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1. Introduction

Developments in the medical and technological fields have led to a longer life ex-
pectancy. However, this improvement has led to an increase in the number of older people
with critical health conditions who need care. Older people who cannot care for them-
selves need special assistance during their daily care. Long-term care involves medical,
welfare, rehabilitative, and social services that significantly impact the national social and
health system and involve a growing number of caregivers who are difficult to find [1].
Advances in information and communications technology (ICT), nanotechnology, and
artificial intelligence (AI) have made it possible to develop efficient home care systems [2],
contributing to the containment of public expenditure and the improvement of the living
conditions of older adults. The creation of intelligent objects, ordinarily present in the home,
the advent of IoT, and the existence of AI algorithms have created the right conditions
for the creation of smart environments (AmI) [3] and ambient assisted living (AAL) [4].
These systems make the home active, intelligent, and safe, making it possible to carry out
daily activities in the best possible way and with full autonomy, as well as ensuring timely
intervention in critical situations. The innovations in care for older people, introduced by
technological evolution, are evident in the creation of smartwatches [5] and fitness bracelets
for monitoring vital parameters such as blood pressure, heart rate, and physical activity;
telemedicine to remotely monitor health status and establish treatment plans [6]; and robots
to support social care [7].

The automatic detection of physical activities performed by human subjects is identi-
fied as human activity recognition (HAR). Its goal is correctly classifying data or images
into gestures, actions, and human-to-human or human–object interactions. Identification
is achieved using AI that analyzes activity data captured from different sources. Sources
range from wearable sensors [8] and smartphone sensors [9] to photographic devices or
CCTV cameras [10]. HAR is used in different fields of application ranging from video
surveillance systems, the assessment of the state of health or the analysis of patient behavior
in a natural environment by monitoring the actions carried out, or even for the detection of
anomalies predicting falls, to human–computer interaction and robotics. Depending on the
area of application, the sensors used will be different.

From a functional point of view, HAR consists of the following phases:

• Automatic acquisition of data on activities performed and vital signs through wearable
sensors and sensors connected to medical equipment.

• Data pre-processing (elimination of any noise or unwanted signals).
• Features extraction.
• Model training and testing.
• Activity recognition.

Two technologies can be used for activity recognition: recognition based on vision
or sensor-based recognition. Inertial sensors are preferred over video-based sensors that

Appl. Sci. 2023, 13, 13009. https://doi.org/10.3390/app132413009 https://www.mdpi.com/journal/applsci
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require the installation of cameras in all rooms in a house for motion recording. In ad-
dition, they are expensive, and the accuracy of reconnaissance is affected by brightness
problems and inevitable visual disturbances, as well as violating privacy. Sensors based on
MEMS technology are miniaturized, economical, and have low power consumption [11].
Monitoring activities in the environment where older people live is relevant to evaluating
their behavioral changes. Technology can help to detect and alert healthcare professionals
or family members about a patient’s behavioral changes, preventing serious problems.
Ultimately, with the help of these systems, we can monitor the patient’s status depending
on the specific pathology, the tracking data, and the exact location.

This Research Topic aims to create a collection of articles illustrating different method-
ological approaches to the subject of HAR in an exciting scenario. It contains eleven
articles that will be briefly described below to stimulate the reader’s interest and to
expand their understanding.

2. An Overview of Published Articles

Ojiako and Farrahi (contribution 1) experimented with an innovative predictive model
of human activities (HAR). They demonstrated that the sensor-based MLP mixer archi-
tecture enables competitive performance in vision-based tasks with lower computational
costs than other deep learning techniques. The MLP mixer recently created by Google
Brain [12] does not use convolutions or self-attention mechanisms, and instead consists
entirely of MLPs. The authors compared the performance of the MLP mixer with the
existing state-of-the-art literature:

*Ensemble LSTM.
*CNN-BiGRU.
*AttenSense.
*Multi-agent attention.
*DeepConvLSTM.
*Triple attention.
*Self-Caution*CNN.
*b-LSTM-S.

The performance was 10.1% better in the Daphnet Gait dataset, 1% better in the
PAMAP2 dataset, and 0.5% better in the Opportunity dataset.

Velasco et al. (contribution 2) used the HAR approach to understand human behavior
by analyzing data representative of domestic routines. Their study is oriented towards
establishing a connection between the activities of daily living, the spaces in which they
take place, and the times related to the performance of the activities in a given place. Re-
search has shown that this information is helpful for healthcare professionals to assess the
health status of patients, for family members to keep track of the habits of relatives, and
for home designers to assess the architectural characteristics of home interiors for acces-
sibility and movement of residents. The authors used the knowledge discovery database
(KDD) approach with the data analyst variant as a key player in the knowledge discovery
process [13]. The KDD approach is an interactive and iterative knowledge discovery pro-
cess that identifies relationships between data that must be valid, new, potentially useful,
and understandable. The analyst gains a greater understanding of the domestic routine
with each process iteration. The parameters used for the evaluation are the sequence
of places visited, times of day at which they are visited, and average duration of visits;
the signals are acquired using PIR sensors connected to a Raspberry Pi4, placed inside
each room of the house. Transitions between positions are detected by measuring the
RSSI power of the Bluetooth signal emitted by a BLE device worn by the subject being
monitored. The evaluation of the method was verified through workshops with seventeen
multidisciplinary participants: architects, engineers, health professionals, and caregivers.
The feedback obtained was positive, confirming the validity of the method adopted as a
source of significant information on the status of the monitored subjects.
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In the third manuscript, Huang et al. (contribution 3) proposed a new multiscale
hierarchical adaptive network structure for HAR called HMA Conv-LSTM. In this model,
there are:

• a multi-scale hierarchical convolution module (HMC) that performs finer-grained
feature extraction on the spatial information of feature vectors;

• an adaptive channel feature fusion module that can blend functionality at different
scales, improving model efficiency and removing redundant information;

• a dynamic channel-selection module-LSTM based on the attention mechanism to
extract time context information.

This multi-scale convolution module uses convolutional cores of different scales for
extracting and splicing multi-scale features in both sensory and temporal dimensions. This
strengthens the network’s ability to recognize features of different scales, improves its
adaptability, and enhances its ability to characterize features.

The diversity and duration of the actions detected by sensors placed on different
body positions dictate longer sliding window sizes for segmentation. This sizing can
result in some fine-grained subtle action processes being overlooked, thus affecting action
recognition. In contrast, the proposed hierarchical architecture can split the action window
and extract features from the sensor sequence data with finer granularity to recognize
the finer action processes effectively. To validate the efficacy of the proposed model, the
authors carried out experiments on several public HAR datasets: Opportunity, PAMAP2,
USC-HAD, and Skoda. Their model was built using Google’s open-source TensorFlow
2.9.0 deep learning framework. The proposed model achieves competitive performance
compared to several state-of-the-art approaches. The evaluation results also show that
the proposed HMA Conv-LSTM can effectively obtain the temporal context and spatial
information from sensor sequence data.

Again, Mekruksavanich et al. (contribution 4) used an innovative approach based
on a DL network and the nature of the data. Exploiting the potential offered by WiFi-
based detection techniques, they used channel status information (CSI) [14] rather than
the received signal strength indicator (RSSI). The authors proposed a hybrid deep learning
network called CNN-GRU-AttNet that leverages the strengths of CNN and GRU to extract
informative spatio-temporal features from raw CSI data automatically and to efficiently
classify tasks. They also integrated an attention mechanism into the network that prioritizes
important features and time steps, thereby improving recognition performance. The
network consists of five layers: the input layer, two CNN layers, a GRU layer, an attention
layer, a fully connected layer, and an output layer. To assess the effectiveness of the
proposed model, the authors used two publicly accessible datasets, CSI-HAR and Stan
WIFI. They refer to seven activities: walking, running, sitting, lying down, standing up,
bending, and falling. Because these datasets did not have predefined training and test sets,
they adopted the cross-validation technique five times to evaluate the model’s performance.
They also performed a comparative evaluation of the performance of five core deep learning
models: CNN, LSTM, BiLSTM, GRU, and BiGRU.

The results show exceptional efficacy in the classification of HAR activities, superior to
the five basic DL models, producing an average accuracy of 99.62%, an accuracy of 99.61%,
and an F1 score of 99.61% in all movements.

Kim and Lee (contribution 5), aware that some physical activities may include similar
features that lead the automatic classification phase to incorrect evaluations, proposed
a new approach to improve recognition accuracy. Their proposed method uses a smart-
phone’s three-axis acceleration and gyroscopic data to define activity patterns visually. In
particular, the method expands the sensor data into 2D and 3D images. This generates
new characteristics of human activities that cannot be detected in one-dimensional data.
These new features allow, on the one hand, the recognition of more diverse types of human
physical activity and, on the other hand, the identification of unique characteristics among
similar types of activities. The raw values from the accelerometer and gyroscope that
correspond to the breadth of the continuous data of the activities performed are used to
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represent 2D image models. Each time-series value is transformed into a luminosity value,
obtaining the Brightness Intensity Distribution Model (BIDP) for each physical activity
data. Each point is expressed as a distinct brightness value based on the measured value.
This type of representation includes areas of intense and low brightness depending on the
location of the data waveform that can degrade the model’s performance. To overcome this
problem, the authors carried out a processing step to generate a standardized visual image.

The image data were used in the training phase along with the raw 1D data to increase
the precision and accuracy of the HAR. The sensor data from the triaxial accelerometer
and gyroscope used in this study came from the “WISDM Activity and Biometrics for
Smartphones and Smartwatches” published by Weiss [14]. The neural network used was of
the multidimensional convolutional type. The model achieved a 90% or higher performance
for all 18 classes of physical activity examined.

This model’s HAR performance was superior to previous studies’ corresponding performance.
Caramaschi et al. (contribution 6) experimented with a model for the recognition

of human activity independent of the orientation of the worn device that classified five
predefined activities within a range of actions that could occur in a clinical setting. Their
proposal stems from the study of how changes in sensor orientation affect the classification
of deep learning (DL) human activity recognition (HAR) targeting activities such as slow
and assisted walking and wheelchair use. The HAR model is orientation-agnostic, uses data
augmentation, and is trained with acceleration measurements recorded from five sensor
positions on the participant’s trunk. The wearable sensor data augmentation approach,
first used by Ohashi et al. [15], positively affects time-series computing and potentially
improves data-driven tasks such as HAR. They used two datasets. The first is the Wearing
Position Study (WPS) acquired at Philips Research Laboratories (2022). It contains three-axis
acceleration measurements from nineteen healthy volunteers, comprising ten males and
nine females. The second is the Simulated Hospital Study (SHS) acquired at Philips
Research Laboratories (2019). It includes ten healthy male and ten female volunteers.
Five GENEActive (GA) sensors were used for monitoring: two in contact with the skin,
two dangling from the neck, and one in the pocket of the clinical gown. The implemented
HAR model is a modified version of the DNN proposed by Fridriksdottir et al. [16]. The
main difference is replacing the long short-time memory layer with a convolutional layer.
This change in architecture was introduced to simplify the model and did not generate
significantly different results from the previous DNN. The performance achieved by the
two sets was evaluated to choose the number of augmented rotation intervals to be applied
to the training data. The first set consisted of seven rotations between 0 and 90 degrees,
while the second set consisted of seven rotations between 0 and 180 degrees. In light
of this preliminary analysis, the final augmentation settings for the augmented model’s
training set consisted of ten rotations from 0 to 180, with a 20-degree pitch on the frontal,
longitudinal, and sagittal axes separately. Cross-validation was used five times to train
both the base and augmented model. The cross-validation performance was used to
evaluate the augmentation approach (i.e., the range of rotations) and the effect of rotation
on the baseline model. The control data results confirmed the augmented model’s good
performance obtained during cross-validation. Testing showed that as the data increased,
the model could learn additional configurations not provided by the initial dataset.

Adherence to cardiac rehabilitation does not currently produce the expected results,
negatively affecting the health status of patients and the use of available resources. To
improve this trend, Filos et al. (contribution 7) set up a study based on machine learning
techniques to predict the adherence of patients with cardiovascular disorders to a six-month
home cardiac telerehabilitation program. Their approach is based on the use of clinical in-
formation available before the start of a program and behavioral and cardiovascular fitness
characteristics acquired during the preliminary phase of familiarization with the program.
As a first step, the methodology applied involves classifying patients into different clusters.
Hierarchical clustering, an algorithm that groups objects with similar characteristics in a tree
hierarchy, was used for classification. The baseline data led to the formation of three groups
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of patients: an active, low-risk patient group, sedentary, high-risk patients, and a group
of patients at high cardiovascular risk but who are fit and motivated. Familiarity with
exercise showed three adherence behaviors (high adherence, low adherence, and transient
adherence), while exercise sessions after the familiarization phase resulted in adherent
and non-adherent clusters. Two model types, namely repetitive decision trees (DT) and
random forest (RF), were used to predict long-term adherence. The data to develop the DT
model were patient clusters created based on baseline characteristics and clusters related
to adherence to the exercise program. Since the DT model is unstable, a slight variation
in the training dataset can lead to changes in the tree. A random forest (RF) technique,
which is more stable, was thus applied. The first model showed both high accuracy and
high recall, at 80.2 ± 19.5% and 94.4 ± 14.5%, respectively, which were better than the
performance of the second model, which displayed a precision of 71.8 ± 25.8% and a recall
of 87.7 ± 24%. Network analysis was applied to discover correlations of their characteristics
that relate to adherence. This study highlighted how important the combination of basic
clinical data with the characteristics acquired during a brief familiarization phase is for
the high-accuracy prediction of adherence to the long-term RC program. The proposed
methodology can be generalized to facilitate the identification of patients who are more
adherent to telerehabilitation programs.

Obesity increases the risk of many chronic diseases, especially cardiovascular disease,
and is a cause of death. Faced with the rapid increase in obesity in the population, Vidal
et al. (contribution 8) developed a cross-sectional analytical study of residents of the United
States of America (USA) who have an Instagram account to determine whether using any
meal tracking platform to record food consumption correlated with an improvement in
body mass index (BMI). The survey was conducted on a sample of actual or graduate
students from Mary Hardin Baylor University, Oakland University, the University of
Kentucky, and Queens University in Charlotte. Eight hundred and ninety-six subjects with
an Instagram account signed up to participate in an anonymous online survey, of which
78.7% were women, 20.6% were men, and 0.7% were classified as others. As for generations,
11.5% belonged to Generation Z, 75.6% to the Millennials, 11.4% to Generation X, and 1.6%
to the Baby Boomers. Overall, 93.5% of the sample did not smoke, 2.3% smoked, and 4.1%
smoked occasionally. Concerning academic qualifications, 3.7% had high school graduates,
6.1% had some university credits, 0.6% had technical training, 3.2% had an associate degree,
43.2% had a bachelor’s degree, 15.1% had a master’s degree and 28.1% had a doctorate. The
information acquired through the questionnaire included the number of hours per week
dedicated to Instagram or physical activity and the intensity of physical activity performed.
In order to test the influence of using any meal tracking platform to record food intake
on BMI, they were asked if they had used any digital platform in the past month. The
chi-square test was used to study the relationships between the use of any digital platform
in the last month and gender, generation, smoking habits, highest academic degree earned,
and time spent on Instagram. The Mann–Whitney U test was adopted to compare BMI,
weekly hours spent on Instagram looking at nutrition- or physical activity-related content,
vigorous physical activity, moderate physical activity, time spent walking, and time spent
sitting among participants who did not eat meals. The survey showed that the platform
was used by 34.2% of the sample. Participants who used any meal tracking platform
also had a higher BMI, invested more hours per week on Instagram looking at nutrition-
or physical activity-related content, and performed more minutes per week of vigorous
physical activity. The survey showed that participants rely on new technologies for optimal
weight without obtaining practical results. The authors believe that combining care with
digital app-based tools and support from healthcare professionals can help individuals to
effectively achieve a healthy weight.

In the ninth paper, Alemayol et al. (contribution 9) proposed a gait and pose analysis
study based on estimating the angle of the lower limb joint from a single inertial sensor.
Gait analysis is critical in healthcare; it is mainly adopted for precise patient monitoring,
the identification of movement abnormalities, the evaluation of surgical findings, and

5



Appl. Sci. 2023, 13, 13009

the detection of osteoarthritis of the knee and hip to diagnose Parkinson’s disease. Gaits
are interpreted through three types of parameters: spatiotemporal (e.g., stride speed and
length/stride), kinematic (e.g., hip extension/flexion), or kinetic parameters (e.g., ground
reaction moments and forces). The authors used kinematic parameters, the joint angles
of the lower limb, and preferred wearable sensors for data collection. These sensors are
preferred to non-wearable ones, which generally consist of optical motion acquisition
systems with high position accuracy, as they are expensive and require longer installation
times and specific skills. Motion analysis in a real-world environment requires precise
and reliable sensors. The investigations identified the Xsens inertial sensors as the most
suitable for this purpose. The literature has various testimonies on the number of sensors,
their positioning and estimation methods, and the analysis of movement. The authors
employed various neural network algorithms to determine the number and placement
of sensors for estimating the joint angle of both legs. To calculate the actual values of the
lower limb joint angle, seven individual Awinda sensors were mounted on the lower half
of the body of each of the sixteen subjects, in particular one on the pelvis at the height of the
anterior-superior iliac spine, another on each of the lateral thighs, two more on the upper
parts of the tibiae and finally two more on the upper anterior parts of the feet. The goal
was the estimation of leg kinematics (joint angles) from any of the sensors attached to the
body. The authors used four different neural network models for the estimation: long-term
bidirectional memory (BLSTM), convolutional neural network, wavelet neural network,
and unidirectional LSTM. Two groups of target angles of the leg joint were examined. The
first set contained only four corners of the leg joint in the sagittal plane, while the second
included six angles of the leg joint in the sagittal plane and two angles of the leg joint in
the coronal plane. By evaluating different combinations of networks and datasets, it was
found that the BLSTM network was the best performer with both datasets, with an absolute
mean error (MAE) of between 3.02◦ and 4.33◦ for the four dominant angles of the leg joint
in the sagittal plane. The results improved with an increased number of sensors and the
introduction of biometric information. From the investigation of the placement of the single
sensor, it was found that the shin or thigh is the optimal position for estimating the angle of
the leg joint. Actual leg movement was compared to a computer-generated simulation of
leg joints, which demonstrated the possibility of estimating leg joint angles during walking
with a single inertial sensor.

Bibbò et al. (contribution 10) developed an innovative model to detect subjects’
emotional health using a self-normalizing neural network (SNN) containing an ensemble
layer. In the context of HAR, computer vision technology can be applied to recognize
emotional states through facial expressions using facial positions such as the nose, eyes,
and lips. The recognition of facial emotions is important because, from the analysis of the
face, it is possible to detect the subject’s health status, such as anxiety, depression, stress,
malaise, and neurodegenerative disorders, making facial diagnosis possible. This is a
beneficial technique in caring for older adults; through the information provided, medical
staff can evaluate the type of intervention required to reduce the subjects’ discomfort. Some
facial manifestations can be associated with the first pathological symptoms, preventing
diseases that can degenerate. The innovation produced by the authors is the development
of an AI classifier based on a set of classifier neural networks whose outputs are directed to
an ensemble layer. In particular, the networks are self-normalizing neural networks (SNNs).
The model comprises six SNNs, each trained to identify six emotions (anger, disgust, fear,
happiness, sadness, and surprise). The networks cascade, and each is dedicated to detecting
the presence or absence in the input image of a single specific emotion (among the six
present in this study) assigned to and associated with it. Each neural network is trained
with its images for a specific emotion. Each network produces two outputs, among which
the first, identified with EM through a numerical enhancement (from 0 to 1), confirms the
correspondence of the emotion detected with that assigned to the network. The second,
identified with AM, similarly through a numerical enhancement (from 0 to 1), signals the
presence of a different emotion from that assigned to the specific network. These outputs
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are then transferred to the ensemble layer, which provides an accurate result by analyzing
the outputs of the individual networks according to statistical logic. Kaggle was used as the
dataset. The authors used an approach to validate the results through the control network
in the experiments. The results showed a success rate for almost all emotions of around
80%, with a peak of 95% for the emotion “Fear”.

The exciting topic of the metaverse is addressed in the eleventh article of this collection.
One of the areas in which the metaverse is applied is digital games. Virtual reality and ani-
mation allow virtual characters to take on natural roles and generate new immersive ways
to live their lives. Oliveira et al. (contribution 11) aimed their research at understanding
the impact of the concept of the metaverse on ordinary people’s lives. The definition of the
concept of the metaverse was first postulated by Neal Stephenson in his book Snow Crash
in 1992. It was defined as a virtual world capable of reaching, interacting, and influencing
human existence [17]. There currently needs to be a single definition.

The metaverse can be understood as a network of interconnected 3D virtual worlds
rendered in real time that can be experienced synchronously and persistently by an unlim-
ited number of users. This study is part of the research on the metaverse, virtual reality,
and gaming. It was produced in three focus groups with Portuguese adults who are regular
video game players. The focus group originated in the work of the Bureau of Applied
Social Research at Columbia University in 1940. It is used in research in several disciplines.
It is a qualitative method of collecting data on a particular topic in an informal discussion
between selected people. During the discussion, information is gained about what people
think or feel and how they act. The developed investigation has the following aims:

• To verify how the metaverse is represented and characterized;
• To identify which technologies stimulate the immersion experience;
• To identify the main dimensions that influence the acceptance of the metaverse concept;
• To understand perceptions of metaverse and VR regarding socialization and well-being;
• To test perceptions of a player’s daily life regarding the concepts of the metaverse,

virtual reality, and gaming;
• To understand the impact of social representations on the concept of play;
• To understand animation’s perceived role in relation to the Metaverse, Virtual Reality,

and gaming concepts.

The data collected during the focus groups are the answers provided by the 13 partici-
pants to the twenty-eight questions distributed across the three themes: games, animation,
and metaverse. The results obtained from player responses produced accurate information
on how the metaverse is represented and characterized and relates to virtual reality and
gaming. In conclusion, the metaverse is considered a game that allows immersive experi-
ences through virtual reality technology and the style and esthetics of animation. It is also
seen as a means of socialization and communication, and a promoter of well-being.

In the future, its expansion into the world of social networks as a means of communi-
cation is foreseeable.

3. Conclusions

AI-based automated HAR monitoring systems are exceptional tools that can be inte-
grated into current practices to improve quality of life. The role of AI is essential in HAR
systems because of its ability to extract hidden information and the level of accuracy shown
in its classification activities. However, using these innovative technologies raises several
issues related to divergent considerations among stakeholders concerning security, privacy,
and health implications due to the use of these technologies. The approach in the design
phase to the role of AI, from the point of view of its responsibilities, needs to be sufficiently
clear. It should be highlighted whether the ML model is assistive or autonomous. Assis-
tive models provide healthcare professionals with treatment, diagnosis, and management
suggestions, leaving them responsible for making decisions. Autonomous models provide
direct diagnoses without any interpretation or supervision from the doctor. Since the de-
veloper’s choice regarding the level of autonomy has clear implications for accountability,

7



Appl. Sci. 2023, 13, 13009

it should be the subject of dialogue and discussion between stakeholders. Implementing
machine learning systems requires considering both clinical and ethical aspects to produce
benefits in health care, facilitate independent living, and reduce healthcare spending. One
of the biggest challenges we will see in the future is the development of increasingly high-
performance artificial intelligence models in new application domains that comply with
moral and ethical requirements [18].
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Abstract: Convolution, recurrent, and attention-based deep learning techniques have produced
the most recent state-of-the-art results in multiple sensor-based human activity recognition (HAR)
datasets. However, these techniques have high computing costs, restricting their use in low-powered
devices. Different methods have been employed to increase the efficiency of these techniques;
however, this often results in worse performance. Recently, pure multi-layer perceptron (MLP) archi-
tectures have demonstrated competitive performance in vision-based tasks with lower computation
costs than other deep-learning techniques. The MLP-Mixer is a pioneering pureMLP architecture that
produces competitive results with state-of-the-art models in computer vision tasks. This paper shows
the viability of the MLP-Mixer in sensor-based HAR. Furthermore, experiments are performed to
gain insight into the Mixer modules essential for HAR, and a visual analysis of the Mixer’s weights is
provided, validating the Mixer’s learning capabilities. As a result, the Mixer achieves F1 scores of
97%, 84.2%, 91.2%, and 90% on the PAMAP2, Daphnet Gait, Opportunity Gestures, and Opportu-
nity Locomotion datasets, respectively, outperforming state-of-the-art models in all datasets except
Opportunity Gestures.

Keywords: human activity recognition; MLP-Mixer; efficiency

1. Introduction

The last two decades have witnessed the rapid growth of wearable devices, which
are increasingly being used for ubiquitous health monitoring. Human activity recognition
(HAR) aims at detecting simple behaviours, such as walking or gestures; more complex
behaviours, like cooking or opening a door, with various use-cases that continue to grow
as the field expands; and assistive technology, such as identifying odd behaviours in the
elderly, including falls [1], skill assessment [2], helping with rehabilitation [3], sports injury
detection, and ambient assisted living [4–6]. Accurately predicting human activities from
sensor data is difficult due to the complexity of human behaviour and the noise in the
sensor data [7].

With larger datasets and more computational power, deep learning has evolved, re-
moving the need for manually created features and inductive biases from models and
increasing the reliance on automatically learning features from raw labelled data [8]. Com-
plex deep learning techniques, such as convolutions and attention-based mechanisms,
are used increasingly with growing computational capacity. These techniques perform
well with larger models, resulting in processes that are generally more expensive compu-
tationally and memory-wise than previous techniques. Although wearable devices and
smartphones have rapidly increased in computation efficiency over the past two decades,
they are still limited in power and storage; this prevents them from using state-of-the-art
deep learning techniques in HAR.

MLP-Mixers, recently created by Google Brain [8], are simplistic and less computa-
tionally expensive models, yet they produce near state-of-the-art results in computer vision
tasks. Wearable devices could produce competitive results in HAR without the significant
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computational demands that current state-of-the-art models impose if MLP-Mixers per-
formed similarly in HAR, which would help advance HAR toward low-powered devices.

The main contributions of this paper are as follows:

• We investigate the performance of the MLP-Mixer in multi-sensor HAR, achieving
competitive, and in some cases, state-of-the-art performance in HAR without con-
volution, recurrent, or attention-based mechanisms in the model. The accompanied
code can be found here https://github.com/KMC07/MLPMixerHAR (accessed on 6
October 2023).

• We analyse the impact of each layer in the Mixer for HAR.
• We analyse the effect of the sliding windows on the Mixer’s performance in HAR.
• We perform a visual analysis of the Mixer’s weights to validate that the Mixer is

successfully recognising different human activities.

2. Related Work

Four main categories of deep-learning architecutres have been used in HAR, convolution-
based architectures, recurrent networks, hybrid models, and attention-based models [9].
Evaluation is performed on benchmark HAR datasets, including Opportunity [10], Daphnet
Gait [11], PAMAP2 [12], Skoda Checkpoint [13], WISDM [14], MHEALTH [15], and UCI-
HAR [16].

With the recent success of CNNs in feature detection, Zeng et al. [17] first proposed
using CNNs in HAR, but they only used a basic CNN on a single accelerometer. Next,
Hammerla et al. [18] thoroughly investigated CNN use in HAR and established its viability.
However, good performance requires large CNN models; this increases the computational
cost, constraining their use on low-power devices. To solve this, Tang et al. [19] looked into
the performance and viability of an efficient CNN that uses a tiny Lego filter inspired by
Yang et al. [20]. The paper investigated a resource-constrained CNN model for HAR on
mobile and wearable devices, achieving an F1 score of 91.40% and 86.10% in the PAMAP2
and Opportunity datasets, respectively. However, this work had the drawback of having
slightly worse performance when compared to conventional CNNs when using small Lego
filters instead of traditional filters.

Recurrent networks are good at capturing long-term dependencies, and because of their
architecture, they can pick up temporal features in sequenced data. Hammerla et al. [18]
took advantage of these benefits and proposed three LSTM models: two uni-directional
LSTM and a bi-directional LSTM model, which trains on both historical and upcoming
data. The models were trained and evaluated on the PAMAP2, Opportunity, and Dapnet
Gait datasets. This work described how to train similar recurrent networks in HAR
and introduced a brand-new regularisation method. The bi-LSTM model outperformed
state-of-the-art models in the Opportunity Gestures dataset, achieving an F1 score of
92.7%. Murad et al. [21] showcased the performance of uni-directional, bi-directional,
and cascaded LSTM models. The bi-direction LSTM performed best on the Opportunity
dataset, with an accuracy of 92.5%. The cascaded LSTM performed the best on Daphnet,
with an accuracy of 94.1%. However, the work did not evaluate the models on extensive
and complex human activities; additionally, resource efficiency was not considered when
designing the model.

CNNs effectively extract spatial features from a local area; however, these models do
not have “memory”, making it hard to learn long-term dependencies between different
samples. RNNs, on the other hand, due to their specific structure, have memory allowing
them to learn long-term dependencies; however, they are challenging to train. Researchers
have created hybrid deep learning models to address the shortcomings of both CNN and
RNN neural networks.

Recently, attention mechanisms have been applied in models to improve performance
in HAR. Attention mechanisms allow the model to learn what to focus on in the dataset and
understand the relationship between each input element. Ma et al. [22] combined attention
mechanisms with a CNN-GRU. This architecture provides the benefits of CNNs, GRUs,
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and attention, enabling spatial and temporal understanding of the dataset. The model
had good performance on all the datasets explored. However, the model is unsuitable for
low-powered devices due to the computational complexity of combining all these models.
Gao et al. [23] combined temporal and sensor attention in residual networks using a novel
dual attention technique to enhance the capacity for feature learning in HAR datasets.
The temporal attention focuses on the target activity sequence and chooses where in the
sequence to concentrate, whereas the sensor attention is vital in selecting which sensor to
focus on, obtaining accuracy scores of 82.75% and 93.16% on Opportunity and PAMAP2,
respectively. Although this model performed well, it was constrained by the shortage
of labelled multimodal training samples. Additionally, this work did not consider this
model’s computation and memory requirements, which decreases its potential for use in
low-powered devices.

MLP Architectures

In a different area of study, with the arrival of the MLP-Mixer, pure deep MLP archi-
tectures have started appearing in computer vision tasks. The MLP variants have similar
structures to the MLP-Mixer, usually with only the internal layers being modified to im-
prove the model. These MLPs work by using a “token-mixing” or/and “channel-mixing”
layer to capture relevant information from the input, followed by stacking these layers N
times. The MLP-Mixer achieved competitive results in computer vision tasks; however,
CNNs and Transformer-based models such as Vision Transformers (ViT) [24] outperform
the Mixer. To overcome this, Liu et al. [25] proposed a new MLP model called gMLP that
introduces a spatial gating unit into MLP layers to enable cross-token interactions. The
gMLP performs spatial and channel projections similar to the MLP-Mixer; however, there
is no channel-mixing layer. The gMLP has 66% fewer parameters than the MLP-Mixer yet
has a 3% performance improvement.

Another method involves using only channel projections. Removing the token-mixing
layer prevents MLPs from gaining context from the input and stops the tokens from
interacting with one another. Instead, to regain context, the feature maps are spatially
interacted with using channel projections after being shifted to align them between the
various channels [24]. Yu et al. [26] proposed the S2-MLP. This model uses spatial shift
operations to communicate between patches. This method is computationally efficient
with low complexity. This model achieves high performance even with its simplicity,
outperforming the MLP-Mixer and remaining competitive with ViT. Finally, Wei et al. [27]
proposed ActiveMLP. This is a token-mixing mechanism that enables the model to learn
how to combine the current token with useful contextual information from other tokens
within the global context of the input. This mechanism allows the model to learn diverse
patterns successfully in vision-based tasks, achieving an accuracy of 82% in ImageNet-1K.

The token-Mixer uses static operations. This prevents the token-Mixer from adapting
to the varying content contained in the different tokens. Methods have been proposed
to add adaptability, allowing the varying information in the tokens to be mixed [24].
Tang et al. [28] try to overcome the static token-mixing layer by viewing each token as an
amplitude and phase-varying wave. The phase is a complex number that controls the
influence of how tokens and fixed weights are related in the MLP, whereas the amplitude is
a real number that represents each token’s content. The combined output of these tokens is
affected by the phase difference between them, and tokens with similar phases tend to com-
plement one another. WaveMLP limits the fully connected layers to only tokens connected
within a local window to address the issue of input resolution sensitivity; however, this
prevents the MLP from taking global context across the entire input. WaveMLP is among
the best MLP architectures, achieving 82.6% top 1-accuracy in ImageNet-1K. It achieves
competitive results with CNNs and Transformers but is still outperformed by them. To
improve on this, Wang et al. [29] proposed the DynaMixer; by considering the contents
of each set of tokens to be mixed, DynaMixer can dynamically generate mixing matrices.
The DynaMixer mixes the tokens row-wise and column-wise to improve the computation
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speed. In each iteration of the DynaMixer, feature dimensionality occurs to produce the
Mixer matrices; additionally, substantially reducing the number of dimensions has little
impact on the performance. These feature spaces are separated into various segments for
token-mixing. The DynaMixer currently produces state-of-the-art performance among
MLP vision architectures, achieving 82.7% top-1 in Imagenet-1k.

3. Methodology

3.1. MLP-Mixer

The MLP-Mixer (Mixer) does not use convolutions or self-attention mechanisms and
is instead made up entirely of MLPs. Even with a simpler architecture than CNNs and
transformers, the Mixer produces competitive results in computer vision tasks against
state-of-the-art models. The Mixer only uses basic matrix multiplication, changes to data
layout, and scalar non-linearities, resulting in a simpler and faster model. The Mixer has
a similar architecture to the ViT; however, the Mixer’s structure has benefits in terms of
speed by allowing linear computation scaling when increasing the number of input patches
instead of quadratic scaling in the case of the ViT.

Figure 1 illustrates the MLP-Mixer architecture. The input is divided into unique
patches that do not overlap. The patches are linearly projected into an embedding space.
In contrast to the transformer and ViT, the input does not need positional embeddings
as the Mixer is sensitive to the position of the inputs in the token-mixing MLPs [8]. The
Mixer consists of two types of MLP layers: the token-mixing layer and the channel-mixing
layer. The inspiration behind this is that modern vision neural architectures, according
to [8], (1) mix their features at a given spatial location across channels and (2) mix their
features between different spatial locations. CNNs implement (1) with a convolution
layer through the 1 × 1 convolution operation; and (2) using large kernels and by adding
multiple convolution layers with pooling, which decreases the input spatially. In attention-
based models, both (1) and (2) are performed within each self-attention layer. The Mixer’s
purpose is to separate per-location operations (1) and cross-location operations (2). These
features are achieved through two layers, called “token-mixing” and “channel-mixing”,
representing the per-location and the cross-location operations, respectively.

Figure 1. Annotated MLP-Mixer architecture with token-mixing annotated on the left and channel-
mixing annotated on the right. Image from [8].

Each unique patch has identical dimensions. The number of patches is calculated by
dividing the input dimensions (H, W) by the patch resolution (P, P), S = HW/P2. The
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sequence of non-overlapping patches is projected into an embedding space with dimension
C, resulting in a matrix of dimensions S × C. The layers in the Mixer are all the same size
and are made up of two MLP blocks each.

• The first block is the token-mixing MLP; the input matrix is normalised and transposed
to allow the data to mix across each patch. The MLP(MLP1) will act on each column
of the input matrix, sharing its weights across the columns. The matrix is transposed
back into its original form. The overall context of the input is obtained by feeding
each patch’s data into the MLP. This token-mixing block essentially allows different
patches in the same channel to communicate.

• The second block is the channel-mixing MLP; this receives residual connections from
its pre-normalised original input to prevent information from being lost during the
training process. The result is normalised, and a different MLP(MLP2) performs
the channel-mixing with a separate set of weights. The MLP acts on each input
matrix row, and its weights are shared across the rows. A single patch’s MLP receives
data from every channel, enabling communication between the information from
various channels.

Each MLP block contains two feed-forward layers with a GELU [30] activation function
applied to each row of the input data. The Mixer layers are calculated in Equation (1) (the
layer index is not included), and the GELU function is demonstrated in Equation (2).

U∗,i = X∗,i + W2σ(W1LayerNorm(X)∗,i), f or i = 1 . . . C, (1)

Yj,∗ = Uj,∗ + W4σ(W3LayerNorm(U)j,∗), f or j = 1 . . . S.

GELU(x) = xP(X ≤ x) = xΦ(x) (2)

It is intuitive to share the weights in each layer of the channel-mixing MLPs as this
offers positional invariance, a key characteristic of convolution layers in CNNs. However,
it is less intuitive to share the weights across channels in the token-mixing MLPs. For
instance, some CNNs use separable convolutions [31], which apply convolutions to each
channel independently of the others. However, these convolutions apply different filters
to each channel, in contrast to the token-mixing MLPs, which use the same filter for all
channels. Additionally, sharing weights in the token-mixing and channel-mixing layers
prevents the Mixer from growing in size quickly when the number of patches, S, or the
dimensions of the embedding space, C, increases, leading to substantial memory savings.
Furthermore, the empirical performance of this model is unaffected by this characteristic.

4. Datasets

To evaluate the performance of the MLP-Mixer in classifying a variety of activities,
three datasets are used for benchmarking.

4.1. Opportunity

The opportunity dataset [10] contains complex labelled data collected from multiple
body sensors. It consists of data from four subjects recorded in a daily living scenario
designed to create multiple activities in a realistic manner. Each subject had six sets of data.

The opportunity dataset consists of all three types of human activities: recurrent, static,
and spontaneous. The subjects wore a body jacket that contained five inertial measurement
units (IMU), made up of a 3D accelerometer, a gyroscope, and a magnetic sensor; two
inertial sensors for both feet; and 12 wireless accelerometers sensors, which suffered from
data loss due to their Bluetooth connection. In this dataset, only sensor data without
packet loss was used. This included data from the inertial sensors on both feet and the
accelerometer sensors on the back and upper limbs, resulting in each sample containing
77 dimensions of sensor data when combining all the sensor data together. The sensors
recorded the data at a sampling rate of 30 Hz. The Mixer is trained, validated, and tested on
are similar to that in the previous literature [18,32–34] for consistency and fair comparison.
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The Mixer was tested on ADL4 and AD5 from subjects 2 and 3, ADL2 from subject 1 was
used as the validation set, and the rest of the ADLs and all the drill sessions were used for
training the Mixer. The Opportunity dataset has multiple benchmark HAR tasks, including:

• Opportunity Gestures: This involves successfully classifying different gestures being
performed by the subjects from both arm sensors. There are 18 different gesture
classes.

• Opportunity Locomotion: This involves accurately classifying the locomotion of the
subjects using full body sensors. There are five different locomotion classes.

4.2. PAMAP2

The PAMAP2 dataset [12] contains complex labelled data collected from chest, hand,
and ankle sensors. This consisted of data recorded from nine subjects. Each subject followed
a routine of 12 different actions and optionally performed an addition of 6 activities,
resulting in 18 recorded activities each, 19 if you include the null class.

The PAMAP2, similar to the Opportunity dataset, contains all three types of human
activities. The nine subjects wore IMUs on their hands, ankles, and chest. The IMU
recorded multimodal data, which consisted of an accelerometer, gyroscope, heart rate,
temperature, and magnetic data. In total, the data contains 40 sensor recordings and
12 IMU orientation data points, resulting in each sample containing 52 dimensions of
sensor data when combined. Each sensor sampled the data at a sampling rate of 100 Hz,
and the dataset was downsampled to approximately 33.3 Hz to have a similar sampling rate
to the opportunity dataset. There were missing data present in the dataset from the packet
loss of the wireless sensors. To account for this, only the heart rate sensor was interpolated;
afterwards, samples with missing values were excluded from the dataset. The parts of the
dataset that are trained, tested, and validated are identical to the previous literature [34,35].
The Mixer was tested on subject 6 and validated on subject 5, and the rest were used for
training; however, subject 9 was dropped due to significantly less sensor data compared
to the rest of the subjects. Additionally, the orientation data points were not used as they
were unimportant for this problem, leaving the dataset with a dimension of 40 features. To
make the experiments performed on PAMAP2 comparable with the previous literature, the
optional activities and the null activities are excluded while training the Mixer, resulting in
a total of 12 classes to be classified.

4.3. Daphnet Gait

The daphnet gait dataset [11] contains labelled data collected from accelerometer
sensors. It consists of data collected from 10 subjects who are affected with Parkinson’s
disease (PD). The subjects are instructed to carry out three types of tasks, walking in a
straight line; walking while turning; and realistic ADL scenarios, which involve tasks
such as getting coffee. These tasks were designed to frequently induce gait freezing in the
subjects. Freezing is a common symptom of PD, which causes difficulty starting movements,
such as taking steps, for a short period of time [18]. The goal of the dataset is to detect
whether the subjects are freezing or doing the specified actions (walk, turn). This is a binary
classification problem since the specified action are combined into one class, “No Freeze”,
and the “Null” class is excluded from the experiment.

Accelerometers were used to capture information about the subjects. They were placed
on the chest, above the ankle, and above the knee, resulting in each sample containing nine
dimensions of sensor data when combined. Each sensor sampled the data at a sampling
rate of 64 Hz, and the dataset was downsampled to 32 Hz for temporal comparison with
the other datasets. A fair comparison was maintained by splitting the dataset into training,
validation, and testing sets identical to the early literature [18]. The Mixer was tested on
data from subject 2, validated on subject 9, and trained using the rest of the information.
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4.4. Sliding Windows

For the datasets to be trained and tested by the Mixer, a sliding window approach is
used on the dataset. This splits the dataset into multiple sequences with the dimensions
(Df × SL), where Df is the number of features in the dataset and SL is the sliding window
length. These 2D sequences, in the case of the Mixer, are treated as images. The length of
the sliding window maintains a fixed length throughout each separate training process
but varies across the different datasets and experiments. As mentioned in Section 3.1,
the Mixer takes an input image with dimensions (H, W) that is split into patches with
identical dimensions (P, P). This requires the patch resolution, P, to be fully divisible by
both dimensions of the input. This limits the length of the sliding window to either be
divisible by the number of features in the dataset or divisible by the patch resolution.

The Mixer outputs a prediction of the activity for every sliding window interval after
observing it; however, there would be multiple predictions in the sliding window instead
of a single ground truth prediction. There are multiple methods around this [35], which
involve using the prediction at the end of the sliding window, max-pooling all of the
sequence predictions over time, or returning the most frequent predictions. The Mixer
benefits from mixing its features at a given spatial location across channels and between
different spatial locations. In addition, the token-mixing MLP provides a global context of
the input to the model. Therefore, using the most frequent predictions as the ground truth
prediction is preferred to other methods since the Mixer learns context from the whole
input. The details of the sliding window for each dataset are briefly described below, and
the summary of their parameters is tabulated in Table 1.

• Opportunity: The dataset was fit into a sliding window with an interval of 2.57 s. This
duration represents 77 samples, which makes the input dimensions identical, allowing
the patch resolution to be a factor of 77. The dataset was normalised to account for the
wide range of sensors used in the dataset. After preprocessing the data, there were no
labels of “close drawer 2” activity in the test set (ADL4 and AD5 from subjects 2 and 3).

• PAMAP2: Before downsampling, the dataset was fitted into a sliding window interval
of 0.84 s, which corresponds to 84 samples. The “rope-jumping” activity in subject 6
had a very small number of samples. After preprocessing, there were no labels of this
activity present in the test set (subject 6).

• Daphnet Gait: Before downsampling, a sliding window interval of 2.1 s was used to
fit the dataset; this interval corresponds to 126 samples. Daphnet Gait contains a lot of
longer activities, so a wider sliding window interval was chosen to provide the Mixer
with more information.

Table 1. The parameters used for each dataset. Note, the parameters are chosen in order to make
them comparable to prior literature for a fair comparison.

Opportunity PAMAP2 Daphnet Gait

Parameters

Number of Activities 18 19 2
Number of Features 77 40 9
Sliding Window Length 77 84 126
Sampling Rate 30 Hz 100 Hz 64 Hz
Downsampling 1 3 2
Step Size 3 3 3
Normalisation True False False
Interpolation False True False
Includes Null activities True False False

Large sliding windows were used to give the Mixer access to more information and
enable the sequence to be divided into patches correctly and in an error-free manner.
Smaller step sizes were used because the Mixer tends to overfit, giving it more training
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points and ensuring that there were enough data points for adequate testing on the various
activities in each dataset.

4.5. Data Sampler and Generation

A class balance sampler was applied to the training dataset to give similar probability
to the classes during training, allowing the Mixer to learn from each class equally in the
imbalanced datasets. The different samples are stored based on their labelled class. During
each batch, the sampler accesses the training samples based on their weights. The samples
are weighted based on the proportion of their class in the training dataset.

4.6. Patches

The MLP-Mixer requires a sequence of input patches. This layer converts the input
sensor data into separate patches. The patch resolution has to be fully divisible by both
the input height and width dimensions. The patch resolution differed between datasets,
and the resolution for each dataset is tabulated in Table 2. This was implemented using a
strided Conv2D layer in Pytorch. A strided Conv2D layer produces the same results as the
per-patch fully-connected layer used in [8]. This layer reshapes the input from number of
samples, number of channels, input height, and input width to number of samples, number
of patches, and patch-embedding dimensionality.

Table 2. Specification of the Mixer architecture for each dataset.

Opportunity PAMAP2 Daphnet Gait

Specifications

Number of Layers 10 10 10
Patch Resolution 11 4 9
Input Sequence Length 49 210 14
Patch-Embedding Size 512 512 512
Token Dimension 256 256 256
Channel Dimension 2048 2048 512
Learnable Parameters (M) 21 21 5

5. Experimental Setup

The Mixer was trained using the Adam optimiser with the cross-entropy loss as the
criterion and hyperparameters β1 = 0.9, β2 = 0.999. The Mixer has a tendency to overfit, so
a weight decay of 1 × 10−3 was used. The gradient clipping at the global norm was set to 1,
and the batch size for the training and testing dataset was 64. A learning rate scheduler
was used, and the learning rate was set to 0.01. For the first 500 steps, the learning rate
scheduler used a linear warm-up rate. Then, until the training was finished, it used a
cosine decay.

The specifications of the Mixer architecture used to produce the main results in
Section 6 is tabulated in Table 2. The experiments were run five times with the best
specifications, and the mean of the results was taken.

5.1. Ablation Study

The Mixer is ablated to compare the importance of different design choices of the
MLP-Mixer in HAR. The different design choices involve the architecture of the Mixer
(token-mixing MLP, channel-mixing MLP) and the RGB embedding layer. The macro F1
score is used in the ablation study to assess the model. This prevents high evaluation scores
by simply choosing the majority class in imbalanced datasets and provides accurate insight
into the model’s learning capabilities across class activities.

The MLP-Mixer without RGB Embedding: The Mixer saw a slight decrease in per-
formance, which meant that this layer made some contribution to the Mixer’s learning
capabilities. This allows the sensor data to simulate the RGB channels in images. This
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produces three sets of features for the Mixer to project into its embedding space instead of
a single set of features from the single sensor channel. The results are tabulated in Table 3.

Table 3. Mixer ablation study.

Opportunity PAMAP2 Daphnet

Metric Fm Fm Fm

Base Mixer 0.68 0.971 0.85
Mixer with no RGB Embedding 0.63 0.940 0.79
Mixer with no Token-Mixing 0.05 0.165 0.12
Mixer with no Channel-Mixing 0.569 0.82 0.795

The MLP-Mixer without the Token-Mixing MLPs: The model had a significant de-
crease in performance in all the datasets without the token-mixing MLPs. The Mixer uses
token-mixing to learn global context from the input and communicate information between
patches; without this layer, the Mixer cannot effectively capture the spatial and temporal in-
formation of the activities in the datasets. The results tabulated in Table 3 indicate the Mixer
loses its capabilities to learn relevant features of the dataset; hence, it can be concluded that
the token-mixing MLP is necessary for the Mixer to perform well in HAR benchmark datasets.

The MLP-Mixer without the Channel-Mixing MLPs: The channel-mixing MLPs
allow the model to communicate between channels, essentially acting as a 1 × 1 convolution.
This enables the Mixer to detect features between channels, and without it, only spatial
information between the various patches will be learned. The results tabulated in Table 3
showcase substantial performance loss, which indicates that the channel-mixing MLP is
important for HAR. However, the performance loss is lower than the performance loss in
the absence of the token-mixing MLPs. This indicates that the channel-mixing MLP is a
supplement to the token-mixing MLP, communicating the information learned from the
token-mixing layer across channels rather than capturing core features needed for accurate
prediction in HAR.

5.2. Measuring Performance

When evaluating classification problems, accuracy can be used as a metric that de-
termines the percentage of correct predictions the model made; this works very well in
most problems, but in classification problems with imbalanced datasets, this metric is no
longer as valuable. For example, in a binary classification task, the dataset could be imbal-
anced with a ratio of 1:100 for the minority and majority classes, respectively. Accurately
predicting the majority class but failing to classify all of the minority classes would still
lead to an accuracy of approximately 99%, which does not evaluate the model’s ability to
predict different classes. Fortunately, there are other metrics that can be used on imbalanced
datasets to evaluate the model’s performance. The following possibilities arise when a
model predicts classes:

• True Positive (TP): the model accurately predicts that the class is an activity.
• True Negative (TN): the model accurately predicts that the class is not an activity.
• False Positive (FP): the model inaccurately predicts that the class is an activity.
• False Negative (FN): the model inaccurately predicts that the class is not an activity.

5.2.1. Precision

Precision is the ratio of positive classification for class i over all positive predictions. It
answers the following question: How many samples recognised and predicted as class i,
were correctly classified? The precision is calculated below:

Precision =
TP

TP + FP
(3)
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5.2.2. Recall

Recall or the true positive rate is the ratio of positive classification prediction for class
i over all predictions of class i. It answers the following question: How many times was
class i correctly classified? The recall is calculated below.

Recall =
TP

TP + FN
(4)

5.2.3. F1-Score

The F1 score combines recall and precision to create a new accuracy-like measurement.
It is the harmonic mean of precision and recall, accounting for the false positives (precision)
and the false negatives (recall) in the different classes. The F1 score is calculated below:

F1 = 2 · Precision · Recall
Precision + Recall

(5)

In a multi-classification problem, having an F1 score for each class is not preferable to
a single score that gives insight into the overall performance of the model. This single score
is obtained using average techniques over all the F1 scores [36].

5.2.4. Macro F1-Score

The macro F1 score computes the unweighted mean of all the F1 scores. It treats all
classes equally, which is very useful in imbalanced datasets since the imbalance is not taken
into account when averaging the F1 scores.

5.2.5. Weighted F1-Score

The weighted F1 score computes the weighted mean of all the F1 scores. It weighs
each class based on the number of true occurrences (true positives and false negatives) it
has, which is very useful in imbalanced datasets where you want to give classes with more
instances in the dataset a higher weightage in the F1 score.

6. Results

The Mixer is compared with the following state-of-the-art architectures:

• Ensemble LSTMs [32]: combines multiple LSTMs using ensemble techniques to
produce a single LSTM.

• CNN-BiGRU [37]: CNN connected with a biGRU.
• AttenSense [22]: a CNN and GRU are combined using an attention mechanism to

learn spatial and temporal patterns.
• Multi-Agent Attention [38]: combines multi-agent collaboration with attention-based

selection.
• DeepConvLSTM [35]: combines an LSTM to learn temporal information with a CNN

to learn spatial features.
• BLSTM-RNN [33]: a bi-LSTM, with its weights and activation functions binarized.
• Triple Attention [39]: a ResNet, using a triple-attention mechanism.
• Self-Attention [40]: a self-attention-based model without any recurrent architectures.
• CNN [18]: a CNN with three layers and max pooling.
• b-LSTM-S [18]: bidirectional LSTM that uses future training data.

Table 4 shows the performance comparison between the Mixer and existing state-
of-the-art literature. Table 4 shows that the MLP-Mixer performs better than previous
techniques in the Opportunity Locomotion, PAMAP2, and Daphnet Gait datasets. Despite
the model’s shortcomings in the Opportunity Gestures dataset, it is still competitive with
most of the previously developed methods. Sliding window techniques were used in all
the previous techniques, with only the sliding window lengths and overlaps differing.
Although the Mixer beats the previous techniques in Opportunity Locomotion, most
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previous work that used the Opportunity dataset for performance evaluation only focused
on the gesture classification task while disregarding the locomotion task.

The sliding window lengths used were similar to or larger than previous techniques,
allowing the model to capture more information from each interval. Therefore, it can be
concluded that the MLP-Mixer model can learn the spatial and temporal dynamics of the
sensor data more effectively than the previous models. The Mixer performs better than
existing attention and convolution-based models in PAMAP2. The macro-score of the
Mixer is slightly higher (0.97) than the triple-attention model [39] (0.96) and significantly
higher than the best convolution-based model [18] (0.937), and it performed better than the
state-of-the-art by 1%. In the daphnet-gait dataset, the model also performed better than
convolution and recurrent models, producing a macro-score of 0.842 compared to 0.741. It
performed better than the state-of-the-art by 10.1%. However, the existing literature using
the Daphnet Gait focuses more on future prediction [41–43] instead of recognition and uses
different evaluation metrics; therefore, it cannot be directly compared to the Mixer. In the
Opportunity Gestures, the Mixer remains competitive but does not perform better than the
b-LSTM-S. The opportunity dataset was particularly challenging for the MLP-Mixer, due
to shorter activities combined with a larger sliding window necessary for the image to be
split into patches. As a result, there were several activities in the training sliding window,
making it more difficult for the Mixer to learn and harder for it to predict activities in the
test sliding window. The b-LSTM-S performed 1.7% better than the Mixer in this dataset.

Table 4. State-of-the-art comparison for MLP-Mixer scores with bold font showing the best perform-
ing cases. Mixer results in the format mean ± std. Fw is the weighted F1 score, and Fm is the F1

macro score.

Opportunity
Locomotion

Opportunity
Gestures

PAMAP2 Daphnet Gait

Metric Fw Fm Fm

Ensemble LSTMs [32] - 0.726 0.854 -
CNN-BiGRU [37] - - 0.855 -
AttenSense [22] - - 0.893 -
Multi-Agent Attention [38] - - 0.899 -
DeepConvLSTM [35] 0.895 0.917 - -
BLSTM-RNN [33] - - 0.93 -
Triple Attention [39] - - 0.932 -
Self-Attention [40] - - 0.96 -
CNN [18] - 0.894 0.937 0.684
b-LSTM-S [18] - 0.927 0.868 0.741
MLP-Mixer 0.90 ± 0.005 0.912 ± 0.002 0.97 ± 0.002 0.842 ± 0.007

7. Discussion

Convolutions capture the spatial information in a local area of the data. However, they
are not effective at learning long-term dependencies (temporal data) [24], unlike recurrent
networks, which specialise in long-term dependencies. The self-attention mechanism learns
the entire context of input patches. Additionally, it learns what to pay attention to based on
its weights [40], allowing it to learn the relationship between the sensors and the different
activities. The token-mixing MLPs can be considered a convolution layer that captures
information about the entire input, combining spatial information from a single channel
and distributing channel weights to increase efficiency, which allows the Mixer to perform
better than previous techniques when an adequate amount of data is provided and the
invariant features of the input are coherent.

The normalised confusion matrices of the PAMAP2, Opportunity, and Daphnet
datasets are illustrated in Figures 2–4, respectively. The model’s ability to distinguish
between activities in the PAMAP2 confusion matrix showed that it had learned the various
spatial and temporal characteristics of each activity. The model did have some trouble
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distinguishing between the “ironing” and “standing” activities; this is probably because
the sensor data for these actions are similar in the chest and ankle regions but only slightly
different in the hand regions. With further inspection, standing consisted of talking while
gesticulating, further validating the possibility of similarities in the hand sensors. Further-
more, the model had little trouble differentiating between “walking”, “vacuum cleaning”,
and “descending stairs” activities; this is understandable since it mistook these activities
for similar ones.

Figure 2. Normalised confusion matrix of the PAMAP2 dataset.

Figure 3. Normalised confusion matrix of the opportunity dataset.
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Figure 4. Normalised confusion matrix of the Daphnet Gait dataset.

It was more difficult for the model to distinguish between different activities in the
Opportunity dataset. Because there were significantly more samples of Null activities
than any other activity, the Opportunity confusion matrix, Figure 3, shows that the model
frequently mistook activities for being unrelated. Furthermore, because the activities were
short, the model had a more challenging time figuring out where a given activity began
and ended in the sliding window. The confusion matrix demonstrates that the model was
could pick up on some of the “open door 2” and “close fridge” activity characteristics.
However, the model did not successfully capture features of “open drawer 1” and mistook
this activity for “close drawer 1”. Further investigation revealed that the activity, which
consisted of opening and closing the drawer, took place in a single sequence, suggesting
that the model could not determine when the activity began and, therefore, could not
correctly distinguish between the two.

There was a significant imbalance between the two activities in the Daphnet Gait
dataset, much like in the opportunity dataset. As shown in Figure 4, the Mixer was trained
on an adequate sample size for the majority class”, No Freeze”, allowing it to learn when
the participants were not freezing correctly. However, in the minority case, there was
insufficient data from the Mixer to properly learn relevant features, resulting in the Mixer
incorrectly classifying the participants as not freezing 26% of the time.

7.1. Performance of Sliding Window Parameters

Each dataset contains a different range of activity lengths and repetition rates. The
sliding window length has a significant impact depending on how long the activities are in
the dataset. The sliding window’s parameters were altered to study its effect on the Mixer
performance. The model’s parameters were fixed, and the step size was constant instead
of using an overlap percentage of the window length to prevent the number of samples
from affecting the results. Small window intervals contain insufficient data for the Mixer to
learn from and make decisions. On the other hand, if the sliding window interval is large
relative to the activities in the window, it allows information from multiple activities to
be present in a single sliding window, making it harder for the Mixer to determine which
activity the sliding window represents among the multiple activities.
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Performance generally improves with increasing overlap, but as there are more sam-
ples to train and test, the computational complexity of training the Mixer also rises. In
contrast, little to no overlap significantly reduces the sample size, particularly for larger
sliding window sizes, which causes the Mixer to over-fit on the dataset.

Figures 5–7 illustrate the changes in the Mixer’s performance when the sliding win-
dow length is changed. In datasets with more extended activities, such as PAMAP2 and
Daphnet, larger sliding windows increase the model’s capability to learn by providing
more information. On the other hand, in the Opportunity dataset, which contains shorter
activities, the model’s performance decreases with larger window lengths. The sliding win-
dow figures indicate that the sliding window has a slight effect on the Mixer’s performance,
but overall the model is not sensitive to the sliding window length.

