
mdpi.com/journal/sensors

Special Issue Reprint

Microwave and Antenna 
System in Medical 
Applications

Edited by 
Hoi-Shun Antony Lui and Mikael Persson



Microwave and Antenna System in
Medical Applications





Microwave and Antenna System in
Medical Applications

Editors

Hoi-Shun Antony Lui
Mikael Persson

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Hoi-Shun Antony Lui

University of Tasmania

Sandy Bay

Australia

Mikael Persson

Chalmers University of Technology

Gothenburg

Sweden

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Sensors (ISSN 1424-8220) (available at: https://www.mdpi.com/journal/sensors/special issues/

MASMA).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0341-5 (Hbk)

ISBN 978-3-7258-0342-2 (PDF)

doi.org/10.3390/books978-3-7258-0342-2

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

https://www.mdpi.com/journal/sensors/special_issues/MASMA
https://www.mdpi.com/journal/sensors/special_issues/MASMA
https://doi.org/10.3390/books978-3-7258-0342-2


Contents

Hoi-Shun Lui and Mikael Persson
Microwave and Antenna Systems in Medical Applications
Reprinted from: Sensors 2024, 24, 1059, doi:10.3390/s24041059 . . . . . . . . . . . . . . . . . . . . 1

Ehsan Akbari Sekehravani and Giovanni Leone
Evaluation of the Resolution in Inverse Scattering of Dielectric Cylinders for 
Medical Applications
Reprinted from: Sensors 2023, 23, 7250, doi:10.3390/s23167250 . . . . . . . . . . . . . . . . . . . . 5

Laura Guerrero Orozco, Lars Peterson and Andreas Fhager
Microwave Antenna System for Muscle Rupture Imaging with a Lossy Gel to Reduce 
Multipath Interference
Reprinted from: Sensors 2022, 22, 4121, doi:10.3390/s22114121 . . . . . . . . . . . . . . . . . . . . 23

Tomas Pokorny, Jan Vrba, Ondrej Fiser, David Vrba, Tomas Drizdal, Marek Novak, et al. 
On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection 
and Classification
Reprinted from: Sensors 2023, 23, 2031, doi:10.3390/s23042031 . . . . . . . . . . . . . . . . . . . . 43

Gulsah Yildiz, Iman Farhat, Lourdes Farrugia, Julian Bonello, Kristian Zarb-Adami, 
Charles V. Sammut, et al.
Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and 
Connected Array
Reprinted from: Sensors 2023, 23, 6592, doi:10.3390/s23146592 . . . . . . . . . . . . . . . . . . . . 64

Citlalli Jessica Trujillo-Romero, Juan Dionisio Merida, Texar Javier Ramı́rez-Guzmán, 
Raquel Martı́nez-Valdez, Lorenzo Leija-Salas, Arturo Vera-Hernández, et al.
Thermal Evaluation of Multi-Antenna Systems Proposed to Treat Bone Tumors: Finite 
Element Analysis
Reprinted from: Sensors 2022, 22, 7604, doi:10.3390/s22197604 . . . . . . . . . . . . . . . . . . . . 86

Julien Frandon, Philippe Akessoul, Tarek Kammoun, Djamel Dabli, Hélène de Forges, 
Jean-Paul Beregi and Joël Greffier
Microwave Ablation of Liver, Kidney and Lung Lesions: One-Month Response and 
Manufacturer’s Charts’ Reliability in Clinical Practice
Reprinted from: Sensors 2022, 22, 3973, doi:10.3390/s22113973 . . . . . . . . . . . . . . . . . . . . 107
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Microwave and Antenna Systems in Medical Applications
Hoi-Shun Lui 1,* and Mikael Persson 2
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Chalmers University of Technology, SE-41296 Gothenburg, Sweden
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The non-ionizing nature of microwave radiation and the low cost of microwave elec-
tronics offer innovative solutions for medical diagnosis, treatment, and health monitor-
ing [1,2]. Researchers in antennas, microwave electronics, computational electromagnetics,
imaging, and signal processing are working collaboratively with medical practitioners to
enhance our lives by developing next-generation healthcare technologies. A well-known
example would be the prospect of utilizing microwave sensors for stroke detection such
that prehospital diagnosis can be facilitated in ambulances using a portable system [3–5].
In regional areas in Sweden and Australia, stroke patients and the elderly who are located
remotely from hospitals will benefit. Clinical trials of microwave stroke detection and
breast screening are currently in place across Europe, North America, and Oceania. An-
other example would be the use of microwave radiation for breast screening, providing
alternatives to existing ionizing X-ray mammography for cancer diagnosis [6–8].

The recent boom in artificial intelligence (AI) and machine learning (ML) is opening
new avenues that accelerate technical development in microwave-based techniques for
medical applications. These developments cover signal processing, imaging processing, as
well as microwave and antenna system optimization [9,10].

In this Special Issue, we present a comprehensive exploration of microwave and an-
tenna systems, showcasing their transformative impact on diverse medical applications,
including medical diagnosis, treatment, and patient monitoring. This collection features
nine cutting-edge original research articles followed by two insightful reviews incorporat-
ing microwave imaging and sensing into digital pulmonology and digital gastroenterology.
The titles and authors of the articles are listed in Table 1.

Table 1. List of articles included in this Special Issue.

Title Authors

(i)
Evaluation of the Resolution in Inverse
Scattering of Dielectric Cylinders for Medical
Applications

Ehsan Akbari Sekehravani,
Giovanni Leone

(ii)
Microwave Antenna System for Muscle
Rupture Imaging with a Lossy Gel to Reduce
Multipath Interference

Laura Guerrero Orozco, Lars Peterson,
Andreas Fhager

(iii)
On the Role of Training Data for SVM-Based
Microwave Brain Stroke Detection
and Classification

Tomas Pokorny, Jan Vrba, Ondrej Fiser,
David Vrba, Tomas Drizdal,
Marek Novak, Luca Tosi,
Alessandro Polo, Marco Salucci

(iv)
Comparison of Microwave Hyperthermia
Applicator Designs with Fora Dipole and
Connected Array

Gulsah Yildiz, Iman Farhat,
Lourdes Farrugia, Julian Bonello,
Kristian Zarb-Adami,
Charles V. Sammut, Tuba Yilmaz,
Ibrahim Akduman

Sensors 2024, 24, 1059. https://doi.org/10.3390/s24041059 https://www.mdpi.com/journal/sensors
1



Sensors 2024, 24, 1059

Table 1. Cont.

Title Authors

(v)
Thermal Evaluation of Multi-Antenna
Systems Proposed to Treat Bone Tumors:
Finite Element Analysis

Citlalli Jessica Trujillo-Romero,
Juan Dionisio Merida,
Texar Javier Ramírez-Guzmán,
Raquel Martínez-Valdez, Lorenzo
Leija-Salas, Arturo Vera-Hernández,
Genaro Rico-Martínez, José Jesús
Agustín Flores-Cuautle,
Josefina Gutiérrez-Martínez,
Emilio Sacristán-Rock

(vi)

Microwave Ablation of Liver, Kidney, and
Lung Lesions: One-Month Response and
Manufacturer’s Charts’ Reliability in
Clinical Practice

Julien Frandon, Philippe Akessoul,
Tarek Kammoun, Djamel Dabli,
Hélène de Forges, Jean-Paul Beregi,
Joël Greffier

(vii)

Walking Step Monitoring with a
Millimeter-Wave Radar in Real-Life
Environment for Disease and Fall Prevention
for the Elderly

Xuezhi Zeng, Halldór Stefán Laxdal
Báruson, Alexander Sundvall

(viii) Wearable Sensor Based on Flexible Sinusoidal
Antenna for Strain Sensing Applications

Mehran Ahadi, Mourad Roudjane,
Marc-André Dugas, Amine Miled,
Younès Messaddeq:

(ix) Brain Implantable End-Fire Antenna with
Enhanced Gain and Bandwidth

Lisa Sapari, Samnang Hout, and
Jae-Young Chung

(x)

Digital Pulmonology Practice with
Phonopulmography Leveraging Artificial
Intelligence: Future Perspectives Using Dual
Microwave Acoustic Sensing and Imaging

Arshia K. Sethi, Pratyusha Muddaloor,
Priyanka Anvekar, Joshika Agarwal,
Anmol Mohan, Mansunderbir Singh,
Keerthy Gopalakrishnan,
Ashima Yadav, Aakriti Adhikari,
Devanshi Damani, Kanchan Kulkarni,
Christopher A. Aakre,
Alexander J. Ryu, Vivek N. Iyer,
Shivaram P. Arunachalam

(xi)

Practicing Digital Gastroenterology through
Phonoenterography Leveraging Artificial
Intelligence: Future Perspectives Using
Microwave Systems

Renisha Redij, Avneet Kaur,
Pratyusha Muddaloor, Arshia K. Sethi,
Keirthana Aedma, Anjali Rajagopal,
Keerthy Gopalakrishnan,
Ashima Yadav, Devanshi N. Damani,
Victor G. Chedid, Xiao Jing Wang,
Christopher A. Aakre, Alexander J. Ryu,
Shivaram P. Arunachalam

1. Original Research Articles

Medical Diagnosis: There are three articles (i–iii) that deal with the use of microwave
imaging and sensing for medical diagnosis of breast cancer, hamstring muscle injuries, and
stroke detection. Sekehravani and Leone et al. (i) address the inverse scattering problem for
dielectric cylinders, providing insights into achievable resolution for medical imaging and
highlighting the potential impact of microwave breast cancer imaging on cancer diagnosis.
In (ii), researchers from Sweden propose a semicircular microwave imaging array with
a novel antenna design for imaging hamstring muscle injuries. The inclusion of a lossy
gel in the imaging domain proves instrumental in reducing multipath signals, enhancing
imaging quality for more accurate diagnostics. Pokorny et al. (iii) investigate microwave
brain stroke detection and classification using support vector machines, emphasizing the
importance of training data in achieving high accuracy. The study showcases the potential
for microwave technology in diagnosing cerebral conditions.
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Disease Treatment: There are three articles about microwave cancer treatment using
microwave hyperthermia (iv) and microwave ablation (v,vi). Yildiz et al. (iv) evaluate the
effectiveness of different fractal octagonal ring antenna designs. Their research emphasizes
the critical role of applicator design in optimizing the specific absorption rate for breast
tumor hyperthermia applications. Examining microwave ablation in bone tumors, Trujillo-
Romero et al. (v) evaluate the thermal performance of multi-antenna arrays. Using the finite
element method, their study presents various antenna configurations, demonstrating the
feasibility of treating bone tumors with a specific focus on ablated tissue volume. Frandon
et al. (vi) investigate the early response and reliability in treating liver, kidney, and lung
lesions using a commercial microwave ablation system in a clinical setting. Their findings
underscore the system’s potential in patient monitoring through reliable ablations.

Patient Monitoring: There are two papers on patient monitoring using antenna sys-
tems (vii,viii), and one paper on implantable antenna design for brain–machine commu-
nication applications (ix). Zeng et al. (vii) utilize millimeter-wave radar for gait analysis
in a real-life environment. Their research showcases the method’s reliability in measuring
step time, offering potential applications in fall prevention for the elderly. In (viii), a flex-
ible sinusoidal-shaped antenna sensor is proposed, and its application in strain sensing
is explored. Their study demonstrates improved sensitivity and flexibility for wearable
sensors, opening avenues for patient monitoring in various medical scenarios. Sapari et al.
(ix) introduce an end-fire radiating implantable antenna for brain–machine interfaces; this
research emphasizes high-data-rate wireless communication. Their study highlights the
antenna’s enhanced gain and broadband operation (3 to 5 GHz), showcasing the potential
of implanting antennas in the skull during brain surgery.

2. Review Articles

This Special Issue includes two review articles on the potential integration of mi-
crowave sensing into the medical diagnosis of respiratory disorders (x) and digestive sys-
tem disorders (xi). The review in (x) delves into the integration of AI with dual microwave
acoustic sensing and imaging for the analysis of lung sounds. The exploration of AI models
opens avenues for real-time respiratory sound analysis, potentially revolutionizing clinical
pulmonology practice. The review in [xi] focuses on digital gastroenterology, investigat-
ing the potential of a bowel sound recording and analysis device—the phonoenterogram.
With a spotlight on microwave-based digital phonoenterography, the review envisions a
future where AI-driven analysis of bowel sounds becomes an accessible, cost-effective, and
versatile diagnostic tool.

3. Conclusions

This Special Issue highlights the multifaceted contributions of microwave and antenna
systems to revolutionizing healthcare. The original research presents innovative approaches
to various technical challenges, showcasing the potential of microwave technology in
diverse applications. The review papers pave the way for integrating microwave sensing
and imaging solutions, opening avenues for novel diagnostic applications.

Conflicts of Interest: The authors declare no conflict of interest.
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Evaluation of the Resolution in Inverse Scattering of Dielectric
Cylinders for Medical Applications
Ehsan Akbari Sekehravani * and Giovanni Leone

Department of Engineering, University of Campania “Luigi Vanvitelli”, I-81031 Aversa, Italy;
giovanni.leone@unicampania.it
* Correspondence: ehsan.akbarisekehravani@unicampania.it

Abstract: The inverse scattering problem has numerous significant applications, including in geo-
physical explorations, medical imaging, and radar imaging. To achieve better performance of the
imaging system, theoretical knowledge of the resolution of the algorithm is required for most of these
applications. However, analytical investigations about the resolution presently feel inadequate. In
order to estimate the achievable resolution, we address the point spread function (PSF) evaluation
of the scattered field for a single frequency and the multi-view case both for the near and the far
fields and the scalar case when the angular domain of the incident field and observation ranges is a
round angle. Instead of the common free space condition, an inhomogeneous background medium,
consisting of a homogeneous dielectric cylinder with a circular cross-section in free space, is assumed.
In addition, since the exact evaluation of the PSF can only be accomplished numerically, an analytical
approximation of the resolution is also considered. For the sake of its comparison, the truncated
singular value decomposition (TSVD) algorithm can be used to implement the exact PSF. We show
how the behavior of the singular values and the resolution change by varying the permittivity of
the background medium. The usefulness of the theoretical discussion is demonstrated in localizing
point-like scatterers within a dielectric cylinder, so mimicking a scenario that may occur in breast
cancer imaging. Numerical results are provided to validate the analytical investigations.

Keywords: linear inverse scattering; number of degrees of freedom; point spread function; inhomoge-
neous medium; resolution; TSVD inversion; localization; breast cancer imaging

1. Introduction

The inverse scattering problem requires determining the physical and geometric
characteristics of an unknown object from scattered field data provided via the induced
perturbation of known incident fields. Since the inverse scattering problem is nonlinear,
approximations such as the Born [1] or Rytov [1,2] ones for dielectric objects and physi-
cal optics (PO) [3,4] approximation for metallic objects can provide a linear relationship
between the scattered field data and the scattering object.

The imaging method based on inverse scattering has gained significant interest and
has been thoroughly researched. This is because of its flexibility and appropriateness for
various applications, such as radar imaging [5], through-the-wall imaging [6,7], ground
penetration radar (GPR) applications [8,9], biological imaging applications [10,11], breast
cancer imaging [12–15], brain stroke detection [16,17], and medical imaging [18]. Far
and near field data can be available according to the application; in particular, medical
imaging can be accomplished in the near zone, which may provide better-resolution benefits
compared with far-field imaging.

The full view is a typical case in inverse scattering, which arises as the incident fields
illuminate the object from all angles, and the scattered fields are observed at all angles.
This case is suitable for various industrial applications or medical imaging applications
like head and breast imaging.

Sensors 2023, 23, 7250. https://doi.org/10.3390/s23167250 https://www.mdpi.com/journal/sensors
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The achievable resolution refers to the ability to accurately distinguish and locate
small features or details within an object or scene being imaged. It is related to the smallest
resolvable distance or size of the features that can be distinguished with the imaging system
and has raised much interest in microwave imaging.

In [19], based on nonlinear modelling and inversion, a super resolution was demon-
strated for a near-field experimental microwave tomography system; however, in nonlinear
inverse scattering, the results depend on the scattering scenario and cannot be investigated
a priori. In [20], the resolution within a linear scattering model was considered; however,
since the internal field is numerically computed as the exact one instead of being approxi-
mated by the incident one as in the Born approximation, no analytical discussion can be
performed and it should be computed numerically. In [21], an alternative definition of reso-
lution was introduced, but a numerical computation is always required for a comparison
of different scenarios. An approach based on deep learning has been proposed in [22] to
improve the spatial resolution for microwave imaging. Therefore, all these approaches
achieve results about resolution based on numerical computations.

Instead, in linear scattering, the achievable resolution can be defined in terms of the
point spread function (PSF) of the system and it represents the reconstruction of a point-like
object. For a compact linear operator, singular value decomposition (SVD) can be used to
introduce the PSF. The concept of PSF has found extensive usage in [23–27], showing its
broad applicability and relevance in various fields.

The analytical evaluation of the exact PSF can be performed for a limited number of
scattering geometries. For most scenarios, numerical methods are the only option. The
truncated SVD (TSVD) [28] algorithm can be used to obtain the exact PSF. To compute
the exact main lobe width of the PSF, an appropriate truncation value must be chosen, as
using an incorrect value may affect the main lobe width and the side lobes. An appropriate
truncation choice could be the number of degrees of freedom (NDF) of the scattering object,
which is defined as the number of significant singular values of the pertinent scattering
operator as they usually decay exponentially.

The NDF evaluation of the scattered field has been addressed in [29] for simple strip
geometries for the full-view case in the far zone. That study has demonstrated that the
same NDF can be obtained through the use of different variables. One way to provide
an analytical expression of the PSF is by evaluating an approximation of the exact PSF
to eliminate the limitations of the exact PSF. For instance, in [30], the evaluation of the
approximated PSF has been considered for strip source/scatterer geometries for the full
view. Those authors used the NDF as a truncation value in the TSVD algorithm. The
results showed that the resolution is constant for the full-view case, the approximation
worked well in the main lobe, and the NDF was a good choice for truncation. The same
analysis is available in [31] for circumference source/scatterer geometries, and the analytical
estimation of the NDF was also evaluated.

The NDF of the radiated field was considered in [32] for square sources, and the
authors showed that the NDF of a full 2D square is equal to the NDF of a void square
source. Sometimes, the analytical estimation of the NDF cannot be evaluated and it should
be computed numerically. For the aspect-limited case, the NDF of the scattered field was
computed numerically in [33] for curve geometries in different modalities. The analytical
approximation of the PSF was also evaluated to estimate the resolution, and it was shown
that the resolution is not constant.

A theoretical study on the achievable resolution and image quality of microwave
imaging systems has been addressed in [34]. That study clarifies the relationship between
resolution and limited-view versus full-view antenna array geometry, monostatic versus
multistatic configuration, single-frequency versus wideband operation, and near-field
versus far-field imaging. The theoretical relations of image resolution have been addressed
in [35] for both the full-view and aspect-limited cases.

Most of the scattering scenarios assume the free space as being in the background,
i.e., a homogeneous medium. In subsurface imaging for GPR applications, a two-layered
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medium has been taken into consideration [36–38] because the closed-form analytical
expression of the scattered field can be found. In this circumstance, the available data are
inherently aspect-limited to a half-space. Less attention has been paid to other layered
geometries, although the closed-form expression of the pertinent scattered field can be
available. In this paper, we are interested in a two-layered cylindrical medium composed of
a homogeneous dielectric cylinder with a circular cross-section, embedded in the free space.
This scenario can provide a theoretical reference for those applications, such as breast
cancer/tumor imaging when scattering objects are located within a dielectric medium of
known parameters. In this paper, we address the evaluation of the PSF of the scattered field
for the single-frequency case and the multi-view sensing configuration for the full-view
case to estimate the achievable resolution for both the far and near fields. We investigate
how the permittivity of the dielectric can affect the truncation level and the resolution.
In addition, an analytical approximate of the exact PSF is evaluated. Furthermore, a
localization application that can be used in breast cancer/tumor imaging is provided.
Numerical comparisons for the truncation index and two PSFs are provided to validate the
theoretical discussion.

The plan for this paper is as follows: In Section 2, the problem statement, a PSF
evaluation, and a discussion about how to choose the truncation level for a general scat-
tering geometry are presented. Section 3 introduces and investigates the approximated
PSF. Section 4 provides some numerical examples to validate the theoretical discussions. In
Section 5, a numerical application to a localization problem is shown. Finally, in Section 6,
conclusions are provided.

2. Statement of the Problem

The general geometry of the problem is depicted in Figure 1. An unknown scatterer
with relative permittivity εs(r) is located within a domain referred to as the investigation
domain (ID), which is embedded in a homogeneous dielectric cylinder (region 1) with a
circular cross-section, radius ra, and relative permittivity εra , centered at the origin. The
dielectric cylinder is located in a free space (region 2) with permittivity ε = ε0 and both
regions are nondispersive, while the magnetic permeability everywhere is equal to µ0.
(The external medium can be also assumed to be different, though always homogeneous,
provided that the appropriate dielectric permittivity is accounted for within the electro-
magnetic scattering model.) Accordingly, the background medium is inhomogeneous, as it
consists of a cylindrically stratified medium.
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𝐽𝑛(𝛽√𝜖𝑟𝑎  𝑟𝑎) 𝐻𝑛
(2)′(𝛽𝑟𝑎) − √𝜖𝑟𝑎  𝐽𝑛

′ (𝛽√𝜖𝑟𝑎  𝑟𝑎) 𝐻𝑛(𝛽𝑟𝑎)
 (3) 

where 𝐻𝑛
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Figure 1. A pictorial view of the geometry of the problem. The dotted line indicates the positions of
the source and receivers.
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Let us define as r = (ρ, φ), ri = (ri, θi), and rs = (rs, θs) as the position vectors span-
ning the scattering object, the source point (transmitter), and observation point (receiver),
respectively. Hereafter, ri and rs are also assumed to be constant, i.e., they are circumference.
In this paper, we consider the full-view case where the angular ranges of the excitation and
observation angles are 2π wide, i.e., −π < θi, θs < π.

Under the Born approximation, in the scalar case, the only component of the scattered
field is defined by

Es
(
rs, ri

)
=

x
ID

χ(r) Gs
(
r, rs

)
Ei
(
ri, r
)

dr = T (χ(r)) (1)

apart from some inessential factors, where χ(r) = εs(r)
εra
− 1 and T are a contrast function

and the pertinent linear operator for our multi-view and single-frequency scattering config-
urations of interest. Moreover, Gs is the Green function pertinent to the inhomogeneous
background medium and Ei is the incident field radiated by a filamentary line source
within the background medium, that is, in the presence of the dielectric cylinder.

In particular, the Green function can be computed in closed form as a series [39] as

Gs
(
r, rs

)
= ∑n d′n H(2)

n (βrs) Jn(β
√

εra ρ) ejn(θs−φ) (2)

where H(2)
n (·) is the Hankel function of the second kind and n-th order and Jn(·) is the Bessel

function of the first kind and n-th order. In addition, the wavenumber and wavelength
are denoted by β and λ, respectively. The generalized transmission d’

n coefficients are
provided by

d′n =

2j
πβra

Jn
(

β
√

εra ra
)

H(2)
n
′
(βra)−√εra J′n

(
β
√

εra ra
)

Hn(βra)
(3)

where H(2)
n
′

and J′n are the derivative of the Hankel function and the derivative of the Bessel
function, respectively.

Because of the reciprocity theorem, the incident field Ei in (1) is equal to the Green func-
tion Gs (apart from an inessential constant factor), i.e., Gs

(
r, ri
)
= Ei

(
ri, r

)
(see Appendix A

for more details).
Note that the series in (2) can apparently be approximated using a finite summation

of 2N + 1 terms, where N is equal to
[
β
√

εra max(ρ)
]
, with [·] representing the nearest

integer. This approximation arises due to the asymptotic behavior of the Bessel function for
order larger than the argument. However, the issue of the truncation of (2) will be further
considered in Section 3 and in Appendix B.

2.1. PSF Evaluation

In this subsection, we first recall the definition of the exact PSF as the impulse response
of an imaging system to a point-like scatterer and express it as the cascade of T −1, i.e., the
regularized inverse operator of T and the forward operator. In other words, the response
of the system to a Dirac delta function δ is the PSF of the system. Mathematically, the exact
PSF is provided by

PSF
(
r, r0

)
= T −1T δ

(
r− r0

)
(4)

When it is observed at (r) and the point-like scatterer is located at (r0), SVD is applied
to (2) because the T operator is linear and compact. Its singular system consists of the triple
{vn, σn, un} [28], where un and vn are the singular functions, which span the data and
the scatterer contrast function spaces, respectively, and σn is the singular values, arranged
under a decreasing order. We can rewrite (4) in terms of the completeness relation truncated
to the retained singular function vn. This is because the minimum–norm solution to the

8
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inverse scattering problem is a projection of the actual contrast function onto the singular
function having non-zero singular values.

PSF
(
r, r0

)
=

Nt

∑
n=1

vn(r) v∗n
(
r0
)

(5)

where ∗ indicates the conjugation operation. Equation (5) states that the exact PSF is
dependent on the number of retained singular values, which is related to the accuracy of
the solution. Hence, knowledge of the singular functions and the choice of Nt are required
to compute (5), and it can only be calculated in closed form for a limited number of scatterer
geometries. The truncation value Nt can be chosen in terms of the NDF, whenever the
singular values exhibit a rather flat behavior before the exponentially fast decay. Then,
Nt is chosen in correspondence with the knee of the singular value curve, and it is rather
independent of the noise on the data. If this is not the case, the correct choice of Nt can
be performed once the uncertainties on the data are available, as the choice of Nt can
vary and it depends on those uncertainties. Additionally, the inversion results depend on
the knowledge available a priori about uncertainties on the data. Therefore, it is worth
investigating the behavior of the SVD of (1) to understand what is the typical behavior of
singular values for the present inhomogeneous medium geometry.

To numerically calculate the SVD of the pertinent operator, a sufficiently fine dis-
cretization of the integral Equation (1) is employed and the resulting matrix equation is
processed in the MATLAB environment.

Figures 2 and 3 show the behavior of the singular values for εra = 4 and ra = 2λ in the far
and near fields, respectively. It is apparent that their behavior is not very different. However,
in contrast to the homogeneous background medium case, where a step-like behavior can be
expected due to the possibility to recast (1) as a Fourier transform [29,31], the singular value
behavior now depends on εra . Hence, it is worthwhile to examine how the truncation level of
the singular values, which determines the value of Nt in (5), impacts the behavior of PSF.

By observing Figures 4 and 5, which pertain to far and near fields (with ri = rs = ra + λ),
respectively, it can be appreciated that a high truncation level does not affect the main lobe
of the PSF, while a low level considerably reduces its side lobe level. Consequently, when
the main lobe of the PSF is the primary focus, as it defines the resolution of the inversion
algorithm, a rather high truncation level of the singular values can be tolerated. On the
contrary, when reconstructing a more complex object, such as a collection of closely located
point-like scatterers, it is important to employ a low truncation level (and consequently,
a low uncertainty level on data) to prevent adverse effects from high side lobes on the
resulting image.
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In this paper, the achievable resolution is estimated based on the general behavior of
such functions, specifically the main lobe. The resolution R is defined as half of the width
W of the main lobe of the PSF function.
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2.2. Approximate PSF

According to [30,31,33], the adjoint operator may approximate the inverse operator in
(4) if the singular values of the relevant operator have a nearly constant behavior before
the knee of its curve. Consequently, it is possible to replace the inverse operator with the
adjoint one in (4) to introduce a good approximation of the exact PSF to overcome the
abovementioned limitation. Notwithstanding, this is not true for the case at hand; hereafter,
we adopt the same approximation since it provides a simple analytical function to define
the resolution.

Then, the approximated
∼

PSF is defined by

∼
PSF

(
r, r0

)
= T +T δ

(
r− r0

)
(6)

The analytical evaluation of (6) is performed as follows. First, we define the adjoint
operator of (1) by

T +Es =
∫ 2π

0

∫ 2π

0
Es
(
rs, ri

)
G∗s
(
r0, rs

)
E∗i
(
ri, r0

)
dθs dθi (7)

as the source and observation domains are assumed to be the circumference. Then, the
spectral theorem for compact self-adjoint operators is applied to T +T :

T +T δ
(
r− r0

)
=s

ID χ(r)
[∫ 2π

0

∫ 2π
0 Gs

(
r, rs

)
Ei
(
ri, r
)

G∗s
(
r0, rs

)
E∗i
(
ri, r0

)
dθs dθi

]
dr

(8)
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By using the addition theorem for the Hankel function and interchanging the integrals
and the summations, because of (2), (8) becomes a four-fold summation, which, in turn,
can be factored as the product of two identical functions with different arguments:

∼
PSF(ρ, ρ0, φ, φ0) = Fs(ρ, ρ0, φ, φ0, rs)·Fi(ρ, ρ0, φ, φ0, ri) (9)

where Fs(ρ, ρ0, φ, φ0, rs) and Fi(ρ, ρ0, φ, φ0, ri) pertain to the observation and incident field,
respectively, and are symmetric functions of the arguments. For the full-view case, for
instance, the Fs function can be written as a double summation:

Fs(ρ, ρ0, φ, φ0, rs) =
∫ 2π

0 Gs
(
r, rs

)
G∗s
(
r0, rs

)
dθs =



∫ 2π
0

N
∑

n=−N
d′n H(2)

n (βrs) Jn
(

β
√

εra ρ
)

ejn(θs−φ) .
(

L
∑

l=−L
d′l H(2)

l (βrs) Jl
(

β
√

εra ρ0
)

ejl(θs−φ0)

)∗
dθs




(10)

Then, since the observation domain is a circumference, so that rs is constant, by
performing the simple closed form integration, (10) becomes

Fs(ρ, ρ0, φ, φ0, rs) =
N

∑
n=−N

∣∣d′n
∣∣2
∣∣∣H(2)

n (βrs)
∣∣∣
2

Jn(β
√

εra ρ) Jn(β
√

εra ρ0) ejn(φ−φ0) (11)

The evaluation of Fi proceeds in the same way as Fs. Finally, the evaluation of (9) is
given by

∼
PSF(ρ, ρ0, φ, φ0) =

[
N
∑

n=−N
|d′n|2

∣∣∣H(2)
n (βrs)

∣∣∣
2

Jn
(

β
√

εra ρ
)

Jn
(

β
√

εra ρ0
)

ejn(φ−φ0)

]
.

[
M
∑

m=−M
|d′m|2 Jm

(
β
√

εra ρ
) ∣∣∣H(2)

m (βri)
∣∣∣
2

Jm
(

β
√

εra ρ0
)

ejm(φ−φ0)

] (12)

which provides the searched analytical evaluation of the approximated
∼

PSF. Although
(12) provides a closed-form expression under a finite series, further simplifications are
considered hereafter.

3. Discussion about the Approximated
∼

PSF

In this section, we provide a further discussion about the approximated
∼

PSF (12) to
simplify it and to demonstrate that the resolution is the same for both the near and far
scattered fields. In particular, we assume that the ID coincides with the whole circular
section or region 1 in Figure 1, so that max(ρ, ρ0) = ra. Therefore, we consider the influence

of
∣∣∣H(2)

n (βrs)
∣∣∣
2
, |d′n|2 and cn =

∣∣Jn
(

β
√

εra ra
)∣∣2 in (12) on the resolution.

3.1. Far Field

For the far field, due to the asymptotic behavior of the Hankel functions for arguments

much larger than the order,
∣∣∣H(2)

n (βrs)
∣∣∣
2

can be approximated by π
2(βrs)

, which becomes a

constant. Next, the influence of |d′n|2 on the behavior of the Fourier coefficients in (12) needs
to be examined. To this end, Figure 6b shows a typical behavior of |d′n|2 for ra = 3λ εra = 3.
It can be observed that they decay for large n (for an explanation, see Appendix B) and
that their amplitude is mostly close to 1. On the other hand, as discussed in Section 2 and
confirmed by Figure 6a, the cn coefficients decay asymptotically for n > N. Therefore, it is
interesting to examine the behavior of the product

∣∣d′n Jn
(

β
√

εra ra
)∣∣ (as max(ρ, ρ0) = ra).
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In the Appendix B, it is shown that this term decays asymptotically for |n| > N′ = [β ra].
Consequently, the Fourier series in (12) can be truncated to 2N′ + 1 terms as

∼
PSF(ρ, ρ0, φ, φ0) ∼=

(
N′

∑
n=−N′

Jn(β
√

εra ρ) Jn(β
√

εra ρ0) ejn(φ−φ0)

)2

(13)
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But, in virtue of the addition theorem of the Bessel functions, (13) is approximately
equal to

∼
PSF(ρ, ρ0, φ, φ0) ∼=

(
J0
(

β
√

εra

∣∣r− r0
∣∣))2 (14)

A comparison between (12) and (14) is provided in Figure 7 for ρ0 = 1.52λ and φ0 = 0.
The results confirm that the two approximations are completely overlapped.
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3.2. Near Field

The results obtained for |d′n|2 are also valid for the near field as they are independent

of rs. Therefore, the influence of the
∣∣∣H(2)

n (βrs)
∣∣∣
2

factor needs to be considered. Figure 8

shows a comparison of
∣∣∣H(2)

n (βrs)
∣∣∣
2

for different rs. It is observed that while the curve
remains flat for large rs values, this is not the case for smaller values. However, even when
rs = a + λ, it can still be considered flat for |n| < N′, thereby having a negligible impact on
(12), and (13) and (14) still hold. Consequently, it can be concluded that the approximate
PSF is the same for both the near and far fields, except for cases where rs < ra + 0.5λ, i.e.,
very close to the dielectric ID. In such cases, it becomes necessary to consider more terms
for the convergence of the Fourier series and to account for the close proximity effects of
the reactive near field, which become significant.
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for different rs (dashed lines shows the value of N’).

Figure 9 shows a comparison of Equations (12)–(14) for ρ0 = 1.52λ and φ0 = 0. The
results verify that the three approximations coincide with each other, as expected. Based on
the results obtained from the two subsections, it can be concluded that (14) can serve as a
reliable approximation for the exact PSF instead of (12). Additionally, it is notable that the
resolution remains the same for both the far and near fields. Further numerical examples
will be provided in the next section.
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4. Numerical Validation

In this section, various numerical examples are presented to validate the theoretical
discussions from the previous sections. We consider a cylinder with a radius of ra = 3λ,
where the ID coincides with the cylinder. To highlight the focusing properties, only the
main lobe of the PSF is taken into account, and the amplitudes of both PSFs are normalized
to 1. For all subsequent numerical examples, ri and rs are set to ra + λ for the near field.

Firstly, we compare the behavior of singular values of (1) for the far and near fields
with different εra . Figure 10 illustrates the behavior of normalized singular values of the
relevant operators (1) for the near and far fields with varying εra . The analytical estimation
of the NDF for a free space was provided in [40,41] for the far field, and it is provided using
NDF = ΣA

(2π)2 , where A and Σ are the spectral domain area and the measure of the area of

the function to be transformed, respectively. For the full-view case, A is π(2β)2 [41] and Σ
is equal to πra

2 for the considered ID, and the NDF estimation is confirmed via the blue
solid line. The results provide evidence that the singular value behavior is approximately
the same for the far and near fields. In addition, the singular value behavior is not flat,
indicating that higher values of εra result in a faster overall decay.
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Figure 10. The behavior of the normalized singular values of the linearized inverse scattering for
different εra for the far and near fields.

A comparison between the exact PSF (12) and the approximated (14) one is performed
for both the far and near fields to further evaluate the performance of the achievable

resolution and to validate the accuracy of the approximated
∼

PSF. Figure 11 illustrates the
normalized amplitude of both PSFs along the φ-cuts when ρ0 = 1.5λ and φ0 = 0. It is
observed that the resolution is the same for both the far and near fields for different εra , as
the main lobe width of the PSF becomes slimmer as εra increases. Therefore, the resolution
R for εra = 1, εra = 4, and εra = 6 is equal to 0.38λ, 0.19λ, and 0.15λ, respectively, as it can
be predicted using (14) according to the first zero of the Bessel function of 0-th order. The
space-invariance of the PSF being achieved for the full-view case means that the resolution
is constant. This result confirms that two PSFs are approximately overlapped.

To check out the performance of the exact PSF (12) and the approximated (14) along a
ρ-cut for the far and near fields, a comparison between two PSFs is provided in Figure 12
for ρ0 = 1.5λ when φ0 = 0. The resolution is again the same for both the far and the near

fields for different εra , as expected. In addition, it is confirmed that the approximated
∼

PSF
works well. As a result, the resolution is proportion to 1√

εra
.
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Figure 11. The comparison of the normalized amplitude of the exact (solid lines) and approximated
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εra = 6 (green lines): (a) far field, (b) near field.
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Figure 12. The comparison of the normalized amplitude of the exact (solid lines) and approximated
(dashed lines) PSFs along a ρ-cut for ρ0 = 1.5λ when φ0 = 0, for εra = 1 (red lines), εra = 4 (blue
lines) εra = 6 (green lines): (a) far field, (b) near field.

5. Application to Breast Cancer Scenario

This section provides an application of the aforementioned theoretical discussions to
reconstruct a set of point-like scatterers located within an ID (blue circle) with ra = 1.5λ
and εra = 12 from the near-field scattered data (ri = rs = a + λ). We are aware that actual
breast cancer scenarios are more complicate, with strongly inhomogeneous background
media, which prevent any analytical work and require numerical modelling. However,
in this paper, the goal is to provide an analytical discussion of the resolution and some
simplifications are required, such as assuming a dielectric homogenous cylindrical circular
investigation domain and modeling tumors as point-like scatterers. For this case, the
truncation level of the singular values is selected at 40 dB. As discussed in Section 3, this
choice ensures a low side lobe level for the exact PSF without affecting its main lobe. The
ID is chosen to mimic a breast cancer scenario, where the dielectric background consists of
a medium with high dielectric permittivity, approximating a circular shape. Breast imaging
aims to identify the presence of breast cancer or tumors, and it has been extensively studied
in the field of microwave sensing and imaging. In particular, breast tumors exhibit relatively
high contrast compared with the predominating fat tissue in the breast [42] and can be
modelled as point-like scatterers. Therefore, this approach can be used for localizing
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or detecting breast cancer/tumors, as accurate detection is the first step in classifying
cancer/tumors.

In this application, we consider three point-like scatterers on a circumference (the
φ-cut) with a radius of ρ0 = 0.26λ located in the ID, representing a typical size of the array
for breast imaging. Figure 13 shows the geometry of the application.
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Figure 13. The geometry of the application. The red dots indicate the position of the point-like
scatterers. The dotted line indicates the positions of source and receivers.

Figure 14 shows a normalized reconstruction of the considered point-like scatterers,
computed via inversion of (1), compared with the result of the summation of three functions
(14) as centered at the scatterers positions. As can be seen in Figure 14a, if the distance
between point-like scatterers is equal to the width W = 0.2λ, they can be distinguished
from each other, as the predicted resolution is R = 0.1λ. However, when the distance is
less than R, they are not resolvable and appear as a single scattering point, as shown in
Figure 14b. The findings indicate that both reconstructions yield similar results.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 14. The exact (solid line) and approximated (dotted line) reconstruction of three point-like 

scatterers: (a) the distance between them is equal to the resolution, (b) the distance between them is 

less than the resolution. The black dots indicate the position of the point-like scatterers. 

Now, we consider an example where the three point-like scatterers are arranged 

along the radius of the ID when 𝜙0 = 0, as shown in Figure 15. 

 

Figure 15. The geometry of the application. The red dots indicate the position of the point-like scat-

terers. The dotted line indicates the positions of source and receivers. 

Figure 16 displays the normalized reconstruction of the point-like scatterers under 

examination computed via inversion of (1), compared with the result of the summation of 

three functions (14). Figure 16a demonstrates that, if the distance between the scatterers is 

the same as the width 𝑊 = 0.2𝜆, they can be identified separately. On the other hand, if 

the distance is smaller than the resolution, with 𝑅 = 0.1𝜆, they are not distinguishable and 

appear as a single scattering point, as depicted in Figure 16b. These results once again 

highlight that both reconstructions produce comparable outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

𝒓𝒊 

𝒓𝒔 

𝒓𝒂 

Y 

Figure 14. The exact (solid line) and approximated (dotted line) reconstruction of three point-like
scatterers: (a) the distance between them is equal to the resolution, (b) the distance between them is
less than the resolution. The black dots indicate the position of the point-like scatterers.
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Now, we consider an example where the three point-like scatterers are arranged along
the radius of the ID when φ0 = 0, as shown in Figure 15.
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Figure 15. The geometry of the application. The red dots indicate the position of the point-like
scatterers. The dotted line indicates the positions of source and receivers.

Figure 16 displays the normalized reconstruction of the point-like scatterers under
examination computed via inversion of (1), compared with the result of the summation of
three functions (14). Figure 16a demonstrates that, if the distance between the scatterers
is the same as the width W = 0.2λ, they can be identified separately. On the other hand,
if the distance is smaller than the resolution, with R = 0.1λ, they are not distinguishable
and appear as a single scattering point, as depicted in Figure 16b. These results once again
highlight that both reconstructions produce comparable outcomes.
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6. Discussion and Conclusions

We have evaluated the PSF of the linear inverse scattering problem for a dielectric
cylinder background to estimate the achievable resolution for the full-view case for both the
far and near fields. Our main goal has been to provide an analytical approximation of the
resolution because the exact evaluation of the PSF can be accomplished only numerically
and its accuracy is dependent on the truncation value. First, we have discussed the behavior
of the singular values and showed that the singular value behavior is approximately the
same for both fields. However, since their behavior is not flat, the accuracy of the result
can depend on the number of singular values to be retained, which, in turn, depends on
the uncertainties on data. It has been pointed out that the choice of the truncation level for
the PSF computation affects only its side lobe level, while the main lobe remains mostly
unchanged. Then, an approximate analytical PSF has been introduced and some numerical
simulations have validated the accuracy of the approximated PSF against the exact PSF. In
particular, the results have shown that there is good agreement in the main lobe region of
both PSFs for different permittivities, which is sufficient for predicting actual resolution in
a sensing configuration. The analytical and the numerical results have also demonstrated
that the resolution is the same for both fields and remains unchanged along the whole
ID, i.e., it is space-invariant. Additionally, both results clearly have highlighted that the
resolution changes by varying the permittivity of the ID in both fields and is inversely
proportional to

√
εra .

Finally, we have presented an application for reconstructing point-like scatterers lo-
cated within the ID from the near field, which is valuable for detecting breast cancer/tumors.
The application demonstrates that when the distance between two point-like scatterers
equals the width of the main lobe PSF, they can be distinguished from each other. Con-
versely, if the distance is less than the width, they cannot be differentiated. The results once
again have shown that both reconstructions achieved similar results. Indeed, the approach
suffers from a limitation. In fact, the approximate evaluation of the PSF is shown to be
accurate in the main lobe, while the behavior of the side lobes is less predictable. This
means that the reconstruction of the isolated point-like scatterers, even if randomly located,
can be expected to be accurate. On the contrary, if there are many point-like scatterers and
they are close to each other, it may not be possible to reconstruct all of them correctly due
to the effect of the side lobes of the corresponding approximate PSF.

For microwave imaging systems designed to operate up to 2GHz, for a reasonable
value of the relative permittivity of human tissues as εra = 6, a resolution of 2.25 cm can be
predicted. Of course, from the imaging point of view, this figure can provide unsatisfactory
results in actual complicated scenarios with many tumors with smaller separations. How-
ever, for detection purposes, especially in the very initial stage, the results of the presented
analysis can provide the minimum detection distance for isolated tumors. In any case, the
resolution at microwave frequencies is connected to the free space wavelength because of
the wave scattering interaction.
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Appendix A

In this appendix, we demonstrate the connection between the Green function and the
incident field by starting from equations (7-32a) in [43], which provide an integral relating
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the file radiated in the region 2 by sources occupying region 1 to the field radiated in region
1 by sources occupying region 2. In the scalar case, where both electric sources and fields
have only the z-component, if we assume no magnetic sources and electric filamentary line
sources with a constant current, the integrals can be evaluated straightforwardly.

Then, the source 1, J1 = Iδ
(
r’− rs

)
, located in r’ = rs, radiates the field

E1(r’) = Ei
(
rs, r’

)
, while the source 2 , J2 = δ(r’− r), located in r’ = r, radiated the

field E2(r’) = Gs(r, r’). Consequently, the left-hand side of equations (7-32a) becomes
IGs
(
r, rs

)
and the right-hand side becomes Ei

(
rs, r

)
, and the two functions are proportional

when the argument variables are exchanged.

Appendix B

In this appendix, we examine the asymptotic behavior for large n of the Fourier
coefficients of (12) in the far-field case. In particular, we consider the factor

∣∣d′n Jn
(

β
√

εra ρ
)∣∣,

which is common to all summations. We make use of the following asymptotic expansion
of the Bessel and Hankel functions for orders larger than the arguments:

Jn(z) ∼
1√
2πn

( ez
2n

)n
(A1)

and

H(2)
n (z) ∼ j

√
2

πn

( ez
2n

)−n
(A2)

where e is Euler’s number.
We start from the denominator of (3), to be rewritten as

Jn(β
√

εra ra)H(2)
n−1 (βra)−

√
εra Jn−1(β

√
εra ra) Hn(βra) (A3)

in virtue of the Bessel functions. Then, via substitution of (A1) and (A2), we obtain

n
√

εra

π

2
eβra

nn

(n− 1)n−1

{[
eβra

2

(
n− 1

n

)n 1
n− 1

]2

− 1

}
(A4)

which can be simplified to
n
√

εra

π

2
eβra

(A5)

This provides ∣∣d′n
∣∣ ∼ e

n
√

εra

(A6)

When we multiply this factor by the asymptotic expansion of the Bessel function,
we obtain

∣∣d′n Jn(β
√

εra ρ)
∣∣ ∼ e√

2πn

(
eβρ

2n

)n
∼ e|Jn(β ρ)| (A7)

This means that the product decays asymptotically for |n| > max(β ρ) = [βra] = N′.
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Abstract: Injuries to the hamstring muscles are an increasing problem in sports. Imaging plays a
key role in diagnosing and managing athletes with muscle injuries, but there are several problems
with conventional imaging modalities with respect to cost and availability. We hypothesized that
microwave imaging could provide improved availability and lower costs and lead to improved and
more accurate diagnostics. In this paper, a semicircular microwave imaging array with eight antennae
was investigated. A key component in this system is the novel antenna design, which is based on a
monopole antenna and a lossy gel. The purpose of the gel is to reduce the effects of multipath signals
and improve the imaging quality. Several different gels have been manufactured and evaluated
in imaging experiments. For comparison, corresponding simulations were performed. The results
showed that the gels can effectively reduce the multipath signals and the imaging experiments
resulted in significantly more stable and repeatable reconstructions when a lossy gel was used
compared to when an almost non-lossy gel was used.

Keywords: microwave imaging; medical diagnosis; antenna system; muscle rupture; prototype;
multipath signal; image reconstruction

1. Introduction

Microwave imaging techniques are beginning to see an increase in clinical research
for different applications. These techniques include breast cancer imaging [1,2], stroke
detection [3–5] and others. In sports, muscle injuries are an increasing problem, especially
injuries to the four hamstring muscles (the biceps femoris caput longum, biceps femoris
caput breve, semimembranosus and semitendinosus muscles) on the back of the thigh that
act as extensors in the hip joint and flexors in the knee joint. Hamstring injuries are the
most common muscle injuries among athletes because they are non-contact injuries [6]
and take place during exercises when the muscle develops tension while lengthening [7].
They have been reported in numerous different sports, such as sprinting, running, soccer
and gymnastics [8,9]. The prevalence of hamstring tears in recreational sports and non-
sporting situations are not well defined [10]; however, some cases have been reported
among the general population [11,12]. These injuries represent a major cause of time lost
in sports [13]. The rehabilitation process can be frustrating for the patient because the
symptoms often persist for a long time (healing time can reach up to 12 months in serious
cases) and re-injuries are common [14].

The biggest problem is that there are no scientific studies that objectively follow the
muscle healing process over time, from injury through all phases of muscle healing from
the inflammation phase to the regeneration phase and the remodeling-maturation phase.
Consequently, there is no general consensus on the time that the patient needs to wait until
it is safe to exercise again [15]. Some studies have reported that almost one out of three
hamstring strains recur and that many happen within 2 weeks of returning to sports [16],
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a time frame that would likely decrease if it were better understood when it would be safe
to return to physical activity.

Imaging plays a key role in the diagnosis and management of athletes with muscle
injuries. Magnetic resonance imaging and ultrasonography are the imaging modalities
of choice [17]. However, magnetic resonance imaging is a scarce resource that is expen-
sive and has long measurement times that can be uncomfortable for some patients [18].
The portability and availability of ultrasound imaging systems make them an attractive
imaging modality that can be used for functional tests. A disadvantage of these systems
is that their effectiveness is dependent on the operator experience [12]. The operator
should be skilled in the technique and have detailed knowledge of compartmental muscle
anatomy, as well as experience in assessing normal and abnormal muscle tissue during the
healing phases. For this reason, the microwave imaging system could be a breakthrough.
This system can be portable and low cost, meaning that it could even be used on-site by the
medical team where athletes are training, which would lead to a faster and safer diagnosis
without the need for a skilled operator. Moreover, there is a future prospective with which
microwave imaging could be used to follow the injury healing process to allow the athlete
a safe return to sports and to prevent recurring injuries or complications.

Microwave imaging diagnostic techniques exploit the dielectric contrast between
tissues. This particular work aimed to exploit this contrast for muscle rupture detection.
A ruptured muscle causes a bleed inside the muscle and the detection of the rupture can be
performed by assessing the dielectric contrast between the blood and the surrounding mus-
cle tissue [19,20]. The tissue contrast is visualized by reconstructed images that represent
the dielectric tissue properties using microwaves that are transmitted through the muscle.

There are two main microwave image reconstruction techniques: tomographic and
radar-based imaging. In tomographic imaging systems, quantitative images of the fol-
lowing dielectric properties are generated: permittivity ε and conductivity σ. Image
reconstruction requires the solution of an inverse scattering problem, usually with com-
putationally demanding methods [21]. Many groups have generated simulation results
using tomographic techniques [22,23]. Furthermore, several approaches have advanced to
phantom and clinical investigations [24–27].

Radar-based microwave imaging does not generate quantitative images of dielectric
properties, but instead identifies and localizes strong scatterers. These systems exploit
a time of flight analysis of measured signals in either mono-, bi- or multistatic antenna
system configurations. Many different confocal microwave imaging algorithms have been
proposed to solve this imaging problem, such as the Delay and Sum (DAS) [28,29] and
Delay, Multiply and Sum (DMAS) [30] algorithms, are commonly used. In these methods,
received signals from the object are synthetically focused, creating an image of the strong
scatterers. The confocal microwave imaging technique has been studied in simulations and
in phantom and patient examinations. For example, the works of Fear and Stuchly [31]
show examples of the monostatic technique. A group led by Craddock at the University
of Bristol showed image reconstruction in clinical trials [32]. The technique has also been
studied clinically by other groups [33].

A particular challenge with the radar-based algorithms is that the measured mi-
crowave signals include early-time and late-time content: the early-time content is dom-
inated by reflections from the skin and the late-time content contains the desired object
response. Before any imaging is attempted, the early-time content must be removed as it
usually has a significantly larger amplitude than the late-time object response. Otherwise,
the desired object response easily drowns in the much larger skin reflection. Different
methods can be applied to reduce the early-time content. The most common is the use
of a priori measurements of a tissue, such as phantom, lesion-free or healthy tissue [30],
and the use of adaptive filtering algorithms [34,35]. The use of a priori data for patient
measurement may not always be possible as it requires measurements to be taken before
and after the injury and subtracting the latter from the former. In that case, a filtering
algorithm may be more suitable. For experimental investigations on tissue phantoms, it

24



Sensors 2022, 22, 4121

is usually possible to perform before and after measurements. All of these algorithms
are similar in that they attempt to estimate the early-time skin response so it can be re-
moved from the signals before reconstructing the image. Consequently, they are sensitive
to measurement variability and noise in the scattering data. Even a small variability creates
errors or uncertainties in the estimation and removal of the early-time signal that could also
corrupt the late-time object response to be preserved. One important step to help mitigate
these problems is to reduce the variability in the measurement data and to keep the signals
free from undesired scattering that originates from sources other than the skin and the
inside of the body. Signal artifacts could occur as reflections from other parts of the antenna
system and the surrounding environment, direct coupling and multipath signals between
antennae, etc. As these signals also tend to be large in amplitude, even very small variations
from measurement to measurement can introduce somewhat unpredictable inconsistencies
in the estimation of the early-time signals and result in the poor removal of skin reflections.
As a result, image reconstruction becomes prone to containing artifacts, which is shown
and discussed in this article.

In the works by Meaney et al. [36], they found that multipath signals are the most
significant factor in the corruption of the measured microwave signals in their imaging
system. In this context, “multipath signals” is a uniting term that refers to all parts of
the signals that do not originate from the signals propagating through the object under
investigation. Instead, these are contributions from waves taking alternative routes (such
as surface waves), reflections and scattering from the antennae themselves, supporting
structures, cables or the surrounding environment. It also includes cross-channel leakage
in the electronic system [37]. Multipath signals cannot be filtered out easily as they all
originate from the same signal source as the desired signals, are at the same frequency and
only appear as interference. The problem with multipath signals is most pronounced in
near-field applications in which the signals are heavily attenuated by tissue [37].

By immersing the antennae and objects under investigation in lossy coupling baths, con-
sisting of saline–glycerine mixtures, unwanted multipath signals can be attenuated [38–40].
At the same time, the coupling medium provides impedance matching between the anten-
nae and the objects to maximize the energy coupled into the object. The lossy bath also has
an advantageous effect on the operating bandwidth of the antennae, which is broadened
due to increased resistive loading. This enables the use of simple and low-profile antennae,
such as monopoles or dipoles, in a wide frequency band [41].

A somewhat different approach to maximizing the energy that is coupled into the
object and, at the same time, minimize the power radiating in other directions is to design
both off-body and on-body antennae with a high directivity. With the main radiation lobe
directed toward the body, multipath effects from waves traveling outside and around
the imaging target are minimized. Sometimes, this property is quantified by the front to
back ratio and in this case, a high front to back ratio was desired. There are several exam-
ples of such antenna designs [2,3,42–46]. These antennae usually have many advantages,
such as broader bandwidths, unidirectional radiating patterns with high gain and small
sizes so there is space for a sufficient number of antennae within the imaging system.
Unfortunately, these antennae also come with the disadvantage of increased complexity
and, with that complexity, a finer meshing and more computationally demanding sim-
ulation models [47,48]. Typically, this means that this type of antenna is less suited for
quantitative tomographic algorithms, for which accurate numerical models are needed,
and more suited for radar-based algorithms.

Simpler monopole antennae seem to be effective in applications that aim for quan-
titative image reconstruction [48–50] and recently, we developed a fast reconstruction
algorithm based on the 2D discrete dipole approximation [48]. This algorithm exploits the
use of low-profile monopole antennae, which are modeled very efficiently using the analyt-
ical expressions of a line source. A lossy coupling bath ensures a reduction in unwanted
multipath signals, for example, in the form of scattering from the wall of the imaging tank
and the antenna elements themselves.
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In this work, one of the goals was to investigate the design principles of an antenna
system that is adapted for muscle rupture imaging and, at the same time, use a lossy
matching medium to minimize multipath signals so that monopole antennae can be used.
In this paper, we present a new antenna design that makes use of a semisolid gel consisting
of a mix of saline water and agar to recreate the effects of antennae in a lossy bath [38,40]
without having to immerse the entire leg, for example, in a tank filled with liquid. The idea
of using a gel as a coupling medium is not new. Previously, regular ultrasound gel has
been used for microwave simulations of bone density in the leg [51]. This gel, however, is
almost lossless and, therefore, it does not dampen multipath signals. Furthermore, it is not
solidified, making it a bit messier to handle. On the other hand, to the best of our knowledge,
the idea to use a lossy and semisolid gel to eliminate multipath signals is novel. The goal
was not to completely eliminate multipath signals but to attenuate them sufficiently to
avoid corruption in the measured signals and image reconstruction. An additional feature
of using a lossy gel is the shielding effect that they have on antennae against external
disturbances. We used the DMAS radar-based imaging method to investigate the effects of
reduced multipath signals on image reconstruction.

The overall goal of this work was to show the proof of principle of this novel antenna
design. However, we did not attempt to optimize the antenna performance, nor the imaging
accuracy for different shapes, sizes and positions of the leg and blood tissue phantoms.
These questions will be addressed in future work.

This paper is organized as follows. Section 2 describes the proposed antennae and an-
tenna system design, together with the measurement and simulation setup. Section 3 shows
the simulated numerical results and the results from phantom experiments, as well as im-
age reconstructions using the phantom measurements. Finally, the results are discussed in
Section 4 and the conclusions are presented in Section 5.

2. Materials and Methods

In this section, we describe the simulation model and experimental setup that were
used to investigate the antenna design, which was based on monopoles immersed in a
semisolid lossy gel. The antennae and antenna system design are explained and we describe
the investigations that were performed to determine their effects on the wave propagation
and the reduction in multipath signals using different conductivity in the gel. The aim
was to determine what is needed to achieve sufficient multipath signal reduction in order
to facilitate accurate and consistent image reconstruction. We also investigated how the
signal levels inside the leg were affected by the conductivity of the gel and the method
that was used to investigate these effects is also described in this section. Lastly, the image
reconstruction method is described, together with the experiments and simulations that
were used to assess the imaging performance.

2.1. Dielectric Properties of Tissue, Phantom Materials and Simulation Models

The experiments and simulations were performed in a simplified environment con-
sisting of only two tissues: muscle and blood. Muscle tissue was used to model the leg of
a patient and blood was used to model the bleeding caused by a muscle rupture. Other
tissues in the leg, such as bone, fat and skin, were omitted for simplicity. This simplified
scenario should still be sufficient to show the proof of principle for the use of a lossy gel
to mitigate the effects of multipath signals. Dielectric data for muscle tissue and blood
tissue were obtained from [20] and are shown in Figure 1. For the experiments, muscle
and blood phantoms were manufactured using water as a solvent, salt to control the con-
ductivity, sugar to control the permittivity and agar to solidify the phantom [52]. The goal
was to manufacture phantoms with properties that were as close as possible to published
dielectric tissue data. However, with these substances, it was not possible to accurately
mimic the dispersive behavior of real tissue over a wide frequency band. There are many
other different substances with which to fabricate tissue-mimicking phantoms, such as oil
in gelatin mixtures [53] and Triton X-100-based liquid mixtures [54], but these also come
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with the problem of inaccurately mimicking dispersive behavior compared to the tissue
data. We decided to use water, salt and sugar because the manufacturing process is simple,
the ingredients are harmless and the dielectric properties are good enough for a proof of
concept. The permittivities and conductivities of the phantom and gel materials were mea-
sured using SPEAG’s Dielectric Assessment Kit (DAK). The dielectric properties used in the
simulations were the same as the measured dielectric properties of the phantom material.

(a)

(b)

Figure 1. The dielectric data for (a) muscle tissue and (b) blood tissue. Each plot contains the
permittivity and conductivity data from the literature, the measured dielectric values of the phantoms
and the corresponding data that were used in the simulations.
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The antennae consisted of rectangular containers filled with lossy gel. Three different
gels were manufactured to investigate the effects of the different attenuating properties of
the gel: Gel #1 was made from regular tap water and 1.5 weight percent (wt%) agar; Gel #2
was made from a mixture of tap water, 1.5 wt% agar and 4 wt% NaCl (table salt); Gel #3
was made from a mixture of tap water, 1.5 wt% agar and 10 wt% NaCl. Figure 2 shows
the measured dielectric properties of the gels, together with the corresponding properties
that were used for the simulations. The measured properties of the gels are almost constant
over the frequency band of interest. To simplify the numerical modeling, we used constant
dielectric values that were equal to the measured properties at 1 GHz. This should not
affect the validity of our conclusions.

