5), proceeding by induction, we note that every term dn of the
sequence

{
dn
}

n∈IN is determined by the previous term dn−1 and a constant. The following
proposition provides an explicit expression for dn in terms of central factorial polynomials.
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Proposition 2. Let
{

dn
}

n∈IN be an odd p.s. It is a GOCPS, that is, it satisfies (5) if and only if
there exists a numerical sequence (α2n)n∈IN, with α0 6= 0, such that

dn(x) =
n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
x[2k+1]. (7)

Proof. If (7) holds, from the linearity of the operator δ2(·) and from property (2o), dn satisfies

δ2dn(x) = 2n(2n + 1) dn−1(x).

Moreover, it results in dn(0) = 0, d0(x) = α0x and deg(dn) is 2n + 1.
Vice versa, we can obtain the result by mathematical induction, taking into account

that every odd polynomial can be expressed as a linear combination of x[2i+1], i ≥ 0.

Remark 3. From (4a), for k > 0,

(
x[2k+1]

)′
(0) = (−1)k

k

∏
i=1

(2i− 1)2

4
.

Hence, from (7), for n > 0 it results in

d′n(0) =
n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
(−1)k

k

∏
i=1

(2i− 1)2

4
. (8)

Proposition 3. Let
{

dn
}

n∈IN be a GOCPS. Then, for j = 0, . . . , n, we obtain

(1) δ2jdn(x) =
(2n + 1)!

(2(n− j) + 1)!
dn−j(x);

(2) δ2j+1dn(x) =
(2n + 1)!

(2(n− j) + 1)!
δdn−j(x);

(3) δ2jdn(0) = 0, δ2j+1dn(0) =
(2n + 1)!

(2(n− j) + 1)!
δdn−j(0).

Proof. The proof follows easily from (5) after some calculations.

Corollary 1. Let
{

dn
}

n∈IN be a GOCPS. Then, ∀n, j ∈ IN with j < n, and we obtain

2j

∑
k=0

(
2j
k

)
(−1)kdn(x + j− k) =

(2n + 1)!
(2(n− j) + 1)!

dn−j(x),

2j+1

∑
k=0

(
2j + 1

k

)
(−1)kdn

(
x + j− k +

1
2

)
=

(2n + 1)!
(2(n− j) + 1)!

δdn−j(x).

Proof. The proof follows from Proposition 3 and the known identities on operator δ.

3.1. Matrix Form

Let
{

dn
}

n∈IN be the GOCPS related to the numerical sequence (α2n)n∈IN, α0 6= 0,
that is, a p.s. as in Proposition 2. The relation (7) suggests to consider the lower infinite
triangular matrix V∞ =

(
vi,j
)

with

vi,j =





(
2i + 1
2j + 1

)
α2(i−j)

2(i− j) + 1
, i ≥ 0, j = 0, 1, . . . , i,

0 i < j.
(9)

We note that V∞ is a Lidstone-type matrix as defined in [14].
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Let
¬
X∞ and D∞ be the infinite vectors

¬
X∞ =

[
x[1], x[3], . . . , x[2ν+1], . . .

]T
, D∞ = [d0(x), d1(x), . . . , dν(x), . . . ]T .

Then, from (7), we obtain D∞ = V∞
¬
X∞, or, for simplicity,

D = V
¬
X, (10)

where, of course, D = D∞, V = V∞,
¬
X =

¬
X∞.

If, in (9), we consider i = 0, . . . , n, n ∈ IN, we obtain the principal submatrix of order

n + 1 of V that we denote by Vn. Analogously,
¬
Xn and Dn are the principal subvectors with

n + 1 components of
¬
X∞ and D∞, respectively.

Then, from (10),

Dn = Vn
¬
Xn. (11)

We call the relation (11) (or (10)) the first matrix form of the GOCPS
{

dn
}

n∈IN.
It is known [14] that the matrix V can be factorized as

V = W Tα W−1,

where W = diag{(2i + 1)! | i ≥ 0} and Tα is the lower triangular Toepliz matrix with

elements tα
i,j =

α2(i−j)

(2(i− j) + 1)!
.

The matrix V is invertible and V−1 =
(
v−1

i,j
)

i,j∈IN, with

v−1
i,j =





(
2i + 1
2j + 1

)
β2(i−j)

2(i− j) + 1
, i ≥ 0, j = 0, 1, . . . , i,

0 i < j,

(β2n)n∈IN being the numerical sequence implicitly defined by [14]

i

∑
j=0

β2jα2(i−j)

(2j + 1)!(2(i− j) + 1)!
= δi0, i ≥ 0, (12)

and δij is the Kronecker symbol.

Remark 4. The (12) is as an infinite linear system for the calculation of the numerical sequence(
β2k
)

k∈IN. By applying Cramer’s rule, the first n + 1 equations in (12) give

β0 =
1
α0

β2i =
3! 5! · · · (2i + 1)!

(−1)iαi+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2
3!

α0
3! 0 · · · · · · 0

α4
5!

α2
3!3!

α0
5! 0 · · · 0

...
...

...
. . .

...
...

...
...

. . . . . .
...

α2(i−1)
(2i−1)!

α2(i−2)
(2i−3)!3!

α2(i−3)
(2i−5)!5! · · · α0

(2i−1)!
α2i

(2i+1)!
α2(i−1)

(2i−1)!3!
α2(i−2)

(2i−3)!5! · · · · · · α2
3!(2i−1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, . . . , n.
(13)

Furthermore,
V−1 = W Tβ W−1,
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where Tβ is the lower triangular Toepliz matrix with elements tβ
i,j =

β2(i−j)

(2(i− j) + 1)!
.

3.2. Conjugate Polynomials

Let (α2n)n∈IN, α0 6= 0 be an assigned numerical sequence and (β2n)n∈IN the sequence
related to (α2n)n∈IN by (12). Let

{
dn
}

n∈IN be the GOCPS related to the sequence (α2n)n∈IN.
For any k ∈ IN, we can consider the polynomial

d̂k(x) =
k

∑
j=0

(
2k + 1
2j + 1

)
β2j

2(k− j) + 1
x[2(k−j)+1] =

k

∑
j=0

(
2k + 1
2j + 1

)
β2(k−j)

2(k− j) + 1
x[2j+1]. (14)

From (14) and Proposition 2, the sequence
{

d̂k
}

k∈IN is a GOCPS. We call the sequences{
dk
}

k∈IN,
{

d̂k
}

k∈IN conjugate odd central polynomial sequences.

By setting D̂ = D̂∞ =
[
d̂0(x), d̂1(x), . . . , d̂ν(x), . . .

]T
and A = V−1 =

(
ai,j
)

with

ai,j =





(
2i + 1
2j + 1

)
β2(i−j)

2(i− j) + 1
, i ≥ 0, j = 0, 1, . . . , i,

0 i < j,

from (14), we have

D̂ = A
¬
X

and D̂n = An
¬
Xn, ∀n ∈ IN.

If we set V2 = V V =
(

v∗i,j
)

, and A2 = A A =
(

a∗i,j
)

, after easy calculations, we obtain

{
D = V2 D̂

D̂ = A2 D
and, ∀n ∈ IN,

{
Dn = V2

n D̂n

D̂n = A2
n Dn.

Moreover,

dn(x) =
n

∑
j=0

v∗n,jd̂j(x), d̂n(x) =
n

∑
j=0

a∗n,jdj(x), ∀n ∈ IN.

3.3. Recurrence Relation and Related Determinant Form

The elements of a GOCPS satisfy some recurrence relations. In addition, they can
be represented as Hessenberg determinants. From the identity (11), being An = V−1

n , we
obtain ¬

Xn = An Dn

and

x[2k+1] =
k

∑
j=0

(
2k + 1
2j + 1

)
β2(k−j)

2(k− j) + 1
dj(x), k = 0, . . . , n. (15)

Theorem 1 ( Recurrence relation). Let
{

dn
}

n∈IN be an odd p.s. It is a GOCPS if and only if there
exist numerical sequences (α2n)n∈IN, (β2n)n∈IN, with α0 6= 0, β0 6= 0, satisfying the relation (12),
such that

dk(x) =
1
β0

[
x[2k+1] −

k−1

∑
j=0

(
2k + 1
2j + 1

)
β2(k−j)

2(k− j) + 1
dj(x)

]
, ∀k ≥ 1.

Proof. The proof follows from (15).
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Theorem 2 (Determinant form). Let
{

dn
}

n∈IN be a GOCPS as in Theorem 1. Then,

d0(x) =
1
β0

x,

dk(x) =
(−1)k

βk+1
0

k

∏
i=1

(2i− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x[1] x[3] · · · x[2k−1] x[2k+1]

β0 β2 · · · β2(k−1) β2k

0 3!β0 · · · (2k−1)!
(2k−3)! β2(k−2)

(2k+1)!
(2k−1)! β2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

0 · · · · · · (2k− 1)!β0
(2k+1)!

3! β2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 1.
(16)

Proof. The relation (15), for k = 0, . . . , n, can be considered as a linear system in the
unknowns dj(x), j = 0, . . . , n. Solving this system by Cramer’s rule provides the result.

By means of the determinant form (16), we can prove some properties using elementary
linear algebra tools. One of these is the following orthogonality conditions.

Proposition 4. Let X be a linear space of regular real value functions and L be a linear functional
on X such that L[x] 6= 0 (by normalization L[x] = 1). Moreover, let L

([
x[2k+1]

])
= β2k, k ≥ 0.

If
{

dL
k
}

k∈IN is the GOPS defined as in (16), then the following orthogonality conditions hold

L
([

δ(2i)dL
k

])
= (2k + 1)!δik, i = 0, . . . , k.

Proof. The proof follows from the linearity of the functional L and from Theorem 2.

Remark 5. Proposition 4 expresses the biorthogonality of the system
({

dL
k
}

k∈IN,
{

Lk
}

k∈IN

)
,

where
Li(·) = L

(
δ2i(·)

)
, ∀i ∈ IN∪ {0}.

With the same techniques used to prove Theorems 1 and 2, we can prove the following
relations for the conjugate sequence

{
d̂n
}

n∈IN:

d̂n(x) =
1
α0

[
x[2k+1] −

k−1

∑
j=0

(
2k + 1
2j + 1

)
α2(k−j)

2(k− j) + 1
d̂j(x)

]

and

d̂0(x) =
1
α0

x,

d̂k(x) =
(−1)k

αk+1
0

k

∏
i=1

(2i− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x[1] x[3] · · · x[2k−1] x[2k+1]

α0 α2 · · · α2(k−1) α2k

0 3!α0 · · · (2k−1)!
(2k−3)! α2(k−2)

(2k+1)!
(2k−1)! α2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

0 · · · · · · (2k− 1)!α0
(2k+1)!

3! α2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 1.
(17)

Remark 6. We note that the determinants in (16) and (17) are Hessenberg determinants. It is
known [17] that, for their numerical calculation, the Gaussian elimination without pivoting is stable.
Furthermore, Proposition 4 shows that (16) is also used for theoretical tools.
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3.4. The Linear Space G̃OCPS

We can extend the classical umbral composition [14,17,19,20] to the set of general odd
central factorial polynomial sequences.

Definition 3. Let
{

dk
}

k∈IN and
{

d∗k
}

k∈IN be the general central polynomial sequences related to
the numerical sequences (ρ2k)k∈IN and (σ2k)k∈IN, respectively. That is,

dk(x) =
k

∑
j=0

(
2k + 1
2j + 1

)
ρ2(k−j)

2(k− j) + 1
x[2j+1], ∀k ∈ IN,

d∗k (x) =
k

∑
j=0

(
2k + 1
2j + 1

)
σ2(k−j)

2(k− j) + 1
x[2j+1], ∀k ∈ IN.

The umbral composition of dk(x) and d∗k (x) is defined as

zk(x) := (dk ◦ d∗k )(x) =
k

∑
j=0

(
2k + 1
2j + 1

)
ρ2(k−j)

2(k− j) + 1
d∗j (x), ∀k ∈ IN. (18)

Remark 7. It’s easy to verify that

1.
{

zk
}

k∈IN =
{

dk ◦ d∗k
}

k∈IN is a GOCPS;

2. ∀k ∈ IN,
(

dk ◦ d̂k

)
(x) = x[2k+1].

Theorem 3. Let "+" and "·" be, respectively, the usual sum and product for a scalar on the set of
odd polynomial sequences and "◦" the umbral composition defined in (18). The algebraic structure
G̃OCPS = (GOCPS,+, ·, ◦) is an algebra.

Proof. The sequence
{

ik
}

k∈IN with ik = x[2k+1] is a GOCPS and, for every
{

dk
}

k∈IN ∈
GOCPS, we obtain dk ◦ ik = dk. Moreover, if

{
dk
}

k∈IN and
{

d̂k
}

k∈IN are conjugate central
factorial polynomial sequences, then dk ◦ d̂k = ik. Hence, we can consider the algebraic

structure G̃OCPS. It is endowed with the identity
{

ik
}

k∈IN and the inverse
{

d̂k
}

k∈IN. This
concludes the proof.

3.5. Generating Function

In order to determine a generating function for a GOCPS, we begin by considering the
generating function for odd central polynomial sequences.

Let H(t) be the power series

H(t) =
∞

∑
n=0

(−1)n

(
n

∏
k=1

(2k− 1)2

4

)
t2n+1

(2n + 1)!
.

Theorem 4. The following identity is true:

sinh(x H(t)) =
∞

∑
ν=0

x[2ν+1] t2ν+1

(2ν + 1)!
.

Proof. Taking into account that

sinh(x H(t)) =
∞

∑
k=0

(xH(t))2k+1

(2k + 1)!
,

after some calculations (see also Proposition 2.1 in ([17], p. 8) and ([17], pp. 69–71)), we
obtain the polynomials x[2k+1] as expressed in (4a).
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After this theorem, we can say that the function

g(x, t) = sinh(x H(t))

is the generating function of the odd central factorial p.s.
{

x[2ν+1]
}

ν∈IN
.

In order to determine the generating function of the GOCPS
{

dk
}

k∈IN related to the
numerical sequence (α2k)k∈IN, we set

l(t) =
∞

∑
k=0

α2k
t2k

(2k + 1)!
. (19)

Theorem 5. Let
{

dk
}

k∈IN be the GOCPS related to (α2k)k∈IN. Then, the function

F(x, t) = l(t) g(x, t)

is its generating function, that is,

l(t) sinh(x H(t)) =
∞

∑
k=0

dk(x)
t2k+1

(2k + 1)!
.

Proof. Taking into account the previous theorem, relations (19) and (7), the proof follows
by standard calculations.

3.6. Connection to the Basic Monomials x2i+1

In order to write a GOCPS as a linear combination of odd monomials x2i+1, we observe
that, from Remark 1,

x[k] =
k

∑
i=0

t(k, i) xi. (20)

Then,

x[2k+1] =
k

∑
i=0

t(2k + 1, i) x2i+1.

By setting Wt =
(
wt

i,j
)

i,j∈IN, with

wt
i,j =

{
t(2i + 1, j) i ≥ j
0 i < j,

we have ¬
X = Wt X̃, (21)

where X̃ =
[
x, x3, . . . , x2ν+1, . . .

]T .
Let

{
dk
}

k∈IN be the GOCPS related to the numerical sequence
(
α2k
)

k∈IN and D as in
(10). Then, by substituting the relation (21) in (10), we obtain

D =
(
V Wt)X̃,

that is,

dn(x) =
n

∑
j=0

zn,jx2j+1, ∀n ∈ IN, (22)

with zn,j =
n

∑
k=0

vn,kwt
k,j.

Remark 8. Observe that d′n(0) = zn,0, ∀n ∈ IN.
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For the calculation of the coefficients zn,j, j = 0, . . . , n, in (22), a direct algorithm can
be applied. It is described in the following theorem.

Theorem 6. Let
(
zn,0
)

n∈IN be an assigned numerical sequence. Then, the sequence
{

dn
}

n∈IN with
dn as in (22) is a GOCPS if and only if the coefficients zn,j, j = 0, 1, . . . , n are the solution of the
upper triangular linear system

n

∑
i=j+1

(
2i + 1
2j + 1

)
zn,i = n(2n + 1)zn−1,j, ∀n ≥ 1, j = 0, . . . , n− 1. (23)

Proof. The polynomial dn as in (22) satisfies the first of (5) if and only if

n−1

∑
j=0

x2j+1
n

∑
i=j+1

(
2i + 1
2j + 1

)
zn,i = n(2n + 1)

n−1

∑
j=0

zn−1,jx2j+1.

Relation (23) follows by applying the principle of identity of polynomials, observing
that zn,n = zn−1,n−1 = · · · = z0,0 = 1.

Remark 9. From Theorem 6, by means of backward substitutions, we have

zn,j =
n(2n + 1)
j(2j + 1)

zn−1,j−1 −
1

j(2j + 1)

n

∑
i=j+1

(
2i + 1
2j− 1

)
zn,i, j = n− 1, . . . , 1. (24)

If V Wt = Z =
(
zi,j
)

i,j∈IN, then, from (22), we obtain the second matrix form for the

sequence
{

dn
}

n∈IN:
D = Z X̃. (25)

From (25), Z being invertible,

X̃ = Z−1 D =
(
Wt)−1V−1D.

If Z−1 =
(
z−1

i,j
)

i,j∈IN, then

x2j+1 =
j

∑
i=0

z−1
j,i di(x).

3.7. Examples

Now, we give some examples of general odd central factorial polynomial sequences.
Given a numerical sequence (α2n)n∈IN, α0 6= 0, we determine the related GOCPS{

dn
}

n∈IN. From Proposition 2, the elements of
{

dn
}

n∈IN are such that

dn(x) =
n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
x[2k+1], ∀n ∈ IN.

In order to write the odd central factorial p.s. in terms of the monomials x2j+1, given a
numerical sequence (zn,0)n∈IN, from Theorem 6, we obtain the sequence

{
dn
}

n∈IN. For all
n ∈ IN, the elements of

{
dn
}

n∈IN have the form

dn(x) =
n

∑
j=0

zn,jx2j+1, (26)

where the coefficients zn,j, n ≥ 1, j = 0, . . . , n − 1 can be calculated by the recurrence
relations (24).
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Example 1 (Odd Fibonacci-central factorial p.s.). We will determine the GOCPS
{

dn
}

n∈IN
such that

d′n(0) = Fn, ∀n ∈ IN, (27)

where
(

Fn
)

n∈IN is the well-known Fibonacci [27,28] numerical sequence given by

F0 = F1 = 1, Fk = Fk−1 + Fk−2, k ≥ 2.

Hence, the elements of this p.s. satisfy

{
δ2dn(x) = 2n(2n + 1)dn−1(x)

dn(0) = 0, d′n(0) = Fn.

We call
{

dn
}

n∈IN odd Fibonacci-central factorial p.s., and we denote it by
{

Fc
n
}

n∈IN.
The conditions (8) and (27) give

n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
(−1)k

k

∏
i=1

(2i− 1)2

4
= Fn, n ≥ 0.

From this, we obtain the coefficients α2k, k = 0, . . . , n.
For example, for n = 4, we obtain

α0 = 1, α2 =
5
4

, α4 =
119
48

, α6 =
1139
192

, α8 = −3427
1280

.

Hence, the first five odd Fibonacci-central factorial polynomials in the basis x[2k+1] are

Fc
0(x) = x[1], Fc

1(x) = x[3] +
5
4

x[1], Fc
2(x) = x[5] +

25
6

x[3] +
119
48

x[1],

Fc
3(x) = x[7] +

35
4

x[5] +
833
48

x[3] +
1139
192

x[1],

Fc
4(x) = x[9] + 15x[7] +

2499
16

x[5] +
1139
16

x[3] − 3427
1280

x[1].

Figure 2 shows the plot of these polynomials.

Figure 2. Odd Fibonacci-central factorial polynomials.

The conditions
zn,0 = Fn, n = 0, 1, . . . ,
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and the relation (24) allow for obtaining the polynomials written in the monomial basis.
For example, for n = 0, . . . , 5, we have

Fc
0(x) = x, Fc

1(x) = x3 + x, Fc
2(x) = x5 +

5
3

x3 + 2x,

Fc
3(x) = x7 +

35
3

x3 + 3x,

Fc
4(x) = x9 − 6x7 +

273
5

x5 − 44x3 + 5x,

Fc
5(x) = x11 − 55

3
x9 + 231x7 − 913x5 +

3377
3

x3 + 8x.

In [27], the Fibonacci p.s.
{

fn
}

n∈IN was analyzed. Note that the p.s.
{

fn
}

n∈IN has an odd
polynomial subsequence { f2n+1}n∈IN. This subsequence differs from

{
Fc

n
}

n∈IN.

Example 2 (Odd Hermite-central factorial polynomial sequence). Let
{
Hn
}

n∈IN be the well-
known Hermite p.s. ([17], p. 135), ([29], p. 187). We consider the monic Hermite p.s.

{
Hn
}

n∈IN
and determine the GOCPS

{
dn
}

n∈IN such that

d′0(0) = 1, d′n(0) = H′n(0) =




(−1)n

(
3
2

)

n
for even n > 0

0 for odd n > 0.
(28)

The elements of this p.s. satisfy

{
δ2dn(x) = 2n(2n + 1)dn−1(x)

dn(0) = 0, d′n(0) = H′n(0), n > 0.

We call this sequence odd Hermite-central factorial p.s., and we denote it by
{

Hc
n
}

n∈IN.
From (8) and (28), for any n ∈ IN, we obtain α2k, k = 0, . . . , n.
For example, for n = 4, we have

α0 = 1, α2 =
5
4

, α4 =
23
48

, α6 = −397
192

, α8 = −4259
1280

.

