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Editorial

Discrete-Valued Time Series

Christian H. Weiß

Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany;
weissc@hsu-hh.de; Tel.: +49-40-6541-2779

Time series are sequentially observed data in which important information about the
phenomenon under consideration is contained not only in the individual observations
themselves, but also in the way these observations follow one another. Therefore, the
stochastic counterpart of time series data, the stochastic process, and the methods and
models for time series analysis, carefully consider this sequential information. The first
approaches to the analysis and modeling of time series were developed about 100 years
ago, and they have formed an entire research discipline at least since the publication of
the famous textbook by Box and Jenkins [1] about 50 years later. This double anniversary
recently gave rise to the Special Issue “Time Series Modeling” in Entropy [2], where numer-
ous contributions illustrated the strong research interest and the various research directions
in this area. Here, it is interesting to note that these contributions could be roughly split
into two halves. The first half deals with real-valued time series, i.e., time series having
a continuous range consisting of real numbers or real vectors. Indeed, time series of this
kind have been the main subject of time series analysis since the beginning, and for most
of the last 100 years. Remarkably, however, the second half of the papers deals with a
rather young subfield of time series analysis that now seems to be attracting a great deal
of research interest: discrete-valued time series. The first papers on discrete-valued time
series appeared in the 1980s, but it was not until the 2000s that a rapid increase in research
activity could be observed. It is only in the last few years that a certain maturity and
consolidation of this research area can be observed, which is manifested in, among other
things, the textbooks by Davis et al. [3], Weiß [4], and in a number of recent survey articles,
such as Davis et al. [5], Fokianos [6], Armillotta et al. [7], Karlis and Mamode Khan [8], and
Li et al. [9], as well as in contribution 4 by Liu et al.

Discrete-valued time series can be of several types (see Weiß [4] for a comprehensive
discussion). Undoubtedly, the most popular are count time series, where the range is
quantitative and consists of non-negative integers [5–8]. However, truly integer-valued
time series (where the range also includes negative integers) are increasingly being con-
sidered [9], while categorical time series, where the range is qualitative (symbols), are
still somewhat neglected. Finally, the discretization of a real-valued time series has to
be mentioned in this context, e.g., when methods based on ordinal patterns are used for
its analysis (see Bandt [10] for a recent overview). Motivated by these diverse research
directions, this Special Issue on “Discrete-valued Time Series” was initiated, which was
actually very well received. It was possible to collect articles on a wide range of topics in
this area, covering stochastic models for discrete-valued time series, as well as methods
for their analysis, univariate and multivariate discrete-valued time series, and various
applications of discrete time-series methods. The remainder of this Editorial provides a
brief summary of the contributions to this Special Issue, grouping the articles thematically.

A large class of models for count time series make use of so-called thinning opera-
tors [4]. Such thinnings are used as integer substitutes of the multiplication, and allow us
to adapt the classical autoregressive moving-average (ARMA) models to the count-data
case. Therefore, the resulting integer ARMA-type models are abbreviated as INARMA
models [4]. The observation-driven random parameter INAR(1) model proposed by Yu
and Tao (contribution 1) belongs to this class, and it is characterized by using the Poisson
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thinning operator together with a state-dependent thinning parameter (i.e., the thinning pa-
rameter at time t depends on the count observation at time t − 1). Furthermore, the authors
introduce further flexibility into the model by allowing the thinning parameter to be chosen
randomly (given the previous observation). The AR(1)-type model developed by Chen et al.
(contribution 2) belongs to the INARMA family as well, but differs from the aforementioned
model of Yu and Tao in several respects. First, Chen et al. focus on bounded counts (i.e.,
the observed counts have the range {0, . . . , n} with specified n ∈ N = {1, 2, . . .}), whereas
Yu and Tao’s INAR(1) model assumes the unbounded range N0 = {0, 1, . . .}. Second,
Chen et al. use Conway–Maxwell–Poisson-binomial thinning operators, thus allowing the
resulting model to handle counts exhibiting either underdispersion, equidispersion, or
overdispersion with respect to a binomial distribution. Further, the article by Silva et al.
(contribution 3) refers to the INARMA modeling of count time series, but under a different
perspective. In many application contexts, it is not possible to observe the true count value
at a time t, but only a censored version of it. Neglecting censoring might cause biased
and inconsistent model estimates, so Silva et al. developed two Bayesian algorithms to
explicitly account for the censoring of data while fitting an INAR(1) model.

Another large class of models for count time series adapt an ARMA-like structure
via a conditional regression approach. Although there is an ongoing debate on how these
models should be referred to [4], most authors use the term integer-valued generalized
autoregressive conditional heteroskedasticity (INGARCH). Compared to the INARMA
class, INGARCH models are better able to handle higher-order models, and by using
a feedback term within the model recursion, they also allow for an intensified memory
of the count process. For these reasons, among others, INGARCH models have become
very popular in recent years, and a comprehensive survey about the state of the art is
presented by Liu et al. (contribution 4). It is worth noting that their survey article is not
restricted to univariate counts only (where both the cases of unbounded and bounded
counts are considered), but it also covers INGARCH models for multivariate counts, as
well as models for “Z-valued time series”. The latter refers to time series with range
Z = {. . . ,−1, 0, 1, . . .}, i.e., where also negative integer outcomes are possible (also see
Li et al. [9] for further information). At this point, the article by Xu et al. (contribution 5) has
to be mentioned, where a particular type of INARCH model is developed. The proposal
adapts the multiplicative error model to the count-data case by combining the INARCH
approach with the binomial thinning operator. Consequently, the resulting model might be
understood as a hybrid model that combines features from the INARMA and INGARCH
classes. Finally, the paper of Moontaha et al. (contribution 6) is also concerned with the
modeling of (possibly multivariate) count time series, but the proposed approach does
not fall into either the INARMA or the INGARCH class. On the contrary, although this
may seem contradictory at first, Moontaha et al. use the Gaussian linear state space model
together with the Kalman filter. However, to ensure that non-negative integer outcomes
are generated, the model is equipped with special observation functions.

The remaining contributions to this Special Issue are not about the mere modeling
of discrete-valued time series, but consider miscellaneous topics in this research area. In
Weiß et al. (contribution 7), a particular type of analyzing count time series is discussed,
namely hypothesis tests based on the partial autocorrelation function (PACF). Such PACF
tests are commonly used for identifying the model order of AR-type count processes,
but their asymptotics have been derived for Gaussian data. Therefore, different ways
of getting more reliable test implementations are investigated in a comparative study.
Guan and Wang (contribution 8) present an application of INARMA models to the risk
analysis of an insurance portfolio. More precisely, an INAR(1) model is used to describe
the temporal dependence among the premium numbers, and an INMA(1) model for the
temporal dependence among the claim numbers. Another application of INARMA models
is presented by Morais (contribution 9), namely statistical process monitoring by control
charts. Morais derives two stochastic ordering results regarding the geometric INAR(1)
process which, in turn, can be utilized to conclude on the properties of the geometric
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control chart’s run length distribution. Last but not least, Papapetrou et al. (contribution 10)
discuss the causality analysis of discrete-valued multivariate time series. In contrast to the
aforementioned contributions, these time series do not need to consist of quantitative count
values, but might also be of qualitative nature. Papapetrou et al. propose a discrete type of
partial mutual information from mixed embedding, and investigate its performance in a
simulation study.
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Issue, to the anonymous peer reviewers for carefully reading the submissions as well as for their
constructive feedback, and to the MDPI editorial staff for their support during this work.
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Article

An Observation-Driven Random Parameter INAR(1) Model
Based on the Poisson Thinning Operator

Kaizhi Yu and Tielai Tao *

School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130, China;
yukz@swufe.edu.cn
* Correspondence: 118020209005@smail.swufe.edu.cn

Abstract: This paper presents a first-order integer-valued autoregressive time series model featuring
observation-driven parameters that may adhere to a particular random distribution. We derive the
ergodicity of the model as well as the theoretical properties of point estimation, interval estimation,
and parameter testing. The properties are verified through numerical simulations. Lastly, we
demonstrate the application of this model using real-world datasets.

Keywords: integer-valued time series; thinning operator; observation-driven; ergodicity; interval
estimation

1. Introduction

Integer-valued time series data are prevalent in both scientific research and various
socioeconomic contexts. Examples of such data encompass the annual number of companies
listed on stock exchanges, the monthly usage of hospital beds in specific departments, and
the yearly frequency of major earthquakes or tsunamis. However, traditional continuous-
valued time series models are unable to precisely capture the unique characteristics of
integer-valued data, resulting in only approximations through continuous-valued models.
This shortcoming may lead to model mis-specification, posing challenges in statistical
inference. Consequently, the modeling and analysis of integer-valued time series data have
increasingly gained attention within academia. Amongst the extensive range of integer-
valued time series models, thinning operator models have attracted considerable interest
from scholars due to their resemblance to Autoregressive Moving Average (ARMA) models
in continuous-valued time series theory. Thinning operator models replace multiplication
in ARMA models with the binomial thinning operator, which was initially introduced by
Steutel and Van Harn [1]:

φ ◦ Yi = ∑Yi
i=1 Bi, (1)

where {Yi} refers to a count series and {Bi} represents a Bernoulli random variable se-
quence that independent of {Yi}, satisfying the condition P(Bi = 1) = 1 − P(Bi = 0) = φ.
Building upon this concept, Al-Osh and Alzaid [2] developed the first-order Integer-valued
Autoregressive (INAR(1)) model, for t ∈ N+:

Yt = φ ◦ Yt−1 + Zt, (2)

where Zt is considered the innovation term entering the model during period t. Its marginal
distribution aligns with a Poisson distribution, exhibiting an expected value of λ, thereby
giving rise to the nomenclature of the Poisson INAR(1) model. An intuitive interpretation
of this model is that, within a hospital setting, the number of in-patients in period t com-
prises patients from period t − 1 who have not yet been discharged, along with patients
newly admitted in period t. Given that Bi adheres to a Bernoulli distribution, the binomial
thinning operator can exclusively express the {0, 1} to {0, 1} excitation states. However,
the binomial thinning operator does not represent the sole available option for thinning

Entropy 2023, 25, 859. https://doi.org/10.3390/e25060859 https://www.mdpi.com/journal/entropy
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operators. Latour [3] expanded the distribution of Bi in Equation (1) to encompass any non-
negative integer-valued random variable, thus establishing the Generalized Integer-valued
Autoregressive (GINAR) model and providing conditions for model stationarity. Further-
more, the φ in Equation (1) need not be a fixed constant. Joe [4] and Zheng, Basawa, and
Datta [5] constructed the Random Coefficient Thinning Operator (RCINAR(1)) model by
permitting the parameter φ in the INAR(1) model to follow a specified random distribution.
Gomes and Castro [6] generalized the thinning operator in RCINAR(1) to GINAR(1) model,
culminating in the development of the Random Coefficient Generalized Integer-valued
Autoregressive model. Weiß and Jentsch [7] proposed a bootstrap estimation method based
on the INAR model to facilitate the introduction of semi-parametric structures within the
INAR model, in turn reducing model assumptions and augmenting model generalization
capabilities. Kang, Wang, and Yang [8] mixed the binomial thinning operator with the oper-
ator introduced by Pegram [9], resulting in the development of a novel INAR model capable
of addressing equi-dispersed, under-dispersed, over-dispersed, zero-inflated, and multi-
modal integer-valued time series data. Salinas, Flunkert, Gasthaus, and Januschowski [10]
proposed a new method for time series forecasting based on autoregressive recurrent neural
network models. Huang, Zhu, and Deng [11] mixed quasi-binomial distribution operators
with generalized Poisson operators, thus equipping the INAR model with the ability to
describe structural changes in the data generation processes. Mohammadi, Sajjadnia, Bak-
ouch, and Sharafi [12] incorporated innovation terms conforming to the Poisson-Lindley
distribution, thereby enhancing the INAR(1) model’s capacity to capture {0, 1} inflated
integer-valued time series data. For further discussion on thinning operator models, Scotto,
Weiß, and Gouveia [13] provide a comprehensive review article.

The thinning operator models previously mentioned presuppose that φ is independent of
other variables, thereby neglecting the dynamic features of the coefficient φ in INAR models.
To tackle this limitation, Zheng and Basawa [14] proposed a first-order observation-driven
integer-valued autoregressive process. Triebsch [15] introduced the first-order Functional
Coefficient Integer-valued Time Series model based on the thinning operator, in which the
coefficient φt during period t is a measurable function of the previous observation Yt−1.
Furthermore, Montriro, Scotto, and Pereira [16] presented the Self-Exciting Threshold Integer-
valued Time Series model (SETINAR) in which the coefficient φt during period t assumes
diverse values contingent on the varying observations in prior limited periods. Building
on the geometric thinning operator (alternatively known as the negative binomial thinning
operator) proposed by Ristić, Bakouch, and Nastić [17], Yu, Wang, and Yang [18] introduced
an INAR(1) model encompassing observation-driven parameters.

With respect to integer-valued time series models featuring observation-driven pa-
rameters, existing studies primarily focus on binomial and geometric thinning operators.
However, the binomial thinning operator cannot represent one-to-many excitation states,
and both binomial and geometric thinning operators exhibit limited descriptive capacity
for locally non-stationary phenomena and extreme values in real data. Consequently, this
paper employs a Poisson thinning operator, defined as follows:

φt � Yt = ∑Yt
i=1 B(t)

i , (3)

where,
{

B(t)
i

}
is independent of Yt and constitutes an independent and identically dis-

tributed Poisson random variable sequence with an intensity parameter φt > 0. The
probability mass function is expressed by:

P

(
B(t)

i = x
)
=

φx
t

x!
exp(−φt),

6
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where
{

B(t)
i

}
and Yt are mutually independent. Leveraging this thinning operator, the

INAR(1) model in this study is formulated as follows:

Yt = φt � Yt−1 + Zt,

where the sequence {Zt} comprises independent and identically distributed non-negative
integer-valued random variables, which are independent of

{
B(t)

i

}
and {Ys}s<t. Further-

more, diverging from the parameters set forth by Yu, Wang, and Yang [18], we posit that φt
correlates with the previous observation Yt−1, and given Yt−1, φt|Yt−1 may still conform to
a specific non-negative probability distribution. In Section 2, we will demonstrate that if
the expectation of this non-negative discrete probability distribution falls below 1, it does
not affect the model’s ergodicity. Simultaneously, due to instances where φt|Yt−1 occa-
sionally exceeds 1, the autoregressive model exhibits non-stationary features or generates
extreme values within specific periods—all without compromising its overall stationarity.
In comparison to existing research, this setting offers the advantage of simultaneously illus-
trating one-to-many excitation states and observation-driven and time-varying parameter
structures, as well as localized non-stationary features or extreme values. For example, in
public health, a patient with an infectious disease may not transmit the illness to others
or could potentially infect one or multiple individuals, indicating one-to-many excitation
states. As the number of infections fluctuates, local epidemic prevention policies may
undergo changes, consequently modifying the disease’s transmissibility and reflecting the
time-varying and observation-driven characteristics of the coefficient. During particular
periods of rapid infectious disease spread, the majority of infected individuals are likely to
infect more than one other person, resulting in infection data that exhibit extreme values or
localized non-stationary characteristics.

The organization of this paper is as follows: in Section 2, we introduce the integer-
valued time series model featuring observation-driven coefficients under investigation
and outline its essential statistical properties. In Section 3, we describe the estimation and
testing methods pertinent to this model and present asymptotic results. Section 4 provides
numerical simulation outcomes of these techniques, elaborating on the performance of the
estimation and testing approaches across diverse settings and sample conditions. Section 5
demonstrates the application of the proposed model using real-world data. Finally, Section 6
offers a summary and discussion.

2. Model Construction and Basic Properties

For the time series {Yt}, consider the following data generating process:

Yt = φt � Yt−1 + Zt (4)

Given Yt−1, φt may be fixed as:

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)] .

Alternatively, {φt} could represent an independent random variable sequence with a
conditional expectation of:

E(φt|Yt−1) =
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)] ,
(5)

where β is an �-dimensional parameter vector, the function ν(·; ·) belongs to a specific
parametric family of functions G{ν(Yt−1; β); β ∈ Θ}, and Θ is a compact subset of R�.
β is an interior point of Θ and ν(y; β) is thrice continuously differentiable with respect to β.
The conditional variance is given by Var(φ|Yt−1) = σ2

φt |Yt−1
. Additionally, {Zt} comprises

an independent and identically distributed non-negative integer-valued random variable

7
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sequence with a probability mass function fz with expectation E(Zt) = λ < ∞ and variance
Var(Zt) = σ2

Z < ∞. Furthermore, {Zt} is independent of {Yt}.

Remark 1. Integer-valued probability distributions that align with the settings of Zt are common,
with typical examples being Poisson and geometric distributions. This paper employs a Poisson
distribution in the numerical simulation section.

Remark 2. There are numerous functions that align with the setting of ν(·; ·), with the most typical
being the linear function ν(Yt−1; β) = β0 + β1Yt−1. In this paper’s numerical simulation section,
a linear function setting will be adopted.

Remark 3. From model (4), it is evident that {Yt} is a Markov chain defined on the set of natural
numbers N, with a one-step-ahead transition probability:

P(Yt = yt|Yt−1 = yt−1) =
∫

P(Yt = yt|Yt−1 = yt−1, φt = φ)P(φt = φ|Yt−1 = yt−1)dφ

=
∫ yt

∑
k=0

(φyt−1)
k

k! exp(−φyt−1) fz(yt − k)P(φt = φ|Yt−1 = yt−1)dφ
(6)

Based on the above model construction, we can obtain the conditional moments for
Model (4). Starting from these conditional moments, we can construct estimating equations
to estimate the unknown parameters in the model:

Property 1. for t ≥ 1

(i) E(Yt|Yt−1) =
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1 + λ,

(ii) Var(Yt|Yt−1) =
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1 + σ2
Z + σ2

φt |Yt−1
,

(iii) Cov(Yt, Yt−1) = E

(
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Y
2
t−1

)
−E

(
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1

)
E(Yt−1).

Ergodicity is crucial for the convergence of parameter estimation, as presented in the
following property:

Property 2. If sup
y∈N

ν(y; β) < ∞, β ∈ Θ, then the data generating process {Yt} defined by (4) is an

ergodic Markov chain.

Remark 4. In Property 2, since the form of the function ν is not determined, we cannot di-
rectly provide the conditions for the ergodicity of {Yt}. However, for specific cases, such as
ν(Yt−1; β) = β0 + β1Yt−1, we can intuitively see that the stationary and ergodic property of
the data generating process requires β1 ≤ 0 at the very least, making the expected value of φt
lower when Yt is higher and vice versa. From the proof of Property A1 in Appendix A, it can be
observed that the ergodicity of {Yt} requires the existence of a constant 0 < m < 1 such that

exp(β0+β1Yt−1)
1+exp(β0+β1Yt−1)

< m; however, if β1 > 0, then exp(β0+β1Yt−1)
1+exp(β0+β1Yt−1)

will increase with the rise of Yt,
making it impossible to determine a constant m that meets requirements.

3. Parameter Estimation and Hypothesis Testing

In this section, we assume that the time series {Yt}T
t=1 satisfies the data-generating pro-

cess defined by Equation (4), with θ0 = (β′
0, λ0) as the true parameter vector of this process

and θ = (β′, λ) as the unknown parameter vector to be estimated. In this paper, our primary
focus is on two estimation methods: Conditional Least Squares (CLS) and Conditional Max-
imum Likelihood (CML). Additionally, we attempt to establish observation-driven interval
estimation through estimating equations in CLS and observation-driven hypothesis testing
through the framework of Empirical Likelihood (EL). Here, we first make assumptions

8
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about the data-generating process {Yt} and the function ν(y; β), assuming the existence of
a neighborhood B of β0 and a positive integrable function N(y), such that:

(A1) {Yt} is a strictly stationary and ergodic sequence.

(A2) 1 ≤ i, j ≤ �,
∣∣∣ ∂ν(y;β)

∂βi

∣∣∣ and
∣∣∣ ∂2ν(y;β)

∂βi∂β j

∣∣∣ are continuous with respect to β and dominated by

N(y) on B, where N(y) is a positive integrable function.

(A3) 1 ≤ i, j, k ≤ �,
∣∣∣ ∂3ν(y;β)

∂βi∂β j∂βk

∣∣∣ are continuous with respect to β and dominated by N(y) on

B, where N(y) is a positive integrable function.
(A4) ∃δ > 0, such that E|Yt|8+δ < ∞, E|N(Yt)|8+δ < ∞.

(A5) E

(
∂ν(y;β)

∂β · ∂ν(y;β)
∂β′

)
is a full-rank matrix, i.e., of rank �.

(A6) The parameters of ν(y; β) are identifiable, that is, if β 	= β0, then Pν(Yt ;β) 	= Pν(Yt ;β0)
,

where Pν(Yt ;β) represents the marginal probability measure of ν(Yt; β).

3.1. Conditional Least Squares Estimation

Let S(θ) = ∑T
t=2(Yt −E(Yt|Yt−1))

2 = ∑T
t=2

(
Yt − exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1 − λ
)2

, where

θ = (β′, λ). The CLS estimator is then given by:

θ̂CLS = argminθ(S(θ)).

Let St(θ) = (Yt −E(Yt|Yt−1))
2. The first-order condition equation is represented

as follows:

−1
2

∂St(θ)

∂θ
= 0 = Mt(θ) =

(
mt1(θ), mt2(θ), . . . , mt(�+1)(θ)

)′
, (7)

where

mti(θ) =

(
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

)
exp[ν(Yt−1; β)]

(1 + exp[ν(Yt−1; β)])2
∂ν(y; β)

∂βi
Yt−1, 1 ≤ i ≤ �,

mt(�+1)(θ) = Yt −
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ.

Thus, the estimating equation is given by ∑T
t=1 Mt(θ) = 0. Solving this equation

provides the CLS estimate θ̂CLS for the parameter vector θ = (β, λ).

Theorem 1. Under assumptions (A1) to (A5), the CLS estimator θ̂CLS is a consistent estimator for
the true parameter θ0, and it has an asymptotic distribution:

√
T
(
θ̂CLS − θ0

) d→ N
(

0, V−1(θ0)W(θ0)V−1(θ0)
)

,

where
W(θ0) = E

(
Mt(θ0)M′

t(θ0)
)
,

V(θ0) = E

(
∂E(Yt|Yt−1)

∂θ
·∂E(Yt|Yt−1)

∂θ′

)
−E

(
ut(θ0)

∂2E(Yt|Yt−1)

∂θ∂θ′

)
,

ut(θ0) = Yt −E

(
Yt

∣∣∣Y(t−1)

)
.

9
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3.2. Interval Estimation

Based on the estimating equations from the CLS estimation, we can construct
observation-driven interval estimation and hypothesis testing. Let:

H(θ) =

⎛⎝ T

∑
t=2

Mt(θ)

⎞⎠′⎛⎝ T

∑
t=2

Mt(θ)Mt(θ)
′

⎞⎠−1⎛⎝ T

∑
t=2

Mt(θ)

⎞⎠
.

We can then obtain the following theorem:

Theorem 2. Under assumptions (A1)–(A5), as T → ∞ ,

H(θ0)
d→ χ2(�+ 1). (8)

Remark 5. From Equation (8), we can construct an interval estimation for θ0:

{θ|H(θ) ≤ Cα},

where Cα satisfies that for 0 < α < 1,P
(

χ2
�+1 ≤ Cα

)
= α. From the perspective of hypothesis testing,

this serves as an acceptance region for testing the null hypothesisH0 : θ0 = θ. If H(θ) > Cα; then the
null hypothesis is rejected.

3.3. Empirical Likelihood Test

In the following, we introduce hypothesis testing based on empirical likelihood es-
timation. First, we provide a brief introduction to the empirical likelihood (EL) method.
Initially proposed by Owen [19] for providing interval estimations for expectation, the EL
method was later extended to estimating equation estimation by Qin and Lawless [20].
For T observations y1, y2, . . . , yT of a random variable Y with distribution F, the empirical
likelihood ratio is defined as:

R(F) =
L(F)
L(FT)

=
T

∏
t=1

Tpt,

where L(F) = ∏T
t=1 pt is the nonparametric likelihood function, pt = dF(yt) = P(Y = yt),

and FT(y) = 1
T ∑T

t=1 1{yt≤y} is the empirical distribution function of the random variable
Y, dFT = 1

T , ∀t ∈ T. Under constraints ∑T
t=1 pt = 1 and pt ≥ 0, ∀t, FT maximizes L(F), so

R(F) ≤ 1.
Suppose we are interested in the parameter vector θ, which satisfies the estimating

equation E(Mt(θ)) = 0. We need to add a new constraint for pt: ∑T
t=1 pt Mt(θ) = 0. Based

on this, we can establish the profile empirical likelihood ratio function:

R(θ) = sup

⎧⎨⎩
T

∏
t=1

Tpt : pt ≥ 0,
T

∑
t=1

pt = 1,
T

∑
t=1

pt Mt(θ) = 0

⎫⎬⎭
.

The profile empirical likelihood ratio function can be solved using the Lagrange
multiplier method. Let:

L(θ) =
T

∑
t=1

log(pt) +𝓀

⎛⎝ T

∑
t=1

pt − 1

⎞⎠+ γ′T
T

∑
t=1

pt Mt(θ),

10
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where 𝓀 and γ are Lagrange multipliers. It can be proved that when L(θ) is maximized,
𝓀 = T, and:

pt =
1
T
· 1
γ′Mt(θ) .

Here, as a function of θ, γ = γ(θ) is the solution to the following equation:

T

∑
t=1

Mt(θ)

1 + γ′Mt(θ)
= 0, (9)

substituting this into pt and R(F), we find:

R(F) =
T

∏
t=1

1
1 + γ(θ)′Mt(θ) .

Thus, the log empirical likelihood ratio function can be defined as:

LE(θ) = − log(R(θ)) =
T

∑
t=1

log
[
1 + γ(θ)′Mt(θ)

]
.

The empirical likelihood estimate is then given by:

θ̂EL = argminθ(LE(θ)).

The corresponding γ is denoted by γ̂
(
θ̂EL

)
.

Remark 6. Given that 0 ≤ pt ≤ 1 for all t ∈ T, it can be deduced that LE(θ) = −log
(

∏T
t=1 pt

)
≥ 0.

Remark 7. Since the number of estimating equations matches the number of parameters to be
estimated (also known as just-identified in some econometrics literature), and θ̂CLS is the solution to
the estimating equation ∑T

t=1 Mt(θ) = 0, it follows from Chen and Keilegom [21] that:

θ̂EL = θ̂CLS.

Therefore, we will omit empirical likelihood estimation in the point estimation segment
in the numerical simulation section.

Theorem 3. Under assumptions (A1)–(A5), let θ =
(
θ′1, θ′2

)′, where θ1 and θ2 are q × 1 and
(�+ 1 − q)× 1-dimensional parameter vectors to be estimated, respectively. For the hypothesis
H0 : θ(1) = θ

(1)
0 , a test statistic can be constructed as follows:

LE

(
θ
(1)
0 , θ̃

(2)
EL

)
−LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
d→ χ2(q),

where
(

θ̂
(1)
EL , θ̂

(2)
EL

)
= θ̂EL, and θ̃

(2)
EL is the estimate obtained by minimizing LE

(
θ
(1)
0 , θ(2)

)
concerning θ(2).

Remark 8. As Remark 7 indicates, in a just-identified situation, θ̂EL = θ̂CLS andLE
(
θ̂CLS

)
= 0.

Thus, the conclusion of Theorem 3 can be further simplified as:

LE

(
θ
(1)
0 , θ̃

(2)
EL

)
d→ χ2(q).

11
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3.4. Conditional Maximum Likelihood Estimation

It is straightforward to derive the log-likelihood function logL(θ) from the one-step-
ahead transition probability (6) of model (4). In time-series models, the probability distri-
bution of the first observation Y1 is unknown, and its influence on the likelihood function
is minimal when the sample size T is sufficiently large. Thus, we focus only on the condi-
tional likelihood function. Given that the log-conditional likelihood function is a nonlinear
function of the parameter vector θ = (β, λ), we employ numerical methods to solve:

θ̂CML = argminθ(logL(θ)).

To obtain the asymptotic distribution of θ̂CML, we need to verify the regularity con-
ditions presented in Billingsley [22]. The satisfaction of these conditions can be directly
observed from the model-building process in Section 2 and the assumptions provided in
Section 3. Therefore, the proof is omitted. We arrive at the following theorem:

Theorem 4. Under assumptions (A1)–(A6), the conditional maximum likelihood estimator θ̂CML
consistently estimates the true parameter θ0 and exhibits an asymptotic distribution:

√
T
(
θ̂CML − θ0

) d→ N
(

0, E−1
)

,

where E = E

(
∂log(P(X1|X0))

∂θ · ∂log(P(X1|X0))
∂θ′

)
represents the Fisher information matrix.

Remark 9. Achieving CML estimation requires making specific assumptions about the probability
distribution of Zt. In this paper, we assume Zt follows a Poisson distribution with parameter λ.
This strong assumption can result in significant errors or even inconsistency in statistical inference
based on the CML method if the assumed model does not represent the true data-generating process.
This constitutes the primary drawback of CML estimation. The impact of model mis-specification on
CML estimation will be examined in the following numerical simulation section.

4. Numerical Simulation

In this section, we set the function ν as a linear function, considering the following
data-generating process:

Yt = φt � Yt−1 + Zt, (10)

E(φt|Yt) =
exp(β0 + β1Yt−1)

1 + exp(β0 + β1Yt−1) .
(11)

Here, {Zt} represents an independently and identically distributed Poisson random
variable sequence with a mean of λ. In subsequent numerical simulation studies, we mainly
concentrate on three aspects: parameter estimation, interval estimation, and empirical likeli-
hood ratio testing. All numerical simulations are conducted based on 1000 repeated sampling.

4.1. Parameter Estimation

We generate data using the above model and apply the CLS and CML methods
to estimate parameters. Moreover, we define three statistical measures for evaluating
estimation performance (using λ as an example):

Sample bias : Bias = λ− λ,

Root mean square error : RMSE =

√
1

1000 ∑1000
i=1

(
λ̂i − λ

)2
,

12
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Mean absolute percentage error : MAPE =
1

1000 ∑1000
i=1

∣∣∣∣∣ λ̂i − λ

λ

∣∣∣∣∣.
In CML estimation, the score function is defined as:

T

∑
t=1

(
∂
∂θ

){∫
∑

yt
k=0

(φyt−1)
k

k! exp(−φyt−1) fz(yt − k)P(φt = φ|Yt−1 = yt−1)dφ

}
∫

∑
yt
k=0

(φyt−1)
k

k! exp(−φyt−1) fz(yt − k)P(φt = φ|Yt−1 = yt−1)dφ
= 0.

In the CML estimation, we primarily consider four distribution cases for φt|Yt−1 when
Zt follows a Poisson distribution. Let the variable At =

exp(β0+β1Yt−1)
1+exp(β0+β1Yt−1)

, and the function

dpois(x, l) = lx

x! exp(−l), l ≥ 0, x ∈ N. Then:

(i) φt|Yt−1 is fixed at At, without any randomness. In this case, the log-likelihood
function is:

logL(θ) = −
T

∑
t=2

log

( yt

∑
k=0

(dpois(k, yt−1 At)·dpois(yt − k, λ))

)
.

(ii) φt|Yt−1 follows a uniform distribution with mean At, minimum value 0, and maxi-
mum value 2At. In this case, the log-likelihood function is:

logL(θ) = −
T

∑
t=2

log

( yt

∑
k=0

dpois(yt − k, λ)

2k!yt−1 At
·(Γ(k + 1, 0)− Γ(k + 1, 2At))

)
.

where Γ(α, x) =
∫ ∞

x tα−1 exp(−t)dt.
(iii) φt|Yt−1 follows an exponential distribution with mean At. In this case, the log-

likelihood function is:

logL(θ) = −
T

∑
t=2

log

( yt

∑
k=0

At

(At + yt−1)
k+1 ·y

k
t−1·dpois(yt − k, λ)

)
.

(iv) φt|Yt−1 follows a chi-square distribution with the mean At. Specifically, the density
function of φt|Yt−1 is:

P(φt = φ|Yt−1 = yt−1) =
1

2At Γ(At/2)
φ

At
2 −1 exp

(
−φ

2

)
.

Although At is not an integer, we still call it a chi-square distribution. In this case, the
log-likelihood function is:

logL(θ) = −
T

∑
t=2

log

⎛⎜⎜⎝ yt

∑
k=0

yt−1

k!
·dpois(yt − k, λ)· 1

2
At
2 Γ

(
At
2 , 0

) · Γ
(

At+2k
2 , 0

)
(

1
2 + yt−1

) At+2k
2

⎞⎟⎟⎠
.

The specific simulation results are shown in the table below:
From Table 1, we can observe that for both CLS and CML estimators, as the sample

size T gradually increases, BIAS, RMSE, and MADE all decline, indicating the consistency
of these estimators. Notably, both CLS and CML yield satisfactory parameter estimates. In
large samples, CLS and CML estimates are approximately equal, while in small samples,
under the premise of a correctly specified model, CML tends to provide superior estimation
precision. Furthermore, we present an additional set of parameter estimation simulation
results in the Appendix A, as shown in Table A1.
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Table 1. Parameter Estimation Simulation Results.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 is fixed.

T = 300

BIAS 0.0571 0.0471 −0.0321 −0.0287 0.0051 0.0059

RMSE 0.7399 0.6983 0.2096 0.2008 0.1368 0.1337

MAPE 0.5636 0.5486 0.2691 0.2619 0.0909 0.0886

T = 500

BIAS 0.0506 0.0407 −0.0251 −0.0221 0.0033 0.0042

RMSE 0.5678 0.5562 0.1556 0.1523 0.1113 0.1091

MAPE 0.4443 0.4346 0.1978 0.1946 0.0738 0.0721

T = 800

BIAS 0.0349 0.0246 −0.0152 −0.0127 −0.0011 0.0004

RMSE 0.4165 0.4076 0.1188 0.1163 0.0828 0.0817

MAPE 0.3327 0.3254 0.1587 0.1554 0.0546 0.0535

T = 1200

BIAS 0.0139 0.0071 −0.0074 −0.0055 0.0009 0.0017

RMSE 0.3471 0.3393 0.0951 0.0931 0.0697 0.0688

MAPE 0.2726 0.2686 0.1252 0.1234 0.0465 0.0459

T = 2000

BIAS 0.0112 0.0085 −0.0058 −0.0053 0.0017 0.0023

RMSE 0.2719 0.2711 0.0732 0.0728 0.0533 0.0525

MAPE 0.2195 0.2176 0.0981 0.0978 0.0352 0.0347

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T = 300

BIAS 0.0865 0.0428 −0.0456 −0.0354 0.0046 0.0121

RMSE 0.8065 0.7395 0.2301 0.2163 0.1454 0.1361

MAPE 0.6267 0.5773 0.2865 0.2696 0.0964 0.0903

T = 500

BIAS 0.0312 0.0076 −0.0228 −0.0169 0.0043 0.0082

RMSE 0.5636 0.5288 0.1567 0.1488 0.1052 0.0997

MAPE 0.4493 0.4239 0.2046 0.1968 0.0703 0.0657

T = 800

BIAS 0.0292 0.0062 −0.0165 −0.0113 0.0038 0.0079

RMSE 0.4503 0.4233 0.1244 0.1191 0.0852 0.0793

MAPE 0.3587 0.3373 0.1651 0.1575 0.0563 0.0525
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Table 1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 1200

BIAS 0.0249 0.0133 −0.0127 −0.0108 0.0003 0.0031

RMSE 0.3513 0.3295 0.0971 0.0923 0.0689 0.0639

MAPE 0.2815 0.2627 0.1289 0.1249 0.0464 0.0428

T = 2000

BIAS 0.0062 −0.0019 −0.0041 −0.0023 0.0016 0.0032

RMSE 0.2735 0.2529 0.0749 0.0719 0.0529 0.0483

MAPE 0.2165 0.1997 0.0983 0.0942 0.0353 0.0323

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows an exponential distribution.

T = 300

BIAS 0.1165 0.0594 −0.0594 −0.0491 0.0048 0.0135

RMSE 0.8356 0.7986 0.2648 0.2541 0.1407 0.1138

MAPE 0.6249 0.5392 0.3071 0.2785 0.0931 0.0752

T = 500

BIAS 0.0174 −0.0175 −0.0195 −0.0116 0.0019 0.0088

RMSE 0.5929 0.5009 0.1649 0.1507 0.1059 0.0871

MAPE 0.4677 0.3955 0.2133 0.1932 0.0701 0.0582

T = 800

BIAS 0.0389 0.0125 −0.0177 −0.0119 −0.0008 0.0042

RMSE 0.4646 0.3871 0.1267 0.1149 0.0839 0.0657

MAPE 0.3673 0.3052 0.1644 0.1486 0.0563 0.0438

T = 1200

BIAS 0.0236 0.0014 −0.0103 −0.0057 0.0016 0.0057

RMSE 0.3709 0.3109 0.0997 0.0903 0.0687 0.0542

MAPE 0.2879 0.2472 0.1299 0.1201 0.0451 0.0362

T = 2000

BIAS 0.0196 0.0074 −0.0091 −0.0072 −0.0021 0.0009

RMSE 0.2837 0.2493 0.0795 0.0746 0.0527 0.0427

MAPE 0.2261 0.1991 0.1047 0.0983 0.0356 0.0286

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a chi−square distribution.

T = 300

BIAS 0.9382 0.2286 −0.3652 −0.1152 −0.0292 0.0041

RMSE 3.7397 1.2307 1.7201 0.5974 0.1471 0.0955

MAPE 1.3992 0.7657 0.8326 0.4475 0.0945 0.0636

T = 500

BIAS 0.3437 0.1486 −0.1325 −0.0738 −0.0213 0.0007

RMSE 1.0769 0.7791 0.3808 0.2767 0.1129 0.0737

MAPE 0.7455 0.5794 0.4262 0.3345 0.0738 0.0493
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Table 1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 800

BIAS 0.1769 0.0771 −0.0628 −0.0339 −0.0139 −0.0006

RMSE 0.7215 0.5257 0.2459 0.1844 0.0889 0.0556

MAPE 0.5301 0.4118 0.2954 0.2363 0.0586 0.0374

T = 1200

BIAS 0.0883 0.0452 −0.0322 −0.0216 −0.0054 0.0012

RMSE 0.5649 0.4368 0.1849 0.1498 0.0703 0.0455

MAPE 0.4353 0.3445 0.2367 0.1949 0.0469 0.0299

T = 2000

BIAS 0.0766 0.0269 −0.0292 −0.0128 −0.0057 0.0005

RMSE 0.4163 0.3267 0.1345 0.1103 0.0542 0.0371

MAPE 0.3256 0.2585 0.1706 0.1441 0.0361 0.0246

Figure 1 showcases the typical trajectory of data generated by models (10) and (11) with
parameters β0 = 1, β1 = −0.6, and λ = 1.2. In this figure, “fixed” represents φt|yt−1 as a
fixed parameter given yt−1, “uniform” denotes φt|yt−1 following a uniform distribution,
“exponential” signifies φt|yt−1 following an exponential distribution, and “chi-square”
indicates φt|yt−1 following a chi-square distribution. Figure 1 reveals that some extreme
values are present in the sample paths when φt|yt−1 follows either an exponential or
chi-square distribution, with the latter capable of generating even higher extreme values.
This suggests that these two distribution settings for φt|yt−1 contain a certain descriptive
ability concerning the extreme values in the data.

As pointed out in Section 3.4, the CML method depends upon correct model spec-
ification. To evaluate the effects of model misspecification on parameter estimation, we
consider {Zt} as an independently and identically distributed geometric random-variable
sequence with a mean of λ within the data generation process (10) and (11). Subsequently,
we employ both the CLS and CML methods for estimation, presenting the results in the
table below.

From Table 2, we can observe that the three statistical measures BIAS, RMSE, and
MAPE for the CML estimator have noticeably increased compared to the CLS estimator.
This indicates that model misspecification significantly impacts CML estimation, necessi-
tating appropriate model selection efforts before employing the CML estimation method.
As long as the conditional expectation E(Yt|Yt−1) is correctly specified, CLS estimation
will be more robust than CML estimation. Moreover, we provide the parameter estimation
simulation results obtained under the misspecification of the φt|yt−1 distribution in the
Appendix A, as shown in Table A2.
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Figure 1. Typical trajectory of the model with β0 = 1, β1 = −0.6, and λ = 1.2.

Table 2. Parameter Estimation Simulation Results under Model Misspecification.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution, Zt follows a geometric distribution.

T = 300

BIAS 0.1823 0.8261 −0.1275 −0.1563 −0.0057 −0.1187

RMSE 1.2279 1.5387 0.7587 0.4665 0.1577 0.1798

MAPE 0.8237 1.0551 0.4661 0.4531 0.1027 0.1257

T = 500

BIAS 0.0931 0.7121 −0.0632 −0.1079 −0.0009 −0.1198

RMSE 0.7686 1.0457 0.4375 0.2613 0.1198 0.1574

MAPE 0.5752 0.8394 0.3016 0.3169 0.0786 0.1118

T = 800

BIAS 0.0858 0.6913 −0.0346 −0.0914 0.0001 −0.1199

RMSE 0.5812 0.9088 0.1651 0.1954 0.1006 0.1468

MAPE 0.4509 0.7538 0.2049 0.2451 0.0657 0.1069
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Table 2. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 1200

BIAS 0.0193 0.6389 −0.0132 −0.0732 0.0043 −0.01191

RMSE 0.4427 0.7848 0.1234 0.1503 0.0829 0.1385

MAPE 0.3495 0.6687 0.1607 0.1913 0.0545 0.1027

T = 2000

BIAS 0.0224 0.6386 −0.0116 −0.0711 0.0021 −0.1213

RMSE 0.3576 0.7362 0.0951 0.1243 0.0625 0.1321

MAPE 0.2796 0.6517 0.1234 0.1612 0.0416 0.1016

4.2. Interval Estimation

We perform a numerical simulation study on the coverage frequency of the interval
estimation, as proposed in Theorem 2 and Remark 5, for the true values in the model.
We consider parameter settings of β0 = 1, β1 = −0.6, and λ = 1.2. The nominal levels
considered are 0.90 and 0.95, with the specific simulation results presented in the following
table:

From Table 3, we can observe that as the sample size T increases, the coverage fre-
quency of interval estimation gradually approaches the nominal level. Even with smaller
sample sizes, the coverage frequency of the interval estimation for the true values remains
satisfactory. This result suggests that the data-driven interval estimation has achieved
commendable performance.

Table 3. Coverage Frequency of Interval Estimation.

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 is fixed.

T 300 500 800 1200 2000

0.95 0.941 0.957 0.957 0.953 0.956

0.9 0.897 0.908 0.912 0.908 0.905

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T 300 500 800 1200 2000

0.95 0.949 0.959 0.961 0.949 0.954

0.9 0.89 0.913 0.899 0.904 0.903

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows an exponential distribution.

T 300 500 800 1200 2000

0.95 0.942 0.938 0.951 0.955 0.953

0.9 0.891 0.894 0.906 0.910 0.909

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a chi−square distribution.

T 300 500 800 1200 2000

0.95 0.905 0.917 0.918 0.92 0.939

0.9 0.854 0.853 0.856 0.864 0.881
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4.3. Empirical Likelihood Test

Lastly, we perform a numerical simulation study on the empirical likelihood test
(EL test). For the observation-driven parameter model defined by data generation processes
(10) and (11), we aim to test whether β1 equals 0. If β1 = 0, our model’s parameters are not
driven by observations. We employ models (10) and (11) to generate sequences, assuming
φt|yt−1 is a fixed parameter, and perform estimation under the null hypothesis. Then, we
compare the test statistic proposed in Theorem 3 with the upper 0.90 and 0.95 quantiles of
the corresponding chi-square distribution; if the EL test statistic exceeds the critical value,
we reject the null hypothesis.

Initially, we investigate scenarios in which the true value of β1 for the data generation
process equals 0, considering the following hypotheses:

H0 : β1 = b 	= 0 H1 : β1 	= b.

where b is a nonnegative constant, the simulation results for the test power are presented
below (the simulation results for H0 : β1 = 0 represent the frequency of Type I errors).

Next, we examine the scenarios where the true value of β1 in the data generation
process is not equal to 0, considering the following hypotheses:

H0 : β1 = 0 H1 : β1 	= 0.

The simulation results for the test power are as follows.
From Tables 4 and 5, we observe that the Type I error frequency of the EL test gradually

diminishes to the corresponding confidence level as the sample size T increases, while
the test power concurrently ascends to 1. Notably, in small sample scenarios, when the
true value of β1 is 0, the test power level for H0 : β1 = −0.1 is relatively low. Likewise,
when the true value of β1 is −0.1, the test power for H0 : β1 = 0 exhibits a similar pattern.
Overall, however, the EL test performs satisfactorily when the gap between the true and
hypothesized values of β1 is relatively large, or in cases involving large samples. Owing
to space constraints, we include in the Appendix A, the EL test simulation results for
the parameter λ under φt|yt−1 following four distinct random distributions, as shown
in Table A3.

Table 4. Empirical Likelihood Test for β1 with a True Value of 0.

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.05.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.096 0.073 0.065 0.057 0.046

H0 : β1 = −0.1 0.296 0.386 0.658 0.823 0.935

H0 : β1 = −0.2 0.707 0.802 0.941 0.984 1

H0 : β1 = −0.3 0.778 0.837 0.988 1 1

H0 : β1 = −0.4 0.822 0.861 0.997 1 1

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.10.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.146 0.126 0.110 0.103 0.107

H0 : β1 = −0.1 0.399 0.447 0.716 0.874 0.976

H0 : β1 = −0.2 0.784 0.883 0.969 1 1

H0 : β1 = −0.3 0.823 0.904 0.993 1 1

H0 : β1 = −0.4 0.875 0.921 1 1 1
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Table 5. Empirical Likelihood Test for β1 with True Value Not Equal to 0.

Parameter : β0 = 1,H0 : β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.05.

T 300 500 800 1200 2000

β1 = −0.1 (true) 0.363 0.536 0.608 0.751 0.907

β1 = −0.2 (true) 0.647 0.806 0.936 0.988 1

β1 = −0.3 (true) 0.768 0.935 1 1 1

β1 = −0.4 (true) 0.875 0.945 1 1 1

Parameter : β0 = 1,H0 : β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.10.

T 300 500 800 1200 2000

β1 = −0.1 (true) 0.439 0.705 0.767 0.859 0.966

β1 = −0.2 (true) 0.751 0.877 0.96 1 1

β1 = −0.3 (true) 0.835 0.99 1 1 1

β1 = −0.4 (true) 0.941 0.997 1 1 1

It is crucial to note that the estimation equation employed in the empirical likelihood
test solely reflects the linear mean structure inherent in the data-generating process. For
more intricate and nonlinear coefficient random distributions, the test exhibits limited
descriptive capacity. As a result, we advise against utilizing the empirical likelihood test
in cases where φt|yt−1 is stochastic. In Appendix A, we present numerical simulation
results pertaining to the empirical likelihood test when φt|yt−1 adheres to an exponential
distribution. As evidenced by Table A4, the empirical likelihood test demonstrates a very
high frequency of Type I errors when φt|yt−1 conforms to an exponential distribution.
Consequently, we discourage the use of the empirical likelihood test in such circumstances.

5. Real Data Application

In this section, we analyze the daily download count data for the software CWB
TeXpert, covering the period from 1 June 2006, to 28 February 2007, resulting in a sample
size of T = 267. This dataset is made available on the Supplementary webpage associated
with Weiß [23].

From the sample path in Figure 2, we observe that this data contains a considerable
number of extreme values. Simultaneously, the ACF and PACF plots suggest that the
sample might have originated from a first-order autoregressive data-generating process.
We proceed to analyze this data using the models introduced in this paper. For the CML
estimation, CML f ix in the table below represents φt|yt−1 as a fixed parameter, CMLuni f
denotes φt|yt−1 following a uniform distribution, CMLexp signifies φt|yt−1 following an
exponential distribution, and CMLchi indicates φt|yt−1 following a chi-square distribution.
Additionally, for comparison purposes, we applied the model proposed by Yu et al. [18] to
this dataset, which is denoted as CMLgeom in the subsequent table:
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Figure 2. Sample Path of Software Download Data and Corresponding ACF and PACF Plots.

The estimation results are displayed in Table 6, where we provide AIC and BIC values
for the four distributions that φt|yt−1 may follow. Based on these two information criteria,
we show a preference for models in which φt|yt−1 follows either a chi-square distribution
or an exponential distribution. This preference might be attributable to the presence of
extreme values in the sample path, as anticipated. As observed in Figure 1 in Section 4,
models with φt|yt−1 following either a chi-square or exponential distribution prove more
effective in capturing data characterized by extreme values.

Table 6. Model Estimation Results.

CLS CMLfix CMLunif CMLexp CMLchi CMLgeom

β0 0.302 0.209 1.379 1.305 0.658 1.244

β1 −0.151 −0.143 −0.227 −0.244 −0.097 −0.231

λ 1.463 1.493 1.201 1.196 1.359 1.166

AIC - 1243.986 1189.377 1151.465 1143.669 1184.96

BIC - 1254.748 1200.138 1162.227 1154.431 1195.322

6. Discussion and Conclusions

In this paper, we propose a first-order integer-valued autoregressive time series model
based on the Poisson thinning operator. The parameters of this model are observation-
driven and may follow specific random distributions, resulting in time-varying autoregres-
sive coefficients. We established the ergodicity of this model and performed estimation and
hypothesis testing using conditional least squares (CLS), conditional maximum likelihood
(CML), and empirical likelihood (EL) methods. Additionally, we provided a data-driven
interval estimation.
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In the numerical simulation study, we compared the parameter estimation perfor-
mance of CLS and CML, verified the coverage frequency of the interval estimation for
the true parameter values in the data generation process, and conducted corresponding
simulation studies for the EL test. The simulation study reveals that the properties of
the CML estimation depend on the correct model specification, while the CLS estimation
demonstrates a degree of robustness against model misspecifications.

In future research, observation-driven parameter integer-valued time series models
offer numerous promising avenues for development. In this discussion, a brief overview of
some of these directions is provided:

(1) Combining observation-driven parameters with self-driven parameters, namely self-
exciting threshold models: the SETINAR model proposed by Montriro, Scotto, and
Pereira [16] is defined as follows:

Yt =

⎧⎨⎩∑
p(1)

i=1 α
(1)
i ◦ Yt−i + Z(1)

t , Yt−d ≤ R,

∑
p(2)

i=1 α
(2)
i ◦ Yt−i + Z(2)

t , Yt−d > R,
(12)

in this model, p(1) and p(2) represent given positive integers, with ∑
p(j)

i=1 α
(j)
i ∈ (0, 1)

for j = 1, 2. Additionally, the innovation series
{

Z(1)
t

}
and

{
Z(2)

t

}
possess probability

distributions F1 and F2 on the set of natural numbers N0, respectively. The constant R
represents the threshold value responsible for the structural transition in the lagged
d-period observation excitation model. Montriro, Scotto, and Pereira [16] demon-
strated that model 6.1 possesses a strictly stationary solution when p(1) = p(2) = 1.
By effectively combining observation-driven parameter models with self-driven pa-
rameter models and flexibly selecting thinning operators, a more diverse range of
integer-valued time series models can be characterized.

(2) Expanding upon current observation-driven models to incorporate higher-order
models: Du and Li [24] introduced the INAR(p) model:

Yt = α1 ◦ Yt−1 + · · ·+ αp ◦ Yt−p + Zt, (13)

in this model, ∑
p
i=1 αi < 1, and {Zt} represents a sequence of integer-valued random

variables defined on the set of natural numbers N0. Existing observation-driven
models are primarily first-order models. By extending these models to higher-order
versions, the capability to describe more intricate and complex parameter dynamics
can be achieved. It is important to note that when progressing to higher-order models,
the technique utilized in the proof of Property 2. is no longer applicable for establish-
ing the model’s ergodicity. As a result, new proof methods need to be sought from
related Markov chain theories.

(3) Extending the observation-driven parameter setting to Integer-valued Autoregres-
sive Conditional Heteroskedasticity (INARCH) models: Fokianos, Rahbek, and
Tjøstheim [25] proposed the INARCH model (which they referred to as Poisson
Autoregressive) as follows:

Yt|Ft−1 ∼ Poisson(λt),
λt = d + αλt−1 + βYt−1,

(14)

where α ≥ 0, β ≥ 0, and α + β < 1. This model is a natural extension of the
generalized linear model and helps to capture the fluctuating changes of observed
variables over time. Another advantage of this model is its simplicity, which makes
it easy to establish the likelihood function of the INARCH model. Extending the
observation-driven parameter setting to integer-valued autoregressive conditional
heteroskedasticity models allows the model to describe the driving effect of the
fluctuations of observed variables on the parameters. However, the challenge in doing
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so lies in the fact that, compared to the INAR model used in this paper, the ergodicity
of the INARCH model is more difficult to establish.

(4) Forecasting Integer-Valued Time Series: In time series research, it is common to
employ h-step forward conditional expectations for forecasting:

Ŷt+h = E(Yt+h|Yt) (15)

Nonetheless, this approach does not guarantee that the predicted values will be
integers, and such predictions primarily describe the expected characteristics of the
model, without capturing potentially time-varying coefficients or other features,
as illustrated in Figure A1. Furthermore, Freeland and McCabe [26] highlighted
that utilizing conditional medians or conditional modes for forecasting could be
misleading. Consequently, it is essential to adopt innovative forecasting methods
for integer-valued time series analysis. The rapid advancement of machine learning
and deep learning in recent years has offered numerous new perspectives, such as
the deep autoregressive model based on autoregressive recurrent neural network
proposed by Salinas, Flunkert, Gasthaus, and Januschowski [10], which may hold
significant potential for widespread application in the domain of integer-valued
time series.
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Appendix A

Appendix A.1. Proofs

Property A1.

(i) Given the data generation process (4), the following can be proved using the law of
iterated expectation:

E(Yt|Yt−1; φt) = φtYt−1 + λ,

Var(Yt|Yt−1; φt) = φtYt−1 + σ2
Z.

Using the formula Var(Y) = Var(E(Y|X)) +E(Var(Y|X)), the result can be proved

(ii) By the law of iterated expectation, we know:

E(YtYt−1) = E(Yt−1E(Yt|Yt−1)) = E

(
φt−1Y2

t−1 + Yt−1λ
)

,

E(Yt)E(Yt−1) = E

(
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 + λ

)
E(Yt−1).
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From this, it follows that:

Cov(Yt, Yt−1) = E

(
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Y2

t−1

)
−E

(
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1

)
E(Yt−1).

Property A2. According to Theorem 1 in Tweedie [27] (also see Meyn and Tweedie [28]), the
sufficient condition for {Yt} to be an ergodic Markov chain is the existence of a set K and a
measurable function g in the state space Y of {Yt} such that:∫

Y
P(x, dy)g(y) ≤ g(x)− 1, x ∈ Kc.

and for a constant B: ∫
Y

P(x, dy)g(y) = λ(x) ≤ B < ∞, x ∈ K.

where P(x, A) = P(Yt ∈ A|Yt−1 = x) .
The state spaceY of {Yt} is the set of natural numbersN = {0, 1, 2, 3, . . .}. Let g(y) = y,

then we have: ∫
N

P(x, dy)g(y) =
∞

∑
y=0

P(Yt = y|Yt−1 = x) = E(Yt|Yt−1 = x)

=
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)] x + λ.

Since sup
y∈N

ν(y; β) < ∞, then:

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
=

1
1 + exp[−ν(x; β)]

≤ 1

1 + exp

[
−sup

y∈N
ν(y; β)

] < 1.

Therefore, we can choose a constant 0 < m < 1, such that exp[ν(Yt−1;β)]
1+exp[ν(Yt−1;β)] < m. Let

N =
∣∣∣ λ+1

1−m

∣∣∣+ 1, where �c� represents the floor function of c. Defining K = {0, 1, 2, . . . , N − 1},
we know:∫

N

P(x, dy)g(y) = E(Yt|Yt−1 = x) < mx + λ < x − 1 = g(x)− 1, x ∈ Kc,

∫
N

P(x, dy)g(y) = E(Yt|Yt−1 = x) < x + λ < N + λ < ∞, x ∈ K.

Hence, the data generation process {Yt} is ergodic.

Theorem A1. According to Theorems 5 and 6 in Klimko and Nelson [29], let g = E

(
Yt

∣∣∣Y(t−1)

)
,

if the following four conditions hold, then Theorem 1 in this paper holds:

(i) ∂g
∂θi

, ∂2g
∂θi∂θj

, ∂3g
∂θi∂θj∂θk

, 1 ≤ i, j, k ≤ �+ 1, exists and are continuous with respect to θ.

(ii) For 1 ≤ i, j ≤ �+ 1, E
∣∣∣(Yt − g) ∂g

∂θi

∣∣∣ < ∞, E
∣∣∣(Yt − g) ∂2g

∂θi∂θj

∣∣∣ < ∞, E
∣∣∣ ∂g

∂θi

∂g
∂θj

∣∣∣ < ∞.

(iii) For 1 ≤ i, j, k ≤ �+ 1, there exist functions:

H(0)(Yt−1, . . . , Y0), H(1)
i (Yt−1, . . . , Y0), H(2)

ij (Yt−1, . . . , Y0), H(3)
ijk (Yt−1, . . . , Y0),
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such that

|g| ≤ H(0),
∣∣∣ ∂g

∂θi

∣∣∣ ≤ H(1)
i ,

∣∣∣ ∂2g
∂θi∂θj

∣∣∣ ≤ H(2)
ij ,

∣∣∣ ∂3g
∂θi∂θj∂θk

∣∣∣ ≤ H(3)
ijk ,

E

∣∣∣Yt·H(3)
ijk (Yt−1, . . . , Y0)

∣∣∣ < ∞,

H(0)(Yt−1, . . . , Y0)H(3)
ijk (Yt−1, . . . , Y0) < ∞,

E

∣∣∣H(1)
i (Yt−1, . . . , Y0)H(2)

ij (Yt−1, . . . , Y0)
∣∣∣ < ∞.

(iv) E(Yt|Yt−1, . . . , Y0) = E

(
Yt

∣∣∣Y(t−1)

)
, a.e., t ≥ 1,

E

(
u2

t (θ)

∣∣∣∣∣ ∂g
∂θi

∂g
∂θj

∣∣∣∣∣
)

< ∞,

where ut(θ) = Yt −E(Yt|Yt−1) .

For model (4), g(θ) = exp[ν(Yt−1;β)]
1+exp[ν(Yt−1;β)]Yt−1 + λ, for 1 ≤ i, j, k ≤ �, we have:

|g(θ)| < Yt−1 + λ,
∣∣∣∣ ∂g
∂θ�+1

∣∣∣∣ = 1,
∣∣∣∣ ∂g
∂θi

∣∣∣∣ < ∣∣∣∣ ∂ν

∂βi

∣∣∣∣Yt−1,

∣∣∣∣∣ ∂2g
∂θi∂θj

∣∣∣∣∣ <
(∣∣∣∣∣ ∂g

∂θi

∂g
∂θj

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂βi∂β j

∣∣∣∣∣
)

Yt−1,

∣∣∣∣∣ ∂3g
∂θi∂θj∂θk

∣∣∣∣∣ <
(∣∣∣∣∣ ∂ν

∂βi

∂ν

∂β j

∂ν

∂βk

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂βi∂βk

∂ν

∂β j

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂β j∂βk

∂ν

∂βi

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂βi∂β j

∂ν

∂βk

∣∣∣∣∣
)

Yt−1 +

∣∣∣∣∣ ∂3ν

∂βi∂β j∂βk

∣∣∣∣∣Yt−1.

Note that the second- and third-order partial derivatives of the function g with respect to λ are

both 0. According to assumptions (A2) and (A3), ∂g
∂θi

, ∂2g
∂θi∂θj

), and ∂3g
∂θi∂θj∂θk

, 1 ≤ i, j, k ≤ � + 1,

exist and are continuous with respect to θ. According to assumption (A5), V(θ0) is non-singular.
Based on assumptions (A1), (A4), and the Hölder inequality, all four conditions are satisfied. Thus,
Theorem 1 holds.

Lemma A1.
{

Mt(θ)Mt(θ)
′
}

is an integrable process.

Note that exp[ν(Yt−1; β)]
1+exp[ν(Yt−1; β)]

< 1, 1
1+exp[ν(Yt−1; β)]

≤ 1. According to assumption (A4), if
i ≤ �, then:

E(mtimti) ≤ E

{[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2 ∂ν(Yt−1; β)

∂βi

∂ν(Yt−1; β)

∂βi
Y2

t−1

}

≤
√
E

[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]4√
E
(

N4(y)Y4
t−1

)

≤
√
E

[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]4√√
E(N8(y))

√
EY8

t−1 < ∞.

Similarly, we can derive that:
If i, j ≤ �, i 	= j, then:

E
(
mtimtj

)
≤ E

{[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2 ∂ν(Yt−1; β)

∂βi

∂ν(Yt−1; β)

∂β j
Y2

t−1

}
< ∞.
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If i ≤ �, j = �+ 1, then:

E
(
mtimtj

)
≤ E

{[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2 ∂ν(Yt−1; β)

∂βi
Yt−1

}
< ∞.

If i = �+ 1, then:

E(mtimti) ≤ E

{[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2
}

< ∞.

Lemma A2. max1≤t≤T‖Mt(θ)‖ = op

(
T

1
2

)
.

Given assumption (A4) and Lemma A1, it follows that E(Mt(θ)′Mt(θ)) < ∞, re-
sulting in ∑∞

t=1 P(Mt(θ)′Mt(θ)) < ∞. As the {Yt} series is strictly stationary, the event{
‖Mt(θ)‖ > t

1
2

}
occurs only a finite number of times with probability 1.

By a similar reasoning, let M∗
T = max1≤t≤T‖Mt(θ)‖, and for any ε > 0, with probabil-

ity 1, there will be only a finite number of T ∈ N such that M∗
T > ε

√
T. Consequently:

limsupT M∗
TT− 1

2 ≤ ε, a.s.

This result implies that M∗
T = op.

Lemma A3. max1≤t≤T
t

∑T
t=1 E(mtimtj)

< ∞, ∀1 ≤ i, j ≤ �+ 1.

The ergodicity property of {Yt} and Lemma A1 lead to:

max1≤t≤T
t

∑T
t=1 E

(
mtimtj

) = max1≤t≤T
t
T
(
E
(
mtimtj

))−1 ≤
(
E
(
mtimtj

))−1
= O(1).

Theorem A2. Given the ergodicity property of {Yt} and Lemma A1, and applying Theorem 14.6
from Davidson [30], we have:

1
T

T

∑
t=2

Mt(θ0)Mt(θ0)
′ a.s.→ E

(
Mt(θ0)Mt(θ0)

′
)

.

LetFn = σ(Y1, Y2, . . . , Yn), M̃ni = ∑n
i=1 mti(θ), 1 ≤ i ≤ �+ 1. For 1 ≤ i ≤ �, we have

E

(
M̃ni

∣∣∣Fn−1

)
= M̃(n−1)i,

+E

((
Yn −

exp[ν(Yn−1; β)]

1 + exp[ν(Yn−1; β)]
Yn−1 − λ

)
exp[ν(Yn−1; β)]

(1 + exp[ν(Yn−1; β)])2
∂ν(y; β)

∂βi
Yn−1

∣∣∣∣∣Fn−1

)
,

= M̃(n−1)i.

Similarly, E
(

M̃n(�+1)

∣∣∣Fn−1

)
= M̃(n−1)(�+1). Thus, for 1 ≤ i ≤ �+ 1,

{
M̃ni,Fn, n ≥ 0

}
is a martingale. Based on this and the ergodicity property of {Yt}, and using Lemmas 2 and 3,
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applying Theorem 25.4 from Davidson [30] establishes that the conditions of Theorem 25.3 in
Davidson [30] are satisfied, resulting in:

1√
T

T

∑
t=2

mti(θ0)
d→ N

(
0,E

(
m2

ti(θ)
))

.

Furthermore, for any (�+ 1)-dimensional vector c 	= 0, we have:

1
T

T

∑
t=2

c′Mt(θ0)
d→ N

(
0, σ2

)
.

Here, σ2 = E

(
c′Mt(θ0)Mt(θ0)

′c
)

. Therefore, we have:

1√
T

T

∑
t=2

Mt(θ0)
d→ N

(
0,E

(
Mt(θ0)Mt(θ0)

′
))

.

In summary, H(θ0)
d→ χ2(�+ 1).

Lemma A4. Let {Yt} be an ergodic stationary random variable sequence; for any i ≥ 2,
E(Yt|Y1, Y2, . . . , Yt−1) = 0, a.s., and E

(
Y2

1
)
= 1. Then:

limsup ∑T
t=1 Yt√

2TloglogT
= 1.

The proof can be found in Stout [31].

Theorem A3. Following steps similar to those in Yu, Wang, and Yang [18] and Qin and Lawless [20],
we can show (by replacing the usage of the double logarithm law with Lemma A4):

γ(θ) =

⎡⎣ 1
T

T

∑
t=2

Mt(θ)Mt(θ)
′

⎤⎦ 1
T

T

∑
t=

Mt(θ) + o
(

T
1
3

)
.

2LE(θ0) =

⎡⎣ T

∑
t=

Mt(θ0)

⎤⎦′⎡⎣ T

∑
t=2

Mt(θ0)Mt(θ0)
′

⎤⎦−1⎡⎣ T

∑
t=

Mt(θ0)

⎤⎦+ o(1).

Furthermore:

√
T
(
θ̂EL − θ0

)
= S−1

22 S21S−1
11

1√
T

T

∑
t=

Mt(θ0) + op(1)
d→ N

(
0, S−1

22

)
,

2LE
(
θ̂EL

)
=

⎡⎣ T

∑
t=

Mt(θ0)

⎤⎦′

S3

⎡⎣ T

∑
t=

Mt(θ0)

⎤⎦+ op(1),

where:

S3 = S−1
11

(
I + S12S−1

22 S21S−1
11

)
, S−1

22 =

[
E

(
∂Mt(θ0)

∂θ′

)(
E

(
Mt(θ0)Mt(θ0)

′
))−1

E

(
∂Mt(θ0)

∂θ

)]−1
,

S11 = E

(
Mt(θ0)Mt(θ0)

′
)

, S12 = E

(
∂Mt(θ0)

∂θ′

)
, S21 = S′

12.
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Based on this, we perform a Taylor expansion of 2LE

(
θ
(1)
0 , θ̃

(2)
EL

)
− 2LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
at

θ = θ0, γ = 0:

2LE

(
θ
(1)
0 , θ̃

(2)
EL

)
− 2LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
d→

⎡⎣E(Mt(θ0)Mt(θ0)
′
)− 1

2 1√
T

T

∑
t=1

Mt(θ0)

⎤⎦′(
E

(
Mt(θ0)Mt(θ0)

′
))− 1

2

×
{
E

(
∂Mt(θ0)

∂θ

)[
E

(
∂Mt(θ0)

∂θ′

)(
E

(
Mt(θ0)Mt(θ0)

′
))−1

E

(
∂Mt(θ0)

∂θ

)]−1
E

(
∂Mt(θ0)

∂θ′

)
−

(
∂Mt(θ0)

∂θ(1)

)[
E

(
∂Mt(θ0)

∂θ′
(1)

)(
E

(
Mt(θ0)Mt(θ0)

′
))−1

E

(
∂Mt(θ0)

∂θ(1)

)]−1

E

(
∂Mt(θ0)

∂θ′
(1)

)⎫⎬⎭
×
(
E

(
Mt(θ0)Mt(θ0)

′
))− 1

2

[
E

(
Mt(θ0)Mt(θ0)

′
)− 1

2 1√
T

T

∑
t=2

Mt(θ0)

]
+ op(1).