Figure 2. The relative permittivity and conductivity of the three lossy gels. The measured data of the
gels, as well as the corresponding properties that were used in the simulations, are shown.

2.2. Antennae, Antenna Array and Experimental Setup

The antennae that we proposed for the muscle rupture detection application are
shown in Figure 3a,b. The monopole antennae were manufactured by peeling off the outer
conductor from a semirigid coaxial cable. The resulting radiating element had a length
of 35 mm. The monopole was bent 90◦, such that it could be mounted through a hole in
the back of the plastic container, as seen in Figure 3b. The plastic containers had inner
dimensions of 20 × 60 mm. The thickness of the plastic wall was 5 mm. The figure also
shows the gel present inside the container. During the measurements, the antennae were
applied in direct contact with the surface of the muscle phantom, such that the monopole
elements were also in direct contact with the phantom. For the sake of maximizing the
transmission into the leg, we did not want any lossy gel between the antenna and the skin,
only behind and beside the skin to attenuate the outgoing multipath signals.

Figure 4a shows the measurement system with the eight transmitting/receiving an-
tennae. The antennae were mounted in a semicircular array with a 16-cm diameter and
an angular spacing of 20◦ between the individual antennae. The antennae were connected
to a Rohde & Schwarz ZNBT8 16-channel vector network analyzer via flexible coaxial
cables. This VNA has a dynamic range of up to 140 dB and operates within the frequency
range of 9 kHz to 8.5 GHz, even though we only measured within the range of 0.5 GHz
to 2.0 GHz. The measurements were taken using each antenna as a transmitter while the
remaining antennae acted as receivers. In Figure 4b, the muscle phantom can be seen inside
the antenna array. The phantom was slightly smaller than the array, with a diameter of
15.6 cm.
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(a) (b)
Figure 3. Monopole antenna with cup full of gel: (a) top view of antenna; (b) side view of antenna.

(a) (b)
Figure 4. Measurement setup for probe measurements and image reconstruction: (a) semicircular
antenna array consisting of 8 antennae; (b) muscle phantom in the antenna array, with probes.

As already mentioned, the idea of this antenna design was to reduce multipath signals
traveling outside the phantom, for example, surface waves. However, we did not want to
sacrifice field strength inside the phantom, as this constituted the useful probing field. One
set of experiments was conducted to investigate the amplitude of the fields, both outside
and inside the muscle phantom, using different gels in the antennae. For this experiment set,
two additional monopole antennae were used as field probes, both with lengths of 19 mm.
The experiments were performed such that one antenna in the array transmitted, whereas
the field probes were used to measure the amplitudes inside and outside the phantom,
i.e., the transmission coefficients. The antenna and field probe arrangement that was used
for both simulations and measurements is sketched in Figure 5. For both measurements and
simulations, we chose to use the lowest antenna position within the array as the transmitter
since this was where the phantom rested directly on the transmitting antenna and thus,
had the best contact. Antenna #5 was used as the transmitting antenna and one of the two
field probes was placed just behind Antenna #3, marked (a) in the figure. The other field
probe was placed in the center of the muscle phantom, marked (b) in the figure. With these
probes, we could determine how the field strengths inside and outside the phantom were
affected by different gel properties. The measurements and simulations with Gel #1, Gel #2
and Gel #3 were conducted using this setup.
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Figure 5. Schematic illustration of the simulation model, including the positions of the two field
probes (a,b). Antennae are numbered #1–#8.

Another set of experiments was carried out for the purpose of image reconstruction.
For this, a hole was carved into the muscle phantom to allow for the insertion of a blood
phantom. The hole went 13 cm deep from the top of the phantom, as sketched in Figure 6.
This hole was filled with a liquid muscle phantom of the same properties as the solid
muscle phantom. This hole made it easy to make a priori measurements without the blood
phantom being present. The blood phantom had a diameter of 4 cm and is shown in
Figure 7a. Figure 7b shows the hole through which the blood phantom was inserted into
the muscle phantom. A wooden stick was attached to the muscle phantom to facilitate the
insertion and extraction of the blood phantom. The measurements were taken with and
without the blood phantom present.

Figure 6. Schematic illustration of the measurement setup, including the position of the blood
phantom, as well as the position of the transect cutting through the middle of the phantom. Antennae
are numbered #1–#8.

For the image reconstruction, the measurements were conducted such that the muscle
phantom was placed in the antenna array and the measurements were repeated 15 times.
Efforts were made not to touch or move anything within the setup between measurements.
Then, the blood phantom was inserted into the hole in the muscle phantom until it touched the
bottom and then 15 more measurements were taken. This procedure was repeated for both
Gel #1 and Gel #3, amounting to a total of 60 measurements and 30 reconstructed images: 15
reconstructions with Gel #1 and 15 with Gel #3.
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(a) (b)

Figure 7. The blood phantom and muscle phantom that were used in the image reconstruction exper-
iments: (a) blood phantom; (b) top view of the muscle phantom.

2.3. Simulations

Simulations corresponding to the field probe measurements were performed. The sim-
ulations were carried out in 3D and a cross-sectional image of the model is shown in
Figure 5. In this figure, the muscle phantom is represented by a cylinder with a 16-cm
diameter and the eight antennae, numbered #1–#8, are shown at the bottom of the image.
The monopoles are shown as circles touching the muscle phantom and behind them are
the quadratic-shaped gels. The plastic material of the containers was not included in this
model. The dielectric properties of the simulated Gel #1, Gel #2 and Gel #3 are shown in
Figure 2. The monopole antennae had the same dimensions as those in the measurements.
The simulations were performed using the CST Studio Suite, Release Version 2020.07, in
the frequency range of 0.5–3 GHz. In the same way as in the previous experiments, the
simulations were performed using the two field probe antennae: one placed in the center
of the phantom (a) and one placed just behind Antenna #3 (b).

2.4. Image Reconstruction Algorithm

The DMAS beamforming algorithm [30] was used to reconstruct the images. We used
a multistatic configuration in which the signals between all possible antenna pairs were
measured. To remove the early-time content, i.e., skin reflections, the measurements of the
homogeneous muscle phantom were subtracted from the corresponding measurements
with the blood phantom present.

3. Results

In this section, the results from the simulations and phantom experiments are pre-
sented. The results showed the effects of the conductivity in the antenna gels. Firstly,
the simulation results are described in Section 3.1. We show the results of wave propaga-
tion inside and outside the muscle phantom using different lossy gels within the antennae.
We also show examples of the simulations of S-parameter transmission data for Gel #1 and
Gel #3. Secondly, the results from the experiments are shown and compared to the results
from the simulations. Finally, the image reconstruction results are shown, based on the
experimental data.
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3.1. Wave Propagation Patterns Inside and Outside the Muscle Phantom

The magnitude of the electric field distribution was investigated using the simulation
model shown in Figure 5 but without the field probes present. To elaborate, the cross-
sectional images of the field patterns are shown for the frequencies of 0.7 GHz and 1.65 GHz
in Figure 8. Antenna #1 was acting as transmitter. These images illustrate that it was
possible to decrease the magnitude of the waves propagating outside the muscle phantom
and around the antennae with a more lossy gel. For the lowest conductivity cases for Gel
#1, as shown in Figure 8a,d, the wave patterns inside the phantom were rather chaotic
and the field amplitudes outside the phantom were prominent. This effect was especially
evident for the 0.7 GHz case. With increasing conductivity in the gel for Gel #2, as shown
in Figure 8b,e, and the even higher conductivity in Gel #3, as shown in Figure 8c,f, it
was seen that the field strengths outside the muscle phantom decreased and the wave
fronts inside the phantom became more regularly shaped as semicircular wave fronts. We
interpreted these results as meaning that the lossy gels helped to attenuate the multipath
signals outside of the muscle phantom model. With weaker field strengths outside the
muscle phantom, weaker fields were also coupled back into the phantom from directions
other than the transmitting antenna itself and, therefore, less interference with the straight
path propagation from the transmitting antenna occurred inside of the model. The effects
of the multipath signal propagation were more apparent at 0.7 GHz than at 1.65 GHz due
to the higher attenuation at higher frequencies.

Traditional radiation diagrams are not relevant to illustrate the directional properties
of the antennae as they show far-field characteristics, so to further illustrate the damping
effect of the gels, something similar to a radiation diagram was generated. The simulations
were carried out as above at frequencies of 0.7 GHz and 1.65 GHz, but with only one
transmitting antenna present and the other seven antennae removed. The magnitude of the
electric field was sampled on a circle that was centered in the monopole element and had a
radius of one wavelength (1λ) at the corresponding frequency. This field was then plotted
in the radial diagram in Figure 9. The geometry was such that the plot corresponded to
the H-plane of a radiation pattern and the angular coordinate was oriented so that 0◦ in
the plot was pointing in the same direction as the surface normal of the antenna at the
antenna–phantom interface. For Gel#1 (Figure 9a,c), the field strengths behind the antennae
were even higher than those in the muscle tissue in front of the antenna. Figure 9b,d show
that for Gel #3, the E-field behind the antennae was significantly lower than that for Gel #1.
In front of the antenna, the field was stronger; in fact, it was almost the same amplitude as
for Gel # 1. This verified that the lossy Gel #3 effectively attenuated the waves traveling
backward and sideways from the antenna.

3.2. Field Probe Simulations and Measurements

The magnitude of the transmission coefficients that represented the electric field
strengths at one point inside the muscle phantom and one point outside the phantom were
measured and simulated. The positions are indicated in Figure 5. One antenna in the array
was transmitting and the two field probes recorded the received data. Figure 10a shows
the simulated magnitudes at probe location (A) as a function of frequency when Antenna
#1 was acting as transmitter with the three different gels. Interestingly, the attenuation
of the electric field (measured transmission coefficient) was not a linear function of the
conductivity of the coupling gel. The decrease in signal level was much greater from Gel #1
to Gel #2 than from Gel #2 to Gel #3, indicating that it might approach a saturation point
at which increased conductivity in the gels does not provide ever-increasing attenuation.
Figure 10b shows the corresponding measured signals that were obtained from the field
probe antenna positioned behind Antenna 3. For these measurements, the field strength
around the muscle phantom decreased in magnitude as the conductivity of the material
increased. Even though the levels were not exactly the same as in the simulations, the
attenuation trend was similar, except at the frequencies in the range of 0.5 GHz to about
0.75 GHz, at which hardly any difference was seen between Gel #1 and Gel #2. However,
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for most of the frequency bands, the attenuation increased with increasing loss in the
gel. Both the simulations and measurements agree that the more the conductivity in the
gels increased, the more the leaking to the surrounding phantom decreased. Possible
explanations for these differences include imperfections in the experimental setup and the
computational model being overly simplified and not including any supporting structures,
antenna cables, etc. The antenna gels had perfect contact with the curved surface of
the muscle phantom in the simulations. In the experiments, there might be small air
gaps between the edges of the flat antennae and the curved phantom surface. When the
monopole element rose even slightly above the surface of the gel, this effect could be even
more pronounced. The larger amplitudes in the field probe measurements than in the
simulations suggested that this might be a plausible explanation.

Figure 8. Simulated radiation patterns for a monopole antenna surrounded by coupling gels in
contact with a muscle phantom for different conductivity values at 0.7 GHz ((a) Gel #1; (b) Gel #2;
(c) Gel #3) and at 1.65 GHz ((d) Gel #1; (e) Gel #2; (f) Gel #3).
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(a) (b)

(c) (d)

Figure 9. E-field sampled at a circle with radius λ around a single transmitting antenna: (a,b) at
0.7 GHz; (c,d) at 1.65 GHz.

(a) (b)

Figure 10. Magnitude of transmission coefficients between the transmitting antenna and Probe A for
Gel #1, Gel #2 and Gel #3: (a) simulated transmission coefficients; (b) measured transmission coefficients.

Another complication was that the probe was placed in air and rather close to the
transmitting antenna, where strong interference patterns could arise. This made the mea-
surements more sensitive to misalignment between the simulations and experiments,
for example.

The amplitude of the electric field was also measured using a field probe in the center
of the muscle phantom, as shown in Figure 5 with probe location (B). The purpose was to
study whether the field strength inside the muscle phantom could also be attenuated by
increasingly lossy gels. The waves inside the muscle phantom were the actual probing fields
that were used to sense the scattering environment. Keeping them as high in amplitude
as possible was therefore favorable from a measurement point of view. Figure 11a shows
the simulated magnitudes of the electric fields at probe location (B). Here, Antenna #1 was
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also used as transmitter. A notable difference in the field strength outside the phantom
was that the overall magnitude of attenuation between the different gels decreased to a
much lesser degree, except in the region of 0.5–0.6 GHz. This meant that the increase in the
conductivity of the gels could be implemented without greatly affecting the field strength
inside the muscle phantom. Figure 11b shows the results of the measurements with the
antenna in the middle of the muscle phantom. The measurement results agreed well with
the simulated results for the field strength. These results indicate that this antenna design
could be effective in attenuating multipath waves while preserving a high field amplitude
inside the tissue.

(a) (b)

Figure 11. Magnitude of transmission coefficients between the transmitting antenna and Probe B
for Gel #1, Gel #2 and Gel #3: (a) simulated transmission coefficients; (b) experimental transmission
coefficients.

S-Parameters

Figure 12 shows a few examples of the transmission coefficients (S21 and S41) for
two of the previous cases with Gel #1 and Gel #3. Both measured and simulated data
are shown. The first notable observation was that the overall amplitude for Gel #3 was
lower than that for Gel #1 for both S21 and S41. Additionally, this figure shows the
same behavior as that shown in Figures 10 and 11, with the curve for Gel #3 being much
smoother than that for Gel #1. Both the simulated and measured cases for Gel #1 showed
a strongly alternating amplitude that appeared to be caused by the multipath waves
interfering with the desired object response. As mentioned already, the amplitudes for
Gel #3 were, in general, much lower in amplitude than those for Gel #1. As shown by the
previous results, the field amplitudes inside the muscle phantom were preserved while
the surrounding multipath signals were dampened. The lower amplitude was therefore
a sign that the multipath signals had been removed and the scattering amplitudes from
within the phantom had been preserved, which should be favorable in the subsequent
signal processing and image reconstruction.

As shown in Figure 12, there were significant differences between the simulated and
experimental data for Gel #1. Gel #1 had a low conductivity and, therefore, did not dampen
the backward waves effectively. As a result, significant levels of multipath signals around
the system that interfered with each other could be expected. The measured S-parameters,
therefore, became quite unpredictable as even small changes in the experimental setup
could lead to large fluctuations in the measured signals, making it difficult to obtain a good
agreement between experimental and simulation data. To some extent, this also illustrated
the importance of using a lossy gel, which reduced the levels of multipath signals and made
the measurements more predictable. With Gel #3, the multipath signals were attenuated
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to a much larger degree, resulting in a better agreement between the measurement and
simulation results.

3.3. Image Reconstruction Experiments

In the imaging reconstruction experiments, two datasets were used, i.e., measurements
with Gel #1 and those with Gel #3. Figures 10 and 11 show that the results for Gel #2 were
between those for Gel #1 and Gel #3 and in the spirit of keeping the rest of the paper as
concise as possible, we chose to only use them in the imaging experiment. For each gel, 15
measurements were taken as a priori measurements and 15 measurements were taken with
the blood phantom inserted into the muscle phantom. For each gel, 15 differential signals
could then be calculated, i.e., the input signals for the DMAS algorithm. These are shown in
Figure 13: Figure 13a shows the results for Gel #1 and Figure 13b shows the results for Gel #3.
The two upper figures show the results for S21 and the two lower figures show the results
for S41. As can be clearly seen, the results for Gel #3 were more stable but had an increasing
level of noise with the increasing frequency. The results for Gel #1, however, showed a
much more random variability, also for the lower frequencies. It was rather intuitive to
conclude that a stable and repeatable input signal for the DMAS algorithm created a stable
and repeatable image reconstruction. Figure 14 shows a few selected reconstructions that
were obtained with the measured data for Gel #1 and Gel #3. The reconstructions from the
measured data for Gel #3 showed fewer artifacts in the background, the three images were
very similar, as can be seen by a visual inspection of the figure, and the blood phantom was
reconstructed in the correct position. The reconstructions from the measured data for Gel
#1, however, showed a much greater variability between the images. As can be seen in the
figure, the upper image looked qualitatively quite good but with stronger artifacts close
to the bottom edge compared to the images from the Gel #3 data. The other two images
looked significantly different and some of the artifacts were even larger in amplitude than
the reconstructed blood phantom target. To visualize all 15 image reconstructions, plots of
the reconstructed amplitudes were drawn at the vertical line crossing through the center
of the muscle phantom, see the dashed line in Figure 6. The reconstructed amplitudes are
shown in Figure 15.

(a)

Figure 12. Cont.
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(b)

Figure 12. Comparison of transmission coefficients obtained from simulated and measured data for
Gel #1 and Gel #3: (a) results for S21; (b) results for S41.

(a) (b)

Figure 13. Differences between the object and baseline for 15 measurements: (a) results using Gel #1;
(b) results using Gel #3. The upper images show the results for S21 and the lower images show the
results for S41.
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(a) (b)

Figure 14. Sample reconstructions using phantom measurements: (a) Gel #1; (b) Gel #3.

(a) (b)

Figure 15. Reconstructed data along the line through the center of the imaging domain for 15 images:
(a) Gel #1; (b) Gel #3.
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4. Discussion

In the work by Meaney et al. [36], it was demonstrated how multipath signals corrupt
measured data within a microwave imaging system. By exploiting a lossy coupling bath,
they successfully reduced the multipath signals and implemented a consistent imaging
procedure. In the present work, the aim was to develop an imaging system for muscle
rupture detection and diagnosis because of the need to immerse the entire leg in a big tank
of lossy liquid is not practical and, in fact, prevents the widespread use of this technique as
the system becomes too bulky and impractical to use. With our new design of a monopole
antenna in front of a lossy gel to somewhat mimic the features of a lossy bath, the system
becomes easier to handle. Antennae can be arranged in configurations that can be attached
directly to the skin and allow the gels to dampen outgoing multipath signals that otherwise
would cause artifacts in the measured data. In this work, both the simulated and measured
data prove that the gels can successfully be used to reduce outgoing multipath signals. We
noted some inconsistencies within the field probe data outside the antenna array, as shown
in Figure 10. This was possibly due to imperfections in the experimental arrangement and
an overly simplified simulation model. Further studies are needed to fully understand
the sources of these discrepancies. However, the trend is clear and in agreement with the
simulations that lossy gels do attenuate the outgoing signals.

A technique using directive antennae was suggested to maximize the energy that is
coupled into the body while minimizing the energy that travels sideways and backward
away from the body. In principle, this may also serve the same purpose of reducing
multipath interference within the measurements. However, antenna designs are usually
more complex and sophisticated compared to those for monopole antennae, which also
suggests the need for a corresponding increase in the numerical modeling complexity.
In the quest for fast quantitative imaging, a reconstruction method based on the discrete
dipole method has been shown to exploit the simplicity of modeling a monopole antenna
in a lossy bath [48]. A muscle rupture diagnostic method could very well be based on an
efficient confocal imaging algorithm. However, as a long-term strategy, it seems reasonable
to seek a solution that also works for fast quantitative imaging as the dielectric properties
may contain important information with respect to diagnosing a patient. Therefore, a
design that is based on monopoles is desired. The image reconstructions that were made
using a lossy gel showed a significant improvement in the imaging quality over an almost
lossless gel. We took great effort in performing the measurements on the muscle phantom
without touching or moving anything within the experimental setup, yet the underlying
microwave data, as well as the reconstructed images, showed a significant variability in the
15 reconstructed images. Performing measurements with the lossy gels, however, resulted
in a very stable reconstruction of the 15 images, with the images looking almost identical.
The only plausible explanation is that multipath signals were attenuated, which resulted in
a significantly more stable imaging system.

5. Conclusions

We presented and investigated a novel design for antennae and an antenna array
that is intended for the microwave imaging of the leg with the purpose of detecting and
diagnosing muscle ruptures. The antennae consist of containers filled with a lossy gel and a
monopole antenna mounted at the surface of the gel. During experimental measurements,
the antennae were placed in direct contact with the muscle phantom and, consequently,
the radiating elements were also in contact with the phantom. The reason for using the
lossy gel on the back and side of the antennae was to attenuate the outgoing and sideways-
moving waves and contribute to a reduction in multipath signals. The results showed
that the field strengths outside the phantoms and antennae were significantly reduced
when a lossy gel was used compared to when an almost lossless gel was used. The results
also showed that the amplitudes of the transmission coefficients between the antennae
decreased with increasing lossy in the gel; however, the field strength inside the muscle
phantom only changed slightly. These results prove that the antennae are effective in
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reducing unwanted multipath signals while effectively preserving the amplitudes of the
probing fields inside the object under investigation. The results obtained for the simulated
and experimental data were in good agreement.

In repeated image reconstruction experiments using the DMAS, the lossy antennae
resulted in significantly more stable and repeatable reconstructions than when an antenna
with an almost lossless gel was used. We can conclude that a reduction in multipath signals
made the signals less corrupted with unpredictable artifacts due to unwanted multipath
scattering, particularly those from the region outside the muscle phantom, i.e., the antennae,
cables, supporting structures, etc.

These results are promising, but the fine-tuning and optimization of the antenna char-
acteristics may further improve the reduction in multipath signals and result in enhanced
imaging capability. The implementation of a skin reflection removal algorithm that does
not require a priori measurements of healthy tissue is also needed to make the technique
more practically usable on patients. Future work should also include the use of more
realistic phantoms or patients to investigate how image reconstruction is affected by other
tissues, such as bone and fat, as well as how well blood phantoms of different sizes, shapes
and locations can be reconstructed.
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Abstract: The aim of this work was to test microwave brain stroke detection and classification
using support vector machines (SVMs). We tested how the nature and variability of training data
and system parameters impact the achieved classification accuracy. Using experimentally verified
numerical models, a large database of synthetic training and test data was created. The models consist
of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human
head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters
in different positions. The generated synthetic data sets were used to test four different hypotheses,
regarding the appropriate parameters of the training dataset, the appropriate frequency range and
the number of frequency points, as well as the level of subject variability to reach the highest SVM
classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of
the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data.
Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for
training accurate SVM predictors with high generalization capabilities. Finally, the datasets created
for this study are made available to the community for testing and developing their own algorithms.

Keywords: SVM; brain stroke; microwave devices; numerical model

1. Introduction

Microwave (MW) technology enables the development of an affordable, non-invasive,
compact, lightweight, and therefore, a portable diagnostic system suitable for pre-hospital
care. In contrast to standard medical imaging methods such as computed tomography
(CT) and magnetic resonance imaging (MRI), MW stroke diagnostic systems could thus be
included in ambulance vehicles. This could reduce the time to stroke classification and thus
speed up the initiation of treatment reducing the lasting effects of strokes on patients [1].

MW detection and classification of strokes is based on measuring changes in dielectric
properties of the brain during stroke progression [2]. For this purpose, an antenna array
is placed around the patient’s head and the reflection and transmission coefficients at
the antenna ports are measured. In supervised machine learning approaches [3,4], the
algorithm is trained using data for known (“labeled”) scenarios (i.e., the existence of a
stroke and, eventually, its type). Training data can be obtained either synthetically using
numerical simulations or by measurements of phantoms or human subjects. However,
this is almost impossible, as it requires at least data from hundreds of patients who are in
life-threatening danger at any given time [5,6].

In [7,8], two brain stroke types are classified using inverse FFT transformation S-matrix.
In [9,10], a human head model with intracranial hemorrhage was used to investigate
the ability of a machine learning-based classification algorithm to distinguish healthy
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individuals from subjects with intracranial hemorrhage, depending on the number of
subjects for training.

In [11], the first version of a laboratory MW system developed in our group in 2015,
a homogeneous head phantom was used in experimental measurements, which demon-
strated the potential of MW systems for brain stroke classifications/diagnostics. In [12], the
SVM algorithm was used to detect the presence of a stroke on a simplified head phantom.
Very high stroke detection accuracy was achieved even with a limited amount of data
used for learning the algorithm. A follow-up work [13] dealt with the distinction between
ischemic and hemorrhagic cerebrovascular events. From [14,15], where the classification
results using different machine learning algorithms (Support Vector Machines, Nearest
Neighbors, Discriminant analysis, Naïve Bayes classifier and Classification Tree) were
compared, it suggests that SVM might be the most suitable for this application.

The aim of this study was to test the influence of the variability of the training data sets
on the detection and classification accuracy using the SVM algorithm. Further, based on
these results, we want to be able to recommend suitable properties of the training dataset.
For this purpose, several 2D numerical models were created and experimentally verified
consisting of an antenna array surrounding reconfigurable geometrically and dielectrically
realistic human head models including virtually embedded stroke phantoms. The human
head models were based on 10 different real subject heads. Thus, a large database of training
and test datasets was created. The SVM-based algorithm was tested for the detection of
the stroke presence and the classification of its type. For the SVM-based classification of
strokes, we tested the following hypotheses:

Hypothesis 1 (H1). The most suitable training data are from subjects with small strokes.

Hypothesis 2 (H2). Single-frequency and multi-frequency training data lead to the same classifi-
cation accuracy.

Hypothesis 3 (H3). A SVM trained on data from subjects with small strokes can accurately
classify randomly sized strokes.

Hypothesis 4 (H4). A SVM trained on data from patients with small strokes can accurately
classify randomly sized strokes at random positions.

2. Materials and Methods
2.1. Numerical Simulations

In this study, COMSOL Multiphysics [16] was used to create 2D synthetic training and
test data in the form of transmission and reflection coefficients (called scattering parameters
or, shortly, S-parameters). The corresponding 2D numerical models consist of a fixed
antenna array surrounding reconfigurable geometrically and dielectrically realistic human
head models. The geometry of the antenna array model corresponds to a cross-section of a
laboratory prototype of a microwave imaging system described in [11].

2.2. Numerical Model

The geometry of one numerical model is depicted in Figure 1.
The 2D geometry was created from the cross-section of the laboratory prototype 3D

numerical model in 100 mm z-coordinates. Absorption boundary conditions are set around
the entire outer perimeter of the computational domain. The antenna elements used in
this study are inspired by the slot antenna from [17]. An antenna 2D equivalent model
consists of a rectangle representing a conductive cavity and a slot was used in simulations
(see Figure 2). A slot segment was created on the perimeter of the rectangle facing the
displayed area and the boundary condition of the port (“User defined”, Ez) was assigned
to it. The rest of the perimeter of the rectangle antenna was assigned a perfect electric
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conductor boundary condition. The sizes of the antenna segments representing the slots
were changed to find the global minimum of a cost function using the genetic algorithm.
We minimized the transmission parameter differences between the optimized 2D model
and the reference experimental measurement for the entire 10-port system. The inner
part of the antenna array was filled only with the matching medium. The maximum
possible agreement between the transfer coefficients for 2D numerical simulation and
experimental measurement was achieved. Relative magnitude differences were calculated
according to Equation (1). Antennas operate in the frequency range from 0.8 GHz to 2 GHz.
A triangular mesh was used, where the maximum value of the side length was set to 1/8 of
the transverse electromagnetic wavelength in the given environment and for the highest
frequency equal to 2 GHz.
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Figure 2. (a,b) is the 3D geometry of the antennas and (c) is the final 2D equivalent antenna model,
where segments representing the slots (marked in blue) were changed to achieve maximum agreement
to the measured transmission parameters within laboratory system.

The 2D geometries of the models of all 10 human heads used here are based on 3D
head models from the IT’IS Foundation’s “The Population Head Model V1.0” database [18].
In Materialize 3-matic software [19], the mesh of the models was modified so that it could
be imported and used for FEM simulations in COMSOL Multiphysics. 2D models were
created from a section of 3D models in the brain part of the head. The models contain layers
representing the scalp, skull, cerebrospinal fluid, and brain (white matter and grey matter).
For completeness, the geometries of the 10 head phantoms are depicted in Appendix A.
The stroke locations are represented by a circle with diameters from 20 to 40 mm placed in
different positions in the brain domain shown in Figure 3.
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Figure 3. 20 positions (a), 83 positions (b), and 456 positions (c) in the brain where strokes of various
sizes were placed.

2.3. Dielectric Properties of Biological Tissues

Realistic dielectric properties values were assigned to the Individual domains of the
human head models, which represents different biological tissues. These values were
determined using the frequency-dependent 4-pole Cole–Cole model [20]. Specifically, for
the skull, CSF, and hemorrhagic stroke represented by the blood, the 4-pole Cole–Cole
model parameters were directly adopted from the database [21]. For the brain dielectric
properties, we used average values of white matter, gray matter and cerebellum and for the
scalp average values of skin and fat. The dielectric properties of the individual domains at
1 GHz are shown in Table 1.

Table 1. Dielectric properties of the domain in the human head modes at 1 GHz [21].

Tissue Layer εr (−) σ (S/m)

Scalp † 35.68 0.66
Skull 12.34 0.16
CSF 68.44 2.46
Brain ‡ 40.00 1.00
Ischemic stroke 34.00 0.85
Hemorrhagic stroke 61.07 1.58
Matching Medium * 40.00 1.00

† Average parameters of skin and fat. ‡ Average parameters of grey matter, white matter, and cerebellum.
* Matching medium dielectric properties are given by the IEEE standard [22].

2.4. Numerical Models Validation

Validation of the numerical models was done in two steps. First, we directly compared
the (synthetic) S-parameters obtained from simulations using 2D and 3D models (the
geometries of these models are shown in Figures 1 and 4) and measurements using the
laboratory prototype of a MW imaging system [11] shown in Figure 5.

For the 2D and 3D simulations and measurements, the inner part of the antenna array
was filled only with the matching medium, which allowed us idealized comparisons of all
these scenarios.

Relative magnitudes differences are defined as:

∆Mij = 20· log10

(∣∣∣∣∣
SA

ij

SB
ij

∣∣∣∣∣

)
, (1)

where SA
ij and SB

ij denote the scattering parameters in the presence or absence of a stroke,
respectively, for each i, j antennas pair.

Magnitudes differences of S-parameters are listed in Appendix C.
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2.5. Acquisition, Nature, and Variability of Training and Testing Data Sets

The datasets were automatically generated using the reconfigurable numerical model
described in Section 2.2 and 2D simulations done in COMSOL Multiphysics controlled with
in-house written MATLAB scripts. These scripts specifically set the operating frequency,
stroke type, size and position, head phantom size scaling, and saved the resulting S-matrices
together with the numerical model settings to a MATLAB structure matrix file.

According to studies [5,13], the most suitable operating frequencies for MW imaging
are around 1 GHz. Our datasets contain simulation results for 25 equidistant frequency
points ranging from 0.8 to 2 GHz.

The head models were based on 10 different patient-specific geometries. To increase the
variability of tested datasets, the geometries of the head models were scaled to 95–105% of
their original size independently in the x and y directions. The scaling factors were determined
for each data point using a uniform probability density random number generator. We used
2 types of strokes: Ischemic stroke (iStroke) caused by blockage of a blood vessel by a clot and
hemorrhagic stroke (hStroke) caused by intracranial bleeding, also the scenario without stroke
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(noStroke) was used. Three datasets have been generated as summarized in the text below
and Table 2.

Table 2. Model parameters in the DataSets.

DataSet
(−)

Stroke Type
(−)

Stroke
Sizes
(mm)

Stroke
Positions

(−)

Head
Phantoms

(−)

Head
Scaled

(%)

Frequency
Points

(−)

1
hStroke
iStroke

noStroke
20, 25, 30, 35, 40 Fixed 20 +

83 + 456 10 95–105 † 25

2
hStroke
iStroke

noStroke
20–40 † Fixed 20 10 95–105 † 25

3
hStroke
iStroke

noStroke
20–40 † Random 20

† 10 95–105 † 25

† Uniform probability density random number generator.

DataSet 1 includes 2D simulation results for subjects with five different stroke sizes
(20, 25, 30, 35 and 40 mm in diameter) of both stroke types placed at 20 predefined positions
within randomly chosen and scaled head models. In total, 1000 simulations were for
each stroke type, and 1000 simulations of randomly scaled head models without stroke.
Therefore, 3000 calculations of S–matrices were done for one frequency point. DataSet1 was
subsequently supplemented with data generated in the same way for 83 and 456 different
stroke positions.

DataSet 2 includes the simulations’ results for subjects with ischemic and hemorrhagic
strokes of random size (ranging from 20 to 40 mm in diameter determined using uniform
probability density random number generator) placed at 20 predefined positions within
randomly chosen and scaled head models. In total, 200 simulations were computed for
each type of stroke and 200 simulations for randomly scaled head models without stroke.

DataSet 3 includes the simulations’ results for subjects with ischemic and hemorrhagic
strokes of random size (range from 20 to 40 mm and determined using uniform probability
density random number generator) placed at random positions within randomly chosen
and scaled head models. In total, 200 simulations were calculated for each type of stroke
and 200 simulations for randomly scaled head models without stroke.

2.6. Feature Selection and Extraction

As previously mentioned, the numerical models contain, in total, 10 antenna elements.
For each simulation, we thus obtain a complex S-matrix with dimensions of 10 × 10. Thanks
to the Lorentz principle of reciprocity

(
Sij = Sji

)
there are only 55 independent elements of

the S-matrix. We divided the complex values of these S-parameters into real and imaginary
parts and thus obtained 110 observed features which give us 110 dataset dimensions for
one frequency point [15].

The training and test data were centered and normalized to a range from 0 to 1. For
training data, we calculate the principal component coefficients using Principal Component
Analysis (PCA) through Singular Value Decomposition (SVD). The principal component
coefficient was used to reduce the dimension for training and test data sets. The most
appropriate number of data dimensions (i.e., of PCA-extracted features) was chosen based
on the classification accuracy for different dimension sizes.

2.7. Stroke Classification

For stroke detection and classification, we used a non-linear SVM with kernel func-
tion [22]. The kernel function maps the data to a higher-dimensional space, where the
classes are easier to separate. For the classification between head phantom with ischemic
stroke (iStroke), hemorrhagic stroke (hStroke), and head phantom without stroke (noStroke)
classes, we constructed a multiclass classifier by combining multiple binary classifiers [13].
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To improve the performance of the algorithm, we searched for the best settings of the SVM
algorithm by optimizing hyper parameters based on Bayesian optimization.

To train the algorithm, an input matrix of a known set of input samples (TrainData)
and an input matrix of known responses to the samples (TrainDataClass) were prepared
according to the tested hypothesis. The input matrix of known samples consisted of a
predefined number of rows in which every row was filled with a single-measured S-matrix,
normalized, and dimensionality reduced by PCA. The input matrix with the response to
the samples was prepared by assigning a number to every class in the input matrix of
known samples.

A trained model was used to classify the data matrix of unknown samples (Data).
A matrix of unknown samples (Data) was created from all samples that correspond to
all stroke types, sizes, and positions according to the hypothesis tested. Different data
were always used to train and test the algorithm to verify its generalization capabilities.
Additional information for analysis (stroke size and position, phantom scale in x-axes and
y-axes) contains an equivalent info matrix (DataInfo). Data from this matrix were used
exclusively for the evaluation of problematic classifications.

The classification accuracy (CL-accuracy) and cross-validation error (CV-error) were
calculated. A confusion matrix was used to determine which type of stroke was problematic
for classification.

2.8. Hypothesis

Hypothesis 1 (H1). The most suitable training data are from subjects with small strokes.

Data corresponding to patients with small ischemic and hemorrhagic stroke sizes show
the smallest deviation from data for healthy subjects. It can be expected that they represent
the worst case for classification and therefore may be the most relevant for determining
support vectors. We trained the SVM algorithm with datasets including successively only
20, then 30, and finally, 40 mm iStrokes and hStrokes placed at 20 positions in 10 randomly
scaled phantoms (in total, 600 for each stroke type for testing). The SVM algorithm classified
the remaining data (DataSet 1). Dimensionality reduction using PCA was not used in this
case. For simplification, only data for 1 GHz were used. The data used for training and
testing are described in Table 3.

Table 3. Training and testing data parameters for hypothesis H1.

TrainData TestData

DataSet (−) No. 1 No.1
Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke
Stroke sizes (mm) 20 or 30 or 40 20, 25, 30, 35, 40
Stroke positions (−) Fixed 20 Fixed 20
Head phantoms (−) 10 10
Frequency points (−) 1 1
DataSet size † (−) 600 3000
DataSet dimensions ‡ (−) 110 110

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix.

Hypothesis 2 (H2). Single-frequency and multi-frequency training data lead to the same classifi-
cation accuracy.

For a smaller number of frequency points, the algorithm works with a smaller amount
of data. On the other hand, for a higher number of frequency points, we can reduce the
dimensionality to only useful information. Classification results were compared for the
SVM algorithm trained on data for a single frequency point (1 GHz), five frequency points
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(from 0.8 GHz, step 0.1 GHz, to 1.2 GHz), fifteen frequency points (from 0.8 GHz, 0.05 GHz
step, up to 1.5 GHz) data and twenty-five frequency points (from 0.8 GHz, 0.05 GHz step,
up to 2 GHz) data. We train the SVM algorithm for 20 mm iStroke and hStroke sizes
located at 20 positions in 10 random scaled phantoms. The SVM algorithm classified
the remaining data (DataSet 1). The data used for training and testing are described in
Table 4. Complete graphs of classification accuracy and cross-validation error for different
dimension reductions are provided in Appendix B.

Table 4. Training and testing data parameters for hypothesis H2.

TrainData TestData

DataSet (−) No. 1 No. 1
Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke
Stroke sizes (mm) 20 20, 25, 30, 35, 40
Stroke positions (−) Fixed 20 Fixed 20
Head phantoms (−) 10 10
Frequency points (−) 1 or 5 or 15 or 25 1
DataSet size † (−) 600 3000
DataSet dimensions ‡ (−) 110 or 550 or 1650 or 2750 110 or 550 or 1650 or 2750

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix.

Hypothesis 3 (H3). SVM trained on data of subjects with small strokes can accurately classify
randomly sized strokes.

We trained the SVM algorithm using data on subjects with 20 mm iStroke and hStroke
located at 20 positions in 10 randomly scaled phantoms (DataSet 1). We used training data
for a frequency of 1 GHz and 90 dimensions reduced by PCA. The SVM algorithm classified
the data of subjects with random stroke sizes (DataSet 2). The data used for training and
testing are described in Table 5.

Table 5. Training and testing data parameters for hypothesis H3.

TrainData TestData

DataSet (−) No. 1 No. 2
Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke
Stroke sizes (mm) 20 20–40
Stroke positions (−) Fixed 20 Fixed 20
Head phantoms (−) 10 10
Frequency points (−) 1 1
DataSet size † (−) 600 600
DataSet dimensions ‡ (−) 90 90

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix.

Hypothesis 4 (H4). SVM trained on data of subjects with small strokes can accurately classify
randomly sized strokes at random positions.

We trained the SVM algorithm using data for 20 mm iStroke and hStroke sizes located
at 20, 83, and 456 positions in 10 randomly scaled phantoms (DataSet 1). We used training
data for a frequency of 1 GHz and 90 dimensions reduced by PCA. The SVM algorithm
classified data for random stroke sizes and random stroke positions (DataSet 3). The data
used for training and testing are described in Table 6.
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Table 6. Training and testing data parameters for hypothesis H4.

TrainData TestData

DataSet (−) No.1 No.3
Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke
Stroke sizes (mm) 20 20–40
Stroke positions (−) Fixed 20 or 83 or 456 Random 20
Head phantoms (−) 10 10
Frequency points (−) 1 1
DataSet size † (−) 600 or 2490 or 1368 600
DataSet dimensions ‡ (−) 90 90

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix.

3. Results
3.1. Numerical Model Validation

Numerical model validation was done by direct comparison of measured S-parameters
from laboratory prototype of the microwave imaging system and S-parameters from 2D
and 3D numerical simulations (see Figure 6).
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Figure 6. Magnitudes differences of 2D numerical model and 3D numerical model (a) and magnitudes
differences of 3D numerical model and experimental measurement (b).

Results of 2D and 3D numerical analysis of the changes in S-parameters induced by
the virtual presence of the stroke model are listed in Appendix C. The reflection coefficients
did not change when the stroke was inserted. Changes in the transmission coefficients were
observed and were different for ischemic and hemorrhagic stroke and therefore applicable
for the given purpose. Results in the 2D model cause more significant changes in the
transmission coefficients than in the 3D model.

3.2. Principal Component Analysis

The variance of DataSet 1 determined by principal component analysis (PCA) is
shown in Figure 7. Around the 90th dimension, the variance begins to decrease more
rapidly. Several higher principal components show significantly lower variance than others.
Based on Figures 7 and A2, where the classification accuracy was the highest and the
cross-validation error the lowest, we decided to set 90 dimensions for a frequency of 1 GHz.
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3.3. Hypothesis

Hypothesis 1 (H1). The most suitable training data are from subjects with small strokes.

SVMs were successively trained with data for different stroke sizes and then classified
the remaining strokes (Training and testing data are described in Table 3). By training
the algorithm with data corresponding to the smallest considered stroke sizes (with a
diameter of 20 mm), the highest classification accuracy was achieved (see Table 7), even
when classifying strokes up to the maximum considered diameter (40 mm). Thus, the
hypothesis that the training data for small stroke sizes is the most suitable for training the
SVM algorithm for stroke classification was confirmed.

Table 7. Effect of stroke sizes on classification accuracy for DataSet1 at 1 GHz.

Stroke Size
(mm)

CV-Error
(%)

CL-Accuracy
(%)

20 11.8 95.7
30 7.0 85.3
40 5.5 65.5

Hypothesis 2 (H2). Single-frequency and multi-frequency training data lead to the same classifi-
cation accuracy.

Graphs of classification accuracy and cross-validation error for different values of
dimensionality and different numbers of frequency points are in Appendix B. From Table 8,
we conclude that for SVM training, it turns out to be most appropriate to use 1 or 5 fre-
quency points, where the classification accuracy and cross-validation error were almost
identical. For 15 and 25 frequency points the results are significantly worse and only after
dimensionality reduction using PCA do the results reach similar classification accuracy
as with a lower number of frequency points. Thus, the hypothesis that the training data
for one frequency point is sufficient for an accurate classification of stroke using the SVM
algorithm was confirmed.
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Table 8. The effect of number of frequency points and dimension reduction on the classification
accuracy.

Frequency
Points

(−)

Frequencies
(GHz)

Total
Dimensions

(−)

CL-Accuracy
CV-Error

(%)

Reduced
Dimensions

(−)

CL-Accuracy
CV-Error

(%)

1 1.00 110 94.6
14.9 90 96.9

10.4

5 0.80 1.00 1.20
1.40 1.50 550 77.0

17.3 80 96.8
10.2

15 0.80–1.50
step 0.05 1650 87.2

21.1 70 96.3
11.1

25 0.80–2.00
step 0.05 2750 33.3

28.6 150 92.2
8.4

Hypothesis 3 (H3). SVM trained on data of subjects with small strokes can accurately classify
randomly sized strokes.

The confusion matrix in Figure 8 shows that the classification between the iStroke
and the hStroke class was accurate, only a 6.5% strokes were classified as the noStroke
class, and 6.0% noStrokes were classified as the iStroke class. The hypothesis that the SVM
algorithm for stroke classification trained on small strokes can classify random-size strokes
was confirmed.
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Hypothesis 4 (H4). SVM trained on data of subjects with small strokes can accurately classify
randomly sized strokes at random positions.

From Table 9 we see that even for a larger amount of data, the algorithm cannot classify
random data accurately and reach a maximum at around 70% classification accuracy. From
the confusion matrixes in Figure 9, we can observe the correct and incorrect classification
of iStroke, hStroke, and noStroke classes. The hypothesis that the SVM algorithm for stroke
classification trained on small strokes can classify random size and random position strokes
was not confirmed.
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Table 9. The SVM algorithm classification of random stroke sizes and random stroke positions with
different amounts of training data (different number of 20 mm stroke positions in the head).

Training Data
Stroke Positions

(−)

Training Data
Number of
Phantoms

(−)

CV-Error
(%)

CL-
Accuracy

(%)

Hyperparameters
Optimalization Settings

(−)

20 hStroke
20 iStroke 10 11.3 64.3

Box Constraint = 912.92
Kernel Function = Gaussian

Kernel Scale = 17.8

83 hStroke
83 iStroke 10 8.9 70.5

Box Constraint = 212.97
Kernel Function = Gaussian

Kernel Scale = 11.41

456 hStroke
456 iStroke

1 randomly
selected from
10 phantoms

11.3 70.2
Box Constraint = 385.03

Kernel Function = Gaussian
Kernel Scale = 19.74
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Figure 9. The confusion matrixes for classification of random stroke sizes and random stroke
positions. In total, 200 samples for iStroke, 200 samples for hStroke and 200 samples for noStroke.
SVM algorithm was trained for (a) 20 and (b) 83 ischemic and hemorrhagic strokes in 10 scaled
phantoms and (c) for 456 ischemic and hemorrhagic strokes in 1 randomly selected phantom from
10 scaled phantoms.

4. Discussion

The results of this work are for a large dataset for the training and testing of machine
learning algorithms for MW detection and classification of cerebrovascular events. The
dataset can be used to optimize the setting and study the performance and limits of the
algorithms for the considered application. As part of this work, the aforementioned dataset
was used to test selected hypotheses. The second result of this work is hypothesis testing,
where it was proven that (a) the data of subjects with strokes of sizes and distributed
throughout the brain are the most suitable for training SVM algorithms, (b) the SVM
algorithm can reliably detect and classify iStrokes and hStrokes at a single frequency, and
multi-frequency data do not bring an increase in classification accuracy, (c) a large amount
of data of subjects with small strokes must be used to train the SVM algorithm.

4.1. Comparison of S-Parameters Obtained by 2D and 3D Simulations and Measurements

In general, the 2D numerical model does not consider the propagation of EM waves
in the 3rd dimension. In this work, a global optimization method was used to find the size
of the boundary condition of the antenna port, which guarantees a good match between
the measured and simulated transmission coefficients. Therefore, the magnitudes of the
transmission parameters calculated and measured are in agreement; see Figure 6. On the
other hand, the agreement in the reflection coefficients is worse. The calculated S-parameters
are symmetric according to its main diagonal, while the measurements S-parameters show
slight symmetry in the second decimal place in dB. These differences can be caused by noise
or temperature fluctuations and must be considered when detecting a stroke.
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4.2. S-Parameter Variability due to the Presence of Strokes

Changes in S-parameter values induced by the presence of ischemic and hemorrhagic
stroke were studied using 2D and 3D numerical simulations. While the reflection coeffi-
cients did not change when the stroke was inserted, changes in the transmission coefficients
were observed even for the worst-case scenario with the stroke located in the middle of the
brain. The changes in transmission coefficients were different for ischemic and hemorrhagic
stroke and therefore applicable for the given purpose. It is also possible to observe changes
in the transmission parameters for the stroke location (–20, 30).

When comparing the calculated changes in the transmission coefficients in 2D and 3D,
it is evident that not considering the EM wave propagation in the 3rd dimension causes
more significant changes in the transmission coefficients than in the 3D model. Stroke
detection and classification on 2D data can perform better than on real data or data obtained
through 3D numerical simulations.

4.3. PCA

Based on the knowledge of the measured data and the information that the s-matrix from
numerical simulations and measurements is symmetric, only the independent S-parameters
of the matrix were selected, which resulted in the first reduction in the data dimension.
Dimensionality reduction was tested using PCA for different frequency points.

With 25 frequency points, it is necessary to strongly reduce the data using PCA to
achieve good classification accuracy results (see Figure A5), but we still did not achieve a
higher classification accuracy or lower cross-validation error compared to a smaller number
of frequency points (see Table 8). For five frequency points it is again necessary to strongly
reduce the data using PCA to achieve good classification accuracy results (see Figure A3).
The classification accuracy and cross-validation error for five frequency points are almost
identical to one frequency point (see Figure A2), where only a small data reduction from 110
to 90 dimensions is needed to achieve the best classification accuracy results. This result is
also suggested by the variance of the data (see Figure 7), where around 90 dimensions, the
principal component starts to radically lose variance, and even a few principal components
reach a significantly lower variance than most of the data. We decided to set 90 dimensions
for extraction using PCA, where the data contain 99.9% variance.

4.4. Hypothesis H1

From Table 7, we can conclude that when training the algorithm only on the data
of subjects with the smallest strokes (diameter 20 mm), the SVM algorithm achieved the
highest classification accuracy of subjects with larger strokes up to a diameter of 40 mm.
On the other hand, the cross-validation error increased from 5.5% to 11.8%. We assume
that data of subjects with larger strokes contain higher variability; therefore, it is easier to
classify them, and the algorithm achieves a smaller cross-validation error when training for
larger strokes. Useful information for creating a support vector is provided by small-stroke
subjects; however, they are more difficult to divide, which is why the Cross-validation error
is higher than for larger strokes.

4.5. Hypothesis H2

SVM trained on data containing one and five frequency points showed almost identical
classification accuracy and cross-validation error. They also outperformed an SVM trained
with data containing a larger number of frequency points, even though the performance of
the latter was enhanced by dimensionality reduction using PCA. This means that for this
particular application, it would be enough to use a narrowband imaging system.

4.6. Hypothesis H3

The confusion matrixes in Figure 8 shows that the classification between ischemic and
hemorrhagic stroke was accurate and only 6.5% of strokes were classified as non-stroke
scenario and 6.0% of no strokes were classified as ischemic stroke.
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Pre-hospital MW detection and classification of cerebrovascular events have the follow-
ing specifics. Ischemic strokes need to be detected because they can be treated immediately
with thrombolytic therapy. A situation where a hemorrhagic stroke is classified as ischemic
is completely unacceptable. Thrombolytic therapy in case of hemorrhagic stroke causes
hematoma enlargement and increases the risk of mortality [23]. In our study, unacceptable
misclassification was observed only when we classify random stroke sizes and random
stroke positions (DataSet 3), but the training dataset is extended by more stroke positions to
eliminate misclassifications. It is, therefore, possible to consider only a 2-class classification
into ischemic cerebrovascular events and the rest.

4.7. Hypothesis H4

The hypothesis that the SVM algorithm for stroke classification trained on data of the
subjects with small strokes can accurately classify random size and random position strokes
were not confirmed. From Table 9, we can conclude that only 20 iStroke and hStroke positions
were not enough and the SVM algorithm only achieved a 63.5% classification accuracy. For 83
and 456 iStroke and hStroke positions SVM algorithm achieved only classification accuracy
of 70% and 71%, respectively. Furthermore, we observed that the box constraint, which was
determined by the optimization of the hyper-parameters, reaches high values. High box
constraint values suggest good separation and fewer misclassifications, but unknown data for
random stroke size and random stroke positions, the SVM algorithm is not able to classify
correctly, and achieves only 70% classification accuracy. We also checked which samples were
misclassified, but no pattern was discovered. From the confusion matrixes in Figure 9 we
conclude that most of the inaccurate classifications belonged to the category without stroke,
and these stroke patients will be taken to the hospital anyway. The biggest problem in the
treatment of stroke patients is the classification of hemorrhagic strokes into the ischemic
category. The use of anticoagulation in hemorrhagic stroke causes hematoma enlargement
and increases the risk of mortality [23]. For this situation, there were no misclassifications for
the 456 iStroke and hStroke positions used for SVM algorithm training.

4.8. Comparison with Published Studies

The results are partially comparable to [10], where a study of the feasibility of subdural
hematoma classification by the SVD-based algorithm was performed on synthetic data
from 2D numerical simulations. The authors achieved 82–96% classification success rate,
considering only a two-class classification of healthy subjects and subjects with subdural
hematomas. Ischemic stroke cases were not considered. Subdural hematoma is distinct from
intracerebral hemorrhage, which is the most common type of hemorrhage in stroke patients.
Intracerebral hemorrhage is located within the brain tissue and is usually of spherical shape
and is generally characterized by a smaller volume than subdural hematoma; hence, the
subdural hematoma may be classified with lower error. The 2D model is a significant
simplification; therefore, a 3D numerical study was presented in [9]. Again, a two-class
classification is performed. In our study, the results of classification into three classes
are presented.

In [24], an alternative and efficient method was proposed to create the training dataset,
based on the distorted Born approximation, to obtain a linear scattering operator from the
dielectric contrast space to the scattering parameters’ one. A dataset containing 10,000 sam-
ples was created in a relatively short time and with low computational effort. On the
other hand, a single 3D CAD model of a human head was used and scaled to obtain a
total of 10 head models. In our study, a higher data variability was considered because all
10 different head models were scaled randomly in each numerical simulation.

The algorithms were tested in [24] on a large amount of data obtained from the linear
dispersion operator. An evaluation of the suitability of different datasets for training was
not carried out. In our study, the effect of multi-frequency data on classification accuracy
was tested, but the results show and agree with the statement in [24] that single-frequency
data is sufficient for this application.
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Classification using the SVM algorithm with a different data processing approach was
performed in [7]. Data were obtained for 10 head models without scaling and only for
ellipsoid strokes of 10 mm3 to 35 mm3. A total of 100 stroke head models were created. A
two-class classification was performed between iStroke and hStroke classes. NoStroke class
was not included. Inverse FFT was used to convert these signals to time series signals. Data
variability was increased by adding noise, which also significantly reduced the classification
success rate from 94% to 77%. In [8], dimensionality reductions by PCA led to classification
success rate increase to 99%. The increase in the classification success using PCA also
confirms our results, even though it was a different data processing approach.

4.9. Further Plans

Training data for machine learning algorithms should ideally be obtained from mea-
surements performed in subjects with acute strokes. However, these patients are in a
life-threatening situations. Using 2D numerical simulations, we obtained the large amount
of data needed to train and test machine learning algorithms and to optimize their settings.
We can test various hypotheses to understand well the performance and limits of this
application. In future, we plan to perform 3D numerical simulations for a larger number of
human heads and a more realistic MW imaging system with up to 24 antennas. Algorithms
trained on the data obtained from numerical simulations would probably fail in the real
world. Therefore, we plan to test the algorithm on experimentally obtained measurement
data using a MW system [25] and anatomically and dielectrically realistic phantoms of the
human head such as those proposed in [26]. Machine learning algorithms do not provide
the position or magnitude of the stroke in the human head; therefore, in the future, we
propose to combine the SVM algorithm with the TSVD Born approximation to obtain an
image of the observed area. Both algorithms can be used on the same device.

5. Conclusions

Machine learning algorithms appear to be a promising method for MW stroke detec-
tion and classification. A large dataset for the training and testing of machine learning
algorithms for MW detection and classification of cerebrovascular events was created.
We demonstrated that the SVM algorithm is able to detect the presence of the stroke and
classify it as ischemic and hemorrhagic classes. Data from a single frequency point (1 GHz)
are sufficient for training the accurate SVM predictors. Further, it was shown that the
data of subjects with smaller strokes appear to be the most suitable for training accurate
SVM predictors with high generalization capabilities for stroke-trained position placement.
The study indicate that it is difficult to find suitable training data to accurately detect and
classify the type of stroke located at an arbitrary position in the head.

Author Contributions: Conceptualization, T.P., J.V. and M.S.; methodology, T.P., J.V., O.F., M.S., L.T.
and A.P.; software, T.P., D.V., T.D. and M.N.; validation, T.P., J.V. and M.S.; formal analysis, T.P., J.V.
and M.N.; investigation, T.P., T.D. and O.F.; resources, T.P.; data curation, T.P.; writing—original draft
preparation, T.P. and J.V.; writing—review and editing, T.P., J.V., M.S., D.V., T.D., M.N., O.F., L.T. and A.P.;
visualization, T.P. and O.F.; supervision, J.V., D.V. and M.S.; project administration, T.P. and D.V.; funding
acquisition, J.V. and D.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the research program of the Czech Science Foundation, Project
no. 21-00579S and by the Grant Agency of the Czech Technical University in Prague, grant name:
Microwave Imaging Methods for Medical Applications.

Data Availability Statement: DataSets from 2D numerical simulations can be downloaded after
filling out the form: https://forms.gle/K2WPhfsXgTmgJCnh6 (accessed on 9 February 2023).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

57



Sensors 2023, 23, 2031

Appendix A

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21 
 

 

position placement. The study indicate that it is difficult to find suitable training data to 
accurately detect and classify the type of stroke located at an arbitrary position in the head. 

Author Contributions: Conceptualization, T.P., J.V. and M.S.; methodology, T.P., J.V., O.F., M.S., 
L.T. and A.P.; software, T.P., D.V., T.D. and M.N.; validation, T.P., J.V. and M.S.; formal analysis, 
T.P., J.V. and M.N.; investigation, T.P., T.D. and O.F.; resources, T.P.; data curation, T.P.; writing—
original draft preparation, T.P. and J.V.; writing—review and editing, T.P., J.V., M.S., D.V., T.D., 
M.N., O.F., L.T. and A.P.; visualization, T.P. and O.F.; supervision, J.V., D.V. and M.S.; project 
administration, T. P. and DV; funding acquisition, J.V. and D.V. All authors have read and agreed 
to the published version of the manuscript. 

Funding: This research was funded by the research program of the Czech Science Foundation, 
Project no. 21-00579S and by the Grant Agency of the Czech Technical University in Prague, grant 
name: Microwave Imaging Methods for Medical Applications. 

Data Availability Statement: DataSets from 2D numerical simulations can be downloaded after 
filling out the form: https://forms.gle/K2WPhfsXgTmgJCnh6 (accessed on 9 February 2023). 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the 
manuscript; or in the decision to publish the results. 

Appendix A 

  
Phantom 1 Phantom 2 

  
Phantom 3 Phantom 4 

  
Phantom 5 Phantom 6 

Figure A1. Cont.

58



Sensors 2023, 23, 2031Sensors 2023, 23, x FOR PEER REVIEW 17 of 21 
 

 

  
Phantom 7 Phantom 8 

  
Phantom 9 Phantom 10 

Figure A1. 10 different human head model geometries based on real subjects. 

Appendix B 
Graphs of classification accuracy and cross-validation error for different 

dimensionality reductions for different numbers of frequency points. 

 
Figure A2. Classification accuracy and cross-validation error for different dimensionality reductions 
in data for a single frequency point (1 GHz). 

Figure A1. 10 different human head model geometries based on real subjects.

Appendix B

Graphs of classification accuracy and cross-validation error for different dimensionality
reductions for different numbers of frequency points.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21 
 

 

  
Phantom 7 Phantom 8 

  
Phantom 9 Phantom 10 

Figure A1. 10 different human head model geometries based on real subjects. 

Appendix B 
Graphs of classification accuracy and cross-validation error for different 

dimensionality reductions for different numbers of frequency points. 

 
Figure A2. Classification accuracy and cross-validation error for different dimensionality reductions 
in data for a single frequency point (1 GHz). 

Figure A2. Classification accuracy and cross-validation error for different dimensionality reductions
in data for a single frequency point (1 GHz).

59



Sensors 2023, 23, 2031Sensors 2023, 23, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure A3. Classification accuracy and cross-validation error for different dimensionality reductions 
in the data for five frequency points (from 0.8 GHz, step 0.1 GHz, to 1.2 GHz). 

 
Figure A4. Classification accuracy and cross-validation error for different dimensionality reductions 
in data for 15 frequency points (from 0.8 GHz, step 0.05 GHz, to 1.5 GHz). 

 
Figure A5. Classification accuracy and cross-validation error for different dimensionality reductions 
in the data for 25 frequency points (from 0.8 GHz, step 0.05 GHz, to 2 GHz). 

Appendix C 
This appendix presents the S-parameter changes induced by the virtual presence of 

ischemic and hemorrhagic strokes calculated using 2D and 3D numerical models. These 
changes were calculated by subtracting the S-parameters for the case when the inner part 
of the antenna system was filled only with the matching medium (εr = 40, σ = 1 S/m) from 
the S-parameters for the case where the stroke model was added virtually. 