The first five odd Hermite-central factorial polynomials are

Hc
0(x) = x[1], Hc

1(x) = x[3] +
5
4

x[1], Hc
2(x) = x[5] +

25
6

x[3] +
23
48

x[1],

Hc
3(x) = x[7] +

35
4

x[5] +
161
48

x[3] − 397
192

x[1],

Hc
4(x) = x[9] + 15x[7] +

483
40

x[5] − 397
16

x[3] − 4259
1280

x[1].

Figure 3 shows the plot of these polynomials.
By the relations (24) and (26), we obtain the polynomials written in the monomial basis.
For example, for n = 0, . . . , 5, they are

Hc
0(x) = x, Hc

1(x) = x3 + x, Hc
2(x) = x5 +

5
3

x3,

Hc
3(x) = x7 − 7

3
x3 − 3

2
x,

Hc
4(x) = x9 − 6x7 +

21
5

x5 − 14x3,

Hc
5(x) = x11 − 55

3
x9 + 99x7 − 286x5 + 297x3 +

15
4

x.
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Figure 3. Odd Hermite-central factorial polynomials.

4. General Even Central Factorial Polynomial Sequences

Now, analogous with the odd case, we consider the general even central factorial
polynomial sequences, that is, the polynomial sequences

{
en
}

n∈IN whose elements are
polynomials of degree 2n satisfying

{
δ2en(x) = 2n(2n− 1)en−1(x)

e′n(0) = 0, e0(x) = 1.
(29)

Since all the proofs of the results concerning this type of polynomial sequences are
similar to those of the odd case, we omit them.

Proposition 5. Let
{

en
}

n∈IN be an even p.s. It is a GECPS, that is, it satisfies (29) if and only if a
numerical sequence (γ2n)n∈IN, with γ0 6= 0, exists such that ∀n ∈ IN, ∀x ∈ IK,

en(x) =
n

∑
k=0

(
2n
2k

)
γ2(n−k)x

[2k].

Proposition 6. Let
{

en
}

n∈IN be a GECPS. Then, for j = 0, . . . , n, we obtain

(1) δ2jen(x) =
(2n)!

(2(n− j))!
en−j(x);

(2) δ2j+1en(x) =
(2n)!

(2(n− j))!
δen−j(x);

(3) δ2j+1en(0) = 0, δ2jen(0) =
(2n)!

(2(n− j))!
δen−j(0).

Corollary 2. For a GECPS
{

en
}

n∈IN, ∀n, j ∈ IN with j < n, the following identities hold:

2j

∑
k=0

(
2j
k

)
(−1)ken(x + j− k) =

(2n)!
(2(n− j))!

en−j(x);

2j+1

∑
k=0

(
2j + 1

k

)
(−1)ken

(
x + j− k +

1
2

)
=

(2n)!
(2(n− j))!

δen−j(x).

240



Mathematics 2022, 10, 978

4.1. Matrix Form

Given a numerical sequence
(
γ2k
)

k∈IN, γ0 6= 0, let us consider the lower infinite
triangular matrix U∞ =

(
ui,j
)

with

ui,j =





(
2i
2j

)
γ2(i−j), i ≥ 0, j = 0, 1, . . . , i

0 i < j

The first matrix form of a GECPS is:

E∞ = U∞
�
X∞, or E = U

�
X, (30)

where U = U∞,

�
X =

�
X∞ =

[
1, x[2], . . . , x[2ν], . . .

]T
, E = E∞ = [e0(x), e1(x), . . . , eν(x), . . . ]T .

The matrix U can be factorized [14] as U = G Tfl G−1, where G = diag{(2i)! | i ≥ 0}
and Tγ is a lower triangular Toepliz matrix with elements tγ

i,j =
γ2(i−j)

(2(i− j))!
.

U is invertible and U−1 = G Tı G−1, where Tı is a lower triangular Toepliz matrix

with elements tβ
i,j =

ζ2(i−j)

(2(i− j))!
,
(
ζ2k
)

k∈IN being the numerical sequence defined by

i

∑
j=0

γ2jζ2(i−j)

(2j)!(2(i− j))!
= δi0, i ≥ 0. (31)

Let Un be the principal submatrix of order n+ 1 of U and let
�
Xn and En be the principal

subvectors with n + 1 components of
�
X∞ and E∞, respectively. Then, from (30),

En = Un
�
Xn. (32)

4.2. Conjugate Even Polynomials

Let
(
γ2k
)

k∈IN, γ0 6= 0, be a given numerical sequence and
(
ζ2k
)

k∈IN the related se-
quence defined as in (31). For any k ∈ IN, we can consider the polynomial

êk(x) =
k

∑
j=0

(
2k
2j

)
ζ2jx[2(k−j)] =

k

∑
j=0

(
2k
2j

)
ζ2(k−j)x

[2j]. (33)

From this identity and Proposition 5, the sequence
{

êk
}

k∈IN is a GECPS. We call the
sequences

{
ek
}

k∈IN,
{

êk
}

k∈IN conjugate even central polynomial sequences.
By setting B =

(
bi,j
)
, with

bi,j =





(
2i
2j

)
ζ2(i−j), i ≥ 0, j = 0, 1, . . . , i

0 i < j,

and Ê = Ê∞ = [ê0(x), ê1(x), . . . , êν(x), . . . ], from (33), we have

Ê = B
�
X and Ên = Bn

�
Xn, ∀n ∈ IN.

241



Mathematics 2022, 10, 978

Moreover,
{

E = U2 Ê

Ê = B2 E
and

{
En = U2

n Ên

Ên = B2
n En,

∀n ∈ IN,

where U2 = U U =
(

u∗i,j
)

, and B2 = B B =
(

b∗i,j
)

. Finally, ∀n ∈ IN,

en(x) =
n

∑
j=0

u∗n,j êj(x), ên(x) =
n

∑
j=0

b∗n,jej(x).

4.3. Recurrence Relation and Related Determinant Form

From the identity (32), we have

�
Xn = U−1

n En,

and, for k = 0, . . . , n,

x[2k] =
k

∑
j=0

(
2k
2j

)
ζ2(k−j)ej(x).

Theorem 7 (Recurrence relation). Let
{

en
}

n∈IN be an even p.s. It is a GECPS if and only if there
exist numerical sequences

(
γ2k
)

k∈IN,
(
ζ2k
)

k∈IN, with γ0 6= 0, ζ0 6= 0, satisfying the relation (31),
such that, ∀k ≥ 1,

ek(x) =
1
ζ0

[
x[2k] −

k−1

∑
j=0

(
2k
2j

)
ζ2(k−j)ej(x)

]
.

Remark 10. For the elements of the conjugate sequence
{

ên
}

n∈IN, the first recurrence relation is

ên(x) =
1

γ0

[
x[2k] −

k−1

∑
j=0

(
2k
2j

)
γ2(k−j) êj(x)

]
.

Theorem 8 (Determinant form). Let
{

en
}

n∈IN be a GECPS as in Theorem 7. Then,

e0(x) =
1
ζ0

,

ek(x) =
(−1)k

ζk+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x[2] x[4] · · · x[2k−2] x[2k]

ζ0 ζ2 ζ4 · · · ζ2(k−1) ζ2k

0 ζ0 (4
2)ζ2 · · · (2k−2

2 )ζ2(k−2) (2k
2 )ζ2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

...
...

...
0 · · · · · · ζ0 ( 2k

2(k−1))ζ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 1.
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The elements of the conjugate sequence
{

ên
}

n∈IN are such that

ê0(x) =
1

γ0
,

êk(x) =
(−1)k

γk+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x[2] x[4] · · · x[2k−2] x[2k]

γ0 γ2 γ4 · · · γ2(k−1) γ2k

0 γ0 (4
2)γ2 · · · (2k−2

2 )γ2(k−2) (2k
2 )γ2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

...
...

...
0 · · · · · · γ0 ( 2k

2(k−1))γ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 1.

4.4. The Linear Space G̃ECPS

Definition 4. Let
{

ek
}

k∈IN and
{

e∗k
}

k∈IN be the general central polynomial sequences related to
the numerical sequences

(
η2k
)

k∈IN and
(
υ2k
)

k∈IN, respectively. That is, ∀k ∈ IN,

ek(x) =
k

∑
j=0

(
2k
2j

)
η2(k−j)x

[2j], e∗k (x) =
k

∑
j=0

(
2k
2j

)
υ2(k−j)x

[2j].

For all k ∈ IN, the umbral composition of ek(x) and e∗k (x) is

wk(x) := (ek ◦ e∗k )(x) =
k

∑
j=0

(
2k
2j

)
η2(k−j)e

∗
j (x).

It is easy to verify that

1.
{

wk
}

k∈IN =
{

ek ◦ e∗k
}

k∈IN is a GECPS;
2. ∀k ∈ IN, (ek ◦ êk)(x) = x[2k].

Moreover, if "+" and "·" are, respectively, the usual sum and product for a scalar on the

set of even polynomial sequences, then G̃ECPS = (GECPS,+, ·, ◦) is an algebra.

4.5. Generating Function

Let G(t) be the power series

G(t) = t +
∞

∑
n=1

(−1)n

(
n

∏
k=1

(2k− 1)2

4

)
t2n+1

(2n + 1)!
.

Then, taking into account that

cosh x(x G(t)) =
∞

∑
k=0

(x G(t))2k

(2k)!
,

we have

cosh(x G(t)) =
∞

∑
ν=0

x[2ν] t2ν

(2ν)!
.

Hence, the function
g(x, t) = cosh(x G(t))

is the generating function of even central factorial polynomials x[2ν].
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Theorem 9. The generating function of a GECPS related to the numerical sequence (γ2k)k∈IN is

F(x, t) = l(t) g(x, t),

with

l(t) =
∞

∑
k=0

γ2k
t2k

(2k)!
.

4.6. Connection to the Basic Monomials x2i

From (20),

x[2k] =
k

∑
i=0

t(2k, i)x2i.

If Ωt =
(
ωt

i,j
)

i,j∈IN, with

ωt
i,j =

{
t(2i, j) i ≥ j
0 i < j,

then �
X = Ωt X̃̃, (34)

where X̃̃ =
[
1, x2, . . . , x2ν, . . .

]T .
Let

{
ek
}

k∈IN be the GECPS related to the numerical sequence
(
γ2k
)

k∈IN. Let E be as in
(30). Then, by substituting (34) in (30), we obtain

E =
(
U Wt)X̃̃,

that is,

en(x) =
i

∑
j=0

sn,jx2j with sn,j =
n

∑
k=0

un,kwt
k,j. (35)

Remark 11. The following identity holds

en(0) = sn,0, n ≥ 0. (36)

Theorem 10. Let
(
sn,0
)

n∈IN be an assigned numerical sequence. Then, the sequence
{

en
}

n∈IN
with en as (35) is a GECPS if and only if the coefficients, sn,j, j = 0, 1, . . . , n, are the solution of
the system

n

∑
i=j+1

(
2i
2j

)
sn,i = n(2n− 1)sn−1,j, j = 0, . . . , n− 1.

Remark 12. From backward substitutions,

sn,j =
n(2n− 1)
j(2j− 1)

sn−1,j−1 −
1

j(2j− 1)

n

∑
i=j+1

(
2i

2j− 2

)
sn,i, j = n− 1, . . . , 1. (37)

4.7. Examples

Now, we give some examples of general even central factorial polynomial sequences.
Firstly, from Proposition 5, if

(
γ2k
)

k∈IN, γ0 6= 0, is an assigned numerical sequence, we
determine the related GECPS, that is, the p.s.

{
en
}

n∈IN such that

en(x) =
n

∑
k=0

(
2n
2k

)
γ2(n−k)x

[2k], ∀n ∈ IN, ∀x ∈ IK.
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Then, we write en in the monomial basis x2i, according to (35). It satisfies (36).

Example 3 (Even Fibonacci-central factorial p.s.). We will determine the GECPS
{

en
}

n∈IN
such that

en(0) = Fn, ∀n ∈ IN, (38)

where
(

Fn
)

n∈IN is the Fibonacci numerical sequence.
The elements of this p.s. satisfy

{
δ2en(x) = 2n(2n− 1)en−1(x)

e′n(0) = 0, en(0) = Fn.

In this case, we call
{

en
}

n∈IN even Fibonacci-central factorial p.s. and we denote it by{
Fe

n
}

n∈IN.
For every n ∈ IN, the conditions (38) give the coefficients γ2k = Fk, k = 0, . . . , n.
For example, for n = 0, . . . , 4, we obtain the polynomials

Fe
0(x) = x[0], Fe

1(x) = x[2] + x[0], Fe
2(x) = x[4] + 6x[2] + 2x[0],

Fe
3(x) = x[6] + 15x[4] + 30x[2] + 3x[0],

Fe
4(x) = x[8] + 28x[6] + 140x[4] + 84x[2] + 5x[0].

Figure 4 shows the plot of these polynomials.

Figure 4. Even Fibonacci-central factorial polynomials.

From the relations (36) and the conditions

Fe
n(0) = sn,0 = Fn, n = 0, 1, . . . ,

we obtain the polynomials Fe
n written into the even monomial basis.

For example, for n = 5, we have

Fe
0(x) = 1, e1(x) = x2 + 1, Fe

2(x) = x4 + 5x2 + 2,

Fe
3(x) = x6 + 10x4 + 19x2 + 3,

Fe
4(x) = x8 + 14x6 + 49x4 + 20x2 + 5,

Fe
5(x) = x10 + 15x8 + 63x6 − 85x4 + 231x2 + 8.

245



Mathematics 2022, 10, 978

Example 4 (Even Hermite-central factorial p.s.). Now, we determine the GECPS
{

en
}

n∈IN
such that

e0(0) = 1, en(0) = Hn(0) =




(−1)n

(
1
2

)

n
for even n > 0

0 for odd n > 0,
(39)

{
Hn
}

n∈IN being the monic Hermite p.s. ([17], p. 135).
The elements of

{
en
}

n∈IN satisfy

{
δ2en(x) = 2n(2n + 1)en−1(x)

en(0) = 0, en(0) = Hn(0).

We call
{

en
}

n∈IN even Hermite-central factorial p.s., and we denote it by
{

He
n
}

n∈IN.
From (39), for any n ∈ IN, we obtain γ2n = Hn(0).
The first five odd Hermite-central factorial polynomials are

He
0(x) = x[0], He

1(x) = x[2], He
2(x) = x[4] − 1

2
x[0],

He
3(x) = x[6] − 15

2
x[2],

He
4(x) = x[8] − 35x[4] +

3
4

x[0].

Figure 5 shows the plot of these polynomials.

Figure 5. Even Hermite-central factorial polynomials.

Written in the monomial basis, they become

He
0(x) = 1, He

1(x) = x2, He
2(x) = x4 − x2 − 1

2
,

He
3(x) = x6 − 5x4 − 7

2
x2,

He
4(x) = x8 − 14x6 + 14x4 − x2 +

3
4

.
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5. Conclusions

In this paper, we considered the operator δ2(·), where δ(·) is the known central
difference operator. The general polynomial solutions of the following two problems

{
δ2dn(x) = 2n(2n + 1)dn−1(x), n ≥ 1

dn(0) = 0, deg(dn) = 2n + 1, n ≥ 0

and {
δ2en(x) = 2n(2n− 1)en−1(x), n ≥ 1

e′n(0) = 0, deg(en) = 2n, n ≥ 0,

have been studied.
These solutions were called general odd (respectively, even) central factorial polynomial

sequences and denoted by GOCPS and GECPS, respectively. Each polynomial has been
written both in the basis x[2i+1] (resp. x[2i]) and in the basis x2i+1 (resp. x2i). The matrix and
determinant forms and a recurrence formula have been provided. The generating functions
for the two kinds of polynomial sequences have also been obtained. An interesting property
of biorthogonality has been demonstrated. Finally, two new general odd (even) central
factorial p.s., called Fibonacci central factorial and Hermite central factorial p.s., have
been given.

Future research in this direction, both theoretical and computational, is possible. For
example, the general operator of the type Qy = ∑∞

k=1 cky(2k), c1 6= 0 can be considered and
the associated odd and even polynomial sequences can be determined. Computational ap-
plications, such as linear interpolation, quadrature formulas and approximation functions,
can be studied. Boundary and initial value problems for difference equations can also be
considered.
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Abstract: An alternative approach, known today as the Bernstein polynomials, to the Weierstrass
uniform approximation theorem was provided by Bernstein. These basis polynomials have attained
increasing momentum, especially in operator theory, integral equations and computer-aided geomet-
ric design. Motivated by the improvements of Bernstein polynomials in computational disciplines,
we propose a new generalization of Bernstein–Kantorovich operators involving shape parameters λ, α

and a positive integer as an original extension of Bernstein–Kantorovich operators. The statistical ap-
proximation properties and the statistical rate of convergence are also obtained by means of a regular
summability matrix. Using the Lipschitz-type maximal function, the modulus of continuity and mod-
ulus of smoothness, certain local approximation results are presented. Some approximation results in
a weighted space are also studied. Finally, illustrative graphics that demonstrate the approximation
behavior and consistency of the proposed operators are provided by a computer program.

Keywords: weighted B-statistical convergence; shape parameter α; shape parameter λ; blending-type
operators; computer graphics

MSC: 41A10; 41A25; 41A36; 26A16; 40C05

1. Introduction

The Weierstrass approximation theorem asserts that there exists a sequence of polyno-
mials rp(u) that converges uniformly to r(u) for any continuous function r(u) on the closed
interval [a, b] [1]. Bernstein provided an alternative proof of the well-known Weierstrass
approximation theorem, nowadays called Bernstein polynomials. The following Bernstein
operators

Bp(r; u) =
p

∑
i=0

bp,i(u)r
(

i
p

)
,

where,

bp,i(u) =
(

p
i

)
ui(1− u)p−i, u ∈ I

were given in [2] to approximate a given continuous function r(u) on [0, 1] = I .
In this sense, an approximation process for Lebesgue integrable real-valued functions

defined on I was presented by replacing sample values r
( i

p
)

with the mean values of r

in the interval
[ i

p , i+1
p
]

(see [3]). It is well known that these operators involving Lebesgue
integrable functions on I can be expressed by means of the Bernstein basis function bp,i(u),

Kp(r; u) = (p + 1)
p

∑
i=0

bp,i(u)
∫ i+1

p+1

i
p+1

r(t) dt.

Mathematics 2022, 10, 2027. https://doi.org/10.3390/math10122027 https://www.mdpi.com/journal/mathematics
249



Mathematics 2022, 10, 2027

There are several generalizations and different modifications of the Kantorovich operators
Kp in the literature (see e.g., [4–8]).

Approximation methods by Bernstein-type operators have been used both in pure
and applied mathematics, as well as in certain computer-aided geometric design and
engineering problems. For instance, a numerical scheme for the computational solution
of certain classes of Volterra integral equations of the third kind and an algorithm for the
approximate solution of singularly perturbed Volterra integral equations were provided
with the help of Bernstein-type operators [9,10].

A new class of Bernstein operators for the continuous function r(u) on I , which
includes the shape parameter α and named hereafter as α-Bernstein operators, were con-
structed in [11]. Many modifications of α-Bernstein operators have been studied (see [4,5,12]).
A new basis with shape parameter λ ∈ [−1, 1] was introduced in [13], and a new type λ-
Bernstein operators were constructed by shape parameter λ in [14]. Shape parameters α
and λ were used to modify Bernstein operators to α-Bernstein-type (see [4,11,12,15,16]) and
λ-Bernstein-type operators (see [6,13,17–25]) in order to have better approximation results.

Quite recently, Cai et al. estimated rates convergence of univariate and bivariate
blending-type operators, which were introduced in [26], by a weighted A-statistical summa-
bility method [27].

The motivation of the paper is to extend Bernstein-type operators and introduce a
novel generalization of blending-type Bernstein–Kantorovich operators that include many
known sequences of linear operators in the literature.

The outline of the paper is as follows: In Section 2, we provide the needed background
that includes definitions of α-Bernstein and λ-Bernstein-type operators. In Section 3, we
introduce a novel generalization of Bernstein–Kantorovich operators with the help of a
new class of basis polynomials involving two shape parameters and a positive integer. We
also obtain moments and central moments and provide a classical Korovkin-type theorem.
In Section 4, we focus on the convergence properties and a Voronovskaja-type approxi-
mation result of the operators through the notion of weighted B-statistical convergence.
Further, we estimate the rate of the weighted B-statistical convergence of the proposed
operators. In Section 5, we obtain some pointwise and weighted approximation results.
In Section 6, we provide certain computer graphics for different kinds of functions to
see the approximation of the defined operators. In Section 7, we provide a conclusion to
summarize the obtained results.

2. Preliminaries

In this part, we provide the needed background that includes definitions of α-Bernstein,
λ-Bernstein and blending (α, λ, s)-Bernstein basis functions; also, the definitions of α-
Bernstein, λ-Bernstein and blending (α, λ, s)-Bernstein operators are provided.

Throughout the paper, let the binomial coefficients be given by the formula

(
p
i

)
=

{
p!

i!(p−i)! , 0 ≤ i ≤ p,
0, otherwise.