It is easy to see that

E

(
∂Mt(θ0)

∂θ

)[
E

(
∂Mt(θ0)

∂θ′

)(
E

(
Mt(θ0)Mt(θ0)

′
))−1

E

(
∂Mt(θ0)

∂θ

)]−1
E

(
∂Mt(θ0)

∂θ′

)

−
(

∂Mt(θ0)

∂θ
(1)

)[
E

(
∂Mt(θ0)

∂θ
′
(1)

)
(E(Mt(θ0)Mt(θ0)

′ ))−1
E

(
∂Mt(θ0)

∂θ(1)

)]−1

E

(
∂Mt(θ0)

∂θ
′
(1)

)

is a symmetric matrix; we will now show that this symmetric matrix is positive–semi definite:

E

(
∂Mt(θ0)

∂θ

)[
E

(
∂Mt(θ0)

∂θ′

)(
E

(
Mt(θ0)Mt(θ0)

′
))−1

E

(
∂Mt(θ0)

∂θ

)]−1
E

(
∂Mt(θ0)

∂θ′

)

�
[
E

(
∂Mt(θ0)

∂θ

)
E

(
∂Mt(θ0)

∂θ
(1)

)]⎡⎣E
(

∂Mt(θ0)

∂θ
′
(1)

)
(E(Mt(θ0)Mt(θ0)

′ ))−1
E

(
∂Mt(θ0)

∂θ(1)

)
0

0 0

⎤⎦
⎡⎢⎢⎣E

(
∂Mt(θ0)

∂θ
′
(1)

)
E

(
∂Mt(θ0)

∂θ
′
(2)

)
⎤⎥⎥⎦

=

(
E

∂Mt(θ0)

∂θ(1)

)[
E

(
∂Mt(θ0)

∂θ′
(1)

)(
E

(
Mt(θ0)Mt(θ0)

′
))−1

E

(
∂Mt(θ0)

∂θ(1)

)]−1

E

(
∂Mt(θ0)

∂θ′
(1)

)
,

here, A � B implies that A − B is positive–semi definite. Therefore, by the result in Rao [32],
we have:

LE

(
θ
(1)
0 , θ̃

(2)
EL

)
−LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
d→ χ2(q).
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Appendix A.2. Complementary Numerical Simulations

Table A1. Parameter Estimation Simulation Results.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 2 β1 = −0.8, λ = 3.5
φt|yt−1 is fixed.

T = 300

BIAS 0.4431 0.3667 −0.1879 −0.1624 −0.0282 −0.0306

RMSE 2.5257 2.7556 1.4189 1.1704 0.2811 0.2811

MAPE 0.4738 0.4791 0.3841 0.3682 0.0637 0.0637

T = 500

BIAS 0.2098 0.2051 −0.0759 −0.0741 −0.0074 −0.0085

RMSE 0.8623 0.8619 0.4246 0.4371 0.2066 0.2062

MAPE 0.3049 0.3041 0.2148 0.2141 0.0475 0.0474

T = 800

BIAS 0.1109 0.1071 −0.0346 −0.0329 −0.0119 −0.0126

RMSE 0.5673 0.5609 0.1646 0.1619 0.1783 0.1775

MAPE 0.2229 0.2208 0.1509 0.1496 0.0404 0.0403

T = 1200

BIAS 0.0862 0.0848 −0.0232 −0.0224 −0.0093 −0.0101

RMSE 0.4491 0.4477 0.1201 0.1193 0.1375 0.1371

MAPE 0.1773 0.1771 0.1169 0.1163 0.0313 0.0311

T = 2000

BIAS 0.0278 0.0269 −0.0119 −0.0115 0.0007 0.0003

RMSE 0.3369 0.3359 0.0889 0.0889 0.1076 0.1074

MAPE 0.1339 0.1333 0.0864 0.0864 0.0246 0.0244

Parameter : β0 = 2, β1 = −0.8, λ = 3.5
φt|yt−1 follows a uniform distribution.

T = 300

BIAS 0.5624 0.3983 −0.2331 −0.1424 −0.0404 −0.0203

RMSE 2.0828 1.1916 1.2894 0.4719 0.2807 0.2534

MAPE 0.4877 0.4146 0.4355 0.3232 0.0641 0.0581

T = 500

BIAS 0.1717 0.1399 −0.0712 −0.0593 −0.0028 0.0079

RMSE 0.8577 0.7919 0.3289 0.2552 0.2153 0.1982

MAPE 0.3028 0.2852 0.2125 0.2012 0.0496 0.0543

T = 800

BIAS 0.1036 0.0809 −0.0317 −0.0285 −0.0124 −0.0039

RMSE 0.5735 0.5538 0.1547 0.1499 0.1725 0.1563

MAPE 0.2212 0.2158 0.1458 0.1427 0.0405 0.0036
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Table A1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 1200

BIAS 0.0531 0.0367 −0.0152 −0.0131 −0.0114 −0.0067

RMSE 0.4479 0.4334 0.1217 0.1196 0.1445 0.1303

MAPE 0.1785 0.1723 0.1177 0.1167 0.0331 0.0301

T = 2000

BIAS 0.0453 0.0385 −0.0143 −0.0129 −0.0048 −0.0029

RMSE 0.3493 0.3429 0.0912 0.0898 0.1091 0.0903

MAPE 0.1389 0.1354 0.0885 0.0871 0.0248 0.0231

Parameter : β0 = 2, β1 = −0.8, λ = 3.5
φt|yt−1 follows an exponential distribution.

T = 300

BIAS 0.5805 0.4213 −0.2463 −0.1944 −0.0092 0.0232

RMSE 2.2029 2.0433 1.0969 1.0533 0.2702 0.2058

MAPE 0.5443 0.4843 0.4557 0.3986 0.0614 0.0466

T = 500

BIAS 0.1923 0.0879 −0.0723 −0.0451 −0.0131 −0.0071

RMSE 1.0283 0.8006 0.2859 0.2364 0.2127 0.1601

MAPE 0.3299 0.2888 0.2236 0.1963 0.0483 0.0359

T = 800

BIAS 0.1439 0.0929 −0.0464 −0.0336 −0.0061 0.0047

RMSE 0.6386 0.5709 0.1855 0.1605 0.1724 0.1293

MAPE 0.2456 0.2238 0.1653 0.1497 0.0389 0.0291

T = 1200

BIAS 0.0699 0.0416 −0.0201 −0.0167 −0.0095 0.0025

RMSE 0.4731 0.4405 0.1242 0.1169 0.1404 0.1049

MAPE 0.1869 0.1744 0.1172 0.1123 0.0322 0.0239

T=2000

BIAS 0.0519 0.0319 −0.0151 −0.0111 −0.0049 0.0007

RMSE 0.3669 0.3435 0.0976 0.9161 0.1106 0.0818

MAPE 0.1442 0.1369 0.0955 0.0908 0.0251 0.0185

Parameter : β0 = 2, β1 = −0.8, λ = 3.5
φt|yt−1 follows a chi−square distribution.

T = 300

BIAS 0.9824 0.4063 −0.5663 −0.1282 −0.0098 0.0078

RMSE 3.3564 2.2437 1.6833 0.6341 0.3081 0.1569

MAPE 0.8569 0.5793 0.7361 0.3699 0.0696 0.0361

T = 500

BIAS 0.4831 0.2249 −0.1805 −0.0621 −0.0202 −0.0068

RMSE 1.4549 0.9875 0.8114 0.2533 0.2293 0.1187

MAPE 0.4856 0.3749 0.3716 0.2354 0.0514 0.0269
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Table A1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 800

BIAS 0.2344 0.0869 −0.092 −0.0305 −0.008 0.0036

RMSE 1.0181 0.7138 0.4998 0.1758 0.1916 0.0962

MAPE 0.3477 0.2792 0.2501 0.1712 0.0433 0.0221

T = 1200

BIAS 0.1382 0.0428 −0.041 −0.015 −0.014 −0.0021

RMSE 0.6592 0.5481 0.1766 0.1351 0.1557 0.0782

MAPE 0.2531 0.2164 0.1649 0.1325 0.0353 0.0181

T = 2000

BIAS 0.0751 0.0438 −0.0269 −0.0161 −0.0011 0.0019

RMSE 0.5081 0.4318 0.1322 0.1079 0.1211 0.0611

MAPE 0.2017 0.1713 0.1279 0.1061 0.0277 0.0141

Table A2. Simulation Results for Parameter Estimation under Model Misspecification. With likelihood
function settled as φt|yt−1 it follows a chi-squared distribution.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T = 300

BIAS 0.0865 −1.8661 −0.0456 −1.5741 0.0046 0.4508

RMSE 0.8065 4.647 0.2301 5.3142 0.1454 0.4777

MAPE 0.6267 2.7518 0.2865 3.1747 0.0964 0.3757

T = 500

BIAS 0.0312 −2.0474 −0.0228 −0.788 0.0043 0.4587

RMSE 0.5636 5.0468 0.1567 5.2847 0.1052 0.4753

MAPE 0.4493 2.5831 0.2046 1.9182 0.0703 0.3823

T = 800

BIAS 0.0292 −2.1058 −0.0165 −0.3596 0.0038 0.4548

RMSE 0.4503 3.2688 0.1244 3.0257 0.0852 0.4657

MAPE 0.3587 2.3491 0.1651 1.2312 0.0563 0.3789

T = 1200

BIAS 0.0249 −2.1077 −0.0127 −0.0739 0.0003 0.4558

RMSE 0.3513 2.6833 0.0971 1.7031 0.0689 0.4641

MAPE 0.2815 2.1461 0.1289 0.7674 0.0464 0.3799

T = 2000

BIAS 0.0062 −2.0216 −0.0041 0.0766 0.0016 0.4546

RMSE 0.2735 2.2846 0.0749 1.0373 0.0529 0.4591

MAPE 0.2165 2.0256 0.0983 0.5483 0.0353 0.3788
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Table A3. Empirical Likelihood Test for the λ Parameter. The significance level is set at 0.05.

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 is fixed.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.537 0.705 0.865 0.995 1

H0 : λ = 1.35 0.235 0.263 0.375 0.542 0.757

H0 : λ = 1.2 (true) 0.038 0.045 0.043 0.052 0.055

H0 : λ = 1.05 0.176 0.33 0.415 0.593 0.823

H0 : λ = 0.9 0.554 0.806 0.96 1 1

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.461 0.754 0.905 0.984 1

H0 : λ = 1.35 0.212 0.304 0.417 0.54 0.786

H0 : λ = 1.2 (true) 0.059 0.06 0.062 0.059 0.05

H0 : λ = 1.05 0.167 0.321 0.407 0.588 0.845

H0 : λ = 0.9 0.645 0.845 0.975 1 1

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows an exponential distribution.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.495 0.722 0.943 0.991 1

H0 : λ = 1.35 0.171 0.31 0.505 0.593 0.844

H0 : λ = 1.2 (true) 0.049 0.046 0.055 0.058 0.047

H0 : λ = 1.05 0.235 0.286 0.442 0.605 0.884

H0 : λ = 0.9 0.57 0.815 0.972 1 1

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a chi−square distribution.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.478 0.648 0.852 0.951 1

H0 : λ = 1.35 0.195 0.334 0.491 0.612 0.807

H0 : λ = 1.2 (true) 0.086 0.088 0.079 0.054 0.051

H0 : λ = 1.05 0.115 0.225 0.318 0.515 0.795

H0 : λ = 0.9 0.417 0.635 0.859 0.946 1

Table A4. Empirical Likelihood Test for β1 with a True Value of 0.

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 follows an exponential distribution, significance level 0.05.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.437 0.446 0.416 0.51 0.427

H0 : β1 = −0.1 0.71 0.787 0.863 0.954 0.982

H0 : β1 = −0.2 0.813 0.933 0.989 0.997 1

H0 : β1 = −0.3 0.912 0.983 1 1 1

H0 : β1 = −0.4 0.945 0.982 1 1 1
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Table A4. Cont.

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 follows an exponential distribution, significance level 0.10.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.543 0.544 0.517 0.613 0.55

H0 : β1 = −0.1 0.797 0.846 0.93 0.982 0.993

H0 : β1 = −0.2 0.872 0.957 0.988 1 1

H0 : β1 = −0.3 0.945 1 1 1 1

H0 : β1 = −0.4 0.971 0.985 1 1 1

Appendix A.3. Complementary Figure

Figure A1. The black line represents the sample trajectory, and the red line denotes the one-step-ahead
forecast trajectory. Parameter: β0 = 1, β1 = −0.6, λ = 1.2.
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Abstract: Binomial autoregressive models are frequently used for modeling bounded time series
counts. However, they are not well developed for more complex bounded time series counts of
the occurrence of n exchangeable and dependent units, which are becoming increasingly common
in practice. To fill this gap, this paper first constructs an exchangeable Conway–Maxwell–Poisson-
binomial (CMPB) thinning operator and then establishes the Conway–Maxwell–Poisson-binomial
AR (CMPBAR) model. We establish its stationarity and ergodicity, discuss the conditional maximum
likelihood (CML) estimate of the model’s parameters, and establish the asymptotic normality of the
CML estimator. In a simulation study, the boxplots illustrate that the CML estimator is consistent
and the qqplots show the asymptotic normality of the CML estimator. In the real data example, our
model takes a smaller AIC and BIC than its main competitors.

Keywords: CMPB thinning operator; bounded time series; CMPBAR model; under-dispersion;
equi-dispersion; over-dispersion

1. Introduction

Bounded time series of counts are commonly observed in real-world applications.
Its (binomial) index of dispersion (as a function of n, μ and σ2) is defined by BID(X) =
nσ2/

(
μ(n − μ)

)
, where n is the predetermined upper limit of the range, E(X) = μ and

Var(X) = σ2. If its BID(X) < 1, then it is under-dispersed, if its BID(X) = 1, then it is
equi-dispersed, while if its BID(X) > 1, then it is over-dispersed (or the extra-binomial
variation).

A popular tool to establish a binomial autoregressive model (BAR) is the binomial
thinning operator “◦” [1], which is introduced by

α ◦ X := ∑X
i=1 Wi, (1)

where X is a non-negative integer-valued random variable, {Wi, i = 1, 2, · · · , n} is an
i.i.d. Bernoulli random variable sequence with P(Wi = 1) = 1 − P(Wi = 0) = α and
independent of X. McKenzie [2] used the binomial thinning operator given in (1) to
establish the binomial AR(1) model, which is a popular model for bounded time series and
defined as follows

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1), (2)

where n ∈ N is the predetermined upper limit of the range; X0 follows the binomial
distribution with P(X0 = k) = (n

k)π
k(1 − π)n−k; α = β + ρ and β = (1 − ρ)π with

ρ ∈ (max {−π/(1 − π),−(1 − π)/π}, 1) and π ∈ (0, 1); the counting series at time t are
independent of the random variables Xs, ∀s < t; and all the counting series in “α◦” and
“β◦” are mutually independent sequences of independent Bernoulli random variables with
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parameters α and β, respectively. The binomial AR(1) process given in (2) is now well
understood and it is an ergodic Markov chain with a stationary distribution Bin(n, π) with
π = β/(1 − ρ) and ρ = α − β. Hence, its BID(Xt) = 1, i.e., the BAR model given in (2),
applies to equi-dispersed time series with finite range; see [3–7] for more discussion about
the BAR(1) model.

Weiß and Pollett [8] extended the binomial AR(1) model as the density-dependent
BAR(1) model (denoted as the DDBAR(1) model), whose thinning probabilities vary over
time by assuming αt = α(Xt−1/n) and βt = β(Xt−1/n). In particular, for given n, if
αt = (1− ρ)(a+ bXt−1/n) and βt = (1− ρ)(a+ bXt−1/n)+ ρ, the DDBAR(1) model allows
to analyze bounded integer-valued time series with under-dispersion, equi-dispersion and
over-dispersion, see Section 4 in [8] for more details. To model extra-binomial variation for
time series counts, Weiß and Kim [9] proposed the beta-binomial AR (BBAR) model based
on the beta-binomial thinning operator “α◦φ”, which is introduced by

αφ ◦ X = ∑X
i=1 Bi,

where X is a non-negative integer-valued random variable, {Bi, i = 1, 2, · · · , n} is an i.i.d.
Bernoulli random variable sequence with P(Bi = 1|αφ) = 1 − P(Bi = 0|αφ) = αφ and
αφ ∼ Beta(τα, τ(1 − α)), τ = (1 − φ)/φ, {Bi, i = 1, 2, · · · , X} is independent of X.

As discussed in Weiß [10], the BAR(1) model, DDBAR(1) model, and BBAR(1) model
can be interpreted as a system with n mutually independent units and each unit being
either in state “1” or state “0”. Assume Xt is the number of units being in state “1” at
time t. Then α ◦ Xt−1 (αt ◦ Xt−1 or αφ ◦ Xt−1) is the number of units still in state “1” at
time t with survival probability α (random survival probability αt or αφ), β ◦ (n − Xt−1)
(βt ◦ (n − Xt−1) or βφ ◦ (n − Xt−1)) is the number of units, which moved from state “0”
to state “1” at time t with revival probability β (random revival probability βt or βφ). It
is worth mentioning that all of BAR(1), DDBAR(1), and BBAR(1) models are aimed at a
system with n independent units, but not a system with n dependent units, i.e., the counting
series in “◦” is independent and identically distributed, but not dependent. To solve this
dilemma, Kang et al. [11] proposed a generalized binomial AR (GBAR) model based on the
generalized binomial thinning operator “α◦θ”, which is proposed by Ristić et al. [12] and
given as follows

αθ ◦ X = ∑X
i=1 Ui,

where Ui = (1 − Vi)Wi + ViZ, {Wi} and {Vi} are two independent random sequences of
iid random variables with Bernoulli(α) and Bernoulli(θ) distributions, Z is a Bernoulli(α)
random variable and is responsible for the cross-dependence, ∀i, j = 1, 2, ..., X, {Wi}, {Vj}
and Z are mutually independent and each of them is independent of X.

Unfortunately, the GBAR model [11] can not use to analyze under-dispersed or equi-
dispersed bounded data. To fill this gap, we are inspired by the Conway–Maxwell–Poisson-
binomial (CMPB) distribution [13] and construct the Conway–Maxwell–Poisson-binomial
thinning operator, whose counting series is exchangeablility. Furthermore, we propose
a new Conway–Maxwell–Poisson-binomial autoregressive (CMPBAR) model, which not
only allows us to analyze bounded data with over-dispersion but also allows us to model
bounded data with equi-dispersion or under-dispersion. The second contribution of this
paper is that we discuss the CML estimation of the parameters involved in the new model,
and establish the asymptotic normality of the CML estimator. To illustrate that the new
model is more flexible and superior, we apply the new model on the weekly rainy days at
Hamburg–Neuwiedenthal in Germany.

The paper is organized as follows. Section 2 first gives a brief review of the Conway–
Maxwell–Poisson-binomial distribution, then gives the definition of the exchangeable
Conway–Maxwell–Poisson-binomial thinning operator and that of the Conway–Maxwell–
Poisson-binomial AR model. The conditional maximum likelihood estimation and its
asymptotic properties are established in Section 3. Section 4 gives a simulation study and
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Section 5 gives real data to show the better performance of the new model. Conclusions are
made in Section 6.

2. Model Formulation and Stability Properties

2.1. Conway–Maxwell–Poisson-Binomial Distribution

For readability, we first give a brief review of the CMPB distribution introduced by
Shmueli et al. [13].

A random variable X taking values in {0, 1, 2, . . . , n} is said to follow the Conway–
Maxwell–Poisson-binomial distribution with parameters (α, ν), if the probability mass
function (pmf) of X takes the form P(X = x|α, ν, n) = (n

x)
ν
αx(1 − α)n−x/Z(α, ν), where

Z(α, ν) = ∑n
x=0 (

n
x)

ν
αx(1 − α)n−x, 0 < α < 1, ν ∈ R and n ∈ N is the predetermined upper

limit of the range.
For simplicity, we write X ∼ CMPB(n, α, ν). Denote θ = α/(1 − α), the pmf of X can

be rewritten as

P(X = x|θ, ν, n) =
1

S(θ, ν)

(
n
x

)ν

θx, (3)

where S(θ, ν) = ∑n
x=0 (

n
x)

ν
θx, θ > 0 and n ∈ N is the predetermined upper limit of the range.

Therefore, we obtain the moment-generating function of X as MX(s) = E(esX) =
S(θes, ν)

S(θ, ν)
.

Furthermore,

E(X) = θ
S
′
(θ, ν)

S(θ, ν)
, Var(X) = θ

S
′
(θ, ν)

S(θ, ν)
+ θ2

⎛⎝S
′′
(θ, ν)

S(θ, ν)
−
(

S
′
(θ, ν)

S(θ, ν)

)2
⎞⎠,

BID =
nVar(X)

E(X)
(
n − E(X)

) =
S(θ, ν)S

′
(θ, ν) + θS(θ, ν)S

′′
(θ, ν)− θ(S

′
(θ, ν))2

nS(θ, ν)S′(θ, ν)− θ(S′(θ, ν))2 , (4)

where S
′
(θ, ν) = ∂S(θ, ν)/∂θ and S

′′
(θ, ν) = ∂S

′
(θ, ν)/∂θ (see Shmueli et al. [13],

Borges et al. [14], Daly and Gaunt [15], and Kadane [16] for more detailed discussion).
Unfortunately, the specific range of the BID for the CMPB distribution can not be

obtained by (4). To solve this dilemma, we give an example in Figure 1 with n = 7, when
α and ν are varying from {0.1, 0.2, 0.3, · · · , 0.9} and {−2,−1.5,−0.5, 0, 0.5, 1, 1.5, 2, 2.5},
respectively.

Figure 1. Plot of the BID of the CMPB distribution for different choices of α and ν.

From Figure 1, the BID of the CMPB distribution takes a value, which may be less than
1, equal to 1, or greater than 1 for different values α and ν. Additionally, it implies that the
CMPB distribution allows us to analyze bounded time series counts with under-dispersion,
equi-dispersion, and over-dispersion.
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To further explore the dynamic change of the BID with α varying from {0.1, 0.2, · · · , 0.9}
for given n = 7 and ν = −0.5, 0, 0.5, 1, 1.5, or 2, we present the plots of the BID in Figure 2.

Figure 2. Plots of the BID of the CMPB distribution for different choices of α.

From Figure 2, we obtain the following observations. First, if ν < 1, the BID is no less
than 1. To be precise, its BID is increasing to maximum when α is varying from 0 to 0.5,
and then decreasing to 1 when α is varying from 0.5 to 1. Second, if ν = 1, its BID = 1, for
all α ∈ (0, 1). Third, if ν > 1, its BID is no more than 1. Precisely, its BID is decreasing to
the minimum when α is varying from 0 to 0.5, and then increasing to 1 when α is varying
from 0.5 to 1. To sum up, the Conway–Maxwell–Poisson-binomial distribution allows
under-dispersion, equi-dispersion, and over-dispersion for bounded time series data.

Remark 1. By (3), the pmf of the CMPB (n, α, ν) is expressed as that of the power series distribution
and if ν = 0, P(X = x|θ, ν, n) = θx/∑n

x=0 θx, θ = α/(1 − α), if ν = 1, the CMPB(n, α, ν)
reduces to binomial distribution with parameter α.

2.2. Conway–Maxwell–Poisson-Binomial Thinning Operator

By Shmueli et al. [13], the CMPB distribution is a distribution on the sum of n depen-
dent Bernoulli components without specifying anything else about the joint distribution
of those components. Precisely, if X ∼ CMPB(n, α, ν), there exists a Bernoulli variable
sequence {Zi} such that X = ∑n

i=1 Zi, where

Pz1,··· ,zn := P(Z1 = z1, · · · , Zn = zn) =
1

∑1
z1=0 · · ·∑1

zn=0 (
n
x)

ν−1
θx

(
n
x

)ν−1
θx (5)

with θ = α/(1 − α), x = ∑n
i=1 zi and (z1, z2, · · · , zn) ∈ {0, 1}n.
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Definition 1. Let θ = α/(1 − α). Then the exchangeable Conway–Maxwell–Poisson-binomial
thinning operator is introduced by

α �ν X := ∑X
i=1 Zi, (6)

where X is a non-negative random variable, {Zi, i = 1, 2, · · · , X} is an exchangeable Bernoulli
variable sequence with its pmf taking the form (5) and independent of X.

To generate the random number of “α �ν X”, we first let X = n, then α �ν X|(X =

n) ∼ CMPB(n, α, ν). Therefore, E(α �ν X|X = n) = θS
′
(θ, ν)/S(θ, ν), Var(α �ν X|X =

n) = θ
S
′
(θ, ν)

S(θ, ν)
+ θ2

⎛⎝S
′′
(θ, ν)

S(θ, ν)
−
(

S
′
(θ, ν)

S(θ, ν)

)2
⎞⎠ and the conditional binomial index of dis-

persion (CBID) is CBID =
S(θ, ν)S

′
(θ, ν) + θS(θ, ν)S

′′
(θ, ν)− θ(S

′
(θ, ν))2

nS(θ, ν)S′(θ, ν)− θ(S′(θ, ν))2 , where S(θ, ν) =

∑n
x=0 (

n
x)

ν
θx, S

′
(θ, ν) = ∂S(θ, ν)/∂θ, and S

′′
(θ, ν) = ∂S

′
(θ, ν)/∂θ.

Second, we let θ = α/(1 − α), then the pmf of α �ν n takes the form (3). Third, we let
θ = λν, λ > 0. By (3), the pmf of the α �ν n can be rewritten as

P(α �ν n = x) =
1

U(λ, ν)

((
n
x

)
λx
)ν

with U(λ, ν) =
n

∑
x=0

((
n
x

)
λx
)ν

.

Furthermore,

P(α �ν n = x + 1) =
(

n − x
x + 1

λ

)ν

P(α �ν n = x), (7)

by which an algorithm is used to generate a random number of α �ν X with X = n can be
expressed as follows.

Remark 2. By Kadane [16], the counting series {Zi} in Definition 1 is a dependent Bernoulli
variable sequence with exchangeability of order 2. To account for the concept of exchangeability, we
assume π is a permutation of (z1, z2, · · · , zn). Then Pz1,··· ,zn = Pπ(1,··· ,zn). By the definition of
exchangeability in Section 6 in Kadane [16], ∑n

i=1 Zi is n-exchangeable. Kadane [16] stated that
“de Finetti’s Theorem shows that sums of exchangeable random variables are mixtures of Binomial
random variables. Because the marginal distribution of each component is Bernoulli, interest centers
on the joint distribution of pairs of such variables”. By Theorem 4 in Kadane [16], n-exchangeability
applies to every permutation of length n, it implies that n

′
is exchangeable for each n

′
< n. Hence,

{Zi} is exchangeable with order 2 because every pair has the same distribution as every other
pair, i.e., every pair of {Z1, Z2, · · · , Zn} has the same distribution as every other pair and for any
pair (Zi, Zj), ∀i, j = 1, 2, · · · , n, and i 	= j, P(Zi = 0, Zj = 1) = P(Zi = 1, Zj = 0) > 0,
P(Zi = 0, Zj = 0) + 2P(Zi = 0, Zj = 1) + P(Zi = 1, Zj = 1) = 1, P(Zi = 1, Zj = 1) > 0,
and P(Zi = 0, Zj = 0) > 0; see [16] for more discussion.

2.3. Binomial Autoregressive Model with the CMPB Operator

Now, we define the BAR(1) model with the CMPB operator by

Xt = α �ν Xt−1 + β �ν (n − Xt−1), (8)

where 0 < α < 1, 0 < β < 1, both α �ν Xt−1 = ∑
Xt−1
i=1 Zi and β �ν (n − Xt−1) = ∑

n−Xt−1
i=1 Wi

are the CMPB thinning operators given in Definition 1, their counting series {Zi} and {Wi}
are the exchangeable Bernoulli variable sequence with their pmfs taking the form (5), {Zi}
is independent of {Wj}, ∀i = 1, 2, . . . , Xt−1, j = 1, 2, . . . , (n − Xt−1), and all the thinnings
at time t are independent of {Xs, s < t}, n ∈ N, ν ∈ R.
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For simplicity, we denote the new model as the CMPBAR(1) model. By (8), {Xt}N is a
Markov chain and its one-step transition probability takes the form

Pη(k|l) = P(Xt = k|Xt−1 = l) =
1

S(θ1, ν)S(θ2, ν)

min {k,l}
∑
i=0

(
l
i

)ν(n − l
k − i

)ν

θi
1θk−i

2 , (9)

where S(θ1, ν) = ∑l
i=0 (

l
i)

ν
θi

1 and S(θ2, ν) = ∑n−l
i=0 (

n−l
i )

ν
θi

2 with η = (θ1, θ2, ν) and θ1 =
α/(1 − α) and θ2 = β/(1 − β).

Theorem 1. If {Xt} satisfies (8), then {Xt} is ergodicity and strictly stationarity.

Proof. Similar to that of Theorem 1 in Kang et al. [11], the state space of {Xt} is {0, 1, · · · , n}.
Because P(Xt = i|Xt−1 = j) > 0, ∀i, j ∈ {0, 1, · · · , n}, so the state space of {Xt} is an equiv-
alence class. Furthermore, {Xt} is an irreducible and aperiodic Markov chain; therefore,
{Xt} is ergodic with a unique stationary distribution by [17].

By Definition 1 and (8), for given Xt−1, {Xt} given in (8) consists of two independent
parts α �ν Xt−1 and β �ν (n − Xt−1), where α �ν Xt−1 ∼ CMPB(Xt−1, α, ν) and β �ν (n −
Xt−1) ∼ CMPB(n − Xt−1, β, ν). Denote θ1 = α/(1 − α) and θ2 = β/(1 − β). Then

E(Xt|Xt−1) = θ1S
′
1/S1 + θ2S

′
2/S2,

Var(Xt|Xt−1) = θ1
S
′
1

S1
+ θ2

S
′
2

S2
+ θ2

1

⎛⎝S
′′
1

S1
−
(

S
′
1

S1

)2
⎞⎠+ θ2

2

⎛⎝S
′′
2

S2
−
(

S
′
2

S2

)2
⎞⎠,

and the conditional binomial index of dispersion (CBID) is

CBID =
θ2

1S2
2
(
S1S

′′
1 − (S

′
1)

2)+ θ2
2S2

1
(
S2S

′′
2 − (S

′
2)

2)+ θ1S1S
′
1S2

2 + θ2S2S
′
2S2

1(
nS1S2 − θ1S′

1S2 − θ2S1S′
2
)(

θ1S2S′
1 + θ2S1S′

2
)

where S1 := S1(θ1, ν) = ∑
Xt−1
x=0 (Xt−1

x )
ν
θx

1 , S
′
1 := S

′
1(θ1, ν) = ∂S1(θ1, ν)/∂θ1, S

′′
1 := S

′′
1(θ1, ν) =

∂S
′
1(θ1, ν)/∂θ1, S2 := S2(θ2, ν) = ∑

n−Xt−1
x=0 (n−Xt−1

x )
ν
θx

2 , S
′
2 := S

′
2(θ2, ν) = ∂S2(θ2, ν)/∂θ2,

S
′′
2 := S

′′
2(θ2, ν) = ∂S

′
2(θ2, ν)/∂θ2.

Unfortunally, because of the complexity of S1(θ1, ν) and S2(θ2, ν), we can not obtain
the marginal distribution of {Xt} and its the autocorrelation structure, including the E(Xt),
Var(Xt), and BID. To resolve this dilemma, for given n = 10, we create some plots of
the BID (in Figure 3) by generating some samples from the CMPBAR(1) model with
ν ∈ {−5,−4.5,−4, · · · , 4.5, 5} and sample size T = 500, when (α, β) = (0.2, 0.2), (0.2, 0.5),
(0.2, 0.6), (0.5, 0.6), i.e., (θ1, θ2) = (0.25, 0.25), (0.25, 1), (0.25, 1.5), (1, 1.5).

From Figure 3, we have the following observations. First, if ν < 1, the BID of the
CMPBAR(1) model is greater than 1, i.e., the CMPBAR(1) model allows us to analyze
bounded integer-valued time series with overdispersion. Second, if ν > 1, the BID of the
CMPBAR(1) model is less than 1, i.e., the CMPBAR(1) model allows us to analyze bounded
integer-valued time series with underdispersion. Third, if ν = 1, the CMPBAR(1) model
becomes to the BAR(1) given in (2) and its BID is equal to 1, i.e., equi-dispersed bounded
integer-valued time series is allowed.
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Figure 3. Plots of BID of the CMPBAR model.

3. Parameter Estimation

In this section, we use the conditional maximum likelihood method to estimate
the parameters (denoted as η = (θ1, θ2, ν)�) involving in the CMPBAR(1) model. Let
{X0, X1, . . . , XT} be a realization of {Xt}, and generate by the CMPBAR(1) process based
on Algorithm 1, where T ∈ N represents the size of sample.

Algorithm 1: Random number generation algorithm for the CMPB distribution

Step 1. generate a random number u, u ∼ Uniform(0, 1);
Step 2. x = 0, p = P(α �ν n = 0|θ, ν, n), F = p, where P(α �ν n = 0|θ, ν, n) is given in (3);
Step 3. if u < F, set α �ν n = x and stop;
Step 4. else p = p ×

( n−x
x+1 λ

)ν by (7), F = F + p, x = x + 1;
Step 5. go to Step 3.

By using (9), the conditional log-likelihood function can be written as:

�(η) = ∑T
t=1 log Pη(Xt|Xt−1)

=
T

∑
t=1

log

(
m

∑
i=0

(
Xt−1

i

)ν(n − Xt−1

Xt − i

)ν

θi
1θXt−i

2

)
− log(S(θ1, ν))− log(S(θ2, ν)), (10)

where S(θ1, ν) = ∑
Xt−1
i=0 ( i

Xt−1
)

ν
θi

1 and S(θ2, ν) = ∑
n−Xt−1
i=0 ( i

n−Xt−1
)

ν
θi

2 with m =

min {Xt, Xt−1}, θ1 > 0, θ2 > 0, and ν ∈ R. Then the CML estimate η̂cml is obtained
by minimizing (10).

Assumption 1. If there exists a t ≥ 1, such that Xt(η) = Xt(η0), Pη0 a.s., then η = η0, where
Pη0 is the probability measure under the true parameter η0 with η0 = {θ0

1, θ0
2, ν0}.

Theorem 2. Let {Xt} be generalized by the CMPBAR(1) model. If Assumption 1 holds, there
exists an estimator η̂cml such that

η̂cml a.s.→ η0 and
√

T(η̂cml − η0)
d−→N

(
0, J−1(η0)I(η0)J−1(η0)

)
, T → ∞,
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where I(η0) = E
[

∂log Pη0(Xt|Xt−1)

∂η

∂log Pη0(Xt|Xt−1)

∂η�

]
and J(η0) = E

(
∂2�(η0)

∂η∂η�

)
.

Proof. To prove the consistence of η̂cml , we denote �t(η) = log Pη(Xt|Xt−1). Hence, �(η) =
∑T

t=1 �t(η). Similar to the first item of Theorem 4 in Chen et al. [18], we can verify that
the assumptions of Theorem 4.1.2 in Amemiya [19] hold under Assumption 1, i.e., E�t(η)
attains a strict local maximum at η0; therefore, there exists an estimator η̂cml such that
η̂cml a.s.→ η0.

In the following, we prove the asymptotic normality of η̂cml . It is easy to see ∂�t(η)/∂θ1,
∂�t(η)/∂θ2, and ∂�t(η)/∂ν exist and are three times continuous differentiable in Θ. Thus,
there exist a N(η0) such that ∂2�t(η)/(∂η∂η�) attains the maximum value at η̃ ∈ N(η0).
Therefore,

E‖ sup
η∈N(η0)

∂2�t(η)

∂η∂η�
‖ = E‖∂2�t(η̃)

∂ηi∂ηj
‖ < ∞.

Similar to the second item of Theorem 4 in [18], we can prove that

T−1
T

∑
t=1

∂2�t(η)

∂η∂η�
p→ E

(
∂2�t(η0)

∂η∂η�

)
by Theorem 4.1.3 in Amemiya [19]. Furthermore,

T−1 ∑T
t=1 ∂�t(η0)/∂η

p→ E(∂�t(η0)/∂η)

by using ergodic theorem. Using the Martingale central limit theorem and the Cramér
device, it is direct to show that

T−1/2∂�(η0)/∂η
d−→N(0, I(η0)).

Then the asymptotic normal distribution of η̂cml is obtained based on the Taylor series
expansion of ∂�(η̂cml)/∂η around η0.

4. Simulation

In this section, we conduct a simulation study to illustrate the large sample property
of the CMPBAR(1) model.

In the simulation, we fix n = 10, let sample size T = 100, 300, 500, and use the optim

function in R to optimize �(η) in (10). To check the finite sample performance, we use the
following parameter combinations of (θ1, θ2, ν) as

(A1) = (0.25, 0.25, 0.5), (A2) = (0.25, 1, 0.5), (A3) = (0.25, 1.5, 0.5), (A4) = (1, 1.5, 0.5),

(B1) = (0.25, 0.25, 1), (B2) = (0.25, 1, 1), (B3) = (0.25, 1.5, 1), (B4) = (1, 1.5, 1),

(C1) = (0.25, 0.25, 1.5), (C2) = (0.25, 1, 1.5), (C3) = (0.25, 1.5, 1.5), (C4) = (1, 1.5, 1.5),

where ν = 0.5, 1 and 1.5 to reflect overdispersion, equidispersion, and underdispersion,
respectively.

For the simulated sample, performances of mean and standard deviation (sd) are

given. For a scale parameter ϕ, sd =
√

1
m−1 ∑m

i=1(ϕ̂i − ϕ)2, where ϕ̂i is the estimator of ϕ

in the ith replication and m = 10, 000. Summaries of the simulation results are given in
Tables 1–3.

To illustrate the consistency and the asymptotic normality of the CML estimators, we
present the boxplots of the CML estimates for (A1), (B1), and (C1) in Figures 4, 5, and 6,
and their qqplots with T = 500 in Figure 7, 8, and 9, respectively. Others are similar and
we omit them.
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Table 1. Mean and sd in parentheses of estimates for (A1)–(A4).

100 300 500

(A1) = (0.25, 0.25, 0.5)
θ1 0.2336 (0.1425) 0.2435 (0.0881) 0.2471 (0.0683)
θ2 0.2408 (0.0829) 0.2467 (0.0498) 0.2479 (0.0391)
ν 0.5682 (0.2484) 0.5231 (0.1371) 0.5135 (0.1065)

(A2) = (0.25, 1, 0.5)
θ1 0.2420 (0.0847) 0.2471 (0.0477) 0.2483 (0.0369)
θ2 1.0058 (0.0935) 1.0022 (0.0510) 1.0010 (0.0390)
ν 0.5236 (0.1353) 0.5070 (0.0742) 0.5044 (0.0567)

(A3) = (0.25, 1.5, 0.5)
θ1 0.2450 (0.0644) 0.2483 (0.0374) 0.2490 (0.0288)
θ2 1.5283 (0.1677) 1.5092 (0.0936) 1.5053 (0.0710)
ν 0.5269 (0.1505) 0.5072 (0.0821) 0.5046 (0.0628)

(A4) = (1, 1.5, 0.5)
θ1 1.0032 (0.1132) 1.0002 (0.0622) 1.0005 (0.0481)
θ2 1.5446 (0.2335) 1.5176 (0.1389) 1.5097 (0.1066)
ν 0.5246 (0.1336) 0.5087 (0.0755) 0.5052 (0.0585)

Table 2. Mean and sd in parentheses of estimates for (B1)–(B4).

100 200 500

(B1) = (0.25, 0.25, 1)
θ1 0.2442 (0.1286) 0.2475 (0.0755) 0.2487 (0.0586)
θ2 0.2484 (0.0693) 0.2497 (0.0402) 0.2496 (0.0313)
ν 1.0484 (0.2317) 1.0152 (0.1288) 1.0094 (0.0997)

(B2) = (0.25, 1, 1)
θ1 0.2483 (0.0906) 0.2491 (0.0508) 0.2496 (0.0393)
θ2 1.0114 (0.1667) 1.0033 (0.0906) 1.0016 (0.0692)
ν 1.0390 (0.2070) 1.0130 (0.1140) 1.0083 (0.0873)

(B3) = (0.25, 1.5, 1)
θ1 0.2507 (0.0770) 0.2497 (0.0440) 0.2499 (0.0339)
θ2 1.5215 (0.2412) 1.5097 (0.1417) 1.5053 (0.1082)
ν 1.0409 (0.2167) 1.0128 (0.1201) 1.0084 (0.0922)

(B4) = (1, 1.5, 1)
θ1 1.0219 (0.1985) 1.0042 (0.1127) 1.0028 (0.0876)
θ2 1.5420 (0.3113) 1.5251 (0.2070) 1.5151 (0.1632)
ν 1.0318 (0.1883) 1.0114 (0.1057) 1.0067 (0.0820)

Table 3. Mean and sd in parentheses of estimates for (C1)–(C4).

100 200 500

(C1) = (0.25, 0.25, 1.5)
θ1 0.2563 (0.1402) 0.2517 (0.0784) 0.2514 (0.0611)
θ2 0.2550 (0.0732) 0.2513 (0.0435) 0.2506 (0.0336)
ν 1.5431 (0.2529) 1.5169 (0.1553) 1.5103 (0.1191)

(C2) = (0.25, 1, 1.5)
θ1 0.2586 (0.1141) 0.2524 (0.0620) 0.2515 (0.0479)
θ2 1.0332 (0.2637) 1.0094 (0.1449) 1.0052 (0.1120)
ν 1.5408 (0.2482) 1.5157 (0.1497) 1.5100 (0.1153)
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Table 3. Cont.

100 200 500

(C3) = (0.25, 1.5, 1.5)
θ1 0.2625 (0.1000) 0.2523 (0.0559) 0.2515 (0.0433)
θ2 1.5186 (0.3340) 1.5169 (0.2200) 1.5100 (0.1730)
ν 1.5383 (0.2512) 1.5167 (0.1531) 1.5103 (0.1180)

(C4) = (1, 1.5, 1.5)
θ1 1.0528 (0.2914) 1.0134 (0.1701) 1.0075 (0.1329)
θ2 1.5339 (0.3820) 1.5310 (0.2724) 1.5221 (0.2243)
ν 1.5398 (0.2350) 1.5161 (0.1396) 1.5100 (0.1082)

Figure 4. Boxplots of the CML estimates for (A1).

Figure 5. Boxplots of the CML estimates for (B1).

Figure 6. Boxplots of the CML estimates for (C1).
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Figure 7. qqplots of the CML estimates for (A1) with T = 500.

Figure 8. qqplots of the CML estimates for (B1) with T = 500.

Figure 9. qqplots of the CML estimates for (C1) with T = 500.

These studies indicate that the CML method seems to perform reasonably well. First,
Tables 1–3 show that the standard deviation of the CML estimator is decreasing with the
sample size increase and the mean of the CML estimator is closer to the true parameter
value in general cases. Second, Figures 4–6 account for the location and dispersion of the
estimates, all of which indicate the consistency of the estimators. Third, Figures 7–9 indicate
the asymptotic normality of the CML estimator.
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5. Real Data Example

In this section, we consider the number of weekly rainy days for the period from
1 January 2005 to 31 December 2010 at Hamburg–Neuwiedenthal in Germany, where a
week is defined as being from Saturday to Friday and n = 7. The data were collected from
the German Weather Service (http://www.dwd.de/, accessed on 12 December 2018). The
sample path and the ACF and PACF plots of the observations are given in Figures 10 and 11,
respectively.

Figure 10. Path of the weekly rainy days.

Figure 11. ACF and PACF plots of the weekly rainy days. (1) shows that the ACF exhibits significant
value for lag 1, and (2) presents that the PACF indicates an AR(1)-like autocorrelation structure.

By computation, the sample mean and variance are 3.8371 and 3.6753, and the BID of
the data is 1.2371, which implies the data exhibits extra-binomial variation. Hence, we use
the CMPBAR(1) model, BAR(1) model [2], BBAR(1) model [9], and GBAR(1) model [11] to
fit data by the CML method. We compare the estimated standard error (SE), −log-likelihood
(−log-lik), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC),
which are summarized in Table 4, including the fitted results of the CML estimate.

From Table 4, the CMPBAR(1) model takes the smallest values of the −log-lik, AIC, and
BIC. Hence, the CMPBAR(1) model might be more appropriate for the weekly rainy days.

To illustrate the adequacy of the CMPBAR(1) model, we consider the fitted Pearson
residual analysis of the CMPBAR(1) model. By computation, the mean and variance of
the fitted Pearson residual are 0.0760 and 1.0500, respectively. The residual analysis in
Figure 12 shows that this model performs rather well.
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Table 4. Estimates for the weekly rainy days and SE are shown in parentheses.

Model Estimates −log-lik AIC BIC

π̂ ρ̂
BAR(1) 0.5476 0.1323 691.5400 1387.0800 1394.5720

(0.0122) (0.0325)

π̂ ρ̂ φ̂
BBAR(1) 0.5475 0.1408 0.2827 623.6617 1253.33233 1264.5619

(0.0177) (0.0507) (0.0320)

π̂ ρ̂ φ̂
GBAR(1) 0.5493 0.1396 0.5209 625.4958 1256.9916 1268.2303

(0.0169) (0.0492) (0.0279)

θ̂1 θ̂2 ν̂
CMPBAR(1) 1.2313 0.9547 0.0995 622.6669 1251.3337 1262.5723

(0.0627) (0.0532) (0.0681)

Figure 12. Pearson residual analysis of the weekly rainy days. (1) ACF (2) PACF.

In addition, to further check the adequacy of the CMPBAR(1) model, we present the
probability integral transform (PIT) (if the fitted model is adequate, its PIT histogram looks
like that of a uniform distribution, see [10] for more discussion) in Figure 13 based on the
fitted CMPBAR(1) model.

As can be seen in Figure 13, the PIT histogram of the CMPBAR(1) model is close
to uniformity, i.e., the PIT histogram confirms that the fitted CMPBAR(1) model works
reasonably well for the weekly rainy days.
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Figure 13. PIT histogram based on the fitted CMPBAR(1) model.

6. Concluding Remarks

This paper considers a new CMPB thinning operator and proposes a new CMPBAR(1)
model, which provides an available method to model bounded data with under-dispersion,
equi-dispersion, and over-dispersion. We discuss some properties of the new model, the
estimate of the parameters, and its large-sample properties. Simulations are conducted to
examine the finite sample performance of estimators. A real data example is provided to
illustrate the applicability of the CMPBAR(1) model.

There are several directions in which we plan to take this work forward. First, the
random coefficient CMPBAR(1) model can be introduced by

Xt = αt ◦ν Xt−1 + βt ◦ν (n − Xt−1),

where αt = α(Xt−1/n) and βt = β(Xt−1/n), “◦ν” is the CMPB thinning operator and the
counting series in “αt◦ν”, and that in “βt◦ν” is independent and all of the counting series
at time t is independent of {Xs, s < t}; see Weiß and Pollett [8] for the random coefficient
BAR(1) model. Second, a correlated sign-thinning operator can be established by

α �ν X = sign(α)sign(X)∑X
i=1 Zi,

where sign(x) = 1 if x ≥ 0 and sign(x)=−1 if x < 0, {Zi, i = 1, 2, · · · , X} is an exchangeable
Bernoulli variable sequence with its pmf taking the form (5). Based on the correlated
sign thinning operator, one can construct a Z-valued autoregressive model to analyze
data with a range Z and under-dispersed, equi-dispersed, and over-dispersed. Third,
a class of Conway–Maxwell–Poisson-binomial generalized autoregressive conditional
heteroskedasticity models can be considered by

Zt|Ft−1 ∼ CMPB(n, αt, ν), αt = gη(Zt−1/n, αt−1),

where η is the parameter vector involving in the model (see Ristić et al. [20] and Chen et al. [18]
for ARCH-type models, Lee and Lee [21] and Chen et al. [22] for GARCH-type models for
bounded data). In addition, a semi-parameter version can be considered by

Zt|Ft−1 ∼ CMPB(n, αt, ν), αt = gη(Zt−1/n, αt−1) + fγ(Xt),

where η is the parameter vector involved in the model, {Xt} is the covariate process
imposed in the observe process {Zt}, and γ is the parameter vector involving in f (·).
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Abstract: Censored data are frequently found in diverse fields including environmental monitoring,
medicine, economics and social sciences. Censoring occurs when observations are available only for
a restricted range, e.g., due to a detection limit. Ignoring censoring produces biased estimates and
unreliable statistical inference. The aim of this work is to contribute to the modelling of time series of
counts under censoring using convolution closed infinitely divisible (CCID) models. The emphasis
is on estimation and inference problems, using Bayesian approaches with Approximate Bayesian
Computation (ABC) and Gibbs sampler with Data Augmentation (GDA) algorithms.

Keywords: Bayesian estimation; censored time series; convolution closed infinitely divisible; Poisson
INAR(1) model

1. Introduction

Observations collected over time or space are usually correlated rather than indepen-
dent. Time series are often observed with data irregularities such as missing values or
detection limits. For instance, a monitoring device may have a technical detection limit
and it records the limit value when the true value exceeds/precedes the detection limit.
Such data is called censored (type 1) data and are common in environmental monitoring,
physical sciences, business and economics. In particular, in the context of time series of
counts, censored data arise in call centers. In fact, the demand measured by the number of
calls is limited by the number of operators. When the number of calls is higher than the
number of operators the data is right censored and the call center incurs under-staffing and
poor service to the costumers.

The main consequence of neglecting censoring in the time series analysis is the loss
of information that is reflected in biased and inconsistent estimators and altered serial
correlation. These consequences can be summarized as problems in inference that lead to
model misspecification, biased parameter estimation, and poor forecasts.

These problems have been solved in regression settings (i.i.d.) and partially solved
for Gaussian time series (see for instance [1–7]). However, the problem of modelling time
series under censoring in the context of time series of counts has, as yet, received little
attention in the literature even though its relevance for inference. Count time series occur
in many areas such as telecommunications, actuarial science, epidemiology, hydrology
and environmental studies where the modelling of censored data may be invaluable in
risk assessment.

In the context of time series of counts, Ref. [8] deal with correlated under-reported data
through INAR(1)-hidden Markov chain models. A naïve method of parameter estimation
was proposed, jointly with the maximum likelihood method based on a revised version of
the forward algorithm. Additionally, Ref. [9] propose a random-censoring Poisson model
for under-reported data, which accounts for the uncertainty about both the count and the
data reporting processes.

Entropy 2023, 25, 549. https://doi.org/10.3390/e25040549 https://www.mdpi.com/journal/entropy
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Here, the problem of modelling count data under censoring is considered under a
Bayesian perspective. In this paper, we consider a general class of convolution closed
infinitely divisible (CCID) models as proposed by [10].

We investigate two natural approaches to analyse censored convolution closed in-
finitely divisible models of first order, CCID(1), using the Bayesian framework: the Ap-
proximate Bayesian Computation (ABC) methodology and the Gibbs sampler with Data
Augmentation (GDA).

Since the CCID(1) under censoring presents an intractable likelihood, we resort to the
Approximate Bayesian Computation methodology for estimating the model parameters.
The presupposed model is simulated by using sample parameters taken from the prior dis-
tribution, then a distance between the simulated dataset and the observations is computed
and when the simulated dataset is very close to the observed, the corresponding parameter
samples are accepted as part of the posterior.

In addition, a widely used strategy to deal with censored data is to fill in censored
data in order to create a data-augmented (complete) dataset. When the data-augmented
posterior and the conditional pdf of the latent process are both available in a tractable form,
the Gibbs sampler allows us to sample from the posterior distribution of the parameters of
the complete dataset. This methodology is called Gibbs sampler with Data Augmentation
(GDA). Here, a modified GDA, in which the data augmentation is achieved by multiple
sampling of the latent variables from the truncated conditional distributions (GDA-MMS),
is adopted.

The Poisson integer-valued autoregressive models of first-order, PoINAR(1), is one
of the most popular classes of CCID models. It was proposed by [11,12] and extensively
studied in the literature and applied to many real-world problems because of its ease of
interpretation. To motivate the proposed approaches, we present in Figure 1 a synthetic
dataset with n = 350 observations generated from a PoINAR(1) process with parameters
α = 0.5 and λ = 5 (Xt, blue line) and the respective right-censored dataset (Yt, red line), at
L = 11, corresponding to 30% of censoring. If we disregard the censoring, the estimates
for the parameters (assuming an PoINAR(1) model without censoring) present a strong
bias. For instance, in the frequentist framework, the conditional maximum likelihood
estimates are α̂CML = 0.6174 and λ̂CML = 3.4078, while in the Bayesian framework, the
Gibbs sampler gives α̂Bayes = 0.6242 and λ̂Bayes = 3.3297. On the other hand, if we assume
a PoINAR(1) model under censoring, the parameter estimates given by the proposed
approaches described in this work are, respectively, α̂ABC = 0.4623 and λ̂ABC = 5.2259, and
α̂GDA = 0.4834 and λ̂GDA = 4.9073. Therefore, it is important to consider the censoring in
data in order to avoid some inference issues that lead to a poor time series analysis.
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Figure 1. Synthetic dataset with n = 350 observations generated from a PoINAR(1) process with parameters
α = 0.5 and λ = 5 (Xt, blue line) and the respective right censored dataset (Yt, red line), at L = 11.

The remainder of this work is organized as follows. Section 2 presents a general
class of convolution closed infinitely divisible (CCID) models under censoring. Two
Bayesian approaches proposed to estimate the parameters of the censored CCID(1) model
are described in Section 3. The proposed methodologies are illustrated and compared with
synthetic data in Section 4. Finally, Section 5 concludes the paper.

2. A Model for Time Series of Counts under Censoring

This section introduces a class of models adequate for censored time series of counts
based on the convolution closed infinitely divisible (CCID) models as proposed by [10].

2.1. Convolution Closed Models for Count Time Series

First we introduce some notation. Consider a random variable X with a distribution
Fμ, μ > 0, belonging to the convolution closed infinitely divisible (CCID) parametric
family [10]. This means, in particular, that the distribution Fμ is closed under convolution,
Fμ1 ∗ Fμ2 = Fμ1+μ2 , where ∗ is the convolution operator. Let R(·) denote a random operator
on X such that R(X) ∼ Fαμ, 0 < α < 1 and the conditional distribution of R(X) given
X = x is Gαμ,(1−α)μ,x, R(X)|X = x ∼ Gαμ,(1−α)μ,x. As an example, consider a Poisson
random variable, X ∼ Po(μ) and a binomial thinning operation, R(X) = α ◦ X = ∑X

i=1 ξi,
ξi ∼iid Ber(α). Then Fμ is the Poisson distribution with parameter μ, R(X) ∼ Po(αμ) and
R(X)|X = x ∼ Bi(x, α), Gαμ,(1−α)μ,x is the Binomial distribution with parameters x and α.

A stationary time series, {Xt; t = 0,±1,±2, . . .} with margin Fμ, Xt ∼ Fμ, is called
a convolution closed infinitely divisible process of order 1, CCID(1), if it satisfies the
following equation

Xt = Rt(Xt−1) + et, (1)

where the innovations et are independently and identically distributed (i.i.d.) with distri-
bution F(1−α)μ and {Rt(·) : t = 0,±1,±2, . . .} are independent replications of the random
operator R(·) [10]. Note that the above construction leads to time series with the same
marginal distribution as that of the innovations.

Model (1) encompasses many AR(1) models proposed in the literature for integer
valued time series. In particular, the Poisson INAR(1), PoINAR(1), the negative binomial
INAR(1), NBINAR(1), and the generalised Poisson INAR(1), GPINAR(1) [13], summarized
in Table 1 (marginal distribution, random operation and its pmf g(·|·), set of parameters θ),
have been widely used in the literature to model time series of counts, see inter alia [14,15],
among others.
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Table 1. Methods for constructing integer valued AR(1) models with specified marginals Fμ and

innovations et
iid
= Fλ, λ = μ(1 − α). B(·, ·) denotes the beta function.

Marginal Distribution Random Operator g(s|Xt−1; α) Innovations θ

Poison Po(μ) binomial thinning (Xt−1
s )αs(1 − α)Xt−1−s Po(λ) (μ, α)

Negative binomial NB(μ, ξ) beta binomial thinning (Xt−1
s )αs(1 − α)Xt−1−s NB(λ, ξ) (μ, α, ξ)

Generalised Poisson GP(μ, ξ) quasi binomial thinning (Xt−1
s )α(α + s(ξ/μ))s−1

(1 − α − s(ξ/μ))Xt−1−s GP(λ, ξ) (μ, α, ξ)

If one chooses F(1−α)μ as Poisson((1 − α)μ), and the random operation as the usual
binomial thinning operation (based on underlying Bernoulli random variables) Rt(Xt−1) =

α ◦ Xt−1 = ∑
Xt−1
i=1 ξti, ξti ∼iid Ber(α), then Fμ is Poisson(μ) and the Poisson integer-valued

autoregressive model, PoINAR(1), as proposed by [11,12], is recovered with the familiar
representation

Xt = α ◦ Xt−1 + εt. (2)

Since model (1) is Markovian [10], given a time series x = (X1, . . . , Xn), the conditional
likelihood is as follows

L(θ) =
n

∏
t=2

fXt |Xt−1
(xt|xt−1), (3)

with

fXt |Xt−1
(k|l) = P(Xt = k|Xt−1 = l) =

min{k,l}
∑
j=0

g(j|l)P(et = k − j). (4)

2.2. Modelling Censoring in CCID(1) Time Series

Given a model as in (1), a basic question is whether it properly describes all the
observations of a given time series, or whether some observations have been affected by
censoring. Here, we describe a model for dealing with censored observations in CCID(1)
processes and study some of its properties.

Exogenous censoring can be modelled assuming (1) as a latent process and
Yt = min{L, Xt} as the observed process, where L is a constant that is assumed to be
known. For simplicity of exposition we assume exogenous right censoring but all the
results are easily extended to left-censoring or interval censoring. Hence, for right exoge-
nous censoring

Yt = min{Xt, L} =

{
Xt, if Xt < L,
L, if Xt ≥ L,

(5)

Xt = Rt(Xt−1) + et.

Although Xt, a CCID(1) process is Markovian, the exogenous censoring implies that
Yt is not Markovian because Yt depends on Xt and L. Furthermore, Yt is not CLAR (Condi-
tionally Linear AutoRegressive). In fact,

E[Yt|Yt−1 = yt−1] = E[Yt|Yt−1 = yt−1]I{yt−1<L} + E[Yt|Yt−1 = L]I{yt−1=L}

=

(
E[Xt|Xt−1 = yt−1]−

+∞

∑
j=0

jP[Xt = L + j|Xt−1 = yt−1]

)
I{yt−1<L}

+

(
E[Xt|Xt−1 ≥ L]−

+∞

∑
j=0

jP[Xt = L + j|Xt−1 ≥ L]

)
I{yt−1=L}
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The authors Zeger and Brookmeyer [1] established a procedure to obtain the likelihood
of an observed time series under censoring, y = (Y1, . . . , Yn), which becomes infeasible
when the proportion of censoring is large. To overcome this issue, this work considers a
Bayesian approach.

3. Bayesian Modelling

The Bayesian approach to the inference of an unknown parameter vector θ is based on
the posterior distribution π(θ|y), defined as

π(θ|y) ∝ L(y|θ)π(θ),

where L(y|θ) is the likelihood function of the observed data y and π(θ) is the prior distri-
bution of the model parameters.

When the likelihood is computationally prohibitive or even impossible to handle,
but it is feasible to simulate samples from the model (bypass the likelihood evaluation),
as is the case of censored CCID(1) processes, Approximate Bayesian Computation (ABC)
algorithms are an alternative. This methodology accepts the parameter draws that produce
a match between the observed and the simulated sample, depending on a set of summary
statistics, a chosen distance and a selected tolerance. The accepted parameters are then used
to estimate (an approximation of) the posterior distribution (conditioned on the summary
statistics that afforded the match).

On the other hand, the idea of imputation arises naturally in the context of censored
data. The Gibbs sampler with Data Augmentation (GDA) allows us to obtain an augmented
dataset from the censored data by using a modified version of the Gibbs sampler, which
samples not only the parameters of the model from its complete conditional but also
the censored observations. The usual inference procedures may then be applied to the
augmented data set.

3.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is based on an acceptance–rejection algo-
rithm. ABC is used to compute a draw from an approximation of the posterior distributions,
based on simulated data obtained from the assumed model in situations where its likeli-
hood function is intractable or numerically difficult to handle. Summary statistics from the
synthetic data are compared with the corresponding statistics from the observed data and
a parameter draw is retained when there is a match (in some sense) between the simulated
sample and the observed time series observation.

Recently, Ref. [16] provided the asymptotic results pertaining to the ABC posterior,
such as Bayesian consistency and asymptotic distribution of the posterior mean.

Let y0 = (Y0
1 , . . . , Y0

n) be the fixed (observed) data and η(·) the model from which the
data is generated. The most basic approximate acceptance/rejection algorithm, based on the
works of [17,18], is as follows:

1. draw a value θ from the prior distribution, π(θ),
2. simulate a sample y = (Y1, . . . , Yn) from the model η(.|θ),
3. accept θ if d(S(y), S0)) ≤ δ for some distance measure d(., .) and some non-negative

tolerance value δ, where S(·) is a summary statistic and S0 = S(y0) is a fixed value.

It is well known that, if we use a proper distance measure, then as δ tends to zero,
the distribution of the accepted values tends to the posterior distribution of the parameter
given the data. When the summary statistics are sufficient for the parameter, then the
distribution of the accepted values tends to the true posterior as δ tends to zero, assuming
a proper distance measure on the space of sufficient statistics. The latent structure of the
thinning operator means that the reduction to a sufficient set of statistics of dimension
smaller than the sample size is not feasible and, therefore, informative summary statistics
are often used [19].
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In this work, given the characteristics of the data under study to compare the observed
data (y0) and the synthetic (simulated ) data (y), we consider two distinctive characteristics
of CCID(1) time series which are affected by the censoring: (i) the empirical marginal
distribution and (ii) lag 1 auto-correlation.

To measure the similarity between the empirical marginal distributions the Kullback-
Leibler (Note that Kullback-Leibler distance measures the dissimilarity between two proba-
bility distributions.) distance is calculated as

S1(y) = dKL( p̂0, p̂) = ∑
j

ln

(
p̂0

j

p̂j

)
p̂0

j , (6)

where p̂0
j and p̂j denote the empirical marginal distribution of the observed time series

and that of the simulated time series, respectively, estimated by the corresponding sam-

ple proportions,
(

p̂0
j =

1
n ∑n

j=1 I{Y0
j =j} and p̂j =

1
n ∑n

j=1 I{Yj=j}

)
. Whenever p̂0

j is zero, the

contribution of the jth term is interpreted as zero because limp→0 p ln(p) = 0.
On the other hand, lag 1 sample autocorrelations, S2(y0) = ρ̂Y0(1) and S2(y) = ρ̂Y(1),

are compared by their squared difference.
Additionally, we estimated the censoring rates, S3(y0) = 1

n ∑n
t=1 I{y0

t =L} and

S3(y) = 1
n ∑n

t=1 I{Yt=L}, which are also compared by their squared difference.

Thus, for each set of parameters, θ(k), a time series x(k) is generated from the model
CCID(1) and right censored at L, yielding y(k) = (Y(k)

1 , . . . , Y(k)
n ) and the above statistics,

S1(y(k)), S2(y(k)) and S3(y(k)) are computed. Combining these statistics in a metric leading
to the choice of the parameters θ requires scaling. Thus, we propose the following metric

d(k)S =
S1(y(k))2

V(S1(y))
+

3

∑
i=2

[Si(y0)− Si(y(k))]2

V(Si(y0)− Si(y))
(7)

where Si(y0) and Si(y(k)) are the ith statistics obtained respectively from the observed
and kth simulated data and V(S1(y)) and V(Si(y0)− Si(y)) are the corresponding sample
variances across the replications.

In summary, we propose Algorithm 1 for ABC approach based on [20]:

Algorithm 1 ABC for censored CCID(1)

For k = 1, ..., N
Sample θ(k) from the prior distribution π(θ)

Generate a time series with n observations, x(k) from the CCID(1) model
Right truncate at L x(k) to obtain the simulated data y(k)

Compute S1(y(k)), S2(y(k)) and S3(y(k))

Compute d(k)S =
S1(y(k))2

V(S1(y))
+ ∑3

i=2
[Si(y0)− Si(y(k))]2

V(Si(y0)− Si(y))
, k = 1, . . . , N

Select the values θ(k) corresponding to the 0.1% quantile of d(k)S , k = 1, . . . , N

Implementation issues regarding the prior distributions and the number of draws N
for the CensPoINAR(1) model are addressed in Sections 3.3 and 4.1.

3.2. Gibbs Sampler with Data Augmentation

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm that can generate
samples of the posterior distribution from their full conditional distributions [21]. When the
data are under censoring or there are missing values, both cases leading to an incomplete
data set, Ref. [22] proposed to combine the Gibbs sampler with data augmentation. This
methodology implies imputing the censored (or missing) data, thus obtaining a complete
dataset, and then dealing with the posterior of the complete data through the iterative
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Gibbs sampler. Therefore, the Gibbs sampler is modified in order to sample not only the pa-
rameters of the model from their complete conditionals but also the censored observations,
obtaining an augmented (complete) dataset z = (z1, . . . , zn) where

zt =

{
Yt, if Yt < L
zt ∼ Fμ(x|x ≥ L), if Yt = L

(8)

where Fμ(x|x ≥ L) is the truncated marginal distribution of the CCID(1) model with
support in [L,+∞[. Furthermore, we consider a modified sampling procedure for the
imputation, designated as Mean of Multiple Simulation (MMS), proposed by [23] consisting
in sampling from Fμ(x|x ≥ L) multiple times, say m, and then imputing with the (nearest
integer value) median of the m samples. This procedure is designated by GDA-MMS .

The augmented dataset can be considered as a CCID(1) time series and with a conditional
likelihood function given by Equation (3). The posterior distribution of θ is given by

p(θ|z) ∝ L(z|θ) π(θ) (9)

where π(θ) is the prior distribution of the parameters. In CCID(1) models the complexity of
p(θ|z) requires resorting to Markov Chain Monte Carlo (MCMC) techniques for sampling
from the full conditional distributions. The procedure is summarized in Algorithm 2 and
detailed for the CensPoINAR(1) case in Sections 3.3 and 4.1.

Algorithm 2 GDA-MMS for censored CCID(1)

Initialize with y = (Y1, . . . , Yn), θ(0) = (θ
(0)
1 , . . . , θ

(0)
p ), L ∈ R, and n, m, N ∈ N

Set z(0) = y
For k = 1, ..., N

Sample θ
(k)
i ∼ π(θi|θ(k−1)

(−i) , z(k−1)) (x(−i) represents the vector x with the ith element
removed.), i = 1, . . . , p

For t = 1, ..., n
If Yt = L

For j = 1, ..., m
Sample z(j)

t ∼ F(x|θ(k), x ≥ L)
z(k)t := 1

m ∑m
j=1 z(j)

t
Else

z(k)t := Yt
Return θ = [θ(1), . . . , θ(N)]′ and z(N).

3.3. The Particular Case of CensPoINAR(1)

This section details the ABC and GDA-MMS procedures to estimate a censored CCID(1)
with the binomial thinning operation and Poisson marginal distribution, the censored
Poisson INAR(1), CensPoINAR(1), model.

Consider the censored observations y = (Y1, . . . , Yn) from a PoINAR(1) time series
x = (X1, . . . , Xn) defined as

Yt = min{Xt, L} =

{
Xt, if Xt < L
L, if Xt ≥ L

(10)

Xt = α ◦ Xt−1 + et,

with α ◦ Xt−1 = ∑
Xt−1
i=1 ξti, ξti ∼iid Ber(α), et ∼ Po(λ) and Xt ∼ Po( λ

1−α ). Then θ = (α, λ)
and given x, the conditional likelihood function is given by
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L(θ) =
n

∏
t=2

fXt |Xt−1
(xt|xt−1) (11)

=
n

∏
t=2

min{xt ,xt−1}
∑
j=0

(
xt−1

j

)
αj(1 − α)(xt−1−j) e−λλxt−j

(xt − j)!
.

Under a Bayesian approach, we need a prior distribution for θ. In the absence of prior
information, we use weakly informative prior distributions for θ detailed below.

3.3.1. ABC for Censored PoINAR(1)

The ABC procedure described in Algorithm 1 is now implemented for the censored
PoINAR(1). For the parameter 0 < α < 1, we choose a non-informative prior U(0, 1), while
for the positive parameter λ, we choose a non-informative U(0, 10). The former allows us
to explore all the support space for α. The choice of U(0, 10) as a prior for λ > 0 allows us
to explore a restricted support for the parameter that is in accordance with small counts.

3.3.2. GDA-MMS for Censored PoINAR(1)

Under the GDA-MMS approach, we first need to obtain a complete data set
z = (z1, . . . , zn) by imputing the censored observations, see (8). In this work, we draw
m = 10 replicates of the right truncated at L Poisson distribution with parameter λ

1−α ,

wi ∼ Po
(

λ
1−α

)
× I(wi≥L) and set zt = �median(w)� (�c� represents the integer ceiling of c),

w = (w1, . . . , wm), if Yt = L. Figure 2 shows an augmented dataset (Zt, black line) from the
synthetic data presented in Figure 1.

Figure 2. Synthetic dataset with n = 350 observations generated from a PoINAR(1) process with
parameters α = 0.5 and λ = 5 (Xt, blue line), the respective right-censored dataset (Yt, red line), at
L = 11, and an example of data augmentation (Zt, black line).

