
mdpi.com/journal/entropy

Special Issue Reprint

Theory and Application  
of the Information  
Bottleneck Method

Edited by 
Jan Lewandowsky and Gerhard Bauch



Theory and Application of the
Information Bottleneck Method





Theory and Application of the
Information Bottleneck Method

Editors

Jan Lewandowsky
Gerhard Bauch

Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Novi Sad ‚ Cluj ‚ Manchester



Editors

Jan Lewandowsky

Communication Systems

Fraunhofer FKIE

Wachtberg

Germany

Gerhard Bauch

Institute of Communications

Hamburg University of Technology

Hamburg

Germany

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access

journal Entropy (ISSN 1099-4300) (available at: www.mdpi.com/journal/entropy/special issues/

information bottleneck method).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0462-7 (Hbk)

ISBN 978-3-7258-0461-0 (PDF)

doi.org/10.3390/books978-3-7258-0461-0

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

www.mdpi.com/journal/entropy/special_issues/information_bottleneck_method
www.mdpi.com/journal/entropy/special_issues/information_bottleneck_method
https://doi.org/10.3390/books978-3-7258-0461-0


Contents

Jan Lewandowsky and Gerhard Bauch
Theory and Application of the Information Bottleneck Method
Reprinted from: Entropy 2024, 26, 187, doi:10.3390/e26030187 . . . . . . . . . . . . . . . . . . . . . 1

Albert E. Parker and Alexander G. Dimitrov
Symmetry-Breaking Bifurcations of the Information Bottleneck and Related Problems
Reprinted from: Entropy 2022, 24, 1231, doi:10.3390/e24091231 . . . . . . . . . . . . . . . . . . . . 4

Shlomi Agmon
The Information Bottleneck’s Ordinary Differential Equation: First-Order Root Tracking for the
Information Bottleneck
Reprinted from: Entropy 2023, 25, 1370, doi:10.3390/e25101370 . . . . . . . . . . . . . . . . . . . . 24

Hippolyte Charvin, Nicola Catenacci Volpi and Daniel Polani
Exact and Soft Successive Refinement of theInformation Bottleneck
Reprinted from: Entropy 2023, 25, 1355, doi:10.3390/e25091355 . . . . . . . . . . . . . . . . . . . . 86

Michael Dikshtein, Or Ordentlich and Shlomo Shamai (Shitz)
The Double-Sided Information Bottleneck Function :

Reprinted from: Entropy 2022, 24, 1321, doi:10.3390/e24091321 . . . . . . . . . . . . . . . . . . . . 137

Bin Deng and Kui Jia
Counterfactual Supervision-Based Information Bottleneck for Out-of-Distribution
Generalization
Reprinted from: Entropy 2023, 25, 193, doi:10.3390/e25020193 . . . . . . . . . . . . . . . . . . . . . 174

Zhaoyan Lyu, Gholamali Aminian and Miguel R. D. Rodrigues
On Neural Networks Fitting, Compression, and Generalization Behavior via
Information-Bottleneck-like Approaches
Reprinted from: Entropy 2023, 25, 1063, doi:10.3390/e25071063 . . . . . . . . . . . . . . . . . . . . 198

Matei Moldoveanu and Abdellatif Zaidi
In-Network Learning: Distributed Training and Inference in Networks :

Reprinted from: Entropy 2023, 25, 920, doi:10.3390/e25060920 . . . . . . . . . . . . . . . . . . . . . 226

Steffen Steiner, Abdulrahman Dayo Aminu and Volker Kuehn
Distributed Quantization for Partially Cooperating Sensors Using the Information Bottleneck
Method
Reprinted from: Entropy 2022, 24, 438, doi:10.3390/e24040438 . . . . . . . . . . . . . . . . . . . . . 249

Assaf Toledo, Elad Venezian and Noam Slonim
Revisiting Sequential Information Bottleneck: New Implementation and Evaluation
Reprinted from: Entropy 2022, 24, 1132, doi:10.3390/e24081132 . . . . . . . . . . . . . . . . . . . . 279

Tobias Monsees, Oliver Griebel, Matthias Herrmann, Dirk Wübben, Armin Dekorsy and
Norbert Wehn
Minimum-Integer Computation Finite Alphabet Message Passing Decoder: From Theory to
Decoder Implementations towards 1 Tb/s
Reprinted from: Entropy 2022, 24, 1452, doi:10.3390/e24101452 . . . . . . . . . . . . . . . . . . . . 294

Jan Lewandowsky, Gerhard Bauch and Maximilian Stark
Information Bottleneck Signal Processing and Learning toMaximize Relevant Information for
Communication Receivers
Reprinted from: Entropy 2022, 24, 972, doi:10.3390/e24070972 . . . . . . . . . . . . . . . . . . . . . 313

v





Citation: Lewandowsky, J.; Bauch, G.