Figure A3. Classification accuracy and cross-validation error for different dimensionality reductions
in the data for five frequency points (from 0.8 GHz, step 0.1 GHz, to 1.2 GHz).

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure A3. Classification accuracy and cross-validation error for different dimensionality reductions 
in the data for five frequency points (from 0.8 GHz, step 0.1 GHz, to 1.2 GHz). 

 
Figure A4. Classification accuracy and cross-validation error for different dimensionality reductions 
in data for 15 frequency points (from 0.8 GHz, step 0.05 GHz, to 1.5 GHz). 

 
Figure A5. Classification accuracy and cross-validation error for different dimensionality reductions 
in the data for 25 frequency points (from 0.8 GHz, step 0.05 GHz, to 2 GHz). 

Appendix C 
This appendix presents the S-parameter changes induced by the virtual presence of 

ischemic and hemorrhagic strokes calculated using 2D and 3D numerical models. These 
changes were calculated by subtracting the S-parameters for the case when the inner part 
of the antenna system was filled only with the matching medium (εr = 40, σ = 1 S/m) from 
the S-parameters for the case where the stroke model was added virtually. 

Figure A4. Classification accuracy and cross-validation error for different dimensionality reductions
in data for 15 frequency points (from 0.8 GHz, step 0.05 GHz, to 1.5 GHz).

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure A3. Classification accuracy and cross-validation error for different dimensionality reductions 
in the data for five frequency points (from 0.8 GHz, step 0.1 GHz, to 1.2 GHz). 

 
Figure A4. Classification accuracy and cross-validation error for different dimensionality reductions 
in data for 15 frequency points (from 0.8 GHz, step 0.05 GHz, to 1.5 GHz). 

 
Figure A5. Classification accuracy and cross-validation error for different dimensionality reductions 
in the data for 25 frequency points (from 0.8 GHz, step 0.05 GHz, to 2 GHz). 

Appendix C 
This appendix presents the S-parameter changes induced by the virtual presence of 

ischemic and hemorrhagic strokes calculated using 2D and 3D numerical models. These 
changes were calculated by subtracting the S-parameters for the case when the inner part 
of the antenna system was filled only with the matching medium (εr = 40, σ = 1 S/m) from 
the S-parameters for the case where the stroke model was added virtually. 

Figure A5. Classification accuracy and cross-validation error for different dimensionality reductions
in the data for 25 frequency points (from 0.8 GHz, step 0.05 GHz, to 2 GHz).

Appendix C

This appendix presents the S-parameter changes induced by the virtual presence of
ischemic and hemorrhagic strokes calculated using 2D and 3D numerical models. These
changes were calculated by subtracting the S-parameters for the case when the inner part
of the antenna system was filled only with the matching medium (εr = 40, σ = 1 S/m) from
the S-parameters for the case where the stroke model was added virtually.
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Abstract: In microwave hyperthermia tumor therapy, electromagnetic waves focus energy on the
tumor to elevate the temperature above its normal levels with minimal injury to the surrounding
healthy tissue. Microwave hyperthermia applicator design is important for the effectiveness of
the therapy and the feasibility of real-time application. In this study, the potential of using fractal
octagonal ring antenna elements as a dipole antenna array and as a connected array at 2.45 GHz
for breast tumor hyperthermia application was investigated. Microwave hyperthermia treatment
models consisting of different fractal octagonal ring antenna array designs and a breast phantom are
simulated in COMSOL Multiphysics to obtain the field distributions. The antenna excitation phases
and magnitudes are optimized using the global particle swarm algorithm to selectively increase the
specific absorption rate at the target region while minimizing hot spots in other regions within the
breast. Specific absorption rate distributions, obtained inside the phantom, are analyzed for each
proposed microwave hyperthermia applicator design. The dipole fractal octagonal ring antenna
arrays are comparatively assessed for three different designs: circular, linear, and Cross−array. The
16-antenna dipole array performance was superior for all three 1-layer applicator designs, and no
distinct difference was found between 16-antenna circular, linear, or cross arrays. Two-layer dipole
arrays have better performance in the deep-tissue targets than one-layer arrays. The performance of
the connected array with a higher number of layers exceeds the performance of the dipole arrays
in the superficial regions, while they are comparable for deep regions of the breast. The 1-layer
12-antenna circular FORA dipole array feasibility as a microwave hyperthermia applicator was
experimentally shown.

Keywords: microwave hyperthermia; cancer therapeutics; fractal octagonal ring array; dipole
antenna; connected array; particle swarm optimization

1. Introduction

Hyperthermia (HT) studies have attested that elevated tissue temperature can damage
and shrink cancerous cells while causing minimal harm to normal tissues [1]. Moreover, HT
makes some of the tumor cells more susceptible to radiation therapy and chemotherapy [2].
Hence, it has been used to treat different types of advanced cancers in combination with
various other forms of cancer therapy, including radiation therapy and chemotherapy [3].
HT is a process that artificially elevates tumor temperature to between 40 °C and 45 °C for a
sufficient period of time (30–60 min) while maintaining the normal body temperature in the
remaining tissue [3]. HT can be delivered using three different modalities, such as ultrasound,
thermal conduction, and microwave radiation devices. However, the final effect varies for
every tissue depending on its location and constituents, such as fat, water, or bone. This study
focuses on a noninvasive system of microwave hyperthermia (HT) to be used in the treatment
of breast cancer.
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A relatively high proportion of carcinomas arises in the upper outer quadrant of the
breasts [4]. However, malignant tissues can develop deep or at any location within the
breast, even near the chest wall. Hence, clinical HT applicators should possess controllable
power deposition profiles to treat lesions of varying sizes and shapes that may occur
at diverse locations within the breast. HT employs beamforming techniques to focus
microwave energy on the breast tumor by adjusting the excitation phase and amplitudes of
the antenna array. Therefore, the choice of the HT applicator and its array distribution is
very important in hyperthermia treatment planning (HTP). Circular-shaped applicators
(CA) are the most common applicator type in breast HT [5–7]. The symmetry offered by CA
provides good coverage of the breast tissue. Linearly distributed applicator (LA) designs
have also been proposed [8–10]; however, their practice has not been appealing because
it has low coverage due to non-symmetrical geometry. In a recent study, the physical
rotation of the linear array has been proposed to better align LA with the target, and
thus enhance the focusing performance [11]. Furthermore, a formation of a hemispherical
hyperthermia chamber deploying an antenna array around the breast has been shown to
realize selective heating of a tumor in a sample [12–14]. It offers a comfortable and wearable
hyperthermia system that can provide complete coverage of the breast. This enables
conformal tumor heating by mechanically or electronically scanning a highly focused
beam through the target region at various breast locations [12,15]. Moreover, efficient HT
focusing can be achieved for small deep-seated breast tumors utilizing radiating elements
implemented in a symmetric cross configuration [16,17]. In [18,19] a Cross−array (XA)
arrangement of four sub-arrays of corrugated tapered slot antennas for application in three-
dimensional (3D) HT was investigated using MRI-derived realistic 3D breast phantoms in
full-wave electromagnetic simulations. The results of this array configuration illustrated
the possibility of selectively heating a tumor volume of 1 cm3 in gland tissue.

This paper employs fractal octagonal ring antenna (FORA) elements for a near-field
phased array antenna and explores its feasibility for an efficient HT system. FORA is a
printable antenna that can be tailored for a wide range of applications [20]. Implementation
of FORA under flat and curvature conditions would be valuable for HT therapy systems to
follow the patient’s body contour. Two types of antenna system were adopted using FORA
elements, which are the disconnected dipole arrays and the connected arrays. The FORA
dipole array is a standard narrow-band antenna design, intended to keep low mutual
coupling between the radiating elements, so as not to unduly alter the performance of
each isolated element. On the other hand, a FORA−connected array is a broadband array
design in which mutual coupling is intentionally introduced between the array elements in
addition to capacitance coupling between the tip ends of each element [21]. This enables
almost continuous current flow among the different FORA elements, thus realizing the
continuous current sheet proposed by Wheeler [22]. The earlier works of the authors are
related to wide-band Vivaldi antennas, tailored especially for imaging applications [8,10,11].
In this work, FORA dipole provides the narrow-band application, while FORA−connected
array provides the conformal and wide-band characteristic that can be used in a future
wearable hyperthermia device application.

For efficient microwave focusing, global particle swarm optimization (PSO) was
used to find the optimum antenna excitations, which enables constructive interference
in the desired target region and destructive interference elsewhere. To computationally
verify the FORA array performance, a 3D simulation of a cylindrical breast phantom was
performed, and two-dimensional (2D) optimization of the antenna excitation parameters
was conducted, then the SAR and temperature results were represented in 2D planes.

FORA dipoles were arranged in circular, linear, and Cross−array applicator designs
which are compatible with the cylindrical phantom geometry. To assess the applicator
design performance in a simple medium, a homogeneous fat phantom was used, and the
positions of different applicator designs were pre-adjusted to show their best performance
at the investigated target locations. One-layer dipole applicators were investigated for
varying antenna numbers and inter-antenna distances. The best-performing designs of the
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1-layer applicators were then investigated for two layers, and for the inter-layer distance.
The FORA−connected array was investigated for different antenna numbers and layer
numbers, and thus different curvatures. Comparisons between the 1- and 2-layer FORA
dipole applicators and different designs of FORA−connected arrays are given. Comparisons
presented in this paper are based on the target-to-breast SAR ratio and the necessary total
antenna power to reach the desired temperature at the target.

An experimental setup with a 1-layer 12-antenna circular FORA dipole array and
fat-mimicking phantom is presented. The computed result and the experimental result are
compared to each other.

The main contributions of this work can be summarized as follows:

• FORA antenna element is proposed to be used in an HT application.
• FORA element is comparatively assessed in the forms of dipole and connected arrays.
• The FORA dipole arrays are comparatively assessed for three different designs (cir-

cular, linear, and Cross−array applicators); the number of constituent antennas; the
number of antenna layers; inter-antenna distances; antenna-tissue distances; and
inter-layer distances.

• The FORA−connected arrays are comparatively assessed for the number of constituent
antennas; number of antenna layers; and antenna-tissue distances.

• The use of the FORA circular array as a hyperthermia applicator was experimentally
verified on a fat-mimicking phantom.

The rest of the paper is organized as follows: an introduction to Pennes’ bio-heat
equation that governs the thermodynamic relation in space and time between the SAR
and the tissue temperature is given in Section 1.1. The following methodology is provided
in Section 2, where the phantom, the FORA antenna, the HT applicator designs, and the
simulation environment are explained in detail. In Section 3, 1- and 2-layer dipole HT
applicator design results as well as the connected FORA array design results are provided,
and the experimental results are presented. Finally, the authors conclude the work in
Section 4.

1.1. Pennes’ Bio-Heat Equation

The normal body tissue temperature is T0 = 37 ◦C. Once heated with an applicator
during hyperthermia therapy, the heat transmission process in living tissue includes ther-
mal conduction, blood circulation and perfusion, and metabolic heat output. Pennes [23]
was the first to develop a mathematical model that describes heat transfer in human tissue
involving the effects of blood flow on tissue temperature on a continuum basis, assuming
the venous blood temperature is equivalent to the local tissue temperature. Pennes’ bio-heat
equation is the most widely used thermal model for studying heat transfer phenomena
associated with hyperthermia treatment modalities. For the transient problem, the temper-
ature distribution in the breast phantom is addressed by Pennes’ bio-heat model expressed
in (1), which allows for a different blood temperature.

Cpρ
∂T
∂t

= ∇ · (K∇T) + Qm + ρSAR− B(T − Tb) (1)

where Cp is tissue-specific heat capacity, ρ is the tissue density, K is thermal conductivity, T
is the temperature, Tb is the blood temperature, Qm is the metabolic heat generation, B is
the capillary blood perfusion coefficient. These parameters are tissue-specific. The specific
absorption rate (SAR) depends on the external heating source, as well as tissue-specific
parameters. SAR can be formulated as:

SAR = 0.5
σ|E|2

ρ
W/kg (2)

where E is the electric field (V/m) in the tissue and σ (S/m) is the electrical conductivity. By
Green’s function approach, it was shown in [5] that the maxima of SAR and the temperature
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are located at the same point, assuming K and B are constants and in a steady state. Based
on this result, the approach adopted in the present work was first to focus the maximum
SAR on the target tissue and then scale the intensity to reach the desired tissue temperature.

2. Materials and Methods
2.1. Numerical Breast Phantom

We used a numerical homogeneous breast phantom model centered at (0, 0, 0) mm,
consisting of fatty breast tissue in the form of a cylinder with a diameter and height of
90 mm. The phantom dielectric properties were taken from the phantom repository of the
University of Wisconsin Cross-Disciplinary Electromagnetics Laboratory [24,25]. Fatty-1
tissue was used for the fat cylinder phantom, and the Debye parameters provided by [24,25]
are given in Table 1. The constant dielectric parameters were calculated at the frequency
of 2.45 GHz as er = 3.9095 and σ = 0.339 S/m. Thermal properties provided in Table 1 for
breast fat tissue were taken from [26].

Table 1. The Debye parameters of the fat tissue dielectric properties. Thermal properties of the fat
tissue.

Debye Model ε∞ ∆ε σs (S/m) τ (ps)
Parameters 2.85 1.10 0.01 13.00

Dielectric εr σ (S/m)
Properties at 2.45 GHz 3.9095 0.339

Thermal ρ (kg/m3) Cp (J/kg/K) k (W/m/K) Qm (W/m3)
Properties 932 2220 0.17 458

2.2. FORA

The antenna elements are based on fractal octagonal ring array geometry (referred
to as FORA), a form of iterative octagon rings subdivided into sequences such that each
sequence is a reduced size of the outer octagonal ring, with a scaling factor of 0.91. Two
types of antennas were developed based on the proposed fractal elements, the dipole
FORA antenna (Figure 1a) and the connected FORA antenna (Figure 1b). The dipole FORA
antenna consists of two identical FORA elements matched to 50 Ω input impedance, such
that the inter-element distance between the elements is 0.3 mm and the spacing between
dipole arrays is one of the key parameters to balance between the room limitation and
the mutual coupling. The dipole is fed through the 0.3 mm feed point between the FORA
elements, see Figure 1a. The material of the antennas was selected as a perfectly electric
conductor (PEC) throughout the simulations.

The connected FORA antenna is an array of FORA dipoles that are electrically con-
nected, arranged such they are closely packed with an inter-element distance of 4 mm
(<< λ/2 of the highest operating frequency-5 GHz-) between the arrays in one direction.
The dimension of a single antenna element in the connected array should always be less
than half the wavelength of the operating frequency. Furthermore, it is capacitively coupled
in the longitudinal direction using inter-digital capacitors consisting of 6 fingers at each
element end. The array in this form is no longer composed of separated resonant elements
but can be considered to be a single antenna periodically fed and backed by a ground
plane at a distance of ≈20 mm from the array elements [27]. The FORA−connected array is
linearly polarized and matched to an input impedance of 180 Ω. The antennas were fed
through the 4 mm feed points between the FORA elements, see Figure 1b.
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(a) (b)

Figure 1. (a) FORA dipole element. (b) FORA−connected element and the inter-digital capacitor
between the two elements in consecutive layers.

The reflection coefficient performance of the two FORA antennas, namely the FORA
dipole array and FORA−connected array, in the vicinity of the fat phantom are illustrated in
Figure 2. As can be seen from both Figure 2a,b, the FORA dipole and the FORA−connected
array are well matched with a return loss of less than −10 dB at the frequency of 2.45 GHz.
This indicates that the incident power is efficiently transferred to the FORA antenna array
and in turn, to the breast phantom. Figure 2b illustrates S11 parameters performance for
different elements of the FORA−connected array fed at the center (the blue line), at distant
from the center of the 3 × 13 FORA connected array (yellow line) and the upper layer of the
array just above the central element (orange line). Unlike the FORA−connected array where
the S11 depends on the position of the elements in the array, the FORA dipole elements in
the array exhibit similar S11 performance in the FORA dipole array deployed linearly, as
can be seen in Figure 2a.

(a) (b)

Figure 2. (a) Simulated S11 parameter as a function of frequency for a single FORA Dipole antenna
in a linear array configuration, (b) and for different FORA−connected array elements.

The FORA dipole element in a linear array consists of four elements and has a 3 dB
beam width of 40.5◦ in the elevation plane whereas 33.3◦ in the azimuth plane. For the
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embedded element pattern in the connected array, there is a 3 dB beam width of 39.6◦ in
the elevation plane whereas 39.2◦ in the azimuth plane. The maximum gains obtained
for a single element at the center of the array are 1.7 dBi and 4.75 dBi for the dipole array
and connected array, respectively. This is expected since the connected array has a ground
plane and therefore has a higher gain that varies between 4 dBi to 8 dBi depending on the
position of the element in the array. The bandwidths obtained by the FORA dipole and the
connected array middle element are 24.5% and 81.6%, respectively. These bandwidths are
enough for narrow-band hyperthermia applications.

2.3. HT Applicators

Different HT applicator designs were carefully investigated in this paper. First, a single
layer of FORA dipoles was simulated, the results were analyzed, and the 2D, z = 0 plane
was chosen for this scenario. Linear, circular, and cross arrays were implemented with
FORA dipole antennas. Second, the 1-layer applicators which show the best performance
were duplicated on the second layer and positioned such that they were symmetrical with
respect to the z = 0 slice. The 2D evaluation was conducted on the same z = 0 plane,
and the effect of the layer separation, dz, was investigated for the 2-layer dipole arrays.
Finally, the connected FORA array was investigated for multiple layers and the number of
antennas. The inter-antenna distances dy and dz are provided as multiples of the free space
wavelength, λ0 ≈ 122.45 mm.

2.3.1. Linear Array

The dipole antennas were placed on two opposite sides of the phantom with the
same alignment. The distance between the first and the last antenna is dy, and the distance
between the consecutive antennas is dy

N/2−1 . A linear HT applicator with 8 antennas together
with a cylindrical phantom can be seen in Figure 3c. An N−antenna linear array will be
referred to as LAN for convenience. The analyzed parameters for the linear array are
as follows:

• Number of antennas (N): 6, 8, 12, 16, 20 antennas
• dx: Distance between the tip of the antennas and the phantom
• dy: Distance between the first and the last antennas

2.3.2. Circular Array

The dipole antennas were arranged in a circle of radius rantenna = (45 mm + ∆r)
around the phantom (rphantom = 45 mm), and have an angular separation of 360/N de-
grees. A circular HT applicator with 8 antennas around a cylindrical phantom is shown in
Figure 3a. An N−antenna circular array will be referred to as CAN for convenience. The
analyzed parameters for the circular array are as follows:

• Number of antennas (N): 6, 8, 12, 16, 20 antennas
• ∆r: Distance between the tip of the antennas and the phantom

2.3.3. Cross−Array

The dipole antennas were situated at the edges of a square centered on the axis of the
phantom. The distance between the first and the last antenna is dy, and the distance between
the consecutive antennas is dy

N/4−1 . A cross HT applicator with 16 antennas is depicted in
Figure 3b. An N−antenna Cross−array will be referred to as XAN for convenience. The
analyzed parameters for the Cross−array are as follows:

• Number of antennas (N): 8, 12, 16, 20 antennas
• dx: Distance between the tip of the antennas and the phantom
• dy: Distance between the first and the last antennas
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(a) (b)

(c) (d)

Figure 3. (a) Circular array with 16 FORA dipoles (top view). (b) Cross−array with 12 FORA dipoles
(top view). (c) Linear array with eight FORA dipoles (side view). (d) Connected array with 39 FORA
elements and three layers (side view).

2.3.4. Connected Array

The FORA elements are capacitively coupled via inter-digital capacitors in the lon-
gitudinal direction, and connected linearly through lumped ports laterally, as seen in
Figures 1b and 3d. A connected array with N antennas will be referred to as ConAN for
simplicity. A total of 11 and 13 elements were analyzed for one layer, and the radii of
connected arrays were 4 mm and 12.9 mm for the 11- and 13-element arrays, respectively.
The curvature of the elements follows the given cylindrical geometry. Two and three layers
for the 11-element and two, three, and five layers for 13-element arrays were investigated,
namely 2 × 11, 2 × 13, 3 × 11 and 3 × 13 finite connected arrays with a backing reflec-
tor. The inter-element distances were kept the same and less than 0.5λ0 of the highest
operational frequency (3 GHz). The side element and the middle element have one and
two inter-digital capacitor arms in the longitudinal direction, respectively. The 2-layer
ConA has two layers of side elements, while the 3-layer ConA has an additional layer of
middle elements while the 5-layer ConA has three additional layers of middle elements.
Furthermore, an 80 mm long cylindrical ground plane is situated at r = 80 mm to direct the
radiation towards the phantom.

2.3.5. Antenna Positions of FORA Dipole Arrays

In this paper, we analyze and compare the behavior of three different FORA dipole
applicator designs. First, the effect of the FORA dipole orientation was investigated when
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the dipole is placed parallel and perpendicular to the phantom. Owing to the dipole
symmetry, parallel and perpendicular orientations gave the same radiation pattern in free
space and a similar pattern within the vicinity of the phantom. We adopt the perpendicular
orientation of the FORA dipole for the rest of the paper since the inter-antenna distance
can be adjusted much smaller with this configuration.

Second, each applicator design was optimized to give the best performance. To
facilitate design comparison, the target centers were set on the positive x-axis, between
(0, 0, 0) and (39, 0, 0) mm with increments of (1, 0, 0) mm. Keeping the target locations
fixed, each applicator was axially rotated around the origin [11] and the TBR was analyzed.
For the circular and the linear applicators, the positions shown in Figures 3a,c gave the
individual best performance. For the cross applicator, it was observed that the best results
for these targets were reached when the applicator was −15° rotated around the origin, as
shown in Figure 3b, and the Cross−array results were taken from the geometry shown in
Figure 3b.

2.4. Simulation Environment

The EM simulations and numerical calculations were implemented on Windows 10
Pro operating system with an Intel i7 processor and CPU 7800X with 3.50 GHz and 128 GB
RAM. EM simulations were conducted using the finite element method (FEM) multiphysics
solver COMSOL Multiphysics v6.0. Electromagnetic Waves, Frequency Domain physics inside
Radio Frequency module was run on a single frequency in a frequency domain [28].

2.4.1. Data Generation

The total electric field vector inside the breast phantom with N antenna excitations
can be written as [29]:

~Etot(r) =
N

∑
i

ai~Ei(r)ejφi (3)

where ~Ei(r) is the electric field vector inside the breast when only ith antenna is excited
with unitary excitation and aiejφi is the ith excitation coefficient with φi phase difference
and ai amplitude. For every simulation case, N individual ~Ei(r) fields were exported for
each antenna from the EM solver and sent to MATLAB. φi and ai are the parameters to be
optimized for the desired focal point.

2.4.2. SAR Optimization Metrics

In this section, the evaluation metrics to be used for the comparison are explained.
Since the principal aim of this work was to focus the SAR on the desired target region,
the metrics were devised based on SAR distributions. First, the 2D average spatial SAR
operator is defined as follows:

avSARΩ =
∑Ω SAR

Area of Ω
W/kg/m2 (4)

where Ω is the surface of the 2D target region and av represents the averaged SAR over
Ω. The main objective of the HT is to increase the SAR intensity at the target, while the
healthy tissue SAR is kept to a minimum. To this end, target-to-breast ratio (TBR) and
hotspot-to-target quotient (HTQ) [30] metrics were defined as follows:

TBR =
avSARtarget

avSARbreast
(5)

HTQ =
avSARhotspot

avSARtarget
(6)
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Defining the resolution as the width of the contour where the SAR intensity falls
to half its maximum value, the resolution of the HT system inside the homogeneous fat
cylinder phantom was ≈24 mm at 2.45 GHz. The desired target dimension is processed as
half of this value: a square of 12 mm × 12 mm. The rest of the phantom region is divided
into square grids with 12 mm side and avSARgrid is calculated for each of the grids. The
hotspot region is chosen automatically as the grid with the highest avSARgrid.

As mentioned before, PSO is prone to converge on a local best value depending on
the specified initial conditions, which were random in our study. To obtain the underlying
trend for each applicator case and to overcome the local convergence issue, a moving
maximum filter with four consecutive points was applied to the obtained TBR values, and
then a 6th degree polynomial fitting was applied.

2.4.3. Particle Swarm Optimization

Particle Swarm Optimization was used to optimize the antenna excitation parameters,
i.e., the phase and the power of the individual antenna feed. PSO has previously been used
as an optimization technique in HT [11,16,18,19]. It is a fast optimization technique, and
it enables multi-parameter optimization and multi-objective cost functions. In particular,
PSO with an inertia weight was used in this study [31]. It has been known that the random
initialization of the parameters can cause local solutions, producing a different optimized
parameter set every time PSO is applied. To overcome the sensitivity of the system to this
issue, each PSO was conducted for 50 repetitions. For each repetition, a swarm size of
100 was iterated 200 times. The optimization process consists of multiple steps, and the
corresponding flowchart is shown in Figure 4.

Repeat for 50 iterations

Repeat for 200 iterations

EM simulation with unitary 
excitation for each antenna

Export 2D E1,..,N data

Calculate SAR for the swarm
(ϕ1,..,N,α1,..,N) 

Create a 
random 
swarm 

Calculate 
cost

Save the population 
with the minimum cost

Lead the 
swarm closer 
to minimum 

cost

Take the set 
(ϕ1,..,N,α1,..,N) with 
minimum cost and 
corresponding SAR

Solve Penne’s eq. 
for 10 min.

Is 
avTemp(target) 
within 0.1% of 

43C?

Rescale SAR 
and α1,..,N

Obtain the 
temperature 
distribution

no

yesSAR Optimization

Figure 4. Flowchart of the optimization scheme.

Multi-parameter optimization was implemented: phase difference and amplitude
values were optimized together. Initially, the range of values that amplitudes can take was
chosen as [0, 1] (V), and the range of values that phase differences can take as [−π, π]
(rad). Cost function to be minimized was chosen as HTQ/TBR. From 50 repetitions, the
optimized set of parameters giving the minimum cost was determined to be the solution.
Using the optimized SAR distribution, Equation (1) was solved for ten minutes, and the
corresponding temperature was calculated. With a feedback algorithm, SAR amplitude
values were scaled and Equation (1) was calculated until the temperature level at the
desired location increased to 43 °C in ten minutes. With this feedback algorithm, the final
optimized amplitudes were recorded for the desired temperature levels.

2.4.4. Temperature Calculation

Pennes’ Bio-heat Equation (1) was implemented using a finite difference time domain
(FDTD) method in MATLAB. The resulting SAR distribution was fed into this equation
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to obtain the temperature change as a function of time. The time steps were two seconds
and spanned over ten minutes, resulting in 300 time steps. The initial temperature of the
phantom was assumed to be 37 °C. Spatial increments in both directions were taken as
1 mm. The Dirichlet boundary condition was used, where the boundary temperatures were
equated to 37 °C. Using a feedback loop, the SAR was scaled until the temperature at the
desired target reached 43 °C in 10 min. Then, this scaling was used to adjust the antenna
excitation amplitudes. The amplitudes were converted into the antenna input power by
Pi[W] = a2

i [V]/Z[Ω], where ai was the excitation amplitude of the ith antenna and Z was
the port impedance; Z = 50 Ω for the dipole and Z = 180 Ω for the connected array. The
sum of the input powers can be written as Ptot = ∑i Pi [W].

3. Results and Discussion

The results are given first for 1-layer FORA dipole arrays. The best-performing 1-layer
HT applicator designs are, then, duplicated to a second layer, and 2-layer FORA dipole
array results are provided in Section 3.2. The results from connected FORA arrays are
provided in Section 3.3.

A common trend from the resulting data indicates a change in behavior of TBR with
position, approximately at x = 8 mm and x = 30 mm. These are indicated with yellow and
cyan lines in Figures 5–10. We will refer to targets occurring in the region 0 < x < 8 mm as
deep-seated, those occurring within 8 < x < 30 mm as the middle region, and those lying
beyond x = 30 mm as the superficial region.
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Figure 5. The TBR values evaluated at the target locations on the x-axis for 1-layer N-antenna circular
dipole array (CA) with: (a) ∆r = 10 mm, (b) ∆r = 2 mm.

3.1. Results of 1-Layer FORA Dipole Arrays

The results of 1-layer circular, linear, and Cross−array HT applicators are presented in
this section. The results for each applicator design are presented in separate sub-sections,
then the results for N−antenna arrays and the best-performing applicator configuration are
grouped and compared.

3.1.1. Circular Applicator

Plots of TBR variation with the target position graphs are shown in Figure 5 for the
1-layer circular array. Figures 5a,b are given for ∆r of 10 and 2 mm, respectively. The
variation with respect to the number of antennas can be observed. Up to N = 16, the higher
the number of antennas, the higher TBR values are obtained. CA6 has higher TBR for
deep-seated targets, and lower TBR for middle and superficial regions. Compared with
other antenna numbers, although CA6 has comparable TBR for deep-seated targets, it gives
the lowest value for the remaining target locations. For ∆r = 2 mm, CA12 and CA16 have
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almost the same values for the deep and the middle-region targets, while CA16 provides
higher TBR with the superficial regions. CA20 has the lowest deep region performance
among the investigated antenna numbers for the circular array and has high performance
for the superficial regions.

CA with dx = 10 mm have higher TBR at deep and middle regions; however, the
performance of CA with dx = 2 mm is better in superficial regions.
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Figure 6. The TBR values evaluated at the target locations on the x-axis for 1-layer N-antenna linear
dipole array (LA) with dx = 2 mm and (a) dy = 0.6 λ0, (b) dy = 0.9 λ0, (c) dy = 1.2 λ0.

0 10 20 30 40

x (mm)

5

6

7

8

9

T
B

R

N: 8

dx: 10 mm

dy: 0.3

N: 12

dx: 10 mm

dy: 0.3

N: 16

dx: 10 mm

dy: 0.3

N: 8

dx: 2 mm

dy: 0.3

N: 12

dx: 2 mm

dy: 0.3

N: 16

dx: 2 mm

dy: 0.3

(a)

0 10 20 30 40

x (mm)

4

5

6

7

8

9

10

T
B

R

N: 8

dx: 10 mm

dy: 0.6

N: 12

dx: 10 mm

dy: 0.6

N: 16

dx: 10 mm

dy: 0.6

N: 8

dx: 2 mm

dy: 0.6

N: 12

dx: 2 mm

dy: 0.6

N: 16

dx: 2 mm

dy: 0.6

N: 20

dx: 10 mm

dy: 0.6

(b)

0 10 20 30 40

x (mm)

4

5

6

7

8

T
B

R

N: 8

dx: 10 mm

dy: 0.9

N: 12

dx: 10 mm

dy: 0.9

N: 16

dx: 10 mm

dy: 0.9

N: 20

dx: 10 mm

dy: 0.9

(c)
Z

Figure 7. The TBR values evaluated at the target locations on the x-axis for 1-layer N-antenna
cross-dipole array (XA) with: (a) dy = 0.3 λ0, (b) dy = 0.6 λ0, (c) dy = 0.9 λ0.
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Figure 8. The TBR values evaluated at the target locations on the x-axis for: (a) 1-layer 8-antenna,
(b) 1-layer 12-antenna, (c) 1-layer 16-antenna circular dipole array (CA), linear dipole array (LA) and
cross-dipole array (XA) applicators.
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Figure 9. The TBR values evaluated at the target locations on the x-axis for: (a) 2-layer circular
dipole array (CA) with ∆r = 10 mm and N = 16, N = 32 and 1-layer 16-antenna CA with ∆r = 10 mm,
(b) 2-layer linear dipole array (LA) with dx = 2 mm and dy = 1.2 λ0 and N = 16, N = 32 and 1-layer
16-antenna LA with dx = 2 mm and dy = 1.2 λ0, and (c) 2-layer cross-dipole array (XA) with dx = 10
mm and dy = 0.6 λ0 and N = 16, N = 32 and 1-layer 16-antenna XA with dx = 10 mm and dy = 0.6 λ0.
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Figure 10. The TBR values evaluated at the target locations on the x-axis for FORA−connected array
(ConA) with multi-layer, 1-layer 16-antenna cross-dipole array (XA) with dx = 10 mm and dy = 0.6 λ0

and 2-layer 32-antenna cross-dipole array (XA) with dx = 10 mm, dy = 0.6 λ0 and dz = 0.6 λ0.

3.1.2. Linear Applicator

For the 1-layer linear array, dx = 10 mm resulted in smaller TBR than for dx = 2 mm in
all cases, and therefore the associated results are omitted. For a fixed dx = 2 mm, TBR plots
for different dy values with changing antenna numbers are shown in Figure 6. In contrast
with the circular array, the 8-antenna linear array has lower TBR than the 6-antenna array
over the phantom for three dy values. LA12 and LA16 behave similarly for deep and middle
targets, while LA16 has higher TBR for superficial regions. It can be observed that, in
general, as dy increases, TBR also increases. N = 20 was evaluated only for dx = 2 mm
and dy = 1.2 λ0 (Figure 6c). LA20 has poor deep and middle-region performance but TBR
values drastically increase for superficial regions.

3.1.3. Cross Applicator

Figure 7 shows the TBR vs. target location plots of constant dy cases. XA16 TBR
values are predominantly superior in all the cases, followed by XA12. The slope of XA16

increases while the targets become closer to the surface, XA12 and XA16 follow a very
similar trend in the deep and middle regions.

For XA8, dx = 10 mm alignment provided higher TBR than dx = 2 mm in the deep and
middle regions. For the same dy values, however, dx = 2 mm shows better performance
for the superficial regions. dy = 0.3 λ0 exhibits lower TBR than dy = 0.6 λ0 in the deep and
middle regions. For both XA8 and XA12, although comparable to others in deep-seated
regions, dx = 10 mm and dy = 0.9 λ0 provides much lower TBR in the superficial region
(Figure 7c). Up to the superficial region, for XA12, dx = 10 mm was superior to dx = 2 mm,
and dy = 0.6 λ0 was superior to dy = 0.3 λ0 (Figures 7a,b). In the superficial region, the
performance of dx = 2 mm is superior. All the cases of XA16 follow a similar trend. In the
deep and middle regions, the combination dx = 10 mm and dy = 0.6 λ0 results in a higher
TBR, and dy = 0.9 λ0 was close to dy = 0.6 λ0, contrary to the other antenna numbers. In
the superficial regions, the TBR performance with dx = 2 mm increases.

XA20 results are given for dx = 10 mm case for both dy = 0.6 λ0 and 0.9 λ0 designs.
XA20 performance was low in the deep and middle regions and above N = 8 and 12
applicators in the superficial regions (Figures 7b,c).

The cases with the highest TBR values for different applicator designs are plotted
in Figure 8 for N = 8, 12, and 16. Cross and circular 1-layer applicators with the same N,
provide, in general, similar trends of TBR, while the values for circular arrays are slightly
inferior to those from cross arrays for deep and middle-region targets, and for N = 8 and 12,
much higher in the superficial regions (Figures 8a,c). The linear applicator does not perform

76



Sensors 2023, 23, 6592

as well as the others when N = 8 (Figure 8a). The performance of the LA12 configuration
is comparable to that of XA12 in the inner half of the phantom but inferior to the other
configurations in the outer half (Figure 8b). For 16 antennas, its performance is better than
the others for superficial regions (Figure 8c). For deep and middle regions with N = 16,
there is no distinct difference between the circular, cross, and linear applicator structures in
terms of TBR.

The applicator designs given in Figure 8c were used to focus on four targets and the
resulting SAR distributions are shown in Figure 11. The corresponding TBR and Ptot values
are given in Table 2. The first and the second targets in the table are on the x-axis, and
they can be referred to as the deep and the superficial regions. TBR values are consistent
with each other such that the linear array has the highest value and the circular array
has the lowest value. The deep target TBR was lower than the superficial target values.
Although the third target was at the same distance from the origin as the second target, the
linear array result changed drastically. This is because the position of the linear array was
assumed as stated previously in this paper such that the best performance occurs along
the x-axis. Since the third target is rotated 90° rotated from the x-axis, it was expected that
the TBR value of the linear array becomes lower. The position of the Cross−array was
also arranged for the x-axis, but since it is symmetrical on 4 quarters, there was almost
no change in the TBR value. The result of the circular array does not change for the third
target due to circular symmetry. The fourth target was in the middle region and has an
angle of 25.5° with the x-axis. Cross and linear arrays give higher TBR than the circular for
the fourth target.

Table 2. The TBR and total antenna input power (Ptot) results of the best-performing 1-layer FORA
dipole applicators focused on different target locations.

Applicator
Target Position (mm) (10, 0, 0) (30, 0, 0) (0, 30, 0) (20, 10, 0)

TBR

CA16, ∆r = 10 mm 5.26 6.45 6.45 5.54
XA16, dx = 10 mm and dy = 0.6 λ0 5.56 6.32 6.34 5.80
LA16, dx = 2 mm and dy = 1.2 λ0 5.59 6.58 5.76 5.81

Ptot[W ]

CA16, ∆r = 10 mm 68 63 78 89
XA16, dx = 10 mm and dy = 0.6 λ0 69 109 94 158
LA16, dx = 2 mm and dy = 1.2 λ0 162 174 187 219

The circular array has the lowest power requirement to reach 43 °C in 10 min and the
linear array has the highest Ptot. Please note that power requirements were not optimized
in this study, and these values were obtained with the procedure explained in Section 2.4.4.
Concerning the 1-layer 16-antenna circular FORA dipole array applicator, with 68 W total
input power, after ten minutes of SAR exposure, the temperature at the (10, 0, 0) target
point increases to 45.2 °C, and the average temperature at the target region (12 mm × 12 mm
region centered at (10, 0, 0) point) becomes 43 °C. The total input power, then, was scaled
from 0 W to 136 W with 13.6 W increments and the temperature level at the target point
was calculated for the corresponding scaled SAR distributions to show the temperature
change for different power levels. The temperature at the target is shown in Figure 12 as a
function of exposure time for each input power level (W) provided in the legend.
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Figure 11. SAR distributions [W/kg] focused at (10, 0, 0), (30, 0, 0), (0, 30, 0), and (20, 10, 0) mm
positions, and obtained with 1-layer of FORA dipole elements. (a–d) Circular array with 16 antennas
and ∆r = 10 mm. (e–h) Cross−array with 16 antennas, dx = 10 mm, and dy = 0.6 λ0. (i–l) Linear array
with 16 antennas, dx = 2 mm, and dy = 1.2 λ0.
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Figure 12. Temperature (°C) at (10, 0, 0) mm target point as a function of exposure time for different
total input power levels (W).

For 1-layer arrays, in general, a larger number of antennas gives higher TBR, which
was an expected result due to increased optimization sensitivity, directivity, and gain. The
number of antennas can be increased until the mutual coupling limits are reached. Arrays
with 20 antennas exhibited inferior performance when compared to other applicators with
a smaller number of antennas in the array.
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3.2. Results of 2-Layer FORA Dipole Arrays

The best HT applicator designs obtained from the 1-layer application were: the 16-
antenna circular array with ∆r = 10 mm, 16-antenna Cross−array with dx = 10 mm and
dy = 0.6 λ0, and 16-antenna linear array with dx = 2 mm and dy = 1.2 λ0 (also shown in
Figure 8c). This suggests that among the 1-layer applicators, 16-antenna arrays perform the
best. In this section, we duplicated these 1-layer antenna arrays to a second layer and set the
inter-layer distance to 0.4 λ0, 0.6 λ0, and 0.8 λ0, while maintaining the symmetry around the
z = 0 plane. Furthermore, the same procedure was repeated by decreasing the number of
antennas in each layer to half to understand whether N = 16 should be maintained as the total
number of antennas or as the number of antennas in one layer. Therefore, 2-layer 32-antenna
and 2-layer 16-antenna applicators were explored. Figure 9 shows the 2-layer results and the
corresponding 1-layer best-case result.

Among the 2-layer CAs, the 32-antenna arrays show superior results to the array with
16 antennas as shown in Figure 9a. For N =16, dz = 0.6 λ0 provides higher TBR than
dz = 0.4 λ0, while dz = 0.8 λ0 gives the lowest TBR values. For N = 32, dz = 0.6 λ0 provides
higher TBR than both dz = 0.4 λ0 and dz = 0.8 λ0. 2-layer CA32 with dz = 0.4 λ0 has the
highest TBR value among the explored designs. The 2-layer CA shows inferior results to
the 1-layer best CA up to the middle region and performs better in the superficial region.
At the most superficial target that was explored, the 2-layer CA32 becomes comparable to
the 1-layer CA16.

Comparing 2-layer linear arrays given in Figure 9b, LA32 was superior to LA16.
dz = 0.8 λ0 has the lowest and dz = 0.4 λ0 has the highest superficial performance. dz = 0.6 λ0
has higher TBR for most of the remaining regions for LA32. LA32 has higher TBR values
than the 1-layer LA16 in the deep region, and comparable results at the most superficial
target that was investigated. However, over most of the phantom, the 1-layer LA16 has
better performance.

In Figure 9c, the 32-antenna array with dz = 0.8 λ0 has the highest TBR value, followed
by dz = 0.6 λ0. XA32 was superior to its counterpart with 16 antennas that have the same
dz distance. The 2-layer cross applicators investigated, except XA16 with dz = 0.4 λ0, show
better performance than the 1-layer XA16 in the deep region and the first half of the middle
region, but the 1-layer XA16 shows better performance in the outer half of the phantom. The
2-layer XA32 catches up with the 1-layer XA16 performance at the outermost target regions.

Table 3 provides the TBR values and Ptot –the power requirement for the target to reach
43 °C in 10 min.– of 2-layer CA32 with ∆r = 10 mm and dz = 0.6 λ0, and the 2-layer XA32

with dx = 10 mm, dy = 0.6 λ0, and dz = 0.8 λ0 for targets (10, 0, 0) mm and (30, 0, 0) mm.
In the deep target, although the TBR values were higher for 2-layer applicators than for
the 1-layer, the increase in the Ptot values was greater. At the superficial target, 2-layer
applicators both exhibit lower performance and higher power demand. Please note that
the power requirement was not optimized in this study.

Duplicating the 1-layer array with the best results onto the second layer provided
better performance in the inner half of the phantom for circular and cross applicators
than their 1-layer counterparts, and only in the deep region for the linear applicator.
Although the 32-antenna 2-layer applicators reach and even exceed the performance of
the 1-layer arrays in the outermost targets, their performance in the outer half of the
phantom was inferior to 1-layer applicators. For a deep-seated target, it was better to use
multilayers; however, 1-layer FORA dipole applicators with 16 antennas perform better for
the remaining phantom regions.
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Table 3. The TBR and total antenna power Ptot results of the best-performing 2-layer FORA dipole
applicators and FORA−connected array applicators focused on different target locations.

Applicator
Target Position (mm) (10, 0, 0) (30, 0, 0)

TBR

2-layer CA32, ∆r = 10 mm, dz = 0.6 λ0 6.10 5.84
2-layer XA32, dx = 10 mm, dy = 0.6 λ0, dz = 0.8 λ0 6.02 6.04
3-layer ConA33, ∆r = 4 mm 4.82 7.72
5-layer ConA65, ∆r = 12.9 mm 5.44 8.67
6-layer ConA66, ∆r = 4 mm 5.26 7.76

Ptot [W]

2-layer CA32, ∆r = 10 mm, dz = 0.6 λ0 270 150
2-layer XA32, dx = 10 mm, dy = 0.6 λ0, dz = 0.8 λ0 271 554
3-layer ConA33, ∆r = 4 mm 197 206
5-layer ConA65, ∆r = 12.9 mm 332 319
6-layer ConA66, ∆r = 4 mm 176 189

3.3. Results of Multi-Layer FORA−connected Arrays

The connected FORA array results are given in Figure 10. In this plot, TBR values
are given separately for three regions, and the sub-plots of each region are scaled to better
discern the results. The TBR value was higher for the higher number of layers in the
connected array, although the performance of the 3- and 5-layer 13-antenna connected array
becomes comparable around x = 20 mm. TBR values were higher for the 13-antenna ConA
than the ones with 11 antennas for the same number of layers, except for the outermost
targets. This was a similar situation to the dipole circular array, where ∆r = 2 mm shows
better performance over ∆r = 10 mm in the outermost targets. The 5-layer 13-antenna
ConA and 6-layer 11-antenna ConA are especially given together in Figure 10 since their
number of antennas is close. The 65- and 66-antenna arrays show similar behavior in
the inner half of the phantom. The TBR resulting from the 65-antenna array shows a
more monotonic increase in the second half of the phantom, while the 66-antenna array
shows better performance in the outermost targets. The investigated connected arrays
show inferior results compared to the 1-layer CA16 with ∆r = 10 mm in the deep and the
middle regions, except for ConA65 and ConA66, which resulted in comparable results. In
the superficial region, the 3-, 5-, and 6-layer connected arrays show better performance
than the dipole circular array.

In Figure 10, the 1- and 2-layer cross-dipole array results as well as the connected array
results are shown together. In the deep region, 2-layer XA16 is superior and followed by
conA66, conA65 and 1-layer XA16. In the middle region, the behavior of all the applicators
changes. In the superficial region, conA66 and conA33 are superior and followed by conA65,
and the 1- and 2-layer cross-dipole array performances are inferior to most of the explored
connected arrays. The conA66 provides the overall better performance, suggesting the
high number of antennas constituting the connected array demonstrate better focusing
capability. Although the number of antennas within conA65 is very close to 66 antennas,
one can conclude that the higher number of layers of the connected array also demonstrates
better performance. Also, when the distance between the antenna and the phantom is
small, the focusing performance at the superficial regions increases as in conA33 and conA66.
Adding higher layers than two was not possible for the given arrangement of the dipole
array. Therefore, more layers could not be compared.

Table 3 provides the TBR and Ptot values of ConA39, ConA65 and ConA66 at a deep and
superficial target. Comparing Tables 2 and 3, 5- and 6-layer ConA have comparable deep
target performance with the best-case 1-layer applicators, while ConA39 was inferior. In
superficial regions, three connected arrays show superior performance to the 1-layer dipole
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applicators. Power requirements of ConA were higher than 1-layer dipole applicators and
comparable to 2-layer dipole applicators.

In beamforming studies, the inter-antenna distance is more important than the total area
that the antennas span. In a medical application, however, there is limited available space,
and the total area that the antenna span becomes an important issue. This is why, in this
paper, instead of the inter-antenna distance, dy, the distance between the first and the last
antennas, is used as one of the parameters. The effects on the applicator performance of
the other parameters, such as the number of antennas, were compared for a fixed antenna
space. The total applicator distance on the x-axis was 158 mm when dx = 10 mm and
142 mm when dx = 2 mm and the largest antenna separation that was investigated was
dy = 1.2 λ ≈ = 147 mm in the y-direction. Therefore, for the best-performing 1-layer dipole
linear array, the area of the applicator was 147 mm × 142 mm, and it was 158 mm × 158 mm
for the circular array. This paper shows a comparison between different FORA element arrays
on a cylindrical fat phantom of diameter 90 mm. The results of best-performing HT applicators
might be different for a bigger phantom or a realistic breast phantom.

3.4. Experimental Results

The purpose of the experiment was to increase the temperature of the phantom at (9,
21, 0) mm, where the center of the phantom was chosen as the origin. The fat-mimicking
phantom has a radius of 45 mm and height of 90 mm and is cut into two equal pieces at
z = 0 slice. To mimic the fat tissue, 80% oil-in-gelatin mixture was prepared according
to the instructions given in [32]. The dielectric properties of the manufactured phantom
were measured with a DAK probe to have εr = 3.77 and σ = 0.035 S/m at 2.45 GHz. Three
measurement points were chosen at z = 0 slice as: (30, 0) mm, (25, 25) mm, (9, 21) mm. For
each point, three more points were selected 90 degrees apart, symmetrical with respect to
the origin. The thirteenth measurement point was selected at the origin.

The HT applicator was comprised of 12 FORA dipole antennas arranged in a circular
array and enclosed in expanded polyethylene foam, as shown in Figure 13b. The block
diagram of the components of the experimental system is given in Figure 13a. Each antenna
was connected to an individual 10W RF power amplifier (HI Microwave Technology,
China HIPA02034040) and the corresponding channels of the phase shifter (HI Microwave
Technology, China HPS-1700T6000M, with 20 dB loss at each channel) providing a specific
relative phase shift. Phase shifter was fed with 16 dBm signal with 2.45 GHz generated
by the microwave source (Agilent Technologies, USA E8257D). The excitation parameters
were further optimized according to the antenna maximum power inputs allowed by the
RF system. Using a Vector Network Analyzer (Keysight, USA M9018A PXIe Chasis), each
signal at the antenna input was fine-tuned to overcome any imbalance over each amplifier.
Table 4 details the ideal magnitude and phase values required for each element in the array.

Table 4. Optimized antenna excitations values for the experiment.

Antenna Number
1 2 3 4 5 6 7 8 9 10 11 12

Phase (°) 21 132 65 70 42 −103 −130 −90 −138 −60 35 114
Power (W) 0.80 1.61 1.02 1.86 2.27 1.67 3.32 3.73 2.88 0.72 3.09 1.58
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(a) (b)

Figure 13. (a) The block diagram of the experimental system. (b) The circular FORA dipole array
prototype with the bottom half of the fat-mimicking phantom in the middle.

The maximum available antenna input power was 4 W due to the loss at the phase
shifter, while 70 W was required in the simulation results to reach 43 °C from 37 °C in
ten minutes. The experiment was run for 60 min when the phantom initial temperature
was 18 °C and the room temperature was 20 °C. Computational results are also given
for 60 min of treatment. The computed temperature distribution and the thermal camera
(Guide ZC04C2001351) image are compared to verify the thermal effect generated by the
HT applicator in a 2D plane (XY-plane). Figure 14 shows the optimized SAR distribution
of the simulation for the experimental setup, and the associated temperature profile after
an hour.

The phantom was taken outside of the applicator after 60 min, the top half of the
phantom was put aside, and all the data were taken from the bottom piece at z = 0 slice.
First, the thermal image was taken and then, thermometer readings were recorded at
13 points, and these 13 values were interpolated in MATLAB to visualize the temperature
distribution. Figure 15a shows the temperature profile. The temperature profile from the
thermal camera is shown in Figure 15b.

(a) (b)

Figure 14. Computational results of the experimental setup. (a) Optimized SAR distribution (W/kg),
(b) Temperature profile after 60 min (°C).
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(a) (b)

Figure 15. Experimental results. (a) Temperature distribution interpolated from the 13 points of the
thermometer readings (°C), (b) Thermal camera image.

The utilized thermal camera during the experiment did not provide specific tempera-
ture values or color bars. Therefore, the real temperature values could not be obtained. The
highest temperature position, on the other hand, was conceivable and well matched with
the computed results. To obtain the specific temperature values, thermometer readings
were provided from 13 discrete locations and the values of these positions also match
well with the expected result. Considering the two data acquisition techniques, both the
real temperature values and the surface temperature distribution, the experimental results
verify the computational results. The difference between the temperature distributions
of the computed and the experimental results can be due to the inhomogeneity of the
phantom and the unknown thermal parameters.

4. Conclusions

In this paper, we presented fractal octagonal (FORA) elements adopted for two types
of antenna arrays, the sparse array and the connected array. The former is referred to as
the FORA dipole array, and the latter is the FORA−connected array. The choice for FORA
elements was due to their characteristics, which enable tailoring these elements for such
types of arrays. This paper investigated FORA antenna elements as breast hyperthermia
applicators for deep and superficial seated targets. The phantom was modeled as a fatty
tissue as it provides a homogeneous environment for such a comparative analysis.

FORA elements were used both as 1- and 2-layer dipole arrays and multi-layer
connected arrays. First, the 1-layer dipole antenna arrays were analyzed, and the best-
performing designs were shown. FORA dipole antenna performance aligned in a linear,
cross, and circular array were examined compared to each other’s performance to selec-
tively minimize hot spots while focusing the energy on a particular target in the phantom
under quest. One-layer 16-antenna dipole arrays were found to be superior to the other
one-layer antenna arrays with lower or higher numbers of antennas for all dipole array
configurations. Duplicating these best cases showed that the 2-layer dipole array performs
better in the deep-seated regions. Two-layer circular and cross arrays performed superior
to the two-layer linear array in the deep-seated regions. Based on these results, 1- and
2-layer cross arrays were compared to connected arrays. Then, multi-layer connected
FORA arrays were investigated for 2-,3-,5- and 6-layers. It was found that their results
were superior to the 1-layer dipole array in the superficial region of the phantom. In
terms of target-to-breast SAR ratio TBR performance, one can conclude that the 2-layer
dipole FORA array would be a better choice for reaching deep-tissue targets, while the
multi-layer connected arrays should be chosen for the superficial regions. However, the
power requirements of these multi-layer connected arrays were higher than the examined
1-layer HT dipole applicators. The experimental results verify the use of FORA antenna in
microwave hyperthermia application.
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FORA Fractal octagonal ring array
EM Electromagnetic
TR Time Reversal
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HTP Hyperthermia Treatment Planning
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FEM Finite Element Method
ISM Industrial Scientific Medical
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TBR Target-to-breast ratio
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Abstract: Microwave ablation is commonly used in soft tissue tumors, but its application in bone
tumors has been barely analyzed. Antennas to treat bone tissue (~3 cm2), has been lately designed.
Bone tumors at pathological stage T1 can reach 8 cm wide. An antenna cannot cover it; therefore, our
goal is to evaluate the thermal performance of multi-antenna arrays. Linear, triangular, and square
configurations of double slot (DS) and monopole (MTM) antennas were evaluated. A parametric
study (finite element method), with variations in distance between antennas (ad) and bone thickness
(bt) was implemented. Array feasibility was evaluated by SWR, ablated tissue volume, etc. The
linear configuration with DS and MTM antennas showed SWR ≤ 1.6 for ad = 1 mm–15 mm and
bt = 20 mm–40 mm, and ad = 10 mm–15 mm and bt = 25 mm–40 mm, respectively; the triangu-
lar showed SWR ≤ 1.5 for ad = 5 mm–15 mm and bt = 20 mm–40 mm and ad = 10 mm–15 mm
and bt = 25 mm–40 mm. The square configuration (DS) generated SWR ≤ 1.5 for ad = 5 mm–20 mm
and bt = 20 mm–40 mm, and the MTM, SWR≤ 1.5 with ad = 10 mm and bt = 25 mm–40 mm. Ablated
tissue was 4.65 cm3–10.46 cm3 after 5 min. According to treatment time and array configuration,
maximum temperature and ablated tissue is modified. Bone tumors >3 cm3 can be treated by these
antenna-arrays.

Keywords: microwave ablation; bone tumors; thermal ablation; antenna array; FEM modeling

1. Introduction

The most common procedures to treat bone cancer are surgery, radiotherapy, and
chemotherapy. The chosen therapy depends on the condition and necessities of the patient;
however, it is well-known that radiotherapy and chemotherapy are not totally effective.
In radiotherapy, high doses are required due to the fairly low radiosensitivity of the bone;
therefore, healthy tissue can be damaged [1]. Chemotherapy is less used because most
of the bone tumors are not very sensitive to it [2]. Moreover, both therapies have the
disadvantage of producing several side effects that reduce the patient quality of life. In
recent years, thermotherapies such as thermal ablation have been proposed to treat bone
tumors. Microwave ablation (MWA) is a minimally invasive technique where critical
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temperatures around 60 ◦C are reached as an effect of the deposition of electromagnetic
(EM) energy [3]. Specifically, MWA is more effective in treating bone tumors because
the tissue heats faster, and larger ablation zones are achieved [4–6]. Several authors
report that MWA has been successfully used as a complementary treatment for different
musculoskeletal tumors [7,8]. Microwave heating applicators work at frequencies in the
ISM band (Industrial Scientific and Medical). One of the frequencies, 2.45 GHz, is the most
used worldwide in medical practice for thermal ablation. The reported antennas work at
2.45 GHz and reach temperatures higher than 60 ◦C [9–11] when using more than 50 W as
input power [4]. Although this means that thermal ablation is present, high input power
levels are necessary because the tested antennas were designed to treat soft tissue instead
of bone tissue. To compensate the power loss, the required treatment time and input power
level to generate thermal ablation increases.

Lately, researchers at the National Institute of Rehabilitation Luis Guillermo Ibarra
Ibarra (INR-LGII) started developing micro-coaxial antennas that were designed to specif-
ically treat bone tissue by MWA [12–17]. Trujillo-Romero et al. firstly designed a single
slot antenna to treat bone tumors [15]. A double slot (DS) antenna was also designed for
the same purpose; it was modeled, built, and characterized in ex vivo porcine bone. The
results showed ablation temperatures (60–100 ◦C) are reached by applying 10 W per 10 min;
moreover, the maximum standing wave ratio (SWR) was 1.8 [16]. Although both antennas
were effective in treating bone tissue, their diameter (1.19 mm) allows its deformation.
This effect could reduce the antenna lifetime and affect its performance after just a few
uses. Therefore, a new set of four different micro-coaxial antennas with a thicker diameter
(2.19 mm) was proposed [17]. The antennas were modeled, built, and tested by using
phantoms and ex vivo porcine tissue. The antennas showed SWR values lower than 1.7;
moreover, just 5 W were applied during 5 min to reach ablation temperatures (60–100 ◦C).
The reduction of input power levels had been possible due to the optimization process of
our antennas This process allows to improve the efficiency of the MW system; therefore,
ablated temperatures are reached with lower levels of input power (less than 10 W) in
a relatively short period of time (minutes). The proposed antennas can cover a tissue
region of approximately 3 cm2. However, according to the pathological stage of cancer,
bone tumors at stage T1 can reach no more than 8 cm, while at T2 can be greater than
8 cm wide [18]. This region dimension cannot be covered by using a single micro-coaxial
antenna, then, either multiple antenna insertions or a multi-antenna system must be used.
The literature reports that some studies were carried out to evaluate multi-antenna arrays;
however, most of these studies were implemented in liver tissue [19–22]. Karampatzakis et.
al. reported a study that was performed to evaluate the heating characteristics of antenna
arrays by using computational modeling [23]. However, in this study the use of triangular
and square configurations of double slot (DS) antenna arrays to treat liver tumors was
proposed; additionally, a brief analysis of some other tissues, including bone, were also
implemented. Furthermore, to our knowledge, our study is the first one completely focused
on evaluating the effect of using multi-antenna arrays to treat bone cancer. Therefore, the
goal of this work was to evaluate the thermal behavior of different micro-coaxial antenna
arrays that were proposed to treat bone cancer by MWA. Our hypothesis is that by using
micro-coaxial antenna arrays, it is possible to increase the volume of the treated tumor;
moreover, by using different antenna types and treatment time, different shapes of the
ablation zones can be generated. The micro-coaxial antennas that were included in the
study were the double slot (DS) and the monopole (MTM) antenna. A 3D parametric
computational study that was based on the finite element method was proposed. The
antenna arrays of two (linear), three (triangular), and four (square) antennas were analyzed.
Several scenarios considering relevant parameters such as distance between the antennas
(ad) and bone thickness (bt) were evaluated. In order to estimate the thermal effect over the
tissues, SWR (standing wave ratio) values, maximum temperatures reached, the volume of
tissue at the ablation temperatures, and the thermal distributions were analyzed.
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2. Materials and Methods

Figure 1 shows a flow chart to summarize the implemented study step-by-step.
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2.1. Micro Coaxial Antennas

To carry out this study, one of the most commonly used antennas to treat soft tissue
(double slot antenna) was proposed. Moreover, as this research was focus on bone tumors,
the monopole antenna was also proposed to evaluate the possibility to cover a larger region
of bone tissue. The double slot and the monopole antennas were previously modeled,
optimized, and tested in multi-tissue phantoms and ex vivo porcine tissue by this research
group [17]. The computational models showed SWR values of 1.26 and 1.55 for the double
slot (DS) and the monopole (MTM) antennas, respectively. Figure 2 shows the geometrical
scheme of each antenna and its dimensions that ensure a maximum energy transmission.
The antenna diameters were set in accordance with the geometric characteristics of the
semi-rigid micro-coaxial cable UT-085; moreover, each antenna is placed in a catheter to
avoid contact with the surrounding tissue.
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2.2. Finite Element Models (FEM)

Electromagnetic and thermal models of the proposed multi-antenna systems were
performed in COMSOL Multiphysics (COMSOL Inc., Burlington, MA, USA). The electro-
magnetic simulations were implemented in the frequency domain (2.45 GHz) and solved
by using the stationary solver (used to find the solution to linear and nonlinear stationary
problems). The thermal simulations were implemented as time-dependent by using the
time-dependent solver (used to find the solution to time-dependent problems). 3D models
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that include the multi-antenna system as well as a multi-tissue segment (bone, muscle, fat,
and skin) were implemented.