The known α-Bernstein operators (see [11]) were introduced as

Tp,α(r; u) =
p

∑
i=0

w(α)
p,i (u)r

(
i
p

)
,

where w(α)
1,0 (u) = 1− u, w(α)

1,1 (u) = u, and α-Bernstein basis is given as

w(α)
p,i (u) =

[
(1− α)

(
p− 2

i

)
u + (1− α)

(
p− 2
i− 2

)
(1− u) + α

(
p
i

)
u(1− u)

]
ui−1(1− u)p−i−1,

for α, u ∈ I , p ≥ 2, r(u) ∈ C[0, 1].
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The λ-Bernstein operators were given as (see [14])

Bp,λ(r; u) =
p

∑
i=0

b̃p,i(u)r
(

i
p

)
,

where λ-Bernstein basis is given as

b̃p,i(λ; u) =





bp,0(u)− λ
p+1 bp+1,1(u), if i = 0,

bp,i(u) + λ
(

p−2i+1
p2−1 bp+1,i(u)

)

−λ
(

p−2k−1
p2−1 bp+1,i+1(u)

)
, if 1 ≤ i ≤ p− 1,

bp,p(u)− λ
p+1 bp+1,p(u), if i = p.

(1)

Generalized blending-type α-Bernstein operators with a positive integer s were intro-
duced in [15] as

Lα,s
p (r; u) =

p

∑
i=0

{
(1− α)

(
p− s
i− s

)
ui−s+1(1− u)p−i + (1− α)

(
p− s

i

)
ui(1− u)p−s−i+1

+α

(
p
i

)
ui(1− u)p−i

}
r
(

i
p

)
, for p ≥ s

and

Lα,s
p (r; u) =

p

∑
i=0

(
p
i

)
ui(1− u)p−ir

(
i
p

)
, for p < s

which depend on shape parameter α, where u, α ∈ I , r(u) ∈ C[0, 1].
Finally, blending-type (α, λ, s)-Bernstein operators were constructed in [26] as follows:

L(α,s)
p,λ (r; u) =

p

∑
i=0

b̃α,s
p,i (λ; u)r

(
i
p

)
,

where 0 ≤ α ≤ 1, −1 ≤ λ ≤ 1 and s is a positive integer and the blending-type (α, λ, s)
basis is given as

b̃α,s
p,i (λ; u) =





b̃p,i(λ; u), if p < s
(1− α)

[
ub̃p−s,i−s(λ; u) + (1− u)b̃p−s,i(λ; u)

]

+αb̃p,i(λ; u), if p ≥ s

and b̃p,i(λ; u) is defined in Equation (1).
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Lemma 1 ([26],Theorem 2). If p ≥ s, for any 0 ≤ α ≤ 1 and −1 ≤ λ ≤ 1 we have

L(α,s)
p,λ (1; u) = 1;

L(α,s)
p,λ (t; u) = u + (1− α)λ

[
1− 2u + up−s+1 − (1− u)p−s+1

p(p− s− 1)

]

+ αλ

[
1− 2u + up+1 − (1− u)p+1

p(p− 1)

]
;

L(α,s)
p,λ (t2; u) = u2 +

[
p + (1− α)s(s− 1)

]
u(1− u)

p2 +
αλ

p

[
2u− 4u2 + 2up+1

(p− 1)

]
;

+
(1− α)λ

p

[
2u− 4u2 + 2up−s+1

(p− s− 1)

]
+

αλ

p2

[
up+1 + (1− u)p+1 − 1

(p− 1)

]

+
(1− α)λ

p2

[
up−s+1 + (1− u)p−s+1 − 1

(p− s− 1)

]
+

[
2su(up−s+1 − (1− u)p−s+1)

(p− s− 1)

]
.

3. Blending (α, λ, s)-Bernstein–Kantorovich Operators

Let L1[0, 1] denote the space of all Lebesgue integrable functions on the interval I . We
introduce the following sequence of operators involving shape parameters λ and α, and a
positive integer s :

K(α,s)
p,λ (r; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

r(t)dt (2)

and call it blending (α, λ, s)-Bernstein–Kantorovich operators.

Lemma 2. Let s be a positive integer, λ ∈ [−1, 1] and α be a non-negative integer, then the
moments of blending (α, λ, s)-Bernstein–Kantorovich operators are as follows:

K(α,s)
p,λ (1; u) = 1;

K(α,s)
p,λ (t; u) =

1 + 2pu
2(p + 1)

+
αλ

(p + 1)(p− 1)

[
1− 2u + up+1 − (1− u)p+1

]

+
(1− α)λ

(p + 1)(p− s− 1)

[
1− 2u + up−s+1 − (1− u)p−s+1

]
;

K(α,s)
p,λ (t2; u) =

1 + 3pu(1 + pu)
3(p + 1)2 +

2(1− α)λu
(p− s− 1)(p + 1)2

[
(p + 1)up−s + p(1− 2u)− 1

]

+
2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)up + p(1− 2u)− 1

]
.
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Proof. Since it is easy to prove the first part of the theorem we skip it. Bearing in mind the
definition of operators (2) and Lemma 1, we have

K(α,s)
p,λ (t; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t dt =
p

∑
i=0

b̃α,s
p,i (λ; u)

2i + 1
2(p + 1)

=
p

p + 1
L(α,s)

p,λ (t; u) +
1

2(p + 1)
L(α,s)

p,λ (1; u)

=
1 + 2pu
2(p + 1)

+ αλ

[
1− 2u + up+1 − (1− u)p+1

(p + 1)(p− 1)

]

+ (1− α)λ

[
1− 2u + up−s+1 − (1− u)p−s+1

(p + 1)(p− s− 1)

]
,

which completes the proof of second part. Now, we prove the third part:

K(α,s)
p,λ (t2; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t2 dt =
p

∑
i=0

b̃α,s
p,i (λ; u)

3i2 + 3i + 1
3(p + 1)2

=
p2

(p + 1)2L
(α,s)
p,λ (t2; u) +

p
(p + 1)2L

(α,s)
p,λ (t; u) +

1
3(p + 1)2L

(α,s)
p,λ (1; u)

=
1 + 3pu(1 + pu)

3(p + 1)2 +
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)up−s + p(1− 2u)− 1

]

+
2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)up + p(1− 2u)− 1

]
.

Corollary 1. The following relationships are satisfied:

K(α,s)
p,λ (t− u; u) = (p + 1)

[
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t dt− u
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

dt

]

=
1− 2u

2(p + 1)
+

αλ

(p + 1)(p− 1)

[
1− 2u + up+1 − (1− u)p+1

]

+
(1− α)λ

(p + 1)(p− s− 1)

[
1− 2u + up−s+1 − (1− u)p−s+1

]
;

K(α,s)
p,λ ((t− u)2; u) = (p + 1)

[
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t2 dt− 2u
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t dt

]

+ (p + 1)u2
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

dt

=
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)(1− u)p−s+1 + (1− u)up−s − 1 + 2u

]

+
2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)(up − up+1 − (1− u)up−s)− 1 + 2u

]
+

3u2 − 3u + 1
3(p + 1)2 .
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Theorem 1. Let r ∈ L1[0, 1], then we have

lim
p→∞
K(α,s)

p,λ (r; u) = r(u)

uniformly on [0, 1].

Proof. Using the commonly stated Bohman–Korovkin theorem [28,29], our aim is to prove
the following uniform convergence condition:

lim
p→∞
K(α,s)

p,λ (ek; u) = uk (k = 0, 1, 2)

where ek(u) = uk, u ∈ I . Clearly, from the first and second parts of Lemma 2, we obtain

lim
p→∞
K(α,s)

p,λ (e0; u) = 1 and lim
p→∞
K(α,s)

p,λ (e1; u) = u.

By the third part of Lemma 2, the following relationship is satisfied

K(α,s)
p,λ (e2; u)→ u2 (p→ ∞).

4. Convergence Properties

In this part, we focus on the convergence properties and a Voronovskaja-type approxi-
mation result of operators K(α,s)

p,λ through the notion of weighted B-statistical convergence.
Further, we estimate the rate of the weighted B-statistical convergence of the proposed
operators. We refer to [30,31] and the references therein for further information about
statistical convergence and its weighted forms, including the regular summability matrix.

Let K ⊆ N0 := N ∪ {0} and Kp = {k ≤ p : k ∈ K}. Then δ(K) = limp→∞
1
p

∣∣Kp
∣∣ is

called the natural density of K, if the limit exists. A sequence u = (up) is called statistically
convergent to a number L if, for each ε > 0, δ{p : |up − L| = ε} = 0. The notion of
weighted statistical convergence is given as:

Let q = (qp) be a sequence of non-negative numbers with q0 > 0 and Qp = ∑
p
k=0 qk → ∞

as p→ ∞, then u = (up) is weighted statistically convergent to a number L if, for every ε > 0,

1
Qp

∣∣{k 5 Qp : qk|uk − L| = ε}
∣∣→ 0 as p→ ∞.

In [32], a new matrix method, which is known as B-summability, was defined. Let
B = (Bi) be a sequence of infinite matrices with Bi = (bpk(i)). Then u ∈ `∞ is said to be B-
summable to the value B-lim u, if limp→∞(Biu)p = B− lim u uniformly for i = 0, 1, 2, · · · .

The method B = (Bi) is regular if and only if the following conditions hold true
(see [33,34]):

‖B‖ = supp,i ∑k |bpk(i)| < ∞;
limp→∞ bpk(i) = 0 uniformly in i for each k ∈ N;
limp→∞ ∑k bpk(i) = 1 uniformly in i, ∀k.
By R+ we denote the set of each regular method B with bpk(i) = 0 for each p, k

and i. Given a regular non-negative summability matrix B ∈ R+, u = (uk) is said to be
B-statistically convergent to the number ` if, for every ε > 0,

∑
k:|uk−`|=ε

bpk(i)→ 0

uniformly in i, (p→ ∞).
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Definition 1 ([35]). Let B = (Bi)i∈N ∈ R+. Further, let q = (qk) be a sequence of nonnegative
numbers with p0 > 0 and Qp = ∑

p
k=0 qk → ∞ as p → ∞. A sequence u = (uk) is said to be

weighted B-statistically convergent to the number ` if, for every ε > 0,

lim
m→∞

1
Qm

m

∑
p=0

qp ∑
k:|uk−`|=ε

bpk(i) = 0 uniformly in i, ∀k.

In this case, we denote it by writing
[
statB , qp

]
− lim u = `.

Theorem 2. Let B ∈ R+ and r ∈ C[0, 1]. Then

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (r; u)− r‖C[0,1] = 0.

Proof. Let r ∈ C[0, 1] and u ∈ I be fixed. In view of the Korovkin theorem, it is sufficient
to show that

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (ej; u)− ej‖C[0,1] = 0,

where ej(u) = uj, u ∈ I and j = 0, 1, 2. By Lemma 2 and Corollary 1 we deduce that

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (e0; u)− e0‖C[0,1] = 0. (3)

Using the definition of proposed operators and Corollary 1, for j = 1 one has

sup
u∈I

∣∣∣∣K
(α,s)
p,λ (e1; u)− e1(u)

∣∣∣∣ = sup
u∈I

∣∣∣∣
1 + 2pu
2(p + 1)

+
αλ

(p + 1)(p− 1)

[
1− 2u + up+1 − (1− u)p+1

]

+
(1− α)λ

(p + 1)(p− s− 1)

[
1− 2u + up−s+1 − (1− u)p−s+1

]
− u

∣∣∣∣

≤ 5
p + 1

.

Now, for a given ε′ > 0, choosing a number ε > 0 such that ε < ε′. Then setting

J :=
{

p ∈ N :
∥∥K(α,s)

p,λ (e1; u)− e1
∥∥ = ε′

}
, J1 :=

{
p ∈ N :

5
p + 1

= ε′ − ε

}
.

Thus we find that

1
Qm

m

∑
p=0

qp ∑
k∈J

bpk(i) ≤
1

Qm

m

∑
p=0

qp ∑
k∈J1

bpk(i).

Letting m→ ∞ in the last inequality we obtain

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (e1; u)− e1‖C[0,1] = 0. (4)
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By definition of the proposed operators and Lemma 2, we have the following relation-
ships:

sup
u∈I

∣∣K(α,s)
p,λ (e2; u)− e2(u)

∣∣ = sup
u∈I

∣∣∣∣
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)up−s + p(1− 2u)− 1

]

+
2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]

1 + 3pu(1 + pu)
3(p + 1)2 +

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)up + p(1− 2u)− 1

]
− u2

∣∣∣∣

≤ 10
(p− 1)(p + 1)2 .

In conclusion, using the same technique as above, we have the following result:

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (e2; u)− e2‖C[0,1] = 0. (5)

Therefore, we conclude the proof by combining (3), (4) and (5).

Definition 2 ([30]). Let B ∈ R+. A sequence u = (up) is statistically weighted B-summable to
L if, for each ε > 0,

lim
j

1
j

∣∣∣∣∣

{
m 5 j :

∣∣ 1
Qm

m

∑
n=0

qp

∞

∑
k=1

upbpk(i)− L
∣∣ = ε

}∣∣∣∣∣ = 0 uniformly in i.

In this case, we denote it by NB(stat)− lim u = L.

Theorem 3 ([30]). Let u = (up) be a bounded sequence. If u is weighted B-statistically convergent
to L then it is statistically weighted B-summable to the same limit L, but not conversely.

Corollary 2. Let B ∈ R+ and r ∈ C[0, 1]. Then

NB(stat)− lim ‖K(α,s)
p,λ (r, u)− r‖C[0,1] = 0.

Proof. The proof is a direct consequence of Theorems 2 and 3. Hence the details
are omitted.

Next, we estimate the rate of weighted B-statistical convergence of K(α,s)
p,λ to r ∈ C[0, 1]

with the help of modulus of continuity of first order.

Definition 3 ([30]). Let B ∈ R+. Suppose that (wk) is a positive non-decreasing sequence.
A sequence u = (uk) is said to be weighted B-statistically convergent to ` with the rate o

(
wk
)

if,
for any ε > 0,

lim
m→∞

1
wmQm

m

∑
p=0

qp ∑
k:|uk−`|=ε

bpk(i) = 0 uniformly in i. (6)

In this case, we denote it by uk − ` =
[
statB , qp

]
− o
(
wk
)
.

Theorem 4. Let (cp)p∈N and (dp)p∈N be two positive non-decreasing sequences and let B ∈ R+.
Assume that the following conditions hold true:

(i) ‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] =

[
statB , qp

]
− o
(
cp
)
,
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(ii) ω(r; δp) =
[
statB , qp

]
− o

(
dp
)

on I , where δp := ‖K(α,s)
p,λ (µ; u; λ)‖1/2

C[0,1] with

µ(u) = (t− u)2, t ∈ I . Then

‖K(α,s)
p,λ − r‖C[0,1] =

[
statB , qp

]
− o
(
ep
) (

r ∈ C[0, 1]
)
,

where ω is the usual modulus of continuity and ep = max{cp, dp}.

Proof. Let r ∈ C[0, 1] and u ∈ [0, 1] be fixed. Since K(α,s)
p,λ is linear and monotone, we may

write that

|K(α,s)
p,λ (r(t); u)− r(u)| ≤ |K(α,s)

p,λ

(
|r(t)− r(u)|; u

)
+ |r(u)| |K(α,s)

p,λ (e0; u)− e0|

≤ ω(r, s)K(α,s)
p,λ

( |t− u|
s

+ 1; u
)
+ |r(u)| |K(α,s)

p,λ (e0; u)− e0|

= ω(r, s)
{
K(α,s)

p,λ (e0; u) +
1
s2K

(α,s)
p,λ (µ; u)

}
+ |r(u)| |K(α,s)

p,λ (e0; u)− e0|. (7)

Taking the supremum over u ∈ [0, 1] on both sides of (7), we observe that

‖K(α,s)
p,λ − r‖C[0,1] ≤ ω(r, s)

{
1
s2 ‖K

(α,s)
p,λ (µ; u)‖C[0,1] + ‖K(α,s)

p,λ (e0; u)− e0‖C[0,1] + 1
}

+ D‖K(α,s)
p,λ (e0; u)− e0‖C[0,1],

where D = ‖r‖C[0,1]. Now, if we take δp = ‖K(α,s)
p,λ (µ; u)‖1/2

C[0,1] in the last relation, we obtain

‖K(α,s)
p,λ − r‖C[0,1] ≤ ω(r, δp)‖K(α,s)

p,λ (e0; u)− e0‖C[0,1] + 2ω(r, δp) + D‖K(α,s)
p,λ (e0; u)− e0‖C[0,1]

≤ N
{

ω(r, δp)‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] + ω(r, δp) + ‖K(α,s)

p,λ (e0; u)− e0‖C[0,1]
}

,

where N = max{2, D}. For a given ε > 0, we define the sets:

U =
{

p : ‖K(α,s)
p,λ − r(u)‖C[0,1] ≥ ε

}
,

U1 =
{

p : ω(r, δp)‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] ≥

ε

3N

}

U2 =
{

p : ω(r, δp) ≥
ε

3N

}
,

U3 =
{

p : ‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] ≥

ε

3N

}
.

Then the inclusion U ⊂ ∪3
j=1Uj holds and

1
emQm

m

∑
p=0

qp ∑
k∈U

bpk(i) ≤
1

emQm

m

∑
p=0

qp ∑
k∈U1

bpk(i) +
1

dmQm

m

∑
p=0

qp ∑
k∈U2

bpk(i)

+
1

cmQm

m

∑
p=0

qp ∑
k∈U3

bpk(i).

By hypotheses (i) and (ii), we have

‖K(α,s)
p,λ − r‖C[0,1] =

[
statB , qp

]
− o
(
ep
)
, ep = max{cp, dp}.

This completes the proof of Theorem 4.

Let C2[0, 1] be the space of all functions r ∈ C[0, 1] such that r′, r′′ ∈ C[0, 1].
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Theorem 5. Let B = (Bi)i∈N ∈ R+. Let r ∈ C[0, 1] and let u be a point of I at which r′′(u)
exists. Then

[statB , qp]− lim
p→∞

{
p[K(α,s)

p,λ (r, u)− r(u)]
}
= (

1
2
− u)r′(u) (uniformly in i).

If r ∈ C2[0, 1], the convergence is also uniform in u ∈ I .

Proof. Let r ∈ C2[0, 1] and u ∈ [0, 1] be fixed. By taking into account Taylor’s expansion
with Peano’s form of reminder we conclude that

r(t)− r(u) = (t− u)r′(u) +
1
2
(t− u)2r′′(u) + (t− u)2 ru(t), (8)

where ru(t) is the remainder term such that ru(t) ∈ C[0, 1] and ru(t) → 0 as t → x.
Applying K(α,s)

p,λ to identity (8), we get

K(α,s)
p,λ (r, u)− r(u) = r′(u)K(α,s)

p,λ (t− u; u) +
r′′(u)

2
K(α,s)

p,λ ((t− u)2; u) +K(α,s)
p,λ ((t− u)2ru(t); u). (9)

By multiplying both sides of (9) by p and using the Cauchy–Schwarz inequality,
we have

pK(α,s)
p,λ ((t− u)2ru(t); u) ≤

√
p2K(α,s)

p,λ ((t− u)4; u)
√
K(α,s)

p,λ (ru(t); u).

Hence, in view of Lemma 2 and boundedness of the expression [statB , qp]−
lim p2K(α,s)

p,λ ((t− u)4; u), we have

[statB , qp]− lim
p→∞

p
[
K(α,s)

p,λ ((t− u)2ru(t); u)
]
= 0,

which completes the proof.

5. Some Approximation Theorems Including Pointwise and Weighted Approximation

In this part, we provide some pointwise and weighted approximation results for
operators K(α,s)

p,λ . Moreover, we establish two local approximation theorems for K(α,s)
p,λ by

the second-order modulus of smoothness and the usual modulus of continuity.
Lipschitz class is defined as follows: Let 0 < ρ ≤ 1, T ⊂ R+ = [0, ∞) and C(R+)

denote the space of all continuous functions r on R+. Then, a function r in CB(R+) belongs
to Lip(ρ) if the condition

|r(t)− r(u)| ≤ Sr,ρ|t− u|ρ (t ∈ T, u ∈ R+)

holds, where the constant Sr,ρ depends on r and ρ.

Theorem 6. Let r ∈ CB(R+), 0 < ρ ≤ 1 and T ⊂ R+ then, for each u ∈ R+,

|K(α,s)
p,λ (r, u)− r(u)| ≤ Sr,ρ

{(
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)(1− u)p−s+1

]

×
(
(1− u)up−s − 1 + 2u

)
+

2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]

+
3u2 − 3u + 1

3(p + 1)2 +
2αλu

(p− 1)(p + 1)2

[
(p + 1)(up − up+1 − (1− u)up−s)− 1 + 2u

]

+
(p + (1− α)s(s− 1))u(1− u)

(p− 1)(p + 1)2

)ρ/2

+ 2dρ(u, T)

}
,
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where d(u, T) is the distance between u and T, defined by

d(u, T) = inf{|t− u| : t ∈ T}.

Proof. Let v ∈ T̄ so that |u− v| = d(u, T), where T̄ is a closure of T, then one has

|r(t)− r(u)| ≤ |r(u)− r(v)|+ |r(t)− r(v)| (u ∈ R+).

By the help of relation

|K(α,s)
p,λ (r, u)− r(u)| ≤ K(α,s)

p,λ (|r(u)− r(v)|; u) +K(α,s)
p,λ (|r(t)− r(v)|; u)

we have

|K(α,s)
p,λ (r, u)− r(u)| ≤ Sr,ρ

{
|x− v|ρ +K(α,s)

p,λ (|t− v|ρ; u)
}

≤ Sr,ρ

{
|x− v|ρ +K(α,s)

p,λ (|t− u|ρ + |x− v|ρ; u)
}

= Sr,ρ

{
2|x− v|ρ +K(α,s)

p,λ (|t− u|ρ; u)
}

.