As remarked above, given the complexity of the posterior distribution, Markov Chain
Monte Carlo techniques are required for sampling from the full conditional distributions.
Thus, the Adaptive Rejection Metropolis Sampling (ARMS) is used inside the Gibbs sam-
pler [24]. Also in this approach, in the absence of prior information, we use weakly
informative prior distributions for (α, λ). Thus, for the parameter 0 < α < 1, we choose a
non-informative beta prior, conjugate of the binomial distribution, with parameters (a, b),
while for the positive parameter μ, we choose a non-informative Gamma (shape, rate) prior,
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conjugate of the Poisson distribution, with parameters (c, d). The full conditional of λ is
given by

p(λ|α, z) =
p(λ, α|z)

p(α|z) ∝ exp[−(d + (n − 1))λ]λc−1
n

∏
t=2

min{zt ,zt−1}
∑
i=0

C(t, i)λ(zt)−i, (12)

where

C(t, i) =
1

((zt)− i)!

(
zt−1

i

)
αi(1 − α)(zt−1)−i and λ > 0.

The full conditional distribution of α is given by

p(α|λ, z) =
p(λ, α|z)
p(λ|z) ∝ αa−1(1 − α)b−1

n

∏
t=2

min{zt ,zt−1}
∑
i=0

K(t, i)αi(1 − α)(zt−1)−i, (13)

where

K(t, i) =
λ(zt)−i

((zt)− i)!

(
Xt−1

i

)
0 < α < 1.

The parameters α and λ are computed as the posterior mean.
The GDA-MMS procedure to estimate a censored PoINAR(1) process is detailed in

Algorithm 3.

Algorithm 3 GDA-MMS for CensPoINAR(1)

Initialize with y, θ(0) = (α(0), λ(0)), L ∈ R, and N, m ∈ N

Set z(0) = y
For k = 1, ..., N

Using ARMS
Sample λ(k) ∼ p(λ|α(k−1), z(k−1))

Sample α(k) ∼ p(α|λ(k), z(k−1))
For t = 1, ..., n

If Yt = L
For j = 1, ..., m

Sample w(j) ∼ Po
(

λ(k)

1−α(k)

)
× I(w(j)≥L)

z(k)t := �median(w)�, w = (w(1), . . . , w(m)),
Else

z(k)t := Yt
Return θ = [θ(1), . . . , θ(N)]′ and z(N).

4. Illustration

This section illustrates the procedures proposed above to model CCID(1) right-censored
time series in the particular case of Poisson distribution and binomial thinning operation.

4.1. Illustration with CensPoINAR(1)

In this section, the performance of the Bayesian approaches previously proposed is
illustrated via synthetic data. Thus, realizations with n = 100, 350, 1000 observations of
CensPoINAR(1) models were simulated, with parameters θ = (0.2, 3) and θ = (0.5, 5),
considering for each case two levels of censorship, namely 30% and 5%.

For the ABC estimates, we run N = 106 replications and choose the pairs (α, λ)

corresponding to the 0.1% lower quantile of d(k)S , Equation (7), in total of 1000 values
from which the estimates are computed as the mean value. Software R [25] was used to
implement the ABC algorithm.

To implement GDA-MMS algorithm we consider the initial values θ(0) = (α(0), λ(0))
given by the Conditional Least squares estimates of α and λ [24]. The hyper-parameters
for the prior distributions of α and λ are the following α ∼ Beta(a = 2, b = 2) and
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λ ∼ Gamma(c = 0.1, d = 0.1). In this work, the function armspp was used from the package
armspp [26] in R to sample from the full conditional distributions. Several experiments were
carried out to analyse the size that the chain should have in order to be stable and, thus,
the number of Gibbs sampler iterations used in this work is N = 15,000. Among these, we
ignored the first 5000 simulations as burn-in time and, to reduce autocorrelation between
MCMC observations, we considered only simulations from every 30 iterations. Therefore,
we use a simulated sample with size 323 to obtain the Bayesian estimates. A convergence
analysis with the usual diagnostic tests was performed with the package coda [27] in R [25].

Tables 2 and 3 summarize ABC and GDA-MMS results for the several scenarios
described above: point estimates, α̂ and λ̂, obtained as sample means, the corresponding
bias, standard deviation and the coefficient of variation. The results indicate that the bias
tends to decrease for large sample sizes and small censoring rates. The results also indicate
that overall ABC presents estimates with smaller bias but larger variability when compared
with GDA-MMS.

Table 2. ABC and GDA-MMS results for parameter α (sample mean, and the corresponding bias, standard
deviation and coefficient of variation) for synthetic data generated from CensPoINAR(1) models.

ABC GDA-MMS

α λ L n α̂ Bias(α̂) s.d.(α̂) CV(α̂) α̂ Bias(α̂) s.d.(α̂) CV(α̂)

0.2 3 4 (30%) 100 0.2571 0.0571 0.0911 0.3544 0.3155 0.1155 0.0323 0.1024

350 0.2067 0.0067 0.0579 0.2803 0.2274 0.0274 0.0178 0.0783

1000 0.1793 −0.0207 0.0398 0.2217 0.2025 0.0025 0.0157 0.0775

0.2 3 6 (5%) 100 0.2268 0.0268 0.0760 0.3350 0.2738 0.0738 0.0270 0.0986

350 0.2302 0.0302 0.0511 0.2221 0.2309 0.0309 0.0140 0.0606

1000 0.1931 −0.0069 0.0327 0.1692 0.1915 −0.0085 0.0112 0.0585

0.5 5 11 (30%) 100 0.5304 0.0304 0.0800 0.1508 0.5596 0.0596 0.0170 0.0304

350 0.4637 −0.0363 0.0535 0.1153 0.4834 −0.0166 0.0124 0.0257

1000 0.5115 0.0115 0.0320 0.0626 0.5050 0.0050 0.0072 0.0143

0.5 5 14 (5%) 100 0.5230 0.0230 0.0815 0.1559 0.5363 0.0363 0.0175 0.0326

350 0.4671 −0.0329 0.0461 0.0987 0.4796 −0.0204 0.0107 0.0223

1000 0.4992 −0.0008 0.0291 0.0584 0.5008 0.0008 0.0070 0.0140
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Table 3. ABC and GDA-MMS results for the parameter λ (sample mean, and the corresponding bias,
standard deviation and coefficient of variation) for synthetic data generated from CensPoINAR(1) models.

ABC GDA-MMS

α λ L n λ̂ Bias(λ̂) s.d.(λ̂) CV(λ̂) λ̂ Bias(λ̂) s.d.(λ̂) CV(λ̂)

0.2 3 4 (30%) 100 2.6623 −0.3377 0.3699 0.1389 2.3265 −0.6735 0.1144 0.0492

350 2.8530 −0.1470 0.2353 0.0825 2.6639 −0.3361 0.0672 0.0252

1000 3.1398 0.1398 0.1668 0.0531 2.9757 −0.0243 0.0603 0.0203

0.2 3 6 (5%) 100 2.7918 −0.2082 0.3203 0.1147 2.5719 −0.4281 0.1007 0.0392

350 2.9507 −0.0493 0.2173 0.0736 2.7846 −0.2154 0.0579 0.0208

1000 3.1342 0.1342 0.1448 0.0462 3.0417 0.0417 0.0460 0.0151

0.5 5 11 (30%) 100 4.3432 −0.6568 0.7504 0.1728 3.9528 −1.0472 0.1600 0.0405

350 5.2315 0.2315 0.5265 0.1006 4.9073 −0.0927 0.1177 0.0240

1000 4.9102 −0.0898 0.3247 0.0661 4.8974 −0.1026 0.0720 0.0147

0.5 5 14 (5%) 100 4.4488 −0.5512 0.7828 0.1760 4.2574 −0.7426 0.1682 0.0395

350 5.1333 0.1333 0.4286 0.0835 4.9877 -0.0123 0.1088 0.0218

1000 5.0613 0.0613 0.2826 0.0558 4.9964 −0.0036 0.0708 0.0142

Additionally, Figures 3 and 4 represent the corresponding posterior densities. The
plots show unimodal and approximately symmetric distributions, with a dispersion that
clearly decreases with increasing sample size and smaller censoring rate. The posterior
densities indicate that the ABC approach produces posteriors that are flatter but with
modes very close to the true value, while the corresponding GDA-MMS approach, despite
producing posteriors which are more concentrated also evidence higher bias. However, the
behaviour of GDA-MMS estimates varies with the parameters and even the sample sizes.
These results are representative of the properties of GDA-MMS estimates across a large
number of experiments, not reported here for conciseness.
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Figure 3. ABC and GDA-MMS posterior densities of the parameters for a realization of 100, 350 and
1000 observations of a CensPoINAR(1) model with θ = (0.2, 3), considering two levels of censoring.
Note that the scale of x-axis of the six plots are different.
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Figure 4. ABC and GDA-MMS posterior densities of the parameters for a realization of 100, 350 and
1000 observations of a CensPoINAR(1) model with θ = (0.5, 5), considering two levels of censoring.
Note that the scale of x-axis of the six plots are different.

4.2. Simulation Study for GDA-MMS

This section presents the results of a simulation study designed to further analyse the
sample properties of GDA-MMS, in particular the bias of the resulting Bayesian estimates.

For that purpose, realizations with sample sizes n = 100 and n = 350 of Cen-
sPoINAR(1) models with parameters θ = (0.2, 3) and θ = (0.5, 5), are generated, con-
sidering two levels of censorship, namely 30% and 5%. To analyse the performance of the
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procedure, the sample posterior mean, standard deviation and mean squared error were
calculated over 50 repetitions.

Boxplots of the sample bias for the 50 repetitions of GDA-MMS methodology are
presented in Figures 5 and 6. The bias increases with the rate of censoring and the variability
decreases with the sample size. Furthermore, in general, the estimates for α presents
positive sample mean biases, indicating that α is overestimated, whilst the estimates for λ
shows negative sample biases, indicating underestimation for λ. Both bias and dispersion
seem larger for λ.

Figure 5. Boxplots of bias for GDA-MMS estimates of α, when θ = (0.5, 5).

Figure 6. Boxplots of bias for GDA-MMS estimates of λ, when θ = (0.5, 5).

Tables 4 and 5 present the sample posterior measures for α̂ and λ̂, respectively. We
can see improvement of the estimation methods performance when the sample size in-
creases. Additionally, the higher the censoring percentage, the worse the behavior of the
proposed methods.
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Table 4. Sample posterior mean, standard errors (in brackets) and root mean square error for GDA-
MMS estimates of α.

α λ L n α̂ (s.e.(α̂)) RMSE(α̂)

0.2 3 4 (30%) 100 0.2918 (0.0977) 0.1341

350 0.2385 (0.0698) 0.0797

0.2 3 6 (5%) 100 0.2739 (0.0680) 0.1004

350 0.2229 (0.0487) 0.0538

0.5 5 11 (30%) 100 0.5404 (0.0632) 0.0750

350 0.5156 (0.0344) 0.0378

0.5 5 14 (5%) 100 0.5142 (0.0626) 0.0642

350 0.5066 (0.0386) 0.0392

Table 5. Sample posterior mean, standard errors (in brackets) and root mean square error for GDA-
MMS estimates of λ.

α λ L n λ̂ (s.e.(λ̂)) RMSE(λ̂)

0.2 3 4 (30%) 100 2.5283 (0.3077) 0.5632

350 2.7842 (0.2462) 0.3274

0.2 3 6 (5%) 100 2.6814 (0.2984) 0.4365

350 2.8934 (0.1843) 0.2129

0.5 5 11 (30%) 100 4.4861 (0.6710) 0.8452

350 4.7976 (0.3357) 0.3920

0.5 5 14 (5%) 100 4.7593 (0.6391) 0.6829

350 4.9229 (0.4177) 0.4248

5. Final Comments

This work approaches the problem of estimating CCID(1) models for time series
of counts under censoring from a Bayesian perspective. Two algorithms are proposed:
one is based on ABC methodology and the second a Gibbs Data Augmentation modified
with multiple sampling. Experiments with synthetic data allow us to conclude that both
approaches lead to estimates that present less bias than those obtained neglecting the
censoring. Moreover, the GDA-MMS approach allows us to obtain a complete data set,
making it a valuable method in other situations such as missing data.

In this study, we focus on the most popular CCID(1) model, the Poisson INAR(1).
However, if the data under study present over- or under-dispersion, other CCID(1) models
with appropriate distributions for the innovations, such as Generalised Poisson or Negative
Binomial, can easily be entertained. Furthermore, one can consider different models for time
series of counts under censoring, based on INGARCH models, ([28,29] using a switching
mechanism) if they are more suitable to the data set to be modeled. These issues are beyond
the scope of this paper and are a topic for a future research project.
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Abstract: Count time series are widely available in fields such as epidemiology, finance, meteorology,
and sports, and thus there is a growing demand for both methodological and application-oriented
research on such data. This paper reviews recent developments in integer-valued generalized
autoregressive conditional heteroscedasticity (INGARCH) models over the past five years, focusing
on data types including unbounded non-negative counts, bounded non-negative counts, Z-valued
time series and multivariate counts. For each type of data, our review follows the three main lines of
model innovation, methodological development, and expansion of application areas. We attempt to
summarize the recent methodological developments of INGARCH models for each data type for the
integration of the whole INGARCH modeling field and suggest some potential research topics.

Keywords: INGARCH; count time series; conditional distribution; dynamic structure; robust estimation

1. Introduction

This paper reviews the development of modeling and inference for four types of
integer time series, including the unbounded N -valued counts, Z-valued time series,
bounded N -valued counts and multivariate counts. Firstly, the unbounded N -valued
counts, also known as count time series, refer to discrete time series taking values in the
range N = {0, 1, 2, · · · }. For example, during an influenza outbreak, the number of new
confirmed cases is reported daily, even down to each community. The analysis of such data
is one of the fundamental tasks in epidemic forecasting and policy implementation (see
Agosto and Giudici [1], Agosto et al. [2] and Giudici et al. [3] among others). Secondly,
Z-valued count time series taking values in the range Z = {· · · ,−1, 0, 1 · · · } are the
appropriate tool to employ when attention is turned to, for example, the changes in athletic
performance by the difference between the number of goals scored in each game and
that in the previous one. Thirdly, the study of bounded count time series with a range of
{0, · · · , n} for a given n ∈ N is also a concern, such as the rigorously recorded data set of
water quality in the estuary. Finally, with the development of data acquisition technology
and the expansion of storage space, multivariate count time series have emerged in various
fields, and the related research is also developing.

For the above four types of integer time series, this review focuses on the the relevant
research fields of the integer-valued generalized autoregressive conditional heteroscedastic-
ity (INGARCH) models, which assume that the observations follow a discrete distribution
and are conditioned on an accompanying intensity process that drives the dynamics, which
are classified as observation-driven models. For instance, given the intensity process, the
observations of a count time series follow a Poisson distribution and the intensity process
is a linear combination of its lagged values and lagged observations (Fokianos et al. [4]).
The diversity of count time series urges the INGARCH-type models to evolve to a broader
domain. This is accompanied by the development of many subdivision directions, includ-
ing the selection and even the creation of suitable conditional distributions, the exploration
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of nonlinear dynamic structures, the proof of stationarity and ergodicity, the relaxation
of restrictions, the updating of methodologies, and so on. The purpose of this paper is to
review recent developments, including the above subdivision directions, in INGARCH
models over the past five years, as earlier work has been summarized. For the generally
methodological development of count time series, not only INGARCH-type models, please
refer to Weiß [5] and Davis et al. [6].

The INGARCH-type models for count time series are the most well-developed of
these four types of integer-valued time series modeling, and they are reviewed in Section 2.
On the one hand, to model some specific features of count time series, researchers have
innovated the conditional distribution assumption. Indeed, Gorgi [7] and Qian and Zhu [8]
focus on heavy-tailed count time series, while Silva and Souza [9] is more concerned with
the generality of distribution and Souza et al. [10] further extends Silva and Souza [9]
to the time-varying version. Accordingly, they all propose new conditional distribution
assumptions that can model the features of interest. On the other hand, there are some new
developments in the dynamic structure of INGARCH. For example, Weiß et al. [11] intro-
duces the softplus function in the linear dynamic structure to implement the possibility of
negative ACF; similar to Souza et al. [10], Roy [12] also focuses on the time-varying feature,
but proceeds from the construction of a semi-parametric dynamic structure based on a
Bayesian framework; some advances are made in the study of nonlinear dynamic structures
with the help of threshold structures and the hysteresis model (Liu et al. [13], Chen and
Khamthong [14], Liu et al. [15] and Chen et al. [16]). Moreover, when it comes to proving
the existence and uniqueness of stationary distributions, which has been a challenging work
in this field, the common approaches recently are based on approximation techniques, weak
dependence or theoretical frameworks using the Feller property, e-chain and Lyapunov
methods. In contrast, the absolute regularity for nonlinear GARCH and INGARCH models
under a mild assumption are considered by Doukhan and Neumann [17], and a series of
methodological studies are specifically reviewed in Section 2.

In contrast, the INGARCH-type models for the other three integer-valued time series
are all still areas of ongoing research. The development patterns of all three areas are similar
to that of the above-mentioned INGARCH-type models for count time series, including
innovation in conditional distribution assumptions, flexibility in dynamic structure and
methodological establishment, etc., but the challenges faced by each are different. For
Z-valued time series, the difficulty of finding a suitable conditional distribution can be
overcome, since it can be handled directly with the help of a sequence of binary or ternary
random variables (Hu [18], Hu and Andrews [19] and Xu and Zhu [20]). However, the
INGARCH-type models for Z-valued time series require more complex and subtle dynamic
structures to implement, and the corresponding theoretical proofs are of higher difficulty.
For bounded counts with range {0, · · · , n} for given n ∈ N , two research frameworks are
currently divided into those based on vector form (Fokianos and Truquet [21]) and those
based on scalar form (Weiß and Jahn [22], Chen et al. [23], Chen et al. [24] among others).
The challenge encountered in the former is the computational stress of the estimation of
matrix-type unknown parameters, while the difficulty in the latter lies in the rarity of
suitable distributions, which are required to be discrete distributions with a range of values,
and the accompanying proof of stationarity. Finally, the development of INGARCH-type
models for multivariate numerical time series is still in its nascent stage. Lee et al. [25], Kim
et al. [26] and Cui and Zhu [27] focus on the INGARCH-type models for bivariate count
times series, but, subject to the development of multivariate Poisson distribution, more mul-
tivariate models related to these studies have not been extended. Another emerging area is
the INGARCH-type models for time-varying network data (Armillotta and Fokianos [28],
Armillotta et al. [29], Armillotta and Fokianos [30] and Tao et al. [31]), and many of the
attempts that come with the challenge are worthwhile, such as optimization of conditional
distributions, nonlinear dynamic structures and time-varying network data with upper
bounds on the number of edges.
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The rest of the paper attempts to review the INGARCH-type models, which are
presented below. Sections 2–5 present the INGARCH-type models for unbounded N -
valued counts, Z-valued time series, bounded N -valued counts and multivariate counts,
respectively (Figure 1). Since there is much content related to unbounded N -valued counts,
Section 2 is divided into three subsections to elaborate on the latest advances in models,
methodologies and applications, but the other sections are also arranged in this way
although they are not split again. Finally, we present some potential research topics from a
personal perspective in Section 6.

unbounded
N -valued counts

Z-valued
time series

bounded N -
valued countsmultivariate counts

Figure 1. Flowchart of the types of time series reviewed.

2. Count Time Series

We consider count time series in this section, the possible outcomes of which are
contained in N . Let {Xt}t∈Z be a count process, x1, · · · , xT be a finite set of observations,
and �t be defined as σ-field generated by observations up to and including time t.

The INGARCH(p, q)-type models with p ≥ 1 and q ≥ 0 require two types of assump-
tions: first, a distributional assumption for Xt conditioned on Xt−1, Xt−2, · · · is needed to
guarantee the discrete range of Xt; secondly, the conditional mean Mt = E(Xt|Xt−1, · · · )
is required to be a linear or nonlinear expression in the last p observations and the last
q conditional means, thus constructing a dynamic structure. For example, the Poisson
INGARCH model assumes that Xt, conditioned on Xt−1, Xt−2, · · · , is Poisson distributed
with intensity parameters Mt and

Mt = ω +
p

∑
i=1

αiXt−i +
q

∑
j=1

β j Mt−j. (1)

This section begins with a review of recent modeling work on improving these two types
of assumptions separately.

2.1. Recent Advances in Assumptions of Conditional Distribution

This subsection begins with the progress of research on count time series with
outliers. For the INGARCH models, the common approach is to assume a heavy-tailed
conditional distribution. Gorgi [7] introduced a heavy-tailed mixture of negative bi-
nomial distributions, known as the beta-negative binomial (BNB) distribution, as an
distribution of Xt conditioned on Xt−1, Xt−2, · · · . See Table 1 for the specific definition of
BNB. Relatedly, Qian and Zhu [8] was also concerned with heavy-tailed count time series
and thus uses the generalized Conway–Maxwell–Poisson (GCOMP) distribution (in
Table 1), which has one more parameter than the Conway–Maxwell–Poisson distribution,
but provides a unified framework to handle over- or under-dispersed, zero-inflated, and
heavy-tailed count data.
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Table 1. Summary of basic properties of distributions related to INGARCH.

Distribution Definition

BNB
(Gorgi [7])

The probability mass function (PMF) of BNB is

P(X = x) =
Γ(x + r)

Γ(x + 1)Γ(r)
B(α + r, β + x)

B(α, β)
,

where Γ(·) and B(·, ·) denote the gamma function and beta function,

respectively. And E(X) =
βr

α − 1
.

GCOMP
(Qian and Zhu [8])

The PMF of GCOMP is is

P(X = x) =
Γ(v + x)rζx

x!C(r, ν, ζ)
,

where the normalizing constant C(r, ν, ζ) = ∑∞
k=0

Γ(ν + k)rζk

k!
, for r < 1,

v > 0 and ζ > 0 or r = 1, v > 0 and 0 < ζ < 1. E(X) =
C(r, ν + 1, ζ)ζ

C(r, ν, ζ)

and Var(X) =
C(r, ν + 2, ζ)ζ2

C(r, ν, ζ)
+

C(r, ν + 1, ζ)ζ

C(r, ν, ζ)
− C2(r, ν + 1, ζ)ζ2

C2(r, ν, ζ)

MP
(Silva and Souza [9])

Let Z be a continuous positive random variable belonging to the expo-
nential family with density function given by

f (z) = exp{φ[zζ0 − b(ζ0)] + c(z; φ)},

where b(·) is a continuous three-times differentiable function and ζ0 is
such that b′(ζ0) = 1 and c(·; ·) is a function that maps R+ ×R+ into
R. Thus, E(Z) = b′(ζ0) = 1 and Var(Z) = φ−1b′′(ζ0). We denote this
as Z ∼ EF(φ). Let X|Z = z ∼ Poisson(μz), with μ > 0 and Z ∼ EF(φ).
Then, X belongs to the class of mixed Poisson distributions. If Z follows
a gamma distribution with mean 1 and dispersion parameter φ, we find
that X follows a negative binomial distribution with parameters μ and φ.
Its probability function is given by

p(x; μ, φ) =
Γ(x + φ)

x!Γ(φ)

(
μ

μ + φ

)x( φ

μ + φ

)φ

.

Definition 1. The following model is denoted by GCOMP-INGARCH(p, q),

Xt|�t−1 ∼ GCOMP(λt, ν, r), λt = α0 +
p

∑
i=1

αiXt−i +
q

∑
j=1

β jλt−1, (2)

where α0 > 0, αi ≥ 0, βi ≥ 0, i = 1, · · · , p, j = 1, · · · , q, p ≥ 1, q ≥ 0, ν > 0 and r < 1.
Specifically, the model (1) is GCOMP-INARCH(p) when q = 0.

According to the properties of the GCOMP distribution, the approximate conditional
expectation and variance are given by

E(Xt|�t−1) ≈ λt +
(2ν − 1)r
2(1 − r)

, Var(Xt|�t−1) ≈
λt

1 − r
,

and these are fundamentally the keys to the flexibility of the GCOMP-INGARCH(p, q)
model. Qian and Zhu [8] also established some properties by assuming that model (2) is
approximately stationary.

Additionally, Silva and Souza [9] proposes a general class of INGARCH models by in-
troducing the mixed Poisson (MP) distribution proposed by Barreto-Souza and Simas [32].
This not only enriches the distribution types of INGARCH models, but also extends the
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negative binomial INGARCH process proposed by Zhu [33], and can even further evolves
new models such as Poisson inverse Gaussian and Poisson generalized hyperbolic slope
processes. Related works include Manaa and Bentarzi [34], Almohaimeed [35], Almo-
haimeed [36], and Cui and Wang [37], where Manaa and Bentarzi [34] focused on the
expansion of time-varying parameters, which extends the time-invariant negative binomial
INGARCH(1,1) studied by Zhu [33] to the periodic negative binomial INGARCH(1,1)
model. Besides the flexibility of distributions, Silva and Souza [9] construct an expectation-
maximization algorithm for estimating the parameters, in particular, the dispersion pa-
rameter. This provides a new framework for parameter estimation of the INGARCH-type
models, which we believe also leaves a wide scope for further research.

Definition 2 (MP-INGARCH model). The process {Xt}t∈Z follows a MP-INGARCH(p,q)
model if it satisfies {

Xt|�t−1 ∼ MP(μt, φ), ∀t ∈ Z ,
μt = α0 + ∑

p
i=1 αiXt−i + ∑

q
j=1 β jμt−j,

(3)

where φ is the dispersion parameter, αi ≥ 0, for i = 0, 1, · · · , p and β j ≥ 0, for j = 0, 1, · · · , q,
with p, q ∈ N .

Note that the dispersion parameter φ in Definition 2 is independent of time t, and thus
Souza et al. [10] is further extended for this setting. Indeed, the dispersion parameter is
made time-varying, φt, by creating a dynamic structure for it similar to that for the intensity
parameter. The resulting model in Definition 3 is called a linear time-varying dispersion
INGARCH (tv-DINGARCH) model (nonlinear tv-DINGARCH(p1,p2, q1, q2) is omitted
here). An interesting feature of the linear tv-DINGARCH processes is that to some extent it
is more analogous to the original GARCH model than other INGARCH models. In particu-
lar, the mean of this model can be constant, while the variance depends on time as in an
ordinary GARCH model. This feature is not possible to be accommodated by the standard
INGARCH. Hence, they refer to the model as a pure INGARCH process to highlight the
degree of association with GARCH that distinguishes it from other INGARCH models.

Definition 3 (Linear tv-DINGARCH model). A linear tv-DINGARCH(1, 1, 1, 1) model {Xt}
is defined by Xt|�t−1 ∼ MP(μt, φt), ∀t ∈ Z , with

λt = β0 + β1Yt−1 + β2λt−1, φt = α0 + α1Yt−1 + α2φt−1, (4)

where β0, α0 > 0 and β1, β2, α1, α2 ≥ 0.

In addition, zero- or zero-one-inflated INGARCH models are valuable in applications
such as insurance. Lee and Kim [38] proposes more general multiple values-inflated
INGARCH models in Definition 4. The conditional distribution q(·|η) containing only
one unknown parameter is indeed a streamlined setup, but it cannot be ignored that the
multiple inflated values will be accompanied by a simultaneous increase in the number of
parameters ρm and the resulting complexity can hardly be offset. From our personal point
of view, a possible reason for such a dilemma is that the idea of a multi-inflated model
constructed by superimposing indicator functions remains fundamentally indistinguishable
from that of the zero-inflated model.

Definition 4 (multiple values-inflated INGARCH). Let{Yt, t ≥ 1} be a time series of counts
taking values 0, 1, . . . following the multiple values-inflated INGARCH model with the conditional
distribution of the one-parameter exponential family:

Yt|�t−1 ∼ p(·|ηt), Xt := E(Yt|�t−1) = fθ(Xt−1, Yt−1), (5)
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where �t−1 is the σ-field generated by η1, Y1, · · · , Yt, and fθ(x, y) is a non-negative bivariate
function defined on [0, ∞) × N , depending on the parameter θ ∈ Θ ⊂ Rd, and p(·|·) is a
probability mass function given by

p(z|η) =
M−1

∑
m=0

{
ρm +

(
1 −

M−1

∑
m=0

ρm

)
q(m|η)

}
I(z = m)

+

(
1 −

M−1

∑
m=0

ρm

)
q(z|η)I(z ≥ M),

q(z|η) = exp{ηz − A(η)}h(z), z ≥ 0, and 0 ≤ ρm < 1.

(6)

Here, η is the natural parameter, A(·) and h(·) are known functions, and B(·) := A
′
(·) exists

and is strictly increasing. In Model (5), Yt|�t−1 ∼ p(·|ηt) implicates Yt = F−1
Xt

(Ut), where
Fx(y) = ∑

y
m=0 p(m|η) with η = B−1(x) and Ut are i.i.d. uniform random variables over (0,1).

An alternative approach to model generalization is to weaken the assumptions of
the structural model allowing for more generalized link functions, and Wechsung and
Neumann [39] make some contributions to the estimation of linkage functions. Wechsung
and Neumann [39] considered a nonparametric version of the INGARCH(1,1) model, where
the link function in the recursion for the variances was not specified by finite-dimensional
parameters. This work completed the asymptotic analysis based on the mixed property,
benefiting from the application of powerful exponential tail bounds in connection with a
chaining argument. This work is highly theoretical, and shows in principle that a sufficiently
regular link function of an INGARCH(1,1) process with hidden intensities can be estimated
using a nonparametric least squares estimator, where the estimate is chosen from a truly
nonparametric class of candidate functions. Further, the consistency rate of the estimator
was shown to be nearly optimal. For practical purposes, Wechsung and Neumann [39] also
reported an approximate version of the theoretical estimator.

The assumption about the distribution has also been approached from another perspec-
tive. Instead of specifying the conditional distribution, Aknouche and Demmouche [40]
presents a double mixed Poisson autoregression whose conditional distribution is a super-
position of two mixtures of Poisson distributions. It is more flexible compared to Poisson
mixtures at the cost of just a few additional parameters. Further, Doukhan et al. [41] consid-
ered the mixture of nonlinear Poisson autoregressions, and Mao et al. [42] proposed a more
general mixture INGARCH model, which includes s negative binomial mixture INGARCH
of Diop et al. [43] and generalized Poisson mixture INGARCH models.

Definition 5. A generalized mixture INGARCH model is defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xt = ∑K

k=1 1(ηt = k)Ykt,
E(Ykt|�t−1) = λkt,
Var(Ykt|�t−1) = νk0λkt + νk1λ2

kt,
λkt = αk0 + ∑

pk
i=1 αkiXt−i + ∑

qk
j=1 βkjλk(t−j),

(7)

where νk0 ≥ 0, νk1 ≥ 0, but not simultaneously equal to zero, αk0 > 0, αki ≥ 0, βkj ≥ 0 for
i = 1, · · · , pk, j = 1, · · · , qk, 1(·) denotes the indicator function, �t−1 indicates the informa-
tion given up to time t − 1, ηt is a sequence of i.i.d. random variables with P(ηt = k) = αk,
α1 + α2 + · · ·+ αK = 1, αk ≥ 0 and k = 1, · · · , K. Furthermore, it is assumed that Xt−j and
ηt are independent for all t and j > 0, the variables Ykt and ηt are conditionally independent
given �t−1 and α1 ≥ α2 ≥ · · · ≥ αK for identifiability. If βkj = 0 for all j = 1, · · · , qk and
k = 1, · · · , K, it reduces to the generalized mixture integer-valued ARCH model.
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2.2. Recent Advances in Dynamic Structures

This subsection reviews the latest advances in dynamic structures of INGARCH. Many
recent works have made attempts in this area, but due to space limitations, we mainly focus
on the essential dynamic structural innovations, some of which will not be mentioned one
by one; for example, Souza et al. [10] also considered the inclusion of covariate/exogenous
time series in tv-DINGARCH model, which enhances the applicability.

First, the INGARCH model with linear dynamic structure has been limited in its
setting. Specifically, since the mean of a count random variable is a positive real number,
the constraints a0 > 0 and a1, · · · , ap, b1, · · · , bq ≥ 0 have to both hold in (1). This severely
dampens the possibility of a negative ACF. The existing log-linear INGARCH model is an
implementable solution to achieve negative ACF values, but at the cost of losing the linear
conditional mean and the ARMA-like autocorrelation structure. Resolving the dilemma
between the linear dynamic structure and a wider range of achievable ACF values is one of
the key steps in the further development of the INGARCH-type models. The contribution
of Weiß et al. [11] is to resolve this dilemma with the help of the softplus function. The
definition of softplus INGARCH model is given as follows.

Definition 6 (softplus Poisson INGARCH model). Xt follows from the softplus Poisson IN-
GARCH model if satisfying

Xt|�t−1 : Poi(Mt), Mt = spc

(
α0 +

p

∑
i=1

αiXt−i +
q

∑
j=1

β j Mt−j

)
, (8)

where the softplus function spc(x) = c ln(1 + exp(x/c)) with c > 0, and α0, · · · , αp, β1, · · · ,
βq ∈ R. The default choice for c is c = 1.

The softplus function spc(x) avoids the drawback of not being differentiable in zero,
while being approximately linear for x > 0. The excellent properties of the softplus func-
tions play a key role as they coincide with the breakthrough of the dilemma of INGARCH
mentioned above.

What follows is a progression of time-varying features in INGARCH, which has been
mentioned in the previous introduction of linear tv-DINGARCH processes in Definition 3,
but Souza et al. [10] approached it from the distribution. Roy [12] proceeded from the
construction of a semi-parametric dynamic structure, and proposed a time-varying autore-
gressive models for count time-series based on a Bayesian framework (Definition 7). This is
the first attempt to model possibly autoregressive count time series with time-varying coef-
ficients, and the success of this attempt can be attributed in part to the Bayesian framework.

Definition 7 (time-varying Bayesian INGARCH model). If the conditional distribution for Xt
given �t−1 is Poi(λt) and

λt = μ(t/T) +
p

∑
i=1

ai(t/T)Xt−i +
q

∑
j=1

bj(t/T)λt−j, (9)

where the hierarchical prior on unknown functions μ(·), ai(·) and bi(·) are based on B-spline bases,
{Xt} is said to follow from the time-varying Bayesian INGARCH model.

Take (1) with p = q = 1 for example, the essential role of the original dynamic structure
is to drive the time-varying nature of the conditional mean Mt, but where the parameters
ω, α1 and β1 do not vary with time. This means that the dynamic structure is allowed to
take into account the heterogeneity changes at t − 1 moments and the effects over the entire
time period reflected by the time-constant parameters. In contrast, the semi-parametric
time-varying dynamic structure (9) corresponds to further strengthening the time-varying
property while weakening the average effect over the whole period. This modeling idea is
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better suited for rapidly changing count time series. In conclusion, Roy [12] contributes
a new idea to the study of INGARCH from a Bayesian viewpoint. Its framework for the
study of time-varying Bayesian INGARCH models is adapted to general non-stationary
time series.

Next are some advances in the study of nonlinear dynamic structures with the
help of threshold structures. The classical two-regime threshold autoregressive model
allows for many properties associated with nonlinearity, and thus, both Liu et al. [13]
and Chen and Khamthong [14] draw on this classical model to implement a nonlinear
study of the dynamic structure of INGARCH, with the difference that the latter is based
on the Markov switching approach and introduces covariates. It is worth mentioning that
Lee and Hwang [44] proposed a generalized regime-switching INGARCH(1,1) model in
a fashion similar to, yet different from, Chen and Khamthong [14], which also employs
Markov chains with time-varying dependent transition probabilities. The difference is
that Lee and Hwang [44] derives recursive formulas for the conditional probabilities of
regimes in Markov chains given past information, starting from the Poisson parameters of
the INGARCH(1,1) process.

Definition 8. The Markov switching INGARCHX model with state variables is defined by

p(Xt|�t−1) =

(
Xt + r − 1

r − 1

)(
1

1 + λt

)r( λt

1 + λt

)
, Xt ≥ 0 (10)

λt =

{
α
(1)
0 + α

(1)
1 Xt−1 + β

(1)
1 λt−1, if st = 1

α
(2)
0 + α

(2)
1 Yt−1 + β

(2)
1 λt−1, if st = 2,

(11)

where st follows a first-order Markov chain with the following transition matrix:

ϑ =

(
Pr(st = 1|st−1 = 1)Pr(st = 2|st−1 = 1)
Pr(st = 1|st−1 = 2)Pr(st = 2|st−1 = 2)

)
=

(
p11 p12
p21 p22

)

and αi = (α
(i)
0 , α

(i)
1 , β

(i)
1 )′ is a non-negative parameter vector in state i. Naturally, changing the

form of λt yields the threshold INGARCHX as follows:

λt =

{
α
(1)
0 + α

(1)
1 Yt−1 + β

(1)
1 λt−1, if Yt−d ≤ c

α
(2)
0 + α

(2)
1 Yt−1 + β

(2)
1 λt−1, if Yt−d > c,

where Yt−d is the threshold variable determining the dynamic switching mechanism of the model, d
is a delay lag and c is the threshold value.

The segmented dynamic structure may lead to sudden changes in the probability of
the INGARCH process, which is a crux that needs to be improved. Li et al. [45] considered a
hysteretic process with the hysteresis variable {St} and the hysteresis zone (rL, rU ], which
makes the regime-switching mechanism more flexible. On this basis, Liu et al. [15] improved
the self-excited threshold negative binomial autoregression (TNBAR) of Liu et al. [13] and
proposed the self-excited hysteretic negative binomial autoregression (SEHNBAR) with the
hysteresis variable St = Xt.

Definition 9. Let {Nt, t ∈ Z} be a sequence of the i.i.d. negative binomial process given in
Liu et al. [13], then {Xt} is said to follow the SEHNBAR model, if

Xt = N(0, λt]

with

λt =

{
d1 + a1λt−1 + b1Xt−1, Rt = 1,
d2 + a2λt−1 + b2Xt−1, Rt = 0,

(12)
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where di, ai, bi > 0, i = 1, 2,

Rt =

⎧⎪⎨⎪⎩
1, Xt−1 ≤ rL,
0, Xt−1 > rU ,
Rt−1, otherwise.

(13)

Rt is the regime indicator with the hysteresis variable Yt−1, and (rL, rU) are boundary parameters
of the hysteresis zone satisfying 0 ≤ rL ≤ rU < ∞.

λt is at the lower regime when Xt−1 < rL, while at the upper regime when Xt−1 > rU .
If Xt−1 falls within the hysteresis zone, the regime indicator remains unchanged, which
means that the regime indicator at time t is the same with that at t − 1. Formally, the
hysteresis model with piecewise linear structure enjoys a more flexible regime-switching
mechanism. Another less intuitive but proven advantage is that the lagged observations on
which λt relies are infinitely far away, which is the key difference between hysteresis models
and traditional threshold models. Chen et al. [16] also proposed a similar INGARCH model
based on the Bayesian framework.

Aknouche and Scotto [46] proposes a multiplicative INGARCH model, which is
defined as the product of a unit-mean integer-valued i.i.d. sequence, and an integer-valued
dependent process defined as a binomial thinning operation of its own past and of the
past of the observed process. This model combines some features of the INGARCH, the
autoregressive conditional duration, and the integer autoregression processes, so it can
be used to model high overdispersion, persistence, and heavy-tailedness. Furthermore,
Weiß and Zhu [47] propose an integer-valued analog of multiplicative error models based
on a multiplicative operator, and the resulting models are closely related to the class of
INGARCH models.

Last but not least, some migratory research works that have received attention in other
fields but are poorly known in the INGARCH model are also of interest. Sim et al. [48]
established the overall framework for the study of general-order INGARCH(p, q) models
without the restriction p = q = 1. Similarly, the purpose of Tsamtsakiri and Karlis [49]
was to select the most appropriate order of INGARCH(p, q) using a trans-dimensional
Bayesian approach, and Tian et al. [50] focused on order shrinkage and selection for the
INGARCH(p, q) model. Furthermore, the temporal aggregation and systematic sampling,
which were widely studied in continuous-valued time series, have received the attention of
Su and Zhu [51] in integer-valued time series.

For clarity, we have sorted out the main relationships of the models reviewed in this
section in Figure 2.

2.3. Methodologies

There are many theory-oriented advances. The proofs for the existence and uniqueness
of stationary distributions in the above-mentioned literature or in the earlier INGARCH
literature are based on approximation techniques, the weak dependence or the theoretical
framework using the Feller property, e-chain and Lyapunov’s method. In contrast, to
prove the existence and uniqueness of a stationary distribution and absolute regularity for
nonlinear GARCH and INGARCH models under a mild assumption, Doukhan and Neu-
mann [17] treated Zt = (Xt, · · · , Xt−p+1, λt, · · · , λt−q+1) as a time-homogeneous Markov
chain where {λt} is the accompanying process of random intensities, and compensated
for missing Feller properties with coupling results. Specially, besides a geometric drift
condition, only a semi-contractive condition was imposed, which means a subgeometric,
rather than the more usual geometric, decay rate of the mixing coefficients. This result not
only enriches the theoretical proof technique, but also broadens the application area of the
INGARCH model.
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Figure 2. Flowchart of some major INGARCH-type models for unbounded counts.

Further, supposed that {Xt} follow from Poisson INGARCH, Neumann [52] use the
contraction property twice: first, under the contraction condition of the intensity process,
Neumann [52] obtained the contraction property of the Markov kernel connected with
Zt in terms of a suitable Wasserstein metric, and then the existence and uniqueness of a
stationary distribution follows via the Banach fixed point theorem; next, the almost effort-
lessly absolute regularity of the count process was established by using the contraction
property once more; finally, Neumann [52] constructed a coupling of the original and the
bootstrap process, and proved the existence and uniqueness of a stationary version of
this joint process as well as absolute regularity of the joint count processes. Notably, the
last item implies that the model-based bootstrap method proposed by Neumann [52] is
more general than most of the existing papers on the consistency of bootstrap. Specifi-
cally, the bootstrap process mimics the random behavior of the original counting process,
rather than being limited to the plausibility of certain specific statistics. More broadly,
Doukhan et al. [53] derived the absolute regularity at a geometric rate not only for station-
ary Poisson GARCH processes, but also for models with an explosive trend. Recently,
Aknouche and Francq [54] considered the existence of a stationary and ergodic solution
of a general Markov-Switching autoregressive conditional mean model, of which the
INGARCH model is one of the variants.

The contribution of Douc et al. [55] is establishing the necessary and sufficient condi-
tions for the identifiability of observation-driven models including the pure INGARCH
model and its numerous extensions, such as the pure INGARCH model with thresholds or
exogenous covariates.
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Recent advances in estimation methods regarding the INGARCH model are reviewed
as follows. One of the main reasons for the utility of negative binomial models is that
Poisson INGARCH is less flexible than models based on overdispersed conditional distribu-
tions when modeling overdispersed series. However, parameter estimation for a negative
binomial INGARCH model is usually implemented based on Poisson quasi-maximum like-
lihood estimation (quasi-MLE or QMLE), where the pitfall is that Poisson-QMLE is likely
to fail to achieve its full asymptotic efficiency with the presence of overdispersion. To clear
this hurdle, Aknouche et al. [56] proposed two negative binomial QMLEs (NB-QMLEs),
including the profile NB-QMLE calculated while arbitrarily fixing the dispersion parameter
of the negative binomial likelihood, and the two-stage NB-QMLE consisting estimation for
both conditional mean and dispersion parameters. Similarly, the two-stage weighted least
square estimators (WLSEs) proposed by Aknouche and Francq [57] are general for time
series data, and feasible for the INGARCH model. WLSEs can be implemented without
fully specifying the conditional distribution or time series structure, and enjoy the same
consistency properties as QMLEs when the conditional distribution is mis-specified, even
if the conditional variance is mis-specified. Additionally, a data-driven strategy was identi-
fied to find asymptotically optimal WLSEs. This actually provides prerequisite support
for further relaxation of the conditional distribution assumption for the count time series.
For the model in Aknouche and Scotto [46], parameter estimation is conducted by using
a two-stage WLSE, and Xu et al. [58] considered a saddlepoint MLE for a special case of
this model.

The commonly used MLE method is highly influenced by outliers, so there are several
works dedicated to establish robust estimation methods. For Poisson INGARCH models,
Li et al. [59] proposed a robust M-estimator by using a new loss function inspired by
the Tukey’s biweight function. It is the construction of this loss function that contributes
to this work. One of the disadvantages of Tukey’s function is that it drops to zero so
that the effect of very large outliers or leverage points is completely suppressed, which
implies the possibility of multiple solutions to the estimated equations. Then, an intuitive
idea is to construct a hybrid loss function that does not fully suppress the effects of very
large outliers or leverage points. Li et al. [59] proposed a new loss function by twofold
improvement. Along similar lines, Xiong and Zhu [60] introduced a robust estimation for
the one-parameter exponential family INGARCH(1,1) models.

Moreover, Kim and Lee [61] used the minimum density power dispersion estimator
as a robust estimator for INGARCH models whose conditional distribution belongs to
the one-parameter exponential family. There are two advantages to this approach: the
first is simplicity, i.e., it contains only a single tuning parameter that controls the trade-off
between robustness and efficiency; the second is the ability to balance robustness and
efficiency, providing considerable robustness while retaining high levels of efficiency as the
tuning parameter approaches zero. Further, Xiong and Zhu [62] and Xiong and Zhu [63]
used the Mallows’ quasi-likelihood estimator and the minimum density power dispersion
estimator as a robust estimator for negative binomial INGARCH models, respectively. For
negative binomial INGARCH models, Elsaied and Fried [64] also developed several robust
estimators including robustifications of method of moments and ML-estimation, one of
which was an alternative to the robust estimator proposed by Xiong and Zhu [63].

Another drawback of MLE for INGARCH models is that numerical results are sen-
sitive to the choice of initial values. Hence, Li and Zhu [65] proposed the mean targeting
estimation, which is an analogue to variance targeting estimation used in the GARCH
model. In addition, there have been some other advances in estimation. Jo and Lee [66]
introduced the mean targeting QMLE based on INGARCH models, which provides a new
perspective. When shifting to focus on more specific estimation problems, it is a common
problem that the estimation performance of the intercept parameter is inferior to that of
other parameters, either in the Poisson or negative binomial INGARCH model. Integrating
the likelihood function by assuming a conditional distribution is one option to eliminate

77



Entropy 2023, 25, 922

this obstacle. Hence, Pei and Zhu [67] adopted the marginal likelihood to estimate the
intercept parameter in the negative binomial INGARCH model.

There are also some areas that are of interest to scholars. For example, to test the pa-
rameter variation of INGARCH, the cumulative sum (CUSUM) statistics has been the most
popular method in recent years (Lee and Lee [68], Lee et al. [69], Lee [70], Vanli et al. [71],
Weiß and Testik [72]), and Lee and Kim [73] reviewed a recent progress regarding the
change point test for integer-valued time series models. Further, as with the techniques
employed to present robust estimates, Kim and Lee [74] introduced a robust change point
test based on density power divergence. Michel [75] considered the limiting distribution of
the INGARCH(1,1) with α + β = 1.

2.4. Applications

The practical application of INGARCH models has developed considerably in recent
years, especially in the period of COVID-19 when there is a strong demand for analysis of
count time series data such as daily new infections in various countries or regions. This
has also given rise to many valuable research topics. Agosto and Giudici [1] focused on
COVID-19 contagion and digital finance, and presented Poisson INGARCH of the daily
newly observed cases to understand the contagion dynamics of the COVID-19. In addition,
the purpose of Agosto et al. [2] is to monitor COVID-19 contagion growth and came to the
interesting conclusion that policy measures aimed at reducing infection are very useful
when the it is at its peak and can reduce reproduction rates. Souza et al. [10] considered
the tv-DINGARCH model with covariate/exogenous time series and applied to the daily
number of deaths due to COVID-19 in Ireland. In contrast, Roy [12] focused specifically on
the data for New York City because the epidemic status in this city lasted for a month and
with the help of the ongoing blockade, it recovered significantly within about three months.
Hence, it is this temporal variability in the data that drew Roy [12] to explore its trends by
the time-varying Bayesian INGARCH model. Similarly, Giudici et al. [3] was also concerned
about the time-varying features of COVID-19 and proposed Bayesian time-dependent
Poisson autoregressive models. Additionally, Gning et al. [76] focused on COVID-19 in
Senegal and China. Moreover, the dynamics of COVID-19 infectivity in Saudi Arabia
were evaluated in Alzahrani [77] by using two statistical models, namely the log-linear
Poisson autoregressive model and the ARIMA model. The results of this study showed
that the log-linear Poisson autoregressive model had superior predictive performance. At
the same time, many application-oriented works have actually proposed new models to
meet the requirements. For example, Xu et al. [78] proposes a comprehensive adaptive
log-linear zero-inflated generalized Poisson INGARCH to describe crime counts in Byron
and Australia, and the features of this data set include autocorrelation, heteroscedasticity,
overdispersion and excessive number of zero observations.

In addition to COVID-19, INGARCH-type models are employed in other areas such
as stock trading, co-tracking of commodity marketsand so on (Chen and Khamthong [79],
Agosto and Raffinetti [80], Jamaludin et al. [81], Algieri and Leccadito [82], Aknouche
et al. [83], Berentsen et al. [84], Cerqueti et al. [85]). It is worth mentioning that the
INGARCH-type model has been favored for human influenza research even before the
outbreak of COVID-19. Specifically, Chen et al. [86] involves the INGARCH-type model
when examining the causal relationship between environmental fine particulate matter
and human influenza in Taiwan. The study on traffic forecasting of Kim [87] affirms the
value of the INGARCH model for applications. The prediction model of Kim [87] was
generated by estimating the parameters of the INGARCH process and predicting the
Poisson parameters of the future step ahead process using conditional MLE methods and
prediction procedures, respectively. They came to the conclusion: “INGARCH captures
the characteristics of network traffic better than other statistical models, it is more tractable
than neural networks (NN), overcomes the black-box nature of NN, and some statistical
models perform comparable or even better than NN, especially when there is insufficient
data to apply deep NN”. Another application that tends to be humanistic and social
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Anavatan and Kayacan [88], the aim of which was to reveal the relationship between the
number of femicide, female unemployment rate, male unemployment rate and the amount
of information in Turkey by using INGARCH model.

In summary, the application scenarios of the INGARCH-type models can be as specific
as a vehicle prediction at an intersection or as macro as a humanistic exploration of a
country, and what is more valuable is that the exploration about their application still
remains expected and promising.

3. Z-Valued Time Series

The previous section is concerned with count time series (i.e., N -valued time series).
However, time series that allow both non-negative and negative integer values (i.e., Z-
valued time series) are also worth investigating, whose research value is reflected in the fol-
lowing aspects: first, there are many typical application areas for Z-valued time series, e.g.,
describing score gaps in sports, trading changes in finance (Xu and Zhu [20]); secondly, the
non-stationary property embodied in such time series is also of interest, such as differenced
series that are initially non-stationary (Gonçalves and Mendes-Lopes [89]). Let {Zt}t∈Z
be a Z-valued process, and z1, · · · , zT be a finite set of observations. A recent study on
the mixing properties of Z-valued GARCH processes can be found in Doukhan et al. [90].
Below, we review contributions on Z-valued time series in recent years.

Firstly, the Skellam distribution is introduced into the INGARCH-type models as a con-
ditional distribution. Alomani et al. [91] proposed the Skellam GARCH(1, 1) model defined
in Definition 10, where the Skellam is the distribution of the difference of
two independent Poisson variates and thus allows for both non-negative and negative
integer-valued variables. The specific definition of the Skellam distribution is placed in
Table 2. The benefits of the Skellam INGARCH model are that they allow time-varying
variance and nonstationarity in the mean for time series, and the conditional maximum
likelihood and conditional least squares methods have been developed for estimation of
the parameters.

Table 2. Summary of basic properties of distributions related to Z-valued INGARCH.

Distribution Definition

Skellam
(Alomani et al. [91])

The PMF of Skellam is

PS(Z = z) = exp{−(λ1 + λ2)}
(

λ1
λ2

)z/2
I|z|(2

√
λ1λ2),

where Ir(x) is the modified Bessel function of order r and is defined by

Ir(x) =
( x

2
)r

∑∞
k=0

(x2/4)k

k!Γ(r + k + 1)
. And E(Z) = λ1 − λ2 and Var(Z) =

λ1 + λ2.

MS
(Cui et al. [92])

The PMF of MS is

PMS(Z = z) = fMS(z|λ1, λ2) =

⎧⎪⎨⎪⎩
PS(Z = z), z ∈ Z/{0,±1}
PS(Z = z)− 1

2 γΔ, z = −1 or 1
Ps(Z = z) + γΔ, z = 0

where � = Ps(Z = 0)− min{Ps(Z = −1), Ps(Z = 1)} > 0 and Ps(Z =
q) = fs(q|λ1, λ2) for q ∈ Z . E(Z) = λ1 −λ2 and Var(Z) = λ1 +λ2 −γΔ.

SGe
(Xu and Zhu [20])

The PMF of SGe is

P(X = k) = p(1 − p)k−1, k = 1, 2, 3, · · ·

E(Z) = 1/p and Var(Z) = (1 − p)/p2
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Definition 10. {Zt|�t−1} follow symmetric Skellam (
σ2

t|t−1
2 ,

σ2
t|t−1
2 ) with the conditional variance

satisfying
σ2

t|t−1 = ω + αZ2
t−1 + βσ2

t−1|t−2, t ≥ 2, (14)

In (14), the parameters ω, α and β satisfy the following constraints: ω > 0, 0 < α < 1, 0 < β < 1
and α + β < 1, which are necessary and sufficient for stationarity of the process (14). We refer to
the above model as Skellam GARCH(1, 1).

The drawback of the symmetric Skellam INGARCH(1,1) in Definition 10 is that only
the simplest case is considered, i.e., the conditional expectation value is equal to zero.
Cui et al. [92] proposes an asymmetric Skellam INGARCH to eliminate this limitation.
Furthermore, the modified Skellam (MS) distribution (see Table 2) is introduced and thus
the modified Skellam INGARCH in Definition 11. Specifically, Cui et al. [92] added a new
parameter, γ, to the standard Skellam distribution whose mission is to control the distance
between the probabilities P(Zt = 0) and min{P(Zt = 1), P(Zt = −1)} by its magnitude
and sign. Hence, the modified Skellam INGARCH can flexibly compensate for the over- or
under-representation of specific integers (−1, 0, 1).

Definition 11 (Modified Skellam INGARCH model). Consider the following model:

Zt|�t−1 ∼ MS(γ, λ2
t , λ∗2

t ),

λ2
t = α0 + α1Z2

t−1 + β1λ2
t−1,

λ∗2
t = α∗0 + α1Z2

t−1 + β1λ∗2
t−1,

where γ ∈ (maxt{−P0t/Δt}, mint{2 min(P−1t, P1t)/Δt}), Δt = P0t − min(P−1t,P1t) > 0,
Pqt = PMS(Xt = q), q ∈ Z , α0 > 0, α∗0 > 0, α1 ≥ 0, β1 ≥ 0. The above model is denoted by
MS-INGARCH(1, 1). Note that for γ = 0, we recover the AS-INGARCH(1, 1) model.

Another path to modeling the Z-valued time series is to extend the N -valued IN-
GARCH models by introducing a sequence of i.i.d. binary random variables independent
of {Zt}, {Qt}, taking values at 1 and −1 with equal probability 0.5, such as a two-sided
Poisson distribution. For example, Hu [18] and Hu and Andrews [19] proposed a Poisson
Z-valued Glosten–Jagannathan–Runkle GARCH (PZG) model as follows.

Definition 12. We call {Zt} an integer-valued asymmetric GARCH process of orders p and q, if
for all t ∈ Z ,

Zt = QtXt,

Xt|�t−1 ∼ Pois(λt),

λt =
(√

1 + 4ηt − 1
)

/2,

ηt = α0 +
p

∑
i=1

αi(|Zt−i| − γZt−i)
2 +

q

∑
j=1

β jηt−j.

Hence, {Xt, t ∈ Z} is a non-negative integer-valued stochastic process; conditioned on past
information up to and including time t − 1, Xt has Poisson distribution with mean λt. So that
{ηt} and {λt} are positive, we assume parameter α0 > 0 and parameters αi, β j, for i = 1, · · · , p,
j = 1, · · · , q, are all non-negative, with model orders p ≥ 1, q ≥ 0.

It can be seen that a two-sided Poisson distribution is employed and the structure of ηt
is inspired by the Glosten–Jagannathan–Runkle GARCH (GJR-GARCH, Glosten et al. [93]).
The main role of GJR-GARCH here is to portray asymmetric responses in the volatility
of Z-valued time series, such as the presence of leverage effects in financial time series,
and is thus the highlight of the PZG model. Furthermore, Xu and Zhu [20] proposed the
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geometric Z-valued GJR-GARCH model based on the shifted geometric distribution that is
more flexible than Poisson distribution. Additionally, Xu and Zhu [20] expanded from a
two-side equality probability of 0.5 to a broader form where the ratio of positive, negative
and zero values can be controlled by a parameter ρ (Definition 13).

Definition 13. The geometric Z-valued GJR-GARCH model is defined as

Zt = Q∗
t Xt,

Xt|�t−1 ∼ SGe(pt),

pt =

√
ρ2 + 4ρλt − ρ

λt
,

λt = ω +
p

∑
i=1

αi(|Zt−i| − γiZt−i)
2 +

q

∑
j=1

β jλt−j,

where SGe(·) denotes the shifted geometric distribution, ω > 0,|γi| ≤ 1, αi ≥ 0, β j ≥ 0, for
i = 1, · · · , p, j = 1, · · · , q, p ≥ 1, q ≥ 0. Specially, {Q∗

t } is a sequence of i.i.d. random variables
taking values at 1, 0 and −1 with probabilities ρ, 1 − 2ρ and ρ, respectively, where 0 < ρ < 1

2 .

4. Bounded Count Time Series

In what follows, {Bt}t∈Z consists of bounded counts with range {0, · · · , n} for given
n ∈ N . This type of data also includes categorical time series, with binary time series
being a special case. In terms of the INCARCH-type models, the study of {Bt} differs
from that of unbounded counts {Xt} in two ways: one is that the candidates for the
conditional distribution are required to be discrete distributions with bounded range of
values; the other is that the dynamic structure of the conditional mean needs to be adjusted
accordingly to the constraints of parameters of the conditional distribution, which leads
to the possibility that the dynamic structure cannot be directly attached to the conditional
mean, but some kind of functional transformation of the conditional mean. Accordingly,
researchers have been bursting at the seams with recent innovative work in these two areas.

The definition of the bound INGARCH (BINGARCH) model is obtained by the dis-
tributional assumption that Bt is generated by a bounded-count distribution and the
normalized conditional mean Pt =

1
n E(Xt|Xt−1, · · · ) , where

Pt = a0 +
p

∑
i=1

aiXt−i/n +
q

∑
j=1

bjPt−j (15)

with the additional constraint a0 + ∑
p
i=1 ai + ∑

q
j=1 bj < 1.

First, for convenience, we assume that Bt is generated by the conditional binomial
distribution Bin(n, Pt).

Bt|�t−1 ∼ Bin(n, Pt) (16)

Then, as with the constraints on the INGARCH-type model with linear dynamic structure
mentioned previously, the BINGARCH-type model also requires constraints a0 > 0 and
a1, · · · , ap, b1, · · · , bq ≥ 0 to ensure positive Pt in (15). In line with the idea of Weiß et al. [11],
Weiß and Jahn [22] solved this puzzle in the BINGARCH-type model with the help of the
soft-clipping functions, which enables the migration and application of this framework
proposed by Weiß et al. [11]. Specially, Weiß and Jahn [22] considered the normalized
conditional mean as follows:

Pt = f

(
α0 +

p

∑
i=1

αiXt−i/n +
q

∑
j=1

β jPt−j

)
. (17)
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where f (·) was set to be the soft-clipping function

f (x) = sc c
n
(x) =

c
n

ln

⎛⎜⎜⎝ 1 + exp( nx
c )

1 + exp
(

n(x − 1)
c

)
⎞⎟⎟⎠. (18)

Definition 14. {Bt} is said to follow the soft-clipping binomial INGARCH model if satisfying (16),
(17) and (18). The model would be well-defined without any further restrictions, but some reasonable
constraints such as |αi|, |β j| < 1 for i = 1, · · · , p and j = 1, · · · , q, and α0 ∈ (0, 1 + p + q)
are needed.

The soft-clipping binomial INGARCH was employed in Weiß and Testik [72] once
more. The fascinating question considered by Weiß and Testik [72] is how the performance
of the control chart is affected if the CUSUM control chart is designed based on the assump-
tion of a completely linear data generation process, while the true one is only approximately
linear. Weiß and Testik [72] aptly exploits the fact that the soft-clipping binomial INGARCH
is an approximately linear counterpart of BINGARCH, and draw the conclusion that, in
general, chart designs are robust to model mis-specification when parameters are specified,
whereas the opposite result is obtained when the parameters are estimated.

The binomial distribution is a traditional choice for studying bounded count time
series, as in (16), due to its simple form and relatively well-established properties. The
motivation for the innovation against the conditional distribution is that there is a fixed
relationship between the variance and the mean of the binomial distribution, denoted as
the binomial index of dispersion (BID), similar to the equidispersion property of Poisson.
The BID for a random variable X taking values in N is defined as

BID =
nVar(X)

E(X)(n − E(X))
.

Additionally, the BID of the binomial random variable is calculated to be 1, which indicates
that (16) is not competent for modeling data with BID > 1. Hence, Chen et al. [23]
proposed a new class of INGARCH models with beta-binomial (BB) variation, which is a
generalization of Chen et al. [94], in Definition 15, where the BID of BB distribution takes
values in the interval (1, n). The specific form of the beta-binomial distribution is available
in Table 3. To analyze the high volatility in time series counts, covariates were further
introduced by Chen et al. [24], and thus a covariate-driven beta-binomial INGARCH model
was proposed in Definition 16.

Definition 15. Let θ = (θ1, · · · , θd)
�be the vector of parameters. Then, the beta-binomial

GARCH(1,1) model is defined as:

Bt|�t−1 : BB(n, pt, φ), Yt := npt := gθ(Yt−1, Bt−1), t = 1, 2, · · · , (19)

where gθ(Yt−1, Bt−1) is a non-negative and continuous function in terms of each θj for a given
Zt−1 and Yt−1, ∀j = 1, 2, · · · , d.

Definition 16. Let Ct = (C1t, C2t, · · · , Cdt) be a d-dimensional exogenous covariate vector. Then,
the logit-BBGARCHX(1,1) model is defined as:

Bt|�t−1 : BB(n, Pt, φ), logit(pt) = ω + αlogit(pt−1) + βBt−1 + f (Ct−1, γ), t ∈ Z , (20)

where logit(x) = log(x/(1 − x)), ∀x ∈ (0, 1), f (·, γ) : Rd → R, (ω, α, β, φ) is the parameter
vector with ω ∈ R, φ ∈ (0, 1), |β| < 4(1 − |α|) and |α| < 1, and γ is the additional parameter
vector involving in f .
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The beta-binomial distribution employed in Chen et al. [23] and Chen et al. [24] allow
to model bounded data with under-dispersion. Then, Chen [95] turned its attention to
a rare case, i.e., an under-diversified pseudo-binomial data set. It is the discrete beta
(DB) distribution that competently models bounded data with under-dispersion, equiv-
dispersion, and over-dispersion. Motivated by this and the soft-clipping function used
in Weiß et al. [11], Chen [95] proposed a new soft-clipping discrete beta GARCH model
as follows.

Definition 17. The soft-clipping discrete beta GARCH(1,1) model is defined by{
Bt|�t−1 ∼ DB(nbot, ntop, pt, τ),
pt = scc

(
ω + α1 pt−1 + β1Bt−1/ntop

)
,

(21)

where the definition of DB is placed in Table 3, scc(·) is defined in (18), |α1|+ |β1| < 1, nbot = 0
or 1 and ntop ∈ N is the predetermined upper limit of the range.

Table 3. Summary of basic properties of distributions related to BINGARCH.

Distribution Definition

BB
(Chen et al. [23])

The PMF of BB is

P(Z = z) =
(

n
z

)
B(z + a, n − z + a)

B(a, b)
with B(a, b) =

Γ(a)Γ(b)
Γ(a + b)

.

The beta-binomial distribution approximately reduces to the usual bi-

nomial distribution when a → ∞ or b → ∞. E(Z) =
na

a + b
and

Var(Z) =
nab

(a + b)2

(
1 +

n − 1
a + b + 1

)
DB

(Chen [95])
The PMF of DB is

P(X = x|α, β, n) =
1

Z(α, β)
f
(

x − nbot + 1
ntop − nbot + 2

)
,

where

f (x) =
1

B(α, β)
xα−1(1 − x)β−1, Z(α, β) =

ntop

∑
x=nbot

f
(

x − nbot + 1
ntop − nbot + 2

)
,

ntop ∈ N is the predetermined upper limit of the range and nbot = 0
or 1 is the predetermined lower limit of the range (Z taking values in
{nbot, nbot + 1, nbot + 2, ..., ntop})

Categorical time series are also a type of bounded count-valued time series. In the
study of INGARCH-type models, categorical time series are usually presented in vector
form, which can be modeled by an autoregressive multinomial logistic time series model
with a latent process and is defined by a GARCH-type recursive equation. Suppose that we
observe a process with state space {0, 1, · · · , n} and define a (n − 1)-dimensional vector
Yt = (Y1t, Y2t, · · · , Y(n−1)t)

�, for 1 ≤ t ≤ n, such that

Ykt =

{
1, if the kth category is observed at time t,
0, otherwise,

(22)

for all k = 1, 2, · · · , n − 1. Moreover,

pkt = P(Ykt = 1|�t−1), 1 ≤ j ≤ N − 1,
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is defined as a vector of conditional probabilities and pt ≡ (p1t, p2t, · · · , p(n−1)t)
′. For the

last category n, set Ynt = 1 − ∑n−1
k=1 Ykt and pnt = 1 − ∑n−1

k=1 pkt. The dynamic structure is
dependent on pt. For instance, the following linear dynamic structure is a classic:

pt = d + Apt−1 + BYt−1,

where d is a vector and A, B are matrices of appropriate dimensions. It is easy to see
that the disadvantage of this modeling approach in application is the problem of using
multidimensional methods to deal with univariate data resulting in increased pressure on
parameter estimation and other troubles. However, its theoretical development is being
gradually refined. Fokianos and Truquet [21] employed a useful coupling technique to
study the ergodicity of infinite-order finite-state stochastic processes, making significant
improvements to previous conditions on the stationarity and ergodicity of these models.

In addition to dealing with categorical time series in vector form, Liu et al. [96] pro-
posed a simple and less computationally stressful way of modeling, which was essentially
an innovative approach to conditional distributions from an application perspective. Liu
et al. [96] first introduced a new zero-one-inflated bounded Poisson (ZOBP) distribution
defined as

P(B = k) = p1 I{k=0} + p2 I{k=1} + (1 − p1 − p2)
λk/k!

∑M
i=0 λi/i!

, k = 0, 1, · · · , M, (23)

where p1 ≥ 0 and p2 ≥ 0 are the inflated parameters for the states 0 and 1, respectively,
with the constraint p1 + p2 < 1, λ > 0 is the intensity parameter and the integer M ≥ 2
is a given upper bound. This distribution is suitable for depicting data for air quality
classes that are predominantly excellent, where 0 and 1 represent excellent and good air
quality, respectively. Liu et al. [96] defined a new INGARCH-type model based on the
ZOBP distribution. For ease of presentation, we denote the ZOBP distribution in (23) with
(p1, p2) = (0, 0) by P∗(λ, M). Let {Dt} be an i.i.d. sequence with the following probability
distribution:

P(Dt = 0) = p1, P(Dt = 1) = p2, P(Dt = 2) = 1 − p1 − p2, (24)

where p1 ≥ 0, p2 ≥ 0 and p1 + p2 ≤ 1. Then, the ZOBP autoregressive (ZOBPAR) model is
defined as follows:

Definition 18. {Bt} is said to follow the ZOBPAR model, if

Bt = (2 − Dt)Dt + (Dt − 1)DtB∗
t /2

with B∗
t |�t−1 ∼ P∗(λt, M) and

λt = d + aλt−1 + bBt−1 (25)

where d > 0, a ≥ 0, b > 0, and Dt satisfying (12) is independent of B∗
t .

Compared with the model in vector form, the ZOBPAR model is concise both in terms
of estimation and its own form. The follow-up Liu et al. [97] is also based on this and is an
application-oriented study completed using Bayesian estimation methods.

5. Multivariate Integer-Valued Time Series

It can be seen that univariate INGARCH models have been well-studied in the litera-
ture, but progress in multivariate INGARCH models has lagged somewhat in comparison.
It is encouraging to note that there have been some recent developments.

We start with a review of some studies based on further improvements of the bivariate
Poisson (BP) INGARCH model. The definition of the BP-INGARCH model is given here.
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Definition 19. Let Yt = (Yt,1, Yt,2)
�. {Yt} is said to follow a BP-INGARCH(1,1) model if

Yt|�t−1 ∼ BP*(λ�
t , φ), λt = (λt,1, λt,2)

� = ω + Aλt−1 + BYt−1,

where the definition of BP* is placed in Table 4, φ ≥ 0, ω = (ω1, ω2)
� ∈ R2

+ and A = {αij}i,j=1,2
and B = {βij}i,j=1,2 are 2 × 2 matrices with non-negative entries.