Figure 5. Evaluation of sliding window length on the Opportunity dataset

Figure 6. Evaluation of sliding window length on the Daphnet Gait dataset
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Figure 7. Performance evaluation of sliding window length on the PAMAP2 dataset

7.2. Weight Visualisation

The models’ weights are visualised to provide insight into which sensors the model
considers necessary for different activities. This experiment aims to confirm that the Mixer
is capturing relevant features and to offer some interpretation of how the Mixer categorises
the activities. The analysis is performed on the PAMAP2 dataset to showcase various
simple and complex activities. Six different activities and their associated weights are
illustrated in Figure 8.

Figure 8 shows how the Mixer associates various sensors with various activities.
The Mixer not only learns which sensors are crucial but also when they are crucial as
the emphasis of the sensors changes throughout the sliding window. For example, in
ascending stairs, the hand (X, Y), chest (X), and ankle sensors have essential features that
the Mixer emphasises, typical when climbing a staircase with handrails. Cycling focuses
on the hand (Y) sensor, most likely for steering, and the chest and ankle sensors, likely for
pedalling. The Mixer prioritises the hand’s (X, Z) sensors when ironing, as expected. While
lying down, the Mixer considers all sensors important, except for the ankle (Z) and hand
(Y), which is to be expected given that the participants had complete freedom to change
their lying positions. Finally, the Mixer values the hand (X, Z) and chest (X) sensors for
vacuum cleaning and the ankles (X, Y) and chest (X) sensors for running activities, which
is consistent with common sense. This analysis concludes that the Mixer is successfully
learning the spatial and temporal characteristics of the various activities because the weight
assignments for these activities are understandable and in tune with common sense.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. The Mixer’s weight visualisation for each accelerometer sensors in the sliding window.
Each figure represents a different activity: (a) Ascending stairs, (b) cycling, (c) ironing, (d) lying,
(e) running, and (f) vacuum cleaning.

8. Conclusions

In this paper, the MLP-Mixer performance is investigated for HAR. The Mixer does
not use convolutions or self-attention mechanisms and instead relies solely on MLPs. It
uses token-mixing and channel mixing layers to communicate between patches and chan-
nels, learning the global context of the input and enabling excellent spatial and temporal
pattern recognition in HAR. Experiments were performed on three popular HAR datasets:
Opportunity, PAMAP2 and Daphnet Gait. The Mixer was assessed using sliding windows
on the dataset. This paper demonstrates that pure-MLP architectures can compete with
convolutional and attention-based architectures in terms of HAR viability and performance.
We demonstrate that the MLP-Mixer outperforms current state-of-the-art models in the test
benchmarks for all datasets except for Opportunity Gestures. It performs 10.1% better in
the Daphnet Gait dataset, 1% better in the PAMAP2 dataset, and 0.5% in the Opportunity
Locomotion dataset. The Mixer was outperformed in the Opportunity Gestures; however,
it remained competitive with the state-of-the-art results. To the best of my knowledge,
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vision-based MLP architectures have not been applied to HAR tasks. It is interesting to
see the performance of a pure-MLP architecture outperform and remain competitive with
state-of-the-art models in HAR.
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Abstract: The concept of collecting data on people’s domestic routines is not novel. However,
the methods and processes used to decipher these raw data and transform them into useful and
appropriate information (i.e., sequence, duration, and timing derived from monitoring domestic
routines) have presented challenges and are the focus of numerous research groups. But how are
the results of the decoded transposition received, interpreted and used by the various professionals
(e.g., occupational therapists and architects) who consume the information? This paper describes the
inclusive evaluation process undertaken, which involved a selected group of stakeholders including
health carers, engineers and end-users (not the occupants themselves, but more so the care team
managing the occupant). Finally, our study suggests that making accessible key spatial and temporal
aspects derived from people’s domestic routines can be of great value to different professionals.
Shedding light on how a systematic approach for collecting, processing and mapping low-level sensor
data into higher forms and representations can be a valuable source of knowledge for improving the
domestic living experience.

Keywords: behaviour analysis; domestic environments; activities of daily living; knowledge discovery
in databases

1. Introduction

People spend most of their time indoors. The Irish people spend an average of
90% of their time in indoors [1–3]. Human Activity Recognition (HAR) approaches are
increasingly being employed to understand human behaviour through the analysis of data
representative of resident’s domestic routines. Current research indicates that healthcare
professionals, as well as family members of vulnerable older people, and professionals
from the built environment, could potentially benefit from information regarding how
householders transit between the different domestic spaces. The term domestic space has
been used to refer to the private space of the house [4]. Based on the interaction between
people and houses, this research focuses on two perspectives.

On the one hand, if we look at the design of a house, although there are generic spaces,
such as an entrance/exit area to the house, a kitchen, bedrooms, bathrooms, etc., their
physical characteristics differ from one another, such as the number of rooms and floors,
their dimensions and orientation, and thus the way they are connected and distributed.
Space syntax, a set of techniques and theories for the study of spatial configurations, is
used to predict possible effects of architectural spaces on users, particularly, how people
make and use spatial configurations [5]. For example, space syntax has been used to
assess the impact of different proposals for extending the existing layout of the Tate Britain
Museum [6]. In addition, research has shown that various applications can benefit from
occupant information, such as improvements in energy efficiency and indoor air quality,
space utilisation and optimisation, occupants’ comfort enhancement, and healthcare sys-
tems [7]. Iweka et al. showed how information about people’s behaviour in relation to
the use of domestic spaces is needed to ensure an effective transition towards optimal
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energy use in private dwellings [8]. Ayalp pointed out the importance and the need to use
information representative of domestic human’s behaviour when designing new homes [9].
In addition, Mahmoud noted how the interior architectural characteristics of a space impact
the accessibility and circulation of people [10].

On the other hand, domestic routines help family members to organise themselves,
what they have to do when, as well as in what order and how often. Basic household
activities may include bedtime routine, cooking, using the toilet, etc. The skills required
to perform these routine tasks have been measured by clinicians to assess the health
status of patients in order to independently care for oneself [11]. The term used in this
domain is activities of daily living (ADLs) [12]. Basic ADLs include: ambulating, feeding,
dressing, personal hygiene, continence and toileting [11]. ADLs are traditionally assessed
by healthcare professionals through face-to-face interviews with patients [13]. Although
the aim of this research is not to provide a method to replace existing ADL assessment
techniques, the focus is on the connection between these activities and the spaces of the
house in which they take place, which is of relevant interest in order to provide supporting
evidence. For example, ambulating refers to the ability of the patient to move from one
position to another and walk independently. Others, such as personal hygiene and toileting,
can be inferred based on the use of the bathroom space. Also, feeding is intrinsically related
to the amount of time the person spends in the kitchen. Bouchachia and Mohsen, who
designed a smart home approach to support caregivers working with people with dementia,
remarked that family members can use smart home information to keep track on a daily
basis of their loved one’s day to day routines, while occupational health professionals could
use this information to improve their knowledge of patients [14].

Both previously described views are characterised by temporal information derived
from people’s domestic routines, in addition to the characteristics of the spaces of the
house wherein they take place—spatial information. Spatial and temporal properties have
been used to get insights about people’s interaction with domestic spaces. Thiago and
Gershon defined a human-sensing taxonomy that includes five components that can be
measured through spatial and temporal sensing information to analyse the occupancy
of buildings and how people interact with them: presence (is there at least one person
present?), count (how many people are present?), location (where is each person?), track
(where was this person before?) and identity (who is each person?) [15]. Based on these
components, Wael al. defined three lenses through which to analyse building occupancy:
occupancy resolution (refers to different occupancy levels, for example, resident presence
or absence), temporal resolution (refers to the frequencies over time with which events
take place) and spatial resolution (refers to the building structure, rooms, floors, and the
building as a whole) [7]. These lenses align with major components of this research:

• The movements of people as a result of household routines in domestic buildings;
• Locations as parts of the whole design of the house through which people move, and

timeliness as the times of the day, duration and the frequency of events in different
spaces of the house;

• Occupancy of buildings. This is used to refer to the presence and movements of
people indoors. The term indoor positioning can include crude binary PIR detection (i.e.,
occupancy of a space), or a finer resolution of a location of a person within the space
(i.e. positioning location), especially in areas where GPS signal is not present [16].

This paper presents a systematic approach, based on the knowledge discovery in
databases (KDD) process, which uses sensor data that reflect the transitioning between
locations in a home (e.g., moving from the bedroom to the bathroom) and provides time-
based information about the use of different rooms by a monitored resident (e.g., at 2 a.m.
moved from the bedroom to the kitchen and stayed for 5 min). The data are then transposed
to a set of data visualisations to provide supporting evidence on the following aspects of
the monitored household’s domestic routines:

• What is the frequency of the visits to the locations?
• What are the most common transitions between locations of the house?
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• Which hours of the day are most representative of an activity taking place in a particu-
lar location?

• How long on average does the monitored subject spend in a location?

This information is not fully representative of activities such as brushing teeth or
preparing food, but is intended to be useful to carers or observers who need to understand
the spatial and temporal aspects of other person’s routines in their home. It can also
inform designers on space usage and areas that have the highest numbers of transition, for
example, kitchen to dining room, so increased care can be taken during the design of these
spaces, or perhaps more wear-resistant materials can be used.

We present an overview of the proposed overall methodological KDD process in Section 2.
In Section 3, the evaluation study conducted to gather feedback and first impressions from
the main consumers of the information made available is described. The responses collected
through the evaluation study are analysed in Section 4. Finally, Section 5 presents the conclu-
sions based on the results of the thematic analysis carried out.

2. Proposed Method

The mapping of low-level sensor data into other forms, which may be more compact,
more abstract, or more useful, involves various steps that go beyond the computational
reasoning of the datasets. There are several questions that need to be addressed as a part of
this process, including what types of data are needed, how the data will be stored, how
the data will be processed, and how the results will be presented. In 1996, Fayyad et al.
described the knowledge discovery in databases process as the “non-trivial process of iden-
tifying novel, potentially useful, and ultimately understandable patterns or relationships
within a dataset in order to make important decisions” [17]. So, KDD is a systematic and
iterative way of uncovering structures of information, understandable patterns, from data
that can be interpreted as valid. In addition, these entities should be valid for new data
with some degree of certainty, resulting in some benefit to the end user or task [18].

As a result of this successful methodology proposed by Fayyad et al., a number of
different KDD approaches were developed, derived mainly for business uses [18]. The
five steps (Sample, Explore, Modify, Model and Assess—SEMMA) constitute the data
mining process developed by the SAS Institute for enterprises to solve different business
problems [19]. Two Crows Consulting also proposed a data mining process model very
similar to the original KDD process [20]. Anand and Buchner proposed an internet-enabled
knowledge discovery process model adapted to the web mining project [21]. Similarly,
in 1997, Cabena et al. suggested a business-oriented KDD process that included most of
the steps involved in the original KDD process [22]. Brachman and Anand introduced
an alternative perspective, a human-centred process, focusing on the data analyst as the
key actor in the overall KDD process [23]. One of the main reasons for this argument was
that the extraction of valuable knowledge requires prior background knowledge (i.e., an
expertise) beyond the data and their analysis, and this background knowledge of the study
area, according to the authors, resides only in the analyst.

Depending on the KDD approach studied, the number of steps can vary; nonetheless,
the generic steps involved in KDD are: (1) developing an understanding of the end goal,
(2) collecting data, (3) selecting a target dataset, (4) cleaning and preprocessing data,
(5) creating sub-sets of interest, (6) data mining, and ultimately, (7) producing outputs for
evaluation (Figure 1).
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Figure 1. Knowledge discovery in databases steps.

Traditionally, the KDD process has used data mining algorithms to automate the
extraction of patterns. Generally, data mining techniques developed in the field of HAR
in domestic environments have been classified into two main groups: data-driven and
knowledge-driven approaches, as well as hybrid methods [7]. Regardless of the approach
undertaken, the activity recognition process focusses on the creation of models that accu-
rately map human activities. Reusability and scalability are the main challenges of these
approaches, as the nature of human activities involves the sequencing of events, and a
particular start time and duration for each step. Additionally, domestic environments vary
in shape, form, and materials, and these factors influence, among other things, the way
in which they are used by their inhabitants. Nonetheless, regardless of the computational
method used, the results of the data mining step need to be presented in a meaningful way
and in a form that can be dynamically adapted by an analyst through iterations so that
conclusions can be drawn.

Our KDD approach follows the idea put forward by Brachman and Anand; we pro-
pose a human-centred approach that brings the analyst’s background knowledge into the
knowledge discovery process. The aim, therefore, is to make the background knowledge in
the knowledge discovery process a key element in the elaboration of assumptions derived
from the study of the sensor data. Our KDD process mimics the scientific method, as it
offers the possibility to explore observations and answer questions. Hence, the process
starts with a question formulated by the analyst; for example, what is the resident’s night-
time routine? This leads to the formulation of a hypothesis, via deduction, perhaps that
the night-time routine of the resident includes the use of the bathroom and the bedroom,
that a minimum duration is expected for these events, and that the frequency of visits to
the bathroom should not exceed 2 min on average. To test the hypothesis derived from the
analyst’s background knowledge, four modes of data visualisation, described in the follow-
ing section, were adapted. These visualisations are flexible based on different parameter
modifications undertaken by the analyst to show different key spatial and temporal aspects
of the sensor data. By iteratively examining these data visualisations, a conclusion can be
drawn. Table 1 shows the comparison between the main steps of our KDD process and the
generic KDD steps previously listed.
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Table 1. Comparison between our KDD steps and generic KDD steps.

Our KDD Steps Generic KDD Steps

1. Identify goals 1. Identify goals

2. Collecting data 2. Collecting data

3. Selection 3. Selection

4. Preprocessing 4. Preprocessing

5. Transformation 5. Transformation

6. The question addressed (Developing a hypothesis)
6. Data mining

7. Testing the hypothesis using data visualisations

8. Evaluation (examining results and drawing
conclusions)

7. Evaluation (examining results
and drawing conclusions)

Through each iteration of the KDD process, the analyst is expected to gain a deeper
understanding of the routine analysed. The key spatial and temporal parameters used to
analyse the daily routines include:

• Order in which locations are transited (e.g., between 1 a.m. and 7 a.m.: (1)—bedroom,
(2)—corridor, (3)—bathroom, (4)—corridor, (5)—bedroom etc.);

• Times of the day when locations are visited (e.g., between 1 a.m. and 7 a.m.: bathroom
at 1:45 a.m. and at 5:50 a.m.);

• Average duration of the visits (e.g., between 1 a.m. and 7 a.m.: average duration of
visits to the bathroom is 3 min).

This information can then be used, for example, by healthcare professionals and family
members to better understand the behavioural aspects of a monitored loved one. But also,
it can be of great value to architects seeking to understand how people use spaces, and thus
how the design of the interior affects the way people conduct their daily routines.

The purpose of the survey discussed in this paper was to collect feedback and first
insights from a selected group of professional stakeholders that could benefit from the
information reported at the end of the process, and thus how the approach described in
this paper can contribute to the field of HAR by providing a systematic tool with which
the data containing the architectural characteristics of the house, the collected sensor data
showing the transitions of a monitored householder between the different locations of
the house, and the placement of the sensing technology, can be decoupled in a reusable
and structured way. This enables the migration of these low-level data inputs into a set
of data visualisations adapted to display key spatial and temporal aspects, including the
sequencing between the most frequently occupied areas of the house and the duration and
timing of events, related to the use of the space by a monitored householder.

The remaining steps, including data collection, data cleaning and pre-processing
techniques, and data transformation, were not examined in this evaluation study so as to
avoid confusing the volunteer participants due to the technical nature of these steps.

3. Evaluation

The workshops developed aimed to engage the study participants with a prototype
of the step-by-step data analysis process in order to address the extent to which low-level
sensor-based data could be a meaningful source of information. The evaluation study was
conducted using Google Forms and involved architects, engineers, healthcare professionals
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and end-users (not the occupant, but the care team managing the occupant). The evaluation
consisted of the following sections.

3.1. Section A: Understanding the Data and Metadata

In the first part, the participant was given a brief introduction to the research and what
was expected of them in this study. They were presented with a sample of the anonymised
CSV file containing the data analysed (Figure 2). Each entry contains the date and time of
an event, the location ID corresponding to a particular space of the house, and the sensor
status, with “1” representing that the sensor was activated.

Figure 2. Sample extracted from the CSV dataset.

The custom-built tracker was a (Passive Infrared) PIR sensor attached to a Raspberry
Pi 4. This tracker device was placed in each room of the house to continuously, anony-
mously and unobtrusively monitor the transitions between locations by measuring the
RSSI strength of the Bluetooth signal emitted by a BLE device worn by the monitored
subject. The novel linking of the PIR and RSSI was imposed to avoid false positives due
to the proximity of the rooms and fluctuations in RSSI signal measurements. The indoor
tracking system and the collection of data for testing and evaluation were approved by the
Research Ethics and Integrity Committee of the TU Dublin.

Then, they were shown a representation of the layout of the house where the monitored
subject lived. This Tube-map visualisation of the house is a digitised pseudo map designed
to make it easier to understand the possible transitions between rooms, e.g., adjacent rooms.
To this end, the rooms are represented by circles of different colours, i.e., every bathroom is
coloured pink and every bedroom green, and the possibility to move between two locations
(which we define as a transition) is represented by a straight line (which we define as
an edge), as shown in Figure 3. In addition, the average distance in metres between two
rooms is also shown, calculated as the distance from the centre point of one room to the
transitioning area, i.e., door, open wall, lift, or staircase, and from this point to the centre
of the adjacent room. Finally, the average time it would take to cover this distance for a
70- to 80-year-old person is also indicated. It was explained to the participants that this
information is obtained from the expanded Building Information Model (BIM) based on the
original BIMXML model, which is a key enabler for the reusability of the process, regardless
of the architectural characteristics of the house.

Based on this information, the participant was asked to rate, on a scale from 0—Very
difficult to 4—Very easy, their ability to understand the possible movements that can be
made by a resident based on the floor plan of the house.
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Figure 3. Tube-map visualisation.

3.2. Section B: Adding Context to the Dataset and Establishing a Daily Routine Hypothesis

This section provided a brief explanation of the context in which the dataset analysed
was created, i.e., the age of the monitored resident, whether s/he lived independently
or with other family members, and the time over which the data were collected. Then,
the volunteer participant was asked the following question: based on your own back-
ground knowledge, could you describe how you imagine the sleeping night routine of
the resident being monitored? For example, what locations of the house do you think
are occupied/visited? Further, if there is any timing associated, such as time of arrival
to a specific location, or minimum time spent in it. The answers provided by the analyst
(volunteer participant in this study) would be used as the hypothesis to be verified or
refined during the visual data exploration. Ultimately, this will help the analyst to gain a
deeper understanding of the resident’s behaviour as derived from domestic routines.

3.3. Section C: Understanding the Data Visualisations

This section introduced the participant of the study to the data visualisations selected
and adapted to enable the analysis of the data. The data visualisations used in this work
have been chosen for displaying key spatial and temporal aspects previously discussed.

(a) Visualisation 1: This diagram shows a summary of the average percentage of sensor
events (monitored resident visits) per time interval of 1 h in a selected location from the
dataset. Overall, this visualisation aims to provide an insight into the times of day when the
monitored subject is most likely to visit the location selected for the analysis, for example
the bedroom in Figure 4. This visualisation uses a dynamic variable, the target location
(e.g., the bathroom), which can be manually modified to adapt the information presented.

(b) Visualisation 2: This graph shows a summary of the average duration of the
sensor events (monitored resident visits) at a selected location in 5 min time intervals for a
selected time window (Figure 5). This diagram uses three dynamic variables that allow the
information presented to be manually adjusted. These variables are the target location, and
the start time and the end time of the time window requested for analysis (e.g., bathroom,
from 00:00 to 00:25).
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Figure 4. Side–by–side graph proposed for analysing the average number of sensor events represent-
ing the occupancy of a selected location per hour within the 24 h of a day.

Figure 5. Side–by–side graph proposed for analysing the average duration of the sensor events
(monitored resident visits) in a selected location per 5 min within a selected time window.

The aim was to use this information in combination with the previous information
shown in visualisation 1. Thus, it is possible to determine how often on average the
monitored resident visits the selected location and how long he/she spends there on average.

(c) Visualisation 3: This graph shows the sequence or order of locations that the
monitored resident passed through between different days. In order to simplify the content
of this graph, no time information about the duration of the events is shown. The time
window over which the sequences are drawn can be manually selected by specifying the
start and end times, e.g., from 05:00:00 to 06:00:00, Figure 6.
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Figure 6. Node graph proposed to display the sequence of visits to different locations of a
monitored resident.

(d) Visualisation 4: The aim of this diagram is to show additional temporal information
to the previously shown sequences for a selected day. Therefore, a layer of temporal context
is added, which can be used to estimate the start time, duration and end time of each event
on a selected day (Figure 7). The date can be manually selected, e.g., 12 May 2021.

Figure 7. 24 h clock visualisation proposed for the study of temporal information associated with the
daily routine of a monitored resident.

After completing the description of these visualisations, participants were asked the
following questions to assess the process and the data visualisations evaluated:

• Would you have been able to identify the identity of the monitored resident or other
people from the dataset used?

• Were the data visualisations useful in accepting or refining your preliminary hypothesis?
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• Could you please explain why the information provided through this process is impor-
tant and could be useful to you, based on your personal or professional experience?

• To conclude, volunteers were given the option to submit further comments or suggestions.

Their answers and feedback are discussed in the following section.

4. Results and Discussion

The evaluation study was conducted by 17 multidisciplinary participants including
architects, engineers, and end-users. They were selected based on their professional
backgrounds. The qualitative data collected were analysed based on the thematic analysis
approach developed by Braun and Clarke [24]. In this line, the process involved the
following steps:

• Familiarisation with the data;
• Creating initial codes;
• Collating codes with supporting data;
• Grouping codes into themes;
• Reviewing themes;
• Writing the narrative as follows.

Through these steps, we intended to characterise and identify repeated patterns or
themes from the data collected. As a result, we found six dominant themes in the data that
support the decisions made during the design of the process. These themes are:

• Human behaviour concerns;
• Temporal awareness related to resident’s domestic routines;
• Spatial awareness related to resident’s domestic routines;
• Architectural applications;
• Healthcare applications;
• Improvement suggestions.

As described in the first section of the paper, the value and importance of understand-
ing people’s behaviour in the home is supported by a wide range of authors. The first
theme, human behaviour concerns, could be said to focus on the how things are done at
home. For example, different responses said:

“With the information derived from the graphs and diagrams we can get a real idea of the
routine of any person.”

“These routines help us to identify different behaviours and study each case individually.”

“In the case of visualisation 4, at a glance you understand the daily routine of the subject.
Simple and very informative. I find this one very useful.”

It also sheds light on health disorders that may appear during a person’s life:

“This process could be useful to better understand the night routines of a friend who had
sleepwalking episodes.”

More obvious is the fact that older adults living independently need special atten-
tion. Knowing how a loved one’s week has been offers peace of mind when they live
independently. We could see this, for example, in the answers of the volunteers:

“I find this research incredibly useful especially for those who live alone and still need
some kind of assistance.”

“I immediately thought about elder people and how their life and safety may be improved
via this monitoring process.”

“Simple and very informative. I find this approach very useful. Mainly for monitoring
elderly and dependent people. For example, an increase in visits to the bathroom may
indicate that the subject has a health problem.”

Once the importance of how we do things at home is highlighted, we need to find
parameters that accurately reflect people’s behaviour. So how requires knowing where and
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when. In order words, spatial and temporal information. Human behaviour resulting from
activities of daily living can take many different forms. However, there are common things
that we all expect to see. For example, different people may have different sleeping routines,
but we can all agree that a person is expected to sleep in her or his bedroom for at least 7 to
8 h a night. This was confirmed by the responses:

“Visualisation 4 is quicker to understand, and provides more information, where, when
and for how long.”

“Repeated visits to the kitchen, short or not, may indicate an eating disorder (ED).”

“It is important to understand where most of our time is spent in our home to see
maybe where we are most productive, where we “waste” a lot of our time, how we can
improve/maximize our spatial use and temporal dimensions within the home.”

From the literature, we are aware of the value of this information to two main groups
of stakeholders, building professionals and health professionals. For the former, the use
of the space could be an advantage in terms of optimising future designs and the impact
they could have on householders. The latter might be able to benefit from this information,
for example, to support what has been said by a patient in a traditional assessment. In
order to verify these assumptions, we invited different members of each group among the
participants. Their feedback supports the previous statements. For example, a researcher
on energy-efficient buildings said:

“One of the biggest uncertainties that any control strategy get effected by is the occupancy
behaviour and movement. For example, the adaptive thermally insulated blind was found
to be ineffective if the human behaviour not talking into account in the control strategy.
This research is beneficial when it comes to controlling building systems and in other
building systems such as the lighting system and heating system.”

Also, another architectural researcher pointed out the following:

“As an architect I think it is very important to understand the users requirements.
This information will be really useful in tailored space design, especially for people with
special needs.”

Healthcare professionals also noted the value of this information in their daily work.
A worker experienced with people with disabilities said:

“As a professional in the health care area with experience with people with disabilities, it
brings new possibilities for me when it comes to studying behaviours of people with some
intellectual and/or physical disability, since most of the time we cannot simply ask the
subjects directly.”

A healthcare professional working with older adults pointed out:

“I think it would be useful given that many older adults have falls at night and lay on the
floor for long periods until someone visits in the morning. If this data was available it
could help trigger an alarm/alert a next of kin if a family member left a bedroom at night
(for example to use the toilet) and did not return within 5 min, they may have fallen and
this could help them be found faster and possibly prevent further damage and trauma and
allow them to seek help quicker.”

A background psychologist commented on the importance of the use of this informa-
tion as evidence in the assessment of patients.

“It could also help to understand moods by analysing where and when patients feel
happy/sad/anxious and see if changing the spatial/temporal dimensions in the house could
affect their mood. This could then be applied for other settings such as offices or even
coffee shops to maximize employee well-being and productivity based on spaces, time
spent in those spaces and time to move between those spaces.”

An occupational therapist noted that:
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“It seems to me a necessity tool, since relying on human attention to detect unusual
patterns of behaviour would, in my opinion, lead to errors.”

Despite the positive feedback, it is also important to highlight the limitations that some
volunteers found when carrying out the evaluation. The diagrams were designed to tell a
story in a language that people could understand. However, some responses suggested
that certain aspects could be improved to make them more accessible and effective. For
example, visualisation 3, described in the previous section, shows the order in which places
are visited, and it was designed to minimise the complexity of the information by removing
the duration of the events. However, this visualisation encountered more difficulties in
getting the message across:

“The graph illustrating the transitions might be improved by using a continuous line
between dots to show previous locations not present in the current form. For example, if
you view from midnight to 3am, and the person was in the bedroom prior to midnight,
this would not be obvious from the transition dot showing the new location.”

“Visualisation 3 I think provides less data to an end user without previous knowledge,
because seeing only points in a graph is not understandable for everyone, especially when
there is more data and the graph is complicated with many more points.”

“I found some of the graphs difficult to interpret and had to look at them a number of times.”

In addition, the evaluation of the simplified Tube-map of the house layout described
in Figure 3 shows a high level of acceptance among the study participants. From the
16 responses, 11 gave a score of “4—Very easy” regarding their ability to understand the
possible movements that can be made by the monitored resident through the premises.
The other five participants rated the visualisation with a score of “3—Easy”. These results
suggest that a simplified representation of the layout of a house can improve the interpreta-
tion and understanding of the physical space in which the monitored resident lives. It is
important to emphasise that this graph was developed to this end and to avoid unnecessary
complexity in traditional house floor plans for non-technical people.

5. Conclusions

In this paper, we evaluated the KDD process to promote awareness about spatial, tem-
poral and transitional aspects resulting from monitoring domestic routines. The feedback
collected from stakeholders in the construction industry suggests that this information can
be of great interest, for example, in the development of energy-efficient building solutions,
and to architects to consider the post-occupancy of the building during the design phase.
In addition, potential end-users such as family members of vulnerable population living
independently, including the elderly and people with physical and mental disabilities,
commented on the value of increased awareness of temporal and locational transit informa-
tion in better understanding how their loved one is doing on a daily basis. The feedback
obtained also shows the positive usability of the Tube-map, which was created to help
people understand the topology of the building.

Finally, future work will focus on further evaluations to gain a deeper understanding
of the value of understanding how people conduct their daily routines at home.
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Abstract: Recently, human action recognition has gained widespread use in fields such as human–robot
interaction, healthcare, and sports. With the popularity of wearable devices, we can easily access
sensor data of human actions for human action recognition. However, extracting spatio-temporal
motion patterns from sensor data and capturing fine-grained action processes remain a challenge. To
address this problem, we proposed a novel hierarchical multi-scale adaptive Conv-LSTM network
structure called HMA Conv-LSTM. The spatial information of sensor signals is extracted by hierar-
chical multi-scale convolution with finer-grained features, and the multi-channel features are fused
by adaptive channel feature fusion to retain important information and improve the efficiency of the
model. The dynamic channel-selection-LSTM based on the attention mechanism captures the temporal
context information and long-term dependence of the sensor signals. Experimental results show that
the proposed model achieves Macro F1-scores of 0.68, 0.91, 0.53, and 0.96 on four public datasets:
Opportunity, PAMAP2, USC-HAD, and Skoda, respectively. Our model demonstrates competitive
performance when compared to several state-of-the-art approaches.

Keywords: multi-scale analysis; attention mechanism; feature fusion; human action recognition

1. Introduction

Human Action Recognition (HAR) is gradually attracting attention, and it is widely
used in the fields of human–robot interaction, elderly care, healthcare, and sports [1–3].
In addition, it plays an important role in areas such as biometrics, entertainment, and
intelligent-assisted living. Examples include fall behavior detection for the homebound el-
derly population, rehabilitative exercise training for patients, and exercise action assessment
for athletes [4,5]. HAR can be performed from both visual and non-visual modalities [6–8],
where the visual modalities are mainly data modalities such as RGB video, depth, bone,
and point cloud; and the non-visual modalities are mainly data modalities such as sensor
signals, radar, magnetic field, and Wi-Fi signals based on wearable devices [9]. These data
modalities encode different sources of information, and different modalities have their own
advantages and characteristics in different application scenarios.

Visual-modality-based approaches perform feature extraction from video streams
captured by cameras; although this approach can visualize the characteristics of human
actions, its performance is affected by the viewing angle, camera occlusion, and the quality
of the background illumination, and there may be privacy issues. On the contrary, the
non-visual modality-based approach, which acquires sensor data of human actions through
wearable devices, does not suffer from privacy issues, has a relatively small amount of
data, does not have occlusion issues, and is adaptable to the environment. Better results
are expected by processing and analyzing sensor data for HAR. This paper focuses on
sensor-based HAR.

Sensor-based HAR is a fundamental component in human–robot interaction and per-
vasive computing [10]. It achieves HAR by acquiring sequence data from embedded sensor
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devices (accelerometers, magnetometers, gyroscopes, etc.) of multiple sensor modalities
worn at different body locations for data processing and analysis. Generally, the data
collected by the sensors in a HAR system form a time series of information. After noise
reduction and normalization of the data sequence, it is segmented into individual windows
by a sliding window method with a fixed window size and overlap rate. Then, each
window is categorized as an action by the HAR method. Figure 1 illustrates an example of
window action on the PAMAP2 dataset. In daily life, human physical actions include not
only some simple actions, but also some complex actions consisting of multiple microscopic
processes. For example, the action of running includes many microscopic processes, such
as starting, accelerating, maintaining, sprinting, decelerating, and so on.

Figure 1. Example of a window of “Sitting” (a) and “Running” (b) actions on the PAMAP2 dataset,
timestep = 1 s.

Traditional machine learning methods [11,12] rely heavily on hand-crafted features
and expert knowledge [13] and only capture shallow features, making it difficult to perform
HAR accurately. Recently, deep learning methods have provided promising results in the
field of HAR [14]. It can learn feature representations for classification tasks without
involving domain-specific knowledge, which achieves more accurate HAR. Therefore,
many researchers have applied CNNs and RNNs to HAR to effectively perform feature
extraction, automatic learning of feature representations, and removal of hand-crafted
features [15–17]. However, since action recognition is a time-series classification problem,
CNNs may have difficulty in capturing time-dimensional information. The Long Short-
Term Memory (LSTM) network can effectively capture the temporal context information
and long-term dependency of sequence data, so some works successfully apply LSTM to
HAR [18–20].

In addition, since CNNs can extract local spatial feature information and LSTMs
can capture temporal context information, hybrid models can effectively capture spatio-
temporal motion patterns from sensor signals. Some recent work combining hybrid models
of CNNs and RNNs has shown promising results [21–24]. However, since LSTMs compress
all the input information into the network, this will lead to the incorporation of noise from
the sensor data acquisition when extracting features, which will affect the effectiveness of
action recognition. Based on this, there are some works to solve this problem by introducing
the attention mechanism [25–29]. The attention mechanism enables the model to focus more
on the parts that are relevant to the current recognition to improve accuracy. Also, some
works optimize the action recognition and window segmentation problems by multi-task
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learning for HAR [30]. Although these models have achieved significant results on HAR,
they do not adequately consider fine-grained features, which may lead to some confusion
in action classification.

To address these issues, we proposed a novel hierarchical multi-scale adaptive Conv-
LSTM network structure called HMA Conv-LSTM, where we attentively weight sensor
signals by sensor feature selection, extract finer-grained spatial features using hierarchical
multi-scale convolution, and extract temporal contextual information by a dynamic channel-
selection-LSTM network. Meanwhile, we employ adaptive channel feature fusion to process
multi-channel feature maps. The main contributions of this paper are as follows:

1. We propose a novel HMA Conv-LSTM network, which realizes HAR that can well
distinguish confusing actions of subtle processes. Extensive experiments on four pub-
lic datasets of Opportunity, PAMAP2, USC-HAD, and Skoda show the effectiveness
of our proposed model.

2. We propose the hierarchical multi-scale convolution module, which performs finer-
grained feature extraction by hierarchical architecture and multi-scale convolution on
spatial information of feature vectors.

3. In addition, we propose the adaptive channel feature fusion module is capable of
fusing features at different scales, which improve the efficiency of the model and
remove redundant information.

4. For the multi-channel feature maps extracted by adaptive channel feature fusion,
we propose the dynamic channel-selection-LSTM module based on the attention
mechanism to extract the temporal context information.

The rest of the paper is organized as follows: Section 2 reviews previous work related
to us. Section 3 details the methodology proposed in this paper. Section 4 describes the
experimental setup and the four HAR benchmark datasets and compares the proposed
model with state-of-the-art methods. Section 5 explores the selection of model parameters
and ablation experiments, discusses the results, and analyzes the confusion matrix as well
as visualizes the attention weights. Finally, Section 6 concludes the paper.

2. Related Work

Research work on sensor-based HAR can be categorized into two types: machine
learning methods and deep learning methods. Earlier research works on HAR were mainly
based on traditional machine learning methods such as the Random Forest (RF), Support
Vector Machine (SVM), and Hidden Markov Model (HMM). Gomes et al. [31] compared the
performances of three classifiers: SVM, RF, and KNN. Kasteren et al. [32] proposed a sensor
that can automatically recognize actions and data labeling system; they demonstrated
the performance of a HMM in recognizing actions. Tran et al. [33] constructed a HAR
system via an SVM that was able to recognize six human actions by extracting 248 features.
However, traditional machine learning methods rely heavily on hand-crafted features such
as mean, maximum, variance, and fast Fourier transform coefficients [34]. Since extracting
hand-crafted features relies on human experience and expert knowledge and only captures
shallow features, the accuracy is limited.

Unlike traditional machine learning methods, deep learning can learn the feature
representation of a classification task without involving domain-specific knowledge, and
HAR can be achieved without extracting hand-crafted features. Yang et al. [15] proposed
that CNNs can effectively capture salient features in the spatial dimension and outperform
traditional machine learning methods. Jiang et al. [35] proposed a CNN model that arranges
raw sensor signals into signal images as model inputs and learns low-level to high-level
features from action images to achieve effective HAR.

Meanwhile, since action recognition is a time-series classification problem, it may be
difficult for CNNs to capture time dimension information. In contrast, Hammerla et al. [18]
and Dua et al. [19] used the LSTM network for HAR, which can effectively capture con-
textual information and long-term dependencies of the temporal dimension of the sen-
sor sequence data. Ullah et al. [36] proposed a stacked LSTM network for recognizing
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six types of human actions using smartphone data, with 93.13% recognition accuracy.
Mohsen et al. [37] used GRU to classify human actions, achieving 97% accuracy on the
WISDM dataset. Gaur et al. [38] achieved a high accuracy in classifying repetitive and non-
repetitive actions over time based on LSTM–RNN networks. Although the above methods
can recognize some simple human actions (e.g., cycling, walking) well, the recognition of
some complex actions (e.g., stair up/down, open/close door) is still challenging, which is
due to the difficulty in capturing the spatio-temporal correlation of sensor signals using a
single CNN or RNN network.

Recently, much of the work in HAR has focused on hybrid models of CNN and
RNN. Ordóñez et al. [21] combined an CNN and an LSTM to achieve significant results in
capturing spatio-temporal features from sensor signals. Yao et al. [22] constructed separate
CNNs for the different types of data in the sensor inputs, and then merged them to form
global feature information; they then extracted temporal relationships through an RNN to
achieve HAR. Nafea et al. [39] used CNN with varying kernel dimensions and BiLSTM
to capture features with different resolutions. They effectively extracted spatio-temporal
features from sensor data with high accuracy.

In addition, some works address the problem that LSTMs may compress the noise
of sensor data into the network. They introduce the attention mechanism to prevent the
incorporation of noisy and irrelevant parts when extracting features, thus improving the
effectiveness of HAR. Murahari et al. [27] added an attention layer to the DeepConvLSTM
architecture proposed in Ordóñez et al. [21] to learn the correlation weight of the hidden
state outputs of the LSTM layer to create context vectors, instead of directly using the last
hidden state. Ma et al. [25] also proposed an architecture based on attention-enhanced
CNNs and GRUs, which uses attention to augment the weight of the sensor modalities and
encapsulate the temporal correlation and temporal context information of specific sensor
signal features. In contrast, Mahmud et al. [26] completely discarded the recurrent structure
and adapted the transformer architecture [40] proposed in the field of machine translation
to use a self-attention-based neural network model to generate feature representations
for classification to better recognize human actions. Zhang et al. [41] proposed a hybrid
model ConvTransformer for HAR, which can fully extract local and global information of
sensor signals and use attention to enhance the model feature characterization capability.
Xiao et al. [42] proposed a two-stream transformer network to extract sensor features from
temporal and spatial channels that effectively model the spatio-temporal dependence of
sensor signals.

The attention mechanism enables the model to pay more attention to the parts that
are relevant to the current recognition when processing sequence data, helping the model
to capture long-term dependencies. Although these models perform well on HAR, they
do not sufficiently consider fine-grained features, which may lead to the actions of some
fine-grained processes being confused during classification. Therefore, we propose the
HMA Conv-LSTM network for human action recognition.

3. Proposed Method

In this section, we introduce the data preprocess and explain the proposed HMA
Conv-LSTM network, whose framework is shown in Figure 2.

3.1. Data Preprocess

Public datasets are usually collected by sensors under real-life conditions and may
contain inconsistent, incomplete, and noisy data. To enable deep learning networks to
process multidimensional sensor timing information for HAR, we perform preprocessing
operations such as data complementation, normalization, and segmentation.
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Figure 2. Overview of HMA Conv-LSTM. Input layer (a) reads the windowed data from the seg-
mented sensor sequence; Sensor Feature Selection (SFS) (b) performs feature selection on input
data based on attention mechanism; Hierarchical Multi-scale Convolution (HMC) (c) performs
finer-grained feature extraction on the spatial information of the features; Multi-scale Conv (d) uses
different scale convolution kernels to extract features from different hierarchical levels of data; Adap-
tive channel selection (ACS) (e) improves the discrimination and sensitivity of the model to the
features of each channel; Adaptive Channel Feature Fusion (ACFF) (f) can retain important informa-
tion and improve model efficiency; dynamic channel-selection-LSTM (DCS-LSTM) (g) can establish
the linkage between feature vectors at different timesteps; Softmax Layer (h) obtains the probability
distribution of the predicted values of each category, and finally takes the category with the largest
predicted value as the classification result.

3.1.1. Data Completion

HAR datasets are typically acquired using inertial sensors at different body parts. The
data at each sampling point are spliced according to the timestep. During the acquisition
process, data may be missing at certain sampling timesteps. Although missing data at
a single timestep has limited impact on the overall data, it can affect the integrity of
the timing data. Therefore, linear interpolation is used to fill in missing values. Let (x, y)
represent missing data, where (x0, y0) represents the previous non-missing data and (x1, y1)
represents the next non-missing data. Since the timestep x is known, the missing value y
can be obtained by using linear interpolation:

y = y0 + (x − x0)
y1 − y0

x1 − x0
(1)

3.1.2. Data Normalization

Since different sensing unit data often use different units of measure, the range of
values can vary. If raw data are used directly as input to the model, it may result in data
items with large values that sway the model’s classification effect. Additionally, fluctuating
unprocessed data may affect the model’s performance [43]. Therefore, we need to normalize
raw data by scaling it to fall within an interval of −1 to 1. It eliminates differences in the
range between different sensor channel types. Data normalization also speeds up model
convergence and improves its training rate and accuracy.

For the collected dataset D = {d1, d2, d3, . . . , dn}, each data sample contains multi-
featured sensor data di = {x1, x2, . . . , xK}, where K represents the number of features. To
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determine the maximum and minimum values for all features in the dataset, we form the
vectors xmax and xmin. And then, we perform the normalization operation:

xi = 2 × |xi − xmin|
|xmax − xmin| − 1 (2)

3.1.3. Data Segmentation and Downsampling

In real-life scenarios, different sampling devices and sensors have varying sampling
rates. To accommodate most sensor devices, we need to downsample the data that are
sampled at a higher rate. For datasets, matching the sampling rates across all data allows
for a more accurate comparison of model performance on different datasets. In this case,
we downsample the PAMAP2, Skoda, and USC-HAD datasets to approximately 33 Hz to
match the sampling rate of the Opportunity dataset.

In this paper, our proposed model is to perform feature extraction for each action
window after segmenting the sensor data sequence. The two dimensions of an action
window are the timestep and the number of sensor features, respectively. Suppose the
sensor data sequence is segmented using a sliding window of width W and a certain
overlap rate. Each window obtained can be denoted as V = [v1, . . . , vt, . . . , vW ], where
vt =

[
vt

1, . . . , vt
K
]

represents K features of the sensor at timestep t. In addition, the action
ground truth label for each window is defined as the label with the most occurrences of
each sensor data within the window. Window-wise and Sample-wise are two methods
used to segment action data [26]. In our study, we uniformly use the Window-wise method
on the training, validation, and test sets to ensure consistent results.

Window size and sliding window overlap rate are important factors in action recogni-
tion because different actions can vary in duration and complexity. To better evaluate and
explore the impact of these factors on our model’s overall effectiveness, we deploy window
size and window overlap rate as hyperparameters in our project. We specifically evaluate
and explore optimal hyperparameters in Section 5.

3.2. Sensor Feature Selection

Different types of sensor features play varying roles in recognizing different actions.
Using unimportant sensor features may significantly impact recognition due to noise [44].
To capture the contribution weights and potential importance of different types of sensor
features, we perform the SFS operation based on the attention mechanism on the sensor
input data. Not all sensor features contribute equally when performing action classification.
For example, the sensor at the subject’s ankle may not contribute much when performing
the “Open Drawer” action. In addition, this weight not only assigns importance to sensor
input features, but also demonstrates the effectiveness of feature selection by visualizing
how much attention is paid to specific features for a particular action.

The SFS operation uses a two-dimensional convolution across sensor feature values
and timesteps to extract dependencies between them. First, it takes as input the sensor’s
feature vectors

[
vt

1, vt
2, . . . vt

i , . . . , vt
K
]

and reshapes them into a single-channel vector, which
is then processed using k convolutional filters to output a k-channel image. This is then
converted back to a single channel using a 1 × 1 convolutional kernel and the attention
weights of the individual sensor feature values are obtained by the softmax operation
defined in (4). The whole process can be formalized as

qt
i = tanh (W1vt

i + b1 ) (3)

st
i =

exp ( (qt
i )

Tw1 )

∑K exp ( (qt
i )

Tw1 )
(4)

ct = ∑
K

st
i v

t
i (5)
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where i denotes the i-th sensor feature value, and K denotes the number of features of
a single timestep sensor. We first obtain the hidden representation of vt

k as qt
i from the

convolutional layer, then compute the similarity between qt
i and the context vector w1,

and obtain the normalized attention weight st
i by a softmax operation. {W1, w1, b1} is the

trainable parameter of the attention network, and ct is the unified feature representation of
all K sensor features obtained after the weighted vector.

3.3. Hierarchical Multi-Scale Convolution

We proposed the HMC module to perform finer-grained feature extraction on the
spatial information of the feature vectors. In the following, we will introduce the multi-scale
convolution module and the entire hierarchical architecture separately.

3.3.1. Multi-Scale Convolution

In deep convolutional structures, single-size convolutional kernels often fail to provide
diverse features and lack the ability to decompose on multi-scales. Since the overall process
of some confusable behaviors (e.g., open/close door) is relatively similar, it is often difficult
to focus on both global and local features if the network is constructed using only a single-
scale convolutional kernel. Inspired by the work of Szegedy et al. [45], we use the multi-
scale convolutional neural network. It utilizes convolutional kernels of different scales
for multi-scale feature extraction and splicing in both sensor and temporal dimensions.
This strengthens the network’s ability to recognize features of different scales, enhances
its adaptability, and improves its feature characterization ability. In addition, we separate
the common N × N two-dimensional convolution kernel, first convolve the temporal
information by the N × 1 convolution kernel, and then use the 1 × N convolution kernel to
convolve the information of different sensor dimensions at the same timestep. The specific
structure is shown in Figure 2d.

In our network structure, 1 × 1 convolution kernels are used to organize information
across channels and perform dimensionality reduction on input channels. It improves
the network’s expressive power and adds a layer of features and nonlinear variations. By
using convolution kernels of different sizes, we can analyze raw sensor data at multi-scales.
To address the issue of vanishing and exploding gradients during network training, we
perform batch normalization after weighted multi-scale feature fusion. This accelerates the
network’s convergence process while keeping the distribution of test and training data the
same and improving the generalization ability of the network.

3.3.2. Hierarchical Architecture

HAR relies on sequential data captured by sensors placed at various body locations,
which contain spatial and temporal information about physical actions. Due to the varying
durations and complexities of different actions, some actions may require longer sliding
window sizes for segmentation to achieve good recognition results. However, sliding
window sizes that are too large may cause the general network model to overlook some
fine-grained subtle action processes, thereby affecting action recognition. In contrast, our
proposed hierarchical architecture can split the action window and extract features from
the sensor sequence data at a finer granularity to effectively recognize the finer action
processes. The specific structure of the whole HMC module is shown in Figure 2c.

To construct the HMC network architecture, we divide the sensor feature sequence
weighted by the SFS module in the time dimension, as shown in Figure 3. The HMC can
capture some subtle changes of actions in human motion. By capturing the sub-actions
in the sensor feature sequences, the model can obtain more detailed information, thus
realizing a finer-grained HAR. In this work, we have tested experimentally and finally
selected the hierarchical architecture with 2 layers of division, and the experiments show
good results, as detailed in Section 5.
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Figure 3. Delineation of the Hierarchical Architecture.

For the sensor feature sequence x =
[
c1, c2, . . . ci, . . . , ct] weighted by the SFS module,

each feature vector ci consists of [ci
1, ci

2, . . . ci
j, . . . , ci

K ], where t denotes the number of
timesteps, and K denotes the number of features of a single timestep sensor. When the
hierarchical number of partitions level = 0, the sequence is not hierarchical and the feature
sequence is unchanged and defaults to 1 partition, x0

1 = x; when the number of partitions
level = 1, the sequence is divided into 2 partitions, i.e.,

x1
1 =

[
c1, c2, . . . , c

t
2

]
, x1

2 =
[
c

t
2+1, . . . , ct−1, ct

]
(6)

When the number of strata level = 2, the sequence is divided into 4 partitions, i.e.,

x2
1 =

[
c1, c2, . . . , c

t
4

]
, x2

2 =
[
c

t
4+1, . . . , c

t
2

]
, x2

3 =
[
c

t
2+1, . . . , c

3
4 t
]
, x2

4 =
[
c

3
4 t+1, . . . , ct

]
(7)

When the number of strata level = n, the sequence is divided into 2n partitions, i.e.,

xn
i =

[
c

t∗(i−1)
2n +1, c

t∗(i−1)
2n +2, . . . , c

t∗i
2n

]
, i ∈ {1, . . . , 2n − 1, 2n} (8)

In fact, we divide the features into two each time, so the i-th sub-partition of the l-th
layer comes from the � i+1

2 � parent partition of the l-1-th layer; the formulaic expression is

xl−1
j =

[
xl

i∗2−1, xl
i∗2

]
(9)

After the hierarchical division, all sub-partitions are presented as a pyramidal tree
structure. We perform multi-scale convolutional operations on each partition of the division.
We use multi-scale convolutional neural networks to extract and splice features in the sensor
dimension and time dimension to strengthen the network’s ability to recognize features at
different scales by multi-scale mining of the data to improve the characterization ability of
the final acquired features.
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Then, we first splice the multi-scale features extracted from each partitioned layer in
the time dimension, and then perform feature superposition; the final features are fused to
a multi-channel feature y′ of the same dimension as that obtained from the original feature
x through the multi-scale convolutional network, which serves as the output of the whole
HMC network. For layer l, the features can be represented as

yl = concat
(

xl
1, xl

2, . . . , xl
2l

)
(10)

And the final fusion feature obtained is

y′ = y1 + y2 + · · ·+ yn (11)

where y′ is fused from n layers of hierarchical multi-scale features. By using the Hierarchical
architecture, we can capture some of the subtle changes in action during human movement.
The model obtains more detailed information by acquiring sub-actions in the sequence of
sensor features, thus enabling finer-grained HAR.

3.4. Adaptive Channel Feature Fusion

After acquiring the multi-scale features by HMC module, we perform ACFF operations
on them. The ACS module and the multi-scale channel feature fusion operation will be
described separately in the following section.

3.4.1. Adaptive Channel Selection

We proposed the ACS module to process the multi-channel feature maps, adaptively
learn the weight coefficients of each channel, improve the overall model’s discriminative
ability and sensitivity to each channel feature, and strengthen the channel features that are
beneficial to model classification while suppressing the useless channel feature information.
Its structure is shown in Figure 2e.

The ACS module mainly contains extraction operations and squeeze operations. As-
sume that the output vector x of the multi-scale convolutional layer is of size C × W × H,
where C is the number of channels, and W × H denotes the size of the feature map of each
channel. The extraction operation inputs x into a global average pooling layer and a global
maximum pooling layer to compress the features, resulting in channel-level statistical
information Zavg and Zmax. This information encodes the spatial features on each channel
as a real number with a global receptive field representing the global features of the feature
maps. The output dimensions match the number of feature channels input. The formulas
for finding Zavg

c and Zmax
c for each channel are as follows:

Zavg
c =

1
W × H

W

∑
i=1

H

∑
j=1

xc(i, j) (12)

Zmax
c = max

1≤i≤W
max

1≤j≤H
xc(i, j) (13)

where xc(i, j) represents the value of row i and column j in the c-channel feature map. After
the extraction operation, the global description features are obtained for each channel. And
the activation operation aims to obtain the relationship between the channels, which is
achieved by using two fully connected layers. The first fully connected layer plays the
role of dimensionality reduction, downgrading the channel dimensions of Zavg

c and Zmax
c

to 1/16 of their original dimensions to change the capacity and computational cost of the
ACS module in the network. It is then activated by the ReLU function and upscaled to the
original channel dimensions using a second fully connected layer. Finally, the normalized
weights are obtained using the Sigmoid activation function after superimposing the channel
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dimensions computed by the two branches of global average pooling and global maximum
pooling. The formula for the activation operation is expressed as

s = Sigmoid
(
W1·ReLU

(
W0·Zavg

)
+ W1·ReLU(W0·Zmax)

)
(14)

where W0 ∈ R
C
16×C and W1 ∈ RC× C

16 ; finally, the learned weights sc for each channel are
multiplied by the original individual channel features xc:

yc = sc × xc (15)

The output dimensions of the extraction and squeeze operations of the ACS module are
unchanged, and the whole process can be viewed as learning the weight coefficients of each
channel adaptively to improve the overall model’s discriminative ability and sensitivity to
the features of each channel.

3.4.2. Multi-Scale Channel Feature Fusion

We propose the ACFF module to process the acquired multi-scale feature maps. The
module consists of an ACS module and two convolutional layers. Its structure is shown in
Figure 2f. Using different sizes of convolutional kernels can extract features at different
scales. Here, we use a convolutional layer containing 64 convolutional kernels of sizes 7× 1
and 5 × 1 to extract local time-domain features and ultimately achieve ACFF at different
scales. For the multi-channel feature map x1, assuming the size of C × W × H, the whole
process is formulaically expressed as

f1(x1) =
C

∑
c=1

7

∑
r=1

x1(c, i, j + r − 1)W1(c, k, r) (16)

f2(x2) =
64

∑
c=1

5

∑
r=1

x2(c, i, j + r − 1)W2(c, k, r) (17)

y = f2( f1(x1)) (18)

where W1 and W2 denote the convolution kernels of the two convolutional layers, respec-
tively, and x1(c, i, j) denotes the value of input x1 in the c-th channel of row i and column j.
r denotes the convolution width. k denotes the number of convolution kernels, which is
the number of output channels of the convolutional layer. Finally, after two convolution
layers, the output feature is y.

In conclusion, the ACFF module performs multi-scale feature extraction and fusion
of multi-channel feature maps. It can reduce the amount of computation while retaining
important spatial information. Moreover, it can improve the efficiency and interpretabil-
ity of the model, remove redundant information, and realize the fusion of features at
different scales.

3.5. Dynamic Channel-Selection-LSTM

For the channel feature maps obtained after ACFF, to establish the connection between
different timestep feature vectors, we use two proposed DCS-LSTM modules to extract
the temporal context information of the sensor signals, the structure of which is shown
in Figure 2g. In addition, Karpathy et al. [46] pointed out that models containing at least
two recurrent layers work better in processing sequence data. Here, we similarly use
the ACS operation to obtain the contributions of different channels, adaptively learn the
weight coefficients of each channel, and strengthen the ability to characterize features for
the classification of confusable behaviors. The structure of the basic LSTM network cell is
shown in Figure 4.
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Figure 4. Structure of the LSTM cell unit. It updates the state of the unit through input gates, output
gates, and forgetting gates. The upper horizontal line ensures that vectors pass through the neurons
with only a few linear operations, enabling long memory retention.

The forgetting gate decides what information to let continue through that neuron.
The input gate decides how much information to update to the state matrix. The output
gate combines the neuron’s state vectors, the input vectors, and the output vectors of the
previous neuron to arrive at the output value for the current moment. Its vector update
operation is represented as

it = σ(Waiat + Whiht−1 + Wcict−1 + bi) (19)

ft = σ (Wa f at + Wh f ht−1 + Wc f ct−1 + b f ) (20)

ot = σ(Waoat + Whoht−1 + Wcoct + bo) (21)

ct = ftct−1 + itσ(Wacat + Whcht−1 + bc) (22)

ht = otσ(ct) (23)

where it, ft, and ot are the output vectors of the input, forgetting, and output gates of the
LSTM cell at time t, respectively; ct is the state vector of the LSTM cell at time t; σ is a
sigmoid nonlinear excitation function that introduces a nonlinear factor; at is the input
vector of the LSTM cell at time t; W stands for the weight matrix for the connection between
different gates; and b is the bias vector.

LSTM can record the feature representation of longer sequence data. Therefore, we
proposed the DCS-LSTM network to implement the time-series modeling work on the
data to facilitate the extraction of temporal contextual information of the sensor signals
and weight the channel features by an ACS module to improve the model’s ability to
discriminate individual channel features and classify confusable behaviors. The hidden
cells of the LSTM are set to 128.
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4. Experiments

In this section, we conduct comprehensive experiments on several public HAR datasets
to validate the effectiveness of our proposed framework. First, we describe the experimental
setup, training measures, and evaluation metrics. Then, we present the benchmark datasets
used. Finally, we compare our proposed model with state-of-the-art methods from recent
years and report on the performance of HMA Conv-LSTM.

4.1. Experimental Setup

We build the model using Google’s open-source deep learning framework TensorFlow
2.9.0, implement it using Python 3.8, and train it on an Intel Xeon Platinum 8255C CPU and
an RTX 3080 GPU with 10 GB of memory. In addition, we used the Adam optimizer [47]
to minimize the cross-entropy loss function for model training. The learning rate adopts
Adam’s default parameter of 0.001 as the initial training parameter of the model. We
also use a cosine learning rate scheduling strategy to dynamically adjust the learning rate
according to the cosine function in each epoch. The batch size of the four datasets is set
to 128, and the number of training epochs is 80. Details of the hyperparameters used for
model training are shown in Table 1.

Table 1. Hyperparameters of the model trained.

Hyperparameters Value

Optimizer Adam
Loss function Cross entropy

Batch size 128
Learning rate 0.001

Learning rate scheduler Cosine
Training epoch 80
Dropout rate 0.3

4.2. Dataset Description

We conducted experiments on the proposed HMA Conv-LSTM model on four bench-
mark datasets [48] with the same experimental setup as in the previous work. Table 2
shows the basic information statistics of the four datasets. Figure 5 shows the distribution
of sample categories for the four benchmark datasets.

Table 2. Summary of the datasets. Here A = Accelerometer, G = Gyroscope, M = Magnetometer.

Dataset
Action

Number
Validation
Subject ID

Test Subject ID Sampling Rate Downsampling Sensors Used

Opportunity 18 1(Run 2) 2, 3(Run 4, 5) 30 Hz 100% A, G, M
PAMAP2 12 105 106 100 Hz 33% A, G

USC-HAD 12 11, 12 13, 14 100 Hz 33% A, G
Skoda 11 1(10%) 1(10%) 98 Hz 33% A

Opportunity dataset [49] mainly contains daily household and kitchen actions. Sub-
jects recorded data using inertial measurement units (IMUs) such as accelerometers, gy-
roscopes, and magnetometers at 12 locations on the body. The dataset is annotated for
18 mid-level actions (e.g., opening/closing the refrigerator), with one null category exceed-
ing 76% of the data. It makes the dataset highly unbalanced in terms of the distribution of
action categories.