We obtain the following relationships applying Hölder inequality to the above inequal-
ity for A = 2/ρ and B = 2/(2− ρ) :

|K(α,s)
p,λ (r, u)− r(u)| ≤ Sr,ρ

{
2dρ(u, T) +K(α,s)

p,λ

1
A
(|t− u|Aρ; u)K(α,s)

p,λ

1
B
(1B; u)

}

= Sr,ρ

{
2dρ(u, T) +K(α,s)

p,λ

ρ
2
(|t− u|2; u)

}
.

We complete the proof by Lemma 2.

Let u ∈ R+ and 0 < ρ ≤ 1, then Lipschitz-type maximal function of order ρ [36] is
expressed as

ωρ(r; u) = sup
v∈R+ ,v 6=u

|r(v)− r(u)|
|v− u|ρ . (10)

We provide a local direct estimate for K(α,s)
p,λ by the next theorem.

Theorem 7. Let r ∈ CB(R+) and 0 < ρ ≤ 1, then, we have

|K(α,s)
p,λ (r, u)− r(u)| ≤ ωρ(r; u)

{
3u2 − 3u + 1

3(p + 1)2 +
(p + (1− α)s(s− 1))u(1− u)

(p− 1)(p + 1)2

+
2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]

+
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)(1− u)p−s+1 + (1− u)up−s − 1 + 2u

]

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)(up − up+1 − (1− u)up−s)− 1 + 2u

]} ρ
2

for all u ∈ R+.
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Proof. We have the following relations

|K(α,s)
p,λ (r, u)− r(u)| = |K(α,s)

p,λ (r, u)− r(u)K(α,s)
p,λ (1; u)|

≤ K(α,s)
p,λ (|r(t)− r(u)|; u)

≤ ωρ(r; u)K(α,s)
p,λ (|t− u|ρ; u)

by the help of (10). Further, applying Hölder inequality to the last inequality for

A = 2/ρ and B = 2/(2− ρ)

we observe that

|K(α,s)
p,λ (r, u)− r(u)| ≤ ωρ(r; u)K(α,s)

p,λ

B
2
(|t− u|2; u).

The last inequality, together with Lemma 2 and the relation in (10) concludes the proof.

Let ψ(u) = 1 + u2 be a weight function then, the weighted space Bψ(R+) denotes the
set of all functions r on R+ having the property

|r(u)| ≤ ψ(u)Sr,

where a constant Sr > 0 depending on r. It is known that Bψ(R+) is a Banach space
equipped with the norm

‖r‖ψ = sup
u∈R+

|r(u)|
ψ(u)

.

Moreover, Cψ(R+) denotes the subspace of all continuous functions in Bψ(R+) and

C∗ψ(R+) =

{
r ∈ Cψ(R+) : lim

u→∞

|r(u)|
ψ(u)

< ∞
}

.

Theorem 8. Let ψ(u) = 1 + u2 then, for all r ∈ C∗ψ(R+), we have

lim
p→∞
‖K(α,s)

p,λ (r, u)− r‖ψ = 0.

Proof. In view of the weighted Korovkin theorem, Definition 1 and Corollary 1, it is easy
to see that

lim
p→∞
‖K(α,s)

p,λ (ei; u)− ei‖ψ = 0

holds for i = 0, 1, 2. This completes the proof.

Theorem 9. Let ψ(u) = 1 + u2 and r ∈ C∗ψ(R+) then, one has

lim
p→∞

sup
u∈R+

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)
= 0. (11)

Proof. We have the following relationshops for any fixed γ > 0:
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sup
u∈R+

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)
≤ sup

u≤γ

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)
+ sup

u≥γ

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)

≤ ‖K(α,s)
p,λ (r, u)− r‖C[0,γ] + ‖r‖ψ sup

u≥γ

|K(α,s)
p,λ (1 + t2; u)|

ψ1+θ(u)

+ sup
u≥γ

|r(u)|
ψ1+θ(u)

. (12)

Using the fact |r(u)| ≤ ψ(u)N we have

sup
u≥γ

|r(u)|
ψ1+θ(u)

≤ ‖r(u)‖ψ

(1 + γ2)1+θ
.

Let ε > 0 be given. We can choose γ to be so large that the following inequality holds:

‖r(u)‖ψ

(1 + γ2)1+θ
< ε/3. (13)

By the help of Corollary 1, we obtain

‖r‖ψ

|K(α,s)
p,λ (1 + t2; u)|

ψ1+θ(u)
→ 0 (p→ ∞).

Further, for the choice of γ as large enough, we have

‖r‖ψ sup
u≥γ

|K(α,s)
p,λ (1 + t2; u)|

ψ1+θ(u)
< ε/3. (14)

Moreover, bearing in mind the Korovkin theorem, the first term on the right-hand side
of inequality (12) becomes

‖K(α,s)
p,λ (r; u)− r‖C[0,γ] < ε/3. (15)

Combining the results in (13)–(15), we obtain the desired result.

In order to give a local approximation theorem, we need to remember certain notions
regarding the modulus of continuity, modulus of smoothness and Peetre’s K-functional.

The modulus of continuity w(r, δ) of r ∈ C[a, b] is defined by

w(r, δ) := sup{|r(u)− r(v)| : u, v ∈ [a, b], |u− v| ≤ δ},

where δ > 0. The following inequality is satisfied for any δ > 0 and each u ∈ [a, b]:

|r(u)− r(v)| ≤ ω(r, δ)

( |u− v|
δ

+ 1
)

.

The second-order modulus of smoothness of r ∈ C[0, 1] is defined as follows:

w2(r,
√

δ) := sup
0<h≤

√
δ

sup
u,u+2h∈I

{|r(u + 2h)− 2r(u + h) + r(u)|},

and the related K-functional is defined by

K2(r, δ) = inf
{
||r− g||C[0,1] + δ||g′′||C[0,1] : g ∈W2[0, 1]

}
,
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where δ > 0 and W2[0, 1] = {g ∈ C[0, 1] : g′, g′′ ∈ C[0, 1]}. It is also known that the in-
equality

K2(r, δ) ≤ C w2(r,
√

δ) (16)

holds for all δ > 0, in which the absolute constant C > 0 is independent of δ and r (see [37]).
Now, we establish a direct local approximation theorem for operators K(α,s)

p,λ .

Theorem 10. The following inequality is satisfied for the operators K(α,s)
p,λ :

|K(α,s)
p,λ (r, u)− r(u)| ≤ C w2

(
r,

ψn(u)
2

)
+ w(r, αp(u)),

where C is an absolute positive constant, ψp(u) = 1
2

√
βp(u) + α2

p(u) and

αp(u) = K(α,s)
p,λ ((t− u); u), βp(u) = K(α,s)

p,λ ((t− u)2; u)

such that both terms αp(u) and βp(u) converge to zero when p→ ∞.

Proof. We construct the operators K(α,s)
p,λ , which preserves constants and linear functions

for u ∈ [0, 1]:

K(α,s)
p,λ (r; u) = K(α,s)

p,λ (r, u) + r(u)− r
[

1 + 2pu
2(p + 1)

+
αλ

(p + 1)(p− 1)

(
1− 2u + up+1 − (1− u)p+1

)

+
(1− α)λ

(p + 1)(p− s− 1)

(
1− 2u + up−s+1 − (1− u)p−s+1

)]
. (17)

Let t, u ∈ [0, 1], then Taylor’s expansion formula for g ∈W2[0, 1] is

g(t) = g(u) + (t− u)g′(u) +
∫ t

u
(t− s)g′′(s)ds. (18)

Applying K(α,s)
p,λ to both sides of (18), we get

K(α,s)
p,λ (g; u)− g(u) = g′(u)K(α,s)

p,λ (t− u; u) + K(α,s)
p,λ

( ∫ t

u
(t− s)g′′(s)ds; u

)

= K(α,s)
p,λ

( ∫ t

u
(t− s)g′′(s)ds; u

)
−
∫ αp(u)+u

u

(
αp(u) + u− s

)
g′′(s)ds.

So

|K(α,s)
p,λ (g; u)− g(u)| ≤ K(α,s)

p,λ

(∣∣∣
∫ t

u
|t− s| |g′′(s)|ds

∣∣∣; u
)
−
∫ αp(u)+u

u

∣∣αp(u) + u− s
∣∣ |g′′(s)| ds

≤ ‖g′′‖C[0,1]
(
K(α,s)

p,λ ((t− u)2; u) +K(α,s)
p,λ

2
(t− u; u)

)
.

We get the following relationships taking (17) into account:

‖K(α,s)
p,λ (g; u)‖C[0,1] ≤ ‖K(α,s)

p,λ (g; u)‖C[0,1] + ‖g(u)‖C[0,1] + ‖g(αp(u) + u)‖C[0,1] ≤ ‖3g‖C[0,1]. (19)
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By (17) and (19) we get

|K(α,s)
p,λ (r, u)− r(u)| ≤ |K(α,s)

p,λ ( f − g; u)|+ |K(α,s)
p,λ (g; u)− g(u)|

+ |g(u)− r(u)|+ |r(αp + u)− r(u)|
≤ 4‖r− g‖C[0,1] + ψ2

p(u)‖g
′′‖C[0,1] + w(r, αn(u)),

where g ∈W2[0, 1] and r ∈ C[0, 1]. By inequality (16) and taking infimum on the right-hand
side of the above inequality over all g ∈W2[0, 1], we get

|K(α,s)
p,λ (r, u)− r(u)| ≤ 4K2(r, ψ2

n(u)/4) + w(r, αp(u)) ≤ C w2

(
r,

ψp(u)
2

)
+ w(r, αp(u)),

which completes the proof.

Theorem 11. Let r ∈ C1[0, 1]. For any u ∈ [0, 1], the following inequality holds:

|K(α,s)
p,λ (r, u)− r(u)| ≤ |αp(u)| |r′(u)|+ 2

√
βp(u)w

(
r′,
√

βp(u)
)
.

Proof. We have the following relationship

r(t)− r(u) = (t− u)r′(u) +
∫ t

u
(r′(s)− r′(u))ds

for any t, u ∈ [0, 1]. Applying K(α,s)
p,λ to the sides of the above relationship, we obtain

K(α,s)
p,λ (r(t)− r(u); u) = r′(u)K(α,s)

p,λ (t− u; u) +K(α,s)
p,λ

( ∫ t

u
(r′(s)− r′(u))ds; u

)
.

It is well known that for any ζ > 0 and each s ∈ [0, 1],

|r(s)− r(u)| ≤ w(r, ζ)

( |s− u|
ζ

+ 1
)

, r ∈ C[0, 1].

By the above inequality we have

∣∣∣∣
∫ t

u
(r′(s)− r′(u))ds

∣∣∣∣ ≤ w(r′, ζ)

(
(t− u)2

ζ
+ |t− u|

)
.

Hence, we have

|K(α,s)
p,λ (r, u)− r(u)| ≤ |r′(u)| |K(α,s)

p,λ (t− u; u)|+ w(r′, ζ)

{
1
ζ
K(α,s)

p,λ ((t− u)2; u) +K(α,s)
p,λ (t− u; u)

}
. (20)

We get the following inequality if we apply the Cauchy–Schwarz inequality on the
right hand side of (20):

|K(α,s)
p,λ (r, u)− r(u)| ≤ |r′(u)||αp(u)|+ w(r′, ζ)

(1
ζ
K(α,s)

p,λ

1/2
((t− u)2; u) + 1

)
K(α,s)

p,λ

1/2
((t− u)2; u).

We prove the theorem if we choose ζ as ζ = β1/2
p (u).

6. Convergence by Graphics

In this section, we provide some graphics that demonstrate the consistency, accuracy
and convergence of the proposed blending operators for different kinds of functions.
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Example 1. Consider the trigonometric function

r1(u) =
1
5

(
0.5u2 + 4

)
sin(3πu)

on the closed interval I . In Figures 1 and 2, we demonstrate approximation and maximum error of
approximation of the proposed operators with the values s = 3, α = 0.9 and λ = 1.

Example 2. Consider the piece-wise function

r2(u) =





8u 0 ≤ u ≤ 1
5

4(1+u)
3

1
5 < u ≤ 1

2
4(2−u)

3
1
2 < u ≤ 4

5

8(1− u) 4
5 < u ≤ 1

on the interval I (see [38]). In Figures 3 and 4, we fix the values s = 3, α = 0.9 and λ = 1, and
change the values of p to see the approximation behavior and maximum error of approximation of
the proposed operators.

Example 3. Consider the trigonometric function

r3(u) =
cos(7πu)
2.5u2 − 10

on the closed interval I . In Figures 5 and 6, we demonstrate approximation and maximum error of
approximation of the proposed operators with certain different values of s, α and λ, and the fixed
value of p = 20.

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

function p=25 p=50 p=100

Figure 1. Approximations by K(α,s)
p,λ for function r1(u).
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0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p=25 p=50 p=100

Figure 2. Maximum error of approximation for function r1(u).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

function p=20 p=40 p=80

Figure 3. Approximations by K(α,s)
p,λ for function r2(u).
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0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

p = 20 p=40 p=80

Figure 4. Maximum error of approximation for function r2(u).

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

function λ=1, α=0.9, s=3

λ=-0.5, α=0.5, s=5 λ=-1, α=0.1, s=4

Figure 5. Approximations by K(α,s)
p,λ for function r3(u).
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

λ=1, α=0.9, s=3 λ=-0.5, α=0.5, s=5 λ=-1, α=0.1, s=4

Figure 6. Maximum error of approximation for function r3(u).

Therefore, we demonstrate the consistency and accuracy of convergence behavior for
the proposed blending-type operators via certain computer graphics. The graphics show
that the proposed operators approximate different kinds of functions for different values of
parameters λ, α and s.

7. Conclusions

Many convergence results, including weighted B-statistical, pointwise and weighted
convergences, are obtained for the following introduced blending (α, λ, s)-Bernstein–
Kantorovich operators:

K(α,s)
p,λ (r; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

r(t)dt

The proposed operators extend the current literature for certain values of λ, α and the
positive integer s :

(i) If we take α = 1, λ = 0 and s = 2, K(α,s)
p,λ becomes the classical Kantorovich operators

defined in [3].
(ii) If we take α = 1 and s = 2, K(α,s)

p,λ becomes the λ−Kantorovich operators defined
in [6,39].

(iii) If we take λ = 0 and s = 2, K(α,s)
p,λ becomes the α−Kantorovich operators defined

in [4].

As a continuation of this study, we will focus on a bivariate version of the proposed
operators defined in this paper.
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Abstract: Extended Dynamic Mode Decomposition (EDMD) allows an approximation of the Koop-
man operator to be derived in the form of a truncated (finite dimensional) linear operator in a lifted
space of (nonlinear) observable functions. EDMD can operate in a purely data-driven way using
either data generated by a numerical simulator of arbitrary complexity or actual experimental data.
An important question at this stage is the selection of basis functions to construct the observable
functions, which in turn is determinant of the sparsity and efficiency of the approximation. In this
study, attention is focused on orthogonal polynomial expansions and an order-reduction procedure
called p-q quasi-norm reduction. The objective of this article is to present a Matlab library to automate
the computation of the EDMD based on the above-mentioned tools and to illustrate the performance
of this library with a few representative examples.

Keywords: extended dynamic mode decomposition; Koopman operator; orthogonal polynomials;
mathematical modeling; dynamic systems

MSC: 37-04

1. Introduction

In contrast to traditional modeling approaches, in which it is necessary to formulate a
general nonlinear model that depends on a set of parameters to replicate the dynamics of
a system under consideration, the EDMD [1] builds upon numerical data (simulation or
actual experiments) to provide a finite-dimensional (truncated) linear representation of the
system dynamics in a lifted space of nonlinear observable functions, making it akin to a
black box modeling paradigm, e.g., transfer functions or autoregressive models [2–4]. While
the approximation provided by EDMD therefore remains nonlinear in the original state
variables, it is linear in a transformed space, which is called the observable space, function
space, or vector-valued function of observables (VVFO), among others (for the remainder
of this article, we use observables when referring to this space, while the example codes use
the VVFO terminology). In other words, The EDMD formulation does not represent the
system by a linearized representation of the form x(k + 1) = Ax(k) (where A is a Jacobian);
rather, it describes the evolution of observables f (x(k)) through a linear operator U, i.e.,

f (x(k + 1)) = U f (x(k)). (1)

EDMD is closely related to other decompositions such as Karhunen–Loeve decomposi-
tion (KLD) [5], singular value decomposition (SVD) [6], proper orthogonal decomposition
(POD) [7], and its direct precursor, dynamic mode decomposition (DMD) [8]. These de-
compositions all produce linear approximations of the behavior of the system near a fixed
point, offering the possibility of using linear system analysis tools. EDMD extends this
possibility to a region of the state space which is larger than the neighborhood of the fixed
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point. Indeed, EDMD describes the nonlinear dynamics while being linear in the function
space, and therefore provides more than local information while preserving the linear
characteristics of the above-mentioned decompositions (KLD, SVD, POD, DMD). As such,
it is sometimes called a linearization in the large.

Koopman mode decomposition (KMD) [9–11] emerges from the linearity of decompo-
sitions that use their spectrum (eigenvalues and eigenvectors) to obtain an approximation of
the Koopman operator [12]. From an approximation of the Koopman operator, it is possible
to analyze nonlinear systems in terms of their stability and regions of attraction [9,13–15].
Additionally, EDMD (or the approximate Koopman operator) can be used in the context
of optimal control and model predictive control [16–19]. These developments show the
importance of having accurate EDMD approximations for analysis and control.

There are several variants of the EDMD algorithm, which use norm-based expansions,
radial-basis functions, kernel-based representations [20], orthogonal polynomials, and their
variations [21,22]. These representations provide tools for analyzing nonlinear systems
via spectral decomposition, and represent the fundamentals for developing synthesis
algorithms such as EDMD for control [23].

In this paper, attention is focused on the use of orthogonal polynomials for the ex-
pression of the observable functions and an order reduction method based on p-q quasi
norm [24,25]. Several application examples are described together with Matlab codes which
constitute a practical library for users interested in applying EDMD to engineering and
scientific problems.

The library provides several Matlab functions to compute a pq-EDMD approximation
of a dynamical system based on one of three possible algorithms. The first algorithm is the
original least squares solution, which is suitable for data with a high signal-to-noise ratio.
For data with higher levels of noise, a maximum likelihood approximation is proposed,
which is valid for unimodal Gaussian distributions (i.e., Gaussian noise for a system with a
unique stable equilibrium point). Finally, a solution based on regularized least squares is
provided, which promotes sparsity in the regression matrix.

2. Extended Dynamic Mode Decomposition

This section starts with an introduction to the traditional EDMD formulation to identify
nonlinear models of dynamical systems. The procedure is exemplified by the Duffing
equation, a benchmark problem in the literature for testing the reliability of the algorithm.

The core idea of the EDMD algorithm is to transform a nonlinear system into an
augmented linear system. The first proponent of this idea was Takata [26], who describes
the method as a formal linearization. Much later, the method emerged in its current form
after the development of the dynamic mode decomposition algorithm [8] and its several
extensions. In the following, the original EDMD algorithm [1] is first presented, followed
by pq-EDMD, which makes use of orthogonal polynomials and order reduction based on
p-q quasi-norm. This later version is particularly interesting as it yields increased numerical
accuracy and systematic application.

2.1. The Basic EDMD Formulation

Consider as an example the unforced Duffing oscillator, which is a nonlinear spring
that has different behaviors depending on the parameterization. The set of differential
equations that govern this system is

ẋ1 = x2 (2)

ẋ2 = −δx2 − x1(α + βx2
1). (3)

where state x1 is the displacement, state x2 is the velocity, α is the stiffness of the spring,
which is related to the linear force of the spring according to Hooke’s law, δ is the amount
of damping in the system, and β is the proportion of nonlinearity present in the stiffness of
the spring.

271



Mathematics 2022, 10, 3859

Figure 1 shows the phase plane of the system for three different sets of parameters and
six random initial conditions (i.e., six initial conditions are generated randomly within the
range ics ∈ [−2, 2]2 starting from a known seed rng(1)). This choice of initial conditions
produces an appropriate set of trajectories for calculating the approximation and testing
its accuracy. The system of Equations (2) and (3) is integrated with a Matlab ODE solver,
e.g., ode23s, and the results are collected at a constant sample period ∆t = 0.1 s for a total of
20 s. The result of this numerical integration is a set of six trajectories of two state variables
with 201 points per variable. Each of these trajectories is an element of a structure array in
Matlab with the fields “Time” and “SV”. The choice of a structure array instead of a tensor
comes from the possibility of having trajectories of different lengths, e.g., experimental data
of different lengths, a feature that becomes important in systems where having redundant
data near the asymptotically stable attractors has a negative impact on the approximation.

Figure 1. Orbits of the Duffing equation for different parameterizations. (Left): undamped, (Center):
hard spring, (Right): soft spring, (Top row): phase plane, (Bottom): states versus time of two
trajectories.

As the EDMD is a data-driven algorithm, certain trajectories serve as a training set
while others serve as a testing set. The amount of data necessary to obtain an accurate
approximation depends on the system under consideration as well as its information
content (large data sets can bear little information content if experiments are not properly
designed). The EDMD algorithm captures the dynamic of the system on the portion of the
state space covered by the trajectories in the training set. Therefore, designing experiments
that maximize the coverage of the state space can reduce the amount of data while having
a positive effect on accuracy.