Theory and Application of the

Information Bottleneck Method.

Entropy 2024, 26, 187. https://

doi.org/10.3390/e26030187

Received: 20 February 2024

Accepted: 21 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Editorial

Theory and Application of the Information Bottleneck Method
Jan Lewandowsky 1,∗ and Gerhard Bauch 2

1 Fraunhofer Institute for Communication, Information Processing and Ergonomics, Fraunhoferstraße 20,
53343 Wachtberg, Germany

2 Institute of Communications, Hamburg University of Technology, Eißendorfer Straße 40,
21073 Hamburg, Germany; bauch@tuhh.de

* Correspondence: jan.lewandowsky@fkie.fraunhofer.de; Tel.: +49-228-9435-731

In 1999, Naftali Tishby et al. introduced a powerful information theoretical framework
called the information bottleneck method [1]. Conceptually, the aim of this method was to
obtain a compressed representation T of an observed random variable Y by mapping Y onto
T. In this setup, compression is caused by the rate–distortion concept of minimizing the
mutual information I(Y;T). The plain minimization of I(Y;T), however, would destroy all
information stored in Y. While classical rate–distortion theory defines limits on a distortion
measure, typically with respect to the observation Y, the information bottleneck method
introduces the concept of relevant information. Therefore, the fundamental idea of the
information bottleneck method is to determine which information should be preserved
under the invoked compression. This relevant information is defined through another
random variable X. Hence, preserving the mutual information I(X;T) while minimizing
I(Y;T) is the fundamental principle of the information bottleneck method.

The seemingly theoretical setup was proven to be very useful for various practical
applications over the last few years. Its utilization evolved and covers too many different
fields to list them here exhaustively. Examples include machine learning, deep learning,
neuroscience, multimedia and image processing, data processing, source coding, channel
coding and information processing. In addition, the theoretical backgrounds of the method,
its generalizations and algorithms to find optimum mappings of Y onto T have become
fruitful research topics. It should be noted that similar problems have been previously
treated by Witsenhausen, Wyner and Ziv in the 1970s. However, this was on a rather ab-
stract level and the information bottleneck with the involved mutual information measures
as presented by Tishby and his colleagues was not as clearly carved out.

Today, more than 20 years after the publication of [1], researchers still conduct very
promising research on the theory and the applications of the information bottleneck method
in various disciplines of science and engineering. In light of this, we initiated a Special
Issue to enrich the literature with topical theoretical and applied works oriented around
the information bottleneck method. Therefore, we encouraged authors to submit their
latest results on the theory and the applications of the information bottleneck method. We
intentionally did not narrow the scope to a certain field of science or engineering. As a
result, our Special Issue impressively illustrates the extensive theory and broad applicability
of the information bottleneck framework.

In the following, we provide an overview of the published articles:

• Motivated by the information bottleneck and information-distortion systems, Parker
and Dimitrov study the mathematical structure of information-based distortion-
annealing problems in contribution 1. They investigate the bifurcations of solutions
of certain degenerate constrained optimization problems related to the information
bottleneck setup. Similarly, contribution 1 contributes to characterizing the local
bifurcation structure of information bottleneck-type problems.

• Agmon leverages the information bottleneck’s relations with the rate–distortion theory
to provide deep insights into its general solution structure in contribution 2. Sub-
optimal solutions are seen to collide or exchange optimality at bifurcations of the

1



Entropy 2024, 26, 187

rate–information curve. By exploiting the dynamics of the optimal trade-off curve, a
means to classify and handle bifurcations is presented. This understanding of bifur-
cations is used to propose a novel and surprisingly accurate numerical information
bottleneck algorithm.

