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Over the last two decades, the realm of image recognition has undergone a remarkable
transformation, characterized by an astonishing pace of advancement. Object detection
performance, once stagnant at around 30-percentage in mean average precision (mAP),
has now impressively soared to 90-percentage and beyond, particularly in benchmarks
like PASCAL VOC. Equally remarkable is the surpassing of human capabilities by con-
temporary learning algorithms, achieving unprecedented accuracy in image classification
tasks such as those found in the ImageNet dataset. These strides in image classification
signal a new era with profound implications for practical applications, spanning areas
like video surveillance, autonomous driving, intelligent healthcare, remote sensing image
interpretation, and artificial intelligence.

At the core of this revolutionary progress in image recognition lie deep learning
algorithms, whose success is rooted in two critical factors: the availability of extensive
training datasets and the computational prowess of state-of-the-art platforms. Notably,
deep neural networks consistently outperform meticulously crafted manual image features
across a spectrum of image tasks. However, amidst the resounding success achieved by
deep learning in image recognition, numerous challenges persist, emphasizing the necessity
for further exploration and innovation.

This Special Issue goes beyond mere acknowledgment of these challenges; it is devoted
to showcasing novel solutions poised to overcome these hurdles. By delving into the intri-
cacies of these issues, our aim is to contribute to the ongoing discourse and advancement
in the ever-evolving field of image recognition. This collection of research endeavors not
only commemorates achievements thus far but also charts the course for the next frontier
in the continuous evolution of image recognition technologies.

For this Special Issue, which was open to all researchers, 12 papers have undergone
a meticulous review process and have been ultimately accepted for publication. These
papers cover a broad spectrum of vision task topics as follows.

• Point cloud deep learning. The efficacy of 3D vision surpasses that of 2D vision due
to its enhanced spatial and depth perception capabilities. Point cloud representation,
commonly utilized in relevant applications, preserves the original geometric informa-
tion in three-dimensional space without discretization. However, the inherent disorder
of point clouds poses challenges for their integration into deep learning frameworks.
In 2017, deep convolutional neural networks were used to address the sparsity and
disorder issues associated with point clouds, forming the famous models, PointNet
and PointNet++. Various kinds of improved models were presented subsequently,
leading to the expanded application of point clouds in areas such as 3D object detection
(Contributor 1), pose estimation (Contributor 2), and more (Contributor 3).
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• Pixelwise semantic segmentation. Semantic segmentation is a fundamental task in
computer vision field. It refers to classify each pixel in an image, enabling segmenta-
tion into semantically distinct regions. In 2015, the full convolutional network (FCN)
was presented, in which the task of semantic segmentation were revolutionized by
employing transposed convolutions. The fully connected layers were replaced by the
convolutional layers to achieve end-to-end segmentation. The presented fashion have
been expanded across various fields. Weng et al. enhanced the DeepLabV3+ model,
addressing railway track extraction errors with morphological algorithm optimization
(Contributor 4). Zheng et al. applied multi-scale semantic segmentation to fire smoke,
incorporating global information (Contributor 5). These advancements showcase the
widespread impact of semantic segmentation in diverse fields.

• Zeroshot learning. The common supervised learning tasks were often struggled
with the limited or the unlabeled examples. This challenge was tackled by zero-shot
learning, in which the transferable representations can be exploited. The discrimina-
tive and semantic-relevant features can be therefore encompassed into the learned
representations. In some researchers, the semantic-relevant representations were em-
phasized through visual-semantic alignment. Likewise, the discrimination techniques
for broader generalization were focused on in the other studies. Recently, the shared
representations between these sub-tasks were targeted. In this special issue, Wang
et al. introduces a novel partially-shared multi-task representation method preserving
complementary knowledge, namely PS-GZSL (Contributor 6). The emerging algo-
rithms like federated learning and contrast learning are used too to offer new solutions
to zero-sample learning (Contributor 7).

• Model optimization. A significant challenge in the current advancement of deep
learning lies in the extensive computation and parameters involved. It is infeasible
to deploy the resource-intensive convolutional neural networks (CNNs) on computing
devices with limitations, such as embedded systems and mobile devices (Contributor 8).
To tackle these issues, considerable research efforts have been dedicated to compres-
sion techniques, including channel pruning, low-rank decomposition, and weight
quantization. In this special issue, a new trick via dynamic pruning and layer fusion is
presented to optimize the deep model (Contributor 9). Through the incorporation of
knowledge distillation and short–long fine-tuning, the redundant layers with minimal
accuracy loss can be eliminated. The primary objective is to reduce memory access
more significantly than reducing computational complexity.

• Multimodal applications. In the real-world visual tasks, a multi-dimensional frame-
work is involved, encompassing spatial, temporal, and modal dimensions. Spatially,
tasks may be spanned from image-level and region-level to pixel-level assignments.
Temporally, the challenges are then extended beyond the static images to include the
processing of time-series videos. In terms of modalities, the inputs and the outputs
can be displayed in a variety of fashions, such as images, text, videos, or other types
like body poses (Contributor 10) and depth maps (Contributor 11). So, it refers to
another important research fields, the data engineering (Contributor 12). Given the
diverse range of application scenarios (Contributor 13), it is challenging to achieve
the universality for model design. Consequently, the future development trajectory
of deep visual systems will focus on constructing more versatile models capable of
accommodating a wide array of input and output types, effectively addressing the
varied demands arising from different scenarios.

In the end, we would like to express our gratitude to these authors who have dedicated
their efforts to in-depth research in the field of computer vision. Their contributions are
of significant importance in addressing current challenges. Additionally, we extend our
thanks to all the reviewers for their time, dedication, and valuable insights during the
evaluation process. This helps ensure the selection of high-quality papers in accordance
with standards.
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Article

Multi-Scale Semantic Segmentation for Fire Smoke Image
Based on Global Information and U-Net

Yuanpan Zheng, Zhenyu Wang *, Boyang Xu and Yiqing Niu

College of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China
* Correspondence: wang_zhenyu0801@163.com

Abstract: Smoke is translucent and irregular, resulting in a very complex mix between background
and smoke. Thin or small smoke is visually inconspicuous, and its boundary is often blurred.
Therefore, it is a very difficult task to completely segment smoke from images. To solve the above
issues, a multi-scale semantic segmentation for fire smoke based on global information and U-Net is
proposed. This algorithm uses multi-scale residual group attention (MRGA) combined with U-Net to
extract multi-scale smoke features, and enhance the perception of small-scale smoke. The encoder
Transformer was used to extract global information, and improve accuracy for thin smoke at the edge
of images. Finally, the proposed algorithm was tested on smoke dataset, and achieves 91.83% mIoU.
Compared with existing segmentation algorithms, mIoU is improved by 2.87%, and mPA is improved
by 3.42%. Thus, it is a segmentation algorithm for fire smoke with higher accuracy.

Keywords: multi-scale residual group attention; U-Net; smoke segmentation; global information

1. Introduction

Occurrence of fire not only threatens the safety of human life and property, but also
damages the natural environment. According to the World Fire Statistics Center (WFSC), in
2019, there were 3.1 million fires in 34 countries around the world. About 19,000 civilians
died in fires, and 68,000 were injured in fires. Moreover, as of 15 August 2020, California
fires have destroyed 1.2 million acres of forest and burned a total of 1.4 million acres of
fields for the year. Therefore, the segmentation of fire smoke images plays an important
role in providing preconditions for fire smoke detection and early warning.

Semantic segmentation is one of the main tasks in the field of computer vision applica-
tions. It classifies each pixel in an image, so that the image can be segmented into regions
with different semantics. In 2015, Long et al. [1] proposed the segmentation network FCN,
which brought semantic segmentation into a new era. The network achieved end-to-end
semantic segmentation using transposed convolutions to replace fully connected layers in
the network. In the same year, Badrinarayanan et al. [2] proposed SegNet, which uses index
information to perform up-sampling in a decoder to save computing power overhead,
but this leads to the loss of more feature information. By using spatial pyramid pooling,
PSPNet [3] adds local and global information to the feature map, which improves the
semantic understanding ability of the network. In order to enhance feature information,
Fu et al. [4] proposed DANet, in the form of a dual-path attention channel, to capture
global feature dependencies simply and effectively. With the development of semantic
segmentation, the semantic relationship between different images is gradually excavated
by researchers. For example, Zhou et al. [5] used a graph model to build the semantic
dependencies between a set of images, and the graph dropout was used to avoid ignoring
isolated objects. Wang et al. [6] proposed a pixel-wise contrastive learning, which used
the cross-image pixel-to-pixel relation to learn a well-structured pixel semantic embed-
ding space to replace the traditional image-wise-based training paradigm. Recently, Zhou

Electronics 2022, 11, 2718. https://doi.org/10.3390/electronics11172718 https://www.mdpi.com/journal/electronics
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et al. [7] proposed a novel non-parametric segmentation method based on non-learnable
prototypes, and achieved excellent performance.

There are two main types of algorithms for smoke segmentation: one is based on
traditional image processing. According to color, texture, and motion characteristics of
smoke, algorithms such as thresholding, clustering, and moving object detection are used
to segment smoke regions. Appana et al. [8] converted smoke images from RGB color
space to HSV color space, and performed thresholding on its saturation and brightness
to achieve segmentation of smoke regions. Zhao et al. [9] used fuzzy c-means algorithm
(FCM) to segment fire smoke areas based on pixel color information. Reference [10]
proposed a multi-scale segmentation algorithm for smoke using a wavelet module based
on smoke texture, and experiments show that it is better than traditional edge segmentation
algorithms. Peng et al. [11] used background difference method to segregate smoke regions
from videos based on a Gaussian mixture model (GMM), which is very effective for slow-
moving smoke. Wu et al. [12] found that the optical flow of blue channel can effectively
reflect motion characteristics of smoke, and proposed an algorithm based on dense optical
flow to segregate smoke. Such methods effectively overcome the interference of smoke-like
objects, but there will be a lot of interfering objects in the segmentation result, when some
non-smog moving objects exist.

Some other smoke segmentation is performed based on deep learning methods. Com-
pared with traditional image processing algorithms, convolutional neural networks can
automatically learn deep-level pixel information in smoke images, which not only reduces
the complexity of feature extraction, but also has higher anti-interference capability. Salman
et al. [13] used DeepLab v3+ with an encoder and decoder to segment smoke, and the
accuracy is significantly improved by 3%. Yuan et al. [14] proposed a dual-classification-
assisted gated recurrent network (CGRNet) for smoke segmentation. The results are
significantly better than existing algorithms, and satisfactory results are achieved on thin
smoke. Considering the visibility of haze in the sky, Taanya et al. [15] adopted the dark
channel pre-processing method to reduce the amount of haze in images, and combined
dense optical flow with mask R-cnn to improve the anti-interference capability of the
segmentation algorithm. Zhu et al. [16] proposed a 3D CNN with an encoder–decoder
based on the motion features of smoke, which effectively mitigated the interference of
moving objects.

Algorithms for smoke segmentation based on deep learning show significant advan-
tages, but there are still many shortcomings: on the one hand, due to the variable size of
smoke, the accuracy of existing algorithms for segmentation of small smoke is not high.
On the other hand, the translucent character of thin smoke at the edges results in missed
segmentation and wrong segmentation

Therefore, to solve above issues, this paper proposes a high-precision segmentation
algorithm for smoke based on multi-scale features and global information of smoke. The
main work is as follows: (1) a multi-scale residual group attention was proposed to extract
and enhance smoke features of different scales, which improved the accuracy of segmen-
tation in small smoke; (2) the self-attention of Transformer was used to generate global
features of smoke and fuse them with multi-scale features to reduce the probability of
missed segmentation and wrong segmentation; (3) the effectiveness of the method proposed
in this paper was verified by ablation experiments and comparative experiments.

2. Related Work

2.1. Neural Attention

An attention mechanism is similar to the way that humans observe objects. More
attention is given to locally important information by weighting the feature maps. It is very
beneficial to enhance feature representation and reduce noise.

The most representative of existing channel attention is SE-Net [17], as shown in
Figure 1. SE-Net generates attention maps by global average pooling, and applies them
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to input features. The purpose is to suppress useless channels, and enhance beneficial
channels by building correlations between channels.

U

H

W C

H

W
C

C C

Figure 1. Channel attention (CA).

Spatial attention enhances the effective information in the feature map by assigning
higher weights to pixels. Spatial attention in CBAM [18] is one of the most representative
models. Spatial attention performs maximum pooling and average pooling along the
channel. Then, the weight matrix is generated by convolution calculation. Finally, the
weight matrix is multiplied with each channel of the feature map to obtain the attentional
features, as shown in Figure 2.

H

W
C

H

W
C

Figure 2. Spatial attention (SA).

2.2. Transformer

Transformer was first proposed by Vaswani [19] for machine translation and estab-
lished state-of-the-art technology in many NLP tasks. To make Transformers also applicable
for computer vision tasks, several modifications were made. For instance, Alexey et al. [20]
proposed Vision Transformer (ViT), and achieved state-of-the-art results in ImageNet
classification by directly applying Transformers with global self-attention to full-sized
images. Swin Transformer [21] uses sliding windows to improve the computational speed
of Transformer, and achieved excellent results in various vision tasks

3. Materials and Methods

3.1. Smoke–U-Net

U-Net [22], proposed by Ronneberger, is composed of an encoder and decoder. It is
widely used in medical image segmentation. Smoke–U-Net is improved based on U-Net and
Transformer, as shown in Figure 3. It mainly contains two parts. The first part is MRGA–U-Net
at the bottom of Figure 3, which is improved based on U-Net. MRGA–U-Net replaces the
convolution after up-sampling and down-sampling in each layer of U-Net with MRGA. On
the one hand, MRGA is used to enhance the representation of smoke features, to make up
for the loss of feature information. On the other hand, it can also enhance the perception of a
model to multi-scale smoke. The second part is the GFM at the top of Figure 3, which is based
on the encoder of Transformer. The input of GFM is an original RGB smoke image and the
output is a feature map γ ∈ R

H×W×1, which represents the global information. The global
feature γ is fused to MRGA–U-Net by matrix multiplication. Then, the fused features are sent
to 1 × 1 convolution and Softmax to obtain the result of segmentation.

6
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Figure 3. Smoke–U-Net algorithm.

3.2. Multi-Scale Residual Group Attention (MRGA)

Colors, textures, and edges are the main features of smoke. However, in algorithms of
smoke segmentation with convolutional neural networks, on the one hand, down-sampling
reduces or even removes the feature of small-sized smoke, and the features are difficult to
recover during up-sampling, which causes more difficult segmentation on small smoke.
To cope with the weakening and loss of information, MRGA uses multi-scale convolution
kernels to retain more features without increasing parameters. On the other hand, the
higher fusion of small smoke with the background, and the more noise caused by similar
pixels, leads to errors in the classification of pixels. To enhance the features of smoke,
the MRGA uses channel attention and spatial attention to enhance the representation of
features, as shown in Figure 4.

H

W

H

W C

Figure 4. Multi-scale residual group attention block (MRGA).
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MRGA first groups the feature maps, and then extracts multi-scale features of smoke
through convolution kernels of different scales. Then, 1 × 1 convolution is used to extract
small smoke features, 5 × 5 convolution is used to extract larger smoke features, and 3 × 3
convolution is used to extract regular size features. The extracted multi-scale features are
then passed through channel attention and spatial attention to enhance channel features
and spatial features, and output a refined feature map. Finally, smoke features at different
scales are concatenated. MRGA directly propagates rich, low-frequency information by
residual connections, which speeds up the training of the network and alleviates gradient
degradation. At the same time, in order to ensure the exchange of information between
different grouping features, and enhance the expressiveness of features, MRGA uses 1 × 1
convolution to rearrange output features.

3.3. Global Features Module (GFM)

To solve inaccurate segmentation due to thinness of smoke at the edge, GFM uses the
encoder of Transformer to capture global semantic information of the image. We divided
the input image X ∈ R

H×W×C into non-overlapping patches Xp = {x1, . . . , xN}, where
xN ∈ R

N×C×p×p, p × p denotes the dimension of each patch and N = HW
p2 is the length of

image sequence. Through Linear Projection, we flattened each patch into a K dimensional
vector I, where K = C × p × p. To maintain the spatial information of each patch, we
added a Positional Embedding Ipos to the Patch Embedding I, in order to preserve positional
information T. Finally, we use the encoder of Transformer to encode T and output the
image-level global information γ ∈ R

1×H×W by Reshape.

T = I + Ipos (1)

3.4. Loss Function

Segmentation results depends not only on network structure, but also on the choice of
loss function. Dice loss function is proposed for the problem of low segmentation accuracy
due to small target. It is derived from binary classification, which essentially measures the
overlap of two regions. In this paper, a loss function combining binary cross entropy (BCE)
and Dice loss function was used to alleviate the inaccurate prediction effect caused by the
difference in the proportion of foreground and background, as shown in Equations (2)–(4).

BCE = − 1
N

N

∑
i=1

yi log(pi) + (1− yi) log(1− pi) (2)

Dice = 1−
2

N
∑

i=1
yi pi + ε

N
∑

i=1
yi +

N
∑

i=1
pi + ε

(3)

BDLoss = 0.6× BCE + 0.4× Dice (4)

where y represents the true label, p represents the predicted result, and N represents the
set of all pixels. In order to prevent the numerator and denominator of Dice from being
extremely small during the training process, which may exceed the computer’s storage
range for the float number, a minimum value ε is set, and ε takes 1× 10−5 in the experiment.

4. Results

4.1. Experimental Platform

Our experiment used PyTorch framework to build the proposed model. Training and
testing were performed on a computer with an Intel Core i7-9700 CPU and 4× NVIDIA
Tesla V100 GPU/32G.

Parameters were updated by Adam optimizer with a learning rate of 0.001, a momen-
tum of 0.99, and a decay factor of 0.9 for the learning rate. Batch size was 16.
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4.2. Dataset

The smoke dataset comes from The State Key Laboratory of Fire Science, University
of Science and Technology of China. The url is http://smoke.ustc.edu.cn/datasets.htm
(accessed on 7 July 2021). It is a public dataset that only has raw smoke images, and does
not contain label images for model training. Therefore, we organized and annotated 2300
smoke images (3 × 512 × 512) with labelme software to obtain the corresponding binary
label maps. It not only includes multiple scenes such as forests, fields, indoors, playgrounds,
urban buildings, and roads, but also includes large, medium, and small smoke of different
scales. Some samples are shown in Figure 5. During training, the dataset was divided into
training set, validation set, and test set, according to the ratio of 7:2:1.

(a)

(b)

Figure 5. (a) samples of smoke images; (b) labels of smoke images.

4.3. Evaluation Index

Our experiment adopted mean intersection over union (mIoU), mean pixel accuracy
(mPA), and the frames per second (FPS) as evaluation indicators.

mIoU indicates the average of overlap between the segmentation result and real label.
It is commonly used to evaluate the accuracy of algorithms, and its calculation formula is
as follows:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(5)

where k is the number of classes of objects in the foreground, and pij is the number of pixels
belonging to class i that are classified as class j.

mPA, shown in Equation (6), indicates the proportion of correctly classified pixels to
all pixels:

mPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(6)

4.4. Results of Train and Validation

In this experiment, the method proposed in this paper was trained and verified for 145
epoch in a smoke dataset, and then the mIoU curve and loss curve were drawn, as shown
in Figure 6.

(a) (b)

Figure 6. (a) Mean value of mIoU at convergence of train and validation is 93.51% and 91.82%,
respectively; (b) mean value of DBLoss at convergence of train and validation is 0.033 and 0.078%,
respectively.

9



Electronics 2022, 11, 2718

5. Discussion

5.1. Ablation Experiment

In order to validate the effectiveness of MRGA and GFM, we performed ablation
experiments to compare and analyze the impact of each improvement on the algorithm.
The results are shown in Table 1.

Table 1. Results of ablation experiments.
√

means the current module is included in the method.

Method MRGA GFM mIoU mPA FPS

U-Net 86.81 91.84 22.36
GFM–U-Net

√
89.40 94.32 18.95

MRGA–U-Net
√

89.12 94.18 24.55
Smoke–U-Net

√ √
91.82 96.62 20.17

The results show that the model with MRGA has a 2.31% improvement in mIoU and a
2.34% improvement in mPA compared with the model without MRGA. It illustrates that
MRGA can effectively reduce the negative effect caused by information loss and improve
the accuracy of segmentation. Compared with the model without GFM, the mIoU and mPA
of the model with GFM improve by 2.59% and 2.48%, respectively. Meanwhile, we can see
that GFM slightly outperforms MRGA on mIoU and mPA, however, GFM has a lower FPS.
This is related to the fact that GFM has more parameters.

5.2. Comparative Experiment of Multi-Scale Segmentation

To evaluate the effectiveness of Smoke–U-Net, four representative algorithms of
segmentation, including SegNet, PSPNet, DeepLab v3+ [23], and U-Net, were selected for
experiments on smoke datasets. Firstly, the validation set was divided into three subsets of
large, medium, and small, according to the size of the smoke. Then, each algorithm was
tested on the subsets to compare the capability of segmentation of smoke of different sizes.
The results of different algorithms are shown in Table 2. Compared with other algorithms,
Smoke-U-Net significantly improves the accuracy of segmentation for multi-scale smoke,
and the average mIoU reaches 91.82%. From these results, it is shown that Smoke-U-Net
achieves state-of-the-art results on all three subsets. In particular, in the results of small
smoke, the mIoU of Smoke–U-Net increases by 3.11% and 4.54%, compared with DeepLab
v3+ and U-Net, respectively.

Table 2. Comparison of mIoU for segmentation at multi-scale smoke and bold font indicates best grade.

Method Large Medium Small

SegNet 85.34% 82. 89% 78.52%
PSPNet 86.53% 82.30% 80.18%
U-Net 89.72% 86.92% 83.82%

DeepLab v3+ 91.03% 88.61% 85.25%
Smoke–U-Net 94.97% 92.15% 88.36%

Figure 7 shows the results of segmentation of different sized smoke by each algorithm.
Combined with the definition of mIoU, the performance of each method for segmentation
can be visualized from the degree of overlap between the red markers and smoke. It can be
seen that Smoke–U-Net effectively reduces the wrong segmentation for small smoke and
the missed segmentation for thin smoke at the edge. In summary, for different size smoke,
the results of Smoke–U-Net are more complete, and the boundary is clearer, compared with
the other algorithms.
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Large

Medium

Small

Original image SegNet PSPNet DeepLab v3+ U Net Smoke–U Net

Figure 7. Comparison of segmentation results on multi-scale smoke.

5.3. Comprehensive Experiments

As shown in Table 3, eight semantic segmentation models, including Smoke–U-Net,
are selected for comparison of comprehensive performance. FCN and SegNet are repre-
sentatives of the semantic segmentation models with an encoder–decoder. PSPNet and
DeepLab v3+ are representatives of semantic segmentation models that perform feature
fusion on the basis of an encoder–decoder. DANet is a representative of semantic segmen-
tation models that utilize the parallel attention mechanism to capture semantic features.
Vision transformer is a typical representative of self-attention. Comprehensive experiments
are performed on all smoke datasets.

Table 3. Comprehensive performance of each algorithm and bold font indicates best grade.

Model mIoU/% mPA% FPS

FCN 80.26 85.95 18.28
SegNet 82.32 88.67 20.65
PSPNet 85.81 90.07 16.47

DeepLab v3+ 88.96 93.20 19.01
U-Net 86.01 91.84 22.36
DANet 88.47 92.65 16.05

Vision Transformer 88.24 92.32 10.30
Smoke–U-Net 91.83 96.62 20.17

Experiments show that Smoke–U-Net achieves the highest scores on mIoU and mPA,
reaching 91.83% and 96.62%, respectively. It benefits from the accuracy of feature extraction
for small-scale smoke by MRGA, and the fusion of global smoke information by GFM. With
the increase in sampling times, the receptive field of traditional convolution becomes larger
and larger, which causes the small target feature to be larger than its original size when
mapped back to original image. MRGA uses 1 × 1 convolution with a smaller receptive
field to pass and enhance small features, which makes the feature extraction of small
targets more accurate. At the same time, GFM constructs the global information of smoke
concentration changes, which improves the recognition ability of thin smoke at the edge
of images. Therefore, the higher score achieved by Smoke–U-Net is expected. In terms
of frame rate, SegNet and U-Net are two simple encoder–decoder structures, and have
significant advantage in computation. In contrast, the encoder of GFM has more parameters
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and computation. Therefore, Smoke–U-Net is second only to U-Net and SegNet in speed.
However, compared to the increase in mIOU (2.70%) and mPA (2.44%), the slightly decrease
in speed is acceptable. Vision transformer is more complex, and has a large amount of
parameters in the encoder and decoder, so it achieves a lower FPS. Figure 8 shows the
results of the comprehensive experiment. Taking into account the speed and accuracy of
Smoke–U-Net, it is more applicable to the actual requirements for smoke segmentation
than other models.

Images

Labels

Ours

DeepLab
v3+

DANet

U Net

PSPNet

SegNet

FCN

Vision
Transformer

Figure 8. Comparison of comprehensive performance of the algorithms (Chinese characters in the
picture have no meaning).
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The method proposed in this paper is effective in multi-scale smoke segmentation.
However, the method is not always highly accurate, as shown in Figure 9. When blurred
background is almost integrated with the low-concentration smoke, or there are some
solid-color interfering objects in the background, sometimes wrong segmentation occurs.
Therefore, we still have a lot of work to do in terms of smoke segmentation.

Figure 9. Some failure cases of the method in this paper (Chinese characters in the picture have no
meaning).

6. Conclusions

In this paper, we analyzed and discussed the current difficulties of smoke segmentation
from the demand of detection of fire smoke. To solve these difficulties, an algorithm called
Smoke–U-Net was proposed. This algorithm improves U-Net, and proposes a multi-scale
residual group attention module, which not only reduces the loss of semantic information,
but also enhances the smoke features through channel attention and spatial attention. In
addition, the encoder Transformer was used to extract the global information of smoke,
and establish the relationship of smoke concentration, so as to improve the segmentation
accuracy of thin smoke. Finally, the effectiveness of Smoke–U-Net for smoke segmentation
at multiple scales was experimentally verified. It achieves 91.82% mIoU and 96.62% mPA.
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Abstract: Due to the high automaticity and efficiency of image-based residential area extraction, it
has become one of the research hotspots in surveying, mapping, and computer vision, etc. For the
application of mapping residential area, the extracted contour is required to be regular. However,
the contour results of existing deep-learning-based residential area extraction methods are assigned
accurately according to the actual range of residential areas in imagery, which are difficult to directly
apply to mapping due to the extractions being messy and irregular. Most of the existing ground object
extraction datasets based on optical satellite images mainly promote the research of semantic segmen-
tation, thereby ignoring the requirements of mapping applications. In this paper, we introduce an
optical satellite images dataset named RERB (Residential area Extraction with Regularized Boundary)
to support and advance end-to-end learning of residential area mapping. The characteristic of RERB
is that it embeds the prior knowledge of regularized contour in the dataset. In detail, the RERB dataset
contains 13,892 high-quality satellite images with a spatial resolution of 2 m acquired from different
cities in China, and the size of each image is approximately 256 × 256 pixels, which covers an area of
more than 3640 square kilometers. The novel published RERB dataset encompasses four superiorities:
(1) Large-scale and high-resolution; (2) well annotated and regular label contour; (3) rich background;
and (4) class imbalance. Therefore, the RERB dataset is suitable for both semantic segmentation
and mapping application tasks. Furthermore, to validate the effectiveness of the RERB, a novel
end-to-end regularization extraction algorithm of residential areas based on contour cross-entropy
constraints is designed and implemented, which can significantly improve the regularization degree
of extraction for the mapping of residential areas. The comparative experimental results demonstrate
the preponderance and practicability of our public dataset and can further facilitate future research.

Keywords: residential area extraction; mapping requirement; contour regularization; end-to-end
deep model; Tian-Hui 1 satellite images

1. Introduction

Topographic map data with 1:50,000 scale are one of the most basic geographic infor-
mation data, which play a significant and strategic role in national economy and national
defense construction [1,2]. With the rapid development of society, users have increasingly
higher requirements for the current situation of topographic maps, and the updating of to-
pographic maps [3,4] has become the primary and urgent work. The content of topographic
maps mainly includes ground objects and the undulating form of terrain. Because the
changes in terrain data are generally relatively small, the updated objects of topographic
map mainly consist of ground objects.

Optical remote sensing imagery is one of the main data sources for updating ground
objects in topographic maps. Ground object mapping mainly refers to the acquisition of
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object information in remote sensing imagery according to the corresponding scale graphic
specification [1]. At present, ground object mapping using remote sensing imagery is
mainly completed manually, with high precision but low efficiency, making this kind of
fashion tedious, expensive, and labor intensive, so it is difficult to meet the needs of rapid
applications, such as land planning and automatic driving. According to official statis-
tics [5], it takes at least 40 days and 10 thousand RMB to produce 1:50,000 topographical
map data. The number of global 1:50,000 topographical maps is about 400 thousand, and
each update requires an investment of about 4 billion RMB.

With the launch of Zi-Yuan 3 (ZY-3) and Tian-Hui 1 (TH-1) stereo mapping satel-
lites [6,7], China has the capability of measuring and updating 1:50,000 topographic maps
with satellite remote sensing imagery. Among the ground feature elements, residential
areas are one of the most important elements in topographic map content. A survey demon-
strated that in most areas, the workload of extracting residential areas accounts for more
than 60% of all the work of extracting ground features [2]. Therefore, studying the auto-
matic extraction method of residential areas for mapping applications is of considerable
significance to improving the efficiency of mapping work.

With the development of this automatic extraction technology, many institutions
around the world have developed digital mapping systems integrated with automatic
technology for recognizing ground feature elements [2]. For examples, both the eCogni-
tion [8] of Definiens and the EasyFeature [9] of Handleray have integrated the ground
feature recognition technology. Specifically, this kind of method mainly includes two steps:
extraction and post-processing.

Semantic segmentation [10,11] is a typical and an efficient technology to accomplish
the extraction step, which indicates, dividing the image into pixel groups with specific
semantics and recognizing each region’s category. In recent years, the development of deep
learning techniques, such as convolution neural network (CNN), has injected new vitality
into the study of semantic segmentation. However, due to the complexity of ground features
and background in remote sensing imagery, the classification results of residential areas
extracted by semantic segmentation method are usually not perfect, especially at residential
area boundaries [12], which are irregular contours. Consequently, these classification results
cannot be directly employed in mapping applications. In addition, the post-processing
technology is exploited to obtain the regularized object boundary contour. The popular
operations used to identify the boundary of a raster dot group include smoothing, line
segment fitting, denudation under complex constraints, and conditional random field
(CRF) method, etc. In addition, there are also some methods using an end-to-end network
to process the boundary of objects. The abovementioned innovative works focus on
improving extraction accuracy but without consideration of the matching degree between
the extraction results and the mapping requirement.

Obviously, the mapping method with two steps is cumbersome, and the post-processing
step also greatly reduces the overall intelligence of the mapping method. End-to-end fashion
can realize intelligent mapping without manual intervention. To promote the end-to-end
mapping method, we present and introduce an optical satellite images dataset named RERB
(Residential area Extraction with Regularized Boundary). To the best of the authors’ knowl-
edge, there is no dataset released for the application of mapping residential area, which
limits the research of end-to-end residential area regularization extraction. Compared to
existing datasets, the contour of label image in RERB dataset consists of regular line seg-
ments. Given this point, it can facilitate the research for end-to-end training of residential
area regularized extraction. Specifically, the public RERB dataset consists of 13,892 satellite
images in 256 × 256 size, covering an area of more than 3640 square kilometers.

To summarize, our contributions are as follows:

(1) According to the specifications for cartographic symbols of 1:50,000 topographic map,
our work summarizes the requirements of regular extraction in the residential area
mapping application.
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(2) We construct a residential area mapping dataset called RERB with regular contour
labels based on TH-1 [7] satellite images, which is the first dataset released for the
residential feature mapping application. Furthermore, in order to measuring the
compliance of the extraction results with the mapping requirements when using
RERB dataset, we design a special evaluation index named CMI (contour matching
index) based on contour matching. Extensive experiments demonstrate the superiority
of RERB dataset.

(3) We sufficiently explore the contour constraint with regular contours in label images
by integrating the contour cross-entropy constraint and the original loss function into
an end-to-end network, which can significantly improve the regularization degree of
extraction results for the mapping of residential areas.

The remainder of this paper is organized as follows: Section 2 introduces the related
works. Section 3 presents the constructed RERB dataset in detail. Section 4 details the exper-
imental results along with in-depth analysis. Section 5 finishes the paper with conclusions
and our future perspective.

2. Related Works

In this section, we first describe the development of datasets for ground object extrac-
tion based on optical image and then introduce semantic segmentation methods. Finally,
we introduce post-processing technology.

2.1. Datasets for Ground Object Extraction

Recently, with the advancement of deep learning technology, datasets have played an
important part in ground object extraction. Any effective deep learning model is obtained
by training with many original images and their corresponding labels. As shown in Table 1,
the widely used open-source datasets with optical image pixel level annotation include
WHU [13], LandCoverNet [14], GID [15], LoveDA [16], SSD [17], etc.

Table 1. Overall comparison of some satellite image datasets.

Year Resolution (m) Image Size Samples Categories
Task-Semantic
Segmentation

Task-Mapping

WHU

2019 0.45 512 × 512 17,388 2
√ √

(building)

2019 0.3–2.3 512 × 512 204 2
√ √

(building)

LandCoverNet 2020 10 256 × 256 1980 7
√

GID 2020 4 7200 × 6800 150 6
√

LoveDA 2021 0.3 1024 × 1024 5987 7
√

SSD 2021 2 7400 × 4950 23 5
√

RERB
(ours) 2022 2 256 × 256 13,892 2

√ √

WHU dataset is released by Wuhan University, and it includes one land-cover category,
namely, buildings. WHU dataset can be used to construct a building extraction model
in a topographic map with a scale of 1:10,000 or larger and cannot be directly applied to
residential area mapping in 1:50,000 scale topographic maps.

The Gaofen image dataset (GID) contains 150 high-quality GF-2 images from more than
60 cities in China, with a spatial resolution of 4 m. The size of each image is approximately
7200 × 6800 pixels, and it includes six land cover categories, namely, built-up, farmland,
forest, meadow, water, and others, which represents all categories other than the former
five categories. Similarly, LandCoverNet, LoveDA, and SSD are also constructed for land
use and land cover (LULC) classification. If they are used for topographic mapping,
post-processing steps still need to be added after model inference.
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To study end-to-end regularized extraction technology of residential area, we propose
the RERB dataset in this paper.

2.2. Semantic Segmentation

Semantic segmentation is a long-standing research topic that assigns a label to each
pixel, known as pixel-level classification. In 2015, Long et al. [18] proposed full connected
networks (FCNs), whose excellent performance led researchers to change their understand-
ing of semantic segmentation from regional clustering to pixel classification. At present,
CNN-based methods have completely exceeded the segmentation accuracy of traditional
methods. However, the training steps of FCNs are complex, and it is easy to lose pixel
position information during up-sampling. After that, U-Net [19], SegNet [20], PSPNet [21],
the DeepLab family [22–24], and FastFCN [25] were developed. U-Net can effectively fuse
multilevel feature maps, and small objects and large objects are processed by using shallow
and deep information, respectively. U-Net is essentially a structure based on multiscale
context and multilevel feature fusion. SegNet improves the segmentation accuracy by
recording the position of pooled values in the original feature map and accurately mapping
the relevant values to the corresponding positions in the up-sampling step. However,
SegNet still fails to recover the object boundary very well. PSPNet integrates the multiscale
background information with a pyramid pooling module. To obtain a larger receptive field,
PSPNet improves the backbone network by using dilated convolutions [26]. Furthermore,
additional losses can provide the intermediate supervision information in PSPNet. The
DeepLab series leads research on semantic segmentation. DeepLab v3+ [24], which inte-
grates more local information in low-level features and replaces the feature extractor with a
more complex Xception network [27], performs well on several public datasets. In addition,
the atrous spatial pyramid pooling (ASPP) structure proposed by the DeepLab network
has been widely employed in semantic segmentation research literature. FastFCN uses the
joint pyramid up-sampling (JPU) module to improve the dilated convolution and obtains
faster speed and higher accuracy.

Especially, semantic segmentation technology has been applied to remote sensing im-
agery and medical image [28,29] in recent years, which has greatly improved the research
level of methods used to automatically extract ground feature elements. For example,
Ying Sun et al. [30] used optical images and light detection and ranging (LiDAR) data
to construct multichannel input data and designed a convolution neural network (CNN)
model with multiscale encoder–decoder architecture to achieve enhanced segmentation
results. Cui et al. [31] also improved the accuracy of building extraction by using the
multiscale information of images. Y. Liu et al. [32] jointly used LiDAR data and intro-
duced a higher-order CRF to increase the accuracy of ground object segmentation. In
addition, several researchers designed two-stage training approaches [33], modified loss
function [34], self-attention modules [35,36], edge information [37], or both self-attention
and edge enhancement modules [17] to fully exploit the context information of remote
sensing imagery from a larger perspective.

2.3. Post-Processing Technology

The processing object of post-processing technology is the raster dot group, which is
obtained by semantic segmentation. Traditional operations used to identify the boundary
of a raster dot group include smoothing, line segment fitting, and denudation under
complex constraints [38,39]. Most of these methods belong to the field of traditional image
processing, and the degree of automation and intelligence is low.

Moreover, CRF [40–42] methods are also widely used in post-processing of semantic
segmentation results. Using CRF, the segmentation results can be corrected, especially
at ground object borders. However, these CRF methods require the introduction of sam-
ples to the CRF control process, and this operation cause the CRF methods to lose their
end-to-end characteristics. For mapping tasks based on automatic extraction technology,
when the end-to-end characteristics are lost, the ground object mapping work must add
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an additional manual post-processing operation, which greatly reduces the overall intel-
ligence of mapping tasks. Hence, new end-to-end methods must be introduced to solve
this problem.

Ying Sun et al. [43] first constructed multichannel input data using optical images
and LiDAR data and then achieved a better result than SegNet by designing an end-
to-end encoding–decoding structure. Meanwhile, the object boundary is strengthened.
There are also some methods using an end-to-end network to process the boundary of
objects, such as ACE2P [44], Gated-SCNN [45], and EaNet [46]. The ACE2P model realizes
end-to-end high-precision training by fully integrating the bottom characteristics, global
contextual information, and edge details in the human body parsing task. Gated-SCNN
is a double branch structure, in which the target shape information is embedded into
the semantic segmentation network by a shape branch. Except for traditional semantic
segmentation labels, image boundary labels are also needed in Gated-SCNN. To effectively
separate confusing objects with sharp contours, EaNet is constructed based on a large
kernel pyramid pooling (LKPP) module and a dice-based edge-aware loss function.

3. The RERB Dataset and Model Construction

This section first describes the contour requirements for mapping applications and
then introduces the RERB dataset. Finally, we analyze the statistics for RERB dataset and
describe the construction of a residential area regularized extraction model.

3.1. Contour Requirements for Mapping Applications

Different topographic maps are distinguished by scale and commonly used scales
generally include 1:2000, 1:5000, 1:10,000, and 1:50,000. The 1:50,000 topographic map data
are one of the most basic geographic information data. At present, ground object mapping
using remote sensing imagery is mainly completed manually, with high precision but low
efficiency, making this kind of fashion tedious, expensive, and labor intensive [5]. As a
result, it is very important to analyze the mapping requirements and build a mapping
dataset to improve the intelligence of mapping work.

Topographic maps of different scales are constrained by corresponding graphic spec-
ifications, which mainly stipulates the symbols, annotations, and contour decoration of
various ground objects and geomorphic elements represented on topographic maps, as
well as the methods and basic requirements of using these symbols. This paper mainly
focuses on 1:50,000 scale, and its corresponding current national standard [1] was issued
on 14 October 2017 and implemented on 1 May 2018.

Ground object mapping in surveying and mapping field mainly refers to the collection
of the ground object information from remote sensing imagery according to the correspond-
ing specification for cartographic symbols [1]. Figure 1 is an example of residential area
extraction and mapping based on optical images. Figure 1b is an illustration of a residential
area in the 1:50,000 topographic map corresponding to the original image in Figure 1a.
Mapping is to obtain the contour of ground objects that meet the requirements of graphic
specifications from remote sensing imagery.

Residential areas [2] refer to houses that are contiguous to each other in cities, towns,
and villages. There are obvious outer contours and primary and secondary streets in
residential areas. The graphic specification [1] stipulates that the convex and concave parts
should be comprehensively represented when their length is less than 0.5–1 mm on the
maps. In the 1:50,000 topographic map, 1 mm on the map represents the actual 50 m, and
the length of 50 m is 25 pixels in the image with a resolution of 2 m. Therefore, the graphic
specification requires that the convex and concave parts should be smoothed when their
length is less than 12.5–25 pixels.

Figure 1c is a direct extraction result of residential areas based on semantic segmenta-
tion algorithms. The contour line is messy and has a high degree of border redundancy.
Figure 1b shows an illustration of the residential area layer in a topographic map, and it is
a standard representation corresponding to the cartographic symbols used in topographic
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mapping. Its outer contour is multiple straight-line segments. The comparison indicated
that the results of traditional semantic segmentation algorithms are different from the
requirements of the cartographic symbols, and the contour of the extracted results must be
regularized as much as possible.

 
(a) (b) 

 
(c) 

Figure 1. An example of residential area mapping based on images: (a) Original image; (b) the
residential area layer in topographic map; and (c) direct extraction results of residential areas.

To sum up, the extracted contour is required to be regular when images are used for
residential area mapping. Each segment of extracted contour is generally a straight-line
segment, which is relatively regular. Therefore, when building a dataset that supports the
end-to-end regularization extraction of residential areas, it is necessary to ensure that the
label image contour meets the regularization requirements.

3.2. Overview and Data Properties

In order to create RERB dataset, we collected 13,892 high-resolution TH-1 images [7],
and the size of each image is approximately 256 × 256 pixels. Figure 2 shows the label
visualization result in this dataset. The TH-1 satellite is the first stereo mapping transmission
satellite in China, and its goal is to achieve topographic mapping at a 1:50,000 scale without
using ground control points. It consists of a high-resolution camera with ground pixel size
of 2 m and a multispectral camera with a ground pixel size of 10 m. Images with a spatial
resolution of 2 m are applied in this dataset, and these images cover a geographical area of
more than 3640 square kilometers.

The proportions of residential area and other land cover categories in RERB dataset
are shown in Table 2. It is obvious that the proportion of the residential area is lower than
that of the other categories, which is consistent with the distribution of large-scale remote
sensing imagery scenes.

Table 2. The proportion of residential area in our dataset.

Proportion (%) Label Number Color

Residential area 15.89 1 (255,255,255)
Background 84.11 0 (0,0,0)

The labels used for traditional semantic segmentation usually do not have regular-
ization characteristics, as shown in Figure 3b. This kind of label is assigned accurately
according to the actual range of residential areas in the image [42]. Different from semantic
segmentation labels, according to the contour regularization requirements in mapping
application, we need to ensure the labels of residential areas into a regular format.
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(a) (b) 

Figure 2. Label visualization for a remote sensing image: (a) Original image and (b) label image.

   
(a) (b) (c) 

Figure 3. Comparison of traditional semantic segmentation labels and mapping application labels:
(a) Original image; (b) semantic segmentation labels; and (c) mapping application labels.

In addition to the regularization requirements of contour line segments, special at-
tention should also be paid to the treatment of the included angle between line segments
when labeling. The main principles include small contour protrusion removal and small
contour concave part filling. As shown in Figure 4, using the interior of the patch as the
reference direction, the contour protrusion and the concave part of the contour are defined
when the angle between contour segments is too small (<45◦) and excessively large (>90◦),
respectively. These situations will be corrected with blunt or right angles. For example, in
Figure 3b, there are small acute angles as shown in the red circles at the corner of residential
areas. Therefore, as shown in Figure 3c, we edit these angles by using a right angle or an
obtuse angle in mapping application labels.
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Figure 4. Diagrams of raised and sunken areas: (a) The angle is too small; (b) the angle is too large;
and (c) the angle is 90◦.

We split 85% of these images into the train set and leave the remaining 15% as the test
set. As for annotation, RERB dataset provides pixel-level labels for two important categories,
including background and residential area. They are labeled with black (0) and white (1).

We also analyze RERB dataset and find it has four properties: (1) Large-scale and
high-resolution. As shown in Table 1, RERB contains 13,892 high-quality satellite images
acquired from different cities in China. It covers an area of more than 3640 square kilometers.
(2) Well annotated and regular label contour. For each satellite image, we provide accurate
pixel-wise mapping application labels for two categories (‘background’ and ‘residential’
area), which are annotated by a group of experts. (3) Rich background. The remote sensing
mapping task is always faced with the diverse background samples (i.e., ground objects
that are not of interest). The high-resolution and different scenes bring more rich details for
the background samples. (4) Class imbalance. As shown in Table 2, two categories have
very different proportions, which lead to a class imbalance problem. This problem poses a
special challenge for the regularization extraction of the residential areas task.

3.3. Statistics for RERB Dataset

Some statistics of the RERB dataset are analyzed in this section. The number of labeled
pixels has been counted. As is shown in Table 2 and Figure 5a, the background class
contains the most pixels with rich and diverse background samples, which cause special
challenge for residential areas extraction.

  

(a) (b) (c) 

Figure 5. Statistics for the RERB dataset: (a) Histogram of the number of pixels for each class;
(b) spectral statistics. The mean and standard deviation (sigma) for background and residential area
are reported; and (c) distribution of the residential area sizes.

For the spectral statistics (Figure 5b), the background category has a lower mean value
(color column) and standard deviation (vertical line). Because of the high-resolution images
of TH-1 satellite are single channel, the values of red, green, and blue are same. As is
shown in Figure 5c, most of the residential areas have relatively small scales. Through
calculation, the average size of the minimum 30% residential areas is about 479.71 pixels,
and the average size of the maximum 30% residential areas is about 18,851 pixels. The
multiscale residential areas require the models to have multiscale capture capabilities.
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3.4. Construction of Residential Area Regularized Extraction Model

The common semantic segmentation network is generally a symmetric network with
encoding–decoding structure [19,20]. The encoding operations mainly include convolution
and pooling. Convolution is used to extract high-dimensional features of the input image,
and pooling is used to make the image smaller. The decoding operations mainly include
deconvolution and up-sampling. Deconvolution makes the features of the image reappear
after classification, and up-sampling can restore the original size of the image. Finally, the
classification results of each pixel are output. In terms of loss function, cross-entropy [46]
has been the most widely used loss function in semantic segmentations of images.

In order to test the effectiveness of the RERB dataset, we designed an end-to-end
regularized extraction network by analyzing the regularization characteristics of label
contour and the constraints of loss function.

As shown in Figure 6, compared with the traditional semantic segmentation network in
Figure 7, our method extracts the contour of the label image first, and realizes regularization
extraction by adding the cross-entropy constraint of the label contour image and model
prediction image to the original loss function. The baseline method chosen in this article
can be any semantic segmentation network, such as U-Net [19] or DeepLab v3+ [24].

 
Figure 6. Regularized extraction model structure of residential area (ours).

Figure 7. Traditional semantic segmentation network (previous).

The cross-entropy loss function can make the predicted image learned from the training
data similar to the real label image. Considering that the label image contour of RERB
dataset already has good, regularized contour characteristics, we first extract the contour of
label image and then constrain the contour regularization degree of the network prediction
image by calculating the cross-entropy loss between the label contour image and the
network prediction image, as shown in Equation (1):

L1(Y, O) = Fce(Y, Gcon(O)) (1)

where O ∈ {0, 1}W×H denotes the label image, W × H represents the image size, Y is the
network inference result image, which has the same size as image O. Fce and Gcon(O)
represent the cross-entropy loss function and the contour extraction function, respectively.
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L1(Y, O) represents the degree of inconsistency between the contours of the two
images. Through the calculation and back propagation of L1(Y, O) in the training process,
the contour of the prediction image can be made more and more regular. The cross-entropy
loss function is expressed as follows:

Fce(Y, G) = −∑x gx log(yx) + (1− gx) log(1− yx) (2)

where yx and gx denotes the value at position x in the image Y and G, respectively.
The contour of the label image can be extracted by the corrosion of a 3 × 3 structuring

element. Corrosion is a commonly used morphological operation in an image processing
file, and it can be expressed as follows:

Gcon(O) = |O− Erosion3×3(O)| (3)

In the above formula, the corrosion operation Erosion3×3(O) can remove the area
contour in the image O, and then the contour image can be obtained by subtracting the
corroded image from the original image.

In the training stage, the Adam [47] optimizer is adopted, and it is a first-order
optimization algorithm. The best model can be obtained by minimizing joint loss function
L(Y, O), which is shown in the following formula:

L(Y, O) = αL0(Y, O) + βL1(Y, O) (4)

where L0(Y, O) is the original loss function of the baseline network, and the functions used
in this paper include cross-entropy and Lovász [48]. The existence of L0(Y, O) can ensure
the segmentation accuracy of the original semantic segmentation network. α and β are the
two weights of loss functions, which are experimentally determined.