Each trajectory of the training set is in discrete-time, i.e., x(k + 1) = T(x(k)), where
x ∈ Rn are the states of the system, k ∈ Z+

0 is the non-negative discrete time, and
T : Rn → Rn is an unknown nonlinear mapping that provides the evolution of the discrete-
time trajectories. To construct the database, the training trajectories are organized in
so-called snapshot pairs {(xi, yi)}N

i=1, where yi = T(xi). The snapshots function presented
in Listing 1 handles the available trajectories, dividing them into training and testing sets
of the appropriate type; the training set consists of matrices containing the x and y data,
while the testing set is a cell array containing one orbit per index of the cell. The choice of
cell arrays instead of a tensor is to offer the possibility of testing trajectories of different
lengths. The tr_ts argument is a Matlab structure containing the indexes of the original
set of orbits, which serve as the training and testing sets. The fields of this structure must
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be tr_index and ts_index, respectively. In addition, there is a normalization flag to use
when necessary, e.g., when the order of magnitude of different states is dissimilar.

Listing 1. Function snapshots used to create the data pairs for training and testing.

1
2 function [xtr , ytr , xts , yts , center , scale] = snapshots(

system , tr_ts , normalization)
3 % Number of trajectories from the system to populate the
4 % snapshots
5 training_number = numel(tr_ts.tr_index);
6 % First , store the snapshots in a cell
7 [xtr_cell , ytr_cell] = deal(cell(training_number ,1));
8 for trj = 1 : training_number
9 % Extract the appropriate data points for x and y

10 xtr_cell{trj} = system(tr_ts.tr_index(trj)).SV(1:end
-2,:);

11 ytr_cell{trj} = system(tr_ts.tr_index(trj)).SV(2:end
-1,:);

12 end
13 % Turn cells into a matrix
14 xtr = cell2mat(xtr_cell);
15 ytr = cell2mat(ytr_cell);
16 % Normalize if necessary
17 if normalization
18 [xtr ,center ,scale] = normalize(xtr ,``zscore '');
19 ytr = normalize(ytr ,'center ',center ,'scale',scale);
20 else
21 center = zeros(1, size(xtr ,2));
22 scale = ones(1, size(xtr ,2));
23 end
24 % For the test trajectories , we need each of them in a
25 % differerent cell because we want to compare the whole
26 % trajectory based on the initial condition
27 testing_number = numel(tr_ts.ts_index);
28 [xts , yts] = deal(cell(testing_number ,1));
29 for trj = 1 : testing_number
30 xts{trj} = normalize(system(tr_ts.ts_index(trj)).SV(1:

end -2,:), ...
31 'center ',center (1: size(system(tr_ts.ts_index(trj)).

SV ,2)), ...
32 'scale',scale (1: size(system(tr_ts.ts_index(trj)).SV

,2)));
33 yts{trj} = normalize(system(tr_ts.ts_index(trj)).SV(2:

end -1,:), ...
34 'center ',center (1: size(system(tr_ts.ts_index(trj)).

SV ,2)), ...
35 'scale',scale (1: size(system(tr_ts.ts_index(trj)).SV

,2)));
36 end
37 end

Notice that the generation of the snapshots avoids the last element in each trajectory,
SV(1:end-2) for x and SV(2:end-1) for y. As stated before, avoiding redundant data at
the asymptotically stable attractors improves the performance of the algorithm. In Matlab,
stopping the simulation early, e.g., as convergence towards the attractor has been achieved,
causes the last output interval ∆t 6= 0.1. This small difference can increase the error in the
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construction of the approximation. Conversely, if the numerical integration of the system
is not stopped near the steady state, it is not necessary to eliminate the last element in
the trajectories.

The next step in the development of the EDMD is the definition of the observable
space as a set of functions fi(x) : Rn → C for i = 1, . . . , d, which represent a transformation
from the state space into an arbitrary function space. This transformation of the state
is equivalent to a change of variables z = f (x), where z ∈ Cd. In the Matlab library,
the observables are described by orthogonal polynomials, where each element of the set
of observables is the tensor product of n univariate polynomials up to order p ∈ N+.
For example, in the Duffing oscillator, a set of observables with p = 2 and a Hermite basis
of orthogonal polynomials is provided by

f (x) =
[
1 2x1 4x2

1 − 2

2x2 4x1x2 2x2(4x2
1 − 2)

4x2
2 − 2 2x1(4x2

2 − 2) (4x2
1 − 2)(4x2

2 − 2)
]>. (4)

Note that the first entry is the product of a zero-order polynomial in both of the state
variables; the orders of the polynomial basis in the two state variables can be summarized by

x1 : 0 1 2 0 1 2 0 1 2
x2 : 0 0 0 1 1 1 2 2 2

(5)

making the generation of observables a problem of accurately handling indexes. Notice
that the full basis of indexes (5) is equivalent to counting numbers on a p + 1 basis with n
significant figures. From such a set of indexes, a method to generate a set of observables
with a Hermite base is proposed in Listing 2.

Listing 2. Generation of a set of observables with a Hermite basis.

1 % Generate the matrix p of indexes
2 hpm = flip(dec2base (0:(p+1)^n - 1, p+1) - '0' ,2)'
3 % Create an array of symbolic variables for the state
4 xsym = sym('x' ,[1 n],'real');
5 % Preallocate the matrix of symbolic variables
6 sym_univariate = sym(ones(size(hpm)));
7 % Loop over the state variables to assign the polynomial
8 % according to the order and variable
9 for state_variable = 1 : n

10 sym_univariate(state_variable ,1:end) = hermiteH(hpm(
state_variable ,1:end), xsym(state_variable));

11 end
12 base = prod(sym_univariate ,1);
13 % The function omits the intercept (first element).
14 % Otherwise , the evaluation of the whole training matrix
15 % is not possible at once , and the calculation should be
16 % achieved in a loop.
17 f = matlabFunction(base (2: end),'var',{xsym})

The function f can evaluate the complete set of training trajectories at once with the
omission of the first observable that corresponds to the intercept or constant value (the
consideration of this observable would require another programming strategy involving
loops, resulting in higher computational time and memory allocation). Notice the versatility
of using orthogonal polynomials, as the whole realm of available orthogonal polynomials
in Matlab is a valid choice, e.g., Laguerre, Legendre, Jacobi, etc. Note that the code snippet
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defines the function of observables as a row vector, instead of the column vector notation
in the theoretical descriptions.

After the observables have been defined, their time evolution can be computed accord-
ing to

f (x(k + 1)) = U f (x(k)) + r(x), (6)

where U ∈ Rd×d is the matrix that provides the linear evolution of the observables and
r(x) is the error in the approximation. One of the main advantages of the EDMD algorithm
resides in the fact that the system description is linear in the function space. The solution
to (6) is the matrix U that minimizes the residual term r(x), which can be expressed as a
least-squares criterion:

l(x, y) =
1
N

N

∑
i=1

1
2
‖ f (yi)−U f (xi)‖2

2, (7)

where N is the total number of samples in the training set. The ordinary least-squares (OLS)
solution is provided by

U = A/G, (8)

where the A/G notation replaces the inverse of the design matrix G, as even when using a
basis formed by the products of orthogonal polynomials, the design matrix can be close to
ill-conditioned (i.e., close to singular). This notation, particularly in Matlab, specifies that a
more robust algorithm compared to the inverse or pseudo-inverse is necessary to obtain
the approximation.

For the solution of (8), the matrices G, A ∈ Rd×d are defined by

G =
1
N

f (x) f (x)> (9)

A =
1
N

f (x) f (y)>. (10)

Setting the observables as products of univariate orthogonal polynomials is an im-
provement, as it generally avoids the need to use a pseudo-inverse approach. Even though
the sequence of polynomials in the set of observables is no longer orthogonal, it is less likely
to have co-linear columns in the design matrix, improving the numerical stability of the so-
lution. With the training set and the observables, the method for calculating the regression
matrix U is shown in Listing 3. Notice that this code defines and uses all the arrays as their
transpose. This change is related to the approximation of the Koopman operator, where
it is necessary to calculate the right and left eigenvectors of U. The eigenfunctions of the
Koopman operator are determined from the left eigenvectors of the spectral decomposition.
In Matlab, the left eigenvectors result from additional algebraic manipulations of the right
eigenvectors and the diagonal matrix of eigenvalues, thereby decreasing the numerical
precision of the eigenfunctions. This problem is alleviated by computing U> and its spectral
decomposition so that the left eigenvectors are immediately available. In general, if U
is a normal matrix (diagonalizable), the additional steps involve the inverse of the right
eigenvectors to obtain the left eigenvectors and the calculation of this inverse, considering
again that the problem is close to being ill-conditioned, which reduces the accuracy of
the eigenfunctions.
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Listing 3. Computation of the approximate Koopman operator for an OLS problem.

1 function u = getU(f, X, Y)
2 %GETU produces the U matrix of the decomposition
3
4 % Evaluate the snapshots with the f functions of the
5 % observables
6 x_eval = [ones(size(X,1) ,1), f(X)];
7 y_eval = [ones(size(Y,1) ,1), f(Y)];
8 % Calculates the G and A matrices
9 g = (x_eval '* x_eval)*(1/ size(X,1));

10 a = (x_eval '* y_eval)*(1/ size(Y,1));
11 % Notice that this returns the transpose
12 % of u
13 u = g\a;
14 end

Numerical Results with EDMD

Here, the EDMD algorithm is tested with the second case scenario for the Duffing
oscillator with hard damping. The EDMD algorithm can capture the dynamics of the
portion of the state space covered by the training set, which is therefore selected as the
outermost trajectory in Figure 2. The five remaining trajectories are used for testing. Table 1
provides the parameters of the original EDMD algorithm.

Table 1. Approximation parameters for the hard spring Duffing oscillator.

Parameter Value

α 1
β 1
δ 0.5
ics 4*rand(6,2)-2;
final_time 20
n_points 201
solver ode23s
tr_idex 3
ts_index [1 2 4 5 6]
polynomial laguerreL
N 199
p 4

observables 25
testing error 6.1370× 10−05

In Figure 2, the graph on the left displays the phase plane of the system and shows the
training trajectory and testing trajectories along with their approximation by the EDMD
algorithm with the Laguerre polynomial basis. EDMD achieves a good approximation while
using only a small amount of data. However, notice that the discrete-time approximation
of a system of order 2 is of dimension twenty-five. In view of this dimensionality explosion
with regard to the original dimension of the state and the complexity of the system, it
is necessary to introduce reduction techniques that decrease the necessary number of
observables to increase the accuracy of the algorithm [24].
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Figure 2. EDMD approximation of the hard damping Duffing oscillator.

2.2. pqEDMD Algorithm

The extension of the EDMD algorithm is a result of speculation on the good perfor-
mance of the original algorithm when coupled with a set of observables based on products
of univariate-orthogonal polynomials. The idea is to introduce a reduction method, based
on p-q quasi-norms, first introduced by Konakli and Sudret [27] for fault detection in poly-
nomial chaos problems. The reduction proceeds in the following way: if the q-quasi-norm
of the indexes that provide the order of the univariate-orthogonal polynomials is less than
the maximum order p of a particular observer, then this observer is eliminated from the set.
To implement this procedure, the orders of an observer are defined as αi, and the q-quasi
norm of these orders as

‖α‖q =

(
n

∑
i=1

α
q
i

) 1
q

, (11)

where q ∈ R+ and Equation (11) represent a norm only when q is an integer. When p is
redefined as the maximum order of a particular multivariate polynomial instead of the
maximum order of the univariate elements, the sets of polynomial orders that remain in
the basis are those that satisfy

αi = {α ∈ Nn : ‖α‖q ≤ p}. (12)

The code snippet used to generate a set of observables based on Laguerre polynomials
with a maximum multivariate order p = 4 and a q-quasi-norm q = 0.7 is provided in
Listing 4.

The reduction of the basis is not only dimensional, as the p-q quasi-norm reduction
reduces the maximum order of the observables as well. As a rule of thumb (consider-
ing various application examples), the higher-order observables usually have a negative
contribution to the accuracy of the solution.
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Listing 4. Generation of a p-q-reduced set of observables with a Laguerre basis.

1 p=4;
2 n=2;
3 q=0.7;
4 % Generate the matrix p of indexes
5 hpm = flip(dec2base (0:(p+1)^n - 1, p+1) - '0' ,2) ';
6 % Reduce the basis
7 orders = hpm(:,vecnorm(hpm ,q) <=p);
8 % Create an array of symbolic variables for the state
9 xsym = sym('x' ,[1 n],'real');

10 % Preallocate the matrix of symbolic variables
11 xPsi = sym(ones(size(orders)));
12 % Loop over the state variables to assign the polynomial
13 % according to the order and variable
14 for state_variable = 1 : n
15 xPsi(state_variable ,1: end) = laguerreL(orders(

state_variable ,1:end), xsym(state_variable));
16 end
17 base = prod(xPsi ,1);
18 f = matlabFunction(base (2: end),'var',{xsym});

Numerical Results with the pqEDMD

The algorithm is now applied to the Duffing oscillator with soft damping. The
pqEDMD algorithm can capture the dynamics of the two attractors provided that the
training set has at least one trajectory that converges to each of them. Additionally, as is the
case for the hard damping, each of these trajectories should be the outermost (see Figure 3).
Table 2 lists the parameters of the pqEDMD algorithm.

Table 2. Approximation parameters for the soft spring Duffing oscillator.

Parameter Value

α −1
β 1
δ 0.5
ics equal to hard spring
final_time 20
n_points 201
solver ode23s
tr_idex [1 3]
ts_index [2 4 5 6]
polynomial laguerreL
N 398
p 5
q ∞→ 1

observables 36→ 21
testing error 2.3770× 10−4 → 1.1464× 10−6

Even though the full basis achieves a low approximation error of 2.3770× 10−4, the re-
duction of the observables order reduces the empirical error by two orders of magnitude.
Comparing the dimension of the full basis to the reduced one does not represent a large
improvement. However, this result is due to the comparison between the best result after
performing a sweep over several p-q values. Imposing lower p-q values on the approxima-
tion has the potential to provide smaller sets of observables while sacrificing accuracy.
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Figure 3. pqEDMD approximation for the soft damping Duffing oscillator.

Next, the first case scenario is considered; here, the damping parameter is zero and
the system oscillates around the fixed point at the origin. The pqEDMD algorithm can
capture the dynamics of the system if the innermost and outermost limit cycles compose
the training set; otherwise, the algorithm cannot capture the dynamics. Table 3 shows a
summary of the simulations along with the results; it is apparent that even though the
empirical error is higher than in the other two case scenarios, the approximation is accurate
(see Figure 4).

Table 3. Approximation parameters for the undamped Duffing oscillator.

Parameter Value

α 1
β 1
δ 0
ics same as hard spring
final_time 20
n_points 201
solver ode23s
tr_idex [3 4]
ts_index [1 2 5 6]
polynomial hermiteH
N 398
p 4
q ∞→ 1.1

observables 25→ 15
testing error 0.1209→ 0.0023

The sweep over different p-q values provides a reduced basis with lower error than
with the full basis.
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Figure 4. pqEDMD approximation for the undamped Duffing oscillator.

Even though p-q quasi-norm reduction produces more accurate and tractable solutions,
having products of orthogonal univariate polynomials does not necessarily produce an
orthogonal basis. In certain scenarios, the evaluation of the observables produces an ill-
conditioned design matrix G. Therefore, the next section proposes a way to eliminate even
more observables from the basis, improving the numerical stability of the solution.

2.3. Improving Numerical Stability via QR Decomposition

QR decomposition [28] can be used to improve the numerical stability and reduce
the number of observables even further. If we assume that the design matrix G ∈ Rd×d in
Equation (9) is obtained based on the products of orthogonal polynomials and that there
are no co-linear columns, or, in other words, that rank(G) = d holds, then it is possible to
decompose this matrix into the product

G = QR, (13)

where Q ∈ Rd×d is orthogonal, i.e., Q>Q = Id and R ∈ Rd×d is upper triangular. Column
pivoting methods for QR decomposition rely on exchanging the rows of G such that in
every step of the diagonalization of R and the subsequent calculation of the orthogonal
columns of Q the procedure starts with a column that is as independent as possible from
the columns of G already processed. This method yields a permutation matrix P ∈ Rd×d

such that
GP = QR, (14)

where the permutation of columns makes the absolute value of the diagonal elements
in R non-increasing, i.e., |r1,1| ≥ |r2,2| ≥ · · · ≥ |rd,d|. Furthermore, considering that the
permutation process selects the most linearly independent column of G in every step of
the process, the last columns in the analysis are the ones that are close to being co-linear.
Therefore, eliminating the observable related to the last column improves the residual
condition number of G. The modified function for the calculation of the regression matrix
U is provided in Listing 5.
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Listing 5. Computation of the regression matrix based on QR decomposition.

1 function u = getU(obj , X, Y)
2 %GETU produces the U matrix of the decomposition
3
4 % Evaluate the snapshots with the f function of the
5 % observables (called psi in the following)
6 Psi = obj.VVFO.Psi;
7 x_eval = [ones(size(X,1) ,1), Psi(X)];
8 y_eval = [ones(size(Y,1) ,1), Psi(Y)];
9 % Calculates the G matrix

10 g = (x_eval '* x_eval)*(1/ size(X,1));
11 % qr decomposition and elimination
12 % of near -co-linear observables
13 while rcond(g) <= eps
14 [~,~,E] = qr(g,0);
15 % Check that the last element is not an
16 % order one polynomial , if it is ,
17 % shift the array
18 while any(E(end)==find(sum(obj.VVFO.polynomials_order)

==1))
19 E = circshift(E,1);
20 end
21 % Eliminate the observable correspondint to the last

element
22 % of E
23 obj.VVFO.polynomials_order = obj.VVFO.polynomials_order

(:,sort(E(1:end -1)));
24 % Get the observables matlabFunction updated
25 Psi = obj.VVFO.Psi;
26 % Evaluate again
27 if all(~ logical(obj.VVFO.polynomials_order (:,1)))
28 x_eval = [ones(size(X,1) ,1), Psi(X)];
29 y_eval = [ones(size(Y,1) ,1), Psi(Y)];
30 else
31 x_eval = Psi(X);
32 y_eval = Psi(Y);
33 end
34 g = (x_eval '* x_eval)*(1/ size(X,1));
35 end
36 a = (x_eval '* y_eval)*(1/ size(Y,1));
37
38 % This returns the transpose of U because it avoids
39 % numerical errors if it is considered as a Koopman

operator
40 % and the espectral decomposition is necessary
41 u = g\a;
42 end

In addition, the code snippet shows particular aspects of the overall solution. First,
an object containing the observables, i.e., the matlabFunction obj.VVFO.Psi, replaces
the original matlabFunction f for the evaluation of the snapshots. Second, note that the
exclusion of observables avoids the elimination of the first order univariate polynomials in
the basis, as they are used to recover the state. Finally, the method checks for the existence
of the constant observable or the intercept, as it could be eliminated due to being close to
co-linear with another observable, which we obviously do not want to happen.
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2.4. Matlab Package

pqEDMD() is the main class of the Matlab package that provides an array of decom-
positions based on the pqEDMD algorithm pqEDMD_array. The cardinality of the array of
solutions may be less than the product of the cardinality of p and q, as certain p-q pairs
produce the same set of indices, i.e., the algorithm would compute the same decomposition
more than once. In addition, it calculates the empirical error of the approximations based
on the test set and returns the best-performing approximation from the array as a separate
attribute best_pqEDMD. The code provides the complete set of solutions, as a user may opt
to use a compact solution that is not as accurate as the best one for tractability reasons,
e.g., an MPC controller, where a smaller basis guarantees feasibility for longer horizons
and has a lower computational cost.

The only required input for pqEDMD() is the system argument, where it is necessary to
provide a structure array with the Time and SV fields with at least two trajectories in the
array, one for training and one for testing. The remaining arguments are optional, e.g., the
array of positive-integer values p, the array of positive values q, the structure of training
and testing trajectories with the fields tr_index and ts_index, the string specifying the
type of polynomial, the array of polynomial parameters (if the polynomial type is either
“Jacobi” or “Gegenbauer”), the boolean flag of normalization, and the string indicating
the decomposition method. For example, Listing 6 shows a call to the algorithm with a
complete set of arguments.

Listing 6. Complete call to the pqEDMD algorithm.

1 pqEDMD(system , [3 4 5], [0.2 0.5 0.7 inf],...
2 'polynomial ','Jacobi ','polyParam ' ,[2 3],'method ','OLS

',...
3 'tr_ts',struct('tr_index ',tr_index ,'ts_index ',

ts_index),...
4 'normalization ',false);

To provide the different approximations in the main class, pqVVFO() handles the
observables for different values of p, q, and the polynomial type. Its output is the matrix of
polynomial indexes, a symbolic vector of observable functions, and a matlabFunction Psi
to evaluate the observables arithmetically and efficiently; it accepts a matrix of values,
avoiding evaluation with loops.

The remaining classes are the implementations of different decompositions based
on different algorithms. The ExtendedDecomposition() is the traditional least-squares
method described in this article. In addition, there are two additional available decompo-
sitions. MaxLikeDecomposition() is used for data with noise, where the maximum likeli-
hood algorithm assumes that the transformation of the states in the function space preserves
a unimodal Gaussian distribution of the noise in the state space (this is a work in progress;
preliminary results can be found in [29]). These properties of the distribution of noise in the
function space are a strong assumption; nonetheless, it is sometimes possible to identify dy-
namical systems corrupted with noise. The last decomposition leverages the advantages of
regularized lasso regression to produce sparse solutions, i.e., RegularizedDecomposition().
Even though the solutions are more tractable, the regularized method sacrifices accuracy.

Figure 5 shows the architecture of the solution with the relationship between classes.
The current functionality requires the user to call pqEDMD() with the appropriate inputs
and options in order to obtain an array of decompositions. This class handles the creation
of the necessary pqVVFO() objects to feed into the required decomposition. It is possible to
use and extend the observable class to use in other types of decompositions without the
use of the main class. The code is available for download in the Supplementary Materials
section of this paper.
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Figure 5. Package architecture.