PAMAP2 dataset [50] mainly contains multiple household actions. A total of nine
subjects were instructed to perform 12 actions of daily living. Subjects recorded complete
IMU data, temperature, and heart rate data using three wearable sensors located on the
hand, chest, and ankle.
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USC-HAD dataset [51] includes six readings from three-axis accelerometers and
gyroscopes worn on the subjects’ bodies. It contains 12 different action categories from
14 subjects, including walking, running, elevator up/down, etc. In addition, the sensor
locations and division of action categories in this dataset make classification using feature
representation learning challenging. For example, it is difficult to discriminate between
actions such as walking to the left or right using only accelerometers and gyroscopes.

Skoda dataset [52] mainly consists of 10 actions performed by workers in an automo-
tive production environment, such as opening/closing doors and check steering wheel. It
also includes labeled empty categories. It consisted of one subject wearing an accelerometer
in several different positions on their arm to perform manual maintenance and quality
checks on automotive parts.

Figure 5. Distribution of sample categories across training, validation, and test sets in the four
benchmark datasets, as well as the proportion of the overall number of samples accounted for by
each category. The ratio of training, validation, and test sets is approximately 80:10:10%.

4.3. Performance Metric

In our experiments, we use the Macro average F1-score as the evaluation metric to
compare the performance of our proposed method with other methods. In particular,
for the Opportunity dataset, accuracy is not a suitable measure due to its highly uneven
categorization. Since the traditional F1-score measures the performance of binary classifi-
cation, we use the mean F1-score, which is Fm, weighted to categories according to their
sample proportions.

Fm =
1
C

C

∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

(24)

where C is the number of action categories. For category i, Precisioni = TPi
TPi + FPi

,

Recalli =
TPi

TPi + FNi
. TPi and FPi are the number of true positives and false positives,

respectively, while FNi refers to the number of false negatives.

4.4. Comparison with State-of-the-Art Methods

In this section, we compare our proposed model with related work from recent years.
The selected baseline approach is based on the four public datasets in Table 2. Firstly,
our model outperforms SVM because earlier machine learning methods relied heavily
on hand-crafted features, which limited their accuracy. Additionally, our model out-
performs CNN and LSTM, which only consider either temporal contextual relevance or
spatial relevance. Secondly, our model is more accurate than the DeepConvLSTM and

53



Appl. Sci. 2023, 13, 10560

DeepConvLSTM + Attention models because our HMC structure effectively captures finer-
grained information about tiny action processes. Furthermore, our model is more accurate
than recently proposed methods such as ConvAE, AttnSense, and Self-Attention that incor-
porate attention mechanism. It reflects that our model outperforms most existing models
and illustrates the effectiveness of our hierarchical architecture for feature extraction. In
addition, Table 3 is categorized by network type, which are traditional models, LSTM-based,
and attention mechanism-based models, and, finally, our proposed model.

Table 3. Macro F1-score of different methods on the benchmark set.

Methods Opportunity PAMAP2 USC-HAD Skoda

SVM [53] - 0.71 - 0.82
RF [54] - 0.74 - 0.83

CNN [55] 0.59 0.82 0.41 0.85

LSTM [56] 0.63 0.75 0.38 0.89
b-LSTM [18] 0.68 0.84 0.39 0.91

DeepConvLSTM [21] 0.67 0.75 0.38 0.91
DeepConvLSTM + Attention [27] 0.71 0.88 - 0.91

LSTM + Continuous Attention [57] - 0.90 - 0.94

ConvAE [48] 0.72 0.80 0.46 0.79
SADeepSense [58] 0.66 0.66 0.49 0.90

AttnSense [25] 0.66 0.89 0.49 0.93
Self-Attention * [26] 0.63 0.84 0.51 0.87

HMA Conv-LSTM 0.68 0.91 0.53 0.96

Models with * indicate that the performance is obtained by our replication. The bold parts represent our proposed
model and the best performance on each dataset.

As shown in Table 3, the recognition performance of HMA Conv-LSTM significantly
outperforms the other baselines. Despite USC-HAD being a challenging dataset, our model
performs better than other models such as DeepConvLSTM (0.38) and AttnSense (0.49).
Additionally, our proposed model outperforms other models which are based on attention
mechanisms. On the PAMAP2 dataset, our model achieves better results (0.91) than Deep-
CovnLSTM + Attention (0.88), LSTM + Continuous Attention (0.90), and AttnSense (0.89).
For the Skoda dataset, our model achieves high performance and outperforms other well-
performing models such as AttnSense (0.93) and LSTM + Continuous Attention (0.94).
In addition, compared to other methods, our model performs well on the Opportunity
dataset (0.68), which contains complex actions. Due to the short duration of some of these
mid-level gestures, the hierarchical architecture does not improve the current results much.
However, when considering more complex and confusing gestures, the effect of our model
is evident.

In conclusion, our proposed model outperforms other baseline methods on all datasets
except the Opportunity dataset. It demonstrates the effectiveness and contribution of our
model. The evaluation results further show that our proposed HMA Conv-LSTM can
effectively obtain both temporal context information and spatial information from sensor
sequence data. It can also recognize some subtle action processes with fine-grained detail,
ultimately achieving good results.

5. Ablation Study and Discussion

We evaluate the effectiveness of our proposed HMA Conv-LSTM model. First, we
explored the effect of the choice of model hyperparameters on performance. Second, we
evaluated the effectiveness and contribution of each module of the model through ablation
experiments. Then, we analyzed the confusion matrix obtained by testing the model on
some of these datasets. Finally, we visualized the feature weights in SFS when recognizing
some actions to improve the interpretability of the model.
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5.1. Parameter Selection

To evaluate the impact of hyperparameters on the model’s overall performance, we
explored the sliding window size, sliding window overlap rate, and the number of hierar-
chical layers. We adjusted them sequentially and finally chose the optimal parameters. First,
we analyzed the effect of sliding window size on the model’s recognition performance.
The four datasets were previously downsampled uniformly to a sampling rate of about
33 Hz per second. Since the repetition period of different actions varies, we experimented
by changing the window size in seconds.

In Figure 6, our proposed model is more stable to changes in window size compared
to other models. It also indicates that some complex actions require longer sliding window
sizes for segmentation to achieve good recognition results. When the initial window size
is small, the performance is average because the HMC structure has difficulty capturing
information on multi-scales. As the window size increases, the model’s performance
improves, demonstrating the effectiveness of the hierarchical architecture and multi-scale
convolution for feature extraction at different scales. The DCS-LSTM can also better capture
temporal context information. Considering the performance, we chose a sliding window
size of 1 s for the PAMAP2 and USC-HAD datasets, while the Opportunity and SKODA
datasets chose a sliding window size of 1.5 s for action recognition.

Figure 6. Performance of different window sizes, which shows the performance comparison of our
proposed model with the self-attention model.

Then, based on the optimal sliding window size, we also discussed the impact of
sliding window overlap rate on model performance. Due to the varying durations and
complexities of different actions, the sliding window overlap rate is also critical in affecting
action recognition. In Figure 7a, the model’s performance on most datasets increases as
the window overlap rate starts to increase, and the model reaches its best result when the
overlap rate reaches 0.5. As the overlap rate continues to increase, the model’s performance
starts to decrease. This suggests that an appropriate overlap ratio can help the model better
capture local patterns and relationships in time series data, maximizing the information in
the data while ensuring computational efficiency. Therefore, we chose 50% as the window
overlap rate for model training. Finally, based on the optimal configuration, we explored
the number of layers in the hierarchical architecture of our proposed model.

In Figure 7b, as the number of layers increases from zero to two, the model’s per-
formance improves on each dataset. This indicates that our proposed HMA Conv-LSTM
network can effectively capture multi-scale features and some fine-grained subtle action
processes. However, when the number of layers reaches three, the performance starts to
deteriorate. The window size may be the cause of this situation. When the number of
layers is three, the minimum division of the partition length is small, and the multi-scale
convolution operation can no longer capture finer features. The model’s best results are
obtained when the number of layers is two. Therefore, we choose two as the number of
hierarchical layers for model construction.
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Figure 7. Performance of different window overlap rates (a) and different hierarchical numbers (b).

5.2. Effectiveness of the Proposed Modules

We conducted an ablation study on the proposed model, based on the optimal param-
eter configurations of the previous model, to evaluate the contributions of the proposed
modules. The results of the ablation experiments are shown in Table 4. In each experiment,
we removed specific modules from the proposed model. Additionally, we replaced the
ablated modules with alternative modules in some experiments for further testing. For ex-
ample, we replaced the entire HMC with multi-scale convolution and replaced DCS-LSTM
with LSTM. We also deleted ACS in ACFF and used the remaining two convolutional
layers instead.

Table 4. Ablation study results compared with the full HMA Conv-LSTM model (Macro F1-score).

Model
Opportunity PAMAP2 USC-HAD Skoda

F1-Score Δ F1-Score Δ F1-Score Δ F1-Score Δ

HMA Conv-LSTM 0.68 - 0.91 - 0.53 - 0.96 -

-SFS 0.65 −0.03 0.87 −0.04 0.51 −0.02 0.93 −0.03

-ACFF
(+Two Convolution Layer) 0.65 −0.03 0.89 −0.02 0.50 −0.03 0.94 −0.02

-DCS-LSTM
(+LSTM) 0.66 −0.02 0.89 −0.02 0.51 −0.02 0.93 −0.03

-HMC 0.61 −0.07 0.86 −0.05 0.48 −0.05 0.91 −0.05

-HMC
(+Multi-scale Convolution) 0.64 −0.04 0.87 −0.04 0.50 −0.03 0.93 −0.03

The bold parts represent the performance of our proposed model before ablation on each dataset.

From Table 4, it is evident that HMC significantly contributes to improving recogni-
tion. Its ablation leads to about 0.05 performance degradation across datasets. While the
ablation of SFS leads to about 0.03 performance degradation. When we replaced the HMC
component with a single multi-scale convolution component, the model performance also
decreased by about 0.03, illustrating the importance and effectiveness of the hierarchical
architecture and suggesting that multi-scale feature maps captured by the multi-scale
convolution are effective.

Regarding DCS-LSTM, replacing it with a standard LSTM network resulted in a per-
formance decrease of about 0.02, indicating that the ACS operation effectively captures
contributions from different channels and learns each channel’s weights adaptively. When
ACS was ablated from the ACFF component, performance decreased by about 0.02, fur-
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ther demonstrating ACS operation’s effectiveness. In conclusion, all components in our
proposed model significantly contribute to its performance, as evidenced by the results of
our ablation experiments. In addition, our study also has some limitations. Our model
depends on the quality of the sensor signal. If there are a lot of noise or data missing, it
may affect the model’s performance.

5.3. Comparison of Specific Actions

Figures 8 and 9 shows the confusion matrix of our proposed model on the PAMAP2,
USC-HAD, Skoda, and Opportunity datasets. The confusion matrix is used to measure the
effectiveness of a classifier in recognizing different categories. The row and column labels of
a confusion matrix represent the true and predicted categories, respectively. The diagonal
elements of the confusion matrix indicate the correct recognition rate for each action, while
the off-diagonal elements represent the proportion of actions that are incorrectly recognized
as other categories.

 

Figure 8. Confusion matrix of the proposed model on the PAMAP2 (a) and USC-HAD (b) datasets.

 

Figure 9. Confusion matrix of the proposed model on the Skoda (a) and Opportunity (b) datasets.
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In Figure 8a, there is some confusion between “standing” and “sitting”, which is
reasonable because the two actions are relatively similar. Other categories such as “walk-
ing”, “running”, and “descending stairs” are well recognized. In Figure 8b, there is some
confusion about the type of action due to the division of the sensor’s position and action
category at the time of data acquisition. However, for some categories such as “Walking
Forward”, “Walking Right”, “Walking Upstairs”, etc., our model is still able to distinguish
the confusing actions well.

In Figure 9a, there is some confusion between the actions “open left front door” and
“close left front door” due to the similarity of the two actions, resulting in similar data
collected by the accelerometer. However, other action categories, such as “open hood”,
“close hood”, and “close both left doors” were well recognized. This is because these
actions are process-oriented and can be distinguished without serious confusion, and
the model is more sensitive to the data collected by the sensors. In Figure 9b, human
action recognition on the Opportunity dataset is challenging due to the highly unbalanced
sample distribution. Nevertheless, our model can still distinguish some easily confused
actions, such as “Open Door 1” and “Open Door 2”, “Close Door 1” and “Close Door 2”,
“Open Drawer 3” and “Close Drawer 3”, etc. This shows that our proposed model can
effectively and accurately recognize some complex actions with subtle processes and can
also distinguish some confusing actions well.

In addition, the evaluation metrics scores for each category on the Skoda and Oppor-
tunity datasets are presented in Tables 5 and 6, respectively. The main focus here is to
analyze the performance of the Macro F1-score. In Table 5, the “close left front door” action
has the lowest Macro F1-score of 0.85; while the actions such as “write on notepad” and
“check steering wheel” have a higher Macro F1-score of 0.99. In Table 6, the Macro F1-score
performance of confusing actions such as “Open Door 1”, “Open Door 2”, “Close Door 1”,
and “Close Door 2” all reached above 0.79, while the Macro F1-score performance of “Open
Drawer 2”, “Close Drawer 2”, “Open Drawer 3”, and “Close Drawer 3” also reached above
0.6, which is generally a good performance. These results indicate that our proposed model
has good action recognition performance.

Table 5. Evaluation metrics for each action of the proposed model on the Skoda dataset.

Action of Skoda Dataset Precision Recall Macro F1-Score

null 0.996 0.999 0.998
write on notepad 0.989 0.988 0.989

open hood 0.980 0.955 0.968
close hood 0.959 0.983 0.970

check gaps on the front door 0.989 0.989 0.989
open left front door 0.834 0.903 0.867
close left front door 0.890 0.809 0.848
close both left door 0.987 0.991 0.989
check trunk gaps 0.989 0.988 0.988

open and close trunk 0.988 0.991 0.989
check steering wheel 0.999 0.980 0.990

Table 6. Evaluation metrics for each action of the proposed model on the Opportunity dataset.

Action of Opportunity Dataset Precision Recall Macro F1-Score

Other 0.949 0.964 0.956
Open Door 1 0.842 0.800 0.821
Open Door 2 0.844 0.750 0.794
Close Door 1 0.944 0.739 0.829
Close Door 2 0.750 0.938 0.833
Open Fridge 0.800 0.675 0.732
Close Fridge 0.733 0.746 0.740
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Table 6. Cont.

Action of Opportunity Dataset Precision Recall Macro F1-Score

Open Dishwasher 0.595 0.658 0.625
Close Dishwasher 0.486 0.586 0.531

Open Drawer 1 0.294 0.385 0.333
Close Drawer 1 0.539 0.467 0.500
Open Drawer 2 0.889 0.500 0.640
Close Drawer 2 0.636 0.700 0.667
Open Drawer 3 0.606 0.769 0.678
Close Drawer 3 0.560 0.667 0.609

Clean Table 0.909 0.526 0.667
Drink from Cup 0.762 0.647 0.700
Toggle Switch 0.857 0.450 0.590

5.4. Visualizing Sensor Feature Selection Weights

We visualized the attentional weights in the SFS module to evaluate the effects of dif-
ferent sensor features on different parts of the human body and different actions. Figure 10a
shows the IMU inertial sensing units in different parts of the human body in the PAMAP2
dataset; Figure 10b,c shows the attentional weights of the different sensor features for the
actions of “running” and “ironing”, respectively.

Figure 10. Visualization of attention weights for “running” (b) and “ironing” (c) actions of the
PAMAP2 dataset, and the position of sensors (a).

In Figure 10b, the “hand_acc”, “chest_acc”, and “ankle_acc” three-axis sensors in the
IMU have a significant impact on the running action. This is reasonable and intuitively
understandable because all parts of the human body are coordinated to complete actions
during running, and different types of sensor features play different roles in recognizing
different actions. In Figure 10c, the “hand_acc” sensor in the IMU is given more weight,
which is also reasonable because ironing is mainly performed with the hand.

Not all sensor features have the same contribution when performing action classifica-
tion. Our SFS module can automatically learn the weights of different sensor features in the
HAR task, capturing their contributions and potential importance. In short, our module
effectively identifies sensor features that contribute to the HAR task, providing a more
accurate basis for action classification.
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6. Conclusions

In this paper, we proposed the HMA Conv-LSTM, a novel hierarchical multi-scale
adaptive Conv-LSTM network for HAR. This network attentively weights sensor signals
by SFS, extracts finer-grained spatial features using HMC, and employs ACFF to process
multi-channel feature maps. It extracts temporal context information through a DCS-LSTM
network. The model fuses spatial features at different scales with time series information
at different levels to effectively capture the spatio-temporal motion patterns of the sensor
signals and accurately recognize some actions with fine-grained processes. Extensive exper-
iments on four public datasets demonstrate that HMA Conv-LSTM achieves competitive
performance when compared to several state-of-the-art approaches.

In future work, we will continue to improve our model by experimenting with new
network structures and techniques to improve the performance of the model. We will also
consider using some data noise reduction and data augmentation operations to improve
the data quality, reduce the impact of noise on the model performance, and improve the
model’s generalization ability.
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Abstract: The recognition of human movements is a crucial aspect of AI-related research fields.
Although methods using vision and sensors provide more valuable data, they come at the expense of
inconvenience to users and social limitations including privacy issues. WiFi-based sensing methods
are increasingly being used to collect data on human activity due to their ubiquity, versatility, and
high performance. Channel state information (CSI), a characteristic of WiFi signals, can be employed
to identify various human activities. Traditional machine learning approaches depend on manually
designed features, so recent studies propose leveraging deep learning capabilities to automatically
extract features from raw CSI data. This research introduces a versatile framework for recognizing
human activities by utilizing CSI data and evaluates its effectiveness on different deep learning
networks. A hybrid deep learning network called CNN-GRU-AttNet is proposed to automatically
extract informative spatial-temporal features from raw CSI data and efficiently classify activities. The
effectiveness of a hybrid model is assessed by comparing it with five conventional deep learning
models (CNN, LSTM, BiLSTM, GRU, and BiGRU) on two widely recognized benchmark datasets
(CSI-HAR and StanWiFi). The experimental results demonstrate that the CNN-GRU-AttNet model
surpasses previous state-of-the-art techniques, leading to an average accuracy improvement of up
to 4.62%. Therefore, the proposed hybrid model is suitable for identifying human actions using
CSI data.

Keywords: human activity recognition; WiFi sensing; deep learning; attention mechanism; channel
state information

1. Introduction

Over the last decade, human activity recognition (HAR) research has advanced signifi-
cantly. It has proven successful in several areas, such as healthcare, smart homes, sports
performance tracking, and human–computer interaction [1]. The primary goal of HAR is to
detect and understand user actions, enabling computing systems to provide proactive assis-
tance [2,3]. There are two main categories of HAR: vision-based and sensor-based. Firstly,
vision-based HAR (V-HAR) holds great promise, benefiting from the rapid advancements
in computer vision techniques and the high resolution offered by optical sensors [4–6]. De-
spite its success, V-HAR still faces challenges such as illumination, occlusion, and privacy
concerns. However, sensor-based HAR (S-HAR) has become increasingly popular due to
the rapid advancement in sensor technology [7–9]. S-HAR collects data from low-level
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sensors, such as accelerometers, gyroscopes, magnetometers, and acoustic sensors, to ex-
tract high-level information about human behavior. However, S-HAR has limitations in
terms of environmental requirements, and people may object to using sensors due to their
bothersome or cumbersome nature. V-HAR and S-HAR have challenges to overcome, but
they can potentially provide valuable insights into human behavior.

Despite the numerous methods developed in recent years, WiFi-based sensing tech-
niques have gained significant attention due to their widespread availability, versatility,
and high performance [10]. WiFi-based sensing has the potential to integrate sensing and
communication functions, as channel information can be utilized for both purposes [11].
Compared to V-HAR and S-HAR techniques, WiFi-based HAR systems provide several
advantages. WiFi-based HAR systems differ from V-HAR systems in that they are not
influenced by lighting conditions or variations in human body shapes, and they also re-
spect user privacy. Additionally, these systems provide a more convenient option for smart
home and healthcare applications since they do not rely on users wearing sensors. Con-
sequently, researchers have actively engaged in investigating and developing WiFi-based
HAR methods in recent times.

Wi-Fi-based human HAR systems offer a cost-effective and seamless integration solu-
tion within existing Wi-Fi infrastructures in both residential and commercial environments,
with minimal additional expenses. These systems can be arranged into two main types [12]
based on their utilization of the received signal strength indicator (RSSI) [13], while the
other type relies on channel state information (CSI) [10,14] for activity recognition tasks.
The CSI provides a comprehensive characterization of the radio frequency (RF) signal
propagation, encompassing aspects such as amplitude attenuation, time lag, and phase
shift across various carrier frequencies. Prior research has consistently demonstrated the
superior performance of CSI-based HAR systems compared to RSSI-based alternatives [14],
primarily due to the increased richness and informational content provided by CSI data.

Learning-based approaches have emerged as potent tools for classification and pre-
diction, occupying a crucial role in HAR and the implementation of recognition models.
Researchers have extensively employed conventional machine learning (ML) techniques, in-
cluding Hidden Markov Model [15], Random Forest [16], Support Vector Machine [17], and
K-Nearest Neighbor [18], to achieve HAR objectives. In conventional activity recognition
methods, ML algorithms manually extract features from sensor data, often relying on statis-
tical or structural attributes such as means, medians, and standard deviations. Extracting
the most relevant manual features often demands domain expertise. While these hand-
crafted features demonstrate satisfactory performance in scenarios with limited training
data, their extraction becomes increasingly intricate as the number of sensors escalates.

Deep learning (DL), a cutting-edge approach within the realm of ML, has gained
significant traction due to its remarkable capability to extract features and perform classifi-
cation simultaneously. In contrast to traditional ML methods, DL leverages artificial neural
networks with multiple layers to process data and address intricate problems. Promising
outcomes have been observed across various domains through DL models including Con-
volutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Recurrent
Neural Networks (RNN). CNN effectively overcomes high dimensionality by employing
filters capable of convolving and sharing weights. On the other hand, RNN, a type of
neural network, leverages previous outputs as inputs in the present step and incorporates
hidden states, making it particularly suitable for solving sequential concerns and operating
time series data. DL presents distinct advantages over traditional ML approaches as it
surpasses the limitations of manual feature extraction and exhibits enhanced efficiency in
handling large datasets. Additionally, Graphics Processing Units (GPUs) can be employed
to accelerate the computational speed of DL models.

Over the past few years, the improvement of DL techniques has become increas-
ingly prominent in CSI-based HAR [19]. Among these techniques, the LSTM method has
emerged as a notable strategy that relies solely on the current state of CSI for learning.
LSTM excels at autonomously learning representative features and capturing temporal data
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during the feature learning process. To attain superior performance in HAR utilizing CSI
measurements, researchers have developed an attention-based bidirectional LSTM method.
This method combines a Bidirectional LSTM (BLSTM) [20] with an attention model that
assigns increased weights to specific time steps, effectively enhancing recognition efficiency.

The conventional LSTM is limited to processing sequential CSI measurements in a
single direction, such as forward, and it solely relies on historical CSI information for the
current hidden state. However, we emphasize the significance of incorporating future CSI
data to enable accurate HAR. Additionally, the sequentially learned features of a conventional
LSTM can have varying effects on the HAR task. In the conventional LSTM method, each
learned characteristic contributes equally to the final identification of human activities.
Real-time applications can benefit from employing advanced DL approaches and models
to enhance the accuracy of these methods.

Therefore, this article presents CNN-GRU-AttNet, an innovative DL network specifi-
cally designed for extracting spatial-temporal features from raw WiFi CSI data. The network
architecture comprises convolution layers and a gated recurrent unit (GRU) layer. Moreover,
we incorporate an attention mechanism that dynamically assigns weights to important
features and time steps, thereby enhancing the model’s generalization performance for
HAR. To evaluate the effectiveness of our proposed model, we conduct a comprehensive
set of experiments and compare its performance against existing benchmark approaches.
The main contributions of this research can be succinctly summarized as:

• Development of a novel DL framework that enables HAR using WiFi CSI measure-
ments, eliminating the need for manual feature extraction.

• Introduction of a hybrid DL network, CNN-GRU-AttNet, that leverages the strengths
of CNN and GRU to automatically extract spatial and temporal features, leading to
highly accurate HAR results.

• Integration of an attention mechanism into the CNN-GRU-AttNet network, allow-
ing for the prioritization of important features and time steps, thereby enhancing
recognition performance.

• Thorough evaluation of the proposed approach through a series of rigorous experi-
ments, demonstrating its superior performance in HAR using WiFi CSI data.

The paper follows the subsequent structure: Section 2 presents an extensive review of
existing research on HAR utilizing WiFi CSI data. In Section 3, we introduce the framework
for automatic learning and selection of features in the HAR process, along with the detailed
description of the proposed CNN-GRU-AttNet model. The experimental setup and the
results obtained under various scenarios are outlined in Section 4. Section 5 provides
an in-depth discussion of the experimental findings, analyzing their implications and
significance. Lastly, Section 6 concludes the study by summarizing the key findings and
suggesting possible avenues for planned research endeavors.

2. Related Works

2.1. CSI-Based HAR

Within the existing literature, numerous WiFi-based HAR systems have been re-
searched and analyzed, capitalizing on the widespread availability of WiFi signals. Notably,
Abdelnasser et al. [21] presented a system called WiGest, which consists of three inte-
gral components: initial feature extraction, gesture recognition, and motion mapping.
This system employs RSS measurements for accurate gesture identification. Additionally,
Gu et al. [22] proposed an alternative approach that leverages WiFi RSS to recognize human
activities. Through manual extraction of significant features from raw RSS measurements,
they introduced a fusion algorithm capable of identifying essential movements such as
standing and walking.

The efficacy of activity recognition mechanisms based on RSS measurements is limited
by the presence of instability and disorder caused by multi-path and fading effects, even
when considering basic activities. While RSS provides a broad understanding of commu-
nication links, CSI offers more intricate details about the condition of the communication
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channel [23]. Notably, the enhanced reliability and informativeness of WiFi CSI have at-
tracted considerable attention. Zhang et al. [24] devised a Fresnel zone model for HAR that
employs WiFi CSI signals, enabling the assessment of WiFi signals’ sensing capabilities.
Through their proposed model, they achieved remarkable accuracy in detecting human
behaviors at centimeter and decimeter scales, such as respiration rate and the orienta-
tion of walking. Furthermore, Wang et al. [25] introduced a location-based movement
identification system that utilizes WiFi CSI readings.

Previous studies relied on hand-crafted features, which obligate expert knowledge
and may not capture the implicit features necessary for accurate HAR using WiFi CSI. To
address this issue, some researchers have proposed using DL techniques to automatically
learn essential features for this task.

2.2. DL for HAR

DL techniques have gained significant traction in utilizing WiFi CSI for the purposes of
localizing and classifying human actions, leveraging the wealth of wireless link information
it offers. Wang et al. [26] presented an indoor localization of the HAR system based on
a multitasking 1D-CNN architecture enhanced with residual connections. Their model
achieved a notable accuracy of 95.68% when tested on a dataset comprising six distinct
categories of human behavior. Moshiri et al. [27] gathered CSI data from various human
activities and converted them into RGB images, which were then passed through a 2D-
CNN layer for classification. Their best-performing model obtained an accuracy of 95%.
Chahoushi et al. [28] presented a MIMO-AE for physical activity classification, which
achieved a high accuracy of 94.49% using only 50% of the training data.

In HAR, RNNs and their subsets, such as LSTM, have been commonly used for CSI
data analysis. However, when analyzing long sequences, these networks face problems,
leading to vanishing gradients. Even with the inclusion of long memory and switch gates
in LSTM, the problem persists [20]. The memory bandwidth requirements of LSTMs
are substantial by reason of the complexity of their sequential direction and MLP lay-
ers. Furthermore, these models encounter difficulties when confronted with sequences
comprising a large number of terms, as their performance becomes compromised beyond
100 terms [29]. Additionally, LSTMs are restricted to analyzing sequential data in a sin-
gle direction, limiting their ability to capture bidirectional dependencies. Therefore, they
cannot differentiate between activities such as lying and sitting down.

To overcome these limitations, researchers have developed new methods for HAR.
Yousefi et al. [19] created the StanWiFi dataset, extracted statistical features, and used
hidden Markov models, LSTM, and RF models to classify activities with reported accuracies
of 64.6%, 73.3%, and 90.5%, respectively. The BiLSTM architecture was meticulously designed
to leverage both historical and prospective CSI data [30], facilitating effective feature learning
in the realm of classification. Additionally, the ABLSTM algorithm [20] underwent rigor-
ous evaluation and comparative analysis against alternative algorithms. Zhang et al. [31]
introduced the Dense-LSTM method, which demonstrated a remarkable accuracy of ap-
proximately 90% while employing a reasonable amount of CSI data. Shang et al. [32]
proposed a DL model that combined LSTM-CNN with WiFi CSI signals, yielding an aver-
age performance of 94.14% on a publicly available dataset. Moreover, Santosh et al. [33]
presented CSITime, an adjusted InceptionTime structure customized for HAR tasks using
WiFi CSI signals, achieving an impressive accuracy of 98% on the StanWiFi dataset.

As discussed earlier, several researchers have explored different techniques for HAR,
including feature extraction, CNN, and RNN-based models, as shown in Table 1. The pres-
ence of spatial and temporal characteristics within WiFi CSI-based HAR data necessitates
the utilization of a model capable of effectively capturing both aspects of human behavior.
To address this, our study introduces a hybrid DL model that is proficient in learning
spatial-temporal features, all while maintaining a streamlined parameter count. This model
offers enhanced precision and accuracy for HAR tasks.
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Table 1. Previous works analysis using DL approaches for HAR based on CSI data.

Year Classifier Model Dataset Physical Activities Accuracy

2019 1D-CNN [26] Private six casual activities 88.13%
2017 LSTM [19] StanWiFi lie down; fall; walk; run; sit down; stand up 90.50%
2019 ABLSTM [20] StanWiFi lie down; fall; walk; run; sit down; stand up 97.30%

Private empty; jump; pick up; run; sit down; wave hand; walk

2020 Dense-LSTM [31] Private
make phone call; check wristwatch; walk normal and
fast; run; jump; lie down; play guitar and piano; play
basketball

90.00%

2021 LSTM-CNN [32] Private stand; sit, falling; standing up; stepping 94.14%
2021 2D-CNN [27] CSI-HAR lie down; fall; bend; run; sit down; stand up; walk 95.00%
2022 CSITime [33] StanWiFi lie down; fall; walk; run; sit down; stand up 98.00%
2023 MIMI-AE [28] CSI-HAR lie down; fall; bend; run; sit down; stand up; walk 94.49%

3. Proposed Methodology

This research introduces an HAR system that utilizes a hybrid DL network called
CNN-GRU-AttNet based on WiFi CSI data. The first step involves collecting raw CSI
data for DL networks. The raw CSI data are pre-processed in the second step using
denoising and segmentation techniques. Following that, the pre-processed CSI data are
partitioned into separate training and evaluating sets utilizing a five-fold cross-validation
methodology. Subsequently, the data samples undergo a process of high-dimensional
embedding to generate features by employing convolutional layers and a GRU layer
within the CNN-GRU-AttNet model. Finally, the system’s performance is evaluated using
standard assessment techniques, such as accuracy, precision, recall, and F1-score. Figure 1
illustrates the overall organization of the framework.

Figure 1. A CSI-based HAR framework using a hybrid DL network.

3.1. Data Acquisition

This study conducted experiments using two publicly available datasets: CSI-HAR
and StanWiFi. The details of both datasets are presented in Table 2.
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Table 2. Summary of the CSI datasets used in this study.

Dataset
No. of Participants

(Age Range)
Collection Tools

Bandwidth and
Number of Subcarries

Activities No. of Samples

CSI-HAR 3 (25 to 70 yrs) Raspberry Pi-4B 40 MHz and Lie down 405
Nexmon CSI Tool 52 Subcarriers Fall 437

Bend 415
Run 449

Sit down 413
Stand up 348

Walk 398

StanWiFi 6 (unidentified) Intel 5300 NIC 20 MHz and Lie down 657
30 Subcarriers Fall 443

Run 1209
Sit down 400
Stand up 304

Walk 1465

3.1.1. CSI-HAR Dataset

The proposed model’s performance and comparable baseline models for WiFi-based
HAR were evaluated using the publicly available CSI-HAR dataset [27]. The dataset
was collected by building in the Nexmon tool on a Raspberry Pi-4GB, which allowed
for collecting and storing CSI data based on transmitted and received information. The
dataset contains 4000 CSI samples collected over 20 s, with each line representing 5 ms.
The activity-related parts of the data were separated and stored in CSV files as matrices
with 52 columns and 600 to 1100 rows, depending on the activity time. Along with the
CSI samples, label files were provided to distinguish the lines for each action. The dataset
consists of seven discrete activities, namely walk, run, sit down, lie down, stand up, bend,
and fall. These actions were operated a total of twenty repetitions by three participants
across different age groups within a controlled homeroom environment.

3.1.2. StanWiFi Dataset

Within the StanWiFi dataset [19], there are seven distinct activities: lie down, fall, walk,
run, sit down, stand up, and pick up. These activities were performed by 6 participants,
and each activity was repeated 20 times. The data gathering involved a Wi-Fi router with a
single antenna transmitting signals, while a laptop equipped with NIC-5300 Intel’s network
interface card and three antennas received the signals. The transmitter and receiver were
positioned 3 m away from each other in a line-of-sight scenario, and the duration of each
activity was set at 20 s. With a sampling frequency of 1000 Hz, the dataset incorporated an
input feature vector that encompassed both raw CSI amplitude data and a 90-dimensional
vector. This vector consisted of 3 antennas and 30 subcarriers. The original dataset had
seven categories, but only six were used in this study to facilitate comparison with previous
works. The majority of methods proposed in the literature (e.g., [19,20,33]) have been
evaluated on six activity classes from the dataset, with the “pick up” activity class being
excluded. In our case, to ensure fair comparison, we evaluate our proposed CNN-GRU-
AttNet on the same six daily activity classes of the StanWiFi dataset. A single training
datapoint is the number of samples × the number of features (500) × the number of
timestamps (90).

3.2. Data Pre-Processing
3.2.1. Data Denoising

To effectively address the impact of noise on the CSI and overcome the potential lack
of discernible characteristics for different activities, it is crucial to employ ML techniques
for noise filtering and feature extraction. Various noise reduction techniques can be utilized,
such as the implementation of Butterworth low-pass filters [34]. Nonetheless, the presence
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of high-bandwidth burst and impulse noises in the CSI, using low-pass filters alone, is not
feasible for achieving a seamless CSI stream.

Based on empirical evidence, there are more effective approaches to achieve this ob-
jective, including employing principal component analysis (PCA) for noise denoising [34].
PCA is a method that reduces the complexity of a system by identifying key features where
a significant portion of relevant information is concentrated. In the context of PCA-based
denoising, this study adheres to the recommendation proposed in [34]. It involves exclud-
ing the initial principal component and instead selecting the subsequent five principal
components for feature extraction. The reason behind this choice is that the noises arising
from internal state transitions are present in all CSI streams. These noises, which show a
strong correlation, get mixed into the initial principal component, along with the signal
generated by human motion. However, it is important to note that all the human mo-
tion signal data present in the initial principal component are also captured within the
remaining principal components. In the context of PCA, the components derived from
PCA show no correlation with each other. As a result, the initial principal component solely
represents one of these orthogonal components, while the rest are preserved within the
subsequent PCA components. Therefore, removing the initial principal component does
not compromise any relevant data. The decision to choose five principal components for
feature extraction is supported by empirical evidence. The aim is to find a balance between
classification effectiveness and computational overhead.

To mitigate noise, the initial principal component is excluded, and the subsequent five
components are utilized for feature extraction. This approach preserves data related to the
dynamic reflection of the mobile target, as it is also captured in other primary components.
Following the application of PCA denoising to the CSI data, specific characteristics are
extracted to enhance its usability for classification purposes. To demonstrate the denoising
performance, we compared the PCA denoising method using the Signal-to-Noise Ratio
(SNR), which represents the ratio of signal power (meaningful information) to noise power.
The denoising results are presented in Figures 2 and 3.

Figure 2 illustrates the amplitude received from all subcarriers of CSI data obtained
from the CSI-HAR dataset after noise reduction using the PCA denoising method. Notably,
the denoised CSI signals exhibit higher SNR values compared to the raw CSI samples.
These findings indicate the successful reduction of noise from the raw CSI data.

Figure 3 presents the raw and smoothed CSI signals for six human activities from the
StanWiFi dataset. The visualizations reveal similar SNR results across all subcarriers of the
CSI data after noise reduction using the PCA denoising method. Similar to the previous
investigation, the SNR value of the denoised CSI data is higher than the SNR value of the
raw data.

3.2.2. Segmentation

Segmentation is a crucial process that involves dividing a signal into smaller sections
or windows. In our research, we utilize segmentation for two primary purposes. The first
challenge we encounter is the variability in the captured CSI signals, which can differ in
length and belong to different subjects. This variability hinders the identification procedure.
The second challenge relates to the temporal aspect of processing an extensive volume of
CSI data, which requires significant time and computational resources.

To address these challenges effectively, our study adopts a predetermined window
size. This window size allows us to partition the denoised CSI signal into multiple smaller
signals. By doing so, we can treat each small signal as an independent instance during the
training phase of the CNN-GRU-AttNet model. This approach not only enhances efficiency
but also improves the accuracy of our results.
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Figure 2. Some CSI signal representations from CSI-HAR dataset after pre-processing: (a) before
denoising; (b) after denoising.
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Figure 3. Some CSI signal representations from StanWiFi dataset after pre-processing: (a) before
denoising; (b) after denoising.

3.3. Recognition Model

This section presents CNN-GRU-AttNet, an attention-based neural network designed
for recognizing human activities using WiFi CSI data, as illustrated in Figure 4. The pro-
posed CNN-GRU-AttNet comprises five layers: the input layer, two CNN layers, a GRU
layer, an attention layer, a fully connected layer, and an output layer. Each of these layers
will be described in detail below.
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Figure 4. The proposed CNN-GRU-AttNet architecture for CSI-based HAR in this work.

CNNs extensively employ DL models with robust feature extraction capabilities.
They can effectively and automatically extract features from input data, especially two-
dimensional image data, and process them quickly. The convolutional layers in CNN are
different from traditional neural network models since they are not fully connected. Instead,
the inputs are linked to the following layers, and subregions in the input sets have the exact
weights, resulting in spatially related outputs. In contrast, traditional neural network models
have different weights for each input, increasing the input dimensionality and making the
network more intricate. CNN addresses this issue by reducing the number of connections
and weights through weight sharing and downsampling operations.

This study utilized a CNN with two layers. The first layer contained 64 filters and a
kernel size of 3, while the second layer had 64 filters and a kernel size of 5. The max-pooling
layers had a uniform pool size of 2. To connect the CNN and GRU layers, a flattened layer
was inserted. Table 3 displays the detailed parameters of the CNN used in this research.

Table 3. Parameters of each layer of the CNN network.

Layer Name Kernel Size Kernel Number Padding Stride

Conv1D-1 5 64 2 4
Maxpooling-1 2 None 0 1
Conv1D-2 7 64 2 1
Maxpooling-2 2 None 0 1

While CNNs have proven to be highly effective in feature extraction, their performance
in tasks involving time-dependent inputs, such as the analysis of biometric signal data in
this study, may be relatively limited. In scenarios where sequential data are processed,
the network’s prediction of future states is influenced by the previous state of the input.
Therefore, the network needs to consider both the current and preceding inputs. To address
this challenge, the RNN model is capable of analyzing each element of the temporal
sequence and incorporating both the current and preceding inputs for the current input
of the RNN. The output of an RNN at a specific time step t depends on the output of the
RNN at the previous time step, t − 1.

Theoretically, RNNs are capable of acquiring knowledge from time series data with
arbitrary lengths. However, when dealing with extensive time series in real-world applica-
tions, RNNs encounter the problem of gradient disappearance, which impedes the learning
of long-term dependencies. To tackle this issue, we integrated a GRU as the memory com-
ponent within the RNN architecture. The organization of the GRU cell’s internal structure
is visualized in Figure 5.
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Figure 5. The structure of a GRU network.

GRU networks can be considered as a simplified form of LSTM networks within the
class of RNNs, as illustrated in Figure 6. They offer enhanced computational efficiency
while preserving the effectiveness of LSTM networks.

Figure 6. Comparison of RNN-based models: (a) simple RNN, (b) LSTM, and (c) GRU.

The architectural representation of a GRU unit, as shown in Figure 6c, consists of an
update gate and a reset gate that control the extent of modification for each hidden state.
These gates serve as mechanisms to regulate the flow of relevant and irrelevant information
between consecutive states in a computational model. Computation of the hidden state
ht at a specific time t incorporates the update gate output zt, the reset gate output rt, and
the current input xt. Additionally, the preceding hidden state ht−1 is taken into account, as
demonstrated below:

zt = σ(Wzxt ⊕ UzHt−1) (1)

rt = σ(Wrxt ⊕ Ur Ht−1) (2)

gt = tanh(Wgxt ⊕ Ug(rt ⊗ ht−1)) (3)

ht = ((1 − zt)⊗ ht−1)⊕ (zt ⊗ gt) (4)

The symbol σ denotes the sigmoid function, ⊕ denotes the elementwise addition
operation, and ⊗ denotes the elementwise multiplication operation.

Once the GRU network has captured the contextual features, this study proposes
using a self-attention mechanism to capture crucial information further. This mechanism
assigns more weight to important information, leading to a more precise understanding of
sequence semantics. The calculation process for the self-attention mechanism is depicted in
Figure 7.
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Figure 7. Attention-based GRU for the classification process.

Once the GRU layer has computed the pre-processed data X = (x1, x2, ..., xT), we can
derive the vector H = [h1, h2, h3, ..., ht, ..., hT ], where T denotes the length of the vector data
X, and ht denotes the hidden state of the GRU at time step t. We can build the self-attention
mechanism for the GRU using the following steps:

γt = tanh(w2ht + b2) (5)

βt =
exp((γt)Tw2)

∑t exp((γt)Tw2)
(6)

δ = ∑
t

βtht, (7)

where w2 is a contextual vector at the time level, βt is a weight normalized through a
softmax function, and δ represents the uniform representation of the entire sequence,
which is calculated by summing all the hidden states weighted by their corresponding
attention weights.

Following the attention layer, the neural network incorporates three dense layers with
dropout regularization. The initial layer consists of 128 neurons and utilizes a dropout rate
of 0.25. This is followed by a layer of 64 neurons with a dropout rate of 0.25 as well. Finally,
the output layer of the model consists of two neurons. The rectified linear unit (ReLU)
activation function is employed in all layers of the model. To achieve the best results during
the training process, a configuration of 200 epochs and a batch size of 32 were utilized. The
categorical cross-entropy loss function was used, and optimization was performed using
the Adam optimizer [35].
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3.4. Hyperparameter and Training

A three-step process is involved in building any statistical classification model. Firstly,
the model development phase involves choosing hyperparameters such as batch size, activa-
tion function, learning rate, number of iterations, etc. that influence how well the model is
built and trained. Adequate variation and a sufficient quantity of data are necessary for this
phase. Secondly, model training and validation are carried out, with the training set being
used to select hyperparameters, and the validation set to evaluate performance. In this
particular instance, the training hyperparameters were carefully chosen. They consisted of
a learning rate of 1 × 10−3, 100 epochs, and a batch size of 128. To ensure efficient learning,
a callback monitor was utilized to adjust the learning rate, reducing it by 75% if no progress
was made for ten successive epochs. The training process incorporated data shuffling by
randomizing the order of the data before the beginning of each epoch, introducing diversity.
The hyperparameters were determined through an iterative process of experimentation
and refinement, aiming to achieve the highest level of accuracy.

In order to assess the efficacy of the proposed model, we utilized two publicly ac-
cessible datasets, CSI-HAR and StanWiFi. Since these datasets did not have predefined
training and testing sets, we adopted the five-fold cross-validation technique [36] to as-
sess the model’s performance. This technique involved randomly dividing the complete
dataset into ten equally sized subsets that were mutually exclusive. The model fitting
process followed an iterative procedure, where nine subsets were used for training, while
the remaining subset was used for evaluating the performance. This testing and training
process was repeated ten times to ensure that each subset underwent a precise testing
phase. The overall performance of the model was evaluated by computing the mean value
of the outcomes obtained from all iterations.

The Adam optimizer [35] played a crucial role in our methodology by updating the
weights of our model. Moreover, we employed the cross-entropy loss function to quantify
the error or loss during the training phase.

3.5. Network Training and Evaluation Metrics

A valuable tool for assessing the recognition performance of DL models is the confu-
sion matrix, which provides a clear and visual representation of their performance. The
multi-class confusion matrix can be mathematically represented: the rows represent the
instances in the predicted class, while the columns represent the instances in the actual class.

C =

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c13 . . . c1n
c21 c22 c23 . . . c2n
c31 c32 c33 . . . c3n
...

...
...

. . .
...

cn1 cn2 cn3 . . . cnn

⎤
⎥⎥⎥⎥⎥⎦

The confusion elements for each class are given by:

• True positive: TP(Ci) = Cii;
• False positive: FP(Ci) = ∑n

l=1 cli − TP(Ci);
• False negative: FN(Ci) = ∑n

l=1 cil − TP(Ci);
• True negative: TN(Ci) = ∑n

l=1 ∑n
k=1 clk − TP(Ci)− FP(Ci)− FN(Ci).

The evaluation of the DL models utilized in this study involved analyzing a confu-
sion matrix and calculating four commonly used metrics: accuracy, precision, recall, and
F1-score.

Accuracy is a measure of systematic error and is calculated by dividing the sum of
true positive and true negative by the total number of records. Precision is determined
by computing the ratio of examples that are correctly classified as belonging to a specific
smartwatch user’s class to all examples that are classified as belonging to that class. Recall
is evaluated as the ratio of examples that are classified as belonging to a specific smartwatch
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user’s class to all examples that actually belong to that class. Lastly, the F1-score is a metric
that blends precision and recall using the harmonic mean.

The mathematical expressions for these evaluation metrics were written as:

Accuracy =
1

|Class| ×
|Class|
∑
i=1

TPi + TNi
TPi + FPi + TNi + FNi

(8)

Precision =
1

|Class| ×
|Class|
∑
i=1

TPi
TPi + FPi

(9)

Recall =
1

|Class| ×
|Class|
∑
i=1

TPi
TPi + FNi

(10)

F1-score = 2 × Precision × Recall
Precision + Recall

(11)

4. Experiments and Findings

In this section, we provide a detailed analysis of the experiments conducted and the
results obtained using the CNN-GRU-AttNet model on two distinct datasets: CSI-HAR and
StanWiFi. Our aim is to demonstrate the effectiveness of the proposed model. Furthermore,
we perform a comparative evaluation by assessing the performance of five baseline deep
learning models (CNN, LSTM, BiLSTM, GRU, and BiGRU), along with other contemporary
models, on the same datasets. This comparative analysis allows us to gain insights into the
relative strengths and weaknesses of different models in the context of the given datasets.

4.1. Experimental Setting

The deep learning networks employed in this study were exclusively developed and
trained on the Google Colab Pro+ platform. To expedite the model training procedure, we
utilized the Tesla V100-SXM2-16GB graphics processor component. The proposed model
and the standard deep learning models were implemented using the Python programming
language, with Tensorflow and CUDA backend frameworks serving as the backbone.
Throughout the investigation, we focused on the following Python libraries:

• To facilitate the comprehension, manipulation, and analysis of sensor data, we em-
ployed Numpy and Pandas for efficient data manipulation.

• For effective presentation and visualization of data exploration and model evaluation
results, we utilized Matplotlib and Seaborn.

• In our experimental procedures, we leveraged the Scikit-learn library as a tool for data
sampling and generation.

• The instantiation and training of the DL models were carried out utilized the Tensor-
Flow, Keras, and TensorBoard frameworks.

4.2. Experimental Findings on CSI-HAR Dataset

The results of the CSI-based HAR dataset demonstrate the superior classification
capabilities of the CNN-GRU-AttNet model, as presented in Table 4. The findings highlight
the CNN-GRU-AttNet model’s outstanding performance, with an average accuracy of
99.62%, precision of 99.61%, recall of 99.61%, and F1-score of 99.61% across all human
movements. Furthermore, a comparative analysis indicates that the CNN-GRU-AttNet
model exhibits exceptional efficacy in classifying HAR tasks, surpassing the achievement
of the five baseline DL models.
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Table 4. Performance results of both the proposed CNN-GRU-AttNet model and the five baseline
models on the CSI-HAR dataset.

Model
Recognition Performance (Mean ± Std)

Accuracy Precision Recall F1-Score

CNN 95.67% (±1.57%) 95.97% (±1.46%) 95.76% (±1.51%) 95.66% (±1.60%)
LSTM 84.12% (±1.22%) 84.56% (±1.14%) 84.17% (±1.24%) 84.10% (±1.18%)
BiLSTM 90.44% (±0.86%) 90.49% (±0.86%) 90.38% (±0.84%) 90.34% (±0.88%)
GRU 89.21% (±2.86%) 89.14% (±2.92%) 89.12% (±2.87%) 89.06% (±2.89%)
BiGRU 95.39% (±0.92%) 95.38% (±0.94%) 95.37% (±0.96%) 95.31% (±0.95%)
CNN-GRU-AttNet 99.62% (±0.26%) 99.61% (±0.26%) 99.61% (±0.27%) 99.61% (±0.26%)

Figure 8 illustrates the confusion matrix of the CSI-HAR dataset based on the proposed
CNN-GRU-AttNet model. The matrix’s diagonal elements correspond to the model’s
accuracy in identifying individual human actions. The findings indicate that the CNN-
GRU-AttNet model is effective in capturing both the spatial and temporal features of
the WiFi CSI signal. Specifically, the model achieves 100% accuracy in recognizing run,
sit down, standup, and walk activities. However, there needs to be more clarification
between lie down and sit down activities. The misclassification could be explained by
the overlapping patterns between sit down activities, characterized by sudden sitting and
prolonged immobility, and lie down activities.

Figure 8. Confusion matrix of the proposed model on CSI-HAR dataset.

The accuracy and loss metrics of the CNN-GRU-AttNet model are illustrated in
Figure 9. The graph in Figure 9a depicts the accuracy values for both the training and vali-
dation data. Notably, the model achieves convergence within a relatively short timeframe,
specifically within 100 epochs. Additionally, Figure 9b demonstrates that the training
loss exhibits higher values compared to the validation loss, which is a reasonable obser-
vation. This elevated training loss can be attributed to the multi-phase learning process
aimed at understanding the distinct characteristics of CSI signals associated with various
human actions.
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Figure 9. The accuracy and loss metrics of the CNN-GRU-AttNet model on the CSI-HAR dataset:
(a) train and validation accuracy curves; (b) train and validation loss curves.

4.3. Experimental Findings on StanWiFi Dataset

Table 5 presents the experimental results of the CNN-GRU-AttNet model applied to
HAR on the StanWiFi dataset. The table clearly demonstrates that the proposed model
achieves impressive performance with an average accuracy of 98.66%, precision of 98.43%,
recall of 97.88%, and F1-score of 98.14%. These results show that the CNN-GRU-AttNet
model performs well in recognizing human activities. Furthermore, compared to five other
baseline DL models, the CNN-GRU-AttNet model achieves the highest recognition accu-
racy.

Table 5. Performance results of both the proposed CNN-GRU-AttNet model and the five baseline
models on the StanWiFi dataset.

Model
Recognition Performance (Mean ± Std)

Accuracy Precision Recall F1-Score

CNN 89.08% (±4.61%) 87.52% (±5.47%) 89.49% (±3.48%) 87.55% (±4.74%)
LSTM 93.95% (±2.15%) 91.32% (±2.66%) 94.80% (±1.64%) 92.75% (±2.25%)
BiLSTM 94.73% (±1.73%) 92.25% (±2.15%) 94.74% (±1.18%) 93.18% (±1.77%)
GRU 94.84% (±2.52%) 92.68% (±3.44%) 94.84% (±2.32%) 93.35% (±3.12%)
BiGRU 95.73% (±2.64%) 94.70% (±2.39%) 95.02% (±3.78%) 94.62% (±3.38%)
CNN-GRU-AttNet 98.66% (±0.26%) 98.43% (±0.29%) 97.88% (±0.59%) 98.14% (±0.42%)

The confusion matrix of the CNN-GRU-AttNet model on the StanWiFi dataset is
illustrated in Figure 10. The results demonstrate that the model has high recognition
accuracy for lie down, walk, and stand up activities, achieving over 96% accuracy. In
contrast, fall and run activities show slightly lower performance, around 94%. Additionally,
sit down activities have a recognition accuracy of 92% or higher. However, there needs to
be more clarification between lie down and sit down activities, and this may be due to the
similarity in signal patterns between the two activities. Figure 11 illustrates the accuracy
and loss metrics of the CNN-GRU-AttNet model applied to the StanWiFi dataset.
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Figure 10. Confusion matrix of the proposed model on the StanWiFi dataset.

Figure 11. The accuracy and loss metrics of the CNN-GRU-AttNet model on the StanWiFi dataset:
(a) train and validation accuracy curves; (b) train and validation loss curves.

5. Discussion

This section discusses the experimental outcomes achieved by utilizing the proposed
CNN-GRU-AttNet model on two distinct datasets.

5.1. Performance Comparison

Assessing the overall effectiveness of a model presents a significant challenge, as it
requires comparing different models using the same dataset. Therefore, we evaluate the
efficacy of the proposed model through a comparative analysis with other models using
the CSI-HAR and StanWiFi datasets. The comparative results are provided in Table 6. Our
study demonstrates that the proposed CNN-GRU-AttNet model outperforms other models
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on the CSI-HAR dataset in terms of recognition capability. The CNN-GRU-AttNet model
achieved an average accuracy of 99.62%, precision of 99.61%, recall of 99.61%, and F1-score
of 99.61%. Furthermore, our proposed CNN-GRU-AttNet model exhibits a remarkable
accuracy improvement of 4.62% compared to the leading-edge model currently available
on the CSI-HAR dataset.

The proposed CNN-GRU-AttNet model has demonstrated a superior level of accuracy,
achieving a score of 98.66% on the StanWiFi dataset, which represents a 0.66% improvement
over the best state-of-the-art performance [33]. Upon analyzing the performance of various
existing models presented in Table 6, it is evident that our proposed CNN-GRU-AttNet
outperforms all others in terms of recognition outcomes on both datasets. This observed
enhancement can be attributed to the recently suggested framework, which adeptly cap-
tures and utilizes spatial and temporal characteristics extracted from unprocessed CSI data
for the purpose of HAR.

Table 6. Comparison between the proposed model and other existing works.

Dataset Classifier Accuracy Precision Recall F1-Score

CSI-HAR 2D-CNN [27] 95.00% - - -
MIMI-AE [28] 94.49% - - -
CNN-GRU-AttNet 99.62% 99.61% 99.61% 99.61%

StanWiFi LSTM [19] 90.50% - - -
ABLSTM [20] 97.30% - - -
CSITime [33] 98.00% - - -
CNN-GRU-AttNet 98.66% 98.43% 97.88% 98.14%

5.2. Impact of the Attention Mechanism

The ability to obtain an interpretable representation is crucial for many ML applica-
tions. While DL techniques excel at extracting features from raw data, understanding the
relative importance of the input data can be challenging. This issue has been addressed
in prior research through the introduction of attention mechanisms. In our study, we
enhanced the classification algorithm by incorporating an attention mechanism originally
designed for neural network machine translation tasks, as presented by Luong et al. [37].
This approach allowed us to develop an interpretable representation that highlighted the
significance of individual input data segments within the model. The findings of our study
demonstrate that the inclusion of the attention mechanism led to improved recognition
effectiveness across all scenarios, as evidenced by the data presented in Figure 12. The
CNN-GRU-AttNet model exhibited notable performance improvements on both bench-
mark datasets.

Figure 12. Improved performance of the proposed network with/without the attention mechanism:
(a) CSI-HAR dataset; (b) StanWiFi dataset.
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5.3. Impact of the PCA Denoising Method

In the proposed methodology, we employed the PCA denoising method to effectively
eliminate noisy signals from the CSI data. Through experimentation, we observed that PCA
leverages the correlated variations present in the CSI time series of different subcarriers,
thereby effectively removing noise from the signals. This process specifically targets
the elimination of uncorrelated noisy components that cannot be adequately filtered out
through traditional low-pass filtering.

General-purpose denoising methods, such as low-pass filters or median filters, un-
fortunately, do not perform well in handling impulse and bursty noises for two reasons.
Firstly, these methods typically require much higher sampling rates than the frequency of
the WiFi signal, making them less suitable for this scenario. Secondly, the noise density in
CSI values is too high for traditional filters to efficiently handle [34].

To thoroughly investigate the impact of the PCA denoising method, we conducted
additional experiments. The comparative results presented in Table 7 clearly demonstrate
that denoising the CSI data using PCA leads to notable improvements in the recognition
performances of our proposed CNN-GRU-AttNet. Specifically, we achieved an accuracy
increase of up to 1.43% for the CSI-HAR dataset and 1.00% for the StanWiFi dataset. As a
result, it becomes evident that the PCA-based noise reduction plays a significant role in
achieving the high recognition accuracies observed in our proposed methodology.

Table 7. Comparison between the proposed model using CSI data before and after denoising by the
PCA denoising method.

Dataset Classifier Accuracy Precision Recall F1-Score

CSI-HAR
CNN-GRU-AttNet using CSI data without the PCA denosing method 98.19% 98.27% 98.17% 98.17%

CNN-GRU-AttNet using denoised CSI data with the PCA denosing method 99.62% 99.61% 99.61% 99.61%

StanWiFi
CNN-GRU-AttNet using CSI data without the PCA denosing method 97.66% 97.13% 97.00% 97.04%

CNN-GRU-AttNet using denoised CSI data with the PCA denosing method 98.66% 98.43% 97.88% 98.14%

5.4. Performance Analysis for Different Subjects

To analyze performances across different subjects, we conducted an additional experi-
ment using the CSI data from the CSI-HAR dataset, which includes detailed information
about the subjects involved in data collection. Specifically, the CSI-HAR dataset contains
records of each activity performed 20 times by 3 voluntary subjects of varying ages, ranging
from 25 to 70 years old. The subjects represent a diverse group, consisting of an adult, a
middle-aged person, and an elderly person.