2.2.1. Electromagnetic (EM) Models

To implement the FEM model and to predict the antenna’s performance, a current
source (Jimp) that irradiated an electromagnetic field was considered. Element Model
Maxwell’s equations, described by Equations (1)–(4), govern the antennas’ performance [24].

∇× E = −jω
↔
µ ·H−Mimp (1)

∇×H = −jω
↔
ε ·E− Jimp (2)

∇·
(↔

ε ·E
)
= − 1

jω
∇·Jimp (3)

∇·
(↔

µ ·H
)
= − 1

jω
∇·Mimp (4)

where Mimp is the magnetic current density, and
↔
ε and

↔
µ are the permittivity and perme-

ability of the tissues that were irradiated by the antenna, E is the electric field, and H is the
magnetic field intensity. The boundary condition for the metallic surfaces, represented by
Equation (5) is considered to solve them:

n× E = 0 r ε SPEC (5)

where SPEC represents the antenna body surface as a perfect electric conductor (PEC). More-
over, the feed point of each antenna was modeled as a port (micro coaxial) boundary condition.

The E and H field satisfy the Sommerfeld radiation boundary condition. These equa-
tions can be hardly analytical solved; therefore, they are solved by numerical methods. Due
to an EM field that is irradiated by the antenna to the infinite, the solution space must be
limited (S0). Therefore, a new boundary condition to describe the EM waves propagation in
a finite space is applied. The boundary condition, known as first-order absorbing, described
by Equation (6), is applied to approximate this behavior. Moreover, this condition indicates
that the EM field can travel in the space without reflections, i.e., the boundary does not
disturb the EM field distribution.

^
n×∇×

(
E
H

)
+ jk0

^
n× ^

n×
(

E
H

)
≈ 0 rεS0 (6)

where n̂ is the unit vector normal to the surface S0. Equation (7) is obtained by doing all the
mathematical procedures:

˝

V

[
(∇× T)· ↔µr

−1 ·(∇× E)− k2
0T· ↔ε r·E

]
dV

=
‚

S0 ∪ SPEC

^
n·
[
T×

(↔
µr
−1·∇ × E

)]
dS

−˝V T·
[
jk0Z0Jimp +∇×

(↔
µr
−1·Mimp

)]
dV

(7)

where
↔
µ r =

↔
µ
µ0

and
↔
ε r =

↔
ε
ε0

are the relative permeability and permittivity tensor, respec-

tively, k0 = ω
√

µ0ε0 is the wavenumber in free space, Z0 =
√

µ0
ε0

is the intrinsic impedance,
V is the volume confined by S0, and T the testing function.
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To describe the EM problem, Equation (8) was obtained by applying the first-order
absorbing boundary condition.

˝

V

[
(∇× T)·↔µr

−1·(∇× E)− k2
0T·↔ε r·E

]
d

=
‚

SPEC

(
^
n× T

)
·↔µr
−1·(∇× E)dS

−jk0
‚

S0

(
^
n× T

)
·
(

^
n× E

)
dS

−˝V T·
[
jk0Z0Jimp +∇×

(↔
µr
−1·Mimp

)]
dV

(8)

To numerically solve the equation, V is divided in small finite elements.
A transverse electromagnetic field (TEM) describes the wave propagation in a micro-

coaxial cable. Equations (9)–(11) describe the antenna wave propagation for a time-
harmonic fields [25]:

E = er
C
r

ej(ωt−kz), (9)

H = eϕ
C
rR

ej(ωt−kz), (10)

Pav = ezπ
C2

Z
lnln

(
rinner
router

)
, (11)

where z is the direction of propagation; r, ϕ, and z are the coordinates of the antenna body;
Pav is the power flow; Z is the wave impedance, rinner, and router are the radius of the inner
and the outer conductors, respectively;ω is the angular frequency; and k the constant of
propagation.

On the other hand, the specific absorption rate (SAR) describes the absorbed energy
per unit of mass in a human body when it is exposed to an electromagnetic source, as
described by Equation (12):

SAR =
σ

2ρ
|E|2 (12)

where E is the propagated electric field, σ and ρ are the conductivity (S/m), and density
(kg/m3) of the irradiated medium, respectively.

2.2.2. Thermal Models

The thermal model is described by the Pennes bioheat transfer equation represented
by Equation (13):

ρc
∂T
∂t

= ∇·(k∇T) + ρQ + SAR− CbW(T− Tb) (13)

where c (J/kg/K) is the heat capacity, ρ (k/m3) is the tissue density, k (W/m ∗ K) is the
thermal conductivity, Cb is the blood heat capacity (J/Kg/K), W (kg/m3/s) is the blood
perfusion, Tb (K) is the blood temperature, Q (W/m3) is the metabolism heat generation,
and SAR (W/kg) was previously described by Equation (12).

The FEM model represents the heat-transfer problem in a small section of the multi-
tissue domain (bone, muscle, fat, and skin), i.e., the domains were truncated; therefore, an
insulation boundary condition was applied as described by Equation (14):

n·∇T = 0 (14)

where T is set as the initial physiological tissue temperature (37 ◦C). Table 1 presents the
tissues and antenna properties that were used in the FEM modeling.
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Table 1. Tissues and antenna properties used in the FEM models [26].

Parameter Value Parameter Value

Blood density 1050 (kg/m3) εr fat 10.8 (—)
Specific heat 3639 (J/kg·K) σ fat 0.268 (S/m)

Blood temperature 37 ◦C k fat 0.21 [W/(m·K)]
εr bone 18.5 (—) ρfat 911 [kg/m3]
σ bone 0.805 (S/m) cfat 2348 [J/(kg·K)]
k bone 0.31 [W/(m·K)] εr skin 38 (—)
ρbone 1908 [kg/m3] σ skin 1.46 [S/m]
c bone 1313 [J/(kg·K)] k skin 0.37 [W/(m·K)]
εr muscle 52.7 (—) ρskin 1109 [kg/m3]
σ muscle 1.74 (S/m) c skin 3391 [J/(kg·K)]
kmuscle 0.49 [W/(m·K)] εr catheter 2.6 (—)
ρmuscle 1090 [kg/m3] εr dielectric 2.03 (—)
c muscle 3421 [J/(kg·K)]

2.3. Parametric Study

Bone tumors can be more than 8 cm wide. To cover a more significant volume than
the one that was covered by a single antenna, a study to evaluate the antenna arrays perfor-
mance was proposed. Both antennas (DS and MTM) were evaluated by following the linear
(Figure 3a), triangular (Figure 3b), and square (Figure 3c) antenna array configurations. In
the study, each antenna was set as A1 A2, A3, and A4 according to the antenna configuration.
A parametric study was performed to obtain the maximum distance between antennas (ad)
that was needed to enhance the volume of tissue that was affected by the thermal ablation.
In order to set the distance between antennas (ad), the next specifications, according to
previous studies that were done by this research group, were considered [15,17]. The
designed antennas reach temperatures higher than 60 ◦C at approximately 10 mm from
the antenna axis, and similar temperatures were reached at approximately 6 mm further to
the antenna tip. Therefore, the covered distance ad was set from 1 to 15 mm with steps of
5 mm. These distances were chosen to ensure that the thermal pattern of the antennas will
be combined; consequently, larger volumes of tissue at ablation temperatures are expected.
Moreover, to evaluate the maximum bone size that can be treated and the thermal effect
over the other tissues (muscle, fat, and skin), the bone thickness (bt) was also included in
the parametric study. Table 2 shows the values that were included in this study.

Table 2. Parameters included in the parametric study.

Parameter Values

Distance between antennas (ad) 1, 5, 10, 15 (mm)
Bone thickness (bt) 2, 2.5, 3, 3.5, 4 (cm)

Figure 3d shows an example of a triangular configuration of antennas that was used
to implement this study. Moreover, model dimensions, distance between antennas (ad),
bone thickness (bt), and the axes of the observation planes that were used for the antenna
performance evaluation, are represented.
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Figure 3. Proposed antenna array configurations to be analyzed, the antennas are depicted as A1 A2,
A3, and A4 according to the antenna configuration, and example of the 3D computational model,
(a) linear antenna array, (b) triangular antenna array, (c) square antenna array, and (d) example of the
geometry that was used to implement this study. The geometry consists of a cylinder of multilayer
tissue (bone, muscle, fat, and skin), as well as the evaluated antenna array. The thicknesses of muscle,
fat, and skin were 2 cm, 1 cm, and 1 mm, respectively. The observation planes XY, XZ, and YZ
that were used for the evaluation are also depicted. As previously described, the distance between
antennas (ad) was modified from 1 mm to 15 mm and bone thickness (bt) from 2 to 4 cm.

2.4. Evaluated Parameters

The standing wave ratio corresponding to each antenna was obtained. The SWR
measures the impedance coupling among the load and the transmission line that supplies it.
An SWR equal to 1 indicates that the entire power is transmitted to the irradiated medium.
The higher the SWR, the greater power loss in the system; therefore, higher levels of power
returns to the microwave system and damages either to the equipment or to the patient
can be presented. On the other hand, maximum temperatures, tissue volumes at ablation
temperatures, and temperature patterns that were generated by the antenna arrays were
obtained. It is well-known that thermal damage depends on the reached temperature and
the treatment time (energy exposure); temperatures around 50–55 ◦C reduce the necessary
time to generate irreversible cell damage to 4–6 min. Temperatures around 60–100 ◦C must
be reached to produce nearly immediate tissue and cell coagulation [27]. Therefore, in this
study, the coagulation of tissue was considered once it reaches 55 ◦C.

3. Results
3.1. Convergence Analysis

By using an adaptive mesh, a finer mesh in the region of interest was generated;
therefore, the number of elements in the mesh can be reduced. An adequate mesh can help
to reduce computational cost without an underestimation of the results. A convergence
study was implemented to choose the adequate mesh size. Therefore, different mesh
sizes were tested to perform the tests. The convergence test was done by analyzing the
relationship between SWR and the simulation time versus the number of elements in the
mesh. For all the antenna arrays, it was observed that the coarser mesh underestimates
the results. For the linear arrays, models with around 625,885 (42 min)–842,209 (60 min)
elements generated SWR values around 1.15. For triangular arrays, models with around
262,088 (30 min)–925,835 (80 min) generated stable SWR values around 1.34. Finally, for the
square array, models with around 371,124 (60 min)–623,272 (130 min) elements generated
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SWR values around 1.4. It is important to address that due to the simplicity of the linear
array models, the number of elements in the mesh can be increased without a big impact
on the computational time.

3.2. Standing Wave Ratio (SWR)

Figure 4 shows the SWR values for linear, triangular, and square configurations of
double slot (DS) and monopole (MTM) antennas. For triangular and square configurations,
just the lowest and the highest SWR values (A1 and A3) are presented, i.e., the SWR values
corresponding to antennas A2 and A4 were between the SWR values that are described in
Figure 4. Figure 4a depicts the SWR for both antennas (A1 and A2) in the linear array that
was composed of the DS and the MTM antennas. In all cases (antenna distance ad and bone
thickness bt), the DS antennas showed better performance, i.e., the SWR was lower than 1.4,
which means a better coupling of the antenna with the microwave system. On the other
hand, the MTM antennas reached SWR values between 1.3 and 2, being the worst-case
scenarios (SWR ∼= 2), the ones with ad = 1 mm, for all the analyzed bone thickness (bt).
Figure 4b shows the SWR for the triangular array; the DS antennas generated SWR values
that were lower than 1.5, except for those cases where ad = 1 mm. The MTM antennas with
ad = 10 mm and ad = 15 mm had SWR values lower than 1.6; however, for ad = 1 mm and
ad = 5 mm, the SWR was between 2 and 3. Finally, Figure 4c shows the SWR for the square
array; in this case, the DS antenna shows SWR values between 1.3 and 1.5, except for those
cases where ad = 1 mm (SWR ≥ 2). The MTM array with ad = 10 mm and ad = 15 mm had
SWR values that were lower than 1.6; however, for ad = 1 mm and ad = 5 mm, the SWR was
between 2 and 3.7. Moreover, to use the MTM antenna in multi-antenna arrays, the bt must
be higher than 20 mm.
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thermal distribution at temperatures higher than 50 °C. Clearly, the temperature field dis-
tributions are strongly related with the heat source distribution. Figure 5a,c,e,g,I,k shows 
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Figure 4. SWR of the antennas that compose the analyzed antenna arrays. (a) linear antenna ar-
ray, (b) triangular antenna array (SWR for A2 is within the values of A1 and A3), and (c) square
antenna array (SWR for A2 and A4 is within the values of A1 and A3). DS = double slot an-
tenna, MTM = monopole antenna; A1, A2, A3, and A4 correspond to the antenna number in each
antenna array.

3.3. Microwave Heat-Source Density and Thermal Distributions

Figure 5 shows the distributions of the microwave heat source in the observation
plane XY, that was generated for the best-case scenarios, as well as the 3D views of the
thermal distribution at temperatures higher than 50 ◦C. Clearly, the temperature field
distributions are strongly related with the heat source distribution. Figure 5a,c,e,g,i,k shows
how the microwave heat-source density can be modified as a function of the antenna
type and antenna distance (ad). It is observed that the fields that are generated by each
antenna are combined; therefore, the region of tissue that reaches thermal ablation is bigger.
Consequently, the heat distributions are also different for each antenna array, as can be
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observed in Figure 5b,d,f,h,j,l. It is also observed how the reached temperature is different
for each case-scenario. Moreover, the reached temperature also depends on the treatment
time; for example, Figure 5b,d represent the thermal distribution after 10 min, Figure 5f,h
after 5 min, while Figure 5j,l after 10 and 5 min, respectively. The reached temperatures
depend on the antenna type, antenna distance (ad), and the treatment time.
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values (Figure 5a), all the case scenarios that were analyzed for the DS linear antenna array 
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Figure 5. Distributions of the microwave heat source in the observation plane XY (W/cm3) and
3D views of the thermal distribution at temperatures higher than 50 ◦C. (a) heat source field for a
linear array of doble slot antennas (ad = 15 mm and bt = 30 mm), (b) thermal distribution generated
by the linear array of doble slot antennas ad = 15 mm and bt = 30 mm after 5 min, (c) heat source
field for a linear array of monopole antennas (ad = 10 mm and bt = 40 mm), (d) thermal distribution
generated by the linear array of monopole antennas (ad = 10 mm and bt = 40 mm) after 10 min,
(e) heat source field for a triangular array of doble slot antennas (ad = 10 mm and bt = 40 mm),
(f) thermal distribution generated by the triangular array of doble slot antennas (ad = 10 mm and
bt = 40 mm) after 5 min, (g) heat source field for a triangular array of monopole antennas (ad = 10 mm
and bt = 40 mm), (h) thermal distribution generated by the triangular array of monopole antennas
(ad = 10 mm and bt = 40 mm) after 5 min, (i) heat source field for a square array of doble slot antennas
(ad = 15 mm and bt = 40 mm), (j) thermal distribution generated by the square array of doble slot
antennas (ad = 15 mm and bt = 40 mm) after 10 min, (k) heat source field for a square array of
monopole antennas (ad = 10 mm and bt = 25 mm), (l) thermal distribution generated by the square
array of monopole antennas (ad = 10 mm and bt = 25 mm) after 5 min.

3.4. Linear Antenna Array

Figure 6 shows the volume of bone tissue at ablation temperatures (T > 55 ◦C) as a
function of time, antenna distance (ad), and bone thickness (bt). According to the SWR
values (Figure 5a), all the case scenarios that were analyzed for the DS linear antenna
array had a good performance (SWR < 1.4). Therefore, Figure 6a shows the volumes of
bone tissue at ablation temperatures that were reached by the DS antenna array. As it was
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expected, the volume of heating tissue increases a function of time; moreover, the smaller
the ad, the higher the tissue volume at ablation temperatures. Figure 6b shows the volume
of bone tissue at ablation temperatures that was obtained with the linear array of MTM
antennas. The best-case scenarios for each analyzed bone thickness (bt) were obtained with
ad = 5 mm and ad = 10 mm. Although the rest of the cases for the MTM antenna arrays
showed ablation temperatures in bone tissue, the SWR values for those antennas were
approximately 2, which means higher power losses that can either overheat the patient
or damage the equipment. Moreover, the tissue volumes that were reached by the MTM
antenna array were lower than those that were reached with the DS antenna array. As
it could be observed, different volumes of bone tissue at ablation temperatures could be
reached depending on antenna type, treatment time, antenna distance, and bone thickness.
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Figure 6. Bone tissue volume at ablation temperatures (T > 55 ◦C) as a function of time, antenna dis-
tance (ad), and bone thickness (bt). (a) Linear array of DS antennas, (b) linear array of MTM antennas.

Table 3 shows the performance of the best-case scenarios for each bone thickness
(bt = 20 mm–40 mm). The SWR, maximum temperature, and volume of bone (V_bone) and
muscle (V_muscle) at ablation temperatures (T > 55 ◦C) are shown. For the DS antenna array,
the best antenna distance was 5 mm; except for a bt = 30 mm, where ad = 15 mm was the
best option. In all cases, ablation temperatures were reached after 5 min; however, the tissue
volumes under ablation were lower than those that were reached after 20 min. Although
the volume of bone tissue at ablation temperatures was between 9.74 cm3 and 19.15 cm3

after 20 min, the maximum reached temperatures were greater than 100 ◦C; moreover, the
surrounding muscle tissue was also affected by temperature increases. It must consider
that treatment time can be reduced from 20 min to 15 min to reduce the temperature and
the effect on muscle. The MTM antenna showed maximum temperatures that were lower
than 100 ◦C even after 20 min. The volume of bone at ablation temperatures goes from
9.81 cm3 to 16.49 cm3. After 20 min, the maximum muscle volume at ablation temperatures
was 5.02 cm3, which means that muscle tissue is less affected when the MTM antenna is
used. It is important to address that treatment time plays an important role in the volume
of tissue (either bone or muscle) that reaches ablation.
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Table 3. Linear antenna array performance. Best-case scenarios were obtained for each analyzed
bone thickness (bt) based on the SWR of the antennas. Maximum reached temperature and tissue
volume at temperatures higher than 55 ◦C are presented.

Antenna
Array ad [mm] bt [mm]

SWR T_max [◦C] V_bone [cm3] V_muscle [cm3]

A1 A2 5 min 20 min 5 min 20 min 5 min 20 min

2 double
slot

antennas
(DS)

5 20 1.05 1.05 85.49 106.10 2.69 9.74 1.36 8.13
5 25 1.11 1.11 88.23 109.00 3.90 13.00 0.28 4.41
15 30 1.15 1.15 70 85.22 2.85 13.09 0 2.15
5 35 1.10 1.10 86.76 109.10 4.67 18.58 0 0.08
5 40 1.09 1.09 87.41 109.50 4.65 19.15 0 0

2 monopole
antennas
(MTM)

10 25 1.30 1.30 65.60 82.82 2.08 9.81 0.22 5.02
10 30 1.36 1.36 67.63 84.20 2.71 12.07 0 2.52
10 35 1.32 1.32 68.7 86.02 3.06 14.83 0 0.48
10 40 1.29 1.29 68.23 86.01 3.24 16.49 0 0

Figure 7 shows the projections of the ablation zones on three observation planes, as
explained below, for treatment times of 5, 10, 15, and 20 min. The isothermal contours
at 55 ◦C that were generated by linear DS and MTM antenna arrays are presented. In
these cases, each antenna was fed with 3 W, which means a total power of 6 W. The
observation was throughout one transversal and two longitudinal planes. The transversal
observation plane (XY) intersects the antenna insertion path at the height between both
slots and at the middle point of the monopole. The longitudinal observation plane XZ
and YZ crosses the centroid of the geometry of each configuration over the respective
axes (See Figure 3). Figure 7a–c show the performance of a linear DS antenna array with
ad = 15 mm and bt = 30 mm, at planes XZ, XY, and YZ, respectively; while Figure 7d–f show
the performance of a linear MTM antenna array with ad = 10 mm and bt = 40 mm at the
same planes. It was observed that even after 5 min of treatment time, both configurations
were capable of generating continuous ablation zones, which became more extended as a
function of treatment time. Both configurations generated different isothermal contours;
however, it is observed that the longer the distance between antennas (ad), the smaller the
ablation zone. Moreover, the DS antenna array shows temperatures higher than 100 ◦C
in plane XY for times above 15 min and in plane YZ for times above 10 min, while the
MTM antenna array does not generate overheating even after 20 min. Figure 6 shows how
the isothermal contour can be modified by antenna type, antenna distance (ad), and bone
thickness (bt).

Table 4 shows the ablation zone distances along the X, Y, and Z axes for 5 and 20 min.
In order to quantify the uniformity of the ablation zone, a sphericity index was calculated.
It was the ratio between the ablation zone volume when it is calculated as an ellipsoid
by considering the distances (DX, DY, DZ), divided by the volume of a sphere that was
generated by considering the longest distance. The distances (DX, DY, DZ) were calculated
as the widest distance of the isothermal contour at 55 ◦C along the three axes.

Table 4. Best-case scenarios of ablation zone dimensions for 5 min and 10 min (6 W) for the linear
configurations of DS and MTM antennas.

DS Antenna Array MTM Antenna Array

Antenna distance (ad) (mm) 15 10
Bone thickness (bt) (mm) 30 40

Heating time 5 min 20 min 5 min 20 min
DX (cm) 0.71 2.45 1.39 2.77
DY (cm) 1.91 3.29 2.26 3.76
DZ (cm) 2.66 3.31 1.49 2.80

Sphericity index 0.19 0.73 0.40 0.54
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array with ad = 15 mm and bt = 30 mm, respectively (d–f) XZ, XY, and YZ planes for a MTM antenna
array with ad = 10 mm and bt = 40 mm, respectively.

3.5. Triangular Antenna Array

Figure 8 shows the volume of bone tissue at ablation temperatures that were reached
by the triangular antenna array. Figure 8a shows the volumes that were generated by the
DS antenna array. In this case, and according to the SWR values (See Figure 4b), all cases,
except the ones with ad = 1 mm and bt = 20 mm–40 mm (SWR∼= 2), had a good performance,
i.e., these cases present SWRs values <2 and V_bone

∼= 4 cm3 (5 min)–31 cm3 (20 min). The
MTM antenna array with ad = 1 mm and bt = 25 mm–40 mm showed SWR values ≥ 3;
however, for the rest of the cases, the SWRs <2 and V_bone

∼= 4 cm3 (5 min)–31 cm3 (20 min).
Although the DS antenna array and the MTM antenna array reach similar V_bone after
20 min, in general, with the MTM antenna array, the V_bone achieved is lower than those
achieved by the DS antenna array, as can be observed in Figure 8a,b. The triangular
array, either DS or MTM antennas, produces a more significant temperature effect over the
muscle tissue, which means that muscle can also reach ablation temperatures depending
on treatment time.

Table 5 shows the best-case scenarios that were obtained with the triangular antenna
arrays for each analyzed bone thickness (bt). The DS antenna array, bt = 20 mm and
ad = 5 mm generated bone tissue overheating (T_max > 100 ◦C) even after 5 min of treat-
ment time (T_max = 111.20 ◦C). Therefore, treatment times that are lower than 3 min are
recommended; however, the ablated tissue volume will be less than 4 cm3. An increase
in the antenna distance (ad = 10 mm) helps to reduce T_max and increase the volume of
ablated bone. Moreover, if the treatment time increases, so does the tissue volume under
ablation. However, not only bone but also muscle tissue reached ablation temperatures.
After 5 min, the muscle volume (V_muscle) at ablation temperatures could be considered
within the safety margin. Nevertheless, after 20 min, the volume of the heated muscle
increased considerably, especially for those cases with bt = 20 mm and 25 mm, where
V_muscle = 13.55 cm3 and 10.11 cm3, respectively. Nevertheless, it will always depend on
the tumor volume that is to be treated.

97



Sensors 2022, 22, 7604

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

Figure 7. Isotherm contour at 55 °C generated by a linear antenna array over different planes after 
5 min, 10 min, 15 min, and 20 min of treatment time. (a)–(c) XZ, XY, and YZ planes for a DS antenna 
array with ad = 15 mm and bt = 30 mm, respectively (d)–(f) XZ, XY, and YZ planes for a MTM 
antenna array with ad = 10 mm and bt = 40 mm, respectively. 

Table 4 shows the ablation zone distances along the X, Y, and Z axes for 5 and 20 min. 
In order to quantify the uniformity of the ablation zone, a sphericity index was calculated. 
It was the ratio between the ablation zone volume when it is calculated as an ellipsoid by 
considering the distances (DX, DY, DZ), divided by the volume of a sphere that was gen-
erated by considering the longest distance. The distances (DX, DY, DZ) were calculated as 
the widest distance of the isothermal contour at 55 °C along the three axes.  

Table 4. Best-case scenarios of ablation zone dimensions for 5 min and 10 min (6 W) for the linear 
configurations of DS and MTM antennas. 

 DS Antenna Array MTM Antenna Array 
Antenna distance (ad) (mm) 15 10 

Bone thickness (bt) (mm) 30 40 
Heating time  5 min 20 min 5 min 20 min 

DX (cm) 0.71 2.45 1.39 2.77 
DY (cm) 1.91 3.29 2.26 3.76 
DZ (cm) 2.66 3.31 1.49 2.80 

Sphericity index  0.19 0.73 0.40 0.54 

3.5. Triangular Antenna Array 
Figure 8 shows the volume of bone tissue at ablation temperatures that were reached 

by the triangular antenna array. Figure 8a shows the volumes that were generated by the 
DS antenna array. In this case, and according to the SWR values (See Figure 4b), all cases, 
except the ones with ad = 1 mm and bt = 20 mm–40 mm (SWR ≅ 2), had a good performance, 

i.e., these cases present SWRs values <2 and V_bone ≅ 4 cm3 (5 min)–31 cm3 (20 min). The 
MTM antenna array with ad = 1 mm and bt = 25 mm–40 mm showed SWR values ≥ 3; 
however, for the rest of the cases, the SWRs <2 and V_bone ≅ 4 cm3 (5 min)–31 cm3 (20 min). 
Although the DS antenna array and the MTM antenna array reach similar V_bone after 20 
min, in general, with the MTM antenna array, the V_bone achieved is lower than those 
achieved by the DS antenna array, as can be observed in Figure 8a,b. The triangular array, 
either DS or MTM antennas, produces a more significant temperature effect over the mus-
cle tissue, which means that muscle can also reach ablation temperatures depending on 
treatment time. 

 
Figure 8. Bone tissue volume at ablation temperatures (T > 55 ◦C) as a function of time, antenna
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Table 5. Triangular antenna array performance. Best-case scenarios were obtained for each analyzed
bone thicknesses (bt) based on the SWR of the antennas. Maximum reached temperature and tissue
volume at temperatures higher than 55 ◦C are presented.

Antenna
Array

ad
[mm]

bt
[mm]

SWR T_max [◦C] V_bone [cm3] V_muscle [cm3]

A1‘ A2 A3 5 min 20 min 5 min 20 min 5 min 20 min

3 double slot
antennas

(DS)

5 20 1.21 1.17 1.24 111.20 139.6 4.83 17.94 2.64 13.55
10 25 1.30 1.30 1.10 92.05 121.3 6.87 22.92 0.71 10.11
10 30 1.35 1.35 1.13 71.30 92.48 6.70 23.00 0 7.90
10 35 1.35 1.35 1.12 70.25 92.62 7.30 28.47 0 2.56
10 40 1.32 1.32 1.11 70.26 94.53 7.59 31.29 0 0.69

3 monopole
antennas
(MTM)

10 25 1.15 1.15 1.19 85.00 112.1 4.97 19.33 2.44 13.16
15 30 1.56 1.56 1.52 69.05 91.70 4.92 20.30 0.32 9.52
10 35 1.26 1.26 1.29 88.31 117.8 7.98 30.13 0 2.12
10 40 1.17 1.17 1.21 90.20 120.9 8.75 34.91 0 0.30

Figure 9a–c show the performance of a triangular DS antenna array with ad = 10 mm
and bt = 40 mm, at planes XZ, XY, and YZ, respectively, while Figure 9d–f show the
performance of a triangular MTM antenna array with ad = 10 mm and bt = 40 mm at
the same planes. As in the linear antenna array, the triangular configurations generated
continuous ablation zones, even after 5 min of treatment time. In this case, the best-case
scenarios had the same ad (10 mm) and bt (40 mm). Therefore, both configurations generated
quite similar isothermal contours, with slight differences (See Table 6). By combining ad
and bt dimensions adequately, the reached temperatures did not surpass the 100 ◦C in any
of the analyzed planes (See Table 5).

98



Sensors 2022, 22, 7604Sensors 2022, 22, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 9. Isotherm contour at 55 °C generated by a triangular antenna array over different planes 
after 5 min, 10 min, 15 min, and 20 min of treatment time. (a)–(c) XZ, XY, and YZ planes for a DS 
antenna array with ad = 10 mm and bt = 40 mm, respectively (d)–(f) XZ, XY, and YZ planes for a 
MTM antenna array with ad = 10 mm and bt = 40 mm, respectively. 

Table 6 shows the ablation zone distances along the X, Y, and Z axis and the spheric-
ity index for 5 and 20 min generated by the triangular configurations of DS and MTM 
antennas.  

Table 6. Best-case scenarios of ablation zone dimensions for 5 min and 10 min (9 W) for the trian-
gular configurations of DS and MTM antennas. 

 DS Antenna Array MTM Antenna Array 
Antenna distance (ad) (mm) 10 10 

Bone thickness (bt) (mm) 40 40 
Heating time  5 min 20 min 5 min 20 min 

DX (cm) 2.48 3.94 2.27 3.90 
DY (cm) 2.53 3.94 2.84 4.21 
DZ (cm) 2.50 3.90 2.29 3.84 

Sphericity index 0.96 0.98 0.64 0.84 

3.6. Square Antenna Array 
Figure 10 shows the volume of bone tissue at ablation temperatures that were 

reached by the square configuration. Figure 10a shows the volumes that were generated 
by the DS antenna array. According to the SWR values (See Figure 4c), cases correspond-
ing to ad = 1 mm and bt = 20 mm–40 mm had SWR values that were higher than 2, which 
means that their performance is not highly effective. Nevertheless, if ad increases, lower 
SWR values are achieved (See Table 7). Moreover, the tissue volume at ablation tempera-
tures also increases. The volume of bone at ablation temperatures goes from approxi-
mately 7 cm3 (5 min) to 44.5 cm3 (20 min). Although the bone volume at ablation temper-
atures can be up to 44.5 cm3, the temperature increase also affects muscle and fatty tissues. 
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Figure 9. Isotherm contour at 55 ◦C generated by a triangular antenna array over different planes
after 5 min, 10 min, 15 min, and 20 min of treatment time. (a–c) XZ, XY, and YZ planes for a DS
antenna array with ad = 10 mm and bt = 40 mm, respectively (d–f) XZ, XY, and YZ planes for a MTM
antenna array with ad = 10 mm and bt = 40 mm, respectively.

Table 6. Best-case scenarios of ablation zone dimensions for 5 min and 10 min (9 W) for the triangular
configurations of DS and MTM antennas.

DS Antenna Array MTM Antenna Array

Antenna distance (ad) (mm) 10 10
Bone thickness (bt) (mm) 40 40

Heating time 5 min 20 min 5 min 20 min
DX (cm) 2.48 3.94 2.27 3.90
DY (cm) 2.53 3.94 2.84 4.21
DZ (cm) 2.50 3.90 2.29 3.84

Sphericity index 0.96 0.98 0.64 0.84

Table 6 shows the ablation zone distances along the X, Y, and Z axis and the sphericity
index for 5 and 20 min generated by the triangular configurations of DS and MTM antennas.

3.6. Square Antenna Array

Figure 10 shows the volume of bone tissue at ablation temperatures that were reached
by the square configuration. Figure 10a shows the volumes that were generated by the
DS antenna array. According to the SWR values (See Figure 4c), cases corresponding to ad
= 1 mm and bt = 20 mm–40 mm had SWR values that were higher than 2, which means
that their performance is not highly effective. Nevertheless, if ad increases, lower SWR
values are achieved (See Table 7). Moreover, the tissue volume at ablation temperatures also
increases. The volume of bone at ablation temperatures goes from approximately 7 cm3

(5 min) to 44.5 cm3 (20 min). Although the bone volume at ablation temperatures can be
up to 44.5 cm3, the temperature increase also affects muscle and fatty tissues. In the worst-
case scenario, even muscle was more affected than bone tissue, i.e., the V_bone = 19.5 cm3,
V_muscle = 25.33 cm3, and V_fat = 2.23 cm3 for ad = 15 mm and bt = 20 mm. On the other
hand, the MTM antenna array reached lower temperatures. Moreover, just cases where
ad = 10 mm and 15 mm and bt = 25 mm–40 mm showed SWR values ≤2 (See Table 7).
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Therefore, in these cases, the reached volumes of bone were from 7 cm3 (5 min) to 41 cm3

(20 min). In the worst-case scenario (ad = 15 mm and bt = 20 mm), V_bone = 24.87 cm3,
V_muscle = 19.5 cm3, and V_fat = 0.37 cm3.
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Figure 10. Bone tissue volume at ablation temperatures (T > 55 ◦C) as a function of time, antenna
distance (ad), and bone thickness (bt). (a) Square array of DS antennas and (b) square array of
MTM antennas.

Table 7. Square antenna array performance. Best-case scenarios were obtained for each analyzed
bone thickness (bt) based on the SWR of the antennas. Maximum reached temperature and tissue
volume at temperatures higher than 55 ◦C are presented.

Antenna
Array

ad
[mm]

bt
[mm]

SWR T_max [◦C] V_bone [cm3] V_muscle [cm3]

A1 A2 A3 A4 5 min 20 min 5 min 20 min 5 min 20 min

4 double
slot

antennas

5 20 1.21 1.21 1.20 1.21 132.3 139.9 7.15 26.22 4.30 20.79
15 25 1.36 1.36 1.36 1.36 67.45 88.30 6.86 27.03 0.52 20.00
15 30 1.32 1.35 1.36 1.35 67.83 91.44 9.04 33.63 0 14.36
15 35 1.32 1.44 1.45 1.45 66.61 92.53 9.86 40.56 0 7.31
15 40 1.25 1.43 1.44 1.44 67.03 93.7 10.46 44.53 0 3.86

4 monopole
antennas

10 25 1.09 1.07 1.07 1.09 105.3 140 7.79 27.69 4.24312 17.51
10 30 1.04 1.04 1.04 1.03 110.4 140 10.17 34.09 2.11448 13.21
10 35 1.02 1.03 1.03 1.02 109.2 140 12.28 40.85 0.42405 7.75
10 40 1.04 1.03 1.03 1.04 108.1 140 13.56 46.41 0 3.10

Table 7 shows the best-case scenarios for each analyzed bt with a square configuration.
For a square DS antenna array with ad = 5 mm and bt = 20 mm, tissue overheating was
observed, and maximum temperatures of 132.3 ◦C and 139.9 ◦C were reached after 5 min
and 20 min, respectively. Moreover, after 20 min, volumes of bone and muscle at ablation
temperatures were quite similar (V_bone = 26.22 cm3 vs. V_muscle = 20 cm3); therefore, the
focalization of the EM energy is not predominant over bone tissue. Nevertheless, the DS
antennas array had the best performance with a maximum distance between the antennas
(ad = 15 mm) and bone thickness higher than 25 mm (bt = 25 mm–40 mm). In these cases,
the SWR values were lower than 1.5, and the reached temperatures did not overpass the
ablation range (55–100 ◦C) even after 20 min. Although muscle may still be affected, in
order to reduce its damage, the treatment time can be reduced. On the other hand, for the
square MTM antenna, the achieved SWR values were the lowest (approx. 1.1); therefore,
a maximum energy transmission was obtained; consequently, an overheating of tissue
was reached, even after 5 min, where temperatures between 105 ◦C and 108 ◦C and a
maximum energy focus over bone tissue were presented. At 20 min of treatment time, a
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maximum temperature of 140 ◦C was reached, and muscle tissue was highly affected by
the temperature increase.

Figure 11a–c show the performance of a square DS antenna array with ad = 15 mm
and bt = 40 mm, at planes XZ, XY, and YZ, respectively, while Figure 11d–f show the
performance of a square MTM antenna array with ad = 10 mm and bt = 25 mm at the same
planes. After 5 min of treatment time, both configurations generated continuous ablation
zones, which became more extensive as a function of treatment time. Both configurations
generated different isothermal contours. Figure 10 shows how the isothermal contour can
be modified in accordance with antenna type, antenna distance (ad), and bone thickness
(bt). The fact that the total input power, in these cases, was 12 W must be addressed (3 W
per antenna) because the reached temperatures were the highest from the study. Moreover,
the MTM array generates maximum temperatures that are higher than 140 ◦C just after
5 min of treatment time. Therefore, in this case, just the isothermal contours at 5 min are
shown in Figure 11.
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Table 8 shows the ablation zone distances along the X, Y, and Z axis and the spheric-
ity index for 5 and 20 min that was generated by the square configurations of DS and 
MTM antennas. For the MTM antenna, the sphericity index shows a reduction of the ab-
lation zone uniformity; however, this configuration can still be used to treat different tu-
mor shapes. The values for 20 min are not reported because the tissue is overheated (140 
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 DS Antenna Array MTM Antenna Array 
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Figure 11. Isotherm contour at 55 ◦C that was generated by a square antenna array over different
planes after 5 min, 10 min, 15 min, and 20 min of treatment time. (a–c) XZ, XY, and YZ planes for a
DS antenna array with ad = 15 mm and bt = 40 mm, respectively; (d–f) XZ, XY, and YZ planes for a
MTM antenna array with ad = 10 mm and bt = 25 mm, respectively.

Table 8 shows the ablation zone distances along the X, Y, and Z axis and the sphericity
index for 5 and 20 min that was generated by the square configurations of DS and MTM
antennas. For the MTM antenna, the sphericity index shows a reduction of the ablation
zone uniformity; however, this configuration can still be used to treat different tumor
shapes. The values for 20 min are not reported because the tissue is overheated (140 ◦C).
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Table 8. Best-case scenarios of ablation zone dimensions for 5 min and 20 min (12 W) for the square
configurations of DS and MTM antennas.

DS Antenna Array MTM Antenna Array

Antenna distance (ad) (mm) 15 10
Bone thickness (bt) (mm) 40 25

Heating time 5 min 20 min 5 min 20 min
DX (cm) 2.074 4.19 2.58 —
DY (cm) 2.68 5.06 4.14 —
DZ (cm) 2.06 4.15 2.56 —

Sphericity index 0.59 0.67 1.5

4. Discussion

Thermal ablation as bone tumors treatment has been poorly analyzed; just a few
studies about it are reported in the literature. Moreover, in most of these cases, antennas
that are designed to treat soft tissue have been used, making it necessary to use either a
high input power or large treatment time. Recently, new micro-coaxial antennas specifically
designed to treat bone tumors has been proposed by this research group. However, the
first evaluations showed that to treat large bone tumors, multi-antenna arrays must be
used. The main goal of this paper was to evaluate the performance of three array con-
figurations (linear, triangular, and square) of antennas that were designed specially to
treat bone tissue. The evaluation was based on SWR analysis, tissue volume at ablation
temperatures, maximum reached temperatures, and isothermal contours. The double slot
(DS) and the monopole (MTM) antennas were chosen to form the arrays, as they were
previously designed and tested [17], i.e., their correct performance has been evaluated
by experimentation in phantom and porcine ex vivo tissue. Previous experimental tests
showed that both antennas could generate ablation temperatures at bone using 10 W of
input power applied for durations between 5 and 10 min. Therefore, to avoid tissue over-
heating, the input power was reduced. In all the analyzed cases, each antenna was fed
with 3 W; hence, the treatment time was up to 20 min to generate the largest coverage
region. It was observed that the distance between the antennas (ad), bone thickness (bt),
and treatment time play a key role in the antenna array performance.

The SWR evaluation showed that the DS antenna arrays had a better performance in
all the analyzed configurations, while ad = 1 mm and bt = 25 mm generated the worse-case
scenarios. With these dimensions, maximum SWR values of 1.36, 1.95, and 2.15 were found
for the linear, triangular, and squared configurations, respectively. In general, the linear
configuration shows no problems using antenna distances (ad) around 1 mm–15 mm and a
bone thickness (bt) from 20 mm–40 mm. However, for triangular and square configurations,
it was observed that ad = 1 mm and bt = 25 mm generated the highest SWR values (1.95
and 2.15, respectively), which will make it difficult to work under such conditions because
either the patient or the MW equipment can be damaged. On the other hand, the MTM
antenna arrays generated higher SWR values than those from the DS antenna arrays.
In fact, to implement any configuration of MTM antennas, the bone thickness must be
greater than 20 mm, to reduce the SWR values. For a linear configuration, the maximum
SWR was 2.24 (ad = 1 and bt = 30 mm); however, in general, ad = 1 mm generated SWR
values that were closer to 2. For triangular and squared configurations, the dimension
ad = 1 mm and ad = 5 mm generated SWR between 2.0 and 3.6. Therefore, these cases could
be implemented just by adding an impedance coupler to reduce the SWR as much as
possible and avoid large power losses that could cause patient overheating as well as some
damage to the MW equipment.

The analyzed antenna distance (ad = 1, 5, 10, and 15 mm) allows the generation
of a continuous ablation zone even after just 1 min of heating by using a total input
power of 6 W (linear configuration), 9 W (triangular configuration), and 12 W (square
configuration). However, after 1 min of heating, the coverage region is narrow, focused
in the area surrounding the slots and monopole; the treatment time must be increased
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to enhance the thermal ablation effect. After 5 min, the linear configuration of both
antennas generated volumes of ablated bone similar to those that were reported by a single
antenna under similar conditions [28]. A single DS antenna fed by 5 W applied per 5 min
generated 2.4 cm3 of ablated bone, while a linear DS antenna array fed by 6 W at the
same time generated from 2.69 cm3 to 4.65 cm3 depending on antenna distances (ad) and
bone thickness (bt). On the other hand, an MTM antenna fed by 5 W applied per 5 min
generated an ablation volume of 2.09 cm3, while a linear MTM antenna array fed by 6 W at
the same time generated from 2.08 cm3 to 3.24 cm3, also depending on ad and bt. Moreover,
for each configuration, antenna type, and bone thickness (bt), a recommended antenna
distance (ad) was set (See Table 2, Table 4, and Table 6) based on the lowest SWR values,
the highest volumes of bone under ablation, and the lowest thermal effect over muscle
tissue. As expected, the longer the treatment time, the higher the reached temperatures and
the volume of bone under ablation; however, muscle is also affected by the temperature
increase. On the other hand, the volume of bone tissue under ablation can also be increased
by using either a triangular or a square configuration of any antenna; however, the volume
of muscle at ablation temperatures also increases. Therefore, tuning the input power and
treatment times could be enough to reduce the thermal effects on muscle. Nevertheless, a
cooling system can be implemented if we want to reduce the thermal effect over muscle
without modifications on the reached temperatures and volume of ablated bone. Another
essential fact to be considered is that the bone thickness is strongly related to the volume of
muscle at ablation temperatures, i.e., the thicker the bone, the more negligible effect over
the surrounding tissues will be generated. Figures 9 and 11 show the symmetry of the
temperature distributions that were generated over the planes XZ and YZ for triangular
and square configurations, respectively. Moreover, it is observed how the size of the
isothermal contour is modified as a function of treatment time. The linear array does not
show symmetry; therefore, Figure 7 shows how the temperature distributions tend to be
different at each analyzed plane.

On the other hand, to our understanding, this study is the first one that was performed
to evaluate the heating characteristics of arrays that are composed of micro-coaxial antennas
that are specifically designed to treat bone. The DS and the MTM antennas were previously
optimized using the finite element method; consequently, their design allows achieving
a maximum energy transference. Hence, the required input power to generate thermal
ablation can be reduced as much as possible. The evaluation tests that were performed to
characterize both antennas showed that 10 W were enough to produce thermal ablation in
bone tissue with treatment times around 5–10 min. Therefore, to avoid tissue overheating
when antenna arrays are used, each antenna was fed with 3 W, i.e., a total of 6W, 9 W, and
12 W were used to feed the linear, triangular, and square configurations, respectively. These
input power levels are far away from those that were reported by other authors. Karam-
patzakis et al. performed a similar study, implemented by using a triangular and square
configuration of DS antennas [23]; they reported 50 W to generate continuous ablation
zones with ad = 10 mm. Moreover, if the ad increases, for example, ad = 15 mm (triangular
configuration), at least 75 W is required to generate a continuous ablation zone, while
ad = 20 mm requires 100 W. Karampatzakis et al. reported some results for ex vivo tissue,
they used a triangular array with ad = 15 mm and a total input power of 100 W; after 10 min
of treatment time, the reported ablation zone dimensions are 5.2 cm × 5.2 cm × 5.0 cm. In
the present study, a triangular configuration with 9 W and ad = 10 mm and bt = 40 mm, after
5 min, generates a T_max = 70.26 ◦C, V_bone(T > 55 ◦C) = 7.59 cm3, and a coverage region of
2.48 cm× 2.53 cm× 2.50 cm. After 20 min, the same configuration generates T_max = 94 ◦C,
V_bone (T > 55 ◦C) = 31.29 cm3, and a coverage region of 3.94 cm × 3.94 cm × 3.90 cm. In
both cases, muscle is hardly affected. Although the coverage region that was reported by
Karampatzakis et al. was larger than the ones that were reported in the present study, in
our case, the level of input power that was used was about one-tenth of the reported values.
In fact, the distance ad can be increased to increase the coverage region; therefore, the input
power could also be increased. Unfortunately, most of the literature reports the evaluation
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of using antenna array configurations to treat soft tissues [20–22,29], making it impossible
to compare our results in more detail. As it is reported in the literature, electromagnetic
models are maturing rapidly; however, the accuracy of thermal models is still under de-
velopment. The main problems to achieve accurate models are the uncertainties in tissue
thermal properties. These properties are different among tissues, patients, etc. Moreover,
these properties are temperature-dependent, i.e., they change while the temperature is
changing due to the thermal ablation treatment. Therefore, to develop accurate models
to predict temperature distributions is still a challenge. Not only because of the difficulty
of modeling tissue properties, but also because of the high computational resources that
are required to implement such models. Due to this, our research is a first approach about
the performance of multi-antenna arrays to treat bone tumors; constant values of these
properties were considered to reduce the complexity of the models and computational
resources. However, one of the main goals of this research group is to improve the accuracy
of thermal models. Therefore, our next step is to evaluate the performance of these antenna
arrays to validate its performance by using phantoms, ex vivo, and in vivo tissue. The
information from the experimentation in vivo will help to improve the accuracy of the
thermal models. Moreover, the inclusion of a cooling system could help to reduce the
thermal effect on muscle tissue. It is important to address that due to the lack of bone
tumor properties that are reported in literature, just healthy bone properties were used to
implement this study.

5. Conclusions

Our main scientific contribution is the evaluation of the thermal performance of differ-
ent antenna arrays to know the possibility of treating large bone tumors. Moreover, this
study is the first one investigating the feasibility of implementing linear, triangular, and
square antenna array configurations to treat bone tumors. The linear configuration with
DS antennas showed SWR ≤ 1.36 for ad = 1 mm–15 mm and bt = 20 mm–40 mm, while
the same configuration with MTM antennas showed SWR ≤ 1.6 for ad = 10 mm–15 mm
and bt = 25 mm–40 mm. The triangular configuration for DS and MTM antennas gen-
erated SWR ≤ 1.5 for ad = 5 mm–15 mm and bt = 20 mm–40 mm and SWR ≤ 1.5 for
ad = 10 mm–15 mm and bt = 25 mm–40 mm, respectively. The square configuration with
DS antennas generated SWR≤ 1.5 for ad = 5 mm–20 mm and bt = 20 mm–40 mm. However,
the square configuration with MTM antennas generated SWR ≤ 1.5 just for those cases
where ad = 10 mm and bt = 25 mm–40 mm. Therefore, the analyzed antenna arrays could
be used under these considerations to produce a larger ablation zone in bone tissue without
damaging the surrounding muscle and fat tissue. All the other cases generated higher
SWR values (>1.6), which means a lower energy transference from the MW system to the
tissue. Moreover, to use the MTM in such configurations, the bone thickness (bt) must
be wider than 20 mm. Bone thickness can be directly related to the tumor size where the
antenna is inserted. In accordance with the treatment time, and antenna configuration,
the T_max and the volume of ablated tissue could be modified, e.g., V_bone = 4.65 cm3

and V_bone = 3.24 cm3 were obtained with a linear DS and MTM antenna arrays that were
fed with a total power of 6 W applied during 5 min, respectively. However, the triangular
configuration (9 W) generated V_bone = 7.59 cm3 and V_bone = 8.75 cm3 with the DS and
the MTM antenna arrays, respectively. Moreover, the square configuration (12 W) tends
to overheat the tissue, i.e., temperatures higher than 100◦C were reached. In the best-case
scenarios, V_bone = 10.46 cm3 and V_bone = 7.79 cm3 were generated by the DS and MTM
antenna arrays, respectively. To reduce the maximum temperature, the input power of each
antenna can be reduced to less than 3 W. If treatment time increases (20 min), the volume
of ablated bone increases; however, muscle tissue is also affected. Nevertheless, this could
help to treat a larger region as a safe margin to avoid tumor recurrence. Micro-coaxial
antenna arrays could be used to increase the volume of the treated region. Moreover,
by using different antenna types and treatment times, different shapes of the ablation
zones are generated. Our study provides a wider evaluation of several case scenarios that
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could happen in the clinic. Therefore, it could help as a guide to choose the antenna type,
configuration, input power, treatment time, etc., in accordance with the tumor that is to be
treated. To provide a stronger evaluation for future work, modeling including the thermal
dependence of tissue properties and blood perfusion must be performed. Moreover, an
experimental evaluation must be carried out, either in phantoms, ex, or in vivo tissues.
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Abstract: Microwave ablation systems allow for performing tumoral destruction in oncology. The
objective of this study was to assess the early response and reliability of the microwave ablation
zone size at one month for liver, kidney and lung lesions, as compared to the manufacturer’s charts.
Patients who underwent microwave ablation with the EmprintTM ablation system for liver, kidney
and lung lesions between June 2016 and June 2018 were retrospectively reviewed. Local response and
ablation zone size (major, L, and minor, l, axes) were evaluated on the one-month follow-up imaging.
Results were compared to the manufacturers’ charts using the Bland–Altman analysis. Fifty-five
patients (mean age 68 ± 11 years; 95 lesions) were included. The one-month complete response was
94%. Liver ablations showed a good agreement with subtle, smaller ablation zones (L: −2 ± 5.7 mm;
l: −5.2 ± 5.6 mm). Kidney ablations showed a moderate agreement with larger ablations for L
(L: 8.69 ± 7.94 mm; l: 0.36 ± 4.77 mm). Lung ablations showed a moderate agreement, with smaller
ablations for l (L: −5.45 ± 4.5 mm; l: −9.32 ± 4.72 mm). With 94% of early complete responses, the
system showed reliable ablations for liver lesions, but larger ablations for kidney lesions, and smaller
for lung lesions.

Keywords: interventional radiology; percutaneous ablation; tumour response; microwave; oncology

1. Introduction

Thermoablation is now part of the wide therapeutic arsenal in oncology. Several
studies have shown the non-inferiority of ablation techniques compared with conventional
surgery in the treatment of some liver [1], pulmonary [2] or renal tumours [3]. These
techniques led to a lower complication rate, a shorter hospital stay and an overall cost
reduction. They are preferable for patients with important comorbidities or those who
refuse surgery.

Ablation techniques include radiofrequency, microwave, cryotherapy, high-intensity
focused ultrasound (HIFU) or laser. Microwave ablation is emerging as a favoured thermal
technique thanks to technological advances allowing for a faster treatment time, a larger ab-
lation zone and its use in various tissues as compared with the other ablation techniques [4].
The result is an enlarged ablation zone and theoretically fewer heat sink effects, such as
cooling related to the proximity of a blood vessel [5,6]. Another advantage of microwave is
the possibility to modulate the size and shape of the ablation zone by modifying the power
delivered and the heating duration. To do this, the manufacturer proposes ex or in vivo
indicative chart predictions to allow adaptation of the treatment to the proposed ablation
with a given equipment (same generator and same needle).

There are various microwave ablation systems available, with different frequencies
and technologies, thus producing different sized and shaped ablation zones [7]. In all
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systems, a difference between the expected volume provided by the manufacturer’s chart
predictions and the effective ablation volumes is frequently reported [8]. The EmprintTM

Ablation system proposes an implemented microwave system with the ThermosphereTM

Technology, presented as more reliable and reproducible than others, and producing more
spherical ablation zones [9].

The objective of the present study was to evaluate the early local response and reliabil-
ity of the procedure in clinical practice, i.e., the size of the ablation at one month for kidney,
liver and lung lesions compared with the chart provided by the manufacturer.

2. Patients and Methods
2.1. Patients

This monocentric study received approval from our Institutional review board for
a retrospective review of consecutive patients who underwent microwave ablation for
primary or secondary liver, kidney or lung tumours from June 2016 to June 2018. Patients
with no reliable measurement of the ablation zone or with lesions treated with multiple
overlapping ablations were not included.

2.2. Ablation Procedure

The ablations were conducted by two interventional radiologists with more than
three years of experience in the technique. The microwave generator was the EmprintTM

system with ThermosphereTM Technology from Medtronic® (Minneapolis, MN, USA).
Both the power delivered as well as the heating duration were at the operator’s discretion,
depending on the charts provided by the manufacturer. In vivo charts were used for liver
and lung lesions, and ex vivo charts for kidney lesions (Table 1). The choice of the imaging
technique used during needle placement, ultrasound, conventional CT scan or cone beam
CT depended on the tumour location and was left to the operator’s discretion.

Table 1. Charts provided by the manufacturer for liver, kidney and lung ablations.

Organ Power (Watt)/Time (Min)
(Number of Ablations)

Major Axis
Expected (mm)

Minor Axis
Expected (mm)

Liver *
(n = 63)

100 w/10 min (n = 23) 41 36
100 w/7 min (n = 8) 40 35
100 w/5 min (n = 1) 39 34
100 w/4 min (n = 1) 38 33
75 w/10 min (n = 7) 36 33
75 w/7 min (n = 2) 35 32
75 w/5 min (n = 5) 33 30
75 w/4 min (n = 2) 32 29

75 w/2.30 min (n = 8) 30 27
45 w/5 min (n = 2) 27 27
45 w/4 min (n = 2) 26 26

45 w/2.30 min (n = 2) 24 23

Kidney **
(n = 14)

100 w/2.30 min (n = 2) 29 26
75 w/7 min (n = 5) 32 31
75 w/5 min (n = 2) 30 29
75 w/4 min (n = 2) 28 27

75 w/2.30 min (n = 2) 25 23
45 w/5 min (n = 1) 25 25

Lung *
(n = 18)

75 w/5 min (n = 1) 38 34
75 w/4 min (n = 1) 38 33

75 w/2.30 min (n = 3) 37 32
45 w/10 min (n = 1) 34 30
45 w/5 min (n = 4) 33 29

45 w/2.30 min (n = 8) 32 27
*: in vivo chart. **: ex vivo chart.
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2.3. Endpoints and Assessments

The primary endpoint was the local response on the first post-ablation CT scan or
MR follow-up imaging scheduled at around one month for liver, kidney and lung lesions.
Ballistic and size of the ablation zone were compared to the prior imaging to evaluate the
complete tumour ablation. Secondary objectives were tumours’ characteristics, the size of
the ablation zone and the comparison with the manufacturer’s chart. All measurements
were performed by one observer (P.A.) on an axial acquisition at the portal time for the
liver and kidney lesions, and with a parenchymal window for the lung lesions. The major
(L) and minor (l) axes were measured for all ablation zones. A sphericity index (SI) was
used [10,11], defined as the ratio between the volume of the ellipsoid and the volume of a
sphere, whose diameter would be the largest axis of the ellipsoid. The ablation volume was
calculated as the ellipsoid volume, as: 4πl2L/3. Using the major axis, the volume of the
sphere was calculated as: 4πL3/3.

Thus, the sphericity index was calculated as follows:

SI =
4πl2L/3
4πL3/3

=
l2

L2 .

A sphericity index of 1.0 corresponded to a perfect sphere, and a sphericity index
approaching 0 to an extreme ellipsoid.

2.4. Statistical Analysis

Data were reported as mean values with standard deviations and ranges. The values
were compared using the Student’s t-test (parametric variables) or the Wilcoxon–Mann–
Whitney test (nonparametric variables). Pearson correlation coefficients between the ab-
lation zone measurements at one month (major and minor axes, sphericity index) and
the manufacturer’s charts were assessed. One-month measurements and manufacturer’s
measurements were compared using a Bland–Altman analysis, taking the manufacturer’s
charts as a reference. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Patients and Lesions Characteristics

During the study period, 77 patients with 113 lesions (liver n = 73, kidney n = 18,
lung n = 21 lesions) underwent microwave thermoablations using the EmprintTM ablation
system (Figure 1). Twelve (12/77, 16%) patients with eighteen lesions (18/113, 16%) were
excluded due to multiple overlapping ablations for the same lesion (n = 15 lesions) or no
reliable measurements (n = 3 lesions, one lost to follow-up, one bilioma, one patient with
an ablation outside the range of the manufacturer’s charts).

Finally, 55 patients with a mean age of 68 ± 11 years (range: 33–91) with 95 lesions
were included: 63 liver lesions (mean lesion long axis: 19.5 ± 7.6 mm), 14 kidney lesions
(24.6 ± 8.7 mm) and 18 lung lesions (9.9 ± 5.5 mm) (Figure 2, Table 2). The indications
were primary (n = 29/55, 53%) or secondary malignant tumours (n = 26/55, 47%), mainly
metastases from colorectal carcinoma (n = 24/26, 92%) (Table 2). Among them, 33/55 (60%)
patients had a single ablation and 22/55 (40%) patients had 2 to 4 simultaneous ablations.

3.2. Early Local Response

One month after the procedure, 89 ablations (89/95, 94%) were complete. Five liver
ablations were partial, due to non-optimal needle placement during the ultrasound-guided
treatment. These lesions were not clearly identified on sonography despite MRI fusion. One
kidney ablation was partial, due to a tumour size of 31 mm with no optimal margins. All
these patients received a second ablation treatment with CT guidance and needle placement
guided by the prior ablation zone. This second treatment was not included in the study
due to overlapping ablation on the same lesion.
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Figure 1. Flowchart of the study.
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Figure 2. Examples of assessment of the ablation zones for liver (left), kidney (middle) and lung
(right) lesions. Top: pre-treatment assessment of the target lesion (white arrows). Bottom: assessment
on the one-month follow-up imaging, with the major (L) and minor (l) axes measurements. Note: air
was found inside the ablation zone (tubular structure).

Table 2. Patients’ characteristics.