3. An Additional Application Example

To conclude this article, an additional case study is discussed involving a set of
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where there are two types of substrate, s1 and s2. The first substrate is the only component
in the inflow, and is the only component necessary for the replication of the first species s3
according to the replication rate constant r1. In addition to the replication of s3, the product
of the first reaction is the second substrate s2, which in turn is necessary for the replication
of the second species s4 according to the replication rate constant r2. The remaining variable
s5 is the combination of the dead species from the two groups, where each group dies
according to the reaction rates r3 and r4, respectively. The ordinary differential equations
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that describe the dynamics of network (15) according to the polynomial formulation of
mass action kinetics [30] and the material exchange with the environment are provided by

ẋ1 = −r1x1x2
3 + d− dx1

ẋ2 = +r1x1x2
3 − r2x2x2

4 − dx2

ẋ3 = +r1x1x2
3 − r3x3 − dx3 (16)

ẋ4 = +r2x2x2
4 − r4x4 − dx4

ẋ5 = +r3x3 + r4x4 − dx5,

where d = 0.5 is the in/out-flow (dilution rate) of the system and the values for the reaction
rates are r = [7 5 0.3 0.05]>. With these rate constants, the system has three asymptotically
stable points: the working point, where the two species s3 and s4 coexist, a point where
species s3 thrives and species s4 washes out, and a wash-out point, where the concentration
of both species vanishes. To construct the database, the strategy is to generate a set of orbits
with an even distribution of initial conditions converging to each of the equilibrium points.
Certain trajectories converging to each point are used as the training set to produce a linear
expanded approximation of the system.

The set of orbits is taken from the numerical integration of the ODE (16) via the ode23s
method with an output sampling ∆t = 0.1 for an arbitrary number of initial conditions
until the full set of orbits has a total of 20 trajectories that converge to each point, resulting
in 60 trajectories in total for the execution of the algorithm.

From each of the sets of orbits that converge to the fixed points, 50% are used for
the approximation and the remaining for testing the solution. It is important to have a
training set with sufficient information about the trajectories of the system, and in a similar
way as for the second and third scenarios of the Duffing equation, to select the trajectories
that are far away from the equilibrium point. For system (16), the choice of trajectories
for the training set are the ten trajectories that at any given time are furthest away from
the equilibrium point to which they converge. Figure 6 shows a selection of training and
testing trajectories.

tr

ts

Figure 6. Training and testing trajectories of the biochemical reaction system.

Assuming that the orbits of the system are in a structure array with the appropriate
fields named system and that the training and testing indexes for the approximation have
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been carefully selected and placed in a structure named tr_ts, the call to the pqEDMD()
class that provides an accurate approximation is shown in Listing 7, where the solution is
obtained through the default decomposition method (ordinary least squares), the default
polynomial type (Legendre), and without normalization.

Listing 7. Class call to approximate the reaction network dynamics.

1 % the pqEDMD !!!
2 p = [3 4 5];
3 q = [0.5 0.7 0.9];
4 mak_net_approx = pqEDMD(system ,p,q,'tr_ts',tr_ts);

Table 4 shows a summary of the simulation parameters used to generate the orbits
and to obtain the approximation. The clear advantage of using the reduction method lies
in the comparison between the full basis of polynomials, i.e., from 3125 observables for
p = 4 and a system of five state variables to a basis of 51 polynomials for q = 0.7. Although
the computation with a full basis is computationally intensive, it leads to a solution that is
not satisfactory, as the state matrix is not Hurwitz and the trajectories diverge, leading to a
result with an infinite error metric.

Figure 7 depicts the comparison of several testing trajectories with their corresponding
approximations. It is clear that certain trajectories converge to a different fixed point than
the one they are supposed to. This phenomenon causes the empirical error grow while
remaining bounded. The reason for this behavior is the lack of training trajectories near
the boundary of the attraction regions of the asymptotically stable equilibrium points. For
better performance of the algorithm in terms of the number of orbits necessary for the
approximation, and possibly the dimension of the observable basis, an experimental design
procedure is required.

ts

approx

Figure 7. Comparison between the testing and approximation trajectories of the biochemical reac-
tion system.
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Table 4. Approximation parameters for the reaction network.

Parameter Value

r1 7
r2 5
r3 0.3
r4 0.05
ics 20 per x∗

final_time stoped when converges
delta_t 0.1
solver ode15s
tr_idex max(vecnorm(SV-x_ast))
ts_index ~tr_index
polynomial Laguerre
N 3874
p 4
q ∞→ 0.7

observables 3125→ 51
testing error ∞→ 12.94

4. Conclusions

This paper presents a methodology to derive discrete-time approximations of nonlin-
ear dynamical systems via the pqEDMD algorithm and proposes a Matlab library that can
hopefully help popularize the use of the method by non-expert users. The discussion of
the methodology and codes is illustrated with several case studies related to the Duffing
oscillator and by an example involving a biochemical reaction network.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10203859/s1. A Matlab library is readily available in the
Supplementary Materials.
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Abstract: Sheffer’s work is about to turn 100 years after its publication. In reporting this important
event, we recall some interesting old and recent results, aware of the incompleteness of the wide
existing literature. Particularly, we recall Sheffer’s approach, the theory of Rota and his collaborators,
the isomorphism between the group of Sheffer polynomial sequences and the so-called Riordan
matrices group. This inspired the most recent approaches based on elementary matrix calculus.
The interesting problem of orthogonality in the context of Sheffer sequences is also reported, recalling
the results of Sheffer, Meixner, Shohat, and the very recent one of Galiffa et al., and of Costabile et al.
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1. Introduction

I.M. Sheffer’s 1939 seminal work [1] was inspired by Pincherle’s paper [2] on the study
of the difference equation

k

∑
n=1

cnφ(x + hn) = f (x). (1)

For the solution of this equation, Pincherle considered a set of Appell [3] polynomials,
and wrote the solutions as an infinite series of them.

Previously, in 1936, Sheffer [4] had studied the solution of the same equation by means
of a different Appell set. In [5] he treated the more general equation

L[y(x)] := a0y(x) + a1y′(x) + · · · = f (x),

and found a solution, under suitable conditions on L and f . As a tribute to Sheffer, we
reproduce part of his introduction in full.

“Here, too, it was possible to relate the equation to a corresponding problem of
expanding functions in series of Appell polynomials.

As is well known, Appell sets
{

Pn
}

n∈IN are characterized by one of the equivalent
conditions

P′n(x) = Pn−1(x), (Pn a polynomial of degree n); (2)

A(t)ext =
∞

∑
n=0

Pn(x)tn, (3)

where A(t) =
∞

∑
n=0

antn is a formal power series, and where the product on the left of (3) is

formally extended in a power series in accordance with the Cauchy rule. We shall say that
the series A(t) is the determining series for the set

{
Pn
}

n∈IN.
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For the particular equation

y(x + 1)− y(x) = f (x),

Pincherle used the Appell set with A(t) = 1
et−1 , getting essentially the Bernoulli

polynomials.
We used A(t) = et − 1, so that n!Pn(x) = (x + 1)n − xn.
Now this equation is also associated with the important set of Newton polynomials

N0(x) = 1, Nn(x) =
x(x− 1) · · · (x− n + 1)

n!
, n ≥ 1,

which is not an Appell set. Yet, it has properties analogous to those ((2) and (3)) of Appell
polynomials. In fact,

∆Nn(x) := Nn(x + 1)− Nn(x) = Nn−1(x),

(1 + t)x = 1 · ex log(1+t) =
∞

∑
n=0

Nn(x)tn.

It is thus suggested that we define a class of difference polynomial sets, of which{
Nn
}

n∈IN is a particular set, by means of the relations

∆Pn(x) = Pn−1(x), n ≥ 0.

And more generally, we can use other operators than d
dx and ∆, to define further sets.

We thus obtain all polynomial sets of type zero (as we denote them). The definition of sets of
type zero generalizes readily to give sets of type one, two, . . . and of infinite type” [1].

After the publicaton of Sheffer’s paper [1], a wide class of related works have been
written, many of which are quite recent. Some of these works also develope a basic-type of
characterization and relationship by modern umbral calculus (see for example [6–16]).

Other papers contains applications in various disciplines. For example:

• probability theory [17–22];
• number theory [23,24];
• linear recurrence [7,25];
• general linear interpolation [26–29];
• operators approximation theory [29–34];
• specific A-type zero orthogonal polynomial sequences [35–47];
• extension of Sheffer sequences also in the multidimensional case [48,49].

Moreover we point out that a sufficiently comprehensive bibliography up to 1995 is in [50].
According to Galiffa et al. [51] “Indeed, research on the Sheffer sequence is an active

area and important in its own right”.
The present paper is structured in two parts and in six main Sections, some of which

contain subsections:

• Part 1: 1939–2000

– Section 2: Sheffer’s approach
– Section 3: Rota’s et al. contributions

• Part 2: 2001–2022

– Section 4: The Riordan group and the Sheffer group
– Section 5: Elementary matrix calculus approach to umbral calculus
– Section 6: Sheffer A-type zero orthogonal polynomial sequences
– Section 7: Relationship between Sheffer A-type zero sequences and monomiality

principle.

We will use the following notations, unless otherwise specified:
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- P is the set of polynomials in the variable x ∈ IK (usually IR or IC); for any n ∈ IN, Pn
is the set of polynomials of degree ≤ n;

-
{

pn
}

n∈IN is a polynomial sequence (p.s.), that is, for any n ∈ IN, pn is a polynomial of
degree exactly n;

-
(
ai
)

i∈IN is a numerical sequence with elements ai;
- A =

(
ai,j
)

i,j∈IN is an infinite lower triangular matrix with entries ai,j; An is the leading
submatrix of order n.

Every time we insert a bibliographical citation we also intend to refer to the references therein.

PART 1.

2. Sheffer’S Approach

“. . . and more generally, we can use other operators than d
dx and ∆, to define further

sets. We thus obtain all polynomial sets of type zero (as we denote them).” [1].
Hence, in his paper, I.M. Sheffer had the goal of determining more general polynomial

sequences then those of P. Appell [3] and of binomial type [6,8,9,52]. However, preliminarly,
he introduced a classification of polynomial sequences into different types.

2.1. Sheffer Classification

Let φ =
{

φn
}

n∈IN be a p.s., that is, for any n ∈ IN, φn is a polynomial of degree exactly
n. We define the set of polynomials (not necessarly a p.s.) vn, n ≥ 0, by recurrence





v0(x)D φ1(x) = φ0(x)

vn(x)Dn+1 φn+1(x) = φn(x)−
n−1

∑
k=0

vk(x)Dk+1 φn+1(x), n > 0.
(4)

Remark 1. We note that, being φn of degree exactly n, for any n ∈ IN, it follows that vn is uniquely
defined and has degree ≤ n.

Let us define Vφ = {vn | ∀n ∈ IN, vn is polynomial as in (4)}.

Theorem 1 ([53]). For the p.s.
{

φn
}

n∈IN there exists a unique differential operator of the form

J := Jφ(x, D) =
∞

∑
k=0

vk(x)Dk+1, vk ∈ Vφ, ∀k ∈ IN, (5)

such that
J[φ0] = 0, J[φn] = φn−1, n ≥ 1. (6)

It is said that the p.s.
{

φn
}

n∈IN belongs to the operator J and that J is the operator
associated with the p.s.

{
φn
}

n∈IN.

Remark 2 ([53]). Not every operator of the form (5) is associated with a p.s. in the sense previously
defined. An operator J of the form (5) is associated with a p.s. if and only if J maps xn into n xn−1.
Hence it maps each polynomial of degree exactly n into a polynomial of degree exactly n− 1.

There is only one operator associated with a given p.s., but there are infinitely many
polynomial sequences belonging to the same operator.

Theorem 2 ([1]). To each operator J of the form (5) correspond infinitely many polynomial se-
quences for which (6) holds. In particular, one and only one of these polynomial sequences, which
we call the basic sequence and denote by

{
bn
}

n∈IN, is such that

b0(x) = 1, bn(0) = 0, n ≥ 1.
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Corollary 1 ([1]). Necessary and sufficient condition for
{

ψn
}

n∈IN to be a p.s. belonging to J is
that there exists a numerical sequence

(
an
)

n∈IN such that

ψn(x) =
n

∑
i=0

ai bn−i(x), a0 6= 0, ∀n ∈ IN, (7)

where
{

bn
}

n∈IN is the basic sequence for J.

Definition 1 ([1]). If no polynomial vk in the set Vφ is of degree greater than m, but at least one is
of degree m, the p.s.

{
φn
}

n∈IN is of A-type m. If the degrees of the polynomials vk are unbounded,
then

{
φn
}

n∈IN is of infinite type.

From Theorem 1 the following corollary holds.

Corollary 2 ([1]). There are infinitely many polynomial sequences for every A-type (finite or infinite).

Example 1 ([1,54]). Any Appell p.s. is of A-type zero. In fact, in this case, J = D.

Example 2 ([54]). Let
(
ai
)

i∈IN be a numerical sequence with a0 6= 0. It is proved [54] that the p.s.{
ak
}

k∈IN defined as

ak(x) =
k

∑
i=0

(
k
i

)
ak−i

xi

i!

is of A-type 1 and the corresponding operator is

Jφ(x, D) = D + xD2.

In order to characterize the polynomial sequences of A-type m, m > 0, we remember
the result of Huff and Rainville [55]. They showed, among other things, that a p.s. with
generating function

φ(t) f (xt) = φ(t) 0Fm(−; β1, β2, . . . , βm; σxt) =
∞

∑
n=0

yn(x)tn,

with σ constant and φ analytic and not zero at t = 0, is of A-type m.
The Sheffer paper [1] contains a study on polynomial sequences of any A-type, but

the most satisfying results are those related to polynomial sequences of A-type zero.

2.2. Polynomial Sequences of A-Type Zero

Sheffer found several characterizations of polynomial sequences of A-type zero. It will
be convenient to restate the conditions for a p.s. to be of A-type zero as follows:

{
φn
}

n∈IN
is a p.s. of A-type zero if

J[φn] = φn−1, n > 0,

where J is the operator

J[y] =
∞

∑
k=1

ck y(k), c1 6= 0, ck ∈ IK, ∀k ∈ IN. (8)

With the operator (8) Sheffer associated the formal power series

J(t) =
∞

∑
k=1

ck tk, (9)

called the generating function of the operator (8).
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The formal power series (9), being c1 6= 0, is invertible. Following Roman and Rota [8]
we call it a δ-series and we call its inverse compositional inverse. It is denoted by

H(t) =
∞

∑
k=1

sk tk, s1 6= 0, sk ∈ IK, ∀k ∈ IN, (10)

and verifies
J(H(t)) = H(J(t)) = t. (11)

Remark 3. Sheffer’s paper [1] (p. 596) in a footnote describes a recurrence procedure for the
calculation of the coefficients si = si

(
cj
)
, i ≥ 1. Indeed they can be numerically generated by means

of a formal algorithm [6] (pp. 6–8).

Then Sheffer gave the first characterization for polynomial sequences of A-type zero.

Theorem 3. A necessary and sufficient condition for
{

φn
}

n∈IN to be of A-type zero corresponding
to the operator J as in (8) is that a numerical sequence

(
ai
)

i∈IN, a0 6= 0, exists such that, setting

A(t) =
∞

∑
i=0

ai ti,

we get

A(t)exH(t) =
∞

∑
n=0

φn(x)tn, (12)

with H(t) as in (10).

Proof. The proof follows after observing that

ex H(t) =
∞

∑
n=0

bn(x)tn,

where
{

bn
}

n∈IN is the basic p.s. for J. Hence both the necessary and sufficient parts follow
by (7) in Corollary 1.

The formal power series

A(t) =
∞

∑
i=0

ai ti.

is called by Sheffer [1] determining series of the p.s.
{

φn
}

n∈IN.
It is observed, also, that every p.s. satisfies infinitely many linear functional equations.

One of the simplest equations for polynomial sequences of A-type zero is given in the
following theorem.

Theorem 4 ([1]). Let
{

φn
}

n∈IN be a p.s. of A-type zero corresponding to operator J, and let A(t)
be its determining series. Then

{
φn
}

n∈IN satisfies the equation

L[y(x)] :=
∞

∑
k=1

(qk,0 + x qk,1)Jk[y] = λy, (13)

where λ = n, for y = φn. The coefficients q are defined by

A′(t)
A(t)

=
∞

∑
k=0

qk+1,0 tn, (14)

292



Mathematics 2022, 10, 4435

H′(t) =
∞

∑
k=0

qk+1,1 tk. (15)

Proof. The proof is based on (12).

From (13) in Theorem 4 a further characterization of polynomial sequences of A-type
zero, expressed only in terms of the elements of the p.s. itself, follows.

Theorem 5 ([1]). A necessary and sufficient condition for a p.s.
{

φn
}

n∈IN to be of A-type zero is
that constants qk,0, qk,1 exist so that

∞

∑
k=1

(qk,0 + x qk,1)φn−k(x) = n φn(x), φn−k(x) = 0 for k > n. (16)

The operator J and the determining series A for
{

φn
}

n∈IN are related to the coefficients q by (14)–(15).

By differentiating both sides of (12) with respect to x, by equating coefficients of the
same powers of t, we obtain

φ′n(x) = s1φn−1(x) + s2φn−2(x) + . . . + snφ0(x), n ≥ 1. (17)

This identity generates a further characterization.

Theorem 6 ([1]). A necessary and suffient condition for a p.s.
{

φn
}

n∈IN to be of A-type zero is that
a numerical sequence

(
sn
)

n∈IN exists for which (17) holds. In this case the operator J corresponding
to
{

φn
}

n∈IN is determined through
(
sn
)

n∈IN by means of (10) and (11).

Another important topic in Sheffer’s paper concerns the orthogonality of the polyno-
mial sequences of A-type zero. It is described in the following Subsection.

2.3. A-Type Zero Polynomial Sequences That Are Orthogonal Polynomials

J. Shohat [56] proved that Hermite polynomials [6] (p. 134) are an Appell p.s., hence
of A-type zero, but are also orthogonal polynomials [57,58]. Another orthogonal p.s. of
A-type zero is Laguerre p.s. [6] (p. 184). This suggests the problem of determining all
A-type zero polynomial sequences that are, also, orthogonal. J. Meixner [59] treated this
problem by using Laplace transformation and taking

A(t)exH(t) =
∞

∑
n=0

φn(x)tn (18)

as definition of A-type zero.
Sheffer in [1] gave a quite different treatment by means of the known properties

of A-type zero polynomial sequences and the three-term recurrence relation for monic
orthogonal polynomial sequences [57,58]

φn(x) = (x + λn)φn−1(x)− µnφn−2(x), n ≥ 1, (19)

with λn, µn real constants, µn > 0, n > 1.
Combining (16) and (19), the basic result of Sheffer is the following theorem.

Theorem 7 ([1]). A necessary and sufficient condition for an A-type zero p.s.
{

φn
}

n∈IN to satisfy
(19) is that

λn = α + b n, and µn = (n− 1)(c + dn), α, b, c, d ∈ IK,

with c + dn 6= 0 for n > 1.
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With further analysis Sheffer characterized the A-type zero polynomial sequences that
are, also, orthogonal, by the following result.

Theorem 8 ([1]). A p.s.
{

φn
}

n∈IN is of A-type zero and orthogonal if and only if the generating
function (18) is expressed in one of the following forms

A(t)exH(t) = µ(1− bt)ce
d+atx
1−bt , a, b, c, µ 6= 0; (20)

A(t)exH(t) = µ et (b + ax) + ct2
, a, c, µ 6= 0; (21)

A(t)exH(t) = µ ect(1− bt)d+ax, a, b, c, µ 6= 0; (22)

A(t)exH(t) = µ

(
1− t

c

)d1+
x
a
(

1− t
b

)d2− x
a
, a, b, c, µ 6= 0, b 6= c. (23)

By properly choosing each of the parameters in (20)–(23) we can obtain all the Sheffer
A-type zero orthogonal polynomial sequences (see [60]).

3. Rota’S et al. Contributions

In 1970 G.C. Rota and his pupils [10,11,22,52] began to construct a completely rigorous
theory of the “classical modern” umbral calculus. Classical umbral calculus, as it was from
1850 to 1970, consists of a symbolic technique for the manipulation of the sequences, whose
mathematical rigor leaves much to be desidered. Just remember Eric Temple Bell’s failed
attempt, in 1940, to persuade the mathematical community to accept umbral calculus as
a legitimate mathematical tool. The theory of Rota et al. is based on the ideas of linear
functional, linear operator and adjuint. In 1977 the authors was lucky enough to join in on
formal theory, that can be called modern umbral calculus. A full exposition of this theory
can be found in Roman’s book [9]. The second chapter of this book contains definitions
and general properties of the Sheffer sequences (i.e., A-type zero polynomial sequences)
that are the main object of the study.

Sheffer Polynomial Sequences

Let P be the algebra of polynomials in the single variable x over the field IK of
characteristic zero. Let P? be the vector space of all linear functionals on P . The authors
use the notation

〈L | p〉
to denote the action of a linear functional L on a polynomial p. The formal power series

f (t) =
∞

∑
k=0

ak
tk

k!
(24)

defines a linear functional on P by setting

〈 f | xn〉 = an.

If the notation tk is used for the k-th derivative operator on P , that is,

tkxn =

{
(n)k xn−k k ≤ n

0 k > n,

where (n)k = n(n− 1) · · · (n− k + 1), then any power series (24) is a liner operator on P .
It is defined as

f (t)xn =
n

∑
k=0

(
n
k

)
akxn−k.
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So f (t)p(x) denotes the action of the operator f (t) on the polynomial p(x). Thus a
formal power series plays three roles in the umbral calculus theory of Rota et al.: a formal
power series, a linear functional and a linear operator. S. Roman seems to encourage the
young reader: “A little familiarity should remove any discomfort that may be felt by the
use of this trinity” [9] (p. 12).