• Charvin, Volpi and Polani investigate the extent to which one can use existing com-
pressed information bottleneck representations to produce new ones with a different
granularity in contribution 3. First, they consider the notion of successive refinement,
where no information needs to be discarded for this transition. For some specific
information bottleneck problems, they derive successive refinability analytically and
provide a tool to investigate it for discrete variables. Going further, they also quantify
the loss of information optimality induced by several-stage processing in information
bottleneck setups.

• Dikshtein, Ordentlich and Shamai introduce and study the double-sided information
bottleneck problem in contribution 4, which is closely related to the biclustering
domain. For jointly Gaussian and doubly symmetric binary sources in the double-
sided information bottleneck setup, they provide insights on optimum solutions.
They also explore a Blahut–Arimoto-like alternating maximization algorithm to find
solutions for double-sided information bottleneck problems.

• Deng and Jia use the information bottleneck concept to deal with out-of-distribution gen-
eralization for classification tasks in contribution 5. In this context, they analyze failure
situations of the information bottleneck invariant risk minimization principle and pro-
pose a new method, termed the counterfactual supervision-based information bottleneck,
to overcome them. The effectiveness of their method is demonstrated empirically.

• Lyu, Aminian and Rodrigues use information bottleneck-inspired techniques to inves-
tigate the learning process of neural networks in contribution 6. They argue that the
mutual information measures involved in the information bottleneck setup are difficult
to estimate in this context. Therefore, they replace them with more tractable ones, i.e.,
the mean-squared error and the cross entropy. The resulting information bottleneck-
inspired principle is used to study the learning dynamics of neural networks.

• Moldoveanu and Zaidi study distributed inference and learning over networks in
contribution 7. They develop a framework to combine the information of observed
features in a distributed information bottleneck setup with distributed observed nodes
and a fusion node that conduct inference. Their experiments underline the advantages
of their proposed scheme with respect to other distributed learning techniques.

• Steiner, Aminu and Kühn consider the optimization of distributed source coding
in sensor networks in contribution 8. They investigate communication protocols in
an extension of the so-called “extended chief executive officer problem setup”. In
this extension, the involved sensor nodes are allowed to communicate. The sensor
nodes are optimized greedily and it is shown that their cooperation improves the
performance significantly.

• Toledo, Venezian and Slonim revisit the sequential information information bottle-
neck (sIB) algorithm in contribution 9. Implementation aspects are discussed and
the performance of their optimized information bottleneck algorithm is evaluated.
The proposed implementation provides a trade-off between quality and speed that
outperforms the considered reference algorithms. The novel sIB implementation is
publicly available to ease further research on the information bottleneck method.

• Monsees, Griebel, Herrmann, Wübben, Dekorsy and Wehn study quantized decoders
for low-density parity-check codes which are designed using the information bottle-
neck principle of maximizing the preserved relevant information under quantization
in contribution 10. Such decoders allow for coarse quantization with minimum
performance losses. A novel criterion for the required bit resolution in reconstruction–
computation–quantization decoders is derived. Moreover, a comparison with a min-
sum decoder implementation for throughput towards 1 Tb/s in fully depleted silicon-
on-insulator technology is carried out.

2



Entropy 2024, 26, 187

• Contribution 11 describes the application of the information bottleneck method to
quantized signal processing problems in communication receivers. For this purpose,
contribution 11 summarizes recent ideas from various works to use the method for
low-complexity quantized channel decoding, detection and channel estimation. In
addition, novel results on a strongly quantized receiver chain, including channel
estimation, detection and channel decoding, illustrate the ability to achieve optimum
performance despite strong quantization with the proposed information bottleneck
receiver design.

We would like to thank all of the aforementioned authors for their outstanding contri-
butions to this Special Issue. We are also especially grateful to the reviewers. The articles
in this Special Issue illustrate the current, highly versatile research directions related to
the information bottleneck method, from relatively mathematical concepts and theories
to their applications in practical engineering. We believe that research on the information
bottleneck method will continue to play a very important role in the future. We look
forward to further research work related to this fascinating method.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions

1. Parker, A.E.; Dimitrov, A.G. Symmetry-Breaking Bifurcations of the Information
Bottleneck and Related Problems. Entropy 2022, 24, 1231.

2. Agmon, S. The Information Bottleneck’s Ordinary Differential Equation: First-Order
Root-Tracking for the IB. Entropy 2023, 25, 1370.