Table 4. Summary of basic properties of distributions related to MINGARCH.

Distribution Definition

BP*
(Lee et al. [25])

Consider random variables Xk, k = 1, 2, 3, which follow independent
Poisson distributions with parameters λ1 − φ, λ2 − φ, φ, respectively, and
then the random variables Y1 = X1 + X3 and Y2 = X2 + X3 jointly fol-
low a bivariate Poisson distribution BP*(λ1, λ2, φ) with probability mass

function: P(Y1 = y1, Y2 = y2) = e−(λ1+λ2−φ) (λ1 − φ)y1 (λ2 − φ)y2

y1!y2!
×

min(y1,y2)

∑
k=0

(
y1
k

)(
y2
k

)
k!
(

φ

(λ1 − φ)(λ2 − φ)

)k
, with E(Y1) = Var(Y1) =

λ1, E(Y2) = Var(Y2) = λ2 and Cov(Y1, Y2) = φ.

BP
( Cui and Zhu [27])

A bivariate Poisson distribution is defined as a product of Poisson
marginals with a multiplicative factor δ, whose PMF is given by

P(Y1 = y1, Y2 = y2) =
λ

y1
1 λ

y2
2

y1!y2!
e−(λ1+λ2)[1+ δ(e−y1 − e−cλ1 )(e−y2 − e−cλ2 )]

where c = 1 − e−1, with E(Y1) = Var(Y1) = λ1, E(Y2) = Var(Y2) = λ2
and Cov(Y1, Y2) = δc2λ1λ2e−c(λ1+λ2).

BPG
(Cui et al. [98])

The PMF of BPG is

P(Y1 = y1, Y2 = y2) =
1

Z(λ1, λ2, θ)

λ
y1
1 λ

y2
2

y1!y2!
e−(λ1+λ2)cρ(F1(y1), F2(y2)),

where Z(λ1, λ2, θ) is the normalizing factor,

cρ(μ1, μ2) =
1√

1 − ρ2
exp

(
− ρ2(q2

1 + q2
2)− 2ρq1q2

2(1 − ρ2)

)

qi = φ−1(ui), φ−1 is the inverse of the standard univariate normal dis-
tribution, μi ∈ [0, 1] for i = 1, 2, ρ ∈ (−1, 1), γ ∈ (−∞, ∞)/{0} and
σ ∈ (−1, 1) are regarded as dependency parameters for BP. Let

cγ(μ1, μ2) =
−γ(e−γ−1)e−(μ1+μ2)γ

[(e−γ − 1) + (e−μ1γ − 1)(e−μ2γ − 1)]2

and
cσ(μ1, μ2) = 1 + σ(1 − 2μ1)(1 − 2μ2),

and then replacing cρ(F1(y1), F2(y2)) with cγ(F1(y1), F2(y2)) and
cσ(F1(y1), F2(y2)) yields the PMF of BPF and that of BPFGM, respec-
tively.

For the BP-INGARCH model, Lee et al. [25] showed the asymptotic normality of
the conditional MLE and introduced the CUSUM test for parameter change based on the
estimates and residuals. Additionally, Kim et al. [26] focused on a robust estimation method
for BP-INGARCH models using the minimum density power divergence estimator.

The limitation of the BP-INGARCH model is that it can only handle positive cross-
correlation between two components and is not competent for cross-correlations. A new
BP-INGARCH model was proposed by Cui and Zhu [27] allowing for negative cross-

85



Entropy 2023, 25, 922

correlation. Cui and Zhu [27] enabled an alternative definition of the BP distribution, just
denoted as BP with definition given in Table 4, i.e., the product of Poisson marginals and a
multiplicative factor δ that can promote positive, zero, or negative cross-correlation.

Further, a class of flexible BP-INGARCH(1,1) model was introduced by Cui et al. [98].
This class of models cover three distributions determined by different special multiplicative
factors, making the portrayal of dependence more flexible.

Definition 20. A new class of BP-INGARCH(1,1) model with flexible multiplicative factor is
proposed as follows:

Yt|�t−1 ∼ GBP(λ�
t ), λt = (λt,1, λt,2)

� = ω + Aλt−1 + BYt−1, (26)

where GBP(·) stands for one of three distributions, denoted as BPG(λ�
t , ρ), BPF(λ�

t , γ) and
BPFGM(λ�

t , σ) in Table 4.

For correlated bivariate count time series data, it is worth mentioning that a new flexi-
ble bivariate conditional Poisson INGARCH model was recently proposed by Piancastelli
et al. [99] to capture negative and positive cross-correlations as well. Although all of these
models are flexible in terms of contemporaneous correlation, the explicit form of the correla-
tion structure of Piancastelli et al. [99] is easier to assess. Piancastelli et al. [99] also provided
a detailed comparison of these methods for bivariate count time series for reference.

The next review is no longer limited to bivariate INGARCH models, but multivariate
INGARCH models. Multivariate count time series remains an area of research with a vast
scope, both in terms of theoretical approaches and application-oriented research. Much of
the existing methodological literature does not focus only on INGARCH models, but is more
broadly applicable to various types of count time series models; see Fokianos [100] for some
recent methodological developments including multivariate INGARCH models. Moreover,
Fokianos et al. [101] introduced an overview of statistical analysis for some models for
multivariate discrete-valued time series based on higher-order Markov chains, where
several extensions are highlighted including non-stationarity, network autoregressions,
conditional non-linear autoregressive models, robust estimation, random fields and spatio-
temporal models. We only show the contribution made by the latest literature Lee et al.
[102] because it was not included in Fokianos [100].

Definition 21. Let Yt = (Yt1, · · · , Ytm)�, t ≥ 1, be the time series of counts taking values in Nm,
and

pi(y|η) = exp{ηy − Ai(η)}hi(y), y ∈ N ,

which stands for the probability mass function of one-parameter exponential family, wherein η is the
natural parameter, Ai(η) and hi(y) are known functions, and both Ai and Bi = A

′
i stands for the

derivative of Ai, are strictly increasing. We then consider the following model.

Yti|�t−1 ∼ pi(y|ηti), i = 1, · · · , m,

Mt = E(Yt|�t−1) = fθ(Mt−1, Yt−1),

where Bi(ηti) = Mti, fθ is a non-negative function defined on [0, ∞)m ×Nm depending on the
parameter θ ∈ Θ ⊂ Rd for some d = 1, 2, · · · , and ηt = (ηt1, · · · , ηtm)� := B−1(Mt) :=
(B−1

1 (Mt1), · · · , B−1
m (Mtm))�.

Unlike other authors who have devoted more effort to specifying the joint distri-
bution of multivariate time series and the marginal distributions of their components,
Lee et al. [102] argued that the conditional mean equation forms the bulk of the modeling
and that the specification of the underlying joint distribution is not a major concern. We
think this premise is a reasonable presupposition. It is well-known that the INGARCH-
type model is built based on two types of assumptions, i.e., assumptions of conditional
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distribution and dynamic structure. Then it is intuitively reasonable that the contempora-
neous dependence of the multivariate count time series can be reflected in the INGARCH
model in two ways: the joint distribution and the multivariate dynamic structure. This
presupposition reduces the complexity of modeling. Specially, although each component
of Yt is modeled using a univariate INGARCH model in Definition 21, the dependence
structure is imposed by the conditional mean process Mt.

Another emerging area is the development of INGARCH-type models applicable to
time-varying network data, which can be considered as a special class of multivariate
count time series. Therefore, a part of recent research has been devoted to establish
INGARCH models and their methodologies applicable to time-varying discrete network
data. Let {Yt = (Y1t, · · · , YNt)} be a network with N nodes. The structure of the network
is completely described by the adjacency matrix A = (aij) ∈ RN×N , where aii = 1 for any
i = 1, · · · , N and aij = 1 that means the presence of a directed edge from i to j, aij = 0
otherwise. In general, any time-varying discrete network data whose relationship can be
modeled by an adjacency matrix can be considered as a multivariate time series.

In a similar vein to the development of univariate integer-valued time series, the
Poisson distribution and linearity assumptions continue to be used instinctively in order
to establish a universal framework. Armillotta and Fokianos [28] considered the Poisson
network autoregressive (PNAR) models for count data with a non-random adjacency
matrix. We show here only the simplest linear form of order 1:

Definition 22. The PNAR(1) model is defined as:

Yi,t|�t−1 ∼ Poisson(λi,t),

λi,t = β0 + β1n−1
i

N

∑
j=1

aijYj,t−1 + β2Yi,t−1, (27)

where ni = ∑i 	=j aij is the out-degree, i.e., the total number of nodes, which i has an edge with.

The PNAR(1) model reduces the inference complexity by incorporating network
information into the dependence structure, where the response of each individual can be
explained by its lagged values and the average effect of its neighbors in (27). Note that
Equation (27) does not include information about the joint dependence structure of the
PNAR(1) model. It is then convenient to rewrite (27) in vector form,

Yt = Nt(λt), λt = �β0 + GYt−1, (28)

where �β0 = β01N ∈ RN , with 1 = (1, 1, · · · , 1)� ∈ RN and the matrix G = β1W +
β2IN , where W = diag{n−1

1 , · · · , n−1
N }A is the row-normalized adjacency matrix, with

A = (aij), so wi = (aij/ni, j = 1, · · · , N)� ∈ RN is the i-th row vector of the matrix
W, satisfying ‖W‖∞ = 1, and IN is the N × N identity matrix. {Nt} is a sequence of
independent N-variate copula–Poisson processes. The main methodological contribution of
Armillotta and Fokianos [28] was the study of the asymptotic properties of such models by
employing Lp-near epoch dependence and α-mixing, rather than based on the assumption
that i.i.d. on which the development of all network time series models discussed so
far has strongly relied. Further, Armillotta et al. [29] reviewed some of the work by
Armillotta and Fokianos [28] and provided a unified framework for the statistical analysis
of both continuous and integer-valued data with a known adjacency matrix. Armillotta and
Fokianos [28] also specified a log-linear PNAR model for the count processes, and another
recent work Armillotta and Fokianos [30] was closely related to this, where a quasi-score
linearity test for continuous and count network autoregressive models was developed.

It can be seen in (27) and (28) that the PNAR model assumes that all individuals are
homogeneous and they share a common autoregressive coefficient. This is a somewhat
detached assumption from reality. Therefore, Tao et al. [31] proposed the grouped PNAR,
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which divides individuals into different groups and describes heterogeneous node behavior
with group-specific parameters. Compared to the original PNAR model, the constraints are
relaxed while competently portraying the heterogeneity. Specially, all individuals could be
classified into K groups in the setting of Tao et al. [31], and each group was characterized
by a specific set of positive parameters θk = (ωk, αk, ρk, βk)

′ ∈ R4, for 1 ≤ k ≤ K.

Definition 23. A grouped PNAR model can be constructed as

Yi,t|�t−1 ∼ Poisson(λi,t), (29)

λi,t =
K

∑
k=1

zik

(
ωk + αkYi,t−1 + ρkd−1

i ∑
j 	=i

aijYj,t−1 + βkλi,t−1

)
, (30)

for each i = 1, · · · , N, and t ≥ 1. Following the PNAR model, the parameters ωk, αk, ρk, βk
represent the group-specific baseline effect, regression coefficient on past observations, network
effect, and regression coefficient on past intensity processes, respectively. Note that we assume
the adjacency matrix A is asymmetric, which covers the special case of symmetric networks. To
distinguish between groups, latent variable zik ∈ {0, 1} was defined for each object i, where zik = 1
if object i is from the k-th group, and zik = 0 otherwise. Assume {(zi1, · · · , ziK)

′, 1 ≤ i ≤ N}
is a sequence of i.i.d. multinomial random vectors with number of events n = 1 and probability
γ = (γ1, · · · , γK)

′. Here, γk represents the group proportion satisfying γk ≥ 0 and ∑K
k=1 γk = 1.

Tao et al. [31] explored the accuracy of model estimation and prediction when the
group labels were unknown and the number of group K is mis-specified, respectively. There
is already a body of mature research on network data, but it is still a relatively emerging
topic in the INGARCH field. Therefore, many further attempts to consider time-varying
networks from the perspective of count time series are worthwhile, such as optimization of
conditional distributions, nonlinear dynamic structures, and related hypothesis testing, or
time-varying network data with upper bounds on the number of edges.

In addition to modeling and methodology, INGARCH is popular for application-
oriented analysis of time-varying networks. For example, Agosto and Ahelegbey [103]
used a financial network model to study the contagion effects between business sectors
based on discrete data, and tested the conditional means (and volatilities) of default counts
across economic sectors estimated by Poisson INGARCH and their dependence in shocks.
Through an empirical analysis of corporate defaults in Italy over the period 1996–2018, a
high degree of intersectoral vulnerability was concluded by Agosto and Ahelegbey [103], in
particular at the onset of the global financial crisis in 2008 and in subsequent years. Such a
wide range of application prospects is accompanied by a desire for theoretical development.

6. Discussion and Conclusions

The purpose of this section is to present some potentially useful research topics based
on the methodology and applications reviewed in the previous sections.

(1). First, we focus on the softplus function spc(·) and soft-clipping function sc c
n
(·),

which contribute to the modeling of unbounded counts and bounded counts allowing
for negative auto-correlation, respectively. For the sake of clarity, sc c

n
(·) is used next as

an example. As already mentioned, the advantage of sc c
n
(·) is that the support set is

R and is nearly linear on (0, n], which allows the parameters in the dynamic structure
of the BINGARCH model not to be restricted to positive numbers. This is certainly an
excellent innovation, and one that seems worth exploring further. The images of sc c

n
(x)

corresponding to different parameters c or n are reported in Figures 3 and 4. It is obvious
that the slope of sc c

n
(x) is small when x < 0 and tends to zero as x decreases. Moreover,

the parameter c has a small moderating effect on this tendency, while n even has almost no
effect. This insensitivity to negative values may lead to concerns that the corresponding
INGARCH models do not fairly model positively and negatively correlated data.
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Figure 3. Plots of soft clipping functions sc c
n
(x), x ∈ [−6, 10] (left) and sc c

n
(x), x ∈ [−6, 0] (right)

with c = 0.5 and n = 2, 3, 4, 5.
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Figure 4. Plots of soft clipping functions sc c
n
(x), x ∈ [−6, 6] (left) and sc c

n
(x), x ∈ [−6, 0] (right)

with n = 4 and c = 1, 0.5, 0.1, 0.01.

The reasons for this confusion can be summarized as follows. Although negative
parameters are allowed to appear in the dynamic structure of the conditional expectation,
such leniency seems to be somewhat offset by the fact that Pt (we use Bin(n, pt) as an
example here) that were obtained from sc c

n
(x) are concentrated around 0 when x < 0,

while sc c
n
(x) is approximately linear when x > 0. The sc c

n
(x) does allow for the existence

of negative correlation, but the extent of the negative correlation is to be explored further.
However, to put it another way, it seems to us that sc c

n
(x) provides a new perspective of

modeling zero-inflated counts. In contrast to the previous idea of embodying the zero-
inflated feature in a conditional distribution, it seems possible to assign this task to a
dynamic structure through sc c

n
(x).

(2). There is still a large demand for innovations dedicated to bounded count time
series. We personally think that there are two feasible directions for exploration: one is the
innovation of conditional distribution, and the other is to continue to deepen the research
based on vector forms. From an application point of view, it is worth exploring to truncate
existing distributions in a reasonable way, or to find distributions that themselves take
values in bounded sets of integers. For the study of vector forms, where the theory is
relatively well-developed, it is imperative to ease the estimation pressure.
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(3). The emergence of new methodologies or research topics in other fields or in the
broader field can stimulate the development of the INGARCH-type models. For example,
Pedersen and Rahbek [104] presented the theory for testing for reduction of GARCHX type
models with an exogenous covariate to standard GARCH type models. Many INGARCH-
type models, including some of the recent literature mentioned earlier, are also focusing
on covariates. Thus, the tests and methodologies proposed by Pedersen and Rahbek [104]
can actually inspire existing INGARCH models to achieve tests of the reasonableness of
introducing covariates. Similarly, refer also to Aknouche and Francq [105] and Debaly and
Truquet [106].
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Abstract: In this article, we propose a modified multiplicative thinning-based integer-valued au-
toregressive conditional heteroscedasticity model and use the saddlepoint maximum likelihood
estimation (SPMLE) method to estimate parameters. A simulation study is given to show a better
performance of the SPMLE. The application of the real data, which is concerned with the number of
tick changes by the minute of the euro to the British pound exchange rate, shows the superiority of
our modified model and the SPMLE.

Keywords: INARCH model; saddlepoint approximation; thinning-based model; time series of counts

1. Introduction

In practice, we can often observe a series of integer-valued data that have their own
distinguishing characteristics, and many models were proposed for modeling integer-
valued time series, such as the integer-valued autoregressive (INAR) process introduced by
McKenzie (1985) [1], and Al-Osh and Alzaid (1987) [2]; the integer-valued moving average
process proposed by Al-Osh and Alzaid (1988) [3]; the integer-valued autoregressive
moving-average model defined by McKenize (1988) [4]; and the integer-valued generalized
autoregressive conditional heteroscedasticity (INGARCH) model proposed by Ferland et al.
(2006) [5], among others. Here we focus on two kinds of the models above: one is the INAR
process, which was introduced as a convenient way to transfer the usual autoregressive
structure to a discrete-valued time series, and a p-order model, which is defined as follows:

Xt =
p

∑
i=1

αi ◦ Xt−i + εt,

where αi ∈ [0, 1) for i = 1, . . . , p, and {εt} is a sequence of independent and identically
distributed (i.i.d.) non-negative integer-valued random variables with E(εt) = μ and
Var(εt) = σ2

ε . The binomial thinning operator ◦ is defined by Steutel and Van Harn
(1979) [6] as:

α ◦ X =
X

∑
i=1

Yi, if X > 0 and 0 otherwise,

where Yi are i.i.d. Bernoulli random variables, independent of X, with a success probability
are defined by α. This model has been generalized by Qian and Zhu (2022) [7], and Huang
et al. (2023) [8], among others.
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The other is the INGARCH model which was proposed by Ferland et al. (2006) [5] to
model the observations of integer-valued time series which exist heteroscedasticity; this
INGARCH(p, q) model with a Poisson deviate is defined as:

Xt|Ft−1 : P(λt), λt = α0 +
p

∑
i=1

αiXt−i +
q

∑
j−1

β jλt−j,

where α0 > 0, αi ≥ 0, β j ≥ 0, i = 1, . . . , p, j = 1, . . . , q, p ≥ 1, q ≥ 0, and Ft−1 is the σ-field
generated by {Xt−1, Xt−2, . . . }. This model has been generalized by Hu (2016) [9], Liu
et al. (2022) [10], and Weiß et al. (2022) [11], among others. Weiß (2018) [12] and Davis
et al. (2021) [13] gave recent reviews. According to definitions of INAR and INGARCH
models, we noticed that the INAR model is thinning-based, while the INGARCH model is
specified by a conditional distribution with a time-varying mean depending on past ob-
servations. Combining the thinning-based stochastic equations and the INGARCH model,
Aknouche and Scotto (2022) [14] proposed a multiplicative thinning-based INGARCH
(MthINGARCH) model to model the integer-valued time series with high overdispersion
and persistence. Furthermore, it fits well with heavy-tailed data regardless of the choice
of innovation distribution and does not require recourse to complex random coefficient
equations. The MthINGARCH model is denoted by:⎧⎪⎪⎨⎪⎪⎩

Xt = λtεt,

λt = 1 + ω ◦ m +
q

∑
i=1

αi ◦ Xt−i +
p

∑
j=1

β j ◦ λt−j,
(1)

where the symbol ◦ stands for the binomial thinning operator, and 0 ≤ ω ≤ 1, 0 ≤ αi < 1
and 0 ≤ β j < 1 (i = 1, . . . , q, j = 1, . . . , p), m is a fixed positive integer number that was
introduced for more flexibility. Since there is no explicit probability mass function for the
series {Xt}, then the traditional maximum likelihood estimation (MLE) cannot be applied
to estimate the parameters; therefore, Aknouche and Scotto (2022) [14] used a two-stage
weighted least squares estimation instead.

Note that the probability mass function of the random variables cannot be given
directly for the likelihood function in some cases; to solve this problem, saddlepoint ap-
proximation has been proposed. Daniel (1954) [15] introduced saddlepoint techniques into
the statistical field, which have been extended by Field and Ronchetti (1990) [16], Jensen
(1995) [17], and Butler (2007) [18]. Saddlepoint techniques have been used successfully
in many applications because of the high accuracy with which they can approximate in-
tractable densities and tail probabilities. Pedeli et al. (2015) [19] proposed an alternative
approach based on the saddlepoint approximation to log-likelihood, and the saddlepoint
maximum likelihood estimation (SPMLE) was used to estimate the parameters of the INAR
model, which demonstrates the usefulness of this technique. Thus, through combining the
MthINGARCH model of Aknouche and Scotto (2022) [14] and the saddlepoint approxima-
tion, we propose a modified multiplicative thinning-based INARCH model for modeling
high overdispersion, before applying the saddlepoint method to the estimated parameters.
Although the two-stage weighted least squares estimation could be used to estimate the
parameters of our modified model, we still adopted the SPMLE as it was still expected to
have a better performance than the two-stage weighted least squares estimation in practice.
Here, we just consider the INARCH model instead of the INGARCH model because it
is difficult and complex to give the conditional cumulant-generating function of random
variables for the latter model when applying the saddlepoint approximation.

This article has the following structure. A modified multiplicative thinning-based
INARCH model is given, alongside some related properties in Section 2. Moreover, we use
the Poisson distribution and geometric distribution for innovations. Section 3 discusses the
SPMLE and its asymptotic properties, then simulation studies for both models with SPMLE
are also given. A real data example is analyzed with our modified models in Section 4, and
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comparisons with existing models are made. In-sample and out-of-sample forecasts are
used to show the superiority of the SPMLE and our modified model. The conclusion is
given in Section 5. Some details of SPMLE and proof of some theorems are presented in the
Appendix A.

2. A Multiplicative Thinning-Based INARCH Model

Note that N = {0, 1, 2, . . . } and Z = {. . . ,−1, 0, 1, . . . } are the set of non-negative
integers and integers, respectively. It can be supposed that {εt, t ∈ Z} is a sequence of i.i.d.
random variables with a mean of one and finite variance of σ2. The modified multiplicative
thinning-based INARCH (denoted by the MthINARCH(q)) model, which we deal with in
this paper, is defined by

Xt = λtεt, λt = ω ◦ m +
q

∑
i=1

αi ◦ Xt−i, (2)

where 0 < ω ≤ 1, 0 ≤ αi < 1, i = 1, . . . , q, m is a fixed positive integer number. In real
applications, we can set m as the upper integer part of the sample mean. It is assumed
that the Bernoulli terms corresponding to the binomial variables ω ◦ m and αi ◦ Xt−i are
mutually independent and independent of the sequence {εt, t ∈ Z}. The reason that we
defined the new model in this way can be explained as follows. The additive term 1 in λt
and in (1) is unnatural, and is posed to ensure λt > 0, but we can achieve this by adjusting
the range of ω; therefore, we adopted a simple version of λt in (2).

Now that we discuss the conditional mean and conditional variance of Xt. Note that
Ft−1 is the σ-field generated by Xt−1, Xt−2, . . .. For E(εt) = 1, let μt := E(Xt|Ft−1) =
E(λtεt|Ft−1) = E(εt)E(λt|Ft−1) = E(λt|Ft−1) = ωm + ∑

q
i=1 αiXt−i. Then we can obtain

the conditional variance; first, let νt := Var(λt|Ft−1) and σ2
t := Var(Xt|Ft−1). For E(εt) =

1, Var(εt) = σ2, so E(ε2
t ) = σ2 + 1. Therefore,

νt : = Var(λt|Ft−1) = ω(1 − ω)m +
q

∑
i=1

αi(1 − αi)Xt−i,

σ2
t : = Var(Xt|Ft−1) = E(X2

t |Ft−1)− [E(Xt|Ft−1)]
2 = E(λ2

t |Ft−1)E(ε2
t )− μ2

t

= [Var(λt|Ft−1) + (E(λt|Ft−1))
2]E(ε2

t )− μ2
t

= (σ2 + 1)(νt + μ2
t )− μ2

t = (σ2 + 1)νt + σ2μ2
t .

Proposition 1. The necessary and sufficient condition for the first-order stationarity of Xt defined
in (2) is that all roots of 1 − ∑

q
i=1 αizi = 0 should lie outside the unit circle.

Proposition 2. The necessary and sufficient condition for the second-order stationarity of Xt
defined in (2) is that (σ2 + 1)∑

q
i=1 α2

i < 1.

Proofs of Propositions 1 and 2 are similar to the proofs of Theorems 2.1 and 2.2 in
Aknouche and Scotto (2022) [14], so we omit the details.

For convenience, we need to specify the distribution of {εt} in (2). First, we let
εt ∼ P(1), then E(εt) = Var(εt) = 1, and this model is denoted by PMthINARCH(q). It is
easy to obtain

μt = ωm +
q

∑
i=1

αiXt−i, σ2
t = 2νt + μ2

t .

Second, let εt ∼ Ge(p∗). The mean of εt is (1 − p∗)/p∗ = 1, so we have p∗ = 0.5 and the
variance is Var(εt) = 2. This model is denoted by GMthINARCH(q), then we have

μt = ωm +
q

∑
i=1

αiXt−i, σ2
t = 3νt + 2μ2

t .
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3. Parameter Estimation

In this section, we will consider the SPMLE and its asymptotic properties, and a
simulation study will be conducted to assess the performance of this estimator.

3.1. Saddlepoint Maximum Likelihood Estimation

Let θ = (ω, α1, . . . , αq)T be the unknown parameter vector. Note that according to the
condition on εt, σ2 is no longer an unknown parameter. The maximum likelihood estimator
of θ was obtained by maximizing the conditional log-likelihood function

l(θ) =
n

∑
t=1

log P(Xt = xt|Xt−1 = xt−1, . . . , Xt−q = xt−q), (3)

giving θ̂ = arg maxθ l(θ). But the above procedure is challenging to implement because it
is difficult to give the likelihood function due to the thinning operations.

Now we discuss the SPMLE. The conditional moment generating function of Xt is

E(euXt |Xt−1 = xt−1, . . . , Xt−q = xt−q) = E(euλtεt |Xt−1 = xt−1, . . . , Xt−q = xt−q)

= E(eu(ω◦m+∑
q
i=1 αi◦Xt−i)εt |Xt−1 = xt−1, . . . , Xt−q = xt−q)

= E(eu(ω◦m)εt)
q

∏
i=1

E(eu(αi◦xt−i)εt).

Remark 1. Here we just consider the INARCH model instead of the INGARCH model because
for the INGARCH model, the conditional cumulant-generating function of Xt should be given

by E(euXt |Xt−1 = xt−1, . . . , Xt−q = xt−q) = E(eu(ω◦m+∑
q
i=1 αi◦Xt−i+∑

p
j=1 β j◦λt−i)εt |Xt−1 =

xt−1, . . . , Xt−q = xt−q). Notice that Xt and λt are correlated, it is difficult and complex to show
the conditional cumulant-generating function.

Using the binomial theorem (a + b)n = ∑n
k=0 Ck

nan−kbk, we have

E(eu(ω◦m)εt) = E
[

E(eu(ω◦m)εt |εt)
]
= E(ωeuεt + (1 − ω))m

= E

[
m

∑
r=0

Cr
m(1 − ω)rωm−reu(m−r)εt

]
=

m

∑
r=0

Cr
m(1 − ω)rωm−rE(eu(m−r)εt).

Similarly, we also have

E(eu(αi◦xt−i)εt) =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i E(eu(xt−i−r)εt).

Therefore, for the PMthINARCH(q) model, we have

E(eu(ω◦m)εt) =
m

∑
r=0

Cr
m(1 − ω)rωm−re(e

u(m−r)−1),

E(eu(αi◦xt−i)εt) =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i e(e

u(xt−i−r)−1),

while for the GMthINARCH(q) model, we have

E(eu(ω◦m)εt) =
m

∑
r=0

Cr
m(1 − ω)rωm−r 1

2 − eu(m−r)
,

E(eu(αi◦xt−i)εt) =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i

1
2 − eu(xt−i−r)

.
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Thus the conditional cumulant-generating function of Xt is:

Kt(u) = log[E(euXt |Xt−1 = xt−1, . . . , Xt−q = xt−q)] = log E(eu(ω◦m)εt) +
q

∑
i=1

log E(eu(αi◦xt−i)εt).

A highly accurate approximation to the conditional mass function of Xt at xt is provided
by the saddlepoint approximation:

f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt) =

(
2πK′′

t (ũt)
)− 1

2 exp{Kt(ũt)− ũtxt}, (4)

where ũt is the unique value of u which satisfies the saddlepoint equation K′
t(u) = xt, with

K′
t and K′′

t represent the first and second order derivatives of Kt with respect to u. Notice
that it is difficult to solve the saddlepoint equation K′

t(u) = xt analytically; similar to that
mentioned in Pedeli et al. (2015) [19], we can use the Newton–Raphson method to solve
this equation.

The log-likelihood function (3) can be approximated by summing the logarithms of
the corresponding density approximations (4), yielding:

L̃n(θ) =
n

∑
t=1

l̃t(θ) :=
n

∑
t=1

log f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt). (5)

The value θ maximizing this expression is called the saddlepoint maximum likelihood
estimator (SPMLE).

3.2. Asymptotic Properties of the SPMLE

Now we discuss the asymptotic properties of the SPMLE. First we give the first-order
Taylor expansion of K′

t(u) at u = 0 yields,

K′
t(u) = K′

t(0) + uK′′
t (0) + o(u) = μt(θ) + uσ2

t (θ) + o(u), (6)

where μt(θ) and σ2
t (θ) are the conditional mean and conditional variance of Xt. Notice that

ũt can be given by K′
t(ũt) = xt, so with the Taylor series expansion of K′

t(u) in (6), we have:

ũt =
xt − μt(θ)

σ2
t (θ)

+ o(1), t = q + 1, . . . , n. (7)

Then, we can obtain the second-order Taylor expansion of Kt(u) at u = 0, which is:

Kt(u) ≈ uK′
t(0) +

u2

2
K′′

t (0) = uμt(θ) +
u2

2
σ2

t (θ). (8)

Focusing on the exponent of the saddlepoint approximation (4), Equation (8) gives

Kt(u)− uxt ≈ u(μt(θ)− xt) +
u2

2
σ2

t (θ).

Then using Equation (7), we have

Kt(ũt)− ũtxt ≈ − [xt − μt(θ)]2

2σ2
t (θ)

. (9)

Hence, we can derive from (8) and (9) that the first-order saddlepoint approximation to the
conditional probability mass function is approximately:

98



Entropy 2023, 25, 207

f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt) =

(
2πK′′

t (ũt)
)− 1

2

× exp

⎡⎣− (xt − ωm − ∑
q
i=1 αixt−i)

2

2
[
(σ2 + 1)(ω(1 − ω)m + ∑

q
i=1 αi(1 − αi)xt−i) + σ2(ωm + ∑

q
i=1 αixt−i)2

]
⎤⎦.

Therefore, L̃n(θ) = ∑n
t=1 l̃t(θ) = ∑n

t=1 log f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt) is the quasi-likelihood

function for the estimation of θ. To establish the large-sample properties, we have

Ln(θ) =
n

∑
t=1

lt(θ) =
n

∑
t=1

log fXt |Xt−1=xt−1,...,Xt−q=xt−q
(xt),

which is the ergodic approximation of L̃n(θ). The first and second derivatives of the quasi-
likelihood function are given in the Appendix A. The strong convergence and asymptotic
normality for the SPMLE θ̂n are established in the following theorems.

First of all, the assumptions for Theorems 1 and 2 are listed as follows.

Assumption 1. The solution of the MthINARCH process is strictly stationary and ergodic.

Assumption 2. Θ is compact and θ0 ∈ Θ̊, where Θ̊ denotes the interior of Θ. For technical reasons,
we assumed the lower and upper values of each component of parameters as 0 < ωL ≤ ω ≤ ωU ≤ 1
and 0 ≤ αL ≤ αi ≤ αU < 1, i = 1, . . . , q.

Theorem 1. Let θ̂n be a sequence of SPMLEs satisfying θ̂n = arg max
θ∈Θ

L̃n(θ), then under Assump-

tions 1 and 2, θ̂n converges to θ0 almost as surely, as n → ∞.

Theorem 2. Under Assumptions 1 and 2, there exists a sequence of maximizers θ̂n of L̃n(θ) such
as that of n → ∞,

√
n(θ̂n − θ0)

d−→ N(0, Σ−1),

where

Σ = −Eθ0

(
∂2lt(θ0)

∂θ∂θT

)
,

and Σ is positively definite.

3.3. Simulation Study

In this section, simulation studies of PMthINARCH(q) and GMthINARCH(q) mod-
els for finite sample size are given, where q = 2. Here, we used several combinations
to show the performance of SPMLE, and the mean absolute deviation error (MADE)
1
s

s

∑
j=1

|θ̂j − θj| was used as the evaluation criterion; here, s is the number of replications.

The sample size is n = 100, 200, 500, and the number of replications is s = 200. We used
the following combinations of (ω, α1, α2)

T as the true values to generate the random sam-
ple: A1 = (0.65, 0.4, 0.4)T, A2 = (0.9, 0.5, 0.3)T for the PMthINARCH(2) model, and B1
= (0.8, 0.4, 0.4)T, B2 = (0.65, 0.3, 0.5)T for the GMthINARCH(2) model. Tables 1 and 2
show the results of these simulations. Notice that as the sample sizes become larger, the
MADEs become smaller, and the estimates seem to be close to the true values. Therefore,
the SPMLE performs well.
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Table 1. Mean and MADE of estimates for PMthINARCH(2) model with SPMLE.

Model ω α1 α2

A1 m = 3

n = 100 Mean 0.6069 0.5356 0.3569
MADE 0.3681 0.2866 0.2510

n = 200 Mean 0.5722 0.5026 0.3952
MADE 0.3557 0.2434 0.2243

n = 500 Mean 0.6436 0.4888 0.4140
MADE 0.2724 0.1287 0.1005

A2 m = 8

n = 100 Mean 0.7782 0.5076 0.4750
MADE 0.2533 0.2752 0.3007

n = 200 Mean 0.7935 0.5161 0.4701
MADE 0.2318 0.2527 0.2778

n = 500 Mean 0.8703 0.5170 0.4677
MADE 0.1752 0.2155 0.2390

Table 2. Mean and MADE of estimates for GMthINARCH(2) model with SPMLE.

Model ω α1 α2

B1 m = 4

n = 100 Mean 0.7821 0.2930 0.2870
MADE 0.1195 0.1499 0.1766

n = 200 Mean 0.8190 0.3611 0.3185
MADE 0.1121 0.1425 0.1640

n = 500 Mean 0.8456 0.3610 0.3298
MADE 0.0601 0.1331 0.1414

B2 m = 6

n = 100 Mean 0.4718 0.2086 0.3811
MADE 0.1965 0.1466 0.1463

n = 200 Mean 0.5186 0.2632 0.5080
MADE 0.1607 0.1198 0.1412

n = 500 Mean 0.5468 0.2874 0.4896
MADE 0.1415 0.1050 0.0770

4. A Real Example

Here, we considered the number of tick changes by the minute of the euro to the
British pound exchange rate (ExRate for short) on December 12th from 9.00 a.m. to 9.00
p.m. The dataset is available at the website http://www.histdata.com/ (accessed on 17
January 2023). The series comprises of 720 observations with a sample mean of 13.2153
and a sample variance of 224.2498. Obviously, the sample variance is much larger than
the sample mean, which shows high overdispersion, and this high overdispersion can
also be seen in Figure 1a. Figure 1b,c are the plots of the autocorrelation function (ACF),
and the partial autocorrelation function (PACF) means that we know the tick changes
are correlated.

We analyzed the data using the PMthINARCH(3) model, GMthINARCH(3) model,
Poisson INAR(3) (here denoted by PINAR(3) for short) model, and the INARCH(3) model.
The Poisson INAR model is mentioned in Pedeli et al. (2015) [19], and the SPMLE was used
to estimate the parameters. Here, the innovations in the PINAR model were assumed to be
Poisson with a mean of one. The INARCH model with a Poisson deviate was proposed by
Ferland et al. (2006) [5], and the MLE was used to estimate the parameters. According to
Aknouche and Scotto (2022) [14], in real applications, we can set m as the upper integer
part of the sample mean. Here the sample mean is 13.2153, so m is set to the value of 14.
Table 3 gives the estimates of SPMLE and the values of the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). According to Table 3, it is clear to see that
the values of AIC and BIC of PMthINARCH(3) and GMthINARCH(3) are smaller than
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those of the PINAR(3) and INARCH(3) models, the values of AIC and BIC of INARCH(3)
are smaller than those of the PINAR(3) model. Moreover, the values of AIC and BIC of
PMthINARCH(3) are smaller than those of GMthINARCH(3). In summary, the INARCH
model performed better than the PINAR model; meanwhile, the PMthINARCH model and
GMthINARCH model performed better than the PINAR model and INARCH model.

Figure 1. (a) The plot of integer-valued series of ExRate. (b) The plot of ACF of observations. (c) The
plot of PACF of observations.

Table 3. Estimation results: AIC and BIC values for PMthINARCH(3), GMthINARCH(3), PINAR(3)
and INARCH(3) models.

PMthINARCH(3) ω α1 α2 α3 AIC BIC
0.3242 0.5214 0.1945 0.0842 1395.296 1413.613

GMthINARCH(3) ω α1 α2 α3 AIC BIC
0.4904 0.2532 0.2155 0.2392 1402.472 1420.789

PINAR(3) α1 α2 α3 AIC BIC
0.1335 0.4116 0.3901 1572.806 1586.544

INARCH(3) ω α1 α2 α3 AIC BIC
8.5670 0.1140 0.1379 0.1009 1524.638 1542.955

According to Aknouche and Scotto (2022) [14], the two-stage weighted least squares
estimation (2SWLSE) was used to estimate the parameters of the MthINGARCH model.
Therefore, to compare the performance of 2SWLSE and SPMLE, and the performance of
PMthINARCH, GMthINARCH, and PINAR models, to consider the in-sample and out-of-
sample forecasts of these two estimation methods and the three models above, respectively.
First, we considered the in-sample forecast. We used all of the observations to estimate the
model, and then we could forecast the last 10 observations 711–720, the last 15 observations
706–720, and the last 20 observations 701–720; these three-time horizons of in-sample
forecast are denoted by C1, C2, and C3, respectively. Similar to the in-sample forecast
process, we also considered the out-of-sample forecast and divided all the observations
into three-time horizons: the first one was 1–710 and 711–720, the second one was 1–705
and 706–720, and the third one was 1–700 and 701–720, which are denoted by D1, D2, and
D3, respectively.

Here we illustrate the performance of the considered models by comparing the MADEs
of each forecast. The MADEs of in-sample forecasts and out-of-sample forecasts for
three models with SPMLE are shown in Table 4. The MADEs of the in-sample forecasts
and out-of-sample forecasts for the PMthINARCH model with 2SWLSE and SPMLE are
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shown in Table 5, and the in-sample forecasts and out-of-sample forecasts for the GMthI-
NARCH model with 2SWLSE and SPMLE are shown in Table 6. According to Table 4, the
MADEs of PMthINARCH(3) and GMthINARCH(3) are smaller than those of PINAR(3),
Tables 5 and 6 show that the MADEs of PMthINARCH(3) and GMthINARCH(3) of SPMLE
are smaller than those of 2SWLSE; meanwhile, in these three Tables, the MADEs of in-
sample forecasts were smaller than those of out-of-sample forecasts. In summary, the
PMthINARCH model and GMthINARCH model were superior to the PINAR model in
modeling this real data set, and the PMthINARCH model performed better than the GMthI-
NARCH model. Meanwhile, the performance of SPMLE was better than 2SWLSE for
MthINARCH models.

Table 4. MADEs of in-sample forecasts and out-of-sample forecasts for PMthINARCH(3),
GMthINARCH(3), and PINAR(3) models with SPMLE.

Methods of
Forecast

PMthINARCH GMthINARCH PINAR

In-sample

C1 15.30 16.80 17.40

C2 15.87 17.67 18.40

C3 16.65 20.70 21.90

Out-of-sample

D1 17.50 17.70 22.50

D2 19.47 19.80 23.80

D3 20.50 25.25 27.50

Table 5. MADEs of in-sample forecasts and out-of-sample forecasts for PMthINARCH(3) model with
SPMLE and 2SWLSE.

Methods of Forecast SPMLE 2SWLSE

In-sample

C1 15.30 16.20

C2 15.87 17.20

C3 16.65 18.55

Out-of-sample

D1 17.50 18.60

D2 19.47 21.67

D3 20.50 22.70

Table 6. MADEs of in-sample forecasts and out-of-sample forecasts for GMthINARCH(3) model
with SPMLE and 2SWLSE.

Methods of Forecast SPMLE 2SWLSE

In-sample

C1 16.80 17.20

C2 17.67 18.07

C3 20.70 21.05

Out-of-sample

D1 17.70 19.90

D2 19.80 22.87

D3 25.25 26.50

5. Conclusions

In this paper, we modified a multiplicative thinning-based INARCH model. The
probability mass function of random variables is provided by saddlepoint approximation.
We used the SPMLE to estimate the parameters and obtain the asymptotic distribution
of the SPMLE. Moreover, to show the superiority of the MthINARCH models and the
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SPMLE, we used the PMthINARCH(q) process and GMthINARCH(q) process for dis-
cussion and comparison. The SPMLE performs well in the simulation studies. A real
dataset indicates that the PMthINARCH model and the GMthINARCH model are able
to describe the overdispersed integer-valued data, and the real data example leads to a
superior performance of the MthINARCH models compared with the PINAR and INARCH
models. In addition, the results also show a superior performance of SPMLE compared
with 2SWLSE.

For further discussion, more research is needed for some aspects. Here we used
the Poisson distribution and geometric distribution for εt; however, we could use the
negative binomial distribution or some zero-inflated distributions as well. Moreover, we
just considered the INARCH model, so the corresponding INGARCH model should be
considered as well.
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Appendix A

Appendix A.1. Details of SPMLE

Here, we give the derivatives of Kt(u) mentioned in Section 3.1 of PMthINARCH(q)
and GMthINARCH(q). Now we give K′

t(u) and K′′
t (u) of PMthINARCH(q). In Section 3.1,

we have

Kt(u) = log E(eu(ω◦m)εt) +
q

∑
i=1

log E(eu(αi◦xt−i)εt) = log a1 +
q

∑
i=1

log b1,

so the derivatives of Kt(u) are given by

K′
t(u) =

c1

a1
+

q

∑
i=1

d1

b1
, K′′

t (u) =
e1a1 − c2

1
a2

1
+

q

∑
i=1

f1b1 − d2
1

b2
1

,

where

a1 =
m

∑
r=0

Cr
m(1 − ω)rωm−reeu(m−r)−1,

b1 =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i eeu(xt−i−r)−1,

c1 =
m

∑
r=0

Cr
m(1 − ω)rωm−reu(m−r)eeu(m−r)−1,
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d1 =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i eu(xt−i−r)eeu(xt−i−r)−1,

e1 =
m

∑
r=0

Cr
m(1 − ω)rωm−reu(m−r)(m − r)2eeu(m−r)−1[1 + eu(m−r)],

f1 =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i (xt−i − r)2eu(xt−i−r)eeu(xt−i−r)−1[1 + eu(xt−i−r)].

Then we give K′
t(u) and K′′

t (u) of GMthINARCH(q). In Section 3.1, we have

Kt(u) = log E(eu(ω◦m)εt) +
q

∑
i=1

log E(eu(αi◦xt−i)εt) = log a2 +
q

∑
i=1

log b2,

so the derivatives of Kt(u) are given by

K′
t(u) =

c2

a2
+

q

∑
t=1

d2

b2
, K′′

t (u) =
e2a2 − c2

2
a2

2
+

q

∑
t=1

f2b2 − d2
2

b2
2

,

where

a2 =
m

∑
r=0

Cr
m(1 − ω)rωm−r 1

2 − (2 − eu(m−r))
,

b2 =
xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i

1
2 − (2 − eu(xt−i−r))

,

c2 =
1
4

m

∑
r=0

Cr
m(1 − ω)rωm−r(m − r)

eu(m−r)

[1 − (1 − 1
2 eu(m−r))]2

,

d2 =
1
4

xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i (xt−i − r)

eu(xt−i−r)

[1 − (1 − 1
2 eu(xt−i−r))]2

,

e2 =
1
4

m

∑
r=0

Cr
m(1 − ω)rωm−r(m − r)2eu(m−r) 1 + 1

2 eu(m−r)

[1 − (1 − 1
2 eu(m−r))]3

,

f2 =
1
4

xt−i

∑
r=0

Cr
xt−i

(1 − αi)
rα

xt−i−r
i (xt−i − r)2eu(xt−i−r) 1 + 1

2 eu(xt−i−r)

[1 − (1 − 1
2 eu(xt−i−r))]3

.

Appendix A.2. Derivatives of the Quasi-Likelihood Function

The conditional log-quasi-likelihood function lt(θ) is continuous on Θ: for 1 ≤ t ≤ n,

∂lt(θ)
∂θ

= m1
∂μt(θ)

∂θ
+ m2

∂σ2
t (θ)

∂θ
,

∂2lt(θ)
∂θ∂θT = (m1 − m3)

∂2μt(θ)

∂θ∂θT − 2m1m3
∂μt(θ)

∂θ

∂σ2
t (θ)

∂θT + (m2 +
m2

3
2

− m2
1m3)

∂2σ2
t (θ)

∂θ∂θT ,

where

m1 =
Xt − μt(θ)

σ2
t (θ)

, m2 =
(Xt − μt(θ))2 − σ2

t (θ)

2σ4
t (θ)

, m3 =
1

σ2
t (θ)

.

Then the first and second derivatives of μt(θ) and σ2
t (θ) can be easily expressed by

∂μt(θ)

∂ω
= m,

∂μt(θ)

∂αi
= Xt−i,

∂σ2
t (θ)

∂ω
= (σ2 + 1)(m − 2ωm) + 2σ2(m2ω + m

q

∑
i=1

αiXt−i),
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∂σ2
t (θ)

∂αi
= (σ2 + 1)(Xt−i − 2αiXt−i) + 2σ2(mωXt−i + αiX2

t−i),

∂2μt(θ)

∂ω2 = 0,
∂2μt(θ)

∂α2
i

= 1,
∂2μt(θ)

∂ωαi
= 0,

∂2σ2
t (θ)

∂ω2 = −2m(σ2 + 1) + 2m2σ2,
∂2σ2

t (θ)

∂α2
i

= −2Xt−i(σ
2 + 1) + 2X2

t−iσ
2,

∂2σ2
t (θ)

∂ωαi
= 2mσ2Xt−i.

Appendix A.3. Proof of Theorem 1

The techniques used here are mainly based on Francq and Zakoïan (2004) [20]. We
will establish the following intermediate results:

(i) limn→∞ supθ∈Θ

∣∣∣ 1
n
(

Ln(θ)− L̃n(θ)
)∣∣∣ = 0 a.s.

(ii) E(lt(θ)) is continuous in θ.
(iii) It exists t ∈ Z such that σ2

t (θ) = σ2
t (θ0) a.s., then ⇒ θ = θ0.

(iv) Any θ 	= θ0 has a neighbourhood V(θ) such that

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

1
n

L̃n(θ
∗) > Eθ0 l1(θ0) a.s.

First we prove (i). Let at := supθ∈Θ |μ̃t(θ) − μt(θ)|, bt := supθ∈Θ |σ̃2
t (θ) − σ2

t (θ)|.
Standard arguments from Corollary 2.2 in Aknouche and Francq (2023) [21] show that
at(1 + Xt + supθ∈Θ μt(θ)) → 0, a.s. and bt(1 + X2

t + supθ∈Θ μ2
t (θ)) → 0, a.s., t → ∞, so we

obtain the inequality

sup
θ∈Θ

∣∣∣∣ 1
n
(Ln(θ)− L̃n(θ))

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣∣ 1
2n

n

∑
t=1

log
σ̃2

t (θ)

σ2
t (θ)

+ (
(xt − μ̃t)2

σ̃2
t

− (xt − μt(θ))2

σ2
t

)

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ 1
2n

n

∑
t=1

σ̃2
t (θ)− σ2

t (θ)

σ2
t (θ)

+ (
(xt − μ̃t(θ))2

σ̃2
t (θ)

− (xt − μt(θ))2

σ2
t

)

∣∣∣∣∣
≤ sup

θ∈Θ

1
2n

n

∑
t=1

|σ̃2
t (θ)− σ2

t (θ)|
σ2

t (θ)
+

|μ̃t(θ)− μt(θ)||μt(θ) + μ̃t(θ)− 2Xt|
σ̃2

t (θ)

+

∣∣σ̃2
t (θ)− σ2

t (θ)
∣∣|Xt − μt(θ)|2

σ2
t (θ)σ̃

2
t (θ)

≤ 1
2n

n

∑
t=1

2
σ2

t (θ)
at(1 + Xt + sup

θ∈Θ
μt(θ)) +

1 + σ̃2
t (θ)

σ2
t (θ)σ̃

2
t (θ)

ct(1 + X2
t + sup

θ∈Θ
μ2

t (θ)).

The a.s. limit holds because of the Cesàro lemma.
We prove (ii) now. For any θ ∈ Θ, let Vη(θ) = B(θ, η) be an open ball centered at θ

with radius η,

∣∣lt(θ̃)− lt(θ)
∣∣ ≤ |σ2

t (θ̃)− σ2
t (θ)|

∣∣∣∣∣X2
t + μ2

t (θ) + σ2
t (θ̃)

σ2
t (θ)σ

2
t (θ̃)

∣∣∣∣∣+ |μt(θ̃)− μt(θ)||μt(θ) + μt(θ̃)− 2Xt|
σ2

t (θ̃)
.

Then

E

⎛⎝ sup
˜θ∈Vη(θ)

∣∣lt(θ̃)− lt(θ)
∣∣⎞⎠ ≤‖ σ2

t (θ̃)− σ2
t (θ) ‖2‖

X2
t + μ2

t (θ) + σ2
t (θ̃)

σ2
t (θ)σ

2
t (θ̃)

‖2

+
‖ μt(θ̃)− μt(θ) ‖2‖ μt(θ) + μt(θ̃)− 2Xt ‖2

σ2
t (θ̃)

→ 0, as η → 0.

105



Entropy 2023, 25, 207

Next, we check (iii). By Jensen’s inequality, we have

E[lt(θ)− lt(θ0)] = E
[

E
(

1
2

log
σ2

t (θ0)

σ2
t (θ)

+
(xt − μt(θ0))

2

2σ2
t (θ0)

− (xt − μt(θ))2

2σ2
t (θ)

∣∣∣∣Ft−1

)]
≤ E

[
log E

(
σ2

t (θ0)

σ2
t (θ)

∣∣∣∣Ft−1

)]
= E(log(1)) = 0.

The equality holds if
σ2

t (θ0)

σ2
t (θ)

= 1 a.s. Ft−1, i.e. θ = θ0.

Then the proof of (iv) is similar to that in the Supplementary Material A.4 in Xu and
Zhu (2022) [22]. Here we omit the details.

Appendix A.4. Proof of the Positive Definiteness of Σ

Here, we prove the positive definiteness of Σ. By definition of positive definiteness,
we need to prove for any ξ = (ξ0, ξ1, . . . , ξq)T ∈ Rq+1, if ξTΣξ = 0, then ξ = 0.

ξTΣξ = ξTE

[
1

2σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θT +
1

σ2
t (θ0)

∂μt(θ0)

∂θ

∂μt(θ0)

∂θT

]
ξ

= E

[
1

2σ4
t (θ0)

(ξT ∂σ2
t (θ0)

∂θ
)2 +

1
σ2

t (θ0)
(ξT ∂μt(θ0)

∂θ
)2

]
.

Suppose the left-hand side is 0, then under Assumption 1, the expectation in the
right-hand side is 0 for any t ∈ Z. Because σ2

t (θ0) > 0, this expectation is always greater

than or equal to 0. It equals 0 only when ξT ∂σ2
t (θ0)

∂θ
= 0 and ξT ∂μt(θ0)

∂θ
= 0 almost surely.

Thus, ξTΣξ = 0 yields ξT ∂σ2
t (θ0)

∂θ
= 0 and ξT ∂μt(θ0)

∂θ
= 0 a.s. for t ∈ Z, and vice versa.

Using vector form of
∂σ2

t (θ0)

∂θ
, we have

ξaξaξa
T ∂σ2

t (θ0)

∂θ
= ξξξT

⎛⎜⎜⎜⎝
(σ2 + 1)(m − 2ωm) + 2σ2(ωm2 + m ∑

q
i=1 αiXt−i)

(σ2 + 1)(Xt−1 − 2α1Xt−1) + 2σ2(ωmXt−1 + α1X2
t−1)

...
(σ2 + 1)(Xt−q − 2αqXt−q) + 2σ2(ωmXt−q + αqX2

t−q)

⎞⎟⎟⎟⎠.

Suppose the left-hand side is 0 almost surely, then the right-hand side is also 0 almost
surely, which can be written as

ξ0(σ
2 + 1)(m − 2ωm) + 2σ2ξ0(ωm2 + m

q

∑
i=1

αiXt−i)

+ ξ1(σ
2 + 1)(Xt−1 − 2α1Xt−1) + 2σ2ξ1(ωmXt−1 + α1X2

t−1) + Mt−2 = 0 a.s.,

where

Mt−2 =
p

∑
k=2

ξk

[
(σ2 + 1)(Xt−k − 2αkXt−k) + 2σ2(ωmXt−k + αkX2

t−k)
]
.

So the coefficients of the above equation must satisfy

ξi(σ
2 + 1) = 0, 2σ2ξi = 0, i = 0, . . . , q.
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For σ2 > 0, we must have ξi = 0, i = 0, . . . , q. Thus, ξ = (ξ0, ξ1, . . . , ξq)T = 0, which
completes the proof of the positive definiteness of Σ.

Appendix A.5. Lemmas for the Proof of Theorem 2

Similar to the proof of Theorem 1.2 in Hu (2016) [9], we give some related lemmas for
the proof of Theorem 2. According to the derivatives of the quasi-likelihood function, we
have

∂μt(θ)

∂ω
= m,

∂σ2
t (θ)

∂ω
= (σ2 + 1)(m − 2ωm) + 2σ2

(
m2ω + m

q

∑
i=1

αiXt−i

)
,

≤ (σ2 + 1)m(1 − 2ωL) + 2σ2

(
m2ωU + m

q

∑
i=1

αUXt−i

)
,

thus, E( ∂μt(θ)
∂ω )2 < ∞ and E( ∂σ2

t (θ)
∂ω )2 < ∞. Likewise for the other terms of parameters.

Lemma A1. Under Assumptions 1 and 2, when n → ∞,

1√
n

n

∑
t=1

∂l̃t(θ0)

∂θi

d−→ N(0, Σ),
1
n

n

∑
t=1

∂2 l̃t(θ0)

∂θi∂θj

P−→ −Σ.

Proof of Lemma A1. First, we show that

n−1/2
n

∑
t=1

∣∣∣∣∂lt(θ0)

∂θi
− ∂l̃t(θ0)

∂θi

∣∣∣∣ P−→ 0, n−1
n

∑
t=1

∣∣∣∣∣∂2lt(θ0)

∂θi∂θj
− ∂2 l̃t(θ0)

∂θi∂θj

∣∣∣∣∣ P−→ 0.

Notice that μ̃t(θ) and σ̃2
t (θ) are stationary approximations of μt(θ) and σ2

t (θ), since Xt
is stationary and ergodic, using arguments similar to Proposition 2.1.1 in Straumann
(2005) [23], for fixed θ ∈ Θ, μ̃t(θ) and σ̃2

t (θ), μt(θ) and σ2
t (θ) are also stationary and ergodic.

Hence, similar to the proof of Lemma A2 in Hu and Andrews (2021) [24], it is easy to have

n−1/2
n

∑
t=1

∣∣∣∣∂lt(θ0)

∂θi
− ∂l̃t(θ0)

∂θi

∣∣∣∣ P−→ 0, n−1
n

∑
t=1

∣∣∣∣∣∂2lt(θ0)

∂θi∂θj
− ∂2 l̃t(θ0)

∂θi∂θj

∣∣∣∣∣ P−→ 0.

Therefore, it suffices to show that

1√
n

n

∑
t=1

∂lt(θ0)

∂θ

d−→ N(0, Σ),
1
n

n

∑
t=1

∂2lt(θ0)

∂θ∂θT
P−→ −Σ.

First, we should guarantee that

Eθ0

∥∥∥∥∂lt(θ0)

∂θ

∂lt(θ0)

∂θT

∥∥∥∥ < ∞, Eθ0

∥∥∥∥∂2lt(θ0)

∂θ∂θT

∥∥∥∥ < ∞. (A1)

Now we prove the first part of (A1).

Eθ0

(
∂lt(θ0)

∂ω

)2

= Eθ0

[
1

2σ4
t (θ0)

(
∂σ2

t (θ0)

∂ω

)2

+
1

σ2
t (θ0)

(
∂μt(θ0)

∂ω

)2
]
< ∞.

Similarly, we can prove other terms, thus, the first part of (A1) holds. The proof of the
second part of (A1) is similar, here we omit the details.
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Under (A1),
{

∂lt(θ0)

∂θ

}
is a martingale difference sequence with respect to {Ft}, it

follows that at θ = θ0, Eθ0

(
∂lt(θ0)

∂θ

∣∣Ft−1

)
= 0, so Eθ0

(
∂lt(θ0)

∂θ

)
= 0. Moreover, we have

shown that Σ = Eθ0

(
∂lt(θ0)

∂θ

∂lt(θ0)

∂θT

)
in Section 3.2. Hence

1√
n

n

∑
t=1

∂l̃t(θ0)

∂θ

d−→ N(0, Σ)

holds by the central limit theorem for martingale difference sequence in Billingsley (1961).

Similarly, we have Eθ0

(
∂l2

t (θ0)

∂θ∂θT

)
= −Σ.

Under Assumption 1,
1
n

n

∑
t=1

∂2 l̃t(θ0)

∂θi∂θj

P−→ −Σ follows from the ergodic theorem. Thus,

Lemma A1 is proved.

Before showing Lemma A2, we have

T̃n(u) ≡ l̃n

(
θ0 +

u√
n

)
− l̃n(θ0), u ∈ R

q+1,

we use T̃n to derive the asymptotic distribution of θ̂n.
For any u ∈ Rq+1, the Taylor series expansion of T̃n(u) at θ0 is

T̃n(u) =
1√
n

n

∑
t=1

uT ∂l̃t(θ0)

∂θ
+

1
2n

n

∑
t=1

uT ∂2 l̃t(θ0)

∂θ∂θT u +
1

2n

n

∑
t=1

uT
[

∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

]
u, (A2)

where θ∗ = θ∗n(u) is on the line segment connecting θ0 and θ0 +
u√
n

. For Euclidean distance

‖ · ‖ and any compact set K ⊂ Rq+1, supu∈K ‖ θ∗ − θ0 ‖→ 0, as n → ∞.

Lemma A2. Under Assumptions 1 and 2, when n → ∞,

1
n

n

∑
t=1

[
∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

]
P−→ 0.

Proof. Similar to Lemma A1, for any 1 ≤ i, j ≤ q + 1,

1
n

n

∑
t=1

∥∥∥∥∥∂2lt(θ0)

∂θi∂θj
− ∂2 l̃t(θ0)

∂θi∂θj

∥∥∥∥∥ P−→ 0. (A3)

Using arguments similar to the proof of Theorem 2.2 of Francq and Zakoïan (2004) [20],
it suffices to show

1
n

n

∑
t=1

[
∂2lt(θ∗)
∂θi∂θj

− ∂2lt(θ0)

∂θi∂θj

]
P−→ 0. (A4)

By the Taylor series expansion, we have

1
n

n

∑
t=1

∂2lt(θ∗)
∂θi∂θj

=
1
n

n

∑
t=1

∂2lt(θ0)

∂θi∂θj
+

1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)
(θ∗ − θ0),

here θ∗∗ = θ∗∗n (u) is on the line segment connecting θ0 and θ∗, such that for any u, we have
‖ θ∗∗ − θ0 ‖→ 0 a.s., n → ∞.

From (A2), ‖ θ∗ − θ0 ‖→ 0 a.s, so

1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)
(θ∗ − θ0) → 0, a.s.
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if

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)∥∥∥∥∥ < ∞, a.s. (A5)

Then we have
1
n

n

∑
t=1

∂2lt(θ∗)
∂θi∂θj

→ 1
n

n

∑
t=1

∂2lt(θ0)

∂θi∂θj
a.s.,

so (A4) is proved.
Using arguments similar to the proof of Theorem 2.2 of Francq and Zakoïan (2004) [20],

there exists a neighborhood ν(θ0), that

Eθ0 sup
θ∈ν(θ0)∩Θ

∥∥∥∥∥ ∂

∂θk

(
∂2lt(θ)
∂θi∂θj

)∥∥∥∥∥ < ∞, sup
θ∈ν(θ0)

∥∥∥∥∥ 1
n

n

∑
t=1

[
∂2lt(θ)
∂θi∂θj

− ∂2 l̃t(θ)
∂θi∂θj

]∥∥∥∥∥ P−→ 0. (A6)

Therefore, by the ergodic theorem, we have

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)∥∥∥∥∥ ≤ lim sup
n→∞

1
n

n

∑
t=1

sup
θ∈ν(θ0)∩Θ

∥∥∥∥∥ ∂

∂θk

(
∂2lt(θ)
∂θi∂θj

)∥∥∥∥∥
= Eθ0 sup

θ∈ν(θ0)∩Θ

∥∥∥∥∥ ∂

∂θk

(
∂2lt(θ)
∂θi∂θj

)∥∥∥∥∥ < ∞,

so (A5) is proved.
In view of (A3), (A4) and (A6), we obtain Lemma A2.

Lemma A3. For any compact set K ∈ Rq+1 and any ε > 0,

lim
σ→0

lim sup
n→∞

P

(
sup

u,v∈K,‖u−v‖<σ

∣∣∣T̃n(u)− T̃n(v)
∣∣∣ ≥ ε

)
= 0.

Proof. For any ε > 0, by (A2) we have

lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈K,‖u−v‖<δ

∣∣∣T̃n(u)− T̃n(v)
∣∣∣ ≥ ε

)

≤ lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1√
n

n

∑
t=1

(u − v)T ∂l̃t(θ0)

∂θ

∣∣∣∣∣ ≥ ε

3

)

+ lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1
n

(
n

∑
t=1

uT ∂2 l̃t(θ0)

∂θ∂θT u −
n

∑
t=1

vT ∂2 l̃t(θ0)

∂θ∂θT v

)∣∣∣∣∣ ≥ 2ε

3

)

+ lim
δ→0

lim sup
n→∞

P

{
sup

u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1
n

[
n

∑
t=1

uT
(

∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

)
u

−
n

∑
t=1

vT
(

∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

)
v

]∣∣∣∣∣ ≥ 2ε

3

}
.

Because of Lemmas A1 and A2, we have

1√
n

n

∑
t=1

∂l̃t(θ0)

∂θ
= Op(1),

1
n

n

∑
t=1

∂2 l̃t(θ0)

∂θ∂θT = Op(1),

1
n

n

∑
t=1

[
∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

]
= op(1),
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where Op(1) and op(1) for vector and matrix means Op(1) and op(1) for every elements.
By the compactness of K, we have

lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1√
n

n

∑
t=1

(u − v)T ∂l̃t(θ0)

∂θ

∣∣∣∣∣ ≥ ε

3

)
= 0,

lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1
n

(
n

∑
t=1

uT ∂2 l̃t(θ0)

∂θ∂θT u −
n

∑
t=1

vT ∂2 l̃t(θ0)

∂θ∂θT v

)∣∣∣∣∣ ≥ 2ε

3

)
= 0,

lim
δ→0

lim sup
n→∞

P

{
sup

u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1
n

[
n

∑
t=1

uT
(

∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

)
u

−
n

∑
t=1

vT
(

∂2 l̃t(θ∗)
∂θ∂θT − ∂2 l̃t(θ0)

∂θ∂θT

)
v

]∣∣∣∣∣ ≥ 2ε

3

}
= 0,

which completes our proof.

Appendix A.6. Proof of Theorem 2

Proof. Let T(u) = uTN(0, Σ)− 1
2 uTΣu, where N is a multivariate Gaussian random vector

with mean 0 and covariance matrix Σ. By Lemmas A1 and A2, for any u ∈ Rq+1 and
n → ∞, the finite dimensional distributions of T̃n converge to those of T: T̃n(u) → T(u).

By Lemma A3, similar to Hu (2016) [9], T̃n(u) is tight on the continuous function
space C(K) for any compact set K ∈ Rq+1. So by Theorem 7.1 in Billingsley (1999) [25],
T̃n(·) → T(·) on C(K). From Appendix A.4 and Lemma A1, Σ is positive finite and
invertible, meanwhile, T(·) is concave with the unique maximum Σ−1N(0, Σ) = N(0, Σ−1).
T̃n(·) is maximized at umax =

√
n(θ̂n − θ0). Thus, the result of Theorem 2 can be proved by

the proof of Lemma 2.2 and Remark 1 in Davis et al. (1992) [26].
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Abstract: This paper proposes a class of algorithms for analyzing event count time series, based on
state space modeling and Kalman filtering. While the dynamics of the state space model is kept
Gaussian and linear, a nonlinear observation function is chosen. In order to estimate the states, an
iterated extended Kalman filter is employed. Positive definiteness of covariance matrices is preserved
by a square-root filtering approach, based on singular value decomposition. Non-negativity of the
count data is ensured, either by an exponential observation function, or by a newly introduced
“affinely distorted hyperbolic” observation function. The resulting algorithm is applied to time series
of the daily number of seizures of drug-resistant epilepsy patients. This number may depend on
dosages of simultaneously administered anti-epileptic drugs, their superposition effects, delay effects,
and unknown factors, making the objective analysis of seizure counts time series arduous. For the
purpose of validation, a simulation study is performed. The results of the time series analysis by state
space modeling, using the dosages of the anti-epileptic drugs as external control inputs, provide a
decision on the effect of the drugs in a particular patient, with respect to reducing or increasing the
number of seizures.

Keywords: n onlinear state space model; iterated extended Kalman filter; Bayesian filtering; count
time series; singular value decomposition

1. Introduction

Temporal data sequences resulting from counting discrete events over a given time
interval represent a particular variant of time series called discrete-valued or event count
time series. These count data arise in various fields, such as physics, epidemiology, finance,
econometrics, or medicine. Much of the existing framework on time series analysis relies
on the assumptions of Gaussianity and linearity. The non-negativity and integrity con-
straints inherent in count time series have led to the development of alternative modeling
approaches that instead employ probability distributions of Poisson type. As prominent
examples we mention generalized linear models (GLMs) [1], dynamic generalized lin-
ear models [2,3], integer-valued autoregressive (INAR) models [4], and integer-valued
generalized autoregressive conditional heteroscedasticity (INGARCH) models [5–7].

However, in this paper we aim at modeling count time series within the linear Gaus-
sian regime as long as possible, while introducing non-negativity and integrity only at the
last stage of modeling, namely, at the stage of modeling the observation process. The suit-
able framework for this agenda is given by classical state space modeling [8]. In state space
modeling, the dynamical process underlying the data is explicitly separated from the obser-
vation process, such that the former can be kept Gaussian and linear, which considerably
simplifies state estimation and model identification. Further advantages of the state space
approach are given by the possibility to discriminate between dynamical noise and obser-
vation noise, and by the option of straightforward generalization to the multivariate case.

Entropy 2023, 25, 1372. https://doi.org/10.3390/e25101372 https://www.mdpi.com/journal/entropy
112



Entropy 2023, 25, 1372

It is also possible to include explanatory factors and external control inputs into state space
models, and to incorporate conditional heteroscedasticity [9], with little additional effort.

Since the dynamics is kept Gaussian and linear, temporal correlations in the given
data can be modeled by standard models from linear time series analysis, such as linear
autoregressive moving average (ARMA) models [10]; ARMA models can be rewritten as
(components of) linear state space models. Finally, non-negativity is modeled by employing
a nonlinear observation function, while integrity is interpreted as the effect of a suitable
additive observation noise term, which performs a kind of quantization of the non-integer
output of the nonlinear observation function.