Let g be an invertible power series, that is,

g(t) =
∞

∑
k=0

ak
tk

k!
, a0 6= 0,

and lef f be a δ-power series, that is

f (t) =
∞

∑
k=1

bk
tk

k!
, b1 6= 0.

Theorem 9 ([9] (p. 17)). There exists a unique p.s.
{

sn
}

n∈IN satisfying the orthogonality condi-
tions 〈

g(t) f (t)k | sn(x)
〉
= n! δn,k, (25)

for all n, k ≥ 0.

Proof. The uniqueness is based on the order of the power series g(t) f (t)k, that is,
o
(

g(t) f (t)k
)
= k, for any k > 0. The existence of the solution sn, for any n ∈ IN, is obtained

from the solution of a nonsingular triangular system.

Following Roman’s book [9], we say that the p.s.
{

sn
}

n∈IN in (25) is the Sheffer
sequence for the pair (g(t), f (t)), or that

{
sn
}

n∈IN is Sheffer for (g(t), f (t)).

There are two important special cases of Sheffer sequences:

(a) the Sheffer sequence for (1, f (t)) is the associated sequence for f (t) (or the binomial
p.s. [6] (p. 24) or the basic p.s. for the operator f (t) [1]);

(b) the Sheffer sequence for (g(t), t) is the Appell p.s. [3] for g(t).

The term Appell sequence in other sources [1] can differs for the factor n!.

Roman gave some characterization of Sheffer sequences.

Theorem 10 ([9] (p.18)). The p.s.
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

1
g( f (t))

ey f (t) =
∞

∑
k=0

sk(y)
tk

k!
(26)

for all y ∈ IK, where f is the compositional inverse of f .

Remark 4. If we use for a formal power series the two variables x and t, we could write (26) as

1
g( f (t))

ex f (t) =
∞

∑
k=0

sk(x)
tk

k!
. (27)

It is the usual form for an exponential generating function.

Remark 5. Sheffer [1] characterized A-type zero polynomial sequences by the generating function

A(t)exH(t) =
∞

∑
k=0

uk(x) tk,

where A(t) is an invertible power series and H(t) is a δ-series.
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From the comparison with (27) it follows that
{

sn
}

n∈IN is a Sheffer sequence in the sense of
Roman if and only if

{ 1
n! sn

}
n∈IN is a sequence of Sheffer A-type zero.

Remark 6. Just for historical record, polynomial sequences of Sheffer A-type zero are called
poweroids by Steffensen [61] and sequences of generalized Appell-type by Erdelyi [62].
Although in Boas and Buck [63] the latter term is used for a more general set of polynomial
sequences.

The generating function (27) provides a representation of Sheffer sequences in classical
monomials.

Theorem 11 ([9] (p.19)). The p.s
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

sn(x) =
n

∑
k=0

1
k!

〈
g
(

f (t)
)−1

f (t)k | xn
〉

xk, ∀n ∈ IN. (28)

Proof. The thesis follows by applying both sides of (26) to xn.

Remark 7. For an explicit calculation of the coefficients in (28) see [6] (pp. 11–13).

Theorem 12 ([9] (p.20)). A p.s
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

f (t)sn(x) = n sn−1(x).

Interesting is the characterization of Sheffer polynomial sequences that generalizes the
binomial formula.

Theorem 13 ([9] (p.21)). A p.s
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

sn(x + y) =
n

∑
k=0

(
n
k

)
pk(y)sn−k(x), ∀n ∈ IN, y ∈ IK, (29)

where
{

pn
}

n∈IN is the (binomial) p.s. associated (basic) with the linear operator f .

Corollary 3. By interchanging x and y in (29) and setting y = 0, we get

sn(x) =
n

∑
k=0

(
n
k

)
pk(x)sn−k(0), ∀n ∈ IN.

Thus, given a p.s.
{

pn
}

n∈IN associated (basic) with f , each Sheffer p.s.
{

sn
}

n∈IN that
uses f as its δ-power series is uniquely determined by the numerical sequence

(
sn(0)

)
n∈IN.

Another important topic introduced by Rota at al. is the umbral composition.

Theorem 14 ([9] (p.44)). The set of Sheffer sequences is a group under umbral composition. In
particular, if

{
sn
}

n∈IN is Sheffer for (g(t), f (t)) and
{

rn
}

n∈IN is Sheffer for (h(t), l(t)), then
{

rn ◦
sn
}

n∈IN is Sheffer for (g(t)h( f (t)), l( f (t))). The identity under umbral composition is the Sheffer

p.s.
{

xn}
n∈IN and the inverse of

{
sn
}

n∈IN is the Sheffer sequence for
(

g(t)
(

f (t)
)−1

, f (t)
)

.

Remark 8. In Roman’s book [9] the problem of orthogonal polynomial sequences which are also
Sheffer is mentioned [9] (p.156–159), but in a more general way.
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PART 2.
In the following Sections we want to discuss some of the more interesting results that

have appeared in the last thirty years or so.

4. The Riordan Group and the Sheffer Group

L. Shapiro et al. in 1991 [64] found a new group of infinite lower triangular matrices.
They called this group Riordan group. This name seems appropriate because due to J.
Riordan’s then recent death. Later the concept of Riordan matrices was generalized to
exponential Riordan matrices by many authors [65,66]. An exponential Riordan matrix is
an infinite lower triangular matrix whose j-th column (being the first indexed with 0) has
the generating function

1
j!

g(t) f (t)j,

where g(t) is an invertible power series and f (t) is a δ-series, that is,

g(t) =
∞

∑
i=0

ai
ti

i!
, a0 6= 0, f (t) =

∞

∑
i=1

bi
ti

i!
, b1 6= 0.

The exponential Riordan matrix generated by the formal power series g(t), f (t) is
denoted by [g(t), f (t)].

Remark 9. As mensioned in [67], “the concept of representing columns of an infinite matrix by
formal power series is not new and goes back to Shur’s paper and Faber polynomials in 1945”.

In the set of exponential Riordan matrices, given A = [g(t), f (t)] and B = [h(t), l(t)],
the matrix multiplication can be defined:

A · B = [g(t), f (t)] · [h(t), l(t)] = [g(t)h( f (t)), l( f (t))]. (30)

The reader will have no difficulty in proving by himself that

• the identity is I = [1, t];
• the inverse matrix is

[g(t), f (t)]−1 =


 1

g
(

f (t)
) , f (t)


,

where f (t) is the compositional inverse, hence is such that f
(

f (t)
)
= f ( f (t)) = t.

Theorem 15. [64] The set of exponential Riordan matrices is a group with respect to the operation
of matrix multiplication as defined in (30), called Riordan group.

In 2007 T.X. He et al. [68] considered the Sheffer group and proved that it is isomorphic
to the Riordan group.

Using the notation of He, a Sheffer p.s.
{

pn
}

n∈IN is defined as

g(t)ex f (t) =
∞

∑
n=0

pn(t)tn. (31)

This definition differs from Roman definition [9] by a constant n!, but it coincides with
that in [1].

In the set of Sheffer polynomial sequences, if
{

pn
}

n∈IN and
{

qn
}

n∈IN are Sheffer
polynomial sequences, He [68] defined the umbral composition “#” in this way:

pn#qn = rn, ∀n ∈ IN, (32)
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where, if pn(x) =
n

∑
k=0

pn,kxk and qn(x) =
n

∑
k=0

qn,kxk, then

rn(x) =
n

∑
k=0

rn,kxk,

with

rn,k =
n

∑
j=k

j!pn,jqj,k, n ≥ j ≥ k.

Theorem 16 ([68]). The set of all Sheffer polynomial sequences defined as in (31) with the operation
“#” defined as in (32) is a group called the Sheffer group and denoted by

({
pn
}

n∈IN, #
)

. The

identity of the group is
{

xn

n!

}
n∈IN

. The inverse of
{

pn
}

n∈IN generated by g(t)ex f (x) is the Sheffer
p.s. generated by

1

g
(

f (t)
) ex f (t),

being f the compositional inverse of f .

Remark 10. The result in the previous theorem, up to the factor n!, is conceptually identical to
Roman’s one [9] (p. 44).

Finally, the isomorphism between the groups is given by mapping
{

pn
}

n∈IN −→ [g(t), f (t)],

that is, by associating with the Sheffer p.s. the exponential Riordan matrix whose rows are
the coefficients of the polynomial pn for any n.

For details we refer to [68], where there are also many examples and some applications.

5. Elementary Matrix Calculus Approach to Umbral Calculus

After isomorphism between Sheffer polynomials and exponential Riordan matrices
in [6,26–28,69–73], there is an attempt to construct the modern umbral calculus trought
elementary matrix calculus. This is in contrast with the previous approaches considered
very formal [74]. Furthermore S. Khan et al. wrote “The simplicity of the algebraic approach
to the Appell and Sheffer sequences established in [69,72], allows several applications” [49].

Let
{

pn
}

n∈IN be a p.s. with

pn(x) =
n

∑
k=0

tn,kxk, tn,k ∈ IK, tn,n 6= 0 ∀n ∈ IN. (33)

Setting
Tn =

(
ti,k
)

i,k∈IN, k ≤ i, i = 0, . . . , n, ∀n ∈ IN,

Xn =
[
1, x, x2, . . . , xn

]T
,

we have
Pn = Tn Xn, (34)

where
Pn = [p0(x), p1(x), . . . , pn(x)]T .

For n→ ∞, with obvious meaning of the symbols, we can write

P = T X, (35)
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where T =
(
tik
)

ik∈IN is an infinite, nonsingular, lower triangular matrix [75] and Tn is the
leader submatrix of order n, for any n ∈ IN. Formulas (34) and (35) are called matrix forms
of the p.s.

{
pn
}

n∈IN.
The concept of representing polynomial sequences by lower triangular matrices is not

new and goes back to G. Polya [76] and I. Shur [77]. In fact, Polya gave a solution of the
Cauchy-Bellman functional equation for matrices

M(x)M(y) = M(x + y) (36)

in the form 


1 0 0 . . . . . . 0

x 1
. . .

x2 2x 1
. . .

x3 3x2 3x 1
...

. . . 0
xn ( n

n−1)xn−1 ( n
n−2)xn−2 . . . . . . 1




.

Then Vein [12] observed that the (n + 1)-th row of the matrix contains the terms of the
polynomial expansion of (1 + x)n, and the elements in the (n + 1)-th column are the terms
of the infinite series expansion of (1− x)−(n+1).

Moreover, for the solution of (36), Vein in [13] proved the relation

M(x) = ex Q, (37)

where Q is an infinite triangular matrix with constant elements, and observed that

Q = M′(0). (38)

From this relation Vein proved some identities among triangular matrices and inverse
relations. Thereafter, he determined two sets of triangular matrices. The elements of one
set are related to the terms of Laguerre, Hermite, Bernoulli, Euler and Bessel polynomials,
whereas the elements of the other set consist of Stirling numbers of both kinds, the two-
parameter Eulerian numbers and a the numbers introduced by Touchard [78]. Hence it has
been shown that these matrices are related by a number of identities. Some known and
lesser known pairs of inverse scalar relations that arise in combinatorial analysis have been
shown to be derivable from simple and obviously inverse pairs of matrix relations. Vein
in [13] wrote “The referee has pointed out that this work is an explicit matrix version of the
umbra1 calculus as presented by Rota et al. [9–11]”.

In [6] the author aims to find well-known results on the umbral calculus and also new
identities and properties of Sheffer sequences, by means of elementary matrix calculus. The
approach is very different from Vein’s. In fact, the starting point are the relations (33)–(35)
and not (36)–(38), which indeed will be never considered.

Now we make a mention of the methods used in [6], through an historical and
constructive path.

5.1. Appell Polynomial Sequences

Let
(
ai
)

i∈IN be a numerical sequence with a0 6= 0. The infinite lower triangular matrix
A =

(
ai,j
)

i,j∈IN with

ai,j =

(
i
j

)
ai−j
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is called Appell-type matrix [6] (pp. 9–10). Then we consider the p.s.
{

an
}

n∈IN with

an(x) =
n

∑
j=0

an,jxj =
n

∑
j=0

(
n
j

)
an−jxj, ∀n ∈ IN, (39)

called Appell p.s.
It’s easy to verify that the matrix form

A X = A, and An Xn = An, ∀n ∈ IN, (40)

holds, where

A = [a0(x), a1(x), . . . , an(x), . . . ]T , X =
[
1, x, x2, . . . , xn, . . .

]T

and
An = [a0(x), a1(x), . . . , an(x)]T , Xn =

[
1, x, x2, . . . , xn

]T
.

The Appell-type matrix is nonsingular and its inverse is also an Appell-type matrix [6].
Moreover, if we set

g(t) =
∞

∑
i=0

ai
ti

i!
, a0 6= 0,

g(t) is an invertible power series and its inverse is

1
g(t)

=
∞

∑
i=0

ai
ti

i!
,

where
n

∑
k=0

(
n
k

)
akan−k = δn,0, ∀n ∈ IN.

Then, if we set A−1 = A =
(
ai,j
)

i,j∈IN, we have

ai,j =

(
i
j

)
ai−j. (41)

The matrix A generates the p.s.
{

an
}

n∈IN such that

an(x) =
n

∑
j=0

(
n
j

)
an−jxj.

Moreover
A X = A, and An Xn = An, ∀n ∈ IN.

For details we refer to [6] (p. 14).
The p.s.

{
an
}

n∈IN is hence an Appell p.s., called conjugate of the p.s.
{

an
}

n∈IN.
The reader will have no difficulty in proving by himself the known identities

a′n(x) = n an−1(x), n ≥ 1 (42)

g(t)ext =
∞

∑
n=0

an(x)
tn

n!

that characterize an Appell p.s. [3].
From the matrix form (40) we get

Xn = AnAn (43)
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and

xn =
n

∑
j=0

an,jaj(x), ∀n ∈ IN. (44)

From the latest formula we can derive a recurrence formula and a determinant form.

Theorem 17 ([6]). For the Appell p.s.
{

an
}

n∈IN defined as in (39) the following identities hold:

a0(x) =
1
a0

and, for any n ≥ 1,

an(x) =
1
a0

[
xn −

n−1

∑
k=0

(
n
k

)
an,kak(x)

]
; (45)

an(x) =
(−1)n

an+1
0

∣∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

a0 a1 · · · an−1 an
...

. . . . . .
...

...
. . . . . .

...
0 · · · · · · a0 ( n

n−1)a1

∣∣∣∣∣∣∣∣∣∣∣∣

. (46)

Proof. Relation (45) follows from (43). The (46) follows by Cramer’s rule applied to the
linear system (44), with n = 0, . . . , M, for any M ∈ IN.

The details can be found in [6] (pp. 83–84).

Remark 11. We note that the determinant form (46) is in [69]. Almost in the same period a similar
form has been given by Yang et al. [79], but with very different and more sophisticated techniques.

An analogous result as in Theorem 17 holds for the conjugate sequence
{

pn
}

n∈IN.

For an Appell p.s. a second recurrence relation and determinant form hold.

Theorem 18 ([6]). With the previous hypothesis and relations, for an Appell p.s. the following
relations hold

an+1(x) = (x + b0)an(x) +
n−1

∑
k=0

(
n
k

)
bn−kak(x), (47)

where
(
bi
)

i∈IN is the numerical sequence given by

g′(t)
g(t)

=
∞

∑
i=0

bi
ti

i!
; (48)

and
a0(x) = 1,

an+1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + b0 −1 0 · · · · · · 0
b1 x + b0 −1 0 · · · 0
b2 (2

1)b1 x + b0 −1 · · · 0
...

. . . . . .
...

...
. . . . . .

...
bn (n

1)bn−1 · · · · · · ( n
n−1)b1 x + b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(49)

with bi as in (48).

Proof. Cfr. [6] (pp. 83–86).
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Remark 12. For the numerical sequence
(
bi
)

i∈IN as in (48) we have the representation

bn =
n

∑
k=0

(
n
k

)
ak+1an−k, ∀n ∈ IN.

Remark 13. We observe that if

n−2

∑
k=0

(
n
k

)
bn−kak(x) = 0, ∀x ∈ IR, ∀n ≥ 2,

then the recurrence relation (47) becomes a three-term relation and, consequently, in suitable
hypothesis, the sequence

{
an
}

n∈IN is also orthogonal [57,80]. It is known [56] that among classical
orthogonal polynomials, only the Hermite sequence is, also, an Appell p.s. We will consider this
topic afterwards.

Remark 14. The second recurrence relation and the second determinant form for Appell polynomial
sequences are, also, in [81], but they are determined by a more general and complicate procedure.

The previous recurrence relations generate some differential equations for Appell
polynomial sequences. For this, firstly we observe that from (42) we have

an−k(x) =
a(k)n (x)

n(n− 1) · · · (n− k + 1)
, ∀k = 0, . . . , n. (50)

Then, using this relation we can prove the following theorem.

Theorem 19 ([6]). Let
{

an
}

n∈IN be the A.p.s. associated with matrix A =
(
ai,j
)

i,j∈IN. Then
{

an
}

n∈IN satisfies the following differential equation

an

n!
y(n)(x) +

an−1

(n− 1)!
y(n−1)(x) + · · ·+ a0y(x) = xn.

Proof. The proof is obtained by putting (50) in the first recurrence relation.

Combining (50) and (47), a second differential equation for Appell polynomial se-
quences can be obtained.

The first determinant form (46) allows to calculate the numerical value of an(x) for
every fixed value of the variable x. In fact, it is knows that Gauss elimination without
pivoting for an Hessenberg matrix is stable [82]. Moreover, it allows to prove the following
orthogonality property.

Let L be a linear functional on P . If we set

L
(

xi
)
= ai, i ≥ 0,

the relation (46) allows to define the Appell p.s. denoted by
{

aL
n
}

n∈IN. Then we consider
the n + 1 linear functionals Li, i = 0, . . . , n such that

L0

(
xi
)
= L

(
xi
)

, Lj

(
xi
)
= L

(
Djxi

)
, j ≤ i, i = 0, . . . , n. (51)

Theorem 20 ([26,27]). For the Appell p.s.
{

an
}

n∈IN the following relations hold

Li

(
aL

n

)
= n!δi,n, i = 0, · · · , n.

Proof. The proof follows from (46).
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Corollary 4. The Appell p.s.
{

aL
n
}

n∈IN is the solution of the general linear interpolation problem

Li(an(x)) = n!δi,n, i = 0, · · · , n, (52)

Remark 15. We note that (52) is equivalent to Theorem 2.3.1 in [8] for Appell polynomial se-
quences.

Theorem 21 ([28]). (Representation theorem) With the previous hypothesis and notations, for
any Pn(x) ∈ Pn we have

Pn(x) =
n

∑
k=0

L
(

P(k)
n

)

k!
aL

k (x). (53)

Relation (53) is a natural generalization of the classic Taylor polynomials.

The previous theorem is extensible to the linear space X of real continuous functions
defined in the interval [a, b], with continuous derivatives of all necessary orders.

Theorem 22 ([28]). For any f ∈ X the polynomial

Pn[ f ](x) =
n

∑
i=0

L
(

f (i)
)

i!
aL

i (x) (54)

is the unique polynomial of degree ≤ n such that

L
(

Pn[ f ](i)
)
= L

(
f (i)
)

, i = 0, . . . , n. (55)

The polynomial (54) is called Appell or umbral interpolant for the function f .
In [28] the estimation of the remainder

Rn[ f ](x) = f (x)− Pn[ f ](x)

can be found.
The second determinant form (49) allows to say that any Appell polynomial is the char-

acteristic polynomial of a suitable Hessenberg matrix. In fact it has been proved [6] (p. 86)
that if

{
an
}

n∈IN is the Appell p.s. with matrix A and related conjugate matrix A, then every
an(x) is the characteristic polynomial of the production matrix [6] (p. 18) of A, that is,

Rn = An Ân,

where Ân is the matrix An with its first row and last column removed. Hence the roots of
an Appell polynomial an(x) are the eingenvalues of matrix Rn.

For other properties we refer to a wide literature (see [6]).

5.2. Binomial-Type Polynomial Sequences

Roman and Rota [8] observed: “It remains a mystery why so many polynomial
sequences occurring in various mathematical circumstances turn out to be of binomial-
type”. They said, also, that “the notion of polynomial sequences of binomial-type goes
back to E.T. Bell” [83,84], and we add to Aitken [85], “Steffens was the first to observe that
the sequence associated with delta operators in the way as D is to xn are of the binomial-
type, but failed to notice the converse of this fact, which was first stated and proved by
Mullin and Rota [52]”. In 1970 Mullin and Rota gave the first systematic theory, using
operators methods instead of the less efficient generating functions methods [1], that had
been exclusively used until then.
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Garsia [74] observed: “Unfortunately, the notions and the proofs in that very original
paper ([52], A/N) in some instances leave something to be desidered, and even tend to
obscure the remarkable simplicity and beauty of the results”.

An algebraic approach to Rota-Mullin theory has been considered in [14].
In the following we will use a matrix-calculus based approach.
Let

(
bi
)

i∈IN, b0 = 0, b1 6= 0, bi ∈ IK, i ≥ 0, be a numerical sequence. We define the
matrix P =

(
pn,k
)

n,k∈IN [6] (pp. 7–8) such that





pn,0 = δn,0 n ≥ 0

pn,1 = bn n ≥ 1

pn,k =
1
k

n−k+1

∑
i=1

(
n
i

)
pi,1 pn−i,k−1 n ≥ 2; k = 2, . . . , n

pn,k = 0 k > n.