Table 8 presents an analysis of the performance of the proposed CNN-GRU-AttNet
model on individual subjects. Notably, the F1-scores of subject 2 (a middle-aged person)
show consistently high values, exceeding 95% for all activities. On the other hand, when
using the CSI data of subject 1 (an adult), the F1-scores for some activities (lie down, bend,
sit down, stand up, and walk) are found to be lower than 95%. These findings strongly
suggest that there are notable differences in the CSI data captured from different subjects.

5.5. Limitations of the Proposed Method

Due to the absence of a conventional dataset that incorporates the CSI data obtained
from settings with substantial interference, we could not evaluate the suggested model’s
efficacy in such an environment. However, we aim to investigate this aspect in our fu-
ture research.
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Table 8. Recognition performances of the proposed CNN-GRU-AttNet based on CSI data from
different subjects.

Subject Activity
Recognition Performance

Accuracy Recall F1-Score

Subject 1 Lie down 82.4% 100.0% 90.3%
(an adult) Fall 100.0% 96.6% 98.2%

Bend 86.2% 100.0% 92.6%
Run 92.1% 100.0% 95.9%

Sit down 100.0% 76.9% 87.0%
Stand up 100.0% 87.0% 93.0%

Walk 100.0% 89.3% 94.3%

Subject 2 Lie down 100.0% 96.3% 98.1%
(a middle-aged person) Fall 100.0% 100.0% 100.0%

Bend 100.0% 100.0% 100.0%
Run 100.0% 100.0% 100.0%

Sit down 96.6% 96.6% 96.6%
Stand up 100.0% 100.0% 100.0%

Walk 96.7% 100.0% 98.3%

Subject 3 Lie down 100.0% 100.0% 100.0%
(an elderly person) Fall 100.0% 93.3% 96.6%

Bend 88.9% 100.0% 94.1%
Run 100.0% 95.5% 97.7%

Sit down 100.0% 92.9% 96.3%
Stand up 92.6% 100.0% 96.2%

Walk 100.0% 100.0% 100.0%

6. Conclusions for Future Research

This study introduces a DL model called CNN-GRU-AttNet, designed to automatically
recognize human behavior from WiFi CSI signals. Human activity can be represented as
time-series data with temporal and spatial characteristics. The CNN-GRU-AttNet model
addresses this challenge by extracting spatial and significant features simultaneously using
convolutional blocks and attention modules, respectively. Additionally, the GRU block is
employed to capture latent temporal patterns within the CSI signals. By combining these
three components, the model effectively represents the CSI signal’s characteristics and
focuses its attention on activity-related information. Consequently, the CNN-GRU-AttNet
model improves the accuracy of activity recognition. Evaluations were conducted on two
distinct datasets, CSI-HAR and StanWiFi, resulting in recognition accuracies of 99.62%
and 98.66%, respectively. A comparative analysis with existing approaches demonstrated
the superiority of the proposed model, achieving improvements of 4.62% and 0.66% in
accuracy, respectively.

There are potential plans to collect and analyze empirical datasets obtained from
environments with significant interference. The task of identifying multi-user activity in
real-world situations poses a more realistic and complex challenge compared to identifying
single-user activity. As a result, this study’s research will be expanded to include HAR
for multiple users. Publicly available datasets often contain common activities that do not
accurately represent real-world situations, as individuals engage in a variety of activities
on a daily basis. Therefore, the acquisition of a WiFi dataset that includes a broader range
of indoor human activities will be deferred for future research.
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Abstract: Few studies analyze what are the common representations of the metaverse. Regarding
what has been said about this concept, our research aims to verify how adults perceive and represent
the metaverse. We carried out a study with focus groups, having as participants Portuguese adults all
considered habitual gamers (or users of digital games). The objectives for this study were seven: verify
how the metaverse is being represented and characterized; identify which technologies stimulate the
immersion experience; identify the main dimensions that influence the acceptance of the metaverse
concept; understand the perceptions of the metaverse and virtual reality regarding socialization and
wellbeing; verify the perceptions of a gamer’s daily life regarding the metaverse, virtual reality, and
gaming concepts; understand the impact of social representations on the gaming concept; and to
understand the perceived role of animation regarding the metaverse, virtual reality, and gaming
concepts. Our results reveal a common understanding of the metaverse, despite some confusion
about this concept. We also verified the high importance of wellbeing and social dimensions in
metaverse immersive experiences provided by technology or gaming characteristics. This exploratory
study gave us essential findings about the perceptions of the metaverse and a deep understanding of
the relations between the metaverse, virtual reality, animation, and gaming.

Keywords: metaverse; virtual reality; animation; digital games; gaming; qualitative research

1. Introduction

Over the years, the gaming industry has become a fulcrum for technological devel-
opment with the premise of reaching higher player engagement. With this evolution, our
reality has been transformed by virtual reality through animation, where virtual characters
assume almost real roles and new realities are generated, as well as languages and new
types of communication [1]. Whether a single individual or global, the perception must be
understood ethically and even politically [2].

This virtual reality brought by animation through the gaming world is considered
a dream [3] by the author Heilig of its power to transform reality. And so we become
aware of how digital transformation has come into our lives because of the metaverse [4].
The gaming industry has founded this concept because we are enveloped with alternate
worlds [5], considered the first areas where metaverse solutions were applied [5]. In this
way, the Metaverse concept has brought us a whole new perspective of reality, uniting the
technology to create new immersive ways to live our lives [6].

Nevertheless, only a few studies focus on trying to understand real perceptions, of
ordinary people, of the concept of the metaverse. Do regular people understand the impact
of the metaverse on their lives and how important this can be in the future? Until the
present date, even the authors have yet to come up with a precise definition for this concept,
so if a consensus between them is still waiting to happen, should we expect that other
people will understand this concept better? As investigators, we aim to understand the
balance between scientific knowledge of this concept and common understanding.
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85



Appl. Sci. 2023, 13, 8573

So, we ask what are the thoughts of the gamers? What are their common thoughts
regarding this concept? Is scientific knowledge aligned with common thoughts? Or are
two apart visions being created?

This research aims to contribute to a better understanding of how this metaverse
concept is being perceived, giving the scientific knowledge of how common assumptions
could or should be explored regarding the definition of this concept. And to provide
the technology and gaming industry with crucial ideas on which concepts they should
be guided to evolve in the future. This study may also be useful for common users or
gamers to reflect on their motivation to seek the metaverse and on how they use games
and virtual reality, considering their socialization in the real world versus immersion
in virtual environments—understanding people’s perceptions may contribute to better
communication linking the real and virtual worlds to proportionate a better involvement
and socialization (beyond any distance or physical barrier).

This explorative study is part of extensive research on the metaverse, virtual reality,
and gaming concepts. So, we ask: how is the metaverse being perceived and represented
by gamers?

Since this is an explorative study and a part of a Ph.D. in development, the objectives
proposed for this study were elaborated using previous investigations already made, and
objectives were predefined according to our Ph.D. thesis.

With this context, we aim to: (1) verify how the metaverse is being represented
and characterized; (2) identify which technologies stimulate the immersion experience;
(3) identify the main dimensions that influence the acceptance of the metaverse concept;
(4) understand perceptions of the metaverse and virtual reality regarding socialization and
wellbeing; (5) verify the perceptions of a gamer’s daily life regarding the metaverse, virtual
reality, and gaming concepts; (6) understand the impact of social representations on the
gaming concept; (7) to understand the perceived role of animation regarding the metaverse,
virtual reality, and gaming concepts.

This study consisted of three focus groups with Portuguese adults who are all con-
sidered regular gamers (or users of digital games). The qualitative data gathered were
analyzed using frequencies. We aimed to identify the main emerging themes and concepts,
helping us explore what can be done in the future and discover more about these concepts.

The present study is framed in a general introduction and a brief literature review.
After these, we present a detailed exploration of the methodology applied to the frequent
themes and main concepts that result from the focus groups we analyzed. After this, we
present the findings of this study, followed by a discussion considering the present results
and a conclusion, including suggestions for future work.

2. Background

2.1. Gaming

The gaming notion begins with technological evolution and engagement with video
or digital games. The gaming area has been with us for a long time [7], and with its
evolution, it has responded to all our wishes, offering new environments, experiences,
and opportunities [8]. Gaming has been considered the founder of the metaverse as an
entertainment tool since it was one of the first solutions where this concept was applied [5].

To understand the gaming concept, we must embrace ourselves through the notion
of playing. Playing is a free activity where joy and fun exist [9]. However, it does not
need to have a goal. All the rules created rely only on the imaginations of the person or
persons playing [9]. So, another view of playing is being in this world to comprehend what
is around us, who we are, and a way to interact with others [10].

In this way, we can understand that the gaming area is something that has been
present for a long time [7] and has responded to our wishes and experience needs [8] to
become more social and share experiences [11]. The gaming world allows us to explore
different experiences where we free ourselves from the limits of our bodies and our previous
experiences and extend ourselves to infinite possibilities [12].
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It is also essential to understand the social importance of the gaming area because most
people play video games with others [13]. Players prefer to play with other players [14] and
communication is more fun, involved, and bonding when people are connected [15]. There
is a unique opportunity for sociability and social games, making them the only media that
allow this activity together [16].

With this understanding, we can see the gaming industry’s efforts continuously grow-
ing through the years, allowing new concepts to be born because of technological develop-
ment. As humans, we are continually staged by our social contexts, and we cannot centre
or surpass them. However, the gaming world offers alternative worlds that distance the
social rules and quotidian.

2.2. Virtual Reality

Virtual reality has been one of the concepts and development technology that was
launched through the gaming area. The term engineers use is virtual, which means
substitute computers and peripherical devices instead of human senses [17]. So, virtual
reality can be seen as a technology that can replace a user’s primary senses for computer
data [18]. It is also considered an electronic simulation of experienced environments [19],
allowing users to get different sensory experiences of real things through simulation, but it
does not mean a new experience can occur [17]. It can be seen as an artificial reality from
the actual world [17].

Virtual reality relies on computer graphic systems combined with different displays
and interface devices that allow immersion through a 3D computer-generated environ-
ment [20]. It is considered a new medium which is only possible through the technological
advances creating practical applications and new ways of communication [21]. Virtual
reality profoundly impacts daily human lives because humans will constantly challenge
the limits of existing technology and optimize the combination of resources to push the
progress of science and technology forward [22]. Virtual tools provide various means of
accessing, viewing, and analyzing data within a focal point to offer spatiality, immersion,
and interaction [23].

To understand virtual reality best, we must understand its key important elements.
One key element is the participants because all the virtual reality magic happens in their
minds. This experience is not the same for each participant because of their experiences,
culture, and history [21]. Then we have the creators, as the second key element, who are
the person or team that designs and implements the created work to be experienced [21].
The third key element is the virtual world. It is considered the content of a given medium
and can exist without being displayed in a virtual reality system. When we observe
that world through the possibility of bringing objects and interactions in a physically
immersive, interactive way, we experience it via virtual reality [21]. The fourth key element
is immersion, the sensation of being in an environment that can be a mental state or
accomplished physically. Physical immersion is considered a characteristic that defines
virtual reality [21]. The fifth, and last key element, is interactivity because it allows alternate
realities through computers, games, and other systems or devices [21].

Virtual reality is seen as an advanced human–computer interaction interface that
allows the simulation of realistic environments [24]. This interactivity can also be defined
as communication media because users can modify a form or content mediated by the
environment in real time [19]. This concept can have different forms, such as cab simulation,
projected reality, augmented reality, telepresence (the feeling of being physically somewhere
other than where the user is [25]), and desktop virtual reality (keyboard, mouse, monitor,
headphones) [24].

2.3. Animation

We now understand virtual reality existing in the gaming world; however, we must
take some time to understand the core of the gaming existence, which is the animation.
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The connection between the gaming area and the animation started because of the
economy around them. The first to explore this relationship was Walt Disney [26], and
by seventy years, commercial license became a possibility [27]. By this means, digital
technology with special effects such as animation broke an essential psychological barrier
because it allowed virtual worlds [26] to exist.

Animation has brought to the gaming world and virtual reality all its meaning “to
give life”. It is an extraordinary audiovisual expression that transforms nonreal events and
takes the audience there [28]. Animation has excellent potential and importance because of
its ability to establish transversal communication with any age, gender, culture, religion, or
nationality [29]. Because of this ability, animation is considered a creative strategy [30] and
a new model of communication for the future [28].

2.4. Metaverse

After our dive through the gaming area and the technological development (virtual
reality and animation concepts), we arrive at the main concept of this investigation, the
metaverse.

The metaverse concept definition appeared for the first time by the author Neal
Stephenson in his book Snow Crash in 1992. It was defined as a virtual world that could
reach, interact, and affect human existence [31]. However, until today, there has yet
to be a consensus about the definition of the metaverse, but there will be definitions
near agreement in the future. The metaverse can be defined as a massive dimension
network of interconnected 3D virtual worlds rendered in real time that can be experienced
synchronously and persistently by an unlimited number of users with a unique sense of
presence and data continuity, who have identity, history, rights, objects communication
and payments [31]. It is also a 3D experience where we can interact with virtual and
augmented reality through headsets, sensory gloves, cameras, and sensors registering our
bodily movements [8].

The metaverse has its inner world that continues to exist even if we are not con-
nected [8]. It can be described as the layer between us and the reality [32], where a 3D
virtual world is shared, and the experiences can be experienced through virtual and aug-
mented reality [33]. It is based on the real world but without physical limitations [34].
The users can involve themselves socially, economically, and culturally through their
avatars [35] because the metaverse unites platforms of socially immersive virtual realities
compatible with video games with massive online multiplayers, open gaming worlds, and
collaborative spaces of augmented reality [36]. It is also seen as a digital universe that
mixes online gaming elements with social networks and virtual reality, allowing users to
engage digitally [37].

The metaverse social application will transform social networks [18], and we can see
that the gaming world is the founder of this concept because gamers could tie it to the
screen and envelop it with alternative worlds [6]. The gaming experience has increasingly
become a lived experience, and the limits between the metaverse and what is gaming and
what is not have disappeared [8]. The metaverse can be achieved via the internet through
augmented reality devices, game consoles, computers, tablets, or mobile phones [4]. In this
way, the metaverse concept is present consciously or unconsciously in our lives.

2.5. Related Work—A Comprehensive Review of Main Concepts

To understand the relationships between the main concepts, in this section, we connect
these concepts with the objectives of the present study. Tables 1–4 were structured to help us
to observe the relations of the concepts (gaming, virtual reality, animation, and metaverse)
and their definitions studied by scientific authors according to our objectives, which are
to: (1) verify how the metaverse is being represented and characterized; (2) identify which
technologies stimulate the immersion experience; (3) identify the main dimensions that
influence the acceptance of the metaverse concept; (4) understand the perceptions of
the metaverse and virtual reality regarding socialization and wellbeing; (5) verify the
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perceptions of a gamer’s daily life regarding the metaverse, virtual reality, and gaming
concepts; (6) understand the impact of social representations on the gaming concept; and
(7) to understand the perceived role of animation regarding the metaverse, virtual reality,
and gaming concepts.

Table 1. Related Work—Concept Gaming.

Author Description Concept Relation Objective Alignment

[8] has responded to all our wishes, offering new
environments, experiences, and opportunities Gaming (3) (4)

[5]
Gaming has been considered the founder of the

metaverse as an entertainment tool since it was one
of the first solutions where this concept was applied

Gaming vs. Metaverse (3) (4) (5)

[9] Playing is a free activity where joy and fun exist Gaming (4)
[11] becoming more social and sharing experiences Gaming (4) (5) (6)

[13]
It is also essential to understand the social

importance of the gaming area because most people
play video games with others

Gaming (4) (5)

[15] communication is more fun, involvement, and bond
when people are connected Gaming (2) (4) (5) (6)

Table 2. Related Work—Concept Virtual Reality.

Author Description Concept Relation Objective Alignment

[17] The term engineers use is virtual, which means substitute
computers and peripherical devices instead of human senses Virtual Reality (2) (4)

[18] virtual reality can be seen as a technology that can replace a
user’s primary senses for computer data Virtual Reality (2)

[19] considered an electronic simulation of experienced
environments Virtual Reality (2)

[20]
Virtual reality relies on computer graphic systems combined

with different displays and interface devices that allow
immersion through a 3D computer-generated environment

Virtual Reality (2) (5)

[21]
It is considered a new medium only possible by the

technological advances creating practical applications and
new ways of communication

Virtual Reality (2) (4) (5)

[21] Physical immersion is considered a characteristic that defines
virtual reality Virtual Reality (2) (4) (5)

[19]
This interactivity can also be defined as communication

media because users can modify a form or content mediated
by the environment in real time

Virtual Reality (2) (4) (5)

[25]
This concept can have different forms, such as cab simulation,
projected reality, augmented reality, telepresence (the feeling
of being physically somewhere other than where the user is)

Virtual Reality (2)

[24] desktop virtual reality (keyboard, mouse,
monitor, headphones) (2)

Table 3. Related Work—Concept Animation.

Author Description Concept Relation Objective Alignment

[26]
The connection between the gaming area and the animation

started because of the economy around them. The first to
explore this relationship was Walt Disney

Animation (6)

[26]
By this means, digital technology with special effects such as
animation broke an essential psychological barrier because it

allowed virtual worlds
Animation (3) (7)

[28] It is an extraordinary audiovisual expression that transforms
nonreal events and takes the audience there Animation (7)
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Table 3. Cont.

Author Description Concept Relation Objective Alignment

[29]
has excellent potential and importance because of its ability to

establish transversal communication with any age, gender,
culture, religion, or nationality

Animation (6) (7)

[30] of this ability, the animation is considered a creative strategy Animation (7)
[28] new model of communication for the future Animation (7)

Table 4. Related Work—Concept Metaverse.

Author Description Concept Relation Objective Alignment

[31] virtual world that could reach, interact, and
affect human existence

Metaverse vs.
Virtual Reality (1) (2) (4) (7)

[31]

The metaverse can be defined as a massive dimension
network and interconnected 3D virtual worlds rendered in

real time that can be experienced synchronously and
persistently by an unlimited number of users with a unique
sense of presence and data continuity, has identity, history,

rights, objects communication and payments

Virtual Reality (1) (4) (5)

[8]
It is also a 3D experience where we can interact with virtual

and augmented reality through headsets, sensory gloves,
cameras, and sensors registering our bodily movements

Metaverse vs.
Virtual Reality (1) (2) (7)

[8] its inner world that continues to exist even if we
are not connected (1)

[32] It can be described as the layer between us and the reality (1) (4) (5)

[33] where a 3D virtual world is shared, and the experiences can
be experienced through virtual and augmented reality (1) (2) (7)

[34] based on the real world but without physical limitations (1) (4) (5)

[35] The users can involve themselves socially, economically, and
culturally through their avatars (1) (3) (4) (5)

[36]

Metaverse unites platforms of socially immersive virtual
realities compatible with video games with massive online

multi-players, open gaming worlds, and collaborative spaces
of augmented reality

(1) (2) (4) (5) (7)

[37]
It is also seen as a digital universe that mixes online gaming
elements with social networks and virtual reality, allowing

users to engage digitally
(1) (2) (3) (4) (7)

[8]
The gaming experience has increasingly become a lived

experience, and the limits between the metaverse and what is
gaming and what is not have disappeared

(1) (3) (4) (5) (7)

[4]
The metaverse can be achieved via the internet through

augmented reality devices, game consoles, computers, tablets,
or mobile phones

(1) (2) (5)

2.6. Qualitative Research—Focus Group

The focus group originated in the work of the Bureau of Applied Social Research at
Columbia University in 1940 [38]. It has become common in research since 1990. It can be
applied to various disciplines such as education, communication and media, health, youth,
ecology and conservation, feminism, sociology, and social psychology [39]. The focus group
is a qualitative data collection method that engages a small number of people in an informal
discussion around a particular topic [39]. It is considered a nonstandard technique to gather
information based on what appears to be an informal discussion among a group of selected
people [40]. This discussion occurs in the presence of a moderator that leads and focuses
the discussion on the research issues [40]. There must be prior planning, leaving it up to
the researcher to determine which questions to approach and discuss, with attention to
the group. These questions are scheduled, and the moderator is responsible for facilitating
participation amongst the discussion group members [39]. The focus group stimulates the
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creation of discourses between the participants that may never occur in real life, quickly
achieving a large amount of data. This method is considered very efficient for gathering
data [41]. Discussion groups are defined by a small number of individuals gathered for
a discussion, making them more valuable overall than a sample representative [42]. In a
group, collective discussion brings together each individual’s sphere of life, and these are
confronted with disagreements, making this method more critical than any other. Human
behavior remains normative, what changed are the sources of normative influence that are
more diverse, complex, and interactive [43].

Focus group discussion effectively provides information about what people think
or feel and how they do it [44]. A group, per se, is not considered good or bad but
reflects human capabilities. Any discussion group can be viewed as a focus group if the
investigator actively encourages and listens to group interaction [45]. The interactions
within the discussion group enable the exploration of stabilized forms of socially shared
knowledge, tensions, and different meanings within the same shared understanding and
the reinterpretations of the symbolic forms of the social knowledge [40]. The great potential
of focus groups is the explicit use of group interaction to produce data and thoughts that
would be less accessible without the interaction found in a group [41]. It can be used as
a single-method investigation or in combination with other methods. This helps guide a
study to generate hypotheses based on the informants’ opinions, thoughts, and feelings,
assessing different populations, or developing questionnaires—as in our case—based on
the participants’ views, suggestions, and interpretations.

The focus group can be used as a simulation of speech and conversations of everyday
life or as an almost natural method to study the generation of social representations or
social knowledge in general [46]. This discussion type is considered closer to everyday
communication [40]. This method generates discussion and therefore reveals the meanings
that people read in the topic of debate and how they negotiate these meanings. It creates
diversity and difference within or between the group, revealing the dilemmas of everyday
arguments [46]. The number of focus groups to be carried out should be evaluated accord-
ing to the interests and objectives being researched [47]. We need to remember that within
a group chosen to represent a social category, the individual participants identify as part
of a specific social group [40]. And the group is also considered a unit of analysis because
it represents the social group the researcher wants to investigate [40]. Depending on the
type of investigation, focus groups can be used as a method on their own or in combination
with other methods (e.g., surveys, observations, and single interviews) [48].

The development of communication and information research practice technologies
has been significantly impacted [48], and the focus group has been naturally transferred to
internet research [40]. The online focus group can be distinguished into synchronous (real-
time) or asynchronous (nonreal-time) groups. Synchronous groups require all participants
to be online simultaneously using a chatroom or conferencing software [48]. In this case,
a possible issue could be the reduced flow of the discussion and the availability of visual
information [49]. However, some software can enable the transmission of relatively nuanced
expressions and emotions in video mode [50] and are able to replicate real-time, face-
to-face interaction [51]. The asynchronous groups must be provided with the software
on their computer, and the participants do not have to be all online. This has some
disadvantages causing technical issues or hesitation to install this software [48]. The number
of participants in the real-time focus group should be limited, causing the discussion to
be too fast and superficial [48]. Differences between online and face-to-face focus group
research concerning group interaction and the ability to obtain information are eroded as
technology provides more significant opportunities to create a social presence online [49].

Online focus groups have advantages, such as logistical issues, because the difficulty
of having all participants at the same place and time is reduced by technology [52,53].
Recording and transcriptions were also facilitated by built-in online interfaces, which can
be downloaded almost immediately [49,50], and automatic recording allows the possibility
of preclassifying the collected information [40]. Sensitive issues and the anonymity of
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virtual groups can create a high sense of psychological safety for sensitive or embarrassing
topics [51]. Regarding the limitation of interaction biases, online interaction can control
some tendencies and prevent participant conflicts or competitiveness [40]. Regarding
adaptability for specific targets, online focus groups can be appropriate for particular types
of participants, such as teens, low-incidence groups, professionals, policymakers, and
disabled individuals [49].

As for the disadvantages, we can point to the digital gap, choosing participants with
some familiarity concerning technology implied in an online focus group. The artificiality
of the interaction situation is that participants may feel concerns about sharing personal
information with strangers in an electronic context [50]. And the lack of nonverbal com-
munication may reduce the nonverbal communication that plays a crucial role in eliciting
responses [49].

Nevertheless, the online focus group may lead to more disclosure than real-world
groups. Data are easier to document, and the loss of contributions due to audibility
problems during the transcript can be reduced [48]. Online focus groups make data
analysis relatively easy through coding and categorization [48].

Regarding the sample size of the focus group, we already know that this method is
considered a qualitative technique that collects data very efficiently [54]. But when do we
know it is enough?

We can make out a little in qualitative research because we do not try to generalize
a population but instead identify social processes [55]. It is also essential to consider the
saturation point concept, considering the point at which gathering new data does not
provide any new theoretical insights into the studied phenomenon [56,57]. So, it does
not matter how little data we have collected, we have to consider the generalizations that
can be made from just one single case. We should focus on our interactive units (such as
social relationships, encounters, and organizations) because these units allow a direct and
deeper analysis of the characteristic observed [58]. The saturation concept is important
in previous studies regarding focus group samples. In a study whose objective was to
assess the saturation and guidance on focus group research, it was found that one focus
group generated 64% of the theme/concepts and that three focus groups generated 84%,
concluding that three focus groups are enough to identify the most prevalent concepts [59].
In another study relating to influence saturation, the authors concluded through their
research that only a few groups are required to capture the breadth of the main issues [60].

For this reason, we decided that three focus groups were enough to collect the main
concepts for our explorative study.

3. Methods

3.1. Data Gathering—Focus Group

This study consists of three synchronous online focus groups, with a total of
13 participants of Portuguese nationality. For choosing the participants, we used as inclu-
sion criteria: (1) being a gamer (plays digital or video games regularly); (2) being young
adults or adults; (3) having some knowledge regarding video-conference tools. As for the
exclusion criteria: (1) did not match all the inclusion criteria mentioned; (2) needed access
to a computer with internet to participate in the online focus group. There were seven
males and six females, with an average age of twenty-nine. Google Meet was the software
chosen to make the video conference.

The questions were revised for each focus group depending on difficulties observed
and on the understanding of what was asked in the previous focus group made. However,
we never interfered with the line of ideas or suggested a response. For example, one
question clarified the meaning of metaverse because participants asked directly if the
metaverse was the concept itself mentioned or if it was the Facebook company changing
their name to Meta. In a general way, all the participants understood what was questioned
immediately.
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The focus groups comprised twenty-eight questions, divided into three main themes:
gaming, animation, and metaverse.

For the gaming theme, we had these questions prepared:

1. What is it for you to play?
2. What is the gaming world for you?
3. What is a gamer for you?
4. What do you think about there being different types of gamers?
5. How do you feel/think that the gaming world is present in our daily lives?
6. What do you think/feel about the statement “a game is a virtual reality”?
7. What do you think/feel about the possibility of social reality being an important

factor in choosing a game in favor of others?
8. When you play, do you feel immersed (“inside”) in the game?
9. How do you relate playing with your everyday reality?
10. How do you relate playing with animation and the metaverse?
11. To what extent do you feel immersed in a virtual world while playing the game? As?

Why?
12. What are the most fascinating features for you to play?
13. What are the most important features in a game to feel more immersed?
14. Do you know or use any objects/technologies that provide immersion in a game?

For the animation theme, the questions were:

1. What do you think/feel about the statement “animation is present in all games”?
2. Do you consider animation an important factor in a game?
3. What features do you like/look for in a gaming animation?
4. What do you think about the statement “an animation is a kind of virtual reality”?

For the main theme of metaverse the questions were:

1. What is the metaverse for you? Refer to at least three words about what it means.
2. What do you think about the metaverse? What do you think the metaverse is for?
3. Have you ever been immersed in the Metaverse? What made you feel/think?
4. For which population do you think the metaverse is more directed? (adults, teens,

children, or seniors/elderly?)
5. How is the metaverse present in your daily life?
6. Do you think the metaverse is a virtual reality? Why?
7. How do you think/feel about the metaverse’s relation to our social reality?
8. What do you think about the possibility of social reality being an important factor in

interacting with the metaverse?
9. Is a game a metaverse?

3.2. Data Gathering and Analysis

In each online focus group, the participants were informed before the discussion that
their participation was voluntary, confidential, and anonymous, and they could decide
to leave anytime. We also obtained a verbal agreement from the participants to allow the
recording of the online focus group session for posterior data analysis.

During the focus group, there were many participants who answered the questions
with only one or two words or small sentences, which allow us to categorize in a frequency
of results.

All the qualitative data was gathered in a transcript in a Word file, which summarized
and categorized (e.g., fun and enjoy fun—joint categorization fun) the concepts mentioned
and analyzed the frequencies of responses from the participants, considering categories
and main themes. After this categorization, we calculated the frequencies and percentages
of the answers given.
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3.3. Data Results

For the gaming questions:

1. What is it for you to play?

As we can observe (see Table 5), according to the meaning of playing, all the partici-
pants considered it fun (N = 13, 100%). Some participants felt something that allowed an
escape from reality and a relaxing activity (N = 6, 46.2%). This gives us essential concepts
such as good mood and new game experiences, reinforcing gaming as something that
promotes the wellbeing of the players.

Table 5. Gaming—What is it for you to play?

Categories Total %

Fun 13 100
Escape reality 6 46.2

Relax 6 46.2
Socialization 5 38.5

Hobby 3 23.1
Therapy 1 7.7

2. What is the gaming world for you?

Table 6 shows that the gaming world is considered something that gathers people,
such as a community (53.8%) and those who enjoy games (46.2%). These results show us
that the players consider the gaming world as a social and wellbeing world.

Table 6. Gaming—What is the gaming world for you?

Categories Total %

Community 7 53.8
The specific group enjoys games 6 46.2

Digital Games 4 30.8
Games categories 3 23.1

Specific group 2 15.4
Join of concepts 2 15.4
Games Industry 2 15.4

Society stereotype 1 7.7
Culture 1 7.7

3. What is a gamer for you?

Most participants responded that a gamer plays games (61.5%, Table 7) and that gamer
is a word used to classify a group of people (46.2%, Table 7). So, we can observe that
for these participants, a gamer can be anyone playing games, giving a generic or simple
consideration regarding a common synonym of a gamer without preconcepts.

Table 7. Gaming—What is a gamer for you?

Categories Total %

A person that plays games 8 61.5
The name given to a group of people 6 46.2

A person that likes any games 5 38.5
A person that regularly plays games 2 15.4

A person that plays games has hobbies 1 7.7
The person who likes computers 1 7.7
A person who likes technology 1 7.7

Synonym of nerd expression 1 7.7
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4. What do you think about there being different types of gamers?

On this question, we can see that the participants were unanimous, considering that
there are different types of gamers (100%, Table 8), meaning that they play frequently
or occasionally (84.6%, Table 9). They also considered this question the premise of the
professional gamer (46.2%, Table 9). These show us that from common perception, a gamer
is characterized by their playing frequency.

Table 8. Gaming—What do you think about there being different types of gamers?

Categories Total %

Yes 13 100
No 0 0

Table 9. Gaming—What do you think about there being different types of gamers?

Categories Total %

Frequent or daily gamer 11 84.6
Occasional gamer 11 84.6

Professional gamer 6 46.2
Semiprofessional 1 7.7

5. How do you feel/think that the gaming world is present in our daily lives?

For the participants, the gaming world is present in their daily lives (N = 13, 100%,
Table 10) because it is mainly a source that provides fun (N = 7, 53.8%, Table 11). These
results are expected since all these participants are considered gamers, but most of these
results show us the need for fun, relaxation, and socialization in a gamer’s life.

Table 10. Gaming—How do you feel/think that the gaming world is present in our daily lives?

Categories Total %

Yes 13 100
No 0 0

Table 11. Gaming—How do you feel/think that the gaming world is present in our daily lives?

Categories Total %

Provides fun 7 53.8
Relaxation 4 30.8

Socialization 4 30.8
Provides positive emotions (happiness, cheerfulness) 3 23.1

Part of the personality of a person 2 15.4
Escape reality 1 7.7

Necessity to play 1 7.7

6. What do you think/feel about the statement “a game is a virtual reality”?

For this question, we can see that most participants consider a game as a promotor of
virtual reality (N = 10, 76.9%, Table 12) because it can create an alternative reality (N = 3,
23.1%, Table 13). Through these results, we can understand that most gamers understand
the meaning of the virtual reality concept and observe some confusion or no awareness
regarding this.
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Table 12. Gaming—What do you think/feel about the statement “a game is a virtual reality”?

Categories Total %

Yes 10 76.9
No 3 23.1

Table 13. Gaming—What do you think/feel about the statement “a game is a virtual reality”?

Categories Total %

Creates an alternative reality 3 23.1
Virtual reality does not apply to games 1 7.7

This applies to augmented reality 1 7.7
Reality provided by computers 1 7.7

Provides experiences 1 7.7

7. What do you think/feel about the possibility of social reality being an important
factor in choosing a game in favor of others?

In this question, the social reality of a game was considered almost unanimous as
something important when these participants consider a game (N = 12, 92.3%, Table 14),
mainly because friends and close people play the same game (N = 12, 92.3%, Table 15) and
because the game itself has a social component (ex: chat, community, blog, multiplayer)
(N = 10, 76.9%, Table 15). Social connection is essential when choosing the game type to
reinforce, be around friends, or make new connections.

Table 14. Gaming—What do you think/feel about the possibility of social reality being an important
factor in choosing a game in favor of others?

Categories Total %

Yes 12 92.3
No 1 7.7

Table 15. Gaming—What do you think/feel about the possibility of social reality being an important
factor in choosing a game in favor of others?

Categories Total %

Friends and close people playing the same game 12 92.3
Social component 10 76.9

Unites people 5 38.5
Friends reference 4 30.8

Gameplay of the game 2 15.4
Games classification (magazines or tv shows) 2 15.4

Price 1 7.7

8. When you play, do you feel immersed (“inside”) in the game?

According to this question, we can understand that almost all the participants feel
immersed in a game (N = 12, 92.3%, Table 16). However, they also answered that it could
be only sometimes (N = 6, 46.2%, Table 16), mainly because they considered that it depends
on the type of the game (N = 6, 46.2%, Table 17). So, we can consider that although all
the games provide an immersed feeling, this immersion feeling can be stronger or weaker
depending on the type of game. Nevertheless, all the games offer immersion feelings.
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Table 16. Gaming—When you play, do you feel immersed (“inside”) in the game?

Categories Total %

Yes 12 92.3
Sometimes 6 46.2

No 1 7.7

Table 17. Gaming—When you play, do you feel immersed (“inside”) in the game?

Categories Total %

It depends on the game type 6 46.2
Identification with the game characters 5 38.5

Game history 4 30.8
It depends on the game context 1 7.7

9. How do you relate playing with your everyday reality?

As we already saw in the questions above, the playing action is considered by most
participants playing games as something that provides fun (N = 7, 53.8%, Table 18). Fun is
considered as an essential theme in the life of a gamer.

Table 18. Gaming—How do you relate playing with your everyday reality?

Categories Total %

Provides fun 7 53.8
Relaxation 4 30.8

Socialization 4 30.8
Provides positive emotions (happiness, cheerfulness) 3 23.1

Part of the personality of a person 2 15.4
Escape reality 1 7.7

Necessity to play 1 7.7

10. How do you relate playing with animation and the metaverse?

With this question, in Table 19, we can see that concepts such as metaverse and
animation are considered connected (N = 13, 100%) and important (N = 9, 69.2%) in the
gaming world. We can see a conscient understanding of gaming, animation, and metaverse
concepts and their relation.

Table 19. Gaming—How do you relate playing with animation and the metaverse?

Categories Total %

Concepts are connected 13 100
Important concept 9 69.2

11. To what extent do you feel immersed in a virtual world while playing the game? As?
Why?

The participants on this question, Table 20, showed us that the history (N = 7, 53.8%),
the possibility to create/build things (N = 6, 46.2%), and the gameplay (N= 6, 46.2%) has
the main characteristic of them to feel more immersed in the virtual world given by the
game. We can observe that the attributes mentioned for immersion are engaging and fun
promoters.
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Table 20. Gaming—While playing the game, to what extent do you feel immersed in a virtual world?
As? Why?

Categories Total %

History 7 53.8
Build/create things 6 46.2

Gameplay 6 46.2
Fun 5 38.5
Price 5 38.5

Person’s state of mind 4 30.8
Visual graphics 4 30.8

Socialization 3 23.1
Emotions (ability to create) 2 15.4

Characters 2 15.4
Music/Audios 2 15.4

Community 2 15.4
Curiosity 1 7.7

Immersive 1 7.7

12. What are the most fascinating features for you to play?

In Table 21, the same characteristic is explored in the above question so that we can
see when the participants relate to the most liked features of a game, history (N = 7, 53.8%),
the possibility to create/build things (N = 6, 46.2%), and the gameplay (N = 6, 46.2%). We
can also understand that a gamer seeks a game’s engagement and fun promotion.

Table 21. Gaming—What are the most fascinating features for you to play?

Categories Total %

History 7 53.8
Build/create things 6 46.2

Gameplay 6 46.2
Fun 5 38.5
Price 5 38.5

Person’s state of mind 4 30.8
Visual graphics 4 30.8

Socialization 3 23.1
Emotions (ability to create) 2 15.4

Characters 2 15.4
Music/Audios 2 15.4

Community 2 15.4
Curiosity 1 7.7

Immersive 1 7.7

13. What are the most important features in a game to feel more immersed?

As for the important feature of feeling more immersed in a game, we can see the
history and gameplay (N = 6, 46.2%, Table 22), characters, ability to build/create things,
and visual graphics (N = 5, 38.5%, Table 22). Once again, engagement and fun-promoting
features are the most important for immersion.

Table 22. Gaming—What are the most important features in a game to feel more immersed?

Categories Total %

History 6 46.2
Gameplay 6 46.2
Characters 5 38.5

Build/create things 5 38.5
Visual graphics 5 38.5
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Table 22. Cont.

Categories Total %

Socialization 4 30.8
Music/Audios 4 30.8

Price 4 30.8
Emotions 2 15.4

Fun 2 15.4
Curiosity 1 7.7

Person’s state of mind 1 7.7

14. Do you know or use any objects/technologies that provide immersion in a game?

Most participants considered the headphones the leading provider as a technology
object of immersion in a game (N = 9, 69.2%, Table 23). These results show us that head-
phones are a significant technology that emphasizes the sense of immersion. Compared
with other technologies, these results make us wonder if the simple or cheaper technologies
already have tremendous power to provide this immersion feeling. Expensive technology
is not available for everybody, but it does not mean they are less immersive than cheaper
ones.

Table 23. Gaming—Do you know or use any objects/technologies that provide immersion in a game?

Categories Total %

Headphones 9 69.2
Keyboard 5 38.5

VR goggles 4 30.8
Monitors 4 30.8

Chair 3 23.1
Interactive game commands 1 7.7

Computer Software that controls the environment 1 7.7
Mousepads 1 7.7

For the animation questions:

1. What do you think/feel about the statement “animation is present in all games”?

In this question, we can see that for most participants, the animation is present in all
games (N = 11, 84.6%, Table 24) and is mandatory to be present (N = 7, 63.6%, Table 25).
The results show us that the definition of what is animation and its importance are current
in the gamer’s mind.

Table 24. Animation—What do you think/feel about the statement “animation is present in all
games”?

Categories Total %

Yes 11 84.6
No 2 15.4

Table 25. Animation—What do you think/feel about the statement “animation is present in all
games”?

Categories Total %

Has to be mandatorily present 7 63.6
Makes characters more real 2 18.2

99



Appl. Sci. 2023, 13, 8573

2. Do you consider animation an important factor in a game?

According to this question, all participants considered animation an important game
factor (N = 13, 100%, Table 26). Some of the participants revealed their thoughts about
animation being adapted to the gameplay of each game (N = 5, 38.5%, Table 27). It is clear
that the animation is part of a game; without it, there would be no games.

Table 26. Animation—Do you consider animation an important factor in a game?

Categories Total %

Yes 13 100
No 0 0

Table 27. Animation—Do you consider animation an important factor in a game?

Categories Total %

It has to be adapted to the gameplay of a game 5 38.5
Graphics can influence the desire to play 3 23.1

It has to be adapted to the game 3 23.1
Can determine a game’s success 1 7.7

3. What features do you like/look for in a gaming animation?

The main feature that the participants look for in a gaming animation is style/aesthetics
(N = 6, 46.2%, Table 28). Animation is something that has to be well thought about in its
style and aesthetics.

Table 28. Animation—What features do you like/look for in a gaming animation?

Categories Total %

Style/aesthetics 6 46.2
It has to be adapted to the game 5 38.5

Gameplay 5 38.5
Socialization 1 7.7

4. What do you think about the statement “an animation is a kind of virtual reality”?

On this question, is animation a kind of virtual reality, we can see a clear division
(Table 29) between yes (N = 6, 46.2%) and no (N = 7, 53.8%). However, if we see the
answers given by the participants that responded yes, animation is seen as something that
creates/part (N = 3, 50%, Table 30) of the virtual reality. These results show an inevitable
confusion or no awareness of the definition or relation between animation and virtual
reality concepts.

Table 29. Animation—What do you think about the statement “an animation is a kind of virtual
reality”?

Categories Total %

Yes 6 46.2
No 7 53.8

Table 30. Animation—What do you think about the statement “an animation is a kind of virtual
reality”?

Categories Total %

It is part of but not one 3 50
Creates virtual reality 3 50
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For the metaverse questions:

1. What is the metaverse for you? Refer to at least three words about what it means.

In this question, Table 31, the participants reveal that for them metaverse concept is
something from the past, is not a new concept (N = 13, 100%), is viewed as socialization and
evolution (N = 9, 69.2%), and something virtual (N = 7, 53.8%). There is an awareness of the
development and history of the metaverse concept and the importance of the socialization
and virtual reality themes as features/characteristics that need to be present.

Table 31. Metaverse—What is the metaverse for you? Refer to at least three words about what it means.

Categories Total %

Past 13 100
Socialization 9 69.2

Evolution 9 69.2
Virtual 7 53.8

Creation 6 46.2
Immersion 3 23.1

Build 3 23.1
Monitorization 2 15.4

Threat 1 7.7
Risk 1 7.7

Innovation 1 7.7

2. What do you think about the metaverse? What do you think the metaverse is for?

As for this question, the metaverse is seen as an old concept (N = 13, 100%, Table 32),
as already among us, promotes socialization and technological evolution (N = 9, 69.2%,
Table 32), and it also supports virtual reality (N = 7, 53.8%, Table 32). The metaverse concept
is seen as a socialization promoter through virtual reality technology.

Table 32. Metaverse—What do you think about the metaverse? What do you think the metaverse is for?

Categories Total %

Old concept 13 100
Promotes Socialization 9 69.2
Technological evolution 9 69.2

Virtual reality 7 53.8
Creates characters 4 30.8
Allows immersion 3 23.1

Allows people to make things virtually 3 23.1
Monitorization of the virtual world 2 15.4

Creates a new reality 2 15.4
Creates new worlds 1 7.7

3. Have you ever been immersed in the metaverse? What made you feel/think?

Almost all participants have never been immersed in the metaverse (N = 10, 76.9%,
Table 33). As for the participants that have been immersed in fun (N = 3, 100%, Table 34)
and the feeling of being even more immersed in the game (N = 2, 66.7%, Table 34), where
the main thoughts they had about their experience. This can lead us to the awareness about
the metaverse definition or even how it can be experienced. It is unclear or generates a
sense of confusion.

Table 33. Metaverse—Have you ever been immersed in the metaverse?

Categories Total %

Yes 3 23.1
No 10 76.9
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Table 34. Metaverse—What made you feel/think?

Categories Total %

More fun 3 100
More immersion 2 66.7

4. For which population do you think the metaverse is more directed? (Adults, teens,
children, or seniors/elderly?)

In this question, we tried to understand the main population N for which the metaverse
was aiming, Table 35, and we could see that the participants did not have a clear response,
and even a N/A was mentioned. Nevertheless, of the confusion, adults and adolescents
were the main population referred (N = 9, 69.2%). At this point, there is significant confusion
about the metaverse concept, even inn the population to which it is aiming.

Table 35. Metaverse—For which population do you think the metaverse is more directed? (Adults,
teens, children, or seniors/elderly?).

Categories Total %

Adults 9 69.2
Adolescent 9 69.2

N/A 5 38.5
Children 4 30.8

5. How is the metaverse present in your daily life?

In this question, we could see that most participants responded that this concept is
present in their daily lives (N = 8, 61.5%, Table 36). Once again, we can see confusion or
no awareness about the metaverse compared with the previous question. However, we
can see that the participants are consciously or unconsciously aware of its presence in their
daily lives.

Table 36. Metaverse—How is the metaverse present in your daily life?

Categories Total %

Yes 8 61.5
No 5 38.5

6. Do you think the metaverse is a virtual reality? Why?

For this question, we saw the unanimous response of the metaverse being a virtual
reality, Table 37, and some even added that this concept is the creator of virtual worlds, so
it is responsible for virtual reality (Table 38). It is transparent for these participants that
virtual reality is a central component of the metaverse concept.

Table 37. Animation—Metaverse—Do you think the metaverse is a virtual reality?

Categories Total %

Yes 13 100
No 0 0

Table 38. Metaverse—Why?

Categories Total %

Creates virtual worlds 5 38.5
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7. What do you think/feel about how the Metaverse relates to our social reality?

When understanding if the metaverse is related to our social reality, most participants
answered yes (N = 9, 69.2%, Table 39), explaining that they considered it a social tool
(N = 10, 76.9%, Table 40). The metaverse concept is understood as a social tool that promotes
socialization.

Table 39. Metaverse—What do you think/feel about how the metaverse relates to our social reality?

Categories Total %

Yes 9 69.2
No 6 46.2

Table 40. Metaverse—What do you think/feel about how the metaverse relates to our social reality?

Categories Total %

Social tool 10 76.9
Not a direct impact 1 7.7

8. What do you think about the possibility of social reality being an important factor in
interacting with the metaverse?

As for this question, in Table 41, we see that social reality is essential when considering
the interaction with the metaverse (N = 9, 69.2%). We can see the importance of socialization
in the metaverse concept.

Table 41. Metaverse—What do you think about the possibility of social reality being an important
factor in interacting with the metaverse?

Categories Total %

Yes 9 69.2
No 6 46.2

9. Is a game a Metaverse?

As for this question, most participants see the Metaverse as a game (N = 9, 69.2%,
Table 42). The Metaverse concept is seen as a game, and these results clearly show us the
relation between this concept and the technology evolution through the gaming world.

Table 42. Metaverse—Is a game a metaverse?

Categories Total %

Yes 9 69.2
No 4 30.8

4. Discussion

Our findings gave us actual results regarding the Metaverse virtual reality and gaming
concepts and the relation between these three concepts, contributing to understanding of
how gamers perceive and represent the metaverse.

Our findings allow us to identify: how the Metaverse is being represented and charac-
terized, which technologies stimulate the immersion experience, and the main dimensions
that influence the acceptance of the metaverse concept. We also understood the perceptions
of the relationship between the metaverse and virtual reality regarding socialization and
wellbeing and the relationship between these concepts and gaming in a gamer’s life. Finally,
we determined the social representations of gaming.

Regarding our first objective, how the metaverse is being represented and character-
ized, we found that this concept is not new for the gamer’s perceptions. Technological
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evolution has developed it, and it is portrayed as a social tool and a virtual reality promoter.
It was also possible to understand confusion or lack of knowledge regarding the definition
of the metaverse. However, central concepts such as virtual reality and gaming relations
were identified, showing the awareness of their association with this concept.

These results are according to the concept’s definition and categorizations since it
unites socially immersive virtual realities with video games [16] and will transform social
networks [35]. It is also considered an environment that merges physical and digital
reality [36], and it can promote digital engagement, and mixes gaming, social networking,
and virtual reality [37].

According to the results and our second objective, the technologies that stimulate the
immersion experience may vary. Still, the gamer’s perception shows us that a simple head-
phone can be crucial for immersion. It is also possible to see awareness of the technology
as a keyboard, VR googles, or a monitor that leads to the understanding that the price or
more evolved technology does not mean immersion. This leads us to the knowledge that
the metaverse is available through different devices [37] with other characteristics.

Third, the main dimensions influencing the acceptance of the metaverse are the gaming
world and virtual reality. And this is no surprise because the metaverse relies on a digital
universe that mixes online gaming [34] or other gaming worlds [33]. Wellbeing, such
as fun and relaxation, are precise dimensions that allow gamers to accept this concept.
In a previous study, it was verified that the perceived pleasure is a relevant concept for
accepting the metaverse [6].

These also lead to the fourth objective, understanding the perception of the metaverse
and virtual reality regarding socialization and wellbeing. Our results show this by the
participants when they refer to the metaverse as a socialization concept and socialization
promoter (Tables 31 and 32) and by clearly stating that the metaverse creates more fun
(Table 34), therefore, a supporter of wellbeing. In terms of the association of the metaverse
and virtual reality, the participants stand out by affirming that metaverse is a virtual reality,
which states a confusion or lack of knowledge regarding each concept definition, but most
importantly, they made the two concepts as one and so they see these concepts as promoters
of socialization and wellbeing.

Regarding the perceptions of a gamer’s daily life regarding the metaverse, virtual
reality, and gaming concepts, it was demonstrated that the daily lives of gamers are
continuing to be impacted by the metaverse and virtual reality through the gaming world,
because of their predisposition to accept digital transformation into their lives [4].

Looking at objective six, understanding the impact of representation on the gaming
concept, the gamers have mentioned social representation regarding the metaverse, virtual
reality, and the gaming world with no exception. They all promote individual or combined
social communication. In the gaming world, because players enjoy playing with others [14],
most video games are played with others [13] and allow bonding [15].

As for our last objective, to understand the perceived role of animation regarding the
metaverse, virtual reality, and gaming concepts, we can see their uniqueness and straight
relation. Animation, which allows a game to be possible, brings us portals between fantasy
and reality, and reality and the social [61]. Animation and its colossal power to transform
reality [6] joins virtual reality, providing the participant’s experiences and an immersion
environment in different forms [32]. In this sense, the gaming world has become the concept
that allows the metaverse to emerge.

With our findings, it is understood that the metaverse concept is still to create its own
boundaries or complete definitions. However, we can see that this concept relies on virtual
reality, and games continue this evolution. This concept is characterized as a promoter of
wellbeing, fun, relaxation, and socialization that can be achieved with more immersive
experiences provided by technology or gaming characteristics.

In the near future, we consider it essential to continue exploring these concepts’ rela-
tions and definitions using other methodologies, such as quantitative methods—developing
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case studies with different types of users/gamers (as long as the metaverse and metaworlds
are more widespread in several contexts and daily practices).

5. Research Limitations

The number of focus group interviews made—more focus groups realize more that
the data obtained could be considered significant. The fact that it was an online focus group
meant that discussions could have reduced the nonverbal communication. However, in our
study, we used software to record the video of the interviews, and all the participants were
asked to use their cameras—after signing an informed consent, agreeing to participate in
the study.

Another limitation could be the large or small number of questions depending on
the perspective taken. Many questions become more exhaustive for the participants and,
therefore, caused a lack of participation because of the time it takes. Fewer questions can
probably promote better participation, but they may not cover all the themes. According to
the participants’ discussion, it also gives us more time for others that may arise. Neverthe-
less, the questions previously accorded are not the only ones that can be made depending
on the discussion, and further questions can arise.

It is also important to mention that this study only has Portuguese gamers, and the
findings could differ (or not) with a diverse population or nationality.

Finally, we have to refer to the knowledge, lack, or confusion regarding the definition
of the concepts amongst the participants, which may vary according to other participants.

6. Conclusions

Since 1992, when Neal Stephenson proposed this concept, the metaverse has been
gaining a space and relevance in our reality. It is something that, for some, is considered
an old concept, perhaps because of its history or dependence on existing concepts such as
gaming and virtual reality, and for others is considered something new, perhaps due to the
novelty or greater attention that authors or companies have given it.

This concept has gained awareness even by the possible users or active users. However,
it lacks an agreed definition by authors or even lacks boundaries since it is still evolving.
This creates confusion between what is the metaverse and what is not by their users. Our
findings demonstrated this vulnerability of the concept.

This exploratory study is of great importance because it allows us to access the per-
ceptions of Portuguese gamers about this concept, showing that confusion and lack of
boundaries percept exist between them. It is also important because, in the scientific world,
a lot has been said regarding the metaverse concept. However, there is a lack of investi-
gations focusing on what common people understand regarding this concept. It is also
important because it can give the gaming and technology industry and scientific studies
more knowledge about tendencies according to the common knowledge that will lead to
how these concepts will evolve. After all, all these concepts evolve according to the needs
and likes of the people.

Focusing on our research question, “How is the metaverse being percept and repre-
sented by gamers?”, we verify that they represent it as something technological and social
promoting, achieved by games through virtual reality experiences.

We can write a possible definition for this concept based on the participants’ answers:
The metaverse concept has been around for a long time because it is considered a game
that allows immersive experiences through virtual reality technology, and the style and
aesthetics of the animation provided. It is also an essential means of socialization and
communication, at an individual level with its representations or a community level with
general terms. It is also an essential promoter of the wellbeing of its users.

The metaverse still has much to be explored. Still, it already showed us the power of
new means of communication through social networks, becoming a social realm where the
power of communication is exercised, implemented, and has no limits. The only limit is
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the human ability to dream or to create things. So, this concept is also making its path in
social media, becoming a form of mass self-communication [1].

Looking at the initial idea from Neal Stephenson (1992) until the present, we can see
a clear evolution from a conceptual picture to a more eligible or tangible concept. It has
gained some definition and importance on fields such as virtual reality and gaming, as
well as being considered a new means of communication. Nevertheless, it still has a lot of
objective boundaries and limits to explore.

Perhaps the metaverse will be something like the OASIS world in the Ready Player
One movie in 2018, where we can be whatever we want, experience different realities in
pursuing something different, fantastic, or a dream, hoping to be immersed in these new
realms for some time believing that reality is a real thing.
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Abstract: Cardiac rehabilitation (CR) focuses on the improvement of health or the prevention of
further disease progression after an event. Despite the documented benefits of CR programs, the
participation remains suboptimal. Home-based CR programs have been proposed to improve uptake
and adherence. The goal of this study was to apply an end-to-end methodology including machine
learning techniques to predict the 6-month adherence of cardiovascular disease (CVD) patients
to a home-based telemonitoring CR program, combining patients’ clinical information with their
actual program participation during a short familiarization phase. Fifty CVD patients participated
in such a program for 6 months, enabling personalized guidance during a phase III CR study.
Clinical, fitness, and psychological data were measured at baseline, whereas actual adherence, in
terms of weekly exercise session duration and patient heart rate, was measured using wearables.
Hierarchical clustering was used to identify different groups based on (1) patients’ clinical baseline
characteristics, (2) exercise adherence during the familiarization phase, and (3) the whole program
adherence, whereas the output of the clustering was determined using repetitive decision trees (DTs)
and random forest (RF) techniques to predict long-term adherence. Finally, for each cluster of patients,
network analysis was applied to discover correlations of their characteristics that link to adherence.
Based on baseline characteristics, patients were clustered into three groups, with differences in
behavior and risk factors, whereas adherent, non-adherent, and transient adherent patients were
identified during the familiarization phase. Regarding the prediction of long-term adherence, the
most common DT showed higher performance compared with RF (precision: 80.2 ± 19.5% and
71.8 ± 25.8%, recall: 94.5 ± 14.5% and 71.8 ± 25.8% for DT and RF accordingly). The analysis of the
DT rules and the analysis of the feature importance of the RF model highlighted the significance
of non-adherence during the familiarization phase, as well as that of the baseline characteristics to
predict future adherence. Network analysis revealed different relationships in different clusters of
patients and the interplay between their behavioral characteristics. In conclusion, the main novelty of
this study is the application of machine learning techniques combining patient characteristics before
the start of the home-based CR programs with data during a short familiarization phase, which can
predict long-term adherence with high accuracy. The data used in this study are available through
connected health technologies and standard measurements in CR; thus, the proposed methodology
can be generalized to other telerehabilitation programs and help healthcare providers to improve
patient-tailored enrolment strategies and resource allocation.

Keywords: adherence; cardiac rehabilitation; machine learning; prediction; exercise; home-based;
familiarization phase; telemonitoring
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1. Introduction

Cardiovascular diseases (CVDs) constitute one of the major health problems in Europe,
accounting for about 45% of all causes of death, and with a continuously increasing
prevalence [1]. This high incidence and prevalence of CVD leads to a high personal
health burden and places a huge burden on society, with EUR 210 billion/year spent on
the management of CVD [2]. Considerable differences in prevalence are observed between
European countries, mainly associated with the prevalence of several risk factors, such as
smoking, obesity, diabetes, and physical inactivity.

Physical activity has been recognized to have a beneficial effect on the prevention
of CVD. Therefore, exercise training is a central part of secondary prevention programs,
referred to as “cardiac rehabilitation” (CR) [3]. Based on the clinical guidelines [3], moderate
exercise for at least 150 min per week and behavioral changes towards a less sedentary
lifestyle can reduce cardiovascular risk factors. The WHO [4] defines adherence as the
extent to which a person’s behavior (e.g., lifestyle changes) corresponds with current
recommendations. Adherence to physical activity can be quantified in several ways [5]. In
general, adherence to lifestyle changes has been recognized as a crucial component towards
better management of patients with chronic disease, but this goal is rarely achieved [6,7].
However, despite the beneficial effects of CR, participation rates remain low, with less
than 40% of eligible patients attending CR programs [8,9]. Low socioeconomic status, age,
gender, the proximity to a CR center, and behavioral aspects such as lack of motivation and
reduced self-efficacy have been identified [9] as the main barriers to CR participation.

In order to overcome the aforementioned barriers and increase both uptake and
adherence to CR, home-based telerehabilitation services have been developed, considering
the advances in technology and the Internet of things (IoT) [10]. Indeed, telerehabilitation
programs have proven to be a safe and effective approach to managing heart failure (HF)
patients [11]. In a meta-analysis by Claes [12], it was found that center-based and home-
based CR had equal effects on exercise capacity, while others found equal effects on quality
of life (QoL) and cost-effectiveness [13].

One major advantage of modern telerehabilitation services is the personalized guid-
ance that they offer, which is facilitated by the availability of low-cost and unobtrusive
devices that integrate various sensors that are useful for the quantification of exercise re-
sponse [11]. For example, accelerometry data can be used to evaluate the volume of exercise,
heart rate sensors are able to capture exercise intensity, and geolocation services allow for
the estimation of walking distance. However, the plethora of available devices also leads to
a large heterogeneity in intervention design, ranging from motivational messages [14] to
telephone counseling [15] or personalized real-time adaptation of exercise sessions [16].