3. Charvin, H.; Volpi, N.C.; Polani, D. Exact and Soft Successive Refinement of the
Information Bottleneck Entropy 2023, 25, 1355.

4. Dikshtein, M.; Ordentlich, O.; Shamai, S. The Double-Sided Information Bottleneck
Function. Entropy 2022, 24, 1321.

5. Deng, B.; Jia, K. Counterfactual Supervision-Based Information Bottleneck for Out-of-
Distribution Generalization. Entropy 2023, 25, 193.

6. Lyu, Z.; Aminian, G.; Rodrigues, M.R.D. On Neural Networks Fitting, Compression,
and Generalization Behavior via Information-Bottleneck-like Approaches. Entropy
2023, 25, 1063.

7. Moldoveanu, M.; Zaidi, A. In-Network Learning: Distributed Training and Inference in
Networks. Entropy 2023, 25, 920.

8. Steiner, S.; Aminu, A.D.; Kuehn, V. Distributed Quantization for Partially Cooperating
Sensors Using the Information Bottleneck Method. Entropy 2022, 24, 438.

9. Toledo, A.; Venezian, E.; Slonim, N. Revisiting Sequential Information Bottleneck:
New Implementation and Evaluation. Entropy 2022, 24, 1132.

10. Monsees, T.; Griebel, O.; Herrmann, M.; Wübben, D.; Dekorsy, A.; Wehn, N. Minimum-
Integer Computation Finite Alphabet Message Passing Decoder: From Theory to De-
coder Implementations towards 1 Tb/s. Entropy 2022, 24, 1452.

11. Lewandowsky, J.; Bauch, G.; Stark, M. Information Bottleneck Signal Processing and
Learning to Maximize Relevant Information for Communication Receivers. Entropy
2022, 24, 972.

Reference
1. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the 37th Allerton Conference on

Communication and Computation, Monticello, NY, USA, 22–24 September 1999; pp. 368–377.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

3



Citation: Parker, A.E.; Dimitrov, A.G.

Symmetry-Breaking Bifurcations of

the Information Bottleneck and

Related Problems. Entropy 2022, 24,

1231. https://doi.org/10.3390/

e24091231

Academic Editors: Jan Lewandowsky

and Gerhard Bauch

Received: 29 June 2022

Accepted: 29 August 2022

Published: 2 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Symmetry-Breaking Bifurcations of the Information Bottleneck
and Related Problems
Albert E. Parker 1 and Alexander G. Dimitrov 2,*

1 Center for Biofilm Engineering, Department of Mathematical Sciences, Montana State University,
Bozeman, MT 59717, USA

2 Department of Mathematics and Statistics, Washington State University Vancouver,
Vancouver, WA 98686, USA

* Correspondence: alex.dimitrov@wsu.edu

Abstract: In this paper, we investigate the bifurcations of solutions to a class of degenerate constrained
optimization problems. This study was motivated by the Information Bottleneck and Information
Distortion problems, which have been used to successfully cluster data in many different applications.
In the problems we discuss in this paper, the distortion function is not a linear function of the quantizer.
This leads to a challenging annealing optimization problem, which we recast as a fixed-point dynamics
problem of a gradient flow of a related dynamical system. The gradient system possesses an SN

symmetry due to its invariance in relabeling representative classes. Its flow hence passes through
a series of bifurcations with specific symmetry breaks. Here, we show that the dynamical system
related to the Information Bottleneck problem has an additional spurious symmetry that requires
more-challenging analysis of the symmetry-breaking bifurcation. For the Information Bottleneck, we
determine that when bifurcations occur, they are only of pitchfork type, and we give conditions that
determine the stability of the bifurcating branches. We relate the existence of subcritical bifurcations
to the existence of first-order phase transitions in the corresponding distortion function as a function
of the annealing parameter, and provide criteria with which to detect such transitions.

Keywords: information bottleneck; optimization; annealing; gradient flow; bifurcations; symmetry

1. Introduction

This paper analyzes bifurcations of solutions to constrained optimization problems of
the form

max
q∈∆

F(q, β) = max
q∈∆

(
N

∑
i=1

f (qi, β)

)
(1)

as a function of a scalar parameter β and a quantizer or classifier q = (q1, . . ., qN) with
qi ∈ <K. The real-valued function f is sufficiently smooth, and ∆ is the constraint space of
valid quantizers, a convex set of discrete probabilities (simplices).