Characteristics Liver Kidney Lung

Patients, n (men/women) 31 (22/9) 13 (9/4) 11 (6/5)

Lesions, n 63 14 18

Mean age, years (SD) 68 (±10) 71 (±13) 65 (±9)

Tumour origin, n (%)
Primitive 14/31 (45%) 12/13 (92%) 3/11 (27%)
Metastatic 17/31 (55%) 1/13 (8%) 8/11 (63%)

Metastatic origin, n (%)
Colon 16/17 (94%) 1/1 (100%) 7/8 (87%)
Others 1/17 (6%) 0/1 (0%) 1/8 (23%)

Tumour size, mean (SD) [range], mm
Long axis 19.5 (±7.6) [8;35] 23.7 (±6.5) [13;37] 9.9 (±5.5) [5;25]
Minor axis 15.5 (±6.2) [6;29] 19.4 (±6.6) [9;30] 7.5 (±4.8) [2;19]

Needle guidance (per lesion), n (%)
CT 19/63 (30%) 12/14 (86%) 12/18 (67%)
CBCT 2/63 (3%) 2/14 (4%) 6/18 (33%)
US 42/63 (67%) 0/14 (0%) 0/18 (0%)

Follow-up imaging (per patient), n (%)
MRI 28/31 (90%) 12/13 (92%) 0/11 (0%)
CT 3/31 (10%) 1/13 (8%) 11/11 (100%)

One-month response (per lesion), n (%)
Complete 58/63 (92%) 13/14 (93%) 18/18 (100%)
Partial 5/63 (8%) 1/14 (7%) 0/18 (0%)

3.3. Microwave Ablations’ Reliability

The ablation zones data are presented in Table 3, and 73% of the measurements were
performed on MRI. The Bland–Altman analysis results for L and l are presented in Figure 3.
Concerning liver lesions, 28 patients (28/31, 90%) with 58 ablations (58/63, 92%) underwent
an MRI, and 3 patients (3/31, 10%) with 5 ablations (5/63, 8%) had a CT scan performed at a
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median time of 32 ± 7 days (range: 22–48) after treatment. The results of the Bland–Altman
test showed a good agreement with a subtle, smaller, less spherical ablation zone than
expected according to the manufacturer’s chart: −2 ± 5.7 mm for L, −5.2 ± 5.6 mm for l,
−0.15 ± 0.18 for the SI. Correlations were moderate for L (r = 0.69, p < 0.001) and l (r = 0.59,
p < 0.001). There was no correlation for SI (r = 0, p = 0.99).

Table 3. Ablation zones sizes and sphericity index expected according to the manufacturer’s charts
and measured on the one-month follow-up.

Charts (mm) One-Month
Follow-Up (mm) p-Values

Liver
Major axis, mean (SD) [range] (mm) 37.4 (±5.1) [24;44] 35.3 (±7.9) [22–46] 0.006
Minor axis, mean (SD) [range] (mm) 32.9 (±3.9) [23;36] 27.7 (±7.0) [12–38] <0.001
Sphericity index, mean (SD) [range] 0.78 (±0.06) [0.7;1] 0.63 (±0.17) [0.32–0.9] <0.001

Kidney
Major axis, mean (SD) [range] (mm) 32.0 (±5.1) [24;42] 40.7 (±8.5) [29–58] 0.003
Minor axis, mean (SD) [range] (mm) 29.9 (±3.7) [23;36] 30.3 (±5.3) [20–38] 0.67
Sphericity index, mean (SD) [range] 0.89 (±0.09) [0.7;1] 0.60 (±0.23) [0.43–0.97] 0.005

Lung
Major axis, mean (SD) [range] (mm) 33.7 (±3.3) [30;40] 28.2 (±6.4) [17–39] <0.001
Minor axis, mean (SD) [range] (mm) 29.5 (±3.0) [27;36] 20.2 (±6.6) [10–33] <0.001
Sphericity index, mean (SD) [range] 0.77 (±0.03) [0.71;0.81] 0.52 (±0.2) [0.25–0.93] <0.001

Sizes according to the manufacturer’s charts were elaborated in accordance with the treatments administered to
the patients. Figures in bold indicate significant differences (<0.05).

Figure 3. Bland–Altman plots showing agreement between the one-month evaluation and charts’
data for the major (top) and minor (bottom) axes, for liver (left), kidney (middle) and lung (right)
lesions. Charts’ data were chosen as the reference. Note: Mean (one month–chart): mean difference
between L and l on the charts and the ablation zone measured on the one-month follow-up patient
imaging. Mean (one month and chart): mean of the sizes proposed by the charts and the ablation
zone measured on the one-month follow-up patient image.
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For kidney lesions, 12 patients (12/13, 92%) with 13 ablations (13/14, 93%) had an
MRI and 1 patient (1/13, 10%) with 1 ablation (1/14, 7%) had a CT scan performed at
a median time of 32 ± 8 days (range: 12–50) after treatment. The Bland–Altman test
showed a moderate agreement with a bigger and less spherical ablation zone than expected:
+8.69 ± 7.94 mm for L, +0.36 ± 4.77 mm for l, −0.28 ± 0.27 for the SI (Figure 2). There were
no significant correlations for L (r = 0.41, p = 0.14), l (r = 0.48, p = 0.08) or SI (r = −0.36,
p = 0.21).

For lung lesions, 11 patients (11/11, 100%) with 18 ablations (18/18, 100%) had a CT
scan performed at a median of 32 ± 6 days (range: 15–47) after treatment. A moderate
agreement with a smaller, less spherical ablation zone than expected was found using the
Bland–Altman test: −5.45 ± 4.5 mm for L, −9.32 ± 4.72 mm for l, −0.24 ± 0.2 for the SI
(Figure 2). Correlations were strong for L (r = 0.76, p < 0.001) and l (r = 0.75, p < 0.001).
There was no correlation for SI (r = 0.24, p = 0.33).

4. Discussion

The microwave ablation system evaluated in this study showed a very good early
response, with 94% of complete ablation on the one-month follow-up imaging. The size of
the ablation zone showed a good agreement for liver and moderate agreement for lung
and kidney lesions with the ablation zone announced in the manufacturer’s chart. We
reported smaller ablation zones for liver and lung lesions, and bigger ablation zones for
kidney lesions. All ablations were less spherical than expected.

For hepatic lesions, the ablation area was significantly smaller than expected on the first
follow-up imaging one month after the procedure, with only small differences for the major
(2 mm) and minor axes (5 mm) but resulting in an ablation zone less spherical than expected.
Although the differences were significant, the underestimation of 2 and 5 mm is acceptable
in clinical practice. The early local response was very good, with 92% of complete ablations,
concordant with that previously described in [10]. Smaller ablation zones at one month
were expected because of tissue retraction and were different from previous studies that
evaluated ablation areas on immediate postoperative imaging [11,12]. The follow-up was
performed at one month according to the clinical practice in our centre. ThermosphereTM

was shown to perform reproducible and expected ablation zones at 100 Watts, but it may
not reflect overall clinical practice, which is more heterogeneous, with the possibility of
using the 25, 50, 75 and 100 Watts charts. In our study, we have not restricted power
use to 100 Watts, it was left to the operator’s discretion as to reflect standard clinical
practice. Although the sphericity index was lower than expected from the manufacturer’s
charts (0.63 vs. 0.78), the Covidien® material technology seems to produce more spherical
ablation zones for liver lesions than other currently available devices such as Certus PR®

and AMICA® materials, which have reported in vivo sphericity indices of 0.49 and 0.39,
respectively [8].

For renal ablations, the major axis obtained on the first follow-up imaging was sig-
nificantly longer than expected according to the manufacturer’s charts, with a potentially
clinically significant difference (8.69 ± 7.94 mm) in case of proximity with structures at risk,
such as the pyelon or ureter. There was no correlation with the chart. This result might be
explained by the specific peritumoral environment. Indeed, percutaneous renal ablations
often concerned cortical lesions located at the interface between the kidney and retroperi-
toneal fat. The surrounding fat has dielectric properties, reflecting the electromagnetic
energy that may impact on the ablation [13]. A previous study showed that depending
on tissue limitations, the shape of the thermoablation zone may range from 7.5% to 23.4%
without any effect on the minor axis [14]. Another explanation may be the lack of an in vivo
chart for renal ablations, unlike for liver and lung. A study evaluating a high-frequency
microwave on ex vivo bovine liver and in vivo pig liver tissue showed that whatever the
power delivered, the ablation zones developed differently according to their in vivo or ex
vivo environment [15]. These differences, with larger ablation zones than expected, should
be taken into consideration in clinical practice.
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For pulmonary ablations, the major and minor axes obtained, and thus the ablation
zone, were significantly much smaller than expected according to the manufacturer’s
charts. Indeed, ablations performed were of 3 cm. For bigger lesions, the underestimation
of the small axis could be a problem, with only partial ablation obtained. However, the
correlation with the chart was strong, probably due to the use of in vivo references and to
the homogeneous environment of lungs. Treated lesions were small (around 1 cm), with
100% of complete response. The ablations were less spherical than expected. This might, as
suggested for liver lesions, be explained by the delay of evaluation, one month after the
procedure. Kodama et al. showed, in a swine model, that the best temporal evaluation for
microwave ablation was one week after the procedure [16]. Performing an earlier follow-up
imaging, at one week, for example, may allow a better evaluation of the ablation zone.

The significant difference found on the ablation shape with a sphericity index lower
than expected might be due to tissue retraction. Microwaves, with high temperatures
generated, induce tissue shrinkage through dehydration and collapse. An ex vivo study
showed that microwaves produced a more important tissue retraction (about 30%) than
radiofrequency (15%) in the liver [17]. The authors showed that this phenomenon has
a greater impact on the minor than on the major axis. In the same study, retraction
was shown to be even more important in the lungs (about 50%), but with no difference
between microwave and radiofrequency [17]. This was coherent with our results, with a
smaller minor axis and a lower sphericity index for pulmonary ablations than for liver
ablations (0.52 for lung lesions, 0.63 for liver lesions). The phenomenon of retraction was
also demonstrated in ex vivo kidney tissue in another study [18]. Additionally, Lee et al.
confirmed this tissue-retraction effect in vivo for liver lesions in 65 patients. In their study,
the ablation zone was evaluated earlier than in our study, with MRI follow-up 24 h after
the procedure. They showed a shrinkage of the ablation zone greater for microwave than
for radiofrequency ablations (−2.45 ± 0.47 mm for microwaves vs. 0.94 ± 0.38 mm for
radiofrequency) [19].

This study had several limitations, mainly due to its retrospective and monocentric
design. Imaging follow-up was performed at one month, according to the standard clinical
practice in our Institute, but it may have resulted in an underestimation of the ablation size
due to tissue retraction. An immediate post-procedural imaging using contrast-enhanced
ultrasound [20] or CT perfusion imaging [21,22] could have been performed to estimate the
real ablation volume, with less retraction effect. Additionally, only axial imaging was used
to evaluate the major and minor axes. Indeed, the great majority of follow-up imaging was
performed with MRI with standard axial acquisitions, without 3D acquisitions. We thus
preferred to use an axial acquisition for more reproducibility between different imaging
modalities. Nevertheless, these preliminary results could be used as a basis for future
prospective and multicentric studies.

5. Conclusions

The microwave ablation system evaluated in this study showed a very good early
local response, with 94% of complete ablations on the one-month follow-up imaging. For
liver lesions, in comparison with the manufacturer’s charts, despite statistically significant
differences, ablations were reliable. For kidney lesions, ablations were bigger than those
expected in the charts, which should be taken into account by the operators. For lung
lesions, the retraction effect was significant, and the ablation zone should be evaluated
earlier than at one month.
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Abstract: We studied the use of a millimeter-wave frequency-modulated continuous wave radar for
gait analysis in a real-life environment, with a focus on the measurement of the step time. A method
was developed for the successful extraction of gait patterns for different test cases. The quantitative
investigation carried out in a lab corridor showed the excellent reliability of the proposed method for
the step time measurement, with an average accuracy of 96%. In addition, a comparison test between
the millimeter-wave radar and a continuous-wave radar working at 2.45 GHz was performed, and
the results suggest that the millimeter-wave radar is more capable of capturing instantaneous gait
features, which enables the timely detection of small gait changes appearing at the early stage of
cognitive disorders.

Keywords: radar; gait analysis; millimeter wave; micro-Doppler; FMCW; CW; fall prevention; illness
prediction

1. Introduction

Improvements in public health have led to a significant increase in life expectancy, with
the consequence of an increasingly aging population. According to WHO, the proportion of
the world’s population over 60 years will double from approximately 11% to 22% between
2000 and 2050. The absolute number of people aged 60 years and over is expected to
increase from 605 million to 2 billion over the same period [1].

The normal aging process entails declines in both cognitive and physical functions [2]
that largely affect the quality of life for the elderly. It has long been known that there is a
direct relationship between cognitive impairment severity and increased gait abnormal-
ities [3]. Early motor dysfunction co-exists with or even precedes the onset of cognitive
decline in older adults [4]. For example, gait patterns tend to differ from their normal
behavior at the early onset of some neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s. A person in the primary phase of Parkinson’s tends to make small and shuffled
steps and may also experience difficulties in performing key walking events, such as start-
ing, stopping, and turning [5]. Short shuffling steps with difficulty lifting the feet off the
ground were reported to be associated with an increased risk of developing dementia [6].

Gait impairments are also associated with fall incidents [7], which are considered to
be a major risk for the elderly living independently, as falls often result in serious physical
and psychological consequences, or even death. The rapid detection of fall incidents can
reduce the mortality rate and raise the chance of surviving the event, but predicting the fall
risk and preventing fall occurrence is of the uttermost importance. Several studies have
identified gait abnormalities as predictors of fall risk [8–10]. However, the gait changes
that appear at the early development stage of neurodegenerative diseases or are associated
with fall risk are usually too subtle and discrete to be detected by clinical observation alone.
Objective, quantitative, and continuous measurements and assessments of gaits are needed
in order to detect these clinically relevant gait changes, enabling the timely introduction of
individually tailored interventions.
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Rapid progress in new technologies has given rise to devices and techniques that allow
for an objective measurement of different gait parameters, resulting in a more efficient
measurement and providing specialists with a large amount of reliable information on
patients’ gaits. These technologies can be broadly divided into wearable and non-wearable
methods. The wearable methods [11] require the person to wear sensors in specific locations
on their body, which can be incorrectly applied or forgotten completely, especially by
the elderly. In addition, the sensors may obstruct natural movement and affect the gait.
For these reasons, wearable methods are not applicable for long-term monitoring purposes.
Non-wearable gait analysis methods usually involve the use of motion capture cameras
or floor sensors [12]. They are usually laboratory-based and the systems are very costly.
In addition, the motion capture cameras can be affected by poor lighting conditions and
often involve the use of a number of markers placed on the body, which is not practical for
daily use.

Radar technology has appeared as the most suitable candidate for continuous gait
monitoring at home due to its safety, simplicity, low cost, lack of contact, and unobtru-
siveness while preserving privacy. Over the past decade, indoor gait measurement and
analysis with different types of radars have been investigated and have showed promising
results [13]. Most of the studies focused on the measurement of walking speed [14–16],
while a few also attempted to measure instantaneous gait. Work [17] presented a study
on the use of a 5.8 GHz pulse Doppler radar for gait speed and step time measurement.
The feasibility of using radars to track different limb joints was first reported in [18] by
using a continuous-wave (CW) radar working at 2.45 GHz, but no quantitative measure of
gait parameters was presented. The most promising work on using radar for gait parame-
ters extraction was reported in [19], where eleven biomechanical parameters were acquired
using two 24 GHz CW radars. However, this work was carried out in a well-controlled
environment, with the subjects walking on a treadmill.

In this work, we explored the use of millimeter waves for in-home gait analysis, and
the intention was to continuously measure the gait parameters of clinical significance for
the prediction and prevention of cognitive diseases and falls in the elderly. Several studies
have reported that step (or stride) time variability (SVT) is a key gait feature in persons with
neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease [20,21].
In addition, it has also been found that an increased STV was associated with fall risk.
A one-year prospective study on fifty-two older adults suggested that stride time variability
was significantly increased in those who subsequently fell compared with those who did
not fall. It was also pointed out that although stride time variability correlated significantly
with gait speed, the latter did not discriminate future fallers from nonfallers [22]. The same
findings were verified by a study performed on persons with multiple sclerosis, and it was
concluded that SVT may be a more sensitive marker of fall risk than the average walking
speed [23]. SVT is usually expressed as a coefficient of variation, which is defined as the
ratio of the standard deviation to the mean of the step (or stride) time [24]. Therefore,
a reliable risk assessment relies on the accurate measurement of the step (or stride) time.

The aim of the study was to investigate the reliability of using a millimeter-wave
frequency-modulated continuous wave (FMCW) radar for step time measurement in a real-
life environment. There have been a few studies employing a millimeter-wave radar sensor
for human recognition based on gait analysis [25–28], but, to the best knowledge of the
authors, none of these studies have presented any quantitative measure of gait parameters.

2. Method

In this section, we describe the developed method for instantaneous gait analysis,
including waveform design, measurement setup, data collection, and data analysis.

2.1. Hardware and Waveform Design

The millimeter-wave radar sensor used in this work was the AWR1642BOOST module
from Texas Instruments [29]. The sensor operates from 77 GHz and supports a bandwidth of
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4 GHz. The module includes two onboard-etched transmitting antennas and four receiving
antennas. A data capture board DCA1000EVM [30] was used along with the radar sensor
in order to capture the raw data.

As aforementioned, we were interested in capturing instantaneous gait features. There-
fore, both good spatial resolution and time resolution are important. The achievable spatial
resolution of the FMCW radar is determined by the chirp’s bandwidth, B, according to the
following equation [31]:

δD =
c

2B
=

c
2Tc · S

(1)

Here, c stands for the speed of light, Tc is the chirp duration, and S is the chirp slope rate.
In the test, the bandwidth was chosen heuristically to be 3.6 GHz, which yields

a 4.16 cm range resolution, giving a good possibility of tracking different limb joints.
The chirp-to-chirp interval was set at 0.5 milliseconds, which allowed for a measurement of
a maximum velocity of approximately 2 m/s according to the following relationship [31]:

υmax =
λ

4Ts
(2)

Here, λ is the wavelength and Ts is the chirp-to-chirp interval. We considered this velocity
as high enough as our work is mainly intended for elderly care, where people usually walk
very slowly.

Each frame was configured as one chirp and, in total, 30,000 frames were transmitted,
which corresponds to a recording time of 15 s. The sampling rate needs to be high enough
to resolve the frequency of the received signal, which is related to the distance of the subject
according to the following equation [31]:

fr =
2S · D

c
(3)

where D is the distance of the subject. We set the sampling rate at 6.25 MSa/s and the
resulting maximum detection distance was approximately 5.86 m, which is a reasonable
size for a room or a corridor in home environment.

The key radar parameters used in the work are given in Table 1.

Table 1. Key radar parameters used in the work.

Parameters Value (unit)

Chirp slope rate 80 (MHz/µs)

Chirp duration 45 (µs)

Sampling rate 6250 (kSa/s)

Start frequency 77 (GHz)

No. chirps per frame 1

Frame-to-frame interval 0.5 (ms)

No. frames 30000

2.2. Data Collection

The data collection was performed in two different environments as shown in Figure 1.
One was a large and open gym hall that was mostly free of clutter, and the other was a lab
corridor, which has a smaller free space and is considered to be a more challenging environment.
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(a) (b)

Figure 1. The two measurement environments for data collection: (a) a gym hall and (b) a lab corridor.

The measurements performed in the gym hall were mainly for finding an optimal
measurement setup and developing a data analysis method. Different sensor heights and
orientations were investigated in order to determine a suitable operating position, and,
in the end, the sensor was placed at a height of 8 cm above the floor in order to focus the
energy on the lower body parts, i.e., legs and feet, which are of the most interest for step
time measurement. The subject was tasked with walking at a self-regulated pace along
a 4 m long (from 5 m to 1 m away from the radar sensor) gym track with different types
of gait, including away from or towards the radar sensor with a normal gait at different
speeds, as well as imitated limp gaits. One of the limp gaits involved one leg swinging
normally whereas the other sought support quickly after lift-off, and the other case was
very similar but at a slower pace. During the measurements, video recordings were made
by using a smartphone camera with the consent of the measured subject in order to provide
the ground truth of some basic information, such as distance, number of steps, start and
end time, etc. The track was marked at half-meter intervals for observational convenience,
which made it convenient for the subject to step exactly at those intervals. This would result
in exactly 8 steps, which gives a good reference for us to compare the radar measurement
and video recordings.

A quantitative investigation on the step time measurement was performed in the lab
corridor. Three healthy subjects (one female and two males) in the age range of 20–40 years
were measured and each subject walked from approximately 6 m away towards the radar
with a slow and self-regulated pace in 15 s. The same type of measurement was repeated
ten times for each subject, resulting in a total measurement time of approximately 2.5 min
each. During the measurements, the subjects wore two commercial motion tracking sensors
(Xsens DOT) at the left and right ankle positions, respectively. The Xsens DOT sensor
provides 3D angular velocity and acceleration using a gyroscope and an accelerometer [32].
The two motion sensors were synchronized during the measurement and the sampling
rate of the motion sensor was 60 Hz. Best efforts were made to start the radar and motion
sensor data collection at the same time.

The collected radar data were stored in a data matrix, as shown in Figure 2, corre-
sponding to the transmitted frames. Each row represents the captured signal corresponding
to each transmitted frame and is the “fast-time” data, and each column reflects the data
change over frames and is the “slow-time” data.
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Figure 2. Recorded data corresponding to transmitted signals: (a) the transmitted frames and (b) the
data matrix for storing the collected data.

2.3. Data Analysis

Figure 3a is the flow chart of the developed method for processing the collected data
to obtain temporal gait parameters such as cadence and step time. Firstly, a fast Fourier
transform (FFT) was applied to each row of the data matrix, as shown in Figure 2b, to
generate a so-called “range profile”, which presents the locations of strongly reflected
objects. By subtracting the range profile obtained from the first frame from others, peaks
that correspond to static objects were eliminated and the remaining highest peaks were
considered to be the measured subject. These peaks were then combined in time to form a
range–time plot, which indicates the location of the measured subject over time.

(a) (b)

Figure 3. The data analysis method: (a) flow chart and (b) the illustration of the main idea of the
sliding window method.
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A sliding window method (SWM) was then used to generate the gait pattern of
the measured subject, and the main idea is illustrated in Figure 3b. With this method,
the complete recording window was divided into many small frame windows (e.g., window
1. . . Nf) and, for each frame window, only a few range bins (one range bin corresponds to
one column of the data matrix in Figure 2b) were selected for generating the gait pattern by
referring to the range–time plot. The first step was to apply a short-time Fourier transform
(STFT) to each selected range bin according to the following equation [33]:

S(n, k) = |
M−1

∑
m=0

s(n + m)w(m)e−j2πmk/K| (4)

Here, S is the time–frequency spectrum, which is a two-dimensional representation of
energy versus time and frequency. s is the slow-time signal for the selected range bin,
which is the data along one column after the aforementioned FFT processing, and w is the
window function. n = 0, 1, . . . , N− 1 is the sample index of the signal, k = 0, 1, . . . , K− 1 is
the frequency index, and m = 0, 1, . . . , M− 1 is the sample index of the window.

The time–frequency spectra generated for each range bin were added up and the
resulting spectrum was rescaled to have a maximum value of one. This was carried out in
order to diminish the effect of distance propagation loss. The rescaled spectrum was then
thresholded to eliminate the background noise and the threshold value was determined by
the following equation:

Threshold =
∑I,J

i=1,j=1 Sb(i, j)

∑I,J
i=1,j=1 Sm(i, j)

(5)

Here, Sb and Sm are the time–frequency spectra obtained from measurements, where there
is no subject and one subject walking, respectively. I and J define the size of the spectrum
in the time and frequency dimensions.

After the thresholding, the spectrum was digitized to “zeros” and “ones”, resulting
in a binary image. Connected components within a size of 30,000 pixels were treated as
noise and thus taken away. The same process was applied to all of the frame windows
and, at the end, the time–frequency spectra obtained for each frame window were aligned
in time, resulting in a micro-Doppler signature for the entire recording window. The gen-
erated binary images for each frame window were also aligned, forming a complete gait
pattern image.

From the micro-Doppler signature, we can calculate the cadence velocity diagram
(CVD), which represents the repetition frequency of certain Doppler shifts:

CVD(l, k) = |
N−1

∑
n=0

Sdoppler(n, k)e−j2πnl/L| (6)

Here, l = 0, 1, . . . , L− 1 is the index of the Doppler repetition frequency. CVD enables
a better analysis of the periodic patterns that are inherent to a human gait, such as the
cadence, which is the number of steps per second.

The step time was estimated from the gait pattern image by extracting the upper
envelope, which gives a good representation of the foot velocity over time.

This proposed method largely saved computational resources and time as it only
needs to handle a small portion of the recorded data. Another advantage of this method is
that it can give a high signal-to-noise ratio and robust handling of unknown measurement
scenarios as it only deals with the location of interest under a specific time.

3. Results

This section includes important results obtained from the tests performed both in
the gym hall and the lab corridor. Both qualitative and quantitative results are presented.
Results from simultaneous measurements by using the millimeter-wave radar and a CW
radar are also presented.
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3.1. Micro-Doppler Signature and Cadence

Figure 4a,b are two measurement examples carried out in the gym hall, where the
subject walked toward the radar sensor at a relatively fast and slow speed, respectively.
Figure 4c,d are two similar measurements, but the subject was walking away from the
radar sensor. The top plots are range–time plots, showing the distance between the subject
and the radar sensor over time, and the middle and lower plots are the micro-Doppler
signatures and the extracted envelope obtained by using the sliding window method shown
in Figure 3.
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Figure 4. The range–time plot micro-Doppler signature, and extracted envelope for different measure-
ment cases in the gym hall: (a,b) are two tests where the subject walked toward the radar sensor at
different speeds; (c,d) are two tests where the subject walked away from the radar sensor at different
speeds; (e,f) are two tests where the subject tried to imitate a limp with different intensities.
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The average walking speeds calculated from the range–time plots for the four measure-
ment examples are approximately 0.48 m/s, 0.28 m/s, 0.37 m/s, and 0.30 m/s, respectively.
These values are very close to those obtained from video recordings, which are 0.49 m/s,
0.29 m/s, 0.39 m/s, and 0.31 m/s.

Figure 4e,f shows the obtained micro-Doppler signature and the extracted envelope
for the two test cases when the subject was asked to alter their gait in order to replicate a
gait similar to a limp.

The cadence velocity diagram obtained according to Equation (6) and the mean
cadence spectrum (mCS), which is computed as the average energy of each Doppler
repetition frequency in the CVD, are shown in Figure 5 for the six measurement examples
described above. The peaks in the mCS correspond to the harmonic components of the gait,
where the peak close to DC corresponds to the oscillating movement of the torso whereas
the second highest peak in the mCS tends to correspond to the oscillating motion of the
legs in the case of an unassisted gait.

As the radar sensor’s radiation energy is mainly directed to the lower limb joints,
the peaks corresponding to the leg/foot movement are the most prominent and are referred
to as cadence. According to the mCS, the cadence for the first four test cases is 60 steps/min,
34 steps/min, 45 steps/min, and 35 steps/min, respectively. These values are in good
agreement with the extracted envelope given in Figure 4 and the video recordings. However,
the agreement does not hold for the limping cases. The cadence according to the mCS is
25 steps/min for both cases, which is significantly lower than the actual number of steps.

3.2. Quantitative Measure of Step Time

Figure 6a shows the range–time plot, micro-Doppler signature, and the extracted enve-
lope of one test case performed in the lab corridor. The subject was out of the measurement
zone at the beginning of the data recording and became “visible” at approximately 3.5 s.
The differential of the extracted foot velocity in comparison with the acceleration data
obtained with the Xsens DOT sensor is shown in Figure 6b. To provide a good illustration,
the radar acceleration data were normalized and the Xsens sensor data were scaled and
offset along the vertical axis. It can clearly be seen that every second peak of the radar
acceleration data align well with the Xsens acceleration data recorded at the left ankle and
right ankle, respectively. The time instants corresponding to these acceleration peaks were
then used to calculate the step times.

The step times obtained from the radar data versus those obtained from the Xsens
sensor data for all of the measurements are presented in Figure 7a. The calculated intra-class
correlation coefficient (ICC) is 0.93. Figure 7b shows the relative error for each measurement
subject, which is defined as the following equation:

∆ =
|STradar − STXsens|

STXsens
× 100% (7)

Here, STradar and STXsens are the step time obtained from radar sensor and Xsens sen-
sors, respectively.

The bottom whisker of each box indicates the lowest error and the topmost whisker
indicates the highest one. The top and bottom edges of the blue rectangle indicate the 75th
and 25th percentiles of the error, respectively. The red mark within the rectangle indicates
the median of the error for each subject. Table 2 is a comparison of the step time measured
by the radar and the Xsens sensors.
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Table 2. Comparison of step time measured by the radar and the Xsens sensors.

Subject STXsens
(mean)

STradar
(mean)

STXsens
(std)

STradar
(std) ∆ (mean) ∆ (median)

A 1.1548 1.1484 0.1010 0.1112 0.0517 0.0443

B 1.4317 1.4249 0.1593 0.1583 0.0407 0.0331

C 1.3459 1.3384 0.1626 0.1640 0.0361 0.0296

A+B+C 0.0428 0.0362
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Figure 5. The cadence velocity diagram (lower plots) and mean cadence spectrum (upper plots) for
the test cases (a–f) shown in Figure 4.
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Figure 6. One measurement example for illustrating the calculation of the step time: (a) the range–
time plot, micro-Doppler signature, and extracted envelope for one measurement example in the lab
corridor; (b) comparison between acceleration data obtained with the radar and the Xsens sensors.
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Figure 7. The measurement of step time by using the millimeter wave FMCW radar: (a) the plot
of the step times obtained with the radar versus those obtained by using the Xsens sensor; (b) the
relative error of the measured step time for each subject.

3.3. Comparison between the Millimeter-Wave FMCW Radar and a Microwave CW Radar

We conducted several simultaneous tests in the gym hall using the millimeter-wave
radar and a microwave radar sensor. Figure 8a shows the measurement setup for the
simultaneous measurement. The CW radar system is a software-defined ratio board
(USRP2901 from National Instruments) operating from 70 MHz to 6 GHz [34]. A pair of
wide-band bow tie antennas that provide conical coverage were used for transmitting and
receiving signals [35]. The operating frequency was set at 2.45 GHz, which is the same as in
the work [18]. The micro-Doppler signatures from two measurement examples are shown
in Figure 8b–e. In the first case, the subject walked slowly along the defined track away
from the sensors at a certain pace and, in the second case, the subject walked toward the
sensors from five meters away with a corner reflector attached to one of the subject’s knees
in order to enhance the corresponding echoes.
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Figure 8. The comparison test between the millimeter-wave radar and a 2.45 GHz CW radar:
(a) measurement setup; (b,c) are micro-Doppler signatures obtained by using the millimeter-wave
radar for test case 1 and case 2, respectively; (d,e) are corresponding micro-Doppler signatures
obtained with the CW radar.

4. Discussion

In this section, we provide an explanation and interpretation of the presented results
and compare our study with other works, as well as discuss the limitations and suggest
future work.

4.1. Comments on the Results

For all of the measurement examples presented in Figure 4, the range–time plots are
in good agreement with the video recordings in terms of the walking distance and walking
time. The micro-Doppler signatures show clear patterns of each step, which facilitates
envelope extraction. The extracted upper envelope shows the foot velocity as the subject
walked, and we can clearly distinguish where each step ends and another begins. In general,
we see a relatively lower foot top velocity when the subject was farthest away from the
radar sensor, and this is highly attributed to the weaker reflections.
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A big variation in step time is clearly seen in Figure 4e,f, where the subject was
imitating a limp. The extracted envelope in Figure 4f is capable of capturing the limp
near-perfectly as the stiff leg is presented with a much lower top velocity. These results
demonstrate the good robustness of the developed method for detecting different types
of gaits.

Whereas the cadence of the normal gait cases were correctly measured, we see an
inaccurate measurement of the cadence for the altered gait cases. This suggests that cadence
is a good measure of the pace of normal gaits, but not effective for abnormal gait cases.

Although the range–time plot shown in Figure 6a is more noisy than those shown in
Figure 4, the quality of the obtained micro-Doppler signature is equally as high as those
carried out in the gym hall. This indicates that the developed method is capable of dealing
with a more challenging measurement environment, such as the lab corridor. Figure 7b
shows that the measurement accuracy of the step time for the two males (subject B and C)
is slightly better than that for the female (subject A), which may be attributed to the weaker
reflections due to a smaller radar cross-section area of the female’s feet. We noticed that, in
a few measurement tests for subject B, the acceleration peaks in the Xsens sensor data are
not always prominent, which makes it challenging to identify the right peaks. This may be
the reason for several outliers in the relative error plot. Overall, the median accuracy for
the three subjects are all over 95%. The ICC of 0.93 indicates the excellent reliability of the
proposed method for step time measurement.

The comparison test between the millimeter-wave radar and the 2.45 GHz CW radar
clearly demonstrated the benefit of using millimeter waves for gait analysis. Especially
for the second measurement example, where the subject wore the reflector on the knee
while walking, the velocity pattern of the knee is largely enhanced and clearly seen in
the micro-Doppler signatures obtained with the FMCW radar while the knee is hardly
distinguishable from other body parts in CW measurements. This indicates that, with
sufficiently strong radiation in a certain direction, we are able to track different limb joints
using the millimeter-wave FMCW radar sensor. However, this is difficult to achieve by
using the microwave CW sensor due to the insufficient spatial resolution.

The obtained results suggest that the millimeter-wave FMCW radar sensor is highly
capable of capturing instantaneous gait features thanks to its inherent high spatial reso-
lution. High accurate measurements of the step time were achieved with the developed
method. The micro-Doppler signatures obtained with the millimeter-wave radar reveal
much greater details of the gait pattern than those by using the microwave CW radar,
which suggests a good potential for identifying different phases of a gait cycle and, as a
consequence, giving a reliable measurement of more gait parameters.

4.2. Comparison with Other Works

As the proposed method is dedicated to in-home gait monitoring, where the use of
wearable sensors is not preferable, the comparison to other works is limited to non-wearable
methods. Paper [36] presented an electrostatic-sensing-based method where temporal gait
parameters were estimated by sensing and analyzing the electrostatic field generated from
human foot stepping. The reported average accuracy in the gait cycle measurement was
97% in the range of 3 m. Our method achieved almost the same measurement accuracy
(96% in mean) in a range that was twice as long.

Work [17] reported an excellent reliability in the step time measurement in a lab
environment by using a 5.8 GHz pulse Doppler radar with an ICC of 0.97 between the
radar and a motion capture system. The drawback of the method is the relatively large size
of the radar sensor and the use of a large metal shield (60 cm × 60 cm) at the back of the
radar, which is unfavorable for integrating the system at home. In addition, two types of
calibration need to be performed prior to the data collection.

Our work presents a simple method that needs neither calibration nor empirical values.
Besides the available high spatial resolution, millimeter-wave radar has several other
unique features that make it especially suitable for in-home gait analysis. For example, at the
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millimeter-wave range, the antenna size is very small, which allows for the deployment of
an antenna array, resulting in a finer beam width. With effective beam-forming, most of the
radiated energy can be directed to specific body parts, which consequently enhances the
echoes of interest and reduces interference. Moreover, the millimeter-wave radar sensor
is very compact and cheap, and can be easily integrated into furnitures and walls in a
home environment.

4.3. Limitation of the Work

The presented work has several limitations. Firstly, the accuracy assessment of the step
time measurement is subject to some errors. The sampling rate of the Xsens sensor is 60 Hz,
providing a time resolution of 0.0167 s. In some of the measurements, the calculated ground
truth may be off by one or two time instants compared to reality due to the difficulties in
identifying the right peaks in the Xsens acceleration data, which correspond to a potential
offset of ±0.0167 s to ±0.0333 s for each step.

Secondly, the data collection was limited to a small number of subjects. In order to
make the collected data more representative, we included both male and female subjects in
the study and mainly focused on a slow speed/walking pace. The step time of the collected
data spans from approximately 0.9 s to 1.8 s, which represents a wide variation range.
The next step is to perform a large-scale study among the target group (i.e., old adults) to
further verify the developed method.

Thirdly, the developed method is highly dependent on the accurate localization of the
measured subject, and this work demonstrated the effective tracking of a single subject in
real-life environment with a single sensor. For the reliable tracking of multiple subjects
and (or) a single subject in a more complex environment, e.g., including many pieces of
furniture, the use of multiple sensors is preferred. The inherent tracking function of the
employed FMCW radar makes it preferable for in-home monitoring in comparison to a
CW radar, as it is less vulnerable to surrounding interference.

Lastly, although the FMCW radar sensor is configured with several antennas, only
one antenna pair was used in this work for the sake of simplicity. It would be interesting
to explore the use of multiple antenna pairs for beamforming to enhance echoes from the
body parts of interest. As the focus of the work is to measure the step time, a low sensor
elevation was chosen to focus the radiation energy on the foot in consideration of the
antenna radiation pattern. In order to effectively capture the echoes from upper body parts,
e.g., the torso, the deployment of a few sensors at different elevations is suggested.

5. Conclusions

The presented work demonstrated the reliable measurement of temporal gait parame-
ters, and, more specifically, the step time, in real-life environments by using a millimeter-
wave FMCW radar. These promising results suggest that this type of radar has good
potential for the timely detection of discrete and subtle gait changes that appear at the early
stage of cognitive disorders at home, enabling the prediction and prevention of cognitive
diseases and fall accidents for the elderly.
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Abstract: A flexible sinusoidal-shaped antenna sensor is introduced in this work, which is a modified
half-wave dipole that can be used for strain sensing applications. The presented antenna is an
improved extension of the previously introduced antenna sensor for respiration monitoring. The
electrical and radiative characteristics of the sinusoidal antenna and the effects of the geometrical
factors are studied. An approach is provided for designing the antenna, and equations are introduced
to estimate the geometrical parameters based on desired electrical specifications. It is shown that
the antenna sensor can be designed to have up to 5.5 times more sensitivity compared to the last
generation of the antenna sensor previously introduced for respiration monitoring. The conductive
polymer material used to fabricate the new antenna makes it more flexible and durable compared to
the previous generation of antenna sensors made of glass-based material. Finally, a reference antenna
made of copper and an antenna sensor made of the conductive polymer are fabricated, and their
electrical characteristics are analyzed in free space and over the body.

Keywords: dipole antenna; miniaturized antenna; sinusoidal antenna; strain sensor; tunable antenna;
conductive polymer; antenna sensor

1. Introduction

The electrical and radiative characteristics of antennas are functions of their geo-
metrical structure and the material specifications of the conductors and dielectrics in the
antenna’s vicinity [1]. Consequently, antennas can be exploited for sensing applications,
where the geometrical deformations or material changes can be detected by monitoring
the antenna’s radiative and electrical characteristics. Applications of antenna sensors can
be in body movement capturing for computer animation or robot controlling, monitoring
structural deformations, such as tracking cracks and displacements in buildings, monu-
ments, and similar structures, and most importantly, monitoring vital signals for diagnosis
and rehabilitation [2–6]. A Serpentine meshed patch antenna is reported for stretch strain
sensing fabricated using laser-cut conductive textiles on Ecoflex substrate [7]. Recently, an
RFID-incorporated meandered line dipole antenna in Ecoflex has also been reported to
detect stretching strain [8].

In addition, some recently published works are focused on detecting bending strain.
For example, Graphene-based patch antennas are introduced in recent works for detecting
bending strain with applications in identifying human posture and joint movements [9,10].
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An aluminum tape patch over a cellulose substrate is also reported in another work for
bending strain detection. The use of cellulose makes the antenna recyclable and suitable
to employ in disposable electromechanical sensors [11]. Some other works are focused
on structural health monitoring (SHM) applications. Recent works in this area are in the
form of rectangular [12], circular [13], and folded patch antennas [14]. Fractal-shaped patch
antennas are also studied by Herbko and Lopato for a more miniaturized SHM antenna
sensor [15]. More recently, a novel metamaterial-based SHM antenna sensor was also
reported by the same team using a double split-ring resonator (dSRR) structure to achieve
even more miniaturization while increasing the strain sensitivity [16].

Antenna sensors can also be embedded in wearables for vital signal monitoring
applications. Although many sensing technologies have been developed for monitoring
vital signals [17,18], applying on-body antenna sensors for this purpose is a relatively new
field of study. A spiral-shaped flexible dipole antenna was reported for respiration detection
by analyzing the received signal strength indicator (RSSI) of a Bluetooth connection [2].
Recently, a low-profile fully textile patch antenna was proposed for respiration monitoring
applications [19]. A new antenna sensor in the form of a fully embroidered meander line
dipole was also proposed in a recent work for real-time respiration monitoring [20].

This work presents a flexible sinusoidal-shaped half-wave dipole antenna sensor that
can be used in strain sensing and vital signal monitoring applications. The proposed
sinusoidal antenna sensor is the new generation of a previously introduced antenna sensor
for respiration monitoring [2]. Using flexible conductors as antenna material, the changes in
the antenna’s impedance due to the mechanical compressions or stretchings can be picked
up by a measurement device as an indicator of the strain applied to the antenna [4]. It
is shown that the antenna sensor introduced in this paper could be up to 5.5 times more
sensitive than the previous generation [2].

The sinusoidal antenna introduced in this paper is a modified version of the half-wave
dipole antenna. Modified dipoles are reported and studied in the literature for the sake of
miniaturization and impedance control, such as meandered, zigzag [21–24], and monopole
sinusoidal geometries [25,26]. They are also employed in Log Periodic Dipole Array (LPDA)
antennas [27,28] and Radio frequency identification (RFID) tags [29,30] due to their short
axial length. Similarly, the sinusoidal antenna introduced here has a resonant impedance
lower than the traditional straight dipole antenna and an axial length shorter than λ/2. For
example, a sinusoidal antenna designed for 50 Ω is 20% axially shorter than a traditional
straight half-wave dipole. The miniature size of the sinusoidal antenna makes it suitable
for wearable applications.

Our implemented antenna sensor for vital signal monitoring is designed to be placed
over the front of the chest area and embedded in a T-shirt [4]. This method of vital
signal monitoring is different from non-contact systems, where both antenna and the
measurement and detection system are located remotely from the subject [17]. The changes
in the circumference of the upper body may lead to a geometrical deformation of the
wearable antenna sensor, which changes its radiative and electrical characteristics, which
will be detected by a measurement system. Sensitivity to strain, stretchability, flexibility,
and durability are crucial factors for achieving a viable vital signal sensing system, as well
as the Specific Absorption Rate (SAR) since these antenna sensors are placed over the body.

In the light of these requirements, this paper paves the way for realizing a vital signal
monitoring system with a more sensitive, flexible, durable, and miniaturized antenna
sensor compared to the previous generation [2–4]. A detailed study of the sinusoidal
antenna’s radiative and electrical specifications for various configurations is provided,
its sensitivity to deformations is studied, and a design guide is provided for the antenna
sensor. Finally, a prototype antenna is fabricated and measured in free space and over the
body, and its durability and SAR compliance are studied. An upcoming paper will cover
the antenna’s application in a vital signal monitoring system and provide measurement
data for the antenna sensor.
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The sinusoidal antenna is introduced and studied in detail in the second and third
sections of this paper. The antenna is simulated using CST Studio Suite® 2020 software [31],
and the effects of the geometrical parameters are analyzed on its radiation characteristics
and strain sensitivity. A design guide is provided in the fourth section using two methods,
and equations are introduced for estimating the geometrical parameters based on desired
characteristics. In the fifth section, a reference copper antenna and a flexible polymer
antenna sensor are fabricated, their electrical parameters are measured, and their environ-
mental durability is analyzed through an experiment. Discussions are made in the sixth
section about the antenna’s SAR, its behavior under bending and twisting, and its applica-
tion in strain sensing. Additionally, a summary of the state-of-the-art is provided, and it is
shown that higher sensitivity to strain is achievable using this antenna sensor compared to
the traditional design used in our previous work, known as a half-turn Archimedean spiral
antenna [2].

2. Antenna Geometry

The design of the antenna sensor, shown in Figure 1, is based on the traditional straight
half-wave dipole. The antenna wires are bent n times to form a sinusoidal shape in the
domain of zero to nπ. Equation (1) can be considered for plotting the shape of a single pole
of the antenna in a cartesian coordinate system where parameters WA and LA define the
width and the length of the antenna, respectively. The n factor indicates the number of
extrema in the structure of a single antenna pole.

y = WA sin
(

nπ
LA

z
)

z = (0, LA) (1)
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Figure 1. Antenna Geometry with n = 5. Small circles in the middle indicate the feeding point. The
antenna is placed along Z-axis, and the peaks and dips are along the Y-axis.

3. Specifications and Intrinsic Parameters

A straight half-wave dipole antenna has a total wire length of 2LW = λ
2 relative to its

wavelength of operation, and ideally has an inductive impedance of ZW = 73.1 + 43j on
the respective frequency [32]. For the modified half-wave dipole antennas, the Shortening
Ratio (SR) is defined as the ratio between the reduction in its axial length and its total wire
length, which is shown as [21,25,26]:

SR =
λ
2−2LA

λ
2

= 1− LA
LW

(2)

The antenna introduced here is simulated using CST Studio Suite® 2020 full-wave elec-
tromagnetic simulation software [31]. The antenna is modeled by very thin wires made of
Perfect Electric Conductor (PEC) and with a diameter d of less than λ× 10−4 as an approxi-
mation of an infinitesimally thin antenna [1]. A feeding point gap of Lg = 1.25× 10−5λ is
considered to keep it as small as possible. The model details mentioned here are considered
for all of the simulations presented in this work.

A set of calculations are made on the introduced antenna geometry for n = 1, . . . , 9, in
which the SR is increased in fine steps while keeping wire length (LW) constant, as shown
in Figure 2. The antenna’s width has to increase in each step to ensure the constancy of
the wire length. The simulation results are presented in Figure 3. The antenna’s resonance
frequency is normalized to the resonance frequency of the straight half-wave dipole ( fD1). It
is evident that the more the antenna becomes compressed, the lower the radiation resistance
on resonance, but the higher the resonance frequency.
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Figure 2. Sample design of an antenna with n = 3 for different values of SR. It is evident that the
more the SR increases, the higher the width of the antenna.
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Figure 3. (a) Radiation Resistance of the antenna on resonance frequency. Inset: zoomed-in detail
of the crossing around the 50 Ω line. (b) The resonance frequency of the antenna normalized to the
resonance frequency of the straight half-wave dipole ( fD1 ).

3.1. Radiation Resistance

The decrease of radiation resistance due to the increase of SR seen in Figure 3a is
expected behavior. To analyze the radiation resistance, we need to observe the antenna
from a far-field point of view, with a distance of r from the antenna, where r � λ. With
the assumption of WA � λ, the oscillations of the sinusoidal shape can be ignored from a
far-field standpoint. Therefore, the antenna can be approximated as a straight dipole with a
physical length of 2LA which is less than half of the operation wavelength. The antenna
seen from the far-field is electrically shorter than a half-wave dipole. The real part of its
impedance, indicating the radiation resistance, will be less than <e {Zw} which is expected
to become even smaller as it becomes a shorter dipole [1,21].

3.2. Resonance Frequency

The normalized resonance frequency of the antenna is shown in Figure 3b as a function
of SR for the different number of bents (n parameter). The point SR = 0 is equivalent to a
straight half-wave dipole LA = LW , and therefore the simulation results show a resonance
at around RD1 ≈ 70 Ω and a normalized frequency of unity. While the wire length is kept
constant, the resonance frequency increases as the SR rises, which means that the rise of
peaks and dips in antenna geometry causes an extra capacitive effect on the antenna [21].

3.3. Effects of the n Factor

It can be concluded from Figure 3a that the higher the n factor, the shorter the axial
length of the antenna for specific radiation resistance, making it more miniaturized. Addi-
tionally, the antenna’s sensitivity to the deformations becomes more significant by choosing
higher n values.

In the case of n = 1, the antenna becomes so wide that it violates the assumption of
WA � λ and cannot be categorized as a linear dipole antenna from a far-field point of
view. For example, the required designs to achieve 50 Ω using n = 1, 5, and 9 are shown in
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Figure 4. The width of the antenna n = 1 is noticeably large and around ≈ 0.15λ, which is
violating WA � λ. Consequently, by choosing n = 1, the antenna cannot be approximated
with a linear equivalent antenna from the far-field point of view anymore. The antenna
would virtually become a superposition of two perpendicular equivalent dipoles with
specifications out of this work’s context.
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Figure 4. Antennas designed for radiation resistance of 50 Ω on a specific frequency using values of
1, 5, and 9 for the n factor. The higher the n factor, the less the antenna width for the same resonance
frequency and radiation resistance, resulting in a more linear structure.

3.4. Radiation Pattern and Maximum Gain

The radiation patterns of antennas designed for 50 Ω are illustrated in Figure 5. The
antennas designed with the constraints of n > 1 have a radiation pattern similar to a
straight half-wave dipole. The maximum gain and Half-power beamwidth (HPBW) are
presented in Table 1 for a straight half-wave dipole antenna (n = 0) and sinusoidal antennas
RR = 50 Ω and n = 1, 3, . . . , 9. It can be concluded that a larger n makes the antenna
more similar to the straight half-wave dipole antenna in terms of HPBW and far-field
pattern. The HPBW is slightly wider than the straight dipole in lower n values and becomes
narrower as n rises, resulting in more directivity (D) and maximum gain (G), as G ∝ D [1].
Following the discussion above about the effects of the n factor, it can be seen that the
unusual radiation pattern for the case of an antenna n = 1 resembles a superposition of
two dipoles along the Z- and Y-axis due to its noticeably large width of WA ≈ 0.15λ.
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Table 1. The Maximum Gain and HPBW of the straight half-wave dipole and 50 Ω sinusoidal dipoles
for different n values.

n Max Gain
(dBi/dBd)

HPBW
XZ Plane (φ=0◦)

HPBW
YZ Plane (φ=90◦)

0 * 2.14/0 78◦ 78◦

1 2.419/0.269 89.6◦ 82.6◦

3 2.451/0.301 79.2◦ 80.6◦

5 2.467/0.317 78.5◦ 79.7◦

7 2.474/0.324 78.3◦ 80.1◦

* Indicates traditional straight half-wave dipole.

4. Design Methods

Here a set of curve fittings are made of the simulation data to provide equations based
on geometrical parameters for estimating the impedance on resonance and the resonance
frequency of the sinusoidal antenna, which can provide a starting point for fine-tuning the
antenna parameters. Two methods are presented, based on two constraints of fixed wire
length or fixed axial length, and the pros and cons of each are described. The curve fittings
are made through a Nonlinear Least Squares (NLS) method based on the Trust Region
algorithm [33].

4.1. Method 1: Designing Based on LA for a Known LW
4.1.1. Curve Fittings Based on SR

In the data presented in Figure 3, the radiation characteristics are expressed based on
SR, which is the antenna length LA relative to the fixed total wire length LW . According to
the curve fittings, the resonance frequency f increases with the rise of SR, and the slope is
proportional to the square root of n. It can be written in the following form:

f = fD1

(
1 +

√
n

k11
· SR

)
(3)

where fD1 is the resonance frequency of a straight half-wave dipole with a length of LW .
The impedance on resonance RR drops as SR increases, and the drop rate is approximately
proportional to the 8th root of n. Therefore, it can be fitted on the following form:

RR = RD1

(
1− k12

8√n
· SR

)
(4)

By choosing k11 = 8.265 in Equation (3), and RD1 = 69.54, k12 = 1.587 in Equation (4),
an R2 of 99.55% and 99.85% is achieved for each Equation, respectively, as a measure of
goodness-of-fit [34]. The curve fitting is made of the data in the domain of n = 3, . . . , 9 and
SR = 0.05, . . . , 0.3. The precision of the curve fittings is shown in Figure A1 in Appendix A.
It is also possible to choose a RR or f of choice and solve the introduced equations for SR. It
should be noted that n factor can only take integer values and should be chosen according
to the fabrication capabilities.

4.1.2. The Design Steps Using Method 1

1. Choosing a wire length LW and n
2. Calculating RR for different SR values, or calculate SR for a given RR
3. Calculating f for the SR chosen in step 2
4. Readjusting LW (and subsequently updating fD1) while keeping SR fixed to reach the

desired resonance frequency
5. Calculating WA based on the finalized LA and LW using the integral Equation intro-

duced in the following.
6. Verify the design by simulating the antenna model based on Equation (1)
7. Finish if the desired frequency is acquired; otherwise, repeat from Step 4.
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It is worth mentioning that the designer has to redo all the steps if they decide to
choose another n value.

4.1.3. Calculating Antenna width WA

With LW and LA as known variables, calculating the width of the antenna (WA)
requires solving an integral equation. A small arc dL can be fit on the hypotenuse of
a right triangle. According to the Pythagorean theorem, its length can be written as
dL =

√
dy2 + dz2. By integrating dL over the curve, the total curve length can be calculated

as follows:

L =
∫ b

a

√
1 +

(
dy
dz

)2
dz. (5)

By combining (1) and (5), the wire length can be calculated as the following:

LW =
∫ LA

0

√
1 +

(
WA

nπ
LA

cos
(

nπ
LA

z
))2

dz . (6)

4.1.4. Disadvantages of Method 1 Based on SR

The integral in Equation (6) does not have an elementary antiderivative and is an
elliptic integral of the second kind. Even though numerical methods and software packages
such as MATLAB can be used to solve the integral Equation for WA effortlessly [35,36], it
would not be a convenient method in the antenna design synthesis process, especially if
the design needs to be made based on antenna width WA parameter.

Although the definition of SR could help to understand the behavior of the antenna, it
is not a decent choice for providing a design method since its dependency on constant wire
length LW requires solving Equation (6) for WA before each iteration of the simulation to
obtain the full geometrical parameters of the antenna. Additionally, the designer has to
redo all the design steps in the case they decide to go with another value of n. Moreover,
the estimation of RR using Equation (4) based on SR cannot differentiate well between
adjacent n values since the data lines are very close.

4.2. Method 2: Designing Based on WA for a Known LA
4.2.1. Widening Ratio

Widening Ratio (WR) is presented in Equation (7) for studying the antenna character-
istics directly based on the geometric parameters of WA and LA and alleviate the need for
solving the integral equations during the antenna design process.

WR = WA
LA
× 100. (7)

A new set of simulations were performed on antennas with different WR values
while keeping LA constant and ignoring the assumption of fixed total wire length LW . This
definition is beneficial while modeling the antenna based on LA and WA in electronic design
automation (EDA) software and electromagnetic simulators. Figure 6 shows an example
representation of the simulated model configurations for n = 3. This set of simulations are
repeated for different n values, and the results are presented in Figure 7.
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Figure 6. Representation of increasing WR of an example antenna with n = 3, while keeping LA as
constant and ignoring the fixed wire length LW constraint.
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Figure 7. Antenna characteristics for different n values expressed versus WR while the axial length
LA is kept constant (a) Radiation Resistance of the antenna on resonance frequency. The required WR
values to design a 50 Ω antenna are marked for n = 3, . . . , 9 (b) Resonance frequency normalized
to fD2.

4.2.1.1. Curve Fittings Based on WR

According to the data presented in Figure 7, the decrease in f and RR is approximately
proportional to n and WR, and Equations (8) and (9) are provided based on this observation.
These equations provide approximations for a given n and WR, as a starting point for fine-
tuning. In this Equation fD2 is the resonance frequency of a straight half-wave dipole with
a length of LA, and by setting k21 = 182.3 in Equation (8) and RD2 = 72.78, k22 = 120.94
in Equation (9), the equations fit approximately on the data points with an R2 of 98.41%
and 99.07%, respectively. The precision of the fitting is illustrated in Figure A2a,b in
Appendix A.

f = fD2

(
1− n

k21
·WR

)
(8)

RR = RD2

(
1− n

k22
·WR

)
(9)

The surface fitting is made with the data in the domain of n = 3, . . . , 9, WR = 1, . . . , 15
and the range of RR = 30, . . . , 65 and f / fD2 = 0.6, . . . , 1. Similarly, these equations can
also be solved for WR considering a f or RR of choice. By combining Equations (8) and (9),
we reach the following Equation (10), which defines f solely based on RR and does not
depend on n, as shown in Figure A2c in Appendix A.

f = fD2 (1− k31(RD3 − RR)) (10)

where:
k31 = k22

k21
, RD3 = k22

k21
RD2 (11)

4.2.1.2. The Design Steps Using Method 2

1. Choosing a wire length LA and n
2. Calculating RR for different WR values, or calculate WR for a given RR
3. Calculating f for the WR chosen in step 2
4. Readjusting LA (and subsequently updating fD2) while keeping WR fixed to reach

the desired resonance frequency
5. Verify the design by simulating the antenna model based on Equation (1)
6. Finish if the desired frequency is acquired; otherwise, repeat from Step 4.

4.2.1.3. Advantages of Method 2 Based on WR

This design method has three advantages compared to the previous method, based
on SR. First, the design is made directly based on LA and WA values and no integrals
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need to be solved to calculate WA for each iteration of the design process. Second, the
estimation of RR has a better separation for adjacent n values compared to the previous
method. Third, if the designer finishes the design process and then decides to go with
another n factor, they will not need to start over. By only repeating the second step, a new
WR can be calculated for the previously chosen resistance, and then WA can be readjusted.
As shown in Equation (10), the resonance frequency of the antenna will not change as long
as the designer keeps the previously chosen radiation resistance for the design.

4.3. Tuning Considerations

The factors affecting classic straight dipole antenna characteristics also apply to
the sinusoidal dipoles, such as feeding point gap width, wire conductivity, and wire
thickness [32]. All simulations were achieved using PEC as the material of the antenna
wires. For convenience, the designer might consider extending the feeding point gap of
Lg = 1.25× 10−5λ to a larger value for high-frequency antennas where λ is shorter than a
kilometer. In this case, the WR (or SR) factor needs to be adjusted to a slightly lower value
for compensating the inductive effect caused by the extra gap widening.

All the data presented from the simulation runs in this work were prepared with the
assumption of a very thin wire with a diameter d of less than λ× 10−4. For an antenna
made of a thicker wire, the WR (or SR) parameter needs to be adjusted to a slightly higher
value to achieve the desired radiation resistance on resonance.

5. Fabrication and Measurement
5.1. Fabrication Process

Two sample high-frequency antennas with n = 5 are fabricated as a proof-of-concept.
Table 2 shows the geometrical parameters used for the fabrication of both antennas. The
antenna is designed and simulated for 800 MHz and 50 Ω impedance. A copper-made
antenna is fabricated as the reference, and a second antenna is also made using a conductive
flexible polymer suitable for wearable sensor applications.

Table 2. Geometrical Parameters of the antennas.

Parameter Axial Length (LA) Width (WA) n Wire Thickness

Value 74.54 mm 5.65 mm 5 1.4 mm

Compared to the previously introduced traditional antenna sensor based on silica
hollow-core fibers, the newly developed polymer fiber is enduring, flexible, and sustains its
electrical characteristics better than silica hollow-core fibers [37]. The conductive polymer
is biocompatible, highly flexible, and resistant to water and other perturbations. It can
be easily sewn on textiles and bending, twisting, or stretching does not break it. The
measured resistance of the material is around ≈ 8 Ω·cm−1 and is observed to have a good
performance in high frequency.

The composition of the conductive polymer fiber is a combination of poly (ethylene-
co-vinyl acetate) (PEVA) polymer (Sigma-Aldrich, St. Louis, MO, USA) and multi-walled
carbon nanotubes (MWCNTs) (commercially available at Cheaptubes, Grafton, VT, USA,
with a carbon purity of 95 wt%) with a composition of 41 wt% mass of MWCNT and 59 wt%
mass of PEVA and without any purifications.