However, the problem of non-adherence is also apparent in home-based or self-
management interventions [17], where significant variations in the levels of adherence
have been reported compared to center-based CR programs. Several RCTs [18] and meta-
analyses [19,20] have reported that patient-centered approaches show an improvement in
patient adherence to CR programs. However, most of these studies were observational and
used subjective information and self-reports to quantify adherence [21].

Both patient-related factors and intervention design could be addressed to increase
adherence [22]. In a systematic review, it was found that both the program characteristics
and personal factors, including health and cognition status, influence adherence to exercise
programs [23]. Essery et al. [21] presented a list of factors that are associated with adherence
to home-based physical therapies, where it was reported that the perception of health status,
self-motivation, or current physical activity level presents a strong positive association
with adherence, while daily stress has a strong negative association with it. On the other
hand, the incorporation of data-driven or rule-based models can guide decisions, leading
to improved adherence [24].

It would be beneficial to integrate objective patient information from a short period
of time to predict long-term adherence to exercise and, thus, proceed with appropriate
targeted modifications and better use of resources. In [25] the Discontinuation Prediction
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Score (DiPS) was introduced, which compares each week’s average steps with those of
the first week of the program. It can be used to score the probability of dropping out
from exercise programs during the week. The prediction model used objectively collected
physical activity data from 210 physically inactive women aged 25 to 69 years, and it
applied logistic regression and support-vector machines to predict the DiPS. As found, the
adherence rate decreased as the program progressed, whereas daily steps at the start of
the program and the steps measured during the previous week were significant predic-
tors of DiPS. In a study performed by [26], three different clusters of participants were
created based on basic individual characteristics and training data collected during the
first three months of the application’s use. Deep learning techniques were applied for the
prediction of adherence to exercise during the fourth month of the program. Finally, [27]
applied data-characteristics-based long short-term memory (DC-LSTM) recurrent neural
networks (RNNs) to predict outdoor physical activity, taking into account patient profiles
and environmental characteristics, such as weather, temperature, and humidity. However,
in all of these studies, the focus was on the short-term prediction. It would be beneficial to
identify the patients who are likely to be non-adherent at an early stage of the program, so
as to modify the motivation strategies and to use the resources efficiently. In a previous
study performed by our research group, adherence to a short familiarization period for
home-based CR was combined with clinical characteristics to predict future adherence [28].
A support-vector machine (SVM) classifier was trained using the most significant features.
However, in that study, only those patients who could clearly be considered to be adherent
or non-adherent during the familiarization phase were included. This resulted in the
exclusion of a considerable number of patients who were moderately adherent, hindering
the generalization of the method and results.

In this paper, we hypothesize that a predictive model based on machine learning
techniques, which integrates (i) patient clinical characteristics, (ii) data from self-reports,
and (iii) objective physical activity information gathered during a short familiarization
phase, can predict longer-term adherence to a home-based CR program for CVD patients.
Therefore, the specific aims of this study were as follows: (1) to cluster patients into distinct
groups based on the adherence to the system during a 6-week familiarization period, (2) to
investigate significant differences between the groups during the aforementioned period,
and (3) to implement a model that could predict the use of the system during a 6-month CR
program. Following a data-driven approach, while adherence prediction was considered
to be a discrete problem (N classes), the number of classes was not predefined but, rather,
identified during the analysis pipeline via clustering. Finally, the predictive model needed
to be explainable so that it could be used by the clinical experts to better support patients
in adhering to home-based CR or to search for other CR alternatives if predicted adherence
to home-based CR was low.

2. Materials and Methods

The graphical overview of the proposed methodology is depicted in Figure 1. Each
part of the figure is described in detail in the following section. In brief, the implementation
of the predictive model was based on data collected from patients with CVD. Different
types of data are available, including clinical data and actual usage of the system based
on smartwatches. Unsupervised learning methods, such as hierarchical and spectral clus-
tering, were used, and the patients were grouped into different groups. Machine learning
techniques were applied in order to predict long-term adherence to telerehabilitation pro-
grams. Finally, network analysis was performed in order to identify relationships between
the features.

111



Appl. Sci. 2023, 13, 6120

 

Figure 1. Graphical overview of the proposed approach. Each part of the graph is described in detail
in the following sections.

2.1. Data Description

This study uses data that were collected during the PATHway-I trial [16]—a single-
blinded randomized control trial (RCT) involving 120 patients that were randomized into a
usual care group and an intervention group, on a 1:1 basis. Given the scope of the present
study, only the patients from the intervention group were included in this analysis.

In brief, the Physical Activity Towards Health (PATHway) was a home-based CR
platform that aimed to empower patients towards self-management of their CVD [16]. It
combined gamified approaches (ExerClass/ExerGames), e-coaching, and outdoor activities
such as jogging or bicycling, to promote an active and healthy lifestyle according to standard
clinical guidelines [29]. Clinical evaluation performed before the start of the CR program
assisted clinical experts to set personalized goals and exercise intensities for the patients.
Heart rate (HR), captured by smartwatches using Microsoft Band (which measures HR
accurately [30]), along with subjective information from questionnaires, allowed for the
continuous monitoring and adaptation of the program based on patient performance and
preferences, in both the short- and longer-term horizons. In brief, the short-term horizon
aimed to guide the patient during the ExerClass/ExerGame sessions to exercise within the
personalized beneficial HR zone. This was followed by the provision of a variety of aerobic
or resistance exercises of different levels of intensity or difficulty and targeting different
body parts. On the other hand, the customization of the exercise program on a weekly
basis aimed to improve patients’ exercise adherence to the program. A decision support
system (DSS) integrated this patient information with clinical guidelines, and experts’
knowledge was developed to achieve this goal [24]. Finally, a notification module was
included, aiming to provide tailored messages to the patients to maintain their engagement
with the PATHway system [31].

Patients randomized to the intervention group participated in a familiarization phase
to become acquainted with the home-based CR intervention. During the first 4 weeks,
the patient was guided by experts on how to use the PATHway system. To evaluate the
adherence to the exercise program, observation of patient behavior without additional
supervision was valuable in evaluating adherence to the exercise program. In this respect,
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an additional 2-week period was considered, where the patient used the system without
supervision by an expert. Thus, the total duration of the familiarization phase was 6 weeks,
and it represented approximately 20% of the whole program’s duration (Figure 2). Patients
with a median duration of exercise sessions per week equal to zero were considered to be
absent from the program and were excluded from further analysis.

Figure 2. Timeline for the intervention study’s structure.

2.1.1. Data from Baseline and Periodic Clinical Evaluation

A plethora of data were collected during baseline and at 3 months and 6 months after
the start of the intervention. The data were categorized into three main categories:

1. Cardiovascular Risk Profile: These markers were collected through blood sampling
and anthropometric measurements. The Framingham cardiovascular risk score was
calculated as described in [32].

2. Health-Related Physical Fitness: These data represent the findings from a maximally
graded cardiopulmonary exercise test (CPET) on a bicycle, along with muscle strength
testing including maximal isometric and isokinetic quadriceps strength, handgrip
strength, and a 30 s sit-to-stand test.

3. Psychological wellbeing and intervention effectiveness: This subjective information was
collected using standardized questionnaires assessing QoL [33], physical activity
behavior [34–36], smoking, alcohol consumption [37], diet [38], stress [39], medication
adherence [40], mental wellbeing [41], social support [42], self-efficacy [43], and
perceived health status [44,45].

In total, 59 features were measured at baseline and 6-month follow-up, while 52 of
these features were collected at 3-month follow-up. A detailed overview of the collected
data has been published previously [16,46].

2.1.2. Exercise Session Data

During the execution of the exercise session, the duration of the session was captured
either automatically in the case of ExerClass/ExerGames or synchronized later when the
patient exercised outdoors. Independent of the type of session (ExerClass/ExerGame or
outdoor activity), the heart rate of each patient was captured by the smartwatch, with a
sampling frequency of 1 Hz. These data were used to quantify patient performance and
adherence to the exercise program.

Exercise Adherence Metric

The adherence to the system was assessed in terms of the mean duration of exercise
sessions performed each week. In more detail, the adherence to the exercise program in
week i was measured as follows:

adher[i] = SessDuration[i]/Nsessions[i] (1)
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In Equation (1), SessDuration is the total duration of the exercise session performed
during week I, while Nsessions is the total number of sessions for that week. SessDuration
was measured automatically in the case of indoor activity with the PATHway system, while
in the case of outdoor activity the patient started and ended the recording of the session.
Since it could be possible that a patient forgot to stop the recording, the maximum value
for SessDuration [i] was set to be equal to 120 min. In addition, sessions with a duration
of less than 10 min were also excluded from the analysis, as they were characterized as
invalid activities [46].

Exercise Performance Metric

According to [29], a patient must exercise above a minimal HR threshold to achieve
health benefits, which is defined as 40% of the maximum HR measured during a cardiopul-
monary exercise test (CPET). Thus, HRlower is defined as follows:

HRlower = 0.4 ∗ HRpeak (2)

where HRpeak is the maximum HR measured during baseline CPET. To quantify patient
performance, the HRtime was estimated as the percentage of time that the HR was greater
than HRlower.

In addition, the HRmean for the kth session was calculated as follows:

HRmean[k] =
1
n

n

∑
i=1

HRsig(i) (3)

where n is the total number of samples of the HRsig signal during the session, and HRnorm
was measured as follows:

HRnorm = (HRmean/HRpeak) ∗ 100 (4)

This reflects the percentage of the mean session HR with respect to the maximum
possible value. These metrics provide averaged values of the subject’s HR and, therefore,
are not significantly affected by any artifacts or low signal accuracy that may occur due to
the exercise.

2.2. Investigation of Different Patient Clusters at Baseline

The patients that attended the home-based CR programs presented different profiles
with regard to their exercise behavior or their clinical characteristics. Thus, the first step
towards implementing a model that could predict future adherence to the program was
to categorize the patients into different clusters. In this study, the clustering was based
on (1) the characteristics collected before the start of the program, (2) the adherence to the
program during the familiarization phase, and (3) the adherence to the whole 6-month
exercise program.

2.2.1. Clustering Baseline Profiles

Hierarchical clustering was used to categorize the patients into different groups based
on their baseline characteristics (Table 1). Hierarchical clustering is an algorithm that groups
objects with similar characteristics into a tree-like hierarchy [47]. The main advantage of
hierarchical clustering is that it is easy to interpret, as the dendrograms provide visual
information on the observations and the clusters to which they belong at each level of detail.
In the present study, the number of clusters was selected based on the one that maximized
the silhouette value [48].
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Table 1. Statistically significant differences between the Present and Absent groups during baseline,
and differences between the start and the end of the CR program.

Present Absent p-Value

Baseline
BARSE 67.361 ± 22.5 53.93 ± 16.6 0.043

Sedentary time (min) 752.53 ± 98.3 677.89 ± 55.1 0.016
Light activity time (min/day) 559.88 ± 80.87 620.78 ± 50.54 0.035

Baseline–6 months
BMI (kg/m2) 0.037 ± 1.08 1.21 ± 1.84 0.022

Waist circumference (cm) −2.06 ± 5.25 2.77 ± 4.24 0.014
Triglycerides (mmol/L) −0.029 ± 0.67 0.48 ± 0.72 0.028

pLoad (Watt) −0.122 ± 25.4 −14.44 ± 18.1 0.028
BARSE = barriers self-efficacy scale; BMI = body mass index; pLoad = peak load achieved during CPET.

2.2.2. Clustering Familiarization Adherence Behavior

The clustering of the patients was based on the mean duration of exercise sessions
performed each week (adher) during the 6 weeks of the familiarization phase. In this respect,
for each patient, the adher value for each of the 6 weeks was computed, and hierarchical
clustering was applied. Maximum silhouette values were used to identify the optimal
number of clusters.

2.2.3. Clustering whole-Program Adherence Behavior

The adherence for the whole 28-week period of the program was based on adher,
which was calculated for the period after the familiarization phase; thus, 22 weeks were
used to cluster the patients. However, the fact that the number of features was comparable
to the number of patients included in the study (approximately 1:2) made the hierarchical
clustering inefficient, as this method is prone to outliers [47]. For this reason, spectral
clustering was applied to categorize the patients into different groups [49]. A self-tuning
kernel [50] was used, and the number of diffusion iterations was set to 18.

2.3. Predictive Modeling for Whole-Program Adherence Prediction

A decision classification tree was built to predict the adherence to the exercise program.
Decision trees are unsupervised learning algorithms that are often used in multilabel
classification [51]. The main advantage of their use, apart from their good performance, is
their interpretability, as they allow for the visualization of the model in terms of rules. The
data used for the model’s development were (1) the clusters of patients that were created
based on the baseline characteristics, and (2) the clusters related to the adherence to the
exercise program during the familiarization phase.

Because of the small sample size, we ran the model 100 times with different combina-
tions of training and test datasets. Each time, the whole dataset was split into training and
testing subsets, at a 9:1 ratio.

The minimum number of observations that should exist in each node of the tree to at-
tempt a split was set to 4, and 10 cross-validations were carried out. For the implementation
of the model, the “rpart” R package was used [52]

For each of the 100 models, the performance of the classification was measured using
precision (Prec), recall (Rec), and accuracy (ACC), which were defined as follows:

Prec =
TP

TP + FP
(5)

Rec =
TP

TP + FN
(6)

ACC =
TP + TN

TP + TN + FP + FN
(7)
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where TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative, respectively. The adherent group was selected to be the positive group. The
frequency of each model was calculated, and the mean performance metrics were extracted.

However, one of the main drawbacks of decision trees is instability, especially in cases
where the sample size is small; thus, minor changes in the training dataset can lead to
modifications in the tree. Therefore, a random forest (RF) technique was applied, which
is more stable and robust. An RF uses voting techniques to aggregate tree-structured
classifiers into a single classifier [53]. A 10-fold cross-validation was applied, and 100 runs
of the RF were used to extract the most important features and the performance metrics
Prec, Rec, and ACC.

2.4. Statistical Differences between the Groups

The Kruskal–Wallis non-parametric statistical test was used to investigate the existence
of significant differences among the groups of patients, as well as to identify any significant
differences between different time periods, since this test is more robust when the sample
size is small [54]. In this case, the analysis was based on the computation of the differences
between the two time periods. In all cases, the probability threshold was set to 0.05, to
consider statistically significant differences.

Spearman’s rank correlation coefficient ρ was used to estimate the rank association
between the variables, and it was computed as follows:

ρ =
cov(R(x), R(Y))

σR(X)σR(Y)
(8)

where R(Xi) and R(Yi) are the ranks of the variables Xi and Yi, respectively, cov is the
covariance, and σR(X) and σR(Y) are the standard deviation of R(X) and R(Y), respectively.
This measure is non-parametric and is recommended when the data do not necessarily
come from a normal distribution.

2.5. Network Analysis Per Group

Network research aims to understand how a process works and identify the system
components as well as the statistical relations between them, with the former being repre-
sented as the nodes of the system and the latter as links between the nodes [55]. Following
this systems medicine approach [56], psychological networks have been widely used in
recent years to conceptualize the interplay of different components of human behavior [57].

In this study, a network analysis was performed to identify the network structure
for each group of patients based on their baseline characteristics, their adherence during
the familiarization phase, and their adherence to the whole program. The data previously
used for the creation of the clusters related to the baseline characteristics and the adherence
during the familiarization phase were also used to create the networks. For the network
analysis of adherence to the whole exercise program, both types of data were considered.
However, in all cases, only features that presented statistically significant differences be-
tween the clusters using the Kruskal–Wallis test were used for the creation of the networks.
In addition, for a more accurate estimation of the networks, the number of nodes had to be
less than the number of members of the group. Therefore, the features were ordered based
on the p-values calculated using the Kruskal–Wallis test, and only the most significant were
included in the analysis.

The network analysis was implemented in R, using the “glasso” package [58] based
on [59] for LASSO regularization. In more detail, the Gaussian graphical model (GGM) [60]
was estimated using “glasso” and EBIC model selection, since it has been found that
this combination works well in retrieving the correct network structure [61]. To assess
the importance of the nodes in the network structure, three measures were used: node
strength and closeness quantify how well a node is directly or indirectly connected to
others, respectively, while betweenness quantifies the node’s importance in the average path
between two other nodes [57].
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Regarding the metrics that were captured during the session (adher, HRnorm, and
HRtime), temporal networks were created using the “graphicalVAR” package [62]. The
number of LASSO tuning parameters that were tested was set to 50.

3. Results

3.1. Absent Versus Present Patients during Familiarization

From the 50 patients that were included in the intervention group (after the exclusion
of the patients who dropped out), 9 of them were considered to be absent (Absent group)
from the exercise program, since they exercised very sparsely, i.e., their median weekly
duration of exercise sessions during the familiarization phase, as well as in the following
weeks, was zero minutes. Therefore, they were excluded from further analysis; thus,
41 patients were included in the Present group.

It was found that Absent had a lower score on the BARSE questionnaire, which mea-
sures the subjects’ perceived capabilities to exercise three times per week for at least 40 min
over the next two months [35]. In addition, the Absent patients had a lower sedentary
time and a higher light activity time during baseline testing (Table 1). These findings
suggest that Absent patients were feeling capable of engaging in enough physical activity
by themselves, and they considered that they did not need the telerehabilitation system to
become more active.

While the Absent patients were not further studied in the next sections, it is worth
noting their differences with the Present group regarding their clinical characteristics after
the 6-month intervention period. It was found that Present patients reduced their waist
circumference, while their BMI, triglyceride levels, and peak load during the CPET re-
mained stable. In contrast, the Absent patients had increased BMI, waist circumference,
and triglyceride levels, and a reduced peak load during CPET. These findings suggest that
exercise had a slightly positive effect on patients who participated in the CR program.

Finally, based on the observation of the exercise behavior in terms of the number of
sessions performed as well as their duration, it was found that the patients who were
characterized as absent during the familiarization phase continued to remain inactive
during the rest of the program (Figure 3). The statistical analysis of the mean duration of
the sessions each week revealed the existence of statistically significant differences between
the groups—mainly during the first half of the 6-month program.

 

Figure 3. Evolution of the number of sessions (left) and the mean session duration (right) for the
present (green) and absent (red) patients. Regarding the mean session duration (right), statistically
significant differences were found for weeks 1 to 11, 13, 17, 20, and 24. The character # means number
of sessions.

3.2. Patient Profile Clusters

The hierarchical clustering resulted in the creation of different clusters of Present
patients considering their baseline characteristics and their exercise behavior during the
familiarization period. More details are provided in the following sections.
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3.2.1. Clusters Based on Clinical Baseline Characteristics

Three clusters of patients were found to maximize the silhouette value, using hier-
archical clustering analysis on the baseline characteristics. Cluster 1 included 5 patients,
while 15 and 21 patients were included in Clusters 2 and 3, respectively. The use of the
Kruskal–Wallis test revealed statistically significant differences between the three clusters
(Table 2).

Table 2. Baseline clinical characteristics that presented statistically significant differences between the
three groups of patients (p < 0.05). The values are presented as the mean value ± standard deviation.

Cluster 1 Cluster 2 Cluster 3

Low-Risk &
Active

High-Risk &
Sedentary

High-Risk & Fit

Glucose (mmol/L) 4.71 ± 0.5 6.04 ± 1.81 5.81 ± 1.04
Risk score (%) 6.16 ± 5.9 18.65 ± 10.43 16.79 ± 10.035

BARSE 81.23 ± 11.1 75.13 ± 17.63 58.43 ± 24.39
PSS 13 ± 7.5 7.73 ± 5.34 12.48 ± 6.129

PACE 4.5 ± 1.7 4.5 ± 1.85 3.12 ± 1.387
Illness perception 38.2 ± 13.74 24.13 ± 12.69 34.1 ± 13.37

SF-36 mental 78.19 ± 15.14 83.36 ± 14.65 74.18 ± 14.17
EE (kcal) 1576 ± 639.62 1115.4 ± 187.27 1583.62 ± 395.35

MVPA (min) 229.4 ± 46.39 77.2 ± 29.46 132.43 ± 41.3
Steps (n) 16720 ± 767.8 8994.93 ± 903.62 13,173.14 ± 1475.88

30 s STS (n) 23 ± 3.24 16.53 ± 4.29 19.29 ± 4.69
Sedentary time (min) 655.6 ± 35.84 840.93 ± 67.96 712.48 ± 76.99

Quadriceps isokinetic (J) 1636.38 ± 314.61 1885.51 ± 849.03 2378.82 ± 576.13
Quadriceps isometric (Nm) 107.2 ± 26.33 142.4 ± 51.32 156.79 ± 38.1

BARSE = barriers self-efficacy scale; PSS = perceived stress scale; PACE = physical activity question-
naire; SF-36 = short-form 36; EE = energy expenditure; MVPA = moderate-to-vigorous physical activity;
STS = sit-to-stand.

As shown in Table 2, Cluster 1 included patients with lower cardiovascular risk
compared to the patients from the other clusters. Those patients were confident that they
could exercise regularly (BARSE), and this was reflected in a higher daily number of steps
and lower sedentary time. The opposite behavior was observed in the patients included in
Cluster 2. Those patients were more sedentary and less physically active, as reflected by
lower daily levels of MVPA and steps. In addition, they had the lowest PSS scores and the
highest BARSE scores, glucose levels, and cardiovascular risk. Finally, the third and largest
cluster included patients who were active, as they achieved the recommended guidelines
for daily steps and MVPA, and their muscular strength was the highest compared with
the other groups. However, these patients were less confident that they could exercise
regularly, and they had the lowest scores in the PACE survey, which captures the attainment
of physical activity guidelines. For these reasons, Cluster 1 is referred to as “Low-Risk”,
Cluster 2 as “High-Risk”, and Cluster 3 as “Average-Baseline”.

3.2.2. Clusters of Patient Adherence during Familiarization

Three clusters were identified based on the hierarchical clustering, with 12, 24, and
5 patients to be included in each cluster. The observation and the statistical analysis of the
mean adher values revealed information regarding the exercise behavior of the patients in
each group. As shown in Figure 4, during the first two weeks, the patients from all of the
clusters presented similar behavior as they attended the demonstration sessions, and they
performed one ExerClass or ExerGame.
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Figure 4. Evolution of mean adher values for the patients included in each cluster.

Slight differences are observed for the following 2 weeks, where the demonstration of
the systems was performed. However, the observation of the p-values after the application
of the Kruskal–Wallis test also revealed a continuous decrease, with the differences being
statistically significant in the last two weeks of the familiarization phase, where the patients
used the system at their homes, without any supervision (Table 3). Patients from Cluster
1 presented a continuous and gradual increase in their adherence, while patients from
Cluster 2—which was the largest cluster—had a low adherence that decreased even further
during the last 2 weeks. Finally, a small cluster of patients presented fluctuations regarding
their time spent exercising (Figure 4). For this reason, and for simplicity, Cluster 1 was
named “adherent-6w”, Cluster 2 “non-adherent-6w”, and Cluster 3 “transient-6w”.

Table 3. Mean session duration for all of the patients in each group for weeks 1 to 6 of the familiariza-
tion phase. The values are presented in minutes as the mean ± standard deviation.

Week
Cluster 1

Adherent-6w
Cluster 2

Non-Adherent-6w
Cluster 3

Transient-6w
p-Value

1 9.43± 1.6 8.94 ± 2.4 9.4 ± 1.3 0.87
2 10.07 ± 5.7 9.69 ± 7.3 8.93 ± 13.4 0.72
3 16 ± 7.9 11.27 ± 8.6 20.6 ± 19 0.35
4 18.75 ± 11.2 13.16 ± 9 9.78 ± 16.3 0.99
5 22.88 ± 9.8 10 ± 9 28.3 ± 16.8 0.00054
6 28.28 ± 12.6 5.67 ± 7.3 29.16 ± 2.4 <0.0001

The evolution of the performance metrics during the familiarization phase for the
three clusters is depicted in Figure 5a,b. As observed, all patients, independent of their
adherence to the exercise program, spent more than 60% of their time with an HR above the
lower HR threshold, and the mean HR during the session was 80% of the maximum HR.
Although the non-adherent-6w patients had lower HRtime values in most of the weeks,
there were no statistically significant differences between the clusters (Table 4). These
results suggest that when the patients exercised, they performed moderate-to-vigorous
activity, and they performed similarly, independent of how frequently they participated in
the rehabilitation program.
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Figure 5. On the upper part, HRtime (a) and HRnorm (b) during the familiarization period are
depicted for the three clusters. On the bottom (c), the Spearman’s correlation for those variables with
adher is provided; the bigger and darker the circle, the greater the correlation. Blue and red denote
positive and negative correlation, respectively.

Table 4. Performance metrics for the 3 session adherence clusters.

% Time Spent above HRlower % HRnorm

Week Adherent-6w Non-Adherent-6w Transient-6w p-Value Adherent-6w Non-Adherent-6w Transient-6w p-Value

1 81.01 ± 15.5 63.44 ± 25.6 61.41 ± 37.8 0.171 84.62 ± 12.78 78.91 ± 15.69 77.74 ± 18.22 0.455
2 82.74 ± 18.4 74.12 ± 18 83.8 ± 20.9 0.256 83.1 ± 11.92 83.71 ± 15.99 91.83 ± 11.51 0.5
3 72.72 ± 30.2 77.71 ± 14.7 82.87 ± 21.3 0.838 78.03 ± 14.65 87.93 ± 14.34 91.42 ± 19.63 0.161
4 79.38 ± 24.1 80.31 ± 14.7 95.37 ± 0.9 0.181 80.76 ± 12.32 86.67 ± 14.49 93.18 ± 19.94 0.508
5 76.9 ± 27.7 70.77 ± 24.4 73.6 ± 25.3 0.492 81.77 ± 14.59 79.98 ± 14.28 83.44 ± 13.24 0.959
6 80.7 ± 28 77.44 ± 10.4 82.81 ± 15.8 0.36 82.72 ± 16.5 86.63 ± 14.44 88.22 ± 13.83 0.88

Finally, from the observation of the correlation matrices in Figure 5c, we can conclude
there was a strong negative correlation between the adherence and the mean HR during
the session in the Adherent-6w group (as a percentage of the maximum HR), while for
Transient-6w patients the correlation was strongly positive, and for the non-adherent-6w
group the correlation was tight. Taking Figure 5b into account as well, where Adherent-6w
present lower performance compared with Transient-6w patients, this finding suggests
that adherence did not necessarily lead to better performance during exercise and that,
generally, the patients tended to exercise in beneficial HR zones (Figure 5a).
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3.3. Program Adherence Clusters

The spectral clustering that was based on adher for the period after the familiarization
phase (week 6) resulted in the formulation of two clusters. Figure 6 depicts the adher
over the whole intervention period (32 weeks). The first cluster included 24 patients and
represented those individuals that were adherent to the exercise program, while the second
cluster consisted of non-adherent patients (17 members). As depicted in Figure 6, even for
the “Adherent” cluster, a slight decrease in exercise duration was observed during the last
4 weeks of the program.

 

Figure 6. Evolution of the mean adher value (mean weekly session duration) for the two clusters
based on the spectral clustering. The dotted line reflects the end of the familiarization phase.

3.4. Predicting Program Adherence

Figure 7 provides a visual overview of the distribution of patients into different
clusters based on the analysis performed. As depicted, the majority of the patients who
remained non-adherent during the whole program’s duration were also non-adherent
during the familiarization phase. On the other hand, patients who were adherent during
the familiarization phase tended to also be adherent for the whole program. One additional
interesting finding is that the active patients with low cardiovascular risk during baseline
did not adhere to the exercise program.

 

Figure 7. Sankey diagram regarding the different clusters of the analysis for the Present cluster. The
Absent patients (n = 9) were not included in the analysis.

A dendrogram was created to predict future adherence to a home-based CR program
according to the clinical data at baseline and the adherence to a short familiarization
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phase. Based on multiple train/test splits and model building with cross-validation in
each run, the most frequent models—representing 92% of the total number of models—are
depicted in Figure 8. As observed, model “a” (left) was the most frequent model, and
it had the highest performance (accuracy = 82.3 ± 14.7%, precision = 80.2 ± 19.5%, and
recall = 94.5 ± 14.5%).

Figure 8. The three most frequent models that were created after splitting the dataset 100 times into
different training and testing datasets. Model (a) was created 61 times, while the frequency for model
(b,c) was 17 and 14, respectively. The performance metrics for each model is shown in the figure, too.
The models are represented as dendrograms with rules. In each node of the tree, the most common
class is depicted, along with the respective probability (mean ± std).

The rules of the model with the highest performance (Figure 8a) were as follows:

1. A patient that is recruited for a home- and exercise-based rehabilitation program has
a 58.5 ± 2.5% probability to be adherent without any additional knowledge.

2. If the patient is adherent during the familiarization phase, then the probability of
being adherent for the whole program reaches 92.3 ± 3.5%.

3. For a patient that is non-adherent or has a transient exercise behavior in the famil-
iarization phase, the possibility to be non-adherent for the rest of the program is
55.6 ± 3%.

a. If those patients are of high risk, based on the baseline characteristics, then the
probability of being non-adherent increases to 82.4 ± 3.9%.

b. If those patients are of low risk or are included in the average-baseline cluster,
then the probability of being adherent is 63.3 ± 3.3%.

Model “b” (middle) is very similar to model “a”, where the continuation of adherence
(second rule) also includes the transient adherence during the familiarization phase in the
same branch, and the third rule is also the same, with very similar probabilities. The third
model uses rules similar to model “a”, but it considers the baseline clusters first and then
the adherence during the familiarization.

This instability of the decision tree classification was reduced by the use of the RF clas-
sification technique. Four features were identified in all of the RF runs as being significant
for the classification of adherence. Figure 9 depicts the mean importance of the features
that were used in each of the 100 runs of the classifier. The performance of the RF model
(accuracy = 73.4 ± 17.5%, precision = 71.8 ± 25.8%, and recall = 87.7 ± 24%) was lower
compared with the most frequent decision tree model (model “a”), but the RF model was
more robust, revealing the importance of transient-6w users for the prediction of adherence
to the whole program.
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Figure 9. The mean importance for the features that were used in each of the 100 runs of the
RF classification.

3.5. Network Analysis and Detection of Structure in Patient Profiles

Network analysis focused on the comparison of the bigger clusters for each type of
analysis, i.e., the two clusters that included the most members. For baseline characteristics,
the clusters with the high-risk and sedentary patients and the high-risk and fit patients
were compared. The nodes on the graphs represent the features that were statistically
significant between all three groups. As shown in Figure 10 (upper), the structure of the
networks differed. In the cluster with the high-risk and fit patients, a stronger interplay
among the characteristics was observed. The centrality measures denoted that the effect of
each node was stronger for most of the features. Although a strictly causal relation was
not defined, this structure may suggest that it is possible to drive changes in some factors
and see effects in others, much more than in the high-risk and sedentary group. The main
differences between the groups were as follows:

• In the high-risk and fit group, the risk was correlated with glucose and SBP, while in
the high-risk and sedentary group, the risk was correlated with the level of MVPA.

• In the average group, STS and SBP were positively correlated, while in the high-risk
and sedentary group they were negatively correlated.

• In the high-risk and fit group, the main connections included peak HR–MVPA–STS–
SBP (physical/cardiovascular condition), while in the X group a glucose–SBP–STS
link prevailed.

Better interpretable results of the network analysis are provided by the comparison
of the clusters that were created based on the adher during the familiarization period. In
this case, the comparison focused on the adherent and non-adherent clusters, and each
node denotes a week. As depicted in Figure 11 (upper), for the adherent group, there were
positive relationships with adher. In the non-adherent cluster, there was a break of the
positive relationship between week 4 and week 5.
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Figure 10. Networks of the two most popular clusters, based on the baseline clinical characteristics
(upper). The centrality measures are depicted on the bottom (bottom).

Figure 11. Temporal network for the three clusters created using the adherence during the familiariza-
tion phase. In the Adherent-6w group (left), there seems to exist no connection between the adherence
and the HR metrics representing the performance during the session. The respective graphs for the
non-adherent and the transient users are depicted in the middle and on the right, respectively.

The temporal graphs suggest a causal relationship between exercise HR performance
and the next week’s adherence. In the transient adherence group, (a) adherence was posi-
tively affected by previous adherence, and good HRnorm, i.e., performance, (b) adherence
improved next week’s HRtime. In the non-adherent group, HRtime positively affected
adher. These links did not exist in the adherent group, in which the adherence behavior
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was not affected by the performance within the session. This means that there may be space
for adjustments in the exercise sessions, to improve performance and influence adherence.

Finally, regarding the analysis of the graphs for the two clusters that were created
based on adherence to the whole exercise program, the 10 most significant features were
considered. Those features included adherence to weeks 2–6 of the familiarization phase,
as well as five features based on the baseline characteristics. The network structure for
both the adherent and non-adherent groups is depicted in Figure 12. As observed, weight
and pVO2 were important and influential nodes in the non-adherent group, whereas in the
adherence group, the adherence in weeks 2–6 remained correlated.

 

Figure 12. Networks for the adherent and non-adherent clusters include data from both the adherence
to the familiarization phase and the baseline clinical characteristics. The numbers inside the nodes
(upper) represent the variable adher during each week. The different measures for the importance of
each node is depicted (bottom).

4. Discussion

Although the beneficial effects of CR have been thoroughly described in several
studies, the uptake and adherence to center-based or home-based CR remains suboptimal.
The limited adherence to CR programs leads to implications for patients’ clinical status and
the effective use of resources.

This study proposes an approach to predict long-term exercise adherence in a home-
based CR setting, based on readily available baseline data before the start of a CR program.
These data include clinical information, behavioral characteristics, and cardiovascular fit-
ness, as well as HR and exercise duration during a familiarization phase of the intervention.
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The methodology is based on the combination of unsupervised and supervised ma-
chine learning techniques in order to predict, from the initial stages of the CR programs,
those patients who are more likely to be adherent during a 6-month period. In more detail,
the unsupervised methods aim to identify different patients’ profiles based on clinical and
behavioral characteristics, whereas supervised techniques use these profiles to make the
prediction. Based on the bibliography, this is the first data-driven end-to-end method that
is able to predict long-term adherence in such programs, using data that are commonly
collected during CR programs.

Initially, clustering was chosen as an unsupervised method to show the group charac-
teristics at baseline and the adherence behavior in a limited familiarization period, without
imposing a binary problem. The baseline data led to the formation of three patient groups,
suggesting (1) a low-risk and active group of patients, (2) high-risk sedentary patients,
and (3) a considerable number of patients who were of high cardiovascular risk but were
also fit and motivated. The exercise familiarization showed three adherence behaviors
(high adherence, low adherence, and transient adherence), while the exercise sessions
after the familiarization phase led to two clusters: adherent and non-adherent. These two
clusters were the targets for prediction, while the clusters based on the baseline data and
the familiarization phase served as inputs for the prediction model.

Two types of models were tested: (1) decision trees, and (2) RF. The first type is more
interpretable but also unstable, while the second type offers both robustness and explain-
ability. Regarding the decision trees, the most common model produced after 100 runs
with 10-fold cross-validation achieved both high precision and high recall (80.2 ± 19.5%
and 94.4 ± 14.5%, respectively), and the rules were simple and explainable. As shown
in Figure 8a, only approximately 60% of the target patients were adherent. However, if
a patient was adherent during the familiarization phase, the long-term adherence rates
reached 90%. For the rest of the patients, their clinical profiles can help the clinical experts to
identify the non-adherent ones. A similar conclusion can also be reached by the observation
of Figure 8b,c.

On the other hand, the RF model had lower performance (precision = 71.8 ± 25.8%
and recall = 87.7 ± 24%), but it also revealed the importance of non-adherence during
the familiarization phase and the high-risk and sedentary profile for the prediction of the
whole-program adherence.

Previous studies focused on groups of patients that presented clear exercise behavior
in terms of adherence, while they excluded patients with intermediate behaviors from the
analysis [28], thereby somewhat limiting the generalizability of the model. In the present
study, the transient adherence and initial clinical profile were found to be important for the
prediction in both the RF model and the decision tree one (Figures 8b and 9, respectively).
However, the validation of the models using an external dataset is a necessary next step.

While the decision tree model predicted that those who were adherent in the familiar-
ization phase would continue to be adherent, it also shed light on the other cases, where the
combination of adherence profile and clinical baseline seemed to play a role in subsequent
adherence. For example, the patients with high cardiovascular risk seemed to be more
susceptible to support and improved adherence, while patients with a low cardiovascular
risk might need different handling, as they were predicted to continue being non-adherent,
potentially because they had already established a physically active lifestyle and, perhaps,
did not have the motivation to follow a specific program.

This is an important point that recognizes and sheds some light on the gray zone
profiles or behaviors, which is also supported by the network analysis. Different network
structures of baseline characteristics showed more correlated features in the high-risk
and fit group of patients, and potentially more room for intervention. Temporal analysis
at familiarization showed an interplay between HR performance and adherence in the
transient and non-adherent groups, with adherence influenced by HRtime or HRnorm,
which may also suggest further room for improvement and personalization of sessions.
In the present study, exercise intensity was not a factor predicting adherence; however, in
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the temporal graph analysis a temporal link between HR and subsequent session duration
was noted.

The role of both the familiarization phase and patient self-confidence is closely linked
to understanding the program and self-motivation of patients. This has also been high-
lighted by [63], who mentioned family support to help keep patients engaged in a home-
based CR program and suggested educating both patients and families to improve adher-
ence to home-based CR programs. In addition, several previous works have identified
factors that affect either short-term or long-term adherence to home-based CR programs,
such as self-motivation, physical activity levels, or perception of self-status [9,21], and they
propose patient-centered strategies to improve adherence to the exercise programs [18,64].

On the other hand, few works have attempted to make a predictive model in a
data-driven manner to increase the chances of a match between patient and CR program.
Recently, predictive models using machine learning techniques have been proposed [26].
However, those studies are only able to perform short-term predictions, while our model
provides a longer-term adherence prediction.

A major advantage of the methodology presented in the present article was that the
models were based on variables that are easily collected. In addition, the present study
does not disregard the patients with intermediate behavior, such as transient adherence, to
make future predictions, making our approach more generalizable compared with previous
studies [28].

Addressing adherence to lifestyle changes, including exercise training, is significant
and incredibly difficult, since participation rates in CR programs depend on several factors.
Understanding those factors and predicting patients’ behavior, such as exercise compli-
ance, is important in clinical practice; thus, the clinical implications of our work could be
substantial. Identifying areas for improvement in the interventions can increase adherence
and the effectiveness of home-based CR; this, in turn, can lead to a better health status and
quality of life for patients with CVD. In addition, since home-based CR methods have also
proven to be more cost-effective, this could also help alleviate the financial stress placed on
healthcare systems by the management of CVD patients [65]. Second, being able to predict
adherence to home-based CR could contribute to better allocation of resources. Tang [66]
showed that patient characteristics influence the choice of a certain type of CR delivery
mode. The clinician could use this information to advise for or against home-based CR for
a specific patient, increasing the likelihood of a match between patient and CR program.

The main limitation of the present study is the fact that the results were based on
a small dataset (41 patients) collected as part of an RCT described in [16]. However, the
data used for the predictive models and patient clustering are typically collected before
a patient is recruited into a CR program, increasing the generalizability of the method
and making it feasible to increase the sample size and allow for external validation of the
models. However, this method needs to be validated using larger datasets, and this is one
of the future directions of our study.

An additional limitation is that in the present study, adherence was mainly associated
with the use of a home-based CR platform. However, the use of technology during exercise
may not fully cover or represent adherence to the desired health behavior. As observed
in Figure 6, patients in the adherent group presented a decrease in their adherence over
time. This finding could be explained by the fact that these patients were becoming more
confident in their physical activity behavior and might choose to exercise on their own,
without the constant need to be stimulated by a home-based system. Finally, information
related to the age and the sex of the patients was not available during the analysis, and
their inclusion could lead to different clusters based on patients’ baseline characteristics.
This lack of information is a limitation of our study.

The results of the present study highlighted the importance of patients’ characteristics
and behavior in the familiarization phase for predicting adherence to home-based CR
programs. Considering that CR programs are effective in improving patients’ functional
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capacity, psychosocial status, and quality of life, technology should be leveraged for the
widespread implementation of CR programs in patients with CVD or other chronic diseases.
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Abstract: HAR technology uses computer and machine vision to analyze human activity and gestures
by processing sensor data. The 3-axis acceleration and gyro sensor data are particularly effective in
measuring human activity as they can calculate movement speed, direction, and angle. Our paper
emphasizes the importance of developing a method to expand the recognition range of human
activity due to the many types of activities and similar movements that can result in misrecognition.
The proposed method uses 3-axis acceleration and gyro sensor data to visually define human activity
patterns and improve recognition accuracy, particularly for similar activities. The method involves
converting the sensor data into an image format, removing noise using time series features, generating
visual patterns of waveforms, and standardizing geometric patterns. The resulting data (1D, 2D, and
3D) can simultaneously process each type by extracting pattern features using parallel convolution
layers and performing classification by applying two fully connected layers in parallel to the merged
data from the output data of three convolution layers. The proposed neural network model achieved
98.1% accuracy and recognized 18 types of activities, three times more than previous studies, with a
shallower layer structure due to the enhanced input data features.

Keywords: human activity recognition (HAR); 3-axial sensor; image type encoding method; WISDM
dataset; CNN

1. Introduction

Currently, smartphones are one of the essential items in daily life [1]. Smartphones
integrate various sensors such as accelerometers, gyroscopes, light sensors, and temperature
sensors, making them versatile for a wide range of services such as device control and
monitoring. They are also used as wearable devices for analyzing physical activity [2–5].
For this analysis, data from 3-axis accelerometers and gyroscopes are commonly used, as
they provide useful information on speed, direction, and angles of human movement. This
data is crucial for human activity recognition (HAR), a technology that learns and infers
advanced knowledge necessary for physical activity recognition based on raw sensor data.
HAR can be effectively utilized in everyday life [6].

HAR is being pursued through various measurement methods and related services
and research. Tian et al. [7] attempted HAR using a single-band wearable accelerometer
and proposed an ensemble-based filter feature selection method that enhanced the strength
of a single accelerometer and improved accuracy by removing overlap and unnecessary
attributes. Kang et al. [8] proposed a hybrid deep learning model that uses both sensor
data from accelerometers and skeleton data from images. Anguita et al. [9] collected sensor
data by attaching smartphones to people’s waists to differentiate various human activities
and performed activity recognition using support vector machines. Sengul et al. [10]
distinguished four common activities in daily life using accelerometer and gyroscope
data to predict injuries caused by falls in the elderly. Moreover, many previous studies
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have focused on segmentation algorithms for accelerometer time series data [11], random
undersampling, random oversampling, ensemble learning methods [12], and so on.

However, human physical activities can be divided into various types (walking,
running, hiking, drinking water, sitting, etc.), and they also include similar activities
(drinking water vs. eating, etc.) as well as types with clear differences (lying down vs.
climbing stairs, etc.). Additionally, 3-axial sensor data can be prone to errors due to noise
and uncertainty (sensor shaking, functional impairment, etc.), and the data size is smaller
than that of video data, making it difficult to train. Therefore, various explored to obtain
stable 3-axial sensor data, and there is considerable interest in visualization research for
encoding sensor data into images without loss [13–16].

Therefore, this paper proposes a method to improve the accuracy of HAR by utilizing
the 3-axial data (accelerometer and gyroscope sensor data) of a smartphone to visualize
2D and 3D. In addition, it recognizes 18 human physical activities through a single device
(smartphone) instead of attaching multiple devices. Partial activity patterns of a single body
movement were obtained through time series data grouped at regular intervals, and they
were visualized in 2D and 3D image streaming formats. By clearly differentiating between
similar human physical activities through this process, an improved HAR is proposed.

Section 2 of this study describes the body activity recognition technology using sensors.
Section 3 introduces the proposed method of encoding the raw sensor data into an image
form. Section 4 comparatively analyzes the performances of the previously studied neural
network learning model and the proposed model. In the final section, we present our
conclusions.

2. Related Research

Defining human actions as a single motion or external form is difficult because even if
two motions may appear identical, they may result in different outcomes depending on
subsequent movements. Therefore, time series data that captures the changes in data over
time is used more frequently than a single data point for recognizing human actions [17,18].
Sensors are the most effective devices for gathering such data [12,19,20]. Currently, deep-
learning-based models associated with sensor data can automatically extract and classify
the characteristics of time series data, enabling accurate behavioral recognition.

In [21], a CNN with local loss was proposed for HAR. The experimental results
showed that the local loss performed better than the global loss for the baseline architecture,
and various human activities could be identified despite the low number of parameters.
However, this study only showed high performance in recognizing six activities (walking,
jogging, walking upstairs, walking downstairs, sitting, and standing) with 98.6% accuracy.
The present study proposes a method to recognize 18 different types of actions, enabling
more diverse biometrics.

A lightweight deep learning model for HAR was proposed in [22]. This model was
developed using long short-term memory (LSTM) and recurrent neural network (RNN)
and showed high performance, achieving an accuracy of 95.78% for recognizing 18 types of
activities on the WISDM dataset. However, due to their recurrent structures, LSTM and
RNN models require longer training and inference times compared to general CNN-based
models. To address this issue, we utilized only convolutional layers (1D, 2D, and 3D
convolutional layers) in a parallel structure, allowing us to analyze and observe a small
dataset from various perspectives.

Ignatov et al. [23] studied an independent deep-learning-based approach for the
classification of human actions. In addition to the simple statistical feature of preserving
the global shape of time series data, they proposed a CNN model for extracting local
characteristics. This study segmented the collected accelerometer sensor data into various
sizes to determine the most effective segmentation size and evaluated the performance of
each segmentation. In our study, we used the duration of the actions to set the size of the
segmented data and performed activity classification using this configuration.
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In [24], to capture various activities for HAR, mobile devices with built-in perceptual
extraction networks were attached to users, and the data collected from these devices
were used for the initial training. The trained weight values were transferred to the server
through the communication network. The transferred data were compared with the trained
weight values from other devices to determine the optimal weight value, and the final
weight value was delivered to each device for re-training. The method proposed by [24]
allows for the simultaneous collection and training of multiple activity data, and strong
performance can be achieved by comprehensively determining the weights of individually
trained models. However, comprehensive weight determination can emphasize strong
performance, but it may also reduce accuracy when classifying similar activities for precise
analysis. In consideration of this, we proposed a method to enhance the original sensor
data, which enabled the classification of 18 distinct activities.

Previous studies on HAR have utilized various methods such as using RNN-based
models to learn temporal changes or hybrid models that mix CNNs. Although HAR using
CNN models has also been studied, it does not perform as well as RNN or hybrid models
(refer to Chapter 6). However, RNN-based models can be limited in real-life usage due to
long training and inference times, and hybrid models have complex structures that make it
difficult to understand the learning process. Additionally, since human physical activity
is diverse and there are many similar movements, there is a high possibility that features
may be lost during the operation process of the layers in deep model structures, and it is
difficult to wear many wearable devices due to discomfort. To address these issues, we
propose a HAR method based on a wearable device using a single smartphone.

To effectively collect human physical activity from wearable devices, we expand
(encode) high-dimensional 3-axis sensor data. This generates new features of human
physical activity that could not be detected in one-dimensional data and removes fine
noise from the sensor. In other words, by defining high-dimensional features such as
directionality and spatiality in one-dimensional data, we propose new information about
features of human physical activity. These new features enable the recognition of more
diverse types of human physical activity and the discovery of unique features among similar
types of human physical activity. Additionally, to effectively learn from the increased
input data, we connect convolutional layers in parallel to enable parallel computation and
complement the missing information in the encoding and learning processes using various
dimensional data (1D data (3-axis sensor), 2D data (image), and 3D data (video image)).
The encoding process is described in detail in Section 3.

3. Image Type Encoding Method of the 3-Axial Sensor Data

Accelerometer and gyroscope sensors that measure the velocity, momentum change,
etc., of an object can detect the active state of an object, due to which both these devices are
used extensively. The (x, y, and z) 3-axial data values from these sensors are arranged into
a time series structure to recognize human activities using the properties of data changes
according to time. However, in the case of similar human activities, the recognition accuracy
decreases due to the small data dimension, which limits the expression of the characteristics.
Therefore, the 3-axial raw data gathered through the accelerometer and gyroscope from
this study were encoded into 2D and 3D images that express time properties. The image
data were trained together with the 1D raw data to increase the precision and accuracy in
order to perform high-dimensional HAR.

3.1. Three-Axial Acceleration and Gyroscope Data Analysis of the WISDM Dataset

The 3-axial accelerometer and gyroscope sensor data used in this study are from
the “WISDM smartphone and smartwatch activity and biometrics” database published
by Weiss [25]. This database consists of data gathered at 50 ms intervals for 18 daily
activities from smartphones placed in the pockets of 51 subjects for three minutes. Table 1
summarizes the 18 measured activities, which are largely distinguished into basic activities
related to walking (A), hand-based activities (B), and dining activities (C).
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Table 1. Smartphone acceleration and gyroscope data from the WISDM database.

Label Activity
No. of Columns No. of Merged

Columns
No. of Data Grouping Type

Accel Gyro

0 Walking 279,817 203,919 152,114 51 A
1 Jogging 268,409 200,252 154,020 49 A
2 Stairs 255,645 197,857 160,430 50 A
3 Sitting 264,592 202,370 180,315 51 A
4 Standing 269,604 202,351 165,068 51 A
5 Typing 246,356 194,540 166,646 49 B
6 Brushing teeth 269,609 202,622 168,771 51 B
7 Eating soup 270,756 202,408 164,177 51 C
8 Eating chips 261,360 197,905 160,237 50 C
9 Eating pasta 249,793 197,844 170,598 50 C

10 Drinking 285,190 202,395 149,138 51 C

11 Eating
sandwich 265,781 197,915 164,635 51 C

12 Kicking 278,766 202,625 150,651 51 A
13 Catching 272,219 198,756 146,675 50 B
14 Dribbling 272,730 202,331 150,333 51 B
15 Writing 260,497 197,894 175,638 51 B
16 Clapping 268,065 202,330 165,304 51 B
17 Folding clothes 265,214 202,321 164,006 51 B

In Table 1, activity A is based on lower body movements, while most activities in B
involve both lower and upper body movements, and C includes activities such as eating
or drinking. Each activity’s data includes a minimum of 194,540 raw data points or more,
and the accelerometer and gyroscope data were merged based on the measurement time
(Table 1, no. of merged columns). Since the WISDM database comprises similar activity
groups and a small amount of data from 49 to 51 (number of subjects), in this study, we
augmented the training dataset by segmenting the data into time units.

3.2. Walking-Activity-Based Data Argumentation

Among the 18 activities of the WISDM dataset, the “Walking” activity in the given time
unit was the easiest to analyze. “Walking” is among the most common human activities,
and a healthy person can normally walk 4.5 km/h, and approximately 8 km can be covered
in 10,000 steps [26–30]. This shows that about 800 ms is required for a movement of 1 m.
In addition, it can be inferred that about 6,400,000 ms (=1 h 46 m 40 s) is required for an
8 km walk, which amounts to 10,000 steps. The time required for one step, denoted as
Tw, corresponds to about 640 ms of time. Therefore, this study sets the data segment size
(DSS) as shown in Equation (1) for the raw sensor data of the WISDM generated at 50 ms
intervals based on Tw, which equals one human step.

DSS =
Tw

TR
+ bias (1)

where, Tw: one step time; TR: sampling time of the WISDM dataset.
In Equation (1), TR = 50 ms indicates the interval of data collection of the WISDM

dataset, and Tw = 640 ms indicates the time consumed per step taken. The DSS was set
to 15 with a bias value of 2.2. One input pattern for neural network training corresponds
to 15 raw sensor data points, and the raw WISDM dataset segments the data repetitively
by moving by one each. Ultimately, 910 physical activity data points were increased to
2,896,476 as a result of using the data segmentation method proposed in this study. These
data were divided into training data and test data in a ratio of 8:2 (2,317,180 data points in
the training set and 579,296 in the test set).
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3.3. Brightness Intensity Distribution Pattern Transformation

Image type expansion was performed for the increased data obtained through raw
sensor data segmentation. The accelerometer and gyroscope sensor data segmented into
identical sizes can express 2D image patterns using the raw values that correspond to
the amplitude of the continuous data, and these pattern data can be used to analyze
physical activities.

Figure 1 shows an example of the raw accelerometer sensor data expressed as a
brightness value. The raw time series data in Figure 1a are mapped to a brightness value
and visualized according to that value. In the case of transforming each point A–E of
the time series graph into a brightness value, the brightness intensity distribution pattern
(BIDP) for each physical activity data can be obtained, as shown in Figure 2b.

 

Figure 1. Brightness distribution transformation of raw sensor data: (a) raw data graph, and
(b) brightness intensity distribution pattern (BIDP).

Figure 2. Example of BIDP visualization.

Each point is expressed as a distinct brightness value according to the measured
value. In the case of transformation into a 256-grayscale image, a brightness value of 128
is assigned to point A as it is located at the center between the maximum and minimum
amplitudes. Point B, which has the minimum amplitude, is assigned a brightness value of
0, while point C, which has the maximum amplitude, is assigned a brightness value of 255.
Points D and E are assigned brightness values of 0 and 128, respectively.

First, to represent the consistent pattern of physical activity in an image format, the
BIDP was transformed into a DSS × DSS matrix by applying Equation (2) after expressing
the raw data from the accelerometer and gyroscope sensors as brightness values in a 1 ×
DSS matrix.

BIDP = ATG =

⎡
⎢⎣

a1
...

aDSS

⎤
⎥⎦[g1 . . . gDSS

]
=

⎡
⎢⎣

a1g1 · · · a1gDSS
...

. . .
...

aDSSg1 · · · aDSSgDSS

⎤
⎥⎦ (2)

where, A =
[
a1 a2 a3 . . . aDSS

]
, G =

[
g1 g2 g3 . . . gDSS

]
.
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In Equation (2), A and G represent the 1× DSS size BDIP matrices of the accelerometer
and gyroscope sensors that correspond to one DSS, respectively. They are transformed into
images of DSS × DSS size by taking the dot product with the transposed matrix of matrix
A, denoted as AT .

Figure 2 shows the results of the BIDP dimension expansion over time. The spatial
characteristics of physical activities can be obtained by discerning brightness intensity
within patterns, which can be observed based on the raw sensor values. Figure 2a shows
a strong area of brightness distributed at the beginning of the BIDP, and the resulting
image is characterized by an emphasized space at the upper left corner. Figure 2b shows a
dot pattern with a strong brightness area distributed between light brightness intensities,
which is emphasized at the center. Figure 2c also shows a dot pattern, but the strong
brightness area is emphasized at the upper left corner instead of the center. Figure 2d
is similar to Figure 2a, but the location of the brightness area differs. In short, distinct
spatial characteristics can be obtained depending on the location of the strong brightness
intensities, which can be used to emphasize the properties of the sensor data.

However, Figure 2 shows experimental results that did not consider the 3-axial nature
of the raw data. The raw accelerometer data, which comprises three axes, does not exhibit
a standardized form as shown in Figure 3. Therefore, this study serializes the 3-axial sensor
data to apply Equation (2) above and express the spatial characteristics of physical activities
in a more accurate form.

 
Figure 3. Example of BIDP visualization by 3-axial raw data serialization: (a) An: acceleration dataset;
Gn: gyro dataset; (b) SAn: serialized acceleration data; SGn: serialized gyro data; (c) SABIDPn: BIDP
of serialized acceleration data; SGBDPn: BIDP of serialized gyro data; (d) SBIDPn: serialized BIDP.

Serializing the 3-axial sensor data, as shown in Figure 3, differentiates the sensor
values for each axis and expresses a more complex geometric spatial pattern. An and
Gn in Figure 3 represent the 3-axial dataset of the accelerometer and gyroscope sensors
with DSS size, respectively, while SAn and SGn represent each component of the 3-axial
dataset serialized into linear form. Applying Equation (2) generates a SBIDPn of size
(DSS × 3)× (DSS × 3). The generated SBIDPn exhibits greater geometric spatial patterns
than Figure 2, which uses 1-axial data. This is clearly evident in the dimensional expansion
using actual 3-axial data. The generated SBIDPn exhibits greater geometric spatial patterns
than Figure 2, which uses 1-axial data. This is clearly evident in the dimensional expansion
using actual 3-axial data.
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Figure 4 shows an example of SBIDP for the 18 types of physical activities presented
by the WISDM dataset using the actual 3-axial raw accelerometer and gyroscope data.
All physical activities show dot patterns while some linear patterns can be seen in the
inner part due to the effect of the color space caused by the different ranges of brightness.
The line patterns inside the image represent information expressed from the different
strength values of each axis, which can be recognized as the spatial characteristics of the
physical activities. These characteristics are emphasized to a greater extent depending on
the magnitude of the differences in the strength values.

 

Figure 4. SBIDP example of 18 activities in the WISDM dataset.

Figure 5 shows the magnified SBIDP results for physical activity labels 3, 7, and 17
from Figure 4. While all patterns may appear rectangular or magnified, different patterns
are expressed based on brightness. Therefore, these patterns are used as classification
features for physical activities.

   
Label 3 Label 7 Label 17 

Figure 5. Example of the magnified SBIDP of some samples in Figure 4.
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3.4. 2 Step SBIDP Enhancement Method

The SBIDP generated through image encoding of raw sensor data expresses physical
activity characteristics as spatially diverse brightness, patterns, and shapes, as shown in
Figure 6. Figure 6 shows the change in the continuous BIDP images for three physical
activity data points according to the change in T. Labels 3, 7, and 17 have overall strong
brightness and take the form of vertical grid patterns, but their detailed characteristics
differ, as seen in their magnifications in Figure 5. In addition, while the physical activity
performed in label 3 of Figure 6 remains the same, the vertical pattern gradually becomes
stronger over time. However, the detailed pattern of label 3 in Figure 5 does not change.
Similar results were obtained for physical activity in labels 7 and 17. They exhibited stronger
grid patterns compared to label 3, as illustrated in Figure 5, which shows the varying levels
of brightness in different areas upon magnification. However, utilizing these robust grid
pattern features without any modifications as input for training a neural network model
may negatively impact its ability to accurately recognize physical activities.

     

Label 3 

    

Label 7 

    

Label 17 

    

Figure 6. Examples of sequential SBIDP.

Therefore, in this study, to transform the detailed characteristics of the grid pattern
into one large pattern, component values of the raw accelerometer sensor value matrix A[·]
and of the gyroscopic sensor value matrix G[·] were arranged to generate SBIDP. This, as a
primary pre-processing step for neural network input, generates BIDPE1 with strengthened
spatial characteristic information. Figure 7 is an example of BIDPE1 generated using
the arranged sensor data matrix, and as can be seen, there are clearer and more defined
gradation spatial characteristics compared with the grid pattern of each label in Figure 6.
However, due to varying brightness values, the resulting pattern took on a curved shape.
The angular features of this curve were utilized to represent changes in physical activity
data, and Equation (3) was employed to generate BIDPE2 with further improved spatial
characteristics as a secondary step.