4. Experiment and Analysis

In this section, we carried out experimental verification and tested the effectiveness of
the RERB dataset by using the model constructed in Sections 3 and 4. We first introduced the
evaluation metrics. Then, we performed an ablation study to determine some parameters. In
the contrast experiment, the baseline networks were U-Net and DeepLab v3+. All experiments
were carried out on a platform with an Intel Core (TM) i9 3.60 GHz CPU, 32 GB RAM, GeForce
GTX 2080 GPU, and 11 GB video memory. These algorithms were implemented using
PyTorch 1.0 and Python 3.7.

4.1. Design of Evaluation Metrics

The traditional semantic segmentation evaluation indexes, such as mean intersection
over union (mIoU) [18], mainly evaluated the extraction accuracy in pixel units, which
cannot reflect the regularization degree of contours as a whole. In detail, the calculation
of mIoU was based on the confusion matrix, as shown in Table 3. There were ncl different
classes in total, including backgrounds, where nij was the number of pixels of class i
predicted to belong to class j and ti = ∑j nij was the total number of pixels of class i.

Table 3. Confusion matrix.

Confusion Matrix
Ground Truth Labels

class 1 . . . class i . . . class ncl

prediction

class 1 n11 . . . n1i . . . n1ncl

. . . . . . . . . . . . . . . . . .
class i ni1 . . . nii . . . nincl

. . . . . . . . . . . . . . . . . .
class ncl nncl1 . . . nncl i . . . nncl ncl
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Therefore, mIoU is calculated as follows.

mIoU = (1/ncl)mathlarger∑inii/
(
ti + mathlarger∑jnji − nii

)
(5)

To quantitatively evaluate the regularization extraction results, a contour matching
index (CMI) was designed to measure the performance of the algorithm in this paper. The
specific steps of the CMI calculation are as follows.

(1) The contours of the model prediction image (Figure 8b) and the label image (Figure 8c)
were extracted, and the results are shown in Figure 8d,e;

(2) The distance transform of the contour of label image was computed, as shown in
Figure 8f;

(3) A contour matching value was obtained by matching the contour of the model predic-
tion image (Figure 8d) with the distance transformed image (Figure 8f);

(4) The CMI value of this image was obtained by dividing the matched value by the
number of pixels in the contour of the label image.

  
(a) (b) (c) 

  

(d) (e) (f) 

Figure 8. Schematic illustration of the procedure used to calculate the CMI: (a) Image; (b) model
prediction image; (c) label image; (d) contour image of (b); (e) contour image of (c); and (f) transformed
image of (e).

The critical factor of the distance transform [49] was the definition of distance. In this
paper, a block distance transform was adopted. The pixel value of the true contour point
was 0 in the image after the distance transform was computed. The farther away from the
true contour point, the larger the pixel value of the transformed image. Thus, the matching
value can be obtained by calculating the sum of pixel values in the transformed image
corresponding to the position of the contour points in the model prediction image. Since
the contour image was a binary image that contained only the residential area point (pixel
value 1) and the background point (pixel value 0), the matching values between Figure 8d,f
can be calculated as follows:

S = ∑(i,j)Ci,j · ei,j/sum(Gt) (6)
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where (i, j) is the pixel coordinate, Ci,j and ei,j are pixel values at (i, j) in Figure 8d,f,
respectively, and sum(Gt) represents the total number of contour points in label contour
image Gt (Figure 8e).

The value S reflected the matching degree between the prediction result and the value
image. The smaller the value was, the higher the matching degree. Furthermore, the average
CMI of all images was used as the evaluation result when a whole test set was evaluated.

Considering that the background class occupied most of the image, we removed the
background class in the calculation of mIoU to prevent it from affecting the evaluation
of other ground features. Therefore, the evaluation indexes included the CMI and IoU of
residential areas.

4.2. Parameters Settings and Ablation Study
4.2.1. Parameters Settings

In the experiment, we divided the training set and test set according to the ratio of
17:3. Finally, the training set and the test set contained approximately 13,611 image slices
and 281 image slices, respectively. To verify the adaptability of the proposed method to
different loss functions, Lovász was used for L0(Y, O) when the baseline network was
U-Net, and cross-entropy was used for L0(Y, O) when the baseline network was DeepLab
v3+. The number of ground feature elements c was set as 2.

The polynomial learning rate policy was employed where the initial learning rate was
multiplied by (1− iter/total_iter)1.5 after each iteration. The maximum number of training
cycles was 100 epochs, and thus, totaliter = 100. The optimal model was determined
by testing the model epoch by epoch during training. The weight decay coefficient was
set to 0.0005. In terms of the optimization method, the Adam [47] optimizer was used
for training.

Batch size value had a great impact on model training and quality of results. Usually,
we selected the maximum value according to the network parameters and the hardware
configuration (mainly the video memory of GPU). In this paper, we carried out experiments
with a batch size of 8, which was determined by model size and video memory. The
selection principle was to make the video memory not overflow.

4.2.2. Ablation Study

In this section, we first studied the influence of the initial learning rate on the test
set of the RERB dataset. To perform this ablation study, we adopted the semantic seg-
mentation network and the metric mIoU. We evaluated the performance pertaining to the
abovementioned parameters, as described in Table 4.

Table 4. Ablation study for the initial learning rate.

U-Net (Lovász)
DeepLab v3+

(Cross-Entropy)

The Initial Learning Rate mIoU mIoU

1 × 10−3 0.76099 0.76919
1 × 10−4 0.77895 0.79395
5 × 10−5 0.77924 0.79749
2 × 10−5 0.78533 0.80450
1 × 10−5 0.77406 0.79527
1 × 10−6 0.77384 0.77298

The experiments specified in Table 4 were conducted with training batch size = 8. As
shown in Table 4, the mIoU peaked when the initial learning rate was 2 × 10−5.

Next, we studied the influence of the weight α and β on the test set of the RERB dataset.
The cross-entropy loss between the label contour image and the network prediction image
was inserted to the above semantic segmentation models. The metric CMI was adopted in
these experiments.
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The experiments specified in Table 5 were conducted with training batch size = 8 and
the initial learning rate 2 × 10−5. As shown in Table 5, the CMI index of the proposed
method reached the minimum value when α = 0.3 and β = 0.7.

Table 5. Ablation study for α and β.

Ours (U-Net)
Lovász+  1(Y,O)

Ours (DeepLab v3+)
Cross-Entropy+  1(Y,O)

(α, β) CMI CMI

(0.1, 0.9) 50.647 69.378
(0.2, 0.8) 51.083 72.654
(0.3, 0.7) 39.687 32.074
(0.4, 0.6) 46.174 58.461
(0.5, 0.5) 54.378 36.794
(0.6, 0.4) 56.376 49.586
(0.7, 0.3) 72.545 50.277
(0.8, 0.2) 53.475 40.433
(0.9, 0.1) 43.602 44.169

4.3. Results and Analysis

We parameter tuned some parameters of U-Net, DeepLab v3+ and our proposed
method, and the quantitative evaluation results on the test set of RERB dataset are shown
in Table 6.

Table 6. Training parameters and quantitative evaluation results.

U-Net Ours (U-Net) DeepLab v3+ Ours (DeepLab v3+)

loss Lovász Lovász+ L1(Y, O) Cross-Entropy Cross-Entropy
+ L1(Y, O)

initial lr 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5

batch size 8 8 8 8
(α, β) -- (0.3, 0.7) -- (0.3, 0.7)
IoU 0.7853 0.7813 (−0.51%) 0.7953 0.8003 (+0.63%)
CMI 65.638 39.686 (+39.54%) 43.051 32.074 (+25.50%)

train epoch 18 41 41 52
test time 15.37 s 15.55 s 42.79 s 42.78 s

The contrasting experimental results are shown in Figure 9. As seen from Table 6 and
Figure 9, the regularization level of residential area contours extracted by our proposed
method had increased greatly, especially those areas marked by white circles. When the
baseline network was U-Net, the IoU of residential areas decreased by 0.51%, but the CMI
increased by 39.54%. Moreover, both the IoU of residential areas and the CMI increased by
0.63% and 25.5%, respectively, when the baseline network was DeepLab v3+.

Compared with the semantic segmentation dataset, the label image contour in RERB
dataset had the regularization characteristic and provided additional information, so
it could support the construction and training of end-to-end regularization extraction
model of residential areas. The experimental results demonstrated the preponderance and
practicability of the RERB dataset.

In terms of computational complexity, according to the model construction method
in Sections 3 and 4, the increased calculation amount of this method compared with the
basic network mainly included label image edge extraction and contour cross-entropy loss
calculation during training. The operations of contour extraction included a corrosion
operation with 3 × 3 structuring element and a subtraction. Contour cross-entropy loss
calculation included logarithmic calculation and accumulation, which was the same as the
original cross-entropy function. Therefore, during the training phase, the computational
complexity of the proposed method was slightly larger than that of the traditional semantic
segmentation network. Consequently, the runtime of training and the optimal epoch
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number of our method were higher than those before model modification. In the case of
test time, our proposed method was at the same level with traditional models.

    

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

Figure 9. Extraction results of some residential areas: (a) Original images; (b) label images; (c) U-Net;
(d) DeepLab v3+; (e) our model (the baseline network is U-Net); and (f) our model (the baseline
network is DeepLab v3+).
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5. Conclusions

For residential areas, the difference between semantic segmentation labels and map-
ping application labels limits the possibility of end-to-end regularization extraction training.
In order to address this problem, we built a dataset named RERB (Residential area Extrac-
tion with Regularized Boundary) for the end-to-end regularization extraction of residential
areas. To ensure the rationality of RERB dataset, we analyzed the contour representation
requirements for residential area mapping according to the graphic specification of 1:50,000
topographic map, and then transformed it into the following annotation requirements: the
contour of label image should be regular, and the included angle of contour line segments
should be as right angle as possible. Based on these principles, we have completed the
annotation of residential areas in 13,892 image patches based on TH-1 images. The size
of each image is approximately 256 × 256 pixels. The RERB dataset encompasses four
properties: (1) Large-scale and high-resolution; (2) well annotated and regular label contour;
(3) rich background; and (4) class imbalance. In reality, high resolution, complex back-
ground, and category imbalance represent three challenges in residential area mapping.
Finally, a residential area regularization extraction model is constructed with a contour
cross-entropy constraint by using the regular contour label of a residential area. Experi-
mental results showed that the proposed algorithm can improve the regularization degree
of the extracted contour of residential areas while maintaining nearly the same extraction
accuracy. This fully proves the effectiveness of RERB dataset. In the future, we will expand
and improve the dataset of mapping residential area and conduct in-depth research on the
end-to-end model for mapping.
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Abstract: In the study of animal behavior, the prevention of sickness, and the gait planning of legged
robots, pose estimation, and gait parameter extraction of quadrupeds are of tremendous importance.
However, there are several varieties of quadrupeds, and distinct species frequently have radically
diverse body types, limb configurations, and gaits. Currently, it is challenging to forecast animal pose
estimation with any degree of accuracy. This research developed a quadruped animal pose estimation
and gait parameter extraction method to address this problem. A computational framework including
three components of target screening, animal pose estimation model, and animal gaits parameter
extraction, which can totally and efficiently solve the problem of quadruped animal pose estimation
and gait parameter extraction, makes up its core. On the basis of the HRNet network, an improved
quadruped animal keypoint extraction network, RFB-HRNet, was proposed to enhance the extraction
effect of quadruped pose estimation. The basic concept was to use a DyConv (dynamic convolution)
module and an RFB (receptive field block) module to propose a special receptive field module DyC-
RFB to optimize the feature extraction capability of the HRNet network at stage 1 and to enhance the
feature extraction capability of the entire network model. The public dataset AP10K was then used
to validate the model’s performance, and it was discovered that the proposed method was superior
to alternative methods. Second, a two-stage cascade network was created by adding an object
detection network to the front end of the pose estimation network to filter the animal object in input
images, which enhanced the pose estimation effect of small targets and multitargets. The acquired
keypoints data of animals were then utilized to extract the gait parameters of the experimental objects.
Experiment findings showed that the gait parameter extraction model proposed in this research could
effectively extract the gait frequency, gait sequence, gait duty cycle, and gait trajectory parameters of
quadruped animals, and obtain real-time and accurate gait trajectory.

Keywords: quadrupeds; pose estimation; HRNet network; gait parameters

1. Introduction

Animal pose estimation (APE) and behavior research have received increasing at-
tention along with the ongoing advancements in computer vision. Pose estimation and
behavior research go hand in hand. Pose estimation can obtain keypoints from animal pose
and offer information and practical assistance for behavioral research. An essential prob-
lem that needs to be solved in behavior research is the further automatic recognition and
acquisition of animal gait parameters based on pose estimation. As a result, the two taken
together can help us quantitatively analyze, comprehend, and grasp the behavioral laws
of quadruped animals. This has important scientific significance and practical application
value for monitoring animal behavior, predicting livestock diseases, and designing and
developing quadruped robots.

Currently, deep-learning-based systems and conventional artificial labeling are the
two main methods used in research on the animal pose and behavior. The former requires
the installation of sensor gear on the quadruped animal to gather data; this is a simple
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process that does not call for any learning or research-based thinking, but it does require
the cooperation of the quadruped animal. This method is simple to use and efficient when
the research subject is a person, but for a variety of animals, it is easy to lose sensors.
It may even harm the experimental subjects due to the randomness of their movement
patterns, so it cannot obtain the desired impact. There are fewer scene restrictions in the
deep-learning-based scheme because data are mostly captured through the recording of
video images, which does not require moving close to the research object. Methods based
on deep learning have been applied quickly in recent years with the emergence of diverse
neural network models, and they have been used in a few real-world situations. In order to
directly forecast position coordinates for tasks involving human pose estimation, Toshev
et al. [1] offered a DNN regression approach that combines multistage regression to predict
keypoint coordinates directly for human pose estimation applications. The algorithm
has two benefits: (1) DNN captures all the context information about key body parts,
and each of those keypoints is regressed using a full human image. (2) Theoretically, it
is feasible to extract keypoint information from any CNN network, irrespective of the
topological relationship between keypoints; however, the error is significant due to the
“concentration” of the distribution region of coordinate points. Fan et al. [2] used a dual-
source deep convolution neural network (DSCNN) to expand a single RCNN to a dual-
source model (DSCNN) to predict coordinate information of human keypoints. The inputs
of Fan et al. are image block and entire image, while the outputs are joint detection
results of sliding windows and joint placement of coordinate points. Pfisher et al. [3]
proposed a keypoint detection method by fusing optical flow with a deep convolutional
network. The keypoints were improved as a heatmap, and by integrating the image
data from the front and back frames, the keypoint prediction of the human pose had a
higher accuracy. Chen Li et al. [4] proposed an unsupervised adaptive approach to animal
pose estimation, utilizing a multiscale domain adaptive module (MDAM) to design a
pseudo label update strategy based on the memory effects of deep networks that enable
networks to learn from clean samples early and noisy samples later to reduce the domain
gap between synthetic and real data. Newell et al. [5] developed an hourglass network
following a multistage design pattern, which had a detection effect of 94.1% on the MPII
dataset. Mu et al. [6] trained their models using synthetic animal data generated from
CAD models, which they subsequently utilized to create pseudo labels for unlabeled real
animal images. The generated pseudo labels are gradually included into the model training
process using three consistency check criteria. Yuhui Yuan et al. [7] proposed a method that
combines vision transformer (ViT), traditional deep convolution networks, HRFormer, and
improved transformer encoder. This method outperformed pure convolution networks and
significantly improved performance for the COCO dataset human keypoint detection task.
Cao et al. [8] presented a cross-domain adaptation scheme to learn a common shared feature
space between human and animal images. An object detection algorithm, CenterNet,
based on Anchor-free, was proposed by Xingyi Zhou et al. [9], and its operations of
deleting ineffective and complicated anchors further improved the detection algorithm’s
performance. As a result, with a few simple adjustments, it may be applied to tasks
involving human keypoint identification, as well as 3D object detection and 2D keypoint
activities. In contrast to the usual method of returning keypoints through a heatmap or
directly returning keypoints, Microsoft Asia Research Institute proposed a new algorithm
called DEKR (disentangled keypoint regression) [10]. It adopted a method of decoupling
multibranch regression keypoint positions and used an adaptive convolution module to
perform an affine transformation on each branch to obtain the pixel offset of each keypoint.
Feng Zhang et al. [11] proposed the Distribution-Aware coordinate Representation of
Keypoint (DARK). It includes two parts: (1) a more principled distribution-aware decoding
method; (2) a coordinate encoding process (transforming truth coordinates to heatmaps) by
generating unbiased heatmaps. In extensive experiments, it was shown that DARK is the
best on two common benchmarks, MPII and the COCO keypoint detection dataset. Izonin
et al. [12] proposed an RBF-based input doubling method for small medical data processing

33



Electronics 2022, 11, 3702

based on the classical iterative RBF neural network. This method solves the problem of
data processing in the medical field when the amount of data is not large enough, and they
are difficult to collect. The proposed method achieves the highest accuracy compared to
some existing improved RBF networks.

Daou et al. [13] employed piezoelectric sensors to obtain the gait parameters of turtles
and created a motion simulation model with regard to the gait parameter extraction
in animal behavior research. To extract temporal and spatial information, including the
movement behavior and present condition of pigs with various body shapes, Yang et al. [14]
used the optical flow frame method. An underactuated quadruped robot named BabyBot
with a flexible spine and elastic joints was created by Zhang XL et al. [15] after being
inspired by the systematic swing of infants’ arms when they hit the ground with their
knees during the crawling process. In bionic robots, Xue Bin Peng et al. [16] captured 3D
motion data by placing position sensors in the limbs and joints of dogs and then applying
reinforcement learning (RL) to enable the robots to mimic and learn the movements of real
animals. In addition, they applied a dog gait to the Unitree Laikago robot, allowing it to
mimic dog behavior such as walking, trotting, and rotating. However, this strategy still has
several technical obstacles, including high artificial expenses and expertise. Kim et al. [17]
proposed a spatially based joint gait and used it with lizard kinematics models after
collecting data on lizard movement using infrared cameras. However, this strategy is
currently only relevant to a single species, and trials for other animals must be developed
to collect data. Chapinal et al. [18] demonstrated that evaluating cow walking speed with
five 3D accelerometers is simple and straightforward, but does not capture more complex
gait parameters such as gait frequency and gait sequence.

To sum up, the problem of pose estimation has been the estimation of numerous
theoretical studies and theories, and human pose estimation is more advanced than animal
pose estimation. Due to the significant differences in anatomy and behavior between
humans and quadruped animals, human pose estimation and quadruped animal pose
estimation are very different. Animal pose estimation has the following issues more so
than human pose estimation.

1. Because there are many distinct kinds of quadrupeds and because their body kinds,
limbs, and behavior modes frequently change substantially, the results of applying a
model originally applied using data from one animal to others are very subpar.

2. Animal fur comes in various hues, and if the color is close to the backdrop color, it is
easy for the background to distort the image, making it difficult to extract an accurate
animal pose information from complicated surroundings.

3. Because quadruped animals often have their limbs below the body, it is easy for the
limbs to become mutually occluded during exercise, which makes it more challenging
to extract the keypoints.

Because of these issues, it is challenging to apply human pose estimation methods to
animal pose estimation directly. Additionally, the present method for extracting quadruped
animal gait parameters mainly involves placing sensors in strategic locations on the limbs
to track pertinent motion parameters. The problem of how to obtain precise motion gait
parameters through noncontact computer vision perception and automatically assess and
identify the motion features of quadrupeds based on pose estimation remains unresolved.

This research proposes a quadruped animal pose estimation model and gait parameter
extraction method to address these problems, using target screening, an animal pose esti-
mation model, and animal gait parameter extraction, which can completely and effectively
solve the problem of animal pose estimation and obtain animal gait parameters. Among
them, an improved animal pose estimation network based on the HRNet network is pro-
posed to improve the performance of animal pose estimation, aiming for the extraction
efficiency of animal keypoint information. The basic idea behind it is to use a special
receptive field block called DyC-RFB to improve the first branch’s feature extraction capa-
bility in stage 1 of the HRNet network and to improve the network model’s overall feature
extraction capability. This will result in a better keypoint extraction effect for the animal
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pose keypoint. Despite being a simple enhancement to the HRNet network model, it has
improved the performance of keypoint extraction of animal pose estimation without appre-
ciably increasing network parameters and computation. Additionally, an object detection
network may also considerably improve the animal pose estimation effect of some small
targets, multitargets, and increase the stability and reliability of pose estimation by being
added to the front end of the pose estimation task for target screening. The calculation
models of keypoint gait parameters, including gait frequency, gait sequence, and duty cycle,
were established with the goal of realizing the automatic extraction of gait parameters
and obtaining real-time and accurate foot gait trajectory. This method was based on pose
estimation and by analyzing the relationship between the temporal and spatial changes in
keypoints of animal pose and gait parameters.

The chapters of this study are organized as follows. In Section 2, we mainly introduce
the animal pose estimation model and animal gait parameter extraction methods. Section 3
describes the experiments and results in this paper. Finally, we provide a conclusion and
discussion of this paper in Section 4.

2. Models and Methods

2.1. Computational Framework

To comprehensively and effectively handle the problem of animal pose estimation
and gait parameter extraction, this research proposes a computational framework based on
computer vision that consists of three sections, as depicted in Figure 1.

(1) Target screening: The individual animal in the input image was targeted after the raw
resolution video image data were passed through an object detection network, and
the upper left and lower right corner coordinates of the selected box, the confidence of
the box, and the animal species were output. In the experiment, if the confidence score
>0.9, confidence was correctly selected, but the gait parameters collected were not
continuous, possibly. Even though the parameters that were extracted were correct,
some valid information was lost at the same time. If the confidence score <0.7 was
correctly selected for the animal, more mutant noise was added to the final gait
parameters, and the processing was difficult. We set this confidence threshold at 0.8
to balance accuracy and data integrity. The animal was correctly identified when the
frame had a confidence score greater than 0.8. Following a cropping process based
on the coordinates of the frame, the resolution was adjusted to 288 × 384 without
changing the aspect ratio of the raw picture. If the detection confidence was less than
0.80, we skipped the current image, detected the next image, and entered the results
into the subsequent RFB-HRNet network.

(2) Animal pose estimation model: The image sliced by the pre-object detection network
was resized to a fixed size, 288 × 384 × 3 resolution, and input into the keypoint
extraction network RFB-HRNet to acquire the heatmap of the animal’s keypoints in
the image, and the heatmap measured 72 × 96 × 17. The coordinate information of
the keypoints in the feature map was calculated based on the predicted heatmap, and
the resulting coordinate information was restored to the ground truth coordinates in
the original image space and connected sequentially.

(3) Animal gaits parameter extraction: After obtaining the coordinates of the keypoints of
the animal under the original resolution, a set of time series of the coordinates of the
animal keypoint was obtained to process the obtained data, and the gait information
of the quadruped animal was acquired. This information included gait frequency,
gait sequence, gait duty cycle, and gait trajectory. Section 2.3 contains information
regarding the particular technique of implementation.

35



Electronics 2022, 11, 3702

 

Figure 1. Quadruped animal pose estimation and animal gait parameter extraction computational
framework.

2.2. Animal Pose Estimation Model
2.2.1. Improved Animal Pose Estimation Network (RFB-HRNet)

The animal pose estimation task is position-sensitive. Common low-resolution rep-
resentation model methods, such ResNet [19], VGG [20], and the MobileNet [21] series,
perform badly for this kind of task. These multilayer models compress feature map res-
olution to accomplish semantic aggregation, but do so at the expense of details, making
them better suited for image classification tasks. Regarding tasks involving pose esti-
mation, the current main research hypothesis is to fuse the low-resolution feature map
with the high-resolution retention network in order to increase the independence of the
semantic information between the resolutions while retaining the large-scale feature map
data extracted from the front layer using the high-resolution retention network. High-
resolution maintenance networks have become the backbone networks for the majority of
common pose estimation models in recent years. The performance of keypoints extraction
significantly improved after the HRNet high-resolution maintenance network [22] was
introduced. In comparison to the human pose estimation task, the animal pose estimation
task is more easily obscured by the background, every keypoint’s motion relationship is
intricate, and mutual occlusion occurs frequently, all of which place higher demands on
the ability to extract keypoints. In order to further enhance the extraction performance of
important details of quadruped animal poses, this paper uses the HRNet network as the
backbone network and enhances the network model on this basis.

In order to preserve high-resolution features and integrate multiscale low-resolution
features, HRNet adopted the idea of a multibranch structure, with each branch correspond-
ing to a feature map of different scale. As the network depth expanded, the network
branches would also rise, but the branches corresponding to the larger-scale feature map
would remain and move in reverse. The body portion of the HRNet network consisted
primarily of four stages in order to actualize this idea. Each stage had several network
branches, with the number of network branches increasing by one with each stage; the
number of channels in the lower network branch was twice that of the upper network
branch, and the feature map resolution was one-half that of the upper network branch.
Thus, the number of network branches would gradually rise with each successive stage.
Due to the unique multibranch structure of the HRNet, it can be seen that the ability to
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extract features from the first branch of stage 1 has a direct effect on the ability to extract
features from each branch in the subsequent three stages, which in turn affects the extrac-
tion performance of the entire network model for keypoint information. If the capacity to
extract features from the first branch of stage 1 of the HRNet network can be increased, the
ability to extract features from the entire network model will be enhanced as a result of the
transfer impact of each branch in subsequent stages.

Inspired by this, and based on HRNet, this research proposes an enhanced keypoint
extraction network, RFB-HRNet, as shown in Figure 2, to further improve the performance
of keypoint extraction of quadruped animals. The basic idea is to use a special receptive field
block module to improve the feature extraction ability of the first branch of stage 1 of the
HRNet network, and then to improve the overall feature extraction ability of the network
model with the aid of the transmission effect of each branch in the later stage, thereby
achieving improved quadruped animal keypoint extraction effects. To provide a receptive
field mechanism that resembles human vision, a DyC-RFB (dynamic convolution receptive
field block) with a dynamic convolutional layer was introduced after the first branch of
stage 1 of the HRNet-W48 backbone network. The ability of the first branch to extract
features was improved, and this effect was propagated to the subsequent stage, ultimately
enhancing the extraction performance of the entire network for keypoint information. In
addition, the computational complexity of the DyC-RFB module was minor after it was
placed in the first branch of stage 1, which accounted for the trade-off between model
complexity and computational speed and prevented a significant influence on network
processing speed.

Figure 2. RFB-HRNet network structure.

The model’s computation procedure is as follows: Firstly, the image resolution ob-
tained by the object detection network is kept at its original aspect ratio of 288 × 384 × 3.
The process is not a simple scaling of the original image, but rather is the filling of one di-
mension with 0 to compensate for another dimension’s deficiency while guaranteeing that
the resolution of 288 × 384 is met. A feature diagram with measurements of 72 × 96 × 48
was presented after the updated DyC-RFB module. After successively completing stage 2,
stage 3, and stage 4, four branches’ feature maps were obtained. Later, following multiscale
feature fusion, the resolution was adjusted to 72 × 96 and the number of feature map
channels was extended to 384. After a convolution with kernel size = 1, stride = 1, and
padding = 0, the number of channels was resized to 17, and the heatmap was regressed
17 times, thus obtaining the two-dimensional coordinates of the quadruped’s keypoint,
which were then scaled in succession. Finally, it was returned to the coordinate position of
the keypoint according to the original resolution space.
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To reduce the deviation of decoding from the heatmap to the keypoints, the formula
k = Decoding(Encoding(k)) should be satisfied as much as possible, where k represents
the keypoint coordinates marked by the dataset. This paper adopts the DARK method
proposed in [11], and the process is shown in Formula (1):

p = m−
(
D′′ (m)−1D′(m)

)
, (1)

where m represents the position coordinates of the first maximum in the heatmap, and D′
and D′′ are the first and second derivatives of the log-likelihood function of the predicted
heatmap coding formula, respectively. The original formula is shown as follows:

D(x; p, Σ) = − ln(2π)− 1
2

ln(|Σ|)− 1
2
(x− p)TΣ−1(x− p), (2)

where Σ is the covariance matrix diag(σ2), x is the two-dimensional position coordinate of
the heatmap, and p is the keypoint position of the predicted heatmap.

The final coordinate position at the original resolution space can be expressed:

p̂ = λp, (3)

where λ represents the scaling factor, and p̂ is the coordinate position of the keypoint under
the original resolution space.

2.2.2. DyC-RFB Module

The RFB module is primarily utilized by the SSD [23] algorithm. By mimicking the
receptive field of human vision, the RFB module can improve the network’s capacity for
feature extraction. As depicted in Figure 3a, its structure is primarily based on the concept
of an inception algorithm [24]. It adds a dilated convolution layer [25] to inception, which
increases the model’s ability to extract features while taking into account the amount of
computation required. Compared to static convolution, dynamic convolution offers a
greater capacity for feature expression and can improve the model’s expression capability
without expanding the network’s depth or width. Its calculation volume is just 4% greater
than that of static convolution, but its performance in feature extraction surpasses that
of static convolution. In order to further improve the model’s ability to express features,
this research employs the dynamic convolution (DyConv) module [26] to upgrade the
RFB module. It then offers an improved DyC-RFB module, as depicted in Figure 3b.
Specifically, it replaces the 3 × 3 convolution of the final layer of the RFB module with
dynamic convolution. The size of the dynamic convolution kernel remains as 3 × 3, and
the respective dilation rates are 1, 3, and 5.

Figure 4 depicts the dynamic convolution (DyConv) module structure. Its structure has
k convolution kernels and the attention module calculates the convolution kernel weight.
Each convolution kernel’s size and output dimension are identical. The average pooling
layer is carried out in the attention layer before being projected to the k dimension via two
fully connected dense layers. Softmax normalization is then applied to the k convolution
kernel weights and convolution kernels to aggregate them. After the aggregate convolution,
the batch normalization is applied and the ReLU activation function is employed to generate
the dynamic convolution module. Its calculation formula is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = g
(

W̃Tx + b̃
)

W̃ =
K
∑

k=1
πk(x)W̃k

b̃ =
K
∑

k=1
πk(x)

(
b̃
)

k

s.t.0 ≤ πk(x) ≤ 1,
K
∑

k=1
πk(x) = 1

, (4)
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where W̃k and b̃k are the weight vector and bias vector of the k th convolution kernel,
respectively, and πk(x) is the attention weight learned by the attention module.

(a)  (b) 

Figure 3. (a) RFB module; (b) DyC-RFB module.

Figure 4. Dynamic convolution (DyConv) module.

2.2.3. Evaluation Metric

The standard evaluation metric is based on object keypoint similarity (OKS), and
average precision (AP), mean average precision (mAP), and average recall (AR) are the
main evaluation metrics of the pose estimation task.

(1) OKS

In this paper, after the pose estimation model obtains the prediction heatmap of
17 keypoints, the position coordinates corresponding to each keypoint are obtained by
regression processing. Then the prediction effect is evaluated by comparing the position
coordinates to the ground truth keypoint. The OKS calculating formula can be denoted as:

OKS =

∑
i

exp
(
−d2

i
2s2σ2

i

)
δ(vi > 0)

n
∑
i

δ(vi > 0)
, (5)
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where σ2
i represents the normalization factor of the ith keypoint, which is the standard

deviation between the manually labeled keypoints and the actual keypoints in all image
data. The larger the standard deviation, the larger the labeling error for this type of key-
point and the more difficult it is to label. Labeling this type of keypoint becomes easier as
its labeling error decreases. The calculation formula is: σ2

i = E[di
2/s2

i]. The constants of
each keypoint are different; the specific values were set according to the AP10k dataset
processing code in the mmpose codebase. The normalization factors for 17 keypoints,
including the nose, eye, neck, tail, shoulder, knee, and ankle, are [0.025, 0.025, 0.026, 0.035,
0.035, 0.079, 0.072, 0.079, 0.072, 0.062, 0.107, 0.087, 0.089, 0.107, 0.087, 0.087, 0.089]. di
represents the Euclidean distance between the detected keypoint and the corresponding
ground truth. s is the object scale. δi(vi ) represents the visibility mark of the keypoint;
when vi > 0, this keypoint is visible, and δ(vi) = 1. When vi < 0, the keypoint is invisible,
and δ(vi) = 0. Each keypoint in the formula has a similarity between 0 and 1. Ideally, the
predicted keypoint’s OKS = 1 when its coordinates match its actual keypoint.

(2) AP

The test dataset Formula (6) depicts the AP of each keypoint. AP50 and AP75 represent
the average precision when IoU equals 0.50 and 0.75, respectively. APM indicates the
average precision of animals on medium objects, whereas APL represents the average
precision of animals on large objects.

Ap =

∑
p

δ(Ooks > s)

∑ p1
, (6)

where s is the OKS threshold. When Ooks > s, δ(Ooks) = 1.

(3) mAP

The mAP is the mean value of AP calculated for different types of keypoints in
the entire dataset, reflecting the performance of the detection algorithm. The formula is
PmAP = mean{AP@s(0.50 : 0.05 : 0.95)}.

(4) AR

AR reflects the proportion of the keypoints in the image that are successfully found, so
the AR is calculated as follows:

AR =
TP

TP + FN
, (7)

where TP is the number of keypoints correctly identified in the image, and FN is the number
of keypoints not correctly identified in the image.

2.3. Animal Gait Parameter Extraction Model
2.3.1. Animal Gait Frequency Extraction Model

The motion state of quadruped animals can be separated into two phases: the swing
phase and the support phase [27]. The swing phase is the motion state of the animal’s feet
from leaving the ground to the next landing during the gait cycle, whereas the support
phase is the movement state of the feet during a gait cycle when the feet are on the ground.
The swing phase and support phase of a quadruped animal are shown in Figure 5.

Periodically, the limbs of the quadrupeds swing when they move. During this brief
period of time, the relatively flat segment of the curve shows that the limbs are in the
support phase, while the steeper segment (Figure 6a) indicates that the limbs are in the
swing phase. Through the first-order differential processing of the corner points of the
limbs, the differential frame (former frame t f rame, later frame t f rame+1) between the two
adjacent slopes is taken to obtain the minimum value, and the time t is mapped to frame
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F(fps). The video used in this paper is 30 frames, that is, the minimum time scale of a single
frame is Δt= 1/F. The formula for calculating the gait frequency of a quadruped animal is:

f =
1(

t f rame+1 − t f rame

)
Δt

, (8)

where t f rame is the previous gait cycle slope minimum frame; t f rame+1 is the next gait cycle
slope minimum frame; and Δt means a minimum frame time unit, which is a constant of
1/30 in this paper.

Animal body

Shoulder joint

Knee joint

Foot end
 

(a) (b) 

Animal body

Shoulder joint

Knee joint

Foot endGround

The distance 
traveled in a gait 
cycle

Figure 5. (a) The swing phase of a quadruped animal; (b) the support phase of a quadruped animal.

  

(a)  (b) 

Figure 6. (a) The feet-end displacement curve of a quadruped animal; (b) the first-order differential
curve of feet-end displacement.

In an ideal state, the first-order differential curve of feet-end displacement should
produce a signal consisting of a square wave; however, this is not possible in practice.
Therefore, the first-order differential curve depicted in Figure 6b is not a complete first-
order differential processing of Figure 6a, but is a reasonable assumption.

2.3.2. Gait Sequence Recognition Model

During a gait cycle, the gait sequence of a quadruped animal is also an important
feature, but it is easily affected by unfavorable circumstances such as environmental
occlusion and shot angle when attempting to extract it. Based on the extracted relative
position parameters of the foot end, this paper analyzes the gait sequence features of the
quadruped animal over time, then binarizes it to obtain the gait phase diagram displayed
in Figure 7. By the concept presented in Section 2.3.1, the first-order differential curve of
the corner displacement of the quadruped animal is obtained and binarized to produce the
gait phase diagram.
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Figure 7. Gait phase diagram of each limb’s gait (left front leg, right front leg, left hind leg, and right
hind leg).

The actual first-order differential curve frequently has a transition process during the
switching process between the support phase and the swing phase, i.e., the foot end has
lifted a part but has not yet completely left the ground; therefore, a threshold value must
be designed to fault-tolerantly control the process. If the binarization threshold is set as
thr, then whether the quadruped animal is in the swing phase or the support phase can be
judged by the following formula:

a =

{
0,

.
f i ∈ else

1,
.
f i ∈ (−thr− δ1, thr + δ2)

, (9)

where a is the label of the support phase and the swing phase, 0 represents the swing
phase, and 1 represents the support phase. thr is the threshold of the swing phase and the
support phase, δ1, δ2 are the threshold margins. The specific size can be set according to the
actual first-order differential curve. The degree of oscillation is set on demand so that the
threshold can be dynamically adjusted according to the actual situation.

Figure 7 depicts the quadruped animal gait cycle for each limb. According to the color-
coded blocks in the figure, the limb is currently in the support phase. When examining and
calculating the order in which each limb’s support phase occurs throughout a gait cycle T,
the gait sequence characteristics of each quadruped animal can be obtained appropriately.

2.3.3. Duty Cycle Parameter Extraction Model

The quadruped gait occupancy parameter describes the percentage of time that the
pendulum support phase occupies throughout the gait cycle when quadruped animals
move. We selected a gait phase diagram of one of the limbs to serve as a method for the
extraction of occupancy parameters in a quadruped. From the Figure 8, we can calculate
a gait cycle of T for each member of the quadruped: t1 for the moment the foot initially
contacts the ground, t2 for the moment it leaves the ground, and t3 for the moment it
contacts the ground again.

Figure 8. A gait phase diagram of one of the limbs of a quadruped animal.

Gait duty cycle parameter extraction is shown in Formula (10):

α =
tg

T
, (10)

where tg is the duration of the limbs in the support phase during a gait cycle. The specific
calculation formula is tg = t2 − t1, and T is the gait cycle.

The gait cycle of each limb varies slightly during quadruped animal movement, even at
constant speeds. Hence, it is necessary to average all the occupancy parameters for each leg.

42



Electronics 2022, 11, 3702

2.3.4. Gait Trajectory Extraction Model

Due to their distinct body composition and gait, quadruped animals can walk freely
in various challenging ground environments, including plains, hills, and mountains. This
inspires the design of legged bionic robots. Legged robot gait planning has traditionally
been the subject of research in this area.

The recorded video data of the experimental animals are broken down into images
frame by frame using the model method in this research, and the keypoints are then
identified. The foot-end trajectory characteristics of the experimental animals can then
be obtained by connecting the keypoint locations of each limb’s foot end in a systematic
manner in accordance with the time sequence.

2.3.5. Evaluation Index of Gait Parameter Extraction

We analyze the gait parameter method proposed in this study by comparing it with
manual computation to verify the practical effect of the gait parameter extraction method.
The three different types of experimental animals include buffalo, horse, and dog. It consists
mainly of the following two indicators.

(1) Relative error

The gait parameters of the target animals were extracted by the method presented in
this paper and compared with the actual value of the manually labeled, as follows:⎧⎪⎨⎪⎩

Erel =
|Mc−OA |

OA
× 100%

Mc =
1
4 ∑ Mi

OA = 1
4 ∑ Oi

, (11)

where Mc represents the average measurement of an individual animal; OA is he actual
value manually marked by individual animals; Mi represents the measured value of the ith
leg; Oi represents the manual labeled value of the ith leg.

(2) Gait sequence consistency judgment index

The indication C for the gait sequence consistency judgment index is used to calculate
a quadruped animal sequence, as shown in Formula (12):

C =

∑
i

δ(Sic = Sia)

N
, (12)

where N is the total number of steps the subject took throughout the experiment; Sic
represents the leg the experimental object used in step I, and Sia represents the leg the
experimental object actually used in step i. The four limbs of the experimental subjects can
be represented in this work by the letters LF, RF, LB, and RB, which stand for the respective
left front leg, right front leg, left hind leg, and right hind leg.

3. Experiments and Results

3.1. Animal Pose Estimation Experiment
3.1.1. Dataset Source and Preprocessing

In this study, we adopted the AP10K dataset [28], a public animal keypoint detection
dataset. The dataset combines previously published datasets and arranges all animals into
a collection of 54 species belonging to 23 families in accordance with the biological concepts
of family and species. All 54 different animals are eventually labeled, yielding 10,105 labeled
images and 13,028 pose annotations. The dataset animals’ entire bodies were split up into
17 keypoints, and Table 1 shows animal keypoint definitions. K-fold cross-validation was
used to validate the dataset to fairly assess the model’s performance and fully utilize the
data to prevent overfitting. Firstly, 10 slices of each species were cut, and the slices were then
separated into three groups: a training set, a validation set, and a test set, in that order: 7:1:2.
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The dataset was rerandomized three times using the same methodology, and the evaluation
score of the model was taken as the average of the three results.

Table 1. Definitions of animal keypoints.

Keypoint Definition Keypoint Definition

1 Left Eye 10 Right Elbow
2 Right Eye 11 Right Front Paw
3 Nose 12 Left Hip
4 Neck 13 Left Knee
5 Root of Tail 14 Left Back Paw
6 Left Shoulder 15 Right Hip
7 Left Elbow 16 Right Knee
8 Left Front Paw 17 Right Back Paw
9 Right Shoulder

The keypoint annotations format is (x, y, z), in which x and y are the pixel coordinates
of the keypoint relative to the upper left corner of the image, and v represents the visibility
of the keypoint. If v = 0 means that the keypoint position does not appear in the image, the
keypoint is not marked, and the corresponding (x, y) is also set as (0, 0); v = 1 indicates that
the keypoints appear in the image, but there is occlusion; v = 2 indicates that the keypoints
are visible in the image and are not occluded. The connection order of the quadruped
animal’s skeleton is as follows: [1 2], [1 3], [2 3], [3 4], [4 5], [4 6], [6 7], [7 8], [4 9], [9 10],
[10 11], [5 12], [12 13], [13 14], [5 15], [15 16], [16 17]. The keypoints are connected in order,
and the labeled information is shown in Figure 9.

 

Figure 9. The keypoints of the quadruped animal.

3.1.2. Experimental Design

The experimental setup employed for this paper’s experiment is equipped with an
Intel i5 10600kf core CPU, 32 GB of memory, and an NVIDIA RTX3060 graphics card. The
deep learning framework chooses Pytorch1.8.2, Adam [29] optimizer, 16 for the batch size,
210 epochs, 0.001 for the learning rate, and 0.0001 for the learning rate after scaling the
original image resolution to 288 × 384 resolution. This paper employs the pretraining
model pose_hrnet_w48_288 × 384 to transfer the model, which speeds up the training
process and lowers the time complexity of training the network from scratch.

This paper’s three sets of comparative ablation study were set up to contrast with
the original HRNet network. The first group consisted of the original HRNet network
by repeating the training network three times. The results were then averaged, and the
acquired dataset was analyzed and confirmed. The second group added an RFB module,
and the subsequent processing was the same as for the first group of studies. The DyC-RFB
module and the same evaluation approach were introduced in the third group of studies.

Some blocked image data were introduced at random while the network model’s
keypoint predictions were being made in the process to assess the network’s capacity
to handle complicated networks. After discussing the similarities between human pose
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estimation and those of four-legged animals, a number of images from the COCO2017
dataset were chosen for experimental validation.

3.1.3. Experimental Results on the AP10K Dataset

Using the AP10K dataset, this experiment initially examined the performance of
RFB-HRNet before testing the performance of alternative model approaches.

To further verify the prediction performance of the network model of this paper
on 17 keypoints, we randomly selected 1280 images from the test dataset (the test data
contained all 54 animal species in the dataset used in this paper) and randomly flipped, cut,
added noise, random rotation ([−45◦, 45◦]), and random scale ([0.65, 1.35]). We obtained
the accuracy of 17 types of quadruped animal keypoints, as shown in Table 2.

Table 2. Average precision of keypoints.

Keypoint Average Precision Keypoint Average Precision

Left Eye 0.810 Right Elbow 0.701
Right Eye 0.799 Right Front Paw 0.693

Nose 0.777 Left Hip 0.691
Neck 0.652 Left Knee 0.718

Root of Tail 0.694 Left Back Paw 0.685
Left Shoulder 0.732 Right Hip 0.766

Left Elbow 0.728 Right Knee 0.671
Left Front Paw 0.704 Right Back Paw 0.722
Right Shoulder 0.728

In Table 2, the average precision is better for feature keypoint with apparent character-
istics such as the nose, eyes, and shoulder. The accuracy of recognition is only somewhat
high for other feature points, such as wrist joints and tails, because these keypoints are
influenced by the environment, the animal’s pose, and the characteristics of its hair, such as
color and texture.

We report the results of our method and other methods in Table 3. The outcomes
demonstrate that our method produced the best outcomes. The AP50, AP75, APM, APL,
AR, and mAP increased by 2.2%, 1.6%, 4.4%, 1.7%, 1.9%, and 2.1%, respectively, compared
to the original HRNet-w48 network. As a result, our method was much improved when
compared to other models.

Table 3. Comparison on the AP10K validation set.

Methods Input Size GPLOPs #Params mAP AP50 AP75 APM APL AR

ResNet50 [19] 288 × 384 5.396 23.508M 0.681 0.926 0.738 0.552 0.687 0.718
ResNet101 [19] 288 × 384 10.272 42.500M 0.683 0.921 0.751 0.545 0.690 0.719

HRNet-W48 [21] 288 × 384 21.059 63.595M 0.729 0.936 0.802 0.577 0.736 0.762
RFB-HRNet 288 × 384 22.612 63.972M 0.750 0.958 0.818 0.621 0.753 0.781

Our network RFB-HRNet, trained from scratch with input size 288 × 384, achieved a
0.75 mAP score more than other models with the same input size. (i) Our method improved
mAP by 2.1 points compared to HRNet-W48, while the numbers of parameters are similar
to HRNet-w48, and ours is slightly larger. (ii) Compared to ResNet101 and ResNet50,
our method improved mAP by 6.7 points, compared to ResNet50, which improved by
6.9 points, respectively.

3.1.4. Ablation Study

Analysis and comparison were compared on the parameters and mAP score of the
three different HRNet networks: the original HRNet-w48 network, the HRNet network
with the RFB module added, and the HRNet network with DyC-RFB module. According
to the findings, which are compared in Table 4, the RFB module’s network parameters
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increased by 0.32 M in comparison to the original HRNet network, and the mAP score
increased by almost 1.3 points. The number of parameters increased by 0.057 M after
adding the improved DyC-RFB module, and the performance of the mAP score improved
by 0.8 points as a result.

Table 4. Comparison of experimental results under different methods.

HRNet DyConv RFB #Params mAP
√ × × 63.595 M 0.729√ × √

63.915 M 0.742√ √ √
63.972 M 0.750

We selected 10 animal species randomly to compare the recognition impact of our
method with the original HRNet network and to compare our method’s prediction effect
with the original HRNet-w48 network. Among the animals selected, some like to dwell
in groups, while others prefer to move alone. The sampled images contain single-target
images, multitarget images, small-area occlusions, and large-area occlusions. The detection
results of the original HRNet-w48 network are shown in the even-numbered rows of
Figure 10, and the detection results of the proposed front object detection network + RFB-
HRNet network in this paper are shown in the odd-numbered rows.

 

Figure 10. Some qualitative results of our method (the odd rows) vs. original HRNet-w48 (the even
rows) on AP10K.

As observed in Figure 10, the two networks can produce identical detection results
for a single animal when the scale of the animal is large. However, our method is more
accurate in some feet-end positions while the original HRNet network exhibits some bias.
The detection performance of our method is noticeably superior to that of the original
HRNet-w48 network for small target animals. For instance, our method can identify the
facial features of the last group of cats in the image which are running. In contrast, the
original HRNet-w48 network has a significant offset when identifying their faces and has
a lower identification effect on the limbs than our method. Our method can completely
detect numerous targets and effectively separate each individual animal, in contrast to the
original HRNet-w48 network, which produces the scenario of missed detection and mutual
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adhesion and is unable to separate multiple targets effectively. This is controlled by the
input–output structure of the pose estimation network; thus, if numerous animals are close
together, it is simple to connect the coordinates of keypoints amongst different individuals,
as demonstrated by the effect of the pose estimation network on the sheep in row 4. In
contrast, due to the inclusion of a prior object detection network in the method proposed
in this paper, as many animals as feasible in a picture including numerous animals can
be detected, so that the task is broken into recognizing many single targets, making it
significantly more effective than the original HRNet network.

In a sense, humans are also a special “four-legged animal”. Therefore, to verify
the generalization ability of the proposed model, several human images were randomly
selected from the COCO2017 dataset and their keypoints were predicted. The results are
shown in Figure 11.

 

Figure 11. Some qualitative results of our method on the COCO2017 human keypoint task.

According to the above figure, quadruped animals have a body structure similar to
humans. This is especially true in terms of facial feature recognition, which has a high level
of accuracy. However, effective recognition is not possible when dealing with complex
human body poses and varied scenes.