This type of problem arises in Rate Distortion Theory [1,2], Deterministic Annealing [3]
and biclustering [4]. The specific motivations for the abstract problem formulation given
in (1) are the Information Bottleneck [5] and Information Distortion [6] functions

max
q∈∆

F(q, β) = max
q∈∆

(D(q)− βI(Y; T)). (2)

These were proposed in [5,7] to analyze the Markov chain X → Y → T in which X →
Y, characterized by a probability p(X, Y), is the original system of interest, characterized
by its mutual information I(X; Y), and T is a simplification (quantized version of) Y. Here
we work mainly with discrete versions of Y and T, with cardinalities |Y| = K and |T| = N.
Typically N << K. I(Y; T) is the mutual information between the K objects in Y and the

4



Entropy 2022, 24, 1231

N clusters in T. The goal is to cluster K objects in Y into N clusters in T given inputs X
such that the function F is maximized in [qi]j; the probability that the jth element of Y is
classified as being a member of the cluster with label i ∈ T. We call such a set of conditional
probabilities a stochastic quantizer, or just a quantizer, to relate to the vector quantization
literature [8]. The annealing parameter β ∈ [0, ∞).

It has been shown that finding hard-clustering solutions to (2) is NP-complete (com-
binatorial search) when D(q) is the mutual information I(X; T) [9], as in the Information
Bottleneck [5,10,11] and the Information Distortion [7,12,13] methods. Information Bottle-
neck (IB) approaches are gaining in penetration into multiple scientific and engineering
domains [14–18]. As they typically involve the nonlinear optimization problem (2), there
is need for optimization methods for such problems that can avoid the rise in complexity
implied by the NP-complete hard-clustering solutions [9]. Originally, Tishby et al. [5]
approached this problem with an algorithm inspired by the Blahut–Arimoto approach to
solving Rate-Distortion types of problems ([2], Chapter 10). The “self-consistent” equations
in [5] optimize both the quantizer and the “relevance” distribution p(x|t). However, unlike
the classic Blahut–Arimoto algorithm, which can guarantee convergence to a unique so-
lution to its iterative scheme because of the convex geometry of the two state spaces, the
“self-consistent” equations have no such guarantee due to the more-complicated geometry
of three convex sets over which the optimization is performed, as also noted in [5]. Accord-
ingly, in this work, we use the original optimization problem (2) over a single variable: the
quantizer (conditional probability) q(t|y). It may be possible that a related Blahut–Arimoto
style optimization coupled to the bifurcation structure of its gradient flow discussed here
can lead to additional insights into this problem, but we consider this beyond the scope of
this particular manuscript.

We have investigated the structure of soft-clustering annealing-type methods that
reach the hard-clustering solution in the limit of the annealing parameter [19,20] through
a series of bifurcations. A bifurcation in this context is a point that is a solution (q∗, β∗)
to (2) such that the number of solutions to (2) changes in a small neighborhood of (q∗, β∗).
Because a bifurcation corresponds to a point at which some of the objects Y have just been
classified, in the IB literature, a bifurcation is usually referred to as a phase transition. One
of the goals of this and related work is to understand why annealing-type algorithms, such
as the original optimization heuristics in [5,10], work as well as they do. This can help with
designing further optimization heuristics and can assess how close those can get to the
global solutions to IB problems. We believe that this amalgamation of optimization theory
and dynamical systems theory, as stated in [19,20], can provide a solid foundation with
which to address such optimization challenges.

Because of the form (1) of F, it possesses certain symmetries. That is, the value of
F(q, β) does not change (is invariant) under arbitrary permutations of the vectors qi. In
other words, F is SN-invariant. The form (1) further implies that the Hessian d2

qF(q) is block
diagonal with blocks {d2

qi f (qi)}N
i=1. These conditions are met by the Information Distortion

function [6],

FH(q, β) = H(T|Y) + βI(X, T), (3)

where H(T|Y) is the entropy, and by the cost function used in the original IB method [5],