BIDPE2 =
3

∑
i=0

BIDPE1

(π

2
× i

)
(3)

where BDIPE1(θ) : θ rotated BIDPE1.
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Label 3 

    

Label 7 

    

Label 17 

    

Figure 7. BIDPE1 examples of 1st enhanced SBIDP by sorting elements of the A[·] and G[·] matrices.

∑ in Equation (3) denotes the image sum (OR) operation, and it refers to the image OR
of the arranged BIDPE1 rotated by 90◦, 180◦, and 280◦. Figure 8 illustrates the outcomes
of BIDPE2 after the secondary enhancement of spatial characteristics, wherein label 3 is
represented as an angled propeller and label 17 as a curved propeller. Figure 9 displays the
resulting BIDPE2 for all 18 physical activities in the WISDM dataset.

     

Label 3 

    

Label 7 

    

Label 17 

    

Figure 8. BIDPE2 examples of 2nd enhanced BIDPE1.
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Figure 9. BIDPE2 example of 18 activities in the WISDM dataset.

4. Three-Dimensional Visualization Method of BIDP

The BIDPE2 produced by the secondary process of enhancing spatial characteristics is
transformed into an image with various shapes based on the finely expressed brightness
value. To express this characteristic in detail, this section visualizes this image into a 3D
image with depth information, as shown in Figure 10. In general, raw sensor data as
time series data contain the recognition of the features of the physical activity of humans
according to time. In this study, to spatially express the time series feature of these raw
data, one physical activity record segmented as DSS was divided into three equal parts for
encoding into the form of a 3D image, as shown in Figure 10.

 

Figure 10. 3D Visualization processing concept from BIDP of raw sensor data (J is no. of datasets).
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Figure 11 presents an example of BIDP3D for the 18 physical activities of the WISDM
dataset, which were generated using the processing steps shown in Figure 10. BIDP refers
to the 2D image, and BIDP3D(t1), BIDP3D(t2), and BIDP3D(t3) each represent one of the
three even parts of a segmented physical activity, as a set of continuous 2D images, showing
3-channel spatial characteristics with time properties.
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Figure 11. BIDP3D examples of 18 activities in the WISDM Dataset.

5. Proposed CNN Architecture for Learning Activity Data

For the simultaneous training of 1D raw sensor data (RSD), 2D BIDP, and 3D BIDP3D
data, 1D, 2D, and 3D convolutional layers are used. The 1D convolutional layer convolves
the sequence data and is well-suited for training long sequences, such as text. The 2D
convolutional layer can extract the feature map for the spatial and directional information
of image data, while the 3D convolutional layer extracts the feature map for the spatial and
directional changes over time. Figure 12 shows the CNN model structure for training 1D
RSD and the expanded 2D BIDP and 3D BIDP3D data.
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Figure 12. A Proposed multi-dimensional convolutional neural network.

As shown in Figure 12, the feature extraction part consists of three convolutional
layers, and the max-pooling layer (1D, 2D, and 3D) is used for subsampling. The number
of kernels in each convolutional layer is 24, 48, and 96, and the filter size is (3), (3 × 3), and
(3 × 3 × 3). All layers have “same” padding, and “ReLU” is used as the activation function.
The max-pooling layer was set to (2), (2 × 2), and (1 × 2 × 2) to reduce the feature map
size by 50%, and the resulting feature map was flattened into 1D. Classification using two
dense layers was performed in parallel, after merging the feature maps extracted through
the convolutional layer of each dimension. Each dense layer has 2,048 nodes, and “ReLU”
is used as the activation function. The results from the dense layers were merged again
using the concatenate function and used as the input to the output layer.

The model parameters mentioned in this study were set using the “keras_tuner” of
the open-source Keras library. The system used for the experiments was a Windows 10
64-bit environment with an i7-6700 CPU, 48 GB of RAM, and two NVIDIA GeForce RTX
3060 GPUs with 12 GB of memory each.

6. Performance Evaluation

6.1. Training Result

The training results for the images generated using RSD and the original data with the
learning model shown in Figure 12 demonstrate identical accuracy and loss, as shown in
Table 2 and Figure 13. The accuracy of the training data in Table 2 was 99.6%, and the loss
was approximately 0.0134. The model completed training at 90 epochs because there was
no significant difference in loss after the 73rd epoch, as shown in Figure 13.

 

Figure 13. Loss of training data.
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Table 2. Accuracy and loss from training model.

Our Model

Accuracy 99.52%
Loss 0.0134

6.2. Performance Evaluation Result

Table 3 shows the precision, recall, and F1 scores of the proposed model for each
class using validation data. The model achieved a performance of 90% or above for all
18 physical activity classes, but classes 12, 13, 14, and 17 showed low performance. This was
due to the fact that physical activities such as climbing stairs, kicking, catching, dribbling,
and folding clothes, which are expressed as slight left and right or up and down movements,
and have similar activity data, were included in classes 2, 12, 13, 14, and 17, as presented in
the confusion matrix in Figure 14.

Table 3. Performance evaluation of expanded data.

Class Precision Recall F1 Score

0 99.0% 99.0% 99.0%
1 99.0% 99.0% 99.0%
2 97.0% 97.0% 97.0%
3 99.0% 99.0% 99.0%
4 99.0% 99.0% 99.0%
5 100.0% 100.0% 100.0%
6 100.0% 100.0% 100.0%
7 99.0% 99.0% 99.0%
8 99.0% 99.0% 99.0%
9 99.0% 99.0% 99.0%
10 99.0% 99.0% 99.0%
11 99.0% 99.0% 99.0%
12 91.0% 93.0% 92.0%
13 94.0% 93.0% 94.0%
14 96.0% 96.0% 96.0%
15 100.0% 100.0% 100.0%
16 99.0% 99.0% 99.0%
17 97.0% 98.0% 97.0%

 

Figure 14. Confusion matrix of validation data (%).
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6.3. Performance Evaluation Comparison by Using the WISDM Dataset

This section compares the performance of the proposed model and that of a well-
known neural network model with those of previous studies. Table 4 compares the HAR
performance with that of the previous RNN-based model using the WISDM dataset. The
proposed method shows a value of 98.15%, which is higher than the corresponding results
of previous studies. However, the proposed method showed a slightly lower performance
compared with the structure that serially connected numerous models (CNN-GRU-LSTM);
however, the proposed algorithm has a relatively simple and shallow layer structure as a
parallel convolutional layer, as shown in Figure 12.

Table 4. Evaluation of the proposed model compared with models based on RNN.

Ref. Model F1 Score (%) Accuracy (%)

[31] Tri-PSRNN 96.62 94.76
[31] PSDRNN 94.01 93.06
[32] LSTM-CNN - 95.85
[33] LSTM-RNN 95.40 96.40
[34] Single-input CNN-GRU model A 92.42 92.03
[34] Single-input CNN-GRU model B 94.50 94.71
[34] Single-input CNN-GRU model C 92.55 92.37
[34] Multi-input CNN-LSTM 95.55 95.45
[34] Multi-input CNN-GRU 97.22 97.21
[35] CNN-GRU-LSTM 98.52 98.51

- Proposed model 98.00 98.15

The use of RNN-based models for HAR can lead to performance degradation due to
the issues of exploding and vanishing gradients in back-propagation. Although LSTM and
GRU techniques have been introduced to address these issues, the sequential nature of
vector inputs allows for the processing of only one sequential data at a time, making it diffi-
cult to take advantage of the parallel processing capabilities of GPUs. As a result, training
and inference models may experience somewhat slower speeds. However, the algorithm
proposed in this paper uses CNN-based methods to overcome these shortcomings. With a
relatively simple image encoding method, it can perform HAR with dimensional concepts
(such as space and direction) in the CNN model, allowing for the extraction of features that
were not previously detectable in time series data.

Table 5 compares the proposed method with CNN-based models, including CNN
models that use input data that have been expanded into multidimensional data. The
proposed method achieved higher performance than previous CNN-based models. In
addition, the HAR data were composed in the form of a time series. Thus, the RNN model
that used the data change according to time showed a higher performance than the CNN-
based models. However, the method proposed in this study uses only a convolutional layer
and shows results similar to those of the RNN-based models. This implies that 18 physical
activities can be classified even with a relatively simpler eight-layer model.

When examining the structure of the comparison models in Table 5, the large-scale
models (Inception-V3 with 313 layers, EfficientNet B0 with 233 layers, and Xception with
126 layers) showed an accuracy of 90.27%, while the small-scale models (Multichannel CNN-
GRU with 9 layers, CNN with an attention mechanism with 6 layers, CNN with 6 layers)
showed a higher accuracy of 95.38% compared to the large-scale models. We attribute this
performance to the loss of feature points between classes due to deep-layer operations
on the input data. When visualizing time series data in a typical way, such as generating
waveform-based visual data such as graphs or histograms, the feature information that can
be obtained from the waveform information is limited, and all features will eventually be
integrated unless there are clear feature points. This is because the entire waveform can
contain similar features. To prove this, we designed a shallow-layer neural model and chose
a parallel input structure and method of expanding the dimension of input data to mimic
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deep feature information even in shallow layers. Through this, we were able to recognize
many categories of classes with a shallow structure compared to the comparison model.

Table 5. Evaluation of the proposed model in comparison with models based on CNN.

Ref. Model
No. of

Activities
Layer F1 Score (%) Accuracy (%)

[36] Baseline 6 10 - 89.55
[37] VGG16 6 23 - 89.32
[38] Inception-V3 6 313 - 91.54
[39] Xception 6 126 - 90.17
[40] EfficientNet B0 6 233 - 89.11
[23] CNN 6 6 - 93.32
[41] Multichannel CNN-GRU 6 9 96.39 96.41
[42] U-Net 6 11 96.50 96.40

[43] CNN with an attention
mechanism 6 6 - 96.40

- Proposed Model 18 8 98.00 98.15

7. Conclusions

This paper proposes an image encoding method using 3-axial sensor data of accelera-
tion and gyro and a human activity recognition (HAR) model based on it. By visualizing
the raw sensor data from the WISDM dataset, strong visual features of the data waveform
could be extracted, which improved recognition accuracy and categories. To augment the
1D raw sensor data, we divided it into time intervals calculated based on the “walking”
activity, which is one of the fundamental human activities, and normalized the represen-
tation range of the segmented 1D sensor data to values between 0 and 255. This enabled
clustering of the finely represented sensor data into a larger range, making it possible
to remove noise caused by fine changes, such as shaking. The data with the modified
representation range creates a 2D image through the matrix dot product of the acceleration
and gyro data, and this image includes areas of strong brightness and weak brightness
depending on the position of the data waveform. However, this can show overly geometric
patterns, which can actually degrade the performance of the model. Therefore, a second
processing step is used to generate a standardized visual image.

The standardized visual image shows a propeller shape with different curves and
brightness areas of the wings depending on the sensor data waveform, creating visual
feature differences in similar types of human activities. Moreover, due to the clear input
data, the hierarchical structure of the HAR model could be simplified to a relatively shallow
eight layers compared to previous studies. In addition, it was possible to recognize 18
categories of human activity, which is three times higher than in previous HAR studies,
and achieve a high accuracy of 98.15%.

Our proposed algorithm is a method for detecting various types of human body
activities on a single device. Through this, we were able to recognize 18 categories of body
activities. In future research, additional experiments are needed to recognize more types
of body activities, and comparison and analysis with previous studies that use dimension
expansion concepts such as image encoding will be necessary. Additionally, analysis of the
correlation between increased computational load due to data expansion and changes in
encoding images based on data waveforms will be needed.

If we design a self-big-data-measurement device for detecting human body activities
and collecting the measured data, we can expect its usefulness in the development of
customized healthcare services based on lifelogging.
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Abstract: Gait analysis is important in a variety of applications such as animation, healthcare, and
virtual reality. So far, high-cost experimental setups employing special cameras, markers, and multiple
wearable sensors have been used for indoor human pose-tracking and gait-analysis purposes. Since
locomotive activities such as walking are rhythmic and exhibit a kinematically constrained motion,
fewer wearable sensors can be employed for gait and pose analysis. One of the core parts of gait
analysis and pose-tracking is lower-limb-joint angle estimation. Therefore, this study proposes a
neural network-based lower-limb-joint angle-estimation method from a single inertial sensor unit.
As proof of concept, four different neural-network models were investigated, including bidirectional
long short-term memory (BLSTM), convolutional neural network, wavelet neural network, and
unidirectional LSTM. Not only could the selected network affect the estimation results, but also the
sensor placement. Hence, the waist, thigh, shank, and foot were selected as candidate inertial sensor
positions. From these inertial sensors, two sets of lower-limb-joint angles were estimated. One set
contains only four sagittal-plane leg-joint angles, while the second includes six sagittal-plane leg-joint
angles and two coronal-plane leg-joint angles. After the assessment of different combinations of
networks and datasets, the BLSTM network with either shank or thigh inertial datasets performed
well for both joint-angle sets. Hence, the shank and thigh parts are the better candidates for a single
inertial sensor-based leg-joint estimation. Consequently, a mean absolute error (MAE) of 3.65◦ and
5.32◦ for the four-joint-angle set and the eight-joint-angle set were obtained, respectively. Additionally,
the actual leg motion was compared to a computer-generated simulation of the predicted leg joints,
which proved the possibility of estimating leg-joint angles during walking with a single inertial
sensor unit.

Keywords: joint-angle estimation; human motion analysis; deep learning; inertial sensors

1. Introduction

Locomotion is a universal behavior that animals and humans use to efficiently translo-
cate and navigate between places. Particularly in humans, the central pattern generator, a
complex network located in the spinal cord, is responsible for the generation of rhythmic
motor behaviors such as walking. The brain stem and motor cortex supply this network
with inputs and motor commands, while the various joints, muscles, and skin provide it
with sensory feedback. This network then produces different patterns of bipedal gait [1].
Furthermore, musculoskeletal/neurological disorders and the overall health status of a
person can affect their gait, hence producing a unique walking pattern (gait) [2].

Gait analysis is highly demanded in the medical field, which is mainly adopted for
precise patient monitoring, pathological gait treatment assessment, movement abnormality
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identification, and surgical outcome evaluation [3]. Its importance in the health area
has been discussed in various studies. These studies cover areas such as knee and hip
osteoarthritis [4], falling risk [5], spinal damage-level determination [6], Parkinson’s disease
diagnosis [7], and facilitating interactive rehabilitation and predictive diagnostics [8,9].
Moreover, it can also be crucial in sports and robotics applications [10], virtual reality, and
character animation applications [11]. Gaits are interpreted by first quantifying them using
representative parameters that are easier to understand. These parameters mainly fall into
two categories, either spatiotemporal (e.g., speed and stride/step length), kinematic (e.g.,
hip extension/flexion), or kinetic (e.g., moments and ground reaction forces) parameters [3].
In this paper, the focus is the estimation of the kinematic parameters for the lower half
of the body. Leg joints are the key source of degrees of freedom for walking locomotion.
Hence, accurately computing the joint angles is vital in understanding human gaits during
walking. To do so, the type of sensor employed for data acquisition plays a key role in the
accuracy of joint-angle computation. Hence, several data-collection techniques have been
investigated over the past few years. Generally, they can be categorized as wearable and
nonwearable sensor systems.

Nonwearable sensor methods mostly employ a 3D motion capture system using
special markers attached to the bodies of subjects. The 3D human pose is captured in a
specialized indoor setting, such as laboratories and studios, using a high level of position
accuracy optical motion capture systems [12]. These methods have long been considered
the industry standard methods. Another type of nonwearable system which is a pressure-
sensing carpet was proposed by the Massachusetts Institute of Technology. It is used
to estimate the 3D human pose using the pressure data acquired from the tactile carpet.
The system includes a carpet of 36 ft2 areas with 9216 sensors, readout circuits, and two
cameras [13]. Moreover, vision-based methods by [14–16] developed a 3D reconstruction
of a human pose from 2D still images and movies while [17] computed walking speed
and stride length from a Kinect camera depth data. Despite their excellent performance,
nonwearable systems only operate inside controlled laboratory settings, which makes
them difficult for physiotherapists and sports scientists who are looking to bridge the
lab-to-field gap. On top of that, such systems are expensive and demand longer setup time
and substantial skill.

These limitations are currently being eased owing to the technological advancement
of wearable sensor miniaturization. Inertial measurement units (IMUs), electromyography,
and other wearable sensors have opened the way for practical indoor/outdoor motion
capture systems for long-term use. The continuous digitization progress and the high
demand for motion analysis in various fields such as rehabilitation centers have made
inertial sensors to be the center of the topic over the last few years. Even though they enable
us to assess movements in a real-world setting with easier portability, wearable sensors
are not yet a standard practice in motion analysis because of a lack of examination related
to accuracy and reliability. However, recent works by [18,19] performed an investigation
on the reliability and validity of the commercially available inertial sensors called Xsens
inertial sensors. They evaluated them for different activities including walking, squatting,
and jumping. As a result, they concluded reliability and validity were fair to excellent in the
sagittal plane for hip, knee, and ankle joint angles and the system can be used by a clinician
to quantify leg-joint angles. For their convenient accompanying software, these inertial
sensors were used in this study as well. However, many of the inertial capture systems
vary in terms of sensor quantity, sensor positioning, and estimation method [20–22]. The
study by [20] adopted an extended Kalman filter method for lower-limb segment position
and orientation estimation from two (fixed only to the feet) and three (attached to the
pelvis and the feet) sensor sets. For the three-sensor set, they achieved an overall root
mean square error (RMSE) of 5.0 ± 1.0, 8.2 ± 2.2, and 5.9 ± 1.6 for the hip, knee, and
ankle, respectively. A study by [21] developed a microcontroller with two inertial sensors
mounted to the thigh and the shank for the computation of the knee joint angle. Their
system claimed to have achieved an RMSE of 0.04◦ with a mean average percentage error of
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2.95% compared to a Vicon motion capture system. Similarly, [22] used one inertial sensor
fixed to the thigh to target the knee joint angle and two inertial sensors fixed to the shank
and thigh to target the ankle joint angles during walking. They have achieved an MAE
of 1.69 ± 1.43◦, 1.29 ± 1.0◦, and 0.82 ± 0.69◦ for the knee, talocrural joint, and subtalar
joint, respectively. In the existing systems, there is a lack of information on how many
inertial sensors are enough to correctly estimate the lower-limb-joint angles during walking
locomotion. Certainly, multiple inertial sensors would make the subject uncomfortable and
the system complex and thus expensive to run. Therefore, any method which employs a
reduced sensor quantity while not sacrificing the performance of the system is favorable.
Additionally, considering the fact that each person has a unique gait makes it challenging
for implementing gait-analysis systems for any random subject. However, a walking
motion is comprised of cyclic leg motions where the bone segments move in a correlated
way with each other. Hence, the walking motion can be mapped or reconstructed from
the motion of a single bone segment. The nonlinear relation that exists among the bone
segments could be possibly approximated by neural networks.

Various algorithms have been used to estimate human poses. However, with the ability
to reconstruct human poses from fewer sensor quantities and the ability to generalize across
subjects, neural networks have been the center of attention in recent years. This has been
demonstrated by our previous study, where we investigated the estimating leg joints
from only one IMU sensor fixed onto the pelvis of a subject using a neural network [23].
Another data-driven technique by [24] gathered data from five people with one IMU sensor
unit fixed on the shank of the right leg to train a recurrent neural network (RNN) that
approximates the gaits of construction workers. They made a special rectangular wooden
frame to perform data measurement experimentation. Then subjects were instructed to
walk on top of it while carrying all the computing equipment. Similarly, [25] also used a
shank-mounted single IMU sensor to estimate the sagittal-plane lower-limb-joint angles.
Their data collection was performed by instructing subjects to walk in a straight line of a
5-m distance inside a laboratory.

The existing methods explained above proved one or two sensors can be enough to
estimate the leg-joint angles with good accuracy. This is possible due to the periodicity and
kinematically constrained biomechanical walking of humans. Reduced sensor quantity not
only helps reduce the complexity but also contributes to a more natural gait performed
by subjects. Despite increased research in this field, there is a paucity of information
investigating the most suitable single IMU placement for leg-joint estimation. As the need
for portable and simple wearable sensors for motion analysis is growing, identifying the
best possible sensor-fixing body locations is the critical part. The position of the fixed
single inertial sensor highly affects the estimation result of the neural networks. There
is no consensus regarding the position of the sensors on the body as previous studies
fix inertial sensors on the pelvis [20,23], thigh [21,22], shank [21,22,24,25], and foot [20].
Hence, in this study, the placement of a single sensor on different parts of the body for joint-
angle estimation of both legs will be investigated by employing various neural-network
algorithms. This is essential to understand the optimal inertial sensor placement on the
lower half of the body when reduced inertial sensors are needed for lower-body motion
analysis. This study will contribute to healthcare physiotherapists and motion analysts in
the sports field. The most dominant sensor positions in many of the existing studies will be
the potential candidates for the inertial sensor placement to estimate two lower-limb-joint
angle sets. These include the pelvis, thigh, shank, and foot. According to [26], CNN is a
better candidate for only prediction tasks while LSTM is desired for sagittal-plane joint-
angle prediction and real-time joint-angle estimation over multilayer perceptron networks.
Hence, four neural networks including convolution-based ones and LSTM networks were
selected. These include a unidirectional LSTM, a bidirectional long short-term memory
(BLSTM), a convolutional neural network (CNN), and a wavelet neural network (WNN).
For the neural-network training, walking data were collected from 16 subjects. The data
measurement was performed in an outdoor setting where subjects were told to walk freely
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and naturally. This study was accomplished with easier mounting labor and significantly
lower sensor setup cost.

Therefore, the main contributions of this research are: (i) the use of a single IMU
sensor to estimate the lower-limb joint rotation angles from data collected outdoors; (ii) the
investigation of an optimal body position for a single inertial sensor placement to estimate
the lower-limb-joint angles; (iii) to show the promising future of reduced wearable sensors
in addressing gait analysis and pose estimation problems; and (iv) to give physiothera-
pists and sports scientists insight regarding how good a single inertial sensor can be in
estimating lower-limb-joint angles in an outdoor setting. Therefore, this could be further ex-
tended for daily activity pose-tracking which could be crucial in rehabilitation and assistive
robot applications.

2. Data Acquisition

2.1. IMU Sensor

The sensors used in this study are called MTw Awinda (hereafter referred to as Awinda
sensors), manufactured by Movella Inc., which is headquartered in Henderson, NV, USA.
These sensors are wireless and easy to integrate small microelectromechanical system
inertial sensors that are convenient for real-time human motion tracking. Awinda sensors
ensure accurate and well-synchronized data among all connected sensors, which is vital
in human pose estimation. The sensors are accompanied by a free software named MT
Manager, which has the functionality of recording and exporting raw inertial data and
orientation data of each sensor.

Since IMU sensors suffer from drifting errors and environmental magnetism, vali-
dating and evaluating their performance is a necessary step before their usage. A study
by [27] compared the Awinda sensor system and an 8-camera Qualisys optical motion
capture system for walking and static poses. The minimum and maximum average root
mean square error (RMSE) results for 18 lower-limb joints were 3.2◦ and 10.1◦ for walking
and 3.7◦ and 8.0◦ for the static pose, respectively. Additionally, the effectiveness of the
Awinda sensor system was evaluated in a study by [28] in comparison to the Optotrak
motion capture system using three activities namely walking, descending stairs, and as-
cending stairs. Resultantly, a mean estimation error of the joint angles ranged from a
minimum of 1.38◦ to a maximum of 6.69◦. However, since experiment environments affect
the performance of the Awinda inertial sensors, the sensors were tested in our optical
motion capture indoor experiment. In particular, verifying the performance of the Awinda
inertial sensors’ orientation is the main goal as their orientation is used to compute the
joint angles. To do so, five-minute data were collected using a rectangular rigid frame with
markers and an Awinda sensor mounted on it. Resultantly, the orientation deviation of
the Awinda sensor system from the Optotrack motion capture system was 1.45◦, 1.66◦, and
0.67◦ corresponding to the x, y, and z axes. On top of the lower results, our data-collection
experiments were conducted for a shorter period, 10 min, to avoid any possible long-term
error. However, more importantly, our actual data-collection experimentation was carried
out in a barely magnetized outdoor space. The magnetization of the site was verified by
the magnetic norm of the sensors as recommended by the manufacturer, which hardly
varies. This is because there are no big man-made structures in the outdoor experimental
site. Therefore, the Awinda sensor system data are sufficient to rely on for this study’s
experimental and analytical needs.

2.2. Data Measurement

To compute the ground-truth joint-angle values of the lower limb, seven individual
Awinda sensors were mounted to the lower half of each subject’s body. As depicted in
Figure 1, one sensor unit per each lower-body bone segment was fixed. The bone segments
include the pelvis, the thighs, the shanks, and the upper parts of the feet. To reduce the
effect of skin motion artifacts, sensors are mounted in places with less skin movement.
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These include the pelvis bone at the height of the anterior superior iliac spine, the middle
of the lateral thighs, the upper parts of the tibiae, and the front upper parts of the feet.

 

Figure 1. A subject wearing seven Awinda sensors during data acquisition.

Here the objective is to estimate the leg kinematics (joint angles, particularly) from any
of the sensors fixed to the body as summarized in Figure 2. As the right leg is dominant
for most people, the three sensors on the right leg in addition to the waist sensor were
investigated and compared in this study. A study by [29] suggested that human locomotor
muscle synergies are decoded from slow cortical waves of the brain. They claimed to
have formulated a relationship between brain signals and leg kinematics. However, in this
study, a noninvasive method with only a single sensor is used to mimic the function of
spinal cord signals during locomotion. This is possible because the movement of our leg is
manifested in our pelvis motion, presuming the subject always maintains contact with the
ground. The pelvis moves forward/backward and sideways during normal walking. Due
to maintaining continuous ground contact, the leg motion directly drives the trunk body
depending on the speed and direction. This creates a repetitive rhythmic motion. This
makes it easier to estimate the repetitive poses of the lower half of the body from various
bone segments’ inertial data. As an example, Figure 3, shows the inertial data of the pelvis
for a single gait leg pose.

After sensor synchronization, sensor calibration was performed before every exper-
iment by orienting the sensors in one direction on a level surface. Next, sensors were
carefully attached to subjects by Velcro tape straps in a similar direction as recommended
by the manufacturer. Then, subjects were instructed so that they walk naturally, in any
direction, by switching their paces to slow, normal, or fast at their convenience. Hence,
diverse data were collected during our experimentation from the 16 subjects. The Awinda
station, which is connected directly to an LG Gram 11th Gen Intel® Core™ i7 computer,
receives the synchronized data from the seven sensors via a wireless transmission. The
Awinda station antenna supports wireless communication up to 50 m range in an out-
door area. This made the data-collection process a lot easier. The data collection was
made at a sampling rate of 100 Hz for approximately 10 min per subject. Sixteen subjects
comprised 13 males and 3 females; an age group of 28 ± 7.2 years old; a weight group
of 63.3 ± 12.2 [Kg]; and a height group of 169.3 ± 8.1 [cm]. In this study, the data were
collected from walking activity only. The experiment was carried out in a level, open space
field which does not have any structures that could pose magnetic interference to the sensor.
A Google map of the experimental site is shown in Figure 4.
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Figure 2. Summarized diagram of the developed system. Adapted with permission from Ref. [23].
2022, IEEE.

 

Figure 3. Pelvis inertial data of a single gait cycle. Red (x-axis), green (y-axis), and blue (z-axis).
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Figure 4. Experimental area (Google Maps).

2.3. Data Preparation

The first step of dataset preparation is the ground-truth joint-angle computation. The
MT Manager software exports the collected raw motion data from the seven sensors as a
text file. However, only three quantities, a 3-axis accelerometer, a 3-axis gyroscope, and a
quaternion orientation, were extracted. The MT Manager software calculates each sensor’s
orientation in both Euler angles and unit quaternions and outputs it with reference to a
global coordinate system. After the raw data are exported and saved as a text file, the
next step is to compute the leg-joint angles which will be used as target values during
the supervised neural-network training. The joint-angle calculation, dataset preparation,
training, and inferencing steps were computed and programmed on the PyCharm IDE
using Python 3.7.

Since each sensor is firmly attached to each bone segment of the body, it is assumed
that the sensor’s orientation corresponds to the orientation of the associated body segment.
The orientation difference between the distal and proximal segments then defines the joint
rotation angle that connects them. This is mathematically expressed in Equation (1). All
attached sensors are aligned to face the same direction.

In other words, if a subject stands upright, making his shank and thigh perpendicular
to the flat ground, the extension/flexion angle of the knee and hip will be 0◦.

qdis_prox = *qdis ⊗ qprox. (1)

where qdis_prox denotes the distal and proximal bone segments orientation difference, qdis

is the distal bone segment orientation, and qprox is the proximal bone segment orientation.
Both the later quantities are measured in reference to the global frame. The ‘⊗’ symbol
denotes quaternion multiplication while ‘*’ indicates quaternion complex conjugate. For
instance, the rotation angle of the knee joint is computed from the orientations of the
distal (thigh) and the proximal (shank) bone segments. This is illustrated in Figure 5.
Subsequently, the quaternion result from Equation (1) was transformed to Euler angles
format from which relevant Euler angles corresponding to the extension/flexion of hip and
knee joints were taken as the ground-truth values. The size of the computed joint angles is
the same in size as the original raw data collected.
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Figure 5. The computation of knee joint angles from proximal and distal inertial sensors.

Two sets of target leg-joint angles were investigated. The first set is comprised of
four joint angles, namely the extension/flexion joint angles of both the hip and knee of
both legs. The second set contains the ankle dorsiflexion/plantarflexion and hip abduc-
tion and adduction joint angles of both legs in addition to the first leg-joint angle set.
From the collected data, the rotation of hip, knee, and ankle joints ranges from −40◦ (flex-
ion) to 20◦ (extension) and 0◦ (extension) to 80◦ (flexion), and −18◦ (dorsiflexion) to 40◦
(plantarflexion), respectively.

Datasets preparation is the second step during the data preparation stage. Datasets
are the input arrays for neural networks during deep learning. These are created by cutting
the raw time-series data into smaller-sized data pieces. To prepare the datasets, a sampling
window of 100 samples-wide (equivalent to 1 s) with an overlap of 80% was employed to
cut the time-series raw data as shown in Figure 6. The resultant dataset becomes an array
of size 100 × 6 inertial data. This method was implemented on all the inertial data of the
pelvis, thigh, shank, and foot. The target labels for the neural networks are the joint angles
that correspond to the last frame of the shifting window. The target joint angles which
correspond to the input inertial datasets are shown with the vertical lines in Figure 6. The
target (label) joint-angle data were then organized into 4 × 1 and 8 × 1 arrays for both sets.

Figure 6. Dataset preparation using a sampling window.
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For deeper analysis, three varieties of input datasets were created. One dataset has
only inertial data of one of the four sensor positions on either leg, which is shaped into
a 100 × 6 array. Another dataset consists of inertial data of both feet (bFID) and pelvis
inertial data (PID). The resultant dataset was then structured into a 100 × 18 array. The
18 columns are the 6-axis inertial data of the pelvis and both feet. This set was created to
examine the estimation performance improvement by combining the inertial data of the
pelvis and both feet. The last one adds the subjects’ biometric information to the PID. Each
person has a distinctive gait, step size, walking speed, and range of motion. Age, gender,
weight, and height are among the factors that could affect these variations. Hence, adding
this information to the training process could improve the estimation accuracy. Except for
gender, the other quantities are expressed numerically. Hence, gender was represented
with a binary quantity that 1 indicates male participants while 0 is for female participants.
As a result, the last dataset will have two separate inputs: a 100 × 6 PID and 4 × 1 biometric
information data (BID). A total of 50,973 datasets were prepared for deep learning. First, it
was divided into three categories as follows: 84.5% of the datasets for training, 14% of the
datasets for validation, and the rest 1.5% of the datasets for testing. The testing dataset was
collected from a separate subject whose data are not included in the training. The testing
data from the 16th subject, which is less than 10 min data, is a new and unencountered
dataset for the trained model.

3. Neural Networks

This section will explain the architectures of the chosen neural-network models for the
leg-joint angle estimation. As mentioned previously, four neural-network methods were
investigated for the estimation problem. Two sets of each of the following neural-network
models were developed to estimate both joint-angle sets. Below follows the description of
the structure of each model used in this study.

3.1. Long Short-Term Networks

By retaining information for a longer period, unidirectional LSTMs (simply LSTMs)
are a type of RNN that excels at learning long-term dependencies [30]. RNNs, specifically
LSTMs, are preferred for recognition and prediction tasks in applications involving lan-
guage translation, time-series data, and speech recognition [31]. LSTMs would therefore be
a good option for training with our time-series data.

A single LSTM layer followed by four fully connected layers was created as an estima-
tor in this study. A total of 512 hidden units made up the LSTM layer with a time step of 100,
equivalent to the input dataset row size. Considering the fact that the output target angle
values could be positive or negative, a linear activation was employed on the last fully
connected layer of the network. This last layer is the same for all the other networks too.
The bidirectional LSTM (BLSTM) is another variation of LSTMs. The distinction between
both the unidirectional LSTM and BLSTM is that input data flows in both forward and
backward directions of the LSTM nodes connected across the timesteps of the network. In
other words, BLSTM can be assumed to add one more LSTM layer to reverse the input data
flow from the last timestep to the first timestep direction [32]. The fact that the BLSTM also
preserves information from the future is the only distinction between the unidirectional
LSTM and BLSTM. The full BLSTM network for the eight-joint-angle set is depicted in
Figure 7. The diagram is only for the inertial data of any of the four bone segments. For the
datasets which include BID, the BID data were fed to a separate dense layer which is later
combined with the LSTM output at the fully connected layer with 64 units. For datasets
that include the FID, the FID is concatenated with the PID and given to the networks as a
100 × 18 array. In this way, the two different quantities, the inertial and the biometric data
will be separately fed to the network so that the networks can learn features from them
independently. Similarly, this applies to the other neural-network models as well.
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Figure 7. BLSTM network for the PID dataset.

3.2. Convolutional Neural Network

CNN has recently emerged as a favorable network not only for image-related clas-
sification problems but also for human motion analysis [33,34]. Hence, in this case, the
input dataset was then treated as a virtual image with 100 × 6 dimensions. The CNN
model consists of two convolutional layers, each of which has a rectified linear unit (RELU)
activation function followed by an average pooling layer. A two-layer fully connected
network then receives the 1D vectorized output from the second convolutional layer.

3.3. Wavelet Neural Network

WNN can be treated as a 2D convolution network, with the exception that low-pass
and high-pass discrete wavelet filters are used in WNN instead of the activation functions
in CNN. A single wavelet layer is equivalent to a two-level wavelet packet decomposition,
which then produces four output coefficients that are then concatenated to create the final
output. Filters for the network training were selected from the Haar wavelets family. Using
these filters, a two-wavelet layer WNN followed by two dense layers was designed.

The open-source Python-based artificial neural-network interface library, Keras, was
used to build the four networks. To mitigate variance shift and overfitting problems, all
the neural networks implement batch normalization, an exponentially decaying learning
rate of 0.0001 with a decay rate of 0.9 at every 1000 steps, a dropout layer with a 0.3 ratio,
and an l2 weight regularization technique. The epoch and batch size hyperparameters for
the deep learning were determined to be 100 and 32, respectively, after several testing and
training. Furthermore, the Huber regression cost function and Adam optimizer methods
were adopted during the training.

4. Results and Discussions

In this section, the performance of the neural networks with the different inertial
datasets will be explained.

4.1. Network Performance with the Different Datasets

The number of combinations of the datasets and the neural networks is large. There-
fore, to reduce the computational time, the best-performing network was first selected by
training four of the networks using solely PID datasets. Next, the selected network will
be trained using the four datasets namely: PID, thigh inertial dataset (TID), shank inertial
dataset (SID), and foot inertial dataset (FID).

The training performance for the PID with the BLSTM network is depicted in Figure 8.
This loss is computed after every training step during the training process. As can be seen
from the graph, the network learned the features well in the first 20 epochs without any
overfitting or underfitting problems. Even though there is a gap between the two graphs,
the difference is small enough to be deemed as an overfitting model. All the networks
employed the Huber loss function and Adam optimizer. It can be seen from Table 1 that
the performance of the BLSTM and LSTM models exceeded the other two models. This
is because both recurrent networks are excellent at learning temporal features included
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in the time-series data. Their close mean absolute errors (MAEs) for the PID indicate the
significance of temporal information for human lower-limb pose estimation problem over
spatial information. Because CNN and WNN are better at extracting and learning spatial
features than recurrent networks. However, their results are inferior compared to LSTM
and BLSTM. Their results, which are shown in Table 1, were acquired by testing the trained
models of the four neural networks with unseen testing dataset types.

 

Figure 8. Training and validation losses of the BLSTM network for PID.

Table 1. Performance of the Networks using mean absolute error (in ◦) metrics.

Networks
Network

Parameter
(PID)

PID PID + BID PID + bFID

hR a kR b hL c kL d av e hR a kR b hL c kL d av e hR a kR b hL c kL d av e

WNN 510,692 6.19 8.72 6.30 8.97 7.55 6.71 9.49 6.09 8.33 7.66 5.15 5.20 5.04 4.75 5.04

LSTM 1,237,572 6.59 5.73 6.25 6.82 6.35 6.51 6.18 5.42 7.36 6.37 6.25 4.26 5.05 4.55 5.03

BLSTM 713,544 5.76 6.01 6.81 6.16 6.19 5.51 6.05 5.81 6.35 5.93 5.06 4.24 4.20 3.07 4.14

CNN 1,318,916 6.16 8.71 6.38 7.93 7.30 5.27 6.53 6.33 6.41 6.14 5.38 5.80 6.70 5.66 5.89

a Right leg hip extension/flexion, b Right leg knee extension/flexion, c Left leg hip extension/flexion, d Left leg
knee extension/flexion, e total average.

From the total average, BLSTM outperformed the other models in predicting the
joint angle in all cases. Next to BLSTM, LSTM and CNN come, respectively, due to their
overall performance as can be seen from the average columns. When the input dimension
increased, especially in PID + bFID, spatial features can be extracted from the two datasets
making it easier for WNN and CNN networks. One observation from Table 1 is that the
accuracy for the knee joints significantly increased when the bFID data were included in
the input. This is because new knee joint information is obtained from the bFID dataset.
With PID, WNN struggled to perform well. Because WNNs employ classical sigmoid
activations along with randomly initialized weights. During training, this leads to the
network converging at a local minimum point. That is why WNNs did not perform well in
the training.

Adding biometric information and feet inertial data to the pelvis inertial data have
improved the total average prediction accuracy of BLSTM by 4.12% and 33%, respectively.
This proves that the way we walk is influenced by our biometric information. However,
the bFID supplements the PID by adding more kinematic information about the foot which
is far from the pelvis sensor.
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4.2. Effect of Sensor Placement

Even though WNN and BLSTM have smaller network sizes, as seen from Table 1,
BLSTM has performed well regardless. Hence, to reduce the training time only the BLSTM
network was further trained using the TID, SID, and FID to determine the best sensor
position for the first set of joint angles. The result of the training is shown in Table 2. Except
for the right hip angle, the inertial data of the sensor attached to the tibia/shank bone has
better accuracy compared to the other three with minimum and maximum MAEs of 3.02◦
and 4.33◦, respectively. This is because the shank motion is directly associated with the
rotations of the knee and hip joints during walking. In other words, we cannot move the
lower part of the body without moving the shank part, but we can move the lower part of
the body without too much movement on the pelvis. Hence, the shank part captures most
of the lower-body kinematics when walking. The performance for the estimation of the
second eight joint angles is lower than the estimation for the four joint angles set. It can be
particularly seen from the ankle and hip abduction/adduction angle columns of Table 3
that the BLSTM network did not perform well for the two joints.

Table 2. MAE (in ◦) of the trained BLSTM network for the first four-joint-angle set using various
inertial datasets.

Dataset hpR_x a knR_x b hpL_x c knL_x d Average

PID 5.76 6.01 6.81 6.16 6.19
TID 2.74 4.92 3.40 4.28 3.84
SID 3.51 3.73 3.02 4.33 3.65
FID 4.41 4.21 3.23 5.55 4.35

a right hip extension/flexion, b right knee extension/flexion, c left hip extension/flexion, d left knee exten-
sion/flexion.

Table 3. MAE (in ◦) of the trained BLSTM network for the second eight-joint-angle set using various
inertial datasets.

Dataset hpR_x hpR_d a knR_x ankR_p b hpL_x hpL_d c knL_x ankL_p d Average

PID 5.59 7.39 6.71 7.76 5.41 4.68 7.01 9.97 6.82

TID 2.28 7.91 4.66 9.33 3.34 4.76 3.99 6.23 5.31

SID 3.93 7.19 3.39 10.41 3.19 5.07 5.33 4.67 5.40

FID 4.41 4.71 4.91 9.44 3.36 3.55 6.13 9.05 5.70
a right hip adduction/abduction, b right ankle dorsiflexion/plantarflexion, c left hip adduction/abduction, d left
ankle dorsiflexion/plantarflexion.

Hence, the overall estimation accuracy was affected. However, the result for the TID
is slightly better than the result of SID in the second set of joint angles as shown in Table 3.
Therefore, for lower extremity joint-angle estimation, attaching an IMU sensor on the tibia
bone right below the knee or on the side of the thigh works well for the four joint angles. It
can be concluded that by using a single inertial sensor, the general pose of walking of a
person can be estimated with good accuracy. Not only from the pelvis inertial data but the
pose of the lower half of the body can also be estimated from other bone segment inertial
data of either leg. In other words, general walking parameters such as forward walking
speed, sagittal joint angles, and step/stride sizes could be computed from a single inertial
data-based estimation method.

4.3. Generalized vs. Personalized Inertial Data

In some applications such as rehabilitation, we may be interested in only a subject-
specific estimation process to boost the performance of the system. Hence, we have also
evaluated the performance of the BLSTM network when trained using subject-specific and
the whole dataset. The name assigned to the subject-specific datasets is “personal.” The
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result is shown in Table 4. The MAE values of the personal dataset indicated in the table are
obtained by averaging the MAE of all subjects. The dataset division for this training was
74%, 16%, and 10% for training, validation, and testing, respectively. As indicated in Table 4,
the errors for the individual dataset are noticeably lower than the general (whole) dataset
errors. This might be adopted in applications that call for a more accurate personalized
joint-angle prediction.

Table 4. MAE (in ◦) of the trained BLSTM network for personal and general pelvis datasets. Adapted
with permission from Ref. [23]. 2022, IEEE.

Dataset hpR_x knR_x hpL_x knL_x

General 5.76 6.01 6.81 6.16
Personal 2.65 3.79 2.73 3.30

4.4. Evaluation with Unseen Dataset

Lastly, the trained BLSTM model was evaluated by the unencountered testing dataset.
The graphs in Figure 9 show the testing dataset’s predicted and actual joint angles. The
testing was performed offline, where test data collected as part of the data collection
was restructured into datasets and fed to the trained BLSTM model for prediction. The
figures show some bias errors, which is to be expected given that each subject has a unique
gait. However, this is a highly promising result for input data solely from a single IMU.
Furthermore, a MATLAB Simulink® skeleton model was also created to visualize the
estimated joint angles from the testing dataset. Figure 10 shows the comparison of the
actual and simulated versions of the predicted four joint angles set. Both successive images
were captured from a camera video and a simulated video. The video of the subject was
taken during the data collection using a camera. Where the video of the skeleton was
generated using a MATLAB built-in video recorder function. The subject was instructed to
make momentary stops during the walking which we use later to synchronize both videos.
An excellent pose estimation was achieved from only a single inertial sensor on the shank
as can be referred from the figure.

 
(a) hpR_x (b) hpR_d (c) knR_x (d) ankR_p 

 
(e) hpR_x (f) hpR_d (g) knR_x (h) ankR_p 

Figure 9. Ground-truth vs. estimated joint angles from a shank IMU using the trained BLSTM model.
(a) right hip ext/flex angle; (b) right hip abd/add; (c) right knee ext/flex angle; (d) right ankle
dorsi/plant; (e) left hip ext/flex angle; (f) left hip abd/add; (g) left knee ext/flex angle; (h) left ankle
dorsi/plant.
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Figure 10. Actual and predicted leg-joint comparison (for the four joint angles) through a graphical
simulation.

Furthermore, the model was evaluated using a cross-validation method. Table 5 shows
the result of a 10-fold cross-validation over the testing dataset. The rows represent the MAE
of the best model and the average of the MAE values of the 10 models of the cross-validator
by joint angle. The best model was selected as the model with the smaller overall mean
value of the joint-angle MAEs. The overall mean value of a model was calculated by taking
the average of the MAE values of each joint. As a result, the overall mean value of the
joint-angle MAEs ranges from 4.46◦ to 5.13◦ which indicates a similar result was obtained
from the different dataset arrangement. Moreover, the results show a similar trend to
Table 3 where the errors for the ankle joints and hip adduction/abduction are larger.

Table 5. Average MAE (in ◦) of the 10-fold cross-validation result over the testing dataset.

Quantity hpR_x hpR_d a knR_x ankR_p b hpL_x hpL_d c knL_x ankL_p d

MAE of the
best model 2.69 4.54 3.82 7.02 2.62 5.23 4.24 5.52

Average of
all models 3.31 4.19 4.44 7.77 2.55 5.13 4.86 5.94

a right hip adduction/abduction, b right ankle dorsiflexion/plantarflexion, c left hip adduction/abduction, d left
ankle dorsiflexion/plantarflexion.

To have an idea of how well our method can handle other datasets, an assessment
with open-source datasets is essential. However, there are no relevant open-source datasets
collected similar to ours. For reference, the results of the studies by the authors in [24,25] are
mentioned here, even though both studies employed different data-collection techniques
and estimation methodologies. The authors in [24] gathered their data by giving their
subjects instructions to walk on a wooden frame along a predetermined path. They claimed
that for their 5 subjects, they were able to achieve a mean joint-angle error range of 5.35◦
to 12.3◦. The data-collection process by the authors in [25] was carried out in a 5 m-long
indoor area. They have achieved a root mean square error range of 7.49◦ to 8.14◦ (using all
features) and 6.19◦ to 7.0◦ (using selected features).
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4.5. Discussion

The neural-network models have resulted in a promising result in estimating, particu-
larly the sagittal-plane lower-limb-joint angles. The results could have been improved if
the data collection was made only for a straight walk on perfectly level ground. However,
the outdoor ground had a gentle slope and subjects were taking turns at different angles.
Hence, for more instructed straight walking in medical environments, the system could
potentially be used to give insight into the kinematics of the lower half of the body. In
particular, in a lower-limb exoskeleton robot where the robot needs to identify the patient’s
walking intention so that it applies a mechanical force to assist the walking movement. In
addition, the before and after walking status of patients who underwent leg-joint surgery,
and their progress can be tracked with this system. The main advantage of this system is
its portability and reduced sensor complexity which could be used in different scenarios
without too much effort.

Even though promising results were obtained for the sagittal-plane joint angles with
SID, the model has difficulty estimating ankle joint angles and coronal-plane lower-body
joint angles. One reason for the difficulty of coronal-plane joint angles is that during walking
our legs barely move along the coronal plane resulting in smaller angle values that are prone
to noise. On the other hand, the ground-truth value of the ankle joints is affected by the foot–
ground impact during heel strike which resulted in higher error. This could be improved by
introducing other low-level sensors on the foot. Another general limitation of deep learning
methods is the lack of explainability and interpretability. This could cause unreliable results
of machine-learning methods. To be used in real-world applications, machine-learning
methods must be easier to understand for unskilled personnel as well. Some studies have
started the work of addressing this issue for an easier understanding of machine-learning
methods. The authors in [35] employed various methods, including Local Interpretable
Model-agnostic Explanations, to explain and interpret the decision-making of machine-
learning methods. This could make machine-learning methods less challenging when used
by less-experienced clinicians. Hence in the future, the interpretability of the system will
be addressed by adopting different techniques such as the black-box explainers which will
be then followed by system reliability and validity evaluation by hiring inexperienced
physiotherapists and skilled people to operate the system. Eventually, the study will be
extended to rehabilitation and eldercare applications. However, for more depth analysis in
these fields, the addition of sensors such as insole sensors, full gait parameterization, and
visualization will be implemented which will give physiotherapists a clear understanding
of a patient’s walking conditions.

5. Conclusions

The gait-analysis research area is expanding quickly due to its fast-growing demand
in areas such as health services and robotics. Due to the rapid advancement in sensing
technology and artificial intelligence, gait analysis has become possible using only a few
wearable sensors. However, there is less consensus on the sensor quantity and placement
for better lower-leg pose estimation. Therefore, in this study, the placement of a single
inertial sensor on the lower half of the body for the leg-joint angle estimation using neural
networks was investigated. Four neural-network models were compared using walking-
motion data collection from 16 multiracial subjects. Among the neural networks, BLSTM
networks performed better with MAE ranging from 3.02◦ to 4.33◦ for the four dominant
sagittal-plane leg-joint angles. The results were improved with the increment of sensors
and the introduction of biometric information. From the investigation of single senor
placement, it was found that the shank or thigh is the optimal position for leg-joint angle
estimation. Both achieve similar results with an overall average error of 3.84◦ and 3.65◦
for the thigh and shank, respectively. Others positions such as the pelvis would not be
close enough to capture whole-leg kinematics from the hip to the toe. Furthermore, it was
confirmed from the estimation results that a single inertial sensor can be enough to estimate
the extension/flexion angles of the hip and knee joints. However, it was challenging
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to accurately estimate the coronal-plane joint angles of the lower limb and ankle joints
owing to the inherent small lateral movement during walking foot–ground impact during
heal strike.

Hence, adding low-dimensional sensors, such as pressure sensors, could potentially
improve the obtained result. However, this study has achieved a promising result that
could serve as a springboard for the further extension of the study to other human activ-
ities. If a robust estimation mechanism for various human activities is developed, it can
be implemented to solve real-world issues, particularly in healthcare services, assistive
robotics, and collaborative robotics.
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Abstract: Tracking a person’s activities is relevant in a variety of contexts, from health and group-
specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In
a clinical context, sensor-based activity tracking could help monitor patients’ progress or deteri-
oration during their hospitalization time. However, during routine hospital care, devices could
face displacements in their position and orientation caused by incorrect device application, patients’
physical peculiarities, or patients’ day-to-day free movement. These aspects can significantly reduce
algorithms’ performances. In this work, we investigated how shifts in orientation could impact
Human Activity Recognition (HAR) classification. To reach this purpose, we propose an HAR model
based on a single three-axis accelerometer that can be located anywhere on the participant’s trunk,
capable of recognizing activities from multiple movement patterns, and, thanks to data augmentation,
can deal with device displacement. Developed models were trained and validated using acceleration
measurements acquired in fifteen participants, and tested on twenty-four participants, of which
twenty were from a different study protocol for external validation. The obtained results highlight
the impact of changes in device orientation on a HAR algorithm and the potential of simple wearable
sensor data augmentation for tackling this challenge. When applying small rotations (<20 degrees),
the error of the baseline non-augmented model steeply increased. On the contrary, even when
considering rotations ranging from 0 to 180 along the frontal axis, our model reached a f1-score of
0.85 ± 0.11 against a baseline model f1-score equal to 0.49 ± 0.12.

Keywords: device displacement; acceleration; wearable devices; data augmentation; patient
monitoring; human activity recognition

1. Introduction

The goal of Human Activity Recognition (HAR) is to classify the movement of a person
into a pre-defined activity set. This information is used in multiple contexts, ranging from
fitness tracking, health assessment and elderly care, to human–robot interaction [1–4]. In a
clinical context, HAR can be used to outline the patients activities during hospitalization to
improve, or enable, recovery/deterioration monitoring [5]; additionally, HAR allows for the
contextualization of electrocardiographic patterns [6,7]. As the study from Brown et al. [8]
stated, a low amount of dynamic activities may cause negative consequences in hospitalized
patients; therefore, it appears relevant to recognize and quantify their activities to timely
assist them. Wearable sensor technologies can support clinicians by providing tools for
continuous measurement acquisition; however, the positioning of these devices is critical.
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Once worn or applied to the body, sensor displacement can occur caused by wrong position-
ing, or by physical peculiarities of the patient such as gender, height, weight, and age [9].
Additionally, within a single position and if free of moving, the wearable device could
have continuous unexpected movements, mostly of small entity [10]. HAR algorithms are
mainly data-driven, meaning that poor results are expected upon random movements.

Most HAR approaches rely on machine learning (ML) techniques based on feature-
based models or raw-data models. Among the commonly applied algorithms, it is possible
to find Hidden Markov Models, Support Vector Machines (SVM), k-Nearest Neighbor,
and Random Forest. In addition to ML techniques, Deep Neural Networks (DNN)-based
algorithms are also used in the HAR context, considering a trade-off between model
simplicity and interpretability, as mentioned by the review from Zhang et al. [11].

In a previous work on HAR from our team, Fridriksdottir et al. [12] described a
DNN based on three-axial accelerometer to recognize hospitalized patients’ activity and
compared its results with those obtained with a feature-based SVM algorithm, where the
best performance was achieved by the DNN approach (accuracy of 94.5% and f1-score
of 94.6% against 83.35% and 85.07%, respectively, with SVM). This study was based on a
single device, body-taped to the patient’s chest to avoid its displacement. This way, the
body positions range that could have been recognized was narrowed down to a limited set.

Other researchers used a combination of an initial position classifier with a subsequent
position-dependent HAR algorithm. This concept relies on the assumption that HAR can
be obtained from sensors applied on different body locations: Saeedi et al. [13] considered
seven different locations (i.e., both ankles, wrists, left thigh, right arm, and waist), while
Sztyler et al. [14] included the chest, forearm, head, shin, thigh, upper arm, and waist.
In [10], different correction methods for sensor displacement were proposed, including
both a feature-based approach and an ML classifier in an attempt to make the HAR model
position independent. The proposed method was developed for a multi-sensor scenario.

As these studies showed, it is challenging to obtain representative data from multiple
positions and their possible displacements. For example, pending devices (pendants) make
the task difficult because of the countless movement combinations that could occur. In this
context, we hypothesized that data augmentation techniques could help in synthesizing
different sensors’ configurations to artificially explore a wide range of possible scenarios.

Nowadays, data augmentation is standard practice when dealing with ML applied to
images, to obtain additional information for the ML models and to avoid overfitting [15].
Typically applied image-augmentation techniques include geometric transformations, filter-
ing, mixing images, random erasing, and feature space augmentation [16]. Wearable sensor
data augmentation represents a less common approach field; however, it was shown to
positively affect time-series based computation and to provide potential improvements in
data-driven tasks such as HAR. The review from Zhang et al. [11] states that high quality
data augmentation techniques are necessary for the growth of HAR research. Augmen-
tation of wearable sensors data was firstly addressed by Ohashi et al. [17], proposing an
augmentation strategy that considers the physical constraints of the arms applied to a multi-
sensor scenario, including an accelerometer, a gyroscope, and an electromyography sensor.
Steven et al. [18] proposed an ensemble data augmentation to the spectral feature space to
improve activity recognition performances among only three classes (sitting, standing, and
walking), reaching an accuracy of 88.87%. The study by Um et al. [19] proposed a method to
classify the motor state of Parkinson’s Disease patients by using data augmentation, where
applying measurements rotation improved the performance compared to other techniques.
Wang et al. [20] stated how HAR sensor data annotation represents a challenging task. To
tackle it, they applied resampling augmentation of accelerometer data within a contrastive
learning framework. This newly proposed approach learns representations by contrasting
positive pairs, corresponding to the same sample augmentations, against negative pairs, or
unrelated separated samples, helpful when few training data are available [21,22].

Device orientation is an important determinant when a three-axial acceleration solu-
tion for HAR is considered. Accordingly, the aim of this research was to investigate the
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impact of changes in sensor orientation on a deep-learning (DL) HAR algorithm targeted
on patient-like activities, such as slow and aided walking and wheelchair. Ultimately, we
propose an orientation-independent HAR model that leverages data augmentation, and
that is trained with acceleration measurements recorded from five sensor locations on the
participant’s trunk.

2. Materials and Methods

2.1. Dataset

Two datasets were considered in this research. The first was represented by the
Wearing Position Study (WPS) acquired within Philips Research laboratories (2022). It
contains three-axis acceleration measurements from nineteen healthy volunteers, ten males
and nine females, while the second is the Simulated Hospital Study (SHS) acquired within
Philips Research laboratories (2019). The SHS includes ten male and ten female healthy
volunteers. Table 1 shows the age, weight, height, and BMI median and first and third
quartiles of both WPS and SHS participants. Before starting the test, each participant was
explained the protocol and afterwards was asked to signed an informed consent, obtained
from all participants involved. Both studies, according to the regulations in the Netherlands,
were waived as non-medical research, and therefore, approval by an IRB institution was
not needed. The Internal Committee for Biomedical Experiments at Philips approved both
studies. Each study was characterized by a specific protocol of activities to be followed
(see Table 2) by the participants. The protocol was performed under the guidance and
observation of two researchers, who annotated the start and end time for each activity.
Self-paced activities (i.e., self-paced walking and self-push wheelchair) were acquired along
a 30-meter corridor without obstacles.

In the WPS study, five GENEActiv (GA) accelerometers [23] were used. Two were
applied on the skin of the participant on the left lower rib (GA lower rib) and on the chest
(GA chest) using body tape, while the other three were applied on a rigid support that
simulates the position of a patient monitor device, with two of them pending from the neck
(GA front and GA side) and the third one placed inside the pocket of a clinical gown (GA
gown). In the SHS study, the sensors’ setting included the GA front only. Figure 1 shows
examples of a patient monitoring device usage in two different positions, front and side.
The sampling frequency of all accelerometers was set to 100 Hz with a dynamic range of
±8 g (1g = 9.8 m/s2).

Once data acquisition was completed, signals were synchronized to the annotations
based on the performed activities and synchronization patterns (i.e., three jumps at the
beginning and end of the session). Signals were down-sampled to 16 Hz and split into
windows of 6 s, with 4.5 s of overlap. No other preprocessing operation was applied; the
development and testing of the models used raw acceleration data as input.

Table 1. Median, first (Q1) and third (Q3) quartiles of the Wearing Position Study (WPS, left side)
and Simulated Hospital Study population (SHS, right side) characteristics: age, weight, height, and
Body Mass Index (BMI).