3.2. Gait Parameter Extraction Experiment
3.2.1. Video Data Collection

The quadruped animal gait parameter extraction experiment, which made up the
second portion of the study, sought to confirm the reliability and validity of the suggested
quadruped animal gait parameter extraction model. The gait parameter extraction ex-
periment requires continuous motion video footage of different quadruped animals with
multi-gait cycles. In this study, the experimental dataset for state parameter extraction was
a motion video of quadruped animals that was shot in real time. Figure 12 depicts the
quadruped animal video capture system, which was shot using a tripod-fixed shooting
gear. The camera’s position is roughly 1 m above the ground, and its coordinates are in
the O–XYZ space. The included angle between the motion direction of the quadruped
animal and the X–Y plane is defined as the motion direction angle β. The motion direction
is positive when it is far from the X–Y plane and negative when it is close to the X–Y plane.
The captured video had 720 × 1280 pixels and a frame rate of 30 FPS, and the range of β
was −33◦~33◦. Quadruped animals include buffalo, horse, and dog, representing typical
quadruped animal of different sizes. Among them, buffalo and horse have a walking gait,
and dog has a trot gait. The buffalo moved from right to left, while the horse and the
dog moved from left to right. During the shooting, the walking process of the quadruped
animal was recorded as completely as possible to ensure that the video contained multiple
gait cycles.
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Figure 12. Quadruped animal video capture system in our study.

3.2.2. Gait Frequency Extraction Experiment

Figures 13–15 depict the foot distance curves of a buffalo, a horse, and a dog in the
experimental animal’s x direction (where x indicates the animal’s heading direction and y
represents the direction perpendicular to the ground).
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Figure 13. (a) Buffalo’s feet displacement curve; (b) first−order differential curve of buffalo’s feet
displacement.
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Figure 14. (a) Horse’s feet displacement curve; (b) first−order differential curve of horse’s feet
displacement.
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Figure 15. (a) Dog’s feet displacement curve; (b) first−order differential curve of dog’s feet displacement.

The quadruped animal’s left front leg, right front leg, left hind leg, and right hind
leg, as well as the first-order differential slope, are represented in the above image by the
letters LF, RF, LB, and RB, respectively. Since the camera is fixed during the recording of the
video material, it is clear from the figure that when quadrupeds move forward, their limbs
alternately swing. Therefore, the experimental animal’s foot displacement direction should
be monotonic, moving from right to left when its features are monotonically reducing, and
from left to right when they are monotonically growing.

Because the quadruped animal’s forward movement process involves the four legs
swinging in essentially the same movement, the difference between the starting frame and
the end frame must take this into account. However, the order of the legs’ movements does
alter slightly. As a result, one leg’s pixel change curve can be chosen as the reference, and
the first derivative can then be determined. The gap frame period of a gait cycle is the
difference between the minimum values of the first-order differential curve. Figure 13b,
Figure 14b, and Figure 15b display the first-order differential curves. The gait frequency of
the buffalo, horse, and dog may be estimated using Formula (8), as shown in Table 5.

Table 5. Gait frequency of buffalo, horse, and dog.

Species Mean Interval Frame (Frames) This Article (Hz) Manual Method Relative Error/%

Buffalo 38.25 0.792 0.812 2.46
Horse 59.8 0.507 0.498 1.81
Dog 12.75 2.377 2.331 1.97

Table 5 above shows that when compared to the manual method, our method has a
maximum frequency relative error of 2.46%. In comparison to horses and dogs, buffalo
showed frequency errors that were noticeably larger. This resulted from the buffalo we
photographed having a darker background, which had a detrimental impact on the experi-
mental results, but overall, the error was within the acceptable range. The gait frequency
of the buffalo and horse is substantially lower than that of the dog. In general, there is a
correlation between body size and the gait of quadruped animals. The frequency of gait
decreases as body size increases.

3.2.3. Experiment of Gait Sequence Recognition

The leg stride order of quadruped animals is a crucial component of a gait cycle, but it
can be easily influenced by a number of negative conditions during the extraction process,
such as shooting angle and ambient occlusion. This paper examined the quadruped animals’
gait sequence features over time and binarized them to obtain the gait phase diagram, as
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shown in Figure 16. This analysis was based on the relative position parameters of the foot
end that were extracted above.
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(b) 

 
(c) 

LF
RF
LB
RB

t1 t2 t3 t4 t50

LF
RF
LB
RB

0 t1 t2 t3 t4 t5 t6

LF
RF
LB
RB

t1 t2 t30 t4 t5

Figure 16. (a) The gait phase diagrams of a buffalo; (b) the gait phase diagrams of a horse; (c) the gait
phase diagrams of a dog.

Figure 17 depicts the gait patterns of a buffalo, horse, and dog. It is clear that the gait
patterns of the two animals are identical. The left front leg comes first, followed by the left
front leg- > right hind leg- > right front leg- > left hind leg- > left front leg throughout a full
gait cycle. There will be more than two legs in the support phase because there is overlap
in each leg’s movement. The initial motion state may differ from the shot scene, but it will
eventually be in a stable state. With the exception of the swing phase, which accounts for a
variable duty cycle throughout the gait cycle, the dog’s gait sequence is essentially in the
same order as the first two. In most cases, only two legs are in the support phase or swing
phase, and both legs belong to the same side.

 
(a) 

(b) 

(c) 

Figure 17. (a) Buffalo gait sequence; (b) horse gait sequence; (c) dog gait sequence.
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The gait sequence of buffalo, horse, and dog is shown in Table 6.

Table 6. Gait sequence of buffalo, horse, and dog.

Species S1 S2 S3 S4 S5
Gait Sequence Consistency

Judgment Index (Formula (12)

Buffalo LF RB RF LB LF 100%
Horse LF RB RF LB LF 100%
Dog RF LB LF RB RF 100%

Table 6 depicts that the gait sequence of buffalo, horse, and dog can be accurately
extracted by the method proposed in this paper.

3.2.4. Gait Duty Cycle Extraction Experiment

Using the gait phase diagrams of buffalo, horse, and dog obtained in Section 3.2.3,
we can plot the corresponding gait cycle curves, respectively, by using Formula (9) in
Section 2.3.2. As shown in Figures 18–20, where 0 represents the support phase and 1
represents the swing phase, the gait duty cycle data of each animal can be calculated by
calculating the time occupied by the swing phase in a gait cycle.
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Figure 18. (a) Buffalo’s gait cycle curves of LF, RF leg; (b) buffalo’s gait cycle curves of LB, RB leg.
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Figure 19. (a) Horse’s gait cycle of LF, RF leg; (b) horse’s gait cycle of LB, RB leg.

51



Electronics 2022, 11, 3702

 
(a) (b) 

0 10 20 30 40 50 60 70

frame(i)

0

1

0

1

G
ai

t c
yc

le

LF
RF

0 10 20 30 40 50 60 70

frame(i)

0

1

0

1

G
ai

t c
yc

le

LB
RB

Figure 20. (a) Dog’s gait cycle of LF, RF leg; (b) dog’s gait cycle of LB, RB leg.

We can calculate the gait duty cycle parameters for the buffalo, horse, and dog by
using Formula (10) and Figures 18–20, and the results are shown in Table 7.

Table 7. Gait duty cycle of buffalo, horse, and dog.

Limb

Buffalo Horse Dog

Our Method
Manual

Calculation
Our Method

Manual
Calculation

Our Method
Manual

Calculation

LF 0.543 0.512 0.615 0.608 0.372 0.356
RF 0.580 0.563 0.630 0.622 0.310 0.330
LB 0.546 0.555 0.597 0.556 0.360 0.321
RB 0.540 0.525 0.631 0.642 0.308 0.288

Average value 0.552 0.539 0.618 0.607 0.338 0.324

Relative error/% 2.41 1.81 4.3

According to the above table, the greatest inaccuracy of the suggested technique is
4.3% when compared to the manual calculation method, demonstrating that it is capable
of reliably calculating the quadrupeds’ duty cycle parameters. It is clear that dogs have a
relatively modest gait duty cycle in comparison to huge quadrupeds such as the buffalo
and horse.

3.2.5. Gait Trajectory Extraction Experiment

In a complete gait cycle, the foot trajectory of the fore and hind limbs of the image
sequence of buffalo, horse, and dog is calculated, and the experimental findings are depicted
in Figures 21–23. Comparing the foot trajectory of the forelimbs and hindlimbs of the buffalo
and the horse, respectively, it can be seen that the trajectory of quadrupeds is not a complete
polynomial curve during the movement process, but a downward movement occurs after
reaching the highest point of its trajectory, so its trajectory has a “concave” segment, and
there is a certain difference in the movement of the forelimbs and hindlimbs, that is, for
the forelimbs, the phase difference between the support phase and the swing phase is
180 degrees in most cycles. In other words, when one limb is in the support phase, the other
is in the swing phase and moves repeatedly in opposition. For the limbs on the same side,
there is also a 180-degree difference between them. Therefore, it can be deduced that, for a
complete gait cycle, the movement of the two limbs on the neighboring diagonals can be
considered substantially synchronized, but not entirely synchronous. At some point, three
legs are in the support phase, while the last leg is in the swing phase, allowing the animal
to retain movement stability at moderate speeds. Both the buffalo and the horse move
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in essentially the same ways, promoting the body’s forward motion during the support
phase and having a fairly identical swinging order. In conclusion, multiple limb joints in
the movement process of quadrupeds coordinate and create smooth movement by varying
their movement phase.
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Figure 21. (a) Foot trajectory of buffalo’s forelimbs; (b) foot trajectory of buffalo’s hindlimbs.
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Figure 22. (a) Foot trajectory of horse’s forelimbs; (b) foot trajectory of horse’s hindlimbs.
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Figure 23. (a) Foot trajectory of dog’s forelimbs; (b) foot trajectory of dog’s hindlimbs.
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4. Conclusions and Discussion

A method for quadruped animal pose estimation and gait parameter extraction was
presented in this paper. Target screening, animal pose estimation model, and animal gait
parameter extraction are its three main components, which together form a vision-based
computational framework that can fully and successfully address the issues of quadruped
animal pose estimation and gait parameter extraction. The fundamental idea can be broken
down into the following steps.

(1) We converted the original video data to images and transmitted them to the network
for object detection to obtain the location anchor box of the animal in the image.

(2) The position anchor frame obtained in the first stage was used to crop the image and
feed it into the RFB-HRNet network to obtain quadruped animal keypoints in original
resolution space.

(3) Various quadruped animal gait characteristics were obtained through computational
research.

The test results using the public dataset AP10K showed that, in comparison to the
original HRNet-w48 network and other methods, our method yielded the best results for
the keypoint extraction of quadruped animal poses. The mAP was 2.10% more than the
original HRNet-w48, while the AR increased by 1.9%. As for gait parameter extraction,
three typical quadruped animals representing different body sizes, buffalo, horse, and dog,
were tested experimentally, and the results demonstrated that the gait parameters, including
gait frequency, gait sequence, and duty cycle, and foot trajectory could be automatically
extracted, and the real-time and accurate gait trajectory could be obtained. The greatest
error of gait frequency was 2.46%, the maximum error of duty cycle was 4.33%, and the
detection of the gait sequence was accurate.

Based on the research work of this paper, the following conclusions were drawn.

(1) The feature extraction capability of the network model as a whole could be signifi-
cantly improved by using a special receptive field module DyC-RFB to improve the
feature extraction capability of the first branch of stage 1 of the HRNet network and
by using the transfer effect of each branch in the later stage. Even if there was only a
small improvement, it was still possible to improve the performance of quadrupeds in
terms of keypoint extraction without significantly increasing the network parameters
or the computation.

(2) A two-stage cascade network was created by adding an object detection network to
the front end of the animal pose estimation model for target screening. This network
could significantly improve the animal pose estimation effect of some small targets
and multitargets, as well as the stability and reliability of pose estimation.

However, some deficiencies still need to be improved in the subsequent work. The
three-dimensional gait data of quadrupeds cannot currently be calculated since the detec-
tion of animal joints still relies on two-dimensional plane estimation and the absence of
depth data. Therefore, its potential will be investigated and improved upon in the future.
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Abstract: Federated learning has been attracting increasing amounts of attention for its potential
applications in disease diagnosis within the medical field due to privacy preservation and its ability
to solve data silo problems. However, the inconsistent distributions of client-side data significantly
degrade the performance of traditional federated learning. To eliminate the adverse effects of
non-IID problems on federated learning performance on multiple medical institution datasets, this
paper proposes a cyclic federated learning method based on distribution information sharing and
knowledge distillation for medical data (CFL_DS_KD). The method is divided into two main phases.
The first stage is an offline preparation process in which all clients train a generator model on local
datasets and pass the generator to neighbouring clients to generate virtual shared data. The second
stage is an online process that can also be mainly divided into two steps. The first step is a knowledge
distillation learning process in which all clients first initialise the task model on the local datasets
and share it with neighbouring clients. The clients then use the shared task model to guide the
updating of their local task models on the virtual shared data. The second step simply re-updates
the task model on the local datasets again and shares it with neighbouring clients. Our experiments
on non-IID datasets demonstrated the superior performance of our proposed method compared to
existing federated learning algorithms.

Keywords: cyclic federated learning; non-IID; distribution information sharing; knowledge distillation

1. Introduction

Deep learning is widely used in clinical scenarios, such as disease screening, health
management, diagnosis and treatment. Obtaining models that can perform various medical
tasks well often requires a large amount of training data; however, due to privacy limitations
in the medical field, it is not possible to pool data from various medical sites to form larger
datasets, which isolates each medical site and means that models can only be trained with a
small amount of local data, resulting in the poor performance of trained models. Federated
learning [1] has been proposed as an effective solution to this problem. Firstly, as a kind
of distributed machine learning, federated learning can jointly train global models for
multiple medical institutions by combining data and annotations from each institution
to expand the sample data volume and the number of annotations [2], thereby making
it possible to solve unbalanced data distributions. Secondly, federated learning does not
require data exchanges among healthcare institutions, which satisfies requirements such as
patient privacy protection, data security and government regulations. Additionally, the
results of federated learning can be shared among medical institutions, which can alleviate
the problem of the uneven distribution of medical resources to a certain extent.

The training process of federated learning involves medical institutions training model
parameters based on local datasets, then sharing model parameters among medical insti-
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tutions and finally fusing all model parameters in an aggregated manner to form better-
performing models. When the data distributions of medical institutions are inconsistent,
i.e., the assumption of independent and identical distribution (IID) is not satisfied among
medical institutions, the complexity of the problem modelling, theoretical analysis and
empirical evaluation of solutions increases, resulting in the degradation of model perfor-
mance [3]. A feasible idea to solve this problem is to share data distributions based on
the model sharing in federated learning, i.e., share the data distribution information of
different medical institutions with other medical institutions. This is similar to the sharing
and exchange of treatment experiences among doctors at multiple medical institutions,
which can improve treatment levels by learning from each other. In addition, there are
certain requirements for data security while keeping shared data.

The initial federated learning framework was the centralised federated learning frame-
work, which faced the problem that it is difficult to find trusted third parties to perform
parameter aggregation [4]. To solve this problem, decentralised federated learning frame-
works have been developed, such as peer-to-peer network structures; however, they have
certain requirements for the computing power of each client. Due to the frequent informa-
tion exchanges between multiple clients, the communication costs are also relatively high.
The decentralised federated learning architectures remove the central server to perform
task model aggregation locally and only exchange information between adjacent clients
on the communication graph, which reduces the probability of network congestion and
communication overheads while improving data privacy protection capabilities. There-
fore, these architectures are very suitable for the model exchange framework of federated
learning and the exchange of shared data.Thus, based on this, our approach is proposed to
improve the task model performance of federated learning for non-IID data.

To sum up, the main contributions of this work can be summarised as follows:

1. A novel unidirectional synchronous cyclic decentralised federated learning framework
and an effective evaluation of the convergence of the model;

2. A new distribution information sharing and knowledge distillation model aggregation
algorithm for the federated task model, which solves the problem of data distribution
inconsistency both at the algorithm level and the data level;

3. The first attempt to use federated learning to diagnose Alzheimer’s disease based on
medical datasets;

4. A way to measure the inconsistent distributions of data features using the maximum
mean difference (MMD).

The rest of our paper is organised as follows. Section 2 introduces related work.
Section 3 details our proposed approach. Section 4 describes the experimental environment
and our experimental results. Section 5 concludes the paper and proposes future work.

2. Related Work

Since federated learning was first proposed, four main types of challenges have
arisen: communication challenges, system challenges, statistical challenges and privacy
challenges [4]. We can refer to these two articles [5,6] for the communication challenges and
system challenges of a cyclic federated learning framework, which have been analyzed and
solved by predecessors. For privacy challenges, we can refer to the solutions in these two
articles [7,8]. The privacy security protection strategies proposed in both papers consist of
a privacy protection module and an attack detection module, while the major difference
between the two is that the first scheme uses a two-level privacy data protection module.
This scheme uses perturbation-based privacy converts categorical values into numeric
and normalizes feature values into a range of [0, 1] before transforming the data using
DL-based encoder techniques, which strengthens privacy and increases the utility of DL
models .The statistical challenges, e.g., the non-independent and identical distribution of
data (non-IID) problem, are some of the most non-negligible challenges in the application
of federated learning in the medical field. Therefore, in this paper, we mainly focus on the
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non-IID problems.In response to non-IID problems, existing research has mainly solved the
problems at the algorithm and data levels.

The algorithm-level solutions mainly include objective function modification and
solution mode optimisation. Objective function modification involves adding regularisation
terms on the client side. A trade-off has been achieved between optimising local models
and reducing the differences between local models and global models to solve the non-
independent homogeneous distribution of data at each node [9–12]. The measure of the
differences between local models and global models by the regularisation terms can be
either the distance between them or the differences in model behaviour. The distance
measures between local and global models are Euclidean distances [9] and weighted
distances [10]. For example, the federated proximal optimisation (FedProx) algorithm that
has been proposed in the literature [9] corrects the client-side drift that occurs in FedAvg
by restricting the Euclidean distances between local models and global models as proximal
terms. This means that the local updates do not excessively deviate from the global models,
which alleviates any inconsistencies in the client-side data and improves the stability of
global model convergence. The federated curvature (FedCurv) algorithm that has been
proposed in the literature [10] uses Fisher information from global models obtained during
the previous rounds of training to weight the distances, which can reduce excessive errors
in the model parameters. The differences in model behaviour between local and global
models can be measured by the degree of inconsistency in the model output distributions
on local datasets or by the gradient of the global models on local datasets. For example, in
the literature [11], the maximum mean discrepancy (MMD) has been used as a metric to
measure the inconsistency in model output distributions on local datasets. The stochastic
controlled averaging (SCAFFOLD) algorithm that has been proposed in the literature [12]
improves the FedProx algorithm by adding a control variable on the client side. This
control variable can take either the gradient norm of global models on local datasets or
the Euclidean distances between local and global models, thus preventing local models
from deviating from the globally correct training direction. These methods can improve
the performance of federated learning for model learning on non-IID datasets to some
extent, but the degree of improvement is limited by the consistency of the client-side data
sampling [3].

In solution optimisation, the good performance of federated learning models is mainly
achieved by improving the server-side aggregation method. The ideal application condi-
tions for federated learning are IID-based datasets (such as the initially proposed FedAvg
algorithm) and weights for clients that are proportional to the number of samples.The accu-
racy of global models is greatly degraded in the case of the inconsistent, unbalanced and
non-independent distribution of client data [13]. For this reason, most scholars have aimed
to improve the shortcomings of aggregation methods for federated averaging algorithms.
Accuracy-based averaging (ABAvg) has been in the literature [14], in which the server-side
tests the accuracy of temporary models on validation datasets to obtain the accuracy of the
models on the client side and then normalises them before aggregating all parameters. The
federated learning with matched averaging (FedMA) algorithm that has been proposed in
the literature [15] uses Bayesian non-parametric methods to match and average weights in
a hierarchical manner. The federated averaging with momentum (FedAvgM) algorithm
that has been proposed in the literature [16] applies momentum when updating global
models on a server. The federated normalised averaging (FedNova) algorithm that has
been proposed in the literature [17] normalises local updates before averaging. However,
these methods have limited success in improving the performance of global models [12], so
some scholars have proposed approaches that evade this problem, such as personalised
federated learning, multitask federated learning and federated meta-learning, which can
also improve the performance of federated learning on non-IID data to some extent.

The source of global model performance degradation is the non-IID problem; thus,
data-level approaches to sharing client-side data have become new options for solving
the non-IID problem. Client-side data sharing can be divided into two types: direct data
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sharing and indirect data sharing. In terms of direct data sharing for federated learning, one
approach is to use a global sharing strategy [18–20], in which the server-side shares small
amounts of public data with the client for training to reduce the variance between trained
local models, thus increasing the robustness and stability of the training process. This
sharing approach relies on task-specific public datasets, and, in practice, there is a risk of
privacy violation during both the acquisition and sharing of public data. Another approach
is to use a local sharing strategy [21,22], in which small amounts of data are shared directly
through trusted communication links between clients; however, this approach also violates
the privacy preservation conventions of federated learning.

Indirectly shared federated learning does not share data directly, but rather makes the
distributions of client datasets consistent by sharing data distribution information on the
client side and then augmenting local training datasets with the shared distribution infor-
mation [23,24]. The data distribution information can be learned using generator networks,
which can be divided into global and local generators, depending on how the generators
are trained. For example, a global generator shared approach has been proposed in the liter-
ature [23] that trains conditional generative adversarial network(CGAN) [25] generators on
central servers and then shares the generators with clients to share distribution information.
However, the data required for training CGANs using central servers are extracted from
all clients, and there is a risk of privacy violation during the transmission of extracted
data from the clients to the server side. A local generator shared approach has also been
proposed in the literature [24] that trains bulldozer distance-based generative adversarial
networks (i.e., Wasserstein generative adversarial networks, WGANs) [23] on local datasets
on the client side and shares them with other clients. An image translation network is then
trained using local generators and other generators to solve the federated learning problem
for client-side heterogeneous data. Implicit data sharing through generators does not cause
any privacy problems and is more practical than direct data sharing because it meets the
need for patient privacy protection in healthcare organisations.

The data-immobile and model-immobile nature of federated learning has led to its
increasingly widespread application in fields with high requirements for sensitive data
protection, such as medicine. To address the problem of the degradation of federal learning
performance due to inconsistent data distributions among federated learning participants,
federated learning for client-side data sharing has become an effective solution strategy.
Among the different options, the approach of sharing data distributions rather than the
data themselves is more appropriate for application because it does not create the risk of
privacy violation. Therefore, we addressed this issue by integrating solutions at both the
data and algorithm levels. See Figure 1 for details of classification guidelines.

Figure 1. Solutions to non-IID problems.

3. The Distribution Information Sharing- and Knowledge Distillation-Based Cyclic
Federated Learning Method

The ultimate goal of federated learning is to jointly train optimal models for multiple
clients; in this paper, we refer to these as task models, which are made by multiple medical
institutions to obtain target models. Task models can be for the diagnosis of diseases, lesion
segmentation, etc. In federated learning, local task models tend to be consistent with global
task models; however, in the case of non-IID local client data, local task models deviate
from global task models. In the existing state-of-the-art circular decentralised federated
learning schemes, the model parameters of nodes are updated after multiple steps of
weighted summation and then averaged, which is a complex and costly communication
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strategy. In addition, the weighted average approach to model parameter aggregation
often yields poor task model performance on non-IID datasets because the client data
distributions of neighbouring nodes may differ significantly and thus, the trained task
models are biased. To address this, a natural idea is to degrade this bias by sharing data
distributions to generate augmented datasets while preserving data privacy and then using
the augmented data to learn the data distributions of other clients to achieve the implicit
aggregation of model parameters. For this purpose, we used generators to learn the data
distribution information of clients and share the local task models of clients, together with
the local data generators, with neighbouring clients. Since both the generators and the task
models carrying the data distribution information of the neighbouring clients were trained
on the same datasets, this facilitated the use of the migration learning idea to aggregate the
task models of two neighbouring clients. Based on this, we proposed a teacher–student
model-based migratory learning approach for task model aggregation. Figure 2 shows a
general block diagram of our proposed approach.

Figure 2. A schematic diagram of our cyclic federated learning method based on distribution
information sharing and knowledge distillation.

Supposing that there are C clients involved in the federated learning task (where G is
the shared generator model parameters that are locally trained offline, and w is the task
model parameters that are dynamic shared weights), the overall process can be divided
into two stages as follows:

Stage 1: The offline process. All clients participating in the federated learning task
train the generator network offline on local datasets to obtain the generator network G that
responds to local distribution information. Then, all clients pass the trained generator G to
the next client in turn. The next client c+1 generates the corresponding virtually shared
local data after receiving the generator from client c before.

Stage 2: The online process, which can be mainly divided into two steps. The first
step is the knowledge distillation learning process, in which all clients first initialise the
task model on local datasets and share it with the next client, and the next client then uses
the shared task model to teach its task model on the data that were virtually shared via
knowledge distillation. The second step simply re-updates the trained task model on local
datasets again and shares it with the next client.

3.1. Distribution Information Acquisition Based on Deep Learning

To eliminate the adverse effects of the non-IID problem on the performance of medical
institution federated learning, an effective approach is to augment the local datasets of
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medical institutions by sharing their data distributions. To obtain information about the
data distributions of healthcare institutions, the current state-of-the-art approach is to use
a generator model with deep learning. Generators are the most effective tools for data
augmentation because they not only learn the distribution information of data effectively
but also generate data that match the real distributions. Generative adversarial networks
(GANs), as one of the current types of mainstream deep neural network generators, are
powerful in terms of image enhancement and image-to-image conversion [22]. Therefore,
we adopted a GAN as a data generator on the main server to obtain the data distribution
information of local clients [26–28] and added conditional information to generate the type
of data that we needed, i.e., the final generator model was a CGAN. Specifically, let the total
number of clients (federated learning participants) participating in the federated learning
task be C, let the local datasets of the c (c = 1, 2, · · · , C) client be Dc = {xi | i = 1, 2, · · · , Nc}
and let Nc = |Dc| be the number of clients in the training sample.The client c trains a
generator and reflects the distribution information Gc of local datasets Dc. Thus, C clients
are trained to obtain C generator models. The distribution of information obtained in this
way is relatively safe from privacy breaches.

3.2. Distribution Information Sharing

The purpose of sharing distribution information is to enable later clients in the cyclic
communication graph to have virtually shared data about the previous client’s data dis-
tribution information, thus enabling two adjacent clients to achieve a consistent distri-
bution of data to improve the performance of task models. To this end, we combined
the features of a cyclic federated learning architecture and model parameters to accom-
plish this process. Let c = 1, 2, · · · , C and let the client c transmit the generator Gc to
the client c+1. When c = C, let c + 1 = 1, thus forming a ring-shaped communication
link. Under the condition of this cyclic communication link, let the client c + 1 receive
the generator Gc from the client c, where Nc = |Dc| is the number of local data points
from the client c. Accordingly, Gc can generate N′c+1 virtually shared data points, i.e.,
D′c+1 =

{
xl | xl = G(zl), l = 1, 2, · · · , N′c+1

}
. Therefore, only the client c+1 has the dis-

tribution information of the client c, which indirectly realises distribution information
sharing while protecting patient privacy. The distribution information sharing process is
schematically illustrated in Figure 3.

Figure 3. A schematic diagram of the distribution information sharing process.

3.3. Task Model Parameter Aggregation

The task model parameter aggregation process focuses on how to use shared distri-
bution information for model parameter aggregation to eliminate the adverse effects of
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the non-IID problem on federated learning performance. In our cyclic federated learning
framework, the client c+1 not only receives the task model parameters from the client c
through a trusted channel but also the generator model Gc. The virtually shared data D′c+1
can be generated locally via Gc. Since D′c+1 have consistent distributions across the local
datasets Dc of the client c, the task model f (x, wc) obtained by the client c after training
using Dc has a good performance. However, the distributions of the local datasets Dc+1 of
the client c+1 are usually not consistent with those of Dc, such that f (x, wc) performs worse
on the local datasets Dc+1 of the client c+1 than on D′c+1. As a result, existing model aggre-
gation algorithms, such as federated averaging and its various improvements, performed
poorly in our cyclic federated learning framework. To this end, we proposed a new method
for model aggregation for federation learning tasks based on knowledge distillation.

Since the locally trained task model of client c has a similar optimal performance on
datasets D′c+1 and Dc, the locally trained task model f (x, wc+1) of client c+1 can be trained
using the local task model f (x, wc) of client c on the datasets D′c+1 to improve performance.
This idea could be implemented using the teacher–student model for migration learning,
as shown in Figures 4 and 5.

Figure 4. A schematic diagram of the teacher–student guided learning approach.

Figure 5. A schematic diagram of the teacher–student guided learning approach.
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The training goal of our cyclic federated learning method based on the distribu-
tion of information sharing and knowledge distillation was the minimisation of the total
loss function:

�(w1, w2, · · · , wC) =
C

∑
c=1

Lc+1(wc+1) + λ
C

∑
c=1

Rc+1(wc+1, wc) (1)

where γ is a hyperparameter that controls the propensity of the local task model, wc+1 is
the parameter of the local task model of the client c + 1 (the task model to be trained can be
the same or different for each client), and the loss function corresponding to Lc+1(wc+1)
has the following definition:

Lc+1(wc+1) = ∑
x∈Dc+1

lc+1(x; wc+1) (2)

where lc+1(x; wc+1) is the loss of the task model f (x, wc+1) on the data sample x and
Rc+1(wc+1, wc) ≥ 0 is the difference between the models of the adjacent clients c and c+1
in the cyclic communication graph, which is defined as follows:

Rc+1(wc+1, wc) = αLso f t(wc+1, wc) + βLhavd(wc+1) (3)

where
Lso f t(wc+1, wc) = ∑

x∈D′c+1

lso f t(x; wc+1, wc) (4)

Lhard (wc+1) = ∑
x∈D′c+1

lhard (x; wc+1) (5)

are the knowledge distillation loss and student loss on the datasets D′c+1, respectively
(which are defined in the same way as in the standard teacher–student model), and α and β
are two hyperparameters with values of 0 when the adjacent client models are the same
and values of greater than 0 when they are different; the smaller the difference, the smaller
the value (and vice versa). According to the incremental convex optimisation theory, the
minimisation equation (Equation (1)) can be solved using the following iteration. At the
k-th iteration, the gradient descent update is first performed on the intermediate variable
uc+1:

u(k)
c+1 = w(k−1)

c+1 − αk∇Rc+1

(
w(k−1)

c+1 , w(k−1)
c

)
(6)

where αk is the gradient descent size, and the superscripts k and k+1 denote the values
of the k-th and k-th+1 iterations, respectively. Then, the model parameters are updated
as follows:

w(k)
c+1 = arg min

w
Lc+1(w) +

λ

2αk

∥∥∥w− u(k)
c+1

∥∥∥2
(7)

Using Equation (6), the iteration of u(k)
c+1 learns the behaviour of f

(
x, wk−1

c

)
on the

datasets D′c+1, thus optimising the performance of the local model f
(

x, wk
c+1

)
that was

updated using Equation (7) on the datasets Dc+1 ∪ D′c+1. After multiple further iterations
of training, as shown in Figure 4, all clients can learn the features of the data distributions of
other clients via this cyclic framework, i.e., the training effect of a global model is reached.
Ultimately, the adverse effects of the non-IID problem on medical institution-federated
learning performance can be eliminated.

The above solution process can be described in pseudo-code as shown in Algorithm 1.
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Algorithm 1 Federated learning algorithm based on distribution information sharing and
knowledge distillation.

Input: C clients,each with its own training datasetsDc,generator Gc and its own task model
f (x, wc)

Output: Trained model parameter set {w1, w2, · · · , wC}
1: for c = 1, 2, · · · , C do
2: Client c sends Gc to Client c+1
3: Client c+1 generates virtual shared data D′c+1 with Gc
4: end for
5: for k = 1, 2, · · · , K do
6: for c = 1, 2, · · · , C do
7: Client c sends wc

(k−1) to Client c+1
8: Client c+1 updates u(k)

c+1 according to (3) and (6)

9: Client c+1 updates w(k)
c+1 according to (1) and (7)

10: end for
11: end for

4. Experimental Results and Discussion

4.1. Development Environment and Datasets

Our machine learning model was built by the well-known deep learning framework
PyTorch, version 1.6.0, and Python, version 3.7.1. A self-built cyclic federated learning
framework was used, in which a Kafka cluster was used as the information medium
for model parameter exchange. The generator network used six convolutional layers
with a convolutional kernel size of 4x4.We used two datasets to validate the effectiveness
of the proposed method, one of which was the Alzheimer’s dataset that was used in a
Kaggle competition .For this dataset, we used the pre-trained model VGG16 provided by
torchvision as our classifier network. The second dataset was the MNIST dataset, which
was also used to validate the generality of the proposed method, i.e., the generalisation
ability of the method. For this dataset, we used the two-layer convolutional layer network
used in MOON. The Alzheimer’s dataset, which has a total of 5120 training data points
and 1279 testing data points, has a 1:1 ratio of diseased to non-diseased data in both the
testing and training sets. The MNIST dataset has a total of 60,000 images in the training set
and 10,000 images in the testing set.

4.2. Experimental Parameters

There are various scenarios of non-IID data. In this study, we focused on two of them:
attribute skew and label skew. To study these two different types of data distributions, we
conducted experiments on the two selected datasets. For the Alzheimer’s dataset, due to
its high data latitude and the few types of labels, we used the maximum mean difference
(MMD) to measure the attribute skew of the client data [29]. The maximum mean difference
is mainly used to measure the distance between two data distributions. Given two data
distributions, the square of their MMD can be expressed as:

MMD2(x, y) = ‖E[ϕ(x)]− E[ϕ(y)]‖2 (8)

where φ(•) denotes the mapping to the regenerated Hilbert space (RKHS). The inconsis-
tency of client data distributions was measured by calculating the MMD, and the entire
dataset was divided according to the MMD value to measure the federated learning per-
formance under different MMD values. As for the MNIST dataset, we used the Dirichlet
distribution [30] to divide the non-IID samples because of the many types of labels. Figure 6
shows the Dirichlet distribution when α = 0.5 and the number of clients was 10.
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Figure 6. Dirichlet distribution.

4.3. Algorithm Evaluation

For the two distribution types (attribute skew and label skew), we effectively evaluated
our algorithm on the selected datasets.

4.3.1. Attribute Skew

To study attribute skew, we conducted a correlation experiment on the Alzheimer’s
dataset, the results of which are shown in Table 1 and Figures 7–10. By comparing the
accuracy rates on the testing set that are shown in Table 1, it can be seen that, in different
MMD scenarios, the cyclic federated average-based method had a larger model loss, its
performance was different from that of the centralised learning method, and the training
was unstable. Our proposed method outperformed the cyclic federated average method,
and the performance was close to or attained the centralised learning performance. The
box line plot in Figure 10 shows that the MMD increased from the top left to the bottom
right. By dynamically increasing the MMD, we could see that as the MMD increased
(i.e., as the data distribution became more inconsistent), the model performance of the
cyclic federated average method degraded faster and deviated greatly from the centralised
learning performance, while the performance of our proposed method was better than
that of the federated average, and the deviation from the centralised learning performance
was slower.

Table 1. The top-1 accuracy of different MMD values on the Alzheimer’s dataset.

Data Division
ID

MMD CFL_DS_KD CFL_FedAvg CL

1 0.514 79.95% 78.97%

79.22%

2 1.029 79.56% 78.11%
3 1.283 78.73% 77.24%
4 1.546 78.60% 72.20%
5 1.803 78.77% 75.37%
6 2.059 78.05% 70.00%
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Figure 7. The accuracy of the different methods on the testing set after different amounts of commu-
nication rounds.

Figure 8. The accuracy of the different methods on the testing set after different amounts of commu-
nication rounds.

Figure 9. A performance comparison of the different methods under different MMD values.
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Figure 10. A performance comparison of the different methods under different MMD values.

Additionally, to further verify the effectiveness of our method, the output differences
between the proposed method and the centralised learning method were analysed. When
the difference was smaller, it meant that the proposed method was closer to the centralised
learning performance. From Figure 11, it can be seen that the output performance difference
between our method and the centralised learning method was almost 0, which effectively
illustrated the beneficial effects of our method.

Figure 11. The difference between the CFL_DS_KD and CL method outputs.

4.3.2. Label Skew

The superior performance of our method was effectively demonstrated after several
experiments on the Alzheimer’s dataset. To further demonstrate the performance of our
proposed method in the case of label skew, we also conducted corresponding comparative
experiments on the public MNIST dataset. Comparisons were made between our proposed
method and the state-of-the-art federated learning algorithm MOON and the mutual
learning method Def_KT within a centreless federated learning framework. As shown
in Figure 12 and Table 2, α is the Dirichlet distribution coefficient, and the smaller its
value, the more inconsistent the data distribution. From the experimental results, it can
be seen that the classification accuracy of our proposed method on the testing set was
almost comparable to the centralised learning method and higher than those of MOON [31],
Def_KT [32] and FedAvg. Thus, the superiority of our proposed method was effectively
demonstrated, both on a medical dataset and a publicly available natural dataset.
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Figure 12. A performance comparison of the different methods when α = 0.5.

Table 2. The top-1 test accuracy with α = 0.5 and α = 0.1 on MNIST datasets.

Method α = 0.1 α = 0.5

MOON 95.7% 98.1%
CFL_FedAvg 97.1% 98.1%

Def_KT 95.2% 99.0%
CFL_DS_KT 98.9% 99.1%

4.3.3. Convergence Evaluation

The convergence of centralised federated learning has been effectively proven, whereas
that of centreless cyclic federated learning frameworks has not yet been proven. Therefore,
in addition to the performance of the selected methods described above, we also experi-
mentally evaluated the convergence of our cyclic federated learning architecture. We used
two parametric numbers to find the differences in weights between clients. The weight
differences could be expressed as follows:

Dl =
1
C

C

∑
c=1

∥∥∥wl
c+1 − wl

c

∥∥∥
2

(9)

Di
l =

1
C

C

∑
c=1

∥∥∥wl
c+1i− wl

ci
∥∥∥

2
(10)

Equation (9) represents single-layer weight differences, and Equation (10) represents
single-weight differences in each layer, where wl

c denotes the c-th client’s i-th layer weight
and wli

c denotes the i-th weight difference in the i-th layer of the c-th client. We conducted
experiments on the Alzheimer’s dataset. Figure 13 shows the single-layer weight differ-
ences, in which it can be seen that as the amounts of communication rounds increased, the
weight differences degraded sequentially and eventually stabilised. Figures 14 and 15 show
the single-layer single-weight differences, in which it can be seen that the largest weight
difference was in the thirteenth convolutional layer, and the maximum difference was only
0.0035 (i.e., close to 0) and reached convergence.
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Figure 13. The single-layer weight differences.

Figure 14. The single-weight differences in each layer.

Figure 15. The single-weight differences in each layer.

The output variance could be expressed as follows:

DM =
1
C

c

∑
c=1
‖ f (wc+1; x)− f (wc; x)‖2 (11)

where f (wc; x) denotes the output of the model of the c-th client under the input sample
x. The output difference results are shown in Figure 16, in which the diagnosis difference
represents the differences between the diagnosis results and the input data. The disease

70



Electronics 2022, 11, 4039

output difference referred to the output differences between the results that were diagnosed
as diseased, and the model output difference referred to the overall differences between
the model outputs. It can be seen from the results that the output differences were small on
the whole, i.e., very close to 0. Therefore, from the above experiments, we could conclude
that the convergence of our proposed method was effectively evaluated. At present, the
model is convergent.

Figure 16. The output differences.

5. Summary

To address the non-IID problem in medical institution federated learning that cannot be
effectively solved using existing federated learning techniques, this paper proposed a cyclic
federated learning method (CFL_DS_KT) based on distribution information sharing and
knowledge distillation. This is a novel and effective federated learning approach and, to the
best of our knowledge, the first time we have used this unidirectional synchronous cyclic
decentralised federated learning framework and effectively evaluated the convergence of a
model with this structure. The experimental results also show that the task model achieves
convergence under our proposed approach. Furthermore, in contrast to existing scholarly
research solutions, we solve the non-IID problem by optimising the solution through the
solution approach of distribution sharing and knowledge distillation. By considering both
data-level and algorithm-level optimisation approaches, we achieve better performance
of the federation learning model under non-IID while safeguarding client data privacy.
In our extensive experiments on medical and public datasets, CFL_DS_KT shows a good
improvement over various state-of-the-art methods, and its accuracy is closer to that of
centralised learning. Further improvements in privacy preservation were achieved due to
using a cyclic federated learning method. It also provided the idea of training federated
learning models on heterogeneous data, which could eliminate data heterogeneity by
transforming the data distribution information from one client to another.

However, our proposed approach has some shortcomings. When the client data is
extremely heterogeneous, it is difficult to train a good generator to generate high-quality
images due to the small amount of training data. Additionally, it is not suitable to train
federated learning models with large numbers of clients as this could increase breakpoint
failures and model training cycle times. Therefore, this method would mainly be suitable
for federated learning across medical institutions.
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Abstract: Face verification based on ordinary 2D RGB images has been widely used in daily life.
However, the quality of ordinary 2D RGB images is limited by illumination, and they lack stereoscopic
features, which makes it difficult to apply them in poor lighting conditions and means they are
susceptible to interference from head pose and partial occlusions. Considering point clouds are
not affected by illumination and can easily represent geometric information, this paper constructs a
novel Siamese network for 3D face verification based on Pointnet. In order to reduce the influence
of the self-generated point clouds, the chamfer distance is adopted to constrain the original point
clouds and explore a new energy function to distinguish features. The experimental results with the
Pandora and Curtin Faces datasets show that the accuracy of the proposed method is improved by
0.6% compared with the latest methods; in large pose interference and partial occlusion, the accuracy
is improved by 4% and 5%. The results verify that our method outperforms the latest methods and
can be applied to a variety of complex scenarios while maintaining real-time performance.

Keywords: chamfer distance; convolutional neural network; face verification; Siamese network

1. Introduction

Face recognition algorithms are traditionally split into two specific tasks by the com-
puter vision community: verification and identification [1]. Different from face identifica-
tion, face verification is a one-to-one comparison task; given a pair of images as input, a
face verification system should predict if the input items contain faces of the same person or
not [2]. The computer vision community has broadly addressed the problem in both the 2D
RGB and 3D domains [3]. However, ordinary RGB cameras cannot obtain effective images
in the case of a large variation of illumination. In addition, 2D RGB images lack stereo
information and are more susceptible to interference from head pose and partial occlusion.

Recently, the computation of geometric descriptors of 3D shapes has played an impor-
tant role in many 3D computer vision applications [4]. In general, 3D objects are mainly
represented by the following four methods: mesh, voxel grid, octree, and point cloud. How-
ever, the expression of mesh is complex, the voxel grid makes the space redundant, and the
octree is complicated to use. In contrast, the point cloud can be directly used to represent
3D information, and the mathematical expression is very concise. With the improvement of
depth map devices, obtaining effective point clouds has become easier. Depth maps have
two main advantages. Firstly, the devices are stable with illumination changes. Secondly,
depth maps can be easily exploited to manage the scale of the target object in detection
tasks [5]. However, compared with point clouds, depth maps have two disadvantages.
First, depth maps are expressed in the form of single-channel 2D images, which cannot
directly reflect the geometric characteristics of objects in a 3D space. Second, the contours
of depth maps overlap with the surrounding pixels, which makes the contours unclear, and
some important information will be lost. Relying on a simple coordinate transformation,
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depth maps can be converted into point clouds; therefore, point clouds inherit the above
two advantages of depth maps and also keep clearer geometric characteristics. Furthermore,
since the pioneering work of Charles et al. [6], who constructed Pointnet, which solves the
sparsity and disorder of point clouds, many deep learning models have been proposed,
and point clouds now have more abundant applications.

In this paper, in order to reduce interference from head pose and partial occlusion, we
rely on point clouds to construct a novel Siamese network for 3D face verification. In our
method, we first obtain face information from depth maps and convert it to point clouds.
Secondly, we construct a Siamese network to extract features. In this step, we adopt the
farthest point sampling algorithm to sample points and employ two set abstractions to extract
local-to-global face features hierarchically. Thirdly, in order to reduce the influence of the
self-generated point clouds, we employ the chamfer distance to constrain the original point
clouds and design a new energy function to measure the difference between two features.

In order to verify the performance of our method, we conduct experiments on
two public datasets—the Pandora dataset and the Curtin Faces dataset. We also split
the Pandora dataset into groups for cross-training and testing to verify the effectiveness of
our method under pose interference and partial occlusion.

The main contributions of this paper are summarized as follows:

1. We propose an end-to-end 3D face verification network, which, to the best of our
knowledge, is the first attempt to construct a Siamese network with point clouds for
face verification.

2. We employ the charm distance to constrain the original point clouds, which can
effectively improve the accuracy, and enables our network to better cope with the
interference from head pose and partial occlusion.

3. The experimental results on public datasets show that our network has good real-time
performance, and the verification accuracy outperforms the latest methods, especially
under pose interference and partial occlusion.

2. Related Works

In recent years, the most widely used face verification methods have mainly been
based on intensity images [7]. Before neural networks became widely used for image tasks,
most of the methods were based on hand-crafted features [8]. With the improvement of
hardware such as GPUs, more deep learning methods in neural networks have been applied
to computer vision. Benefiting from the perceptual power of deep learning, most methods
outperform humans on the LFW dataset [9]. Among them, Schroff et al. [10] constructed a
network, FaceNet, which takes pairs of images as inputs and introduces a triplet loss to cal-
culate the difference between images. In [11], Phillips et al. designed a VGG-face algorithm
to recognize faces as variables. Richardson et al. [12] combined CoarseNet and FineNet
and introduced an end-to-end CNN framework that derives the shape in a coarse-to-fine
fashion. In order to avoid noise and degradation, Deng et al. [13] explored a robust binary
face descriptor, compressive binary patterns (CBP). Wu et al. [14] proposed a center invari-
ant loss and added a penalty to the differences between each center of classes to generate a
robust and discriminative face representation method. Wang et al. [15] introduced a more
interpretable additive angular margin for the softmax loss in face verification and discussed
the importance of feature normalization. To combat the data imbalance, Ding et al. [16]
combined generative adversarial networks and a classifier network to construct a one-shot
face recognition network. Likewise, in order to deal with the imbalance problem, based on
margin-aware reinforcement learning, Liu et al. [17] introduced a fair loss, in which deep
Q-learning is used to learn an appropriate adaptive margin for each class. Targeting racial
and gender differences in face recognition, Zhu et al. [18] combined NAS technology and
the reinforcement learning strategy into a face recognition task and proposed a novel deep
neural architecture search network. In order to deal with low-resolution face verification,
Jiao et al. [19] constructed an end-to-end low-resolution face translation and verification
framework which improves the accuracy of face verification while improving the quality of
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face images. Recently, Lin et al. [20] proposed a novel similarity metric, called explainable
cosine, which can be plugged into most of the verification models to provide meaningful
explanations. Aimed at facial comparison in a forensic context, Verma et al. [21] employed
an automatic approach to detect facial landmarks, and selected independent facial indices
extracted from a subset of these landmarks. Cao et al. [22] introduced two descriptors and
one composite operator to construct a framework named GMLM-CNN for face verification
between short-wave infrared and visible light.

Compared to RGB images, depth maps lack texture detail, but they cope well with
dramatic light changes. Based on the depth maps, Guido et al. [23] generated other
types of pictures using a GAN network for head pose estimation. In [7,24], Ballota et al.
utilized convolutional neural networks for head detection, marking the first time CNN
was leveraged for head detection based on depth images. In recent years, many face
verification methods based on depth maps have been proposed. Borghi et al. [3] con-
structed JanusNet, which is a hybrid Siamese network composed of depth and RGB images.
Subsequently, Borghi et al. [2] used two fully convolutional networks to build a Siamese
network, which only relies on deep images for training and testing and achieved very
good results. Afterwards, Wang et al. [25] adopted a one-shot Siamese network for depth
face verification which significantly improved the accuracy. In order to reduce the inter-
ference from the head pose, Zou et al. [26] projected the face features onto a 2D plane
and introduced the attention mechanism to reduce interference from facial expressions.
Rajagopal et al. [27] introduced a CDS feature vector and proposed three levels of networks
for face expression categorization. Wang et al. [28] used L2 to constrain facial features and
constructed an L2–Siamese network for depth face verification.

Most of the proposed related 3D methods have achieved excellent performance. In
order to solve the photometric stereo for non-Lambertian surfaces and a disordered and
arbitrary number of input features, Chen et al. [29] proposed a deep fully convolutional
network PS-FCN to predict a normal map of the object in a fast feed-forward pass. Aiming
at 3D geometry reconstruction and avoiding blurred reconstruction, Ju et al. [30] proposed
a self-learning conditional network with multi-scale features for photometric stereo. Similar
to depth maps, surface normal maps can also provide 3D information for relevant tasks.
The pioneers Woodham et al. [31] proposed photometric stereo, which varies the direction
of incident illumination between successive images while holding the viewing direction
constant to recover the surface normal of each of the image points. Recently, Ju et al. [32] pre-
sented a normalized attention-weighted photometric stereo network NormAttention-PSN,
which significantly improved surface orientation prediction for complicated structures.