In linear state space modeling, tasks such as prediction, filtering, and smoothing
may be performed by algorithms based on the linear Kalman filter (KF) [8,11]. However,
in the case of a nonlinear observation function, generalizations of the linear KF need to be
employed. Nowadays, a variety of algorithms is available, such as the extended KF (EKF),
the iterated extended KF (IEKF), the unscented KF (UKF), and particle filtering [11,12].

The EKF is based on applying a linear KF by forming the local derivative of the
nonlinear observation function (and the dynamical process, if it is also nonlinear) at the
current estimate of the predicted state. The IEKF extends the EKF by an additional iteration
that aims at finding consistent estimates for predicted and filtered states. It has recently
been shown that the IEKF iteration can be interpreted as an application of Gauss–Newton
optimization [12]. The UKF generalizes the EKF by propagating an ensemble of determinis-
tically chosen points, thus improving Gaussian approximation and eliminating the explicit
calculation of the Jacobian matrices. In principle, in Kalman filtering the error covariance
matrices of the state estimates should be bounded and should converge to a steady so-
lution, irrespective of the error in the initial state estimate and the corresponding initial
error covariance matrix. However, the opposite phenomenon called theoretical divergence of
classical KF is also well known. In order to keep the covariance matrix positive definite
and improve the numerical behavior of the KF, square-root variants of the linear KF and its
nonlinear generalizations have been introduced [13].

The mentioned algorithms have played a prominent role in applications in biomedical
research and adjacent fields, such as public health [14]. Examples of corresponding count
time series include epidemiological data (such as the famous U.S. poliomyelitis incidence
time series, consisting of monthly counts starting in 1970) [15], sleep stage sequences,
erythrocyte counts, infectious disease data [16], and epileptic seizure counts [17,18]. While
most epilepsies respond well to anti-epileptic treatment, modeling the effects of anti-
epileptic drugs (AEDs) on seizure frequency is essential for patients with difficult-to-treat
or treatment-resistant epilepsies [19,20].

Several quantitative approaches to the analysis of seizure count time series have been
proposed, which suffer from significant deficiencies. The mixed-effects models employed by
Tharayil et al. cannot assess the effects of the changes in AEDs [21]. The epilepsy seizure
management tool (EpiSAT) proposed by Chiang et al. does not account for observation
errors caused by missed seizures or misinterpreted non-seizure events [22]. The Bayesian
negative binomial dynamic linear model, recently proposed by Wang et al., cannot model
the interaction effect between AEDs [23].

Application of state space modeling and Kalman filtering to seizure count time se-
ries has the potential to solve these deficiencies by quantifying the effect of an AED in
the presence of other AEDs, describing delays in the effect of each AED, and modeling
interaction effects between several AEDs. Moreover, the state space approach allows for the
presence of temporal correlations in the seizure count time series that are unrelated to the
current AED medication, but may result from other unknown influences on the probability
of seizures. Furthermore, the state space approach is robust with respect to observation
errors, such as missed seizures, events misclassified as seizures, outliers, missing data,
or other observer-related errors. Therefore, the primary objective of this contribution is to
explore and develop state space modeling algorithms tailored explicitly for event count
time series, with a particular focus on the modeling of seizure count time series, as an
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illustrative example. To the best of our knowledge, apart from our previous work [24–26],
this approach is novel on its own.

This paper is organized as follows. In Section 2, “Materials and Methods”, we discuss
the main algorithms for Kalman filtering and for parameter estimation; we also describe
the simulated data and the real data from a patient. In Section 3, “Results”, we show the
performance of the proposed algorithm, provide some comparison with respect to the
numerical problems arising in previous algorithms, and show results from application to
both simulated and real data. Section 4, “Discussion”, concludes the paper. Additional in-
formation on the proposed state space models and Kalman filtering algorithms is provided
in Appendices A and B.

2. Materials and Methods

2.1. Independent Components Linear State Space (IC-LSS) Models

The independent components linear state space (IC-LSS) model is a distinct category
of the linear state space (LSS) models proposed by Galka et al. [27]. Let the data vector
observed at time t be denoted by yt, where t = 1, . . . , T denotes discrete time, and let the
dimension of yt be denoted by n. The examples for analysis of actual data that are shown
below are for scalar data only, i.e., n = 1, but we choose to keep the presentation of the
methodology more general.

In linear state space (LSS) modeling, the observed data are linked to an unobserved
m-dimensional state vector, xt, as described by an observation equation

yt = Cxt + εt, εt ∼ N (0,R) (1)

where C and εt represent the observation matrix and the observation noise, respectively.
The observation noise is a white Gaussian noise with zero mean and observation noise
covariance matrix R. By including this noise, the model acknowledges the limitations and
uncertainties of real-world observations, and the information loss about the true state of
the system. Within LSS models, the temporal evolution of the state vector, xt, is described
by a discrete-time dynamical equation

xt = Axt−1 + ηt, ηt ∼ N (0,Q) (2)

where A and ηt represent the state transition matrix and the dynamical noise, respectively.
Also, the dynamical noise is a white Gaussian noise with zero mean and dynamical noise
covariance matrix Q. An additional control input term, depending on a known external
control input, ut, may be added to the dynamical equation:

xt = Axt−1 + Buut + ηt (3)

where Bu represents the control gain matrix. The respective dimensions of the matrices
and vectors are given in Table 1. The IC-LSS model is a specific subset of the LSS model
family that characterizes data as a combination of independent source processes through
a weighted sum and chooses specific structures of parameter matrices of the general
state space model. The model depends on a set of parameters matrices, collected in the
set Θ = {C,A,R,Q,Bu}. Both the state transition matrix, A, and the dynamical noise
covariance matrix, Q, are constructed as block-diagonal matrices with identical sets of block
dimensions, as described in Appendix A.

Our modeling approach assumes that the impact of each control input, i.e., each com-
ponent of the vector ut, is independent of the other components, and that the corresponding
processes can be modeled as deterministic first-order autoregressive models, to be denoted
by AR(1). These AR(1) models are made deterministic by setting the corresponding ele-
ments of Q to zero. To account for temporally correlated fluctuations in the data caused by
factors other than the control input, a stochastic process is also included. This stochastic
process is modeled by an autoregressive moving average model with orders p and p − 1,
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to be denoted as ARMA(p, p − 1). In the current implementation, we usually choose p = 2,
which represents a trade-off between the stochasticity and stability of the model. AR(1) and
ARMA(2,1) models can easily be incorporated into IC-LSS models (for technical details, see
Appendix A).

Table 1. Quantities arising in state space models.

Notation Meaning and/or Name Dimension

yt data vector n
εt observation noise vector n
xt state vector m
ηt dynamical noise vector m
ut external control vector u
C observation matrix n × m
A state transition matrix m × m
R observation noise covariance matrix n × n
Q dynamical noise covariance matrix m × m
Bu control gain matrix m × u

2.2. Nonlinear State Space (NLSS) Models

Count time series do not follow Gaussian probability distributions, therefore the class
of linear Gaussian state space models is not well suited for modeling such time series;
rather it would be beneficial to employ appropriate nonlinear state space (NLSS) models.
In this paper, we keep the dynamical equation linear, as in Equation (3), while defining a
nonlinear observation equation by

yt = f(xt) + εt, εt ∼ N (0,R) (4)

where we have assumed that the observation noise, εt, can be kept Gaussian; f( . ) represents
a nonlinear observation function. We employ two different nonlinear functions, namely

f1(x) = exp(Cx) (5)

and

f2(x) =
Cx

2
+

√
(Cx)2

4
+ k (6)

In the case of multivariate data, n > 1, these functions are to be applied component-wise.
The first of these observation functions, simply an exponential function, has been

chosen with the intention of achieving non-negativity of the observed data, as it may also be
achieved in Poisson regression. The disadvantage of this choice for the observation function
is the fact that it diverges exponentially for large positive arguments. In previous work,
we have occasionally encountered numerical breakdown of Kalman filtering algorithms
due to the resulting extremely large values [25,26]; details will be provided below in
Section 3.1. For this reason, we propose a different nonlinear observation function, to be
called the “affinely distorted hyperbolic” function, as given in Equation (6); while for
negative arguments it behaves like the exponential function, for positive arguments it
converges to the linear function, rising with a slope of C, see Figure 1.

Recently, Weiß and coworkers [7,28] have introduced a nonlinear function called the
“softplus” function, given by

f(x) = k log
(

1 + exp
(
x/k

))
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where k is a real positive parameter. This function could be employed instead of our
“affinely distorted hyperbolic” function for the purpose of constraining observations to be
non-negative, since it has similar behavior.

Figure 1. Nonlinear observation functions f1(x) (blue) and f2(x) (red), with C = 1 and k = 1; the
dashed vertical line on the right side represents the linear function f(x) = x.

2.3. Iterated Extended Kalman Filter (IEKF)

In this paper, we are dealing with a two-fold estimation problem: estimation of states
and estimation of parameters. The extended Kalman filter (EKF) has been used as a popular
tool for estimating the states in nonlinear state space models. It was first proposed by
Kalman and Bucy in 1961 [29]. The EKF results from extending the original Kalman filter
developed for linear systems to nonlinear systems by linearizing the dynamical equation
and the observation equation around the current state estimate. As an improved variant of
EKF, the iterated extended Kalman filter (IEKF) has been proposed, in order to improve
the accuracy and stability of the EKF [30]. The IEKF has been applied to various fields,
including robotics, aerospace, and control systems.

For a given time series of length T and given initial state estimate x0|0 and correspond-
ing covariance matrix P0|0, the forward temporal recursion begins at time t = 1 with the
predicted state estimate [25], which is computed by

xt|t−1 = Axt−1|t−1 + Buut (7)

The notation xt1|t0
is used throughout the paper to indicate that an estimate at time t1 is

obtained by using all data available at time t0. The corresponding predicted state covariance
is computed by

Pt|t−1 = APt−1|t−1A
T +Q (8)

At each time point, the IEKF iteration starts, after Equations (7) and (8) have been evaluated,
with iteration index i = 1, . . . , im. First, the derivative of the chosen nonlinear function is
computed as

H
(i)
t =

∂f

∂x

∣∣∣∣
x
(i−1)
t|t

(9)
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In the multivariate case, this derivative will be a matrix (Jacobian matrix). At each iteration,
the prediction errors (also known as innovations), the innovation variance, the Kalman gain,
and the filtered state estimates are computed, according to

ν
(i)
t = yt − f

(
x
(i−1)
t|t

)
(10)

V
(i)
t = H

(i)
t Pt|t−1

(
H
(i)
t
)T

+ R (11)

K
(i)
t = Pt|t−1

(
H
(i)
t
)T(

V
(i)
t
)−1 (12)

x
(i)
t|t = xt|t−1 +K

(i)
t

(
ν
(i)
t −H

(i)
t

(
xt|t−1 − x

(i−1)
t|t

))
(13)

The iteration ends when a stopping criterion is fulfilled. We use the stopping criterion of
either the norm of the relative change of x

(i)
t|t falling below 10−10, or the iteration index

reaching a maximal value of im = 100. After the iteration, the filtered state covariance is
computed by

Pt|t =
(
Im −K

(i)
t H

(i)
t
)
Pt|t−1 (14)

where Im denotes the m-dimensional identity matrix.
The IEKF algorithm, as presented above, is summarized in Appendix B. In an earlier

paper [25], we have presented results from actual application of the IEKF, for the case of an
exponential observation function.

2.4. Singular Value Decomposition Iterated Extended Kalman Filter (SVD-IEKF)

At each time step, the covariance matrices Pt|t−1, Vt, and Pt|t arising in the Kalman
filter recursion have to be positive definite, or at least, positive semi-definite. However, it is
well known that during the recursion due to numerical effects these covariance matrices
may lose the property of positive definiteness. As a consequence, computation of the
likelihood becomes unreliable; furthermore, the iteration of the IEKF may converge only
with delays, or it may entirely fail to converge [25].

As a remedy, one may work with matrix square roots of the covariance matrices,
instead of the covariance matrices themselves. There are, at least, two ways to define
the square root of a matrix: by Cholesky decomposition (CD) and by singular value
decomposition (SVD).

For a given real square matrix M with dimension m × m, the Cholesky decomposition
is given by

M = ST
MSM (15)

where SM denotes a (m × m)-dimensional upper triangular matrix with non-negative
diagonal elements. The Cholesky Decomposition is only possible for matrices that are
positive (semi-)definite; for semi-definiteness, the decomposition may not be unique.

For a given real matrix, M, with dimension m × n, the SVD decomposition is given by

M = UMΣMWT
M (16)

where UM and WM denote two orthogonal matrices with dimensions m × m and n × n,
respectively, and ΣM is a diagonal matrix with dimension m × n, which has non-negative
real numbers, σi, on its diagonal, called the singular values of M [31]. The singular values
are the positive square roots of the eigenvalues of MTM [13]. SVD can be applied to any
matrix, without the condition of positive (semi-)definiteness.

The SVD of a positive (semi-)definite square matrix, M, e.g., a covariance matrix, can
be formulated as

M = WMΣ2
MWT

M (17)
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such that we have UM = WM, and the definition of the matrix of singular values has been
changed to Σ2

M instead of ΣM; this is a reasonable change of definition, since the singular
values are non-negative.

Square-root variants of the Kalman filter that employ CD were proposed already in
the 1960s. However, SVD represents a matrix decomposition that offers superior numerical
properties, compared with CD. Square-root variants of the Kalman filter that employ SVD
were proposed in 1992 by Wang et al. [13], and in 2017 by Kulikova and Tsyganova [32].
In an earlier paper, we proposed a square-root variant of the IEKF that employs SVD [26],
based on the algorithm of Kulikova and Tsyganova.

In the proposed nonlinear Kalman filter algorithm, the initial covariance matrix, P0|0,
and the noise covariance matrices, Q and R, are factorized by SVD as follows:

P0|0 = W0|0Σ2
0|0W

T
0|0

Q = WQΣ2
QW

T
Q

R = WRΣ2
RW

T
R

These factorizations are performed once outside of the forward recursion of the Kalman
filter. The recursion then begins with the same update equation for the predicted state as
before, Equation (7). However, now the corresponding predicted state covariance matrix is
updated by performing a factorization step by applying SVD to a pre-array, as follows [26]:

U1

[
ΣPt|t−1

0

]
︸ ︷︷ ︸

singular values array

WT
Pt|t−1

=

[
ΣPt−1|t−1

WT
Pt−1|t−1

AT

ΣQW
T
Q

]
︸ ︷︷ ︸

pre-array

(18)

Pt|t−1 =WPt|t−1
Σ2
Pt|t−1

WT
Pt|t−1

(19)

where U1 is an orthogonal matrix that can be discarded. Also, in the SVD-IEKF algorithm,
at each time point an iteration is performed, with the equations for the Jacobi matrix and
the innovations given by Equations (9) and (10), respectively. However, Equation (11) is
replaced by an array factorization step:

U2

[
Σ(i)
Vt
0

]
︸ ︷︷ ︸

singular values array

(
W

(i)
Vt

)T
=

⎡⎣ ΣRW
T
R

Σ(i)
Pt|t−1

(
W

(i)
Pt|t−1

)T(
H
(i)
t
)T

⎤⎦
︸ ︷︷ ︸

pre-array

(20)

V
(i)
t = W

(i)
Vt

(
Σ(i)
Vt

)2(
W

(i)
Vt

)T (21)

where U2 is an orthogonal matrix which can be discarded. As the iteration proceeds,
the normalized innovation, the normalized gain, the optimal Kalman gain, and the filtered
state estimate are computed as follows:

ν̂
(i)
t =

(
W

(i)
Vt

)T
ν
(i)
t (22)

k
(i)
t = Pt|t−1

(
H
(i)
t
)T

W
(i)
Vt

(23)

K
(i)
t = k

(i)
t
(
Σ(i)
Vt

)−2(
W

(i)
Vt

)T (24)

x
(i+1)
t|t = xt|t−1 + k

(i)
t
(
Σ(i)
Vt

)−2
(

ν̂
(i)
t −

(
W

(i)
Vt

)T
H
(i)
t (xt|t−1 − x

(i)
t|t )

)
. (25)
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After reaching the stopping criterion of the iteration, the filtered state covariance matrix,
Pt|t, is computed by a third array factorization step:

U3

[
ΣPt|t
0

]
︸ ︷︷ ︸

singular values array

WT
Pt|t

=

⎡⎣ΣPt|t−1
WT

Pt|t−1

(
Im −K

(i)
t H

(i)
t
)T

ΣRW
T
R

(
K
(i)
t
)T

⎤⎦
︸ ︷︷ ︸

pre-array

(26)

Pt|t = WPt|t Σ
2
Pt|t

WT
Pt|t

(27)

where U3 denotes another orthogonal matrix that can be discarded, and i denotes the
index at which the iteration had stopped. The SVD-IEKF algorithm, as presented above, is
summarized in Appendix B.

2.5. Non-Dynamic Regression Model: Gaussian Case

For the purpose of comparison, we also employ two types of non-dynamic regression
models. The first of these models represents the classical linear Gaussian case; it is defined
as follows:

yt = B̃uut + nt (28)

where B̃u denotes a matrix of regression coefficients, and nt denotes a time series of regres-
sion residuals, assumed to have a Gaussian distribution with zero mean and covariance
matrix Σn. B̃u can be estimated by ordinary least squares; the covariance matrix, Σn, can
then be computed as

Σn =
1
T

T

∑
t=1

(yt − B̃uut)(yt − B̃uut)
T (29)

Note that the regression model of Equation (28) implicitly assumes that the effects of the
different components of the control vector, ut, are uncorrelated.

From the regression model of Equation (28), a logarithmic likelihood can be computed by

log L
(
B̃u

)
= −T

2
(log |Σn|+ n log 2π + n) (30)

2.6. Non-Dynamic Regression Model: Poisson Case

The second non-dynamic regression model is an example of a generalized linear
model, representing the Poisson case; it is defined as follows:

log yt = B̃uut + nt (31)

where B̃u denotes another matrix of regression coefficients, and nt denotes another time
series of regression residuals; in this case, yt is assumed to have a Poisson distribution.
Note that, for simplicity, we formulate this model only for the case of scalar data.

From the regression model of Equation (31), a logarithmic likelihood can be computed by

log L
(
B̃u

)
=

T

∑
t=1

(
ytB̃uut − exp(B̃uut)− log(yt!)

)
. (32)

2.7. Parameter Estimation and Ensembles of Models

As mentioned earlier, when fitting a state space model to given data we have to solve
a two-fold estimation problem: estimation of states and estimation of parameters. In this
paper, estimation of the model parameters, denoted by Θ in Section 2.1, is performed by
numerical maximization of the logarithmic innovation likelihood, denoted by log L(Θ),
employing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton and Nelder–
Mead simplex algorithms [33]. Apart from filtered state estimates, the forward recursion

119



Entropy 2023, 25, 1372

of the Kalman filter also provides the corresponding contributions to the logarithmic
innovation likelihood, which may then be summed up:

log L(Θ) = −1
2

T

∑
t=1

(
log |Vt|+ νT

t V
−1
t νt

)
− nT

2
log 2π (33)

In this expression, the effect of the initial state has been ignored. If the innovations, νt,
have been obtained by the IEKF or SVD-IEKF algorithms, their values correspond to the
final values resulting from the iteration performed at time t, until the stopping criterion
is fulfilled.

In order to avoid parameter redundancy with respect to the control gain matrix, Bu,
the observation matrix, C, has not been included in the set of parameters to be estimated
by optimization; instead constant values of 1.0 are employed, except for the ARMA(2,1)
component, for which the control gain parameters are fixed at zero.

For given data, comparison of the performance of state space models, as discussed
above in Sections 2.2–2.4, with the performance of non-dynamic regression models, as dis-
cussed above in Sections 2.5 and 2.6, can be performed by comparison of the corresponding
values of an information criterion, such as the (corrected) Akaike information criterion
(AICc) [27]. The AICc can be computed from the logarithmic likelihood according to

AICc = −2 log L(Θ) +
2NparT

T − Npar − 1
(34)

where Npar denotes the number of data-adaptive parameters of the corresponding model;
in the case of state space models, this would be the total number of parameters in Θ; if the
nonlinear observation function, f(.), according to Equation (6), is chosen, also the parameter
k becomes part of Θ.

The second term in Equation (34) represents a penalty term for the complexity of the
model; through this term, the values of AICc for different models can be directly compared,
while the corresponding values of the logarithmic likelihood cannot, since they would be
biased in favor of the more complex model. The task of parameter estimation is then given
by finding parameters that minimize the AICc. Due to the complicated dependence of the
AICc on Θ, including the possible existence of numerous local minima, this task can only be
approached by numerical optimization. The chosen algorithm for numerical optimization
may converge to one of these local minima, instead of the global minimum, or to other
minima with smaller AICc values.

This issue can be resolved by employing an ensemble of models. Each model in the
ensemble is initialized with randomly selected initial parameter values and optimized
using the same minimum AICc approach until convergence. Finally, the model with the
smallest AICc value is retained. However, although the probability of actually finding the
global minimum will be improved by this ensemble approach, no assurance of finding the
global minimum is provided.

2.8. Simulated Data

To validate the performance and effectiveness of our proposed NLSS modeling ap-
proach, we conduct simulations, before applying it to the patient data. These simulations
serve to demonstrate the algorithm’s capability in accurately capturing the dynamics of
event count time series. We assume that three anti-epileptic drugs are given, named
AED1, AED2 and AED3, and that, for the particular simulated “patient”, AED1 and AED3
reduce the daily number of seizures, while AED2 increases it. The (arbitrarily chosen)
time-dependent dosages of the drugs during a time interval of 500 days are shown in the
upper panel of Figure 2a, while the resulting time series of the daily numbers of seizures is
shown in the lower panel of the figure.

The simulated time series is generated by employing Equations (1) and (3), utilizing
the affinely distorted hyperbolic function f2(xt), as discussed in Equation (6). In addition
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to the contributions of the three anti-epileptic drugs, a stochastic ARMA(2,1) process is
added. The resulting time series is rounded to integer values, representing the simulated
daily seizure counts. The daily seizure counts assume values from 0 to 6, which is a realistic
interval. The MATLAB code for recreating the simulated data is provided in Appendix C.
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Figure 2. Time-dependent dosages of anti-epileptic drugs (upper panels) and corresponding count
time series of daily epileptic seizures (lower panels) for a simulation (a) and for a real patient (b); in
the upper panels, the anti-epileptic drugs are discriminated by colors (see legends below the panels,
which also give the names of the drugs).

2.9. Patient Data

We demonstrate the practical application of NLSS modeling through the analysis of a
real-world data set obtained from a patient suffering from symptomatic epilepsy. The data
set utilized in this study was collected from an electronic seizure diary called EPI-Vista
(http://www.epivista.de, accessed on 20 September 2023), which has been in routine use
at the North German Epilepsy Center for Children and Adolescents in Schwentinental-
Raisdorf, Germany, since 2007. EPI-Vista is a freely available therapy management tool
that records information about dosages of administered anti-epileptic drugs and about
seizure events.

The time-dependent dosages of the drugs during the chosen time interval of 618 days
are shown in the upper panel of Figure 2b, while the recorded time series of the daily
numbers of seizures is shown in the lower panel of the figure. During the chosen time
interval, five different anti-epileptic drugs were administered: oxcarbazepine, lamotrigine,
rufinamide, clobazam, and valproate.

3. Results

3.1. Convergence Behavior of Iteration

We will briefly comment on the convergence behavior of the iteration of the SVD-IEKF.
Within the recursion of the SVD-IEKF through the data, the iteration takes place at each
time point. We may plot the norm of the relative change of the state estimate as a function of
the iteration index, obtaining a set of curves; examples are shown in Figures 3 and 4. These
examples refer to the analysis of the simulated data, as described in Section 2.8. In Figure 3a,
it can be seen that for all 500 time points the iteration converges according to a power law
within, at most, 35 iterations, thereby confirming that the SVD-IEKF works properly.

However, within an ensemble of models, cases may also occur that show less favorable
behavior. An example is shown in Figure 3b. In this case, we see convergence only for the
first time point; the iteration loop stops after 500 iterations. State estimates obtained from
this iteration were extremely large (in the order of e100), and therefore the Kalman filter
recursion was not continued, and no further iterations were performed. This problem can
be resolved by replacing the exponential function with the affinely distorted hyperbolic
function in the observation equation, Equation (1).
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Figure 3. Norm of relative change of state estimate vs. iteration index for the application of the
SVD-IEKF to a simulated count time series, using a model initialized with two different sets of
random model parameters; in (a) iterations for all 500 time points are shown, while in (b) only
the first iteration is shown, since the recursion of the Kalman filter was aborted afterwards due to
numerical failure.

In Figure 4, we illustrate the effects of loss of positive definiteness of covariance
matrices on the convergence behavior. Also, this example refers to the analysis of the
simulated data. The standard IEKF was used, as described above in Section 2.3, and the
affinely distorted hyperbolic function was employed.

In Figure 4a, it can be seen that for most time points the iteration completely fails to
converge, instead norms of relative state changes stay approximately constant or oscillate;
note the extremely large, or small, values on the vertical axis. In Figure 4b, the effect of
switching from the IEKF to the SVD-IEKF is illustrated, for the same simulated data and the
same set of model parameters: now, for almost all time points, good convergence within
60 iterations is obtained. For a single time point, convergence is slower and seems not to
follow a power law.

Within an ensemble of 1000 random initial models, we find that for 18 models the
IEKF encounters numerical problems resulting from covariance matrices losing positive
definiteness or becoming singular, and another 11 models exhibit poor convergence behav-
ior. For the SVD-IEKF, all models of the ensemble display good or satisfactory convergence
behavior, without any numerical instability of the Kalman filter.
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Figure 4. Norm of relative change of state estimate vs. iteration index for the application of the
IEKF (a) or SVD-IEKF (b) to a simulated count time series, using a model initialized with a set of
random model parameters; iterations for all 500 time points are shown.

3.2. Results of Ensemble Approach: Simulated Data

Following earlier work [24], we plot the control gain parameters, i.e., the diagonal
elements of the control gain matrix, Bu, as defined in Equation (3), against the corresponding
values of the AICc for all models of the ensemble; for each diagonal element, i.e., for each
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anti-epileptic drug, a separate plot is created. For the simulated data, the resulting plots are
shown in Figure 5; blue dots represent the results from the 1000 models of the ensemble.
The model with the lowest AICc value is highlighted in green. In addition, the results
obtained by the two non-dynamic regression models are also shown, and are represented
by red (Gaussian) and deep purple (Poisson); error bars are also shown, although they are
mostly very small.

From Figure 5 it can be seen that most of the models of the ensemble achieve a lower
AICc, compared with the non-dynamic regression models. For AED1 and AED2, the
clouds of blue dots scatter over both positive and negative values of the control gain
parameter; however, the model with the smallest control gain parameter is negative for
AED1, and positive for AED2. For AED3, literally all models yield negative control
gain parameters.

Since the simulation was designed such that AED1 and AED3 reduce the daily number
of seizures, while AED2 increases it, the ensemble approach has succeeded in retrieving the
correct result. As can be seen from Figure 5, in this case also the non-dynamic regression
models reproduce the correct result.

In Table 2, the correct values of the observation parameters, which were used for
creating the simulated data, and the estimated values of these parameters, obtained for
the model with the lowest AICc value, are shown. The table also lists estimated errors for
the estimated parameters; these errors can be estimated by computing the Hessian of the
local likelihood at the optimal point. However, it is obvious that, at least for AED1 and
AED3, these estimated errors are much too small to describe the actual deviation of the
estimated values from the correct values; the probable reason for this is that in nonlinear
filtering algorithms with an iteration at each time point, such as the IEKF and SVD-IEKF,
the local likelihood often has a complicated shape with discontinuous behavior, such that
numerically computed Hessians do not provide reliable estimates of the estimation errors.
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Figure 5. Estimated control gain parameters vs. AICc for simulated data, using an ensemble of
1000 randomly initialized models. The blue dots represent the results for the ensemble, with the
model with the lowest AICc highlighted in green. The red (Gaussian case) and deep purple (Poisson
case) dots represent the results obtained by the non-dynamic regression models. For the green, red,
and deep purple dots, error bars are added, but they are mostly very small. The three panels refer to
the three anti-epileptic drugs that were used in the simulation.

123



Entropy 2023, 25, 1372

Table 2. Correct and estimated values of the observation parameters for the simulation study;
the third row gives estimated errors for the estimated values, obtained from the Hessian of the
local likelihood.

Anti-Epileptic Drug AED1 AED2 AED3

correct values −0.40 0.95 −0.70
estimated values (best model) −0.43 0.79 −0.96
estimated errors (best model) ±1.86 × 10−7 ±4.57 × 10−2 ±4.33 × 10−8

3.3. Result of Ensemble Approach: Patient Data

For the patient data, an ensemble of 700 randomly initialized models was employed.
When using the SVD-IEKF and the affinely distorted hyperbolic function, optimization of
all models proceeded without cases of numerical problems. The resulting plots of estimated
control gain parameters against the corresponding values of the AICc for all models of the
ensemble are shown in Figure 6; again, blue dots represent the results from the models of
the ensemble, the model with the lowest AICc value is highlighted in green, and the results
obtained by the two non-dynamic regression models are represented by red (Gaussian) and
deep purple (Poisson).

From Figure 6 it can be seen that, again, most of the models of the ensemble achieve
a lower AICc, compared with the non-dynamic regression models. The error bars of the
red dots are somewhat larger now than in the case of the simulated data; for clobazam, the
error interval includes the value of zero for the control gain parameter, such that it would
become impossible to decide whether the effect of this anti-epileptic drug on the seizure
count would be increasing, decreasing, or zero. Furthermore, based on the non-dynamic
regression models, we would conclude that oxcarbazepine and lamotrigine would decrease
the seizure count, while rufinamide and valproate would increase it.
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Figure 6. Estimated control gain parameters vs. AICc for patient data, using an ensemble of
700 randomly initialized models. The blue dots represent the results for the ensemble, with the
model with the lowest AICc highlighted in green. The red (Gaussian case) and deep purple (Poisson
case) dots represent the results obtained by the non-dynamic regression models. For the green, red,
and deep purple dots, error bars are added. The five panels refer to the five anti-epileptic drugs that
were administered during the chosen time interval of 618 days.
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On the other hand, according to the results of the analysis by the SVD-IEKF, we would
conclude that all anti-epileptic drugs, except for valproate, would decrease the seizure
count; consequently, for two anti-epileptic drugs, the conclusions would differ from the
conclusions based on the non-dynamic regression models.

We add a comment on the results of the ensemble approach, both for simulated and
patient data, as shown in Figures 5 and 6. In this paper, we are dealing with time series of
fairly short length, at most a few hundred values, since this is the typical situation for time
series of a daily number of certain events, such as epileptic seizures. As a consequence of
this scarcity of data, relative to the dimension of the space of model parameters, the AICc
(i.e., the negative likelihood), as a function of these parameters, will display many local
minima, and the task of finding the global minimum may not be well defined. For this
reason, we consider it necessary to choose an ensemble approach. In the figures showing
the results of the ensemble approach, the clouds of results that have a higher value of the
AICc than the best model also contain some useful information.

As an example, consider again Figure 6. For each of the five anti-epileptic drugs
displayed, it can be seen that the majority of the blue dots correspond to the same sign of
the control gain parameter as the best model (i.e., the dot highlighted in green), thereby
lending additional credibility to the resulting conclusions on the effects of these drugs.
If, in such a case, the blue dots were distributed about equally over positive and negative
values of the control gain parameter, we would be less inclined to regard the sign of this
parameter for the best model as significant.

The underlying problem with respect to estimating model parameters from small
data sets is unrelated to the particular choice of a state space model with linear dynamics
and nonlinear observation; it has been observed quite similarly in an earlier study based
on purely linear modeling [24]. The task to be addressed here is to draw the optimal
conclusion, based on the scarce available data.

3.4. Innovation Whiteness Test

The aim of modeling a given time series by a parametric model, such as a state space
model, is given by extracting temporal correlations as much as possible, such that the
remaining prediction errors, i.e., the innovations, do not contain any residual correlations;
this is equivalent to the innovations being white noise. In order to demonstrate that our
modeling of the given data has been successful, with respect to this whiteness criterion,
we will now show the autocorrelation function of the innovations of the best state space
models from the ensembles.

In Figure 7, the autocorrelation functions for the innovations of the simulated data
(left panel) and the patient data (right panel) are shown (green curves); for comparison,
the autocorrelation functions of the raw data are also shown (blue curves). The red dashed
lines correspond to one standard deviation. Note that, at lag zero, autocorrelation functions
always assume a value of 1.0. By comparison of the blue and the green curves it can be seen
that, both for simulated data and for patient data, very good whitening has been achieved,
with only a few outliers exceeding one standard deviation. This result confirms the validity,
in a statistical sense, of the chosen approach of modeling the data by a state space model
with a nonlinear observation function.

125



Entropy 2023, 25, 1372

0 50 100 150 200 250 300 350 400
Lag

-0.5

0

0.5

1

N
or

m
al

iz
ed

 A
ut

oc
or

re
la

ti
on

Simulated data

(a)

0 100 200 300 400 500 600
Lag

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
ut

oc
or

re
la

ti
on

Patient data

(b)
Figure 7. Autocorrelation functions of raw data (blue curves) and innovations after state space
modeling (green curves) for simulated data (a) and patient data (b), for the best models of the
respective ensembles. The red dashed lines correspond to one standard deviation of the innovations.

4. Discussion

In this paper, we propose an algorithm for analyzing event count time series by
state space modeling and Kalman filtering. Within the larger field of time series analysis,
the analysis of event count time series represents a special case, which is characterized by
the need to model data that are both non-negative and integer, i.e., data given by natural
numbers. The classical linear Gaussian state space model seems less suited for such data,
since count data are described by Poisson distributions, rather than Gaussian distributions.

However, as we demonstrate, it is possible to keep the dynamics of the state space
model Gaussian and linear, while introducing nonlinearity only at the last stage of modeling,
namely, at the stage of modeling the observation process, thereby enforcing non-negativity
and integrity of the observed data. The step from the non-integer output of the observation
function to the integer data can then be roughly interpreted as addition of “quantization
noise”. By this device, Poisson distributions need not be employed explicitly. Nevertheless,
due to the choice of a nonlinear observation function, it is necessary to employ nonlinear
Kalman filters.

The present paper summarizes and extends earlier work, according to a sequence of
steps that can be described as follows:

• In an initial study, we had proposed to analyze event count time series by purely linear
Gaussian state space modeling, using the standard linear Kalman filter [24].

• Then, as a generalization, we employed nonlinear state space modeling, such that a
linear dynamical equation was combined with a nonlinear observation function; the
exponential function was chosen. State space modeling was performed by the iterated
extended Kalman filter (IEKF) [25].

• As a further step of improvement, the standard IEKF was replaced by the numerically
superior singular value decomposition variant of the IEKF [26].

• In the present paper, we replaced the exponential function with the “affinely distorted
hyperbolic” function; alternatively, the “softplus function” of Weiß and coworkers
could also have been employed. We have not yet systematically compared both
functions, but expect that they would display similar performance.

The classical linear Kalman filter consists of a recursion in the forward direction through
time, which represents the optimal state estimator for linear Gaussian state space models [8].
As soon as nonlinearities are introduced into the dynamical equation or the observation
equation, no closed-form optimal recursion exists, such that approximations and additional
iterations have to be employed. The iterated extended Kalman filter (IEKF) represents a
well-established example of such approximative nonlinear state estimators.

It is well known that, in the practical application of both the classical linear Kalman
filter and its nonlinear generalizations, numerical problems may arise, which result from
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covariance matrices losing the property of positive definiteness. The usual remedy for such
problems is given by expressing the recursion, not directly for the covariance matrices,
but for square roots of these matrices, which is known as square root filtering. Matrix
square roots may be defined either by Cholesky decomposition, or by singular value
decomposition (SVD). Since the latter decomposition represents the more general and
numerically more robust decomposition [34], we have chosen to employ it for our state
estimation algorithm. The resulting algorithm is, to the best our knowledge, the first SVD
variant of the IEKF that has been proposed [26].

When defining a state space model with a linear dynamical equation, the use of an
exponential observation function represents a natural choice, in order to keep the data
non-negative. However, the disadvantage of the exponential function is its exponential
divergence for positive arguments, which may lead to numerical failure of the SVD-IEKF
algorithm. For this reason, we propose a new nonlinear observation function that converges
to zero for negative arguments, just like the exponential function, while converging to a
linear function for positive arguments. This function can be derived by affinely distorting a
(negative) hyperbolic function, such that the vertical axis becomes the desired linear func-
tion for positive arguments. As we have demonstrated in the present paper by analyzing
both simulated and real data, employing the affinely distorted hyperbolic function within
the SVD-IEKF algorithm finally removes the risk of numerical failure.

We emphasize that the proposed algorithm can be applied to any event count time
series that one may wish to analyze under a non-negativity constraint; here, as an example,
we have applied the algorithm to the analysis of time series of the daily number of seizures
of drug-resistant epilepsy patients undergoing treatment with several, simultaneously
administered anti-epileptic drugs. The time-dependent dosages of these drugs are inserted
into the state space model as an external control input. The simultaneous presence of several
drugs, their potential superposition effects, delay effects, and further unknown factors
influencing the daily number of seizures make the objective analysis of seizure count time
series arduous. As we have demonstrated, both in a simulation study and in the analysis of
data from a real patient, state space modeling provides a powerful and flexible framework
for analyzing the effects of anti-epileptic drugs in epilepsy patients. By comparison of
an information criterion, such as the AICc, it can be proven that state space modeling
provides a modeling of the data that is superior to modeling by conventional non-dynamic
regression models.

There exist other model classes that take temporal correlations into account, such as
the dynamic GLM, INAR, and INGARCH model classes. Our approach to modeling event
count time series, as proposed in the present paper, represents an alternative to these model
classes, but we do not intend to replace these classes, but rather provide an additional tool
for the analysis of event count time series. According to a well-known proverb, “all models
are wrong, but some models are useful”. Then, the justification of introducing a new class of
models can come only from their usefulness in practical work, which needs to be explored
by application to real data. Within the likelihood framework, the comparison of different
model classes should be performed by quantifying their performance in predicting the data,
preferably by using an information criterion, such as the AICc. It would be very interesting
to perform a systematic study of the performance of our approach to modeling event
count time series, in comparison with the already available model classes; this, however, is
beyond the scope of the present paper and remains a task for future work.

With respect to the chosen field of application, namely, the analysis of time series of the
daily number of seizures of drug-resistant epilepsy patients, in the future we intend to apply
the presented algorithm to data from larger cohorts of patients. By discriminating between
different types of seizures in the same patient, it is also intended to generalize the analysis
to the case of vector data. Furthermore, the analysis should be generalized such that not
only the effects of individual anti-epileptic drugs are modeled, but also the interaction
effects between pairs, or groups, of drugs. Finally, in order to reduce the computational time
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consumption, work should be devoted to developing more efficient algorithms for fitting
ensembles of nonlinear state space models by numerical maximum-likelihood procedures.
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Abbreviations

The following abbreviations are used in this paper:

AED Anti-epileptic drug
IC-LSS Independent components linear state space
NLSS Nonlinear state space
AR Autoregressive
ARMA Autoregressive moving average
IEKF Iterated extended Kalman filter
SVD Singular value decomposition
CD Cholesky decomposition
BFGS Broyden–Fletcher–Goldfarb–Shanno
AICc corrected Akaike information criterion

Appendix A. Block Diagonal Structure of A and Q

The IC-LSS model discussed in Section 2.1 is based on a block-diagonal structure [35] of
the state transition matrix, A, and the dynamical noise covariance matrix, Q, as follows [27]:

A =

⎛⎜⎜⎜⎝
A1 0 0 . . . 0
0 A2 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . AJ

⎞⎟⎟⎟⎠, Q =

⎛⎜⎜⎜⎝
Q1 0 0 . . . 0
0 Q2 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . QJ

⎞⎟⎟⎟⎠ (A1)

where J denotes the number of independent components and also represents the number
of blocks. If we assume that the jth block represents an autoregressive moving average
(ARMA) model with model orders (p, p − 1), consisting of an autoregressive part with pa-
rameters a(j)

τ , τ = 1, . . . , p, and a moving average part with parameters b(j)
τ , τ = 0, . . . , p − 1,

the block matrix, Aj, has left companion form, given by [27]
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Aj =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a(j)
1 1 0 . . . 0

a(j)
2 0 1 . . . 0
...

...
...

. . . 0
a(j)

p−1 0 0 . . . 1

a(j)
p 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A2)

and the block matrix, Qj, has outer product form, given by [27]

Qj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(b(j)
0 )2 b(j)

0 b(j)
1 . . . b(j)

0 b(j)
q

b(j)
1 b(j)

0 (b(j)
1 )2 . . . b(j)

1 b(j)
q

...
...

...
. . .

b(j)
p−2b(j)

0 b(j)
p−2b(j)

1 . . . b(j)
p−2b(j)

q

b(j)
p−1b(j)

0 b(j)
p−1b(j)

1 . . . (b(j)
p−1)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A3)

We usually employ the scaling convention b(j)
0 = 1 for all blocks.

Appendix B. Iterated Extended Kalman Filter (IEKF) Algorithms

Algorithm A1 Iterated Extended Kalman Filter (IEKF)

Require: Initial state estimate: x0|0
Require: Initial covariance matrix: P0|0

1: for t = 1 to T do

2: Prediction Step:

3: Compute the predicted state estimate: xt|t−1 = Axt−1|t−1 + Buut

4: Compute the predicted state covariance matrix: Pt|t−1 = APt−1|t−1A
T +Q

5: Update Step:

6: Initialize iteration: i = 1 , x
(0)
t|t = xt|t−1

7: repeat

8: Compute the Jacobian matrix of the observation function: H(i)
t = ∂f

∂x

∣∣∣∣
x
(i−1)
t|t

9: Compute the innovation: ν
(i)
t = yt − f

(
x
(i−1)
t|t

)
10: Compute the innovation covariance matrix: V(i)

t = H
(i)
t Pt|t−1

(
H
(i)
t
)T

+ R

11: Compute the Kalman gain: K(i)
t = Pt|t−1

(
H
(i)
t
)T(

V
(i)
t
)−1

12: Update the state estimate: x
(i)
t|t = xt|t−1 +K

(i)
t

(
ν
(i)
t −H

(i)
t

(
xt|t−1 − x

(i−1)
t|t

))
13: Increment iteration: i = i + 1

14: until Stopping criterion met or maximum number of iterations (im) reached

15: Compute the filtered state covariance matrix: Pt|t =
(
Im −K

(i)
t H

(i)
t
)
Pt|t−1

16: end for
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Algorithm A2 Singular Value Decomposition Iterated Extended Kalman Filter (SVD-IEKF)

Require: Initial state estimate: x0|0
Require: Initial covariance matrix: P0|0 = W0|0Σ2

0|0W
T
0|0

Require: Factorized dynamic noise covariance matrix: Q = WQΣ2
QW

T
Q

Require: Factorized observation noise covariance matrix: R = WRΣ2
RW

T
R

1: for t = 1 to T do

2: Prediction Step:

3: Compute the predicted state estimate: xt|t−1 = Axt−1|t−1 + Buut

4: Compute the predicted state covariance matrix:

U1

[
ΣPt|t−1

0

]
WT

Pt|t−1
=

⎡⎣ΣPt−1|t−1
WT

Pt−1|t−1
AT

ΣQW
T
Q

⎤⎦
Pt|t−1 = WPt|t−1

Σ2
Pt|t−1

WT
Pt|t−1

5: Update Step:

6: Initialize iteration: i = 1 , x
(0)
t|t = xt|t−1

7: repeat

8: Compute the Jacobian matrix of the observation function: H(i)
t = ∂f

∂x

∣∣∣∣
x
(i−1)
t|t

9: Compute the innovation: ν
(i)
t = yt − f

(
x
(i−1)
t|t

)
10: Compute the innovation covariance matrix:

U2

[
Σ(i)
Vt

0

](
W

(i)
Vt

)T
=

⎡⎣ ΣRW
T
R

Σ(i)
Pt|t−1

(
W

(i)
Pt|t−1

)T(
H
(i)
t
)T

⎤⎦
V
(i)
t = W

(i)
Vt

(
Σ(i)
Vt

)2(
W

(i)
Vt

)T

11: Compute normalized innovation: ν̂
(i)
t =

(
W

(i)
Vt

)T
ν
(i)
t

12: Compute normalized gain: k(i)t = Pt|t−1
(
H
(i)
t
)T

W
(i)
Vt

13: Compute the optimal Kalman gain: K(i)
t = k

(i)
t
(
Σ(i)
Vt

)−2(
W

(i)
Vt

)T

14: Update the state estimate:

x
(i+1)
t|t = xt|t−1 + k

(i)
t
(
Σ(i)
Vt

)−2
(

ν̂
(i)
t −

(
W

(i)
Vt

)T
H
(i)
t (xt|t−1 − x

(i)
t|t )

15: Increment iteration: i = i + 1

16: until Stopping criterion met or maximum number of iterations (im) reached

17: Compute the filtered state covariance matrix:

U3

[
ΣPt|t

0

]
WT

Pt|t
=

⎡⎣ΣPt|t−1
WT

Pt|t−1

(
Im −K

(i)
t H

(i)
t
)T

ΣRW
T
R

(
K
(i)
t
)T

⎤⎦
Pt|t = WPt|t Σ

2
Pt|t

WT
Pt|t

18: end for
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Appendix C. Matlab Code for Generating Simulated Data

Listing A1. MATLAB code for generating simulated data

x = zeros(m, n); % state vector according to Equation (3).

x_initial = zeros(m, 1); % initializing sate vector with zero.

k = 1; % parameter defined in Equation (6).

C = [-0.40, 0.95, -0.70, 0.75, 0];

A = [0.5, 0, 0, 0, 0;

0, 0.25, 0, 0, 0;

0, 0, 0.25, 0, 0;

0, 0, 0, 0.9, 1;

0, 0, 0, -0.5, 0];

ε = [zeros(1, u), randn (1), zeros(1, 1)]; % observation noise from

Equation (6).

for(time = 1: T) % Begin Kalman forward loop

external_input = [u_t(:, time:-1:T, 1)' , zeros(1, (m - u))]; %

external input defined in Equation (4)

if t == 1

x(:, t) = A * x_initial + external_input' + ε';

else

x(:, t) = A * x(:, t - 1) + external_input' + ε';

end

for seizure_type = 1:n % for multi -dimensional data

srexpr = sqrt (((C(seizure_type , :) * x(:, t))^2) / 4 + k); %

intermediate variable

y(seizure_type , t) = round ((C(seizure_type , :) * x(:, t)) /

2 + srexpr);

end

end % End Kalman forward loop
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Abstract: In a time series context, the study of the partial autocorrelation function (PACF) is helpful
for model identification. Especially in the case of autoregressive (AR) models, it is widely used for
order selection. During the last decades, the use of AR-type count processes, i.e., which also fulfil the
Yule–Walker equations and thus provide the same PACF characterization as AR models, increased a
lot. This motivates the use of the PACF test also for such count processes. By computing the sample
PACF based on the raw data or the Pearson residuals, respectively, findings are usually evaluated
based on well-known asymptotic results. However, the conditions for these asymptotics are generally
not fulfilled for AR-type count processes, which deteriorates the performance of the PACF test in
such cases. Thus, we present different implementations of the PACF test for AR-type count processes,
which rely on several bootstrap schemes for count times series. We compare them in simulations
with the asymptotic results, and we illustrate them with an application to a real-world data example.

Keywords: autoregressive model; count time series; INAR bootstrap; partial autocorrelation function;
Yule–Walker equations

1. Introduction

Autoregressive (AR) models for time series date back to Walker [1], Yule [2], and they
assume the current observation of the considered process to be generated from its own
past by a linear scheme. The ordinary pth-order AR-model for a real-valued process
(Zt)t∈Z={...,−1,0,1,...}, abbreviated as AR(p) model, is defined by the recursive scheme

Zt = α1 · Zt−1 + . . . + αp · Zt−p + εt (αp 	= 0), (1)

where the innovations (εt)Z are independent and identically distributed (i. i. d.) real-valued
random variables (rv), which are also assumed to be square-integrable (“white noise”).
To ensure a (weakly) stationary and causal solution for the AR(p) recursion (1), the AR-
parameters α1, . . . , αp ∈ R have to be chosen such that the roots of the characteristic
polynomial α(z) = 1 − α1 z − . . . − αp zp are outside the unit circle. Then, if the innovations
(εt)Z follow a normal distribution, also the observations (Zt)Z are normal, leading to the
Gaussian AR(p) process.

A characteristic property of the AR(p) process is given by the fact that its autocorrela-
tion function (ACF), ρ(h) = Corr[Zt, Zt−h] with h ∈ N = {1, 2, . . .} and ρ(0) = 1, satisfies
the following set of linear equations:

ρ(h) = ∑
p
i=1 αi ρ

(
|h − i|

)
for h = 1, 2, . . . (2)

These Yule–Walker (YW) equations, in turn, give rise to define the partial autocorrelation
function (PACF), ρpart(h) with time lags h ∈ N, in the following way (see Appendix A

for further details): if Rk :=
(
ρ(|i − j|)

)
i,j=1,...,k and rk :=

(
ρ(1), . . . , ρ(k)

)� ∈ Rk for

k = 1, 2, . . ., and if ak ∈ Rk denotes the solution of the equation Rk ak = rk, then the
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PACF at lag k is defined as the last component of ak, i.e., ρpart(k) := ak,k. Hence, if the
YW-equations (2) hold, it follows that

ρpart(p) = αp, ρpart(h) = 0 for all h > p. (3)

This characteristic abrupt drop-down of the PACF towards zero after lag h = p is commonly
used for model identification in practice, namely by inspecting the sample PACF for such
a pattern, see the Box–Jenkins program dating back to Box & Jenkins [3]. Details on
the PACF’s computation are summarized in Appendix A. There, we also provide a brief
discussion on some equivalences between ACF, PACF, and the AR-coefficients, in the sense
that the AR(p) model (1) is characterized equivalently by either α1, . . . , αp, or ρ(1), . . . , ρ(p),
or ρpart(1), . . . , ρpart(p).

Since the introduction of the ordinary AR(p) model, several other AR-type models
have been proposed in the literature, not only for real-valued processes, but also for
different types of quantitative processes such as count processes (and even for categorical
processes), see the surveys by Holan et al. [4], Weiß [5]. In the present work, the focus is on
(stationary and square-integrable) AR-type count processes (Xt)Z, i.e., where the Xt have a
quantitative range contained in N0 = {0, 1, . . .}. Here, the AR(p) structure is implied by
requiring the conditional mean at each time t to be linear in the last p observations [6], i.e.,

E[Xt | Xt−1, . . .] = α0 + α1 Xt−1 + . . . + αp Xt−p, (4)

because then, the YW-equations (2) immediately follow by using the law of total covari-
ance. Note that one also has to require α0 > 0 and α1, . . . , αp ≥ 0, as the counts Xt are
non-negative rvs having a truly positive mean, computed as μ = α0/(1 − α1 − . . . − αp).
The considered class of count processes satisfying (4) covers many popular special cases,
such as the INAR(p) model (integer-valued AR) by Du & Li [7], the INARCH(p) model
(‘CH’ = conditional heteroscedasticity) by Ferland et al. [8], or their bounded-counts coun-
terparts discussed in Kim et al. [9]; see Section 2 for further details. These count processes
satisfying (4), however, are not truly linear processes: by contrast to (1), there is no linear
relation between their observations.

As all these AR(p)-like count processes satisfy the YW-equations (2) and, thus, the PACF
characterization (3), it is common practice to employ the sample PACF (SPACF) for model
identification given a count time series X1, . . . , Xn. More precisely, one commonly computes
the SPACF from X1, . . . , Xn, ρ̂part(h) for h = 1, 2, . . ., and checks for the pattern (3) among
those SPACF values that are classified as being significantly different from zero. An analogous
procedure is common during a later step of the Box–Jenkins program. After having fitted
a model to the data, one commonly computes the Pearson residuals to check the model
adequacy; see Weiß [5], Jung & Tremayne [10] as well as Section 2. While, for an adequate
model fit, the Pearson residuals are expected to be uncorrelated, significant SPACF values
computed thereof would indicate that the fitted model does not adequately capture the true
dependence structure. In both cases, practitioners usually evaluate the significance of ρ̂part(h)
based on the following asymptotic result (see [11] (Theorem 8.1.2)):

√
n ρ̂part(h)

a∼ N(0, 1) for lags h ≥ p, (5)

i.e., the value ρ̂part(h) is compared to the critical values ±z1−α/2/
√

n to test the null hypoth-
esis of an AR(h− 1) process on level α. Here, N(μ, σ2) denotes the normal distribution with
mean μ and variance σ2, and zγ abbreviates the γ-quantile of N(0, 1). The aforementioned
critical values are automatically plotted in SPACF plots by common statistical software,
e.g., if one uses the command pacf in R. However, Theorem 8.1.2 in Brockwell & Davis [11]
assumes that the SPACF is computed from a truly linear AR(p) process as in (1), which
is neither the case for the aforementioned AR-type count processes, nor for the Pearson
residuals computed thereof. Thus, it is not clear if the approximation (5) is asymptotically
correct and sufficiently precise in finite samples. In fact, some special asymptotic results
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in Kim & Weiß [12], Mills & Seneta [13], see Section 3 for further details, as well as some
simulation results for Pearson residuals in Weiß et al. [14] indicate that this is generally
indeed not the case.

Therefore, several alternative ways of implementing the PACF-test are presented in
Section 4, namely relying on different types of bootstrap schemes for count time series.
The performance of these bootstrap implementations compared to the asymptotic ones is
analyzed in a comprehensive simulation study. In Section 5, we start with the case where
the SPACF is applied to the original count time series (Xt) with the aim of identifying the
AR model order. Afterwards in Section 6, we consider the case of applying the SPACF to
the (non-integer) Pearson residuals computed based on a model fit, i.e., the SPACF is used
for checking the model adequacy. Our findings are also illustrated by a real-data example
on claims counts in Section 7. Here, the computations and simulations in Sections 5–7 have
been performed with the software R, and the documented R-code for Section 7 is provided
in the Supplementary Materials to this article. Further R-codes can be obtained from the
corresponding author upon request. We conclude the article in Section 8.

2. On AR-Type Count Time Series and Pearson Residuals

Several (stationary and square-integrable) AR-type count processes (Xt)Z, which also
have a conditional linear mean according to (4), have been discussed in the literature.
Most of these processes either follow a model recursion using so-called thinning operators
(typically referred to as INAR models), or they are defined by specifying the conditional
distribution of Xt|Xt−1, . . . together with condition (4), leading to INARCH models, see
Weiß [5] for a survey. For this research, we focus on the most popular instance of these two
classes, namely the INAR(p) model of Du & Li [7] on the one hand, and the INARCH(p)
model of Ferland et al. [8] on the other hand.

The INAR(p) model of Du & Li [7] makes use of the binomial thinning operator “◦”
introduced by Steutel & van Harn [15]. Having the parameter α ∈ (0; 1) and being applied
to a count rv X, it is defined by the conditional binomial distribution α ◦ X|X ∼ Bin(X, α),
where the boundary cases are included as 0 ◦ X = 0 and 1 ◦ X = X. Let (εt)Z be square-
integrable i. i. d. count rv, denote με = E[εt] and σ2

ε = V[εt]. Then, the INAR(p) process
(Xt)Z is defined by the recursion

Xt = α1 ◦ Xt−1 + . . . + αp ◦ Xt−p + εt, (6)

where all thinnings are executed independently of each other, and where α• := ∑
p
j=1 αj < 1

is assumed to ensure a stationary solution. The INAR(p) process (6) constitutes a pth-order
Markov process, the transition probabilities of which are a convolution between the p binomial
distributions Bin(Xt−1, α1), . . . , Bin(Xt−p, αp) and the innovations’ distribution [16] (p. 469).
The conditional mean satisfies (4) with α0 = με, and the conditional variance is given by

V[Xt | Xt−1, . . .] = σ2
ε +

p
∑

j=1
αj(1 − αj) Xt−j, (7)

see Drost et al. [16] (p. 469). The default choice for εt in the literature is a Poisson (Poi)
distribution (which is the integer counterpart to the normal distribution), leading to the
Poi-INAR(p) process. However, any other (non-degenerate) count distribution for εt might
be used as well, such as the negative-binomial (NB) distribution for increased dispersion,
leading to the NB-INAR(p) process. In the case of such a parametric specification for εt,
ones computes the moments με, σ2

ε according to this model, and then the conditional mean
and variance according to (4) and (7), respectively.

The INARCH(p) model of Ferland et al. [8] directly assumes the conditional linear
mean (4) to hold, and then specifies the conditional distribution of Xt|Xt−1, . . . In Ferland
et al. [8], the case of a conditional Poi-distribution is assumed, i.e., altogether

Xt|Xt−1, . . . ∼ Poi(α0 + α1 Xt−1 + . . . + αp Xt−p), (8)
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such that the conditional variance of this Poi-INARCH(p) process equals V[Xt | Xt−1, . . .] =
E[Xt | Xt−1, . . .]. However, other choices for the conditional distribution of Xt|Xt−1, . . .
have been investigated in the literature; see [5] (Section 4.2).

For parameter estimation, one commonly uses either simple method-of-moment
(MM) estimators (i.e., derived from marginal sample moments and the sample ACF, also
see Appendix A), or the more advanced conditional maximum likelihood (CML) estima-
tors, which are computed by using a numerical optimization routine (see [5] (Section 2.2)).
It should be noted that for the INAR(p) model, also a semi-parametric specification
exists (where the innovations’ distribution is left unspecified). The corresponding semi-
parametric CML estimator was analyzed by Drost et al. [16]; see also the small-sample
refinement by Faymonville et al. [17]. It leads to non-parametric estimates for the proba-
bilities pε,k = P(εt = k) for k between some finite bounds 0 ≤ l < u < ∞ (and pε,k = 0
for k 	∈ {l, . . . , u}), which can then be used for computing με, σ2

ε as required for the
conditional moments (4) and (7). More precisely, the rth moment, r ∈ N, is given by
E[εr

t ] = ∑u
k=l kr pε,k.

After having fitted a model to the count time series X1, . . . , Xn, a widely used ap-
proach for checking the model adequacy is to investigate the corresponding (standardized)
Pearson residuals [5,10,14,18,19]. Let the parameters of the considered AR(p)-type model
be comprised in the vector θ, and let θ̂ denote the estimated parameters of the fitted model.
Furthermore, let us write the conditional mean as E[Xt | Xt−1, . . . ; θ] and the conditional
variance as V[Xt | Xt−1, . . . ; θ] to express their dependence on the actual parameter values.
Then, the Pearson residuals are defined as

Rt := Rt(θ̂) =
Xt − E

[
Xt | Xt−1, . . . ; θ̂

]√
V
[
Xt | Xt−1, . . . ; θ̂

] for t = p + 1, . . . , n. (9)

If the fitted AR(p)-type model is adequate for X1, . . . , Xn, then Rp+1, . . . , Rn should have
a sample mean (variance) close to zero (one), and they should be uncorrelated. These
necessary criteria are then used as adequacy checks. In the present research, our focus is
on the SPACF computed from Rp+1, . . . , Rn, which, for an adequate model fit, should not
have values being significantly different from zero.

3. Some Asymptotic Results for the Sample PACF

The basic asymptotic result (5), which has been shown for the SPACF being computed
from a true AR(p) process, has been extended in several directions. First, some refinements
have been derived by Anderson [20,21] and further investigated by Kwan [22], who,
however, assume the data-generating process (DGP) to be i. i. d. Gaussian, i.e., neither
AR dependence nor count rvs are covered by their results. More precisely, Anderson [20]
complements the asymptotic variance 1/n in (5) by the following O(n−2) approximation
of the mean:

E
[
ρ̂part(h)

] a
=

{
−1/n + O(n−2) if h odd,
−2/n + O(n−2) if h even.

(10)

While the Gaussian assumption is weakened by the statement that the result (10) “seems
likely to have some validity for many non-Gaussian distributions” [20] (p. 406), the i. i. d.-
assumption is not relaxed.

The O(n−2) approximation in (10) is extended to a corresponding O(n−3) approxima-
tion in Anderson [21] (pp. 565–566).

E
[
ρ̂part(h)

] a
=

⎧⎪⎪⎨⎪⎪⎩
− 1

n
− h − 1

n2 + O(n−3) if h odd,

− 2
n
− h/2 − 2

n2 + O(n−3) if h even,

V
[
ρ̂part(h)

] a
=

1
n
− h + 2

n2 + O(n−3).

(11)
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While the O(n−3) extension in (11) seems relevant only for very small sample sizes n,
the alternating pattern for the mean in (10) might affect the performance of the normal
approximation also for larger n.

Another extension of the basic asymptotic result (5) is due to Kim & Weiß [12], Mills &
Seneta [13]. These authors consider two particular types of AR(1) count process, namely a
Poi-INAR(1) and a binomial AR(1) process, respectively, and derive an O(n−2) approxi-
mation of V

[
ρ̂part(h)

]
for h ≥ 2. While their exact formulae are not relevant for the present

research, the crucial point is as follows: In both cases, the approximate variance is of the
form (1 + c)/n, where c is inverse proportional to the mean μ, and also depends on the
value of ρ(1). Especially for low means μ, the numerator 1 + c deviates notably from 1.
Hence, the basic asymptotics (5) do not hold for these types of count process. An analogous
conclusion can be drawn from the simulation results in Weiß et al. [14] (Table 1), where the
rejection rate for the SPACF of the Pearson residuals (with CML-fitted Poi-INAR(p) model)
under the basic asymptotic critical values (5) is analyzed. These rejection rates are often
below the intended level, which indicates that (5) does not hold here.

These possible drawbacks of existing asymptotic results are illustrated by Figure 1.
The upper panel refers to the mean of SPACF(h), which is either computed from 104

simulated Poi-INAR(1) time series (black and dark grey bars), or according to the refined
asymptotic result (11) (light grey bars). Note that the sample size n = 1000 was chosen
rather large such that sample properties and (true) asymptotic properties should agree
reasonably well. In Figure 1a, where the SPACF is computed from the raw counts (Xt),
we omit plotting the mean at h = 1 as this would violate the graphic’s Y-range (recall
that ρpart(1) = α). From (a) and (b), we recognize that the simple asymptotics (5), where
the mean of SPACF is approximated by zero, would be misleading in practice, because a
negative bias with an oscillating pattern (odd vs. even lags) is observed. As a consequence,
if testing the PACF based on (5) and thus ignoring the bias, we may get unreliable sizes,
which is also later observed in our simulation studies. The alternating pattern of the bias
in (a) and (b) is similar to the refined asymptotics (11). However, we do not observe an
exact agreement to (11), as the simulated means seem to depend on the actual value of
the AR-parameter α. The effect of α gets much stronger in (c), where even positive bias
values for low h are observed, contradicting (11). This is caused by the use of the MM
estimator, which is known to be increasingly biased with increasing α [23]; a possible
solution for practice could be to use a bias-corrected version of the MM estimator. The
lower panel in Figure 1 shows the corresponding standard deviations (SDs). The strongest
deviation between simulated and asymptotic results is observed for lag h = 1, followed
by lag h = 2. In particular, for both types of Pearson residuals and both h = 1, 2, the
asymptotic SD from (11) is too large (and the asymptotic SD according to (5) would
even be larger) such that a corresponding PACF-test is expected to be conservative
(which is later confirmed by our simulation study). Therefore, it seems advisable to
look for other ways of implementing the PACF-test, neither relying on (5) nor (11). An
approximation based on asymptotic results does not look promising in general, as we
expect the asymptotics to highly depend on the actual DGP, recall the aforementioned
results by Kim & Weiß [12], Mills & Seneta [13]. Thus, in what follows, our idea is to try
out different types of bootstrap implementations, i.e., the true distribution of the SPACF
is approximated by appropriate resampling schemes. This might also allow to account
for the effect of the selected estimator when computing the Pearson residuals.
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Raw counts Xt CML-Pearson residuals MM-Pearson residuals

(a) h (b) h (c) h

(d) h (e) h (f) h

Figure 1. Means in (a–c) and SDs in (d–f) of SPACF(h) for sample size n = 1000, either simulated
values for Poi-INAR(1) DGP with μ = 5 and AR-parameter α, or asymptotic values from (11). SPACF
computed from raw counts, and from Pearson residuals with CML or MM estimation.

4. Bootstrap Approaches for the Sample PACF

Let ϑ denote the parameter of interest for the actual DGP (Yt), and let ϑ̂ = T(Y1, . . . , Yn)
denote an estimate of it (in the present research, this parameter is the (S)PACF at some
lag h ∈ N). Analogously, let (Y∗

t ) denote a corresponding bootstrap DGP, and let ϑ̂∗ =
T(Y∗

1 , . . . , Y∗
n ) be the estimator obtained from a bootstrap sample. If E∗[·] denotes the ex-

pectation operator of the bootstrap DGP, that is, conditional on the data X1, . . . , Xn, then
the centered bootstrap estimate is given by ϑ̂∗

cent := ϑ̂∗ − E∗[ϑ̂∗]. A common approach
for constructing a two-sided bootstrap confidence interval (CI) for ϑ with confidence level
1 − α ∈ (0; 1) is given by [

ϑ̂ − q1−α/2
(
ϑ̂∗

cent
)
; ϑ̂ − qα/2

(
ϑ̂∗

cent
)]

, (12)

where qγ(·) denotes the γ-quantile, see Hall [24]. The bootstrap CI (12) is used for testing
the null hypothesis “H0 : ϑ = ϑ0” on level α by applying the following decision rule:
reject H0 if ϑ0 is not contained in the CI (12). This implies the equivalent decision rule to
reject H0 if

ϑ̂ − ϑ0 < qα/2
(
ϑ̂∗

cent
)

or ϑ̂ − ϑ0 > q1−α/2
(
ϑ̂∗

cent
)
. (13)

In the present article, ϑ refers to the PACF at lag h, computed from either the original count
process (Xt), or from the Pearson residuals (Rt) obtained after model fitting. In both cases,
the PACF at lag h is tested against the hypothetical value ϑ0 = 0, as it would be the case for
an AR-type process of order < h.

If we apply the PACF to the original count time series X1, . . . , Xn, then the following
setups are considered:
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• fully parametric setup: a fully parametric count AR(p) model with p ≤ 2 is fitted to
the data and then used as the bootstrap DGP; the PACF at certain lags h > p is tested
against zero. Here, we focus on the Poi-INAR(p) model, and we use the parametric
INAR-bootstrap of Jentsch & Weiß [25].

• semi-parametric setup: a semi-parametric count AR(p) model is fitted to the data [16]
and then used as the bootstrap DGP; the PACF at lags h > p is tested against zero.
Here, we focus on the INAR(p) model with unspecified innovations, and we use the
semi-parametric INAR-bootstrap of Jentsch & Weiß [25].

• non-parametric setup: we use the circular block bootstrap as considered by Politis
& White [26], where an automatic block-length selection might be done by using
the function b.star in R-package “np” (https://CRAN.R-project.org/package=np,
accessed on 31 March 2022).

In case of an INAR(p) bootstrap DGP, the centering at lag h is done by the lag-h PACF
corresponding to the fitted model, i.e., which satisfies the YW-equations (2) under estimated
parameters, see Appendix A for computational details. In case of the non-parametric block
bootstrap, the sample PACF at lag h is used for centering the bootstrap values.

If we apply the PACF to the Pearson residuals (Rt), then again (semi-)parametric
setups are considered, where also model fitting is replicated based on the bootstrap time
series, as well as the subsequent computation of Pearson residuals based on the bootstrap
model fit. This time, a centering is not necessary. Non-parametric bootstrap schemes can
be directly applied to the original Pearson residuals (without the need for model fitting
during bootstrap replication). Under the null of model adequacy, we expect the available
Pearson residuals to be uncorrelated. Thus, a first idea is to apply the classical Efron
bootstrap [27], although this bootstrap scheme actually requires i. i. d. data. Therefore, as
a second idea, we also apply the aforementioned block bootstrap to (Rt) to account for
possible non-linear dependencies.

Remark 1. For implementing the (semi-)parametric INAR bootstraps, or for computing the Pearson
residuals with respect to an INAR model, the model parameters have to be estimated. The following
approaches are used for this purpose:

• If the fully parametric Poi-INAR(p) model is fitted, we use either the MM estimator of θ =
(α1, . . . , αp, με), which is obtained by solving the mean equation μ = με/(1− α1 − . . . − αp)
as well as the YW-equations (2) for h = 1, . . . , p in με, α1, . . . , αp and by plugging-in
the sample counterparts for μ, ρ(1), . . . , ρ(p), or the CML estimator of θ. The latter is ob-
tained by numerically maximizing the conditional log-likelihood function �(θ | xp, . . . , x1) =

∑T
t=p+1 ln p(xt | xt−1, . . . , xt−p, θ), where the transition probabilities p(xt | xt−1, . . . , xt−p)

are computed by evaluating the convolution of the p thinnings’ binomial distributions and the
innovations’ Poisson distribution, i.e., Bin(xt−1, α1) � . . . � Bin(xt−p, αp) � Poi(με).