The fabrication steps of the conductive polymer are shown in Figure 8a. For an hour,
the MWCNT nanoparticles are sonicated in 10 mL of tetrahydrofuran (THF) (Fisher Scien-
tific International, Waltham, MA, USA). Afterward, the PEVA polymer and the MWCNTs
solution are mixed by mechanical stirring for one hour at 1400 rpm. The mixture is then
sonicated for an additional 180 min for better dispersion. Finally, the colloidal solution is
placed in the oven at 100 ◦C for 15 min to obtain a high-viscosity composite.
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Figure 8. (a) Fabrication process of the MWCNT-PEVA conductive polymer (b) the extrusion process
of the polymer wire (c) SEM image of the cross-section of the MWCNT-PEVA polymer wire.

The composite of the conductive fiber is extruded [38] using a commercially available
syringe, as shown in Figure 8b, and is left to dry out. The initial thickness of conductive
fiber is 1.6 mm, which reduces to 1.4 mm after the drying process. The scanning electron
microscopy (SEM) image of the cross-section of the polymer wire is presented in Figure 8c.

5.2. Measurements

The fabricated antennas are shown in Figure 9a,b and are fed using the commercially
available 1:1 balun TC1-1-13MA+ from Mini-Circuits [39]. The measurements are made
using a calibrated VNA system, with effects of the transmission line de-embedded from
the final scattering parameters (S-Parameters) readout [40]. Table 3 shows the measured
specifications of the fabricated antennas. The return loss of the antennas is also presented in
Figure 9c. Each measurement is repeated eight times, and the average values are reported.
The measurements show a good agreement between the antennas and the simulation. The
differences are due to the error in fabrication, the material specifications, and non-rigid
nature of the polymer wire.
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Figure 9. (a) The Copper antenna (b) The Polymer antenna, sewn on a T-shirt (c) Return loss of the
antenna in simulation, the Copper antenna, and the Polymer antenna, both in free space and over
the body.

Table 3. Measured Antenna Specifications.

Antenna Operation Frequency Impedance on Frequency

Copper 790 MHz 52 + 0.2 i Ω
Conductive Polymer

(Free space) 827 MHz 50.4 + 2.5 i Ω

Conductive Polymer
(Over the Body) 808 MHz 49.2 + 19.9 i Ω
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It can be seen that the resonance frequency of the polymer antenna is changed when it
is placed over the body. There are two factors contributing to this frequency shift. The first
one is the changes in the antenna’s surrounding material in its reactive near-field region,
which makes a change in the impedance of the antenna seen from the feeding circuit,
resulting in an impedance mismatch and therefore affecting the resonance frequency and
the radiation resistance of the antenna [41].

The other factor causing this shift is the deviation of the antenna’s dimensions due
to its initial stretching when the patient wears the smart textile, as shown in Figure 10.
Therefore, it is recommended that the T-shirt selected for the antenna integration be a right
fit for the patient’s body form and not too tight. Otherwise, the initial state of the antenna
sensor will be considerably stretched, which would potentially limit the dynamic range of
the antenna sensor.
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Figure 10. A 50 Ω antenna sensor n = 5, embedded on a smart T-shirt for vital signal monitoring
applications.

5.3. The Durability of the Antenna Sensor

An experiment is performed in order to demonstrate the durability of the conductive
polymer material for wearable smart textile applications intended for everyday use. A 50 Ω
antenna sensor is fabricated and sewn on a piece of fabric, and its electrical specifica-
tions are measured. The fabric and the antenna sensor are washed for 20 cycles, and the
measurements are performed again after each cycle.

During each step, the fabric is submerged in a container filled with tap water and
detergent and is stirred vigorously to simulate a washing procedure. The fabric is taken
out after 5 min, and then it is rinsed using tap water. Next, a piece of a napkin is used to
remove the excessive wetness of the fabric. Finally, a heat gun is used for 10 to 15 min to
completely dry out the fabric and antenna sensor. The specifications of the antenna sensor
are remeasured and recorded after the complete dry out.

The container water and the detergent were refreshed every five cycles. The SMA
connectors were held outside the water during the washing process, as shown in Figure 11.
The heat gun is placed at least 15 cm away from the fabric during the drying process to
prevent accidental burning due to its high temperature and is manually swung over the
fabric to ensure complete dryness.

The measurements after each cycle are shown in Figure 12. It can be seen that there
is a slight shift in the antenna’s operation frequency throughout the cycles, which could
be due to the antenna deformations or fabric shrinkage caused by the heat during the
drying process. The reflection loss of the antenna is still ideally below −10 dB, and despite
the slight frequency shift, the antenna’s performance is not significantly affected after
20 wash cycles.
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Figure 12. Antenna electrical characteristics are measured after each washing cycle. Each measure-
ment is made four times, and the average is reported. Error bars show the standard deviation of each
measurement. (a) Normalized frequency shift of the antenna. Green dashed line indicates zero shift.
(b) Return Loss of the antenna on resonance frequency. (c,d) Real and Imaginary part of the antenna’s
impedance on operation frequency, respectively. Green dashed line indicates the ideal values for a
50 Ω impedance matching.

6. Discussion
6.1. Strain Sensitivity

The introduced antenna design is notably valuable in strain sensing applications. It
was previously shown in Figure 3 that the impedance and the resonance frequency of the
antenna shift as SR changes when the sinusoidal dipole becomes stretched or compressed
along its axis. One can exploit this behavior and make a sinusoidal antenna out of flexible
conductors and record the S-parameters of the antenna over time as an indicator of the
strain applied to the antenna [4]. The strain detection can be achieved by tracking the
resonance frequency or measuring the reflection coefficient on a fixed frequency.

The traditional antenna sensor employed in previous works on respiration monitor-
ing [2–4] is essentially a sinusoidal half-wave dipole n = 1. Higher n values can increase
the sensitivity of the antenna sensor. For comparison, by choosing n = 2, the resonance
frequency sensitivity of the antenna versus SR will be ≈ 2.2 times more than the sensitivity
demonstrated by the traditional antenna. It increases to ≈ 4.1 and ≈ 5.5 times more for
the antennas n = 5 and n = 9, respectively, which is a significant improvement. Figure 13
shows the trend of sensitivity improvement for different n values.
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Figure 13. Sensitivity of the resonance frequency of the sinusoidal antenna sensor to the applied
strain, expressed relative to the sensitivity of the traditional antenna sensor with n = 1, for antennas
n > 1.

Although a higher n value can provide better sensitivity, the advantage is reduced as
n become larger and larger. For instance, raising n from 7 to 9 only improves the sensitivity
by 12%, while changing n from 2 to 4 will boost the sensitivity by a significant amount of
83%. Moreover, an antenna sensor designed with a very high n value could be challenging
to fabricate if the wire is relatively thick, and it will not be easy to integrate the antenna
into wearable applications.

Table 4 summarizes the characteristics of this work compared to other recently pub-
lished works on flexible antennas for strain sensing. Stretching strain is defined as
ε = ∆L/L0 where L0 is the initial antenna sensor length, and stretchability is εmax × 100%
which is the maximum amount of the possible strain ε that can be applied to the sensor,
expressed in percentage [7]. Bending strain is defined as ε = h/2r where h is the antenna
sensor thickness and r is the bending radius. The maximum bending is defined as the angle
at which the sensor cannot be bent any further [11]. Exceeding the limits of the reported
stretchability (or maximum bending) is either destructive for the antenna sensor or yields
unreliable sensor readings [7,11]. The sensitivity to strain is also defined as S = (∆ f / f0)/ε
which is the normalized frequency shift ∆ f / f0 for an applied strain of ε [7,11]. Table 5
compares recent works on another category of antenna strain sensors primarily used in
structural health monitoring to detect surface strains and cracks in the structures.

Table 4. Comparison of recent works on stretchable antennas for strain sensing.

Description Strain Type Stretchability/Max.
Bending

Sensitivity
to Strain Year Ref.

Sinusoidal dipole antenna * Stretching 30% 0.40 2022 This work
Serpentine meshed patch

over ground plane Stretching 40% 0.20 2021 [7]

Serpentine meshed in patch
and ground planes Stretching 100% 0.25 2021 [7]

RFID Meandered half-wave
dipole in Ecoflex Stretching Not provided 0.141 ** 2019 Based on [8]

Flexible planar dipole
antenna over Kepton tape Stretching Not provided 0.066 ** 2012 Based on [42]

Liquid metal loop antenna Stretching 40% 0.18 2009 [43]
Graphene patch antenna

over copper tape Bending Not provided 1.4 2021 [9]

Flexible multi-layer
graphene film Bending Not provided 5.39 2018 [10]

Aluminum tape patch over
cellulose substrate Bending 160

◦
3.49 2016 [11]

* With the assumption of n = 9 and the initial SR = 0.3. In the case of using adequately thin wires, a higher initial
SR and therefore higher stretchability could be achieved. ** The original author does not provide the sensitivity
directly. The presented value is calculated from the reported data.

144



Sensors 2022, 22, 4069

Table 5. Comparison of recent works on antenna sensors for structural health monitoring.

Description Resonance Freq Sensitivity to Strain
(kHz/µε) * Year Ref.

Double split-ring resonator (dSRR) antenna 2.725 GHz −1.548 2022 [16]
Rectangular microstrip antenna 2.725 GHz −2.379 2022 [16]
Rectangular microstrip antenna 2.469 GHz −2.847 2021 [12]

Sierpinski fractal microstrip patch 2.725 GHz −1.18 2019 [15]
Circular patch antenna 2.5 GHz −2.05 2018 [13]

RFID folded patch antenna 911.6 MHz −0.76 2015 [14]

* The sensitivity of this category of antenna sensors is usually reported in absolute frequency.

A crucial factor for antenna sensor comparison is the magnitude of force needed to
achieve a specific strain. This factor becomes especially important in applications with very
small stretching forces. To the best of our knowledge, such a parameter is not reported in
any of the works summarized in Table 4. However, the materials used in the fabrication
of each antenna sensor are well described in the other works and this paper, which might
indirectly address this issue. Nonetheless, a study on the magnitude of force required to
achieve a specific strain on the antenna introduced here is undoubtedly an interesting point
that could be experimentally measured and included in a forthcoming paper.

6.2. Effects of Bending and Twisting

Although the antenna sensor introduced here is ideally designed for applications
where the deformations are mainly along the Z-axis, the effects of other forms of deforma-
tions are also investigated to understand the antenna’s behavior better. A sample 50 Ω
sinusoidal antenna with the geometrical parameters introduced in Table 2 is simulated in
twisted and bent conditions, as illustrated in Figure 14. The twisting is performed around
the Z-axis up to 90

◦
, and the cylindrical bending is applied along the X-axis up to 180

◦
.
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Figure 14. Illustration of (a) the twisting and (b) the bending applied to the modeled antenna in
simulation software. The blue metallic-colored plane, the thick wire, and the lighting effects are
added for a better presentation of the 3D model.

Figure 15 presents the antenna simulation results for different bend and twist angles.
There is a significant change in the antenna’s resistance on the resonance frequency under
bending deformation. It is shown that the more the antenna becomes bent, the lower
becomes the resistance on the resonance frequency. Bending can also shift the resonance
frequency to slightly higher, which is negligible in low bending angles and will be less
than 2% for 180

◦
. In comparison, twisting does not significantly affect the resistance on

resonance and shows a slightly decreasing trend. It also has a similar effect on the resonance
frequency, making it drop by as much as 2.5% at 90

◦
of twisting according to the simulation.
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Figure 15. (a,b) The shift in antenna’s resistance on resonance and (c,d) its normalized resonance
frequency for different angles of bending and twisting, respectively.

6.3. Specific Absorption Rate (SAR) Analysis

The amount of radio frequency (RF) radiation exposure is a critical factor that should
be controlled in the radiating systems embedded in home appliances and portable devices.
This concern becomes even more important in wearable devices and smart textiles due
to the continuity of radiation and the close proximity of the radiating elements to body
tissues. The amount of RF exposure is regulated using a metric named specific absorption
rate (SAR), which is the time derivative of an incremental amount of energy dissipated in a
specific mass of tissues [44]. The Federal Communications Commission (FCC) defines the
limit of the SAR level of mobile phones for public exposure to 1.6 W/Kg, averaged over 1 g
of tissue [45].

An analysis of SAR level is made on a sinusoidal antenna with n = 5 and designed
for 50 Ω on its 800 MHz resonance frequency. The antenna model is simulated while
placed over the chest of the human body phantom model named Hugo from the CST Voxel
Family, with a voxel resolution of 2 mm× 2 mm× 2 mm [31]. The gap between the antenna
and the phantom model is considered 2 mm. The calculated SAR level for a reference
excitation power of Pre f = 1 mW (equivalent to 0 dBm), averaged over 1 g of tissue, has
a maximum value of 0.0138 W/Kg. Therefore, the maximum possible excitation power
Pmax complying with FCC SAR level limitations can be calculated using a simple ratio as
shown in Equation (12). Based on this calculation, the excitation power must be less than
Pmax = 115.9 mW (equivalent to 20.64 dBm) to comply with the limitations. Figure 16
presents the body phantom model and the SAR simulation results.

Pmax = Pre f ·
(

SARlimit
SARcalculated

)
= 1 mW ·

(
1.6 W/Kg

0.0138 W/Kg

)
≈ 115.9 mW ≡ 20.64 dBm (12)
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7. Conclusions

A new flexible dipole antenna with a sinusoidal geometry is introduced. The radiative
and electrical specifications of the antenna and the effect of geometrical parameters are
presented. The antenna is fabricated using a biocompatible conductive polymer with
high flexibility and great endurance. In contrast to the previous generation of antenna
sensors made from glass-based material, the new antenna will not break by twisting,
bending, and stretching, and can be used in wearable applications without compromising
the user’s comfort. It is also shown that the new antenna design can have up to 5.5 times
more sensitivity than the traditional antenna sensor employed in the previous works for
respiration monitoring [2].

Additionally, a design guide for sinusoidal antennas is provided, and curve fittings
are performed to estimate the geometrical factors based on the radiation characteristics
of choice. The equations presented here provide a starting point for fine-tuning the ge-
ometrical parameters to achieve the desired radiation characteristics. Finally, a sample
antenna is designed and fabricated in two versions, one with copper and one with the
conductive polymer. The fabrication method is described, and the electrical specifications
of the fabricated antennas are reported in free space and over the body. It is shown that
there is a good agreement between the simulation and the measurements. Experiments
are performed to prove the durability of the antenna sensor for everyday use, and it is
shown that the performance of the antenna does not decay after 20 washing, rinsing, and
drying cycles.

The contributions of this paper were mainly in the antenna design, characteristics,
and strain sensitivity analysis. It was shown that the new antenna could provide better
performance in sensing and be a superior choice for wearable applications compared to its
previous generation due to its miniature size, flexibility, and durability. An upcoming paper
will be focused on the application of the introduced antenna in a vital signal monitoring
system. The antenna’s performance in sensing applications will be evaluated, and the
measurement data will be provided.
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Appendix A

The correlation between the simulated data and the introduced fitted equations is
illustrated in this appendix for both design methods based on SR and WR.
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Figure A1. Correlation of the data and the equations achieved via curve fitting based on SR for
(a) radiation resistance on resonance frequency (zoomed in) and (b) resonance frequency normalized
to fD1. Solid lines represent the data, and dashed lines represent the fitted function. It is clear that the
fitted function on RR is ambiguous for adjacent n values.
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Abstract: An end-fire radiating implantable antenna with a small footprint and broadband operation
at the frequency range of 3–5 GHz is proposed for high-data-rate wireless communication in a
brain–machine interface. The proposed Vivaldi antenna was implanted vertically along the height of
the skull to avoid deformation in the radiation pattern and to compensate for a gain–loss caused by
surrounding lossy brain tissues. It was shown that the vertically implanted end-fire antenna had a
3 dB higher antenna gain than a horizontally implanted broadside radiating antenna discussed in
recent literature. Additionally, comb-shaped slot arrays imprinted on the Vivaldi antenna lowered
the resonant frequency by approximately 2 GHz and improved the antenna gain by more than
2 dB compared to an ordinary Vivaldi antenna. An antenna prototype was fabricated and then
tested for verification inside a seven-layered semi-solid brain phantom where each layer had similar
electromagnetic material properties as actual brain tissues. The measured data showed that the
antenna radiated toward the end-fire direction with an average gain of −15.7 dBi under the frequency
of interest, 3–5 GHz. A link budget analysis shows that reliable wireless communication can be
achieved over a distance of 10.8 cm despite the electromagnetically harsh environment.

Keywords: brain–machine interface; implantable antenna; link budget analysis; specific absorption
rate; tissue-emulating phantom; ultra-wideband antenna; Vivaldi antenna

1. Introduction

Brain signal monitoring has gained considerable attention not only from brain scien-
tists but also from electronics engineers. Real-time neural data extracted by a brain–machine
interface (BMI) or brain–computer interface (BCI) can be used for various applications,
such as restoring sensory functions and controlling robotic prostheses [1]. A review of the
basic concept of BCI, its applications, and challenges were extensively discussed in [2].
A conventional technique such as electroencephalography (EEG) requires a wired elec-
trode to be attached on the scalp to monitor brain signals [3]. However, several studies
have demonstrated the need for implanting a wireless BMI deep into the brain to monitor
both the electroencephalogram (EEFG) and electrocorticography (ECoG) for cognitive and
speech control [4–9]. Neuralink [10], a neurotechnology company, has recently presented a
pioneering deep BMI with wireless communication and power-charging functions.

A wireless BMI consists of electrodes, an analog integrated circuit, a digital signal
processing unit, a radio frequency (RF) front-end, and an antenna. They are packed
into a biocompatible housing whose footprint typically ranges from 10 × 10 mm2 to
20 × 20 mm2 [5–13].

The slightly large size of a brain implant is primarily due to the antenna size. For
instance, the size of a half-wavelength patch antenna at the 2.4 GHz industrial-scientific-
medical (ISM) frequency band in free space is approximately 60 × 60 mm2. The antenna size
can be reduced to fit into the housing by considering the high dielectric constants of brain
tissues (e.g., cortical bone or dura) and by applying antenna miniaturization techniques
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(e.g., meandering, folding, and shorting). However, most of the reported works suffer from
a low antenna gain (<−20 dBi) that is due to the high dielectric loss of brain tissues. The
study showed that the antenna gain reduced by 10.7 dB after implanting it in the brain [5].

Typically, a brain-implanted antenna is located under the skull, immersed horizontally
in the dura or cerebrospinal fluid (CSF), as shown in Figure 1a. This circumstance lowers
the antenna gain because the skull is thick (~7 mm at the bregma) and lossy (loss tangent,
tanδ, ~0.3) [14,15]. A full-wave electromagnetic simulation study indicated a reduction
of at least 2 dB in antenna gain because of the thick skull. Deformation of the antenna
radiation pattern is another issue. A broadside antenna horizontally placed under the skull
is expected to radiate toward the zenith. However, unexpected large back lobes and side
lobes are often seen after implanting an antenna in such a complex brain environment [16],
i.e., the broadside radiation is not guaranteed because of the impact of the thick skull layer,
high permittivity brain tissues, and small antenna ground plane.
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Figure 1. Conceptual illustrations of the brain-implanted antenna placement: (a) conventional
horizontal placement and (b) proposed vertical placement.

This paper presents an end-fire radiating antenna implanted vertically in the skull.
Figure 1b shows the conceptual illustration of the vertical placement. The antenna was
placed along the thickness of the skull and then connected upright to the integrated circuit
(IC). Hence, the antenna had more design freedom as long as the height conformed to the
thickness of the skull. More importantly, the antenna gain can be significantly improved
throughout the bandwidth of interest. The proposed antenna was designed for 3–5 GHz
impulse radio ultra-wideband (IR-UWB), which could transfer the data at a high rate with
a low power consumption because of its wider operation bandwidth [17,18]. A tapered
slot antenna, the so-called Vivaldi antenna, was employed to cater to this wide bandwidth.
The Vivaldi antenna is a well-known end-fire radiating antenna that provides broadband
impedance matching and radiation performance owing to its gradual tapered structure [19].
However, we found that an abrupt tapering profile was required because the end-fire
length was limited to the skull thickness. This abrupt profile limited the end-fire gain and
bandwidth. Therefore, a slot array was implemented in the proposed design to resolve
the issue. The slot array improved the gain and reduced the antenna resonant frequency,
implying the size miniaturization. As a result, the antenna gain is enhanced approximately
2 dB and 3 dB by introducing the new Vivaldi antenna and by implanting the antenna
vertically in the skull.

The rest of the paper is organized as follows. Section 2 describes the antenna design.
Furthermore, it provides details of the brain environment and slot array structure. Section 3
presents the antenna prototype fabrication process and measurement results. Section 4
discusses the specific absorption rate (SAR) simulation and measurement results along
with the link budget analysis to estimate the performance of the communication system
equipped with the proposed antenna. Section 5 concludes the paper.

2. Antenna Design

Figure 2 provides an overview of the proposed skull-embedded Vivaldi antenna. It was
vertically installed against the dura matter below the skull. The antenna was sandwiched
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inside a Taconic RF-35, a biocompatible insulator with relative permittivity (εr) and loss
tangent (tanδ) of 3.5 and 0.002, respectively. Its low tanδ value at the antenna design
frequency (i.e., 3–5 GHz) is beneficial for improving the antenna gain [11]. In addition, the
RF-35 is mechanically durable (tensile strength of 27,000 psi and dimensional stability of
0.00004 mm/mm) and has a low moisture absorption of 0.02%. The height of the insulator
was fixed to 7 mm, corresponding to a typical height of an adult human skull. The thickness
and width of the insulator were 0.5 mm and 12 mm, respectively (see Figure 2). The width
of 12 mm matched half of the guided wavelength (λg) at the center frequency (4 GHz). The
geometry of the insulated Vivaldi antenna was optimized using full-wave electromagnetic
simulation software (Ansys HFSS). The goal was to achieve a good impedance matching
condition (reflection coefficient, S11 < −10 dB) and high end-fire gain (>−15 dB) over a wide
bandwidth (3–5 GHz) even in the lossy brain environment. It consisted of seven different
layers of brain tissues; their material properties and thicknesses assigned in the simulation
model are listed in Table 1 [20]. The material properties of each layer are presented in the
center frequency 4 GHz of the target bandwidth (3–5 GHz).
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Figure 2. The proposed Vivaldi antenna surrounded by insulators and embedded in the skull.

Table 1. Material properties of brain tissues at 4 GHz.

Layer Relative Permittivity (εr) Loss Tangent (tanδ) Thickness (mm)

Skin 40.84 0.297 1
Fat 5.12 0.160 2

Skull 10.53 0.310 7
Dura 40.10 0.308 1.5
CSF 63.73 0.366 2

The geometry of the Vivaldi antenna is depicted in Figure 3. The tapered slot at the
middle gradually opened up to support a smooth impedance transition and to generate
end-fire radiations over a broad bandwidth. Simulation results showed that an ordinary
Vivaldi antenna modeled in the given area of 7 × 12 mm2 resonated around 6 GHz, which
is higher than the desirable 4 GHz (i.e., the center frequency of 3–5 GHz). Therefore, an
antenna miniaturization technique was required to reduce the antenna footprint. One way

153



Sensors 2022, 22, 4328

to miniaturize a Vivaldi antenna is to add horizontal slots along the side edges [21–23].
The horizontal slots act as a choke to lessen undesirable currents flowing at the side edges,
which can improve the impedance-matching condition. However, this method accompanies
the decrease of end-fire gain. The substrate size along the longitudinal direction was
extended [24] and driving elements between the tapered slots were added to recover the
end-fire gain [22].
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Figure 3. Geometry of the proposed Vivaldi antenna with vertical slots.

Instead of horizontal slots, the proposed Vivaldi implemented comb-shaped vertical
slots to miniaturize the Vivaldi antenna. We found that the method effectively improved the
end-fire gain by concentrating more currents along the tapered slot in the middle. Figure 4
shows the surface current densities at 3, 4, and 5 GHz for the conventional Vivaldi without
slots and proposed Vivaldi with slots. The conventional design exhibited excessive currents
at the bottom edge where the antenna feed was located. Stronger currents were observed
at the lower frequency of 3 GHz, which has a longer wavelength. However, the proposed
design gradually distributed these currents to the center tapered slot and three vertical slots,
making the electrical length longer (miniaturization) and main radiating source stronger
(improved gain). The similarity in current distributions at 3, 4, and 5 GHz imply that a
stable radiation characteristic can be maintained over a broad bandwidth.
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Figure 5a,b show the simulation results of S11 and realized gain while embedding the
antenna in the seven-layer brain phantom. We compared S11 and the realized gain of the
proposed Vivaldi antenna to that of the conventional Vivaldi antenna. The resonant fre-
quency was shifted down from 6 GHz to 4 GHz by introducing the vertical slots. Moreover,
the realized gain plot showed an improvement of 1–3 dB at the target frequency range,
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3–5 GHz; an average of −13 dBi realized gain can be achieved. It is worth noting that
the realized gain of a conventional Vivaldi is low, about 6 GHz, despite the S11 being low,
implying its antenna impedance matching and radiation performances have a discrepancy.
In contrast, the proposed Vivaldi’s resonant frequency and the frequency exhibiting high
realized gain are matched. Altogether, the vertical installation of the end-fire antenna and
optimization of its geometry improved the realized gain by approximately 3 dB and 2 dB
(total of 5 dB) relative to horizontally installed broadside antennas, respectively.

Sensors 2022, 22, × FOR PEER REVIEW 5 of 14 
 

 

frequency was shifted down from 6 GHz to 4 GHz by introducing the vertical slots. More-

over, the realized gain plot showed an improvement of 1–3 dB at the target frequency 

range, 3–5 GHz; an average of −13 dBi realized gain can be achieved. It is worth noting 

that the realized gain of a conventional Vivaldi is low, about 6 GHz, despite the S11 being 

low, implying its antenna impedance matching and radiation performances have a dis-

crepancy. In contrast, the proposed Vivaldi’s resonant frequency and the frequency ex-

hibiting high realized gain are matched. Altogether, the vertical installation of the end-

fire antenna and optimization of its geometry improved the realized gain by approxi-

mately 3 dB and 2 dB (total of 5 dB) relative to horizontally installed broadside antennas, 

respectively. 

  
(a) (b) 

Figure 5. Comparisons of (a) S11 and (b) realized gain of conventional and proposed Vivaldi anten-

nas. 

Figure 6 shows parametric studies of S11 by altering the slot’s geometry. The width 

of slot (s) can be used to tune the antenna’s resonant frequency (see Figure 6a). Here, s 

between each slot is set to be the same to make the optimization process concise. The wider 

s shifted the resonant frequency toward the lower end, resulting in antenna miniaturiza-

tion by introducing more slot inductance than capacitance. Slot length (l1) was another 

parameter for adjusting the resonant frequency (see Figure 6b). The longer l1 provided 

more inductance without altering the capacitance. Therefore, the resonant frequency 

shifted left with increasing l1. We note that l1 is the length of the first slot. The second and 

third slots were longer. Their lengths were determined by the Vivaldi’s exponential cur-

vature profile at the middle. In particular, l1 = 2.4 mm, l2 = 2.8 mm, and l3 = 3.4 mm. Table 

2 lists the final antenna’s geometrical parameters. These values were obtained for the tar-

get frequency range, 3–5 GHz, with the given antenna space, 12 mm × 7 mm; however, the 

s and l parametric optimizations can be applied for any frequency band and antenna size. 

  

(a) (b) 
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Figure 6 shows parametric studies of S11 by altering the slot’s geometry. The width
of slot (s) can be used to tune the antenna’s resonant frequency (see Figure 6a). Here,
s between each slot is set to be the same to make the optimization process concise. The
wider s shifted the resonant frequency toward the lower end, resulting in antenna miniatur-
ization by introducing more slot inductance than capacitance. Slot length (l1) was another
parameter for adjusting the resonant frequency (see Figure 6b). The longer l1 provided
more inductance without altering the capacitance. Therefore, the resonant frequency shifted
left with increasing l1. We note that l1 is the length of the first slot. The second and third
slots were longer. Their lengths were determined by the Vivaldi’s exponential curvature
profile at the middle. In particular, l1 = 2.4 mm, l2 = 2.8 mm, and l3 = 3.4 mm. Table 2
lists the final antenna’s geometrical parameters. These values were obtained for the target
frequency range, 3–5 GHz, with the given antenna space, 12 mm × 7 mm; however, the
s and l parametric optimizations can be applied for any frequency band and antenna size.
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Table 2. Optimized antenna parameters.

Parameter Length (mm)

s 0.4
w 0.8
h 1.6
l1 2.4
l2 2.8
l3 3.4

3. Antenna Prototype Fabrication and Measurement

Having obtained promising broadband and high gain simulation results, an antenna
prototype was fabricated and then tested for experimental validation. The measured
antenna parameters were S11, radiation patterns, and realized gain. They were measured
by inserting the antenna prototype into an in-house fabricated seven-layer brain phantom.

3.1. Fabrication of Brain-Tissue-Emulating Phantom

The radiation performance of an implantable antenna is highly affected by its sur-
rounding environment. Hence, it is important to test the antenna inside a human tissue-
mimicking phantom exhibiting similar electromagnetic material properties (i.e., εr and tanδ)
of the actual environment—the brain for this study. A liquid phantom is often used to test
implantable antennas [25,26]. However, such a homogeneous phantom is insufficient to
represent the complex brain environment consisting of multiple layers with different mate-
rial properties. We fabricated seven different semi-solid tissue-emulating layers following
recipes provided in [12]. Figure 7 shows the fabricated seven layers and their stack-up. The
material properties of each layer were measured by an open-ended coaxial probe [27] and
compared to the known values listed in Table 1 for validation. The size of the stack-up was
10 cm × 10 cm × 7.2 cm.
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3.2. Fabrication of Antenna Prototype

Figure 8 shows the fabricated antenna prototype. The optimized Vivaldi geometry,
including the vertical slot array, was implemented on a 0.5 mm thick Taconic RF-35 substrate.
A conventional printed circuit board (PCB) fabrication process was used to etch the antenna
footprint on the substrate. Figure 8a shows the fabricated antenna itself, while Figure 8b
shows a combination of the antenna and coaxial cable. As can be seen, the antenna was
directly fed by a coaxial cable instead of a bulky RF connector (e.g., SMA connector). The
outer conductor of the cable was directly soldered to one Vivaldi arm to feed the balanced
Vivaldi antenna with the unbalanced coaxial cable; the inner conductor was routed through
a hole punctured at the substrate and then soldered to the other arm. After that, the antenna
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was covered by another piece of 0.5 mm Taconic RF-35 as an insulator (i.e., superstrate) as
depicted in Figure 8c.
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Figure 8. Fabricated antenna prototype: (a) antenna printed on a substrate, (b) antenna connected to
a coaxial cable, and (c) antenna covered by a superstrate.

3.3. Measurement of S11

The fabricated antenna was placed into the seven-layer phantom for measurements.
More specifically, the antenna was vertically inserted in the skull layer; hence, the top and
bottom of the antenna were touching the fat and dura layer, respectively (see Figure 2).
Figure 9 shows the test setup for S11 measurement. The phantom (with the antenna inside)
was placed on a mount made with low permittivity and low loss Rohacell® foam. The
coaxial cable sticking out from the phantom was connected to a vector network analyzer
(Anritsu MS2038C). Figure 10 compares the measured and simulated S11 of the proposed
and conventional Vivaldi antennas. The latter is an ordinary Vivaldi that does not have the
vertical slot array, as depicted in the inset of Figure 10. The red and black lines correspond
to S11 responses of the proposed and conventional Vivaldi, respectively. The measured
S11 data indicated that the resonant frequency of the proposed Vivaldi was 2 GHz lower
than the conventional Vivaldi (4.3 GHz versus 6.3 GHz), which confirms the antenna
miniaturization effect caused by the vertical slot array. The simulation results of S11 are
drawn with solid lines. They agree well with the measurements. The measured resonant
frequencies were higher than those from simulations by approximately 300 MHz and
150 MHz for the proposed and conventional antennas, respectively, possibly because of
slight discrepancies in the phantom’s material properties. We note that the phantom’s
εr and tanδ are highly affected by the amount of water evaporation with time. It is hard
to avoid the water evaporation in spite of precautions when handling the semi-solid
phantoms. Solutions to prevent this difficulty can include wrapping each tissue phantom
with a thin layer of low permittivity material or using 3D-printed biomaterials with a low
moisture content.
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3.4. Measurement of Radiation Pattern

The far-field radiation patterns of the proposed antenna were measured in an accred-
ited antenna chamber [28]. Figure 11 shows the seven-layer phantom (with the antenna
inside) mounted on a positioner. The latter was capable of 3D rotation (180◦ in elevation and
360◦ in azimuth). The z-direction shown in the figure corresponds to the end-fire direction
where the aperture of the antenna points is. Figure 12a shows the measured 3D radiation
pattern at the center frequency, 4 GHz. It shows that most radiation is pointed toward the
zenith (z-direction) with a high front-to-back ratio (FBR) of 16 dB. Furthermore, Figure 12b,c
present the measured 2D E-plane and H-plane patterns. They were normalized by the peak
gain value and then compared with the simulated radiation patterns. Good agreements
can be observed, implying the prototype fabrication and measurement procedures were
valid. Figure 13 shows the measured realized gain in the z-direction at the frequency range
of 2 to 6 GHz. We compared the measured realized gain of the conventional Vivaldi (see
Figure 10 b) with that of the proposed Vivaldi (see Figure 10). The measured realized gain
data was not steady in the bandwidth of interest, and it was approximately 2 dB lower
than the simulation data (see Figure 5b); however, the gain improvement of the proposed
design compared to the conventional Vivaldi was clearly observed. A gain improvement
is observed because of the added vertical slots, which redirect more currents along the
tapered slot as described in the simulation study, Figure 4. The average improvement
was 2.68 dB throughout 3–5 GHz, which is similar to the improvement demonstrated
in Figure 5b. Table 3 compares previously reported brain-implanted antennas and the
proposed Vivaldi in terms of their operation frequency, size, and gain. It also includes the
conventional Vivaldi’s gain to highlight the gain improvement of the proposed Vivaldi.
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Figure 12. Radiation patterns of the antenna prototype inside the phantom at 4 GHz: (a) measured
3D radiation pattern, (b) measured and simulated 2D E-plane radiation pattern (normalized by the
peak), and (c) H-plane radiation pattern (normalized by the peak).
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Figure 13. A comparison of measured realized gain of the conventional and proposed Vivaldi antennas.

Table 3. Comparison of brain-implanted antennas.

Antenna Frequency (GHz) Size (mm3) Gain (dBi)

[11] 2.40–2.48 39.9 −20.75
[12] 2.42–2.50 50 −25
[14] 2.40–2.48 101.6 −17.3

Conventional Vivaldi 3–5 42 −18.3
Proposed Vivaldi 3–5 42 −15.7

4. Specific Absorption Rate and Link Budget Analysis
4.1. Specific Absorption Rate

It is required to examine the specific absorption rate (SAR)—the amount of non-
ionizing radiated power absorbed by the surrounding biological tissues—for an implantable
wireless device. SAR standards differ by countries or regulatory agencies; however, two
SAR standards are mainly considered: IEEE C95.1-1999 [29] and IEEE C95.1-2005 [30]. The
maximum allowable SAR values are 1.6 W/kg averaged over 1 g of tissue and 2 W/kg
over 10 g of tissue for IEEE C95.1-1999 and IEEE C95.1-2005, respectively.

SAR values were computed and analyzed using the same simulation setup as the
antenna performance analysis (see Section 2). Figure 14a,b show the simulated SAR-1g
and SAR-10g for various frequencies after supplying an input power of 1 W to the antenna
embedded in the bone layer. The SAR-1g in Figure 14a continuously increased with
increasing frequency, while the SAR-10g in Figure 14b shows a peak and null at 3.6 GHz
and 5.1 GHz, respectively. The SAR values were very high because of the high input power
of 1 W, e.g., 240 W/kg and 59.4 W/kg at 4 GHz for SAR-1g and SAR-10g, respectively.

159



Sensors 2022, 22, 4328

However, the actual SAR is expected to have a much lower value because the power
consumed by the RF-front-end of implantable devices generally lies within 100 µW to a few
mW [31]. Hence, we calculated the maximum allowable input power to the antenna that
satisfied the SAR-1g (1.6 W/kg) and SAR-10g (2 W/kg) criteria. They are marked by the red
dashed lines. The SAR-1g criterion can be fulfilled as long as the input power is less than
5.9 mW for the frequency range of 3–5 GHz as in Figure 14a. The maximum allowable input
power for the SAR-10g was 33.6 mW as in Figure 14b, which is less stringent than SAR-1g.

Sensors 2022, 22, × FOR PEER REVIEW 10 of 14 
 

 

240 W/kg and 59.4 W/kg at 4 GHz for SAR-1g and SAR-10g, respectively. However, the 

actual SAR is expected to have a much lower value because the power consumed by the RF-

front-end of implantable devices generally lies within 100 μW to a few mW [31]. Hence, we 

calculated the maximum allowable input power to the antenna that satisfied the SAR-1g (1.6 

W/kg) and SAR-10g (2 W/kg) criteria. They are marked by the red dashed lines. The SAR-

1g criterion can be fulfilled as long as the input power is less than 5.9 mW for the frequency 

range of 3–5 GHz as in Figure 14a. The maximum allowable input power for the SAR-10g 

was 33.6 mW as in Figure 14b, which is less stringent than SAR-1g. 

  
(a) (b) 

Figure 14. The simulated SAR and maximum allowable input power of the proposed antenna inside 

the seven-layer phantom: (a) SAR-1g and (b) SAR-10g. The insets show simulated SAR value distri-

butions around the antenna. 

We measured SAR using a SAR robot in an accredited test facility [32]. Figure 15a 

shows the SAR robot and probe and Figure 15b shows the actual test set-up with the phan-

tom and signal generator as the source. Figure 15c provides a zoomed-in view of the phan-

tom placements. The seven-layer phantom with the antenna inside was attached at the 

bottom of a SAR flat phantom. A SAR probe was scanned by the robot arm at the opposite 

side of the empty flat phantom, and the E-field magnitudes radiated from the antenna 

were collected. The antenna was fed by a coaxial cable connected to a signal generator. 

The SAR values at a wireless local area network (WLAN) of 2.45 GHz and 5.8 GHz were 

measured because of the lack of SAR measurement procedure for 3–5 GHz IR-UWB. The 

output power from the signal generator was set to 1 mW. Figure 16 shows the measured 

SAR distribution. The total scan area was 150 × 150 mm2. The zoomed scan volume after 

identifying the hot spot was 40 × 40 × 35 mm3. The hot spot locations for 2.45 GHz and 5.8 

GHz were comparable. The higher frequency (5.8 GHz) showed a higher averaged SAR-

1g value of 0.42 W/kg than that of the lower frequency (2.45 GHz) (i.e., 0.11 W/kg). Both 

of them were much lower than the 1.6 W/kg limit. These measurement trials provide a 

reasonable postulation that SAR is not a problematic issue despite that the measured fre-

quencies were not exactly matched to the target frequencies. 

 
(a) (b) (c) 

Figure 14. The simulated SAR and maximum allowable input power of the proposed antenna
inside the seven-layer phantom: (a) SAR-1g and (b) SAR-10g. The insets show simulated SAR value
distributions around the antenna.

We measured SAR using a SAR robot in an accredited test facility [32]. Figure 15a
shows the SAR robot and probe and Figure 15b shows the actual test set-up with the
phantom and signal generator as the source. Figure 15c provides a zoomed-in view of the
phantom placements. The seven-layer phantom with the antenna inside was attached at the
bottom of a SAR flat phantom. A SAR probe was scanned by the robot arm at the opposite
side of the empty flat phantom, and the E-field magnitudes radiated from the antenna
were collected. The antenna was fed by a coaxial cable connected to a signal generator.
The SAR values at a wireless local area network (WLAN) of 2.45 GHz and 5.8 GHz were
measured because of the lack of SAR measurement procedure for 3–5 GHz IR-UWB. The
output power from the signal generator was set to 1 mW. Figure 16 shows the measured
SAR distribution. The total scan area was 150 × 150 mm2. The zoomed scan volume after
identifying the hot spot was 40 × 40 × 35 mm3. The hot spot locations for 2.45 GHz and
5.8 GHz were comparable. The higher frequency (5.8 GHz) showed a higher averaged
SAR-1g value of 0.42 W/kg than that of the lower frequency (2.45 GHz) (i.e., 0.11 W/kg).
Both of them were much lower than the 1.6 W/kg limit. These measurement trials provide
a reasonable postulation that SAR is not a problematic issue despite that the measured
frequencies were not exactly matched to the target frequencies.
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Figure 15. SAR measurement setup with DASY 5 SAR robot: (a) SAR robot with the probe, (b) whole
measurement setup, and (c) antenna placement.
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4.2. Link Budget Analysis

A link budget analysis [33,34] was conducted to estimate the approximate performance
of an implantable wireless communication system equipped with the proposed Vivaldi
antenna. We assumed a point-to-point wireless communication system whose transmitting
antenna was the proposed Vivaldi implanted in the brain and the receiving antenna was
a broadband testing antenna [35] situated outside of the head. Table 4 summarizes the
parameters for the link budget analysis. The link margin (LM) is a power margin at the
receiver, allowing a satisfying wireless communication quality. More specifically:

LM(dB) = Pr − Pr(min) (1)

where Pr corresponds to the received power and Pr(min) denotes the minimum required
power for the receiver. LM typically spans from 3 to 20 dB. We set it to 20 dB, the most
demanding requirement, to reflect the harsh wireless communication environment. The
assigned transmit power (Pt) was −25 dBm, which is a typical output power of a trans-
mitter for implantable devices [31]. The realized gain of the transmitting (Tx) antenna
(i.e., implanted antenna) was given by −16.67 dB based on the measurement in the data
presented in Section 3. Furthermore, the receiving (Rx) antenna’s realized gain was set
to 6.65 dB, which corresponds to the antenna gain at 4 GHz of a broadband tapered slot
antenna [35]. The required signal-to-noise ratio (SNR) per bit, or the energy per bit to noise
power spectral density ratio (Eb/N0), was set to 9.6 dB by assuming an ideal phase-shift
keying (PSK) performance. The bit rate was set to 256 Mbps, which is reasonably high for
brain-signal monitoring [34]. Finally, the path loss (L0) was calculated for the free-space at-
tenuation. In the equation, λ4GHz denotes the free-space wavelength of 4 GHz (i.e., 75 mm)
and D denotes the distance between the Tx and Rx. In fact, D is the parameter of interest
for this link budget analysis. According to the Friis transmission formula [33]:

Pr(dB) = Pt + RGt + RGr − L0 (2)

Pr(min)(dB) =
Eb
N0

+ KT0 + B (3)

Plugging (2) and (3) into (1) and then applying the parameters from Table 4 provided
D = 108.1 mm, i.e., the transmitted brain signal can be reliably received with LM of 20 dB at
the receiver located at 108.1 mm above the head. We note that this distance was reduced to
80.4 mm if the conventional Vivaldi with a realized gain of −19.24 dB was used instead of
using the proposed Vivaldi.
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Table 4. Parameters for link budget analysis.

Parameters Values at 4 GHz

Link margin (LM) 20 dB
Transmit power (Pt) −25 dBm

Tx Ant. realized gain (RGt) −16.67 dB
Rx Ant. realized gain (RGr) 6.65 dB

SNR per bit (Eb/N0) 9.6 dB
Boltzmann’s constant (K) 1.38 × 10−23

Temperature (T0) 298 K
Bit rate (B) 256 Mbps

Path Loss (L0) 20 log
(

4πD
λ4GHz

)
dB

5. Conclusions

The full-wave electromagnetic simulations showed that the end-fire antenna vertically
embedded in the skull exhibited two times (3 dB) higher antenna gain than an ordinary
case—a broadside antenna horizontally embedded below the skull. The proposed end-fire
Vivaldi antenna was measured to have a small footprint of 12 × 7 mm2 because of the novel
comb-shaped slot arrays behind the main aperture. These slot arrays not only promote the
antenna miniaturization but also enhance the gain and bandwidth. The geometry of the
antenna was carefully optimized by full-wave simulations to operate in the 3–5 GHz IR-
UWB frequency range. An antenna prototype was fabricated and a series of measurements
were performed by embedding the antenna in an in-house-made seven-layer brain-tissue-
emulating phantom to verify the antenna performance. The measurement results of the
proposed Vivaldi showed that the resonant frequency was 2 GHz lower, and the gain was
2.6 dB higher than the conventional Vivaldi without slot arrays. Furthermore, the proposed
Vivaldi can be a promising candidate for brain-to-outside wireless communication based
on the link budget and SAR analyses. Based on our findings, it could be worthwhile for
surgeons and medical professionals to identify pathways for implanting antennas in the
skull during a brain surgery (e.g., craniotomy).
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Abstract: Respiratory disorders, being one of the leading causes of disability worldwide, account for
constant evolution in management technologies, resulting in the incorporation of artificial intelligence
(AI) in the recording and analysis of lung sounds to aid diagnosis in clinical pulmonology practice.
Although lung sound auscultation is a common clinical practice, its use in diagnosis is limited due to
its high variability and subjectivity. We review the origin of lung sounds, various auscultation and
processing methods over the years and their clinical applications to understand the potential for a
lung sound auscultation and analysis device. Respiratory sounds result from the intra-pulmonary
collision of molecules contained in the air, leading to turbulent flow and subsequent sound production.
These sounds have been recorded via an electronic stethoscope and analyzed using back-propagation
neural networks, wavelet transform models, Gaussian mixture models and recently with machine
learning and deep learning models with possible use in asthma, COVID-19, asbestosis and interstitial
lung disease. The purpose of this review was to summarize lung sound physiology, recording
technologies and diagnostics methods using AI for digital pulmonology practice. Future research
and development in recording and analyzing respiratory sounds in real time could revolutionize
clinical practice for both the patients and the healthcare personnel.

Keywords: respiratory disorders; lung sounds; AI; phonopulmogram; auscultation; electronic stethoscope;
machine learning; deep learning

1. Introduction

Respiratory diseases are a major public health concern and a leading cause of mortality
globally. According to the World Health Organization, respiratory disorders were among

Sensors 2023, 23, 5514. https://doi.org/10.3390/s23125514 https://www.mdpi.com/journal/sensors
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the top 10 global causes of death in 2019 and account for more than 8 million fatalities each
year. The burden of these diseases is particularly high in low- and middle-income nations
where access to healthcare is limited and air quality is suboptimal [1]. Chronic obstructive
pulmonary disease (COPD) is the third-most common cause of death globally, causing
3.2 million deaths annually, while over 250 million individuals worldwide suffer from
asthma [2–4]. Infections such as tuberculosis (TB) are also a significant contributor to the
disease burden, with more than 10 million new cases and 1.4 million deaths annually [4–6].
Even in affluent nations, lung cancer remains one of the deadliest types of cancer, with a
5-year survival rate of just 10–20% [7]. The epidemiology of respiratory diseases highlights
the need for increased efforts to prevent and manage these conditions.

Auscultation is a critical technique that is frequently used in conjunction with clinical
and laboratory methods to diagnose respiratory illnesses. Auscultation is the process of
using a stethoscope to listen to the chest to hear respiratory sounds and evaluate breathing
patterns. This quick and easy technique offers crucial information for diagnosis [8]. In order
to detect respiratory disorders, chest imaging and pulmonary function tests (PFTs) are
also frequently performed. Chest X-rays (CXRs) or computed tomography (CT) visualize
the chest, and PFTs assess lung capacity and function [9–11]. Bronchoscopy and biopsy
entail inserting a scope into the airways in order to visually inspect the lung tissue up
close and collect tissue samples for further examination. These techniques have helped to
improve patient outcomes by supplementing correct diagnosis and treatment of respiratory
disorders [12,13]. The field of pulmonary diagnostics is undergoing a significant transition
as a result of the integration of artificial intelligence (AI) in healthcare, with AI algorithms
assisting in the interpretation of imaging investigations, real-time analysis and clinical
decision making [14].

Although successful, current techniques using traditional stethoscopes for identify-
ing respiratory illnesses have some drawbacks, one of them being its subjective nature
and dependence on the knowledge and expertise of the healthcare provider [15]. The
intra-operator variability and subjectivity associated with auscultation leads to a lack in
uniformity, which can make it challenging to evaluate and understand results over time
or between various practitioners. The capacity of CXRs to identify several respiratory
disorders, particularly in the early stages of disease, is also limited [16]. There are dangers
associated with invasive diagnostic procedures such as bronchoscopy and biopsy, includ-
ing infection and bleeding [17,18]. Additionally, patients in rural areas struggle to receive
correct and timely diagnosis and treatment due to a lack of resources [19].

Lung sounds (LSs), or auscultation as they are commonly known, can be used to
supplement diagnosis in several lung diseases, including pneumonia, bronchitis and
asthma [8]. The variations in lung sounds can provide valuable information for both the
diagnosis and treatment of respiratory diseases. Lung sounds can also be used to check on
the success of respiratory disorder treatments [8]. Conventional stethoscopes, although non-
invasive, quick and inexpensive, frequently provide weak sounds, making it challenging
to recognize and identify some sounds, such as mild cardiac murmurs or pulmonary
wheezes [20,21]. Since their normal frequency range is constrained, they frequently miss
out on some high- or low-frequency sounds that can be crucial for diagnosis [22].

The need to increase the efficacy and accuracy of auscultation gave rise to the evolution
of AI-based analysis. With previous definitions of pathological LSs in place, computer
algorithms and programs have been developed to detect them automatically using the elec-
trical recordings (done using electronic stethoscopes) of LSs known as phonopulmograms
(PPGs). AI has the capacity for self-improvement as it learns from new data and cases
and can be trained to perform better than traditional processing methods [23,24]. In recent
years, AI algorithms have been used for the processing and recognition of LSs, among
which the most frequently used algorithms include artificial neural networks, Gaussian
mixture models and support vector machines [25]. Utilization of a digital stethoscope
to record and store LSs of high quality and integration with AI enables the classification
of LSs into normal or abnormal in real-time and serves as an essential screening step for
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physicians [21]. Asthma, COPD and pneumonia are among the respiratory illnesses that
AI-based smart stethoscopes and machine learning algorithms are being utilized to identify;
the stethoscopes can also analyze LSs and provide real-time feedback for more precise
diagnosis [24,26]. AI-based systems can also be useful as a diagnostic tool to triage patients
and identify those in need of serious care and referral to a specialist [24,26].

Over the years, there has been an evolution of technologies which have been able to
pick up subtle clues to aid in diagnosis of respiratory sounds. While existing literature
highlights the need for this technology, it fails to provide a clear understanding of the
mechanism of LS production and its clinical usability. The purpose of this review was
to study the physiology of LS origin, factors affecting its frequency, AI-assisted clinical
applications and recording technologies in existing literature. Additionally, this review
reflects on the prospects of using AI-assisted microwave-based dual sensing systems for
PPG acoustics and lung tissue imaging and their impact on transforming pulmonology
practice for improving patient care.

2. Physiology of Lung Sounds

LSs, believed to be the result of a structure–function continuum, are primarily pro-
duced by the airflow along the tracheobronchial tree. Ideally, the air should flow laminarly
as it passes through the respiratory tract. However, laminar flow only occurs at small ter-
minal components such as bronchioles. Usually when a large volume/tidal volume of air
passes through the respiratory tract, it encounters branching and irregular-walled airways
such as the trachea or bronchi, which causes a turbulent and haphazard airflow producing
sound from the collision of air molecules with each other or with the airway walls [27].
Another mechanism for breath sound generation is the development of whirlpools between
the 5th and the 13th generations of the bronchial tree [28]. The whirlpools or vortices are
produced when air flows from a narrower circular circumferential opening into a wider
one at the origin of these sounds inside the chest wall, ranging over a frequency of 50 Hz to
2500 Hz and possibly reaching up to 4000 Hz at the trachea [29]. However, as the sound
traverses the lung parenchyma, pleura and chest wall, it becomes dampened over higher
frequencies and the auscultated sounds over the chest wall are thus limited to a frequency
range of 100–200 Hz [28].

LSs originate within the lungs, which differentiates them from the transmitted voice
sounds originating from the larynx. LSs comprise normal breath sounds (Table 1) and
adventitious/abnormal sounds (Table 2) as auscultated over the chest wall. The normal
sounds can be further distinguished as normal tracheal sounds, normal or vesicular breath
sounds or bronchial breath sounds, based on their characteristics and location of ausculta-
tion as shown in Figure 1. The various LSs are described in Tables 1 and 2 [8].

Table 1. Normal Breath Sounds.

S. No. Location Mechanism of
Production Characteristics Acoustics

Associated
Pathological
Conditions

1. Tracheal
Sounds Over trachea

Passage of large
volume of air at
high flow rate

• Biphasic (inspiratory,
expiratory)

• Harsh, high-pitched
• Expiratory phase >

inspiratory phase

100–5000 Hz
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Table 1. Cont.

S. No. Location Mechanism of
Production Characteristics Acoustics

Associated
Pathological
Conditions

2. Bronchial
Sounds

Manubrium
(between 2nd
and 3rd
intercostal
spaces)

Passage of air
through
progressively
smaller airways

• Hollow, high-pitched
• Biphasic (inspiratory,

expiratory)
• Expiratory phase >

inspiratory phase (I:
E: 1:2)

• a/w Whispering
pectoriloquy

Highly variable
depending on site
of auscultation
and underlying
pathology.

• Consolidation
• Pleural effusion
• Alveolar collapse
• Mediastinal

tumor

3. Vesicular
Sounds All over chest

Passage of air
through bronchi
and bronchioles

• Soft, low-pitched
• Biphasic (inspiratory,

expiratory)
• I: E: 2:1
• Intensity of

inspiratory phase>
expiratory phase

Auscultation:
100–200 Hz
Sensitive
microphone: up
to 800 Hz

Table 2. Abnormal Lung sounds.

S. No. Location Mechanism of
Production Characteristics Acoustics Associated Pathological

Conditions

1. Stridor [31] Proximal/upper
airway

Airway obstruc-
tion/narrowing

• High-pitched
• Inspiratory

(supraglottic
narrow-
ing/obstruction)

• Biphasic (glot-
tis/subglottis/
cervical tra-
chea)

• Expiratory
(thoracic tra-
chea/bronchi)

>500 Hz

• Adenoid
hypertrophy,
craniofacial
abnormalities,
choanal atresia, etc.
(inspiratory)

• Laryngomalacia,
vocal cord palsy,
laryngeal mass, etc.
(biphasic)

• Tracheal stenosis,
foreign body,
vascular
compression, etc.
(expiratory)

2. Wheeze [32]
Anterior/
posterior chest
wall

Airway
narrowing
(spasm/mass/
mucus plugs/
foreign body/
parasite infesta-
tion)

• High-pitched
• Shrill, coarse

whistling/
rustling

• Intensity on
expiration >
inspiration

100–5000 Hz

• Asthma
• COPD
• Endobronchial mass
• Mucus plugging
• Foreign body

3. Rhonchus
Anterior/
posterior chest
wall

Passage of air
through lower
respiratory tract
secretions

• Low-pitched,
squeaky

• Intensity on
expiration >
inspiration

• Character
affected by
coughing

~150 Hz

• Pneumonia
• Chronic bronchitis
• Bronchiectasis
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Table 2. Cont.

S. No. Location Mechanism of
Production Characteristics Acoustics Associated Pathological

Conditions

4. Coarse
crackles [33]

Anterior/
posterior chest
wall

Passage and
opening of
airways clogged
by secretions and
fluids

• Low-pitched
• Biphasic

beginning at
early
inspiration

~350 Hz
• Pulmonary edema
• Pneumonia
• Bronchiectasis

5. Fine
crackles [33]

Anterior/
posterior chest
wall

Opening of
collapsed
terminal airways

• High-pitched ~650 Hz

• Interstitial lung
diseases

• Congestive heart
failure

• Pneumonia
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mor 

3. Vesicular 

Sounds 
All over chest 

Passage of air through 

bronchi and bronchioles 

• Soft, low-pitched 

• Biphasic (inspiratory, 

expiratory) 

• I: E: 2:1 

• Intensity of inspira-

tory phase> expiratory 

phase 

Auscultation: 

100–200 Hz 

Sensitive 

microphone: up 

to 800 Hz 

 

Table 2. Abnormal Lung sounds. 

S. No. Location 
Mechanism of 

Production 
Characteristics Acoustics 

Associated Pathological 

Conditions 

1. Stridor 

[31] 

Proximal/upp

er airway 

Airway 

obstruction/narrowi

ng 

• High-pitched 

• Inspiratory (supra-

glottic narrowing/obstruc-

tion) 

>500 Hz 

• Adenoid hypertrophy, 

craniofacial abnormalities, 

choanal atresia, etc. (inspira-

tory) 

Figure 1. Physiological origin of lung sounds and primary sites of auscultation [30]. Numbers in the
figure represent the points of auscultation.

3. Recording Technologies

Conventional stethoscopes, constrained by the subjectivity and expertise of the clini-
cian, have found limited use in pulmonology practice [21,34]. Another drawback is their
lack of use in telemedicine, remote care and care for COVID-19 patients because of personal
protective equipment [35]. Stethoscope auscultation in busy clinic settings often results in
poor signal transmission due to noise, tubular resonance effects and greater attenuation of
higher-frequency sounds ranging from 50 Hz to 2500 Hz [34].

To overcome the shortcomings of a conventional pulmonary auscultation device,
deep learning-based models through convolutional neural networks (CNNs) have been
developed to enable electronic auscultation of LSs with digital stethoscopes for increased
diagnostic accuracy and precision. In their comparative study of the effectiveness of doctor
auscultation and machine learning-based analysis based on neural networks, Grzywalski
et al. suggested that automatic analysis could increase efficiency [26]. A study revealed
that AI algorithms were superior to physicians in detecting adventitious LSs [25].

Though machine learning has wide applications in analyzing LSs, the analysis is
nonetheless constrained by the fact that it performs less accurately when the noises from
the stethoscope itself and the surrounding environment are mixed into the recorded sounds
or when two or more breathing sounds are present at the same time [21,36]. In addition,
deep learning algorithms’ black box-type algorithmic aspect results in a certain lack of
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interpretability of the analyzed comprehensive information. Interpretability being a crucial
component of the analysis, it also closely relates to technological challenges and data
dependencies, hence the need for standardization and a clear definition [37]. Table 3
shows the various technological modalities and their shortcomings to gauge a better
understanding.

Table 3. Summary of studies on technology applying AI in lung sound auscultation through
phonopulmography to aid in disease detection.

Year,
Author Study Technique Results & Limitations

1989, Pasterkamp [38].

Assessing lung sound
amplitudes, frequencies and
timing using digital
respirosonography.

Piezoelectric accelerometers→
four-channel FM tape recorder
→ filtered and played through
an analog-to-digital converter
→ IBM sensitive personal
computer.

Sonograms of tracheal and
vesicular sounds with sound
intensities displayed on a color
scale identified phases of
respiration in normal and
asthmatic patients.

1995, Forkheim et al. [39].
Testing of various neural
networks to identify wheezes
from different lung segments.

Raw data and Fourier transform
data used to train and test
back-propagation neural
network (BPNN).

Fourier transform data
provided a better classification
rate than the raw signal using
the BPNN with accuracy of 91%.
Large training set is required to
yield better results.

1997, Kahya et al [40].
Classification of lung sounds
into obstructive, restrictive
and healthy.

Autoregressive models applied
to overlapping lung sounds
were used to retrieve feature
parameters using k-NN-voting
and k-NN-multinominal
classifiers. Leave-one-out
method was used to classify.

The multinominal classifier
showed higher performance in
both expiration and combined
inspiration and expiration cycle
vs. the voting classifier.

1999, Rietveld [41].

Comparison of neural
networks (NNs) and human
examiners in classifying
normal and asthmatic lung
sounds.