In the field of 3D point cloud vision, building on the innovation of Pointnet, Qi et al. [6]
solved the disorder and application in deep learning of point clouds; although many point
cloud methods are proposed, this work only considered the global features and missed
local features. Subsequently, Charles et al. [33] improved Pointnet by extracting local
features from a group of Pointnets. In order to solve the application of point clouds in
convolutional neural networks, Li et al. [34] proposed Pointcnn to learn X-transformation,
which is the generalization of typical CNNs into learning features. Guerrero et al. [35]
changed the first transformation of Pointnet and proposed PCPNet, which avoids the
quality defects of the point clouds and reduces the interference of invalid points. The above
works [33–35] optimize the feature extraction of point clouds and maintain good real-time
performance, but they did not consider the spatial geometric characteristics of original
points. In PPFNet, Deng et al. [36] applied a four-dimensional feature descriptor to describe
the geometric characteristics of original point pairs. Zhou et al. [4] constructed a Siamese
point network for feature extraction and measured the difference between the original point
clouds. Both [4] and [36] considered the spatial geometric characteristics of the original
point clouds, but they adopted a matrix for registration, which is computationally intensive
and time-consuming.
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As mentioned above, many point-cloud-based networks have been proposed, and
they have their own advantages. Due to these advantages, many face analysis methods
are proposed. Recently, Xiao et al. [37] constructed a classification network to guide the
regression process of Pointnet++ for head pose estimation. Ma et al. [38] combined a deep
regression forest and Pointnet for predicting head pose. Cao et al. [39] proposed a local
descriptor to describe the projection of point clouds for 3D face recognition.

Face verification is a one-to-one comparison task taking into account both the effec-
tiveness of feature extraction and real-time performance. Based on Pointnet, we construct a
novel Siamese network and adopt the chamfer distance to constrain the geometric charac-
teristics of the original point clouds.

3. Methods

For face verification with 3D point clouds, we convert the depth maps into point
clouds, construct a Siamese network to extract the features of a pair of faces, and employ
the chamfer distance to design the energy function to predict the similarity between the
two faces.

3.1. Point Cloud Extraction

As described above, we transform depth maps to point clouds. This means con-
verting depth data from an image coordinate system to the world coordinate system.
Each pixel of a depth map represents the distance from the target to the sensor (in mm).
In this step, we assume that the whole head information and head center (x′ , y′ ) with
its depth value Dp has been obtained (head detection and center localization are not
the focus of our work). Firstly, removing the background, we set the pixel value, which
is greater than Dp + L to 0, where L is the general amount of space for a real head [24]
(300 mm in our method). Secondly, according to Equation (1), we convert depth data to
point clouds. ⎡⎣x

y
z

⎤⎦ = Dp

⎡⎢⎣
1
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0 0
0 1

fy
0

0 0 1
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where (x, y, z) is the point location in the world coordinate system, and (xi, yi) is the
pixel position in the image. fx and fy are camera internal parameters which represent the
horizontal and the vertical focal length, respectively. As shown in Equation (1), a point
cloud is a list of points (represent in position (x, y, z)) in a 3D space.

3.2. Siamese Neural Network

Siamese neural networks were first proposed and applied to the signature and verifi-
cation certificate tasks by Bromley et al. [40]. A Siamese network consists of two shared
weight networks which accept distinct inputs and are joined by an energy function at
the end. This energy function computes a metric between two high-level features. The
parameters between the twin networks are tied, which can guarantee network consistency,
and ensures that a pair of very similar features are not mapped to very different locations
in feature space by the respective networks [41].

The structure of the Siamese neural network is shown in Figure 1. The input layer
sends an object to the hidden layer which extracts object features. The ends of two networks
are connected by an energy function in the distance layer which computes certain metrics
between features based on task requirements. Output layers predict the result of the
Siamese network.
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Figure 1. The framework of Siamese neural network. A pair of parallel networks extract features sep-
arately, and an energy function connects them to measure a certain relationship between two features.

3.3. Feature Extraction

As mentioned above, the essence of a point cloud is a list of points (n× 3 matrix, where
n is the number of points, and 3 represents (x, y, z) in the world coordinates). Geometrically,
the order of points does not affect its representation of the overall shape in 3D space.
As shown in Figure 2, the same point clouds can be represented by completely different
matrices. In order to deal with the disorder of point clouds and their application in deep
learning, Chen et al. [6], based on the idea of symmetric function, constructed a deep
learning model called Pointnet. The idea is to approximate a general function by applying
a symmetric function:

f (x1, x2, x3, · · · , xn) ≈ γ ◦ g(h(x1), h(x2), h(x3), · · · , h(xn)) (2)

where f is a general function, which maps all independent variables (x1, x2, x3, · · · , xn) to a
new feature space Rm. h is another general function used to map each independent variable
xi to feature space R

l , and g is a symmetric function (the input order does not affect the
result). r is also a general function which maps the result of function g to the specific feature
space R

m. According to Equation (2), the left part of the equation can be approximated by
the right part. As described above, we adopt Pointnet to approximate the right part.

Point Cloud Representation

=

1 1 1

2 2 2

3 3 3

4 4 4

a a a

a a a

a a a

a a a

x y z
x y z
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≠

(a) (b)

Figure 2. Disorder of point cloud. The point clouds in (a,b) have the same geometry, but the order of
the points is different, and the expressions are also different.

The structure of the network is shown in Figure 3.
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Figure 3. The structure of Pointnet. Each point is mapped into the feature space by three convolutional
layers, and a max pooling layer acts as the symmetric function to extract the global feature of the
point cloud.

As shown in Figure 3, where n is the total number of points. We adopt three convo-
lutional layers as the function h in Equation (2) (convolution kernel is 1× 1, the filter is
k, l, m, respectively), which is used to map the feature of each point to the feature space
R

3 → R
k → R

l → R
m . Finally, according to [6,29,30], a max pooling layer is adopted as

the symmetric function, g, which can solve the disorder of the features and extract the
global feature in R

m.
As described above, only the global feature of the object can be obtained by Pointnet.

There is no step to extract local features. Because point clouds lack a detailed texture,
only global features lead to a limited generalization ability of the network, especially in
complex scenarios. In order to improve the cognitive ability of the network, according
to [33], we adopt the set abstraction to extract the local-to-global features. The structure of
a set abstraction is shown in Figure 4. A set abstraction consists of the following three parts:
sampling, grouping, and local feature extraction. For a point cloud {p1, p2, p3, . . . , pN}(the
feature dimension of these points is C), in order to sample uniformly, we first use the
farthest point sampling method to sample the points. In this step, we arbitrarily select a
point pi as the starting point and find the farthest point pi1 from the point cloud, and put
pi1 into a new point set. Next, we regard pi1 as a new starting point and find the farthest
point in the rest of the points. We iterate the above steps until we obtain a new point
set

{
p11, p12, p13, . . . , p1N1

}
with a fixed number N1. Compared with random sampling,

farthest point sampling can cover the whole point set [42].

Sampling&
Grouping

Point net

( , )N C 1( , , )N K C 1 1( , )N C

Figure 4. The structure of a set abstraction. The farthest point sampling method is used to sample
feature points and group them, and a set of Pointnets is used to extract the features of each local region.

Secondly, we group these points in
{

p11, p12, p13, . . . , p1N1

}
; in this step, we regard

each point as the center of a sphere with radius K (our network contains two set abstractions
with a K of 0.2 and 0.4, respectively), and points in the same sphere are grouped into one
group. After this step, we obtain a new grouping set

{
g1, g2, g3, · · · , gN1

}
, and each group

represents a local region of its own central point.
Finally, we use a Pointnet, as shown in Figure 3, to extract features of each group, and

obtain a set of local features
{

f1, f2, f3, . . . , fN1

}
(the dimension of these features is C1). We

regard
{

f1, f2, f3, . . . , fN1

}
as a new point set for the abstraction of the next step.

The process of our method is shown in Figure 5, and we use a pair of completely
parallel branches to extract head features separately. Each branch contains two set abstrac-
tions. The first set abstraction adopts Pointnet1 to extract local features, which has three
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convolutional layers, and the filter of each layer is 64, 64, 128, respectively. The second set
abstraction adopts Pointnet2 to extract local features, which also has three convolutional
layers, and the filter of each layer is 128, 128, 256, respectively. After the second set abstrac-
tion, each branch employs Pointnet3 (The filters of three convolutional layers are 256, 512,
1024) to extract the local-to-global features of the object.

Pointnet1 Pointnet2 Pointnet3

Sampling&
grouping

Pointnet1 Pointnet2 Pointnet3

Chamfer 
Distance

feature 
constrain

Sampling&
grouping

Sampling&
grouping

Sampling&
grouping

Conv 1 1× Maxpool Fully connected layer

Set abstraction

Set abstraction

Set abstraction

Set abstraction

Energy
function

L2 
distance

 Constraint
distance

Sigmoid

(0,1)

Branch(a)

Branch(b)

Figure 5. The whole structure of our method. Two identical branches are adopted to extract features
separately, and the chamfer distance is used to constrain original point clouds. At the end of the
network, a novel energy function is introduced to distinguish the similarity of objects.

In practice, although the furthest point sampling method samples uniformly, due to
the unevenness of the point cloud, some groups have fewer points. During the grouping
process, the density and sparseness of points will affect the feature extraction. Therefore,
we use multi-resolution grouping to obtain the features of each layer.

As shown in Figure 6, the features of a set abstraction are composed of two vectors.
The left vector is the features of each group in this set abstraction. The right vector is the
features of the original points of the previous layer for groups with sparse points which
makes the first vector less reliable. Therefore, the second vector learns a higher weight
during training. On the other hand, for groups with dense points, the networks obtain finer
feature information, and the first vector learns a higher weight. In the training process,
the network adjusts the weights in the above way to find the optimal weights for different
point densities [42].

 
Figure 6. Hierarchical feature extraction schematic.
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3.4. Feature Constraint

Siamese networks measure the difference between high-dimensional features but
lack a description of the difference between original point clouds. The chamfer distance
can represent the original differences of point clouds and is widely used in point cloud
reconstruction [4]. In order to reduce the influence of the self-generated point clouds, we
adopt chamfer distance (CD) to constrain their features. It is defined as follows:

dCD(S1, S2) = ∑
p∈S1

min
q∈S2

d(p, q) + ∑
p∈S2

min
q∈S1

d(p, q) (3)

where S1, S2 ∈ R
3 represent two sets of point clouds. d(p, q) measures the L2 distance

between points p and q. The first term represents the sum of the minimum distances
from any points in S1 to S2, whereas the second term represents the sum of the minimum
distances from any points in S2 to S1. If the chamfer distance is greater, two sets of point
clouds are more distinct, and vice versa.

As mentioned above, the ends of the Siamese network are connected by an energy
function which measures the difference between a pair of objects. Based on the chamfer
distance, we design a new energy function to measure features, which is as follows:

Econstrain =

{
D2( fi, f j), (i, j) ∈ C

max(0, m− D( fi, f j)), (i, j) ∈ C̃
(4)

where C is a set of correspondence point clouds, which has a low chamfer distance (the
threshold is 0.02 in our method). fi is the feature extracted by our network, and D is the
Euclidean distance. m is the margin value (the threshold is 0.7 in our method). The first
term constrains the same objects closer in the feature space, and the second term leads
different objects to have a large distance (greater than the margin value).

In face verification tasks, the L2 distance is commonly used to measure the difference
between two features. The whole energy function of our network is shown below:

Etotal = λEconstrain + (1− λ)EL2 (5)

where EL2 is the L2 distance between two objects. λ is the ratio of the contribution of
the Econstrain.

According to Equation (6), we adopt sigmoid to map the value of energy function to
probability distribution between (0, 1).

S(Etotal) =
1

1 + e−Etotal
(6)

Face verification can be regarded as a classification task; our network uses cross-
entropy as the loss function:

H(p, q) = −∑
x

p(x) log q(x) (7)

where p(x) represents the ground truth, when p(x) is 1, the pair of objects belong to the
same object, and when p(x) is 0, the pair of objects belong to different objects. The q(x)
represents the predicted value. The whole structure of our network is shown in Figure 5;
the chamfer distance is used to constrain the features of original point clouds, and a new
energy function is used to measure the difference between objects.

In the selection of hyperparameters, the batch size is 64, the learning rate is 0.001, the
decay rate is 0.99, and the decay step size is 500.

4. Experiments

In this section, we first introduce two public datasets, the Pandora dataset [23] and
the Curtin Faces dataset [43], for our experiments. Secondly, we conduct an experiment to
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investigate the similarity threshold of our Siamese network, which determines whether a
pair of objects belong to the same object or not. Thirdly, we conduct ablation experiments
to verify the effect of the set abstractions and chamfer distance and analyze the parameter λ
in Equation (5). Fourthly, we explore the influence of the input numbers of points. Finally,
we conduct comparison experiments with current methods and divide the Pandora dataset
into a series of subsets to validate the performance of our network under pose interference
and partial occlusion.

4.1. Dataset

Pandora dataset: Borghi et al. [23] created this dataset for head and shoulder pose
estimation. This dataset collected upper body information of 22 subjects (10 males and
12 females) with Microsoft Kinect One. There are 110 sequences with over 250,000 im-
ages. Each depth map corresponds to an RGB image and has the ground truth of head
center and pose angles. Interference is generated by glasses, scarves, mobile phones, and
various postures.

Curtin Faces dataset: Li et al. [43] collected this dataset with the Microsoft Kinect
Sensor. This dataset is created specifically for face verification and contains 5000 samples
from 52 subjects. Each subject has 97 images, which contain varying head poses, facial
expressions, occlusion, and illumination.

In our experiments, we only focus on face verification and not face detection and head
center localization; we directly use ground truth to obtain face information.

4.2. Similarity Threshold

Ideally, in our method, the similarity threshold is close to 1 for the same objects and
close to 0 for different objects, but due to the influence of head pose and partial occlusion,
etc., the network cannot reach the optimal condition. As a result, the value of the similarity
threshold directly affects the result. We conduct an experiment with the Pandora dataset
to determine the similarity threshold. In order to reflect the initial performance of our
network, we remove the feature constraint part and only use the L2 distance as the energy
function to investigate the similarity threshold. The results are reported in Table 1.

Table 1. Similarity threshold of our network for face verification.

Threshold Acc Threshold Acc

0.1 82.62% 0.6 85.52%
0.2 83.97% 0.7 84.33%
0.3 84.85% 0.8 78.56%
0.4 85.14% 0.9 71.78%
0.5 84.79% \ \

As shown in Table 1, when the threshold is selected as 0.1, our network has good
performance, but it is difficult to distinguish between different objects with a similar
appearance, and when the threshold is 0.9, a wrong prediction is often taken from the
same objects. When the threshold is selected as 0.6, our network has the best performance
because the network has good compatibility with the entire dataset under this setting and
can minimize the influence of posture and partial occlusion. According to Table 1, we set
the threshold to 0.6 for the subsequent experiments.

4.3. Ablation Experiments

As described above, we adopt set abstractions to extract local-to-global features and
use the chamfer distance to constrain original point clouds; in this section, we conduct
ablation experiments to verify the performance of our method.

In the first step, we conduct experiments on the Pandora dataset to verify the effect
of the set abstractions. Firstly, we only employ one Pointnet to extract global features for
face verification. Secondly, we adopt one set abstraction to extract features, and finally, we
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use two set abstractions to extract local-to-global features hierarchically. The results are
reported in Table 2.

Table 2. Performance evaluation with different structures of a Siamese network on the Pan-
dora dataset.

Method Pointnet One Set Abstraction Two Set Abstractions

Acc 72.9% 80.1% 85.2%
fps 650 355 215

According to Table 2, the set abstraction can significantly improve the accuracy of
our network. This is because multi-layer feature extraction can better describe the details
of the objects, but it consumes more time. Considering both the accuracy and real-time
performance, we use two set abstractions for feature extraction (215 fps can meet the
real-time requirements of most tasks).

As shown in Equation (5), the parameter λ determines the contribution of the con-
straint function. In order to confirm λ, we can keep λ as a fixed value throughout training
or let the network learn the parameter. The second way is elegant and always improves
the regular loss [44], but the parameter learned by the network provides it with greater
freedom to fit the easy samples, which results in a relaxed chamfer distance constraint.
Therefore, we fix the parameter for the ablation experiment on the Pandora dataset to
investigate the λ.

The results are reported in Table 3. When λ = 0, the feature constraint function
is not utilized, and with the constraint of the chamfer distance, the performance of our
network improved considerably. However, the accuracy decreases when λ > 0.4 because
the chamfer distance mainly acts as a feature constraint; when λ is too large, the metric of
the energy function is reduced, which is not conducive to distinguishing facial features.
When λ is too small, the constraint of the chamfer distance is limited, and smaller constraint
ratios lead to a limited improvement of the network’s performance. According to Table 3,
the network performs best when λ = 0.4 because the feature constraint in Equation (5)
reaches an equilibrium value under this setting.

Table 3. Performance evaluation of face verification with different λ on the Pandora dataset.

λ Acc λ Acc

0 85.52% 0.6 86.01%
0.1 86.69% 0.7 81.21%
0.2 87.13% 0.8 75.79%
0.3 88.95% 0.9 74.32%
0.4 90.4% 1.0 74.03%
0.5 88.04% \ \

4.4. Point Number for Network Performance

Point clouds represent the geometric shape of an object in a 3D space. As shown in
Figure 7, the number of points determines the detailed information of the shape; when
the number of points is higher, the geometric texture is clearer. According to the sampling
process of our network, the number of input points affects the efficiency of our network.
In this section, we investigate the effect of the input number of points. Table 4 lists the
experimental results on the Pandora dataset with different input numbers of points, of
1024, 2048, and 4096. As shown in Table 4, when the input number of points is 1024, our
network has the lowest accuracy but the fastest speed. When the input number of points is
4096, because more detailed information about the faces is presented, the network has the
highest accuracy, but this is more time-consuming; however, in the above three cases, the
accuracy is relatively close. This is because even in the case of 1024 points, the geometric
shapes of the objects can also be well characterized.
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Figure 7. The first row shows the corresponding RGB images, and the second row shows the depth
images. The third to fifth rows are point clouds transformed from the depth images, and they contain
4096, 2048, and 1024 points, respectively.

Table 4. Performance evaluation with different input numbers of points.

Input Number Acc fps

1024 88.2 420
2048 89.7 305
4096 90.4 225

As described above, the network performs best when the similarity threshold is 0.6,
λ is 0.4, and the input number of points is 4096. We use our best result for the following
comparison experiments. Figure 8 shows the loss and accuracy of our network during
training under this setting.
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Figure 8. Curve of loss and accuracy when the threshold is 0.6, λ = 0.4, and the point number is 4096.

4.5. Comparison Experiments

The Pandora dataset and the Curtin Faces dataset contain two types of data, namely,
RGB images and depth maps. The sensors of depth maps do not depend on lighting
conditions but lack detailed contours compared with RGB images. The point clouds in our
method are derived from depth maps; therefore, for a fair comparison, we compare this
with other methods which only rely on depth maps. The experimental results are reported
in Tables 5 and 6.

Table 5. Comparison of results achieved by different methods on the Pandora dataset.

Method
Input Images Model GPU:1080ti

Train Test Input Size Acc fps

JanusNet [3] RGB+Depth Depth 100 × 100 81.4% 202

Siamese [2] Depth Depth variable 85.3% 604

One-shot [25] Depth Depth variable 89.2% 43

L2-Sia [28] Depth Depth 100 × 100 89.9% 148

Ours Depth Depth variable 90.5% 225

Table 6. Comparison of results on the Curtin Faces dataset.

Methods Siamese [2] Ours

Acc 86% 89%

In the same experimental environment, comparison results with the current state-of-
the-art methods on the Pandora dataset are reported in Table 5. The fully convolutional
network method [2] has the fastest speed, but our accuracy improved by 5.2%. The method
detailed in [28] explores an L2-constraint on pose features; although our accuracy is very
close to the results of this experiment, with only a 0.6% increase, the efficiency of our
method is significantly improved.

Table 6 lists the comparison results for the Curtin Faces dataset. We follow the
evaluation procedure described in [2] with only 18 images per subject for the training
phases and our accuracy increased by 3% under the same experimental conditions (this
dataset is specifically used for face identification tasks which are rarely used for face
verification and lacks other reference results).
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According to Tables 5 and 6, our method achieves the highest accuracy and also has
good real-time performance.

In order to further verify the performance of our network under the interference of
head pose, according to [2,3,25,28], the Pandora dataset is split as follows:

A1 =
{

sρθσ

∣∣∀γ ∈ {ρ, θ, σ} : −10◦ ≤ γ ≤ 10◦
}

(8)

A2 =
{

sρθσ

∣∣∃γ ∈ {ρ, θ, σ} : γ < −10◦ ∪ γ > 10◦
}

(9)

A3 =
{

sρθσ

∣∣∀γ ∈ {ρ, θ, σ} : γ < −10◦ ∪ γ > 10◦
}

(10)

where ρ, θ, and σ are Euler angles, representing the yaw, pitch, and roll angles of the head
pose. Figure 9 shows examples of group A1, A2 and A3. In group A1, all pose angles are
within 10◦, and less interference can be seen for the head pose. In group A2, there exists
at least one pose angle greater than 10◦ which has a little interference from the head pose,
whereas in group A3, three pose angles are greater than 10◦, and head pose interferes the
most. After the Pandora dataset is split, cross-training and testing are performed. The
results are reported in Table 7. When A1 is adopted as the training sequence, all methods
achieve good results because the training samples are least disturbed by head pose. Our
method achieves 91% accuracy. When A3 is adopted as the training sequence, the samples
are most affected by head pose, compared with the method in [28]; even in the A3 testing
sequence with the largest pose interference in both training and testing, our accuracy
improved by 4%. When using the {A1, A2} sequence for training, our network achieves
the best results due to more abundant training samples.

(a) (b) (c)

Figure 9. Example of Pandora split. Where (a) represents the A1 sequence, with the least head pose
interference; (b) represents the A2 sequence with a little head pose interference; and (c) represents
the A3 sequence. Tree pose angles are greater than 10◦.
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Table 7. Comparison of results achieved by different methods on the dataset splits according to
head pose.

Train

One-Shot [25] L2-Sia [28] Our

Test

A1 A2 A3 {A1,A2} A1 A2 A3 {A1,A2} A1 A2 A3 {A1,A2}

A1 0.90 0.81 0.78 0.82 0.90 0.83 0.78 0.82 0.91 0.83 0.80 0.84
A2 0.91 0.88 0.87 0.90 0.90 0.88 0.87 0.89 0.90 0.86 0.87 0.90
A3 0.81 0.77 0.67 0.73 0.82 0.78 0.73 0.75 0.84 0.78 0.77 0.79

{A1, A2} 0.90 0.84 0.85 0.89 0.91 0.88 0.87 0.90 0.92 0.87 0.89 0.90

According to Table 7, regardless of which sequence is chosen for training, our accu-
racy outperforms other methods, which proves that our method is more robust against
pose interference.

In order to verify the performance of the network under movements and partial
occlusion, the dataset is divided into five subsets S1, S2, S3, S4, and S5. As shown in
Figure 10, S1, S2, and S3 only have limited movement (least pose interference from head
and shoulder). S4, S5 contain complex and free movements, and the angles of the head
and shoulder mainly vary one at a time and also contain partial occlusions. Accord-
ing to the methods of [2,3], the above five subsets are divided into three groups, where
G1 = {S1, S2, S3}, G2 = {S4, S5}, and G1 = {S1, S2, S3, S4, S5}; cross-training and testing
are then performed. The results are reported in Table 8. When G1 is used for both training
and testing, all methods achieve good results due to the least interference from movements
and partial occlusions; however, when G2 is used for testing, due to the lack of correspond-
ing training samples, the accuracy decreases. However, our accuracy is 83%, which also
increased by 5% compared to other methods. When G3 is used as the training sequence,
the training samples are more abundant and include more common and complex samples;
rich samples can effectively improve the generalization ability of our network and achieve
the best results under all testing sequences.

(a) (b) (c) (d) (e)

Figure 10. Example of Pandora split, where (a–e) represent the sequence S1, S2, S3, S4, and S5,
respectively, where the subset (a–c) contains constrained movements and subsets (d,e) contain
complex movements and occlusions.
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Table 8. Comparison of results achieved by different methods on the dataset splits according to head
and shoulder movements and partial occlusions.

Train

Test

JanusNet [3] Siamese [2] Our Method

G1 G2 G3 G1 G2 G3 G1 G2 G3

G1 0.84 0.75 0.77 0.89 0.78 0.82 0.90 0.83 0.84
G2 0.72 0.71 0.74 0.87 0.80 0.83 0.87 0.84 0.86
G3 0.80 0.73 0.76 0.90 0.83 0.85 0.91 0.87 0.88

As shown in Table 8, under all the training and testing sequences, our network
obtained better results than other methods, which proves that our network can cope well
with the interference of movements and partial occlusions.

Combining the results of Tables 7 and 8, it is noticeable that our network can effectively
solve face verification in the case of pose interference, movements, and partial occlusions,
and obtain higher accuracy than other methods. Our experiments are implemented on
a desktop computer with the Ubuntu16.04 operating system; the CPU is an Intel Core i7
(3.40GHz), and the GPU is an NVIDIA GTX1080ti

5. Conclusions

In this study, a novel Siamese network was developed for 3D face verification which
employs two shared weight branches to extract features separately and calculate the simi-
larity. For each branch, two set abstractions are adopted to group local regions and extract
local-to-global features hierarchically. In order to reduce the influence of the self-generated
point clouds, the chamfer distance is introduced to constrain the original point clouds
and design a new energy function to distinguish features. The experimental results prove
the effectiveness of the set abstraction and the chamfer distance for feature extraction.
Comparison experiments on public datasets show that under large pose interference and
partial occlusion, the accuracy is improved by 4% and 5%, respectively, and the whole
accuracy also outperforms other methods. However, the network performs transformations
from depth images and adopts a multi-layer structure to extract features which would
lead to extra computational costs. In the case of large pose interference and partial occlu-
sions, the accuracy is still not sufficient. In our future work, we will further optimize the
network to improve efficiency and explore new algorithms to improve accuracy in more
complex situations.
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Abstract: Head pose estimation is an important part of the field of face analysis technology. It can
be applied to driver attention monitoring, passenger monitoring, effective information screening,
etc. However, illumination changes and partial occlusion interfere with the task, and due to the
non-stationary characteristic of the head pose change process, normal regression networks are unable
to achieve very accurate results on large-scale synthetic training data. To address the above problems,
a Siamese network based on 3D point clouds was proposed, which adopts a share weight network
with similar pose samples to constrain the regression process of the pose’s angles; meanwhile, a local
feature descriptor was introduced to describe the local geometric features of the objects. In order to
verify the performance of our method, we conducted experiments on two public datasets: the Biwi
Kinect Head Pose dataset and Pandora. The results show that compared with the latest methods,
our standard deviation was reduced by 0.4, and the mean error was reduced by 0.1; meanwhile, our
network also maintained a good real-time performance.

Keywords: head pose estimation; convolutional neural network; Siamese network

1. Introduction

Head pose estimation is an important part of the field of computer vision and also an
important indicator for studying human behavior and attention. It can provide key infor-
mation for many facial analysis tasks, such as face recognition, facial expression recognition,
and driving concentration prediction [1]. The essence of the task is to predict the three
pose angles (roll pitch yaw) of the object relative to the sensors. An effective algorithm
should include the following main factors: a high accuracy, real-time performance, and
the ability to cope with partial occlusion and large pose variations [2]. With respect to the
above factors, many RGB-based head pose estimation algorithms have been proposed and
achieved a very good performance [2]. However, the imaging quality of ordinary RGB
sensors depends on light conditions, making them difficult to apply in some scenarios
where light is weak or variable, such as night driving concentration detection, expression
recognition in weak light environments, etc. [3]. With the development of depth sensors, it
is more convenient to obtain high-quality depth images (also known as 2.5D images) [4].
Compared with ordinary RGB sensors, depth cameras have the following two main ad-
vantages. One advantage is that their infrared-based imaging principle—where each pixel
represents the distance from the target to the sensors—makes the imaging quality mainly
related to distances and is stable against variations in the light conditions; thus, it can be
safely applied to human daily life [3]. The other advantage is that it can easily achieve
background separation based on distance information, which can reduce the interference
of the background and enable the task to focus on the object itself [1]. Depth maps can be
easily converted into 3D point clouds by a simple coordinate transformation, which enables
point clouds to inherit the above advantages of depth maps. Meanwhile, point clouds can
better describe the spatial geometric feature of objects in 3D space, and the contours are
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stretched to have a more hierarchical appearance and clearer outlines; some important
information around the outlines can be well retained [5].

Recently, many 3D methods based on different data types were proposed for face
analysis, such as mesh, voxel grid, octree, and surface normal map. Compared with these
four data types, the mathematical expression of a point cloud is more concise and can
directly represent the spatial geometry information of an object. However, the disorder of
the point clouds makes them difficult to apply to deep learning. Pioneers Qi et al. [6] relied
on the idea of symmetric functions to solve the disorder of 3D point clouds and constructed
PointNet. Many point clouds deep learning networks were proposed, such as those by Qi
et al. [7], who optimized PointNet and proposed PointNet++. Deng et al. [8] introduced
a local region representation to extract local features. Many point cloud methods were
proposed for 3D computer vision. However, in the field of head pose estimation, due to the
lack of the detailed textures of point clouds, the current pose estimation methods have not
focused much attention on the local features of original point clouds, which leads to larger
errors under large pose variations. Meanwhile, due to the non-stationary characteristic of
the pose change process, previous regression networks were unable to achieve very good
results on large-scale synthetic training data [9]. In order to deal with the above problems,
we introduce a local feature descriptor coupled with a Siamese regression network for 3D
head pose estimation. In our method, we first employ a local feature descriptor to describe
the spatial geometric features of the objects; then, a group of PointNets is adopted to extract
the local features, and three fully connected layers are used to map the head features to pose
angles. Second, we utilize a share weight regression network with similar pose samples to
guide the regression process of the pose angles. Finally, a novel loss function is introduced
to constrain the difference between two similar features. In order to verify the effectiveness
of the proposed method, we conduct experiments on two public datasets: the Biwi Kinect
Head Pose dataset and Pandora.

The main contributions of this paper are summarized as follows:

1. We introduce a local feature descriptor to describe the detailed features of the point
clouds to reduce the impact of their lack of detailed texture.

2. We present a new Siamese network to constrain the regression process of 3D head
pose angles, which significantly reduced the errors of the original regression network.
To the best of our knowledge, this is the first work to estimate 3D head poses by using
a Siamese network.

3. The experimental results on public datasets show that our accuracy outperforms the
latest approaches and also exhibits a good real-time performance.

2. Related Works

In recent years, the most widely used head pose estimation methods have mainly been
proposed on RGB images. Drouard et al. [10] extracted HOG-based descriptors from face
bounding boxes and mapped them to the corresponding head poses. Patacchiola et al. [11]
proposed a convolutional neural network (CNN) supplemented with adaptive gradient
methods to make the method robust for real-world applications. Hsu et al. [9] adopted a
classification network to supervise the regression process of pose angles, which significantly
improved the accuracy of the head pose estimation. Ruiz et al. [12] jointly combined pose
classification and regression training with a multi-loss convolutional neural network on a
large synthetically expanded dataset, which reduced the dependence on landmarks and
enhanced the robustness of the network. Recently, Huang et al. [13] introduced a head
pose estimation method using two-stage ensembles with average top-k regression, which
combined the two subtasks by considering the task-dependent weights instead of setting
coefficients by using grid search. Based on the driver’s head pose and multi-head attention,
Mercat et al. [14] proposed a vehicle motion forecasting method. In order to cope with
complex situations, Liu et al. [15] proposed a robust three-branch model with a triplet
module and matrix Fisher distribution module. Considering the discontinuity of Euler
angles or quaternions and the observation that MAE may not reflect the actual behavior,

92



Electronics 2023, 12, 1194

Cao et al. [16] proposed an annotation method which uses three vectors to describe the
head poses and measurements using the mean absolute error of the vectors (MAEV) to
assess the performance. Relying on head poses, Jha et al. [17] proposed a formulation based
on probabilistic models to create salient regions describing the driver’s visual attention.
In order to bridge the gap between better predictions and incorrectly labeled pose images,
Liu et al. [18] introduced probability values to encode labels, which took advantage of the
adjacent pose’s information and achieved a very good performance.

Compared to RGB images, depth maps cope well with dramatic light changes but
lack texture detail [5], and very few studies only rely on depth maps [3]. Ballotta et al. [4]
constructed a fully convolutional network to predict the location of the head’s center. Wang
et al. [19] combined the perception of deep learning and the decision-making power of
machine learning to propose a convolutional neural network for multi-target head center
localization. Borghi et al. [1] converted the depth maps into gray-level images and motion
images via the GAN network, and they combined them to predict the head pose; this
method relies on three types of training samples and greatly improved the head pose’s
prediction accuracy. Lei et al. [20] only relied on depth maps and constructed a one-shot
network for face verification, which achieved a high accuracy with a small training sample.
Recently, Wang et al. [21] employed an L2 norm to constrain head features in order to
reduce the interference of partial occlusions for face verification.

As mentioned above, based on point clouds, many methods have been proposed
and made breakthrough progress. Xiao et al. [2] utilized PointNet++ to extract the global
features of the head and constructed a regression network for pose estimation. Xu et al. [22]
presented a statistical and articulated a 3D human shape modeling pipeline, which cap-
tured various poses together with additional closeups of the individual’s head and facial
expressions. Then, Xiao et al. [23] adopted a classification network associated with soft
labels to supervise the regression process of the pose angles. Hu et al. [24] leveraged the
3D spatial structure of the face and combined it with bidirectional long short-term memory
(BLSTM) layers to estimate head poses in naturalistic driving conditions. Considering
that the point clouds lack texture, Zou et al. [25] combined gray images and proposed a
sparse loss function for 3D face recognition. Recently, Ma et al. [26] combined PointNet and
deep regression forests to construct a new deep learning method in order to improve the
efficiency of the head pose estimations. Cao et al. [27] proposed the RoPS local descriptor
to map local features to three different planes and leveraged FaceNet to achieve 3D face
recognition with a high accuracy. Based on a multi-layer perceptron (MLP), Xu et al. [28]
constructed a classification network to predict the probability of each angle, and they
also combined it with a graph convolutional neural network to reduce computation and
memory costs.

In our method, we employ a Siamese network to supervise the regression process
of the pose angles. The Siamese network was first proposed by Bromley et al. [29]; they
applied this network to signature and verification certificate tasks. Based on the Siamese
network, many methods have been proposed for computer vision. Melekhov et al. [30] used
a Siamese network to extract a pair of features and calculated the similarity to determine
whether the images matched. Varga et al. [31] introduced a deep multi-instance learning
approach for person re-identification. Considering the local patterns of the target and their
structural relationships, Zhang et al. [32] proposed a local structure learning method, which
provides more accurate target tracking. Recently, Wang et al. [33] conducted a formal study
on the importance of asymmetry by explicitly distinguishing the two encoders within the
network and exploiting the asymmetry for Siamese representation learning.

3. Methods

In this section, we first introduce PointNet for point cloud feature extraction, and we
propose a local feature descriptor to describe the local regions. Second, we construct a head
pose regression network for the pose estimation. Finally, a Siamese network with similar
samples is introduced to guide the training process of the pose regression network.
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3.1. Introduction of Point Clouds and Feature Extraction

A point cloud is a series of points in a 3D space, and it is expressed as matrix n× 3,
where n is the number of points and 3 represents the coordinate (x, y, z) of a point in the
world coordinate system, but the sequence of the points of the same object is not necessarily
consistent [5]; moreover, due to the disorder of the point clouds, they cannot have an
index sequence similar to regular 2D images or 3D voxels to achieve weight sharing for
convolution operations [34]. Solving the disorder of the point clouds and performing an
effective feature extraction is the key factor for facial analysis based on point clouds [2].
According to Theorem 1, Qi et al. [6] utilized the idea of a symmetric function to construct
a deep learning network in order to deal with the disorder of the point clouds.

Theorem 1. Suppose f : χ → R is a continuous set function w.r.t Hausdorff distance dH(·, ·)
∀ε > 0, ∃ a continuous function h, and a symmetric function g(x1, x2, x3, · · · , xn) = γ ◦MAX
such that for any S ∈ χ, ∣∣∣∣ f (S)− γ

(
MAX

xi∈S
{h(xi)}

)∣∣∣∣ < ε (1)

where x1, x2, x3, · · · , xn is the full list of elements in S ordered arbitrarily, γ is a continuous
function, and MAX is a vector max operator that takes n vectors as the input and returns a new
vector of the element-wise maximum.

Theorem 1 shows that if there are enough feature dimensions in the MAX operator,

function f can be arbitrarily approximated by γ

(
MAX

xi∈S
{h(xi)}

)
.

Inspired by Theorem 1, a multilayer perceptron (MLP) is adopted to construct the
right side of Equation (2) in order to approximate the left side:

f (x1, x2, x3, · · · , xn) ≈ γ ◦ g(h(x1), h(x2), h(x3), · · · , h(xn)) (2)

where f and h are different general functions that map independent variables (x1, x2, x3, · · · , xn)
and xi to different feature spaces R

m and R
l , respectively. G is a symmetric function

(approximates the MAX operator in Theorem 1, and the function result is independent of
the input order of the arguments). R is another general function R

l → R
m which maps the

result of the symmetric function g to feature space R
m [5]. For a disordered point cloud,

Qi et al. [6] employed a convolutional neural network as the MLP and a Max pooling
layer as the symmetric function to extract the global feature of the object for classification
and segmentation tasks. However, head pose estimation is a regression task, and it has
difficulty achieving accurate results when only using global features. In this step, we adopt
a shallow network structure, which deletes the transform net of PointNet, and we adjust
the dimensions of each layer to make it suitable for local feature extractions in the next step.
The structure of our proposed network is shown in Figure 1.

n 256

Point cloud

643
× × ×
n n

128
n

256

Max pool

Object feature

MLP cov1 1×

×

Figure 1. The structure of PointNet for extracting features of the point object. The MLP consists of
three convolutional layers with filters 64, 128, and 256. The convolution kernel is 1× 1.
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As shown in Figure 1, for an input point cloud object with n points, we use three
convolutional layers with 64, 128, and 256 filters to map every point to a high-dimensional
feature space: R3 → R

64 → R
128 → R

256 . Moreover, inspired by [6,35–37], a Max pooling
layer was utilized as the symmetric function (the MAX operator in Theorem 1) to solve the
disorder of the points set and to extract the feature in R

256.
In order to ensure that the network has the same feature input dimension and can

evenly sample the points, the farthest point sampling method is adopted to sample a fixed
number of points for each object (each object samples 4096 points) before PointNet.

3.2. Local Feature Descriptor

Compared with RGB images, point clouds lack detailed textures, which results in
difficulty in effectively characterizing objects by only using global features [2], and the
position information of the points cannot directly reflect the geometric relationship between
the points [8]. In order to enhance the description of the geometric details of the local region,
in this step we adopt a local feature descriptor to describe the geometric characteristics of
the local region.

For a pair of points (pi, pj) in a local region, in order to describe the geometric rela-
tionship between two points, a four-dimensional descriptor is introduced:

ψij = (‖d‖,∠(ni, d),∠(nj, d),∠(ni, nj)) (3)

where d is the vector, which represents the difference between two points in the feature
space, and ‖·‖ is the Euclidean distance. ni and nj are the normal vectors of pi and pj
in the local region, respectively. As shown in Equation (4), ∠ is the angle between two
normal vectors.

∠(ni, nj) = a tan 2(‖ni × nj‖, ni·nj) (4)

The four-dimensional descriptor describes the spatial geometric characteristics of the
points pair. For all points

{
p1, p2, p3, . . . , pj

}
in a local region, with pi as the center and k as

the radius (k is 0.4 in our method), we contain j point pairs with center point pi. Then, the
encoding method of this local region is expressed as Equation (5):

Fi = [p1, n1, p2, n2, . . . , pj, nj, ψi1, ψi2 . . . , ψij] (5)

where nj is the normal vector of point pj, and ψij is the four-dimensional feature descriptor
between point pj and center point pi. As shown in Figure 2, Fi describes the spatial
geometric characteristics of the local region via the local feature descriptor between all
points with center point pi in this local region.

ip
in 1p

1n

Figure 2. Schematic diagram of spatial geometric characteristics with center point pi in a local region.

3.3. Pose Prediction Network

In this section, we utilize the PointNet with the local feature descriptor to construct a
prediction network for head pose estimations; the structure of the head pose prediction
network is shown in Figure 3.
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Figure 3. The structure of the head pose prediction network with local feature descriptors. In the
figure, 3 fully connected layers are used to map head features to pose angles, where the last layer has
3 filters, which represent 3 pose angles (roll, pitch, and yaw).

As shown in Figure 3, for an input object with 4096 points {p1, p2, p3, · · · , p4096}, we se-
lect every point as the center of a sphere with radius k (k is 0.4 in our method), and the points
in the same sphere are regarded as being in the same local region {L1, L2, L3, · · · , L4096}.
For each Li, we adopt the local feature descriptor to describe the geometric characteristics
of the local region: {ψ1, ψ2, ψ3, · · · , ψ4096} (ψi represents a local geometric characteristic of
local region Li). Then, PointNet, as shown in Figure 1, is utilized to extract the features
of each ψi. After the above steps, we obtain a set of local features in high-dimensional
feature space { f1, f2, f3, · · · , f4096}. Subsequently, a Max pooling layer is used to extract
the entirety of feature Fw of all the local features { f1, f2, f3, · · · , f4096}. Finally, three fully
connected layers with 256, 64, and 3 filters are adopted to map head feature Fw to three
pose angles.

The loss function of our head pose prediction network is defined as follows:

Lpredict =
n

∑
j

∥∥Gj − Pj
∥∥2

2 (6)

where Gi represents the ground truth of three pose angles (expressed in Euler angles: roll,
pitch, and yaw), and Pi is the prediction value of our head pose prediction network.

3.4. Siamese Network for Pose Constraint

As described above, a regression network is constructed to predict head poses, but
due to the non-stationary characteristic of the head pose change process, it is difficult for
a single regression network to cope with large-scale synthetic training data [23], which
will result in a large prediction error. In order to deal with the above problem, a Siamese
network with similar samples was proposed to constrain the prediction values and guide
the regression process of the pose prediction network.

The structure of the proposed Siamese network is shown in Figure 4. The network
consists of two identical branches, which accept similar pose samples as the inputs and
extract features. The ends of the two branches are connected by an energy function to
compute the difference between the two features:

Lenergy = ∑ n
j ‖Dnet(xi)− Dgt(xi)‖2

2 (7)

Dnet(xj) = P1j − P2j (8)
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Dgt(xj) = G1j − G2j (9)

where Dnet is the difference between the two predicted pose angles extracted by their own
branch, and Dgt represents the difference in their ground truth [38].

...

local feature 
descriptor Pointnet Local feature Max

pool

local feature 
descriptor Pointnet Local feature Max

pool

1predictL

2predictL

energyL

...
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256
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64
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256
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3
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3

Pose prediction  network1 

Pose prediction  network2 

Share weight 

Figure 4. The structure of the Siamese network for head pose estimations. Two shared weight
networks extract similar pose objects, and an energy function (the loss function of the Siamese
network) concatenates the prediction results of two branches to constrain the prediction values and
guide the regression process.

Considering that the training dataset has a total of N samples, a large number of N/2
possible pairs can be used, and for a specific pair of samples (Si, Sj), only those with at
least γ degrees of the total difference between all the pose angles (ground truth value)
are selected: ∣∣∣Gsi − Gsj

∣∣∣ < γ (10)

where γ determines the similarity of the pair of samples. In the training process, the energy
function Lenergy is also regarded as the loss function of the Siamese network.

Compared with a single-branch network, the proposed Siamese network has two main
advantages. First, the parameters between the identical networks are shared, which can
guarantee that a pair of very similar samples is not mapped to very different locations in a
feature space by the respective networks. Second, as the loss function (Lenergy) converges
during training, similar pose samples within γ are extracted by their own network, which
enables two regression networks to supervise each other and prevents the other side from
being mapped to a more distant area in the feature space. In the testing stage, we only
employ one pose prediction network to estimate the head pose (the parameters of the two
networks are tied).

The hyperparameters of our Siamese network are as follows: the learning rate is 0.001,
the decay rate is 0.99, the batch size is 64, and the decay step size is 500.

4. Experiments

In this section, we first introduce two public datasets for experiments: the Biwi Kinect
Head Pose dataset and Pandora. Second, in order to verify the effect of the local feature
descriptor and investigate similarity γ in Equation (10), we conduct ablation experiments
on the Biwi Kinect Head Pose dataset. Third, we investigate the influence of the input
number of points. Finally, we use our best results for comparison experiments with the
latest methods and analyze the results.
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4.1. Datasets

With respect to the Biwi Kinect Head Pose dataset, Fanelli et al. [39] utilized Kinect
to collect this dataset. This dataset has a total of more than 15,000 head pose images,
each object contains depth maps and the corresponding RGB images, and the resolution
is 640× 480. Biwi records 24 sequences of 20 different objects (6 females and 14 males,
some of them are recorded twice). It is a challenging dataset with various head poses
and partial occlusion. The test set includes sequences 11 and 12, which contain around
1304 images, and the training set contains the remaining 22 sequences, which contain
around 14,000 images.

With respect to the Pandora dataset, Borghi et al. [1] collected this dataset specifically
for head and shoulder pose estimations. Pandora has a total of more than 250,000 images,
and each object contains depth maps (the resolution is 512× 424) and corresponding RGB
images (the resolution is 1920 × 1080). The dataset records 110 sequences of 10 male
and 12 female objects. The recorded objects belonging to the upper body contain various
postures, hairstyles, glasses, scarf, etc.

The above two datasets only provide RGB and depth images. We should transform
depth images to point clouds before sending them into the Siamese network. First, we
directly use the ground truth of the head center Hc with its depth value Dc to obtain the
head areas (head detection is not the focus of our method), and we remove the background:
we set the depth value as greater than Dc + 300 to 0 (300 is the general amount of space for
a real head and expressed in mm). Second, we transform the depth map from an image
coordinate system to a world coordinate system.⎡⎣x

y
z

⎤⎦ = Dc

⎡⎢⎣
1
fx

0 0
0 1

fy
0

0 0 1

⎤⎥⎦
⎡⎣xi

yi

1

⎤⎦ (11)

(xi, yi) denotes the pixel in the image coordinate system, and fx and fy represent the
horizontal and vertical focal length of the internal parameters of the depth sensors. (x, y, z)
is the position of the point converted from the pixel. Figure 5 shows examples of RGB im-
ages, depth maps, and point clouds from the Biwi Kinect Head Pose and Pandora datasets.

(a) (b)  
Figure 5. Examples of Biwi Kinect Head Pose dataset (a) and Pandora dataset (b). The first line
is the RGB images, and the second and third lines are the corresponding depth maps and point
clouds, respectively.
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Both Biwi Kinect Head Pose and Pandora datasets provide ground truth pose angles
(roll, pitch, and yaw). In our experiments, according to previous methods [1,2,23,26,38], we
use the mean of the absolute values and the standard deviation to quantitatively evaluate
the accuracy:

S = δ± β (12)

δ denotes the mean of the absolute values (MAE) of the difference between all ground
truth and predicted values, and β is the standard deviation of the absolute values (SD) of
the difference between all ground truth and predicted values.

4.2. Ablation Experiments

As described in Section 3.2, we introduced a local feature descriptor to describe the
local region. In order to verify the effect of our method, according to the method in [7], we
replace the local feature descriptor and only use the position information of the points to
describe the local region.

In this section, to intuitively demonstrate the effect of the descriptor, we only use a
single branch, as shown in Figure 3, to conduct the ablation experiment. The results are
reported in Table 1.

Table 1. Performance evaluation with different local region expressions on the Biwi Kinect Head
Pose dataset.

Local Region Position Local Feature Descriptor

Roll 2.2± 2.6 1.7± 2.0
Pitch 2.4± 2.1 2.0± 2.2
Yaw 2.4± 2.2 2.4± 2.1
Avg 2.3± 2.3 2.0± 2.1
fps 385 288

As shown in Table 1, the accuracy of the head pose prediction network greatly im-
proved with the local feature descriptor, where the MAE is reduced by 0.3 and the SD is
reduced by 0.2. This is because the descriptor provides the network with detailed local geo-
metric features, which are more conducive to the extraction of the pose characteristics. On
the other hand, our method would lead to extra computational costs, but it still maintains a
good real-time performance. The results in Table 1 prove the effectiveness of the proposed
local feature descriptor.

According to Equation (10) in Section 3.4, γ represents the similarity of the pair of
samples. For a deep learning network, training samples are a key factor for the performance.
In this step, we conduct comparison experiments on Biwi to decide the best γ for the
Siamese network; the results are reported in Table 2.

Table 2. Performance evaluation with different γ on the Biwi Kinect Head Pose dataset.

γ Roll Pitch Yaw Avg

0 1.7± 2.0 2.0± 2.2 2.4± 2.1 2.0± 2.1
5 1.7± 2.0 1.9± 2.1 2.2± 2.1 2.0± 2.1
10 1.5± 1.9 1.7± 2.0 2.2± 1.9 1.8± 1.9
15 1.3± 1.7 1.5± 1.8 2.2± 1.7 1.6± 1.7
20 1.3± 1.7 1.6± 1.8 2.3± 1.8 1.7± 1.8
25 1.4± 1.7 1.7± 2.0 2.3± 1.8 1.8± 1.8
30 1.5± 1.8 1.8± 2.0 2.4± 1.9 1.9± 1.9
35 1.6± 1.9 1.9± 2.2 2.4± 2.1 2.0± 2.0
40 1.9± 2.2 2.2± 2.3 2.4± 2.2 2.2± 2.2
45 2.3± 2.4 2.4± 2.5 2.5± 2.3 2.4± 2.4
50 2.5± 2.8 2.6± 2.7 2.5± 2.5 2.5± 2.7
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As shown in Table 2, when γ = 0, the inputted pair of samples has the same pose
angles (same sample), and when the loss function is Lenergy = 0, the constraint of the
Siamese network is not utilized. As γ increases, the two branches of the Siamese network
start to constrain each other. When γ = 15, our network achieves the best results. As
γ continues to increase, the accuracy begins to decline. This is because obtaining more
similar pose samples is more conducive to constraining pose angles within a smaller range.
However, when γ is too small, the Siamese network also cannot achieve the best results
because the pose features of the samples are too close, which makes it difficult for the
Siamese network to distinguish the difference.