• If the semi-parametric Poi-INAR(p) model is fitted, then the innovations’ distribution is not
specified. As a result, the parameter vector now equals θsp = (α1, . . . , αp, pε,0, pε,1, . . .), and
we use the semi-parametric CML approach of Drost et al. [16] for estimation. In this case, the
transition probabilities for the log-likelihood function �(θsp | xp, . . . , x1) are obtained from
the convolution Bin(xt−1, α1) � . . . � Bin(xt−p, αp) � Gε, where Gε expresses the unspecified
innovations’ distribution with probability masses pε,0, pε,1, . . .

5. PACF Diagnostics for Raw Counts

In the first part of our simulation study, we analyze the performance of the asymptotic
and (semi-)parametric implementations of PACF-tests if these are applied to the raw counts
(Xt) (the results of the non-parametric bootstrap schemes are discussed separately in
Remark 2). We consider 1st- and 2nd-order AR-type DGPs, where the aim of applying
the PACF-tests (nominal level 0.05) is the identification of the correct AR-order p. As
the bootstrap versions of these tests are computationally very demanding (especially the
semi-parametric INAR bootstrap), we use the warp-speed method of Giacomini et al. [28]
for executing the simulations. This, in turn, allows us to use 104 replications throughout our
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simulation study. We also cross-checked that the achieved rejection rates are close to those
obtained by a traditional bootstrap implementation with B = 500 bootstrap replications
per simulation run. All simulations have been done with the software R, and R-codes can
be obtained from the corresponding author upon request.

Table 1 shows the rejection rates of the PACF-tests for different types of AR(1)-like
count DGP, recall Section 2. There, the PACFs are computed from a simulated count
time series x1, . . . , xn of length n, where the choice n = 100 (n = 1000) represents the
small (large) sample behaviour. The results refer to the medium autocorrelation case
ρ(1) = 0.5, but further results for ρ(1) ∈ {0.25, 0.75} are summarized in Appendix B,
see Table A1. Five implementations of the PACF-test are considered: using the simple
asymptotic approximation (5) or the refined one (11) (recall Section 3), using the parametric
Poi-INAR(1) bootstrap with either MM or CML estimates, and using the semi-parametric
INAR(1) bootstrap with CML estimates (recall Section 4). If first looking at the block
“Poi-INAR(1) DGP” in Table 1, we recognize that all implementations perform roughly
the same, i.e., the rejection rate at lag h = 1 (expressing the power of the PACF-test) is
close to 1, and the rejection rates at lags h ≥ 2 (expressing the size) are close to the 0.05-
level. It should be noted, however, that for ρ(1) = 0.25, see Table A1, the asymptotic
implementations have notably less power at lag h = 1. An analogous conclusion holds
for the NB-INAR(1) block in Table 1, although now, the model behind the parametric
Poi-INAR(1) bootstrap is misspecified. So the parametric bootstrap exhibits robustness
properties in finite samples. In the third block, “Poi-INARCH(1)”, also the semi-parametric
bootstrap is misspecified, but again the rejection rates are robust for ρ(1) = 0.5. For
ρ(1) = 0.75 in Table A1, however, we observe size exceedences for lags h ≥ 2, i.e., the
misspecification of Poi-INARCH(1) as Poi-INAR(1) is not negligible anymore for this DGP.
This is plausible in view of Remark 4.1.7 in Weiß [5], where it is shown that these models
lead to different sample paths for high autocorrelation. Much more surprising, also both
asymptotic implementations deteriorate (even more severely) for a Poi-INARCH(1) DGP
with ρ(1) = 0.75, see Table A1, i.e., we get too many false rejections in any case. Thus, if one
anticipates that the data are generated by an INARCH process, a tailor-made parametric
bootstrap implementation of the PACF-tests should be used.

Table 1. Rejection rates of PACF-tests applied to DGP with μ = 5 and ρ(1) = 0.5, where semi-
parametric (parametric) bootstrap relies on null of (Poi-)INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

μ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.998 0.053 0.040 0.044 0.998 0.054 0.043 0.046 0.995 0.054 0.046 0.044
(5) 1000 1.000 0.056 0.047 0.049 1.000 0.057 0.051 0.053 1.000 0.056 0.053 0.050

asym. 100 0.998 0.054 0.047 0.048 0.997 0.052 0.050 0.051 0.997 0.047 0.049 0.048
(11) 1000 1.000 0.050 0.049 0.051 1.000 0.061 0.053 0.049 1.000 0.060 0.051 0.048

param. 100 1.000 0.052 0.055 0.056 0.999 0.053 0.052 0.055 1.000 0.048 0.053 0.049
MM 1000 1.000 0.055 0.052 0.049 1.000 0.047 0.052 0.046 1.000 0.046 0.056 0.046

param. 100 1.000 0.054 0.051 0.054 0.999 0.049 0.053 0.050 0.999 0.059 0.046 0.049
CML 1000 1.000 0.048 0.049 0.057 1.000 0.050 0.055 0.051 1.000 0.052 0.052 0.047

semi-p. 100 1.000 0.053 0.053 0.051 1.000 0.054 0.051 0.049 0.999 0.044 0.048 0.054
CML 1000 1.000 0.047 0.054 0.054 1.000 0.051 0.049 0.057 1.000 0.052 0.054 0.052

Let us continue our performance analyses by turning to 2nd-order DGPs. In Table 2,
the (semi-)parametric bootstrap schemes are still executed by (erroneously) assuming a
1st-order INAR DGP (like in Table 1), i.e., they are affected by a (further) source of model
misspecification. But as seen from the rejection rates in Table 2, we still have good size
(h ≥ 3) and power values (h = 1, 2), comparable to those of the refined asymptotic imple-
mentation (11). By contrast, the simple asymptotic (5) leads to a clearly reduced power
at lag h = 2. Finally, in Table 3, the bootstrap schemes now correctly assume a 2nd-order
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INAR DGP, i.e., we only have the following misspecifications left: parametric Poi-INAR(2)
bootstrap applied to NB-INAR(2) or Poi-INARCH(2) DGP, and semi-parametric INAR(2)
bootstrap applied to Poi-INARCH(2) DGP. It can be seen that the parametric bootstrap
using MM estimates as well as the semi-parametric bootstrap lead to improved power
at lag h = 2, whereas the parametric CML-setup even deteriorates (especially under Poi-
INARCH(2) misspecification). The latter observation fits well to later results in Section 6,
where the parametric bootstrap with CML estimates does again worse than its MM- or
semi-CML-counterparts. This can be explained by the fact that for a fully parametric CML
approach, model misspecification affects the estimates of all parameters simultaneously,
while for the MM approach, for example, the estimation of mean and dependence param-
eters coincide across all three types of DGP. So it does not seem advisable to use a fully
parametric bootstrap in combination with CML estimation for PACF diagnostics.

Table 2. Like Table 1, but 2nd-order DGPs with α2 = 0.2.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

μ = 1.5 Poi-INARCH(2)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.984 0.383 0.048 0.047 0.983 0.390 0.047 0.048 0.983 0.384 0.049 0.048
(5) 1000 1.000 1.000 0.053 0.053 1.000 1.000 0.056 0.052 1.000 1.000 0.055 0.053

asym. 100 0.990 0.478 0.048 0.049 0.987 0.480 0.053 0.047 0.986 0.480 0.053 0.054
(11) 1000 1.000 1.000 0.052 0.051 1.000 1.000 0.056 0.051 1.000 1.000 0.056 0.062

param. 100 0.996 0.470 0.055 0.058 0.995 0.465 0.053 0.054 0.995 0.482 0.048 0.054
MM 1000 1.000 1.000 0.056 0.058 1.000 1.000 0.053 0.051 1.000 1.000 0.055 0.054

param. 100 0.995 0.470 0.044 0.050 0.994 0.465 0.054 0.051 0.994 0.471 0.052 0.054
CML 1000 1.000 1.000 0.052 0.053 1.000 1.000 0.051 0.057 1.000 1.000 0.055 0.058

semi-p. 100 0.995 0.475 0.055 0.054 0.996 0.472 0.047 0.053 0.994 0.485 0.049 0.058
CML 1000 1.000 1.000 0.054 0.052 1.000 1.000 0.054 0.056 1.000 1.000 0.054 0.053

Table 3. Rejection rates of PACF-tests applied to DGP with μ = 5, ρ(1) = 0.5 and α2 = 0.2, where
semi-parametric (parametric) bootstrap relies on null of (Poi-)INAR(2) process.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

μ = 1.5 Poi-INARCH(2)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.984 0.383 0.048 0.047 0.983 0.390 0.047 0.048 0.983 0.384 0.049 0.048
(5) 1000 1.000 1.000 0.053 0.053 1.000 1.000 0.056 0.052 1.000 1.000 0.055 0.053

asym. 100 0.990 0.478 0.048 0.049 0.987 0.480 0.053 0.047 0.986 0.480 0.053 0.054
(11) 1000 1.000 1.000 0.052 0.051 1.000 1.000 0.056 0.051 1.000 1.000 0.056 0.062

param. 100 0.992 0.510 0.044 0.050 0.992 0.516 0.049 0.048 0.992 0.531 0.054 0.056
MM 1000 1.000 1.000 0.046 0.051 1.000 1.000 0.055 0.054 1.000 1.000 0.058 0.052

param. 100 0.977 0.447 0.057 0.048 0.994 0.478 0.052 0.050 0.991 0.446 0.055 0.056
CML 1000 1.000 1.000 0.050 0.053 1.000 1.000 0.053 0.051 1.000 1.000 0.054 0.051

semi-p. 100 0.993 0.548 0.053 0.047 0.990 0.521 0.053 0.054 0.992 0.498 0.051 0.049
CML 1000 1.000 1.000 0.055 0.047 1.000 1.000 0.049 0.047 1.000 1.000 0.051 0.051

To sum up, if computing the SPACF from the raw counts (Xt), with the aim of identi-
fying the AR-order of the given count DGP, the overally best performance is shown by the
MM-based parametric and CML-based semi-parametric bootstrap implementation of the
PACF-test, but also the refined asymptotic implementation relying on (11) does reasonably
well. The latter is remarkable as these asymptotics are not the correct ones regarding the
considered count DGPs (also recall the discussion of Figure 1), but it appears that their
approximation quality is sufficient anyway. The simple asymptotic implementation (5), by
contrast, as it is used by statistical software packages by default, leads to reduced power in
some cases. From a practical point of view, as the additional benefit of the (semi-)parametric
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bootstrap schemes compared to the refined asymptotic implementation (11) is not that large,
especially in view of the necessary computational effort, it seems advisable for practice to
use (11) for doing the PACF-test. Recall that this recommendation refers to the case, where
the SPACF is computed from the raw counts (Xt) to identify the DGP’s AR-order. The
case of applying the PACF-test to Pearson residuals for checking the model adequacy is
analyzed in the following Section 6.

6. PACF Diagnostics for Pearson Residuals

While the raw counts’ SPACF is typically computed before model fitting (namely for
identifying appropriate candidate models), the PACF-analysis of the Pearson residuals is
relevant after model fitting, namely for checking the fitted model’s adequacy. Thus, the
main difference of the simulations in the present section, compared to those of Section 5,
is given by the fact that this time, we first fit a (Poi-)INAR model to the data, and then
we apply the SPACF to the Pearson residuals computed thereof. For Poi-INAR model
fitting, we again use either MM- or CML-estimation, and then we apply the asymptotic
or corresponding parametric bootstrap implementations (like before, we use the warp-
speed method). An exception is given by the semi-parametric CML estimation, as in
this case, also the semi-parametric bootstrap is used for methodological consistency (and
Pearson residuals are computed with respect to an unspecified INAR model). We also
consider the same scenarios of model orders as before, i.e., 1st-order DGPs and INAR(1)-fit
(Tables 4 and 7), 2nd-order DGPs but still INAR(1)-fit (Tables 5 and 8), and 2nd-order
DGPs and INAR(2)-fit (Tables 6 and 9). Recall that the fitted model is now used for both
the computation of the Pearson residuals and the implementation of (semi-)parametric
bootstrap schemes.

Table 4. Rejection rates of PACF-tests applied to Pearson residuals using MM estimates (DGPs with μ = 5
and ρ(1) = 0.5), where both residuals and parametric bootstrap rely on null of Poi-INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

μ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.000 0.026 0.040 0.043 0.001 0.026 0.038 0.044 0.000 0.031 0.041 0.044
(5) 1000 0.000 0.029 0.044 0.053 0.000 0.030 0.043 0.052 0.001 0.033 0.044 0.050

asym. 100 0.001 0.030 0.046 0.050 0.001 0.032 0.042 0.049 0.001 0.037 0.049 0.049
(11) 1000 0.000 0.030 0.047 0.048 0.000 0.030 0.047 0.051 0.000 0.032 0.047 0.050

param. 100 0.056 0.051 0.052 0.048 0.050 0.049 0.049 0.045 0.066 0.050 0.047 0.051
MM 1000 0.051 0.053 0.049 0.045 0.050 0.051 0.053 0.051 0.060 0.046 0.050 0.044

Let us start with the case of fitting a Poi-INAR model by MM estimation, see Tables 4–6.
In Table 4 (1st-order models and DGPs; also see Table A3 in the Appendix B), we recognize
that both asymptotic implementations lead to undersizing at lags h = 1, 2 (particularly
severe at h = 1). This is in close agreement to our conclusions drawn from Figure 1 as
well as to the findings of Weiß et al. [14]. An analogous observation can be done in Table 6
(2nd-order models and DGPs), but now for lags h = 1, 2, 3 (particularly severe at h = 1, 2).
In both cases, however, the MM-based parametric bootstrap holds the nominal 0.05-level
reasonably well. The drawback resulting from this undersizing gets clear in Table 5, where
the wrong AR-order was selected during model fitting: the asymptotic implementations
lead to a very low power for sample size n = 100, implying that one will hardly recognize
the inadequate model choice. Thus, if model assumptions are used anyway for computing
the Pearson residuals, the asymptotic implementation should be avoided, but the model
assumptions should also be utilized for executing the PACF-test by using the parametric
bootstrap scheme. As a final remark, strictly speaking, we are always concerned with model
misspecification if having an NB-INAR or Poi-INARCH DGP. However, all three DGPs
per table have the same conditional mean and, thus, the same autocorrelation structure,
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only their conditional variances differ. Also the MM-estimates required for computing the
conditional mean are identical across all models. Thus, it is not surprising that the rejection
rates of the PACF-tests do not differ much among these three types of DGP (but again with
slight oversizing for the Poi-INARCH DGPs).

Finally, we did the same simulations again, but using CML instead of MM estimation.
Table 7 (as well as Table A5 in the Appendix B) refer to the case of both 1st-order models and
1st-order DGPs. In the first block, where the parametric Pearson residuals are computed
by correctly assuming a Poi-INAR(1) DGP, we have again strong undersizing at lag 1 for
the asymptotic implementation, but a close agreement to the nominal 0.05-level for the
parametric bootstrap. The remaining blocks with NB-INAR(1) and Poi-INARCH(1) DGP,
however, differ notably from the corresponding blocks in Tables 7 and A5, respectively. This
is plausible as the parametric CML approach for a misspecified model leads to misleading
estimates for all parameters. While MM estimation leads to the same estimates for the
dependence parameters across the three 1st-order models, these differ for parametric CML
estimation. Therefore, we have high rejection rates especially at lag 1 (especially if using
the parametric bootstrap), which is desirable on the one hand as the fitted model is indeed
not adequate. On the other hand, we did not misspecify the (P)ACF structure (a 1st-order
model is correct for all DGPs) but the actual data-generating mechanism, i.e., a user might
draw the wrong conclusion from this rejection based on the lag-1 PACF. At this point,
it is interesting to look at the semi-parametric model fit and bootstrap in Table 7. For
both INAR(1) DGPs, the rejection rates are close to the 0.05-level, which is the desirable
result as we are concerned with an adequate model fit. For the Poi-INARCH(1) DGP, by
contrast, we get moderately increased rejection rates at lag 1, which again has to be assessed
ambivalently: on the one hand, the fitted INAR(1) model is indeed not adequate, but on
the other hand, the inadequacy does not refer to the autocorrelation structure.

Table 5. Like Table 4, but 2nd-order DGPs with α2 = 0.2.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

μ = 1.5 Poi-INARCH(2)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.016 0.264 0.079 0.043 0.014 0.266 0.077 0.043 0.018 0.275 0.080 0.045
(5) 1000 0.975 0.998 0.648 0.191 0.958 0.998 0.625 0.192 0.966 0.999 0.642 0.191

asym. 100 0.013 0.359 0.104 0.061 0.010 0.356 0.100 0.059 0.014 0.369 0.105 0.060
(11) 1000 0.972 0.998 0.662 0.212 0.954 0.998 0.640 0.210 0.962 0.999 0.655 0.210

param. 100 0.395 0.365 0.102 0.063 0.369 0.356 0.094 0.064 0.396 0.378 0.092 0.069
MM 1000 1.000 0.999 0.664 0.201 1.000 0.999 0.646 0.204 1.000 0.999 0.662 0.211

Table 6. Rejection rates of PACF-tests applied to Pearson residuals using MM estimates (DGPs with
μ = 5, ρ(1) = 0.5, and α2 = 0.2), where both residuals and parametric bootstrap rely on null of
Poi-INAR(2) process.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

μ = 1.5 Poi-INARCH(2)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.000 0.001 0.033 0.034 0.000 0.002 0.035 0.038 0.000 0.002 0.034 0.036
(5) 1000 0.000 0.001 0.036 0.042 0.000 0.001 0.033 0.042 0.000 0.001 0.036 0.040

asym. 100 0.000 0.003 0.041 0.043 0.000 0.003 0.040 0.044 0.000 0.002 0.042 0.046
(11) 1000 0.000 0.001 0.036 0.042 0.000 0.001 0.035 0.044 0.000 0.001 0.036 0.045

param. 100 0.050 0.037 0.044 0.048 0.053 0.038 0.047 0.050 0.052 0.038 0.059 0.050
MM 1000 0.049 0.049 0.046 0.052 0.059 0.049 0.052 0.052 0.067 0.054 0.055 0.053
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Table 7. Rejection rates of PACF-tests applied to Pearson residuals using CML estimates (DGPs with
μ = 5 and ρ(1) = 0.5), where both residuals and bootstrap rely on null of Poi-INAR(1) process
(parametric bootstrap) or unspecified INAR(1) process (semi-parametric bootstrap), respectively.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

μ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.009 0.035 0.041 0.046 0.028 0.036 0.041 0.039 0.023 0.038 0.045 0.042
(5) 1000 0.008 0.035 0.045 0.048 0.902 0.182 0.069 0.053 0.745 0.148 0.072 0.051

asym. 100 0.009 0.041 0.046 0.048 0.043 0.055 0.047 0.050 0.034 0.053 0.048 0.051
(11) 1000 0.009 0.039 0.046 0.053 0.909 0.198 0.077 0.058 0.753 0.167 0.072 0.055

param. 100 0.052 0.049 0.049 0.045 0.238 0.062 0.048 0.049 0.209 0.064 0.053 0.050
CML 1000 0.049 0.053 0.049 0.053 0.993 0.226 0.075 0.051 0.963 0.188 0.082 0.048

semi-p. 100 0.050 0.051 0.054 0.053 0.057 0.048 0.052 0.044 0.070 0.052 0.049 0.051
CML 1000 0.039 0.053 0.056 0.048 0.052 0.053 0.055 0.049 0.225 0.067 0.058 0.050

Table 8. Like Table 7, but 2nd-order DGPs with α2 = 0.2.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

μ = 1.5 Poi-INARCH(2)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.026 0.301 0.084 0.043 0.001 0.403 0.090 0.044 0.001 0.404 0.092 0.045
(5) 1000 0.522 0.999 0.696 0.192 0.001 1.000 0.718 0.178 0.000 1.000 0.726 0.174

asym. 100 0.020 0.391 0.110 0.061 0.002 0.502 0.114 0.059 0.001 0.492 0.125 0.064
(11) 1000 0.508 0.999 0.709 0.212 0.001 1.000 0.733 0.193 0.000 1.000 0.727 0.193

param. 100 0.099 0.399 0.114 0.059 0.031 0.514 0.105 0.062 0.028 0.495 0.131 0.063
CML 1000 0.840 1.000 0.710 0.235 0.041 1.000 0.755 0.183 0.023 1.000 0.737 0.194

semi-p. 100 0.222 0.350 0.106 0.063 0.172 0.384 0.098 0.054 0.134 0.410 0.109 0.066
CML 1000 0.999 0.999 0.664 0.222 0.976 0.999 0.665 0.204 0.917 1.000 0.720 0.208

Table 9. Rejection rates of PACF-tests applied to Pearson residuals using CML estimates (DGPs with
μ = 5, ρ(1) = 0.5, and α2 = 0.2), where both residuals and bootstrap rely on null of Poi-INAR(2) process
(parametric bootstrap) or unspecified INAR(2) process (semi-parametric bootstrap), respectively.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

μ = 1.5 Poi-INARCH(2)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.002 0.002 0.033 0.036 0.003 0.001 0.037 0.038 0.001 0.001 0.037 0.036
(5) 1000 0.000 0.000 0.037 0.044 0.303 0.021 0.082 0.063 0.158 0.005 0.063 0.047

asym. 100 0.002 0.002 0.039 0.041 0.005 0.004 0.047 0.049 0.002 0.002 0.042 0.046
(11) 1000 0.000 0.001 0.038 0.044 0.332 0.028 0.089 0.070 0.174 0.006 0.074 0.055

param. 100 0.002 0.002 0.037 0.043 0.003 0.003 0.051 0.047 0.002 0.002 0.048 0.051
CML 1000 0.000 0.001 0.038 0.044 0.344 0.023 0.086 0.067 0.186 0.007 0.065 0.058

semi-p. 100 0.043 0.038 0.050 0.044 0.044 0.036 0.047 0.043 0.038 0.039 0.052 0.050
CML 1000 0.035 0.045 0.053 0.053 0.051 0.054 0.055 0.051 0.149 0.056 0.054 0.053

Essentially analogous conclusions can be drawn from Table 9, where we are concerned
with both 2nd-order models and 2nd-order DGPs. So let us turn to Table 8, where 1st-
order models are fitted to 2nd-order DGPs. Thus, we are concerned with at least an
inadequate autocorrelation structure (and sometimes also further model misspecification)
such that high rejection rates are desirable. Let us start with the first block about the
Poi-INAR(2) DGP. As a consequence of the strong undersizing at lag 1, the parametric
bootstrap, and especially the asymptotic implementations, show relatively low power
values, especially for the small sample size n = 100. The semi-parametric bootstrap, by
contrast, has substantially higer power values at lag 1. For lags h ≥ 2, the rejection rates
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are similar between the different implementations, with a slight advantage for the refined
asymptotics as well as the parametric bootstrap. The discrepancy at lag 1 gets even more
extreme for the NB-INAR(2) and Poi-INARCH(2) DGP, then all other implementations
than the semi-parametric one lead to power close to zero. For lags 2 and 3, by contrast, the
refined asymptotics as well as the parametric bootstrap are again more powerful. However,
looking back to Table 5, it seems that the overall most appealing power is shown by the
MM-based parametric bootstrap. This type of bootstrap also has the advantage that the
necessary computational effort is much less than for the CML-based bootstraps. Thus,
altogether, while we recommended to use the refined asymptotics (11) if testing the PACF
computed from the raw counts, the PACF analysis of Pearson residuals should be done
by the MM-based parametric bootstrap: if computing the Pearson residuals from an MM-
fitted Poi-INAR model, and if using this model fit for parametric bootstrap, one has good
size properties and an appealing power performance at the same time. Certainly, this
recommendation does not exclude to do CML-fitting in a second step, once the correct
AR-order has been identified. But during the phase of model diagnostics, at least if n is not
particularly large, the parametric-MM solution seems to be best suited.

Remark 2. As mentioned in Section 4, we also tried out fully non-parametric bootstrap schemes.
For the case where the PACF-tests are applied to the raw counts (Xt), as discussed in Section 5, the
circular block bootstrap was used as a fully non-parametric setup, see Table A2 in the Appendix B
for the obtained results. While these implementations lead to an appealing power at lag h = 1,
strong size deteriorations are observed for h ≥ 2. The strongest deviations are observed for the fixed
block length b = 5. Increasing b, first the low-lag rejection rates stabilize at 0.05, while we have
undersizing for large lags. For b = 20, 25, we have good sizes for h = 5, 6, but now the low lags
lead to exceedances of 0.05. Thus, tailor-made block lengths would be required for different lags h.
The automatic block-length selection via b.star typically leads to block lengths between 5 and 10
(depending on the actual extent of ρ(1)), but this causes undersizing throughout, getting more severe
for increasing h. The reason why b.star tends to pick block lengths that are too small to capture
dependence at larger lags is given by the fact that it is designed to select a block length suitable
for inference about the sample mean, but not for the sample PACF. In view of the aforementioned
size problems and the unclear choice of block lengths, we discourage from using block-bootstrap
implementations of the PACF-test for analyzing the raw counts data.

If doing a PACF-analysis of the Pearson residuals, as we investigate it in the present Section 6,
then, besides block-bootstrap implementations, also the Efron bootstrap appears reasonable for
this task. For the case where the Pearson residuals rely on MM estimates, simulation results
are summarized in Table A4 in the Appendix B. If doing an automatic block-length selection via
b.star, we often end up with block length 1 (as the Pearson residuals are uncorrelated under
model adequacy). Thus, the b.star-block bootstrap shows nearly the same rejection rates as the
Efron bootstrap, but these are too low at lags h = 1, 2, like for the asymptotic implementations.
Increasing the block length to the fixed values b = 5 or b = 10, we get an even further decrease in
size. Therefore, neither Efron nor block bootstrap offer any advantage compared to the asymptotic
implementations. Analogous conclusions hold if model fitting is done by CML estimation, see
Table A6 in the Appendix B, so we discourage from the use of Efron and block bootstrap also if doing
a PACF-test of the Pearson residuals.

7. Real-Data Application

For illustration, we pick up a widely discussed data example from the literature,
namely the claims counts data introduced by Freeland [29]. These counts express the
monthly number of claims caused by burn-related injuries in the heavy manufacturing
industry for the period 1987–1994, i.e., the count time series is of length n = 96; see Figure 2.
Recall that the R-code used for the subsequent computations is provided in the Supple-
mentary Materials. Freeland [29] suggested to model these data by a Poi-INAR(1) model,
but following the discussions of subsequent authors, this model choice is not without
controversy. For example, the marginal distribution exhibits moderate overdispersion, as
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the sample variance 11.357 exceeds the mean 8.604. Therefore, some authors suggested
to consider an NB-INAR(1) or Poi-INARCH(1) model instead. Furthermore, one may
doubt the 1st-order AR-structure, see Weiß et al. [30], as the SPACF in Figure 2 is only
slightly non-significant at lag h = 2, where the plotted critical values (dashed lines) refer
to the PACF-test on level 0.05 based on the simple asymptotic implementation (5). Thus,
altogether, we are concerned with a scenario that fits very well to our simulation study in
Sections 5 and 6: the null hypothesis for the data is that of a Poi-INAR(1) model, but this
model might be misspecified in terms of marginal distribution, model order, or the actual
AR-type data-generating mechanism. Moreover, the sample size n = 96 and the lag-1
sample ACF 0.452 are close to the parametrizations considered there. In what follows, we
apply the different implementations of the PACF-test to (the Pearson residuals computed
from) the claims data. Certainly, as we do not know the true model behind the data, we are
not in a position to pass definitive judgement on whether or not a test lead to the correct or
wrong decision. But we shall discuss the PACF-tests with respect to our simulation results.

t h

Figure 2. Time series plot and SPACF(h) of claims counts, see Section 7.

Let us start with an analysis of the raw counts’ SPACF, in analogy to Section 5. Table 10
summarizes the SPACF(h) values for h = 1, . . . , 5 (bold font) as well as the corresponding
critical values (level 0.05). The latter are computed by the five methods considered in
Section 5, with the number of bootstrap replications chosen as B = 1000. For the simple
asymptotic implementation (5), as we have already seen in Figure 2, we get a rejection
only at lag 1, whereas the remaining methods reject also at lag 2. Thus, there is indeed
evidence that the data might stem from a higher-order model. In addition, the different lag-
2 decisions for (5) vs. the remaining implementations appear plausible in view of Table 2,
where we found clearly lower power for (5) at h = 2. Note that all critical values except (5)
are visibly asymmetric, so the SPACF appears rather biased for n = 96. Furthermore, all
bootstrap implementations lead to quite similar critical values, and the refined asymptotic
implementation (11) is also similar to them except for the upper critical value at h = 1.

Next, we fit either a Poi-INAR(1) model to the claims counts (via MM or CML), or an
unspecified INAR(1) model by the semi-parametric CML approach. Using the resulting
model fits, we first compute a set of Pearson residuals for each model, and then the SPACF
thereof, like in Section 6. The critical values are determined by both asymptotic approaches
as well as by the bootstrap approach corresponding to the respective estimation method.
Results are summarized in Table 11. We get only a few rejections anymore, namely for the
CML-fit of the Poi-INAR(1) model at lag h = 2, both for the refined asymptotics and the
parametric bootstrap. The remaining model fits do not lead to a rejection, and one might
ask, why? The reason seems to be the respective estimate of the AR(1)-parameter α1 = ρ(1),
which equals only 0.396 for CML, but 0.452 for MM and 0.434 for semi-CML. So the CML-fit
explains less of the dependency in the data. The deeper reason for this ambiguous outcome
seems to be the low sample size n = 96; according to Section 6, we can generally expect
only mild power values. It is again interesting to compare the different critical values.
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For the Poi-INAR(1) CML-fit, bootstrap and refined asymptotics lead to rather similar
critical values, in agreement with our simulation results in Section 6, where a similar
performance of both methods was observed. For the remaining estimation approaches, the
bootstrap critical values tend to be more narrow than the asymptotic ones, especially at
lags 1 and 2. The strongest “shrinkage” of the critical values is observed for h = 1, which
goes along with our findings in Section 6, where the asymptotic implementation lead to
severe undersizing at lag 1, whereas the bootstrap approaches held the nominal level quite
well. Furthermore, due to the narrower critical values, the MM and semi-CML bootstraps
are also more powerful at lags 1 and 2.

Table 10. SPACF(h) of claims counts (bold font), lower and upper critical values (level 0.05) by
different methods, where italic font indicates that critical value is violated.

Lag h: 1 2 3 4 5

Upper asym. (5) 0.200 0.200 0.200 0.200 0.200
critical value asym. (11) 0.186 0.175 0.184 0.173 0.182
by method . . . param., MM 0.134 0.175 0.184 0.181 0.186

param., CML 0.148 0.167 0.179 0.182 0.185
semi-p., CML 0.138 0.171 0.166 0.162 0.192

SPACF(h) 0.452 0.198 −0.010 −0.038 0.040

Lower asym. (5) −0.200 −0.200 −0.200 −0.200 −0.200
critical value asym. (11) −0.207 −0.217 −0.205 −0.215 −0.203
by method . . . param., MM −0.211 −0.224 −0.206 −0.202 −0.199

param., CML −0.224 −0.223 −0.218 −0.204 −0.197
semi-p., CML −0.213 −0.213 −0.198 −0.220 −0.199

Table 11. SPACF(h) of Pearson residuals after fitting a (Poi-)INAR(1) model to the claims counts
(bold font). Lower and upper critical values (level 0.05) by different methods, where italic font
indicates that critical value is violated.

Poi-INAR(1), MM Lag h: 1 2 3 4 5

Upper asym. (5) 0.201 0.201 0.201 0.201 0.201
critical value asym. (11) 0.187 0.176 0.185 0.174 0.183
by method . . . param., MM 0.108 0.167 0.195 0.184 0.189

SPACF(h) −0.060 0.156 0.061 −0.032 −0.007

Lower asym. (5) −0.201 −0.201 −0.201 −0.201 −0.201
critical value asym. (11) −0.208 −0.218 −0.206 −0.216 −0.205
by method . . . param., MM −0.076 −0.190 −0.195 −0.195 −0.202

Poi-INAR(1), CML Lag h: 1 2 3 4 5

Upper asym. (5) 0.201 0.201 0.201 0.201 0.201
critical value asym. (11) 0.187 0.176 0.185 0.174 0.183
by method . . . param., CML 0.172 0.166 0.183 0.180 0.193

SPACF(h) 0.009 0.185 0.062 −0.031 −0.002

Lower asym. (5) −0.201 −0.201 −0.201 −0.201 −0.201
critical value asym. (11) −0.208 −0.218 −0.206 −0.216 −0.205
by method . . . param., CML −0.208 −0.213 −0.219 −0.205 −0.201

INAR(1), semi-CML Lag h: 1 2 3 4 5

Upper asym. (5) 0.201 0.201 0.201 0.201 0.201
critical value asym. (11) 0.187 0.176 0.185 0.174 0.183
by method . . . semi-p., CML 0.158 0.171 0.178 0.162 0.203

SPACF(h) −0.041 0.165 0.064 −0.029 −0.006

Lower asym. (5) −0.201 −0.201 −0.201 −0.201 −0.201
critical value asym. (11) −0.208 −0.218 −0.206 −0.216 −0.205
by method . . . semi-p., CML −0.142 −0.204 −0.196 −0.215 −0.210

8. Conclusions

In this paper, we considered PACF model diagnostics for AR-type count processes
based on raw data and on Pearson residuals, respectively. At first, we illustrated the
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limitations of the widely used and well-known asymptotic distribution result (as well as
some refinements thereof) for the sample PACF values. Then, we introduced appropriate
bootstrap schemes for the approximation of the correct sample PACF distribution. We
considered a fully parametric bootstrap combined with MM and CML estimation, a semi-
parametric bootstrap combined with CML estimation, and a fully non-parametric bootstrap
scheme. We compared the performance of the different procedures for first- and second-
order AR-type count processes. In the case where we apply the PACF test directly to the raw
count data, the best performance was observed for the MM-based parametric bootstrap,
CML-based semi-parametric bootstrap, and the refined asymptotic results, where the latter
are preferable for computing time reasons. By contrast, when applying the PACF test to the
Pearson residuals, we advise using the MM-based parametric bootstrap procedure which
simultaneously provides good size properties and power performance. Finally, we applied
our different PACF procedures to a well-known data set on claims counts and found some
evidence for a higher-order model.
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Appendix A. On the Equivalence of ACF, PACF, and AR Coefficients

The first p Yule–Walker (YW) equations in

ρ(h) = ∑
p
i=1 αi ρ

(
|h − i|

)
for h = 1, 2, . . . (A1)

can be rewritten in vector-matrix notation as follows: For k ∈ N, let αk :=
(
α1, . . . , αk

)� ∈
Rk with αi = 0 for i > p, let rk :=

(
ρ(1), . . . , ρ(k)

)� ∈ Rk, and

Rk :=
(

ρ
(
|i − j|

))
i,j=1,...,k

=

⎛⎜⎜⎜⎜⎝
1 ρ(1) · · · ρ(k − 1)

ρ(1) 1
. . .

...
...

. . . . . . ρ(1)
ρ(k − 1) · · · ρ(1) 1

⎞⎟⎟⎟⎟⎠ ∈ R
k×k. (A2)

Then, (A1) implies that the AR(p) process satisfies the linear equation

Rp αp = rp. (A3)

Note that Rk constitutes a symmetric Toeplitz matrix, i.e., it is characterized by having
constant diagonals. This type of matrix structure was first considered by Toeplitz [31,32],
and it is crucial for efficiently solving (A3) in αp (see the details below).
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Assume that Rk is invertible, and let ak ∈ Rk be the unique solution of the equation

Rk ak = rk, i.e., ak = R−1
k rk. (A4)

Then, the PACF at lag k is defined by ρpart(k) := ak,k (last component of ak); let us denote

πk :=
(
ρpart(1), . . . , ρpart(k)

)� ∈ Rk.
If (Xt)Z follows an AR(p) model, then (A3) implies that

ρpart(p) = αp, ρpart(h) = 0 for all h > p, (A5)

holds; in particular, we have ap = αp. Because of the Toeplitz structure of Rk, the YW-
equations (A3) can be solved recursively for k = 1, 2, . . ., which was first recognized by
Durbin [33], Levinson [34]. The recursive scheme, which is commonly referred to as the
Durbin–Levinson (DL) algorithm, can be expressed as

ak+1,k+1 =
ρ(k + 1) − ∑k

i=1 ak,i ρ(k + 1 − i)

1 − ∑k
i=1 ak,i ρ(i)

,

⎛⎜⎝ ak+1,1
...

ak+1,k

⎞⎟⎠ =

⎛⎜⎝ ak,1
...

ak,k

⎞⎟⎠ − ak+1,k+1

⎛⎜⎝ ak,k
...

ak,1

⎞⎟⎠.

(A6)

Given the (sample) ACF, the DL-algorithm (A6) is used to recursively compute the (sample)
PACF for k = 1, 2, . . ., where ρpart(1) = a1,1 = ρ(1).

Furthermore, applying the DL-algorithm to (A3), we can compute the AR parameters
α1, . . . , αp corresponding to the ACF values ρ(1), . . . , ρ(p) (or if using the sample ACF, we
end up with moment estimates for the AR parameters, referred to as YW-estimates). In R,
this is readily implemented via acf2AR. Given the AR parameters, in turn, (A1) or (A3)
can also be solved in the ACF, see Section 3.3 in Brockwell & Davis [11] as well as the
R command ARMAacf.

The previous discussion shows that an AR(p) model can be characterized equivalently
by either αp or rp. According to Barndorff-Nielsen & Schou [35], this type of “equivalent
parametrization” can be further extended by the one-to-one relationship between αp and
πp, i.e., we have one-to-one relations between rp ↔ αp ↔ πp. For computing αp from πp,
Barndorff-Nielsen & Schou [35] suggest to use the DL-algorithm (A6) together with (A4)
as follows:⎛⎜⎜⎜⎝

ak+1,1
...

ak+1,k
ak+1,k+1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ak,1

...
ak,k
0

⎞⎟⎟⎟⎠ − ρpart(k + 1)

⎛⎜⎜⎜⎝
ak,k

...
ak,1
−1

⎞⎟⎟⎟⎠ for k = 1, 2, . . . , (A7)

which is initialized by setting a1,1 = ρpart(1). Then, αp = ap. Altogether, the application of
the DL-algorithm allows the transformations

rp
(A3)−−−→ αp

(A6)↘ ↗ (A7)

πp

By contrast, recall that αp → rp (and thus πp → αp → rp) is done by solving (A1) or
(A3) in the ACF, e.g., by using the “third method” in Brockwell & Davis [11] (Section 3.3)
or R’s ARMAacf.
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Appendix B. Further Simulation Results

Table A1. Rejection rates of PACF-test applied to DGP with μ = 5, where semi-parametric (paramet-
ric) bootstrap relies on null of (Poi-)INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

μ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method ρ(1) n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 0.25 100 0.629 0.050 0.047 0.043 0.646 0.050 0.042 0.044 0.639 0.049 0.046 0.045
(1.5) 1000 1.000 0.049 0.050 0.046 1.000 0.054 0.052 0.049 1.000 0.054 0.047 0.050

0.5 100 0.998 0.053 0.040 0.044 0.998 0.054 0.043 0.046 0.995 0.054 0.046 0.044
1000 1.000 0.056 0.047 0.049 1.000 0.057 0.051 0.053 1.000 0.056 0.053 0.050

0.75 100 1.000 0.050 0.042 0.043 1.000 0.057 0.048 0.045 1.000 0.062 0.053 0.047
1000 1.000 0.050 0.048 0.054 1.000 0.060 0.056 0.055 1.000 0.071 0.063 0.061

asym. 0.25 100 0.692 0.045 0.046 0.054 0.688 0.051 0.048 0.052 0.690 0.054 0.052 0.047
(3.2) 1000 1.000 0.053 0.050 0.052 1.000 0.053 0.051 0.047 1.000 0.051 0.050 0.049

0.5 100 0.998 0.054 0.047 0.048 0.997 0.052 0.050 0.051 0.997 0.047 0.049 0.048
1000 1.000 0.050 0.049 0.051 1.000 0.061 0.053 0.049 1.000 0.060 0.051 0.048

0.75 100 1.000 0.047 0.051 0.046 1.000 0.054 0.054 0.050 1.000 0.060 0.061 0.053
1000 1.000 0.055 0.054 0.054 1.000 0.062 0.058 0.056 1.000 0.073 0.066 0.060

param. 0.25 100 0.742 0.046 0.046 0.050 0.736 0.045 0.054 0.051 0.747 0.053 0.048 0.048
MM 1000 1.000 0.054 0.048 0.043 1.000 0.048 0.055 0.054 1.000 0.050 0.048 0.050

0.5 100 1.000 0.052 0.055 0.056 0.999 0.053 0.052 0.055 1.000 0.048 0.053 0.049
1000 1.000 0.055 0.052 0.049 1.000 0.047 0.052 0.046 1.000 0.046 0.056 0.046

0.75 100 1.000 0.050 0.057 0.056 1.000 0.052 0.047 0.047 1.000 0.064 0.067 0.061
1000 1.000 0.061 0.049 0.049 1.000 0.060 0.059 0.054 1.000 0.067 0.062 0.059

param. 0.25 100 0.747 0.049 0.049 0.054 0.735 0.046 0.049 0.051 0.726 0.053 0.052 0.055
CML 1000 1.000 0.051 0.049 0.047 1.000 0.049 0.058 0.049 1.000 0.044 0.051 0.048

0.5 100 1.000 0.054 0.051 0.054 0.999 0.049 0.053 0.050 0.999 0.059 0.046 0.049
1000 1.000 0.048 0.049 0.057 1.000 0.050 0.055 0.051 1.000 0.052 0.052 0.047

0.75 100 1.000 0.052 0.050 0.051 1.000 0.051 0.051 0.050 1.000 0.061 0.055 0.053
1000 1.000 0.050 0.050 0.052 1.000 0.052 0.058 0.053 1.000 0.069 0.066 0.066

semi-p. 0.25 100 0.736 0.043 0.046 0.048 0.723 0.049 0.052 0.051 0.733 0.053 0.053 0.056
CML 1000 1.000 0.048 0.052 0.047 1.000 0.046 0.053 0.057 1.000 0.054 0.059 0.046

0.5 100 1.000 0.053 0.053 0.051 1.000 0.054 0.051 0.049 0.999 0.044 0.048 0.054
1000 1.000 0.047 0.054 0.054 1.000 0.051 0.049 0.057 1.000 0.052 0.054 0.052

0.75 100 1.000 0.052 0.054 0.054 1.000 0.051 0.051 0.041 1.000 0.064 0.063 0.057
1000 1.000 0.048 0.046 0.051 1.000 0.051 0.048 0.048 1.000 0.060 0.057 0.060

Table A2. Rejection rates of PACF-test applied to Poi-INAR(1) DGP with μ = 5, where circular block
bootstrap with automatically selected (“b.star”) or fixed block length b is used.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

b.star 0.25 100 0.922 0.010 0.006 0.007 0.007 0.007
1000 1.000 0.037 0.025 0.016 0.011 0.006

0.5 100 1.000 0.024 0.012 0.008 0.008 0.007
1000 1.000 0.050 0.041 0.032 0.032 0.023

0.75 100 1.000 0.041 0.027 0.019 0.015 0.010
1000 1.000 0.045 0.050 0.042 0.037 0.035

b = 5 0.25 100 0.857 0.031 0.024 0.011 0.005 0.005
1000 1.000 0.038 0.023 0.011 0.003 0.004

0.5 100 1.000 0.036 0.020 0.014 0.004 0.008
1000 1.000 0.042 0.026 0.013 0.004 0.006

0.75 100 1.000 0.028 0.021 0.008 0.002 0.008
1000 1.000 0.125 0.074 0.038 0.016 0.029

b = 10 0.25 100 0.833 0.052 0.047 0.036 0.026 0.022
1000 1.000 0.045 0.041 0.036 0.031 0.025

0.5 100 1.000 0.053 0.042 0.032 0.026 0.020
1000 1.000 0.047 0.040 0.034 0.027 0.024

0.75 100 1.000 0.045 0.041 0.035 0.023 0.020
1000 1.000 0.054 0.040 0.034 0.029 0.019

b = 15 0.25 100 0.831 0.058 0.050 0.051 0.037 0.031
1000 1.000 0.043 0.048 0.045 0.037 0.030

0.5 100 1.000 0.058 0.054 0.051 0.042 0.029
1000 1.000 0.058 0.045 0.046 0.038 0.031

0.75 100 1.000 0.054 0.042 0.035 0.036 0.034
1000 1.000 0.053 0.044 0.039 0.031 0.036

b = 20 0.25 100 0.813 0.064 0.060 0.055 0.051 0.047
1000 1.000 0.053 0.046 0.045 0.046 0.041

0.5 100 1.000 0.067 0.065 0.056 0.050 0.044
1000 1.000 0.052 0.048 0.038 0.045 0.039

0.75 100 1.000 0.059 0.064 0.051 0.043 0.041
1000 1.000 0.049 0.048 0.047 0.034 0.038
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Table A2. Cont.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

b = 25 0.25 100 0.819 0.080 0.072 0.058 0.058 0.056
1000 1.000 0.054 0.058 0.051 0.047 0.044

0.5 100 1.000 0.078 0.065 0.065 0.052 0.048
1000 1.000 0.049 0.060 0.050 0.046 0.052

0.75 100 1.000 0.070 0.064 0.058 0.048 0.051
1000 1.000 0.054 0.050 0.050 0.048 0.040

Table A3. Rejection rates of PACF-test applied to Pearson residuals using MM estimates (DGPs with
μ = 5), where both residuals and parametric bootstrap rely on null of Poi-INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

μ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method ρ(1) n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 0.25 100 0.000 0.038 0.044 0.047 0.000 0.041 0.040 0.046 0.000 0.042 0.046 0.046
(1.5) 1000 0.000 0.043 0.050 0.050 0.000 0.043 0.049 0.050 0.000 0.045 0.047 0.051

0.5 100 0.000 0.026 0.040 0.043 0.001 0.026 0.038 0.044 0.000 0.031 0.041 0.044
1000 0.000 0.029 0.044 0.053 0.000 0.030 0.043 0.052 0.001 0.033 0.044 0.050

0.75 100 0.011 0.022 0.034 0.037 0.010 0.022 0.030 0.035 0.013 0.026 0.036 0.041
1000 0.011 0.026 0.036 0.042 0.009 0.024 0.035 0.044 0.017 0.028 0.039 0.045

asym. 0.25 100 0.000 0.039 0.046 0.048 0.000 0.043 0.049 0.048 0.000 0.046 0.049 0.045
(3.2) 1000 0.000 0.046 0.052 0.055 0.000 0.044 0.048 0.048 0.000 0.047 0.047 0.053

0.5 100 0.001 0.030 0.046 0.050 0.001 0.032 0.042 0.049 0.001 0.037 0.049 0.049
1000 0.000 0.030 0.047 0.048 0.000 0.030 0.047 0.051 0.000 0.032 0.047 0.050

0.75 100 0.014 0.031 0.038 0.047 0.015 0.030 0.037 0.045 0.019 0.036 0.045 0.053
1000 0.011 0.026 0.036 0.042 0.010 0.024 0.034 0.043 0.018 0.029 0.040 0.045

param. 0.25 100 0.029 0.050 0.046 0.052 0.030 0.041 0.052 0.047 0.025 0.050 0.046 0.052
MM 1000 0.047 0.047 0.049 0.050 0.047 0.053 0.047 0.046 0.057 0.053 0.057 0.049

0.5 100 0.056 0.051 0.052 0.048 0.050 0.049 0.049 0.045 0.066 0.050 0.047 0.051
1000 0.051 0.053 0.049 0.045 0.050 0.051 0.053 0.051 0.060 0.046 0.050 0.044

0.75 100 0.059 0.042 0.050 0.053 0.058 0.044 0.046 0.045 0.071 0.056 0.055 0.050
1000 0.051 0.051 0.047 0.049 0.043 0.046 0.046 0.045 0.064 0.054 0.061 0.053

Table A4. Rejection rates of PACF-test applied to Pearson residuals using MM estimates (Poi-INAR(1)
DGPs with μ = 5), where circular block bootstrap with automatically selected (“b.star”) or fixed block
length b is used.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

Efron 0.25 100 0.000 0.047 0.046 0.047 0.051 0.049
1000 0.000 0.040 0.047 0.051 0.048 0.046

0.5 100 0.001 0.033 0.054 0.048 0.044 0.050
1000 0.000 0.033 0.043 0.050 0.050 0.055

0.75 100 0.014 0.030 0.041 0.044 0.047 0.053
1000 0.011 0.028 0.032 0.044 0.043 0.046

b.star 0.25 100 0.000 0.041 0.041 0.048 0.045 0.054
1000 0.000 0.049 0.052 0.047 0.049 0.053

0.5 100 0.000 0.034 0.044 0.046 0.045 0.054
1000 0.001 0.030 0.048 0.048 0.047 0.054

0.75 100 0.008 0.037 0.040 0.044 0.044 0.049
1000 0.007 0.027 0.033 0.041 0.044 0.049

b = 5 0.25 100 0.000 0.024 0.035 0.048 0.044 0.047
1000 0.000 0.023 0.035 0.044 0.055 0.053

0.5 100 0.001 0.022 0.034 0.044 0.047 0.042
1000 0.000 0.017 0.033 0.047 0.046 0.049

0.75 100 0.003 0.017 0.035 0.042 0.050 0.047
1000 0.003 0.013 0.028 0.039 0.044 0.051

b = 10 0.25 100 0.000 0.015 0.019 0.027 0.032 0.035
1000 0.000 0.010 0.017 0.025 0.028 0.033

0.5 100 0.000 0.016 0.020 0.030 0.033 0.043
1000 0.000 0.008 0.017 0.021 0.028 0.037

0.75 100 0.003 0.012 0.018 0.023 0.030 0.034
1000 0.002 0.008 0.013 0.020 0.025 0.035
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Table A5. Rejection rates of PACF-test applied to Pearson residuals using CML estimates (DGPs
with μ = 5), where both residuals and bootstrap rely on null of Poi-INAR(1) process (parametric
bootstrap) or unspecified INAR(1) process (semi-parametric bootstrap), respectively.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

μ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method ρ(1) n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 0.25 100 0.001 0.044 0.043 0.047 0.001 0.042 0.040 0.046 0.001 0.045 0.047 0.047
(1.5) 1000 0.000 0.045 0.051 0.052 0.236 0.057 0.049 0.050 0.000 0.048 0.048 0.052

0.5 100 0.009 0.035 0.041 0.046 0.028 0.036 0.041 0.039 0.023 0.038 0.045 0.042
1000 0.008 0.035 0.045 0.048 0.902 0.182 0.069 0.053 0.745 0.148 0.072 0.051

0.75 100 0.032 0.042 0.043 0.042 0.057 0.041 0.044 0.040 0.364 0.113 0.070 0.047
1000 0.033 0.040 0.048 0.050 0.581 0.288 0.162 0.094 1.000 0.913 0.488 0.204

asym. 0.25 100 0.001 0.043 0.047 0.049 0.002 0.049 0.050 0.048 0.000 0.046 0.049 0.049
(3.2) 1000 0.000 0.042 0.049 0.048 0.270 0.060 0.049 0.048 0.000 0.045 0.050 0.050

0.5 100 0.009 0.041 0.046 0.048 0.043 0.055 0.047 0.050 0.034 0.053 0.048 0.051
1000 0.009 0.039 0.046 0.053 0.909 0.198 0.077 0.058 0.753 0.167 0.072 0.055

0.75 100 0.034 0.043 0.046 0.048 0.075 0.062 0.052 0.055 0.425 0.165 0.094 0.067
1000 0.035 0.040 0.046 0.046 0.609 0.310 0.173 0.112 1.000 0.921 0.502 0.221

param. 0.25 100 0.040 0.052 0.049 0.048 0.262 0.050 0.051 0.056 0.046 0.051 0.051 0.056
CML 1000 0.049 0.046 0.053 0.049 1.000 0.065 0.051 0.054 0.194 0.047 0.050 0.047

0.5 100 0.052 0.049 0.049 0.045 0.238 0.062 0.048 0.049 0.209 0.064 0.053 0.050
1000 0.049 0.053 0.049 0.053 0.993 0.226 0.075 0.051 0.963 0.188 0.082 0.048

0.75 100 0.046 0.046 0.050 0.051 0.123 0.079 0.054 0.052 0.606 0.190 0.097 0.068
1000 0.048 0.053 0.048 0.047 0.709 0.338 0.169 0.121 1.000 0.936 0.522 0.221

semi-p. 0.25 100 0.037 0.045 0.047 0.050 0.049 0.044 0.050 0.054 0.045 0.051 0.052 0.051
CML 1000 0.037 0.054 0.050 0.047 0.037 0.047 0.052 0.052 0.031 0.051 0.054 0.054

0.5 100 0.050 0.051 0.054 0.053 0.057 0.048 0.052 0.044 0.070 0.052 0.049 0.051
1000 0.039 0.053 0.056 0.048 0.052 0.053 0.055 0.049 0.225 0.067 0.058 0.050

0.75 100 0.051 0.044 0.049 0.050 0.049 0.049 0.046 0.047 0.223 0.104 0.072 0.061
1000 0.046 0.049 0.049 0.051 0.055 0.053 0.050 0.050 0.377 0.217 0.129 0.080

Table A6. Rejection rates of PACF-test applied to Pearson residuals using CML estimates (Poi-
INAR(1) DGPs with μ = 5), where circular block bootstrap with automatically selected (“b.star”) or
fixed block length b is used.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

b.star 0.25 100 0.001 0.046 0.050 0.050 0.052 0.049
1000 0.000 0.050 0.053 0.050 0.050 0.051

0.5 100 0.007 0.036 0.046 0.054 0.045 0.052
1000 0.005 0.034 0.046 0.047 0.050 0.050

0.75 100 0.023 0.038 0.043 0.045 0.042 0.058
1000 0.022 0.049 0.046 0.047 0.050 0.052

b = 5 0.25 100 0.001 0.024 0.037 0.048 0.046 0.048
1000 0.000 0.020 0.033 0.048 0.045 0.056

0.5 100 0.003 0.020 0.038 0.039 0.050 0.050
1000 0.002 0.018 0.035 0.045 0.051 0.049

0.75 100 0.010 0.023 0.042 0.047 0.050 0.048
1000 0.009 0.018 0.032 0.045 0.049 0.044

b = 10 0.25 100 0.001 0.016 0.020 0.030 0.033 0.042
1000 0.000 0.012 0.018 0.028 0.029 0.034

0.5 100 0.003 0.014 0.019 0.030 0.031 0.036
1000 0.001 0.010 0.015 0.020 0.027 0.031

0.75 100 0.010 0.016 0.018 0.025 0.040 0.039
1000 0.006 0.011 0.015 0.023 0.023 0.032
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Abstract: In this paper, we propose a new discrete-time risk model of an insurance portfolio with
stochastic premiums, in which the temporal dependence among the premium numbers of consecutive
periods is fitted by the first-order integer-valued autoregressive (INAR(1)) process and the temporal
dependence among the claim numbers of consecutive periods is described by the integer-valued
moving average (INMA(1)) process. To measure the risk of the model quantitatively, we study the
explicit expression for a function whose solution is defined as the Lundberg adjustment coefficient
and give the Lundberg approximation formula for the infinite-time ruin probability. In the case of
heavy-tailed claim sizes, we establish the asymptotic formula for the finite-time ruin probability
via the large deviations of the aggregate claims. Two numerical examples are provided in order to
illustrate our theoretical findings.

Keywords: risk model; stochastic premiums; INAR(1) process; INMA(1) process; ruin probability

MSC: 62P05; 91B30; 97M30

1. Introduction

As an absolutely necessary part of the modern financial system, insurance is one of
the most effective ways for people to manage risks, such that it plays a significant role in
our daily life. A very important task of insurance companies is to quantitatively analyze
future claims. Consequently, risk theory has become an active research field of actuarial
science. For the classical mathematical risk model, the so-called Lundberg–Cramér surplus
process has the following form:

U0
t = u + ct −

N0
t

∑
i=1

Yi, t ≥ 0, (1)

in which u ≥ 0 is the initial capital of an insurance portfolio, c > 0 is the constant rate of
premium income, {N0

t , t ≥ 0} is a homogeneous Poisson process with intensity λ, the total
claim numbers are denoted up to time t, and Yi describes the size of the ith claim. In the
literature, Asmussen and Albrecher [1] presented excellent reviews about this well-known
and important model.

In model (1), independent structures are usually assumed. For example, the claim
amount {Yi, i ≥ 1} is a sequence of non-negative independent and identically distributed
(i.i.d.) random variables, and the claim numbers of different periods are assumed to
be a sequence of i.i.d. random variables. However, these are not always true in practice
because of the increasing complexity of individual risks. To avoid this restriction, a growing
number of actuaries have been paying attention to the model with dependent risks. As
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stated in Yang and Zhang [2], there are mainly two kinds of correlation in insurance: one is
the correlation among lines of businesses, and the other is temporal dependence, such as
the correlation between the current claim and the previous claims. For recent works about
the first type of correlation, Refs. [3,4] studied the dependence among individual risks,
Refs. [5,6] discussed the two-dimensional risk models with dependent surplus processes,
and [7,8] examined the risk models that have multiple classes of insurance business with
thinning dependence structure. The relevant results have been used in a variety of actuarial
areas, including, among others, value at risk, dividend strategies, reinsurance, capital
allocation, etc.

In this paper, we focus on the second type. To deal with this problem, the use of a
time series is a critical method. Gerber [9] considered the calculation of ruin probabilities
in a Gaussian linear risk model; Gourieroux and Jasiak [10] applied the integer-valued
time series model to update the premiums in vehicle insurance; and many researchers
have extensively revisited the relevant results afterwards. Considering that the com-
pound distributions are the cornerstones of a great number of risk models in risk theory,
Cossette et al. [11] proposed some new discrete-time risk models, where the first-order
integer-valued moving average (INMA(1)) and first-order integer-valued autoregressive
(INAR(1)) processes are used to describe the dependence structures among the number of
claims for each period. The authors derived expressions for the functions that allow people
to find the Lundberg adjustment coefficients and discussed the Lundberg approximation
formulas for infinite-time ruin probabilities. Along the same line, Cossette et al. [12] de-
termined the distributions of aggregate claim amount and provided an effective way to
measure some related risk quantities, including VaR, TVaR, and the stop-loss premium.
Shi and Wang [13] gave an approximation method for the risk model with the Poisson
INAR(1) claim number process in order to obtain the upper bound of the infinite-time ruin
probability. Zhang et al. [14] solved the problem of optimal reinsurance strategy for the
risk model with the INMA(1) claim number process. Afterwards, Hu et al. [15] and Chen
and Hu [16] further generalized this kind of model by replacing the Poisson innovations
with compound Poisson innovations in the INAR(1) and INMA(1) claim number pro-
cesses, respectively. Guan and Hu [17] even utilized an INAR(1) process with an arbitrary
innovations’ distribution to specify the temporal dependence among the claim numbers.

In the papers mentioned above, it should be noted that the incomes of all the risk
models are linear functions of time t, because the premiums are collected continuously
with positive deterministic constant rate c, providing great convenience for risk analysis.
However, this assumption is obviously lacking in terms of describing the real situation
of insurance portfolios; for example, it cannot capture the uncertainty of the customers’
arrivals. As an alternative to a fixed premium rate, Boikov [18] supposesed that the pre-
mium income also follows a compound Poisson process and calculates the ruin probability.
From then on, the risk models with stochastic premiums have been extensively improved
by many actuaries. Wang et al. [19] studied the investment problem of such models. Labbé
and Sendova [20] discussed the Gerber–Shiu function. Zhao and Yin [21] proposed a
renewal risk model with stochastic incomes. Recently, Su et al. [22] provided a statistical
method for estimating the Gerber–Shiu function; Ragulina [23] investigated the De Vylder
approximation for the ruin probability and a constant dividend strategy in the risk model
with stochastic premiums; and Dibu and Jacob [24] focused on a double barrier hybrid
dividend strategy. Wang et al. [25] quantitatively assessed the impact of the stochastic
income process on some ruin quantities in detail.

Similar to the classical risk model, the premium numbers of different periods are
commonly set to be a sequence of i.i.d. random variables in the aforementioned papers. To
better characterize the uncertainty and capture the variability of an insurer’s income process,
Guan and Wang [26] proposed modeling the temporal dependence among the premium
numbers of each period by a Poisson INAR(1) process. In this paper, we follow this trend of
research. We also aim to study a new dependent risk model with stochastic premiums based
on time series for count random variables, in which the INAR(1) process and INMA(1)
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process are applied to fit the temporal dependence among the premium numbers and the
temporal dependence among the claim numbers of consecutive periods, respectively. Our
goal is to approximate the infinite-time ruin probability of the proposed surplus process by
the Lundberg adjustment coefficient and discuss the asymptotic formula for the finite-time
ruin probability when the claim sizes follow distributions with heavy tails.

Our model generalizes the classical discrete-time surplus process of an insurance
portfolio with stochastic premiums to a new dependent risk model, and our results extend
what has been studied in the existing literature. The contributions of our paper mainly
include the following two aspects:

• In contrast to the assumption that either claim numbers or premium numbers have
a temporally dependent structure, we propose a new risk model of an insurance
portfolio with both claim numbers and premium numbers being dependent within
the integer-valued time series framework, which is more flexible in insurance practice.

• In addition to studying the distribution of the aggregate claims, the Lundberg ad-
justment coefficient, and the Lundberg approximation formula for the infinite-time
ruin probability in the case of light-tailed claim sizes, we also explore the large de-
viations of the aggregate claims and the asymptotic formula for the finite-time ruin
probability when the claim sizes are heavy-tailed, which enlarges the applicability of
the risk model.

The remainder of the paper is organized as follows: Section 2 introduces our con-
cerned risk model and considers some probabilistic properties of the proposed model.
Section 3 defines the Lundberg adjustment coefficient via the solution of an explicit equa-
tion. Section 4 establishes an exponential asymptotic estimation for the infinite-time ruin
probability. Section 5 studies the large deviations of the aggregate claims when the claim
sizes follow a class of heavy-tailed distributions and presents an asymptotic formula for the
finite-time ruin probability. Section 6 illustrates the main results by numerical simulations.
Section 7 finally concludes this paper.

2. Risk Model and Basic Properties

In this section, we first describe the new dependent risk model, and then, provide
some moment results of the premiums and claims. Let Ut be the surplus of an insurance
portfolio at the end of period t, and we define the surplus process by the dynamic equation

Ut = Ut−1 + Pt − Lt = Ut−1 +
Mt

∑
k=1

Xt,k −
Nt

∑
j=1

Yt,j, t = 1, 2, · · · , (2)

where U0 = u ≥ 0 is the initial surplus level; Pt =
Mt
∑

k=1
Xt,k aggregates the premiums during

period t, in which Mt counts the number of individual income and Xt,k represents the

amount of the kth premium income for the insurance portfolio during period t; Lt =
Nt
∑

j=1
Yt,j

is the aggregate claims during period t, in which Nt denotes the number of claims and
Yt,j is the size of the jth payment to the insured in period t. For mathematical tractability,
the following assumptions are made:

(1) Both {Xt,k, t = 1, 2, · · · , k = 1, 2, · · · } and {Yt,j, j = 1, 2, · · · , k = 1, 2, · · · } are
arrays of i.i.d. random variables, which have the same distributions as non-negative X and
Y, respectively.

(2) {Xt,k, t = 1, 2, · · · , k = 1, 2, · · · }, {Yt,j, j = 1, 2, · · · , k = 1, 2, · · · }, {Mt, t =
1, 2, · · · }, and {Nt, t = 1, 2, · · · } are mutually independent.

The dependence structures of the model are constructed in the following ways:
(i) {Mt, t = 1, 2, · · · } constitutes a Poisson INAR(1) process that satisfies

Mt = α ◦ Mt−1 + εt, t = 2, 3, · · · , (3)
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where the so-called binomial thinning operator “◦” is given by

α ◦ Mt−1 =
Mt−1

∑
m=1

B(1)
t,m, t = 2, 3, · · · , (4)

in which the following statements are true:

• The thinning parameter α ∈ [0, 1).

• {B(1)
t,m, t = 2, 3, · · · , m = 1, 2, · · · } is an array of i.i.d. Bernoulli random variables with

mean α.
• {εt, t = 2, 3, · · · } is a sequence of i.i.d. Poisson random variables with mean λ1.

• M1, {B(1)
t,m, t = 2, 3, · · · , m = 1, 2, · · · } and {εt, t = 2, 3, · · · } are independent.

(ii) {Nt, t = 1, 2, · · · } constitutes a Poisson INMA(1) process that satisfies

Nt = β ◦ ηt−1 + ηt, t = 1, 2, · · · , (5)

where “◦” is similarly defined by

β ◦ ηt−1 =
ηt−1

∑
m=1

B(2)
t,m, t = 1, 2, · · · , (6)

in which the following are true:

• The thinning parameter β ∈ [0, 1).

• {B(2)
t,m, t = 1, 2, · · · , m = 1, 2, · · · } is an array of i.i.d. Bernoulli random variables with

mean β.
• {ηt, t = 0, 1, · · · } is a sequence of i.i.d. Poisson random variables with mean λ2.

• {B(2)
t,m, t = 1, 2, · · · , m = 1, 2, · · · } and {ηt, t = 1, 2, · · · } are independent.

Remark 1. Time series analysis is one of the most important methods for dealing with dependent
data and has attracted a lot of interest during the last decades. However, the classical real-valued
time series models with continuous ranges can not account for discreteness, so they are of limited use
for fitting the premium numbers and the claim numbers, which are typical count random variables
fairly common in practice. Their poor performances in modeling this class of data mainly include:
(1) the data generating mechanism can not be explained; (2) the approximate errors are big; and
(3) the forecast results are not integer-valued. Therefore, models and methods for integer-valued
time series have been covered by a large number of papers in recent years. Refs. [27–30] present
comprehensive surveys on this fascinating research area. As two core models of integer-valued time
series, INAR(1) process and INMA(1) process have been extensively applied in the literature of
actuarial science, and the relevant results have been widely used in a variety of risk management.

Remark 2. The INAR(1) process (3) shows that the premium number in period t is composed of
two parts: εt denotes the new incomes arriving between period t − 1 and t, and α ◦ Mt−1 presents a
random proportion of the premium number in the previous period. This can be reasonably explained
for the insurance practice that states: every insured entity could continue to pay a premium with
probability α; or withdraw from the contract with probability 1 − α in the next period. When α = 0,
(3) becomes Mt = εt, meaning that the premium number in period t could be totally determined by
εt, and our model (2) will reduce to the classical discrete-time risk model with stochastic premiums,
where the premium numbers of different periods are independent (please see Appendix A for details).

Remark 3. The INMA(1) process (5) reveals that the claim number in period t also consists of two
parts: ηt is the new claim during period t, and β ◦ ηt−1 indicates the claims of period t − 1 that
could produce another accident with probability β in period t. Instead of (3), we use the INMA(1)
process (5) to fit the temporal dependence among the claim numbers for each period, considering
that the insured parties cannot receive benefits every year for some insurance products. Taking
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unemployment insurance as an example, every time the claimant is out of work, they could receive
the benefits for up to 2 years, if the premiums for at least 1 year have been paid. Another appropriate
example might be some medical insurance contracts, which state that no matter how long the patient
stays in the hospital, the insurer would pay the benefits for at most (for instance) 2 months. Similarly,
if β = 0, our proposed model will reduce to the classical case, where the claim numbers of different
periods are independent.