FIB(q, β) = −I(Y, T) + βI(X, T), (4)

which is the focus of this manuscript. Both the Information Distortion and Informaton
Bottleneck problems have the form given in (1) and (2). Importantly, d2FIB(q) has a
“perpetual kernel“ since each block d2 f (qi) has the eigenpair (0, qi) for every q [20]. In other
words, the Hessian d2F is singular for every q and every value of β. This makes bifurcation
detection challenging because bifurcations can usually be detected by identifying isolated
singularities of d2F. This degeneracy is a consequence of the translational symmetry of

5



Entropy 2022, 24, 1231

FIB: if kkk ∈ ker d2
qFIB(q∗), then FIB(q∗) = FIB(q∗ + tkkk) for all t ∈ < such that q∗ + tkkk ∈ ∆. At

bifurcations of solutions to (4), the translational symmetry never breaks.
To better understand bifurcations of solutions to problems of the form (1), which

includes the problems (3) and (4), we consider the gradient flow
(

q̇
λ̇

)
= ∇L(q, λ, β)

Equilibria of this flow correspond to critical points of (1), where L is the Lagrangian with
respect to the constraints imposed by ∆, and λ is the vector of Lagrange multipliers.

Previous work showed that when d2F is generically non-singular, as occurs for the
Information Distortion (3), then there are isolated singularities of d2L that indicate possible
bifurcations of solutions to (1). In this case, an M > 1-dimensional ker d2F necessitates an
M− 1-dimensional ker d2L, which admits a bifurcation of solutions to (1) where symmetry
breaks from SM to Sm × Sn for every m, n > 0 such that m + n = M [21].

Here we allow d2F and d2L to be singular for every q ∈ ∆, as occurs for the Information
Bottleneck (4). That is, the perpetual kernel for d2F implies that d2L also has a perpetual
kernel ker d2L = Kp(q), which means that the eigenvalue crossing condition that must
occur at a bifurcation (i.e., d2Lmust have a zero eigenvalue at a bifurcation) [20] is never
satisfied in Kp. There are a few challenges due to the existence of the perpetual kernel
(i.e., degeneracy) of the Information Bottleneck that we address in this paper. First, detecting
bifurcations may be problematic because one cannot simply monitor the determinant of
either d2F or d2L. Second, the standard theory that assures the existence of bifurcating
branches, the Equivariance Branching Lemma, cannot be applied directly. Lastly, the spaces
that contain the bifurcating solutions are always at least two-dimensional, which makes
tracking the bifurcating solutions problematic.

Here we address two of these three challenges. We show that at a bifurcation,
new eigenvalue(s) of d2FIB and d2L must cross zero, causing ker d2L to expand so that
ker d2L(q∗) = Kp ∪K∗, whereK∗ is the span of the eigenvectors with crossing eigenvalues.
Instead of detecting bifurcations by the expensive process of monitoring the expansion
of ker d2L (from Kp to Kp ∪ K∗), we give a simple way to check the eigenvalue crossing
condition for annealing problems F = G(q) + βD(q) as in (2) [20]. We prove the existence
of the bifurcating branches by adapting the standard proof for the Equivariant Branching
Lemma. This newly developed theory guarantees that bifurcating branches exist in K∗, are
generically pitchforks, and that symmetry breaks from SM to Sm × Sn. Additionally, we
give conditions to check whether the pitchforks are subcritical or supercritical, and how
stability of the bifurcating branches relates to optimality in the optimization problem (1).

2. Bifurcation Analysis
2.1. Equivariant Branching Lemma

The Equivariant Branching Lemma relates the subgroup structure of a symmetry
group Γ with the existence of symmetry-breaking bifurcating branches of equilibria of
ẋ = f (x, β). Observe that we present a version that does not require absolute irreducibility.
For a proof see [22] p. 83.

Theorem 1 (Equivariant Branching Lemma). Let f be a smooth function f : V ×< → V that
is Γ-equivariant for a compact Lie group Γ and a Banach space V. Let Σ be an isotropy subgroup of
Γ with dim Fix(Σ) = 1. Suppose that Fix(Γ) = {0} and the crossing condition d2

βx f (0, 0)xxx0 6= 0
for x0 ∈ Fix(Σ). Then there exists a unique smooth solution branch (tx0, β(t)) to f = 0 with
isotropy subgroup Σ.