Figure 6 shows the prediction accuracy with different θ metrics. For each pose angle,
if the absolute value of the difference between the prediction value and the ground truth is
less than θ, the pose angle is regarded as accurately predicted. According to Figure 6, when
θ is too small, the accuracy is obviously low. When the total difference, γ, is 5 and 10, the
difference in the head pose is quite small, especially for a certain angle.

(%)

( )θ

(%)

( )θ

(%)

( )θ

(a) (b) (c)

Figure 6. (a–c) represent the Curves of prediction accuracies with different metrics θ for Roll, Pitch,
Yaw respectively.

According to Table 2, we set γ = 15 as our best result for comparison experiments.
Figure 7 shows the curves of the loss function and the accuracy of the Siamese network
during training when γ = 15.

3(10 )

 
Figure 7. Curves of accuracy and loss when training our network at γ = 15.

4.3. Input Number of Points

As mentioned above, we sampled 4096 points for each object, but the number of input
points affects the performance of the network. As shown in Figure 8, this is because the
number of points affects the detailed information of the object and also determines the

100



Electronics 2023, 12, 1194

number of local regions. In this section, we investigate the input number of the points by
losing half points for each step (we also adopt the farthest point sampling method to the
sample points). The results are reported in Table 3.

(a) (b) (c) (d) (e)

Figure 8. Examples of different input numbers of points, where (a,b) are corresponding RGB images
and depth maps, and (c–e) represent input point clouds with 4096, 2048, and 1024 points, respectively.

Table 3. Results of the different input numbers of points on the Biwi Kinect Head Pose dataset.

Input Number Acc fps

4096 1.6± 1.7 288
2048 1.7± 1.9 398
1024 2.0± 2.2 558

As reported in Table 3, our network has a higher accuracy when there is an increased
input number of points, which indicates that more points are beneficial for describing
the more detailed features of the object and can significantly improve the accuracy of
the network, but time consumption increases. However, 4096 points with 288 fps also
maintained a good real-time performance for most applications.

4.4. Comparison Experiments

In this section, we conduct comparison experiments on two public datasets, and we
analyze the results. Table 4 reports the comparison of the results with the latest methods on
the Biwi Kinect Head Pose dataset.

Table 4. Comparison of results achieved by different methods on the Biwi Kinect Head Pose dataset.

Methods Input Roll Pitch Yaw Avg

Venturelli et al. [38] Depth 2.1± 2.2 2.3± 2.7 2.8± 3.3 2.4± 2.7
Borghi et al. [1] Depth 1.8± 1.8 1.6± 1.7 1.7± 1.5 1.7± 1.7
Xiao et al. [2] Point cloud 1.5± 1.4 2.3± 1.7 2.4± 1.8 2.1± 1.6

Huang et al. [13] RGB 3.1 5.2 4.6 4.3
Ma et al. [26] Point cloud 1.4± 2.0 1.5± 2.3 1.5± 2.1 1.5± 2.1
Cao et al. [16] RGB 4.1 4.8 3.0 4.0
Liu et al. [18] RGB 2.6 4.7 3.4 3.6

Ours Point cloud 1.3± 1.7 1.5± 1.8 2.2± 1.7 1.6± 1.7

Table 4 lists a comparison of the experimental results on the Biwi Kinect Head Pose
dataset. The methods in [13,16,18] only report their MAE, and other methods report
MAE± SD. As shown in Table 4, the accuracy of the depth and point cloud methods is
obviously higher than the RGB methods. This is because geometric information is more
conducive to the extraction of the pose features, especially under partial occlusion and
large pose interferences. Compared with depth maps, point clouds have more abundant
geometric information and clearer contours, which are more beneficial to pose feature
extraction. Although Borghi et al. [1] achieved a very high accuracy and only relied on
depth maps, they used two Gan networks to generate gray and motion images, which
leveraged three types of images to jointly predict the head pose, and the entire network
structure is too complex.

101



Electronics 2023, 12, 1194

As per the results reported in Table 4, compared with the methods in [1], our MAE
was reduced by 0.1, and compared with the methods in [26], although their MAE is lower,
our SD was reduced by 0.4. Overall, the accuracy of our method is higher than that of the
other methods.

In order to intuitively show the test results on the Biwi Kinect Head Pose dataset,
Figure 9a shows the ground truth and the prediction values of all the test samples, and
Figure 9b shows the error distributions for each pose angle. As shown in Figure 9, the
prediction results are very close to the ground truth, and the error distribution is convergent.

(b)

(a)

Figure 9. Results of the Biwi dataset: (a) reports the comparison between the ground truth and the
predicted value for each frame (ground truth is the black line). (b) reports the error distributions for
each angle.

Table 5 lists a comparison of the experimental results on the Pandora dataset, which
contains more abundant samples with a series of large body gestures and partial occlusion.
As reported in Table 5, our accuracy outperforms the latest methods. Compared with
Xiao et al. [23], our accuracy is very close to theirs, and only the MAE was reduced by 0.1,
but for each pose angle, our MAE and SD were better than theirs, except for the SD of the
roll angle. Figure 10 shows the examples of our method on Pandora.

Table 5. Comparison of results achieved by different methods on the Pandora dataset.

Methods Input Roll Pitch Yaw Avg

Borghi et al. [1] Depth 5.4± 5.1 6.5± 6.6 10.4± 11.8 7.4± 7.8
Xiao et al. [23] Point cloud 4.3± 4.5 6.1± 5.6 8.6± 9.8 6.3± 6.6
Ma et al. [26] Point cloud 4.9± 7.4 6.4± 10.5 9.6± 15.3 7.0± 11.0

Ours Point cloud 4.3± 4.7 6.0± 5.2 8.3± 9.8 6.2± 6.6
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(c)

(a)

(d)

(b)

 

Figure 10. Examples on the Pandora dataset. (a–d) are different objects with variable head poses.
The first rows show the RGB images and the corresponding depth maps of head regions. The second
rows show the point clouds of the objects and the pose prediction results, where the red arrows are
the ground truth, and the dark blue arrows are the prediction values.

As shown in Figure 10, our method can cope well with pose predictions with respect
to various pose changes and provide an accurate pose angle estimation.

For the head pose estimation task, except for the accuracy, the time cost is also an
important indicator for measuring performance, which determines whether the method
can be applied to real application scenarios. Table 6 lists a comparison of different methods
in terms of time costs. Because different data types are processed in different ways, for a
fair comparison, we only conducted comparisons with point cloud methods.

Table 6. Comparison of different methods in terms of time costs.

Methods fms

Xiao et al., 2020 [2] 125
Xiao et al., 2020 [23] 117

Wang et al., 2022 [21] 148
Wang et al., 2023 [5] 225

Ours 288

As shown in Table 6, compared with recent head feature extraction methods, our
method is faster. This is because the local feature descriptor described the spatial geometric
features of the local regions in detail before the deep learning network, which allows us
to adopt a shallow network to extract the features and enables the network to maintain a
good real-time performance.
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Combining Tables 4 and 5, it is noticeable that our accuracy outperforms the latest
methods, and Table 6 proves that our network also has a good real-time performance.

We conducted our experiments on the following operating system: Ubuntu16.04. The
used hardware is listed as follows: the GPU is NVIDIA GTX1080ti, the CPU is Intel Core
i7 (3.40 GHz), the display is SAMSUNG S27R350FHC (75 Hz, resolution: 1920× 1080),
and the depth cameras are Kinect v2 (resolution: 640× 480) for the Biwi Kinect Head Pose
dataset and the Kinect one (resolution: 512× 424) for the Pandora dataset.

5. Conclusions

In this study, in order to cope with the non-stationary characteristic of the head pose
change process, a new Siamese network with a local feature descriptor was constructed for
3D head pose estimations. In the feature extraction stage, a four-dimensional descriptor
is introduced to describe the geometrical relationship between a pair of points, which
can describe the geometric characteristics of the local regions in detail. In the head pose
estimation stage, similar pose samples were used to constrain the regression process of the
pose angles. Ablation experiments proved the effectiveness of the local feature descriptor,
and the results of the experiments on public datasets show that compared with the latest
methods, our accuracy outperformed the other methods (where SD was reduced by 0.4
and MAE was reduced by 0.1). Simultaneously, the proposed method also maintained
real-time performance and can be applied to real application scenarios. However, in the
case of partial occlusions, the accuracy is still not sufficient. In future studies, we will
further explore algorithms and optimize the network and explore new methods for other
3D face analysis technologies.
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Abstract: The heavy workload of current deep learning architectures significantly impedes the
application of deep learning, especially on resource-constrained devices. Pruning has provided a
promising solution to compressing the bloated deep learning models by removing the redundancies
of the networks. However, existing pruning methods mainly focus on compressing the superfluous
channels without considering layer-level redundancies, which results in the channel-pruned models
still suffering from serious redundancies. To mitigate this problem, we propose an effective compres-
sion algorithm for deep learning models that uses both the channel-level and layer-level compression
techniques to optimize the enormous deep learning models. In detail, the channels are dynamically
pruned first, and then the model is further optimized by fusing the redundant layers. Only a minor
performance loss results. The experimental results show that the computations of ResNet-110 are
reduced by 80.05%, yet the accuracy is only decreased by 0.72%. Forty-eight convolutional layers
could be discarded from ResNet-110 with no loss of performance, which fully demonstrates the
efficiency of the proposal.

Keywords: convolutional neural network; architecture improvement; dynamic channel pruning;
memory access improvement

1. Introduction

Convolution neural networks (CNNs) have been proven to be effective in various
applications [1–3]: object detection [4,5], cultural heritage protection [6], environment
monitoring [7], robotics [8–10] and healthcare [11].

CNNs are designed to extract features from the input, which are used to reflect
whether a region of the input has certain properties [12]. Based on these features, CNNs can
accomplish tasks such as classification or detection. For example, in drone-based disaster
management applications, CNNs techniques are used to quickly and accurately extract
features of disasters, such as forest fires, landslides, and volcanic eruptions, from images
captured by drone camera [13].

However, the enormous numbers of computations and parameters of CNNs hinder fur-
ther development. Thus, it is not practical to deploy heavy CNNs on resource-constrained
computing devices, such as embedded systems and mobile devices [14–16]. To address
the problems, substantial research efforts have been devoted to compression techniques:
channel pruning [17–20], low-rank decomposition [21–23], and weight quantization [24,25].
Channel pruning is performed by locating and removing redundant channels to reduce
the numbers of floating-point operations (FLOPs) and parameters. In addition, the pruned
model is intact in parallelism, which contributes to the efficient utilization of hardware
resources [26].

After the model is compressed by channel pruning, many convolutional layers are
equipped with only a few channels. These layers are defined as thin layers. Channel prun-
ing is designed to remove unimportant channels and keep relatively important ones, so the
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remaining channels have valuable contributions. However, since the residual connection is
effective, mainstream models [27] (such as ResNet [28], DenseNet [29], and MobileNet [30])
adopt design patterns where multiple layers form the bottleneck structure and residual
connection are applied to the input and output of the bottleneck structure. To maintain
the functional integrity of the residual connection, most pruning strategies [31,32] do not
modify the input channels of the first layer and the output channels of the last layer in the
bottleneck structure. Hence, even though the thin layer is important to the model, there
is a lot of redundancy in the corresponding bottleneck structure. It is feasible to further
compress the model by utilizing the redundancy in the bottleneck structure.

On the other hand, models with fewer layers have more benefits for hardware. In
recent years, the use of CNNs on resource-constrained devices has gained attention, e.g.,
the field-programmable gate array (FPGA). The combination of high performance and
high power efficiency is leading to the adoption of FPGAs in a variety of CNN-based
applications. However, since CNN models are designed to be bloated, a large number
of weights need to be stored in external memory and transferred to the FPGAs during
computation [33,34]. This process requires additional energy and time. The energy cost
due to the increased memory accesses and data movement even exceeds the energy cost
of computation [35–38]. As a result, the implementation of deep learning models on
FPGAs or other lightweight devices should be accompanied by optimizations, such as
model compression and weight quantization. Removing layers could further contribute
to solving this problem by reducing the load of the layer weights and the feature maps.
Thus, a method to remove thin layers and the corresponding bottleneck structure while
preserving the feature extraction capability is urgently needed [39].

Therefore, this paper proposes an architecture improvement approach for CNNs that
aims to improve the performance of a model on resource-constrained devices by optimizing
the model at the channel level and layer level. Specifically, first, the model is compressed
by dynamic pruning, where highly sparse channels are dynamically removed. Then
the channel-level compressed model is further optimized by layer fusion, the redundant
structure is removed, and other layers substitute its function. Moreover, knowledge
distillation and short–long fine-tuning are introduced to layer fusion to reduce performance
loss. As layer fusion proceeds, the optimal architecture for the current task is obtained.
The proposal was applied to various models, and experimental results show that the
improved models can achieve high performance with fewer computational resources.

The main contributions of the paper are as follows:

• A method for layer-level compression of CNNs is proposed. By introducing knowl-
edge distillation and short–long fine-tuning, redundant layers are removed with lower
accuracy loss.

• The proposal may provide an idea for applications that desire to reduce memory
access more than reduce computational complexity.

The rest of the paper is organized as follows: Section 2 introduces related works.
Section 3 details the methodology. Section 4 shows the experimental results. Section 5
concludes the paper. In addition, all the abbreviations and definitions are listed in the
Appendix A.

2. Related Work

This section reviews channel pruning and knowledge distillation, and then gives a
short introduction to the related work.

Channel pruning is an efficient approach to compressing CNN models. The challenge
of channel pruning is to remove channels with the minimal performance loss. He et al. [40]
proposed a new channel-pruning method. Inspired by tensor factorization improvement
based on feature-map reconstruction, the proposal fully exploits the redundancy of feature
maps between channels. Specifically, for the trained model, it aims to reduce the dimensions
of the input feature maps of the layer, while minimizing the reconstruction error of the
output feature maps, to achieve pruning of the layer. The minimization problem is solved
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by two key steps: in the first step, the most representative channels are selected based on
lasso regression, and the redundant channels are pruned. In the other step, the output of
the remaining channels are reconstructed with linear least squares. Experiments showed
that a 2× speed-up is achieved with a 1% accuracy loss.

As a representative method for model compression and acceleration, knowledge
distillation effectively can learn small student models from large teacher models [41].
Huang et al. [42] proposed a new type of knowledge from the teacher model and transferred
it to the student model. Specifically, the selective knowledge of neurons was exploited.
Each neuron essentially extracts a certain pattern from the raw input. If a neuron is
activated, that suggests some common property in the corresponding region that is relevant
to the target task. Such information is valuable for the student model, as it provides an
explanation for the prediction results of the teacher model. Hence, they proposed to align
the distribution of neuron selectivity pattern between the student model and the teacher
model. The maximum mean difference was introduced as a loss function to measure the
discrepancy between the output feature maps of the teacher and student intermediate
layers. The experimental results indicate that the proposal improves the performance of
the student model significantly.

In some studies, knowledge distillation and channel pruning are combined. Aghli et al. [43]
proposed a compression method for CNNs by combining knowledge distillation and weight
pruning based on activation analysis. In detail, a select number of the layers in ResNet are pruned
to avoid breaking the network’s structure. Then, a new knowledge distillation architecture
and loss function are used to compress the layers that were untouched in the previous step.
The proposal was applied to the image classification task of head pose. Experimental results show
that the model was significantly compressed while maintaining accuracy close to the baseline.

3. Methods

This paper intends to improve the architecture of CNNs. The proposals include
dynamic pruning and layer fusion. First, the unimportant channels in the trained model
are removed by dynamic pruning. Then, the redundant layers in the pruned model are
further removed by layer fusion. The flow of the proposed method is described in Figure 1.
In the next section, the details of each part are explained.

Figure 1. A diagram about the flow of proposed architecture-improvement strategy. The part enclosed
by the dotted line indicates the compressed channel.

3.1. Preliminary

First, the convolution operation is introduced. Fij indicates the filter that connects the
ith input channel to the jth output channel. With the batch size set to 1, the feature map is a
two-dimensional matrix that propagates between layers. If Mi denotes the input feature
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map on the ith channel, � and b denote the convolution operator and the bias, and then
the jth output feature map Oj is generated as

C

∑
i=1

Mi � Fij + b = Oj. (1)

The sparsity is introduced to describe the percentage of redundant data (i.e., zero
elements) in the feature map. Since the output feature map is the sum of the convolution
results of the input feature map and the filter, if the input feature map has high sparsity,
the convolution result of the corresponding element is close to zero and has no effect on the
output, which means the redundancy of input channels can be measured by the sparsity of
the input feature map and removes redundant channels while having a minor impact on
the model.

In addition, in CNNs, layers are tightly connected to each other by channels. Removing
an input channel is also removing the corresponding output channel from the previous
layer. As the highly sparse feature maps are generated from the corresponding output
channel of the previous layer, the loss of the entire output channel is acceptable to the
model. In detail, when the channel is removed, the corresponding filter is pruned and the
model is compressed.

3.2. Dynamic Pruning

In the previous section, the sparsity and redundancy were explained. This part
proposes a method to dynamically determine the pruning target based on the sparsity of
the feature map. Let the model infer the entire validation set, and calculate the average
sparsity of each feature map in each input channel. The average sparsity is defined as
channel sparsity, which is used to evaluate the importance of the channel. Here, the pruning
threshold is introduced to distinguish high sparsity from low sparsity. When the value
of channel sparsity is greater than the pruning threshold, the corresponding channel is
considered to be the pruning target. After pruning the model, fine-tune the remaining parts
of the model to restore accuracy. If a low pruning threshold is set, major parts of the model
are removed, which leads to difficulties in recovering the accuracy. Thus, determining an
appropriate pruning threshold is critical.

The investigation of different thresholds on pruning results is conducted. Figure 2
shows the results. It should be noted that the accuracy of the model after fine-tuning
is given in the figure. It can be seen that fine-tuning accuracy increases as the pruning
threshold increases. When the accuracy is close to the baseline, the effect of increasing the
pruning threshold is slight. In addition, according to Figure 2b, it can be concluded that the
smaller the pruning threshold, the greater the compression ratio.

We empirically summarize the following: (1) When the fine-tuning accuracy is lower
than the target accuracy, increasing the pruning threshold improves the fine-tuning accuracy.
(2) When the fine-tuning accuracy is higher than the target accuracy, the compression ratio
could be further enhanced by lowering the threshold slightly while the fine-tuning accuracy
remains at the same level. Note that the target accuracy is not the baseline. Considering that
the fine-tuning accuracy is unstable, target accuracy was set to slightly below the baseline
in the experiment.
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Figure 2. Results of pruning experiments on CIFAR10 with pruning thresholds from 0.5 to 1.0.
ResNet-56 model was pruned in the experiment. (a) Accuracy. (b) Compression ratio of FLOPs
and parameters.

Therefore, the binary search algorithm is introduced to adjust the pruning threshold
based on feedback from fine-tuning. Algorithm 1 describes the proposal in detail. Pu
and Pl are the two endpoints of the search interval for the optimal pruning threshold
and are initialized to 1 and 0.5, respectively. Pc is the current pruning threshold and is
initialized to the midpoint of the search interval. The pruning process is simplified into the
following steps: (1) Load the original trained model, or the compressed model, from the
previous iteration. (2) One pruning attempt is performed based on Pc, and then the model
is fine-tuned to get the corresponding accuracy. (3) If the fine-tuning accuracy is higher
than the target accuracy, the upper endpoint, Pu, is updated to Pc. Then, Pc is reduced by a
quarter of the search interval. If the fine-tuning accuracy is lower than the target accuracy,
the lower endpoint Pl is updated to the value of Pc. Then, Pc is increased by half of the
search interval. The above steps repeat until the gap between Pl and Pu is less than 0.03,
an empirically determined termination condition. When the loop ends, the compression
result of this iteration is obtained.

Algorithm 1: Algorithm for dynamic pruning.
Data: Pre-trained network
Result: The compressed network
initialization: the current pruning threshold Pc;
upper endpoint of target interval Pu = 1.0;
lower endpoint of target interval Pl = 0.5;
Pc ← (1/2Pu + 1/2Pl) ;
while Pu − Pl > 0.03 do

load trained network;
select and delete channels based on Pc;
fine-tune the pruned network and measure accuracy;
if accuracy ≤ target accuracy then

Pu ← Pc;
Pc ← (3/4Pu + 1/4Pl) ;
save current network as the result;

else
Pl ← Pc;
Pc ← (1/2Pu + 1/2Pl) ;

end

end

111



Electronics 2023, 12, 1208

In addition, dynamic pruning is iterative to get better compression results. The com-
pressed model of the previous iteration is the original model of this iteration. By analyzing
the experimental data, too many pruning iterations make little improvement on the com-
pression result; thus, the iterations were set to 3 by us.

3.3. Layer Fusion

After dynamic pruning, the pruned model has multiple thin layers. This part intends
to deprecate these thin layers by layer fusion, causing slight performance loss.

The bottleneck structure where the thin layer lies is defined as the material structure.
Another bottleneck structure in the fusion operation is defined as the carrier structure
(described in Figure 1). The challenge of layer fusion is that the impact of losing an
entire layer on feature propagation is serious; thus, the carrier structure should undertake
the function of the material structure. Therefore, the nearest bottleneck structure of the
material structure is chosen as the carrier structure. Normally, carrier structure is the layer
before the material structure. Then, the model is fine-tuned to adjust the output of the
carrier structure to be similar to that of the material structure, so the carrier structure is
functionally equivalent to the two layers before fusion. If x represents the input, and F ()
and G() represent the carrier structure and the material structure, respectively, then the
fused layerH() should function as:

H(x) = G(F (x)). (2)

There are two key points in layer-fusion fine-tuning: knowledge distillation and
short–long fine-tuning.

3.3.1. Knowledge Distillation

Knowledge distillation [44] is a method for transferring knowledge from a complex
teacher network to a simple student network. A critical part of knowledge distillation is
the soft label, which is a learning objective obtained from the output of the teacher network.
The soft label is defined as:

qi =
exp (zi/T)

∑j exp (zj/T)
. (3)

Here, zi is the probability of the ith class and T is the temperature of knowledge
distillation. In knowledge distillation, the student network is optimized according to
the soft labels and the ground-truth labels to get better training results. Benefiting from
knowledge distillation, the student network is trained to generalize in the same way as the
teacher network, and the training difficulty of the student network is reduced.

Therefore, in layer fusion, knowledge distillation is introduced as the fine-tuning
method. After a material structure is removed, a sub-network with a simpler structure
is obtained. The model compressed by dynamic pruning is considered as the teacher
network, and the sub-network is considered as the student network. The sub-network is
fine-tuned with knowledge distillation after removing one material structure. Fine-tuning
with knowledge distillation could optimize the output of the carrier structure to close to
the material structure, which means the loss of layer fusion is minimal.

3.3.2. Short–Long Fine-Tuning

In general, training the model optimizes all of the parameters. However, after the
material structure is removed, only the carrier structure needs to be fine-tuned. Optimizing
the entire network would increase the difficulty of searching for the optimal solution. This
part is intended to keep the fine-tuning focused on the output of the carrier structure. Thus,
after removing the material structure, only the weights of the carrier structure are tuned,
and other layers are frozen. As a result, it is enough to take a small number of epochs for
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fine-tuning only the carrier structure of the network, the process of which is denoted as
short fine-tuning. The short fine-tuning is done after each material structure is removed.

In addition, it is difficult to fine-tune the output of the carrier structure to be exactly
the same as that of the material structure. A tiny offset remains in the fused layers after
short fine-tuning. When the offsets accumulate too much, the performance of the model
is severely degraded. Thus, after four bottleneck structures are fused, the model is fine-
tuned without freezing. This process requires more iterations and is defined as long
fine-tuning. Introducing long–short fine-tuning contributes to providing layer fusion with
a low performance loss.

3.3.3. Iterative Layer Fusion

Layer fusion is an iterative process. After one bottleneck structure is fused, the next
set of material and carrier structures is searched by the new model.

Algorithm 2 describes the flow of layer fusion. In detail, the duplicate of the pruned
model always serves as the teacher model for knowledge distillation. First, find the
bottleneck structure with the lowest number of channels as the material structure, and select
the previous bottleneck structure as the carrier structure. Then, remove the material
structure and short fine-tune the model. After repeating these two steps four times, a long
fine-tuning is conducted. The above steps are repeated until the drop in accuracy is greater
than 3%. Although the architecture is compressed by layer fusion, the model performance
does not keep decreasing. When the model is modified to the appropriate architecture,
the model’s performance increases. Both increases and decreases in model accuracy are
possible after each long fine-tuning, so a loose termination condition is adopted. The results
after each long fine-tuning are kept, and we evaluate them in terms of compression ratio
and performance.

Algorithm 2: Flow of layer fusion.
Data: The pruned model
Result: The model with improved architecture
duplicate the pruned model as the teacher model;
while accuracy drop less than 3% do

for iterations to 4 do
select the bottleneck structure with the least number of channels as the
material structure;

select the previous layer of the element layer as the carrier structure;
remove the material structure from model;
freeze weights except for the carrier structure;
short fine-tuning with knowledge distillation;

end
long fine-tuning with knowledge distillation;
save model;

end

4. Experimental

4.1. Experimental Configuration

The proposal was applied to the ResNet and DenseNet models to evaluate the im-
provement effect. CIFAR10 and ImageNet50 [45] were adopted as experimental datasets.
CIFAR10 contains 50k training images and 10k test images, all of which are 32 × 32. Ima-
geNet50 consists of 50 random classes chosen from the ILSVRC2012 dataset. It contains
51,614 training images, 6490 validation images, and 6440 test images, all of which are
224 × 224. Common ResNet models, such as ResNet-50 and ResNet-101, are designed for
ImageNet, and their architectures are too complex for CIFAR10. ResNet-56 and ResNet-110
have been designed for CIFAR10 with a simpler architecture, and they expect an input size
of 32 × 32. Therefore, ResNet-56 and ResNet-110 have been adopted as the base model for
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the CIFAR10 compression experiment. For the same reason, DenseNet-40 was adopted
as the base model for the CIFAR10, and DenseNet-121 was compressed in the experiment
on ImageNet50.

Each base model was trained on the datasets with a 5-epoch warm-up and 320 epochs,
from scratch. The momentum was set to 0.9, the weight decay factor was 10−4, and the
batch size was 64. Experiments were conducted on the Nvidia GeForce GTX 3080 Ti GPU
and Intel i9-10900 CPU, and the models were implemented by pytorch.

In the dynamic pruning phase, the optimizer SGD with a learning rate initialized to
0.01 was adopted. The learning rate was decayed by cosine annealing [46] with a period
of 320 epochs and restarted at epoch 160. The network was fine-tuned on the training set,
and the number of epochs was set to 320. When the best accuracy was not updated for
more than 20 epochs, the fine-tuning was stopped. About the pruning strategy, only the
input channels of second convolutional layers in bottleneck structures were selected as
pruning targets. In DenseNet40, since a more dense structure than the bottleneck structure
which contains one convolutional layer is adopted, the highly sparse output channels of
each convolutional layer and all the corresponding input channels are removed.

In the layer-fusion phase, normally, the carrier structure is the previous bottleneck
structure of the material structure. However, layer fusion should not fuse two layers with
different sizes of output feature maps. When the output size of the previous bottleneck
structure is different, the following one is picked as the carrier structure. The temperature
of the knowledge distillation was set to 4. The number of epochs for short fine-tuning was
set to 50, and 200 for long fine-tuning. The other settings of fine-tuning were the same as in
dynamic pruning.

4.2. Experiments on CIFAR10

The experimental results of dynamic pruning on CIFAR10 are shown in Table 1. Top-1
accuracy and FLOPs are the focuses. The compression effect is noticeable on the ResNet
series, especially ResNet110, which compresses 75.75% of FLOPs with a 0.42% drop in
precision. In addition, layers with less than six output channels are considered thin layers,
and the number of such layers is listed in the table. It can be seen that the number of thin
layers after pruning was considerable, especially for ResNet110, which had 31 thin layers.
In the next phase, layer fusion was mainly focused on these thin layers.

Table 1. Results of dynamic pruning on CIFAR10. “Acc.” indicates accuracy. “Acc. ↓” and
“FLOPs ↓” denote reductions compared to the base models. The other tables and figures follow the
same conventions.

Baseline
(%)

Pruned
Acc. (%)

Acc. ↓
(%)

FLOPs
(M)

FLOPs ↓
(%)

Thin
Layers

ResNet-56 93.52 93.1 0.42 50.92 60.10 10
ResNet-110 93.76 93.34 0.42 62.34 75.75 31

DenseNet-40 94.53 94.07 0.46 210.56 28.03 10

Table 2 details the experimental results of layer fusion. The effect of layer fusion was
most significant on ResNet-56 and DenseNet-40. Compared to the results of dynamic
pruning, the compression ratio was improved by 12.01% on ResNet-56, and the accuracy
was further reduced by 0.35%. Additionally, FLOPs were further reduced in number by
11.78% in DenseNet-40, along with a further loss of 0.41% in accuracy. For ResNet-110,
although only 4.3% of FLOPs were eliminated by layer fusion, up to 64 convolutional layers
were fused, and the accuracy reduction was 0.3%. The results of the layer fusion, in order
to prioritize the performance, are also listed in the table. It indicates that multiple layers
were removed from the models with less than 0.07% in accuracy degradation. Specifically,
after fusing the 48 convolutional layers in ResNet-110, the accuracy rose by 0.04% compared
to the pruned model.
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Table 2. Results of layer fusion on CIFAR10. The depth and fused layers refer to numbers of
convolutional layers. ResNet-56∗ indicates the layer fusion results of the priority selection according
to the precision, and same for ResNet-110∗ and DenseNet-40∗.

Fused
Acc. (%)

Acc. ↓
(%)

FLOPs
(M)

FLOPs ↓
(%)

Depth
Fused
Layers

ResNet-56 92.75 0.77 35.59 72.11 24 32
ResNet-110 93.04 0.72 51.28 80.05 46 64

DenseNet-40 93.66 0.87 176.10 39.81 24 16

ResNet-56∗ 93.04 0.48 46.85 63.29 40 16
ResNet-110∗ 93.38 0.38 57.14 77.77 62 48

DenseNet-40∗ 94.07 0.46 187.54 35.90 28 12

4.3. Experiments on ImageNet50

The proposal achieved satisfactory results on CIFAR10. However, mainstream models
are considered too complex for CIFAR10, which means there are plenty of redundant
structures that can be easily removed from the model. Therefore, as a complement, the ex-
periments were performed on ImageNet50, which consists of large input images. Since
ImageNet50 is more complex compared to CIFAR10, it is challenging to compress the mod-
els without accuracy loss. Table 3 provides the results obtained in the experiment. As can
be seen in the table, 34.54% of the FLOPs of DenseNet121 were compressed, and there was
a 0.65% accuracy reduction. Then, layer fusion improved the compression of FLOPs to
36.48% while resulting in an overall accuracy loss of 0.92%. In detail, 32 convolutional
layers of DenseNet121 were fused in the layer fusion.

Table 3. Compression results of DenseNet-121 on ImageNet50. “After layer fusion” indicates the
result of layer fusion after dynamic pruning.

Acc.
(%)

Acc. ↓
(%)

FLOPs
(M)

FLOPs ↓
(%)

Baseline 90.21 - 59.2 -
After dynamic pruning 89.56 0.65 38.75 34.54

After layer fusion 89.29 0.92 37.60 36.48

4.4. Analysis

The results of all experiments are summarized in Table 4. In addition, the intermediate
results of layer fusion are analyzed. Figure 3 presents the layer fusion details of the
experiments on CIFAR10. The baseline is the model’s accuracy after dynamic pruning. It
can be noticed that the accuracy is not continuously decreasing as the layers are fused. In the
layer-fusion experiments on ResNet-110, the accuracy was higher than the baseline four
times. Additionally, for DenseNet-40, there was a significant increase in accuracy of 0.38%
after the first four layers were fused. Afterward, when the 12 convolutional layers were
discarded, the accuracy was the same as the baseline. These data suggest that it is feasible
to improve the compressed model’s performance by layer fusion. Moreover, the variations
in FLOPs are also shown in the figure. It can be found that since the bottleneck structure
with the fewest channels was fused, the reduction in computational resources by layer
fusion was not significant. However, considering that it was a further reduction of FLOPs
from a compressed model, the enhanced compression ratio is valuable.
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Table 4. All compression results by our proposed method.

Dataset Model
Original
Acc. (%)

Compressed
Acc. (%)

Acc. ↓
(%)

Original
FLOPs (M)

Compressed
FLOPs (M)

FLOPs ↓
(%)

CIFAR10
ResNet-56 93.52 92.75 0.77 127.62 35.59 72.11

ResNet-110 93.76 93.04 0.72 257.09 51.28 80.05
DenseNet-40 94.53 93.66 0.87 292.56 176.1 39.80

ImageNet50 DenseNet-121 90.21 89.29 0.92 59.20 37.60 36.48
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Figure 3. Layer fusion details of ResNet-110 and DenseNet-40. The accuracy and FLOPs of the model
after all four layers are fused are shown in the figure. (a) ResNet-110. (b) DenseNet-40.

Moreover, comparison experiments were conducted to analyze the proposal:

• Knowledge distillation was replaced by cross-entropy loss in the fine-tuning.
• No short fine-tuning was performed after each structure was fused; only long fine-

tuning was conducted after four layers were fused.
• We trained models from scratch with the optimized architectures.

Figure 4 presents the experiment without knowledge distillation on DenseNet-40.
From the figure, it can be seen that without the benefit of knowledge distillation, it is difficult
to recover the model accuracy to a satisfactory level. After 20 layers are fused, the model’s
accuracy degrades more seriously. Additionally, Figure 5 presents the experiment with
no short fine-tuning on ResNet-110. After removing short fine-tuning, seven fine-tuning
results were worse than before, and the accuracy dropped more severely after 44 layers
were fused.

Since the complexity of the model architectures was reduced without a significant drop
in performance, we can say that they nearly retain the performance of the complex models
even though the architectures are relatively simple. To demonstrate that, models with
architectures the same as those of the compressed models were built and then trained from
scratch with the same training settings as the base models. The results are listed in Table 5.
Acc. improved indicates the accuracy improved by the proposal compared to training
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from scratch. These data show that with similar complexity, the models compressed by the
proposed method have higher performance.
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Figure 4. Details of the layer-fusion experiment on DenseNet-40 without knowledge distillation.
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Figure 5. Details of the layer-fusion experiment on ResNet-110 without short fine-tuning.

Table 5. Accuracy of the compressed models and models trained from scratch with compressed ar-
chitectures.

Acc. by
Proposal (%)

Acc. from
Scratch (%)

Acc.
Improved (%)

ResNet-56 92.75 91.65 1.10
ResNet-110 93.04 92.31 0.73

DenseNet-40 93.66 93.25 0.41

5. Conclusions

In this paper, we proposed a CNN architecture-improvement approach to optimize
redundant models at the channel level and the layer level. First, the binary search method
is used to dynamically determine the appropriate pruning threshold, and then redundant
channels are removed based on the threshold. Then, bottleneck structures with only a few
channels are eliminated by layer fusion to compress the model at the layer level. Knowledge
distillation and short–long fine-tuning were introduced to layer fusion to enhance the
performance of the fused models. The experimental results show the efficiency of the
proposal: in terms of ResNet-56, 72.11% of FLOPs were eliminated, and there was a 0.77%
drop in accuracy; as for ResNet-110, 80.05% of FLOPs were eliminated, and there was a drop
in accuracy of 0.72%. In detail, the data demonstrate that there are 48 convolutional layers
that could be removed from ResNet110 by our method without harming the model. We
focused on the analysis of the proposal in the classification task. In future work, the effects
of detection and segmentation tasks will be analyzed, since compression is more difficult
for these tasks. Furthermore, the models with the optimized architecture are planned to be
implemented on FPGAs to evaluate the compression effect on resource-constrained devices.
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Appendix A

Table A1. List of abbreviations and definitions.

Abbreviation Explanation

FLOP Floating-point operation
CNN Convolution neural network
FPGA Field-programmable gate array
lasso Least absolute shrinkage and selection operator
Fij Filter that connects the ith input channel to the jth

output channel
Mi Input feature map on the ith channel
Oi Output feature map on the ith channel
� Convolution operator
b Bias
Pc Current demarcation point of En-sparsity
Pu Upper endpoint of target interval
Pl Lower endpoint of target interval
x Input of bottleneck structure
F () Carrier structure
G() Material structure
H() Fused layer
zi The probability of the ith class
T The temperature of knowledge distillation
qi The soft label of the ith class
GPU Graphics processing unit
CPU Central Processing Unit
Acc. Top-1 accuracy
Acc. ↓ Reduction in accuracy compared to the base model
FLOPs ↓ Reduction in FLOP compared to the base model
SGD Stochastic gradient descent algorithm
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Abstract: Generalized Zero-Shot Learning (GZSL) holds significant research importance as it enables
the classification of samples from both seen and unseen classes. A prevailing approach for GZSL
is learning transferable representations that can generalize well to both seen and unseen classes
during testing. This approach encompasses two key concepts: discriminative representations and
semantic-relevant representations. “Semantic-relevant” facilitates the transfer of semantic knowl-
edge using pre-defined semantic descriptors, while “discriminative” is crucial for accurate category
discrimination. However, these two concepts are arguably inherently conflicting, as semantic de-
scriptors are not specifically designed for image classification. Existing methods often struggle with
balancing these two aspects and neglect the conflict between them, leading to suboptimal representa-
tion generalization and transferability to unseen classes. To address this issue, we propose a novel
partially-shared multi-task representation learning method, termed PS-GZSL, which jointly preserves
complementary and sharable knowledge between these two concepts. Specifically, we first propose a
novel perspective that treats the learning of discriminative and semantic-relevant representations as
optimizing a discrimination task and a visual-semantic alignment task, respectively. Then, to learn
more complete and generalizable representations, PS-GZSL explicitly factorizes visual features into
task-shared and task-specific representations and introduces two advanced tasks: an instance-level
contrastive discrimination task and a relation-based visual-semantic alignment task. Furthermore,
PS-GZSL employs Mixture-of-Experts (MoE) with a dropout mechanism to prevent representation
degeneration and integrates a conditional GAN (cGAN) to synthesize unseen features for estimating
unseen visual features. Extensive experiments and more competitive results on five widely-used
GZSL benchmark datasets validate the effectiveness of our PS-GZSL.

Keywords: Generalized Zero-Shot Learning; discriminative; semantic-relevant; image classification;
partially-shared multi-task learning; transferable representation

1. Introduction

Generalized Zero-Shot Learning (GZSL) [1] has attracted significant research interest
due to its ability to transfer knowledge to unseen classes using additional class-level
semantic descriptors, such as word vectors [2] or attributes [3]. As an extension of Zero-Shot
Learning (ZSL) [3,4], GZSL aims to classify both seen and unseen classes simultaneously
during testing. This capability is crucial in various real-world applications where the
availability of labeled samples for all possible classes is limited or infeasible [5,6].

A key idea in GZSL is learning transferable representations, which encompass two
essential concepts: discriminative and semantic-relevant features. Discriminative features are
crucial for accurate category discrimination, possessing strong decision-making power and
promoting the classification task of unseen classes. In contrast, semantic-relevant facilitates
a shared semantic space between seen and unseen classes using pre-defined semantic
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descriptors, reflecting the semantic relationships between different classes as accurately
as possible. GZSL can be viewed as a multi-task problem, where learning discriminative
features optimizes a discrimination sub-task, and learning semantically-relevant features
optimizes a visual-semantic alignment sub-task. By adopting a multi-task perspective,
GZSL aims to obtain comprehensive representations between tasks that can generalize well
to unseen classes during testing. However, since semantic descriptors are not specifically
designed for image classification [1,7,8], two main challenges arise: (1) appropriately
balancing these sub-tasks and resolving their conflict, and (2) ensuring the stability and
expressiveness of learned representations.

Unfortunately, existing methods tend to bypass or ignore these challenges between
discriminative and semantic-relevant, resulting in passable performance on unseen classes.
Specifically: (1) some researchers focus solely on semantic-relevant representations through
elaborate visual-semantic alignment [8–10], while others concentrate on advanced discrim-
ination techniques to extract more generalizable discriminative representations [11,12].
(2) Furthermore, the conflict between discrimination and visual-semantic alignment is often
neglected, as recent methods primarily focus on learning shared representations between
these two sub-task [7,13,14]. As a result, their poor generalization can be attributed to the
discarding of some task-specific information between sub-tasks, which can be viewed as the
“diamond in the rough” for GZSL. Some works in domain generalization (DG) have shown
that this specific information could enhance a model’s generalization performance when
classifying unseen classes [15,16]. For example, in the AWA1 dataset shown in Figure 1.
attributes like “Strong, Big” that are not visually discriminative can still reduce the mis-
classification between tigers and cats. Similarly, visual cues like the ear and nose shape are
salient for classifying image samples but not represented in the semantic descriptors.

To address the aforementioned challenges and limitations, we propose a novel partially-
shared representation learning network, termed PS-GZSL, which jointly preserves com-
plementary and transferable information between discriminative and semantic-relevant
features. First, to resolve the conflict between tasks and avoid information loss, PS-GZSL
proposes a partially-shared multi-task learning mechanism to explicitly model both task-
shared and task-specific representations. As depicted in Figure 2, PS-GZSL utilizes three
Mixture-of-Experts (MoE) [17,18] to factorize a visual feature into three latent represen-
tations: a task-shared discriminative and semantic representation hds, a task-specific dis-
criminative representation hd, and a task-specific semantic-relevant representation hs. Each
sub-task corresponds to a task-specific and a task-shared representation. Second, to ensure
the stability and expressiveness of learned representations, PS-GZSL draws inspiration
from the success of contrastive learning [19] and metric learning [20], proposing two ef-
fective sub-tasks: an instance-level contrastive discrimination task and a relation-based
visual-semantic alignment task. These tasks have been proven to achieve better generaliza-
tion performance, respectively. To avoid representation degeneration, PS-GZSL randomly
drops out experts in each MoE. Furthermore, PS-GZSL is a hybrid GZSL framework that
integrates with a feature generation component. In feature generation, PS-GZSL adopts a
conditional generative adversarial network [21] with a feedback mechanism to mitigate the
bias towards seen classes in the latent representation space.

In summary, the main contributions of our work can be summarized:

1. We describe a novel perspective grounded in multi-task learning, which reveals
that existing methods exhibit an inherent generalization weakness of losing some
transferable visual features.

2. We propose a novel GZSL method, termed partially-shared multi-task representation
learning network (PS-GZSL), to jointly preserve complementary and transferable
information between discriminative and semantic-relevant features

3. Extensive experiments on five widely-used GZSL benchmark datasets validate the
effectiveness of our PS-GZSL and show that the joint contributions of the task-shared
and task-specific representations result in more transferability representation.
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Figure 1. Existing GZSL methods either bypass or ignore the conflict between discriminative and
semantic-relevant objectives, and may overlook some task-specific visual features (as indicated by the
green and orange dashed lines). In contrast, PS-GZSL can preserve more complete sharable features.
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Figure 2. Illustration of our proposed PS-GZSL, which consists of (i) a conditional GAN network
D and G with latent feedback mechanism; (ii) a multi-branch MoE network E = [Eds, Ed, Es] for
factorized latent representation learning. And two task modules P and R are extended to ensure the
discriminative property and semantic property. Here, a denotes the semantic descriptors, and ε is a
random gaussian noise.

2. Related Works

Early approaches for ZSL/GZSL can be broadly classified into two main groups:
Embedding-based methods and Generative-based methods. The former group [22–27]
learns an encoder to map the visual features of seen classes to their respective semantic
descriptors. In contrast, the latter group [21,28–32] learns a conditional generator, such as
cVAE [33] or cGAN [34], to synthesize virtual unseen features based on the seen samples
and semantic descriptors of both classes.

Recent state-of-the-art methods typically graft an encoder on top of a conditional
generator, with a focus on improving the transferability of visual representations. (1) Some
methods emphasize preserving semantic-relevant information that corresponds to pre-
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defined descriptors. For example, CADA-VAE [9] employs two aligned Variational Au-
toencoders(VAEs) to learn shared latent representations between semantic descriptors and
visual features. SDGZSL [10] integrates a disentanglement constraint and a Relation net-
work [20] to ensure the semantic-consistency of the learned representation. SE-GZSL [35]
uses two AutoEncoders and Mutual information maximization to capture semantic-relevant
information. (2) Some others prioritize the preservation of more discriminative informa-
tion. DLFZRL [11] adopts a hierarchical factorizing approach and adversarial learning
to learn the discriminative latent representation, regardless of whether it is semantically
relevant or not. DR-GZSL [7] utilizes an auxiliary classifier and a shuffling disentangle-
ment mechanism to extract the discriminative part of the semantic-relevant representation.
CE-GZSL [13] integrates the semantic-supervised learning module and label-supervised
discrimination module in the latent space to learn discriminative visual representations. In
summary, these methods differ in the transferable characteristics of the data they model
for recognition.

In contrast to existing methods, we argue that both discriminative and semantic-
relevant representations are important for recognizing test classes. However, due to the
conflict between them, these methods implicitly discard some valuable features. We
are thus motivated to adopt the soft-parameter sharing mechanism [17,36] in multi-task
learning. This flexibility stems is derived from information routing between tasks, and its
characteristics of seeking similarities while preserving differences have led to significant
successes in multi-task learning domains such as recommendation systems. We are the
first to apply this idea and revise it for representation learning in GZSL. A novel multi-task
representation learning paradigm is proposed that models task-specific and task-shared
representations in parallel, unlike existing paradigms [37,38] that use a single MoE for each
sub-task and a hierarchical structure. For the sake of clear understanding, we highlight the
distinctions between our approach and those counterparts in Table 1.

Table 1. Qualitative Model Comparison. The©, �, and� denote representations that are discrimi-
native and semantic-relevant, only discriminative, and only semantic-relevant, respectively.

Model Comparison
Task-Shared Task-Specific

© � �
SP-AEN [8]

√ √
CADA-VAE [9]

√
SDGZSL [10]

√ √
DLFZRL [11]

√ √
DR-GZSL [7]

√
CE-GZSL [13]

√

Our PS-GZSL
√ √ √

3. Methods

To learn more transferable representations, in this section, we present our proposed
PS-GZSL method, which combines MoE, a partially-shared mechanism, an instance con-
trastive discrimination module, and a relation-based visual-semantic alignment module.
To alleviate the bias towards seen, we also adopt a feature generation module with latent
feedback. The overall framework of our proposed PS-GZSL is shown in Figure 2, Then,
the definition of the ZSL/GZSL problem and all the above modules are explained in detail.

3.1. Problem Definition

In Zero-Shot learning, we are given two disjoint sets of classes: {X s,Y s} with S
seen classes and {X u,Yu} with U unseen classes, where we have Y s ∩ Yu = ∅ and
Y all = Y s ∪ Yu. For the semantic descriptors A = {a1, . . . , aS, aS+1, . . . , aS+U}, each class,
whether seen or unseen, is associated with a semantic descriptor that can take the form of
sentences or attributes. Under ZSL setting, we have {X s,Y s,As} and {Yu,Au} available
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during training phase. Let x ∈ X denote the extracted feature instances of images. The
goal of ZSL is to learn a model f to classify unseen samples during the test phase, which
can be formulated as f : x → Yu. GZSL is a more realistic and challenging problem that
requires f to handle both seen and unseen samples: f : x → Y all .

3.2. Task-Shared and Task-Specific Representations

To begin our PS-GZSL, we first provide definitions for three visual representations
that are concerning discriminative and semantic-relevant concepts.
Discriminative and Semantic-relevant Representations. Firstly, we define task-shared
discriminative and semantic-relevant representations hds to encode the discriminative
features of images that are related to corresponding semantic descriptors. These visual
features are used for the both discrimination task and the visual-semantic alignment task
during the training phase.
Discriminative but Non-semantic Representations. Secondly, discriminative but non-
semantic features are encoded in discrimination task-specific representations, denoted as
hd. These features are important for discrimination, but they may not contribute to the
visual-semantic alignment task since not represented in the semantic descriptors.
Non-Discriminative but Semantic-relevant Representations. Finally, non-discriminative
but semantic-relevant features are encoded in visual-semantic alignment task-specific
representations, denoted as hs. These features are not discriminative in seen classes but
may be critical for recognizing unseen classes. Thus, these features only contribute to the
visual-semantic alignment task during training.