As stated in Al-Osh and Alzaid [31], under the condition of 0 ≤ α < 1, it follows that
the process of premium numbers {Mt, t = 1, 2, · · · } is a stationary and ergodic Markov
chain. Furthermore, if we assume εt ∼ P(λ1), then Mt is also Poisson distributed with mean

λ1
1−α . Hence, by the law of iterated expectation and the assumption that {Xt,k, k = 1, 2, · · · }
and Mt are independent, it is easy to find that

E(Pt = E[E(Pt|Mt)] = E

[
E

(
Mt

∑
k=1

Xt,k|Mt

)]
= E

[
Mt

∑
k=1

E(Xt,k|Mt)

]
= E

[
Mt

∑
k=1

E(Xt,k)

]
= E(Mt)E(X) =

λ1

1 − α
E(X). (7)

Meanwhile, by the law of total variance, we can obtain

Var(Pt) = Var[E(Pt|Mt)] + E[Var(Pt|Mt)]

= Var

[
E

(
Mt

∑
k=1

Xt,k|Mt

)]
+ E

[
Var

(
Mt

∑
k=1

Xt,k|Mt

)]

= Var

[
Mt

∑
k=1

E(Xt,k|Mt)

]
+ E

[
Mt

∑
k=1

Var(Xt,k|Mt)

]

= Var

[
Mt

∑
k=1

E(Xt,k)

]
+ E

[
Mt

∑
k=1

Var(Xt,k)

]
= Var[Mt · E(X)] + E[Mt · Var(X)]

= E(Mt)Var(X) + Var(Mt)[E(X)]2 =
λ1

1 − α
E(X2). (8)

Furthermore, Al-Osh and Alzaid [31] show that

Cov(Mt, Mt+h) = αhVar(Mt) =
λ1αh

1 − α
,

from which we can obtain

Cov(Pt, Pt+h) = E(PtPt+h)− E(Pt)E(Pt+h)

= E[E(PtPt+h|Mt, Mt+h)]− E(Mt)E(Mt+h)[E(X)]2

= E[E(Pt|Mt)E(Pt+h|Mt+h)]− E(Mt)E(Mt+h)[E(X)]2

= E(Mt Mt+h)[E(X)]2 − E(Mt)E(Mt+h)[E(X)]2

= [E(X)]2Cov(Mt, Mt+h) =
λ1αh

1 − α
[E(X)]2, h = 1, 2, · · · . (9)

Similarly, for the process of claim numbers {Nt, t = 1, 2, · · · }, under the condition of
0 ≤ β < 1, its marginal distribution is uniquely determined by the law of {ηt, t = 0, 1, · · · }.
Therefore, the assumption of ηt ∼ P(λ2) will result in Nt being Poisson distributed with a
mean of (1 + β)λ2. Consequently, by the same method to drive (7)–(9), we have

E(Lt) = E(Nt)E(Y) = (1 + β)λ2E(Y),
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Var(Lt) = E(Nt)Var(Y) + Var(Nt)[E(Y)]2 = (1 + β)λ2E(Y2).

and

Cov(Lt, Lt+h) = [E(Y)]2Cov(Nt, Nt+h) =

{
λ2β[E(Y)]2, h = 1,
0, h > 1.

(10)

These results are consistent with those in [11].

3. Definition of the Lundberg Adjustment Coefficient

In this section, we first consider how to calculate the moment generating functions
(m.g.f.) of the aggregate premiums and aggregate claims up to period t, and then, define
the Lundberg adjustment coefficient of the proposed dependent risk model with stochastic
premiums based on time series for count random variables by means of a equation.

After recursive calculation, we can rewrite model (2) as

Ut = Ut−1 + Pt − Lt = Ut−1 +
Mt

∑
k=1

Xt,k −
Nt

∑
j=1

Yt,j

= u +
t

∑
i=1

Mi

∑
k=1

Xi,k −
t

∑
i=1

Ni

∑
j=1

Yi,j = u + Wt − St, t = 1, 2, · · · , (11)

in which Wt =
t

∑
i=1

Pi =
t

∑
i=1

Mi
∑

k=1
Xi,k and St =

t
∑

i=1
Li =

t
∑

i=1

Ni
∑

j=1
Yi,j represent the aggregate

premium incomes and aggregate claim payments up to time t, respectively. As for the m.g.f.
of Wt and St, by the definition, we have that

MWt(r) = E(erWt)

= E[er(P1+···+Pt)]

= MP1,··· ,Pt(r, · · · , r)

= PM1,··· ,Mt(MX(r), · · · , MX(r))

= E[MX(r)M1 · · · MX(r)Mt ]

= PM1+···+Mt(MX(r)), (12)

where MX(·) denotes the m.g.f. of X and PM1+···+Mt(·) presents the probability generating
function (p.g.f.) of the total premium number up to period t of the proposed model (2).

Similarly, it holds that

MSt(r) = PN1+···+Nt(MY(r)), (13)

where MY(·) denotes the m.g.f. of Y, and PN1+···+Nt(·) presents the p.m.f. of the total claim
number up to period t of the proposed model (2).

In order to compute MWt(r) and MSt(r), we find the explicit expressions for PM1+···+Mt(·)
and PN1+···+Nt(·) in the following two lemmas, respectively.

Lemma 1. For t = 1, 2, · · · , when 0 ≤ s ≤ 1, the p.g.f. of M1 + · · ·+ Mt is given by

PM1+···+Mt(s) = exp
{

λ
s − 1

1 − αs

[
t +

1 − (αs)t

1 − α
− 1 − (αs)t

1 − αs

]}
. (14)

Proof. Since M1 ∼ P( λ1
1−α ), it is obvious that

PM1(s) = exp
{

λ1

1 − α
(s − 1)

}
.
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When t ≥ 2, we denote

α(t) ◦ M1 = α ◦ · · · ◦ α◦︸ ︷︷ ︸
t−fold operation

M1.

By the property of the binomial thinning operator (see Scotto et al. [28] for example), we
can rewrite M1 + · · ·+ Mt as

M1 + · · ·+ Mt = M1 + α ◦ M1 + α(2) ◦ M1 + · · ·+ α(t−1) ◦ M1

+ ε2 + α ◦ ε2 + · · ·+ α(t−2) ◦ ε2

+ · · ·
+ εt−1 + α ◦ εt−1

+ εt. (15)

For the p.g.f. calculation, we have

PM1+α◦M1+α(2)◦M1+···+α(t−1)◦M1
(s) = E(sM1+α◦M1+α(2)◦M1+···+α(t−1)◦M1)

= E
[
sM1 sα◦M1 · · · sα(t−2)◦M1 E

(
sα(t−1)◦M1 |M1, · · · , α(t−2) ◦ M1

)]
= E

[
sM1 sα◦M1 · · · sα(t−2)◦M1(αs + 1 − α)α(t−2)◦M1

]
= E

[
sM1 sα◦M1 · · · sα(t−3)◦M1(h2(s))α(t−2)◦M1

]
= E

[
sM1 sα◦M1 · · · sα(t−3)◦M1(αh2(s) + 1 − α)α(t−3)◦M1

]
= E

[
sM1 sα◦M1 · · · sα(t−4)◦M1(h3(s))α(t−3)◦M1

]
= · · ·
= E

[
sM1(αht−1(s) + 1 − α)α◦M1

]
= exp

{
λ1

1 − α
(ht(s)− 1)

}
, (16)

in which h1(s) = s and ht(s) = s(αht−1(s) + 1 − α).
Similarly, we can obtain

Pε2+α◦ε2+···+α(t−2)◦ε2
(s) = exp{λ1(ht−1(s)− 1)}, · · · , Pεt(s) = exp{λ1(h1(s)− 1)}. (17)

Combining (15)–(17), it follows that

PM1+···+Mt(s)

=PM1+α◦M1+α(2)◦M1+···+α(t−1)◦M1
(s)× Pε2+α◦ε2+···+α(t−2)◦ε2

(s)× · · · × Pεt−1+α◦εt−1(s)× Pεt(s)

= exp
{

λ1

1 − α
(ht(s)− 1)

} t−1

∏
i=1

exp{λ1(hi(s)− 1)}. (18)

Moreover, from the definition ht(s) = s(αht−1(s) + 1 − α), it is easy to find that

ht(s)− 1 = s − 1 + αs(ht−1(s)− 1).

Then, recursive calculation results in

ht(s)− 1 = (s − 1)
1 − (αs)t

1 − αs
. (19)
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Finally, inserting (19) into (18), we can obtain

PM1+···+Mt(s) = exp
{

λ
s − 1

1 − αs

[
t +

1 − (αs)t

1 − α
− 1 − (αs)t

1 − αs

]}
.

This completes the proof.

Lemma 2. For t = 1, 2, · · · , when s ≥ 0, the p.g.f. of N1 + · · ·+ Nt is given by

PN1+···+Nt(s) = exp
{

λ2(1 + β)(s − 1) + λ2(t − 1)[βs2 + (1 − β)s − 1]
}

. (20)

Proof. By (5), it holds that

PN1+···+Nt(s) = E(sN1+···+Nt)

= E(sβ◦η0+η1 sβ◦η1+η2 · · · sβ◦ηt−1+ηt)

= E(sβ◦η0 sη1+β◦η1 · · · sηt−1+β◦ηt−1 sηt)

= E(sβ◦η0)E(sη1+β◦η1) · · · E(sηt−1+β◦ηt−1)E(sηt)

= exp
{

λ2(1 + β)(s − 1) + λ2(t − 1)[βs2 + (1 − β)s − 1]
}

,

which follows from ηt ∼ P(λ2), β ◦ η0 ∼ P(βλ2) and

Pεi+β◦εi (s) = E(sεi+β◦εi )

= E[E(sεi sβ◦εi |εi)]

= E[sεi E(sβ◦εi |εi)]

= E[sεi (βs + 1 − β)εi ]

= exp
{

λ2[βs2 + (1 − β)s − 1]
}

, i = 1, 2, · · · , t − 1.

The proof then is completed.

To further analyze the insurance portfolio, we write

ct(r) =
1
t

ln E([er(St−Wt)]), (21)

and let

c(r) = lim
t→+∞

ct(r). (22)

Then, the positive solution to the equation c(r) = 0 can be defined as the Lundberg
adjustment coefficient, which is denoted by R and can be used to approximate the infinite-
time ruin probability of the proposed model (2). The following result gives the explicit
expression for c(r).

Theorem 1. For r ≥ 0, we have

c(r) = λ1
MX(−r)− 1

1 − αMX(−r)
+ λ2[βM2

Y(r) + (1 − β)MY(r)− 1]. (23)

Proof. Due to the non-negativity of r and X, it follows that

0 ≤ MX(−r) ≤ 1, 0 ≤ αMX(−r) < 1.

Then, by Lemma 1, we have
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lim
t→+∞

1
t

ln E(e−rWt) = lim
t→+∞

1
t

ln PM1+···+Mt(MX(−r))

= lim
t→+∞

1
t

ln
(

exp
{

λ
MX(−r)− 1

1 − αMX(−r)

[
t +

1 − (αMX(−r))t

1 − α
− 1 − (αMX(−r))t

1 − αMX(−r)

]})
= λ

MX(−r)− 1
1 − αMX(−r)

. (24)

On the other hand, from (13) and (20), we obtain

lim
t→+∞

1
t

ln E(erSt) = lim
t→+∞

1
t

ln PN1+···+Nt(MY(r))

= lim
t→+∞

1
t

ln
(

exp
{

λ2(1 + β)(MY(r)− 1) + λ2(t − 1)[βM2
Y(r) + (1 − β)MY(r)− 1]

})
= λ2(1 + β) lim

t→+∞

1
t
(MY(r)− 1) + lim

t→+∞

t − 1
t

λ2[βM2
Y(r) + (1 − β)MY(r)− 1]

= λ2[βM2
Y(r) + (1 − β)MY(r)− 1]. (25)

Then, combining (24) and (25) with (21) and (22) yields

c(r) = lim
t→+∞

ct(r)

= lim
t→+∞

1
t

ln E([er(St−Wt)])

= lim
t→+∞

1
t

ln E(erSt) + lim
t→+∞

1
t

ln E(e−rWt)

= λ1
MX(−r)− 1

1 − αMX(−r)
+ λ2[βM2

Y(r) + (1 − β)MY(r)− 1],

This completes the proof.

Remark 4. When α = 0, the proposed model (2) degenerates to the discrete-time risk model based
on the Poisson INMA(1) process studied by [11,14], where only the temporal dependence among the
claim numbers of consecutive periods is considered. Consequently, (23) becomes

c(r) = λ1[MX(−r)− 1] + λ2[βM2
Y(r) + (1 − β)MY(r)− 1],

which corresponds to (7) in [11,14].

Remark 5. When β = 0, the proposed model (2) reduces to the discrete-time risk model with
stochastic premiums and dependence based on the Poisson INAR(1) process studied by [26], where
only the temporal dependence among the premium numbers of consecutive periods is considered. As
a result, (23) becomes

c(r) = λ1
MX(−r)− 1

1 − αMX(−r)
+ λ2[MY(r)− 1],

which corresponds to (3.10) in [26].

4. Lundberg Approximation Formula for the Infinite-Time Ruin Probability

Let the ruin time of our proposed surplus process (2) be T = inf
t∈{0,1,2,··· }

{t, Ut ≤ 0} if

Ut goes below 0 at least once; otherwise, take T = +∞. As a consequence, the infinite-time
ruin probability ψ(u) is defined by

ψ(u) = P(T < +∞|U0 = u).
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Ruin probability ψ(u) is well-known as one of the most common and important quantities
used to measure the riskiness of an insurance portfolio in the risk-theoretic context. How-
ever, as can be seen from the expression (11), our proposed model releases the condition
that Pt and Lt are independent of Ut−1, which is a key but defective assumption in the
classical risk model with stochastic premiums and allows for the temporal dependence
among the premium numbers and claim numbers. Therefore, Pt and Lt are correlated
with Ut−1, and {Ut, t = 1, 2, · · · } is no longer a Lévy process with stationary independent
increments in our model. Consequently, it is not easy to derive the upper bounds and
explicit expression for the infinite-time ruin probability such as those in some classical
models. As an efficient alternative, the following result gives an asymptotic estimation for
ψ(u) of our proposed model (2).

Theorem 2. In the discrete-time dependent risk model with stochastic premiums based on the
Poisson INAR(1) process and Poisson INMA(1) process, if

λ1

1 − α
E(X) > λ2(1 + β)E(Y), (26)

we can obtain the Lundberg approximation formula for the infinite-time ruin probability ψ(u),
which has the following expression:

lim
u→+∞

− ln(ψ(u))
u

= R, (27)

where u and R are the initial capital and the Lundberg adjustment coefficient, respectively.

Proof. According to Theorem 2.1 in Müller and Pflug [32], it is sufficient for us to prove
that the equation c(r) = 0 has a unique positive solution, which can be defined as the
Lundberg adjustment coefficient R. To this end, we derive the following four properties of
the function c(r).

Firstly, noting that MX(0) = MY(0) = 1, we have

c(0) = λ1
MX(0)− 1

1 − αMX(0)
+ λ2[βM2

Y(0) + (1 − β)MY(0)− 1] = 0. (28)

Secondly, it is easy to calculate that

c′(r) =
−λ1(1 − α)M′

X(−r)
[1 − αMX(−r)]2

+ λ2[2βMY(r)M′
Y(r) + (1 − β)M′

Y(r)].

Together with the fact M′
X(0) = E(X) and M′

Y(0) = E(Y), we obtain

c′(0) =
−λ1(1 − α)M′

X(0)
[1 − αMX(0)]2

+ λ2[2βMY(0)M′
Y(0) + (1 − β)M′

Y(0)]

= λ2(1 + β)E(Y)− λ1

1 − α
E(X) < 0. (29)

Thirdly, it is easy to verify the convexity of c(r), which results from the fact that ct(r)
is convex and the definition of c(r) = lim

t→+∞
ct(r).

Finally, when the m.g.f. of Y exists, i.e., there exists some quantity r0, 0 < r0 ≤ +∞,
such that MY(r) is finite for all r < r0 with

lim
r→r−0

MY(r) = +∞,
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then, it holds that

lim
r→r−0

c(r) = lim
r→r−0

(
λ1

MX(−r)− 1
1 − αMX(−r)

+ λ2[βM2
Y(r) + (1 − β)MY(r)− 1]

)
= +∞. (30)

Therefore, it can be concluded that there exists a unique positive solution to the
equation c(r) = 0, and then, (27) follows immediately.

Remark 6. In risk and ruin theory, the assumption (26) is the so-called relative safety loading
condition, which implies that the expected premium incomes should be more than the expected claim
expenses to guarantee that the insurance company can operate normally and profitably.

Remark 7. As a result of the approximation formula (27), we can asymptotically estimate the
infinite-time ruin probability ψ(u) by

ψ(u) � e−Ru, (31)

if the initial surplus u becomes large enough.

From (9) and (10), it can be seen that the thinning parameters α and β could quantita-
tively measure the degree of the dependence in the risk model (2); hence, it is necessary
for us to discuss their impacts on the adjustment coefficient and further on the risk of the
insurance portfolio.

Proposition 1. As a function of the two thinning parameters, the Lundberg adjustment coefficient
R of our proposed risk model (2) increases with respect to α and decreases with respect to β.

Proof. For convenience, we now rewrite c(r) as c(α, β, r); the Lundberg adjustment coeffi-
cient R is determined by c(α, β, R) = 0 and can be taken as a function of α and β. By the
properties derived in the proof of Theorem 2, we know that

∂c(α, β, R)
∂R

> 0.

Meanwhile, with R > 0 in mind, it follows that 0 ≤ MX(−R) < 1. Thus, we take the
partial derivative of c(α, β, R) with respect to variable α and then have

∂c(α, β, R)
∂α

=
∂

∂α

(
λ1

MX(−R)− 1
1 − αMX(−R)

+ λ2[βM2
Y(R) + (1 − β)MY(R)− 1]

)
=

−λ1MX(−R)[1 − αMX(−R)] + λ1(1 − α)MX(−R)MX(−R)
[1 − αMX(−R)]2

=
λ1[M2

X(−R)− MX(−R)]
[1 − αMX(−R)]2

< 0.

As a result, using implicit function theorem, it holds that

∂R
∂α

= − (∂/∂α)c(α, β, R)
(∂/∂R)c(α, β, R)

> 0,

implying that R increases with respect to α.
Similarly, because MY(R) > 1 for R > 0, taking the partial derivative of c(α, β, R) with

respect to variable β yields

∂c(α, β, R)
∂β

=
∂

∂β

(
λ1

MX(−R)− 1
1 − αMX(−R)

+ λ2[βM2
Y(R) + (1 − β)MY(R)− 1]

)
= λ2[M2

Y(R)− MY(R)] > 0,
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from which we apply implicit function theorem again and obtain

∂R
∂β

= − (∂/∂β)c(α, β, R)
(∂/∂R)c(α, β, R)

< 0,

meaning that R decreases with respect to β.

Remark 8. As shown in Proposition 1, the degree of riskiness can be measured and quantified by
the Lundberg adjustment coefficient R, in the sense that it decreases with the thinning parameter α,
while it increases with the thinning parameter β. In insurance practice, it can be naturally explained
that when α increases, the insured parties would like to renew their insurance contracts with a
higher probability in the next period, which would lower the risk of the portfolio. On the contrary,
when β increases, a reported claim becomes more likely to produce another insurance accident in the
next period, which could make the portfolio much riskier.

5. Asymptotic Formula for the Finite-Time Ruin Probability

In this section, we turn our focus to the case of heavy-tailed claim sizes, which are
frequently used in insurance practice for catastrophe risks, such as earthquakes, hurricanes,
floods, financial crises, agricultural disasters, and so on. In these instances, the Lundberg
adjustment coefficient and Lundberg approximation estimation for infinite-time ruin prob-
ability can no longer be applied because MY(r) (the m.g.f. of Y) does not exist for r > 0.
Therefore, increasing numbers of researchers have increasingly paid close attention to the
precise large deviations in the aggregate of claims, as well as the asymptotic formulas
for infinite-time and finite-time ruin probabilities. The relevant study was initiated by
Klüppelberg and Mikosch [33] and then has been revisited by many researchers afterwards.
We refer to Chen et al. [34] and Fu et al. [35] for some recent contributions on this topic.
Cheng and Wang [36], Yang et al. [37], and Jing et al. [38] considered the asymptotic ruin
probabilities in risk models with dependence among the claim sizes. Xun et al. [39] obtained
the uniformly asymptotic result of ruin probability in a general risk model with stochastic
premiums. Yu [40] derived the precise large deviations of the aggregate amount of claims
for a risk model with the Poisson ARCH claim number process. Along the same line, in this
section, we investigate our proposed model (2) when the distribution of claim sizes belongs
to a heavy-tailed class.

First, we give some brief notations. Let a(x) and b(x) be two positive functions. We de-
note a(x) ∼ b(x) if lim

x→+∞
a(x)/b(x) = 1; denote a(x) � b(x) if lim sup

x→+∞
a(x)/b(x) ≤ 1; de-

note a(x) � b(x) if lim inf
x→+∞

a(x)/b(x) ≥ 1; and denote a(x) = o(b(x)) if lim sup
x→+∞

a(x)/b(x) =

0. We denote the common distribution functions of premium amount X and claim size Y
with FX(x) and FY(y), respectively.

Then, we recall a class of heavy-tailed distributions and one of its important prop-
erties. More detailed discussions can be found in Embrechts et al. [41], Asmussen and
Albrecher [1], etc.

A distribution function F on [0, ∞] is said to have a consistently varying tail, denoted
by F ∈ C, if

lim
y↑1

lim sup
x→+∞

F(xy)
F(x)

= lim
y↓1

lim inf
x→+∞

F(xy)
F(x)

= 1, (32)

where F(x) is the tail probability with F(x) = 1 − F(x). The class C is a wide class
of distributions commonly used in actuarial science, including the well-known Pareto,
Burr, and loggamma distributions. Ng et al. [42] established a very useful result for the
distributions of class C, which is given in the following lemma.
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Lemma 3. Suppose that {Yj, j = 1, 2, · · · } is a sequence of i.i.d. non-negative random variables

with common distribution function FY(y) ∈ C and E(Y) < +∞. Taking Qt =
t

∑
j=1

Yj, for any fixed

γ > 0, it holds uniformly for all y > γt that

P(Qt − tE(Y) > y) ∼ tFY(y), t → +∞, (33)

in which the uniformity is understood in the following sense:

lim
t→+∞

sup
y≥γt

∣∣∣∣P(Qt − tE(Y) > y)
tFY(y)

− 1
∣∣∣∣ = 0.

Analogous to the infinite-time ruin probability ψ(u), for any fixed t = 1, 2, · · · , we
define the finite-time ruin probability ψ(u, t) of the discrete-time risk model (2) as

ψ(u, t) = P(T ≤ t|U0 = u).

In order to further study the asymptotic formula of ψ(u, t), which is also a core actuarial
quantity, we revise Lemma 3 as follows.

Lemma 4. Suppose that {Yj, j = 1, 2, · · · } is a sequence of i.i.d. non-negative random variables

with the common distribution function FY(y) ∈ C and E(Y) < +∞. Define Qt =
t

∑
j=1

Yj; then,

for any fixed γ > 0 and δ > 0, it holds uniformly for all y > γt1+δ that

P(Qt > y) ∼ tFY(y), t → +∞. (34)

Proof. By the definition of class C, it follows for any fixed θ > 0 and sufficiently large y
that

FY((1 + θ)y)
FY(y)

≤ FY(y + o(y))
FY(y)

≤ FY((1 − θ)y)
FY(y)

,

from which we can obtain

1 = lim
θ↓0

lim inf
y→+∞

FY((1 + θ)y)
FY(y)

≤ lim inf
y→+∞

FY(y + o(y))
FY(y)

≤ lim sup
y→+∞

FY(y + o(y))
FY(y)

≤ lim
θ↓0

lim sup
y→+∞

FY((1 − θ)y)
FY(y)

= 1.

Hence, it holds that

lim
y→+∞

FY(y + o(y))
FY(y)

= 1. (35)

Furthermore, by Lemma 3 and (35), it follows that
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lim
t→+∞

sup
y>γt1+δ

∣∣∣∣P(Qt > y)
tFY(y)

− 1
∣∣∣∣ = lim

t→+∞
sup

y>γt1+δ

∣∣∣∣P(Qt − tE(Y) > y − tE(Y))
tFY(y − tE(Y))

× FY(y − tE(Y))
FY(y)

− 1
∣∣∣∣

≤ lim
t→+∞

sup
y>γt1+δ

FY(y − tE(Y))
FY(y)

×
∣∣∣∣P(Qt − tE(Y) > y − tE(Y))

tFY(y − tE(Y))
− 1

∣∣∣∣
+ lim

t→+∞
sup

y>γt1+δ

∣∣∣∣ FY(y − tE(Y))
FY(y)

− 1
∣∣∣∣

= lim
y→+∞

FY(y + o(y))
FY(y)

× lim
t→+∞

sup
y>γt1+δ

∣∣∣∣P(Qt − tE(Y) > y − tE(Y))
tFY(y − tE(Y))

− 1
∣∣∣∣

+ lim
y→+∞

∣∣∣∣ FY(y + o(y))
FY(y)

− 1
∣∣∣∣

= 0.

The proof is then completed.

Now, we give the precise large deviations of the aggregate claims, St, which is de-
scribed in model (11).

Theorem 3. For our proposed model (2), let FY(y) and E(Y) be the common distribution function
and expectation of the claim sizes, respectively. Assuming FY(y) ∈ C and E(Y) < +∞, then for
any fixed γ > 0 and δ > 0, it holds uniformly for all y > γt1+δ that

P(St > y) ∼ λ2(1 + β)tFY(y), t → +∞. (36)

Proof. Let {Yj, j = 1, 2, · · · } be a sequence of i.i.d. non-negative random variables,
with their common distribution function denoted by FY(y). Suppose that ϕSt(r) is the

characteristic function of St =
t

∑
i=1

Ni
∑

j=1
Yi,j. With the same method to derive (12) and (13), we

can obtain
ϕSt(r) = E

[
(ϕY(r))N1+···+Nt

]
, (37)

where ϕY(r) is the characteristic function of Y.
On the other hand, direct calculation leads to

E

[
exp

{
ir

N1+···+Nt

∑
j=1

Yj

}]
= ∑

n
E

[
exp

{
ir

n

∑
j=1

Yj

}
× I{N1+···+Nt=n}

]
= ∑

n
[E exp{irY}]n × P{N1 + N2 + · · ·+ Nt = n}

= E[(ϕY(r))N1+···Nt ]. (38)

We conclude after checking (37) and (38) that

St
d
=

N1+···+Nt

∑
j=1

Yj, (39)

where ” d
=” means the identical distribution.

For any 0 < η < λ2(1 + β), we have

167



Entropy 2023, 25, 698

P

(
N1+···+Nt

∑
j=1

Yj > y

)

=P

(
t

∑
i=1

Ni < �(λ2(1 + β) + η)t�,
N1+···+Nt

∑
j=1

Yj > y

)
+ P

(
t

∑
i=1

Ni ≥ �(λ2(1 + β) + η)t�,
N1+···+Nt

∑
j=1

Yj > y

)

≤P

(�(λ2(1+β)+η)t�
∑
j=1

Yj > y

)
+ P

(
t

∑
i=1

Ni ≥ �(λ2(1 + β) + η)t�
)

=Δ1 + Δ2, (40)

in which �·� denotes the maximum integer not exceeding ′′·′′.
From Lemma 4, we know it holds uniformly for all y > γt1+δ that

Δ1 ∼ �(λ2(1 + β) + η)t�FY(y). (41)

As for Δ2, for t = 1, 2, · · · , we write

t

∑
i=1

Ni =
�t/2�
∑
i=1

N2i +
�t/2�+p

∑
i=1

N2i−1,

where p = 0 if t is a even number, and p = 1 if t is an odd number. From the definition,
we know that {Ni, i = 1, 2, · · · } is a one-dependent stationary sequence with the common
Poisson distribution of mean λ2(1 + β) and m.g.f MN(r) = exp{λ2(1 + β)(er − 1)}; then,
it is easy to see that {N2i, 1 ≤ i ≤ �t/2�} and {N2i−1, 1 ≤ i ≤ �t/2�+ p} are two sequences
of i.i.d. random variables. Let a = λ2(1 + β) + η; by Cramér Theorem (Theorem 2.2.3 in
Dembo and Zeitonui [43]), we have

Δ2 = P

(�t/2�
∑
i=1

N2i +
�t/2�+p

∑
i=1

N2i−1 ≥ �(λ2(1 + β) + η)t�
)

≤ P

(�t/2�
∑
i=1

N2i ≥ �λ2(1 + β) + η��t/2�
)
+ P

(�t/2�+p

∑
i=1

N2i−1 ≥ �λ2(1 + β) + η�(�t/2�+ p)

)
∼ e−�t/2�I(a) + e−(�t/2�+p)I(a) → 0, t → +∞, (42)

in which I(a) = sup
−∞<r<+∞

{ar − log(MN(r))} > 0.

Combining (40)–(42) gives

P

(
N1+···+Nt

∑
j=1

Yj > y

)
� �(λ2(1 + β) + η)t�FY(y). (43)

On the other hand, it holds that

P

(
N1+···+Nt

∑
j=1

Yj > y

)
≥ P

(
t

∑
i=1

Ni ≥ �(λ2(1 + β)− η)t�,
N1+···+Nt

∑
j=1

Yj > y

)

≥ P

(
t

∑
i=1

Ni ≥ �(λ2(1 + β)− η)t�,
�(λ2(1+β)−η)t�

∑
j=1

Yj > y

)

= P

(
t

∑
i=1

Ni ≥ �(λ2(1 + β)− η)t�
)
× P

(�(λ2(1+β)−η)t�
∑
j=1

Yj > y

)
, (44)

in which
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P

(
t

∑
i=1

Ni ≥ �(λ2(1 + β)− η)t�
)

= P

(
t

∑
i=1

Ni − λ2(1 + β)t ≥ �(λ2(1 + β)− η)t� − λ2(1 + β)t

)

≥ P

(
t

∑
i=1

Ni − λ2(1 + β) ≥ −ηt

)

≥ P

(∣∣∣∣∣ t

∑
i=1

Ni − λ2(1 + β)t

∣∣∣∣∣ ≤ ηt

)
→ 1, t → +∞, (45)

because of the fact that

P

(∣∣∣∣∣ t

∑
i=1

Ni − λ2(1 + β)t

∣∣∣∣∣ > ηt

)

≤P

(∣∣∣∣∣�t/2�
∑
i=1

[N2i − λ2(1 + β)]

∣∣∣∣∣ > η�t/2�
)
+ P

(∣∣∣∣∣�t/2�+p

∑
i=1

[N2i−1 − λ2(1 + β)]

∣∣∣∣∣ > η(�t/2�+ p)

)
→0, t → +∞,

obtained from the classical law of large numbers.
Then, combining (44), (45), and Lemma 4 yields

P

(N1+···+Ny

∑
j=1

Yj > y

)
� �(λ2(1 + β)− η)t�FY(y). (46)

Generally, letting η ↓ 0 in (43) and (46) and keeping (39) in mind, we finally conclude
that

P(St > y) = P

(
N1+···+Nt

∑
j=1

Yj > y

)
∼ �λ2(1 + β)t�FY(y) ∼ λ2(1 + β)tFY(y).

Then, the proof is completed.

With the help of the above conclusion, we can manifest the asymptotic formula for the
finite-time ruin probability in the following theorem.

Theorem 4. Under the conditions of Theorem 3, for any fixed γ > 0 and δ > 0, the asymptotic
formula

ψ(u, t) ∼ λ2(1 + β)tFY(u) (47)

holds uniformly for all u > γt1+δ as t → +∞.

Proof. From the definition of finite-time ruin probability, it is clear that

ψ(u, t) = P

(
sup

m∈{0,1,··· ,t}
(Sm − Wm) > u

)
≥ P(St − Wt > u)
= P(St > u + Wt)

= P
(

St > u +
λ1

1 − α
tE(X) + Wt −

λ1

1 − α
tE(X)

)
. (48)
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Noting that Wt =
t

∑
i=1

Pi =
t

∑
i=1

Mi
∑

k=1
Xi,k and keeping (9) in mind, for any η > 0, we have

P
(∣∣∣∣Wt −

λ1

1 − α
tE(X)

∣∣∣∣ ≥ ηt
)
= P

(∣∣∣∣∣1
t

t

∑
i=1

Pi −
λ1

1 − α
E(X)

∣∣∣∣∣ ≥ η

)

≤
E

(
1
t

t

∑
i=1

Pi −
λ1

1 − α
E(X)

)2

η2

=
1

(ηt)2

t

∑
i,j=1

Cov(Pi, Pj)

=
λ1E(X2)

(1 − α)(ηt)2

(
t + 2(t − 1)α + 2(t − 2)α2 + · · ·+ 2αt−1

)
≤ 2λ1E(X2)(1 − αt)

tη2(1 − α)2 → 0, t → +∞,

from which we can obtain

lim
t→+∞

sup
u>γt1+δ

1
u

(
λ1

1 − α
tE(X) + Wt −

λ1

1 − α
tE(X)

)
= 0.

Then, for any θ > 0, if t is sufficiently large such that u is sufficiently large, it holds that

P(St > u + θu) ≤ P
(

St > u +
λ1

1 − α
tE(X) + Wt −

λ1

1 − α
tE(X)

)
≤ P(St > u − θu),

Furthermore, by Theorem 3 and let θ ↓ 0, we have

P
(

St > u +
λ1

1 − α
tE(X) + Wt −

λ1

1 − α
tE(X)

)
∼ λ2(1 + β)FY(u), uniformly for u > γt1+δ as t → +∞. (49)

Plugging (49) into (48) gives

ψ(u, t) � λ2(1 + β)tFY(u). (50)

On the other hand, for any fixed γ > 0 and δ > 0, we have uniformly for all u > γt1+δ

that

ψ(u, t) = P

(
sup

m∈{0,1,··· ,t}
(Sm − Wm) > u

)
≤ P(St > u) ∼ λ2(1 + β)tFY(u).

which implies
ψ(u, t) � λ2(1 + β)tFY(u). (51)

Therefore, we complete the proof by combining (50) and (51).

Remark 9. Applying Lemma 3 instead of Lemma 4 in Theorem 3, it is not difficult to see that the
precise large deviation (36) also holds uniformly for all y > γt. In this paper, we restrict ourselves
to the interval y > γt1+δ in order to provide convenience for investigating the finite-time ruin
probability ψ(u, t). Moreover, we can prove that the asymptotic formula (47) in Theorem 4 holds
uniformly for all u ∈ Ω = {u; t = o(u)}, which includes u > γt1+δ as a special case. In practice,
when t is large enough, we can asymptotically estimate ψ(u, t) by λ2(1 + β)tFY(u), as the size of
claims belong to the distributions of class C and the insurer’s initial surplus is adequate in the sense
of u > γt1+δ.
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6. Numerical Examples

In this section, we aim to perform some numerical simulations to demonstrate and
assess the Lundberg adjustment coefficient and the Lundberg approximation results for
the infinite-time ruin probability ψ(u), as well as the asymptotic formula for the finite-time
ruin probability ψ(u, t), of our proposed model.

Example 1. We suppose that the gain amount X and the claim size Y follow exponential distri-
butions that have means 1/μ1 and 1/μ2, respectively. Therefore, we have the moment generating
functions of X and Y as follows:

MX(−r) =
μ1

μ1 + r
, MY(r) =

μ2

μ2 − r
, r > 0. (52)

Then, from Theorem 2, c(r) = 0 is equivalent to

λ1
1

(1 − α)μ1 + r
= λ2

(1 + β)μ2 − r
(μ2 − 2)2 . (53)

The unique positive solution to Equation (53) can be found but appears tedious. In what follows, we
give some numerical results to show the properties and performance of R and e−Ru.

Without loss of generality, we set λ1 = 1, λ2 = 0.4, μ1 = 1, and μ2 = 0.5, and then, calculate
and discuss the Lundberg adjustment coefficient R and the approximated ruin probability e−Ru for
different values of α and β. When we consider the impacts of α and β on the main results, it should
be noted that the relative safety loading condition (26) has to be satisfied, i.e.,

λ1

1 − α
· 1

μ1
> λ2 · (1 + β) · 1

μ2
, (54)

which, in our parameter scenario, implies

1
1 − α

> 0.8(1 + β). (55)

Table 1 gives the computed values of Lundberg adjustment coefficients corresponding to
different values of α and β. We also illustrate these results in Figure 1, from which it can be clearly
seen that R increases as α increases, implying that the insurance portfolio would become less and
less dangerous because the approximated infinite-time ruin probability e−Ru decreases. In the same
sense, when β increases, R will decrease, meaning that there could be higher risks in the insurance
portfolio. (In Table 1, the notation “ − ” means that the values of α and β do not satisfy the relative
safety loading condition, and the Lundberg adjustment coefficients are not considered for these
situations.)

Table 1. Lundberg adjustment coefficients for different α and β.

β

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0680 0.0414 0.0183 - - - - - -
0.2 0.0968 0.0706 0.0481 0.0282 0.0104 - - - -
0.3 0.1256 0.1000 0.0781 0.0588 0.0416 0.0259 0.0115 - -
0.4 0.1545 0.1295 0.1082 0.0897 0.0731 0.0581 0.0443 0.0316 0.0198
0.5 0.1834 0.1591 0.1386 0.1208 0.1049 0.0906 0.0776 0.0655 0.0544
0.6 0.2124 0.1888 0.1691 0.1522 0.1371 0.1236 0.1113 0.1000 0.0895
0.7 0.2415 0.2187 0.2000 0.1839 0.1698 0.1571 0.1457 0.1351 0.1254
0.8 0.2707 0.2489 0.2312 0.2162 0.2031 0.1913 0.1807 0.1711 0.1622
0.9 0.3000 0.2794 0.2630 0.2491 0.2370 0.2264 0.2167 0.2080 0.2000
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Figure 1. Lundberg adjustment coefficients corresponding to different α and β.

In order to evaluate the performance of the approximated infinite-time ruin probability e−Ru, we
fix α = β = 0.5 in the proposed risk model and compute the true ruin probabilities corresponding to
different values of u by the Monte Carlo method used in Albrecher and Kantor [44]. For this purpose,
we randomly draw sample paths according to the Poisson INAR(1) process and the Poisson INMA(1)
process for the premium arrivals {Mt, t = 1, 2, · · · } and the claim numbers {Nt, t = 1, 2, · · · },
respectively. Afterwards, we simulate the surplus process (2) starting at U0 = u, with the premium
amounts and claim sizes following the given exponential distributions. These simulations are
replicated n = 3000 times; then, the trajectories with negative values (i.e., ruin event occurs) are
counted, and we denote this number by n1. Hence, the infinite-time ruin probability ψ(u) can be
estimated by

ψ̂(u) =
n1

n
. (56)

In addition, because of the fact that Ut → +∞ with probability one as t → +∞ when the relative
safety loading condition holds, we know that Ut will never become negative when t is large enough.
Therefore, it is necessary for us to choose a suitable Tst at which we should stop the simulated surplus
process for each sample path if the ruin event does not occur before this time. As a consequence,
(56) is actually the estimate of the finite-time ruin probability ψ(u, Tst) = P(T ≤ Tst|U0 = u). In
this paper, we set Tst = 1000. In practice, we can choose larger values for Tst so that the bias of the
estimator for ψ(u) is less significant.

In Table 2 and Figure 2, we compare the simulated ruin probability with the approximated ruin
probability. As can be seen, when u grows, both of the ruin probabilities approach zero. However,
as alternatives to the true ruin probabilities, the approximations do not work well when the values of
u are small. We can explain these results with the following three reasons. Firstly, as the limit of
ψ(u) as u → +∞, e−Ru may be very different than ψ(u) at the beginning. Secondly, the simulated
infinite-time ruin probabilities are indeed the estimated values for the finite-time ruin probability
ψ(u, Tst), which are smaller than the true values of ψ(u). Thirdly, the total number of simulated
trajectories n and the chosen time Tst affect the simulated results. We could increase n and Tst to
improve the performance, but a longer run time is needed.

On the other hand, the values of simulated ruin probability and the approximated ruin proba-
bility become closer and closer with the increase in u, implying that the approximation method could

work better as u grows. To strengthen this statement, we define γ(u) =
ψ̂(u)
e−Ru , and then, calculate

the values of γ(u) with respect to different values of u; the results are listed in the last column of
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Table 2. It can be seen that γ(u) approaches 1 asymptotically, which indicates that it is valid to
take e−Ru as the approximated result for ψ̂(u) and, furthermore, for ψ(u) when u is large enough.
Figure 3 also illustrates this conclusion visually. In practice, an insurer is always required to hold
a huge number of initial surplus to guarantee its solvency under certain regulatory frameworks;
therefore, the approximation method is of importance and is applicable in the risk management
of insurance.

Table 2. Comparison of the simulated and approximated ruin probability.

u ψ̂(u) e−Ru
γ(u) =

ψ̂(u)
e−Ru

10 0.2280 0.3503 0.6509
15 0.1386 0.2073 0.6686
20 0.0819 0.1227 0.6678
25 0.0497 0.0726 0.6846
30 0.0294 0.0430 0.6835
35 0.0183 0.0254 0.7186
40 0.0112 0.0151 0.7388
45 0.0067 0.0089 0.7575
50 0.0043 0.0053 0.8125

Figure 2. The simulated and approximated ruin probabilities with respect to different values of u.

Example 2. We suppose that the gain amount X is distributed by the exponential distribution with
mean of 1/μ1, and the claim size Y follows the Pareto distribution, which has shape parameter τ1 and

scale parameter τ2, i.e., the distribution function FY(y) is given by FY(y) = 1−
(

τ2

τ2 + x

)τ1

, y > 0.

To perform the calculations, we set λ1 = 1, μ1 = 1, λ2 = 0.1, τ1 = 3, τ2 = 16, and α = β = 0.5. It
is not difficult to check that these values satisfy the relative safety loading condition (26). Our goal is to
compare the asymptotic result λ2(1+ β)tFY(y) (AS for simplification) with the simulated results of the
finite-time ruin probabilities obtained using the Monte Carlo method (MC for simplification). As can
be seen from Table 3, the ratio of MC to AS becomes closer and closer to one as t increases for different
u, indicating that the asymptotic formula stated in Theorem 4 is valid and applicable in practice.
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Table 3. Comparison of the simulated results and the asymptotic results for ψ(u, t).

u = 60 u = 70 u = 80 u = 90 u = 100

AS 0.0760 0.0560 0.0437 0.0300 0.0210
t = 50 MC 0.0700 0.0483 0.0347 0.0258 0.0197

AS/MC 1.0860 1.1595 1.2576 1.1628 1.0660

AS 0.0703 0.0487 0.0440 0.0280 0.0200
t = 40 MC 0.0560 0.0386 0.0278 0.0206 0.0157

AS/MC 1.2563 1.2596 1.5840 1.3592 1.2739

AS 0.0517 0.0360 0.0330 0.0170 0.0140
t = 30 MC 0.0420 0.0290 0.0208 0.0155 0.0118

AS/MC 1.2305 1.2423 1.5840 1.0985 1.1856

AS 0.0377 0.0247 0.0223 0.0140 0.0120
t = 20 MC 0.0280 0.0193 0.0139 0.0103 0.0079

AS/MC 1.3456 1.2768 1.6043 1.3570 1.5190

AS 0.0190 0.0130 0.0113 0.0077 0.0063
t = 10 MC 0.0140 0.0097 0.0069 0.0052 0.0039

AS/MC 1.3575 1.3402 1.6377 1.4862 1.6090

Figure 3. The values of ratio γ(u) with respect to different u.

7. Conclusions

In this paper, we examine a generalization of the classical discrete-time risk model of
an insurance portfolio with stochastic premiums, using a Poisson INAR(1) process and a
Poisson INMA(1) process to fit the temporal dependence among the premium numbers
and the temporal dependence among the claim numbers, respectively. We give the explicit
expression for the function satisfied by the Lundberg adjustment coefficient and find the
Lundberg approximation formula for the infinite-time ruin probability. Furthermore, we
discuss and analyze the impact of the two thinning parameters and manifest that the depen-
dence structure in the model has a significant influence on the risk of the surplus process in
an insurance company. When the claim sizes follow a class of heavy-tailed distributions,
we establish the large deviations of the aggregate claims and investigate the asymptotic
formula for the finite-time ruin probability. In the numerical examples, we use MATLAB
to randomly draw the sample paths of the proposed surplus process and compute esti-
mates of the true ruin probabilities corresponding to different values of u using the Monte
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Carlo method. From the simulated results, it can be seen that the approximation formula
and asymptotic formula we obtained are effective. Furthermore, these two formulas are
much simpler to use for calculating and estimating the ruin probabilities than the Monte
Carlo method.

As for future work, we could implement the same methodology by applying the
time series for count data with other distributed innovations or an arbitrary innovations’
distribution. Generally, using the same approach as that in Lemma 1 and Lemma 2, we can
extend (14) and (20) to

PM1+···+Mt(s) = PM1(ht(s))
t−1

∏
i=1

Pε(hi(s)),

and
PN1+···+Nt(s) = Pη(s)Pη(βs + (1 − β))[Pη(βs2 + (1 − β)s)]t−1,

respectively. Therefore, if we could derive the explicit expression of c(r), the properties of
the solution to the equation c(r) = 0 can be discussed, and the adjustment coefficient can
be obtained to measure the risk.

Additionally, we could adopt some higher-order processes to make the insurance
risk model much more practical and flexible. In this situation, it becomes more challeng-
ing to find the expressions of PM1+···+Mt(s) and PN1+···+Nt(s). As a consequence, there
might be some difficulties in deriving c(r) and defining the adjustment coefficient for an
insurance portfolio.

On the other hand, instead of fixing the distributions and the parameters to illustrate
the results by simulation, we can use the real dataset to fit the distributions and obtain the
statistical estimates of the parameters, so that the ruin problems of the risk model could be
analyzed in a more scientific way.
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Appendix A

In this appendix, we explicate the motivation and rationale of our proposed model (2)
by the following descriptions, in order to make this paper more accessible to the readers.
Let us begin with the classical discrete-time Lundberg–Cramér risk model

Ut = Ut−1 + c − Lt, t = 1, 2, · · · , (A1)

where Ut corresponds to the surplus of an insurance portfolio at time t, with U0 = u being
the initial surplus; c being the constant premium income per period, and Lt representing
the aggregate claim amount in period t that is defined as

Lt =
Nt

∑
j=1

Yt,j, (A2)
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in which Nt denotes the number of claims and Yt,j is the size of the jth payment to the
insured in period t. After recursively calculating, it is easy to see that the risk model (A1)
can be rewritten as

Ut = u + ct −
t

∑
i=1

Li = u + ct −
t

∑
i=1

Ni

∑
j=1

Yi,j, t = 1, 2, · · · ,

which is equivalent to the model (1) by denoting N0
t =

t
∑

i=1
Ni.

For simplicity, it is assumed that the claim numbers of different periods are indepen-
dent in the Lundberg–Cramér risk model, i.e., the claim number process {Nt, t = 1, 2, · · · }
is a sequence of i.i.d. random variables, which is certainly not realistic. As a consequence,
ref. [11] proposes some new discrete-time risk models, where the Poisson INMA(1) process
and Poisson INAR(1) process are used to describe the dependence structures among the
numbers of claims. That is to say, the claim number process {Nt, t = 1, 2, · · · } satisfies

Nt = α ◦ Nt−1 + εt, t = 2, 3, · · · ,

or
Nt = β ◦ ηt−1 + ηt, t = 1, 2, · · · .

On the other hand, both of the above two types of risk models suppose that the
premiums are collected with positive deterministic constant rate c, which is also lacks the
ability of describing the real situation of insurance portfolio. As an alternative to this case,
ref. [18] proposes the risk model with stochastic premiums that can be expressed as

Ut = Ut−1 + Pt − Lt, t = 1, 2, · · · , (A3)

where Lt is defined by (A2), and Pt aggregates the premiums in period t that is defined as

Pt =
Mt

∑
k=1

Xt,k, (A4)

in which Mt counts the number of individual income, and Xt,k represents the amount of
the kth premium income for the insurance portfolio in period t.

In the risk model (A3), it should be noted that both the premium number process
{Mt, t = 1, 2, · · · } and the claim number process {Nt, t = 1, 2, · · · } are supposed to be
sequences of i.i.d. random variables. Therefore, the goal of this paper is to introduce
the idea of [11] into the risk model with stochastic premiums by using time series for
count random variables to fit the temporal dependence among {Mt, t = 1, 2, · · · } and
{Nt, t = 1, 2, · · · }, respectively. Furthermore, considering some insurance practices (please
see Remarks 2 and 3), we assume that {Mt, t = 1, 2, · · · } constitutes a Poisson INAR(1)
process that satisfies

Mt = α ◦ Mt−1 + εt, t = 2, 3, · · · ,

and {Nt, t = 1, 2, · · · } constitutes a Poisson INMA(1) process that satisfies

Nt = β ◦ ηt−1 + ηt, t = 1, 2, · · · .

Our proposed risk model can also be generalized in several aspects to make itself more
flexible and applicable, as discussed in the Conclusions.
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Abstract: The geometric first-order integer-valued autoregressive process (GINAR(1)) can be par-
ticularly useful to model relevant discrete-valued time series, namely in statistical process control.
We resort to stochastic ordering to prove that the GINAR(1) process is a discrete-time Markov chain
governed by a totally positive order 2 (TP2) transition matrix.Stochastic ordering is also used to
compare transition matrices referring to pairs of GINAR(1) processes with different values of the
marginal mean. We assess and illustrate the implications of these two stochastic ordering results,
namely on the properties of the run length of geometric charts for monitoring GINAR(1) counts.
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1. Introduction

The INAR(1) and GINAR(1) processes were originally proposed by McKenzie [1,2];
the latter model was soon after discussed in more detail by Alzaid and Al-Osh [3]. They rely
on the binomial thinning operation due to Steutel and van Harn [4] which is defined below.

Definition 1. Let X be a non-negative integer-valued r.v. with range N0 = {0, 1, . . . } and ρ a
scalar in (0, 1). Then the binomial thinning operation on X results in the r.v.

ρ ◦ X =
X

∑
t=1

Yt, (1)

where ◦ represents the binomial thinning operator; {Yt : t ∈ N} is a sequence of i.i.d. Bernoulli r.v.
with parameter ρ; {Yt : t ∈ N} is independent of X.

We usually refer to ρ ◦ X as the r.v. that arises from X by binomial thinning. Furthermore, we
define 0 ◦ X = 0 and 1 ◦ X = X.

Now that we have defined the binomial thinning operation, a sort of scalar multiplica-
tion counterpart in the integer-valued setting, the reader is reminded of the definition of
McKenzie’s GINAR(1) process and its main properties.

Definition 2. Let ρ, p ∈ (0, 1). Then {Xt : t ∈ N0} is said to be a GINAR(1) process if Xt is
written in the form

Xt = ρ ◦ Xt−1 + Bt × Gt, (2)

where {Bt : i ∈ N} and {Gt : i ∈ N} are independent sequences of i.i.d. Bernoulli r.v. with
parameter (1 − ρ) and of i.i.d. geometric r.v. with parameter p, respectively; the sequence of
innovations {εt = Bt × Gt : t ∈ t ∈ N} and {X0, . . . , Xt−2, Xt−1} are independent; all thinning
operations are performed independently of each other and of {εt : t ∈ N}; and all the thinning
operations at time t are independent of {X0, . . . , Xt−2, Xt−1}.

Entropy 2023, 25, 444. https://doi.org/10.3390/e25030444 https://www.mdpi.com/journal/entropy
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According to McKenzie [2] and Alzaid and Al-Osh [3], if X0 ∼ geometric(p) then
{Xt : t ∈ N0} is a stationary AR(1) process with geometric(p) marginal distribution.

McKenzie [2] also adds that {Xt : t ∈ N0} is a DTMC with TPM, P(p, ρ) = [pij(p, ρ)]i,j∈N0
= [P(Xt = j | Xt−1 = i)]i,j∈N0 , where

pi j(p, ρ) =
min{i,j}

∑
m=0

(
i
m

)
ρm (1 − ρ)i−m × (1 − ρ) (1 − p)j−m p

+

(
i
j

)
ρj (1 − ρ)i−j × ρ × IN0(i − j), i, j ∈ N0, (3)

where IN0 represents the indicator function of the set of non-negative integers. These
entries can be obtained by taking advantage of a few facts: (ρ ◦ Xt−1 | Xt−1 = 0) = 0 with
probability 1; (ρ ◦ Xt−1 | Xt−1 = i) ∼ binomial(i, ρ), for i ∈ N; the p.f. of the innovations,
εt = Bt × Gt, is equal to

P(εt = j) =
{

P(Bt = 0 or Gt = 0) = p (1 − ρ) + ρ, j = 0
P(Bt = 1, Gt = j) = (1 − ρ) (1 − p)j p, j ∈ N.

(4)

The autocorrelation function of the GINAR(1) process is equal to

corr(Xt, Xt+k) = ρk, k, t ∈ N0. (5)

We ought to point out that the GINAR(1) process is a particular case of the generalized
geometric INAR(1) or GGINAR(1) process, introduced by (Al-Osh and Aly [5], Section 3).
Moreover, autocorrelated geometric counts can also be modeled by the new geometric
INAR(1) or NGINAR(1) process, proposed by Ristić et al. [6] and relying on the negative
binomial thinning operator. Finally, the NGINAR(1) process is a special instance of the
ZMGINAR(1) process, the zero-modified geometric first-order integer-valued autoregres-
sive, introduced and thoroughly described by Barreto-Souza [7].

The remainder of the paper is organized as follows. In Section 2, we shall prove that P

has two important features stated in the two following theorems.

Theorem 1. The TPM P(p, ρ) of a GINAR(1) process is totally positive of order 2,

P(p, ρ) ∈ TP2, (6)

i.e., all the 2 × 2 minors of the P(p, ρ) are non-negative.

Theorem 2. Let: {Xt(p, ρ) : t ∈ N0} and {Xt(p′, ρ) : t ∈ N0} be two independent GINAR(1)
processes, with parameters (p, ρ) and (p′, ρ); P(p, ρ) = [pij(p, ρ)]i,j∈{0,1,...,n} and P(p′, ρ) =

[pij(p′, ρ)]i,j∈{0,1,...,n} be their corresponding TPM. Then P(p′, ρ) is stochastically smaller than
P(p, ρ) in the usual (or in the Kalmykov order) sense,

P(p′, ρ) ≤st P(p, ρ), (7)

if 0 ≤ √
ρ/(

√
ρ + 1) < p ≤ p′ < 1, that is,

n

∑
j=l

pi j(p, ρ) ≤
n

∑
j=l

pm j(p′, ρ), i, l, m ∈ {0, 1, . . . , n}, i ≤ m,

in case 1/
√

ρ > E[Xt(p, ρ)] ≥ E[Xt(p′, ρ)] > 0.

In Section 3, we discuss and illustrate the impact of (6) and (7) on the run length of an
upper one-sided geometric chart for monitoring GINAR(1) processes. In Section 4, we sum
up our findings and briefly refer to related and future work.
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2. Proving the Two Features of the GINAR(1) Process

Demonstrating that the 2 × 2 minors of the TPM of a GINAR(1) process are all non-
negative is not simple, due to the aspect of the transition probabilities defined in (3).
However, by adopting the reasoning of (Morais and Pacheco [8] Section 2) and resorting to
some auxiliary definitions and lemmas in Appendix A.1, we can prove (6).

Proof of Theorem 1. Note that

(Xt+1(p, ρ) | Xt(p, ρ) = i) = ρ ◦ Xt−1(p, ρ) + εt
st
= B(i, ρ) + BG(p, ρ),

where: B(0, ρ)
st
= 0; B(i, ρ) ∼ binomial(i, ρ), i ∈ N; BG(p, ρ) a r.v. with p.f. given by (4);

B(i, ρ) and BG(p, ρ) are two independent r.v.
In accordance to Lemmas A1 and A3, B(i) stochastically increases with i in the like-

lihood ratio sense and B(i, ρ), BG(p, ρ) ∈ PF2. Hence, we can invoke the closure of the
stochastic order ≤lr (see Definition A1) under the sum of independent PF2 r.v. (see (Shaked
and Shanthikumar [9] p. 46, Theorem 1.C.9) or Karlin and Proschan [10]) to conclude that

B(i, ρ) + BG(p, ρ) ≤lr B(i + 1, ρ) + BG(p, ρ)

(Xt+1(p, ρ) | Xt(p, ρ) = i) ≤lr (Xt+1(p, ρ) | Xt(p, ρ) = i + 1),

for i ∈ N0, i.e., P ∈ TP2 or P is a stochastically monotone TPM in the likelihood ratio sense
(P ∈ Mlr), according to Definition A2.

The next proof refers to a stochastic ordering between the TPM that govern two DTMC
with the same state space, thus associated with what Kulkarni [11] (pp. 148–149) terms the
Kalmykov-dominance or Kalmykov order(see Kalmykov [12] Theorem 2).

Proof of Theorem 2. Result (7) can be shown to hold by successively capitalizing on:
Lemmas A1 and A2; the closure of ≤lr under the sum of independent PF2 r.v.; P(p′, ρ) ∈
TP2; and X ≤lr Y implies that the r.v. X is stochastically smaller than the r.v. Y in the usual
sense, in short X ≤st Y (see Shaked and Shanthikumar [9] p. 42, Theorem 1.C.1). Then, for
i, m ∈ {0, 1, . . . , n}, i ≤ m, and 0 ≤ √

ρ/(
√

ρ + 1) < p ≤ p′ < 1:

(Xt+1(p′, ρ) | Xt(p′, ρ) = i) st
= B(i, ρ) + BG(p′, ρ)

≤lr B(i + 1, ρ) + BG(p, ρ)
st
= (Xt+1(p, ρ) | Xt(p, ρ) = i)

≤lr (Xt+1(p, ρ) | Xt(p, ρ) = m)

(Xt+1(p′, ρ) | Xt(p′, ρ) = i) ≤st (Xt+1(p, ρ) | Xt(p, ρ) = m)
n

∑
j=l

pi j(p′, ρ) ≤
n

∑
j=l

pm j(p, ρ), l ∈ {0, 1, . . . , n},

i.e., P(p′, ρ) ≤st P(p, ρ) if 1/
√

ρ > 1/p − 1 = E[Xt(p, ρ)] ≥ E[Xt(p′, ρ)] = 1/p′ − 1 >
0.

3. Practical Implications in Statistical Process Control

Time series of counts arise naturally in several applications, namely the manufacturing
industry, health care, service industry, insurance, and network analysis. Using control
charts for monitoring the underlying count processes is essential to swiftly detect changes
in such processes and start preventive or corrective actions (see Weiß [13]). For an overview
of control charts for count processes, we refer the reader to Weiß [14].

As noted by Ristić et al. [6], counts with geometric marginal distributions play a major
role in several areas, for instance reliability, medicine, and precipitation modeling. These
counts may refer to the number of machines waiting for maintenance, congenital malformations,
or thunderstorms in a day.
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In statistical process control, the GINAR(1) process can be used to model, for example,
the cumulative counts of conforming items between two nonconforming items when these
successive counts are no longer independent, say because the observations are generated
by automated high-frequency sampling.

The literature review reveals that no charts have been proposed for monitoring GI-
NAR(1) or GGINAR(1) counts. However, Li et al. [15] proposed a combined jumps chart, a
cumulative sum (CUSUM) chart, and a combined exponentially weighted moving average
(EWMA) chart for monitoring the NGINAR(1) counts. Furthermore, Li et al. [16] described
upper and lower one-sided CUSUM charts for monitoring the mean of ZMGINAR(1)
counts.

Let us consider that the following quality control chart is being used to detect decreases
in the parameter p of the GINAR(1) process.

Definition 3. Let {Xt : t ∈ N0} be a GINAR(1) process. The upper one-sided geometric chart
makes use of the set of control statistics {Xt : t ∈ N} and triggers a signal at time t (t ∈ N) if
Xt > U, where U is a fixed upper control limit (UCL) in N0.

We should bear in mind that the control statistic Xt becomes stochastically smaller
in the usual sense as p increases (see Lemma A4). Consequently and as suggested by
(Xie et al. [17] p. 42), it is clear that when an observed value of Xt exceeds the UCL of the
chart, this should be taken as a sign that the p has decreased, that is, an indication of a
potential increase in the process mean (1 − p)/p.

The performance of the upper one-sided geometric chart is about to be assessed in
terms of the run length (RL), the random number of samples collected before a signal
is triggered by this control chart. Consequently, the following first passage time of the
stochastic process {Xt : t ∈ N0}, under the condition that X0 = u ∈ {0, 1, . . . , U}, is a vital
performance measure of this chart for monitoring a GINAR(1) process:

RLu ≡ RLu(U) = min{t ∈ N : Xt > U | X0 = u}, (8)

where u is a fixed initial value in the set {0, 1, . . . , U}.
U is chosen in such a way that false alarms are rather infrequent and increases in the

process mean (1 − p)/p (i.e., decreases in p) are detected as quickly as possible. Hence, we
should be dealing with a large in-control RL and smaller out-of-control run lengths.

3.1. Significance of P ∈ TP2

By invoking the first part of Theorem 3.1 of Assaf et al. [18], we can state that the TP2
character of the TPM of the GINAR(1) process leads to the following result.

Corollary 1. Let {Xt : t ∈ N0} be a GINAR(1) process. Then

RL0 = min{t ∈ N : Xt > U | X0 = 0} ∈ PF2, (9)

i.e., [PRL0(x + 1)]2 ≥ PRL0(x)× PRL0(x + 2), for x ∈ N0.

Corollary 1 implies that RL0 has an increasing hazard rate (RL0 ∈ IHR), that is,
λRL0(m) = P(RL0 = m)/P(RL0 ≥ m) is a nondecreasing function of m ∈ N (see
Kijima [19] p. 118, Theorem 3.7(ii)). RL0 ∈ IHR means that signaling, given that no
observation has previously exceeded the UCL, becomes more likely as we proceed with the
collection of observations provided that X0 = 0.

Note, however, that RLu may not be IHR, for u ∈ {1, . . . , U}. In fact, the second part
of Theorem 3.1 of Assaf et al. [18] allows us to state that the p.f. PRLU (l + n) is TP2 in l and
n (l, n ∈ N0), i.e., PRLU (l + n)× PRLU (l′ + n′) ≥ PRLU (l′ + n)× PRLU (l + n′), for l, n ∈ N0
(l < l′, n < n′). As a consequence, [PRLU (x + 1)]2 ≤ PRLU (x)× PRLU (x + 2), for x ∈ N0,
thus we can add that RLU has an decreasing hazard rate (RLU ∈ DHR).
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The next corollary translates the stochastic influence of an increase in the initial value
u and can be shown to be valid by capitalizing on (Karlin [20] pp. 42–43, Theorem 2.1).

Corollary 2. Let {Xt : t ∈ N0} be a GINAR(1) process. Then, for u, u′ ∈ {0, 1, . . . , U},

RLu′ ≤lr RLu, u ≤ u′. (10)

Let us denote the upper one-sided geometric chart with X0 = u′ (resp. X0 = u) by
Scheme 1 (resp. Scheme 2). Then (10) can be interpreted as follows: the odds of Scheme 1
signaling at sample m against Scheme 2 triggering a signal at the same sample decreases as
m increases (see [21] p. 5).

Result (10) seems quite evident; nevertheless, it would not be valid if the GINAR(1)
process was not governed by a TP2 TPM.

3.2. Other Comparisons of Run Lengths

The stochastic inequality P(p′, ρ) ≤st P(p, ρ), for 0 ≤ √
ρ/(

√
ρ + 1) < p ≤ p′ < 1,

allows us to stochastically compare two GINAR(1) processes. As a matter of fact, by
invoking Lemma A4 and Theorem 6.B.32 of (Shaked and Shanthikumar [9] p. 282), we can
state the next result.

Corollary 3. Let {Xt(p′, ρ) : t ∈ N0} and {Xt(p, ρ) : t ∈ N0} two GINAR(1) processes. If
0 ≤ √

ρ/(
√

ρ + 1) < p ≤ p′ < 1 and the initial states are deterministic X0 = u′ ≤ X0(p′) = u
or random, say X0(p′, ρ) ∼ geometric(p′) ≤st X0(p, ρ) ∼ geometric(p), then

{Xt(p′, ρ) : t ∈ N0} ≤st {Xt(p, ρ) : t ∈ N0}. (11)

From (11) we can infer from (11) that X1(p′, ρ) ≤st X1(p, ρ).
The next lemma plays a vital role in the comparison of run lengths and is taken from

(Shaked and Shanthikumar [9] p. 283).

Lemma 1. If two stochastic processes {Xt : t ∈ T } and {Yt : t ∈ T } satisfy {Xt : t ∈ T } ≤st
{Yt : t ∈ T } then

inf{t ∈ T : Yt > U} ≤st inf{t ∈ T : Xt > U}. (12)

Lemma 1 states what could be considered obvious: if we are dealing with two ordered
stochastic processes in the usual sense, the larger stochastic process in the usual sense
exceeds the critical level U stochastically sooner also in the usual sense.

By combining Corollary 3 and Lemma 1, we can provide a stochastic flavor to the
influence of an increase in p not only on RLu but also on another important RL:

RLX1 = min{t ∈ N : Xt > U | X1}, (13)

which we coin as overall run length, following (Weiß [22] Section 20.2.2). RLX1 refers to a
first passage time of the stochastic process {Xt : t ∈ N} under the condition that the initial
state coincides with the r.v. X1. In point of fact, it is reasonable to resort to this performance
measure because in practice we do not know X0, hence it is plausible to rely, for example,
on X1 ∼ geometric(p).

Corollary 4. The following stochastic ordering results hold for the run lengths of the upper one-
sided geometric chart for monitoring GINAR(1) processes:

RLu(p, ρ) ≤st RLu′
(p′, ρ) (14)

RLX1(p,ρ)(p, ρ) ≤st RLX1(p′ ,ρ)(p′, ρ), (15)

for u′ ≤ u and 0 ≤ √
ρ/(

√
ρ + 1) < p ≤ p′ < 1.
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Note that we could have also invoked (14) and the closure of the usual stochastic
order ≤st under mixtures (see Shaked and Shanthikumar [9] p. 6, Theorem 1.A.3.(d)) to
prove (15).

Results (14) and (15) mean that the upper one-sided geometric chart for the GINAR(1)
process stochastically increases its detection speed (in the usual sense) as the downward
shift in p becomes more extreme. This stochastic ordering result parallels with the notion
of a sequentially repeated uniformly powerful test.

3.3. An Illustration

Ristić et al. [6] found that an NGINAR(1) model with estimated parameters p̂0 =
1/(1 + 0.5872) = 0.63 and ρ̂0 = 0.1650 adequately described the monthly counts of
sex offenses reported in the 21st police car beat in Pittsburgh. This data set comprises
144 observations, starting in January 1990 and ending in December 2001.

Note that the GINAR(1) and NGINAR(1) processes share the same geometric marginal
distribution; and, as far as the offense data set is concerned, the value of the Akaike
information criterion (AIC) for the NGINAR(1) and GINAR(1) models are very close,
namely 302.67 and 303.74, respectively, as (Ristić et al. [6] Table 2) attest. Hence, we are
going to consider the upper one-sided geometric chart from Definition 3 with p0 = 0.63
and ρ0 = 0.1650 for monitoring such counts.

An UCL equal to U = 5 and an initial state u = 0 (resp. u = U) yield an in-control
ARL of E[RL0(p0, ρ0)] ! 393.7 (resp. E[RLU(p0, ρ0)] ! 391.4). These and other RL-related
performance measures used in this subsection are described in Appendix A.2.

The plots of the hazard rate function in Figure 1 give additional insights into the RL
performance of the geometric chart as we proceed with the sampling and to the impact of
the adoption of a head start. Indeed, it illustrates two results that follow from Corollary 1:
RL0(p0, ρ0) ∈ IHR and RLU(p0, ρ0) ∈ DHR. This last result suggests that the false-alarm
rate conveniently decreases in the first samples when we adopt a head start (u = U > 0).

Figure 1. Hazard rate functions of RL0(p0, ρ0) and RLU(p0, ρ0).

According to Brook and Evans [23], the limiting form of the p.f. of the RL is geometric-
like with parameter 1 − ξ(p, ρ), where ξ(p, ρ) is the maximum real eigenvalue of Q(p, ρ) =
[pij(p, ρ)]i,j∈{0,1,...,U}, regardless of the initial value u of the control statistic Xt. Therefore,
it comes as no surprise that the values of the hazard rate functions of RL0(p0, ρ0) and
RLU(p0, ρ0) converge to

lim
m→+∞

λRL0(p0,ρ0)
(m) = lim

m→+∞
λRLU(p0,ρ0)

(m) = 1 − ξ(p, ρ) ! 0.002541, (16)

as suggested by Figure 1.
Furthermore, the hazard rate function of RL0(p0, ρ0) is pointwise below the one of

RLU(p0, ρ0) because Corollary 2 establishes that RLU(p0, ρ0) ≤lr RL0(p0, ρ0) and this result
in turn implies RLU(p0, ρ0) ≤hr RL0(p0, ρ0), that is, λRLU(p0,ρ0)

(m) ≥ λRL0(p0,ρ0)
(m), for

m ∈ N (see Definition A4).
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We now illustrate the first result of Corollary 4 and also of a consequence of its second
result: RL0(p, ρ) ≤st RL0(p′, ρ), for 0 ≤ √

ρ/(
√

ρ + 1) < p ≤ p′ < 1; E[RLX1(p,ρ)(p, ρ)] is
an increasing function of p in the interval, (

√
ρ/(

√
ρ + 1), 1).

In the left panel of Figure 2, we plotted the survival functions of RL0(0.9p0, ρ0) and
RL0(p0, ρ0).