(56)

P is called binomial-type matrix [6]. It is a non singular, infinite lower triangular matrix.
Then we can consider the polynomial sequence





p0(x) = 1

p1(x) = p1,0 + p1,1(x)

· · ·
pn(x) = pn,0 + pn,1(x) + · · ·+ pn,nxn

· · ·

It will be called binomial-type polynomial sequence (b.p.s. in the following).
The following carachterization explains the construction of a binomial-type matrix P

as in (56).

Theorem 23 ([6] (pp. 24,26)). Let
{

pn
}

n∈IN be a polynomial sequence. It is a b.p.s. if and only if
there exists a numerical sequence

(
bi
)

i∈IN, with b0 = 0, b1 6= 0, such that, for any n ∈ IN,





p′n(x) =
n

∑
i=1

(
n
i

)
bi pn−i(x) =

n−1

∑
i=0

(
n
i

)
bn−i pi(x)

pn(0) = 0, p0(x) = 1

and

ex f (t) =
∞

∑
n=0

pn(x)
tn

n!
, (57)

where f (t) =
∞

∑
i=0

bi
ti

i!
.

Proof. Let
{

pn
}

n∈IN be a b.p.s.. Hence there exists a numerical sequence
(
bi
)

i∈IN with
b0 = 0, b1 6= 0 such that pn(x) = ∑n

k=0 pn,kxk, where pn,k are defined as in (56). Then we
have

p′n(x) =
n

∑
k=1

pn,kk xk−1 =
n

∑
k=1

(
n−k+1

∑
i=1

(
n
i

)
bi pn−i,k−1

)
xk−1 =

n

∑
k=1

(
n
k

)
bk pn−k(x). (58)

With the reverse procedure, after integration, the opposite implication follows.
Property (57) follows by easy manipulations [6] (pp. 26–27).
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Proposition 1 ([6] (pp. 6–9)). With the previous notations and hypothesis we get

f
(

f (t)
)
= f ( f (t)) = t

if and only if

f (t) =
∞

∑
i=0

bi
ti

i!
,

where
(
bi
)

i∈IN is defined by
n

∑
k=1

pn,kbk = δn,1, n ≥ 1,

being pn,k as in (56).

Power series f (t) and f (t) are the compositional inverse of each other. From the
numerical sequence

(
bk
)

k∈IN we can construct the matrix P =
(

pn,k
)

n,k∈IN, called the
conjugate binomial matrix of P. It is proved [6] (p. 14) that P = P−1. The matrix P allows
considering the p.s.

{
pn
}

n∈IN, called the conjugate p.s. of
{

pn
}

n∈IN, with elements





p0(x) = 1

p1(x) = p1,0 + p1,1(x)

· · ·
pn(x) = pn,0 + pn,1(x) + · · ·+ pn,nxn

· · ·

Proposition 2. If
{

pn
}

n∈IN and
{

pn
}

n∈IN are conjugate b.p.s., we have

(pn ◦ pn)(x) = pn(pn(x)) = pn(pn(x)) = xn. (59)

Theorem 24. Let B be the set of binomial polynomial sequences and “◦” the umbral composi-
tion [86] defined in B. Then the algebraic structure (B, ◦) is a group.

Remark 16. An analogous result holds for the set A of Appell polynomial sequences. That is, the
algebraic structure (A, ◦) is a group.

For the conjugate b.p.s.
{

pn
}

n∈IN and
{

pn
}

n∈IN, if we set

P̂(x) = [p0(x), . . . , pn(x), . . . ], P(x) = [p0(x), . . . , pn(x), . . . ],

we get the matrix forms

P̂ = P X, and P̂n = Pn Xn, ∀n ∈ IN,

P = P X, and Pn = Pn Xn, ∀n ∈ IN.

Theorem 25 ([6]). For the conjugate b.p.s.
{

pn
}

n∈IN and
{

pn
}

n∈IN the following identities hold

• pn(x) =
1

pn,n

[
xn −

n−1

∑
k=0

pn,k pk(x)

]
;

• pn(x) =
1

pn,n

[
xn −

n−1

∑
k=0

pn,k pk(x)

]
;
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• ĉ0 pn+1(x) = −(nĉ1 − x)pn(x)−
n

∑
k=2

ĉk pn−k+1(x), where

n

∑
k=0

(
n
k

)
ĉkbn−k+1 = δn,0, ∀n ∈ IN,

with initial conditions ĉ0 = 1, b1 = 1, p0(x) = x;

• pn(x) =
(−1)n+1

∏n
k=0 pk,k

∣∣∣∣∣∣∣∣∣∣∣∣

x x2 · · · xn−1 xn

p1,1 p2,1 · · · pn−1,1 pn,1
0 p2,2 · · · pn−1,2 pn,2
...

. . .
...

...
0 · · · pn−1,n−1 pn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1

and

pn(x) =
(−1)n+1

∏n
k=0 pk,k

∣∣∣∣∣∣∣∣∣∣∣

x x2 · · · xn−1 xn

p1,1 p2,1 · · · pn−1,1 pn,1
0 p2,2 · · · pn−1,2 pn,2
...

. . .
...

...
0 · · · pn−1,n−1 pn,n−1

∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1;

• referring to Sheffer’s approach, the operator J := J(x, D) =
∞

∑
i=1

biD(i), is the corresponding

operator to the b.p.s.
{

pn
}

n∈IN and this is the basic sequence for J, that is, J[pn] = n pn−1 [6]
(p. 36).

For further details and properties we refer to [6] (pp. 24–45).

5.3. Sheffer Polynomial Sequences

In order to give an appropriate matrix-calculus based approach of Sheffer A-type zero
polynomial sequences we consider

• two numerical sequences
(
an
)

n∈IN, with a0 6= 0, ai ∈ IK, i ∈ IN,

(
bn
)

n∈IN with b0 = 0, b1 6= 0, bi ∈ IK, i ∈ IN;

• the Appell-type matrix A =
(
ai,j
)

i,j∈IN, with ai,j =

(
i
j

)
ai−j;

• the binomial-type matrix P =
(

pi,j
)

i,j∈IN, with pi,j defined as in (56);

• the Appell p.s.
{

an
}

n∈IN with

an(x) =
n

∑
k=0

(
n
k

)
an−kxk, ∀n ∈ IN;

• the binomial p.s.
{

pn
}

n∈IN with

pn(x) =
n

∑
k=0

pn,kxk, ∀n ∈ IN;

• the formal power series

g(t) =
∞

∑
i=0

ai
ti

i!
, f (t) =

∞

∑
i=0

bi
ti

i!
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and the related inverse and compositional inverse

1
g(t)

=
∞

∑
i=0

ai
ti

i!
, f (t) =

∞

∑
i=0

bi
ti

i!
;

• the linear operator

J[y] =
∞

∑
i=1

bi
y(i)

i!
,

where
(
bi
)

i∈IN is defined as in Proposition 1.

Then we consider the umbral composition of the polynomial sequences
{

an
}

n∈IN and{
pn
}

n∈IN, denoted by
{

sn
}

n∈IN, that is [86],

sn(x) =
n

∑
i=0

(
n
i

)
an−i pi(x), ∀n ∈ IN. (60)

We call Sheffer p.s. the sequence
{

sn
}

n∈IN related to the numerical sequences
(
ai
)

i∈IN,(
bi
)

i∈IN as defined above [72].
We denote by S =

(
si,j
)

i,j∈IN the infinite lower triangular matrix associated with the

p.s.
{

sn
}

n∈IN, that is,

sn(x) =
n

∑
k=0

sn,kxk, ∀n ∈ IN. (61)

Proposition 3. With the previous notations and hypothesis we get

S = A P. (62)

Proof. See [6,72].

As for Appell and binomial-type polynomial sequences, we will define the conjugate
sequence of a Sheffer p.s.

{
sn
}

n∈IN, that is, the p.s. with matrix S−1 (see [6] (p. 14,
pp. 150–151)).

For that, we consider the p.s.
{

sn
}

n∈IN such that

sn(x) =
n

∑
i=0

sn,j xj, ∀n ∈ IN,

where

sn,j =
n

∑
k=0

(
n
k

)
gk pn−k,j, j = 0, . . . , n, n ∈ IN

being
(

gi
)

i∈IN defined by

k

∑
i=0

(
k
i

)
ŝi gk−i = δk,0, with ŝk =

k

∑
j=1

aj pk,j.

Let S =
(
si,j
)

i,j∈IN be the infinite lower triangular matrix associated with the p.s.
{

sn
}

n∈IN.

Proposition 4 ([6] (p. 14)). With the previous notations and hypothesis we get

S = S−1. (63)
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Remark 17. By construction the matrix S is the product of an Appell matrix and a binomial-type
matrix. This is not evident from (62).

Hence the p.s.
{

sn
}

n∈IN, being the umbral composition of an Appell and a binomial-type p.s.,
is a Sheffer p.s., called conjugate of the p.s.

{
sn
}

n∈IN.

Now we give the matrix form of a Sheffer p.s. We set

S(x) = [s0(x), . . . , sn(x), . . . ], and Sn(x) = [s0(x), . . . , sn(x)], ∀n ∈ IN,

S(x) = [s0(x), . . . , sn(x), . . . ], and Sn(x) = [s0(x), . . . , sn(x)], ∀n ∈ IN,

P(x) = [p0(x), . . . , pn(x), . . . ], and Pn(x) = [p0(x), . . . , pn(x)], ∀n ∈ IN.

Therefore we have
S(x) = S X = (A P) X = A (P X) (64)

and
Sn(x) = Sn Xn = (An Pn) Xn = An (Pn Xn).

From these matrix forms we can derive recurrence relations, determinant forms and
differential equations. For details we refer to [6] (pp. 149–165).

Theorem 26 ([6] (pp. 158–159)). For the Sheffer p.s.
{

sn
}

n∈IN the following identities hold

1
k!

s(k)n (x) =
n

∑
i=k

(
n
i

)
pi,ksn−i(x), ∀n ∈ IN, k = 0, . . . , n.

Particularly, for k = 1,

s′n(x) =
n−1

∑
i=0

(
n
i

)
bn−isi(x).

Proof. The proof follows by differentiation of (60), taking into account (64) and (56).

Proposition 5 ([6] (p. 159)). The following recurrence relation for the columns of the matrix S
holds

sn,k+1 =
1

k + 1

n

∑
i=k

(
n
i

)
bn−isi,k =

1
k + 1

n−k

∑
i=1

(
n
i

)
bisn−i,k, k = 0, . . . , n− 1,

with boundary conditions

sn,0 = an, sn,n = a0bn
1 , n ≥ 0.

In order to determine the relationship with Sheffer A-type zero polynomial sequences
we get the following theorem.

Theorem 27 ([6] (p. 153)). For a Sheffer p.s.
{

sn
}

n∈IN defined as in (60) or (61) we have

g(t)ex f (t) =
∞

∑
n=0

sn(x)
tn

n!
,

J sn = n sn−1.

Now we can say that the p.s.
{

sn
}

n∈IN, defined above, is a Sheffer A-type zero p.s.
For other properties we refer to a wide existing literature (see, for example [6]).

Finally we can observe that the previous construction allows us to write an explicit
algorithm (Algorithm 1) for the numerical generation of a Sheffer p.s.
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Algorithm 1 Appell, binomial-type, Sheffer polynomial sequences.

1: Inizialization: N, ai, bi, i = 0, . . . , N;
2: Appell-type matrix:

A =
(
ai,j
)

i,j=0,...,N , ai,j =

(
i
j

)
ai−j, i = 0, . . . , N, j = 0, . . . , i;

3: binomial-type matrix:
P =

(
pn,k
)

n,k=0,...,N ,

pn,k as in (56);
4: Appell p.s.:

an(x) =
n

∑
k=0

(
n
k

)
an−kxk, n = 0, . . . , N;

plot an;
5: binomial-type p.s.:

pn(x) =
n

∑
k=0

pn,kxk, n = 0, . . . , N;

plot pn;
6: Sheffer-type matrix:

S =
(
si,j
)

i,j=0,...,N , si,j =
j

∑
k=0

(
i
k

)
ai−k pk,j, i = 0, . . . , N, j = 0, . . . , i;

7: Sheffer p.s.:

sn(x) =
n

∑
k=0

(
n
k

)
an−k pk(x), n = 0, . . . , N;

plot sn;
8: end.

6. Sheffer A-Type Zero Orthogonal Polynomial Sequences

We have observed that I.M. Sheffer in his work [1] characterized the A-type zero
polynomial sequences which satisfy, also, an orthogonal condition.

This problem has been considered before by Meixner [59], Sholat [56], but with a
different analysis. Recently, D.J. Galiffa et al. [51] showed that all Sheffer A-type zero
orthogonal polynomial sequences can be characterisized by using only the generating
function that defines this class and a monic three-term recurrence relation. They, therefore,
simplified Sheffer’s analysis.

6.1. Galiffa et al. Analysis

It is suitable to use the same definitions and notations as in [51].

Definition 2. A p.s.
{

Pn
}

n∈IN is classified as A-type zero if there exist two numerical sequences(
ai
)

i∈IN and
(
hi
)

i∈IN such that

A(t)exH(t) =
∞

∑
n=0

Pn(x)tn, (65)

with

A(t) =
∞

∑
i=0

aiti, a0 = 1,

H(t) =
∞

∑
i=1

hiti, h1 = 1.
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To determine which orthogonal set satisfy (65), Sheffer used a monic three-term
recurrence relation of the form [57,58]

Pn+1(x) = (x + λn+1)Pn(x)− µn+1Pn−1(x), n ≥ 0, (66)

with µn > 0, for any n ∈ IN and P−1 = 0.
The idea of Galiffa et al. [51] consists in obtaining some coefficients of Pn by (65). They

observed that

∞

∑
n=0

antnex(t+h2t2+h3t3+··· ) =
∞

∑
n=0

antnexteh2xt2
eh3xt3 · · ·

=
∞

∑
k0=0

ak0 tk0
∞

∑
k1=0

(xt)k1

k1!

∞

∑
k2=0

(h2xt2)k2

k2!

∞

∑
k3=0

(h3xt3)k3

k3!
· · · .

The general term in each of the products above is

ak0 tk0
xk1 tk1

k1!
hk2

2 xk2 t2k2

k2!
hk3

3 xk3 t3k3

k3!
. . .

Thus, discovering the coefficient of xrtr is equivalent to determining all of the nonneg-
ative integer solutions {k0, k1, k2, . . . } of the linear Diophantine equations

k1 + k2 + k3 + · · · = r (67)

k0 + k1 + 2k2 + 3k3 + · · · = s, (68)

where (67) represents the x-exponents and (68) the t-exponents.
In order to satisfy (66) we have to observe the coefficients xntn, xn−1tn−1 and xn−2tn−2.

We omit the calculation, for which we refer to [51].

Lemma 1. For the Sheffer A-type zero polynomial Pn(x) = cn,0xn + cn,1xn−1 + cn,2xn−2 +
O
(
xn−3) as in (66) we have

cn,0 =
1
n!

, cn,1 =
a1

(n− 1)!
+

h2

(n− 2)!

cn,2 =
a2

(n− 2)!
+

a1h2 + h3

(n− 3)!
+

h2
2

2!(n− 4)!
.

Interestingly enough, the coefficients cn,0, cn,1, cn,2 above are expressed in terms of only
the first two nonunitary coefficients of t in A(t) as H(t), that is a1, a2, h2, h3.

Then the authors in [51] showed that Sheffer A-type zero polynomial sequences satisfy
a monic three-term recurrence relation if and only if

λn+1 = a1 + 2h2n

µn+1 =
(
a2

1 − 2a2 + 2a1h2 − 4h2
2 + 3h3

)
n +

(
4h2

2 − 3h3
)
n2.

Hence the following orthogonal polynomial sequences all necessarily belong to the
Sheffer A-type zero classes

{
(−1)nn!L(α)

n (x)
}

,
{

2−nHn(x)
}

, {(−a)nCn(x; a)},
{

cn(β)n

(c− 1)n Mn(x; β, c)
}

,
{
(2 sin φ)−nn!P(λ)

n (x; φ)
}

, {(−N)n pnKn(x; p, N)}.

These are respectively the monic forms of the Laguerre, Hermite, Charlier, Meixner,
Meixner–Pollaczek and Krawtchouk polynomials, as defined in [51,60].
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6.2. A Further Note on the Orthogonality of Sheffer A-Type Zero Polynomial Sequences

The analysis of Galiffa et al. in [51] can be further improved, by using an equivalent
definition of Sheffer A-type zero polynomial sequences. In fact, assuming as definition a
differential relation by using Theorem 26 and Proposition 5, we get

Theorem 28 ([54]). For monic Sheffer A-type zero polynomial sequences we have

sn,n = 1, sn,n−1 = na1 +
n(n− 1)

2
b2,

sn,n−2 =
n(n− 1)

2
a2 +

n(n− 1)(n− 2)
2

a1b2 +
n(n− 1)(n− 2)

6
b3

+
n(n− 1)(n− 2)(n− 3)

8
b2

2.

Proof. Cfr. [54].

Theorem 29 ([54]). A monic Sheffer p.s. satisfies the three-term recurrence relation if and only if

λn+1 = −(a1 + n b2)

µn+1 = n
(

a2
1 − a2 + a1b2 − b2

2 +
1
2

b3

)
+ n2

(
b2

2 −
1
2

b3

)
.

Proof. From the comparison between (66) and (61) we have

λn+1 = sn,n−1 − sn+1,n

µn+1 = −λn+1sn,n−1 + sn,n−2 − sn+1,n−1.

From Theorem 28 we get the result.

We observe that these results coincide with the ones in [51].

Remark 18. In the set of the Appell polynomial sequences we have the family of the monic orthogo-
nal polynomials with

λn+1 = −a1, µn+1 =
(

a2
1 − a2

)
n, a2

1 − a2 > 0.

In particular, among the classic orgonal polynomials only Hermite polynomial sequences [6]
(p. 134) are also Appell polynomial sequences.

7. Relationship between Sheffer A-Type Zero Sequences and Monomiality Principle

The idea of monomiality goes back to J. Steffenson [61] but only in the last thirty years
this idea has been systematically used by other authors (see [87–89]).

Definition 3. A polynomial sequence
{

pn
}

n∈IN is quasi monomial if and only if there exist two
linear operators P̂, M̂, independent on n, called derivative and multiplicative operators, respectively,
verifying the identities

P̂(pn(x)) = n pn−1(x), n ≥ 1, (69)

M̂(pn(x)) = pn+1(x), n ≥ 0. (70)

Hence P̂ and M̂ play an analogous role to that of derivative and multiplicative opera-
tors, respectively, on classic monomials.

The operators P̂ and M̂ satisfy the following commutative property
[

P̂, M̂
]
= P̂ M̂− M̂ P̂ = 1̂,
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so they display a Veyl group structure.
Let the p.s.

{
pn
}

n∈IN be quasi monomial with respect to the operators P̂, M̂. Then
some of its properties can be easily derived from those of the operators themselves:

1. if P̂, M̂ have a differential representation, that is, P̂ = P̂(Dx), M̂ = M̂(x, Dx), then for
any n ∈ IN the polynomial pn satisfies the differential equations

M̂P̂(pn(x)) = n pn(x),

P̂M̂(pn(x)) = (n + 1)pn(x);

2. assuming p0(x) = 1, pn can be explicitely constructed as

pn(x) = M̂n(1);

3. from the above identity it follows that the exponential generating function of
{

pn
}

n∈IN
is given by

etM̂(1) =
∞

∑
n=0

(
tM̂
)n

n!
(1),

and therefore

etM̂(1) =
∞

∑
n=0

pn(x)
tn

n!
.

Let
{

sn
}

n∈IN be a Sheffer A-type zero p.s. with exponential generating function [6]
(p. 153)

g(t)ex f (t) =
∞

∑
n=0

sn(x)
tn

n!
,

where

g(t) =
∞

∑
i=0

ai
ti

i!
, a0 6= 0, ai ∈ IK,

f (t) =
∞

∑
i=1

bi
ti

i!
, b1 6= 0, bi ∈ IK.

It has been showed [90,91] that a Sheffer A-type zero p.s. is quasi monomial with
respect to the differential operators

P̂ = f (Dx)

M̂ = x f ′
(

f (Dx)
)
+

g′
(

f (Dx)
)

g
(

f (Dx)
) .

Conversely, if
{

sn
}

n∈IN is a p.s. satisfying (69), (70), with M̂ = M̂(x, Dx), P̂ = P̂(x, Dx),
then necessarily it is of Sheffer A-type zero.

8. Conclusions

As the centenary of the publication of I.M. Sheffer’s famous paper approaches, we
wanted to honor his memory by recalling some old and recent results. In particular we
recalled the idea of the classification of polynomials by means of suitable linear differential
operators and Sheffer’s method for the study of A-type zero polynomials.

Later Rota et al., in 1970, framed the study of A-type zero polynomials with the umbral
calculus. Indeed, after the theory of Rota et al., modern umbral calculus was essentially
confused with the study of polynomials of A-type zero. Another relevant idea was the
isomorphism between the group of A-type zero polynomials and the Riordan group of
exponential-type matrices introduced at the end of the last century. This gave a different
vision to the subject and allowed the development of algebraic methods. For example, the
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attempt to set modern umbral calculus on elementary matrix calculus. The simplicity of
this result has allowed numerous theoretical and computational applications.

The constant proliferation of new ideas, theoretical and applicative, involving polyno-
mial sets, make us believe that the Sheffer sequences are an active and important research
area in its own right.
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