3.3. Representation Learning

As shown in Figure 2, Our encoder module consists of three parallel Mixture-of-experts
(MoE) modules (E = [Eds, Ed, Es]), which explicitly factorize a visual feature x into three
latent representations: hds, hd, and hs, i.e., hds = Eds(x), hd = Ed(x) and hs = Es(x).

3.3.1. Mixture-of-Experts

PS-GZSL adopts a gated MoE module to replace simple Multi-Layer Perceptrons (MLPs)
in order to obtain more expressive representations, MoE is a neural network architecture
that comprises several experts, each of which specializes in a specific part of the input space.
The output of the network is then computed as a weighted combination of the outputs of
the experts by a gating network, as shown in Figure 3.

Gate Input

Output

xx

xx

xx

Softmax E1 E2 En

Gate Input

Output

x

x

x

Softmax E1 E2 En

Figure 3. The architecture of MoE.
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Given a visual feature as input, the MoE module can be formulated as:

E(x) =
n

∑
i

g(x)iei(x), (1)

where, the gate network g combines the results of n expert networks, where ∑n
i=1 g(x)i = 1

and g(x)i represents the ith logit of the output, indicating the weight assigned to expert ei.
We denote the aforementioned three MoE modules as Eds, Ed and Es for the task-

shared representation hds and two task-specific representation hd and hs, respectively.
It’s worth noting that we’ve incorporated the dropout technique in the gate network,
which randomly discards some outputs of the experts. This technique helps prevent
overfitting and also ensures that the representations (hds, hd, and hs) remain informative for
subsequent sub-tasks.

3.3.2. Instance Contrastive Discrimination Task

According to the definition above, both hds and hd are expected to capture the discrim-
inative features. For convenience, we denote w = hds ⊕ hd = Eds(x)⊕ Ed(x). To compare
the similarities and differences of visual representations w, an instance contrastive discrim-
ination task is proposed, which assigns samples to different categories according to the
comparison results. Specifically, PS-GZSL takes Supervised Contrastive Learning (Sup-
Con) [19] loss as the objective function in this task since SupCon shows better generalization
performance and stronger robustness in discriminative representation learning compared
with other metric learning loss.

We follow the strategy proposed in [19] where the representation w is further propa-
gated through a projection network P (as shown in Figure 4) to obtain a new representation
denoted as z = P(w). For every wi encoded from a visual feature xi, the SupCon loss of wi
is as follows:

�(zi) = − log

{
1

P(i) ∑
p∈Pi

exp
(
z�i zp/τe

)
∑k∈K(i) exp

(
z�i zk/τe

)}, (2)

where, τe > 0 denotes the temperature parameter for stable training. P(i) ≡ {p ∈ K(i) :
yp = yi} represents the indices of all positives in the mini-batch that are distinct from i,
and |P(i)| is its cardinality.

Class 1

Normalized
Embeddings

Class 2

PPP

Class 1

Normalized
Embeddings

Class 2

P

hdshds hdhdhds hd hdshds hdhdhds hd hdshds hdhdhds hdhds hd hds hd hds hdhds hd hds hd hds hd

Figure 4. Illustration of Instance Contrastive Discrimination.
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To simultaneously learn the MoE modules Eds, Ed, and the projection network P,
the loss function for this discrimination task is calculated as the sum of instance-level
SupCon loss within a batch of samples I.

Ldis(Ed, Eds, P) = ∑
i∈I

�(zi). (3)

Such a contrastive learning encourages Eds and Ed to capture the strong inter-class
discriminative features, and intra-class structure shared in the latent space, making both
hds and hd more discriminative and more transferable. Furthermore, we demonstrate the
superiority of SupCon loss over softmax loss in ablation experiments.

3.3.3. Relation-Based Visual-Semantic Alignment Task

In the same way, both hds and hs are devised to capture semantic-relevant information
that corresponds to the annotated semantic descriptors A. For convenience, we denote
v = hds ⊕ hs = Eds(x)⊕ Es(x). In order to learn semantic-relevant representations v without
directly mapping visual features into the semantic space, we adopt a Relation network
in [20] as a visual-semantic alignment task. The goal is to maximize the similarity score
(SS) between v and the corresponding semantic descriptor a through a deeper end-to-end
architecture, which includes a learned nonlinear metric in the form of our alignment task.
Thus, the objective of this task is to accurately measure the similarity score between pairs
of v and a via a neural network. The similarity score SS of the matched pairs is set to 1,
while mismatched pairs are assigned 0, which can be formulated as:

SS(vt, ac) =

{
0, yt �= yc

1, yt = yc
, (4)

where t and c refer to the t-th visual sample’s semantic-relevant representation and c-th
class-level semantic descriptor from the seen classes, yt and yc denote the ground truth
label of vt and ac.

In [20], they utilize mean square error(MSE) as a loss function while ignoring the
class-imbalance problem in zero-shot learning. Moreover, as SupCon requires a large batch
size, “Softmax + Cross Entropy” is a more efficient alternative than MSE in this scenario (as
shown in Figure 5).

Denote the relation module as R. We can calculate the loss function of this task as:

Lalign(Es, Eds, R) = ∑
i∈I
− log

exp (R(vi, a+)/τs)

∑S
s=1 exp (R(vi, as)/τs)

, (5)

where, S denotes the number of seen classes, and τs > 0 denotes the scaling factor to stable
the softmax activation for robust performance.
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Figure 5. Illustration of Relation-Based Visual-Semantic Alignment.
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3.4. Feature Generation with Latent Feedback

In order to alleviate the phenomenon that encoded representations are biased towards
seen classes in GZSL, we integrate the proposed representation learning method on top of
a conditional GAN (cGAN) [21]. Specifically, we adopt a conditional generator network
G to generate virtual unseen features x̃ = G(a, ε), here ε ∼ N (0, I) represent a Gaussian
noise. In the meanwhile, we train a discriminator D to distinguish between a real pair (x, a)
and a generated pair (x̃, a). The generator G and the discriminator D are jointly trained by
minimizing the adversarial objective given as:

V(G, D) = Ep(x,a)[log D(x, a)] +EpG(x̃,a)[log(1− D(x̃, a))], (6)

where p(x, a) and pG(x̃, a) represent the joint distribution of real/synthetic visual-semantic
pairs, respectively.

However, the objective stated above does not guarantee that the generated features
are discriminative or semantic-relevant. Drawing on the feedback mechanism in [13,21,39],
we aim to improve the quality of generated features by passing them through the afore-
mentioned multi-task network. Therefore, Equation (6) can be reformulated as:

V(G, D) =Ep(x,a)[log D(x, a)] +EpG(x̃,a)[log(1− D(x̃, a))]

+EpG(x̃,a)[δ1Lalign + δ2Ldis],
(7)

3.5. Training and Inference

As a summary, the overall loss of our proposed method is formulated as:

Ltotal = V(G, D) + Ldis(Ed, Esh, P) + Lalign(Es, Esh, R). (8)

Given visual features and corresponding semantic descriptors from seen classes, PS-
GZSL solves GZSL in four steps:

1. Training feature generation and representation learning models based on Equation (8).
2. These learned models are then used to synthesize and extract unseen class representa-

tions c̃.
3. Using real visual samples x from seen classes for training the partially-shared repre-

sentation learning part and synthesized visual samples x̃ for tuning generator.
4. The final generalized zero-shot classifier is a single layer linear softmax classifier,

learned on c̃ and c (extracted from real seen x and synthesized samples x̃), as depicted
in Figure 6.
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Figure 6. Using concatenated task-shared and task-specific representation for training classifier.
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4. Experiments

4.1. Datasets

We perform our PS-GZSL on five widely used benchmark datasets for GZSL, includ-
ing Animals with Attributes 1&2 (AWA1 [3] & AWA2 [1]), Caltech-UCSD Birds-200-2011
(CUB) [40], Oxford Flowers (FLO) [41]), and SUN Attribute (SUN) [42]. For visual features,
we follow the standard GZSL practice of using ResNet101 [43] pre-trained on ImageNet-
1k [44] without fine-tuning, resulting in 2048-dimensional features for each image. The
semantic descriptors used for AWA1, AWA2, and SUN are their respective class-level
attributes. For CUB and FLO, the semantic descriptors are generated from 10 textual
descriptions by character-based CNN-RNN [45]. In addition, we employ the Proposed
Split(PS) in [1] to split seen and unseen classes on each dataset. The statistics of the datasets
and GZSL split settings are illustrated in Table 2.

Table 2. Statistics of the AWA1&2, CUB, and FLO, SUN datasets.

Dataset AWA1 AWA2 CUB FLO SUN

#Seen Classes 40 40 150 82 645
#Unseen Classes 10 10 50 20 72
#Samples 30,475 37,322 11,788 8189 14,340
#Semantic Descriptors 1 85 85 1024 1024 102

#Training Samples 19,832 23,527 7057 5394 10,320
#Test Seen Samples 4958 5882 1764 1640 2580
#Test Unseen Samples 5685 7913 2967 1155 1440

1 #Semantic Descriptors indicate the dimensions of semantic descriptors per class.

4.2. Metrics

To assess the model performance in GZSL setting, we use the harmonic mean of
per-class Top-1 accuracy on seen classes and unseen classes, formulated as H = 2× S×
U/(S + U), where S and U represent seen accuracy and unseen accuracy, respectively. In
addition, we adopt U as the evaluation metric for ZSL.

4.3. Implementation Details

In our PS-GZSL, all networks are implemented with Multi-Layer Perceptrons(MLPs).
The architecture of the discriminator and generator of the feature generation architectures
consist of single-layer MLPs with a 4096-unit hidden layer activated by LeakyReLU. In
representation learning, each MoE module contains three experts and corresponds to a
gate network. The dimension of task-specific representation (hd & hs) and task-shared
representation (hsh) are set to 1024 in all of the five datasets. For the projection network P,
we set the size of the projection’s output z to 256 for AWA2, FLO, and SUN and 512 for
AWA1 and CUB. The relation network R contains two FC+ReLU layers, and we utilize
2048 hidden units for AWA1, AWA2, and CUB and 1024 units for FLO and SUN. The
difference among datasets has motivated us to perform numerous experiments aimed at
determining the optimal number of synthesized unseen visual instances in each dataset.
Once PS-GZSL is trained, we use a fixed 400 per unseen class for CUB, 2400 for AWA1&2,
600 for FLO, and 100 for SUN. The weighting coefficients in Equation (7) are set to σ1 = 0.001
and σ2 = 0.001, and the value of temperature in Equations (2) and (5) are set to τe = 0.1 and
τs = 0.1. We optimize the overall loss function (Equation (8)) with the Adam optimizer,
using β1 = 0.5, β2 = 0.999. The mini-batch size is set to 512 for AWA1, AWA2, CUB,
and SUN, and 3072 for FLO in our method. All experiments are implemented with PyTorch,
and trained on a single NVIDIA RTX 2080Ti GPU.

4.4. Comparison with State-of-the-Arts

Recently, some methods have introduced transductive zero-shot learning on target
datasets, where they use unlabeled unseen samples for training models, leading to sig-
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nificant performance increases. However, it is costly and even unrealistic in real-world
zero-shot scenarios. Thus, we only present results under the inductive setting.

Our PS-GZSL is compared with other GZSL methods on five widely used datasets
without fine-tuning the pre-trained backbone. Results of our method in GZSL are given in
Table 3, which indicates that PS-GZSL is compatible with the state-of-the-art. Specifically,
PS-GZSL attains the best harmonic mean H on four datasets, i.e., 70.6 on AWA1, 71.8
on AWA2, 67.4 on CUB, and 43.3 on SUN. Notably, on CUB, PS-GZSL is the first one
that attains a performance > 70.0 on unseen accuracy, which is even higher than the seen
accuracy. This is because PS-GZSL retains more information in the learned representations
to enhance GZSL classification during testing. As a result, representations for seen classes
contain some redundancy, which adversely affects their classification accuracy. On FLO,
PS-GZSL achieves the second-best harmonic mean H with 73.8, only lower than FREE [14].
However, PS-GZSL outperforms FREE by a considerable margin on the other four datasets.
These results show that PS-GZSL can acquire classification knowledge transferable to
unseen classes by utilizing the partially-shared mechanism and MoE, thereby learning
more transferable representations from the seen classes. Specifically, by explicitly preserving
these task-specific representations, the three MoE modules can effectively reduce the loss of
information caused by the conflict between discrimination and visual-semantic alignment,
thus enabling the preservation of more useful features for the testing phase.

Table 3. Comparisons with the State-Of-The-Art GZSL Methods. The best results and the second-best
results are respectively marked in red and blue.

Methods
AWA1 AWA2 CUB FLO SUN

U S H U S H U S H U S H U S H

DeViSE [22] 13.4 68.7 22.4 17.1 74.7 27.8 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9
TCN [46] 49.4 76.5 60.0 61.2 65.8 63.4 52.6 52.0 52.3 - - - 31.2 37.3 34.0
DVBE [47] - - - 63.6 70.8 67.0 53.2 60.2 56.5 - - - 45.0 37.2 40.7
f-CLSWGAN [21] 57.9 64.0 60.2 - - - 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4
CADA-VAE [9] 57.3 72.8 64.1 55.8 75.0 63.9 51.6 53.5 52.4 - - - 47.2 35.7 40.6
SP-AEN [8] - - - 23.3 90.9 37.1 34.7 70.6 46.6 - - - 24.9 38.6 30.3
LisGAN [28] 52.6 76.3 62.3 - - - 46.5 57.9 51.6 57.7 83.8 68.3 42.9 37.8 40.2
cycle-CLSWGAN [30] 56.9 64.0 60.2 - - - 45.7 61.0 52.3 59.2 72.5 65.1 49.4 33.6 40.0
DLFZRL [11] - - 61.2 - - 60.9 - - 51.9 - - - - - 42.5
cvcZSL [48] 62.7 77.0 69.1 56.4 81.4 66.7 47.4 47.6 47.5 - - - 36.3 42.8 39.3
f-VAEGAN-D2 [29] 57.9 61.4 59.6 - - - 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4
LsrGAN [31] 54.6 74.6 63.0 - - - 48.1 59.1 53.0 - - - 44.8 37.7 40.9
TF-VAEGAN [39] - - - 59.8 75.1 66.6 52.8 64.7 58.1 62.5 84.1 71.7 45.6 40.7 43.0
DR-GZSL [7] 60.7 72.9 66.2 56.9 80.2 66.6 51.1 58.2 54.4 - - - 36.6 47.6 41.4
SDGZSL [10] - - - 64.6 73.6 68.8 59.9 66.4 63.0 62.2 79.3 69.8 48.2 36.1 41.3
CE-GZSL [13] 65.3 73.4 69.1 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 48.8 38.6 43.1
FREE [14] 62.9 69.4 66.0 60.4 75.4 67.1 55.7 59.9 57.7 67.4 84.5 75.0 47.4 37.2 41.7

Our PS-GZSL 67.5 74.1 70.6 66.4 78.1 71.8 70.6 64.5 67.4 66.8 82.5 73.8 50.1 38.1 43.3

Furthermore, we also report the performances of our PS-GZSL in the conventional
ZSL scenario, as presented in Table 4. To provide a comprehensive comparison, we have
selected both previous conventional ZSL methods and recent GZSL methods under the
conventional zero-shot setting. PS-GZSL achieves the best performance on three datasets
and the second-best on FLO and SUN. This shows its superiority over existing GZSL
methods on unseen classes and its strong generalization ability. These results prove the
effectiveness of our PS-GZSL in both GZSL and conventional ZSL.
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Table 4. Results of conventional ZSL. The best and the second-best accuracy of unseen classes are
respectively marked in red and blue.

Methods AWA1 AWA2 CUB FLO SUN

DEVISE [22] 54.2 59.7 52.0 45.9 56.5
SJE [23] 65.6 61.9 53.9 53.4 53.7
ALE [24] 59.9 62.5 54.9 48.5 58.1
ESZSL [25] 58.2 58.6 53.9 51.0 54.5
DCN [26] 65.2 - 56.2 - 61.8
CADA-VAE [9] - 64.0 60.4 65.2 61.8
SP-AEN [8] 58.5 - 55.4 - 59.2
cycle-CLSWGAN [30] 66.3 - 58.4 70.1 60.0
DLFZRL [11] 71.3 70.3 61.8 - 61.3
TCN [46] 70.3 71.2 59.5 - 61.5
f-CLSWGAN [21] 68.2 - 57.3 67.2 60.8
f-VAEGAN-D2 [29] - 71.1 61.0 67.7 64.7
TF-VAEGAN [39] - 72.2 64.9 70.8 66.0
AGZSL [12] - 72.8 76.0 - 63.3
SDGZSL [10] - 72.1 75.5 73.3 62.4
CE-GZSL [13] 71.0 70.4 77.5 70.6 63.3

Ours PS-GZSL 71.5 72.9 78.1 71.3 64.7

4.5. Ablation Studies

Ablation studies were conducted to gain further insight into our PS-GZSL, evaluating
the effects of different model architectures and representation components.

4.5.1. t-SNE Visualization

To further validate the transferability of our PS-GZSL, we visualize the task-shared
representation hds and the multi-task joint representation hds ⊕ hd ⊕ hs from unseen visual
samples in Figure 7. We choose 10 unseen categories of test unseen set on AWA2 and
50 unseen categories of test unseen set on CUB. These data are sufficient in quantity and
explicitly show the model’s learned representation for the class comparison in unseen
classes. Clearly, as we expected, the multi-task joint representation is more discriminative
than the individual task-shared representation. However, we can still see discriminative
patterns from hds, which is consistent with the assumption of previous methods based on
learning the shared parts. This demonstrates that these task-shared representations may
help classify between these categories, but the discriminative knowledge transfer from
known to unknown categories is impaired due to the loss of task-specific information.

(a) (b) (c) (d)

Figure 7. The t-SNE visualization:. (a) hds of unseen classes on AWA2, (b) hds ⊕ hd ⊕ hs of unseen
classes on AWA2, (c) hds of unseen classes on CUB and (d) hds ⊕ hd ⊕ hs of unseen classes on CUB.

4.5.2. Effectiveness of Task-Shared & Task-Specific Representations

In order to validate our key motivation for the partially-shared mechanism of PS-GZSL:
In addition to task-shared discriminative and semantic-relevant representations, task-specific
only discriminative representations and only semantic-relevant representations are both useful
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in GZSL. We studied the performance of different combinations among hds, hd and hs.
The results are presented in Figure 8, where we observe that using hds alone achieves
comparable poor performance. However, when hds is concatenated with either hd or hs,
the performance is improved, which demonstrates that both the hd and hs are helpful in
GZSL. The best performance is achieved when we concatenate hds, hd, and hs together.
This reveals that task joint representation hds ⊕ hd ⊕ hs can capture complete correlation
information among categories and their semantic descriptors, resulting in more informative
and transferable representations for the test phase. Thus, both the task-shared and task-
specific representations between discrimination and visual-semantic alignment are crucial
to improve the classification performance in GZSL.

(a) (b)

(c) (d)

Figure 8. The effectiveness of various latent representations: (a) AWA1, (b) AWA2, (c) CUB and
(d) FLO.

4.5.3. Analysis of Model Components

To assess the contributions of each component in PS-GZSL, different stripped-down
architectures of we proposed methods were evaluated. The GZSL performance of each
version on the AWA2 and CUB is represented in Table 5.

We observe that PS-GZSL outperforms PS-GZSL w/o MoE which validates that the
MoE can improve the transferability of representation in GZSL. More importantly, we
observe that PS-GZSL w/o MoE&PS outperforms PS-GZSL w/o MoE. This reveals the fact
that simply splitting the visual encoder into three branches is not sufficient for learning the
ideal transferable representations. Because any arbitrary mutually exclusive information
decomposition can satisfy the regularizer, even if the hds encodes total information and hd,
hs are non-informative for both tasks. This further demonstrates the superiority of our MoE
module and expert dropout mechanism, which avoids the inexpressive issue among hds, hd,
and hs. The above results indicate that our partially-shared mechanism and MoE module
are mutually complementary in our method and prove that jointly preserving shared and
specific representations between discriminative features and semantic features can preserve
more complete and transferable information.
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Table 5. Ablation study for different stripped-down architectures of PS-GZSL on the AWA2 and CUB
dataset. PS is the partially-shared mechanism, Ldis is the adopted SupCon loss, Lcl f is a classification
loss of an auxiliary classifier for our discrimination task, and Lmse is the MSE version of our visual-
semantic alignment task. The best and the second-best accuracy of unseen classes are respectively
marked in red and blue.

Version
AWA2 CUB

U S H U S H

PS-GZSL w/o MoE&PS 65.7 74.8 69.9 71.5 61.3 66.0
PS-GZSL w/o PS 66.9 74.8 70.7 67.0 66.8 66.9
PS-GZSL w/o MoE 61.4 79.8 69.4 68.4 63.1 65.6
PS-GZSL w/o Lalign w/ Lmse 66.0 75.5 70.5 66.9 66.2 66.5
PS-GZSL w/o Ldis w/ Lcl f 65.7 77.8 71.2 67.5 66.8 67.2

PS-GZSL 66.4 78.1 71.8 70.1 64.5 67.4

4.6. Hyper-Parameter Analysis

In our PS-GZSL approach, the hyperparameters that exert the greatest influence are
the number of synthesized samples per class, the number of experts in each branch, and the
dimensions of hds, hd, and hs.
Visualization of Different Number of Synthesized Samples. The number of synthesized
samples per class was varied, as shown in Figure 9. The results show that the performance
on all four datasets increased with an increasing number of synthesized examples. This
demonstrated that the bias towards seen problems was relieved by the feature generation
in our PS-GZSL. However, generating too many samples will impair the accuracy of
seen classes (S) and eventually hamper the harmonic mean H. Therefore, selecting an
appropriate value to achieve the balance between S and U is important.

(a) (b)

(c) (d)

Figure 9. The influence of the number of synthesized visual instances in each unseen class. (a) AWA1,
(b) AWA2, (c) CUB, and (d) FLO.
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Visualization of Different Number of Experts. Since we use MoE modules for each
branch, the architecture of the expert network is very important for our method. As shown
in Figure 10, we study different numbers of experts for task-specific and task-shared, noted
as num_sp and num_sh, respectively. As the numbers of task-specific experts and task-
shared experts increase, the harmonic mean is boosted and then drops, which achieves
the peek performance when num_sp = 3 and num_sh = 3. Thus, for convenience, both
num_sp and num_sh are set to 3 in order to achieve a considerable performance in all of
the remaining datasets.

(a) (b)

Figure 10. The effect of the number of task-specific and task-shared experts (denoted as num_sp and
num_sh, respectively) : (a) AWA2 and (b) CUB.

Visualization of Different Representations Dimensions. Intuitively, the dimensions hds,
hd, and hs will have a significant impact on the optimization of these two sub-tasks. This
will ultimately affect the transferability and expressiveness of the concatenated final repre-
sentations. To explore the sensitivity of our PS-GZSL to the dimensionality in the latent
space. As shown in Figure 11, the harmonic mean accuracy of PS-GZSL for different latent
dimensions on AWA2 and CUB, i.e., 256, 512, 1024, and 2048 for both task-specific and
task-shared representations(denoted as spSize and shSize, respectively) are represented.
As spSize and shSize are both set to 1024, PS-GZSL consistently performs better than all
others on AWA2 and CUB. Therefore, both spSize and shSize are set to 1024 in all of the
remaining datasets.

(a) (b)

Figure 11. The effect of the dimension of task-specific representation and task-shared representation
(denoted as spSize and shSize, respectively). (a) AWA2 and (b) CUB.
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5. Conclusions

In this paper, we propose a new way of learning the composite method by accounting
for all the features based on multi-task representation learning. Specifically, the recent
representation learning method in GZSL discards some specific information between two
tasks (i.e., classification task and visual semantic alignment task). As explained in the
introduction, this specific information can be either discriminative or semantic-relevant,
depending on their contribution to the testing phase.

Further on, we believe that jointly preserving task-specific and task-shared features
leads to a more complete and more transferable representation in GZSL. To support this
claim, a novel representation learning method termed PS-GZSL is proposed. Unlike most
existing methods, PS-GZSL explicitly factorizes visual features into one task-shared and two
task-specific representations through the partially-shared mechanism between the discrimi-
nation and visual semantic alignment task. This flexibility enables PS-GZSL to preserve
more complete knowledge. Furthermore, PS-GZSL carefully designs the mixture of experts
and gate networks for learning informative representations for each branch. As evaluated
in extensive experiments, the good transferability of PS-GZSL has been demonstrated.

As a starting point, this study shows the potential ability of the partially-shared
mechanism in learning transferable representation in GZSL. There is still a large research
space in this direction. First, the relative loss weight ratio of each sub-task is set to 1,
but future work could investigate the use of adaptive weights to balance the two tasks
during optimization. Second, ideally, the encoding information of task-shared and task-
specific representations should be no redundancy. It is also important to devise a regularizer
to accomplish this. In the future, we will investigate these potential directions.
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Abstract: The PointPillars algorithm can detect vehicles, pedestrians, and cyclists on the road, and is
widely used in the field of environmental awareness in autonomous driving. However, its feature
encoding network only uses a minimalist PointNet network for feature extraction of point cloud
information, which does not consider the global context information of the point cloud, and the
local structure features are not sufficiently extracted, and these feature losses can seriously affect
the performance of the object detection network. To address this problem, this paper proposes an
improved PointPillars algorithm named TGPP: Transformer-based Global PointPillars. After the
point cloud is divided into several pillars, global context features and local structure features are
extracted through a multi-head attention mechanism, so that the point cloud after feature coding has
global context features and local structure features; the two-dimensional pseudo-image generated
by this feature is used for feature learning using a two-dimensional convolutional neural network.
Finally, the SSD detection head is used to achieve 3D object detection. It is demonstrated that the
TGPP achieves an average accuracy improvement of 2.64% in the KITTI test set.

Keywords: deep learning; 3D object detection; lidar point cloud; transformer

1. Introduction

The 3D object detection technology is an important part of the environment perception
module in the automatic driving system. Accurately identifying objects such as vehicles,
pedestrians, and cyclists on the road is the basis for vehicle planning and control. To
better accomplish this goal, self-driving cars need to rely on a variety of sensors, among
which lidar is one of the most important sensors. Lidar can measure the distance to
the surrounding environment through a scanner, and directly generate sparse 3D point
cloud information, which has inherent advantages in the task of 3D object detection.
Traditional methods usually down-sample the point cloud information first, then remove
the ground, and then use European, DBSCAN and other clustering methods combined with
3D bounding boxes to detect objects [1–5]. The traditional method requires cumbersome
parameter adjustment work during the deployment process, making it difficult to apply in
practice. With the rapid development of deep learning technology and parallel computing
units, the end-to-end 3D object detection method based on deep learning has become the
current key research content.

With the rapid development of computer vision and deep learning, 2D object detection
technology has made great progress, but there are essential differences between the two data
forms of the point cloud and image. In order, direct convolution of the point cloud will lead
to severe distortion of the features [6], so the excellent 2D object detection algorithm cannot
be directly applied to the 3D object detection task. In 2017, Qi et al. proposed PointNet [7]
and PointNet++ [8] deep convolutional neural networks, which take the original point cloud
as input and can be applied to point cloud point-by-point feature extraction, point cloud
recognition, and point cloud semantics segmentation, and other fields also provide feature
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extraction tools for 3D object detection tasks based on point cloud data. Subsequently, a
point-based 3D object detection method was proposed. PointRCNN [9] is a more classic
point-based method. The main idea is to extract point-by-point features from the PointNet
network and predict 3D proposals to achieve 3D object detection. This type of method takes
a lot of time to retrieve points, so the calculation is very large, and the detection efficiency
is very low. In response to this problem, Zhou Y and others proposed the VoxelNet [10]
algorithm, which is the earliest voxel-based method. This algorithm represents the point
cloud as voxels, and the follow-up work in voxels reduces the amount of calculation and is
based on the voxel method, which is more convenient for the extraction of target features,
but due to the slow inference speed of the 3D convolutional neural network, its detection
efficiency is still not ideal. As an upgraded version of VoxelNet, the SECOND [11] algorithm
replaces the ordinary 3D convolution with sparse 3D convolution to speed up the reasoning
time, but it still cannot eliminate the disadvantage of the slow calculation speed of 3D
convolution. To this end, the PointPillars [12] algorithm proposes a novel encoder, which
realizes end-to-end learning on 3D object detection tasks using only 2D convolutional
neural networks. Its unique pillars-based encoding method greatly speeds up the detection
speed. In addition, its simple algorithm framework can be easily deployed to a variety of
laser radars. At present, it is one of the most widely used methods in engineering practice,
and the research and improvement of the algorithm have practical application value and
engineering significance.

At present, the detection rate of the PointPillars algorithm still has a large advantage,
but its detection accuracy is inferior to the later excellent works. For example, Li Y et al.
proposed the UVTR [13], which explicitly expresses and interacts with image and point
cloud features in voxel space; Lai X et al. proposed the SphereFormer [14] method, which
solved the problem of discontinuous information and limited receptive field. Therefore, in
the past two years, some scholars have proposed some methods to improve PointPillars.
For example, in 2021, Xinwei He et al. [15] proposed an intra-pillar multi-scale feature
extraction module to enhance the overall learning ability of the PointPillars algorithm,
thereby improving detection accuracy. This work improved the local structural feature
extraction method of the point cloud, but still does not consider the global context fea-
ture information of the point cloud; in 2022, Dejiang Chen et al. [16] improved the 2D
convolutional down-sampling module of the PointPillars algorithm based on Swin Trans-
former [17], optimized the original 2D convolutional neural network, and improved the
Average Orientation Similarity (AOS) accuracy to a certain level. The improvement of this
work optimizes the 2D convolutional neural network to improve the learning ability of
point cloud features.

However, the above improvement scheme still does not make full use of point cloud
features: its feature encoding process is to divide all point clouds into uniform pillars,
where each pillar can be understood as a combination of voxels at the corresponding
position on the z-axis, and then pass a minimalist PointNet network, which performs local
feature extraction and uses Max Pooling to obtain points representing the features of each
pillar, and finally generates a sparse 2D pseudo-image through position mapping. In this
encoding process, the local feature extraction is insufficient and does not consider the global
features causing a loss to the features of the point cloud.

To solve the appealing problem, this paper proposes an improved PointPillars algo-
rithm named TGPP (Transformer-based Global PointPillars), based on Transformer [18],
to improve the feature encoding network: after the point cloud is divided into pillars, the
global position feature calculation and local structure feature calculation are performed
based on the improved Transformer module, and each the rich global context features
and local features of the pillars enable the local features of the point cloud and accurate
global position information to be preserved in the feature encoding process to improve the
accuracy of the algorithm object detection.
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2. TGPP Algorithm Network

TGPP is an improvement on PintPillars. The reasoning speed of the PointPillars
algorithm is very fast, exceeding the scanning frequency of the radar, so its real-time
detection is very good. The algorithm uses 3D point clouds as input, which can realize
end-to-end learning and can detect road vehicles, pedestrians, and cyclists. These three
common objects are identified.

The TGPP algorithm structure is shown in Figure 1 below. The algorithm can be
divided into three main parts: (1) Pillar Feature Net: divide the 3D point cloud into pillars,
and generate the 2D pseudo image. (2) Two-dimensional convolutional neural network:
use multiple down-sampling of 2D pseudo-images to obtain feature maps of different
resolutions, and then up-sample multiple feature maps after down-sampling to the same
size for splicing to generate the final feature map. (3) Object detection head: generate a 3D
detection frame and object classification for the feature map, and obtain the position and
type of the object. The main difference between this method and the original method lies
in the feature encoding network, and the structure of this algorithm will be introduced in
detail below.

 

Figure 1. TGPP algorithm network structure.

2.1. Overall Algorithm Process

This algorithm takes the original point cloud data information as input, and first
expresses the point cloud as a uniformly distributed pillar: the three-dimensional point
cloud information is directly obtained from the top view, all points are discretized into a
uniform square network on the x–y plane in the grid, and each pillar is cubic with infinite
extension in the z-axis direction of each grid.

Due to the sparsity of the point cloud, most of the pillars are empty, and there are
usually only a small number of points in the non-empty pillars. This sparsity is used to
create a size density tensor (D, P, N), where D represents the feature dimension of each
pillar, P represents the number of pillars, and N represents the maximum number of points
in each pillar. When the points in the pillars exceed N, random sampling selects N points;
when the points are less than N, it will be filled with 0 samples.

After obtaining a (D, P, N) tensor, the input is based on the improved Transformer
feature an encoding network for feature extraction. First, we use the MLP (Multi-Layer
Perceptron) operation for position encoding and dimension-up processing, changing from
(D, P, N) tensors to (C, P, N) tensors, and C represents the feature dimension after dimension
enhancement (256); then, based on the multi-head attention mechanism, we calculate
the global context features for each pillars and calculate the local structural features for
the points in each pillar, so that the point cloud information in each pillars has global
context features and local structural features, in particular, in order to fully extract the local
structural features of the point cloud, a combination of local and global position encoding
is used; then, the maximum pooling is used to extract the feature points that best represent
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the features of the pillars; finally, according to the pillars index, we remap the point cloud
to the corresponding position of the original grid, and generate a 2D pseudo-image of size
(C, H, W), where H and W represent the height and width of the image.

The generated 2D pseudo-image will be input into the 2D convolutional neural net-
work for feature learning, and finally, the detection head based on the design of SSD (Single
Shot Multibox Detector) [19] is used to realize the classification and regression of 3D object
detection and generate a 3D object detection frame.

2.2. Feature Encoding Network Based on Transformer

The Transformer model is a deep learning model based on the attention mechanism,
which has been widely used in natural language processing (NLP), image processing, and
other fields. Its core idea is to split the input sequence into a set of vector representa-
tions, and then use the attention mechanism to learn the dependencies between positions.
Through the multi-head attention mechanism, Transformer can perform more compre-
hensive and accurate feature extraction on point cloud data, and its application in 3D
object detection tasks based on point cloud data has gradually become a trend. PCT [20],
Point Transformer [21], SOE-Net [22], VoxSeT [23], FlatFormer [24] and other works have
achieved good results. Therefore, it is feasible to improve the feature encoding network
based on Transformer.

The feature encoding network structure of this algorithm is shown in Figure 2 below,
which is a network structure based on the encoder–decoder. The input of the feature
encoding network is the point cloud information represented by the pillar distribution, and
a vector sequence is generated through position encoding, and input to the multi-head
attention module for calculation; each element of the input sequence is compared with
other elements in the sequence Elements interact and give different weights according to
their relevance. This interaction is realized by calculating the attention weight matrix; then
it is input into the feedforward neural network module, and the output of the attention
layer is further nonlinearly transformed; additionally, in order to prevent degradation
problems during the training process, we add ResNet residual neural network [25] and
LN layer [26] (Figure 2: Add&Norm module); the difference between the decoder and
the encoder is that there is add a masked multi-head attention module, whose input is
the predicted output of the entire feature calculation process; and the final output layer
converts the output of the decoder into the final probability distribution through a linear
transformation and Softmax function for generating prediction results. Nx represents the
number of encoders and decoders, that is, the number of layers of the Transformer. Each
layer independently processes the input and passes its output to the next layer.

The core content of the feature encoding network is to use the multi-head attention
module to calculate the global context feature of the pillars and the local feature calculation
of the internal structure of the pillars:

(1) Global Feature Calculation:

The calculation formula of the global attention [18] is

Attention(Q, K, V) = Softmax(
QKT
√

dk
) (1)

In Formula (1), Q, K, and V are feature codes of point cloud columns. First, calculate
the dot product of the Q matrix and K matrix, and divide it by the scale

√
dk to prevent

overflow of the dot product result, where dk is the vector in the Q and K dimension. After
calculating the dot product, use the Softmax function to normalize the dot product to a
probability distribution, and finally multiply it by the matrix V to obtain the attention score
matrix between different pillars.
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The multi-head attention allows the model to simultaneously focus on information
from different pillars and different locations. The representation of the multi-head atten-
tion [18] is as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo

headi = Attention
(
QWi

Q, KWi
K, VWi

V) (2)

Among them, Wi
K ∈ Rdmodel×dk ,Wi

V ∈ Rdmodel×dv ,dv = dk,dmodel = dk × h; h is the
number of attention heads.

All non-empty pillars perform global context feature calculation through the multi-
head attention mechanism, which can add global attention to each pillar.

Figure 2. TGPP algorithm feature-encoded network structure.

(2) Local Feature Calculation:

In the process of calculating the global feature of the pillars, the local feature calculation
is added, and the local geometric relationship between the center point and the adjacent
point is used to effectively aggregate the local features by learning the attention weight.
The specific method is to use the subtraction relationship, and at the same time add the
local position information δ to the attention vector γ and the feature vector α to aggregate
features. The overall calculation expression [27] is

gi = ∑
μj∈x(i)

ρ(γ(ϕ(μi)− ϕ(μj) + δ))(α(μj) + δ) (3)
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Among them, μ = { fi|i = 1, 2, . . . , n} is a set of feature vectors composed of points
in the pillars, μ(i) ∈ μ; gi is the feature output after adding local attention; ϕ, φ, and α are
point-by-point feature transformation functions, similar to linear projection functions; and
γ is the attention-generating mapping function. The calculation formula of local position
information δ is

δ = ε(pi − pj) (4)

Among them, pi,pj is the coordinates of the 3D point cloud; and ε is composed of two
ReLU functions [28].

After the above processing, the point cloud features after feature encoding will have
global position features and local structure features, which reduce the feature loss caused
by feature encoding, and the subsequent generated 2D pseudo-images are more conducive
to subsequent feature learning to improve object detection accuracy.

2.3. 2D Convolutional Neural Network and SSD Detection Head

After the original point cloud information passes through the feature encoding net-
work, a 2D pseudo image is generated, and the 2D convolutional neural network can be
used very conveniently for feature learning. The structure of the 2D convolutional neural
network is shown in Figure 1. The backbone network consists of two sub-networks: a
top-down feature extraction network and an up-sampling and feature stitching network.
The top-down sub-network uses a gradually decreasing spatial resolution to acquire fea-
tures, and consists of a series of block structures, where each block structure contains three
parameters (S, L, F), each block contains L 3 × 3 2D convolutional layers, F output channels,
and the step size of the convolutional layer is S. The network that performs up-sampling
and feature splicing is responsible for up-sampling the features from the first sub-network
and applying the BN Layer [29] and the ReLU function to form the final output features.
The use of a 2D convolutional neural network avoids the disadvantages of slow inference
speed of algorithms such as VoxelNet using a 3D convolutional neural network, simplifies
the structure of the model, reduces the amount of calculation, has good detection accuracy,
and greatly improves detection speed.

The SSD detection head is used to predict the position, category, and orientation of 3D
objects. We use the 2D intersection-over-union ratio (IOU) to match the prior frame with the
real label frame, regardless of the height information, but use it as an additional regression
object, because in the real road object, all objects can be considered to be in the same plane
of the three-dimensional space, the height difference between all categories of objects is not
very large, and better results can be obtained by directly using the SmoothL1 function [30]
for regression. At the same time, the FPN (feature pyramid network) [31] operation is also
introduced in the detection head to handle objects of different sizes. By extracting features
at different scales, objects of different sizes can be located more accurately.

3. Algorithm Implementation Details

3.1. Details of Feature Encoding Network Structure Parameters

The cross-section of each pillar is a square with a side length of 0.16 m. In the actual
feature encoding process, only the front view part is intercepted to generate a pseudo-
image, because the real label information of the KITTI dataset is only in the front view
captured by the camera. It is marked in the image, so the points of the original point cloud
information in the negative direction of the x-axis should be discarded, and the points that
are too far away should be removed. Refer to the original algorithm to take the maximum
and minimum values of (x, y, z) in the point cloud space. It is min: (0, −39.68, −3), max:
(69.12, 39.68, 1), in meters; the maximum value P of the number of pillars is 12,000, and the
maximum value of point sampling in each pillar is N, which is set to 32. The number of
Transformer layers is 4, the number of heads is 2, and a 2-layer learnable MLP is used for
position encoding.
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3.2. Loss Calculation

This article uses the same loss calculation method as the original algorithm. Each
real label box contains (x, y, z, w, l, h, θ) 7 parameters, where (x, y, z) represents the three-
dimensional coordinates of the object center; (z, w, l) represents the label of the length,
width, and height of the frame, and θ represents the rotation angle. The regression residual
of the positioning task between the prior box and the ground truth box is defined as

Δx = xgt−xa

da , Δy = ygt−ya

da , Δz = zgt−za

da

Δw = log wgt

wa , Δl = log lgt

la , Δh = log hgt

ha ,
Δθ = sin(θgt − θa)

(5)

Among them, xgt represents the x value of the label box; xa represents the x value
of the prior frame; y, z, w, l, h, θ are the same; and da represents the diagonal distance

between the length and width of the prior frame, defined as da =
√
(wa)2 + (la)2. The total

localization loss is
Lloc = ∑

b∈(x,y,z,w,l,h,θ)
SmoothL1(Δb) (6)

Since it is not possible to completely distinguish between two a priori boxes with
completely opposite directions during angle regression, it is necessary to add direction
classification to the a priori box. The direction classification loss function uses the Softmax
function, denoted as Ldir [11]. The object classification loss function uses Focal Loss [32]:

Lcls = −λa(1− pa)r log pa (7)

Among them, pa represents the probability that the predicted prior box belongs to the
positive class, λ = 0.25, r = 2. Finally, the total loss function is obtained as

L =
1

Npos
(βlocLloc + βclsLcls + βdirLdir) (8)

Among them, Npos is the number of correct prior frames. The values of βloc, βcls and
βdir we refer to SECOND algorithm, so βloc = 2, βcls = 1, βdir = 0.2.

4. Testing Results

4.1. KITTI Dataset Division

The training and testing of the model use KITTI’s 3D object detection dataset [33],
which consists of lidar point clouds and image samples. It is only trained on the lidar point
cloud, but the lidar point cloud and image fusion are used. The method to realize the
comparison between the prior frame and the true value. The sample data have 7481 training
samples. For the convenience of comparison, the same data set division method as the
PointPillars algorithm is used: the training samples are divided into 3712 training samples
and 3769 testing samples.

4.2. Experiment Analysis
4.2.1. Model Training

The computer environment used for the training and testing of this algorithm is
Ubuntu 20.04 system, the processor is Intel® Core™ i9-9900 CPU @ 3.10 GHz × 16, the
graphics card is Nvidia A40, and the video memory is 48G. TGPP is improved based on
the PointPillars algorithm model in the OpenPCDet framework and written in Python3.8.

OpenPCDet is an open-source point cloud object detection algorithm library based
on Pytorch. The PointPillars algorithm in this framework adopts more advanced data
enhancement methods, optimizers, learning strategies, and other methods to optimize the
model. The trained model has better detection accuracy.
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The optimizer selected during training is Adam_onecycle, and the maximum learning
rate LR is 0.002. This algorithm and PointPillars are trained under the same conditions.
During the training process, the loss change curve before and after the model improvement
is shown in Figure 3. It can be seen from the figure that the TGPP has a stronger feature
learning ability.

Figure 3. Loss change curve.

4.2.2. Model Training

The test is performed on the trained model based on KITTI’s 3D object detection
testing set. The test scenarios are divided into three types: simple, medium, and difficult.
The test mainly uses the average precision (AP) of 3D object detection as the evaluation
index. During the test, the detection of vehicles adopts the standard of IoU = 0.7, and the
detection of pedestrians and cyclists adopts the standard of IoU = 0.5.

(1) Compared with PointPillars:

The test results of this algorithm and the PointPillars algorithm are shown in Table 1.
It can be seen from Table 1 that compared with PointPillars, this method has improved the
3D object detection performance of vehicles, pedestrians, and cyclists. The vehicle detection
AP in the three difficulty scenarios increased by 2.68%, 1.84%, and 2.62%, respectively; the
pedestrian detection AP increased by 4.84%, 3.97%, and 3.42%, respectively; the cyclist
detection AP increased by 1.41%, 2.12%, and 2.24%, respectively. To better evaluate the
overall detection performance, the mAP of vehicles, pedestrians, and cyclists detected
under medium difficulty are calculated. The TGPP mAP is 63.56%, and the PointPillars
mAP is 60.92%. TGPP has improved by 2.64% mAP in the testing set, which is equivalent
to a performance improvement of about 4.3% for PointPillars.

Table 1. Comparison of average precision of 3D object detection (%).

Method
Runtime

(ms)

Car (IoU = 0.7) Pedestrian (IoU = 0.5) Cyclist (IoU = 0.5) mAP
Mod.Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars 16 85.06 76.05 72.03 52.08 45.88 41.67 78.64 60.83 57.43 60.92

TGPP 21 87.74 77.89 74.65 56.92 49.85 45.09 80.05 62.95 59.67 63.56

In terms of detection speed, the average time for PointPillars to process a frame of point
cloud data is only 16 ms. Compared with PointPillars, the detection speed has decreased,
and the average time is 21 ms, which is 47 Hz when converted into Hz. Considering the
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vehicle-mounted laser, the scanning frequency of the lidar is usually 10–20 Hz, so this
method can still meet the real-time detection requirements.

(2) Comparison with Other 3D Object Detection Methods:

Comparing this method with the more excellent methods in recent years, as shown
in Table 2, the 3D detection performance of other methods is derived from their own
papers, some of which did not give the detection speed, taken from KITTI’s 3D object
detection method performance leaderboard. It can be seen from the table that this method
is compared with commonly used methods based on the fusion of image and point cloud
data such as MV3D [34], RoarNet [35], AVoD-FPN [36], and F-PointNet [37]. There are no
small advantages in the speed or detection of AP. Among lidar-based methods, this method
also has certain advantages compared with voxel-based methods. For example, compared
with VoxelNet, SECOND, TANe [38], and PSA-Det3D [39] the mAP is 14.51%, 7.17%, 2.93%,
and 2.43% higher; the detection accuracy of the point-based method is usually higher, but
this method also has advantages compared with it, such as PointRCNN and STD [40],
where the mAP is 4.51% and 2.85% higher, respectively. At the same time, this method is
superior to all the methods mentioned above in terms of detection speed.

Table 2. Comparison of 3D object detection accuracy with other methods (%).

Method
Runtime

(ms)

Car (IoU = 0.7) Pedestrian (IoU = 0.5) Cyclist (IoU = 0.5) mAP
Mod.Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Lidar& Img.
MV3D 360 71.29 62.68 56.56 - - - - - - -

RoarNet 100 83.71 73.04 59.16 - - - - - - -
AVOD-FPN 100 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61 55.62
F-PointNet 169 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39 57.35

Only Lidar
Voxel-base

VoxelNet 220 77.47 65.11 57.73 39.48 33.69 31.50 61.22 48.36 44.37 49.05
SECOND 50 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90 56.39

TANet 35 83.81 75.38 67.66 54.92 46.67 42.42 73.84 59.86 53.46 60.63
PSA-Det3D 80 87.46 78.80 74.47 49.72 42.81 39.58 75.82 61.79 55.12 61.13

Point-base
PointRCNN 100 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59 59.05

STD 80 86.61 77.63 76.06 53.08 44.24 41.97 78.89 62.53 55.77 60.71

TGPP 21 87.74 77.89 74.65 56.92 49.85 45.09 80.05 62.95 59.67 63.56

In summary, this method maintains the advantages of the PointPillars algorithm
in detection speed and is also superior to the current mainstream methods in detection
accuracy. Therefore, it is proved that the feature encoding network improvement scheme
proposed in this paper is feasible and practical.

4.3. Comparison of Actual Road Environment Test Results

We use this method and the original method to test the effect of target detection in
the same road environment, as shown in Figure 4. In Figure 4 (scenario a), it can be seen
that the false detection rate of the original method is higher, and many non-object point
clouds are recognized as vehicles and cyclists; in Figure 4 (scenario b), it can be seen that
the original method has a higher impact on pedestrians. The false detection rate is high,
and the point cloud of non-pedestrians is recognized as pedestrians. From this, it can be
seen that the detection accuracy of this method is better than that of the original method in
the actual road environment test.
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(scenario a) 

  
(TGPP) (PointPillars) 

 
(scenario b) 

  
(TGPP) (PointPillars) 

Figure 4. Object detection results in the actual road environment. Car: green bounding boxes;
pedestrian: blue bounding boxes; cyclist: purple bounding boxes. The red box displays the difference
in detection performance between TGPP and PointPillars. By comparing the object in the red box, it
can be found that TGPP has better detection performance.

5. Ablation Experiments

In order to verify the effectiveness of the improved Transformer-based feature encod-
ing network, an ablation experiment is performed. The hyperparameters of the feature
encoding network include the number of Transformer layers and the number of heads.
Change these two parameters to observe the impact on detection performance. In order to
avoid the influence of random number seeds, each set of parameters was trained five times.
For the convenience of the experiment, Epoch was set to 120, and the average mAP under
medium difficulty was used as the evaluation index. The results are shown in Table 3. It
can be seen from the table that when the number of layers and heads is small, the detection
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performance is not as good as PointPillars. Increasing the number of layers and heads
within a certain range can improve the detection performance. When the number of layers
is 4 and the number of heads is 2, the effect is the best. Continuing to increase the number
of layers and the number of heads will degrade the detection performance.

Table 3. Results of ablation experiments.

Group
Transformer

Layer
Transformer

Head
Epoch

Training
Time

mAP
Mod.