Since RL0(0.9p0, ρ) ≤st RL0(p0, ρ), the plot of survival function of RL0(0.9p0, ρ) is
pointwise below the one of RL0(p0, ρ), as Figure 2 plainly demonstrates. Hence, the number
of samples taken until the detection of a 10% decrease in p by the upper one-sided geometric
chart is indeed stochastically smaller than the number of samples we collect until this chart
emits a false alarm.

Figure 2. Survival function of RL0(p, ρ0), for p = 0.9p0 and p = p0 (black and gray solid lines);
overall ARL function, E[RLX1 (p, ρ0)], for

√
ρ/(

√
ρ + 1) < p ≤ p0.

The right panel of Figure 2 refers to the overall ARL function, E[RLX1(p, ρ0)], for√
ρ/(

√
ρ + 1) < p ≤ p0. It increases with p in this particular interval from

E[RLX1(
√

ρ0/(
√

ρ0 + 1), ρ0)] ! 8.3 to E[RLX1(p0, ρ0)] ! 393.5. We ought to note that
it increases further when we take p ∈ (p0, 1), therefore the upper one-sided geometric chart
cannot detect increases in p in an expedient manner, as we have anticipated.

We wrote a program for Mathematica 10.3 (Wolfram [24]) to produce all the graphs
and results in this subsection.

4. Concluding Remarks

As expertly put by Montgomery and Mastrangelo [25], the independence assumption
is often violated in practice. As a consequence, we often deal with discrete-valued time
series, namely when we are dealing with very high sampling rates, as suggested by Weiß
and Testik [26], and Rakitzis et al. [27].

In this paper, we considered the GINAR(1) count process, resorted to stochastic
ordering to prove two features of its TPM, and discussed the implications of these two
traits on RL-related performance measures of an upper one-sided geometric control chart
that accounts for the autocorrelated character of such process.

For example: the TP2 character of the TPM of the GINAR(1) process implies an IHR
behaviour of the run length RL0 of that same chart; the run length RLu and the overall run
length RLX1 stochastically increase in the usual sense in the interval (

√
ρ0/(

√
ρ0 + 1), 1).

These features of the GINAR(1) process and the associated results are comparable to
the ones derived by (Morais [21] Section 3.2) and Morais and Pacheco [8,28].

It is important to note that the notion of stochastically monotone matrices in the usual
sense was introduced by Daley [29] for real-valued discrete-time Markov chains. Moreover,
Karlin [20] implicitly states that a TP2 TPM possesses a monotone likelihood ratio property
and, thus, virtually defines stochastically monotone Markov chains in the likelihood ratio
sense. Furthermore, the comparison of counting processes and queues in the usual sense
can be traced back, for instance, to Whitt [30] and the multivariate likelihood ratio order of
random vectors (or TP2 order) is discussed, for example, by (Shaked and Shanthikumar [9]
pp. 298–305).
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Coincidentally, the stochastic order in the likelihood sense for stochastic processes or
TPM has not been defined up to now, as far as we have investigated. For this reason and
the fact that the ≤lr order is not closed under mixtures (see Shaked and Shanthikumar [31]
p. 33), we did not state or prove the ≤lr analogue of the two results in Corollary 4.

We also failed to prove that P(p, ρ′) ≤st P(p, ρ), for 0 ≤ ρ ≤ ρ′ < 1, because of
two opposing stochastic behaviors of the summands (ρ ◦ Xt | Xt = i) and εt+1: the
r.v. binomial(i, ρ) (resp. BG(p, ρ)) stochastically increases (resp. decreases) with ρ in the
likelihood ratio sense. Had we proven that result, we could have concluded that the larger
the upward shifts in the autocorrelation parameter, the longer it takes the upper one-sided
geometric chart to detect such a change in ρ.

It would be pertinent to investigate the stochastic properties of the RL and overall
RL of lower one-sided geometric charts for detecting increases in the parameter p of a
GINAR(1) process.

Another possibility of further work which certainly deserves some consideration is
to investigate the extension of Theorems 1 and 2 to the NGINAR(1) process, the novel
geometric INAR(1) process proposed by Guerrero et al. [32], or the new INAR(1) process
with Poisson binomial-exponential 2 innovations studied by Zhang et al. [33], and assess the
impact of these two results in the RL performance of upper one-sided charts for monitoring
such autocorrelated geometric counts.

We ought to mention that deriving results similar to (6) and (7) seems to be very
unlikely for the mixed generalized Poisson INAR process [34]. This follows from the fact
that the generalized Poisson distribution has not a PF2 p.f.
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Abbreviations

The following abbreviations are used in this manuscript:

c.d.f. cumulative distribution function
DHR decreasing hazard rate
DTMC discrete-time Markov chain
GGINAR(1) generalized geometric first-order integer-valued autoregressive process
GINAR(1) geometric first-order integer-valued autoregressive process
i.i.d. independent and identically distributed
IHR increasing hazard rate
INAR(1) first-order integer-valued autoregressive process
NGINAR(1) new geometric first-order integer-valued autoregressive process
p.f. probability function
PF2 Pólya frequency of order 2
RL run length
r.v. random variable
TP2 totally positive of order 2
TPM transition probability matrix
UCL upper control limit
ZMGINAR(1) zero-modified geometric first-order integer-valued autoregressive process
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Appendix A

Appendix A.1. Auxiliary Definitions and Lemmas

This appendix has the sole purpose of providing a few notions and results that are
crucial to prove (6), (7), and some of the implications of these two stochastic ordering
results.

The notions of stochastically smaller in the likelihood ratio sense, stochastically monotone
in the likelihood ratio sense, and Pólya frequency of order 2 p.f. are taken or follow from
(Shaked and Shanthikumar [9] p. 42), (Kijima [19] pp. 129–131), and (Kijima [19] p. 106)
(respectively).

Definition A1. Let X and Y be two non-negative integer r.v., with p.f. PX and PY. Then X is said
to be stochastically smaller than Y in the likelihood ratio sense if

PX(x)
PY(x)

is a nonincreasing function of x, (A1)

over the union of the supports of the r.v. X and Y. In shorthand notation, X ≤lr Y.

Lemma A1. Let B(i, ρ) ∼ binomial(i, ρ). Then

B(i, ρ) ≤lr B(i + 1, ρ), i ∈ N0. (A2)

B(i, ρ) stochastically increases with i in the likelihood ratio sense because the ratio

PB(i,ρ)(x)
PB(i+1,ρ)(x)

=
i + 1 − x

(1 − p)(i + 1)

is a nonincreasing function of x ∈ {0, 1, . . . , i + 1}.

Lemma A2. Let BG(p, ρ) be a r.v. with p.f. given by (4). Then

BG(p′, ρ) ≤lr BG(p, ρ),
√

ρ
√

ρ + 1
< p ≤ p′ < 1. (A3)

Note that

rBG(x) =
PBG(p′ ,ρ)(x)
PBG(p,ρ)(x)

=

⎧⎨⎩
p′(1−ρ)+ρ
p′(1−ρ)+ρ

, x = 0
p′
p ×

(
1−p′
1−p

)x
, x ∈ N.

Since (1 − p′)/(1 − p) ≤ 1, rBG(x) is a nonincreasing function of x ∈ N. We still have to
verify that rBG(0) ≥ rBG(1): this inequality is valid if f (p) = [p(1 − ρ) + ρ]/[p(1 − p] =
1/(1 − p) + ρ/p has a positive derivative, i.e., if 1/(1 − p)2 − ρ/p2 > 0 or, equivalently,
p >

√
ρ/(

√
ρ + 1). Hence BG(p, ρ) stochastically decreases with p in the likelihood ratio

sense as long as 0 ≤ √
ρ/(

√
ρ + 1) < p ≤ p′ < 1.

Definition A2. Let {Xt : t ∈ N0} be an irreducible DTMC with TPM P. Then {Xt : t ∈ N0} is
said to be stochastically monotone in the likelihood ratio sense if

(Xt+1 | Xt = i) ≤lr (Xt+1 | Xt = i + 1), (A4)

for all i. In this case, we write P ∈ Mlr or P ∈ TP2.

Definition A3. Let X be a non-negative r.v. with probability function (p.f.) PX(x). If

PX(x)
PX(x + 1)

is nondecreasing in x ∈ N0, (A5)
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i.e., [PX(x + 1)]2 ≥ PX(x)× PX(x + 2), x ∈ N0, then X is said to have a Pólya frequency of order
2 (PF2) p.f. and we write X ∈ PF2.

Lemma A3. If B(i, ρ) ∼ binomial(i, ρ) and BG(p, ρ) is a r.v. with p.f. given by (4) then B(i, ρ),
BG(p, ρ) ∈ PF2.

We have

PB(i,ρ)(x)
PB(i,ρ)(x + 1)

=
1 − p

p
× x + 1

i − x
, x = 0, 1, . . . , i,

PBG(p,ρ)(x)
PBG(p,ρ)(x + 1)

=

{ p(1−ρ)+ρ
(1−ρ)(1−p)p , x = 0

1
1−p , x ∈ N.

Since [p(1 − ρ) + ρ]/[(1 − ρ)(1 − p)p] ≤ 1/(1 − p) ⇔ ρ ≤ 1, we can state that these two
ratios are certainly nondecreasing functions of x over the support of the corresponding p.f.

The concepts of stochastically smaller in the usual sense in the univariate and multivariate
cases and stochastically smaller in the hazard rate sense in the univariate case can be found in
(Shaked and Shanthikumar [9] pp. 3, 17, 266), whereas on p. 281 of this same reference the
stochastic ordering of stochastic processes in the usual sense is defined.

Definition A4. Let X and Y be two non-negative integer r.v., with p.f. PX and PY and c.d.f. FX
and FY. Then: X is said to be stochastically smaller than Y in the usual sense (X ≤st Y) if

FX(x) = 1 − FX(x) ≤ 1 − FY(x) = FY(x), x ∈ N0; (A6)

X is said to be stochastically smaller than Y in the hazard rate sense (X ≤hr Y) in case

λX(x) =
PX(x)

FX(x − 1)
≥ PY(x)

FY(x − 1)
= λY(x), x ∈ N0. (A7)

The stochastic orders ≤lr, ≤hr, and ≤st can be related: X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y
(see Shaked and Shanthikumar [9] pp. 18, 43, Theorems 1.B.1, 1.C.1). Moreover, X ≤st Y ⇒
E(X) ≤ E(Y) provided that these expectations exist.

Lemma A4. Let G(p) be an r.v. with geometric distribution with parameter p. Then

G(p′) ≤st G(p), 0 < p ≤ p′ < 1. (A8)

Equation (A8) follows in a straightforward manner: PG(p)(x) = (1 − p)x p, for x ∈ N0;
thus, FG(p′)(x) = (1 − p′)x+1 ≤ (1 − p)x+1 = FG(p)(x), for x ∈ N0, when 0 < p ≤ p′ < 1.

Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two vectors in Rm; then we write x ≤ y if
xt ≤ yt, for t = 1, . . . , m. Additionally, recall that U ⊆ Rm is called an upper set if y ∈ U
whenever x ≤ y and x ∈ U (see Shaked and Shanthikumar [9] p. 266).

Definition A5. Let X and Y be two m−dimensional random vectors. Then X is said to be smaller
than Y in the usual sense if

P(X ∈ U ) ≤ P(Y ∈ U ), (A9)

for every upper set U in Rm. We write X ≤st Y.

Definition A6. Let {Xt : t ∈ N0} and {Yt : t ∈ N0} be two discrete-time stochastic processes
with a common state space S . Then {Xt : t ∈ N0} is said to be stochastically smaller than
{Yt : t ∈ N0} in the usual sense if

(Xt1 , . . . , Xtm) ≤st (Yt1 , . . . , Ytm), (A10)
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for every m ∈ N and (t1, . . . , tm) ∈ Nm
0 . In this case, we write {Xt : t ∈ N0} ≤st {Yt : t ∈ N0}.

As a consequence of Definition A6, {Xt : t ∈ N0} ≤st {Yt : t ∈ N0} implies that
Xt ≤st Yt, for all t ∈ N0.

Appendix A.2. Run Length Related Performance Measures

The run length of the upper one-sided geometric chart, RLu ≡ RLu(p, ρ), is the first
passage time to the set of states {U + 1, U + 2, . . . }, where u ∈ {0, 1 . . . , U}. Thus, we
can use the Markov chain approach proposed by Brook and Evans [23] and provide the
expected value of RLu,

E(RLu) = e�u × (I − Q)−1 × 1, (A11)

where: e�u is the (u + 1)th vector of the orthogonal basis for R(U+1); I represents an identity
matrix with rank (U + 1); Q ≡ Q(p, ρ) = [pi j(p, ρ)]i,j∈{0,1,...,U} is the sub-stochastic matrix
that governs the transitions between the states in {0, 1, . . . , U}, with entries given by (3); 1

is a column-vector with (U + 1) ones.
We can also add the survival and hazard rate functions of RLu are equal to

FRLu(m) = e�u × Qm × 1, (A12)

λRLu(m) =
P(RLu = m)

P(RLu ≥ m)
=

FRLu(m − 1)− FRLu(m)

FRLu(m − 1)
, (A13)

for m ∈ N.
The overall ARL of the upper one-sided geometric chart is given by

E(RLX1) = 1 +
U

∑
u=0

ARLu × P(X1 = u) (A14)

(see (Weiß [22] Section 20.2.2) or Weiß and Testik [35]).
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Abstract: A causality analysis aims at estimating the interactions of the observed variables and
subsequently the connectivity structure of the observed dynamical system or stochastic process. The
partial mutual information from mixed embedding (PMIME) is found appropriate for the causality
analysis of continuous-valued time series, even of high dimension, as it applies a dimension reduction
by selecting the most relevant lag variables of all the observed variables to the response, using
conditional mutual information (CMI). The presence of lag components of the driving variable in this
vector implies a direct causal (driving-response) effect. In this study, the PMIME is appropriately
adapted to discrete-valued multivariate time series, called the discrete PMIME (DPMIME). An
appropriate estimation of the discrete probability distributions and CMI for discrete variables is
implemented in the DPMIME. Further, the asymptotic distribution of the estimated CMI is derived,
allowing for a parametric significance test for the CMI in the DPMIME, whereas for the PMIME,
there is no parametric test for the CMI and the test is performed using resampling. Monte Carlo
simulations are performed using different generating systems of discrete-valued time series. The
simulation suggests that the parametric significance test for the CMI in the progressive algorithm
of the DPMIME is compared favorably to the corresponding resampling significance test, and the
accuracy of the DPMIME in the estimation of direct causality converges with the time-series length to
the accuracy of the PMIME. Further, the DPMIME is used to investigate whether the global financial
crisis has an effect on the causality network of the financial world market.

Keywords: Granger causality; conditional mutual information; mixed embedding; symbol sequences;
discrete-valued time series; financial complex network

1. Introduction

A challenge in many domains of science and engineering is to study the causality of
observed variables in the form of multivariate time series. Granger causality has been the
key concept for this, where Granger causality from one variable to another suggests that
the former improves the prediction ahead in time of the latter. Many methods have been
developed based on the Granger causality idea to identify directional interactions among
variables from their time series (see [1] for a recent comparative study of many Granger
causality measures) and have been applied in various fields, such as economics [2], medical
sciences [3], and earth sciences [4]. Of particular interest are measures of direct Granger
causality that estimate the causal effect of the driving to the response variable that cannot
be explained by the other observed variables. The estimated direct causal effects can then
be used to form connections between the nodes being the observed variables in a causality
network that estimates the connectivity (coupling) structure of the underlying system.

The studies on the Granger causality typically regard the continuous-valued time
series, and often the number K of the time series is relatively high, and the underlying
system is complex [5,6]. However, in some applications, the observations are discrete
valued, e.g., the sign of the financial index return, the levels of precipitation, the counts of
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spikes in the electroencephalogram, and the counts of significant earthquake occurrences
within successive time intervals. In this work, we propose an appropriate method to
estimate the direct Granger causality on discrete-valued multivariate time series.

In the analysis of discrete-valued multivariate time series, termed symbol sequences
when no order of discrete values is assumed, the causality effects are estimated typically
in terms of the fitted model. Different approaches have been proposed for the form
of the probability distribution models based on strong assumptions about the structure
of the system, i.e., a multivariate Markov chain. One of the most known approaches
giving a model of reduced form is the mixture transition distribution (MTD) [7], which
restricts the initially large number of parameters, assuming that there is only an effect
of each lag variable separately [8,9]. Recently, the MTD was adapted for the causality
estimation in [10,11] and discussed in the review in [12]. Other approaches assume the
Poisson distribution [13,14] and the negative binomial distribution [15,16]. In the category
of autoregressive models are Pegram’s autoregressive models [17,18] and multivariate
integer-valued autoregressive models (MINAR) [19,20]. Another proposed method, which,
however, simplifies the problem to a linear one, is the so-called CUTE method [21]. Having
obtained the model under given restrictions, one can then identify the causality of a driving
variable to the response variable from the existence of lag terms of the driving variable in
the model form.

Here, we follow a different approach and estimate the causality relationships directly
using the information measures of mutual information (MI) and conditional MI (CMI).
These measures have been employed to estimate causality and derive causality networks
from continuous-valued time series [1,22,23]. For discrete-valued time series, MI and CMI
have been used, e.g., for the estimation of the Markov chain order [24] and the estimation
of autocorrelation in conjunction with Pegram’s autoregressive models [25]. They have
also been used on discrete data derived from continuous-valued time series, either as
ranks of components of embedding vectors [26,27] or as ordinal patterns [28–30]. However,
we are not aware of any work on using information measures for a causality analysis of
discrete-valued multivariate time series or symbol sequences (there is a reference to this in
the supplementary material in [31]).

The framework of the proposed analysis is the estimation of the direct causality of a
discrete driving variable X to a discrete response variable Y from the symbol sequences of
K observed discrete variables, where X and Y are two of them. The direct causality implies
the dependence of Y at one time step ahead, Yt+1, on X at some lag τ ≥ 0, Xt−τ that cannot
be explained by any other variable at any lag. In the model setting, the direct causality
is identified by the presence of the term Xt−τ in the model for Yt+1. In the information
theory setting, it is identified by the presence of significant information of Xt−τ for the
response Yt+1 that cannot be explained by other lag variables, which is quantified by the
CMI of Xt−τ and Yt+1 given the other lag variables. We develop this idea in a progressive
algorithm that builds a set of the most informative lag variables for Yt+1, called the discrete
partial conditional mutual information from mixed embedding (DPMIME), based on a
similar measure called the PMIME for continuous variables [32,33]. The presence of lag
variables Xt−τ (for one or more different lags τ) in the derived set, the so-called mixed
embedding vector, identifies the existence of the direct causality from X to Y, and the
relative contribution of the lag variables of X in explaining Yt+1 conditioned on the other
components of the mixed embedding vector (regarding the other K − 1 variables) quantifies
the strength of this relationship. Further, we develop a parametric significance test for the
CMI of the selected lag variable and Yt+1 at each step of the DPMIME algorithm, which
does not have an analogue in the PMIME regarding continuous variables.

In the evaluation of the DPMIME with Monte Carlo simulations, we compare the
DPMIME to PMIME on discretized time series from continuous-valued systems and also
discrete-valued time series generated by multivariate sparse Markov chains and MTD and
MINAR systems, with a predefined coupling structure. We also compare the parametric
significance test to the resampling significance test in the DPMIME. Further, we form the
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causality networks of five capital markets from the DPMIME, using the sign of the change
in the respective daily indices, as well as other causality measures (computed on the values
of the indices), and we compare the networks from each measure before and after the global
financial crisis of 2008.

The structure of the paper is as follows. First, in Section 2, we present the proposed
measure DPMIME along with the resampling and parametric test for the CMI. In Section 3,
we assess the efficiency of the proposed DPMIME measure with a resampling and paramet-
ric test and compare the DPMIME to the PMIME in a simulation study. The results of the
application regarding the global financial crisis are presented in Section 4, and finally, in
Section 5, the main conclusions are drawn.

2. Discrete Partial Mutual Information from Mixed Embedding

In this section, we present the measure of discrete partial mutual information from
mixed embedding (DPMIME), the parametric significance test, and the resampling signif-
icance test used in the DPMIME. We also present performance indices for the causality
measure when all the K(K − 1) causal effects are estimated for all possible directed pairs of
the K observed discrete variables.

2.1. Iterative Algorithm for the Computation of DPMIME

Let {x1,t, x2,t, . . . , xK,t}, t = 1, 2, . . . , n, be the observations of a stochastic process on
K discrete random variables X1, X2, . . . , XK, typically a multivariate Markov chain. The
discrete variables can be nominal or ordinal, and for convenience hereafter, we refer to the
data as multivariate symbol sequence.

We are interested in defining a measure for the direct causality from X to Y, where X
and Y are any of the K observed discrete variables. For a sufficiently large number of lags
L, we formulate the set Wt of candidate lag variables that may have information explaining
the response Y at one time step ahead, Yt+1. The set Wt has K · L components (’·’ denotes
multiplication), Xi,t−τ , i = 1, . . . , K, τ = 0, . . . , L − 1. The algorithm DPMIME aims to build
up progressively the so-called mixed embedding vector, i.e., a subset wt of Wt of the most
informative lag variables explaining Yt+1.

In the first step, the first lag variable to enter wt is the one that maximizes the MI
with Yt+1,

w1 = arg max
w∈Wt

I(Yt+1; w) (1)

and wt = w1
t = [w1] (the superscript denotes the iteration, equal to the cardinality of the

set). The MI of two variables X and Y is defined in terms of entropy and probability mass
functions (pmfs) as [34]

I(X; Y) = H(X) + H(Y)− H(X, Y) = ∑
x,y

p(x, y) log
pX,Y(x, y)

pX(x)pY(y)
,

where H(X) is the entropy of X, the sum is over all values x and y of X and Y, pX,Y(x, y)
is the joint pmf of (X, Y), and pX(x) is the pmf of X. The pmfs are assumed to regard
the multinomial probability distribution and are estimated by the maximum likelihood
estimate, where the probability for each value or pair of values is simply given by the
relative frequency of occurrence in the sample (the multivariate symbol sequence). In the
subsequent steps, the CMI instead of the MI is used to find the new component to enter wt.
Suppose that at step j, the j most relevant lag variables to Yt+1 are found forming wt = w

j
t.

The next component to be added to w
j
t is one of the components in Wt \ w

j
t (the K · L

components except the j components already selected) that maximizes the CMI to Yt+1, i.e.,
the mutual information of the candidate w and Yt+1 conditioned on the components in w

j
t

wj+1 = arg max
w∈Wt\w

j
t

I(Yt+1; w|wj
t). (2)
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The CMI of two variables X and Y given a third variable Z is defined in terms of entropy
and pmfs as [34]

I(X; Y|Z) = −H(X, Y, Z) + H(X, Z) + H(Y, Z)− H(Z)

= ∑
x,y,z

pX,Y,Z(x, y, z) log
pX,Y,Z(x, y, z)pZ(z)
pX,Z(x, z)pY,Z(y, z)

.

At each step, when the lag variable is selected, using (1) for the first step and (2) for the sub-
sequent steps, a significance test is run for the MI in (1) and the CMI in (2). The parametric
and resampling significance tests are presented in detail later in this section. For the step
j + 1, where wj+1 is found in (2), if the CMI I(Yt+1; wj+1|wj

t) is found statistically signifi-

cant by the parametric or resampling test, the wt is augmented as wt = w
j+1
t = [w

j
t, wj+1].

Otherwise, there is no significant lag variable to be added to the mixed embedding vector
and the algorithm terminates, giving the mixed embedding vector wt = w

j
t.

The components of the mixed embedding vector wt obtained upon termination of the
algorithm are grouped in lag variables of the driving variable X, wX

t , the response variable
Y, wY

t , and all other K − 2 variables, wZ
t , expressed as wt = [wX

t , wY
t , wZ

t ]. If wX
t is empty,

i.e., no-lag variable Xt−τ has information to explain Yt+1 in view of the other lag variables,
there is no direct causality from X to Y. Otherwise, we quantify the direct causality from X
to Y as the proportion of the information of Yt+1 explained by the lag variables of X. The
measure DPMIME is thus defined as

DPMIMEX→Y =

⎧⎨⎩0, if wX
t = ∅.

I(Yt+1;wX
t |wY

t ,wZ
t )

I(Yt+1;wt)
, otherwise.

(3)

In the following, we present the resampling test and the parametric test for the significance
of the CMI of the response Yt+1 and the selected component wj+1 given the components

already selected in w
j
t, I(Yt+1; wj+1|wj

t).

2.2. Randomization Test for the Significance of CMI

First, we do not assume any asymptotic parametric distribution of the estimate of
I(Yt+1; wj+1|wj

t) under the null hypothesis H0 : I(Yt+1; wj+1|wj
t) = 0. Thus, the empirical

distribution of the estimate of I(Yt+1; wj+1|wj
t) is formed by resampling on the initial

sample of the variables Yt+1, wj+1 and w
j
t. For this, we follow the resampling scheme of the

so-called time-shifted surrogates for the significance test for correlation or causality [35,36].
The resampling is actually applied only to wj+1. To retain both the marginal distribution
and intra-dependence (autocorrelation) of wj+1 and destroy any inter-dependence to Yt+1

and w
j
t, we shift cyclically the symbol sequence of wj+1 by a random step k [35] (We

do not consider here the case of periodic or periodic-like symbol sequences, where this
randomization scheme is problematic, as it is likely that the generated surrogate symbol
sequence is similar to the original symbol sequence.). Thus, for the original symbol sequence
{wj+1,1, wj+1,2, . . . , wj+1,n} of wj+1, a randomized (surrogate) symbol sequence for the
random step k is

{w∗
j+1,1, w∗

j+1,2, . . . , w∗
j+1,n} = {wj+1,k+1, . . . , wj+1,n, wj+1,1, . . . , wj+1,k}.

We derive a number Q of such randomized symbol sequences and compute for each of
them the corresponding estimates of I(Yt+1; wj+1|wj

t) under the H0, denoted

I(Yt+1; w∗1
j+1|w

j
t), I(Yt+1; w∗2

j+1|w
j
t), . . . , I(Yt+1; w∗Q

j+1|w
j
t).
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These Q values form the empirical null distribution of the estimate of I(Yt+1; wj+1|wj
t). The

H0 is rejected if the estimate of I(Yt+1; wj+1|wj
t) on the original data is at the right tail of

the empirical null distribution. To assess this, we use rank ordering, where r0 is the rank of
the estimate of I(Yt+1; wj+1|wj

t) in the ordered list of the Q + 1 values, assuming ascending
order. The p-value of the one-sided test is 1 − (r0 − 0.326)/(Q + 1 + 0.348) (using the
correction in [37] to avoid extreme values such as p = 0 when the original value is last
in the ordered list, which is formally not correct). The DPMIME measure in Equation (3)
derived using resampling test of CMI is denoted DPMIMErt.

2.3. Parametric Test for the Significance of CMI

Entropy and MI on discrete variables are well-studied quantities and there is rich
literature about the statistical properties and distribution of their estimates. For the signifi-
cance test for the CMI I(X; Y|Z) for three discrete scalar or vector variables X, Y, and Z, the
most prominent of the parametric null distribution approximations are worked out in [38],
namely the Gaussian and Gamma distributions. For the Gamma null distribution, following
the work in [39], it turns out that Î(X, Y) follows approximately the Gamma distribution

Î(X, Y) ∼ Γ
(
(PX − 1)(PY − 1)

2
,

1
n ln 2

)
,

where n is the sample size and PX is the number of the possible discrete values of X. Further,
it follows that Î(X, Y|Z) is also approximately Gamma distributed

Î(X, Y|Z) ∼ Γ
(

PZ
2
(PX − 1)(PY − 1),

1
n ln 2

)
. (4)

We use the Gamma distribution to approximate the null distribution of the estimate of
I(Yt+1; wj+1|wj

t) for the significance test of CMI, setting Yt+1, wj+1 and w
j
t as X, Y, and Z,

respectively, in Equation (4). The parametric significance test is right-sided, as is for the re-
sampling significance test, and the p-value is the complementary of the Gamma cumulative
density function for the value of the estimate of I(Yt+1; wj+1|wj

t). The DPMIME measure
in Equation (3) derived using the parametric test of CMI is denoted DPMIMEpt. Both
tests in the computation of DPMIMErt and DPMIMEpt are performed at the significance
level α = 0.05.

2.4. Statistical Evaluation of Method Accuracy

For a system of K variables, there are K(K − 1) ordered pairs of variables to estimate
causality. In the simulations of known systems, we know the true interactions between
the system variables from the system equations. We further assume that the causal effects
in each realization of the system match the designed interactions. Though this cannot be
established analytically, former simulations have shown that for weak coupling, below the
limit of generalized synchronization, the match holds [1]. Thus, we can assess the match of
the K(K − 1) estimated causal effects to the true causal dependencies using performance
indices. Here, we consider the indices of specificity, sensitivity, Matthews correlation
coefficient, F-measure, and Hamming distance. All the indices refer to binary entries, i.e.,
there is causal effect or not, so we do not use the magnitude of DPMIME in (3), but only if
it is positive or not.

The sensitivity is the proportion of the true causal effects (true positives, TPs) correctly
identified as such, given as sens = TP/(TP + FN), where FN (false negative) denotes the
number of pairs having true causal effects but have gone undetected. The specificity is the
proportion of the pairs correctly not being identified as having causal effects (true negatives,
TNs), given as spec = TN/(TN + FP), where FP (false positive) denotes the number of pairs
found falsely to have causal effects. For the perfect match of estimated and true causality,
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sensitivity and specificity are one. The Matthews correlation coefficient (MCC) weighs
sensitivity and specificity [40]

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

MCC ranges from −1 to 1. If MCC = 1, there is perfect identification of the pairs of true
and no causality; if MCC = −1, there is total disagreement and pairs of no causality are
identified as pairs of causality and vice versa, whereas MCC at the zero level indicates
random assignment of pairs to causal and non-causal effects. The F-measure is the harmonic
mean of precision and sensitivity. The precision, also called positive predictive value, is
the number of detected true causal effects divided by the total number of detected casual
effects, F = TP/(TP + FP). The F-measure (FM) ranges from 0 to 1. If FM = 1, there is
perfect identification of the pairs of true causality, whereas if FM = 0, no true coupling
is detected. The Hamming distance (HD) is the sum of false positives (FPs) and false
negatives (FNs). Thus, HD obtains non-negative integer values bounded below by zero
(perfect identification) and above by K(K − 1) if all pairs are misclassified.

3. Simulations

One of the aims of the simulation study is to assess whether and how the DPMIME
on discrete-valued time series attains the causality estimation accuracy of PMIME on the
respective continuous-valued time series. Therefore, we generate discrete-valued time series
on the basis of the causality structure of a continuous-valued time series. The continuous-
valued time series is generated by a known dynamical system so that the original causal
interactions are given by the system equations. In the simulation study, we consider four
different ways to generate discrete-valued time series aiming at having the original causal
interactions, as presented below.

1. Continuous to Discrete by quantization (Con2Dis): The multivariate symbol sequence of
a predefined number of symbols M is directly derived by quantization of the values
of the multivariate continuous-valued time series of K observed variables. The range
of values of each variable is partitioned to M equiprobable intervals and each interval
is assigned to one of the M symbols.

2. Realization of estimated sparse Markov Chain (SparseMC): The multivariate symbol se-
quence is generated as a realization of a Markov chain of reduced form estimated on
the Con2Dis multivariate symbol sequence (as derived above from the continuous-
valued multivariate time series). First, the transition probability matrix of a Markov
chain of predefined order L is estimated on the Con2Dis multivariate symbol sequence.
An entry in this matrix regards the probability of a symbol of the response variable
conditioned on the ‘word’ of size K · L of L last symbols of all K variables. For M
discrete symbols, the size of the transition probability matrix for one of the K response
variables is MK·L × M. The causal interactions in the original dynamical system assign
zero transition probabilities to words that contain non-existing causal interactions
so that the Markov chain has a reduced form as the lag variables are less (or much
less for a sparse causality network) than K · L. For example, let us assume the case
of K = 3, L = 2, and M = 2 and the true lag causal relationships for the response
X1,t+1 are X1,t, X1,t−1, and X2,t. The full form of the Markov chain comprises 23·2 = 64
conditioned probabilities for each of the two symbols of X1,t+1, but we estimate only
the 23 = 8 probabilities as the lag variables X2,t−1, X3,t, and X3,t−1 are not considered
to have any causal effect on X1,t+1. Even for a sparse causality network (few true
lag causal relationships), the multivariate Markov chain can only be estimated for
relatively small values of K, L, and M. Once the sparse transition probability matrix is
formed, the generation of a multivariate symbol sequence of length n goes as follows.
The first L symbols for each of the K variables are chosen randomly, and they assign
to the initial condition. Then, for times t + 1, t = L + 1, ..., n + T, the new symbol of

196



Entropy 2022, 24, 1505

each of the K variables is drawn according to the estimated conditioned probabilities.
Finally, the first T symbols for each variable are assigned to a transient period and are
omitted to form the SparseMC multivariate symbol sequence of length n.

3. Realization of estimated mixture transition distribution model (MTD): Instead of deter-
mining the multivariate Markov chain of reduced form in SparseMC, a specific and
operatively more tractable form called mixture transition distribution model (MTD)
has been proposed [41]. In essence, instead of determining the transition probability
from the word of the causal lag variables to the response variable, the MTD deter-
mines the transition probability from each causal lag variable to the response variable.
Here, as lag variable, we consider any lag of the driving variable to the response in
the true dynamical system, e.g., for the example above for the driving variable X2
to the response X1, we consider both lags of X2 (assuming L = 2) and not only the
true lag one. In its full form, the MTD assumes that the state probability distribution
of the j-th variable at time t + 1 (response variable) depends on the state probability
distribution of all K variables at the last L times as

Xj,t+1 =
K

∑
i=1

L

∑
l=1

λj,i,l Pj,i,lXi,t−l+1, i = 1, 2, . . . , K, t = L, L + 1, . . . ,

where Pj,i,l is the transition probability from Xi,t−l+1 to Xj,t+1, and λj,i,l is a parameter
giving the weight on Xi,t−l+1 in determining Xj,t+1, and for j = 1, 2, . . . , K, the fol-
lowing holds ∑K

i=1 ∑L
l=1 λj,i,l = 1. We restrict the full form of MTD by dropping from

the sum the variables that are non-causal to Xj, preserving that the remaining λj,i,l
sum up to one. Thus, λj,i,l denotes the strength of lag causality from Xi,t−l+1 to Xj,t+1.
Further, after a simulation study for the optimal tolerance threshold λ0, we determine
λ0 = 0.01, and if λj,i,l < λ0, we set λj,i,l = 0 to omit terms having small coefficients. In
this way, we attempt to retain only significant dependencies of the response on the lag
variables. We use the estimated MTD model as the generating process and generate
a multivariate symbol sequence. To fit MTD to the Con2Dis multivariate symbol se-
quence, we use the package markovchain package in R language [42], implementing
the fitting of higher-order multivariate Markov chains as described in [43,44].

4. Realization of estimated multivariate integer-autoregressive system (MINAR): Another
simplified form of the multivariate Markov chain is given by the multivariate integer-
autoregressive systems (MINAR) [19]. Here, we do not estimate MINAR from
the Con2Dis multivariate symbol sequence, as done for the sparse multivariate
Markov chain (SparseMC) and the MTD process, but define the MINAR of order
one, MINAR(1), by setting to zero the coefficients that regard no-lag causality in
the original dynamical system. Therefore, the j-th variable at time t is given as
Xj,t = ∑K

i=1 αi,j ◦ Xi,t−1 + Rj,t for j = 1, . . . , K, where αi,j ∈ [0, 1] are the coefficients
of MINAR(1) (set to zero if the corresponding driver–response relationship does not
exist in the original dynamical system), ◦ denotes the thinning operator (The thinning
operator defines that a ◦ x is the sum of x Bernoulli outcomes of probability a.), and
Rj,t is a random variable taking integer values from a given distribution (here, we
set the discrete uniform of two symbols). We note that the way the integer-valued
sequence is generated does not determine a fixed number of integer values for each of
the K variables so that the generated multivariate symbol sequence does not have a
predefined number M of symbols.

The multivariate symbol sequences of all four types are generated under the condition
of preserving the coupling structure of the original continuous-valued system. However,
only the first type Con2Dis directly preserves the original coupling structure, as the Con2Dis
multivariate symbol sequence is directly converted from the continuous-valued realization
of the original system. For the other three types, a restricted model is first fitted to the
Con2Dis multivariate symbol sequence, which is then used to generate a multivariate
symbol sequence. Among the three models, the sparse Markov chain (SparseMC) is best
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constrained to preserve the original coupling structure. The other two models, the MTD
and MINAR, are included in the study as there are known models for discrete-valued
time series, adapted here to the given coupling structure. However, the MTD does not
preserve the exact lag coupling structure of the original system and the MINAR generates
multivariate symbol sequences of varying number of symbols at each realization so that
the estimation of the causality structure with the DPMIME on the MTD and MINAR
multivariate symbol sequences is not expected to be accurate.

We compute the DPMIME on each multivariate symbol sequence and evaluate the
statistical accuracy of the DPMIME to estimate the true variable interactions and subse-
quently the true coupling network. Further, we compute also the PMIME on the initial
continuous-valued time series and examine whether DPMIME can attain the accuracy
of PMIME.

3.1. The Simulation Setup

In the simulation study, we use as the original dynamical system the coupled Hénon
maps [33,45] and consider four settings regarding different connectivity structures for
K = 5 (here, the K variables constitute the K subsystems being coupled). We also consider
a vector stochastic process as a fifth generating system.

The first system (S1) has an open-chain structure of K = 5 coupled Hénon maps, as
shown in Figure 1a, defined as

X1,t+1 = 1.4 − X2
1,t + 0.3X1,t−1

X2,t+1 = 1.4 − (0.5C(X1,t + X3,t) + (1 − C)X2,t)
2 + 0.3X2,t−1

X3,t+1 = 1.4 − (0.5C(X2,t + X4,t) + (1 − C)X3,t)
2 + 0.3X3,t−1 (5)

X4,t+1 = 1.4 − (0.5C(X3,t + X5,t) + (1 − C)X4,t)
2 + 0.3X4,t−1

X5,t+1 = 1.4 − X2
5,t + 0.3X5,t−1

The first and last variable in the chain of K = 5 variables drives its adjacent variable and
each of the other variables drive the adjacent variable to its left and right. The coupling
strength C is set to 0.2 regarding weak coupling.

The second system (S2) has a randomly chosen structure, as shown in Figure 1b, and
it is defined as

X1,t+1 = 1.4 − X1,t((1 − C)X1,t + CX3,t) + 0.3X1,t−1

X2,t+1 = 1.4 − X2
2,t + 0.3X2,t−1

X3,t+1 = 1.4 − X3,t(0.5CX2,t + (1 − C)X3,t + 0.5CX5,t) + 0.3X3,t−1 (6)

X4,t+1 = 1.4 − X4,t(0.5CX2,t + 0.5CX3,t + (1 − C)X4,t) + 0.3X4,t−1

X5,t+1 = 1.4 − X5,t(CX4,t + (1 − C)X5,t) + 0.3X5,t−1

The coupling strength C is set to 0.5. There is no predefined pattern for the interactions of
the variables, other than the number of interactions being six, as for S1.

The other two systems, S3 and S4, also have a randomly chosen structure similar to S1
(see Figure 1c,d). S3 is defined as

X1,t+1 = 1.4 − X1,t((1 − C)X1,t + CX5,t) + 0.3X1,t−1

X2,t+1 = 1.4 − X2
2,t + 0.3X2,t−1

X3,t+1 = 1.4 − X3,t((1 − C)X3,t + CX5,t) + 0.3X3,t−1 (7)

X4,t+1 = 1.4 − X4,t((1 − C)X4,t + CX5,t) + 0.3X4,t−1

X5,t+1 = 1.4 − X5,t

(
1
3

CX1,t +
1
3

CX2,t +
1
3

CX3,t + (1 − C)X5,t

)
+ 0.3X5,t−1
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and S4 is defined as

X1,t+1 = 1.4 − X2
1,t + 0.3X1,t−1

X2,t+1 = 1.4 − X2,t(CX1,t + (1 − C)X2,t) + 0.3X2,t−1

X3,t+1 = 1.4 − X3,t(CX2,t + (1 − C)X3,t) + 0.3X3,t−1 (8)

X4,t+1 = 1.4 − X4,t(CX3,t + (1 − C)X4,t) + 0.3X4,t−1

X5,t+1 = 1.4 − X5,t(0.5CX1,t + 0.5CX4,t + (1 − C)X5,t) + 0.3X5,t−1

The coupling strength C is set to 0.5 for S3 and 0.4 for S4. System S3 has node 5 as a hub
(three in-coming and three out-going connections) and system S4 has a causal chain from
node 1, to 2, to 3, to 4.

The fifth system (S5) is a vector autoregressive process on K = 5 variables (model 1
in [46]), and it is defined as

X1,t+1 = 0.4X1,t − 0.5X1,t−1 + 0.4X5,t + u1,t+1

X2,t+1 = 0.4X2,t − 0.3X1,t−3 + 0.4X5,t−1 + u2,t+1

X3,t+1 = 0.5X3,t − 0.7X3,t−1 − 0.3X5,t−2 + u3,t+1 (9)

X4,t+1 = 0.8X4,t−2 + 0.4X1,t−1 + 0.3X2,t−1 + u4,t+1

X5,t+1 = 0.7X5,t − 0.5X5,t−1 − 0.4X4,t + u5,t+1

The terms uj,t+1 are white noise with zero mean. The connectivity structure of S5 is shown
in Figure 1e.
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(e)

Figure 1. The graphs of the connectivity structure of the simulated systems: (a) open-chain structure
(S1), (b–d) randomly chosen structure for (S2)–(S4), respectively, and (e) vector autoregressive
process (S5).

To derive statistically stable results, we generate 100 realizations for each system and
for different time-series lengths n. The number of symbols (M) for the discretization of the
continuous-valued multivariate time series is 2 and 4, respectively. For the discretization,
an equiprobable partition is used so that when M = 2, all values of the time series larger
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than the median are set to 0 and the rest to 1, and when M = 4, the quartiles of the time
series define the four symbols.

3.2. An Illustrative Example

The performance of the DPMIME is first illustrated with a specific example, focusing
on the first two equations of system S1 and thus considering as a response in the DPMIME
(and PMIME) only the first and second variable. We consider only the first type (Con2Dis)
for the generation of the multivariate symbol sequence with M = 2 symbols and length
n = 1024. The parametric test for the significance of each component to be added to
the mixed embedding vector is used (DPMIMEpt), and the maximum lag is L = 5. The
PMIME is computed for the same L = 5 on the continuous-valued time series (before
discretization). Table 1 shows the frequency of occurrence of any of the 25 lag terms in the
mixed embedding vector of DPMIMEpt and PMIME for the response X1 and X2 in 100
Monte Carlo realizations. For the true lag terms, i.e., the terms that occur in the system
equations, the frequencies are highlighted.

Table 1. Each cell in columns 2–5 has the frequency of occurrence over 100 realizations of the
lag variable (first column) in the mixed embedding vector for DPMIMEpt and PMIME, where the
response is the first or the second variable of system S1 and for n = 1024, L = 5, and M = 2. The
frequencies of the lag variables occurring in the system equations are highlighted.

X1,t+1 X2,t+1

DPMIMEpt PMIME DPMIMEpt PMIME

X1,t 100 100 6 1
X1,t−1 100 100 84 99
X1,t−2 100 5 3 0
X1,t−3 100 1 2 0
X1,t−4 92 0 1 0
X2,t 0 0 100 100
X2,t−1 0 0 91 100
X2,t−2 0 0 72 5
X2,t−3 0 0 8 1
X2,t−4 0 0 31 0
X3,t 1 0 32 44
X3,t−1 0 0 39 53
X3,t−2 0 0 15 6
X3,t−3 1 0 10 1
X3,t−4 1 0 5 0
X4,t 0 0 0 0
X4,t−1 0 0 1 0
X4,t−2 0 0 0 0
X4,t−3 0 0 0 0
X4,t−4 0 0 0 0
X5,t 0 0 0 0
X5,t−1 0 0 0 0
X5,t−2 0 0 0 0
X5,t−3 0 0 0 0
X5,t−4 0 0 0 0

The variable X1,t+1 depends on the variables X1,t and X1,t−1, which are selected
by both algorithms of DPMIMEpt and PMIME in all realizations (frequency 100). The
DPMIMEpt selects also the lag terms X1,t−2, X1,t−3, and X1,t−4 of the response variable, but
their inclusion in the mixed embedding vector does not result in any false causal effects.
(It turns out that it is hard to find the exact lag components of the driving variable in the
case of discrete-valued time series, which questions the use of DPMIME for building the
input of a regression model to the response.) No other lag terms are found (the maximum
frequency is one).
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The second equation of S1 defines the dependence of X2,t+1 on X1,t, X2,t, X2,t−1, and
X3,t. For X2 as response, both algorithms do not include the lag term X1,t in the mixed
embedding vector (frequency 6 for DPMIMEpt and 1 for PMIME) but include instead X1,t−1
(frequency 84 for DPMIMEpt and 99 for PMIME) so that the variable X1 is represented
in the mixed embedding vector and the correct causal effect from X1 to X2 is established.
The lag terms X2,t and X2,t−1 are always present in the mixed embedding vector for both
algorithms (X2,t occurs less frequently at 91% for DPMIMEpt) and terms of larger lag of
X2 occur for DPMIMEpt at a smaller frequency. The representation of X3 in the mixed
embedding vector is spread over the two first lags for PMIME and to the first four lags
for DPMIMEpt so that though the true lag term X3,t is not well identified (frequency 32
and 44 for DPMIMEpt and PMIME, respectively), the causal effect from X3 to X2 is well
established. The variables X4 and X5 are not represented in the mixed embedding vector,
and thus both DPMIMEpt and PMIME correctly find no causal effect from these variables
to X2.

The example shows that the two algorithms have a similar performance, with DP-
MIMEpt tending to include more lag terms of the causal variables, but both algorithms do
not include lag terms of variables that have no causal effect on the response variable.

3.3. System 1

The example above is for the first two variables of S1, and in the following, we compute
DPMIMEpt and PMIME for all K = 5 response variables of S1 and detect the presence
of causal effects by the presence of a lag term (or terms) of the driving variable in the
mixed embedding vector for the response variable. The true causal effects as derived by
the equations of S1 are X1 → X2, X2 → X3, X3 → X2, X3 → X4, X4 → X3, and X5 → X4.
The distribution of the DPMIMEpt and PMIME (in the form of boxplots) and the rate of
detection of causal effects (numbers under the boxplots) for all 20 directed variable pairs
are shown in Figure 2.

Figure 2. Boxplots of DPMIMEpt (M = 2) and PMIME for all variable pairs of S1, for 100 realizations
of the system S1, using L = 5 and n = 1024. At each panel, the number of times the causal effect is
detected is displayed below each boxplot.

Both measures perfectly define the non-existent causal effects with a percentage of
detection less than 3%. The DPMIMEpt detects the true causal effects in high percentages,
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approaching the perfect identification achieved by PMIME. However, as seen by the size
of the boxplots, the DPMIME obtains smaller values than the PMIME. Though both are
defined by the same CMI to MI ratio in (3), this ratio is smaller for the DPMIME.

To quantify the performance of the DPMIMEpt and PMIME at each realization of
S1, we calculate the performance indices sens, spec, MCC, FM, and HD on the 20 binary
directed connections, where six of them are true. In Table 2, the average indices over the
100 realizations of S1 for n = 1024 are shown for both measures.

Table 2. Average of sensitivity (sens), specificity (spec), MCC, F-measure (FM), and Hamming
distance (HD) over 100 realizations of system S1 for the causality measures DPMIMEpt (M = 2) and
PMIME, using L = 5 and n = 1024.

DPMIMEpt PMIME

sens 0.952 1
spec 0.994 0.999
MCC 0.956 0.999
FM 0.956 0.999
HD 0.380 0.010

For the DPMIMEpt using M = 2, both sensitivity and specificity are very high, and
the overall indices are high as well, e.g., the HD shows that more often none or less often
one causal effect out of 20 causal effects is misclassified (average HD is 0.38). Thus, the
performance of the DPMIMEpt is close to the almost perfect performance of the PMIME.

Next, we compare the parametric test (PT) and resampling test (RT) for the CMI used
in the DPMIME as the criterion to terminate the algorithm building the mixed embedding
vector. We consider the four types for generating multivariate symbol sequences (Con2Dis,
SparseMC, MTD, and MINAR) and for M = 2 and M = 4 symbols. The latter does not
apply to MINAR as the generated sequences have not a predefined number of symbols
(integers). In the comparison, we again use as reference (gold standard) the PMIME, because
this is computed directly on the continuous-valued time series, whereas the DPMIMEpt
and DPMIMErt are computed on the discrete-valued time series. We also examine the
performance of measures for different time-series lengths n. Here, we only report results
for the performance index MCC in Table 3.

The DPMIMEpt and DPMIMErt fail to define the pairs with causal and non-causal
effects when applied to the multivariate symbol sequences generated by the MTD. As
already mentioned, the MTD model fails to preserve the causality of the original system
and, in turn, the generated discrete-valued sequences do not allow for the estimation of
the true causal effects. For example, for M = 2 when n = 1024, the performance indices
sens, spec, MCC, FM, and HD are 0.36, 0.60, −0.03, 0.31, and 9.41, respectively, indicating a
very low specificity. The DPMIME using either significance test on the Con2Dis sequences
scores similarly in the MCC and at a lower level than the PMIME, converging to the highest
level with the increase of n. This holds for both M = 2 and M = 4, but for M = 4,
the performance of DPMIME is worse than that of PMIME and the difference decreases
with n, indicating that for a larger number of symbols longer time series are needed. The
accuracy of DPMIME on the SparseMC sequences is similar as for the Con2Dis sequences
when M = 4, but for M = 2, the accuracy does not improve with n unlike in the case of
Con2Dis. The DPMIME performs better on MINAR sequences than on MTD sequences,
especially when the resampling significance test is used in DPMIME. In this particular case,
the parametric test is not as accurate as the resampling test. The finding that DPMIMEpt
and DPMIMErt (except in the case of MINAR) perform similarly has practical importance
because we can rely on DPMIMEpt and save computation time, which for long time series
and many observed variables, DPMIMErt would be computationally very intensive.
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Table 3. Average MCC over 100 realizations of system S1 for the causality measures DPMIME using
L = 5, number of symbols M = 2, 4 (column 1), the parametric test (PT), and the resampling test (RT)
(column 2) on multivariate sequences of type Con2Dis, SparseMC, MTD, and MINAR, as well as
PMIME (colum 3), and for n = 512, 1024, 2048, 4096 (columns 4–7, respectively).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.78 0.96 1 1

RT Con2Dis 0.76 0.95 1 1

PT SparseMC 0.72 0.79 0.79 0.80

RT SparseMC 0.71 0.82 0.83 0.82

PT MTD −0.02 −0.03 −0.05 −0.05

RT MTD 0.00 −0.01 −0.04 −0.03

M = 4

PT Con2Dis 0.49 0.70 0.99 1

RT Con2Dis 0.39 0.70 0.99 1

PT SparseMC 0.54 0.72 1 1

RT SparseMC 0.43 0.72 1 1

PT MTD 0.00 −0.02 −0.03 −0.06

RT MTD 0.00 −0.02 −0.02 0.03

PT MINAR 0.08 0.12 0.25 0.43

RT MINAR 0.41 0.61 0.75 0.81

PMIME 0.98 1 1 1

Similar results as for MCC in Table 3 are obtained using the performance index HD,
as shown in Figure 3a. The misclassification is larger when the time series gets smaller
(from 4096 to 512) for the same number of symbols M, and when M gets larger (from 2 to
4) for the same n. However, the HD is at the same level for all these settings for DPMIMEpt
and DPMIMErt, and for both measures, it converges to zero (no misclassification of all 20
variable pairs) for n ≥ 2048, as does PMIME even for small n.
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Figure 3. Average HD over 100 realizations of system S1 in (a) and S2 in (b) for the causality measures
DPMIME (L = 5) using symbols M = 2, 4 (denoted with M and the number 2 or 4 in the beginning
of each word label in the abscissa), the parametric test, and the resampling test (given by PT or RT
after the symbol notation of each word label) on multivariate sequences of type Con2Dis, SparseMC,
MTD (present only in (a)), and MINAR, as well as PMIME (the acronym is at the end of each word
label), and for n = 512, 1024, 2048, 4096, as given in the legend.

203



Entropy 2022, 24, 1505

3.4. System 2

System S2 differs from S1 in that it has a randomly chosen coupling structure. We show
the summary results of the performance index MCC in Table 4 and the HD in Figure 3b.
The performance of DPMIMEpt and DPMIMErt on the Con2Dis and SparseMC sequences
is similar to that on system S1 for the different settings of time-series length n and number
of symbols M (the MTDs are not included in the results due to their poor performance in
the previous system). The accuracy in detecting the true causal effects is better for smaller
M when n is small, converging to the highest performance level with n and faster for M = 4
(MCC = 1 and HD = 0). The highest level is again attained by PMIME even for the smallest
time-series length n = 512. For the smallest n = 512, the performance of DPMIMEpt and
DPMIMErt is better for system S2 than for system S1. Another difference to system S1 is
that for the largest tested n = 4096, the DPMIMEpt and DPMIMErt reach the highest level
for M = 4 but not for M = 2, indicating that once there is enough data, the use of the
largest number of symbols allows for a better detection of the causal effects. For system
S2, the DPMIMEpt and DPMIMErt on the MINAR sequences give similar MCC scores
that do not tend to get higher with n, unlike the respective scores for system S1. This lack
of improvement with n in the causality estimation on MINAR sequences is attributed to
the varying number of integers of the generated time series increasing with n so that the
number of symbols M is relatively large compared to the length of time series n.

Table 4. As for Table 3 but for system S2 (MTD not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.92 0.97 0.98 0.97

RT Con2Dis 0.93 0.97 0.98 0.98

PT SparseMC 0.76 0.76 0.75 0.75

RT SparseMC 0.82 0.80 0.79 0.78

M = 4

PT Con2Dis 0.78 0.77 1 1

RT Con2Dis 0.73 0.77 1 1

PT SparseMC 0.75 0.77 1 1

RT SparseMC 0.74 0.77 1 1

PT MINAR 0.29 0.38 0.49 0.54

RT MINAR 0.42 0.53 0.49 0.43

PMIME 1 1 1 1

3.5. System 3 and System 4

Systems S3 and S4 also have a randomly chosen structure, as with system S2. The
summary results of the performance index MCC are shown in Table 5 for S2 and Table 6
for S3.

For the different settings of both S2 and S3, the generation of symbol sequences by
Con2Dis and SparseMC, the number of symbols M = 2 and M = 4, and the time-series
lengths n, the DPMIMEpt and DPMIMErt always perform similarly and less accurately
than the PMIME. There are however differences in the DPMIME in Con2Dis and SparseMC
with respect to M. As for S1 and S2, for both S3 and S4, the DPMIME on SparseMC
symbol sequences tends to perform better for M = 4 than for M = 2, and this occurs more
consistently for a larger n. On the other hand, the DPMIME on Con2Dis symbol sequences
tends to perform better for M = 2 than for M = 4, particularly for a smaller n. For a larger
n, for S3, the best performance is observed for Con2Dis and M = 2, and for S4, SparseMC
and M = 4.
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Table 5. As for Table 3 but for system S3 (L = 5, MTD and MINAR not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.8 0.93 0.93 0.95

RT Con2Dis 0.78 0.92 0.94 0.95

PT SparseMC 0.73 0.75 0.73 0.76

RT SparseMC 0.75 0.79 0.77 0.79

M = 4

PT Con2Dis 0.68 0.76 0.81 0.88

RT Con2Dis 0.68 0.76 0.81 0.88

PT SparseMC 0.65 0.76 0.81 0.88

RT SparseMC 0.65 0.76 0.80 0.88

PMIME 0.98 0.99 1 1

Table 6. As for Table 3 but for system S4 (L = 5, MTD and MINAR not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.94 0.98 0.99 0.94

RT Con2Dis 0.93 0.98 0.99 0.96

PT SparseMC 0.68 0.73 0.70 0.72

RT SparseMC 0.74 0.79 0.75 0.75

M = 4

PT Con2Dis 0.82 0.81 0.78 0.70

RT Con2Dis 0.86 0.85 0.80 0.72

PT SparseMC 0.79 0.87 0.98 1

RT SparseMC 0.77 0.87 0.97 1

PMIME 0.99 0.99 1

3.6. System 5

System S5 is a five-dimensional vector autoregressive process of order 4. This system is
chosen in order to examine the performance of the causality measures in a linear stochastic
system. The summary results of the performance index MCC are presented in Table 7.
First, it is worth noting that the PMIME does not reach the highest accuracy level as for
the nonlinear deterministic systems S1–S4, but the MCC ranges from 0.76 to 0.78 for the
different n. The highest accuracy level is attained by the DPMIMEpt for a smaller n and the
DPMIMEpt for a larger n on the Con2Dis symbol sequences when M = 4. For M = 4, the
randomization test tends to outperform the parametric test for a larger n and attains the
maximum MCC = 1. On the other hand, when M = 2, the accuracy of both tests is at the
same level and does not improve significantly with the increase of n as does for PMIME.

Table 7. As for Table 3 but for system S5 (L = 8, MTD and MINAR not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.61 0.71 0.72 0.75

RT Con2Dis 0.66 0.74 0.74 0.76

PT SparseMC 0.60 0.65 0.68 0.67

RT SparseMC 0.66 0.68 0.71 0.70

M = 4

PT Con2Dis 0.81 0.98 0.88 0.86

RT Con2Dis 0.75 0.98 1 0.98

PT SparseMC 0.82 0.98 0.88 0.86

RT SparseMC 0.75 0.98 1 0.98

PMIME 0.77 0.78 0.78 0.76

205



Entropy 2022, 24, 1505

3.7. Effect of Observational Noise

In the last part of the simulation study, we investigate the effect of observational noise,
restricting to observational noise on the original continuous-valued time series. We consider
system S1 and add to each of the five generated time series white Gaussian noise with
standard deviation (SD) being a given percentage of the SD of the time series. The Con2Dis
approach with M = 2 is then applied to derive the symbol sequences of different lengths n
and the DPMIME is applied using the parametric test (DPMIMEpt) and randomization test
(DPMIMErt). In Table 8, the results are presented, including the PMIME measure as well.
The type of test does not seem to affect the performance of the DPMIME for all different
noise levels. For noise levels up to 10%, the MCC is rather stable and effectively the same
as for the noise-free symbol sequences and decreases with a further increase in noise level
(20% and 40%) for all different n. However, even for the high noise level of 40% when
n = 4096, the MCC is 0.8 for DPMIMEpt and 0.85 for DPMIMErt and close to the MCC for
PMIME at 0.89. Overall, a smooth decrease in the accuracy of the DPMIME is observed
with the increase in the level of observational noise, which suggests the appropriateness of
DPMIME for real-world symbol sequences.

Table 8. Average MCC over 100 realizations of system S1 for the causality measures DPMIMEpt
and DPMIMErt on the Con2Dis symbols sequences (M = 2) and PMIME on the original continuous-
valued time series (column 2), where noise of different levels is added (column 1), and the time-series
length is n = 512, 1024, 2048, 4096 (columns 3–6). The added white noise is Gaussian with standard
deviation given by the percentage of the standard deviation of the data.

Noise Measure n = 512 n = 1024 n = 2048 n = 4096

0%

PMIMEpt 0.78 0.96 1 1

PMIMErt 0.76 0.95 1 1

PMIME 0.98 1 1 1

5%

PMIMEpt 0.81 0.95 0.98 0.99

PMIMErt 0.80 0.94 0.98 0.99

PMIME 0.99 1 1 1

10%

PMIMEpt 0.76 0.95 0.99 0.99

PMIMErt 0.78 0.95 1 0.99

PMIME 0.95 0.99 1 1

20%

PMIMEpt 0.72 0.87 0.93 0.93

PMIMErt 0.71 0.88 0.94 0.94

PMIME 0.92 0.96 0.97 0.97

40%

PMIMEpt 0.46 0.67 0.76 0.80

PMIMErt 0.48 0.70 0.80 0.85

PMIME 0.70 0.84 0.88 0.89

4. Application to Real Data

We consider a real-world application to compare DPMIME to other causality mea-
sures. These are the linear direct causality measure called the conditional Granger causality
index (CGCI) [47,48], the information-based direct causality measure of partial transfer
entropy (PTE) [49], and finally, the original partial mutual information from mixed embed-
ding (PMIME).

The dataset is the Morgan Stanley Capital International (MSCI) market capitalization
weighted index of five selected markets in Europe and South America: Greece, Germany,
France, UK, and USA. Specifically, we consider two datasets: the first one is in the time
period 1 January 2004 to 31 January 2008 and the second one in the period from 3 March
2008 to 30 March 2012. The separation was made with regard to the occurrence of the global
financial crisis (GFC), also referred to as the Great Recession, dated from the beginning
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of year 2008 to year 2013 [50]. The two selected periods are therefore called preGFC and
postGFC. The interest here is to study whether and how each of the causality measures
detects changes in the connectivity structure in the system of the five markets from preGFC
to postGFC. Each dataset comprises n=1065 observations, which correspond to daily returns
(first differences in the logarithms of the indices). For DPMIME, the data were discretized to
two symbols: 1 if the return is positive and 0 otherwise. For consistency, the amount of past
information denoted L is the same for all causality measures and set to L = 2, where for
DPMIME and PMIME L stands for the maximum lag, for PTE it stands for the embedding
dimension, and for CGCI it stands for the order of the (restricted and unrestricted) vector
autoregressive (VAR) model.

The causality measures DPMIMEpt, PMIME, CGCI, and PTE are computed for each
pair of national markets in the preGFC and postGFC periods. While DPMIME and PMIME
assign zero to the non-significant causal relationships, CGCI and PTE require a threshold,
here given by the parametric significance test for CGCI and the resampling significance test
for PTE (the time-shifted surrogates as for the significance of CMI in DPMIMErt). Then,
the causality networks are formed drawing weighted connections with weights being the
value of the significant measure, and the networks are shown in Figure 4 for the preGFC
and postGFC periods.
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Figure 4. The causality networks of weighted connections for the preGFC period using the measures
DPMIMEpt in (a), PMIME in (b), CGCI in (c), and PTE in (d), and respectively for the postGFC period
in (e–h).

All causality measures suggest the USA market has a causal effect on many other
markets before and after the GFC. In the DPMIMEpt networks (Figure 4a,e), there is in
additional causal effect from UK to Germany in both the preGFC and postGFC periods,
while the driving from France to UK in preGFC reverses in the postGFC period. Regarding
the latter, the PMIME networks show the opposite, UK to France in preGFC and France to
UK in postGFC (Figure 4b,f). The PMIME networks show no causal effect of USA on Greece
in both periods, which has no straightforward interpretation. In the postGFC period, the
PMIME finds a bidirectional causal relationship for the USA and UK. The CGCI measure
gives almost full networks in both periods (Figure 4c,g), failing to reveal any particular
connectivity structure in the system of the five national markets. On the other hand, the
PTE turns out to be the most conservative measure, giving only the causal effect of the USA
to UK, Germany and France (not Greece) in both periods (Figure 4d,h).

The DPMIMErt gave similar results to DPMIMEpt (not shown here). We repeated
the same analysis for the DPMIME and L = 1, and the results were stable. Overall, the
DPMIME estimates reasonable causal relationships, the USA to all four other markets in
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both periods, whereas the PMIME and PTE exclude Greece, and the UK and France causal
relationship changes direction from preGFC to postGFC.

5. Discussion

In this study, we propose a Granger causality measure for discrete-valued multivariate
time series or multivariate symbol sequences based on partial mutual information from
a mixed embedding named DPMIME. The rationale is to build the so-called mixed em-
bedding vector that has as components the lag terms of the observed variables that best
explain the response ahead in time. To quantify the causality of a driving variable to a
response variable in view of all the observed variables, we first check whether the lag
terms of the driving variable are included in the mixed embedding vector. If there are not
any, then the measure is zero and there is no causal effect, whereas if there are, then the
proportion of the information on the response explained by these lag terms determines
the strength of the causal effect from the driving to the response. For the termination of
the algorithm building the mixed embedding vector, we develop a parametric test using
a Gamma approximation of the asymptotic null distribution of the conditional mutual
information, CMI (information of the tested lag term and the response given the other
lag terms already included in the mixed embedding vector). This is a main difference
to the PMIME, the analogue of the same algorithm already developed by our team for
continuous-valued time series. The PMIME employs a resampling significance test as there
is no parametric approximation of the null distribution of the CMI for continuous variables.
Another main difference to the PMIME is that for discrete-valued time series, we use a
different estimate for the information measures of the mutual information, MI, and CMI
used in the algorithm, i.e., we use the maximum likelihood estimate for the probabilities of
all discrete probability distributions involved in the definition of the MI and CMI, whereas
in the PMIME, the nearest neighbor estimate [51] is used for the entropies involved in the
definition of the MI and CMI. We develop two versions of the DPMIME, one using the
parametric significance test for the termination criterion, denoted DPMIMEpt, and another
using the resampling significance test, denoted DPMIMErt, as for the PMIME.

The previous studies of our research team have showed that the PMIME is one of the
most appropriate measures to estimate direct causality in multivariate time series and par-
ticularly in the setting of high-dimensional time series (many observed variables) [1,27,52].
Therefore, to evaluate the proposed measure DPMIME for the causality of discrete-valued
multivariate time series and multivariate symbol sequences, we compare it to the PMIME.
For the simulations, dynamical systems of continuous-valued variables were used to gener-
ate multivariate time series and compute on them the PMIME. Then, the discrete-valued
time series were generated by discretizing the continuous-valued time series, denoted
Con2Dis. Moreover, systems for the generation of discrete-valued time series were fitted
to the Con2Dis multivariate sequence: the sparse Markov Chain (SparseMC), the mixture
transition distribution models (MTD), and the multivariate integer-autoregressive systems
(MINAR). The simulations showed that the MTD cannot preserve the original coupling
structure, whereas the varying number of integers (assigned to symbols) of the MINAR se-
quences complicates the use of the DPMIME on these sequences. The SparseMC sequences
could preserve sufficiently well the coupling structure in the discrete-valued (Con2Dis)
and continuous-valued time series, as the DPMIME could detect the original causality
relationships almost as well in the SparseMC sequences as in the Con2Dis sequences. Thus,
the main focus in the simulation study was on the performance of the DPMIMEpt and
DPMIMErt (for the parametric and resampling significance test) on the Con2Dis multivari-
ate symbol sequences, as compared to the PMIME, where the latter has the role of golden
standard as it is computed on the complete available information from the system, i.e., the
continuous-valued time series. Further, we assess whether the DPMIMEpt can perform
as well as the DPMIMErt, as the DPMIMEpt is much faster to compute and would be
preferred in applications.
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The simulation systems are coupled Hénon maps of five subsystems, one with an
open-chain coupling structure and the other three with a different randomly chosen cou-
pling structure, as well as a vector autoregressive process (VAR) on five variables. The
performance indices were computed on binary causality estimates (presence or absence
of causal effect) for all pairs of variables (subsystems). The average of the performance
indices over 100 realizations for each setting of the time-series length n and number of
symbols M from the discretization were reported. The results on all the simulated systems
showed that the DPMIMEpt scores lower than the PMIME, as expected, but converges to
the performance level of the PMIME with an increasing n, except for the VAR system where
the accuracy of the DPMIMEpt in detecting the true causal effects is better when n = 1024
and similar to the PMIME when n ≥ 2048. The difference to the PMIME is larger for a
small n and larger M (going from 2 to 4 symbols), which is anticipated as the discretization
smooths out information in the time series about the evolution of the underlying system.
However, the convergence of the DPMIME to the PMIME for a data size of n ≥ 2048
indicates that the proposed measure can be used in applications with a moderate length of
the discrete-valued time series that can have an even high dimension (we tested here for
five subsystems).

The finding that the DPMIMEpt and DPMIMErt perform similarly has high practical
relevance. The DPMIME is based on multiple computations of the CMI on progressively
higher dimensions that are computationally intensive. If we had to rely on the DPMIMErt,
the computation time at each iteration of the algorithm would be multiplied with the
number of the resampled data used for the resampling significance test. In applications on
long sequences of many symbols, the computation time may be prohibitively long using the
DPMIMErt with, say, 100 resampling sequences for each test, but it would be approximately
100 times less when using the DPMIMEpt. Thus, the DPMIMEpt is an appropriate measure
to estimate the direct causality in many symbol sequences.

The DPMIME was further applied and compared to other causality measures (PMIME,
CGCI, and PTE) in one real-world application. We used data from the Morgan Stanley
Capital International market capitalization weighted index of five national markets to
examine the causality structure of the system of the five markets before and after the start of
the global financial crisis. The proposed measure DPMIME detects the crucial role of the US
market before and after the start of the global financial crisis without being as conservative
as the PTE and without giving full networks as the CGCI.
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