Samples digitized and related to
PEFR→ Fourier spectrum was
calculated from selected breath
cycle→ spectral vectors
obtained were classified using
NN.

Self-classifying networks were
better (identified 96% of the
spectrograms) at discriminating
the classes of breath sounds
than human examiners.

2000, Waitman et al. [42].
Representing and classifying
breath sounds in an intensive
setting.

Breath sounds represented by
power spectral density→
feature vectors→ individual
breath sounds→ inspiratory
and expiratory segments→
number of inputs featured,
hidden units and hidden layers
calculated using BPNN.

The training tapes were better
classified (91%) with a higher
sensitivity (87%) and specificity
(95%) vs. the ICU breath sounds
(73%, 62% and 85%).

2000, Oud et al. [43].

Analysis of breath sounds
produced by asthmatics and
corelating them with degree
of obstruction.

Air-coupled electret
microphone attached to trachea
→ wireless tape-recorder→
high-pass filtering→ discrete
Fourier transform (DFT) and
Welch method→ K-NN-based
classifier.

Welch spectra are comparatively
more convenient; 60–90% of the
sound data classified according
to their FEV1 value.
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Table 3. Cont.

Year,
Author Study Technique Results & Limitations

2002, Alsmadi et al. [44].

Digital signal processor (DSP)
used for classification of lung
sounds into healthy and
pathological.

Microphone attached to the
chest→ breath sounds split into
inspiration and expiration→
segmented and modeled by an
auto-regressive model of order 6
BY Levinson–Durbin algorithm
→ classified using k-NN and
minimum distance classifier.

Encouraging results obtained
for classifying sounds into
two classes.

2003, Baydar et al. [45].
Automatic classification of
respiratory sounds using
signal coherence method.

Recorded breath sounds were
amplified and digitized→
signal coherence was calculated
using the feature vectors.

Performance was unsatisfactory
but could have promising
application in wheeze analysis
due to their sinusoidal structure.

2003, Bahoura et al. [46].
Classification of respiratory
sounds using cepstral
analysis.

Segmented sound characterized
by fewer cepstral coefficients→
classified using Vector
Quantization (V) method.

Higher classification results vs.
Autoregressive representation
and the wavelet transform
method of feature.

2004, Folland et al. [47].

Comparing constructive
probabilistic neural network
(CPNN) with multilayer
perceptron (MLP) and
radial-basis function network
(RBFN) in classifying
tracheal–bronchial
breath sounds.

Data were presented as
signal-estimation models of the
tracheal–bronchial frequency
spectra.

The classification by CPNN,
MLP and RBFN was 97.8,77.8
and 96.2% accurate, respectively.

2004, Kandaswamy et al. [48]. Lung sound analysis using
wavelet transform method.

Decomposed lung sounds into
frequency sub-bands using
wavelet transform→ features
extraction→ classified using an
artificial neural network
(ANN)-based system.

Lung sounds classified into
normal, wheeze, crackle,
squawk, stridor or rhonchus.

2004, Gnitecki et al. [49].

Analysis of amplitude and
patterns of lung sounds (LSs)
in children before and after
methacholine challenge test.

From root mean square (RMS)
of LS and breath hold (BH)
signals, signal-to-noise ratio
(SNR) was determined, and 2
fractal-dimension (FD)
algorithms based on signal
variance and morphology were
applied.

RMS-SNR and
morphology-based FD values
better classified
bronchoconstriction with LSs.

2004, Bahoura et al. [50].

Classification of respiratory
sounds into normal and
wheeze using Gaussian
mixture models (GMM).

Cepstral or wavelet transform
used to characterize the sound
signal divided into overlapping
segments. This method
compared with vector
quantization (VQ) and
multi-layer perceptron NN.

2007, Chien et al. [51].

Classification of normal lung
and wheezing sounds using
cepstral analyses in Gaussian
mixture models (GMM).

Lung sound recorded using
electro-condenser microphone,
amplified, filtered and analyzed
using MFCC and Fourier
transform-based model.

Accuracy of 90% at Gaussian
mix 16 and increase in
performance with longer length
of time for training sound.
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Table 3. Cont.

Year,
Author Study Technique Results & Limitations

2008, Alsmadi et al. [52].

Using k-NN and
minimum-distance classifiers
to design an instrument to
acquire, parametrize and
classify LSs.

Sound signal from chest
microphone and flow signal
from pneumotachograph→
feature extracted using LPC→
classified based on 12 reference
libraries

Clinical testing had a
96% accuracy.

2008, Lu et al. [53]. Automated crackle detection
and classification.

Crackle separation, detection
and classification using fractal
dimension, wavelet packet filter
(WPST) and GMM.

Separation using WPST 98%,
detection sensitivity of 92.9%
and a classification performance
of 91.5%.

2009, Riella et al. [54]. Automatic wheeze detection
in digitally recorded LSs.

Pre-processing of respiratory
cycle→ computing the
spectrogram→ stored as an
array→multi-layer perceptron
ANN.

84.82%, 92.86% accuracy for
identification of wheeze in
isolated and groups of
respiratory cycle respectively.

2009, Bahoura et al. [55].

Comparing feature extraction
by Fourier transform, linear
predictive coding, wavelet
transform and MFCC and
classification using vector
quantization, GMM and
ANN.

Recorded sound split and
extracted features used to train
and test the model for
classification.

Results achieved best by a
combination of MFCC and
GMM with p < 0.05 compared to
other methods.

2009, Matsunaga et al. [56].

Segregation of normal and
abnormal lung sounds based
on maximum likelihood
approach using hidden
Markov models.

Two acoustic modeling methods
were used: one for classifying
abnormal sounds and the other
for normal lung sounds.

Both models showed increase in
recall rate for identifying
abnormal and normal lung
sounds. Noises hindered the
improvement of recall rates.

2010, Mayorga et al. [57].

Evaluation and definition of
lung sounds to assess
relationship with respiratory
diseases.

Electronic stethoscope to record
lung sounds→ analysis
through GMM models to
determine frequency of
wheezing and crackles to
predict disease state.

52.5% accuracy in
cross-validation evaluation,
98.75% accuracy in reference
recognition. This method could
be used in <5-year-olds or to aid
physicians with sensorial
restrictions. Inability to process
unwanted sounds and small
sample size.

2010, Azarbarzin et al. [58].
Unsupervised snore
classification algorithm of
patients during their sleep.

LSs during sleep were recorded
via polysomnography (PSG) by
two tracheal and ambient
microphones→ detected with
vertical box algorithm→
K-means clustering algorithm to
label as snore or no-snore.

Accuracy was 98.2% for tracheal
recordings and 95.5% for
ambient recordings. No
requirement of prior training;
robust and fast model.

2010, Flietstra et al. [59].

Automated analysis of
crackles in interstitial
pulmonary fibrosis (IPF) and
ability to differentiate from
crackles due to congestive
heart failure (CHF) and
pneumonia (PN).

Lung sounds from patients with
IPF, CHF and PN were
examined using a 16-channel
lung sound analyzer and
classified using neural networks
and support vector machines
(SVM)

IPF crackles were distinguished
from PN crackles with a 0.82
sensitivity, 0.88 specificity, 0.86
accuracy. IPF crackles were
separated from CHF crackles
with 0.77 sensitivity, 0.85
specificity, 0.82 accuracy.
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Year,
Author Study Technique Results & Limitations

2011, Serbes et al. [60].

Novel method for crackle
identification to aid in
diagnosis of pulmonary
disorders.

LSs with and without crackles
→ dual tree complex wavelet
transforms (DTCWT)
time-frequency (TF) and
timescale analysis→ feature
subsets→ SVMs

Usage of DTCWT enhances
crackle detection ability of the
model. Inability to use model in
real time.

2011, Jin et al. [61].

Novel identification and
extraction method of
adventitious LSs based on
instantaneous frequency (IF)
analysis using
temporal–spectral
dominance-based features.

Electret condenser microphone
to record LSs from healthy
subjects and subjects with
varying degrees of airway
obstruction a TF decomposition
method.

Accuracy of 92.4 ± 2.9%.
Validity of results is required
from more test subjects as well
as pathological confirmation.
Exploration of crackle LSs is
required.

2011, Charleston-
Villalobos et al. [62].

Assessment of parametric
representation of LSs to
classify them as normal or
abnormal (ILD).

LSs→ conventional power
spectral density, eigenvalues of
the covariance matrix and
univariate autoregressive (UAR)
and multivariate autoregressive
models (MAR)→ feature
vectors→ supervised neural
network.

The UAR model showed
effectiveness with accuracy of
75% in healthy people and 93%
in patients with ILD in LS
parameterization.

2011, Yamashita et al. [63].

Distinction between healthy
subjects and pulmonary
emphysema patients based on
LSs.

LSs→ two-step classification
process→ hidden Markov
models and bigram models→
label acoustic segments as
“confident abnormal
respiration”.

Classification rate of 88.7%
between diseased and healthy
patients. Need for a refined
threshold to finetune and
improve performance.

2012, Xie et al. [64].
LS extraction using a
multi-scale analysis system to
aid in LS classification.

Healthy and pathological
subjects with airway
obstruction→multi-scale
principal component analysis→
enhance and extract signal→
empirical classification.

Accuracy of 98.34%

2017, Gronnesby et al. [65].
Machine learning-based
detection of crackles in lung
sounds

Microphone with a recorder→
reference database training sets
with crackle and normal
windows→ preprocessing a
classification and server
implementation

5-dimensional vector and SVM
with a radial-basis function
kernel performed best with a
precision of 0.86 and recall
of 0.84.

2021, Karimizadeh et al. [66].

Multichannel LS analysis in
determining severity of
pulmonary disease in cystic
fibrosis (CF) patients.

30-channel acquisition system
→ expiration-to-inspiration LS
power ratio features calculated
→ support vector machine,
ANN, decision tree and naïve
Bayesian classifiers.

Upper and peripheral airways
features were more effective in
distinguishing between mild
(91.1%) and moderate-to-severe
(92.8%). The NN classifier had
the best accuracy, of 89.05%.

2021, Chung et al. [67].
Artificial intelligence
(AI)-based pneumonia
diagnostic algorithm.

Loudness and energy ratio were
used to represent the level of
cough sounds and spectral
variations.

90.0% sensitivity, 78.6%
specificity and 84.9% accuracy.

2021, Nguyen et al. [68] Transfer learning to tackle the
mismatch of recording setup.

Pre-trained network used to
build a multi-input CNN model.

F-score of 9.84% on the
target domain.
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2021, Ulukaya et al. [69].
Resonance-based
decomposition to isolate
crackles and wheezes.

Crackle and/or wheeze signals
decomposed using tunable
Q-factor wavelet transform and
morphological component
analysis

Significant superiority over its
competitors in terms of crackle
localization and signal
reconstruction ability.

2021, Kim et al. [70]. Automated classification of
breath sounds.

Deep-learning CNN to
categorize LSs (normal, crackles,
wheezes, rhonchi)→ LS
classification combining
pretrained image feature
extractor.

Accuracy of 85.7% and a mean
AUC of 0.92 for classification of
lung sounds.

2021, Ullah et al. [71]. LS classification.

LSs of varying duration→
pre-processed segmented
mel-frequency cepstral
coefficients (MFCCs) and
short-time Fourier transform
(STFT) analysis→ features used
to train (70%) and validate
(30%) models including ANN,
SVM, K-nearest neighbor
(KNN), decision tree (DT) and
random forest (RF).

The best results were obtained
with STFT + MFCC-ANN
combination with an accuracy
of 98.61%, 98% F1 score, 98%
recall and 99% precision.

2021, Srivastava et al. [72]. CNN-based deep learning
method for COPD detection.

Machine learning library
features such as MFCC,
mel-spectrogram, chroma and
chroma CENS.

Classification accuracy score of
93%.

2021, Rani et al. [73].
Machine learning-based
classification of pulmonary
diseases from LSs.

LSs→ Four machine-learning
classifiers (SVM, KNN, naïve
Bayes and ANN).

Low time complexity, robust
and non-invasive.

2022, Nguyen et al. [74].
Classification of adventitious
lung sounds and respiratory
diseases.

Pre-trained ResNet model→
vanilla finetuning, co-tuning,
stochastic normalization and
the combination of the three→
data augmentation in both time
domain and time frequency
domain.

58.29 ± 0.24% and 64.74 ± 0.05%
average score for the 4- and
2-class adventitious LS task and
92.72 ± 1.30% and 93.77 ± 1.41%
average score for the 3- and
2-class respiratory disease
classification tasks, respectively.

2022, Pancaldi et al. [75].
Automatic detection of
pathological LSs in patients
with COVID-19 pneumonia.

LSs of patients in the ER
processed using software
VECTOR, suitably devised for
ILD.

Diagnostic accuracy of 75%.

2022, Wu et al. [76].

Overcoming subjectivity of
conventional stethoscopes and
filtering cardiopulmonary
sounds.

An electronic stethoscope and
an AI-based classifier recorded
cardiopulmonary sounds which
were then analyzed using fast
FT.

Accuracy of 73.3%, sensitivity of
66.7%, specificity of 80% and F1
score of 71.5%.

174



Sensors 2023, 23, 5514

Table 3. Cont.

Year,
Author Study Technique Results & Limitations

2022, Neili et al. [77].

Evaluation and comparison of
time frequency techniques
such as spectrogram,
scalogram, mel spectrogram
and gammatone gram
representations in lung sound
classification.

LS signals obtained from the
ICBHI 2017 respiratory sound
database→ converted into
images of spectrogram,
scalogram, mel spectrogram
and gammatone gram TF→ fed
into VGG16, ResNet-50 and
Alex Net deep learning
architectures→ network
performances were analyzed.

Gammatone gram and
scalogram TF images coupled
with ResNet-50 achieved
maximum classification
accuracy.

2022, Vidhya et al. [78].
Diagnosis of pneumonia from
lung sounds using
gradient-boosting algorithm.

Electronic stethoscope→
audacity software→ separates
the required sound from
unwanted noises.

Good identification properties
with 97% accuracy.

2022, Dori et al. [79].

Full-spectrum auscultation
device using machine learning
analysis to detect COVID-19
pneumonia.

COVID, non-COVID patients,
healthy LSs→ full-spectrum
stethoscope→machine
learning classifier.

Sensitivity 97% and specificity 93%.

2022, Alqudah et al. [80].
Evaluation of different deep
learning models in diagnosing
respiratory pathologies.

Augmented datasets→ three
different deep learning models
→ generate four different
sub-datasets.

Highest accuracy of
CNN–LSTM model using
non-augmentation was 99.6%,
99.8%, 82.4% and 99.4% for
datasets 1, 2, 3 and 4.

2022, Kim et al. [21].

Diagnosing respiratory
sounds using deep
learning-based LS analysis
algorithm

Overcoming the subjectivity of a
conventional stethoscope.

2022, Kwon et [81]

Shifted δ-cepstral coefficients
in lower-subspace (SDC-L) as
a novel feature of lung sound
classification

Performance of SDC-L
evaluated with 3 machine
learning techniques (SVM,
k-NN, RF), two deep learning
algorithms (MLP and CNN)
and one hybrid deep learning
algorithm combining CNN with
long short-term memory
(LSTM).

SVM, MLP and a hybrid deep
learning algorithm (CNN plus
LSTM) outperformed SDC-L,
and the other classifiers
achieved equivalent results with
all features.

Implications and Limitations

Various AI models have been used in detecting and analyzing lung sounds [38–81].
These methods have been tested in and proposed to be used in a multitude of clinical
settings. From classification of lung sounds using different models [40–42,44–46,48] to
corelating lung sounds with degree of obstruction in asthmatics, AI shows promising
capability. Along with its use in the diagnosis and management of various pulmonary
disorders including pneumonia, COPD, asthma and IPF, its ability to filter cardiovascular
sounds makes it superior to conventional stethoscopes [76]. Despite extensive research
in the field, the lack of substantial sample sizes and the inability of current models to
filter environmental noise have hindered AI’s development and use in everyday clinical
practice [56]. Furthermore, since clinical decision making is feasible with interpretable AI,
current reviews of AI models are mostly black box-type models without clarity regarding
the exploitability of the features that relate to underlying pathophysiology in order to guide
practice. AI researchers in this field should apply physiologically consistent signal process-
ing and AI approaches with interpretable models that can augment physicians’ clinical
decision making to diagnose and treat various lung diseases using phonopulmograms.
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4. Clinical Applications of Lung Sounds
4.1. Infectious Respiratory Disorders
4.1.1. Pulmonary Tuberculosis

In 2018, 10 million persons had incident TB and 1.5 people died of TB [82]. The
sound properties of infected lungs differ from those of healthy lungs [83]. As a result, it is
expected that infected lungs will exhibit adventitious LSs, which frequently signifies an
abnormality in the lungs, such as obstruction in the airway passages or pulmonary disease.
The lung damage brought on by active TB results in displaced lung tissue, which obstructs
the airways and may cause wheezing. Crackles could be a sign of fibrosis brought on by
the healing of the lungs [83]. In a study performed on healthy volunteers and patients
with pulmonary TB, a large database of respiratory sounds was created and studied using
multiple approaches, such as time domain, frequency domain and accidental wheezing
and crackling analysis. The subjects in this study had their respiratory sounds recorded
at 14 different sites on their posterior and anterior chest walls. The statistical overlap
factor (SOF) was used to identify the most important signal characteristics in the temporal
and frequency domains connected to the presence of TB. The auscultation recordings
were then automatically classified into their respective groups for healthy or TB-origin
using a neural network that was trained using these features. This study illustrates the
potential of computer-aided auscultation in the detection and management of TB. Although
the diagnostic accuracy of the neural network was 73% with automated noise filtering,
more data training and potentially other signal processing techniques, the outcomes of
future models can be enhanced. Such analyses will also enable follow-up with TB patients
and gather more data as they receive treatment and recover to ascertain whether there
is potential for complete recovery [84]. More in-depth research on electronic recording
and digital analysis needs to be done on the peculiarities of respiratory sounds related
to TB [84].

4.1.2. Pneumonia

Every year, about 450 million people worldwide are affected by pneumonia, and de-
layed diagnosis results in about 4 million deaths. Respiratory sounds can be recorded with
computerized stethoscopes and AI can be used to diagnose pneumonia with the gradient-
boosting model, a machine learning model with an accuracy of 97%. This eliminates the
need to perform CXRs, blood tests and pulse oximetry tests for diagnosing pneumonia,
ensuring early diagnosis and management [80].

Signal processing and machine learning models are also used to classify normal, COPD
and pneumonia patients with an accuracy of 99.7% according to a study conducted by Naqvi
et al. [85]. Among children aged 1–59 months, hospitalized with WHO-defined clinical
pneumonia without WHO danger signs (e.g., chest in-drawing, stridor, labored breathing,
fast breathing), recorded LS analysis using machine learning and digital stethoscopes
showed the presence of wheezing (without crackles) was correlated with lower odds
of radiographic pneumonia and lower mortality as compared to children with normal
recordings [86].

4.1.3. COVID-19

CNN models have helped classify normal and abnormal lung sounds in COVID-19
patients and categorize them into normal, moderate, severe and critical cases with high
accuracy and precision. Limitations existed in the study due to background noises interrupt-
ing lung sound analysis with CNN models. However, this method can provide clinicians
with useful early prognostic information to facilitate pre-treatment risk stratification and
guide medical staff to conduct more intensive surveillance and treatment of patients at
high risk of severe illness to reduce mortality [35,79].
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4.2. Non-Infectious Respiratory Disorders
4.2.1. Restrictive Lung Disease
Interstitial Pulmonary Fibrosis

Patients with interstitial pulmonary fibrosis (IPF) frequently present with crackles
similar to those of patients with pneumonia or congestive heart failure (CHF), leading to
difficulty in diagnosis and potentially errors in management. Crackle pitch is one of the
characteristics that notably differs between these diseases, which supports the widely held
belief that IPF crackles are produced in smaller airways than those of CHF and pneumonia.
Smither referred to the crackles of lung fibrosis brought on by asbestos as “characteristic in
their sound and distribution,” and Wood and Gloyne described them as a major hallmark
of this industrial disease as early as 1930 [87,88]. Using a 16-channel lung sound analyzer,
39 individuals with IPF, 95 with CHF and 123 with pneumonia were studied and machine
learning techniques such as neural networks and support vector machines were used to
assess crackle properties. With a sensitivity of 0.82, specificity of 0.88 and accuracy of 0.86,
the IPF crackles could be distinguished from those in patients with pneumonia due to
their distinctive features and with a sensitivity of 0.77, specificity of 0.85 and accuracy of
0.82, they were distinguished from those of CHF patients [61]. Fine crackles produced
from a number of abnormally closed small airways increase in a lung with advanced
fibrosis, which can be quantified by the machine learning-based analyzing algorithm. They
were associated with the progression of lung fibrosis seen on high-resolution CT images
in IPF patients, and the AI analysis had higher sensitivity than CXR findings of IPF [89].
Clinicians can make use of bedside computer analysis of crackles to diagnose IPF quickly
and reduce medication errors [90]. In another study, patients with rheumatoid arthritis had
their lung sounds recorded using an electronic stethoscope and analyzed using a Velcro
sound detector (VECTOR) which showed a 93.2% sensitivity and hence proved to be a
significant potential screening technique for rheumatoid arthritis patients with interstitial
lung disease [90].

Asbestos-Related Lung Injury

Frequency distribution of lung sounds using computerized lung sound analyzer is
significantly associated with interstitial lung fibrosis on high-resolution computed tomogra-
phy (HRCT) scoring in patients with asbestos-related lung injury. The inspiratory crackles
and high sound frequencies are associated with fibrotic changes to the lung while low
sound frequencies were associated with emphysematous components of the asbestos-
injured lung [91].

Pulmonary Edema

For many years, diagnosing pulmonary edema and tracking treatment response relied
heavily on roentgenography and chest auscultation. Rales, which are now more com-
monly referred to as “crackles” in medical terminology, are still the primary auscultation
feature used to diagnose pulmonary edema. Pulmonary edema can be cardiogenic and
non-cardiogenic. One study described a multimodal sensing system that tracks changes in
cardiopulmonary health by collecting data from bioimpedance spectroscopy, multi-channel
lung sounds from four contact microphones, multi-frequency impedance pneumography,
temperature and kinematics. The authors carried out a feasibility study on HF patients
(n = 14) in clinical settings after initially validating the system on healthy people (n = 10).
The ratio of resistance, from 5 kHz to 150 kHz (K), to respiratory timings (e.g., respiratory
rate) were derived from three measurements conducted over the course of the hospital-
ization, and the researchers discovered an increase in K that was statistically significant
(p < 0.05) from admission to discharge, as well as respiratory timings that were within
physiologically reasonable limits. It was possible to identify Cheyne–Stokes breathing pat-
terns and inspiratory crackles from patient recordings using integrated power (IP)-derived
respiratory signals and lung sounds, respectively. This showed that the suggested system
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can record precise respiratory signals and lung sounds in a clinical scenario, as well as
identify changes in pulmonary fluid status [92].

4.2.2. Obstructive Lung Diseases
Chronic Obstructive Lung Disease

COPD causes the narrowing of air passages, making breathing difficult. The con-
ventional methods of COPD diagnosis, via pulmonary function test, CXRs or AI-based
analysis of CXRs or chest CT, are time-consuming, expensive and complex. Automated
detection of LSs to diagnose COPD early can be timesaving for both the patient and the
doctor. The physician can record and relay LSs to a pre-processing module, where it is
augmented and passed to a convolutional neural network and classified into either COPD
or non-COPD [72]. In addition, analyzing recordings from different auscultation points
using multichannel lung sounds could help assess the whole lung rather than a specific re-
gion [93]. Machine learning models can also be used to predict acute exacerbation of COPD
symptoms by telemonitoring computerized respiratory sounds, proving the significance of
telehealth care systems for COPD management [72,94].

Computerized respiratory sounds are sensitive to short- and mid-term effects of
pulmonary rehabilitation (PR) in patients with COPD. A study showed a decrease in
inspiratory and expiratory median frequency of computerized respiratory sound related
to improving the lung function of patients with COPD after PR in the band range of
100–300 Hz. Positive relationships between inspiratory median frequency and subjects’
symptoms (e.g., rest dyspnea, self-reported sputum) and health-related quality of life were
found at the high-frequency band (300–600 Hz) [95].

Asthma

Lung wheezes can be detected by analyzing respiratory sounds’ frequency in asthma
patients. High-pitched wheezing is associated with frequencies higher than 500 Hz. Fre-
quency spectra in asthmatic patients can be categorized into three groups: asthma during
an exacerbation, asthma in remission and normal state [41]. Several studies showed strong
correlations between lung function parameter (FEV1) and median frequency of respiration
sound power spectra computed from expiratory tracheal sounds, which can be established
by computational techniques such as artificial neural networks [41,43]. A study by Islam
et al. distinguished normal and asthmatic people using their posterior lung sound signals
to reduce the inference of heart sounds, with the uniqueness of wheezing not being a
necessary requirement for asthma detection [96].

Recently, studies have also identified asthma severity levels (mild, moderate and
severe) by extracting integrated power features from respiratory sound signals, i.e., the
energy of breath sounds in different sub-bands, which are not affected by airflow rate. In
another study, the expiration/inspiration lung sound power ratio in a low-frequency band
was used as a sign of airway obstruction and inflammation in bronchial asthma patients [66].

Cystic Fibrosis

The severity of lung disease can be monitored in cystic fibrosis (CF) patients using an
artificial neural network with 89.05% average accuracy. Although conventional spirometry
and a drop in FEV1% are commonly used tests to indicate the severity of lung disease in
patients with CF, they require significant patient cooperation, especially in the pediatric
population [66]. In a study by Karimizadeh et al., multichannel lung sounds were recorded
from various regions of the lungs (large airways, upper airways and peripheral airways),
expiration-to-inspiration lung sound power ratio features in different frequency bands
(E/I F) were extracted and compared between the groups of different severity levels of lung
disease using support vector machine, artificial neural network, decision tree and naïve
Bayesian classifiers by the leave-one-sample-out method. Results showed that more severe
lung disease occurred in the upper lobes compared to the lower lobes, hence discriminating
between severity levels of CF lung disease [66].
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Smoking and AI

Significant differences between digitally recorded respiratory sounds of healthy smok-
ers and non-smokers have been noticed and can be used as the earliest indicator for
detecting smoking-related respiratory diseases such as COPD, lung cancer, etc. [97].

4.2.3. Lung Cancer

In one study, researchers showed how artificial neural networks were used to classify
normal and crackle noises collected from 20 healthy subjects and 23 lung cancer patients, re-
spectively. First, using a discrete wavelet transform (DWT) based on the Daubechies 7 (db7)
and Haar mother wavelets, the sound data were divided into seven distinct frequency
bands. Second, for five frequency bands (D3, D4, D5, D6 and D7), the detail coefficients’
mean, standard deviation and maximum PSD were computed as features. The ANN
classifier took fifteen features as input. The classification results demonstrate that, when
utilizing 15 nodes at the hidden layer, db7-based wavelets outperformed Haar wavelets
with flawless 100% sensitivity, specificity and accuracy during the testing and validation
phases. When utilizing 10 nodes at the hidden layer, Haar’s testing stage is the only one
that demonstrated 100% sensitivity, specificity and accuracy [98]. However, we are looking
for more literature regarding lung sounds in lung cancer to draw a definite conclusion.

5. Discussion

The pulmonary system is the site of the top 10 causes of mortality in 2019, with
many fatal respiratory pathologies such as COPD, ILD and asthma and infectious diseases
such as pneumonia, TB and most recently COVID-19. Rapid and easy screening has
never been more essential [1–5,7]. While radiological investigations are an important
confirmatory diagnostic method, initial pulmonary examinations by auscultation can help
detect respiratory abnormalities [8,9,23]. Improvement and augmentation of the initial
auscultation step could result in better screening of lung diseases as shown in Figure 2.
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LSs, generated by the flow of air through the respiratory tract, can be altered by
disruption of laminar flow [25]. Different types of LSs, both normal and abnormal, have
been identified and studied which can help both guide diagnosis and monitor the progress
of treatment. Utilizing these modulations of respiratory sounds, it has been possible to
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screen individuals with a respiratory pathology with the help of auscultation. However,
the commonly used conventional stethoscopes are subject to inter-observer variability and
produce weak sounds or sounds superimposed with background noise, posing a risk of
missing out on certain sound frequencies essential for narrowing the diagnosis [21–23].
With the advent of digital stethoscopes, superior quality sound recording is possible and
integration with artificial intelligence through neural networks, automated processing and
analyses of sound recordings can offer a promising alternative [22–24]. Employing lung
sound amplitudes, frequencies and timing as an input, an output of automatic breath sound
identification is the goal of AI-integrated respiratory sound analysis [35].

Over the years, multiple technologies incorporating neural networks have been used
to analyze LSs. In the 1990s and early 2000s, self-classifying networks and lung sound
classification using back-propagation neural networks and wavelet transform methods
showed high accuracy. Gaussian mixture models (GMM) were used to increase efficacy,
with a hybrid of mel-frequency cepstral co-efficient and GMM showing higher reference
recognition. This has been recently followed by using deep learning and machine learning-
based classification of lung sounds and of pulmonary diseases ranging from pneumonia
to COVID-19.

A phonopulmogram using machine learning methods could potentially transfigure
respiratory clinical practice. There is a growing need for research with larger sample sizes
and a standardized database of normal and pathological lung sounds, which could be used
to diagnose patients quickly and efficiently. Such a system would also help patients who are
in remote areas and unable to travel with the early diagnosis of disabling conditions such
as interstitial lung disease and tuberculosis, thus significantly reducing both expenditure
and strain on the healthcare system.

As illustrated in Figure 1, the 24 auscultatory sites could offer significant assistance in
the simultaneous acquisition and analysis of phonopulmogram signals. Novel innovations
in phonopulmogram acoustic sensor designs and implementation strategies are required to
optimize effective acquisition across all auscultatory sites to obtain high-fidelity data for
various lung diseases. AI-assisted sensor deployment will revolutionize the design and
use of these sensors for specific lung diseases. Additionally, the data obtained from these
acquisitions can further improve analysis of the phonopulmogram for effective detection,
diagnosis and prognostication of various lung diseases as well as for treatment-monitoring
applications. Standardized recording technologies and a dataset of various characteristic
lung sounds will subsequently lead to the development of reliable AI-based models for
automated lung sound analysis. These advancements will lead to an effective clinical
decision support system that will impact digital pulmonology practice and reduce health
care costs. The following section describes the author’s perspectives on the dual application
of microwave systems for acoustic sensing of phonopulmograms as well as microwave
imaging of the lung tissues for dielectric property measurement for a combined real-time
digital assessment for improved patient care in pulmonology.

AI-Assisted Microwave Based Dual Sensor System for Digital Pulmonology-Future Perspectives

Electrical impedance distribution in the human body is different as conductivity in
each tissue is different. Conductivity also changes with pathology [99]. This principle has
been used in electrical impedance tomography (EIT) imaging systems to diagnose various
diseases. EIT is a new technology with clinical applications in specific lung pathology
diagnosis, tumor detection and real time monitoring of lung volume changes [99]. Frerichs
et al. conducted a study with EIT and reported that specific lung volumes related to
spontaneous and mechanical ventilation could be separated, which helps optimize the
ventilatory pattern for patients who are on artificial ventilation and therapy management for
those patients [100]. Another study suggested that EIT can be used to identify imbalances
in regional lung ventilation during mechanical ventilation [101]. EIT has also been used
in diagnosing certain lung diseases. EIT reconstructs a cross-sectional image of lung
conductivity, which correlates with regional ventilation. A study showed that EIT had
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100% sensitivity in detecting pneumothoraces even with a small air volume in the pleural
space [102]. The electrical properties of normal and diseased tissue in the human body are
different. Bioimpedance studies help diagnose pathological tissues, including cancer [103].
Yang et al. conducted a multicenter study using electrical impedance analysis (EIA) as a
diagnostic tool for pulmonary lesions. The study showed that EIA is an excellent diagnostic
tool for lung cancers with high accuracy and can be adjunctively used with other diagnostic
methods [103].

Similarly, microwave imaging (MWI) techniques are based on the dielectric properties
of biological tissues. MWI uses electromagnetic waves at frequencies ranging from 0.5
GHz to 9.0 GHz to detect dielectric contrast that scatters from the tissue of the imaging do-
main [104]. Microwave (MW) technology can potentially help diagnose malignant tumors
and other pathologies using the evaluation of complex permittivity of the tissue [105,106].
MW are safe diagnostic tools that generate images based on differences in dielectric prop-
erties. Recently, MWI has been gaining attention for diagnoses of various diseases such
as breast cancer, bone tumors, stroke and lung cancer. Multiple studies have shown the
difference in dielectric properties of ground glass opacities in lung lesions and the potential
of MWI to detect these lesions [107].

Lin et al. conducted a study on detecting pneumonia in COVID-19 patients with
MWI and showed promising results [107]. Khalesi et al. successfully experimented with
Huygens principle-based MWI to see lung lesions in phantoms. The aim was to investigate
elliptical, asymmetric and multilayer torsos. They suggested further research for a better
MWI device that can be used in clinical trials for lung imaging [108]. Another study used a
human torso to detect pulmonary edema and hemorrhage using MWI. They used a contrast
source inversion method based on MWI and used the Cole–Cole model to determine the
dielectric properties of human tissues. They simulated the scattered field via the method
of moments [109]. The proposed technique shown in this study can potentially be used
to locate and differentiate pulmonary edema and hemorrhage. Barbarinde et al. used a
thorax phantom with simulated tissue dielectric properties and proposed that MWI can be
potentially used for lung tumor detection. In this experiment, the microwave image was
reconstructed using the delay-and-sum algorithm from the backscattered signals from the
phantom [110]. Therefore, these studies show that MW-based techniques can be used as
diagnostic methods for lung pathologies with improved antenna and hardware designs for
clinical application.

There is an excellent development of electro-acoustic sensors based on electro-acoustic
transduction in industrial, scientific and healthcare applications. Recently there have
been tremendous advancements in acoustic biosensors, which are widely used to detect
various diseases [111]. Microwave acoustic sensor applications have been used in power
plants, aerospace and defense [112]. However, their use in healthcare is in its infancy;
various research has been going on for the last few decades. Various acoustic techniques
for pulmonary analysis have been discussed in the above sections. MW can also be used
to detect acoustic parameters that can be used to develop diagnostic tools and biosensors
with heart and lung sounds. Hui et al. developed the UHF microwave technique to retrieve
heart sounds. They adapted previous near field coherent sensing (NCS) techniques [113].
This study demonstrated that MW NCS retrieved heart sounds similar to those retrieved
by conventional stethoscope. With improvements to the antenna designs in the future, this
technique could be used for clinical trials and as a sensor. The sound vibrations produced
in the human body can be detected by MW technology. When the human body is subject to
a low-intensity electromagnetic (EM) wave, the backscattered waves represent the object’s
vibration along with amplitude modulation. This can be processed to retrieve helpful
information on lung and heart functioning [114]. Microwave acoustic detection systems
could be developed to detect signals created by the movement of the lungs, air and thoracic
cavity. With further research and advancements in hardware design, microwave acoustic
sensors for PPG sensing could be a promising diagnostic tool that can also be used for
continuous patient monitoring.
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It is evident that microwave-based sensors for a dual acoustic sensing for PPG and
dielectric properties imaging are feasible with significant advancements in the AI-assisted
microwave sensing and image reconstruction. Figure 3 depicts an implementation example
of digital phonopulmography using dual microwave sensing systems and its potential
impact. Novel microwave-based acoustic PPG sensors will open new avenues for technolo-
gies suitable for the accurate capture and recording of lung sounds. With an intelligent
array of microwave antennas for dielectric property imaging, a combined dual sensing
mechanism is feasible as a microwave belt that can provide simultaneous recording of
LSs at the 24 auscultatory sites as well as microwave imaging of the target lung tissues.
This will revolutionize practice by providing novel biomarkers for lung tissues when as-
sessing various lung pathologies and its associated relations with lung sound analysis
for providing novel digital insights in real time to improve clinical practice. Microwave
telemetry may become inevitable with large microwave data capture and transmission
to effectively operationalize digital pulmonology. AI-assisted methods are required in
both PPG data and dielectric property data mining and interpretation as well as in the
design of a computer-aided decision support system for the accurate diagnosis of various
lung diseases. Digital phonopulmography using AI-assisted dual microwave sensing can
positively impact pulmonology clinical practice operations as well as enhance patient care.
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sensing systems [30].

Future research is required on the design of novel AI-assisted microwave PPG acoustic
sensors using enhanced metamaterial designs and frequency selective surfaces. Significant
advancements are needed in microwave imaging hardware designs and robust dielectric
properties reconstruction algorithms for accurate diagnosis of lung diseases. AI-assisted
microwave telemetry system design is needed to provide noise-free PPG data transmis-
sion for reliable diagnosis. In this era of digital health, non-invasive diagnosis of lung
diseases is warranted, employing novel AI-assisted microwave tools that can impact pul-
monology practice and patient care. This review provides new insights and directions
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for practicing digital pulmonology using a dual sensing approach with microwave-based
phonopulmography system.

6. Conclusions

Auscultation of lung sounds has been known to be a clinically useful technique for
assisting with diagnosis of various lung diseases. Various studies have demonstrated
the promising potential of digital lung sounds towards impacting pulmonology practice,
though more research is warranted. While reasonable knowledge on the origin of normal
lung sounds is well documented, further research is needed in better understanding the
pathophysiology of abnormal lung sounds is needed to effectively translate acoustic fea-
tures into clinical practice. The recording and analysis of lung sounds shows tremendous
potential for the design and development of a patient friendly sensing device that can
provide real-time analytics on the lung status. Microwave-based dual sensing approach
for PPG sensing and microwave imaging for digital phonopulmography offers a huge
opportunity to impact pulmonology practice as well as patient care. Technological advance-
ments on the design of novel AI-assisted microwave acoustic and dielectric sensors with
effective telemetry system designs will lead to an enhanced digital pulmonology practice
in the future.
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Abstract: Production of bowel sounds, established in the 1900s, has limited application in existing
patient-care regimes and diagnostic modalities. We review the physiology of bowel sound production,
the developments in recording technologies and the clinical application in various scenarios, to
understand the potential of a bowel sound recording and analysis device—the phonoenterogram in
future gastroenterological practice. Bowel sound production depends on but is not entirely limited to
the type of food consumed, amount of air ingested and the type of intestinal contractions. Recording
technologies for extraction and analysis of these include the wavelet-based filtering, autoregressive
moving average model, multivariate empirical mode decompression, radial basis function network,
two-dimensional positional mapping, neural network model and acoustic biosensor technique.
Prior studies evaluate the application of bowel sounds in conditions such as intestinal obstruction,
acute appendicitis, large bowel disorders such as inflammatory bowel disease and bowel polyps,
ascites, post-operative ileus, sepsis, irritable bowel syndrome, diabetes mellitus, neurodegenerative
disorders such as Parkinson’s disease and neonatal conditions such as hypertrophic pyloric stenosis.
Recording and analysis of bowel sounds using artificial intelligence is crucial for creating an accessible,
inexpensive and safe device with a broad range of clinical applications. Microwave-based digital
phonoenterography has huge potential for impacting GI practice and patient care.

Keywords: phonoenterogram; PEG; computer-aided auscultation; bowel sounds; artificial intelli-
gence; microwave telemetry; microwave acoustic sensors; gastroenterology; digital health

1. Introduction

Gastrointestinal diseases have significant implications on morbidity, mortality and
quality of life in affected individuals. For instance, functional gastrointestinal diseases
that produce symptoms, without any structural or visible pathological lesions, affect more
than 40% people worldwide, according to a large multinational survey [1]. Irritable bowel
syndrome (IBS) is a chronic functional disorder [2] that is diagnosed after excluding other
medical conditions and fulfilling a clinical criterion. The lack of a definite test for IBS makes
it a challenge for both physicians and patients, with the latter often undergoing extensive
testing to rule out medical conditions, leading to higher expenditures and lower quality of
life [3,4].
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Similarly, managerial gaps exist in conditions such as post-operative ileus (POI) and
intestinal obstruction. POI refers to disruption of normal bowel motility following surgery,
leading to obstipation and intolerance to oral intake [5]. Physicians typically rely on
clinical signs such as passage of flatus and intestinal auscultation to decide on the time to
start oral feeds [6]. However, this method may not be reliable indicator as it is difficult
to determine in unconscious patients and patients with prolonged POI and depends on
subjective interpretation of clinical signs and clinical experience [7]. Imaging modalities can
be used in these cases, but they increase radiation exposure and have limitations subject
to availability. In emergent conditions such as intestinal obstruction, guidelines suggest
plain X-ray or an abdominal CT scan for diagnostic confirmation [8]. While this is a reliable
method, it presents time constrains for patients with unstable vitals who are often taken
directly into surgery without any preliminary testing.

Furthermore, in chronic conditions such as ulcerative colitis (UC) and Crohn’s disease
(CD), frequent longitudinal monitoring with endoscopy is required to track severity and
guide management protocols [9]. With the number of endoscopies increasing every year
and countries such as the United States reporting 22.2 million endoscopies in 2021 [10], there
is an increased burden on the healthcare system. Invasive procedures such as endoscopies
increase the risk of infection and perforation in individuals [11]. In addition, they are costly,
require substantial healthcare personnel, and are not a feasible option in resource limited
settings. Therefore, there is an urgent need for alternative diagnostic modalities that relieve
pressure on the healthcare system, reduce the number of invasive procedures on patients
requiring frequent monitoring, are safe, cost-effective, and easily accessible and available,
which can help in timely diagnosis and guide management.

In the search for a solution to the existing problems, there has been increasing re-
search in the recent past to utilize bowel sounds (BS) as a new diagnostic tool. However,
intestinal auscultation, which once drew considerable interest [12–14], is sparsely used
in clinical practice today due to a lack of standardized recording technologies, interper-
sonal variations in interpretations, and poor understanding of the underlying physiology
and clinical applications [15]. The term ‘phonoenterography’ was coined by Watson and
Knox [16] in 1967 to describe the recording and analysis of BS. In the recent past, signif-
icant improvements have been made in developing a recording device that accurately
detects and defines BS while differentiating it from other acoustic signals from the body.
Moreover, there has been significant research in developing computer aided auscultation
(CAA) [17,18] to reduce the interpersonal variability and subjective bias. Several review
papers [19,20] have summarized the advancements in recording technologies with the
latest studies using wireless devices [21,22] to record and transmit data. Analysis of BS
can be used for diagnosis and or management of common gastrointestinal conditions such
as intestinal obstruction [23], acute appendicitis [24], inflammatory bowel disease [25],
diverticular disease [25], bowel polyps [25], ascites [26], post-operative complications and
critical care [27] and irritable bowel syndrome [17]. It has also used in management of
diabetes mellitus [28,29], neurodegenerative disorders [30] and the diagnosis of infantile
hypertrophic pyloric stenosis [31].

While existing literature highlights the need for this technology, it fails to provide
a clear understanding of the mechanism of BS production, its clinical usability, and the
future of using a digital BS detector using a microwave-based sensor for recording pho-
noenterogram (PEG). The purpose of this review was to study the physiology of BS origin,
factors affecting its frequency, clinical applications and recording technologies in existing
literature. Additionally, this review reflects on the prospects of using microwave-based
systems for PEG and its impact on transforming gastroenterological practice for improving
patient care.

2. Physiology

The physiology of bowel sounds dates back to early 1900s where a detained explana-
tion was given by Cannon [12], Plessis [13] and Milton [14]. Currently, we do not have an
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exact mechanism for the production of bowel sounds, but a majority suggest that intestinal
motility is the primary origin [12–14]. Gut motility, contents of the gastrointestinal lumen
and the presence of gas have been hypothesized as the major contributing factors [32–35].
Air that is consumed with food reaches the lumen of the gut, where gut motility leads
to constant formation and resolution of gas bubbles [33] that generate sound in various
portions of the gastrointestinal tract [36] (Figure 1) [37].
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2.1. Gastric and Pyloroduodenal Region

Food reaches the stomach and is pushed forward via peristaltic movements towards
the pylorus [1]. The frequency of gastric peristalsis and pyloric sphincter relaxation do not
coincide, leading to food hitting against the closed sphincter, which produces a loud, explo-
sive sound described as ‘bursting of bubbles’ [12]. Peristaltic waves occur around 3 times
per minute or every 20 s as cited by Plessis [13] and confirmed by Moritz’s experiment on
himself [12]. These propulsive movements are normally painless but can produce pain
with an exaggerated sound in intestinal obstruction [13].

2.2. Small Intestine

The bolus of food in the small intestine is broken down into smaller fragments by
segmental contractions of the circular muscles that occur about seven to twelve times a
minute [13]. These contractions push the food forward and backward to allow mixing of
the food with the intestinal secretions. Thus, a large number of contractions are required in
the small intestine to propel the food forward. Additionally, intestinal motility is affected by
bowel tone [12], creating a pressure gradient with higher tone in the upper gut as compared
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to the lower, aiding in downward movement of the food. Bowel sounds arising from the
small intestinal have three distinctive features, namely [12]: (i) Pattern—slowly rising and
gradually subsiding, or slowly rising with a peak and sudden drop, or sharply rising and
gradually dropping; (ii) Rhythm—each bowel sound lasts for two to three seconds with
multiple sounds occurring in same location for several minutes; and (iii) Intensity—loud
sounds due to the presence of valvulae conniventes that alter the luminal diameter and
contribute to pressure changes.

2.3. Ileocecal Region and Colon

Movements in the proximal colon are explained by two theories, namely anti-peristalsis
and saccular oscillations. The food moving from the ileum to the caecum acts as a stimulus
causing the caecum to contract and form a blind pouch which temporarily prevents the
progression of food, creating a high-pressure zone. Food is pushed back towards the
caecum due to this pressure gradient, and it strikes the ileocecal valve, thus producing a
sound. This phenomenon is called anti-peristalsis [12,14]. The colon has numerous sacculae
which produce oscillatory movements with the intestinal contents and contract to push the
contents into the next sacculi. This phenomenon allows churning of the food and produces
a sound described as a continuous popping and gurgling noise. Some researchers [12,38]
believe the saccular oscillations contribute more to the bowel sound production than an-
tiperistalsis. The right lower quadrant is a point of auscultation due to more activity in the
ileocecal and proximal colon, as compared to the distal colon. Contractions from the distal
colon push the contents forward and produce crackling noises followed by an urge to pass
flatus [12].

Although bowel sound production and intestinal motility have been closely linked,
there are studies that contradict this theory as bowel sounds have been recorded in abdomi-
nal quadrants independent of peristalsis, indicating they may not be a combined event [39].
Tomomasa et al. [40] suggested bowel sounds are a result of the transfer of energy between
the contents of the lumen rather than propulsion. This phenomenon occurs during the
second phase of migrating motor complex (MMC) in a fasting state. MMC refers to the
motor activity of the intestine with three phases, namely quiescent motor, irregular and
regular pattern of contractions [41]. Another study [42] suggested myoelectrical slow wave
and spike burst activity of the intestine as the etiology leading to bowel sound production.
Dual peaks of bowel sounds are heard after consumption of food [32,43,44]. The first
occurs immediately after the meal and is hypothesized to be due to swallowed air forming
intraluminal gas. The second occurs an hour later, which coincides with gastric emptying.
The stomach is the most active site of bowel sound production, followed by the colon and
then the small bowel [34]. Short frequency high amplitude sounds are produced in the
colon whereas higher frequency sounds originate from the stomach. Sometimes a loud
rumble [45] can be heard from the abdomen, which can be due to a pathological cause such
as gut hypertrophy or due to physiological nervous air swallowing.

3. Effect of Modifiable and Non-Modifiable Factors on Bowel Sounds

Studies have researched the effect of various modifiable and non-modifiable factors on
bowel sounds. Knowledge pertaining to these factors can help propagate further research
in the following scenarios:

3.1. Serum 5-Hydroxytryptamine

Serum 5-Hydroxytryptamine (5-HT) is produced by the intestine in response to pres-
sure changes and intestinal epithelium deformation. Increased bowel motility leads to
increased release of 5-HT into the blood, producing intestinal symptoms in carcinoid syn-
drome [46]. 5-HT thus acts as a local hormone causing excessive loud bowel sounds known
as borborygmi [46].
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3.2. Medications

Tomomasa et al. [40] studied the relationship between gastrointestinal sounds and
small intestinal motility. Their results concluded that the sum of sound index (SI) co-
incides with the gastric phase of migrating motor complex, with a lower SI seen in
somatostatin [31,40] and scopolamine (due to decreased antral contraction and delayed
gastric time respectively). A higher SI is seen with erythromycin and metoclopramide (due
to increased antral contraction and shorter transit time, respectively). Gut stimulants such
as carbachol and magnesium sulphate lead to an increased production of bowel sounds [46].
Furthermore, Martin et al. [47] studied the effect of anti-spasmodic drugs, oxybutynin and
dicyclomine on gastrointestinal activity using a microphone with a panasonic recorder
embedded in a polystyrene cotton-padded box. A decrease in bowel sounds following
drug administration was noted. Another study by Emoto et al. [48], using autoregressive
moving average (ARMA) spectrum to study the effect of mosapride, found a decreased
sound to sound interval with increasing plasma concentrations of mosapride and peak
gut activity. They concluded that this technique was highly sensitive and specific to detect
bowel sounds.

3.3. Morphine

The post-operative course of a patient is determined by the status of bowel function
and tolerability of feeds. Morphine and meperidine, used for postoperative pain control, de-
crease gut motility by inhibiting myoelectric complexes in the small intestine and colon [49].
A positive correlation [50] between the quantity of morphine used and the time of the
return of bowel sounds, first flatus, and first bowel movement was found. However, there
was no correlation between incision length and bowel motility. Limited use of morphine is
recommended to attain early return of bowel function [50].

3.4. Coffee and Soda

Recreational drinks such as coffee and soda can be used for the treatment of constipation [51].
Coffee produces gastrin hormone in the pyloric antrum, whereas the carbon dioxide in the
soda produces intraluminal gas that creates pressure in the gastrointestinal tract leading
to increased gut motility [51,52]. Additionally, soda excites the trigeminal neurons in the
tongue that stimulates the dorsal vagus nucleus in the brainstem, further activating the
visceral sensory neurons to promote gut motility [53].

3.5. Stress

Holtmann and Enck noted that physical and physiological stressors lead to increased
non-propulsive contractions of the esophagus, decreased antral motility of the stomach,
decreased migrating motor complexes in the small intestine and an increased motor spike
activity in the colon [54].

3.6. Age and Gender

Gastrointestinal motility is affected by non-modmodifiable factors such as age and
gender. Safronov et al. [18] used computerised phonoenterography(CPEG) to study various
sound indices (amplitude, frequency and duration) in different age groups and recorded
the peristaltic sounds as gastric images. High fasting CPEG indices were seen in those
between 6–9 years, whereas weak post-meal bowel motility and low motor evacuation was
seen in ages 6–15 years. However, no significant difference between gender was seen.

4. Clinical Application of Bowel Sounds

Recording and analysis of bowel sounds using a phonoenterogram can function as a
diagnostic modality and aid in the management of various clinical conditions (Figure 2) [37].
Some clinical scenarios for application of bowel sounds are described below:
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4.1. Acute Appendicitis

Local inflammation around the appendix influences peristalsis, resulting in changes of
bowel sound character [59,60]. The literature suggests that one-fourth of the patients under-
going appendicectomy have a normal appendix at operation [24]. Abdominal auscultation
to analyze bowel sound features can aid in diagnosis to prevent unnecessary abdominal
surgeries in such patients. Arnbjörnsson et al. [24] recorded bowel sounds pre and post
appendicectomy in clinically diagnosed patients and found patients with gangrenous ap-
pendix to have a significant difference in pre- and post-operative median height of spike
frequency, whereas patients with normal appendix had no significant difference in the two
groups. Furthermore, this study stressed the importance of repeated recordings to avoid
variations produced by abdominal movements such as breathing or muscle contractions
which tend to affect the amplitude and frequency of bowel sound recording.

4.2. Large Bowel Disorders

Bowel sound features have been studied in pathologies of the large intestine such
as Crohn’s disease, ulcerative colitis, diverticular disease, and bowel polyps [61]. Had-
jileontiadis et al. [61] studied scatter plots of higher order crossings, and found an overlap
between post-polypectomy patients and healthy subjects, suggesting bowel sounds as a
potential scale to determine the efficacy of the surgical procedure. Inflammatory bowel
disease (IBD) is a chronic condition requiring repeated testing using colonoscopies [9], thus
the need for a non-invasive modality for long-term monitoring of the disorder should be
stressed. A case-control study by Craine et al. [25] using EnteroTach analysis found the
sound-to-sound interval (SSI) to be shortest in irritable bowel syndrome (IBS), followed
by Crohn’s disease and largest in healthy controls. However, this study lacked specificity
as patients with Crohn’s disease having concurrent IBS symptoms were not considered.
A study [62] comparing 2-min bowel sound recording in patients with IBD and drug-
induced motility with mosapride and senna using EnteroTach analysis found no significant
different in the sound-to-sound interval of both groups. The study concluded that the
method fails to diagnose hyper-motility conditions and requires a longer recording interval.
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Therefore, further research is required to establish the diagnostic yield of bowel sounds in
this scenario.

4.3. Ascites

Ascites [43,44] refers to the collection of fluid in the abdominal cavity that is a sequel
to decompensated liver cirrhosis. The third spacing of the fluid causes hypovolemia and
alters the hemodynamic status, warranting swift diagnosis. Moderate to severe ascites is
diagnosed with a bedside examination, but smaller volumes require imaging modalities.
The abdominal ultrasound [63] can study fluid volume greater than 100 mL, but its results
are affected by obesity, abdominal mass or distension. Computed tomography scans are
an effective diagnostic modality but are not cost-effective. Liatsos et al. [26] studied bowel
sound analysis for non-invasive diagnosis of small volume ascites using scatter plots
of higher order crossings, which resulted in a significant difference in the bowel sound
pattern amongst cases versus healthy controls. However, the small study sample could not
determine the sensitivity and specificity of the technique.

4.4. Post-Operative Complications and Critical Care

Abdominal surgery increases the risk of complications such as post-operative ileus
(POI), and infection and sepsis [27,64]. Post-operative ileus is the decreased intestinal
activity due to surgery and anesthesia on bowel motility [13,27]. After surgery, bowel
motility is characterized by initial segmental sounds, followed by gradual progression to
propulsive sounds that mark the return to normal [13]. Anesthesia used during surgery
affects bowel motility [64] and causes an immediate decrease in bowel sounds after surgery
with a return to the normal state 3 h later. Kaneshiro et al. [27] used abdominal vibrations
and acoustic signals to calculate intestinal rate in patients with post-operative ileus versus
normal bowel recovery and found a significantly low intestinal rate in POI cases. Bowel
sound analysis can be used for assessing gut activity to guide timely initiation of enteral
feeds [65] and administration of purgatives and enema [13] to allow faster recovery from
surgery. Additionally, bowel sounds can also be used to measure of severity of post-
operative sepsis and guide management strategies. A study [66] noted that gastrointestinal
motility decreases with increasing severity of sepsis that was gauged by the level of
interleukin-6. Management with oral steroids increased the gastrointestinal motility and
proved the treatment to be effective.

Auscultation of bowel sounds in critically ill patients is a valuable tool but has a
subjective nature with technical limitations [67]. Although physicians can diagnose ileus by
the auscultation of bowel sounds [6], the conventional stethoscope has been unreliable in
promptly detecting ileus, with poor sensitivity with low positive predictive value [7,27,65].
Additionally, a noisy environment in the intensive care unit (ICU) makes it even more
difficult to auscultate effectively [7]. Bowel sounds may not be a true measure [68] of
gastrointestinal function in patients on mechanical ventilation and neuromuscular blocking
agents as they swallow little air leading to a decreased intraluminal gas production. A
study [69] found bowel sounds to have no association between flatus, bowel activity or
tolerance to oral feeds in patients who underwent abdominal surgery and concluded
the method was unreliable for determining time to start oral feeds and resolution of
postoperative ileus. Similarly, Massey [70] found no association between bowel sounds
and return of bowel activity after postoperative ileus, thus doubting the application of this
science. Another study also observed some ICU patients with ileus showing the presence
of bowel sounds instead of absence [71]. Thus, the discrepancies in literature and technical
difficulties encourage the need for further research on pathophysiology and recording
technologies [72].

4.5. Irritable Bowel Syndrome

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder [2]
characterized by abdominal pain associated with change in stool consistency and frequency,
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with no structural pathology on endoscopy. IBS is a clinical diagnosis based on patient’s
symptoms. Most patients commonly undergo invasive testing with colonoscopies to
rule out other disorders before being diagnosed with IBS [9]. The lack of definite testing
negatively impacts the affected population causing mental and financial strain [3,73]. Bowel
sounds can be used for non-invasive monitoring of gastrointestinal activity in patients
with severe diarrhea by recording the vibrations on the surface of the abdomen and
processing the signals from the system with a computer [74]. Several studies have tested
analysis of bowel sounds to be a potential diagnostic modality for IBS [4,17,25,48,61,73,75].
Craine et al. [17] in a case-control study noted a decreased fasting sound to sound interval
(SSI) in IBS cases that was comparable to the decreased post-meal SSI in healthy controls.
However, a similar average intensity and frequency of bowel sounds was noted in both
groups. Bowel sounds have been extensively studied in IBS patients using computerized
auscultation, two-dimensional positional mapping and enterotachogram analysis [25,61,75].
Patients with IBS had a short SSI as compared to healthy volunteers and IBD cases [25]. A
significant increase in low frequency sounds was seen in healthy volunteers as compared to
functional bowel disorders [75]. Studies [48,73] have found an increased post-meal bowel
sounds with a higher density noted in healthy subjects when compared to IBS cases. Upon
two-dimensional mapping, the right lower quadrant and mid-upper abdomen were the
most active areas of bowel sound production. Further research is needed to identify specific
bowel sound characteristics in IBS to formulate a diagnostic modality.

4.6. Diabetes Mellitus

Optimal blood glucose regulation is important for normal function of the vital organs [76].
Patients with diabetes mellitus must balance their caloric intake to avoid fluctuations in
blood glucose that are affected by physiological factors such as time of food intake, the
type of food, exercise, sleep, stress and digestion [29]. Bowel sounds can be studied to
understand the post-meal gastrointestinal motility [77] in diabetics and healthy subjects. In
diabetic patients, both the sound index (SI) and motility index (MI) decreases, while healthy
subjects have an increased SI and MI observed in the gastroduodenal region compared to
intestinal region.

An artificial pancreas system [28] is a device comprising a measuring unit that contin-
uously monitors blood glucose to determine the appropriate time and amount of insulin
bolus needed. Currently this device fails to measure the effect of dynamic physiological
factors on blood glucose [78–80]. Mamun and Khandaker et al. [28,29] integrated a bowel
sound measuring device within this system to record the digestive state and aid in insulin
control. The device detects acoustic vibrations from the bowel for real-time monitoring
of food ingestion and intestinal motility, and offers a meal notification feature within the
insulin pump to notify the patients of their blood glucose levels [28].

4.7. Neurodegenerative Disorders

The dorsal motor nucleus of the vagus nerve [81] forms the parasympathetic nerve
supply to the upper gastrointestinal tract mainly the stomach. Neurodegenerative condi-
tions such as Parkinson’s disease, multiple system atrophy and progressive supranuclear
palsy damage this nucleus leading to gastroparesis. The slow forward movement of food
significantly decreases the bowel sounds in such cases as compared to healthy controls [30].
Assessing bowel motility in these patients allows for timely intervention and prevents
further complications.