1 (PointPillars) -- -- 120 5 60.42

2 (TGPP) 1 1 120 5 59.76

3 (TGPP) 2 1 120 5 59.95

4 (TGPP) 2 2 120 5 61.34

5 (TGPP) 4 1 120 5 62.26

6 (TGPP) 4 2 120 5 63.32

7 (TGPP) 6 1 120 5 62.81

8 (TGPP) 6 2 120 5 62.94

6. Conclusions

In this paper, for the 3D object detection algorithm, an improved PointPillars feature
encoding network based on Transformer is proposed. This improved PointPillars algorithm
is named TGPP. The improved feature encoding network uses a multi-head attention
mechanism to extract global context features and local structure features from pillars.
The feature extraction ability of the original algorithm in the feature encoding process is
improved, and the feature loss is reduced. Experimental results prove that this algorithm
has better object detection performance than PointPillars, and the average object detection
accuracy on the KITTI testing set has increased by 2.64%, which is also competitive with
other methods in recent years.
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Abstract: Extracting railway tracks is crucial for creating electronic railway maps. Traditional meth-
ods require significant manual labor and resources while existing neural networks have limitations
in efficiency and precision. To address these challenges, a railway track extraction method using an
improved DeepLabV3+ model is proposed, which incorporates several key enhancements. Firstly, the
encoder part of the method utilizes the lightweight network MobileNetV3 as the backbone extraction
network for DeepLabV3+. Secondly, the decoder part adopts the lightweight, universal upsampling
operator CARAFE for upsampling. Lastly, to address any potential extraction errors, morphological
algorithms are applied to optimize the extraction results. A dedicated railway track segmentation
dataset is also created to train and evaluate the proposed method. The experimental results demon-
strate that the model achieves impressive performance on the railway track segmentation dataset
and DeepGlobe dataset. The MIoU scores are 88.93% and 84.72%, with Recall values of 89.02% and
86.96%. Moreover, the overall accuracy stands at 97.69% and 94.84%. The algorithm’s operation time
is about 5% lower than the original network. Furthermore, the morphological algorithm effectively
eliminates errors like holes and spots. These findings indicate the model’s accuracy, efficiency, and
enhancement brought by the morphological algorithm in error elimination.

Keywords: deep learning; MobileNetV3; morphological algorithm; railway extraction; aerial imagery

1. Introduction

Railway transportation plays a vital role in China’s economic development and is a
fundamental component of its transportation system. Extracting railway tracks is essential
for creating railway electronic maps, ensuring smooth railway operations, and safeguarding
people’s lives and property. Traditionally, drawing railway track maps involved processing
satellite positioning data, which required extensive expertise and involved a substantial
workload [1–3]. However, with the availability of remote sensing and UAV aerial images [4],
deep learning methods can now be applied to extract railway tracks and generate railway
electronic maps, offering convenience and efficiency.

The process of extracting railway tracks and roads shares several similarities. Tradi-
tional methods for obtaining railway or road information involve setting specific conditions
based on texture, spectral, and geometric features. These conditions are then used to extract
deeper features and acquire the desired information. For road extraction, Xiao Chi et al. [5]
proposed using road color features to obtain initial road segments, which were refined
using a region merging algorithm to achieve complete road information. Shi W. et al. [6]
introduced a general adaptive neighborhood approach to perform spectrum-space clas-
sification, distinguishing road and non-road regions. Xiaoyu Liu et al. [7] utilized grid
approximation and adaptive filtering parameter calculation, combined with the spatial
distribution characteristics of roads, to extract roads through clustering fitting and other
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techniques. Lingran Kong et al. [8] constructed feature points based on the spectral charac-
teristics of road areas, connecting them to form an initial road network. Various constraints
were added, and the road centerline was extracted by maximizing the Posterior probability
criterion. These studies demonstrate different approaches to extracting road information
using color features, spatial analysis, adaptive methods, and probabilistic criteria. Simi-
larly, railway track extraction methods employ comparable principles to analyze relevant
features and obtain accurate railway track information.

Traditional extraction methods for railway tracks often rely on researchers possessing
significant prior knowledge. However, these methods face challenges in distinguishing
features that share similar characteristics. For instance, rivers and railways may exhibit
similar geometric features, and buildings and railways may have comparable spectral
features. Consequently, traditional extraction methods are prone to inaccuracies and lack
robustness when confronted with such complexities. As a result, these methods are not
well-suited for the intricate environments found in modern cities.

In recent years, deep learning has experienced rapid advancements and found
widespread applications in various fields, including facial expression recognition [9], lane de-
tection [10], railway foreign body detection, track defect detection, catenary detection, and road
extraction [11]. Convolutional Neural Networks (CNNs), as a classical deep learning architec-
ture, have significantly contributed to road segmentation research. Zuoming She et al. [12]
proposed a CNN model for road extraction, optimizing extracted data to obtain comprehen-
sive road features. Jiguang Dai et al. [13] introduced a method based on multi-scale CNNs for
road extraction in remote sensing images. They employed a sub-image training model and
incorporated residual connections to address resolution reduction and gradient disappearance
issues during extraction. Zhang X. et al. [14] developed an FCN network utilizing a spatially
consistent integration algorithm to determine loss function weights for extracting road regions.
Xiangwen Kong et al. [15] introduced an SM-Unet semantic segmentation network with a
stripe pooling module to enhance road extraction performance. Hao Qi et al. [16] proposed
the MBv2-DPPM model, considering segmentation accuracy and speed. However, this model
still exhibits some errors, such as convex points and spots. Overall, the rapid development
of deep learning technology has significantly improved road segmentation and extraction
tasks, but some challenges persist, such as handling complex road structures and enhancing
accuracy in challenging scenarios.

Compared to traditional extraction methods, deep learning-based extraction methods offer
several advantages. They require less prior knowledge and workload for researchers, and the
overall process is relatively straightforward. This makes deep learning methods more suitable
for handling the complexities of modern urban environments. While the accuracy of deep
learning-based extraction methods has been improved through extensive research by scholars,
there are still certain challenges. Deep networks often have many layers and parameters,
leading to inefficient network performance. Additionally, the pixel-level nature of deep learning
extraction may result in spots, holes, or breakpoints in the final extraction results.

The errors in extracting tracks caused by holes and breakpoints using deep learn-
ing methods are attributed to multiple factors. Firstly, it could be due to data-related
issues. Both unmanned aerial imagery and remote sensing images inevitably suffer from
occlusions, such as trees and buildings, in the scene. Moreover, during extraction, the
pixels representing tracks often constitute a small proportion of the entire image, leading
to a class imbalance where non-track pixels dominate. This imbalance might cause the
model to be biased towards predicting non-track categories, thus affecting the accuracy
of track extraction. Secondly, limitations in the principles of the methods used could be
a contributing factor. Most deep-learning techniques aim to identify underlying patterns
between images and labels. However, in the case of pixel-level semantic segmentation,
variations in lighting conditions around the tracks can result in misclassification. Lastly,
issues with the annotated data could play a role. Errors in the labeled data may cause
the deep learning model to learn incorrect features, leading to recognition inaccuracies.
Therefore, the simplest way to address recognition errors is through post-processing. After
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obtaining initial results, applying post-processing techniques like removing isolated pixels
and eliminating noise can help refine the track extraction outcome.

The paper presents several contributions to address the challenges in deep learning-
based extraction methods:

• Segmentation Dataset: A railway track segmentation dataset is established, consisting
of 7892 original images and their corresponding label images. These images are
collected from aerial shots of railway UAVs in various stations in China, capturing
different environmental conditions and railway track information.

• Improved DeepLabV3+ Model: The paper proposes an enhanced DeepLabV3+ net-
work model. It replaces the original backbone network with a lightweight Mo-
bileNetV3 network module, which helps mitigate the efficiency issues caused by
the deep network hierarchy and large parameter quantity. The bilinear upsampling
module is also replaced with CARAFE, improving both extraction process accuracy.

• Morphological Algorithm Optimization: The paper introduces an optimization method
using morphological algorithms. After obtaining initial extraction results from the im-
proved model, morphological operations, such as erosion and expansion, are applied
to eliminate potential errors like spots and holes. This optimization process enhances
the accuracy of railway track extraction.

The remaining sections of the manuscript are organized as follows: The methodology
flow and network structure employed in this study are presented in Section 2. The experi-
mental data, experimental environment, and evaluation metrics are introduced in Section 3.
The experimental process is outlined, and the obtained results are presented in Section 4.
A comprehensive discussion of the results obtained in this study is provided in Section 5.
Finally, the overall conclusions are presented in Section 6.

2. Materials and Methods

This section presents an exposition of the methodology flow and network architec-
ture employed in this study, providing a comprehensive account of the key components
involved. The subsequent elucidation aims to facilitate a deeper understanding of the
underlying processes and techniques utilized in this research endeavor.

2.1. Algorithm Flow

This study is divided into five main stages: data acquisition, data preprocessing,
trajectory extraction, morphological optimization, and calculation evaluation index. In the
data acquisition stage, aerial images captured by orbital UAVs in various domestic stations
are selected. These images encompass different weather conditions and terrains, providing
a diverse dataset for analysis. During the data preprocessing stage, corresponding labels
are created for the original images. The dataset is then divided into training, test, and
validation sets using a specific proportion. The training set is further augmented to increase
its size and enhance the model’s learning capability. In the Railway track segmentation
and extraction stage, the prepared dataset is fed into the improved network proposed
in this paper for training. The network is trained to optimize its weights, which are
utilized to extract binary images of the railway tracks from the original images. The
morphological optimization stage involves applying morphological binary operations to
refine the extracted railway track images obtained in the previous stage. This process helps
eliminate defects such as holes and spots in the extraction results, improving the overall
quality of the extracted tracks. Finally, in calculating the evaluation index stage, common
semantic segmentation evaluation metrics are employed to assess the quality of the results.
Metrics such as MIoU, recall, and accuracy are calculated to evaluate the performance of the
railway track extraction and segmentation method. Overall, the study follows a systematic
approach, starting from data acquisition and preprocessing, progressing to railway track
segmentation and extraction using the improved network, morphological optimization,
and finally, evaluating the results using standard evaluation metrics. The method flow of
this article is shown in Figure 1.
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Figure 1. Flowchart of the algorithm proposed in this article.

2.2. Improved DeepLabv3+ Network Structure

The network architecture used in this paper is an encoder-decoder structure. This
structure mainly consists of an encoder and a decoder. The encoder is the most important
component in the entire model, responsible for the feature extraction and compression
process. Through multiple layers of convolution and pooling operations, the encoder
can capture various low-level and high-level features in the input data. These features
provide meaningful information for subsequent tasks and help the model learn the crucial
characteristics of the input data. The design and performance of the encoder directly impact
the overall effectiveness of the model. A well-designed encoder can assist the model in
better understanding and processing the data, thereby improving the model’s performance
and generalization ability.

On the other hand, the decoder is responsible for feature restoration. By utilizing
operations such as upsampling and deconvolution, the decoder can reverse the encoder
process and restore the original data’s dimensions and resolution. The close collaboration
between the encoder and decoder drives the model to perform excellently in various tasks.

In the original DeepLabv3+ model, the encoder structure utilizes DeepLabv3 [17],
while the decoder replaces the direct 16x bilinear upsampling used in DeepLabv3 with a
specialized upsampling module. The decoder is responsible for processing, fusing, and
upsampling the input features from the encoder, ultimately generating the extraction
result [18]. While this approach addresses the drawback of missing details in direct 16x
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bilinear upsampling, the upsampling module in the decoder also introduces additional
computational complexity, resulting in decreased efficiency during the extraction process.
Despite these modifications, the enhancement in extraction accuracy is not substantial.

To address these challenges, this paper introduces an improved DeepLabv3+ model.
The encoder incorporates the lightweight MobileNetV3 [19] network, proposed by Google,
as the backbone network for initial feature extraction. Subsequently, the ASPP (Atrous
Spatial Pyramid Pooling) module is employed to consider context information and fuse
features from different receptive fields. In the decoder, both lower-level and higher-level
semantic features generated by the encoder are utilized. The lower-level semantic features
undergo a 1 × 1 convolution to increase their dimension, while the higher-level semantic
features are upsampled using a 4× CARAFE (Content-Aware ReAssembly of FEatures)
module. The features are fused, followed by two consecutive 3 × 3 convolutions. A final
4-fold CARAFE upsampling is performed to obtain the initial extraction results. However,
the initial extraction results may still contain imperfections such as spots, voids, bumps,
or pits. To improve the completeness of the extraction results, the morphological process-
ing technique is applied to optimize the initial extraction results. This processing helps
eliminate these imperfections and enhance the overall quality of the extraction. Figure 2
illustrates the proposed structure of the improved DeepLabv3+ network, showcasing the
flow and components of the model.

 

Figure 2. Improved DeepLabv3+ network structure diagram.

The process of railway track extraction in this paper consists of three stages: the
training stage, the extraction stage, and the optimization stage. In the training phase,
pre-trained weights are utilized to expedite the convergence of the model. The loss function
is then applied to calculate the error between the predicted output and the ground truth
labels. This loss value serves as a feedback signal used to adjust the weight values of
each layer in the network through back-propagation facilitated by the optimizer. Multiple
iterations of training are performed until the loss value reaches its minimum and stops
decreasing. At this point, the predicted values closely resemble the real values, and the
model weights are considered optimal. The model training results thus achieve the best
performance. Moving on to the extraction stage, the input image is processed sequentially
with each layer’s features based on the trained weights. The various semantic features
extracted from each layer are then fused and upsampled in the decoder section of the
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model. This process ultimately yields the preliminary extraction results, which represent
the initial segmentation of the railway track. In the optimization stage, the preliminary
extraction results undergo morphological operations such as erosion, dilation, opening,
and closing. These operations are employed to rectify possible errors and enhance the
completeness of the results. By applying these morphological operations, more accurate
and comprehensive extraction results are obtained.

2.3. Mobilenetv3 Network

MobileNetV3 is the latest lightweight network proposed by Google. It offers several
advantages, including fewer parameters, lower computation requirements, and reduced
time consumption. In MobileNetV3, the convolution kernel of the first layer has been
modified from 32 to 16, further reducing time consumption without compromising accu-
racy. In MobileNetV2 [20], the Swish function replaced the ReLU function, resulting in
a significant improvement in accuracy. However, the computation and derivation of the
Swish activation function and other non-linear functions were more complex, leading to an
increased time burden. To address these limitations, MobileNetV3 introduces the h − swish
function as the activation function. The h − swish function is similar to ReLU6 but offers
easier calculations. The expression for the h − swish activation function is as follows:

h− swish(x) = x
ReLU6(x + 3)

6
(1)

The performance of a nonlinear activation function can vary based on the depth of the
network layer. Generally, the h − swish function performs better as the number of network
layers increases. Therefore, in the MobileNetV3 structure, the h − swish activation function is
used exclusively in the first and subsequent layers of the network. This approach leverages
the strengths of the h − swish function, such as its computational efficiency and ability to
maintain high accuracy. However, as the depth of the network increases, other factors, such as
the complexity of the task and the characteristics of the data, may come into play. To optimize
the network’s overall performance, it is common to employ different activation functions in
different layers based on specific requirements and performance characteristics. By selectively
applying the h − swish activation function to the initial layers of MobileNetV3, the trade-off
between accuracy and computational efficiency is effectively managed.

In MobileNetV3, the core of the network is the Block structure, which incorporates
the channel attention mechanism [21] and updates the activation function. This module
enables explicit modeling of interdependencies between channels and adaptive recalibra-
tion of channel-level characteristic responses. When the Block structure in MobileNetV3 is
activated, the input feature matrix undergoes processing through 1 × 1 convolution and
3 × 3 convolution. It is then passed to the attention module for further processing. The
channel attention module pools each channel of the input feature matrix, transforming it
into a vector using two fully connected layers. In the first fully connected layer, the number
of channels is reduced to 1/4 of the input feature, while the number of channels remains
unchanged in the second fully connected layer. The output vector from the attention mod-
ule represents the weight relationships among different channel features in the preceding
input feature matrix. This weight signifies the importance of each channel feature, with
higher weights assigned to more significant features. The Block structure of MobileNetV3
is illustrated in Figure 3.

Utilizing the channel attention module to calculate feature channel weights can intro-
duce additional time consumption to the overall model. The conventional channel attention
module employs the sigmoid activation function with an exponent, which demands sig-
nificant computational resources. Moreover, during backpropagation, there is a risk of
vanishing gradients. To address these concerns, MobileNetV3 employs the h-sigmoid
function as the activation function in the attention module. This choice helps to mitigate
the additional computational burden. Using the h-sigmoid function, MobileNetV3 reduces
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the computational overhead while effectively modeling the channel weights within the
attention module. The expression of the h-sigmoid activation function is as follows:

f (x) =

⎧⎨⎩
1, (x > 3)

x
6 + 0.5, (3 ≥ x ≥ −3)

0, (x < −3)
(2)

Figure 3. The block structure of MobileNetV3.

In summary, in MobileNetV3, reducing the convolutional size decreased the number
of parameters, updating the non-linear activation function improved model computational
efficiency, and utilizing network architecture search (NAS) and NetAdapt further enhanced
computational efficiency by finding optimal network structures. The experiments conducted
by Howard et al. [19] demonstrated that MobileNetV3-Large and MobileNetV3-Small versions
achieved varying degrees of improvement in tasks such as ImageNet classification, COCO
detection, and semantic segmentation compared to other networks. These improvements
mainly manifested as increased accuracy and reduced processing time.

2.4. Morphological Algorithm

The morphology algorithm is an image-processing technique that relies on lattice
theory and topology. It consists of four fundamental operations: erosion, dilation, opening,
and closing. Opening and closing operations are composite operations that combine erosion
and dilation [22].

At the core of the morphology algorithm is a convolution kernel-like structure, which
can be designed in a square or circular shape around a reference point, depending on the
requirements. During the execution of the algorithm, this “kernel” moves systematically
across the input binary image. By analyzing the pixel values, the algorithm determines the
relationships between different parts of the image, allowing for an understanding of its
structural characteristics. Subsequently, appropriate processing of the binary image can be
performed based on this analysis.

The morphological erosion operation in the morphology algorithm involves finding
the minimum value among the pixels in a specific area of a binary image. In the case
of a binary input image consisting of values [0, 1], the morphology algorithm’s “kernel”
traverses the image. If only pixel 0 or pixel 1 is present within the range of the kernel, no
changes are made to that region. However, if both pixel 0 and pixel 1 are present within
the kernel’s range, the corresponding region in the binary image, centered around the
reference point of the kernel, is assigned a value of 0. The operation’s effect is demonstrated
in Figure 4a.

157



Electronics 2023, 12, 3500

 

Figure 4. Schematic diagram of morphological algorithm effect.

On the other hand, the morphological dilation algorithm performs a local maximum
operation. It operates similarly to the erosion algorithm mentioned above, where regions
with either pixel value 0 or pixel value 1 undergo no processing. However, if both pixel
values 0 and 1 are present simultaneously, the binary image region centered around the
reference point defined in the “kernel” is copied as pixel 1. The operation’s effect is depicted
in Figure 4b.

The open and close operations in the morphology algorithm are composite operations
that combine erosion and dilation. The open operation involves applying erosion followed by
dilation. This operation effectively eliminates small spots and convex areas within a specified
region, as depicted in Figure 4c. On the other hand, the close operation applies dilation first
and then erosion. It is useful for filling holes and depressions in the image, as illustrated in
Figure 4d. In the context of the paper, the model first performs the open operation to eliminate
spots and convex areas. This step helps remove small artifacts and irregularities. Then, the
close operation is applied to connect fragmented structures and fill in any remaining holes or
gaps, thereby achieving a more complete and refined image representation.

2.5. Lightweight up Sampling Structure CARAFE

Upsampling allows for the enlargement of extracted features, making it an essential
process in feature extraction. However, many upsampling algorithms suffer from small
receptive fields, high computational complexity, and a lack of consideration for the contex-
tual information within the feature maps. To address these limitations, Wang J. et al. [23]
proposed a lightweight upsampling operator called CARAFE. This operator automatically
generates different upsampling kernels to handle pixel information within the input fea-
ture map. CARAFE consists of the upsampling kernel prediction module and the feature
recombination module. The upsampling kernel prediction module predicts the appropriate
upsampling kernels based on the input feature map, considering its content information.
The feature recombination module then utilizes the predicted kernels to recombine the
feature maps, effectively capturing and preserving more detailed information during up-
sampling. By incorporating the CARAFE upsampling operator, the network can better
adapt to the pixel information and content characteristics of the feature map, leading to
improved performance in tasks such as semantic segmentation.

Taking the upsampling process of the advanced semantic features of the model in this
article as an example. When the railway track segmentation data set is used for extraction,
the input original image is 512 × 512 × 3. That is, the size is 512 × 512, and the number of
channels is 3. The image is processed by the backbone network and ASPP module, and the
output advanced feature map is 32 × 32 × 256. In the upsampling kernel prediction module,
the advanced feature graph output by the decoder is first compressed by 1 × 1 convolution
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channel to obtain a feature graph with a size of 32 × 32 × 64. Then, according to the multiple
of 4 times the upsampling, the compressed feature graph is re-encoded by 3× 3 convolution to
obtain a feature graph with several channels of 42 × 52. Then dimension expansion is carried
out to obtain 4× 32× 4× 32× 52 upsampled kernel. In the feature recombination module, a
point with a size of 5 × 5 is selected from the input feature map and the corresponding region
of the point in the upper sampling kernel at the prediction point is dot product operation, and
finally a feature map with a size of 128 × 128 × 256 is obtained. The working principle of the
up-sampling module in this paper is shown in Figure 5.

 
Figure 5. Working principle of upsampling module.

Currently, there are various upsampling methods used in deep learning, including
“Nearest”, “Bilinear”, “Deconvolution”, “Pixel Shuffle”, “Gumbel” and “Spatial Atten-
tion”. The “Nearest” and “Bilinear” methods are similar, as they only determine the
upsampling kernel based on the spatial position of the pixels and do not utilize semantic
information from the feature maps. Additionally, their receptive fields are usually small.
On the other hand, “Deconvolution”, “Pixel Shuffle” and “Gumbel” are learning-based
upsampling methods, which involve a higher number of parameters and require signifi-
cant computational resources. “Spatial Attention” employs a learned attention weight for
each upsampled pixel to guide the sampling and interpolation of pixels from the original
image, resulting in more accurate and clear reconstructions. Nevertheless, this method
is task-dependent and may not be suitable for certain tasks, and it could also potentially
suffer from the issue of vanishing gradients.

To compare the performance of the various upsampling algorithms mentioned above,
extensive experiments were conducted on Faster R-CNN in reference [23]. Different opera-
tors were used to perform the upsampling operation in Feature Pyramid Network (FPN).
The reference [23] experimental results are shown in Table 1.

Table 1. Experimental Comparison of Different Upsampling Algorithms in Reference [23].

Algorithms AP APS APM APL FLOPS Params

Nearest 36.50% 21.30% 40.30% 47.20% 0 0
Bilinear 36.70% 21.00% 40.50% 47.50% 8 K 0

Deconvolution 36.40% 21.30% 39.90% 46.50% 1.2 M 590 K
Pixel Shuffle 36.50% 20.90% 40.40% 46.70% 4.7 M 2.4 M

Gumbel 36.90% 21.50% 40.60% 48.10% 1.1 M 132 K
Spatial

Attention 36.90% 21.70% 40.80% 47.00% 28 K 2.3 K

CARAFE 37.80% 23.10% 41.70% 48.50% 199 K 74 K
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The experimental results demonstrate that CARAFE upsampling outperforms other
upsampling methods, showing significant improvements in Average Precision (AP), APS,
APM, and APL. This indicates that CARAFE exhibits superior performance and is effective
across different object sizes.

3. Experimental Data and Evaluation Indexes

In this section, we present the experimental data, experimental setup, and evaluation
metrics employed in this study, aiming to provide a comprehensive overview of the
empirical aspects of our research.

3.1. Experimental Data

In this paper, the railway track segmentation dataset is created using UAV aerial
images provided by a company. The dataset primarily consists of railway UAV aerial
images captured in various railway stations in different cities in China, encompassing
diverse railway environments. The original aerial images do not have corresponding label
images, so it was necessary to manually annotate the label files using LabelMe software.
The railway track segmentation dataset needs to be divided into three subsets: the training,
test, and validation sets. The training set accounts for 90% of the total data, while the test
and validation sets use the remaining 10%. Specifically, the test set and the validation
set share the same subset; they are not separately partitioned. To prevent overfitting,
improve model robustness, enhance model generalization, and address sample imbalance,
several data augmentation techniques were employed on the training set. These techniques
included random cropping, rotation, horizontal flip, vertical flip, and center flip. Through
these augmentation methods, the divided training set was enriched, resulting in a final
training set consisting of 7892 railway images along with their corresponding label images.
In the railway label dataset used in this paper, the background pixel value is set as 0, while
the target pixel value representing the railway track is set as 1. The original and labeled
images are displayed in Figure 6.

    

Figure 6. Original image and label image (Railway dataset).

This paper used the DeepGlobe dataset [24] as a public dataset consisting of original
and label images. Specifically, 3984 images were selected from this dataset. In the Deep-
Globe dataset, the pixel values in the label images range from 0 to 255. However, for the
model used in this paper, the label dataset requires pixel values to be 0 to 1. Therefore,
preprocessing was performed on the DeepGlobe dataset. The preprocessing involved
converting the regions in the label images with a pixel value of 255 to a pixel value of 1
using a binary image processing algorithm. This ensured consistency with the label dataset
used in the model. Subsequently, the data images were divided into training and test sets,
following a 9:1 ratio. The validation set was not separately divided. The images from the
DeepGlobe dataset and their corresponding labels are displayed in Figure 7.
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Figure 7. Raw image and label image (Deepglobe dataset).

3.2. Experimental Environment and Parameter Setting

The experimental environment for this paper was a Windows 10 system with a 64-bit
operating system, an Intel i5 CPU, and an NVIDIA Tesla T4 graphics card. The model was
implemented using Torch 1.2.0 and Python 3.7. During the training process, the initial
learning rate was set to 7 × 10−3. To achieve high accuracy, the Stochastic Gradient Descent
(SGD) optimizer was used. A weight decay of 1 × 10−4 was applied to prevent overfitting.
The model was trained for 100 epochs, and the weights were saved every five epochs for
further analysis and evaluation.

In semantic segmentation tasks, the role of the loss function is crucial. Semantic
segmentation refers to the process of assigning each pixel in an image to a specific semantic
class, thus requiring corresponding predicted results for every pixel. The loss function
measures the difference between the model’s predictions and the ground-truth labels. By
minimizing the loss function, the optimization algorithm can adjust the model parameters
to improve the performance of the semantic segmentation model. The loss function used in
this article is the cross-entropy loss function, and its expression is as follows:

CE_loss = − 1
n∑

x
[ylna + (1− y)ln(1− a)] (3)

In semantic segmentation tasks, each pixel’s prediction is represented as a class proba-
bility vector. The cross-entropy loss function is well-suited for pixel-level classification as it
naturally measures the dissimilarity between predicted and ground-truth class distributions.
It also possesses desirable gradient properties, enabling common optimization algorithms
like stochastic gradient descent to effectively adjust model parameters, accelerate model
convergence, and minimize the loss function.

3.3. Evaluation Index

The model presented in this paper is a semantic segmentation model. To assess its
performance, several evaluation metrics were employed, including Intersection over Union
(IoU) and Mean Intersection over Union (MIoU), Class Pixel Accuracy (CPA) and Mean
Pixel Accuracy (MPA), Recall, and Accuracy. IoU measures the overlap between the pre-
dicted segmentation mask and the ground truth mask for each class, while MIoU computes
the average IoU across all classes. CPA calculates the percentage of correctly classified pix-
els for each class, and MPA computes the average accuracy across all classes. Recall assesses
the ability of the model to identify positive instances correctly, and Accuracy measures the
overall accuracy of the model’s predictions. By evaluating the model’s performance using
these metrics, a comprehensive understanding of its merits and limitations can be obtained.
The evaluation index formula is as follows:

IoU =
TP

TP + FN + FP
(4)

MIoU =
1
N ∑N

k=1 IoUk (5)
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CPA =
TP

TP + FP
(6)

MPA =
1
N ∑N

k=1 CPAk (7)

Recall =
TP

TP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

In evaluating the model, the following definitions are used: TP (True Positives) repre-
sents the cases where the model correctly predicts a positive instance, and the label result is
also positive. FP (False Positives) represents the cases where the model incorrectly predicts
a positive instance, but the label result is negative. TN (True Negatives) represents the cases
where the model correctly predicts a negative instance, and the label result is also negative.
FN (False Negatives) represents the cases where the model incorrectly predicts a negative
instance, but the label result is positive.

4. Results

This section outlines the experimental procedure employed in this study and presents
a comparative analysis of the experimental results.

4.1. Visual Analysis of Loss Function

To further evaluate the performance of the proposed railway track extraction method,
the convergence process of the training loss functions for different models was visually
analyzed on the DeepGlobe public dataset and the railway track segmentation dataset.
The convergence rate and the minimum value reached by the loss function represent the
performance of different semantic segmentation models. To eliminate any other inter-
fering factors, the models used in this paper’s loss function visualization experiment all
employed the same loss function, and the number of training iterations was set to 100. The
networks compared in this experiment include U-Net and different backbone networks of
the DeepLabv3+ model.

In the experiment using the railway track segmentation dataset, the U-Net network
exhibits significant fluctuations in its loss iteration curve. The training loss continuously
decreases, while the validation loss slightly increases after the initial decrease, eventually
converging to the minimum loss value at around the 60th iteration. On the other hand, the
DeepLabv3+ models with MobileNetV2 and Xception backbones show smaller fluctuations
in their loss curves, converging to the minimum loss within 50 to 60 iterations. In this
paper, the convergence curve of the model’s loss function is relatively smooth, with both
the training loss and validation loss converging rapidly. The lowest loss value is reached at
around the 40th iteration. The loss function curve of the railway track segmentation data
set is shown in Figure 8.

The visualization experiments conducted on the DeepGlobe public dataset reveal
several observations. In the U-Net model, the training loss decreases rapidly, but the
validation loss converges slower. The MobileNetV2 backbone network model exhibits faster
convergence speed, although the loss value remains relatively high. On the other hand, the
Xception backbone network model shows the slowest convergence speed. Compared to
these models, the network proposed in this paper demonstrates improved convergence
speed and achieves a lower final loss value. The public data set loss function curve is
shown in Figure 9.
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Figure 8. Convergence Comparison of Loss function of Railway Dataset.

 

Figure 9. Convergence Comparison of Loss function of Common Dataset.
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The visual curve of the loss function demonstrates that the proposed model exhibits
faster convergence, a smoother loss curve, and a smaller convergence value. As a result, the
railway track extraction model proposed in this paper showcases superior performance.

4.2. Comparative Experimental Analysis
4.2.1. Comparison of Data Augmentation Experiment Results

Data augmentation is a technique that involves transforming and expanding the
original training data to increase the diversity and quantity of data samples. This article
presents the following reasons for employing data augmentation: Firstly, augmenting data
helps the model better capture and learn the invariances and patterns within the data,
enhancing its generalization capabilities on unseen data. Secondly, deep learning models
are prone to overfitting in the presence of limited samples, and data augmentation can
mitigate the risk of overfitting by enlarging the training dataset. The model becomes more
adept at handling perturbations and noise in the input data through data augmentation,
leading to improved robustness and increased accuracy.

Using the railway track dataset experiment as an example, we conducted experiments
with three different training set sizes: 700 images, 3500 images, and 7000 images, to
demonstrate the necessity of data augmentation through the extracted results. In the
experiments, all other conditions were kept the same, with only the number of training
samples varying. The experimental results are shown in Figure 10.

    
(a) (b) (c) (d) 

Figure 10. Different data quantity extraction results. (a) Label, (b) 700 images, (c) 3500 images,
(d) 7000 images. The red area represents the railway track region. The white box outlines the
differences in the image.

From this, it can be observed that with a limited number of Epochs, larger data
quantities lead to better model performance. However, it does not imply that more data is
always better, as excessively large datasets can consume more time. Therefore, multiple
experiments are necessary to find the optimal combination between data quantity and
model performance.

4.2.2. Morphological Algorithm Experimental Comparison

The composite operations of morphological algorithms can eliminate specific extrac-
tion errors. OpenCV provides an efficient and user-friendly interface for image morpholog-
ical transformations, where all morphological operations are based on erosion and dilation.
During the execution of the erode() function, the image undergoes an erosion operation,
setting the value at point p to the minimum value within the area covered by the kernel
when aligned with point p. On the other hand, the dilate() function performs a dilation
operation, replacing the minimum value with the maximum value. The two function
expressions are as follows:

erode(x, y) =
min

(i, j) ∈ kernel
src(x + i, y + j) (10)
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dilate(x, y) =
max

(i, j) ∈ kernel
src(x + i, y + j) (11)

When performing morphological processing on the initially extracted results of railway
tracks, it is necessary to set the kernel size. This study uses a matrix of size 5 × 5, and
the required operations are specified using the morphologyEx() function. First, an opening
operation is applied to remove speckles and protuberances, with the morphologyEx() function
parameter set to MOP_OPEN. Subsequently, a closing operation is performed to connect small
fractures and fill in holes, with the morphologyEx() function parameter set to MOP_CLOSE.
Through optimization with morphological algorithms, a more complete extraction result can
be achieved. Taking the Railway track segmentation dataset as an example, the comparison of
results before and after morphological processing is shown in Figure 11.

  
(a) (b) 

Figure 11. Comparison of Results Before and After Morphological Processing (Railway track segmen-
tation dataset). (a) Initial extraction results, (b) Processed results. The red area represents the railway
track region. The white box outlines the differences in the image.

4.2.3. Railway Dataset Experiment

To compare the overall accuracy of this algorithm with other algorithms, an evalua-
tion was conducted using the railway track segmentation dataset. The evaluation metrics
and runtime of the proposed model were compared with the U-Net semantic segmenta-
tion network [25], L-UNet network [26], DeepLabv3 model with ResNet backbone [27], and
DeepLabv3+ network [28] using the improved MobileNetV2 backbone network with rectangu-
lar contrast. For ease of comparison, the prediction time was selected to measure the model’s
time difference, and 288 original images from the railway track segmentation dataset were
used for prediction. It can be observed that the DeepLabv3+ model with the MobileNetV2
backbone network achieves improved accuracy and lower prediction time compared to the
U-Net network and DeepLabv3 network. This indicates that utilizing a lightweight back-
bone network, such as MobileNetV2, in the DeepLabv3+ model can significantly reduce the
network’s scale without compromising accuracy and overall runtime.

Furthermore, the MobileNetV3 backbone network was employed in this paper, which fur-
ther enhances accuracy and reduces runtime by approximately 5% compared to MobileNetV2
before the morphological processing. Based on the above analysis, it can be concluded that the
proposed method improves the accuracy of railway track extraction and significantly reduces
the overall running time. The comparison results are presented in Table 2.

Despite the improvements made in the DeepLabv3+ model, there are still some im-
perfections in the extracted railway track area, such as holes, bumps, and spots. This is
mainly due to the nature of semantic segmentation, which operates at a pixel level. In
non-railway areas of the original image, there may be pixels that are similar or identical to
those in the railway area, leading to segmentation errors. To further enhance the semantic
segmentation results, morphological erosion and dilation operations can be employed. The
open operation (erosion followed by dilation) helps to remove spots and bumps, while the
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close operation (dilation followed by erosion) can eliminate voids within the railway area
without altering the overall shape. The effectiveness of these morphological operations
depends on adjusting the size of the kernel in the algorithm to achieve optimal results. By
applying these operations to the railway area, a complete and refined railway track can
be obtained. Table 2 compares the results obtained by the model proposed in this paper
and other extraction models, highlighting the improvements achieved. The comparison
between the model in this paper and other model extraction results is shown in Table 3.

Table 2. Comparison of evaluation indicators between this method and other models.

Model IoU MIoU CPA MPA Recall Accuracy Times

Ning Y. et al. [25] 63.41% 86.16% 74.94% 93.85% 86.52% 94.72% 96 s
Miao X. et al. [26] 65.22% 87.60% 76.71% 95.41% 87.01% 96.11% 80 s
Ling H. et al. [27] 64.13% 86.06% 75.53% 94.07% 86.62% 95.34% 72 s

Yuejuan R. et al. [28] 64.97% 86.87% 76.21% 94.90% 86.99% 95.96% 64 s
Proposed method 66.21% 88.93% 76.33% 95.51% 89.02% 97.69% 61 s

Table 3. Comparison of extraction results between this article and other models. The red area
represents the railway track region. The white box outlines the differences in the image.

Original
Ning Y. et al.

[25]
Miao X. et al.

[26]
Ling H. et al.

[27]
Yuejuan R.
et al. [28]

Proposed
Method

Label

4.2.4. DeepGlobe Public Data Set Model Comparative Experimental Analysis

To assess the generalization ability of the proposed model, the same experiment was
conducted on the DeepGlobe public dataset, which was preprocessed to enable semantic
segmentation. Different models were trained on this dataset, and predictions were made on
398 raw images. The experimental results demonstrate that similar to the results obtained on
the railway track segmentation dataset, the proposed model exhibits improved extraction
accuracy compared to other models and reduced computational time. The comparison
results of evaluation metrics and runtime are presented in Table 4.

Table 4. Comparison of evaluation indicators between this method and other models.

Model IoU MIoU CPA MPA Recall Accuracy Times

Ning Y. et al. [25] 61.66% 79.91% 72.57% 82.58% 84.35% 90.32% 132 s
Miao X. et al. [26] 63.98% 81.32% 74.92% 84.06% 85.77% 92.66% 110 s
Ling H. et al. [27] 61.96% 80.06% 73.24% 82.97% 84.90% 91.92% 98 s

Yuejuan R. et al. [28] 62.15% 82.35% 74.17% 83.95% 85.03% 93.81% 88 s
Proposed method 65.21% 84.72% 75.80% 86.60% 86.96% 94.84% 84 s
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The public dataset contains road environments that are more complex, and as a result,
the evaluation metrics have decreased to varying degrees compared to the railway track
segmentation dataset. However, under the same conditions, the proposed model still
exhibits improved extraction performance compared to other models. The road images
extracted by the proposed model undergo further processing using a morphological algo-
rithm, resulting in more complete road features. A comparison between the results of the
proposed model after morphological processing and other models is presented in Table 5.

Table 5. Comparison of extraction results between this article and other models. The red area
represents the railway track region. The white box outlines the differences in the image.

Original
Ning Y. et al.

[25]
Miao X. et al.

[26]
Ling H. et al.

[27]
Yuejuan R.
et al. [28]

Proposed
Method

Label

4.3. Analysis of Ablation Experiment

To verify whether the enhanced DeepLabv3+ model proposed in this paper achieves im-
proved accuracy and reduced runtime compared to the original model, ablation experiments
were conducted on both the DeepGlobe public and railway track segmentation datasets.

The ablation experiments conducted in this paper primarily focused on examining
the impacts of the MobileNetV3 backbone extraction network, MobileNetV2 backbone
extraction network, CARAFE, and morphological algorithm on the accuracy and runtime
of railway track extraction, while keeping other conditions constant. Initially, experiments
were conducted using the MobileNetV2 backbone extraction network to evaluate the
effects of CARAFE and the morphological algorithm on extraction accuracy and runtime.
Subsequently, the same experimental operations were performed using the MobileNetV3
backbone extraction network.

The experimental results on the railway track segmentation dataset demonstrate that
replacing the upsampling module with CARAFE leads to a slight improvement in accuracy
and a reduction in runtime. Furthermore, the addition of the morphological algorithm
further enhances accuracy but significantly increases the runtime. However, under identical
conditions, the MobileNetV3 backbone extraction network is more efficient and consumes
less time than the MobileNetV2 extraction network. The comparison results of the ablation
experiments on the railway track segmentation dataset are presented in Table 6.

The experimental results on the DeepGlobe public dataset exhibit similar trends to
those observed on the railway track segmentation dataset. The incorporation of CARAFE
and the morphology algorithms leads to an improvement in extraction accuracy to some
extent, while the performance of the MobileNetV3 backbone surpasses that of MobileNetV2.
The comparison results of the ablation experiments on the DeepGlobe public dataset are
presented in Table 7.

167



Electronics 2023, 12, 3500

Table 6. Railway Dataset Ablation Experiment.

Mobilenetv2 Mobilenetv3 CARAFE Morphological Accuracy Times

√ × × × 93.57% 63 s√ × √ × 93.91% 62 s√ × √ √
96.15% 65 s

× √ × × 94.71% 60 s
× √ √ × 95.07% 58 s
× √ √ √

97.59% 61 s

Table 7. Deepglobal public dataset ablation experiment.

Mobilenetv2 Mobilenetv3 CARAFE Morphological Accuracy Times

√ × × × 91.45% 88 s√ × √ × 91.93% 86 s√ × √ √
93.34% 90 s

× √ × × 92.88% 83 s
× √ √ × 93.21% 82 s
× √ √ √

94.84% 84 s

Firstly, the results of the ablation experiments on two datasets show that MobileNetV3
achieves slightly higher accuracy than MobileNetV2 while also reducing processing time
by approximately 5%. This experiment provides evidence that MobileNetV3 inherits the
strengths of MobileNetV2 while incorporating “lightweight” enhancements.

Furthermore, compared to the default 16x Bilinear upsampling, employing CARAFE
upsampling leads to a slight improvement in accuracy without significant differences
in time consumption. This experiment demonstrates that CARAFE upsampling, which
considers image semantic features and adaptive kernel selection, can effectively enhance
model performance.

Finally, the composite operation of morphological algorithms can also significantly
improve the extraction results.

5. Discussion

Based on the experimental results, it is evident that the proposed method has sig-
nificantly enhanced the extraction accuracy while reducing time consumption. This im-
provement can be attributed to the utilization of NAS (Neural Architecture Search) and
NetAdapt algorithms in the MobileNetV3 network. Furthermore, the inclusion of the
CARAFE module and morphology algorithm has a noticeable effect on improving the ex-
traction accuracy, albeit at the cost of increased overall running time. The CARAFE module,
a lightweight upsampling operator, considers the content information of the feature map
while maintaining a low parameter count. This leads to shorter upsampling time and a
slight improvement in accuracy. The morphology algorithm, on the other hand, assesses
the validity of a region based on the pixel distribution within a binary image. Suppose the
number of pixel values surrounding a particular region significantly exceeds the number
of pixel values within the region. In that case, the pixel value of the region is modified,
effectively eliminating spots and holes.

To enhance the generalization capability of this paper’s model, both data and model
aspects were addressed. Firstly, in terms of data, a railway segmentation dataset was created
using unmanned aerial vehicle (UAV) images taken from various regions and cities in China.
The dataset encompasses diverse weather conditions, terrains, and environments, including
railway stations in different regions of China. After partitioning the railway segmentation
dataset into training, validation, and test sets, data augmentation techniques were applied
to the training set. Secondly, for the model aspect, SGD (Stochastic Gradient Descent) was
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chosen as the optimizer to update and compute the network parameters influencing the model
training and outputs, driving them towards or achieving optimal values.

Furthermore, an L2 regularization module was incorporated into the model to prevent
overfitting. During the model training process, the best weights and the final training
weights were automatically saved for optional selection. To validate the model’s generaliza-
tion ability in different traffic scenarios, experiments were also conducted on the publicly
available DeepGlobe dataset. The experimental results demonstrate that this model is
suitable for diverse environments and exhibits a certain generalization capability.

6. Conclusions

This paper introduces an improved DeepLabv3+ model for railway track extraction.
The study begins by creating a railway track segmentation dataset with diverse scenes using
UAV aerial images from several domestic stations. Addressing the low work efficiency
caused by excessive layers in existing semantic segmentation networks, the proposed
approach utilizes the lightweight MobileNetV3 network as the backbone network for the
DeepLabv3+ model. The CARAFE lightweight upsampling operator is also employed
for the decoder’s upsampling component. This design achieves segmentation accuracy
while reducing the scale of the semantic segmentation network and improving model
efficiency. To address potential issues such as holes and spots in the initial extraction
results, this paper incorporates a morphological algorithm to optimize the outcomes. By
employing a combination of morphological erosion and dilation operations, the algorithm
effectively eliminates these undesired artifacts. The proposed algorithm is evaluated using
the railway track segmentation dataset and the DeepGlobe dataset, comparing it with
common semantic segmentation networks. Experimental results demonstrate that the
proposed model exhibits significantly improved accuracy while consuming less time.

Although this method has reduced the model’s computational time to some extent,
it necessitates morphological optimization of the extracted results, which adds a small
amount of additional processing. Further optimization of the model is required to minimize
time overhead, ensuring faster and more comprehensive extraction of railway tracks.
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Abstract: Spatially polarization modulation has been proven to be an efficient and simple method for
polarization measurement. Since the polarization information is encoded in the intensity distribution
of the modulated light, the task of polarization measurement can be treated as the image processing
problem, while the pattern of the light is captured by a camera. However, classical image processing
methods could not meet the increasing demand of practical applications due to their poor computa-
tional efficiency. To address this issue, in this paper, an improved Convolutional Neural Network is
proposed to extract the Stokes parameters of the light from the irradiance image. In our algorithm,
residual blocks are adopted and different layers are connected to ensure that the underlying features
include more details of the image. Furthermore, refined residual block and Global Average Pooling
are introduced to avoid overfitting issues and gradient vanishing problems. Finally, our algorithm is
tested on massive synthetic and real data, while the mean square error (MSE) between the extracted
values and the true values of the normalized Stokes parameters is counted. Compared to VGG and
FAM, the experimental results demonstrate that our algorithm has outstanding performance.

Keywords: polarization direction measurement; CNN; global average pooling

1. Introduction

Polarization measurement is important in many applications, such as in sky polarized
light navigation [1], remote sensing [2–4], the food industry [5–8] and ellipsometry [9–11].
Generally, four methods, including interferometric polarimeter [12,13], temporally mod-
ulated polarimeter [14,15], division-of-amplitude polarimeter [16,17] and spatially mod-
ulated polarimeter [18–21], are well accepted to solve this problem. In a interferometric
polarimeter, the coherent optical paths are constructed, and the polarization information
can be calculated from the interference pattern. The interferometric polarimeter is robust
and stable, however, the analyzing process of the interference pattern is usually compli-
cated. In a temporally modulated polarimeter, the rotatable or active optical elements are
utilized to modulate the incident polarized light in a time sequential, and the polarization
state of the incident beam can be obtained by analyzing the time varying intensity signal.
The temporally modulated polarimeter is simple and easy to implement, however, its mea-
surement speed is limited, and it is sensitive to the power and wavelength fluctuation of the
light sources. In a division-of-amplitude polarimeter, the incident beams are analyzed by
several channels with different polarization optics, and the polarization information can be
obtained in a single shot. The division-of-amplitude polarimeter is competent for real-time
monitoring, but its configuration is usually complicated to adjust. To conquer these issues,
some researchers developed a fourth method, i.e., spatially modulated polarimeter. In a
spatially modulated polarimeter, the spatially modulated polarization optics, such as micro
polarizer arrays, polarization grating, azimuthal or radial polarizers, are utilized to modu-
late the intensity in the spatial domain, the polarization information of the incident beam
can be obtained by processing and analyzing the spatial modulated intensity image. The
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spatially modulated polarimeter can achieve the polarization measurement in a compact,
rapid and stable way. It is not sensitive to changes in the power and wavelength of the
light. However, as the core devices, the spatial modulation devices are difficult to deploy.

Fortunately, a vortex retarder based spatial polarization modulated polarimetry
method is proposed [1,11,18]. The vortex retarder is a special wave plate, and it has a
constant retardance across the clear aperture, but its fast axis rotates continuously along
the azimuth, so it can convert an ordinary polarized light into a vectorial optical beam [18].
Then, the polarization information is included in the light intensity distribution while the
vector polarized light field is detected by a polarizer. Compared to other spatial modulation
methods, this method has the advantages of stable performance, low wavelength sensitivity,
good temperature stability, high modulation quality and low cost. In this method, the
polarization information can be extracted using image processing when the pattern of the
light is captured by a camera. Consequently, the accuracy of the polarization measurement
is determined by the performance of the image processing algorithms.

Recently, image processing algorithms are divided into two categories: traditional
methods and machine learning. In traditional methods, the design of feature extractors
relies on the designers’ professional knowledge. Furthermore, the methods usually need
complex parameter tuning processes. To the best of our knowledge, two papers use tradi-
tion methods to calculate the polarization state from the irradiance image. In reference [21],
an image correlation operation is proposed to extract the polarization direction from the
hour-glass-shaped intensity image. However, the measurement accuracy is decided in
the step of correlation operation, and numerous calculations need to be performed to
ensure a high accuracy, which is very time consuming. What is more, the method can only
obtain the polarization direction, and other polarization information, such as ellipticity
and polarization handiness are lost. To obtain the Stokes parameters of the polarized light,
a Fourier analysis method (FAM) is proposed [18]. In this method, a series of Randon
transformations is performed to obtain the modulation curve of the intensity image, and
the Stokes parameters of the incident light can be measured by Fourier analysis of the
modulation curve. However, the computational efficiency of the Fourier analysis method
is rather poor due to numerous redundant calculations in the Randon transformation. Due
to a series of advantages, such as excellent performance, better generalization, end-to-end
training and no need for complex parameter tuning, the machine learning method has been
widely used in image processing. As the most important branch of machine learning, deep
learning performs well and has been widely used in image processing. In reference [22],
more than 300 research contributions on deep learning techniques for object detection
are introduced. More than 100 deep-learning-based methods have been proposed for
image segmentation [23]. Some researchers are devoted to achieving image registration
depending on deep learning [24]. Zhao et al. [25] designed SpikeSR-Net to super–resolve a
high-resolution image sequence from the low-resolution binary spike streams. In particular,
in reference [26], a Convolutional Neural Network (CNN) based on VGGNet architecture
was trained to obtain the polarization states of light using a single shot of intensity image.
Though it has similar accuracy to FAM, it is much less time consuming.