Age
Weight

[kg]
Height

[cm]
BMI

[kg/m2]
Age

Weight
[kg]

Height
[cm]

BMI
[kg/m2]

Median 41.5 71.5 174.5 23.05 44.5 75.0 175.0 25.34

Q1 25.8 61.2 167.8 21.32 32.8 68.5 166.5 23.77

Q3 53.3 79.5 184.8 25.12 54.3 86.5 182.0 26.28
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(a) (b) (c)

Figure 1. Patient monitoring device placement in the front (a) and side (b) positions [24,25]. (c) The
sensor settings for the Wearing Position Study data collection. Yellow squares are GENEActive
sensors: two in contact with the skin, two pending from the neck and one in the clinical gown pocket.

Table 2. Wearing Position Study and Simulated Hospital Study activities reported in
chronological order.

Activity Duration Activity Duration

Jump 3x (sync) ** Self-paced
Lying in bed ** 3 min Physioterapy on chair ** 2 min

Left side ** 30 s Patient transport in
wheelchair ** 1 min

Right side ** 30 s Wheelchair self-push Self-paced
Reclined ** 30 s Crutches ** Self-paced
Upright ** 30 s Anterior walker ** Self-paced

Sitting edge of the bed ** 30 s IV pole ** Self-paced
Standing ** 30 s 4-wheel rollator ** Self-paced
0.6 km/h ** 2 min Walk slow * Self-paced
0.8 km/h ** 2 min Walk normal * Self-paced
1.0 km/h ** 2 min Walk fast * Self-paced
1.5 km/h ** 2 min Intermittent walking * Self-paced
2.0 km/h ** 2 min Shuffling * Self-paced
3.0 km/h ** 2 min Upstairs one leg first ** Self-paced
4.0 km/h ** 2 min Downstairs one leg first ** Self-paced

4.0 km/h inclined * 2 min Stairs ascent ** Self-paced
Washing hands ** 1 min Stairs descent ** Self-paced

Reading ** 1 min Jump 3x (sync) ** Self-paced
*: Activities performed only in the Wearing Position Study (WPS); **: Activities performed in the Wearing Position
Study and in the Simulated Hospital Study (SHS).

2.2. Model Architecture

The implemented HAR model architecture is shown in Figure 2 and represents a
modified version of the DNN proposed by Fridriksdottir et al. [12]. The main difference
with the previous model consists of the substitution of the Long Short Time Memory
layer with a convolutional layer: this change in architecture was introduced to simplify
the model and it did not generate results significantly different from the previous DNN.
The model input consists of the X-, Y-, and Z- acceleration segments of shape (number of
segments, 96, 3). The model includes four 1D convolutional layers interspersed with four
batch normalization layers. Moreover, two max-pooling and dropout layers were added to
reduce overfitting risks. After the fourth batch normalization layer, a flattening layer was
added to reshape the data and to provide input for the final dense layer that computes the
prediction probabilities of five classes, by means of a softmax activation function [26].

The model uses categorical cross entropy as loss function, and the ‘Adam’ opti-
mizer [27], considering a batch size of 100 samples. The ’Balanced Batch Generator’ function
was used to fit the model: it is a Keras [28] function that allows creating balanced batches
during model training by specifying the desired sampler, where in this case a random
sampler was applied.
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Figure 2. Convolutional Neural Network model architecture composed of an input layer, four blocks
including multiple layers (B1, B2, B3, B4), flattening and ending softmax layer.

2.3. Data Augmentation

Data augmentation was used to synthesize different points of view relevant to the
same data [29]. A rotational matrix was applied to the original acceleration measurements
as in the Equation: ⎡

⎣acc′x
acc′y
acc′z

⎤
⎦ = RxRyRz

⎡
⎣accx

accy
accz

⎤
⎦ (1)

In particular, (accx, accy, accz) are the original values and (acc′x, acc′y, acc′z) are the
computed acceleration values associated with the applied rotation. The chosen rotation
angle is α, in degrees units. The rotational matrixes are defined for each axis and correspond
to Rx, Ry, Rz:

Rx =

⎡
⎣1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎤
⎦ (2)

Ry =

⎡
⎣ cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)

⎤
⎦ (3)

Rz =

⎡
⎣cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎤
⎦ (4)

2.3.1. Augmentation Setting for Training Data

The number and range of rotations applied to the accelerometer signals might affect the
success of data augmentation. Therefore, we initially tested which rotation pattern resulted
in the largest performance improvement for our model during cross-validation. Two
augmentation training datasets were considered: the first set consisted of seven rotations
between 0 and 90 degrees, while the second set consisted of seven rotations between 0 and
180 degrees. Rotations were applied separately along the frontal and sagittal axis of the
human body. The frontal axis splits the body into a dorsal and ventral parts, while the
sagittal axis splits the body into an upper and lower halves. To compare the two augmented
sets, tests were made for rotations from 0 to 360 degrees with a step of 5 degrees.

Based on this preliminary analysis, the final augmentation settings for the training
set of the augmented model consisted of ten rotations from 0 to 180, with a 20 degree
step on the frontal and sagittal axis separately. While all the original acceleration signals
were considered in the training data, only a randomly selected portion (11.1%) of these
signals was kept when applying a single rotation. The baseline model was trained using
the data collected by the five upper body sensors in the WPS dataset, including a total of
73,683 segments (windows of 6 s overlapped by 4.5 s). The resulting training size of the
augmented model was three times the size of the baseline training set.
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2.3.2. Augmentation Setting of Testing Data

The models were evaluated through three different test sets shown in Figure 3 and
reported below:

• Original: this test set did not have any data augmentation.
• Real-life test set: double-axis small rotations along the frontal and sagittal axis (respec-

tively X- and Z-axis). In particular: [[5, 5], [5, 2], [2, 5], [10, 10], [10, 5], [5, 10], [15, 15],
[15, 10], [10, 15]], unit of measurement in degrees.

• Fully-rotated test set: fifty-six rotations between 0 and 360 degrees applied along the
frontal, longitudinal, and sagittal axis (respectively, X-,Y-, and Z-axis) separately.

Table 3 describes the selected participants and sensors used for training and testing
of both the baseline and augmented HAR models. Fifteen participants of the WPS were
considered when cross-validating the model: ten for training, two for validation, and three
for testing. The participants in the cross-validation procedure were randomly split and
performance for each fold was observed to see if there were any discrepancies between the
splits. On the other hand, four random participants of the WPS and all twenty participants
of the SHS were kept separated and considered only in the final testing as a holdout set
(i.e., external validation).

(a) (b) (c)

Figure 3. Augmented test set visualization. (a) The original sensor orientation compared to the
standing human body. (b) The applied rotations of the real-life test set along the frontal and sagittal
axis. (c) The three non-simultaneous rotations applied along the frontal, longitudinal, and sagittal
axis (r1, r2, r3) with the fully-rotated test set.

Table 3. Train and test settings for the baseline and the augmented model computation. The baseline
model training did not undergo data augmentation. The two models were tested in the same way by
means of three test sets.

Train/Test Participants Rotations Rotation Axis Sensors’ Location

Train
baseline
model

WPS—15 participants - -
Front, side,

gown, chest,
left lower rib

Train
augmented

model
WPS—15 participants 0 to 180 deg.

step 20
Frontal (X-axis),
sagittal (Z-axis)

Front, side,
gown, chest,
left lower rib

Test
holdout

WPS—4 holdout
participants Test sets:

Original, real-life, fully-rotated test sets

Front, side,
gown

SHS—20 participants Front

3. Evaluation of the Orientation Impact Model and HAR Performance

A five-fold cross-validation [30] was used to train both the baseline and the augmented
models. The cross-validation performance was used to determine the augmentation ap-
proach (i.e., the range of rotations), and the effect of the rotation on the baseline model.
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Each cross-validation fold used the WPS data of ten participants for training the model, the
data of two participants for early stopping, and the data of three participants to assess the
model performance.

The activity labels of the two holdout sets were estimated by a majority-voting en-
semble of the results of the five models obtained during cross-validation for baseline and
augmented models. The results of the original test sets were averaged over the considered
participants. The real-life and fully-rotated test sets’ results were averaged on the applied
external rotations and the considered f1-score was computed by micro-averaging obtained
predictions. The performance metrics that evaluated each class were the f1-score, precision,
recall, and specificity. Additionally, the Cohen’s Kappa (Kappa-score) was considered: it
represents an inter-rater agreement coefficient between two raters, as a function of the
probability that the two raters are in perfect agreement [31]. For statistical analysis, first
the Shapiro–Wilk [32] test was used to verify the normality of f1-score values. Then, the
Wilcoxon signed-rank and the t-test were applied to establish differences within perfor-
mance distributions. The Wilcoxon test is non-parametric, and therefore, does not require
normality of the observed data [33].

4. Results

4.1. Rotation Impact on the Baseline Model

The baseline model was tested by using data augmentation, in particular, by applying
rotations, from 0 to 180 degrees, on the frontal, longitudinal, and sagittal axis. Performances
between the five cross-validation splits were observed. In particular, a minimum Kappa-
score value of 0.87 and a maximal Kappa-score value of 0.92 were obtained when testing
the baseline model with the original test set. Thus, it could be concluded that the model
performance was not dependent on which recordings were included in the training set.
Figure 4 reports the percentage of wrong classifications according to multiple axis and
groups of activities. It is noticeable how the Y-axis, parallel to the participant’s frontal plane
and parallel to the Earth’s gravity acceleration, was the least impacted axis by orientation
changes. Moreover, because of the nature of the proposed activities, the static ones (Lying in
bed, Left side, Passive wheelchair, Right side, Reading, Reclined, Sitting on the edge of the
bed, Standing, Upright, Washing hands/brushing teeth) were the least affected compared
to the dynamic ones.

Figure 4. Percentage of misclassified segments when testing the baseline model with rotations from
0 to 180 degrees applied to each axis separately. Misclassified segments correspond to the amount of
false negative predictions for the specific label

Figure 5 shows the percentage of misclassified segments of selected groups of activities
when rotations were applied along the frontal, longitudinal, and sagittal axis (respectively,
X-, Y-, and Z-axis) separately; the performance is shown for each applied rotation from 0 to
180 degrees (0, 5, 10, 20, 25, 30, 40, . . . , 180 degrees). Two groups of activities are reported:
treadmill walking and static activities. As previously observed, major differences were
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noticeable in relation to the type of activity being considered and the axis to which the
rotation was applied. It is relevant to highlight that, within dynamic activities, the error
percentage increased rapidly even for low values of applied rotations. Activity distribution
from the WPS and SHS data, divided according to the label of our interest, were as follows:
stairs ascent 5.2%, stairs descent 4.9%, static 25.2%, walking 62.5%, wheelchair 2.3%.

Figure 5. Top panels show false negative percentage profiles of treadmill walking activities; bottom
panels report false negative percentage profiles of static activities. Rotations on the X-, Y-, and Z-axis
correspond to rotations applied along the frontal, longitudinal, and sagittal axis, respectively.

4.2. Augmentation Approach

The performance of models trained with two augmented training sets was observed to
determine which one would suit best. In particular, the comparison between the two ranges
of rotation was computed from 0 to 360 degrees, every five degrees, and results were
presented for each 90 degree range. As shown in Figure 6, the model trained with a range
of rotations that span from 0 to 180 had better results over three quarters out of four, in
terms of Kappa score.

Figure 6. Performances comparison of Kappa score between two differently augmented models.
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4.3. Holdout Data Results—External Validation

When rotations were applied on a single or double axis, the baseline model signifi-
cantly increased the errors when classifying what activity the participant was doing, thus
decreasing the performance. The augmented model maintained high performance even
when rotations were applied. This consideration was confirmed from testing outcomes
on both WPS holdout and SHS data, as external validation. Figure 7 reports the obtained
results for the baseline and the augmented model according to the three augmented test
sets in terms of f1-score and Kappa-score. Appendix A reports detailed numerical results,
such as the median and interquartile range referring to Figure 7 and single class results
according to each model, each testing set, and considered participants.

Statistical analysis was conducted on the f1-score and Kappa-score of the two models.
For all data (cross-validated participants, WPS holdout participants, and SHS external
validation), no significant difference was observed related to the original test set. The
paired t-test was applied to test real-life test set performances, obtaining a p-value smaller
than 0.01 for both holdout source sets. The Wilcoxon-rank test was used for the fully-rotated
test set, showing a p-value < 0.01 for each axis of the WPS holdout data. The SHS p-values
were below 0.01 for both the frontal and sagittal axis (X- and Z-axis), while for rotations
applied along the longitudinal axis (Y-axis), no significant difference was shown.

Figure 7. F1-score (top panels) and Kappa-score (bottom panels) of the baseline and the augmented
model for the three test sets: Original, real-life and fully rotated test sets. *: test sets obtained
statistically different results for the baseline and augmented model with a p-value < 0.01.

Additionally, Figure 8 highlights the covered area of false negative percentage profile
related to treadmill walking activities. The green area belongs to the baseline model and it
is generally wider than the one of the augmented model. Low-speed treadmill activities
(�2.0 km/h) majorly contributed to the upper part of the green area. On the contrary,
high-speed treadmill activities (>2.0 km/h) had generally fewer false negatives (lower part
of the green area). This behavior was less visible in the profiles of the augmented model.
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Figure 8. False negative percentage profiles of treadmill activities (i.e., walking class) for rotations
applied to each axis separately for baseline and augmented models. The top line corresponds to
the maximum profile for that rotation; the bottom line corresponds to the minimum profile for that
rotation; the black dotted lines correspond to the profile median value.

5. Discussion

The context of HAR is broad and with multiple fields of application, making it hard,
sometimes, to compare studies due to the diversity in the selected activities, environment
conditions, target population, and chosen metrics [34].

Our study was focused on simulated activities that may characterize a hospitalized
patient wearing a device with freedom of movement (i.e., pendants or inside a pocket),
localized in the upper part of the patient’s body. Thanks to data augmentation, the HAR
model was able to learn additional configurations not provided by the initial dataset.
As Figure 8 shows, the false negative percentage red area covered by the augmented
model was significantly smaller compared to the green area belonging to the baseline
model. Additionally, the red area kept the error profile low and stable while the applied
rotations increased.

To choose the augmented rotation ranges to be applied to the training data, perfor-
mances obtained from two different sets, shown in Figure 6, were evaluated: despite
the seven rotations between 0 and 180 degrees being sparse, they allowed the model
to better learn device configurations characterized by higher applied rotations. In light
of these considerations, a rotation range from 0 to 180 degrees was chosen for training
data augmentation.

To the best of our knowledge, few research studies addressed data augmentation of
acceleration signals; therefore, expanding this research field and its potential applications
could be of relevant interest in this knowledge domain. The study by Ohashi et al. [17]
addressed data augmentation according to a specific physical constraint; in particular,
it allows sensor movement only on a certain trajectory dictated by the arm’s degrees of
freedom. In contrast, our applied augmentation does not follow physical constraints. In
fact, it includes rotations that could easily happen when using sensors pending from the
body in patient monitoring devices (i.e., the PortraitTM Mobile, by GE Healthcare [35], or
the IntelliVue MX40 by Philips [36]), such as for example: the up-side down flipping of
the device (i.e., 180 degrees on the frontal axis), inclined device due to body shape (i.e.,
small rotations along the frontal axis), and inclined device due to asymmetric position of
the pending rigid support (small rotations along sagittal axis).

Collecting data spanning from many orientation configurations is highly time- and
computationally expensive; from this perspective, data augmentation could represent an
optimal approach to deal with this aspect and to increase overall performance. In Table 4,
the main augmentation-related studies found in the literature are reported, along with
the considered sensors and their positions, the applied augmentations, and the identified
activities within the proposed framework.
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Table 4. Description of the most relevant studies related to wearable sensor data augmentation in the
context of HAR. Each study is described by its sensors’ positioning, applied augmentation, type of
sensor, and recognized activities.

Author
Sensors’
Position

Applied
Augmentation

Augmented
Sensors

Recognized
Activities

[17] Forearm Rotations around
X-axis

Accelerometer
Gyroscope

EMG *

Holding,
Twisting,
Folding

[18] Left wrist
Averaging,
combining,

shuffling

Spectral
features of

accelerometer
and gyroscope

Sitting,
Standing,
Walking

[19] Wrist

Rotation,
Permutation,

Time-warping,
Magnitude-warping

Accelerometer

Motor state of
Parkinson sbj:
Bradyiknesia,

Dyskinesia

[20] Mobile phone
pockets

Resampling for
contrastive learning

Accelerometer
Gyroscope

Magnetometer

UCI-HAR [37],
MotionSense [38],

USC-HAD [39]

Proposed
model

Body trunk Rotations around the
three axis separately

Accelerometer
Stairs up, Stairs down,

Static, Walking,
Wheelchair

*: augmented sensors that undergo different kind of augmentation than the one reported in the table.

In accordance with the literature, our initial results confirmed that device displacement
might cause significant performance loss when using sensor orientation-dependent models.
The error rate steeply rises even with small rotations (i.e., 5 degrees applied to the frontal
axis ≈ 10%; 10 degrees applied to the frontal axis ≈ 20% for 0.8 km/h from Figure 5).
False negative percentages of static activities did not increase when rotations were applied
(i.e., 5 and 10 degrees applied to the frontal axis ≈ 5% for “Sitting edge of the bed” from
Figure 5). As a result of the stable acceleration pattern, the model was able to recognize
and classify this behavior as static activity. On the other hand, treadmill-related activity
results showed an error rise as the applied rotation increased over the frontal and sagittal
axis (X- and Z-axis). This trend was probably due to the nature of the different treadmill
walking activities. In particular, high-speed walking activities had a low error profile. This
activity type showed high peaks during the heel-strike and toe-off gait phases, allowing
the model to predict it more easily. However, even for high-speed walking activities,
their error percentage increased when larger rotations were applied (≈90 degree on the
frontal axis). A possible reason for this could be that large rotations along the frontal
and sagittal axis (X- and Z-axis) implied switching the acceleration component parallel to
gravity that usually carries most part of the information. Figure 9 shows an example of
walking activities of 0.8 km/h and 4.0 km/h and their corresponding applied rotations of
twenty and sixty degrees. It was visible how slower walking had a smaller acceleration
range. On the other hand, faster walking acceleration range had more dynamism and the
information spanned a wider acceleration range.
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Figure 9. Walking activities of 0.8 km/h (top) and 4.0 km/h (bottom) and the corresponding applied
rotations of twenty and sixty degrees (g = 9.81 km/s2).

As shown in Figure 4, the static activities were the least affected by rotations on all
orientation axes, probably due to their low acceleration values. Considering the models’
performance differences among activities, another possible approach could be a tailored
augmentation to the activity itself. Future work might consider transformations applied
only to the classes that are majorly influenced by rotation, i.e., the classes with a high
dynamic range, in terms, for example, of acceleration magnitude. This way, redundancy
would be avoided and data would be augmented more efficiently.

Limitations and Future Work

Among the five prediction classes, further processing could be applied to the “wheelchair”
class. As a matter of fact, it was easy to misclassify it with static or walking activities, due
to acceleration pattern similarities. Our performance showed a low precision for the
original test set and a high value for recall of the wheelchair class (0.41 ± 0.23 precision,
0.92 ± 0.12 recall for SHS participants, original test set). Frequently, slow walking activities
were wrongly classified as wheelchair. A possible future improvement to “wheelchair”
precision could be to apply post-processing steps to the predicted “wheelchair” class. For
example, contextualizing the single “wheelchair” segment with the surrounding ones (i.e.,
within a certain number of consecutive “walking” segments, if “wheelchair” is detected,
that prediction will likely be wrong, and therefore, post-processed as “walking”). Fur-
ther steps could also consider prediction contextualization for all classes, either through
post-processing or by adding specific layers to the deep-learning model (i.e., recurrent
layer). Additionally, future studies should collect an higher amount of “wheelchair”,
“stairs ascent”, and “stairs descent” data, given the imbalance of such data classes used in
these studies.

Our application used accelerometer sensors; however, multiple studies have combined
together different sensor modalities belonging to Inertial Measurement Unit technology,
involving measurements of accelerometer, gyroscope, and sometimes, magnetometer data.
Jiang et al. [40] proposed a method that merges accelerometer and gyroscope data into an
activity image. They used CNN power and obtained outstanding accuracy performances
related to three different public datasets. Using these sensors could be helpful, respectively,
for different types of activities. For example, stairs ascending and descending performances
could be improved using gyroscope or barometer data, while more dynamic activities, such
as walking, rely on acceleration data. In most circumstances, acceleration measurements
primary lead the activity classification, while gyroscope data have a secondary support
role [41]. In spite of the fact that more signals and sensors could be integrated, we focused
our research on a single triaxial accelerometer-based solution. This approach has the
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advantage of being easily applicable to any device that contains an accelerometer, without
the need to re-design its components. Additionally, it maintains low power consumption.

The used model architecture, CNN, lies within the most common DNN-based ap-
proaches [11]. Despite many advantages and progresses made through DNN-based mod-
els, multiple challenges still apply to these techniques, such as their explainability and
generalization capabilities compared with models built on extracted features from the
respective knowledge domain [42]. Considering the SHS study, within the context of a
patient-monitoring solution, using DL capabilities proved to be effective and promising [12].
Through this study, we examined how rotations could impact DL algorithms and how data
augmentation address for this aspect. This challenge might be found also for other ML
approaches that are orientation-dependent (e.g., orientation dependent features, three-axis
acceleration). Future work should focus on comparing the augmented DL approach with
other techniques, such as HMM, or feature-based models [43,44].

The good performances of the augmented model obtained during cross-validation
were confirmed by the holdout data results. This indicates that our model can well gen-
eralize using unseen data, i.e., participants. However, holdout data belong to the same
study (WPS) or to a similarly acquired one (SHS) compared to training data, and while the
participants were different between the sets, the activities performed were similar. This
might have partially biased the performance of the classification algorithms that still needs
to be confirmed in a real-life scenario. Despite this, the SHS was a different research study
compared to the WPS and added additional holdout data. Moreover, many activities of the
protocols were self-paced, meaning that each participant could choose their own walking
speed (i.e., slow, fast, normal walk, and the aided-walking activities), and thus, adding
data variability. Studies that include acceleration measurements whose source is a clinical
population would help better define the generalization capabilities of the model.

6. Conclusions

This research investigated the effects of device displacement on a DNN-based HAR
model performance and proposed an orientation-independent HAR model. Further rele-
vant steps might relate to model testing on a real clinical population and to wearable sensor
data augmentation using other approaches, such as activity-tailored augmentation.

By applying HAR to wearable devices, it is possible to monitor and classify the
activities performed by a patient. Device displacement is among the biggest challenges
related to wearable sensors. A primary analysis showed how displacement, even of small
entity, could negatively impact HAR algorithm performance. Ultimately, we developed an
orientation-independent model that classified five pre-defined activities within a range of
actions likely to happen in a clinical environment. Through this research, a possible solution
was proposed for device displacement in HAR, and new challenges were highlighted to
broaden this field and get closer to better activity monitoring solutions for clinicians
and patients.
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Appendix A

Here, we report numerical performances related to the baseline and augmented model
in particular, as referred to in Figure 4 (Table A1) and Figure 7 (Table A2) .

Table A1. Median and IQR of false negative percentages according to different activity groups.

X-Axis Y-Axis Z-Axis

Static (static) 1.43 (1.58) 7.14 (1.45) 7.11 (4.19)
Treadmill walking (walking) 47.69 (18.02) 5.01 (0.62) 33.71 (28.74)

Stairs ascent (stairs ascent) 75.67 (41.21) 18.34 (4.6) 58.99 (56.78)
Stairs descent (stairs descent) 57.71 (32.85) 20.32 (2.78) 30.69 (16.24)

Walking aids (walking) 84.13 (16.58) 8.9 (0.75) 56.65 (39.47)
Intermittent shuffling(walking) 86.38 (19.42) 9.09 (1.0) 63.63 (46.32)
Active wheelchair(wheelchair) 49.33 (38.33) 42.62 (25.06) 32.41 (43.6)

Table A2. Median and IQR of f1-score and Kappa-score according to the two holdout sets and three
test sets.

Test Set Mdl Original Real-Life Fully-Rotated

f1-Score

WPS
Holdout

Base. 0.96 (0.01) 0.80 (0.15) 0.78 (0.38)
Aug. 0.96 (0.02) 0.92 (0.03) 0.92 (0.03)

SHS
Base. 0.92 (0.08) 0.84 (0.09) 0.77 (0.24)
Aug. 0.92 (0.07) 0.87 (0.03) 0.88 (0.03)

Kappa-score

WPS
Holdout

Base. 0.93 (0.01) 0.80 (0.20) 0.66 (0.51)
Aug. 0.92 (0.02) 0.87 (0.04) 0.88 (0.05)

SHS
Base. 0.85 (0.13) 0.72 (0.12) 0.61 (0.35)
Aug. 0.85 (0.11) 0.77 (0.04) 0.78 (0.05)

Following the numerical results of the baseline and augmented models of holdout
data, each of the three proposed test sets were divided in subsections.

Appendix A.1. Original Test Set Results for Individual Classes

Table A3 reports the results of the original test set referring to the WPS holdout
participants. Table A4 reports the same results but referring to the SHS participants.

Table A3. Single class results of baseline and augmented model for the original test set. Considered
data: WPS holdout participants.

Mdl Metric
Stairs

Ascent
Stairs

Descent
Static Walking Wheelchair

precision 0.89 ± 0.03 0.99 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.70 ± 0.13
recall 0.88 ± 0.02 0.86 ± 0.06 0.96 ± 0.03 0.97 ± 0.02 0.93 ± 0.06

Base.
f1-score 0.89 ± 0.02 0.92 ± 0.04 0.97 ± 0.01 0.97 ± 0.01 0.79 ± 0.1

specificity 0.99 ± 0.0 1.00 ± 0.0 0.99 ± 0.0 0.95 ± 0.02 0.99 ± 0.01

precision 0.88 ± 0.09 0.94 ± 0.05 0.9 ± 0.07 0.97 ± 0.01 0.41 ± 0.23
recall 0.89 ± 0.09 0.88 ± 0.12 0.94 ± 0.04 0.89 ± 0.09 0.92 ± 0.12

Aug.
f1-score 0.88 ± 0.06 0.90 ± 0.08 0.92 ± 0.03 0.92 ± 0.05 0.53 ± 0.23

specificity 1.00 ± 0.0 1.00 ± 0.0 0.99 ± 0.0 0.93 ± 0.02 0.98 ± 0.01
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Table A4. Single class results of baseline and augmented model for the original test set. Considered
data: SHS participants.

Mdl Metric
Stairs

Ascent
Stairs

Descent
Static Walking Wheelchair

precision 0.83 ± 0.09 0.94 ± 0.05 0.92 ± 0.06 0.97 ± 0.01 0.39 ± 0.21
recall 0.92 ± 0.07 0.88 ± 0.12 0.92 ± 0.04 0.89 ± 0.09 0.91 ± 0.15

Base.
f1-score 0.87 ± 0.06 0.90 ± 0.07 0.92 ± 0.03 0.92 ± 0.05 0.51 ± 0.23

specificity 0.99 ± 0.01 1.0 ± 0.0 0.97 ± 0.02 0.94 ± 0.02 0.95 ± 0.06

precision 0.88 ± 0.09 0.94 ± 0.05 0.90 ± 0.07 0.97 ± 0.01 0.41 ± 0.23
recall 0.89 ± 0.09 0.88 ± 0.12 0.94 ± 0.04 0.89 ± 0.09 0.92 ± 0.12

Aug.
f1-score 0.88 ± 0.06 0.90 ± 0.08 0.92 ± 0.03 0.92 ± 0.05 0.53 ± 0.23

specificity 1.0 ± 0.01 1.0 ± 0.0 0.96 ± 0.03 0.94 ± 0.03 0.95 ± 0.06

Appendix A.2. Real-Life Test Set Results for Individual Classes

Table A5 reports the results of the real-life test set referring to the WPS holdout
participants. Table A6 reports the same results but referring to the SHS participants.

Table A5. Single class results of the baseline and augmented model for the real-life test set. Considered
data: WPS holdout participants.

Mdl Metric
Stairs

Ascent
Stairs

Descent
Static Walking Wheelchair

precision 0.88 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.23 ± 0.12
recall 0.87 ± 0.03 0.84 ± 0.03 0.96 ± 0.0 0.79 ± 0.12 0.88 ± 0.03

Base.
f1-score 0.87 ± 0.02 0.9 ± 0.02 0.97 ± 0.0 0.86 ± 0.08 0.35 ± 0.15

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.95 ± 0.0 0.88 ± 0.08

precision 0.94 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.95 ± 0.0 0.41 ± 0.09
recall 0.81 ± 0.01 0.83 ± 0.01 0.98 ± 0.0 0.92 ± 0.03 0.93 ± 0.0

Aug.
f1-score 0.87 ± 0.01 0.90 ± 0.01 0.98 ± 0.0 0.94 ± 0.02 0.56 ± 0.09

specificity 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.93 ± 0.0 0.96 ± 0.02

Table A6. Single class results of the baseline and augmented model for the real-life test set. Considered
data: SHS participants.

Mdl Metric
Stairs

Ascent
Stairs

Descent
Static Walking Wheelchair

precision 0.80 ± 0.02 0.95 ± 0.02 0.92 ± 0.01 0.97 ± 0.0 0.13 ± 0.04
recall 0.91 ± 0.01 0.84 ± 0.02 0.93 ± 0.0 0.79 ± 0.06 0.93 ± 0.01

Base.
f1-score 0.85 ± 0.01 0.89 ± 0.02 0.92 ± 0.0 0.87 ± 0.04 0.23 ± 0.07

specificity 0.99 ± 0.0 1.0 ± 0.0 0.97 ± 0.0 0.95 ± 0.01 0.88 ± 0.05

precision 0.84 ± 0.01 0.93 ± 0.0 0.91 ± 0.0 0.97 ± 0.0 0.18 ± 0.03
recall 0.88 ± 0.01 0.83 ± 0.02 0.94 ± 0.0 0.85 ± 0.02 0.93 ± 0.01

Aug.
f1-score 0.86 ± 0.01 0.88 ± 0.01 0.92 ± 0.0 0.90 ± 0.01 0.30 ± 0.04

specificity 0.99 ± 0.0 1.0 ± 0.0 0.97 ± 0.0 0.94 ± 0.0 0.92 ± 0.02

Appendix A.3. Fully-Rotated Test Set Results for Individual Classes

Table A7 reports the results for the baseline and augmented models of the fully-rotated
test sets referring to the WPS holdout participants. Table A8 reports the same results but
referring to the SHS participants.
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Table A7. Single class results of baseline and augmented model for the fully-rotated test set on every
axis. Considered data: WPS holdout participants.

Mdl Ax Metric
Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.34 ± 0.32 0.40 ± 0.34 0.99 ± 0.01 0.53 ± 0.23 0.43 ± 0.29
recall 0.66 ± 0.23 0.56 ± 0.31 0.58 ± 0.23 0.91 ± 0.06 0.33 ± 0.29

f1-score 0.37 ± 0.3 0.39 ± 0.3 0.70 ± 0.16 0.65 ± 0.17 0.32 ± 0.27X

specificity 0.99 ± 0.02 0.97 ± 0.06 0.69 ± 0.21 0.93 ± 0.05 0.92 ± 0.1

precision 0.84 ± 0.03 0.79 ± 0.05 0.95 ± 0.01 0.96 ± 0.02 0.66 ± 0.17
recall 0.85 ± 0.04 0.97 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.55 ± 0.2

f1-score 0.84 ± 0.03 0.87 ± 0.03 0.95 ± 0.01 0.96 ± 0.01 0.57 ± 0.13Y

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.94 ± 0.01 0.98 ± 0.02

precision 0.43 ± 0.32 0.65 ± 0.21 0.98 ± 0.02 0.57 ± 0.23 0.48 ± 0.3
recall 0.61 ± 0.2 0.59 ± 0.24 0.73 ± 0.26 0.95 ± 0.03 0.19 ± 0.15

Base.

f1-score 0.46 ± 0.28 0.58 ± 0.19 0.81 ± 0.19 0.69 ± 0.18 0.23 ± 0.18Z

specificity 0.98 ± 0.01 0.95 ± 0.05 0.79 ± 0.26 0.95 ± 0.04 0.90 ± 0.09

precision 0.74 ± 0.07 0.71 ± 0.13 0.98 ± 0.01 0.95 ± 0.02 0.91 ± 0.04
recall 0.91 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.93 ± 0.02 0.59 ± 0.17

f1-score 0.82 ± 0.05 0.81 ± 0.1 0.97 ± 0.01 0.94 ± 0.02 0.70 ± 0.12X

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.90 ± 0.03 0.98 ± 0.02

precision 0.75 ± 0.04 0.81 ± 0.02 0.96 ± 0.0 0.97 ± 0.01 0.89 ± 0.04
recall 0.92 ± 0.02 0.97 ± 0.02 0.98 ± 0.0 0.94 ± 0.01 0.64 ± 0.13

f1-score 0.83 ± 0.03 0.88 ± 0.02 0.97 ± 0.0 0.96 ± 0.01 0.74 ± 0.07Y

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.94 ± 0.01 0.98 ± 0.02

precision 0.70 ± 0.08 0.79 ± 0.06 0.97 ± 0.01 0.92 ± 0.03 0.93 ± 0.02
recall 0.93 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.93 ± 0.02 0.42 ± 0.09

Aug.

f1-score 0.79 ± 0.06 0.86 ± 0.04 0.97 ± 0.0 0.93 ± 0.02 0.57 ± 0.08Z

specificity 0.98 ± 0.01 0.95 ± 0.05 0.79 ± 0.26 0.95 ± 0.04 0.90 ± 0.09

Table A8. Single class results of baseline and augmented model for the fully-rotated test set on every
axis. Considered data: SHS participants.

Mdl Ax Metric
Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.40 ± 0.30 0.40 ± 0.31 0.98 ± 0.03 0.64 ± 0.13 0.40 ± 0.32
recall 0.53 ± 0.24 0.49 ± 0.30 0.61 ± 0.17 0.96 ± 0.03 0.17 ± 0.17

f1-score 0.41 ± 0.26 0.40 ± 0.28 0.73 ± 0.11 0.76 ± 0.09 0.20 ± 0.18X

specificity 0.99 ± 0.02 0.99 ± 0.02 0.75 ± 0.14 0.94 ± 0.04 0.94 ± 0.07

precision 0.89 ± 0.02 0.81 ± 0.02 0.91 ± 0.01 0.90 ± 0.02 0.70 ± 0.24
recall 0.80 ± 0.03 0.93 ± 0.02 0.90 ± 0.02 0.96 ± 0.01 0.24 ± 0.09

f1-score 0.84 ± 0.02 0.87 ± 0.02 0.91 ± 0.01 0.93 ± 0.01 0.34 ± 0.09Y

specificity 0.99 ± 0.0 1.0 ± 0.0 0.97 ± 0.01 0.92 ± 0.01 0.96 ± 0.02

precision 0.44 ± 0.36 0.68 ± 0.17 0.96 ± 0.04 0.63 ± 0.13 0.65 ± 0.31
recall 0.56 ± 0.16 0.62 ± 0.25 0.72 ± 0.21 0.98 ± 0.01 0.15 ± 0.10

Base.

f1-score 0.42 ± 0.28 0.61 ± 0.17 0.80 ± 0.14 0.76 ± 0.09 0.18 ± 0.08Z

specificity 0.99 ± 0.01 0.98 ± 0.03 0.82 ± 0.19 0.97 ± 0.02 0.89 ± 0.09

precision 0.80 ± 0.05 0.72 ± 0.11 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.08
recall 0.81 ± 0.08 0.84 ± 0.07 0.88 ± 0.04 0.96 ± 0.01 0.24 ± 0.10

f1-score 0.80 ± 0.06 0.77 ± 0.09 0.91 ± 0.02 0.91 ± 0.02 0.37 ± 0.10X

specificity 0.99 ± 0.0 1.0 ± 0.0 0.95 ± 0.02 0.93 ± 0.01 0.94 ± 0.03

precision 0.84 ± 0.03 0.81 ± 0.02 0.92 ± 0.01 0.90 ± 0.02 0.81 ± 0.09
recall 0.88 ± 0.02 0.91 ± 0.02 0.90 ± 0.01 0.96 ± 0.0 0.26 ± 0.04

f1-score 0.86 ± 0.02 0.86 ± 0.02 0.91 ± 0.01 0.93 ± 0.01 0.38 ± 0.04Y

specificity 1.0 ± 0.0 1.0 ± 0.0 0.96 ± 0.0 0.92 ± 0.01 0.96 ± 0.01

precision 0.79 ± 0.05 0.80 ± 0.05 0.93 ± 0.01 0.85 ± 0.02 0.92 ± 0.01
recall 0.86 ± 0.04 0.89 ± 0.04 0.89 ± 0.02 0.96 ± 0.0 0.19 ± 0.03

Aug.

f1-score 0.82 ± 0.04 0.84 ± 0.03 0.91 ± 0.01 0.90 ± 0.02 0.31 ± 0.04Z

specificity 1.0 ± 0.0 1.0 ± 0.0 0.96 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
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Abstract: Computer recognition of human activity is an important area of research in computer
vision. Human activity recognition (HAR) involves identifying human activities in real-life contexts
and plays an important role in interpersonal interaction. Artificial intelligence usually identifies
activities by analyzing data collected using different sources. These can be wearable sensors, MEMS
devices embedded in smartphones, cameras, or CCTV systems. As part of HAR, computer vision
technology can be applied to the recognition of the emotional state through facial expressions using
facial positions such as the nose, eyes, and lips. Human facial expressions change with different
health states. Our application is oriented toward the detection of the emotional health of subjects
using a self-normalizing neural network (SNN) in cascade with an ensemble layer. We identify
the subjects’ emotional states through which the medical staff can derive useful indications of the
patient’s state of health.

Keywords: HAR; face emotion recognition; face detection; computer vision; deep learning; SNN;
ensemble; vectorflow

1. Introduction

Human activity recognition (HAR) designates the complex of human action, which can
be decomposed into human-to-human interaction, human-to-object events, and gestures [1].
Its objective is to detect data relating to the activities usually carried out by the elderly
or those in need of care using sensors or observing a sequence of actions from videos or
images. An applicable technique is facial expression recognition (FER) [2,3]. Human beings
interact with each other through gestures and emotions [4]; therefore, facial expressions
are a way to obtain emotional information [5] and can reflect a person’s psychophysical
state [6,7].

Thanks to various technological innovations, the emotion recognition and detection
(EDR) has found widespread applications in different sectors and, according to some
estimates, will have its highest growth rate in the coming years. During the pandemic,
EDR technology was used by some companies to assess the state of satisfaction of workers
who had been employed in smart working activities. Through computer vision algorithms,
recognizing the emotions and moods of workers through their facial expressions, it was
possible to assess the stress level to which they were subjected. Another sector in which
it has found applications is learning and education. EDR technology has been used to
assess the learning level of students by providing helpful guidance to educators to adopt
the proper corrections to improve the learning process. Another sector in which EDR
technology finds applications is healthcare. Thanks to the creation of smart homes and
IoT technologies, patients can be provided with efficient healthcare without resorting to
hospital admissions. A large amount of data can be acquired through computer vision and
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sensors, which, when processed and analyzed, provide valuable indications to healthcare
personnel and doctors to improve care and provide adequate services. This is aimed at
improving the lifestyle of people in need of assistance.

The recognition of facial emotions is important because, from the analysis of the face,
it is possible to detect the state of health of the subject, such as anxiety, depression, stress,
or malaise, making a facial diagnosis possible. It is a beneficial technique in caring for the
elderly; through the information provided, medical personnel can evaluate the type of
intervention to reduce the state of the discomfort of the subjects. Some manifestations of
the face can be associated with the first pathological symptoms facilitating the prevention
of diseases that can degenerate. The eyes, in particular, can report physical and mental
changes. This technique has ancient roots, in particular in traditional Chinese medicine
(TCM), in which doctors performed a diagnosis of a disease by looking at facial features.
They believed that pathological changes of internal organs reflected directly on the face
allowed them to determine a diagnosis. Each anatomical part of the face reflected the state
of functioning of each organ; for example, the cheeks were associated with the lungs, the lips
with the digestive system and stomach, and the eyebrows with the nervous and respiratory
systems. This technique, called “facial diagnosis,” requires considerable experience in order
to perform an accurate diagnosis. In modern times, the difficulty of obtaining a medical
examination due to economic conditions and the scarce availability of medical resources for
those who live in underdeveloped geographical areas has stimulated research to develop
techniques and diagnoses using artificial intelligence. Finally, thanks to the technological
evolution of deep learning, it has been found that computer-assisted facial diagnosis has
low error rates [8].

While being a helpful tool, the use of deep learning in facial recognition presents some
problems on which researchers work to improve efficiency. The main challenges must be
addressed: accuracy, security, and privacy.

Accuracy is an essential aspect of the recognition process. The detected face may have
lighting problems, poor image quality, low resolution, a blurred face, or different types of
occlusions: systematic (hair, masks, clothes, and make-up) and temporary (hands covering
the face or pose variations). These factors create errors in the faceprint feedback with faces
in the database. Using a large amount of training data and 3D imagery improves accuracy.

Security refers to the risk of using facial recognition for identity theft or illicit purposes.
Efficient ML and DL security systems already present in systems can provide adequate
protection against illegal use.

Additionally, regarding privacy, the use of facial images must comply with the laws
on processing personal data.

In interpreting images in the biomedical field, specific studies have been presented on
improving the efficiency of deep learning. Below are some of the most significant examples.

Zhao et al. [9] developed an interesting method of deep learning in bioimaging called
VoxelEmbed. Their work was finalized in the realization of an innovative multistream
approach that facilitates embedding pixels with 3D contextual information. This solution
arose from the need to meet the need for tools for the analysis of the dynamics of living
cells. The segmentation and tracking of cell instances based on pixel incorporation have
proven helpful for studying cellular dynamics. This method was validated through tests
on four 3D datasets of the Cell Tracking Challenge.

Meanwhile, Zheng et al. [10] proposed a system to optimize the feature boundary of
deep CNN through a two-step training method: a pre-training step and implicit regular-
ization. Regularization is the process of enhancing the generalization ability of a CNN in
order to train complex models while maintaining lower overfitting. It has a primary role in
the tuning parameters of deep CNN. In the pre-training step, the authors trained the model
to obtain the image representation for anomaly detection. Based on the anomaly detection
results, the implicit regularization step re-trained the network to regularize the feature
boundary and obtain the convergence. The implicit regularization can be considered as an
implicit model ensemble. It can be regarded as the training process of a different network
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that shares weights with different training samples; it can be viewed as a combination of a
wide number of similar CNNs trained with different datasets.

Finally, Yao et al. [11] presented interesting findings relating to overcoming the prob-
lem of training self-supervised machine learning algorithms using massive data of biomed-
ical images from databases or specialized journals. However, the images from such sources
consist of a considerably large amount of compound figures with subplots.

In their work, these authors developed a framework (SimCFS) for separating com-
pound figures using weak classification annotations. In particular, they proposed a system
to separate the compound figures with lateral loss. The training stage contains these steps.
SimCFS only requires single images from different categories. The pseudo compound
figures are generated from the augmentation simulator (SimCFS-AUG). Then, a detection
network (SimCFS-DET) is trained to perform compound figure separation. In the testing
stage, they used only the trained SimCFS-DET for separating the images.

For evaluating the performance of different compound figure separation strategies,
they used one compound figure dataset (called Glomeruli-2000) consisting of 917 training
and 917 testing real figure plots from the American Journal of Kidney Diseases (AJKD).

The proposed method SimCFS-DET was then compared with the most used methods
for separating compound figures showing better performance. ImageCLEF2016 was used
as the dataset, containing 8397 figures, of which 6783 were for training and 1614 for testing.
The system ultimately allows efficient distribution to new image classes.

In this work, a facial emotion recognition system based on an innovative approach of
an SNN ensemble network is designed to support the work of medical staff in the diagnostic
evaluation of the type of detectable malaise. The work after the introduction containing the
importance of FER is articulated as follows: Section 2 presents the related works, Section 3
presents the analysis of the problem, Section 4 provides the methodology, Section 5 sets
out the dataset and model design, Section 6 presents the results and discussion, and finally,
Section 7 provides the conclusions.

2. Related Works

In recent years, many applications of emotion recognition have been developed using
single modalities, multiple modalities, static images, and videos; here are some examples.

Jin et al. [12] proposed a system for identifying specific diseases using the deep transfer
learning technique from facial recognition to facial diagnosis. With this technique, they
solved the problem of the difficulty of finding images for facial diagnosis. They developed
a suitable system for detecting and screening diseases using a small dataset. The study was
aimed at identifying the following diseases:

• Thalassemia: a genetic blood disorder caused by abnormal hemoglobin production,
which is a hereditary disease.

• Hyperthyroidism: an endocrine disease caused by excessive amounts of thyroid
hormones T3 and T4.

• Down syndrome: a genetic disorder caused by trisomy of chromosome 21.
• Leprosy: an infectious disease also known as Hansen’s disease, caused by the bac-

terium Mycobacterium leprae.

The methodology adopted was deep transfer learning (DTL), which transfers knowl-
edge from a pre-trained deep neural network for facial verification and recognition. Starting
from the recognition and verification of the face, the authors moved on to facial diagnosis.

Since these domains have the same feature space and related activities, it was possible
to use a small dataset for deep transfer learning from facial recognition to facial diagnosis.
The implementation of the model was based on MatLab’s MatConvNet. The NVIDIA
CUDA toolkit and CuDNN library were used for GPU acceleration.

The model was built through a fine-tuning phase of a pre-trained VGG-Face CNN and
using pre-trained CNN as a feature extractor for the smaller dataset. The VGG-Face dataset
contained 2.6 million images.
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The model was tested on two cases of facial diagnosis. One was the detection of
beta-thalassemia, which was a binary classification activity. The other was detecting four
diseases, such as beta-thalassemia, hyperthyroidism, Down syndrome, and leprosy, a multi-
class classification activity. Only 140 images from the dataset were used to detect a single
disease, of which 70 were for facial images specific for beta-thalassemia and 70 for healthy
subjects. Of the 70 of each type, 40 were used for training and 30 for testing. Comparing
the results obtained with the VGG-Face model with those of traditional machine learning
methods (AlexNet and ResNet50), it was found that its accuracy, being greater than 95%,
is much better than that of the others. In further evaluating the algorithm, the authors
performed a multi-class classification. In this case, 350 images from the dataset were used
(70 for each face). Two hundred images are used for the training process (40 images for
each face). One hundred and fifty images (30 images for each face) were used for the
testing process. Although the classification process was more complex, the model had
excellent accuracy for beta-thalassemia, Down syndrome, and leprosy. It had low accuracy
for hyperthyroidism. The performance obtained was better than that of traditional machine
learning methods. The accuracy was 93%.

Therefore, CNN as a feature extractor has been proven to be a suitable deep transfer
learning method when using a small dataset for facial analysis.

Jin et al. [13] introduced an innovative deep-learning model to improve facial recogni-
tion. Many factors, such as lighting, variation of head pose, and lack of information about
the spatial characteristics of the face, influence the accuracy of facial recognition. The latter
can be overcome with the use of RGB-D sensors. In practice, images of RGB-D faces are
challenging to find. Therefore, in the face of these color and depth problems connected to
RGB sensors, these authors developed a model to obtain more accurate facial recognition
based on deep learning. The proposed solution allowed for obtaining depth maps from
images of 2D faces in place of those obtainable with a depth sensor. In particular, they
designed a neural network model called “D+GAN” (Depth plus Generative Adversarial
network), with which they performed multi-conditional translation from image to image
with facial attributes. Compared to the normal two-component GANs generator and dis-
criminator, this network had the advantage of generating high-quality face depth maps
by making greater use of facial attribute information and determining sex, age, and race
categories. The facial recognition process was divided into the following phases:

• Capturing RGB face images.
• Image preprocessing to remove the image background from the face evenly.
• Generating face depth maps
• Merging images using the unsampled Shearlet transform (NSST).
• Using different tools for face recognition.

The Bosphorus 3D Face Database and the CASUA 3D Face Database were used to
train the model, and the BU-3DFe Database was used for testing.

To evaluate the quality of the depth maps obtained, face depth maps were created for
each of the previous datasets using different techniques:

� Monodepth2
� DenseDepth Method (KTTI)
� DenseDepth (NYUDepth)
� DenseDepth (NYUDepthV2)
� 3DMorphable Model (3DMMI)
� Pix2Pix
� CycleGAN

and compared with D+GAN.
Numerous experiments were carried out to validate the model. The authors compared

the eight depth maps obtained with the techniques cited for each dataset used. The results
showed that the outputs generated by D+GAN show more detailed depth information for
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all three datasets. Even in the correlation graphs of the various output images, there was a
higher quality for the depth maps generated by 3DMM, Pix2Pix, Cycle GAN, and D+GAN.

For a quantitative analysis of the face depth maps generated by the different models,
SSIM, RMSE (root-mean-squared error), and PSNR (peak-signal-to-noise ratio) were used.
SSIM is a parameter used for assessing the structural similarity of images. It is used to
evaluate the quality of the processed image compared to the reference one. Additionally,
from a quantitative point of view, these three indices for D+GAN depth maps were the best.

The four models, PCA, ICA, Facenet, and InsightFace, were used as face recognition
methods. ENTL, Yale, UMIST, AR, and ERET were used as datasets. From the experiments,
it was found that for each dataset of the five used, the best results were obtained when
operating with the pseudo-RGB-D facial recognition modes compared to the RGB mode.
The best result was obtained when combining the FaceNet model with the ORL database.

Ghosh et al. [14] developed an innovative model of recognition of human emotions
using analyses of both physiological and textual characteristics considering heart rate [15]
and blood pressure, or changes in pupil size or even textual analysis. Their study analyzed
five emotions: anger, sadness, joy, disgust, and fear. The model was built taking into account
two physiological characteristics: facial muscle movements and HRV combined with
textual analysis. Heart rate variability (HRV) is the oscillation of heart rate over a series of
consecutive heartbeats. This study’s novelty lay in the analysis of the combination of these
characteristics with the classification of emotions obtained by applying a deep learning
model based on RNN (Recurrent Neural Network). The methodological approach used to
collect the characteristics corresponding to each of the five classes of emotions mentioned
above involved showing 500 subjects belonging to different cultural backgrounds and
age groups a series of photograms of various films to arouse emotions, which were the
object of the study. The data on HRV were captured using a wearable device containing
various biometric sensors such as a heart rate monitor, blood pressure measurement sensor,
and body temperature sensor. The parameters measured were heart rate, systolic blood
pressure, and diastolic blood pressure concerning the above categories of emotions.

Sixty-eight reference points have been identified on facial images to extract features
from facial muscle movement. The positions of these points vary according to different
emotions. The characteristics associated with the different landmarks of the face make it
possible to distinguish the five different emotions. Only 47 landmarks were used in this
study. Considering that each facial reference point is identified by x and y coordinates,
a 94-dimensional characteristic vector was derived for each emotional category for each
person. For textual analysis, ISEAR public datasets were used [16]. This dataset consists
of several blogs written by different subjects in a specific emotional state. Each blog is
associated with a label for emotional class. The datasets were associated with the five
emotions: anger, sadness, joy, disgust, and fear. The ISEAR dataset consists of 7666 samples,
but 1400 samples were used for each of the five emotional categories above. Using the
word-emotion lexicon of the National Research Council (NRC), Canada, tokens related
to each emotional category were extracted. Features were studied using long short-term
memory (LSTM) and bidirectional long short-term memory (BLSTM) variants of the RNN
classifier. The experimental results showed a classification accuracy of 98.5% in the case of
BLSTM and 95.1% for LSTM.

Dahua et al. [17], for the recognition of emotions, used a multimodal model that,
compared to the single-mode model, used complementary information that improved
classification accuracy. They merged the features extracted from electroencephalography
(EEG) to detect emotions continuously with those derived from facial expressions. To
arouse emotions in the subjects, films and excerpts from the SEED dataset (SJTU Emotion
EEG Dataset) [18] representing types of negative, neutral, and positive emotions were
screened, and simultaneously EEG signals and facial expressions were recorded separately.
Ten subjects participated in the experiment. Six sessions of movie clips representing a
combination of the three classes of emotions were presented to each subject. Before each
visualization session, the subjects were required to stay relaxed for 10 s to obtain the baseline
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to capture the change in emotion. The length of each clip is about 200 s. A 30 s break was
provided between one film and another. Ten observers, specialists in psychology, were
employed to carry out the continuous annotation of the response of the facial expression of
the subjects. For this phase, the DARMA program was used, which allowed continuous
evaluations of valence and excitement to be collected when viewing audio and video files.

With the help of a joystick, the observers performed the continuous annotation of
emotions. The EEG data were sampled ussing the Emotive EPOC headset equipped with
14 acquisition channels. The ECG signals were preprocessed to delete artifacts by applying
the 4–47 Hz bandpass filter and the spatial filter based on independent component analysis
(ICA). The PSD (PhotoShop Document) features were extracted using the short-term Fourier
transform (STFT). The PSD features are correlated with emotions in different bands, such
as theta bands (4–7 Hz), alpha bands (8–12 Hz), beta bands (13–30 Hz), and gamma bands
(30–47 Hz). The 56 features (14 channels × 4 frequency bands) were used to represent
the EEG signals. After this phase, feature selection was performed to simplify the model
and to improve performance by reducing irrelevant or redundant features. The authors
applied t-distributed stochastic neighbor embedding (t-SNE), a nonlinear feature selection
algorithm that was very efficient in computer vision. The valence predictions of EEG were
obtained by support vector regression (SVR). Facial geometric features were extracted
using the facial reference point localization model for facial expression. In particular, the
inclination of the forehead, the extension of the opening of the eyes, the extension of
the mouth, and the inclination of a corner of the mouth were chosen as facial features.
These features were extracted by considering the coordinates of 29 landmarks in the eye
and mouth. SVR was also applied for facial predictions. Both features were merged.
Long short-term memory networks (LSTM) were utilized to accomplish the decision-level
fusion and capture the temporal dynamics of emotions. To verify the validity of their
classification method, the authors compared their t-SNE feature selection method with
principal component analysis (PCA) with different dimensions. The results showed that the
precision of EEG-based emotion recognition improves with decreasing feature dimensions.
Both methods demonstrated the validity of the recognition system.

Moreover, t-SNE achieved more significant improvement than PCA. The best perfor-
mances achieved by t-SNE and PCA were 0.534 ± 0.028 and 0.464 ± 0.032, respectively,
when the dimension of the mapped feature was 15. The results of continuous emotion
recognition showed that the fusion of two modalities provided better results than EEG and
facial expressions separately. For the results of a single modality, facial expressions were
better than EEG. The experimental results found that three steps of LSTM yielded the best
CCC (concordance correlation coefficient) of 0.625 ± 0.029.

The possibility of using wireless devices and networks has stimulated research in the
design of innovative models capable of recognizing human activities through the collection
of physiological, environmental, and position data to obtain valuable information on the
state of health of people, to develop intervention strategies to improve living conditions.
In addition, the development of machine learning algorithms makes it possible to deduce
human emotions from sensory data that can facilitate the identification of mental situations
in need of help.

In this context, Kanjo et al. [19] proposed a model that is based on the detection of
emotions in motion and in real-life environments, different from other models in which
emotions are detected in laboratory environments and with samples in which emotions are
stimulated by audiovisual means or by asking participants to perform activities designed
to induce emotional states. The experience was developed with the following:

• The use of multimodal sensors: physiological, environmental, and position data
collected in a global template representing the signal’s dynamics together with the
temporal relationships of each mode.

• The application of different deep learning models to extract emotions automatically.
• Collecting data in real situations from subjects wearing a bracelet and a smartphone.
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• In classifying emotions, the characteristics of the three types of signals are examined
individually and combined.

The authors used the EnvBodySens dataset, already tested in a previous work [20],
which collected data from 40 participants who walked on specific paths. The data were
obtained for heart rate (HR), galvanic skin response (SGR), body temperature, motion data
(accelerometer and gyroscope), environmental data such as noise levels, UV, atmospheric
pressure and location data, GPS locations, and self-reported emotion levels recorded on
Android phones (Nexus), wirelessly connected to Microsoft Wrist Band 2 [21]. The self-
reported data referred to the responses given by the participants about the sensations they
experienced while walking based on a predefined scale of emotions. The data collected
included 550,432 sensor data frames and 5345 self-report responses. The signals were
preprocessed and subsequently inputted into a hybrid model of a convolutional neural
network and long short-term memory recurrent neural network (CNN-LSTM). The results
showed that deep learning algorithms effectively classify human emotions when using
many sensor inputs. The average accuracy was 95%. In addition, tests carried out using
MLP, CNN, and CNN-LSTM models showed that with the hybrid model, the accuracy of
emotional states increased by more than 20% compared to a traditional MLP model.

The application developed by Suraj et al. [22] was part of the research aimed at
the automatic detection of emotions, using deep learning algorithms, to detect pain or
discomfort to help medical personnel immediately activate the most suitable treatments.
The solution adopted is based on the use of a CNN network to which images of the face
and mouth are transferred. The authors created the model through human face detection,
eliminating unwanted components using a webcam. Images underwent a preprocessing
step to convert from RGB to grayscale using OpenCV libraries. Histogram equalization
was performed to unify and improve image contrast for better edge identification. Next,
a cascade Haar classifier was used to recognize the mouth and eyes in each frame. The
classification of emotions was performed by the last level of the CNN network (SoftMax).

Experimental results showed that this system can detect normal emotions, pain, and
fatigue accuracy of 79.71%.

3. Emotion Recognition Analysis

To offer readers a clear understanding of how emotions can be derived through visual
images of the face, we developed an analysis of the theme reported below.

3.1. Detection Technique

The FER is also used in human intention prediction (HIP), which represents an emerg-
ing area of research in which the system, through the collected data, predicts human
behavior to improve assisted living.

Face recognition in the context of the HAR in healthcare can be applied for:

• Detecting neurodegenerative disorders;
• Detecting states of depression or, in general, identifying subjects who need assistance;
• Observing the condition of patients during medical treatment;
• Detecting psychotic disorders;
• Monitoring anxiety states;
• Detecting pain or stress.

Human behavior can be characterized by analyzing facial expressions through the
vision system. The face is the most expressive part of our body; it makes visible every
emotional trace, thus making a face the primary source from which to obtain information
on emotions.

Abdulsalam et al. analyzed how emotions can be detected [23]. They can be recognized
through unimodal social behaviors, such as speech, facial expressions, texts, or gestures;
bimodal behaviors, such as speech associated with facial expressions; or multimodal
behaviors, such as audio, video, or physiological signals.
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As part of our study, we focused on recognizing emotions through facial expression with-
out considering other methodologies that use voice, body movements, or physiological signals.