4.8. Neonates

Premature or low birth-weight infants have an immature digestive system and are
prone to various gastrointestinal abnormalities [82] such as necrotizing enterocolitis (NEC),
vomiting, gastroesophageal reflux, pulmonary aspiration of gastric contents, electrolyte
abnormalities, allergies, birth defects, enzyme deficiencies, systemic illnesses, infection,
abnormal vascular supply and obstruction. Radiological techniques, although highly
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specific, delay the time of diagnosis and cannot be used for gastrointestinal monitoring.
Hill et al. [82,83] recorded bowel sounds to continuously monitor and relay information to
the physician for timely prevention of complications and diagnosis, as well as to determine
the appropriate time for enteral nutrition as the premature gut is prone to rejection. A
study [84] showed bowel sounds to have high accuracy in diagnosing early stages of
NEC development. Tele-diagnostic ability for recording infantile bowel sounds at home
using a smartphone and relaying these smartphone data to the clinician is yet another
leveraging factor. Pyloric stenosis, an obstructive condition characterized by a hypertrophic
gastric outlet has an excellent prognosis when detected early. It is surgically treated
by pyloromyotomy, the effectiveness of which can be monitored by recording bowel
sounds [31]. Fewer bowel sounds are heard prior to the procedure, due to the obstructive
nature of the disease and delayed gastric emptying. The gut sounds reach their normal
frequency 48–72 h post-operation. Hence, bowel sounds can be easily used as a reflection
of severity of illness, aid in monitoring the post-operative status and help determine time
to commence post-operative feeding.

5. Auscultation and Recording Technologies

Although auscultation forms an integral part of bedside clinical examination, the use of
a stethoscope for listening to the abdominal sounds has limited use. This can be attributed
to the poor quality of the recording device and interference by surrounding noise [85,86].
A suction microphone with a crystal inset and phonocardiogram amplifier [16] was used
in the 1960s to determine peristalsis in order to diagnose motility disorders. However,
the need for simultaneous recording of sound and motility limited the use of this device.
Various changes in the structure of stethoscope have been made since the 20th century to
improve the quality of auscultation. The primitive stethoscopes with a microphone-based
sensor [87–89] relied on power supply and was highly sensitive to airborne noise. Using a
similar device, real-time monitoring [90] of intestinal motility was obtained from single
or multiple bursts pattern of bowel sounds. Soon, non-contact microphones [91,92] were
used, but required longer duration of recording making it uncomfortable for the patient.
Other modifications that followed were skin adhering stethoscopes [93] and stethoscopes
with a diaphragm replaced by a piezoelectric transducer [74]. Bray et al. [94] studied the
workings of the transducer device during fasting and post-meals. He noted 500 to 700 Hz
epigastric sounds during fasting, a low gastric activity in the inter-digestive state and an
increase in the gastric and intestinal sounds post-meals.

Electronic stethoscopes can be used to study conditions of acute abdomen [95] as
well as to differentiate patients [96] with small bowel obstruction and postoperative ileus.
However, the technique was ineffective due to variability in auditory characteristics across
clinicians and surgeons. Although studies [58] show inter-physician agreement in cate-
gorizing auscultated bowel sounds into normal and pathological, it cannot be applied
clinically due to physician inconvenience. Eventually, all the conventional recording tech-
nologies were proved insignificant [97] due to dependence on the operator’s knowledge,
interruptions by the surrounding air, need for longer supervision, and poor detection of
low amplitude bowel sounds. Bowel sound auscultation was digitally revolutionized with
the development of computerized bowel sound detectors coupled to microphone-based
sensors. These devices were able to adequately detect subtypes of bowel sounds with accu-
rate start and end points [98]. Single burst (SB), multiple bursts (MB), continuous random
sound (CRS) and harmonic sound (HS) patterns were recognized that were previously not
detected by any device [98].

The drawbacks of auscultation include a lack of specific guidelines for the area
and duration of auscultation. Some scientists state no specific site for bowel sound
auscultation [99–101] as sounds generated from any location could radiate to the en-
tire abdomen, whereas some [102,103] proposed specific auscultating regions. The ad-
vised auscultation duration varies from 30 s to 7 min [102,104,105], preferably prior to
palpation [106,107] as it may stimulate peristalsis [99]. However, a recent study [108] found
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no difference in bowel sounds before and after palpation. An attempt [109] to localize the
source of bowel sounds using absorbent and non-absorbent sound propagation models
found majority of the sounds [110] in mid-lower and the right lower abdomen. A similar
association with the right lower quadrant was revealed by Wang et al. [98] while study-
ing effect of food intake on bowel sounds. They noticed increased number of sounds
from this region and explained it by the movement of the ileo-caecal valve upon food
consumption [98].

Bowel sound auscultation has transformed multiple folds over the past century, but
some studies [96] show its unworthiness to detect bowel pathologies. There is a need of
a standardized procedure for auscultation and development of novel technologies that
can record and analyze bowel sounds efficiently. Incorporating digital processing of the
auscultated sounds could minimize human error and prevent excess recruitment of skilled
health care staff. Recent studies [21,22] have developed recording technologies to create a
wearable device that is Bluetooth enabled for wireless transmission of data, thus allowing
remote and telemedicine healthcare practices. A study by Kutsumi et al. [111] recorded
BS using a prototype application on a smartphone and successfully recognized BS using a
CNN model. Hence, BS auscultation has a future potential to form a non-invasive diagnosis
of various gastrointestinal disorders.

The studies between 1967 and 2022 on this data set have been summarized in
Table 1 [21,22,28,42,61,65,83,87–89,91,111–133].

Table 1. Studies with bowel sounds recording technologies and analytical methods.

Year, Author Study Technique Results & Limitations

1967, Georgoulis [112] Intestinal sounds classification
in post-operative patients.

Capsule microphone→ tape
recorder→ B filter→

paper record.

Simple and compound sounds
showing interpersonal

variation. Requires 48-h
long recording.

1988, Radnitz [113]
Biofeedback with bowel

sounds for irritable bowel
syndrome patients.

Audio-visual bowel sound
recording for training

patient’s bowel activity.

Reduced mean daily diarrhea
reporting, maintained up to

1 year, affected by stress.

1998, Hadjileontiadis [114]
Symmetrical alpha-stable

distribution for lung sounds
and bowel sounds analysis.

15 to 30 s signal→ converter
(sampling rate of 2.5 KHz for
lung, and 5 KHz for bowel)→
WTST-NST and inverse filter.

Contaminated signal- alpha is
~1.5. Denoised signal- alpha

decreased significantly.

1994, Sugrue [115]

Computer aided sound
analysis system (C.A.S.A.S) in

acute abdomen cases vs.
healthy controls.

Microphone→ analog to
digital converter (ADC)→
computerized analysis for

bowel sounds features

Increased mean sound length
and amplitude, and reduced
frequency in cases. Patients

need to remain still
during recording.

1999, Hadjileontiadis [61]
Higher order crossings (HOC)

in large bowel disorders vs.
healthy controls.

Audioscope→WTST-NST
filter→ Number of axis

crossings (equally spaced
points of time) counted→

HOC pattern plotted.

Post-polypectomy HOC
comparable to control,

proving efficacy of
the procedure.

2000, Hadjileontiadis [116]
Wavelet based stationary

and non-stationary
filter (WTST-NST).

Signal divided with wavelet
transform (WT)→

decomposed into multiple
scales with applied power and
threshold→ filtered with WT
coefficient→ denoised signal.

Efficiently removed
interfering noises and

enhanced signal quality.

2001, Ranta [117]

Bowel sound processing
(denoising, segmentation and

characterization) based on
wavelet-based algorithm (39)

Multiple microphones to
localize bowel sounds→

wavelet coefficients vector
with feature extraction

for segmentation

Correct interpretation and
decontamination of recorded

data needed.
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Table 1. Cont.

Year, Author Study Technique Results & Limitations

2003,
Hadjileontiadis [118]

Bowel sound enhancement
with reduction of
background noise.

Kurtosis-based detector→
time domain of explosive

bowel sounds→ separated
from background noise.

Reliable detector for
extracting bowel sound peaks.

2003, 2005,
Hadjileontiadis [119,120]

To detect explosive lung and
bowel sounds in patients

with pulmonary
and gastrointestinal

pathology respectively.

Fractal Dimension (FD) based
detector in wavelet transform
(WT) domain→ detects FD

variation and WT coefficients
related to lung or

bowel sounds.

Low noise susceptibility
proved with noise stress test.

2008, Dimoulas [121]
Autonomous intestinal

motility analysis for long-term
bowel sound monitoring.

Time-frequency features and
wavelet parameters in

combination with
multi-layer perceptron.

Recognition accuracy of
94.84% and 2.19% error in

separating interfering noises

2008, Hill [76]
Efficacy of a novel device in
NICU patients before and

after feeding.

Electronic stethoscope→
amplifier→ acquisition card
→ computer→ picked up
hyperactive bowel sound

Significant background noise
not accounted for.

2011, Kim [88]

Modified iterative
kurtosis-based detector and
estimation algorithms based
on regression model of jitter

and shimmer.

Piezo-polymer microphone→
filtered, digitized, segmented,

modified (kurtosis-based
algorithm) and characterized

(absolute jitter and
shimmer method)

Longer colon transit time in
delayed bowel motility cases.

Small sample size. Lack of
technical specifications of

the device.

2011, Kim [89]

Back propagation neural
network (BPNN) and

Artificial neural
network (ANN)

Signal modified
(kurtosis-based algorithm)

and characterized (absolute
jitter and shimmer)→

analyzed using BPNN and
ANN model.

Longer colon transit time in
delayed gastric emptying and
spinal cord injury cases. Short

sample size and duration
of recordings.

2011, Tsai
[42]

LabVIEW technique for
real-time monitoring of

bowel sounds.

Electric condenser
microphone attached to a

stethoscope→ data
acquisition interface.

Proved the effectiveness of the
digital infinite impulse
responses (IIR) filter.

2013, Lin [122] Higher order statistics based
radial basis function network.

A three-layer network with
input, hidden and output

layers to augment and
enhance sound.

Enhancement of bowel sounds
during both stationary and
non-stationary conditions.

2013, Sakata
[87]

Fasting and post meals bowel
sounds in healthy volunteers.

Recording device with sensors
and built-in amplifiers→

computer with
WTST-NST filter

Unsynchronized recording of
stethoscope and device with
conditions not indicative of
normal digestive activities.

2014, Spiegel [65]
Bowel sounds in patients with
post-operative ileus (POI) vs.

those tolerating oral feed.

Real time monitoring using a
surveillance biosensor.

Intestinal rate of healthy
controls→ patients tolerating

oral feeds→ POI. Failed to
isolate coordinated

bowel activity.

2015, Mamun
[123]

Low power integrated bowel
sound measurement system.

Piezoelectric film used as a
sensor, amplified, filtered

and characterized.

Detected regularly sustained
bowel sounds from
surrounding noises.

2015, Longfu [124] Spectral entropy for bowel
sound signal identification.

Dynamic weighing threshold
and spectral subtraction for

detecting and increasing
signal to noise ratio (SNR)

Accurate detection of
endpoint of bowel sounds in

low SNR condition.

2014, Sheu [125]
Higher order crossings-based
fractal dimension method in

noisy conditions

Recorded bowel sounds→
analyzed using higher

order crossings.

Superior performance to
conventional fractal

dimension algorithms.
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Table 1. Cont.

Year, Author Study Technique Results & Limitations

2015, Yin [126] Artificial neural network to
recognize digestive state.

Extracted bowel sounds→
adaptive filtering using

2 reference signals→ least
mean square algorithm for

denoising→ threshold
detection block

Detected the ongoing
digestive state in 3 volunteers.

2016,
Mamun [28]

Ultra-low power real time
bowel sound detector to

measure meal instances in
artificial pancreas device.

Piezoelectric sensor→
transduced into voltage signal

by front end processor→
feature extractor identifies

bowel sound segment.

Consumes 53microW power
from 1V supply in 0.96 mm2

area. Suitable for portable
devices with 85% accuracy

and low false positive rates.

2018,
Sato [91]

Non-contact bowel sound
analysis after consumption of

carbonated water.

Bowel sound segment
detection→ extraction→

classification→ evaluation to
detect signal to noise

ratio (SNR)

Number of bowel sound
segments inversely related to

SNR. Accuracy inversely
related to post-meals SNR.
Small sample size & low

sound pressure
in stethoscope.

2018, Liu
[127]

Mel Frequency Cepstrum
Coefficient Feature (MFCC)

and Long Short-Term Memory
(LSTM) neural network.

Compressed 1 min voice
recording→ screened by two

doctors for presence or
absence of sound signals→

further processing
and extraction.

Effective results in same
environment; decreased

sensitivity with noisy signals.

2019,
Kolle [128]

Filtering of bowel sounds
using multivariate empirical

mode decomposition.

Model increases the
non-linear components of

signals and separates them
from other signals.

False events identified and
filtered out with easy

identification of relevant
events. Contamination

by artefacts.

2020,
Kodani [129]

Long-term bowel sound
measurement with

elimination of
movement-related cloth

rubbing noises.

Portable sensor, with the
notch, wavelet and low-pass
filters→ increase focus on

bowel sounds and
cloth-rubbing noise→
separated based on the

number of peaks at specific
frequency signals.

Effective in differentiating
bowel sounds from noise.

Difficulty in separating when
both overlap.

2020,
Zhao [130]

Long-term bowel sound
monitoring with

Convolutional Neural
Network (CNN).

Wearable bowel sound system
used for monitoring and

CNNs used for
segment recognition.

High sensitivity and moderate
accuracy for bowel sound

monitoring. Time consuming.
Noisy-labels present.

2020,
Zheng [131]

Convolutional Recurrent
Neural Network (CRNN)

system-based
sound detection.

Gastrointestinal sound set
with collection instrument,

dataset annotation and
distribution, to detect bowel

sounds, speech, snoring,
cough, rub and groan.

Effective in identifying snore
and cough.

Weak performance due to low
frequency of bowel sound.

2021,
Namikawa [132]

Real time bowel sound
analysis system for

peri-operative monitoring in
gastric surgery patients.

Recording equipment and
acoustic sensors used to

record frequency of
bowel sounds.

Frequency of bowel sound
was higher in

post-gastrectomy cases, with
inverse relation to operation

time. Small sample size &
large-sized equipment.

2021,
Ficek [133]

Hybrid convolutional,
recursive neural network for

bowel sound analysis.

Intestinal sound contact
microphone→ analyzed

using deep neural network.

Efficiently analyzed bowel
sound sequences. Lacks

wireless technology.
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Table 1. Cont.

Year, Author Study Technique Results & Limitations

2022,
Sitaula [84]

Convolutional Neural
Network (CNN) to classify

neonatal bowel sounds.

Digital stethoscope recording
→ computer analysis based
on CNN system→ refined

with Laplace hidden
semi-Markov model

Classified bowel sounds into
peristaltic and non-peristaltic.

Imbalanced data without
noise cancellation.

2022, Zhao [22]

Binarized CNN-based BS
recognition algorithm with

time-domain histogram
features for wearable device.

Wearable BS recorder→
Gateway via Bluetooth→
relayed to cloud servers

(wired or wireless)

Algorithm reached 99.92%
classification accuracy and
very low false alarm rate.
Validated by hardware

implementation and
computation overhead

reduction ratio of 58.28 for
overall operation.

2022, Wang [21]

Flexible dual-channel digital
auscultation patch with active
noise reduction for long-term

BS monitoring.

Digital auscultation patch
(two channels for BS and one
channel for ambient noise)→
transmitted via Bluetooth→

computer processing with
adaptive filtering for active

noise reduction, feature
extraction and source

localization→ BS analysis
created with intelligent

systems.

Flexible, soft, light patch can
easily bend to maintain

conformal attachment on the
abdomen. Wireless wearable

device is suitable for long
term monitoring. Noise

reducing algorithm is useful
in noisy clinical environments.

2022, Kutsumi [111]

Prototype smartphone
application to record BS using

built-in microphone with
automatic analyzation of BS.

BS recorded with built-in
microphone of Apple iPhone 7

using the BS recording
application. Annotated BS

segments were analyzed using
CNN and LSTM models.

The CNN model was superior
and recognized BS with

moderate accuracy (88.9%)
with data recorded from a

smartphone.

6. Discussion

Bowel sounds have a promising potential as a non-invasive diagnostic modality
and management aids are needed in practice to establish patient-friendly, cost-effective
care. We reviewed previous studies to understand how bowel sounds are produced,
evaluate the need of bowel sound auscultation or recording in clinical practice, and the
future of phonoenterogram in healthcare. Studies explained that bowel sound production
are scarce with varied theories. Some studies [12–14] link bowel sounds to gut motility,
whereas others [39,40] believe it to be due to the transfer of energy between luminal
contents. Collectively, the production of bowel sounds could be due to a combination
of luminal contents [34], amount of luminal air [33], type of contractions [13], and the
myoelectrical activity of the intestine [40]. Physiology-focused studies are required to
establish a definite origin.

Despite limited knowledge on the genesis of bowel sounds, phonoenterograms have
been applied in various conditions such as intestinal obstruction [57], irritable bowel
syndrome [17,25,48,61,75], acute gastrointestinal conditions [24], inflammatory bowel
disease [61], diverticular disease [61], bowel polyps [61], postoperative ileus [27], critical
care [64], sepsis [66], ascites [63], diabetes mellitus [28,29], neurodegenerative disorders [30],
neonatal care [83] and hypertrophic pyloric stenosis [31]. A recent systematic review [19]
concluded that computerized analysis of bowel sounds shows promise in the field of di-
agnostic and prognostic gastroenterology. When integrated with engineering knowledge
to create a standardized recording and analysis device this could turn into a powerful
technology in the field of gastroenterology.

Auscultation of bowel sounds has been in practice since the time of Hippocrates [12].
This ancient practice was later studied by multiple researchers but had limited usability
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due to interference of surrounding medium air, with long duration of recordings ultimately
leading to erroneous results [71,87–89,91,92,97]. Subsequently, the use of procedures such as
endoscopy, colonoscopy and manometry increased and are widely employed today. Despite
their high accuracy rate, they pose the risk of perforation which can be life-threatening [11].
Thus, there is a need for an inexpensive, non-invasive, patient-friendly alternative for
bedside diagnosis of common gastrointestinal conditions.

A phonoenterogram has the potential to revolutionize clinical practice. Research
should be focused on building a system that not only records bowel sounds efficiently but
also interprets the results accurately. Such a system could eliminate the factor of human
error and inter-personal variability involved with the auscultation of bowel sounds. Using
this system, a large database for normal and pathological bowel sounds could be created
to increase the accuracy of computerized interpretation. This data set can also be used for
food evaluation technology, which developing value-added foods based on an individual’s
constitution, predisposing conditions and bowel activity [87]. In the future, a digital system
capable of recording bowel sounds remotely would be helpful in the monitoring and
diagnosis of bed-bound critical patients, and older adults unable to visit the clinic. In
addition, a model for self-diagnosis of irritable bowel syndrome could help diagnose this
chronic functional motility disorder early and reduce the mental and financial strain on the
affected population and the healthcare system.

Digital Phonoenterography Using Microwave-Based Systems: Future Perspectives

Tomomasa et al. first proposed the relationship between migrating motor complex
(MMC) and bowel sounds (BS), suggesting that the sound index synchronizes with the
MMC cycle, and BS can potentially be a biomarker for clinical use [40]. However, as the
current sensors have various limitations, as discussed above, a novel technique is needed
that can effectively measure BS with a phonoenterogram (PEG). Electromagnetic (EM)
based sensors have been explored in medicine for continuous vital monitoring. Most of
these applications have been used in detecting heart sounds [134]. Microwave energy has
recently gained attention, and its applications in healthcare are tremendous, including
diagnostic and therapeutic methods [135]. Microwaves are non-ionizing EM waves and are
helpful in the development of new treatments and biosensor diagnostics [136].

EM detects audible signals as the reflected radiation from the vibrating object has
amplitude modulation representing the vibration. Kumar developed a microwave acoustic
detection system to detect vibrating signals by speech through a wall [137]. Researchers
have also developed non-contact microwave radar sensors for structural vibration monitor-
ing. With significant advancements and focused radiation beams, microwave technology
is used to create auditory radars for vocal signal detection [138]. Lin et al. developed a
coherent homodyne demodulator to detect the radar signal reflected from vibrating vocal
cords of human subjects. These measured signals are consistent with acoustic signals and
have a variety of potential medical applications [139]. Therefore, microwave energy can
be used to create wireless sensing applications to detect internal body sounds. Wireless
microwave acoustic sensors have been developed and used in various industries, but their
application in health remains unexplored [140,141].

Liu. S et al. summarized the theories and applications of electromagnetic acoustic
(EMA) techniques in biomedical applications [142]. They found that electromagnetic and
acoustic techniques are superior to conventional ultrasound techniques as they have better
tolerance to sound speed variation than ultrasonic propagation. Although these studies
have shown potential applications, EMA is yet to be applied clinically. Hui et al. [143]
demonstrated the UHF microwave technique to retrieve heart sounds. They created a
microwave near-field coherent sensor that adapted a radio frequency identification (RFID)
tag and compared it to the conventional acoustic stethoscope, which showed similar
heart sound content and can be used as a biometric parameter. This can also be used for
diagnostic purposes regardless of the ambient noise level [143]. These results suggest the
potential design of microwave acoustic PEG sensor for high fidelity data capturing of BS. AI
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assisted acoustic sensor designs using novel metamaterials offer huge promise for digital
phonoenterography using microwave telemetry system.

Biomedical telemetry is extensively employed in the ambulatory monitoring of physiolog-
ical data such as heart rate, blood pressure, oxygen saturation and respiratory rate [144–147].
The use of microwave energy to monitor vital signs is gaining popularity. Continuous wave
radar has been used to monitor heart rate and blood pressure. Various antenna design
developments helped improve the use of microwaves in telemetry [148]. Most conventional
monitoring systems use inductive transmission for data transfer and device recharge, with
problems with high power requirements and biocompatibility. However, high-frequency
(~400 MHz) microwave devices with small implantable antennas can serve the same pur-
pose with better battery life and compatibility. Therefore, a microwave telemetry system
can complement the digital phonoenterography system design for efficient wireless trans-
mission. Figure 3 [37] depicts an implementation example for digital phonoenterography
using microwave systems and its potential impact.
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Novel microwave-based acoustic PEG sensors will pave the way for the accurate
capturing of bowel sounds. Data transmission using microwave telemetry may employ AI
in both PEG data mining and interpretation as well as in the design of a computer-aided
decision support system for the accurate diagnosis of GI diseases. Digital phonoenterogra-
phy assisted with microwave-based systems can positively impact practice operations as
well as enhance patient care. With an efficient system in place, healthcare providers can
appreciate its impact in terms of reduced resource utilization, lowered operational costs,
improved provider scheduling and workflows, remote digital health monitoring as well as
an opportunity for data analytics using AI with microwave data to optimize these utilities.

Future research is warranted on the design of novel AI-assisted microwave acoustic
sensors specific to the application of interest for digital phonoenterography. Novel AI-
assisted metamaterial designs and frequency selective surfaces for microwave acoustic
sensors offer huge promise to propel this field. AI-assisted microwave telemetry system
design is needed to provide noise free phonoenterography data transmission for reliable
diagnosis. Overall, it is evident that the non-invasive diagnosis of GI diseases is warranted,
with novel AI-assisted microwave tools that can impact GI practice and patient care. This
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review provides new insights and directions for practicing digital gastroenterology using a
microwave based phonoenterography system.

7. Conclusions

Preliminary studies show promising results in the usefulness of bowel sounds in GI
practice, though more research is warranted. Research related to the origin of normal bowel
sounds as well as the pathophysiology of abnormal bowel sounds is needed to effectively
translate acoustic features into clinical practice. The recording and analysis of bowel sounds
shows tremendous potential for creating a device that is accessible, patient-friendly, cost-
effective and, most importantly, devoid of any risk factors that are associated with radiation
or intervention. Microwave-based digital phonoenterography offers a huge opportunity to
impact both GI practice as well as patient care. Future research should focus on the design
of novel AI-assisted microwave acoustic sensors and telemetry system designs.

Author Contributions: R.R. and S.P.A. defined the review scope, context and purpose of the study.
D.N.D., V.G.C., X.J.W., C.A.A., K.G. and A.J.R. provided clinical perspectives and expertise for the
study. R.R., A.K., P.M., A.K.S., K.A., A.R., K.G. and A.Y. conducted a literature review and drafted the
manuscript. S.P.A., R.R. and A.R. conceived and crafted the illustrative figures. D.N.D., V.G.C., X.J.W.,
C.A.A., A.J.R. and S.P.A. provided consulting and performed a critical review of the manuscript. R.R.,
A.K., A.R. and S.P.A. performed the cleaning and organization of the manuscript. S.P.A. provided
conceptualization, supervision and project administration. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The review was based on publicly available academic literature databases.

Acknowledgments: This work was supported by the Advanced Analytics and Practice Innovation
unit for Artificial Intelligence and Informatics research within the Department of Medicine, Mayo
Clinic, Rochester, MN USA. This work was also supported by the GIH Division for the GIH Artifi-
cial Intelligence Laboratory (GAIL) and Microwave Engineering and Imaging Laboratory (MEIL),
Department of Medicine, Mayo Clinic, Rochester, MN USA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.;

Fukudo, S. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study.
Gastroenterology 2021, 160, 99–114.e113. [CrossRef] [PubMed]

2. Horwitz, B.J.; Fisher, R.S. The irritable bowel syndrome. N. Engl. J. Med. 2001, 344, 1846–1850. [CrossRef]
3. Saha, L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J. Gastroenterol. WJG

2014, 20, 6759. [CrossRef] [PubMed]
4. Defrees, D.N.; Bailey, J. Irritable bowel syndrome: Epidemiology, pathophysiology, diagnosis, and treatment. Prim. Care Clin. Off.

Pract. 2017, 44, 655–671. [CrossRef] [PubMed]
5. Harnsberger, C.R.; Maykel, J.A.; Alavi, K. Postoperative ileus. Clin. Colon Rectal Surg. 2019, 32, 166–170. [CrossRef]
6. Gu, Y.; Lim, H.J.; Moser, M.A. How useful are bowel sounds in assessing the abdomen? Dig. Surg. 2010, 27, 422–426. [CrossRef]
7. Van Bree, S.; Prins, M.; Juffermans, N. Auscultation for bowel sounds in patients with ileus: An outdated practice in the ICU?

Neth. J. Crit. Care 2018, 26, 142–146.
8. Jackson, P.G.; Raiji, M.T. Evaluation and management of intestinal obstruction. Am. Fam. Physician 2011, 83, 159–165.
9. Gergely, M.; Deepak, P. Tools for the Diagnosis and Management of Crohn’s Disease. Gastroenterol. Clin. N. Am. 2022, 51, 213–239.

[CrossRef]
10. Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Jensen, E.T.; Kim, H.P.; Egberg, M.D.; Lund, J.L.; Moon, A.M.; Pate, V.; Barnes, E.L.

Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2021. Gastroenterology 2022, 162,
621–644. [CrossRef]

11. Kavic, S.M.; Basson, M.D. Complications of endoscopy. Am. J. Surg. 2001, 181, 319–332. [CrossRef] [PubMed]

204



Sensors 2023, 23, 2302

12. Cannon, W.B. Auscultation of the rhythmic sounds produced by the stomach and intestines. Am. J. Physiol.-Leg. Content 1905, 14,
339–353. [CrossRef]

13. Du Plessis, D. Clinical observations on intestinal motility. South Afr. Med. J. 1954, 28, 27–33.
14. Milton, G. Normal bowel sounds. Med. J. Aust. 1958, 2, 490–493. [CrossRef]
15. Baid, H. A critical review of auscultating bowel sounds. Br. J. Nurs. 2009, 18, 1125–1129. [CrossRef]
16. Watson, W.C.; Knox, E.C. Phonoenterography: The recording and analysis of bowel sounds. Gut 1967, 8, 88–94. [CrossRef]
17. Craine, B.L.; Silpa, M.; O’Toole, C.J. Computerized auscultation applied to irritable bowel syndrome. Dig. Dis. Sci. 1999, 44,

1887–1892. [CrossRef] [PubMed]
18. Safronov, B.; Shakhova, S.; Polyatykina, O.; Nazarov, S. Computer phonoenterography in the assessment of the motor-evacuatory

function of the gastrointestinal tract in healthy children. Hum. Physiol. 2006, 32, 122–124. [CrossRef]
19. Inderjeeth, A.-J.; Webberley, K.M.; Muir, J.; Marshall, B.J. The potential of computerised analysis of bowel sounds for diagnosis of

gastrointestinal conditions: A systematic. Syst. Rev. 2018, 7, 124. [CrossRef] [PubMed]
20. Nowak, J.K.; Nowak, R.; Radzikowski, K.; Grulkowski, I.; Walkowiak, J. Automated bowel sound analysis: An overview. Sensors

2021, 21, 5294. [CrossRef]
21. Wang, G.; Yang, Y.; Chen, S.; Fu, J.; Wu, D.; Yang, A.; Ma, Y.; Feng, X. Flexible dual-channel digital auscultation patch with active

noise reduction for bowel sound monitoring and application. IEEE J. Biomed. Health Inform. 2022, 26, 2951–2962. [CrossRef]
[PubMed]

22. Zhao, K.; Feng, S.; Jiang, H.; Wang, Z.; Chen, P.; Zhu, B.; Duan, X. A Binarized CNN-based Bowel Sound Recognition Algorithm
with Time-domain Histogram Features for Wearable Healthcare Systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69,
629–633. [CrossRef]

23. Ching, S.S.; Tan, Y.K. Spectral analysis of bowel sounds in intestinal obstruction using an electronic stethoscope. World J.
Gastroenterol. WJG 2012, 18, 4585. [CrossRef] [PubMed]

24. Arnbjörnsson, E.; Bengmark, S. Auscultation of Bowel Sounds in Patients with Suspected Acute Appendicitis–an Aid in the
Diagnosis? Eur. Surg. Res. 1983, 15, 24–27. [CrossRef]

25. Craine, B.L.; Silpa, M.L.; O’Toole, C.J. Enterotachogram analysis to distinguish irritable bowel syndrome from Crohn’s disease.
Dig. Dis. Sci. 2001, 46, 1974–1979. [CrossRef]

26. Liatsos, C.; Hadjileontiadis, L.J.; Mavrogiannis, C.; Patch, D.; Panas, S.M.; Burroughs, A.K. Bowel sounds analysis: A novel
noninvasive method for diagnosis of small-volume ascites. Dig. Dis. Sci. 2003, 48, 1630–1636. [CrossRef]

27. Kaneshiro, M.; Kaiser, W.; Pourmorady, J.; Fleshner, P.; Russell, M.; Zaghiyan, K.; Lin, A.; Martinez, B.; Patel, A.; Nguyen, A.
Postoperative gastrointestinal telemetry with an acoustic biosensor predicts ileus vs. uneventful GI recovery. J. Gastrointest. Surg.
2016, 20, 132–139. [CrossRef]

28. Al Mamun, K.A.; McFarlane, N. Integrated real time bowel sound detector for artificial pancreas systems. Sens. Bio-Sens. Res.
2016, 7, 84–89. [CrossRef]

29. Mamun, K.; McFarlane, N. Live Demonstration: Portable Bowel Sound Idenfication System. In Proceedings of the 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018.

30. Ozawa, T.; Saji, E.; Yajima, R.; Onodera, O.; Nishizawa, M. Reduced bowel sounds in Parkinson’s disease and multiple system
atrophy patients. Clin. Auton. Res. 2011, 21, 181–184. [CrossRef]

31. Tomomasa, T.; Takahashi, A.; Nako, Y.; Kaneko, H.; Tabata, M.; Tsuchida, Y.; Morikawa, A. Analysis of gastrointestinal sounds in
infants with pyloric stenosis before and after pyloromyotomy. Pediatrics 1999, 104, e60. [CrossRef]

32. Vasseur, C.; Devroede, G.; Dalle, D.; Van Houtte, N.; Bastin, E.; Thibault, R. Postprandial bowel sounds. IEEE Trans. Biomed. Eng.
1975, 443–448. [CrossRef]

33. Wilson, S.R.; Burns, P.N.; Wilkinson, L.M.; Simpson, D.H.; Muradali, D. Gas at abdominal US: Appearance, relevance, and
analysis of artifacts. Radiology 1999, 210, 113–123. [CrossRef] [PubMed]

34. Politzer, J.-P.; Devroede, G.; Vasseur, C.; Gerard, J.; Thibault, R. The genesis of bowel sounds: Influence of viscus and gastrointesti-
nal content. Gastroenterology 1976, 71, 282–285. [CrossRef] [PubMed]

35. Farrar, J.T.; Ingelfinger, F.J. Gastrointestinal motility as revealed by study of abdominal sounds. Gastroenterology 1955, 29, 789–802.
[CrossRef] [PubMed]

36. Liu, C.J.; Huang, S.C.; Chen, H.I. Oscillating gas bubbles as the origin of bowel sounds: A combined acoustic and imaging study.
Chin. J. Physiol 2010, 53, 245–253. [CrossRef]

37. BioRender. Created with BioRender.com. BioRender: Toronto, ON, Canada, 2021. Available online: https://biorender.com/
(accessed on 31 December 2022).

38. Elliott, T.; Barclay-Smith, E. Antiperistalsis and other muscular activities of the colon. J. Physiol. 1904, 31, 272. [CrossRef]
39. Drake, A.; Franklin, N.; Schrock, J.W.; Jones, R.A. Auscultation of Bowel Sounds and Ultrasound of Peristalsis Are Neither

Compartmentalized Nor Correlated. Cureus 2021, 13, 14982. [CrossRef]
40. Tomomasa, T.; Morikawa, A.; Sandler, R.H.; Mansy, H.A.; Koneko, H.; Masahiko, T.; Hyman, P.E.; Itoh, Z. Gastrointestinal sounds

and migrating motor complex in fasted humans. Am. J. Gastroenterol. 1999, 94, 374–381. [CrossRef]
41. Deane, A.; Chapman, M.J.; Fraser, R.J.; Bryant, L.K.; Burgstad, C.; Nguyen, N.Q. Mechanisms underlying feed intolerance in the

critically ill: Implications for treatment. World J. Gastroenterol. WJG 2007, 13, 3909. [CrossRef]

205



Sensors 2023, 23, 2302

42. Tsai, C.-F.; Wu, T.-J.; Chao, Y.-M. Labview based bowel-sounds monitoring system in realtime. In Proceedings of the 2011
International Conference on Machine Learning and Cybernetics, Guilin, China, 10–13 July 2011; pp. 1815–1818.

43. Griffith, G.; Owen, G.; Kirkman, S.; Shields, R. Measurement of rate of gastric emptying using chromium-51. Lancet 1966, 1,
1244–1245. [CrossRef]

44. Roth, J.L.A. The symptom patterns of gaseousness. Ann. New York Acad. Sci. 1968, 150, 109–126. [CrossRef] [PubMed]
45. Ellis, H. BORBORYGMI. In French’s Index of Differential Diagnosis; Elsevier: Amsterdam, The Netherlands, 1979; p. 111.
46. Adams, B. The measurement of intestinal sounds in man and their relationship to serum 5-hydroxytryptamine. Gut 1961, 2,

246–251. [CrossRef] [PubMed]
47. Martin, D.C.; Beckloff, G.L.; Arnold, J.D.; Gitomer, S. Bowel sound quantitation to evaluate drugs on gastrointestinal motor

activity. J. Clin. Pharmacol. New Drugs 1971, 11, 42–45. [CrossRef]
48. Emoto, T.; Shono, K.; Abeyratne, U.R.; Okahisa, T.; Yano, H.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. ARMA-based spectral

bandwidth for evaluation of bowel motility by the analysis of bowel sounds. Physiol. Meas. 2013, 34, 925. [CrossRef] [PubMed]
49. Kaufman, P.N.; Krevsky, B.; Malmud, L.S.; Maurer, A.H.; Somers, M.B.; Siegel, J.A.; Fisher, R.S. Role of opiate receptors in the

regulation of colonic transit. Gastroenterology 1988, 94, 1351–1356. [CrossRef]
50. Cali, R.L.; Meade, P.G.; Swanson, M.S.; Freeman, C. Effect of morphine and incision length on bowel function after colectomy. Dis.

Colon Rectum 2000, 43, 163–168. [CrossRef]
51. Horiyama, K.; Emoto, T.; Haraguchi, T.; Uebanso, T.; Naito, Y.; Gyobu, T.; Kanemoto, K.; Inobe, J.; Sano, A.; Akutagawa, M. Bowel

sound-based features to investigate the effect of coffee and soda on gastrointestinal motility. Biomed. Signal Process. Control. 2021,
66, 102425. [CrossRef]

52. Brown, S.; Cann, P.; Read, N. Effect of coffee on distal colon function. Gut 1990, 31, 450–453. [CrossRef]
53. Dessirier, J.-M.; Simons, C.T.; Carstens, M.I.; O’Mahony, M.; Carstens, E. Psychophysical and neurobiological evidence that the

oral sensation elicited by carbonated water is of chemogenic origin. Chem. Senses 2000, 25, 277–284. [CrossRef]
54. Holtmann, G.; Enck, P. Stress and gastrointestinal motility in humans: A review of the literature. Neurogastroenterol. Motil. 1991, 3,

245–254. [CrossRef]
55. Cappell, M.S.; Batke, M. Mechanical obstruction of the small bowel and colon. Med. Clin. N. Am. 2008, 92, 575–597. [CrossRef]

[PubMed]
56. Bhat, S. Intestinal Obstruction; Jaypee brothers: New Delhi, India, 2016.
57. Yoshino, H.; Abe, Y.; Yoshino, T.; Ohsato, K. Clinical application of spectral analysis of bowel sounds in intestinal obstruction. Dis.

Colon Rectum 1990, 33, 753–757. [CrossRef] [PubMed]
58. Gade, J.; Kruse, P.; Andersen, O.T.; Pedersen, S.B.; Boesby, S. Physicians’ abdominal auscultation: A multi-rater agreement study.

Scand. J. Gastroenterol. 1998, 33, 773–777. [PubMed]
59. Stevens, N.C. Auscultation of the Abdomen: An Aid to Diagnosis. New Engl. J. Med. 1934, 211, 108–110. [CrossRef]
60. Hobson, T.; Rosenman, L.D. Acute appendicitis—When is it right to be wrong? Am. J. Surg 1964, 108, 306–312. [CrossRef]
61. Hadjileontiadis, L.; Kontakos, T.; Liatsos, C.; Mavrogiannis, C.; Rokkas, T.; Panas, S. Enhancement of the diagnostic character of

bowel sounds using higher-order crossings. In Proceedings of the First Joint BMES/EMBS Conference, 1999 IEEE Engineering in
Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, Atlanta,
GA, USA, 13–16 October 1999; Volume 2, p. 1027.

62. Yuki, M.; Adachi, K.; Fujishiro, H.; Uchida, Y.; Miyaoka, Y.; Yoshino, N.; Yuki, T.; Ono, M.; Kinoshita, Y. Is a computerized
bowel sound auscultation system useful for the detection of increased bowel motility. Am. J. Gastroenterol. 2002, 97, 1846–1848.
[CrossRef]

63. Goldberg, B.B.; Goodman, G.A.; Clearfield, H.R. Evaluation of ascites by ultrasound. Radiology 1970, 96, 15–22. [CrossRef]
64. Wang, G.; Wang, M.; Liu, H.; Zhao, S.; Liu, L.; Wang, W. Changes in bowel sounds of inpatients undergoing general anesthesia.

BioMedical Eng. OnLine 2020, 19, 60. [CrossRef]
65. Spiegel, B.M.; Kaneshiro, M.; Russell, M.M.; Lin, A.; Patel, A.; Tashjian, V.C.; Zegarski, V.; Singh, D.; Cohen, S.E.; Reid, M.W.

Validation of an acoustic gastrointestinal surveillance biosensor for postoperative ileus. J. Gastrointest. Surg. 2014, 18, 1795–1803.
[CrossRef]

66. Goto, J.; Matsuda, K.; Harii, N.; Moriguchi, T.; Yanagisawa, M.; Sakata, O. Usefulness of a real-time bowel sound analysis system
in patients with severe sepsis (pilot study). J. Artif. Organs 2015, 18, 86–91. [CrossRef]

67. Li, B.; Wang, J.-R.; Ma, Y.-L. Bowel sounds and monitoring gastrointestinal motility in critically ill patients. Clin. Nurse Spec. 2012,
26, 29–34. [CrossRef]

68. Shelly, M.; Church, J. Bowel sounds during intermittent positive pressure. Anaesthesia 1987, 42, 207–209. [CrossRef] [PubMed]
69. Read, T.E.; Brozovich, M.; Andujar, J.E.; Ricciardi, R.; Caushaj, P.F. Bowel sounds are not associated with flatus, bowel movement,

or tolerance of oral intake in patients after major abdominal surgery. Dis. Colon Rectum 2017, 60, 608–613. [CrossRef] [PubMed]
70. Massey, R.L. Return of bowel sounds indicating an end of postoperative ileus: Is it time to cease this long-standing nursing

tradition? Medsurg Nurs. 2012, 21, 146.
71. Van Bree, S.; Bemelman, W.; Hollmann, M.; Bennink, R.; Boeckxstaens, G. Auscultation of bowel sounds to assess intestinal

motility? Neurogastroenterol. Motil. 2015, 27, 105–106.

206



Sensors 2023, 23, 2302

72. Deane, A.M.; Ali Abdelhamid, Y.; Plummer, M.P.; Fetterplace, K.; Moore, C.; Reintam Blaser, A. Are classic bedside exam findings
required to initiate enteral nutrition in critically ill patients: Emphasis on bowel sounds and abdominal distension. Nutr. Clin.
Pract. 2021, 36, 67–75. [CrossRef]

73. Du, X.; Allwood, G.; Webberley, K.M.; Inderjeeth, A.-J.; Osseiran, A.; Marshall, B.J. Noninvasive diagnosis of irritable bowel
syndrome via bowel sound features: Proof of concept. Clin. Transl. Gastroenterol. 2019, 10, e00017. [CrossRef] [PubMed]

74. Campbell, F.; Storey, B.; Cullen, P.; Cuschieri, A. Surface vibration analysis (SVA): A new non-invasive monitor of gastrointestinal
activity. Gut 1989, 30, 39–45. [CrossRef]

75. Craine, B.L.; Silpa, M.L.; O’toole, C.J. Two-dimensional positional mapping of gastrointestinal sounds in control and functional
bowel syndrome patients. Dig. Dis. Sci. 2002, 47, 1290–1296. [CrossRef]

76. Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of Diabetes 2017. J. Diabetes Res. 2018, 2018,
3086167. [CrossRef]

77. Yamaguchi, K.; Yamaguchi, T.; Odaka, T.; Saisho, H. Evaluation of gastrointestinal motility by computerized analysis of abdominal
auscultation findings. J. Gastroenterol. Hepatol. 2006, 21, 510–514. [CrossRef] [PubMed]

78. Breton, M.; Farret, A.; Bruttomesso, D.; Anderson, S.; Magni, L.; Patek, S.; Dalla Man, C.; Place, J.; Demartini, S.; Del Favero, S.; et al.
Fully integrated artificial pancreas in type 1 diabetes: Modular closed-loop glucose control maintains near normoglycemia.
Diabetes 2012, 61, 2230–2237. [CrossRef]

79. Harvey, R.A.; Wang, Y.; Grosman, B.; Percival, M.W.; Bevier, W.; Finan, D.A.; Zisser, H.; Seborg, D.E.; Jovanovic, L.; Doyle, F.J.; et al.
Quest for the artificial pancreas: Combining technology with treatment. IEEE Eng. Med. Biol. Mag. 2010, 29, 53–62. [CrossRef]
[PubMed]

80. Doyle, F.J.; Huyett, L.M.; Lee, J.B.; Zisser, H.C.; Kerr, D.; Dassau, E. Response to comment on Doyle et al. Closed-loop artificial
pancreas systems: Engineering the algorithms. Diabetes Care 2014;37:1191–1197. Diabetes Care 2014, 37, e228. [CrossRef]

81. Benarroch, E.; Schmeichel, A.; Sandroni, P.; Low, P.; Parisi, J. Involvement of vagal autonomic nuclei in multiple system atrophy
and Lewy body disease. Neurology 2006, 66, 378–383. [CrossRef] [PubMed]

82. Hill, J.M.; Maloney, A.; Stephens, K.; Adrezin, R.; Eisenfeld, L. Stethoscope for monitoring neonatal abdominal sounds. Proc.
IAJC-IJME Int. Conf. 2008, 9, 5–11.

83. Hill, J.M.; Regan, M.S.; Adrezin, R.S.; Eisenfeld, L. System for recording the bowel sounds of premature infants. Front. Biomed.
Devices 2008, 48337, 37–38.

84. Sitaula, C.; He, J.; Priyadarshi, A.; Tracy, M.; Kavehei, O.; Hinder, M.; Withana, A.; McEwan, A.; Marzbanrad, F. Neonatal bowel
sound detection using convolutional neural network and Laplace hidden semi-Markov model. IEEE/ACM Trans. Audio Speech
Lang. Process. 2022, 30, 1853–1864. [CrossRef]

85. Mansy, H.; Sandler, R. Choice of operating parameters in heart sound removal from bowel sounds using adaptive filter-
ing. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Soci-
ety.’Magnificent Milestones and Emerging Opportunities in Medical Engineering’(Cat. No. 97CH36136), Chicago, IL, USA,
30 October–2 November 1997; pp. 1398–1401.

86. Mansy, H.A.; Sandler, R.H. Bowel-sound signal enhancement using adaptive filtering. IEEE Eng. Med. Biol. Mag. 1997, 16,
105–117. [CrossRef]

87. Sakata, O.; Suzuki, Y.; Matsuda, K.; Satake, T. Temporal changes in occurrence frequency of bowel sounds both in fasting state
and after eating. J. Artif. Organs 2013, 16, 83–90. [CrossRef]

88. Kim, K.S.; Seo, J.H.; Ryu, S.H.; Kim, M.H.; Song, C.G. Estimation algorithm of the bowel motility based on regression analysis of
the jitter and shimmer of bowel sounds. Comput. Methods Programs Biomed. 2011, 104, 426–434. [CrossRef] [PubMed]

89. Kim, K.-S.; Seo, J.-H.; Song, C.-G. Non-invasive algorithm for bowel motility estimation using a back-propagation neural network
model of bowel sounds. Biomed. Eng. Online 2011, 10, 69. [CrossRef]

90. Ulusar, U.D.; Canpolat, M.; Yaprak, M.; Kazanir, S.; Ogunc, G. Real-time monitoring for recovery of gastrointestinal tract motility
detection after abdominal surgery. In Proceedings of the 2013 7th International Conference on Application of Information and
Communication Technologies, Azerbaijan, Baku, 23–25 October 2013; pp. 1–4.

91. Sato, R.; Emoto, T.; Gojima, Y.; Akutagawa, M. Automatic bowel motility evaluation technique for noncontact sound recordings.
Appl. Sci. 2018, 8, 999. [CrossRef]

92. Emoto, T.; Abeyratne, U.R.; Gojima, Y.; Nanba, K.; Sogabe, M.; Okahisa, T.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. Evaluation of
human bowel motility using non-contact microphones. Biomed. Phys. Eng. Express 2016, 2, 045012. [CrossRef]

93. Grenier, M.-C.; Gagnon, K.R.; Genest, J.; Durand, J.; Durand, L.-G. Clinical comparison of acoustic and electronic stethoscopes
and design of a new electronic stethoscope. Am. J. Cardiol. 1998, 81 5, 653–656. [CrossRef]

94. Bray, D.; Reilly, R.; Haskin, L.; McCormack, B. Assessing motility through abdominal sound monitoring. In Proceedings of
the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ’Magnificent Milestones
and Emerging Opportunities in Medical Engineering’ (Cat. No. 97CH36136), Chicago, IL, USA, 30 October–2 November 1997;
pp. 2398–2400.

95. Zaborski, D.; Halczak, M.; Grzesiak, W.; Modrzejewski, A. Recording and analysis of bowel sounds. Euroasian J. Hepato-
Gastroenterol. 2015, 5, 67. [CrossRef] [PubMed]

96. Felder, S.; Margel, D.; Murrell, Z.; Fleshner, P. Usefulness of bowel sound auscultation: A prospective evaluation. J. Surg. Educ.
2014, 71, 768–773. [CrossRef]

207



Sensors 2023, 23, 2302

97. Lu, Q.; Yadid-Pecht, O.; Sadowski, D.; Mintchev, M.P. Acoustic and intraluminal ultrasonic technologies in the diagnosis of
diseases in gastrointestinal tract: A review. Engineering 2013, 5, 73–77. [CrossRef]

98. Wang, N.; Testa, A.; Marshall, B.J. Development of a bowel sound detector adapted to demonstrate the effect of food intake.
Biomed. Eng. Online 2022, 21, 1. [CrossRef]

99. Bickley, L.S.; Szilagyi, P.G.; Bates, B. Bates’ Guide to Physical Examination and History Taking; Lippincott Williams & Wilkins:
Philadelphia, PA, USA, 2009.

100. Kahan, S. Signs and Symptoms, 2nd ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2009.
101. Talley, N.J. Clinical Examination: A Systemic Guide to Physical Diagnosis, 5th ed.; Churchill Livingstone Elsevier: London, UK, 2006.
102. Seidel, H.M. Mosby’s Guide to Physical Examination; Elsevier: Amsterdam, The Netherlands, 2010.
103. Rushforth, H. Assessment Made Incredibly Easy! Lippincott Williams & Wilkins: London, UK, 2009.
104. Epstein, O. The Abdomen- Clinical Examination, 4th ed.; Mosby, Elsevier: Maryland Heights, MO, USA, 2008; pp. 186–225.
105. Cox, C.; Steggall, M. A step− by-step guide to performing a complete abdominal examination. Gastrointest. Nurs. 2009, 7, 10–17.

[CrossRef]
106. Evans, M.M.; Evans, M.; Lashinski, K.; Franklin, A. Assessing the abdomen. Nursing2020 2009, 39, 12. [CrossRef] [PubMed]
107. Mehta, M. Assessing the abdomen. Nursing 2003, 33, 54–55. [CrossRef]
108. Vizioli, L.H.; Winckler, F.D.; da Luz, L.C.; Marques, G.K.; Callegari-Jacques, S.M.; Fornari, F. Abdominal Palpation Does Not

Modify the Number of Bowel Sounds in Healthy Volunteers and Gastrointestinal Outpatients. Am. J. Med. Sci. 2020, 360, 378–382.
[CrossRef] [PubMed]

109. Ranta, R.; Louis-Dorr, V.; Heinrich, C.; Wolf, D.; Guillemin, F. Towards an acoustic map of abdominal activity. In Proceedings of
the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439),
Cancun, Mexico, 17–21 September 2003; pp. 2769–2772.

110. Ranta, R.; Louis-Dorr, V.; Heinrich, C.; Wolf, D.; Guillemin, F. Principal component analysis and interpretation of bowel sounds. In
Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco,
CA, USA, 1–5 September 2004; pp. 227–230.

111. Kutsumi, Y.; Kanegawa, N.; Zeida, M.; Matsubara, H.; Murayama, N. Automated Bowel Sound and Motility Analysis with CNN
Using a Smartphone. Sensors 2023, 23, 407. [CrossRef] [PubMed]

112. Georgoulis, B. Bowel Sounds. J. R. Soc. Med. 1967, 60, 917–920. [CrossRef]
113. Radnitz, C.L.; Blanchard, E.B. Bowel sound biofeedback as a treatment for irritable bowel syndrome. Biofeedback Self-Regul. 1988,

13, 169–179. [CrossRef]
114. Hadjileontiadis, L.J.; Panas, S.M. On modeling impulsive bioacoustic signals with symmetric spl alpha/-stable distributions:

Application in discontinuous adventitious lung sounds and explosive bowel sounds. In Proceedings of the 20th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the
Year 2000 and Beyond (Cat. No.98CH36286), Hong Kong, China, 1 November 1998; Volume 11, pp. 13–16.

115. Sugrue, M.; Redfern, M. Computerized phonoenterography: The clinical investigation of a new system. J. Clin. Gastroenterol.
1994, 18, 139–144. [CrossRef]

116. Hadjileontiadis, L.J.; Liatsos, C.N.; Mavrogiannis, C.C.; Rokkas, T.A.; Panas, S.M. Enhancement of bowel sounds by wavelet-based
filtering. IEEE Trans. Biomed. Eng. 2000, 47, 876–886. [CrossRef]

117. Ranta, R.; Heinrich, C.; Louis-Dorr, V.; Wolf, D.; Guillemin, F. Wavelet-based bowel sounds denoising, segmentation and
characterization. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Istanbul, Turkey, 25–28 October 2001; pp. 1903–1906.

118. Hadjileontiadis, L.J.; Rekanos, I.T. Enhancement of explosive bowel sounds using kurtosis-based filtering. In Proceedings of the
25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439),
Cancun, Mexico, 17–21 September 2003; pp. 2479–2482.

119. Hadjileontiadis, L.J.; Rekanos, I.T. Detection of explosive lung and bowel sounds by means of fractal dimension. IEEE Signal
Process. Lett. 2003, 10, 311–314. [CrossRef]

120. Hadjileontiadis, L.J. Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II:
Application results. IEEE Trans. Biomed. Eng. 2005, 52, 1050–1064. [CrossRef]

121. Dimoulas, C.; Kalliris, G.; Papanikolaou, G.; Petridis, V.; Kalampakas, A. Bowel-sound pattern analysis using wavelets and neural
networks with application to long-term, unsupervised, gastrointestinal motility monitoring. Expert Syst. Appl. 2008, 34, 26–41.
[CrossRef]

122. Lin, B.-S.; Sheu, M.-J.; Chuang, C.-C.; Tseng, K.-C.; Chen, J.-Y. Enhancing bowel sounds by using a higher order statistics-based
radial basis function network. IEEE J. Biomed. Health Inform. 2013, 17, 675–680. [CrossRef] [PubMed]

123. Mamun, K.A.A.; Habib, M.H.U.; McFarlane, N.; Paul, N. A low power integrated bowel sound measurement system. Conf. Rec.
IEEE Instrum. Meas. Technol. Conf. 2015, 2015, 779–783. [CrossRef]

124. Zhou, L.; Sun, Y.; Hua, S.; Li, Z.; Hao, D.; Hu, Y. Identification of bowel sound signal with spectral entropy method. In
Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China,
16–18 July 2015; pp. 798–802.

125. Sheu, M.-J.; Lin, P.-Y.; Chen, J.-Y.; Lee, C.-C.; Lin, B.-S. Higher-order-statistics-based fractal dimension for noisy bowel sound
detection. IEEE Signal Process. Lett. 2014, 22, 789–793. [CrossRef]

208



Sensors 2023, 23, 2302

126. Yin, Y.; Yang, W.; Jiang, H.; Wang, Z. Bowel sound based digestion state recognition using artificial neural network. In Proceedings
of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4.

127. Liu, J.; Yin, Y.; Jiang, H.; Kan, H.; Zhang, Z.; Chen, P.; Zhu, B.; Wang, Z. Bowel sound detection based on MFCC feature and LSTM
neural network. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA,
17–19 October 2018; pp. 1–4.

128. Kölle, K.; Aftab, M.F.; Andersson, L.E.; Fougner, A.L.; Stavdahl, Ø. Data driven filtering of bowel sounds using multivariate
empirical mode decomposition. Biomed. Eng. Online 2019, 18, 28. [CrossRef] [PubMed]

129. Kodani, K.; Sakata, O. Automatic Bowel Sound Detection under Cloth Rubbing Noise. In Proceedings of the 2020 IEEE Region 10
Conference (Tencon), Osaka, Japan, 16–19 November 2020; pp. 779–784.

130. Zhao, K.; Jiang, H.; Yuan, T.; Zhang, C.; Jia, W.; Wang, Z. A CNN Based Human Bowel Sound Segment Recognition Algorithm with
Reduced Computation Complexity for Wearable Healthcare System. In Proceedings of the 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5.

131. Zheng, X.; Zhang, C.; Chen, P.; Zhao, K.; Jiang, H.; Jiang, Z.; Pan, H.; Wang, Z.; Jia, W. A CRNN System for Sound Event Detection
Based on Gastrointestinal Sound Dataset Collected by Wearable Auscultation Devices. IEEE Access 2020, 8, 157892–157905.
[CrossRef]

132. Namikawa, T.; Yamaguchi, S.; Fujisawa, K.; Ogawa, M.; Iwabu, J.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi,
M. Real-time bowel sound analysis using newly developed device in patients undergoing gastric surgery for gastric tumor. JGH
Open. 2021, 5, 454–458. [CrossRef]

133. Ficek, J.; Radzikowski, K.; Nowak, J.K.; Yoshie, O.; Walkowiak, J.; Nowak, R. Analysis of Gastrointestinal Acoustic Activity Using
Deep Neural Networks. Sensors 2021, 21, 7602. [CrossRef]

134. Will, C.; Shi, K.; Schellenberger, S.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. Radar-based heart
sound detection. Sci. Rep. 2018, 8, 1–14. [CrossRef]

135. Rosen, A. Microwave Applications in Medicine in the USA-a Short Overview. In Proceedings of the 1991 21st European Microwave
Conference, Stuttgart, Germany, 9–12 September 1991; pp. 139–149.

136. Gartshore, A.; Kidd, M.; Joshi, L.T. Applications of microwave energy in medicine. Biosensors 2021, 11, 96. [CrossRef]
137. Kumar, R. Remote Acoustic Detection System Using Microwave Signals. 2006. Available online: https://www.researchgate.net/

publication/230807188_Remote_Acoustic_Detection_System_using_Microwave_Signals (accessed on 31 December 2022).
138. Li, C.; Peng, Z.; Huang, T.-Y.; Fan, T.; Wang, F.-K.; Horng, T.-S.; Munoz-Ferreras, J.-M.; Gomez-Garcia, R.; Ran, L.; Lin, J. A review

on recent progress of portable short-range noncontact microwave radar systems. IEEE Trans. Microw. Theory Tech. 2017, 65,
1692–1706. [CrossRef]

139. Lin, C.-S.; Chang, S.-F.; Chang, C.-C.; Lin, C.-C. Microwave human vocal vibration signal detection based on Doppler radar
technology. IEEE Trans. Microw. Theory Tech. 2010, 58, 2299–2306.

140. Pereira da Cunha, M. Wireless Microwave Acoustic Sensor System for Condition Monitoring in Power Plant Environments; University of
Maine: Orono, ME, USA, 2017.

141. Maskay, A.; Da Cunha, M.P. High temperature static strain microwave acoustic sensor. In Proceedings of the 2016 IEEE
International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4.

142. Liu, S.; Zhang, R.; Zheng, Z.; Zheng, Y. Electromagnetic–acoustic sensing for biomedical applications. Sensors 2018, 18, 3203.
[CrossRef] [PubMed]

143. Hui, X.; Sharma, P.; Kan, E.C. Microwave stethoscope for heart sound by near-field coherent sensing. In Proceedings of the 2019
IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 365–368.

144. Orphanidou, C.; Clifton, D.; Khan, S.; Smith, M.; Feldmar, J.; Tarassenko, L. Telemetry-based vital sign monitoring for ambulatory
hospital patients. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Minneapolis, Minnesota, 3–6 September 2009; pp. 4650–4653.

145. Polk, T.; Walker, W.; Hande, A.; Bhatia, D. Wireless telemetry for oxygen saturation measurements. In Proceedings of the 2006
IEEE Biomedical Circuits and Systems Conference, Nara, Japan, 17–19 October 2019; pp. 174–177.

146. Zulkifli, N.S.A.; Harun, F.C.; Azahar, N. Centralized heart rate monitoring telemetry system using ZigBee wireless sensor network.
In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China,
5–7 January 2012; pp. 265–268.

147. Budinger, T.F. Biomonitoring with wireless communications. Annu. Rev. Biomed. Eng. 2003, 5, 383–412. [CrossRef] [PubMed]
148. Sinharay, A.; Das, R.; Seth, S. A novel microwave measurement technique for non-contact vital sign monitoring. In Proceedings

of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

209





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-0342-2