In this paper, a deep learning technique is also adopted to extract polarization infor-
mation from the irradiance image due to its outstanding performance. In this paper, an
efficient deep-learning-based image processing algorithm, named ResNet-GAP, is proposed
to extract the polarization direction from the irradiance image of the modulated input light.
To prevent overfitting of the network, global average pooling [27] (GAP) is introduced
while ResNet [28] is adopted as the main architecture of our network. Furthermore, the
residual block is refined in order to extract image features better and avoid gradient vanish-
ing. In addition, the originally full connection layer is divided into two layers, including a
FC layer and a ReLU activation function.

The main work of our paper is as follows: Section 2 introduces the theoretical and
experimental investigation, and Section 3 describes our experiments and analyzes the
results. Section 4 summarizes the main work of this paper and introduces our future work.
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2. Theoretical and Experimental Investigation

The schematic of our experiment includes two stages: irradiance image generation
and image processing. In the first stage, a spatially modulated scheme using a vortex
retarder is built, and the irradiance image including the polarization state of the light is
captured by a camera. Then, in the second stage, an improved CNN is proposed to extract
the polarization information from the irradiance image.

2.1. Irradiance Image Generation Stage

In 1852, Stokes proposed that the polarization state of the light wave can be represented
by four real number parameters, which are called Stokes parameters. Generally, the Stokes
parameters can be written as a column vector of one order, i.e., S =

[
S0 S1 S2 S3

]T .
For a certain optical element or an optical system, the relationship between outgoing light
and the incident light can be represented by

Sout = M · Sin (1)

Sout and Sin are the Stokes vector of outgoing and incident light. M is the Muller
matrix of the optical system.

As shown in Figure 1, an integrating sphere (IS) and a positive lens are utilized to
generate a uniform and collimated natural light field. Then, the incident light with different
polarization states are captured while altering the azimuth angles of the transmission axis
of the polarizer and the fast axis of the wave plate. Subsequently, the polarized light is
modulated by a retarder and another analyzer. For the zero-order vortex half-wave retarder
(VHWR), with the initial fast axis oriented along 0

◦
, the Equation (1) can be rewritten as

Sout =

⎡⎢⎢⎣
1 0 0 0
0 cos 2ϕ sin 2ϕ 0
0 sin 2ϕ − cos 2ϕ 0
0 0 0 −1

⎤⎥⎥⎦Sin (2)

where ϕ is the azimuth angle. Consequently, when the transmission axis of the analyzer is
oriented at 0

◦
, the light intensity can be denoted by

I(ϕ) ∝ Sout0 = Sin0 + Sin1 cos 2ϕ + Sin2 sin 2ϕ (3)

Figure 1. The experiment system. IS: integrating sphere; L: Lens; P: polarizer; W: wave plate; V:
vortex retarder; A: analyzer.

Similarly, if the incident light is modulated by a zero-order vortex quarter-wave
retarder (VQWR), while the initial fast axis is oriented along 0

◦
, the light intensity is

I(ϕ) ∝ Sout0 = Sin0 +
1
2

Sin1 +
1
2

Sin1 cos 2ϕ +
1
2

Sin2 sin 2ϕ− 1
2

Sin3 sin ϕ (4)

Equations (2) and (3) point out that, utilizing the optical system shown in Figure 1, the
Stokes parameters are encoded in the intensity of the modulated light. In other words, the
problem of polarization measurement can be treated as an image processing problem to
extract Stokes parameters from the irradiance images.
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2.2. ResNet-GAP

However, experiments show that the performance of the classical ResNet50 did not
meet our expectation in evaluating the Stokes parameters of the light intensity image.
Hence, we modify the ResNet50 architecture to make it suitable for our Stokes parameters
evaluation problem. The full specification of our modified network, which we called
ResNet-GAP, appears in Table 1. The main architecture of our ResNet-GAP is similar to
ResNet50, however, there are some improvements.

Table 1. The architecture of ResNet-GAP.

Layer Name Output Size Layers

conv 1 112 × 112
3 × 3, stride 2
3 × 3, stride 1
3 × 3, stride 1

conv2_x 56 × 56

3 × 3 max pool, stride 2⎡⎣ 1× 1, 64
3× 3, 64
1× 1, 256

⎤⎦× 3

conv3_x 28 × 28

⎡⎣ 1× 1, 128
3× 3, 128
1× 1, 512

⎤⎦× 4

conv4_x 14 × 14

⎡⎣ 1× 1, 256
3× 3, 256

1× 1, 1024

⎤⎦× 6

conv5_x 7 × 7

⎡⎣ 1× 1, 512
3× 3, 512

1× 1, 2048

⎤⎦× 3

1 × 1 GlobalAveragePooling2D; 1024-d FC, ReLU;
dropout; L-d FC, Sigmoid

In conv1 layer, we choose to replace the 7 × 7 convolution with multiple layers
of smaller convolution. Convolutions with larger spatial filters (e.g., 7 × 7) tend to be
time consuming, while convolutions with smaller spatial filters (e.g., 3 × 3) tend to be
much easier in terms of computation. Hence, we replace the 7 × 7 convolution with a
concatenation of three layers of 3 × 3 convolution (one with stride 2 and two with stride 1).
This setup clearly reduces the parameter count and also increases the network depth to
maximize the utilization of the network capacity and complexity.

In conv5_x, the first layer is the down sampling module, which, in fact, contains Path
A and Path B as in Figure 2. Originally in ResNet50, Path A first completes the channel
contraction through 1 × 1 convolution with stride 2 to realize down sampling, then a 3 × 3
convolution follows, which keep the number of channels unchanged; the main purpose
is to extract features and, at the last step, expand the number of channels through a 1 × 1
convolution, while Path B is convolved through a 1 × 1 with stride 2 for down sampling.
Here, in Path A, we move the down sampling process into the 3 × 3 convolution step to
avoid information loss in the beginning step as a result of the 1 × 1 convolution with stride
2, while, in Path B, we use average pooling instead of down sampling.

In the pooling layer, global average pooling (GAP) is used in our modified architecture,
which effectively prevents overfitting of the network, strengthens the consistency of feature
maps and labels and speeds up network convergence. On the other hand, originally in
the ResNet50, there is only one fully connected (FC) layer. Here, we divide it into two
FC layers. In the first FC layer, the number of the channels is set to be 1024, followed by
a ReLU activation function. Then, dropout operation is employed, which can randomly
inactivate some of the nodes to be 0 with probability 0.5 to avoid overfitting. Finally, the
channels of the pooling layer are changed from 1000 to L, which is the number of the Stokes
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parameters. In the second FC layer, the activation function is changed from Softmax to
Sigmoid. Though the Softmax activation function is widely used in multi-label image
classification, transforming the output of the model into a probability distribution, since
the sum of the probabilities of all categories equals 1, if the probability value of the model
output is very small or large, problems may occur such as numerical overflow or gradient
vanishing when choosing Softmax activation function, which may reduce the effectiveness
of the network. Meanwhile, it is unlikely to meet such a problem when choosing the
Sigmoid activation function, since the output range of the Sigmoid function is between
0 and 1, which means that the Sigmoid activation function is more stable in the training
process compared with the Softmax activation function.

Figure 2. The structure of conv5_x.

3. Experiments and Results

In the subsequent experiments, we employ the Tensorflow framework under Python
to construct, configure, train and test the network. And the network is tested in the same
hardware configuration. The network is designed following the configuration to train
parameters: the Adam optimizer and the MSE function are chosen as the optimizer and
the loss function. The custom evaluation function is ownAccuracy. The batch size is 128,
i.e., the number of images fed into the network at each time is 128. The accuracy of the
network was assessed using the Mean Squared Error (MSE) metric. In order to completely
evaluate the performance, in this paper, the algorithms are tested on images when light
is modulated by the VHWR and VQWR, respectively. A vast quantity of experimental
data are generated by Matlab for network training. Then, the trained network is tested
using synthetic and real images, respectively. To evaluate the robustness of the algorithms
to noise, Gaussian noise, in which the mean value is 0 and variance values range from
0 to 0.01 in steps o 0.001, is added to the synthetic images. Two state-of-the-art methods
(i.e., VGG and FAM) are adopted for comparison.

3.1. Vortex Half-Wave Retarder
3.1.1. Noise-Free Data
Train

We generate noise-free data to train the network. In the training stage, we generate
50,000 perfect, noise-free images. Out of these, 40,000 are randomly chosen for training and
10,000 for validation. As the Stokes parameters are set randomly, 40,000 synthetic images
contain enough polarization states of light waves. Theoretically, the trained network can
study the characteristics of the training data well.

In the training stage, the size of the batch is set to be 128. MSE of 50 epochs are shown
in Figure 3. It can be found that the MSE of the training set is smaller than the validation
set. Additionally, the MSE on both sets tend to decrease gradually and converge.
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Figure 3. The MSE on the noise-free images corresponding to the training set and the validation set
for VHWR.

Test

Based on the results obtained from the above training, the model with the best perfor-
mance in the training process was selected as the test model. We simulate 11 test sets, each
containing 1000 frames of images with zero mean Gaussian noise and variance ranging
from 0 to 0.01 in steps of 0.001. We select one image from each group as an example, as
shown in Figure 4. The MSE of S1 estimated by ResNet-GAP, VGG and FAM is shown in
Figure 5. The MSE of S2 is shown in Figure 6. The training data shows that the MSE of the
test set is extremely low, and it can even reach as low as 1 × 10−6. With an increase in the
variance of Gaussian noise, the MSE of S1 and S2 also increases gradually, indicating that
the model is sensitive to noise. From Figures 5 and 6, it is evident that the MSE of ResNet-
GAP has the slowest growth rate with an increase in noise. That is to say, ResNet-GAP is
more robust to noise than VGG and FAM.

Figure 4. Images disturbed by different levels of noise while the light is modulated by a VHWR.

Furthermore, the performances of different algorithms are tested on real data. A
total of 37 real images (shown in Figure 7) are captured by our experimental system, in
which the transmission axis of the polarizer was fixed at 20◦, and the fast axis of the
VHWR was rotated from 0◦ to 180◦ with a step of 5◦. The results for S1 and S2 are shown
in Figure 8. They demonstrate the perfect performance of the algorithms. For ResNet-
GAP, the maximum absolute error of S1 is 0.0428, and the average value is 0.0035. For
S2, the maximum absolute error is 0.0574, and the average error is 0.0014. The MSE
of three algorithms are given in Table 2. This illustrates that the ResNet-GAP network
achieved an MSE of 1 × 10−4 when tested on real images, which is marginally larger
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than the results on the noise-free simulated image. This difference is due to noise in the
real image.

 

Figure 5. The MSE of S1 with respect to noise while the light is modulated by a VHWR.

 

Figure 6. The MSE of S2 to noise while the light is modulated by a VHWR.

Figure 7. The real images when the fast axis of the VHWR is rotated.
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Figure 8. The Stokes parameters real values and their evaluated values by ResNet-GAP.

Table 2. Performance of algorithms on real images for VHWR.

Stokes Parameters Algorithm MSE

S1 ResNet-GAP 0.000385
S1 FAM 0.001623
S1 VGG 0.000741
S2 ResNet-GAP 0.000506
S2 FAM 0.000932
S2 VGG 0.000611

The truth values of S1 and S2 are plotted against the predicted values of the three
algorithms, as shown in Figures 9 and 10. They indicate that ResNet-GAP has the closest
predicted value to the truth value and performs better than VGG and FAM.

 
Figure 9. The values of S1 to different orientations of the fast axis for VHWR.
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Figure 10. The values of S2 to different orientations of the fast axis for VHWR.

When 37 real images were tested, ResNet-GAP consumed only 0.01443 s, in com-
parison to VGG and FAM, which took 0.003694 s and 28.763 s, respectively. Obviously,
the ResNet-GAP network is much faster than FAM and VGG. It is more suitable for real-
time processing.

3.1.2. Noisy Data

Since noise is usually unavoidable in reality, we selected Gaussian noise images with
variance 0.01 as the training and validation data sets. The numbers of images for training
and validation are 40,000 and 10,000, respectively. Other parameters are kept the same as
the noise-free case described above. The MSE of different epochs are shown in Figure 11. It
can be seen that the MSE of the training data set is much less than that of the validation
data set. The MSE of the training and validation sets converge quickly, approximately in
the magnitude of 1 × 10−3.

Figure 11. The MSE on the noise images corresponding to the training set and the validation set
for VHWR.

However, as can be seen from Figures 5 and 6, the value of MSE obtained by the model
with noise-free data is about 2.5 × 10−4 when the noise variance is 0.01. This value is much
lower than the MSE obtained by the model with noisy data, as shown in Figure 11. Given
the poor performance of the models obtained from training with noisy data, we do not
perform further testing experiments.
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3.2. Vortex Quarter-Wave Retarder
3.2.1. Noise-Free Data
Train

We examined algorithms on irradiance images when the light is modulated by a
VQWR. In this case, the Stokes parameters are S1, S2 and S3. Here, the training and
validation data sets are noise-free images. Figure 12 illustrates the MSE corresponding
to various epochs, indicating that the MSE of the validation set is lower than that of the
training set, which are all in the magnitude of 1 × 10−3.

Figure 12. The MSE on the noise-free images corresponding to the training set and the validation set
for VQWR.

Test

The training model with the smallest MSE in the training process was chosen as the
best model for the test experiment.

To evaluate the robustness of the model to noise, 11 data sets are generated while the
images are disturbed by Gaussian noise with zero mean and the variance ranging from
0 to 0.01 in steps of 0.001. Each data set contains 1000 images. We select one image from
each data set as an example, and they are shown in Figure 13. The MSE of S1 estimated
by ResNet-GAP, VGG and FAM is shown in Figure 14. The MSE of S2 and S3 is shown in
Figures 15 and 16, respectively. The results show that, with the increase in the variance of
Gaussian noise, the MSE of the Stokes parameters all increase gradually. In other words, all
algorithms are sensitive to noise. However, compared to FAM, ResNet-GAP and VGG are
more robust.

Figure 13. Images disturbed by different level of noise while the light is modulated by a VQWR.
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Figure 14. The MSE of S1 with respect to noise while the light is modulated by a VQWR.

 
Figure 15. The MSE of S2 with respect to noise while the light is modulated by a VQWR.

 

Figure 16. The MSE of S3 with respect to noise while the light is modulated by a VQWR.

Furthermore, the performances of different algorithms are tested on real data. A total
of 37 real images are captured by our experimental system. The orientation of the fast axis
of VQWR ranges from 0◦ to 180◦ in steps of 5◦. The real images are shown in Figure 17. The
results for S1, S2 and S3 shown in Figure 18 demonstrate the perfect performance of the
algorithms. For ResNet-GAP, the maximum absolute error of S1 is 0.0794, and the average
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value is 0.0172. For S2, the maximum absolute error is 0.0855, and the average error is
0.0073. For S3, the maximum absolute error is 0.0735, and the average error is 0.0193.

Figure 17. The real images when the fast axis of the VQWR is rotated.

 
Figure 18. The Stokes parameters’ real values and their evaluated values by ResNet-GAP.

The MSE of three algorithms are given in Table 3. As shown in Figures 19–21, the truth
values of Stokes parameters are plotted against the predicted values of the three algorithms.
They indicate that ResNet-GAP have the closest predicted value to the truth value and
performed better than VGG and FAM.

The schematic diagrams of the Poincaré sphere are shown in Figures 22–25, where the
blur curves represent the exact continuous distribution expressed in terms of the Stokes
parameters, while the red asterisks represent the truth values and the predicted values
obtained by ResNet–GAP, VGG and the FAM of the 37 real images respectively. According
to the experimental results shown in these figures (from Figures 22–25), we can easily find
that the measured results were well consistent with the predicted values in both the Stokes
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curves and Poincaré sphere, and the fitted curves based on these discrete experimental
results were also matched well with the theoretical predicted results.

Table 3. Performance of algorithms on real images for VQWR.

Stokes Parameters Network MSE

S1 ResNet-GAP 0.0020
S1 FAM 0.0120
S1 VGG 0.0053
S2 ResNet-GAP 0.0012
S2 FAM 0.0032
S2 VGG 0.0021
S3 ResNet-GAP 0.0031
S3 FAM 0.0046
S3 VGG 0.0027

Figure 19. The values of S1 to different orientations of the fast axis for VQWR.

 

Figure 20. The values of S2 to different orientations of the fast axis for VQWR.
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Figure 21. The values of S3 to different orientations of the fast axis for VQWR.

 
Figure 22. The schematic diagrams of the Poincaré sphere for the truth values.

 
Figure 23. The schematic diagrams of the Poincaré sphere for the predicted values of ResNet-GAP.
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Figure 24. The schematic diagrams of the Poincaré sphere for the predicted values of VGG.

 

Figure 25. The schematic diagrams of the Poincaré sphere for the predicted values of FAM.

When 37 real images were tested, ResNet-GAP consumed only 0.02035 s, in com-
parison to VGG and FAM, which took 0.04162 s and 33.57 s, respectively. Obviously, the
ResNet-GAP network is much faster than FAM and VGG. It is more suitable for real-
time processing.

3.2.2. Noisy Data

Next, we use Gaussian noisy images with a zero mean and 0.01 variance as the training
and validation data. All other parameters remain the same as in the VQWR without noise
case. Figure 26 shows the MSE for different epochs. We observe that the MSE for the
validation set is smaller than that of the training set. Both of them converge quickly, with
MSE approximately in the magnitude of 1 × 10−3.

However, the performance of the model obtained by training with noisy data is worse
than that with noiseless data. Therefore, we do not perform further testing experiments.
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Figure 26. The MSE on the noise-free images corresponding to the training set and the validation set
for VQWR.

4. Conclusions

In conclusion, we focused on how to effectively extract Stokes parameters of the light
from the irradiance image in this paper. We proposed an improved Convolutional Neural
Network which we call ResNet-GAP. The experiment results show that our proposed
method can extract Stokes parameters effectively. We have tested on the synthetic and real
data obtained from the VHWR and VQWR, respectively. Compared to VGG and FAM,
the experiment results demonstrate that our method has outstanding performance with a
smaller MSE and with a lower computational cost as well.

Although we have found the effectiveness of our proposed method, during our in-
depth research, we also realized that some aspects are worth further research in the future.
The first one is that our system uses a He-Ne laser with an operating wavelength of
632.8 nm; in future research, we will discuss the performance of ResNet-GAP under the
width-wide wavelength case. Furthermore, we find that our network performs significantly
better in testing real half-wavelength slice images than in testing real quarter-wavelength
slice images under the criteria of MSE evaluation performance. We will further explore and
explain this phenomenon in our subsequent studies. And, based on this, it is hopefully
expected that we can obtain a better performance in testing real quarter-wave slice images.
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Abstract: The market share of organic light-emitting diode (OLED) screens in consumer electronics
has grown rapidly in recent years. In order to increase the screen-to-body ratio of OLED phones,
under-screen or in-screen fingerprint recognition is a must-have option. Current commercial hardware
schemes include adhesive, ultrasonic, and under-screen optical ones. No mature in-screen solution
has been proposed. In this work, we designed and manufactured an OLED panel with an in-screen
fingerprint recognition system for the first time, by integrating an active sensor array into the OLED
panel. The sensor and display module share the same set of fabrication processes when manufactured.
Compared with the current widely commercially available under-screen schemes, the proposed
in-screen solution can achieve a much larger functional area, better flexibility, and smaller thickness,
while significantly reducing module cost. A point light source scheme, implemented by lighting
up a single or several adjacent OLED pixels, instead of a conventional area source scheme as in the
CMOS image sensor, or a CIS-based solution, has to be adopted since the optical distance is not long
enough due to the integration. We designed a pattern for the point light sources and developed an
optical unmixing network model to realize the unmixing and stitching of images obtained by each
point light source at the same exposure time. After training, data verification of this network model
shows that this deep learning algorithm outputs a stitched image of large area and high quality,
where FRR = 0.7% given FAR = 1:50 k. In despite of a poorer quality of raw images and a much
more complex algorithm compared with current commercial solutions, the proposed algorithm still
obtains results comparable to peer studies, proving the effectiveness of our algorithm. Thus, the time
required for fingerprint capture in our in-screen scheme is greatly reduced, by which one of the main
obstacles for commercial application is overcome.

Keywords: algorithm; deep learning; image stitching; image unmixing; in-screen fingerprint recognition;
OLED

1. Introduction

In recent years, many categories of consumer electronics, including smart watches,
mobile phones, laptops, monitors, and TVs, have adopted OLED screens instead of con-
ventional liquid crystal display (LCD) screens gradually. Compared with LCD, OLED has
many obvious advantages [1], such as higher contrast ratio between light and dark, lower
power consumption, a wider color gamut, etc. In particular, for mobile phones, OLED
screens provide excellent flexibility, opening up the possibility of more module forms for
users in mobile applications. For example, foldable and rollable phones with OLED screens
have all been implemented [2]. In addition, due to a narrower bezel, the screen-to-body
ratio of OLED screens is also higher than its LCD counterpart. In order to further achieve
an extremely high screen-to-body ratio for better custom experience, other mobile phone
parts related with screens must also be improved in design and implementation [3,4].
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For fingerprint recognition, in terms of hardware, a few manufacturers use ultrasonic
solutions [5,6]; some other researchers have also proposed a standalone module, which
can be adhered to the screen [7]. The mainstream commercial under-screen fingerprint
recognition solution is to stack micro lenses and CIS chips under the OLED screen to
act like a camera module to capture fingerprint images [8], as shown in Figure 1a. The
obtained images are then compared with the pre-captured “standard” fingerprint pattern
and conclude the matching degree [9]. Such a scheme has three disadvantages. First, the
screen will become thicker due to the stack of CIS and lenses, and will also add weight
to the phone. Moreover, under some extreme conditions such as strong ambient light,
the module can be seen, as shown in inset of Figure 1b. Second, CIS is fabricated on
silicon, which is a rigid module. Inconvenience in design will be caused if some flexible
features such as rollability, are needed. Third, due to the consideration on weight, power
consumption, and especially cost, the fingerprint recognition module is limited to a small
area of the screen. Large-area or even full-screen fingerprint recognition cannot be achieved.
Therefore, many researchers and companies are developing and optimizing solutions with
sensors integrated under OLED [10–12]. Although the under-screen solution solves the
problem of CIS not being able to achieve flexibility, it still causes the screen thickness to
increase; in addition, due to a low transmittance of OLED, and obviously due to the sensor
performance under the panel process being worse than that of CIS under the standard
silicon process, the low light and noise challenges are more serious [13,14]. In contrast, the
fingerprint recognition solution integrated in the screen, rather than under the screen, does
not increase the module thickness, as can be roughly seen in their cross-sectional schematic
views in Figure 1c,d. The in-screen scheme also reduces the transmission requirement,
while the cost is lower because the manufacturing process is shared with the backplane of
the OLED panel, though crosstalk of display and sensors would be more severe. However,
the difficulty of the integration process causes degradation in the sensor performance;
thus, the integration time needed is longer. As the optical distance decreases due to the
integration, the imaging area becomes smaller, so multi-frame image acquisition is required.
Both of these problems require a much longer customer waiting time, which cannot be
tolerated. Thus, no mature in-screen scheme has been proposed yet.

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Comparison of commercial CIS-based solution for fingerprint recognition and our in-screen
solution demonstrated in this work. (a) Schematic of CIS-based solution. (b) A photo of mobile
phone with OLED screen and under-screen fingerprint recognition system integrated. The inset
shows vaguely the CIS module under strong ambient light. (c) Common cross-sectional schematic of
under-screen scheme. (d) Cross-sectional schematic in this work. The thickness is significantly lower.
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(e) Schematic for our in-screen solution. (f) Optical path of incident light reflected to panel in our
solution. Clearly, light intensity varies with the distance from the center of light source to the sensor.
(g) A photo of fabricated OLED panel integrated with in-screen fingerprint recognition scheme in
this work.

In terms of algorithms, in recent years, a lot of progress has been made in fingerprint
image enhancement based on deep learning. Examples include the use of adversarial
learning and edge loss to solve fingerprint sensor interoperability or cross-sensor matching
problems [15,16], and the use of cyclic generation adversarial networks to enhance low-
quality fingerprint images [17]. When applied to under-screen fingerprint images, due
to restrictions in the acquisition environment (sometimes in low temperature or strong
ambient light), image quality (sensor density is generally limited by the display size
and resolution), algorithm model size (generally about 20 MB or below since consumer
electronics require a rapid unlock), and so on, these algorithms have to be optimized to meet
higher requirements. Huang et al. proposed an image preprocessing process for fingerprints
under OLED screens [18]. To overcome the image quality problems, researchers from
Samsung proposed a matching algorithm using multi-scale texture descriptors, A-KAZE,
to improve the accuracy of matching [19]. Wu et al. presents a fingerprint alignment
algorithm based on the latest under-screen optical fingerprint image sensors in order
to avoid very similar but wrong alignment results [20]. To address blurring issues in
fingerprint images due to wet fingers, Zhang proposes an algorithm named EMEE (Ellipse
Model Extrapolation Equalization) based on an elliptical model [21]. In spite of these works,
there are still many problems to be solved, such as handling strategies for different types of
lighting conditions, reducing noise, etc. In addition, the above research results are mostly
aimed at the under-screen fingerprint scheme, and the algorithm development for the
in-screen fingerprint scheme is still missing.

In this study, in terms of hardware, we introduced an in-screen scheme by integrating
the optical sensors and its driving circuits into the OLED panel. The sensors and the
OLED pixels are fabricated on the same glass substrate and share the same set of masks
when manufactured. The test results show that the integrated hardware shows excellent
performance. A point light source scheme is adopted since the optical distance is not long
enough due to the integration. We found that such a scheme would lead to insufficiency
of the effective fingerprint image area, which makes it difficult to achieve key indicators
for matching. Therefore, we designed a lighting pattern of multi-point sources for image
capture. In terms of algorithms, in order to solve the key problem of the long unlocking
time of the in-screen solution, we developed and trained a deep convolutional network
model based on a cross grid structure, to extract, enhance, and stitch fingerprint information
in multi-point light source fingerprint images. Additionally, we designed a multi-level
preprocessing strategy that separately handles regions of ambient light noise, fingermark
reflectance, and point sources in order to reduce the impact of environmental light on the
quality of fingerprint images. The results of data verification show that the model can
achieve the customers’ target. Our work overcomes an important problem towards the
mass production of in-screen fingerprint recognition schemes for OLED.

2. Device and Optical Methods

We developed an OLED panel with sensors integrated to realize the function of in-
screen fingerprint recognition. As can be seen in Figure 1e, the sensor array is nested
between OLED pixels. Cover glass above the panel is used to support and protect the panel.
The sensor, known as PIN, consists of a p-type and n-type silicon, sandwiching a layer of
amorphous silicon as the photosensitive material, converting light into electrons [22]. TFT
circuits, used as pixel driving scheme for sensors, were fabricated by the low-temperature
polycrystalline silicon (LTPS) process. OLED-related designs such as pixel layout, pixel
circuits, and gate on array (GOA) circuits in this study generally follow mature commercial
schemes, and also share the LTPS process. A specific designed driver IC for PIN sensors
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was adopted to realize the accumulation of photo-generated charges and the following
processes, such as analog-to-digital conversion (ADC).

For CIS or under-screen fingerprint recognition schemes, the sensors are under the
display screen, while the thickness of the display module could serve as optical distance of
the image system. However, for in-screen scheme, the optical distance will be significantly
reduced; thus, the conventional area source scheme is no longer applicable. We developed
a point light source scheme for fingerprint image capture to adapt the proposed in-screen
solution. The details are as follows.

When a finger presses down on the surface of the cover glass, one “point light source”
(an OLED pixel or several adjacent pixels) right under the finger lights up and starts to
luminesce towards the interface of finger and cover glass. At the valley of fingerprint, the
interface is glass and air. Some of the incident light from the pixels reflects back into panel
and the rest is released into the air through the interface. Since the refractive index of glass
is greater than that of air, incident light with an angle greater than the critical angle of
total reflection (typical value here is 42◦) will be entirely reflected at the interface, and then
this light will be collected by the sensors. Meanwhile, at the ridge of the fingerprint, the
interface is glass and human skin. Due to the small difference in refractive index between
skin and glass, reflection here will be largely reduced, and a major part of this incident
light escapes through the finger side. Therefore, sensors will capture more light reflected by
fingerprint valley than that of ridge. A fingerprint image then can be captured by the sensor
array, as depicted in Figure 1f. In Figure 1g, we demonstrate a photo of our fabricated
OLED panel, with fingerprint recognition module integrated.

There are some incidental problems with this scheme. At the center of the point light
source, in the sensor plane, there will be a non-imaging area because the light intensity
reflected back is too strong, which exceeds the full well capacity of the sensors (Area I in
Figure 2a). Part of the area around the center of the point light source (Area II in Figure 2a),
also could not obtain valid data since the reflected ratio of light versus the incident light
is too small; thus, the light intensity difference between fingerprint valley and ridge is
beyond the resolution limit of the sensor. Moreover, areas far away from the center of
the point light source (the outside areas beyond Area III in Figure 2a) could not image
well either, due to the long optical propagation distance. The light intensity difference
would thus be too small for sensors to distinguish. Therefore, in the sensor plane, for a
single-point light source, the valid imaging area of in this scheme is limited to a specific
range (Area III in Figure 2a). Experimental data prove that the valid imaging area is too
small to provide enough fingerprint features to realize effective fingerprint matching [23].
This is also one of the main challenges faced by researchers when developing an in-screen
scheme. Typically, the valid imaging area by a single-point light source scheme is about 53%
of that of current commercial CIS solution (which is around 6.5 mm × 6.5 mm). To solve
this problem, naturally, stitching of images from multiple point light sources is considered.
There are two ways to achieve this goal, as shown in Figure 2b. One is to light up the
multiple point light sources sequentially, obtaining multiple frames of images, and then
stitch the images into one. This method could obtain a large image of high quality, but the
disadvantage is that it requires multiple exposure times. Based on the characteristic limits
of sensor and system, and the principle that the display effect should not be influenced,
exposure and processing time of each point light source image needs at least 67 ms. The
total image capture time of this sequential scheme would exceed the commercial standard,
since a long waiting time (image capture time together with processing time such like
fingerprint matching) for fingerprint recognition would not be acceptable by customers.
The second method is to light up multiple point light sources at the same time to obtain
a large-area image at one-time exposure and capture. However, due to image-to-object
optical amplification (roughly ×2 here), the obtained image in the sensor array is enlarged.
Therefore, when multiple point light sources are lit up at the same time, the images of each
light source will be mixed in the sensor plane, and the correct image cannot be obtained, as
depicted in Figure 2c. We cannot avoid this problem by separating the point light sources
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far apart until they do not mix with each other, because the contact area of the finger and
the cover glass is limited.

(a) (b) (c)

Figure 2. Image of the single-point light source scheme (a); lighting timing and pattern for multiple
point light source scheme (b); and (c) schematic of images from different point light sources mixing
with each other, due to the image-to-object optical amplification.

In order to solve the mentioned problems, we designed a light-up pattern, and de-
veloped an optical unmixing network model to realize unmixing and stitching of images
obtained by each point light source at the same exposure time. We adopted a 4-point
mixed lighting pattern here, as can be seen in Figure 2c. Image quality difference in spatial
distribution caused by optical noise was also taken into consideration in the pattern design.
The reasons for choosing this pattern will be discussed in Section 4.

3. Data Acquisition and Processing Methods

Data acquisition and processing methods include the three following parts: Section 3.1.
fingerprint image acquisition by the 4-point light source scheme; Section 3.2. image
preprocessing; and Section 3.3. unmixing and stitching network model. In addition, in order
to train the proposed network model, we first lit up the 4-point light sources sequentially
and stitched the 4 corresponding images together, and then set it as ground truth.

3.1. Data Acquisition, Ground Truth, and Dataset Preparation

A low-noise data acquisition system based on a customized analog front end was set
up for charge accumulation of the PIN sensors. The system works simultaneously with a
commercially used driving scheme for OLED panel. For 4-point light source image acquisi-
tion, we first lit up the 4-point light sources at the same time, and testees were required
to press a finger onto the screen right upon the light sources. After image acquisition,
the testees were required to keep their finger still upon the screen, and the 4-point light
sources were then lit up sequentially to obtain the fingerprint images of the corresponding
single-point light source. Image acquisition for each finger was conducted for several
times repeatedly, and statistically abundant quantity of fingerprint images from fingers
of different testees were obtained. The image was generated by the system into a 16-bit
PNG format.

Fingerprint images of 18 volunteers (12 male and 6 female) in total were collected.
Images of 6 fingerprints for each volunteer were obtained, and the numbering sequence is
shown in Figure 3a. Due to the limited area of the sensors, multiple entries are required to
fully cover the entire fingerprint feature, which is generally set to 20 entries for each finger.
Therefore, it is necessary to collect as many fragments of fingerprints as possible in the first
20 times to achieve full coverage. Then, 40 more tests were conducted as validation test
sets. Due to the lack of publicly accessible datasets of in-screen fingerprint images, we use
these captured data to train and evaluate our algorithm.
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(a)

(b)

Figure 3. (a) Fingerprint data acquired in this work and (b) methods applied for preprocessing and
stitching of single-point light source images.

Schematic diagram in Figure 3b shows the methods taken in data processing of each
single light source image. The problems to be solved in image preprocessing mainly include
three aspects: (i) The obtained image by the sensor array itself not being uniform. In the
point light source scheme, except for the non-imaging area in the center of light source as
depicted in Figure 2c, the luminous intensity of OLED decreases with the increase in the
light exit angle, and moreover, the light intensity decreases with the increase in propagation
distance when total reflection happens. (ii) Defects such as dead pixels, defective lines, and
dynamic patterns. This is due to the process deviations of TFT or metal layers. (iii) Noise in
the image. Noise here comes from the sensor and the image acquisition system, including
the shot noise of the PIN sensor, electro-magnetic signal noise, reading noise of the system,
etc. Among all the processing steps taken, self-adaptive brightness correction is used
to solve problem (i). Anomaly detection and correction and image filtering are used to
solve the problem (ii). Since valleys and ridges in a fingerprint image are required to be
distinguished, self-adaptive contrast correction can significantly enhance the quality of the
image. Then, these four images were stitched as one and set as ground truth.

3.2. Image Preprocessing

Similarly, the 4-point mixed light source images obtained by lighting up the light
source pattern at the same time not only contain fingerprint information obtained by the
sensor through collection of reflected light, but also contain noise information introduced by
ambient light and optical signals near the light source points. Before training the proposed
convolutional neural networks, it is necessary to preprocess the mixed light image, and
strip and segment the primary data and secondary data. As shown in Figure 4a, region A
contains major fingerprint information; region B contains a large amount of ambient light
noise and a small amount of weak fingerprint data; and region C contains a strong light
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source signal and a small amount of fingerprint information. Here, we use the threshold
segmentation method. The average value range of region A, B, C is calculated through
the statistics of a large number of image data. Each pixel and threshold of the mixed light
image is compared to segment the image region, as shown in Formula (1):

Ia
(x,y) =

{
I(x,y) mina ≤ I(x,y) ≤ maxa

0 I(x,y) ≤ mina or I(x,y) ≥ maxa
(1)

where Ia
(x,y) stands for pixel value at position (x, y) in region A; I(x,y) stands for pixel value

in the acquired image at position (x, y); mina and maxa are the minimum and maximum
pixel values, respectively, in an artificially selected region that is relatively smooth in region
A. They are regarded as the lower limit and upper limit of the range of region A. The
Laplacian edge detection algorithm is used to detect the edge in the image. The lengths and
positions of the detected edges are compared, and the final extracted edge is considered as
the boundary between neighboring regions. The image is then segmented. Since fingerprint
data are mainly distributed in the small value range of region A, it is necessary to normalize
each segmented image. The results of a processed image are shown in Figure 4b–d. Both
the mixed light image and the unmixed light image are gray images in a single channel.

(a) (b) (c) (d)

Figure 4. Preprocessing of the mixed light image. (a) Partition of the mixed light image. (b–d) show
the images after processing of segmentation method for Region A, B and C respectively.

3.3. Network Structure of Unmixing and Stitching Algorithm

The structure design of the optical unmixing network model is shown in Figure 5.
The network structure is like a cross grid, deepening the fusion between deep features
and shallow features, making full use of the limited fingerprint information in the mixed
optical image. The network uses spatial separable convolution to realize most of the
convolution operations, with the convolution kernel size k = 5. The down-sampling layer
is composed of spatially separable max pooling layer, min pooling layer, and concat layer,
while the filtering kernel size of pooling layer k = 5. The network takes the above mentioned
preprocessed three-layer image as input. Concat processing of the input is performed on
the channel dimension. That is, the size of the input image matrix is B × 3 × H ×W, where
B is the number of mixed light images in a training batch, H is the height of the image,
W is the width of the image. The output of the network is a B × 1 × H × W unmixing
image matrix.

The function of the unmixing optical network model is to correctly recover the fin-
gerprint image containing clear ridge and valley information from the input multi-point
unmixing image. L1 loss is used to calculate the pixel-by-pixel gap between the unmixing
image generated by the model and the ground truth image, and the gap can be narrowed
by optimizing the network parameters, which can guide the fingerprint image generated
by the model to have a more accurate ridge and valley direction. However, models that
only use L1 loss training focus more on enhancing the thick and obvious ridges and valleys,
while small ridges and valleys in local areas are easy to be blurred. Therefore, this paper
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adds the edge loss function based on the Sobel operator to improve the model’s attention
to small ridges and valleys. The calculation process is shown in Formulas (2)–(4):

LL1
(
Y, Ŷ

)
=

1
W × H × C

W

∑
x=1

H

∑
y=1

C

∑
z=1

∣∣∣Y(x,y,z) − Ŷ(x,y,z)

∣∣∣ (2)

Lsobel
(
Y, Ŷ

)
= LL1

(
S(Y), S

(
Ŷ
))

(3)

L
(
Y, Ŷ

)
= LL1

(
Y, Ŷ

)
+ λ× Lsobel

(
Y, Ŷ

)
(4)

Y stands for the network output of the mixed light images; Ŷ for ground truth; W, H,
C, for the width and height of the image and channel number, respectively; S(x) for image
edge figure based on Sobel edge detection algorithm; λ value is 1.

Figure 5. Network structure of the proposed unmixing algorithm.

AdamW algorithm [24] was used to optimize the model parameters of the network
model. The initial learning rate was set to 10−4 and the batch size of the training data was
set to 48.

After the fingerprint image of the point light source is preprocessed and unmixed, we
intercept the ring region as the effective fingerprint region, according to the full reflection
angle and the requirements of the image signal-to-noise ratio. This is usually realized by
using a fixed ring mask. Several independent ring fingerprint regions are obtained. Due to
the image amplification oriented by this point light source scheme, the size of the image is
larger than the object. The magnification factor is M. In order to stitch, it is necessary to
expand the spacing of the center position of each ring region image by M times. Since the
position of each point source is set by us, its position on the image can also be calculated
by a linear mapping. Therefore, its position on the Mosaic image is also obtained. For the
overlapping regions of multiple ring regions, a weighted average can be used to complete
the fusion of each ring region, and finally stitched into a complete fingerprint image.
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4. Results and Discussion

Figure 6 shows the performance of the in-screen PIN sensor obtained by our test. As
can be seen from the figure, although the sensor area of each pixel is small due to the
layout limitation of the integration, it still maintains a linear response to light intensity
until it reaches full well capacity (about 1800 lx, for the DUT). This shows that the process
optimization of the sensor is effective enough to significantly reduce the influence of the
edge effect. According to the sensor area, integration time, and IC-related parameters,
further calculation can obtain that the optical response degree of our sensor is about
0.0076 fC/(lx·um2). These data are higher than the previous work on using glass-based
PIN in an under-screen scheme [4], and are also consistent with the data that we calculated
based on the transmittance of the stack of film layers. This proves that the in-screen scheme
can effectively increase the semaphore and reduce power consumption compared with the
under-screen scheme. However, our data show that the sensor noise of the in-screen scheme
is about twice that of the under-screen scheme due to interference from the display signal
because of signal coupling. This issue needs to be addressed through further hardware and
design optimization.

Figure 6. Performance of the PIN sensor in the proposed scheme.

Figure 7a–d show a single-light point image, single-point stitched images (ground
truth), unmixing stitched images by a model trained only using L1 loss, and unmixing
stitched images by a model trained using L1 loss and edge loss, respectively. It can be
seen that the area of a single-point image is obviously small, and the latter three prove no
difference in area size. The terminal manufacturer uses false acceptance rate (FAR) and
false rejection rate (FRR) to evaluate the pros and cons of the fingerprint acquisition scheme.
False acceptance refers to the event when a “wrong” fingerprint is input, but the matching
scores is greater than the given threshold. False rejection refer to the event when a “right”
fingerprint is input, but the matching scores fall below a given threshold given by the
evaluating system. The mathematical formula is as follows:

FRR =
NFR

NGRA
× 100% (5)

FAR =
NFA

NIRA
× 100% (6)

where NFR refers to number of false rejections; NGRA refers to number of genuine recog-
nition attempts; NFA refers to number of false acceptances; NIRA refers to number of
imposter recognition attempts.
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(a) (b) (c) (d)

(e) (f)

Figure 7. Output after processing. (a) Image of single-point light source after preprocessing.
(b) Stitched image of 4 single-point light sources. (c) Output image of the proposed unmixing
and stitching algorithm trained with L1 loss only. (d) Output image of the proposed unmixing
and stitching algorithm trained with L1 loss and edge loss. (e) Comparison of key indicators with
and without edge loss in the proposed unmixing and stitching algorithm. (f) Comparison of key
indicators between the stitched images of single-point light source and the proposed unmixing and
stitching image.

Quantitatively, the general requirements of customer indicators are, in the premise
of FAR = 1:50 k, FRR ≤ 1%. We took fingerprint data that had not been used for training
or tested in the evaluating system. NGRA = 3850, NIRA = 370 k are conducted in this
work. Figure 7e demonstrates the influence of edge loss. Edge loss is helpful to improve
the accuracy of the network model to restore the concave and convex curves of ridge and
valley edges and to reduce the false adhesion and fusion of multiple bifurcated regions. It
can be seen that adding edge loss will lead to better performance on FRR. Figure 7f shows
the comparison of FRR of ground truth and the unmixing stitched image with edge loss
involved. Also, some intermediate evaluation metrics are listed in Table 1 to quantitatively
describe the effect of the proposed algorithm. It can be seen in the table and figures that the
single-point stitched image and the unmixing stitched image both meet the requirements
of customers, although the latter still cannot match the former (FRR = 0.7% versus 0.48%,
given FAR = 1:50 k, respectively). Based on our analysis of the recognition result graph,
we found that there is a significant FRR difference between the two methods of obtaining
fingerprint images when FAR was less than 1%, and thereafter, the FRR curves obtained
by the two methods tended to be basically parallel. We believe that this is mainly due to
the insufficient number of samples participating in the training, resulting in overfitting of
the model during the training process. Overfitting leads to the model mistakenly restoring
some fingerprint details to the features of other fingerprints, and there are also very few
cases where fingerprint image details cannot be fully restored. To address this issue, we
plan to improve model performance by increasing the number of fingerprint samples in
the training set. By introducing more training data, we can more comprehensively cover
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various details of fingerprints and reduce the occurrence of overfitting, thereby improving
the accuracy and robustness of fingerprint recovery models.

Table 1. Intermediate evaluation metrics to compare the proposed algorithm and ground truth.
In the table, SNR stands for signal-to-noise ratio; DYN for dynamic range; NRSS for no-reference
structure similarity; SMD for sum of modulus of gray difference; EAV for edge acutance value;
AREA for effective area of the fingerprint image; KEYPOINTS for the number of key points available
for recognition.

SNR DYN NRSS SMD EAV AREA KEYPOINTS

Proposed algorithm
Average value 0.0328 198.22 0.7185 0.0105 202.56 16,586 12.000

Standard error 0.0026 4.2273 0.0407 0.0015 15.677 1251.6 10.779

Ground Truth
Average value 0.0346 198.75 0.7666 0.0123 217.60 16,161 12.254

Standard error 0.0026 6.5187 0.0375 0.0016 16.072 1259.2 11.040

The lighting pattern used above is carefully designed. We also compared the image
quality generated after the same proposed unmixing and stitching algorithm using different
lighting patterns. Specifically, we compared the data of lighting patterns of two points,
four points, and six points. From the result of FRR, as can be seen in Figure 8, a four-point
pattern is slightly better than six points, which is significantly better than two points. The
reasons are as follows: The area of the six-point fingerprint image is larger than that of
the four-point fingerprint image, but the most central part of the fingerprint image has
more saturated and non-information areas due to the bright spots, as mentioned above in
Section 2, which just corresponds to the pressing center of the finger, that is, holes will be
generated in the center of the fingerprint image. Although the hole texture can be recovered
from the surrounding texture by means of deep learning, for the holes in a large range,
there will still be differences between the recovered fingerprint texture and the original
fingerprint, and this difference will lead to a difference between the six-point pattern and
the four-point one. However, due to the small fingerprint area, the information that can be
extracted is less, so the FRR result of the two-point fingerprint image is rather poor.

Figure 8. Comparison of lighting pattern.

As far as we know, the in-screen integrated hardware scheme and lighting pattern and
the corresponding unmixing and stitching algorithm in this paper are proposed for the first
time; thus, there are no identical dataset results to compare with. If we extend the scope
to include under-screen schemes, Bae et al. adopt an adhesive hardware scheme, where
FRR = 0.73% when FAR= 1:50 k (Figure 6 in ref. [25]). The result of our work is slightly
better. In the work of Mathur et al., where a capacitive scheme is adopted, FRR > 0.2% when
FAR= 1:100; either the SIFT or VeriFinger algorithm are used for processing, for in-house
partial DB (Figure 9 in ref [19]). Our work demonstrates a similar result. Zhang used an
under-screen optical hardware scheme, and adopted a fusion feature extraction algorithm
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to repair the fingerprint. For non-extreme cases, the result obtained is FRR = 1.28% @
FAR = 7.28 × 10−4 (Table 5-4 in [21]), where our work is apparently superior. Raw images
captured from the capacitor scheme or the under-screen scheme used in the above three
works are with less noise (especially crosstalk noise), better signal-to-noise ratio, and no
need to perform light unmixing and stitching processing. Despite the poor quality of
raw images and complexity in the algorithm, we still obtained results comparable to peer
studies, proving the effectiveness of our scheme.

Therefore, through the design of a four-point lighting pattern and the development
of a deep learning algorithm, we realized large-area and high-quality fingerprint image
acquisition, which greatly compressed the acquisition time, and solved the problem of
too small fingerprint imaging area caused by the single-point light source amplification
imaging of the in-screen fingerprint scheme. Hence, one of the main obstacles for the mass
production of the in-screen scheme was cleared.

5. Conclusions

By integrating the PIN sensor array into the OLED screen, for the first time, we
designed and prepared an OLED in-screen fingerprint recognition system. Compared to
current commercial solutions such as adhesive or under-screen schemes, our solution can
achieve larger area, better flexible matching, and a significant reduction in cost, turning
out to be a better option. In order to solve the problems of insufficient area of fingerprint
imaging at one capture and insufficient time of collection at multiple captures in this
hardware scheme, we designed an image stitching scheme through four-point light sources
and developed an unmixing optical network model to realize optical unmixing and stitching
of the one-time-exposure images. According to the matching scores after a large amount
of data trained in this model, it is proved that our model, FRR = 0.7% when FAR = 1:50 k,
meets the customers’ target well. Despite the poor quality of raw images and complexity
in the algorithm compared with the above-mentioned schemes, we still obtained results
comparable to peer studies, proving the effectiveness of our scheme. The results show
the proposed lighting pattern and deep learning algorithm we developed can help obtain
high-quality and large-area fingerprint images, which can greatly reduce the time required
for fingerprint collection, and thus provide a feasible scheme for the mass production of
in-screen integration products.

The work ahead needs to be performed are mainly on three aspects. On the hardware
side, PIN performance and integration design need to be optimized to reduce noise interfer-
ence, especially crosstalk between display and sensing, which will radically reduce the size
and difficulty of the algorithm. In terms of lighting pattern, although the mode we adopt
in this study can meet the requirements, it still needs to be further optimized according
to the hardware scheme and algorithm, so as to obtain enough data in a shorter time and
reduce the time required to identify, thus providing a better user experience. In terms of
algorithms, the accuracy and robustness of our algorithms will be improved if there are
more data samples in the future, or if there are datasets of open access available. In addition,
there is still a lot of work needed to be performed in the restoration and reconstruction of
fingerprint details.
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