Ekman was one of the first researchers to study emotions and their relationship with
facial expressions; his research demonstrated the universality and discretion of emotions
following Darwinian theory [24]. Over the years, he developed a set for the recognition
of emotions based on a series of stimuli called POFA (Pictures of Facial Affect) consisting
of 110 black and white images. According to Ekman et al. [25], in nature, there are two
different categories of emotions, primary or universal emotions, and secondary or complex
emotions. The former can also be present in other animals, as Charles Darwin argued in
The Expression of Emotion in Man and Animals; the latter, however, is present only in human
beings. Primary emotions are universal and innate emotions.

On the other hand, secondary emotions are affected by environmental and socio-
cultural influences. The primary emotions are also essential: anger, fear, sadness, happiness,
disgust, and surprise. Complex emotions include joy, envy, shame, anxiety, boredom, resig-
nation, jealousy, hope, forgiveness, offense, nostalgia, remorse, disappointment, and relief.

In 1992, Ekman expanded his list of basic emotions, adding contempt, embarrassment,
guilt, and shame to those already known. For each of the primary emotions, there are
characteristic elements of the face that allow one to identify the type of emotions:

Anger, generated by frustration, manifests itself through aggressiveness and can
be identified through the following features: a flushed face, hard look, dilated nostrils,
clenched jaws, lowered eyebrows, and tight lips. Some of these characteristics are also
present in expressions of fear. However, the eyebrows, the forehead movement, and the
type of mouth allow us to differentiate the two expressions. In fear, the eyebrows are raised,
the eyelids are stretched, and the mouth is open.

Happiness, the manifestation of a mood of satisfaction, is one of the easiest emotions
to recognize because a smile appears on the person’s face. The lips can be joined in the
smile or open, including the teeth and cheeks raised. The more pronounced the smile, the
more the cheeks rise.

Disgust is a feeling of repulsion, and its characteristics are: clenched nostrils, raised
upper lip, and curled nose. The greater the sense of disgust, the more pronounced the
upper lip and the wrinkling of the nose will be.

Sadness is identified through the forehead and eyebrows: the first displays a frown,
and for the second, the inner corners are raised. Sometimes sadness can be confused with
the emotion of fear.

Surprise, the manifestation of the state of mind in the face of an unexpected event, is a
type of brief emotion in which the eyebrows appear curved and raised, the eyes wide, the
forehead wrinkled, and the jaw is lowered, causing the lips to open.

Fear, an emotion produced in the face of a dangerous situation, is identified through
the following characteristics: raised eyebrows, wide-open eyes, dilated pupils, joined
eyebrows, and elongated lips.

There are two methods for studying facial expression: one based on an analytical
method through which the mimic components that contribute to the determination of a
specific facial expression are identified and the other based on the judgment of the facial
expressions manifested. The facial action coding system (FACS) can be used as an analytical
method. This system, developed by Ekman and Friesen, constitutes a measurement system
to evaluate the movements of facial expressions of emotion. It can be used to identify the
internal and emotional state of the subject. Through the analysis of facial micro expressions,
which are involuntary and rapid expressions, it is possible to deduce indications of hidden
thoughts and emotions of the subject. They appear with a fraction of a second and reveal
the subject’s genuine emotion.

The system is based on the coding of evaluators based on the presence and extent
of facial micromovements, called facial action units (AU), such as the face, eye, and head
movements. Face emotion recognition is a technology that belongs to the field of “Affective
computing” [26], enabling automatic systems to interpret and recognize human emotions.
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It is an interdisciplinary field that exploits computer science, psychology, neuroscience, and
cognitive science. It is a technology that reasonably and accurately recognizes emotions
from visual, textual, and auditory sources. High-resolution cameras and powerful machine
learning capabilities allow artificial intelligence to identify emotion through facial expres-
sions. It is used in various fields of application, as already seen above, including health, to
study stress and psychophysical disorders.

3.2. FER Structure

Face emotion recognition (FER) is a technique for the recognition of emotions through
the analysis of facial expressions in multimodal form.

FER has increased in the field of perceptual and cognitive sciences and affective com-
puting with the development of artificial intelligence techniques, virtual reality [27], and
augmented reality [28,29]. Different inputs are available for the FER, such as electromyog-
raphy (EMG), electrocardiograms (ECG), electroencephalograms (EEG), and the a camera;
the latter is preferable because it provides more information and does not require the
use of wearable devices. The technology on which the FER is based uses mathematical
algorithms to analyze faces acquired from images or videos to recognize emotions or be-
haviors through facial features. Recognition systems can use 2D images as input data, but
newer approaches employ 3D models or combined 2D–3D models called FER multimodal
models [30]. Three-dimensional technology performs better, but due to the high resolution
and frame rate, it requires more computational power as the amount of data captured in
3D databases increases.

In addition to traditional approaches [31], deep learning-based algorithms can be
applied for extraction, classification, and recognition activities.

FER is divided into the following phases: image acquisition, image processing, face
detection, feature extraction, and emotion classification (Figure 1).

Figure 1. Flow chart of facial emotion recognition.

� Image processing is a preliminary phase to eliminate all interfering factors in the input
image that can affect classification performance and complicate processing. It consists
of locating and extracting the region of the face. It is used to eliminate the background
noise through processing filters and to normalize the image’s color. For example,
one of the most commonly used filters to obtain a sharper image is RIR (Regularized
Inverse Auto-Regressive) [32].

� Face detection involves distinguishing faces in an image or video and constructing
bounding boxes for faces. One algorithm used for this purpose is the Viola–Jones
algorithm, developed initially for object detection. This algorithm examines the minor
features of a human face in an image, and if all these features are found, the algorithm
predicts that there is a face in that image or a secondary image. Its application
requires that requirements such as full-view, frontal, vertical, well-lit, and life-size
faces in fixed-resolution images are met. Paul Viola and Michael Jones modified
Haar’s wavelets to develop so-called Haar-like features. A Haar-like feature considers
adjacent rectangular regions in a sensing window, adds pixel intensities in each region
and calculates the difference between these sums. This difference is used to categorize
subsections of an image.

� Feature extraction is the process of extracting reference points that facilitate the
algorithm to recognize the expression. Extraction methods can be different depending
on the type of input image. For static images, the extraction method can be based
on “geometric features” or “aspects”. One commonly used geometric feature model
is the active shape model (ASM) [33]. It consists of creating a suggested shape by
looking at the image around each point for a better location for the point. Based
on this aspect, local feature analysis (LFA) methods use the entire face or specific
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measures to extract facial changes. The commonly used methods are local binary
pattern (LBP) and Gabor feature extraction. LBP [34] is a texture operator defined as
an ordered binary sequence of color depth comparisons between pixel p and pixels
belonging to the neighborhood under consideration. To calculate the LPB code, for
each generic pixel “p”, the 8 “x” neighbors of the center pixel are compared with the
pixel p and assigned a value of one if x ≥ p. Calculating LBP on the entire image
means producing a feature vector consisting of a histogram as an output result.

� Gabor feature extraction applies a series of filters to extract features. They are extracted
from sequences of dynamic images and are derived from changes in expressions and
the displacement of characteristic points of the face [35].

� Emotion classification has the task of identifying which emotions correspond to the
facial features examined. The following is an overview of the approaches based on
traditional methods and those based on deep learning [36]. In facial recognition
technology, data separation is crucial, belonging to the same class. A class represents
all data from the same subject. Linear discriminant analysis (LDA) and principal
component analysis (PCA) are among the most commonly used classifiers. Both aim
to separate data into classes. LDA [37] is a method that transforms image vectors into
a low-dimensional space maximizing data separation between classes and minimizing
dispersion within the classroom. That is, it groups the images of the same class and
separates the images of a different class. LDA allows for identifying the aim of an ob-
jective evaluation of the visual information present in the features. Similarly, PCA [38]
is an algorithm that transforms image vectors by reducing large dimensions into
smaller values while preserving as much information as possible and separating data
into the classroom. It employs eigenvalues and eigenvectors to reduce dimensionality
and projects data samples onto a small space.

Another algorithm used for classification is the K-nearest neighbor algorithm [39].
Classification is performed by comparing the sample with its neighbors. The input consists
of the training samples, while the output is the result of the sample belonging to a class.
The sample is classified through the class to which its neighbors belong. Based on the value
of K, the K elements closest to the sample to be examined are considered. Based on most
elements of a given class, the sample under examination will be assigned to the same class.

Among the algorithms based on supervised learning models are support vector ma-
chines (SVMs) [40], which are binary linear classification methods. With the two training
datasets, each identified according to the class it belongs to between the two possible
classes, the model assigns the new examples to one of them. The algorithm is based on the
identification of the separation line between the two classes that maximizes the margin
between the classes themselves, where the margin means the minimum distance from the
line to the points of the two classes. The so-called support vectors achieve this goal using
only a minimal part of the training dataset. Supporting vectors are those datasets that
reside on the margin and are used to perform classification.

Finally, random forest is a classifier formed by combining decision trees [41]. The
algorithm builds multiple trees based on randomly selected subsets of the training dataset,
then aggregates the predictions of each tree to choose the best prediction. Random forest
belongs to the class of algorithms called “Ensemble”. They work based on a combination of
machine learning algorithms to create a predictive model that ensures better performance.
There are different methods of aggregation, including bagging and boosting. Bagging
consists of sampling the initial dataset N times, training it N times, and choosing the
category most frequently for classification. On the other hand, boosting is based on a
sequential process in which, at each step, the previous model is improved by correcting
errors; each model depends on the previous one and tends to decrease the error.

Deep learning-based FER approaches significantly reduce reliance on models based
on physical facial features and other preprocessing techniques, enabling learning directly
from input images. The convolutional neural network (CNN) and recurrent neural network
(RNN) are the most widely used network models.
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3.3. Neural Network

The CNN network is a deep neural network that learns the characteristics of data layer
by layer through a nonlinear structure. It consists of a set of several layers that have the
function of extracting the characteristics of the input images and a completely connected
terminal layer that acts as a classifier. They are suitable for analyzing images in specific
datasets and classifying objects within them. Each processing layer contains a convolutional
filter, a trigger function (Relu), and a pooling function. At the end of each processing step,
an input is generated for the next level. The convolution subjects the images to a series of
filters, each of which manages to activate specific characteristics of the images to create the
feature map that becomes the input for the next filter. The activation function is intended
to introduce a non-linearity into the system using nonlinear functions, and it can cancel
negative values obtained in the previous classes. The pooling function obtains images with
a particular input resolution. It returns the same number of images with fewer pixels, thus
reducing the size of the output matrices and the number of parameters that must be learned
from the network. At the end of the convolutional layers is the fully connected level (FC),
which aims to identify the classes obtained in the previous levels according to a certain
probability. These operations are repeated on multiple levels, and each level learns to
classify different characteristics. A fully connected level and classification level are used to
provide classification output. Designing a CNN network requires a training phase followed
by a testing phase. During the training phase, the images are labeled and transferred to
subsequent levels to allow conversion from the original input representation layer to a
higher-level and more abstract representation to build the reference feature maps with
which the network must compare the output feature maps. Each class represents a possible
answer that the system will choose. During the recognition phase, the network follows a
classification operation to identify which class the input image belongs to, identifying the
one with the highest probability.

RNN is a feed-forward neural network similar to the CNN network. It still has an
input layer, hidden intermediate levels, and an output layer. Land connections between
nodes form a graph directed along a timeline. While in CNN, neurons of the same level
cannot communicate with each other but can only send signals to the next layer, in RNN,
neurons can also admit loops. They can be interconnected even to neurons of an earlier
level. These networks link backward or to the same level. They can use their internal
memory to process any input sequence. The output of a neuron can influence itself in a
subsequent time step or affect the neurons of the previous chain, which will interfere with
the behavior of the neuron on which the loop closes. RNN networks can process a data
timeline, unlike classical feed-forward networks where the data provided are static. A
timeline can be thought of as a function sampled over several moments.

Deep learning methods must use extensive datasets to achieve a high recognition rate,
and so the algorithms do not work well if a few subjects form the datasets.

3.4. Dataset Used

The public databases used for analyzing emotions are the BU-3DFE and the BU-4DFE.
The BU-3DFE [42] is a 3D facial model database at Binghamton University containing

facial images of 100 subjects of different ethnic and racial origins. Each subject was scanned
with seven expressions. Except for the neutral expression, each of the six basic expressions
(happiness, disgust, fear, anger, surprise, and sadness) includes four intensity levels. Thus,
there are a total of 2500 3D facial expression models. Each expression pattern has an
image of the corresponding facial texture captured at two views (approximately +45◦
and −45◦). As a result, the database consists of 2500 two-view texture images and 2500
geometric shape models. To analyze facial behavior from static 3D to dynamic 3D space,
the BU-3DFE was extended to the BU-4DFE [42]. The new database of high-resolution
3D dynamic facial expressions refers to 101 subjects of different sexes, ages, racial and
ethnic origins. Three-dimensional facial expressions were captured at a rate of 25 frames
per second. Each sequence of expressions contains approximately 100 frames. Each
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subject performed the six basic emotions, ending with the neutral expression. The database
contains 606 sequences of 3D facial expressions.

Another database used is the Bosphorus [43], which contains 2D and 3D images
of 105 subjects, of which a third are professional actors and actresses. The data were
collected in the laboratory, and the subjects were instructed to perform the seven basic
facial expressions. The scans for the 105 subjects were carried out considering different
poses, expressions, and occlusion conditions. The total number of facial scans is 4666. This
database contains examples of the unit of action (A.U.) faces defined in the facial action
coding system.

Other databases with visual sequences and images are available for studying emotions;
some examples are presented below.

The extended Cohn–Kanade Dataset (cK+) [44] contains 593 sequences of 123 subjects.
The sequence of images varies in duration from 10 to 60 frames. The images are labeled
with seven emotions, including six basic emotions and contempt. All images were taken
with a constant background. To avoid mistakes during the training phase, the labels were
assigned respecting the coding of FACS emotions.

Another database is the CASME [45], which contains spontaneous microexpressions.
Microexpressions are fleeting facial expressions that reveal authentic emotions that people
try to hide. From the 1500 facial movements filmed at 60 fps, 195 microexpressions were
selected. Samples from the dataset were taken from thirty-five participants. Each clip has a
minimum length of 500 ms. The images were labeled based on psychological studies and
participants’ self-assessments.

Still, the FER-2013 [46] is a widely used dataset containing 28,000 training data,
3500 validation data, and 3500 test data. Land images are stored in a spreadsheet where
the pixel values of each image are reported in cells per row. The images were obtained
using Google search and then grouped by emotional classes. The images were collected
from varying poses, ages, and occlusion.

BAUM [47] is a spontaneous audiovisual facial database of affective and mental states.
Video clips were obtained by shooting subjects from a front view using a stereo camera
and a semi-profile view using a mono camera. Subjects were shown images and short
video clips to evoke emotions and mental states. The target emotions are happiness, anger,
sadness, disgust, fear, surprise, boredom, and contempt; mental targets are uncertain (even
confused, indecisive), thoughtful, focused, interested (even curious), and annoyed. The
database contains 273 clips obtained from 31 subjects (13 females, 18 males) with the age
range of subjects being 19–65 years.

4. Methodology

A deep learning architecture is certainly not an innovative approach; in recent years,
numerous applications have been developed and shown excellent facial and emotional
recognition results. A deep neural architecture represents a practical solution; it allows one
to analyze and extract the characteristics of each face to train the network and associate the
characteristics of a new image with one of the seven emotions.

The innovation brought by our project is the development of an AI classifier based on
a set of classifying neural networks whose outputs are directed to an ensemble layer [48].
In particular, the networks are self-normalizing neural networks (SNN) [49]. We can
operate assumptions for which the problem is framed in the detection of phenomenological
expressions that:

• They are finite and contained.
• They may have a certain degree of overlap in their manifestation.
• They evolve in a specific time frame, during which common randomness mecha-

nisms govern the type of variation; in other words, the comparison between different
temporal evolutions of the same phenomenology has little variability.
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• The last stage of this evolution represents more distance between the expected classes
(or with less overlap between classes), which can be defined as a maximum characteri-
zation event.

The architecture consists of 6 SNNs, each trained to identify the six emotions. The
networks are cascaded, and each is dedicated to detecting the presence or absence in the
input image of a single specific emotion (among the six present in this study) assigned and
associated with it. Each neural network is trained with its images for a specific emotion.
Each network will produce two outputs, of which the first identified with EM, through
a numerical enhancement (from 0 to 1), will confirm the correspondence of the detected
emotion with that assigned to the network, and the second identified with AM, similarly
through a numerical enhancement (from 0 to 1), will signal the presence of another emotion
than that assigned to the specific network. If, for example, the first network has been trained
to detect anger, the eligible cases will be EM1t1 = 1 and AM1t1 = 0 if the emotion is anger,
and EM1t1 = 0 AM1t1 = 1 when the emotion detected is “another” different from anger.

These outputs are then transferred to the ensemble layer, which provides an accurate
result by analyzing the outputs of the individual networks according to statistical logic.
Ensemble is an algorithm that combines several trained models, allowing them to obtain
better predictive results than single models.

Wanting to apply this architecture to the time interval during which the face passes
from a “resting” stage to the stage “of complete characterization” of a specific emotion, it
will be necessary to provide as an input to neural networks three frames obtained from a
single specific video. In this case, the ensemble classifier will consist of 18 neural networks,
six dedicated to identifying the six emotions for each video frame. Its architecture is
represented by the diagram shown in Figure 2.

Figure 2. Network architecture.

The system’s functioning can be described by assuming that we want to classify a
specific emotion that we already know, such as “happiness.” With its three frames, this
emotion is inputted into the system. Assuming that the M2 network has been trained for
this type of emotion, we will obtain that, for Frame 1, EM2t1 will take on a more significant
weight value than all the EMit1 of the other five networks. Similarly, when we move on to
analyze Frame 2, in which the expression takes shape, the EM2t2 will increase its weight
value, resulting in more significance than the EMit2. Finally, with frame three, we will
obtain a maximum evaluation of EM2t3 far superior to the other values for EMit3. Finally,
the Classification Ensemble module, in analyzing all of the EMitj, determines as a predictive
value the classification obtained from EM2t3, considering the temporal variation obtained.

196



Appl. Sci. 2023, 13, 3259

This mode of analysis performed at three different time intervals allows us to evaluate
the difference, even on the same individual, between the movements that the face performs
during the moments leading to the full manifestation of emotion. It allows us to evaluate
whether it is the result of a subconscious reaction to an event (“genuine reaction”) or, vice
versa, produced by an act of conscious voluntariness (“voluntary fiction”).

This approach is challenging to implement since building a training set with the
visual traits described above is complex. The extraction from the videos of the three
frames that belong to the exact configuration of the muscles of the face relative to the
evolution of a specific emotion needs to be revised. For example, extracting frames with
only time synchronization in mind could compromise model inference. While the evolution
of expressions can be correlated, the timing of expressions can vary significantly from
individual to individual.

Therefore, finding such videos at a helpful quantity for training networks is challeng-
ing. The hypothesized architecture remains valid, excluding the temporal component,
considering that a single image is instantly acquired. Even with this mode, the qualities
related to the performance and near observability of inferential states remain preserved.
For these reasons, a simpler architecture was applied in this work, as shown in Figure 3.

 

Figure 3. “Single frame” Configuration.

The input images in this configuration can be assimilated to the frame at time t3 of the
configuration in Figure 2. The images are supposed to be no longer sequences of movie
frames. Instead, the images of the training set are all referable to the stage of the maximum
characterization of emotions.

Compared to a single neural network, this configuration has the advantage of imple-
menting a classifier with inferential states that are “almost observable”. With this solution,
we can overcome the problem that afflicts a specific classifier if it produces an erroneous
result. This classifier provides the advantage of being able to intervene when it is affected
by development or model errors in the case of unwanted outputs. In the case of using
neural networks, it is impossible to identify the “neuron” to be replaced as it is the entire
network that has extracted a model that does not conform to the phenomenology to which
it was applied. So, with an AI Ensemble classifier, it becomes possible to identify the
subnet that gave the output altering the correct functioning of the ensemble module. It
is possible to intervene directly in that specific subnet. This peculiarity, in addition to
providing elements to understand why and how the error was born, allows for obtaining
improvements in all parts of the classifier.

5. Dataset and Model Design

The research activities focused mainly on identifying, studying, and highlighting how
the proposed AI ensemble approach can provide different advantages in the FER field.
With this in mind, design choices can be characterized as “stress tests.”
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In particular, a Kaggle dataset was chosen for the training and test sets (Figure 4). The
dataset also predicts the “neutral” emotion, which we did not consider.

Figure 4. Some emotions from the Kaggle Dataset.

This presents some critical issues:

• Facial expressions, or gestures, are not always the primary characterization of images.
• The numerical distribution of classes is very uneven and, in some cases, limited

(Tables 1 and 2).
• The “distance” between the reference classes is not very marked (we collected conflict-

ing opinions of attribution through small surveys aimed at students).

Table 1. Training set.

Training set Total

L0 (Anger) 3995
L1 (Disgust) 436
L2 (Fear) 4097
L3 (Happines) 7215
L4 (Sad) 4830
L5 (surprise) 3171

Table 2. Testset.

Testset Total

L0 (Anger) 958
L1 (Disgust) 111
L2 (Fear) 1024
L3 (Happines) 1774
L4 (Sad) 1247
L5 (surprise) 831

The single images are grayscale and have a resolution of 48 × 48 pixels.
The training set has been appropriately relabeled by generating six different training

sets from two classes (“reference emotion” and “other emotion”).
In this scenario, it seemed helpful and not too expensive in computational terms to

use SNNs (self-normalizing neural networks). These are networks robust to noise and
disturbances and do not exhibit high variation in their training errors. In deep learning, a
widely used technique is batch normalization, which leads to the normalization of neuron
activation towards mean zero and unit variance. Each level is normalized and used as an
input to the next level. SNNs, on the other hand, are self-normalizing, neural activations
that automatically converge towards mean zero and unit variance. This property is ensured
by the activation function, which consists of scaled exponential linear units (SELU). This
characteristic accelerates convergence in the formation process. SELU learns faster and
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better than other activation functions without needing further processing. The SELU
activation function can be expressed mathematically as:

f(x) = λ × x if x > 0 (1)

f(x) = λ × α (ex − 1) if x ≤ 0

Graphically, it can be represented as in Figure 5.

Figure 5. SELU activation function.

The “SELU” nonlinearity keeps the data standardized and prevents the gradients from
becoming too small or too large. The effects are comparable to batch normalization while
requiring significantly less calculation. In addition, the convergence property of SNNs
towards mean zero and unit variance allows the training of deep networks with many
levels and makes learning highly robust.

The configuration of the networks (Figure 6) is as follows:

• Input layer (48 × 8 × 1).
• Layer with linear activation function (105 neurons on average).
• Dropout layer, with a 30% activation rate; a layer present only during training that

helps prevent the phenomenon of overfitting.
• Layer with SELU activation function
• A linear output layer (Figure 7), this layer has two outputs for individual neural networks.

• Epochs = 60
• Learning rate = 0.0001
• Accuracy = 98.4%

Figure 6. Network configuration.
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Figure 7. Attributes of output layer.

The control neural network has six outputs (as many as the emotions to be classified).
For the training, we used the Adam stochastic optimizer [50], with a learning rate of

0.0001 and a minibatch size of 200. This optimization algorithm can be used instead of the
classic stochastic gradient descent procedure to iteratively update the network weights
based on training data. Regarding loss function, we used multinomial logistic loss.

In addition, we excluded a certain number of images from the training set to make it
as homogenous as possible, as they would have produced a misclassification due to their
similarity to other emotions.

The test set was not altered, thus introducing an additional “stress” factor in evaluating
the results.

We also used Netflix’s Vectorflow Framework (Apache License Version 2.0), a mini-
malist neural network library for a single-machine environment written in D optimized
for sparse data and low latency. D is a development language that can compile natively
into many hardware and operating systems while retaining the simplicity of development
like Python.

The proposed methodology is ensemble learning in a broad sense. Various ensemble
techniques have long been considered and applied to AI network models; however, in
these configurations, the models are complete and autonomous and could also be used
outside the ensemble configuration. In our case, however, the single models (the single
neural networks) can identify only one specific emotion. Therefore, more than a single
network would be required to address the problem under examination. With our approach,
the ensemble process is “distributed” between the homonymous layer and the networks,
which, on the one hand, operate a classification for each emotion and, on the other, ab-
stract information of the six classes that is then analyzed by the terminal layer for precise
identification of the emotion.

For the Ensemble algorithm used, we applied the following rules:

• If multiple networks attribute different emotions to the same image, the network wins
where the difference between the two outputs is higher (less uncertainty);

• If only one network performs the classification, no further investigation is carried out,
which becomes the solution for the entire model;

• If no network classifies the input image as a specific emotion (all outputs are: other
emotion�), then the ensemble layer will choose the emotion associated with the
network for which the two outputs have a shorter distance between all other networks
(greater uncertainty in classifying it as another emotion).

From a methodological point of view, a “control” neural network was implemented.
A comparison was performed for the results obtained with the Ensemble AI architecture.
This network is the same type as the individual SNN networks but built (six outputs) and
implemented to classify the six emotions autonomously. The training was carried out with
the same training set. Its configuration is the same as that used for the classifier (Figure 6).

200



Appl. Sci. 2023, 13, 3259

6. Results and Discussion

In the experiments, we used a result validation approach through the control network.
In Table 3 we reported the results for the six emotions analyzed. Success rates were achieved
using the original test dataset and a training dataset reduced by several images to make
it more consistent. The percentages refer to each type of image (emotion) in the case of
the control neural network, to the single AI NN units, and to the entire model in the
Ensemble algorithm.

Table 3. Success Rate.

Control Network Sub Network Ensamble

L0 (Anger) 22% 62% 78%

L1 (Disgust) 10% 18% 22%

L2 (Fear) 82% 94% 95%

L3 (Happiness) 43% 76% 81%

L4 (Sad) 64% 83% 85%

L5 (surprise) 54% 77% 80%

From the analysis of the data, there is a low value for the “Disgust” emotion for all
types of networks used, both due to the low number of samples present in the datasets
and the difficulty of its identification due to the lack of expressive separability from the
“Anger” class.

We also found that network performance improved by moving from the single control
network trained for the six types of emotions to those of individual networks built to
identify a specific emotion (no false positives were detected). Moreover, finally adding the
rules of decision and unification of the ensemble layer, we noticed that the performance of
the network improved further. The success rates are almost all around 80%, with a peak of
95% for the “Fear” emotion.

We compared the model’s performance with the other proposals in the related work
(Table 4). Depending on the specific functionalities of the emotion recognition system,
researchers used different methodologies, technologies and databases. In our analysis, we
represented different experiences testifying to a varied scenario.

The results obtained show that the algorithm adopted ensures that facial emotion recog-
nition results are compatible from the point of view of accuracy with the state-of-the-art.

The efficiency of the model was based on the type of network used. SNN networks
allowed us to create a model with a reduced number of levels compared to existing models.
This choice arose from some considerations related to the intrinsic quality of the model
(e.g., not requiring any normalization of the input data) and the peculiarities of the dataset
used in conjunction with the learning phase. The dataset is, in fact, not very homogeneous
in terms of the numerical distribution of classes. Therefore, two of the qualities of SELUs
are very valuable: it does not have a vanishing gradient problem, and neurons cannot die,
as can happen with RELUs.

Then, the outputs of the individual networks are sent to the Ensemble layer, which
has the task of improving the performance of the individual classification systems through
the analysis of the results rendered.

We achieved 98.4% accuracy with a learning rate of 0.0001 and 60 epochs, while in the
test phase we obtained an accuracy value of 85%, excluding the emotion disgust.
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Table 4. Comparison of face emotion recognition systems.

Authors Purpose Technologies Database Efficiency

Jn et al. [12] Direct diagnosis of disease
• Deep Transfer
• Learning DTL
• MatConvNet

VGG-Face 93% accuracy

Jn et al. [13]
Improved facial emotion
recognition using pseudo
RGB-D

• RGB-D sensor
• Depth plus
• Generator
• Adversarial

network

• Bosphorous 3d
• Face
• CASUA 3d Face
• Bu-3DFe

97% SSIM (Similarity
index for measuring
image quality)

Ghosh et al. [14]
Improved facial emotion
recognition using
physiological signals

• RNN
• HRV sensor ISEAR 96% accuracy

Dahua et al. [17]
Improved facial emotion
recognition using
physiological signals

• t-SNE
• PCA
• SVR
• PSD

SEED dataset
0.625 ± 0.029 CCC
(Concordance
correlation coefficient)

Kanio et al. [19]

Improved facial emotion
recognition using MEMS,
environmental an
physiological signals in
real-life environments

• CNN
• CNN-LSTM EnvBodySens 95% accuracy

Suraj et al. [22]
Pain or discomfort
recognition in
patients monitoring

• CNN
• Haar classifier N.D. 79.71% accuracy

Bibbo’ et al. Face emotion recognition Ensemble SNN Kaggle 98.4% accuracy in
training and 85% in test

The emotion collection was carried out based on static images. The usefulness of a
video would provide spatiotemporal information for expression dynamics captured in a
video sequence [51]. The temporal information is accurate, allowing us to perform better.
However, it involves significant differences in the characteristics extracted during the
duration of the transition and in the specific characteristics of the expressions depending on
the subject’s physiognomy. Possible approaches to solving this type of problem are costly
in terms of computational time and complexity. Therefore, they do not efficiently reduce
time redundancies in extracted frames.

The dataset used, which is complex in itself, presents for some classes a limited number
of samples. Numerous images are not sufficiently clear, and can lead to misinterpretation.
This led us to reduce the number of samples per class to make the entire dataset homoge-
neous. In order to improve accuracy, the number of samples for each class can be increased
in future work.

Therefore, we believe that the proposed solution, due to the reduced computational
load and its structural simplicity, can be used in the monitoring of the elderly to support
medical staff in the assessment of the health status of patients.

7. Conclusions

In this article, we have developed a facial expression recognition system that can
help improve healthcare. Despite the results obtained with technological progress in the
development of automatic emotion recognition systems, this technology, as observed from
the review of the literature, is not widely used in the health system.
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The solution we propose is based on the Ensemble AI model. The methodology applied
is part of an ensemble learning area in which the models, in comparison, discriminate two
classes, with one referring to the specific emotion for the network for which it was trained
and the other regerring to “other emotion” class. The advantages obtained were:

“Almost observable states”. It is possible to investigate and highlight which module
caused errors. It operates a debugging similar to the case of deterministic algorithms.

“Modularity and parallelism”. Individual modules can be trained on different work-
stations, at different times, without synchronization between parts. This feature allows one
to independently develop different configurations and calibrations of the specific module
research groups.

“Embedded application”. The Vectorflow framework in D language allows the realiza-
tion of the model even in embedded hardware on many platforms and operating systems.

The results show an increase in performance compared to the control neural network,
confirming that the proposed system can recognize emotions with high precision. With this
system, doctors and healthcare professionals can constantly monitor, as part of the broader
human activity recognition system, the psychophysical conditions of patients, detecting
malaise, pain and fatigue and taking appropriate actions as needed.

This solution can be seen as a component of smart healthcare centers.
In the future, we plan to extend the work by investigating the infrastructure on a less

complex dataset and analyzing video sequences.
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Featured Application: This study informs the healthcare workers implicated in the treatment

of obesity about how the use of digital platforms to record food intake is related to the body

mass index in a sample of a general population with high internet literacy. These data can be

applied to guide the appropriate use of these resources by the population and thus improve the

repercussions of their utilization on the user’s health.

Abstract: An inadequate diet has been shown to be a cause of obesity. Nowadays, digital resources
are replacing traditional methods of recording food consumption. Thus, the objective of this study
was to analyze a sample of United States of America (USA) residents to determine if the usage of any
meal tracker platform to record food intake was related to an improved body mass index (BMI). An
analytical cross-sectional study that included 896 subjects with an Instagram account who enrolled
to participate in an anonymous online survey was performed. Any meal tracker platform used to
record food intake over the last month was employed by 34.2% of the sample. A total of 85.3% of
the participants who had tracked their food intake were women (p < 0.001), and 33.3% (p = 0.018)
had a doctorate degree. Participants who used any meal tracker platform also had higher BMIs
(median: 24.9 (Q1: 22.7–Q3: 27.9), p < 0.001), invested more hours a week on Instagram looking over
nutrition or physical activity (median: 2.0 (Q1: 1.0–Q3: 4.0), p = 0.028) and performed more minutes
per week of strong physical activity (median: 240.0 (Q1: 135.0–Q3: 450.0), p = 0.007). Conclusions:
USA residents with an Instagram account who had been using any meal tracker platform to record
food intake were predominantly highly educated women. They had higher BMIs despite the fact
they were engaged in stronger exercise and invested more hours a week on Instagram looking over
nutrition or physical activity.

Keywords: diet records; eHealth; body mass index; internet of things; social media

1. Introduction

In 2016, the prevalence of being overweight in the adult world population was 39%
in persons over 18 years old (39% of men and 40% of women). The prevalence of obesity
was 13% (11% of men and 15% of women). The prevalence of obesity throughout the
world almost tripled between 1975 and 2016 [1]. The prevalence of obesity has been
reported at about 20% in the United States of America [2]. Being overweight or obese is
related to overall mortality [3] and particular causes of death, including cardiovascular
and respiratory diseases and cancer [3]. Being overweight or obese augments the risk of
numerous chronic diseases, especially cardiovascular diseases, type 2 diabetes mellitus,
and some cancers [4].
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Inadequate dietary habits have been shown to cause obesity prevalence among the
population [5]. In the age of digital technology, different ways of trying to improve health
with innovative technologies have been developed [6]. Health information via social media,
with nutrition [7] and fitness counseling [8], wearable devices to track physical activity [9],
and applications to record food intake—or even more specific platforms for different types of
users, such as patients with food allergies [10], older adults [11] or young children [12]—are
frequently used by the population. Thus, nowadays, digital applications or platforms are
replacing traditional ways of recording our food intake, such as written food diaries or
food frequency questionnaires [13,14].

Some of these applications have been developed for different populations, such as
the Irish [15], British [16–18], German [19,20], French [21], Swedish [22], Italian [23], Ara-
bian [24], Canadian [25], Australian [26] or United States of America [27] populations, with
the aim of addressing the epidemiological challenges regarding health and weight loss. On
the contrary, a large number of smartphone applications have been created by private insti-
tutions, with a mainly commercial purpose [28]. Usually, they have not been validated (only
around 0.8% of the apps registering food intake have been scientifically evaluated [29]);
they have not involved nutrition professionals during their development (only around
0.05% have been created with identifiable professional advice [30]) [31], and they have not
been adapted to the different cultural food habits [32]. These apps are developed to be used
by the general population, with the main objective of weight management [31]. They have
been shown to report acceptable energy intake and fat proportions [33], despite micronu-
trients being predominantly underrated [33]. For example, MyFitnessPal has been shown
to be accurate for calculating total energy intake and fiber [34] but underrated sodium
intake [35]. The accuracy of the apps in registering the consumption of saturated and
polyunsaturated fatty acids, a relevant aspect of cardiovascular health, has been evaluated
as poor [36]. It has been stated that the greater source of error might reside in the estimation
of the portion size [37], in the use of non-specific food composition data for each country,
and in the modification of a food list by the user [38].

Widely used applications, such as MyFitnessPal, Lose It!, or FatSecret [31], are de-
signed to capture dietary data and even to provide personalized nutritional advice, and
the majority are used without professional support [39]. The quality of the information
provided by some of these apps (Yazi, FeelEat, and Bonne App) has been evaluated by
dieticians and nutritionists, showing high-quality scores, although other widely used ap-
plications, such as Lose It!, obtained worse marks [40]. Specificity of the content has been
shown as a deficit topic in general, although FeelEat has also been evaluated as being cor-
rect in this issue [40]. The experiences that favor the use of apps to track food consumption
have been elucidated. Between them, easier and quicker food data annotation, with respect
to more conventional methods, the provision of goals, diet recommendations, and the indi-
cations of progress [39], are noticeable. When considering personal factors favoring the use
of these apps, privacy has been identified as the most remarkable [39]. On the other hand,
it has also been stated that the user can become addicted and obsessed [39]. For example, it
has been shown that people with high signs of eating disorders use MyFitnessPal more [41].
Dietary tracking with MyFitnessPal has also been linked to an exacerbation of body concern
in college women with body dissatisfaction and to changes in feelings (both positive and
negative), dietary intake and even increases in weight [42]. Users are worried about the
possibility of becoming obsessed, especially those with a poor body image [42]. In young
adults, dietary tracking with apps has been associated with a greater presence of irregular
weight control behaviors, such as fasting or purging [43].

In summary, the way in which the use of these applications, without professional
intervention, influences the maintenance of a healthy weight has not been widely studied,
despite the huge number of apps available on the market (it has been reported that there
are around 30,000 marketable mobile apps dedicated to a selection of food and/or physical
activity) [31]. In order to enhance the evidence about the effects of the use of these apps
on the population has been recommended [40]. Thus, the objective of this manuscript is
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to present an analytical cross-sectional study of United States of America (USA) residents
who have an Instagram account and to determine if the usage of any meal tracker platform
to record food consumption was related to an improved body mass index (BMI). We
hypothesized that using any meal tracker platform to record food intake would improve
healthy weight maintenance.

2. Materials and Methods

2.1. Study Design

The study was a cross-sectional analysis and included USA residents enrolled to
contribute to an anonymous online survey.

2.2. Setting

The connecting link to the research was sent via email to actual or graduated students
from the University of Mary Hardin Baylor, Oakland University, the University of Kentucky,
and Queens University of Charlotte. The survey link was also expanded via Facebook and
Instagram. The distribution of the link was achieved with a cascade effect. The survey was
hosted on the Survey Monkey platform. An opportunity sampling method was performed.

2.3. Participants

In order to estimate the sample size, an infinite population was assumed. The expected
proportion used was 71%. Instagram was used in 2021 by around 71% of the United States
of America adults [44]. The GRANMO calculator “https://www.imim.es/ofertadeserveis/
software-public/granmo/ (accessed on 2 September 2019)” was utilized to compute the
sample size [45], with a 0.95 confidence level and desired precision of +/− 3.5 percent units
in the population estimation option. A minimal number of 646 participants was obtained.

Finally, the number of registered surveys was 896, taking into consideration the
possibility of doubtful or incomplete answers in some of the registers.

The participants were eligible for inclusion if they were older than 18 years and they
had an Instagram account. The consideration of users’ internet literacy was considered a
relevant factor in influencing the capacity of users to track their food intake digitally [46].
The selection of a sample connected to Instagram might favor its homogeneity regarding
the user profile according to their literacy level or technological skills [47].

2.4. Ethical Considerations

The University of Zaragoza, via the Academic Commission of the Doctoral Program
in Health and Sports Sciences (protocol code: “Impact of Instagram on the lifestyle and
physical activity in the United States of America” 2 July 2019), approved the study, which
observed the ethical stipulations of the Declaration of Helsinki [48]. The survey was
conducted in a way that minimizes possible harm to the environment; it was anonymous,
and the information was to be destroyed after the study was completed.

The study did not register questions regarding religion, political views, race, or other
aspects that could infringe on research ethics. Before starting the completion of the survey,
the subjects dispensed volunteer informed consent.

2.5. Data Sources

In the survey, the participants were questioned about the following:

- Gender: man/woman/others.
- Age, grouped in generations: Generation Z (born 1997–2012); Millennials (born

1981–1996); Generation X (born 1965–1980); Boomers (born 1946–1964) [49].
- Height, measured in feet and inches, and weight, measured in pounds. BMI was

determined: BMI = 703 × weight (pounds)/[height (inches)]2. BMI is considered an
index with very high specificity (97%) to detect obesity [50]. Self-reported weight and
height online have shown to be a valid method, with moderate to good agreement
between measured anthropometric data and those self-reported [51].
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- Do you smoke? Yes/No/Occasionally. It has been stated that traditional epidemiologi-
cal risk factors can be collected with equivalent or superior reliability online compared
with conventional methods [52].

- Highest academic degree attained, classified by a doctorate degree; master’s degree;
bachelor’s degree; associate degree; trade/technical/vocational training; some college
credit, no degree; high school graduate or the equivalent.

- How long the participants have been regularly on Instagram, classified as less than
1 year, between 1–2.5 years, and more than 2.5 years.

- How many hours per week on Instagram looking over nutrition or physical activity.
- The physical activity executed by the participants was registered with the short form

“last 7 days” of the International Physical Activity Questionnaire (IPAQ) [53]. It
was self-administered, and vigorous physical activity (minutes per week), moderate
physical activity (minutes per week), time spent walking (minutes per week), and
time spent sitting (hours per day) were recorded. This questionnaire is considered
reliable and valid for noting physical activity information [54].

In order to test the influence of the usage of any meal tracker platform to record food
intake regarding BMIs, the participants answered about the usage over the last month of any
meal tracker platforms to record their food intake. The answer was classified as: No/Yes.

2.6. Statistical Analyses

Gender, generation, smoking habits, academic degree, and time spent on Instagram
were described with percentages in each category. BMI, hours per week on Instagram
looking over nutrition or physical activity, vigorous physical activity, moderate physical
activity, time spent walking, and time spent sitting were described with the median,
25th percentile (Q1) and 75th percentile (Q3) because they were not normally distributed
according to the Kolmogorov–Smirnov test.

A chi-squared test was selected to study the relations of the usage, over the last month,
of any meal tracker platforms to record food intake with gender, generation, smoking
habits, highest academic degree attained, and time spent on Instagram (the maximum
likelihood ratio chi-squared test was used when expected frequencies in some cells were less
than 5). The Mann–Whitney U test was adopted to compare BMIs, hours per week spent on
Instagram looking over nutrition or physical activity, vigorous physical activity, moderate
physical activity, time spent walking, and time spent sitting between the participants who
did not use any meal tracker platforms to record their food intake over the last month with
those who did. The statistical significance was established at a p < 0.05.

SPSS 25.0 for Mac was used for the calculations.

3. Results

Of the 896 who participated, 78.7% were women, 20.6% were men, and 0.7% classified
themselves as others. Regarding the generations, 11.5% belonged to Generation Z, 75.6%
belonged to the Millennials, 11.4% belonged to Generation X, and 1.6% belonged to the
Boomers. A total of 93.5% of the sample did not smoke, 2.3% used to smoke, and 4.1%
used to smoke occasionally. Regarding the academic degree attained, 3.7% were high
school graduates, 6.1% had some college credit, 0.6% had technical training, 3.2% had an
associate degree, 43.2% had a bachelor’s degree, 15.1% possessed a master’s degree, and
28.1% possessed a doctorate. The majority of the participants (52.3%) regularly consulted
Instagram for less than one year, 17.8% regularly consulted Instagram for between 1 and
2.5 years, and 29.9% had more than 2.5 years. They spent a median of 2 h per week
(Q1: 1–Q3: 3) on Instagram looking over nutrition or physical activity. In relation to BMI,
the median was 24.0 (Q1: 21.8–Q3: 27.2). The median of the total minutes per week
performing vigorous physical activity was 240.0 (Q1: 120.0–Q3: 360.0), and performing
moderate physical activity was 180.0 (Q1: 90.0–Q3: 360.0). The median of the minutes per
week spent walking was 360.0 (Q1: 140.0–Q3: 840.0), and the median of the time spent
sitting (hours per day) was 5.0 (Q1: 4.0–Q3: 8.0).
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Any meal tracker platform to record food intake over the last month was used by 34.2%
(n = 306) of the sample (Table 1). The associations between gender, generation, smoking
habits, academic degree, time on Instagram, BMI, hours per week on Instagram looking
over nutrition or physical activity, vigorous physical activity, moderate physical activity,
time spent walking, and time spent sitting, and the variable usage of any meal tracker
platform to record food intake can be seen in Table 1. Gender, academic degree, BMI, hours
per week on Instagram looking over nutrition or physical activity, and minutes per week
of vigorous physical activity showed a significant dependency on the usage of any meal
tracker platform to record food intake. The percentage of women and the percentage of
participants with a doctorate were significantly higher in the group that used any meal
tracker platform than in the group that did not. Of the participants who had tracked their
food intake, 85.3% were women, and 33.3% had a doctorate. The participants who used any
meal tracker platform had higher BMIs, invested more hours a week on Instagram looking
over nutrition or physical activity, and performed more vigorous physical activity. They had
a median BMI of 24.9, invested a median of 2 h a week on Instagram looking over nutrition
or physical activity, and performed a median of 240.0 min a week of vigorous exercise.

Table 1. Comparative analysis of the participants depending on the usage of any meal tracker
platform to record food intake over the last month.

Usage of Any Meal Tracker Platform to Record Food Intake over the
Last Month

No Yes p Value

Gender (n = 896)

Man 23.7% 14.7%
<0.001

Woman 75.3% 85.3%

Other 1.0% 0.0%

Generation (n = 896)

Generation Z (born 1997–2012) 11.0% 12.4%

0.057
Millennials (born 1981–1996) 73.9% 78.8%

Generation X (born 1965–1980) 13.2% 7.8%

Boomers (born 1946–1964) 1.9% 1.0%

Smoke (n = 896)

No 92.9% 94.8%

0.548Yes 2.5% 2.0%

Occasionally 4.6% 3.2%

Degree (n = 896)

High school graduate. diploma or the equivalent 4.6% 2.0%

0.018

Some college credit. No degree 6.9% 4.6%

Trade/technical/vocational training 0.8% 0.0%

Associate degree 3.6% 2.6%

Bachelor’s degree 43.4% 42.8%

Master’s degree 15.3% 14.7%

Doctorate Degree 25.4% 33.3%
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Table 1. Cont.

Usage of Any Meal Tracker Platform to Record Food Intake over the
Last Month

Time on Instagram (n = 792)

Less than 1 year 50.8% 55.1%

0.455Between 1–2.5 years 18.0% 17.5%

More than 2.5 years 31.2% 27.4%

Median (Q1–Q3) Median (Q1–Q3)

Body Mass Index (n = 896) 23.6 (21.5–26.7) 24.9 (22.7–27.9) <0.001

Hours per week on Instagram looking over nutrition
or physical activity (n = 685)

2.0 (1.0–3.0) 2.0 (1.0–4.0) 0.028

Vigorous physical activity (min per week) (n = 765) 232.5 (120.0–360.0) 240.0 (135.0–450.0) 0.007

Moderate physical activity (min per week) (n = 741) 180.0 (90.0–360.0) 180.0 (90.0–360.0) 0.692

Time spent walking (min per week) (n = 844) 420.0 (140.0–840.0) 315.0 (122.5–840.0) 0.377

Time spent sitting (hours per day) (n = 859) 5.0 (4.0–8.0) 5.0 (4.0–8.0) 0.415

4. Discussion

This study has examined the relationship between the usage of any meal tracker
platform to record food intake and gender, generation, smoking habits, academic degree,
time on Instagram, BMI, hours per week on Instagram looking over nutrition or physical
activity, and physical activity in USA residents that possessed an Instagram account. It
was shown that a superior percentage of women and participants with a doctorate tracked
their food intake. Moreover, those participants who tracked their food intake had higher
BMIs, invested more hours a week on Instagram looking over nutrition or physical activity,
and performed more vigorous physical activity. Thus, our outcomes suggest that using
any meal tracker platform to record food intake over the last month would not lead to a
lower BMI.

Any meal tracker platform to record food intake over the last month was used by
34.2% of the sample. A total of 85.3% of the participants who had tracked their food intake
were women (p < 0.001) and 33.3% (p = 0.018) had a doctorate. It has been previously
shown that women and more educated participants are likely to be better respondents
to online dietary intake measurements [55], which is according to our results. Women
college students have manifested as those who track calories more so than men [56,57],
and highly educated citizens were revealed to use more mobile health applications [58].
Women were shown to be better respondents to the online surveys requesting data about
their health-based app use [59]. More women than men have been identified as users of
apps from healthy lifestyle websites for nutrition information, weight loss, and physical
activity [59].

The prevalence of smoking habits in adults in the USA was determined to be 18%
in 2012, and it continues to decrease [60]. In this study, the vast majority of the sample
did not smoke, and there were no differences between the group that recorded their food
consumption and the one that did not; thus, we can eliminate tobacco as a factor that could
influence BMIs [61].

Participants who used any meal tracker platform had higher BMIs (median:
24.9 (Q1: 22.7–Q3: 27.9), p < 0.001), despite being engaged in more vigorous physical activ-
ity (median: 240.0 (Q1: 135.0–Q3: 450.0), p = 0.007) and complying with the recommen-
dations on the amount of vigorous physical activity for health benefits from the World
Health Organization (more than 75 min per week) [62]. Although it has been postulated
that exercise is one of the keys to maintaining a healthy weight, the amount and type
of physical activity that should be performed to achieve improvements is still subject to
discussion [63]. A recent review showed that exercise protocols based on high-intensity
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interval training with a slow volume that require less time, however, favored better car-
diorespiratory adaptations than continuous moderate physical activity, yet they did not
provoke changes in the body’s composition in normal, overweight, or obese adults [63].
However, it has also been shown that vigorous physical activity may be more beneficial
than moderate physical activity in reducing waist circumference and visceral adiposity;
however, this was observed in adults who are overweight or obese [64].

Thus, the tracking of food intake in our study is not related to a more healthy weight
because, according to the BMI categories [65], participants who tracked their food intake
were almost overweight (BMI between 25 and 29.9), while those participants who did not
(median: 23.6 (Q1: 21.5–Q3: 26.7)), stayed not-so borderline of the normal BMI category
(between 18.5 and 24.9). This is in agreement with the results of a recent review, which
found that the effectiveness of multicomponent technologically mediated interventions
for weight management in obesity showed promising results; however, the isolated use of
an app received presumably less positive outcomes [66]. A recent review of intervention
studies using smartphone apps has analyzed the effects on anthropometric, metabolic, and
dietary outcomes. It has highlighted weight loss in adults being overweight and obese
for 3 and 12 months, although with minimal long-term effectiveness [67]. A recent study
on overweight or obese adults, who were advised to self-monitor their dietary intake for
8 weeks with an app, has found that if the frequency of self-monitoring was consistent,
weight loss could be achieved in the short term [68]. Another recent study has shown
that using tailored weight and calorie goals provided by professionals to track a person’s
food intake with a mobile app can produce clinically significant weight loss [69]. Thus, by
only using the isolated online tracking of food intake, the maintenance of a healthy weight
does not seem to be effective, though, previously, it has been shown that electronic dietary
records were better than traditional methods for BMI reduction [49]. However, if there is
professional support, the results improve. Anteriorly, it has been stated that in order to
progress to healthy dietary behaviors, having simple knowledge of the facts is not enough.
It would be necessary to develop favorable convictions towards alimentation [70] and have
the professional support of a dietitian’s skills to obtain behavioral change and sustainable
weight reduction [71]. In fact, app users have declared that having professional support for
using the apps may be interesting [39]. It has been demonstrated that a combination of care
with digital apps-based tools and support by health professionals is effective for healthy
weight achievement [72]. The factors included in these interventions, which conditioned
the best results in weight management, were as follows: self-management, particularly in
the first phases of the interventions; early education in nutrition and diet; and totally online
support messages from health professionals [72].

Participants who used meal tracker platforms of any type not only had higher BMIs
but also invested more hours a week on Instagram when looking over nutrition or physical
activity (median: 2.0 (Q1: 1.0–Q3: 4.0), p = 0.028). The time of social media consumption
has been shown to be correlated to the augmented sitting time on non-business days [73],
and a higher BMI has been associated with more time spent sitting [74].

It might be supposed, however, that these almost-overweight participants sought help
via technology or apps to track their food intake, and information on the web to try to
achieve a healthier weight. It seems that they were aware of the benefits of a healthy weight
and turned to new technologies in search of support to achieve it. This is a fact that might
be confronted by health professionals, given that it might show that health services are not
offering all the necessary support to educate populations in healthy nutritional behavior
or that people even prefer not to consult health professionals because they might feel
stigmatized [75]. It has been shown that the most habitual origins of stigma in overweight
and obese adults come from doctors, classmates, store clerks, companions and fellow
workers, and also from younger teachers and nurses; however, the increased frequency of
stigma is not associated with BMI [75]. Therefore, it is relevant that health professionals
consider improving their communication skills, avoid inappropriate comments and show
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comprehension and empathy [75] to favor those people concerned about their weight who
turn to professionals for help.

Limitations

This study is subject to some limitations. It is based on a cross-sectional study method;
thus, any causality can be referred to as relations with significant results. However, due
to the scant bibliography that exists so far on the subject, the results found may be a good
starting point for the future development of prospective longitudinal studies to clarify
the repercussions of populations’ generalized use of meal-tracking platforms. Previous
studies have shown that during weight loss interventions, to guaranty ad-herence, to track
the food intake diary, at least in two occasions must be achieved [76]. In our study, the
number of times or the frequency at which the participants tracked their food intake was
not registered. The fact that the use of a meal tracker platform is not related to a better BMI
might be related to an inconstant adherence to the tracking habit in our study. Participants
were questioned only about their usage of the meal-tracking platform over the last month
to facilitate a concrete response and not provoke an inferred response because the event
would not be concretely recalled [77]; this might also be considered a short period where
the monitoring of changes in BMI can occur. Millennials are the predominant generation
represented in the study. Previously, it has been stated that older adults are less prone
to adopt the use of digital health technologies [78], but this fact might compromise the
representativeness of our sample to other populations with a more balanced representation
of the different generations. The sampled participants have a high and homogeneous
internet literacy. Expanding the survey link through universities might have conditioned
the access to the survey link to highly educated individuals. Thus, the results might be
generalizable only to populations with similar characteristics.

5. Conclusions

United States of America residents with an Instagram account who had used any meal
tracker platform to record their food intake over the last month were predominantly highly
educated women, contemplating that the primary route of expansion of the survey link was
through universities and that the predominant generation represented in the sample were
Millennials. They had higher BMIs, despite the fact they were engaged in more vigorous
exercise and invested more hours a week on Instagram looking over nutrition or physical
activity, which might show that these participants rely on new technologies in search of
their optimal weight.

Author Contributions: Conceptualization, H.J.T.-V. and J.M.T.-M.; methodology, H.J.T.-V., M.C.V.-P.
and C.H.-G.; formal analysis, M.O.L.-L., S.M.-G. and S.M.-B.; investigation, H.J.T.-V.; data curation,
M.O.L.-L., S.M.-G. and S.M.-B.; writing—original draft preparation, H.J.T.-V., M.O.L.-L., M.C.V.-P. and
C.H.-G.; writing—review and editing, H.J.T.-V., M.C.V.-P., M.O.L.-L., S.M.-G. and C.H.-G.; visualiza-
tion, S.M.-B. and J.M.T.-M.; supervision, J.M.T.-M. and C.H.-G. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was performed considering the ethical stipulations
of the Declaration of Helsinki. It was approved by the University of Zaragoza via the Academic
Commission of the Doctoral Program in Health and Sports Sciences (protocol code: “Impact of
Instagram on the lifestyle and physical activity in the United States of America” 2 July 2019).

Informed Consent Statement: Volunteer informed consent was given by all the participants in
the study.

Data Availability Statement: The datasets presented in this study are available on request from the
corresponding author. All data covered by this study are included in this manuscript.

Acknowledgments: The authors acknowledge participants for their disinterested collaboration.

Conflicts of Interest: The authors declare no competing interest.

213



Appl. Sci. 2022, 12, 12144

References

1. World Health Organization. Obesity and Overweight. Available online: https://www.who.int/health-topics/obesity#tab=tab_1
(accessed on 4 November 2022).

2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from
1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.
Lancet 2017, 390, 2627–2642. [CrossRef] [PubMed]

3. Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific
mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [CrossRef]
[PubMed]

4. Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity
and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [CrossRef] [PubMed]

5. Vallgårda, S.; Nielsen, M.E.J.; Hansen, A.K.K.; Cathaoir, K.Ó.; Hartlev, M.; Holm, L.; Christensen, B.J.; Jensen, J.D.; Sørensen, T.I.A.;
Sandøe, P. Should Europe follow the US and declare obesity a disease? A discussion of the so-called utilitarian argument. Eur. J.
Clin. Nutr. 2017, 71, 1263–1267. [CrossRef]

6. Santoro, E. Social media and medical apps: How they can change health communication, education and care. Recenti Prog. Med.
2013, 104, 179–180. [CrossRef]

7. Tricas-Vidal, H.J.; Vidal-Peracho, M.C.; Lucha-López, M.O.; Hidalgo-García, C.; Lucha-López, A.C.; Monti-Ballano, S.;
Corral-de Toro, J.; Márquez-Gonzalvo, S.; Tricás-Moreno, J.M. Nutrition-Related Content on Instagram in the United States of
America: Analytical Cross-Sectional Study. Foods 2022, 11, 239. [CrossRef] [PubMed]

8. Tricás-Vidal, H.J.; Vidal-Peracho, M.C.; Lucha-López, M.O.; Hidalgo-García, C.; Monti-Ballano, S.; Márquez-Gonzalvo, S.;
Tricás-Moreno, J.M. Impact of Fitness Influencers on the Level of Physical Activity Performed by Instagram Users in the United
States of America: Analytical Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 14258. [CrossRef]

9. Tricás-Vidal, H.J.; Lucha-López, M.O.; Hidalgo-García, C.; Vidal-Peracho, M.C.; Monti-Ballano, S.; Tricás-Moreno, J.M. Health
Habits and Wearable Activity Tracker Devices: Analytical Cross-Sectional Study. Sensors 2022, 22, 2960. [CrossRef]

10. Bert, F.; Giacometti, M.; Gualano, M.R.; Siliquini, R. Smartphones and health promotion: A review of the evidence. J. Med. Syst.
2014, 38, 9995. [CrossRef]

11. Timon, C.M.; Astell, A.J.; Hwang, F.; Adlam, T.D.; Smith, T.; Maclean, L.; Spurr, D.; Forster, S.E.; Williams, E.A. The validation of a
computer-based food record for older adults: The Novel Assessment of Nutrition and Ageing (NANA) method. Br. J. Nutr. 2015,
113, 654–664. [CrossRef]

12. Vereecken, C.A.; Covents, M.; Haynie, D.; Maes, L. Feasibility of the Young Children’s Nutrition Assessment on the Web. J. Am.
Diet. Assoc. 2009, 109, 1896–1902. [CrossRef] [PubMed]

13. Kaiser, B.; Stelzl, T.; Finglas, P.; Gedrich, K. The Assessment of a Personalized Nutrition Tool (eNutri) in Germany: Pilot Study on
Usability Metrics and Users’ Experiences. JMIR Form. Res. 2022, 6, e34497. [CrossRef]

14. Eldridge, A.L.; Piernas, C.; Illner, A.-K.; Gibney, M.J.; Gurinović, M.A.; de Vries, J.H.M.; Cade, J.E. Evaluation of New Technology-
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