For an arbitrary Γ-equivariant system where bifurcation occurs at (x∗, β∗), the re-
quirement in Theorem 1 that the bifurcation occurs at the origin is accomplished by a
translation. Assuring that the Jacobian vanishes, dx f (0, 0) = 0, can be effected by restrict-

6



Entropy 2022, 24, 1231

ing and projecting the system onto the kernel of the Jacobian. This transform is called the
Liapunov–Schmidt reduction (see [23]).

The Equivariant Branching Lemma does not directly apply to yield bifurcating branches
for the problem (1) at q for which d2F is singular for the following reasons:

• Kp and K∗ have independent bases, which implies that each is invariant to the action
of SN , and so the decomposition ker d2L(q∗) = Kp × K∗ shows that SN does not
act absolutely irreducibly on ker d2F(q∗), but it does act absolutely irreducibly on
each of these disjoint subspaces separately. This is why we present a version of the
Equivariant Branching Lemma that does not require absolute irreducibility.

• The Liapunov–Schmidt reduction onto ker d2L(q∗) is clear, but not onto K∗.
• Fix(Sm × Sn) ∩ ker d2L(q∗) is two-dimensional with basis

{(nvvv, . . ., nvvv,−mvvv, . . .,−mvvv), (nyyy, . . ., nyyy,−myyy, . . .,−myyy)},

where vvv, yyy ∈ <K.

We address these issues in the manuscript and show that a small modification of
the Equivariant Branching Lemma allows for similar analysis to be successfully applied
to Information Bottleneck-style problems such as (2) with minimal modifications to the
original algorithm from [20].

2.2. A Gradient Flow

We now lay the groundwork necessary to determine the bifurcations of local solutions
to (1)

max
q∈∆

F(q, β),

where F = ∑N
i=1 f (qi, β), which includes as a special case the Information Distortion (3) and

Information Bottleneck (4) problems. The convex set of discrete conditional probabilities is

∆ :=

{
q ∈ <NK |

N

∑
i=1

qi
k = 1 ∀ k : 1 ≤ k ≤ K and qi

k ≥ 0 ∀ i, k

}
.

Due to the form of F, it has the following properties:

1. F(q, β) is an SN-invariant, real-valued function of q, where the action of SN on q
permutes the component vectors qi, i = 1, . . . , N, of q ∈ ∆.

2. The NK × NK Hessian d2
qF(q, β) is block diagonal, where the ith K × K block is

d2 f (qi).

The Lagrangian of (1) with respect to the equality constraints from ∆ is

L(q, λ, β) = F(q, β) +
K

∑
k=1

λk

(
N

∑
i=1

qi
k − 1

)
. (5)

The scalar λk is the Lagrange multiplier for the constraint ∑N
i=1 qi

k − 1 = 0, and λ ∈ <K is
the vector of Lagrange multipliers λ = (λ1, λ2, . . ., λK)

T . The gradient of the Lagrangian
in (5) is

∇L := ∇q,λL(q, λ, β) =

( ∇qL
∇λL

)
,

7



Entropy 2022, 24, 1231

where ∇qL = ∇F(q, β) + Λ and Λ =
(
λT , λT , . . . λT)T ∈ RNK. The gradient ∇λL is a

vector of K constraints

∇λL =




∑i qi
1 − 1

∑i qi
2 − 1
...

∑i qi
K − 1


.

Let J be the Jacobian of dq∇λL

J := dq∇λL =
(

IK IK . . . IK
)

︸ ︷︷ ︸
N blocks

. (6)

Observe that J has full row rank. The Hessian of (5) with respect to the vector
(

q
λ

)
∈

<NK+K is

d2L(q) := d2L(q, λ, β) =

(
d2F(q, β) JT

J 000

)
, (7)

where 000 is K× K. The NK× NK matrix d2F(q) := d2
qF(q, β) is the block diagonal Hessian

of F with K× K blocks {d2 f (qi, β)}N
i=1.

The dynamical system whose equilibria are stationary points of (1) is the gradient flow
of the Lagrangian

(
q̇
λ̇

)
= ∇L(q, λ, β) (8)

for L as defined in (5) and β ∈ [0, ∞). The equilibria of (8) are points
(

q∗

λ∗

)
∈ RNK+K

where
∇L(q∗, λ∗, β) = 0.

The Jacobian of this system is the Hessian d2L(q, λ, β) from (7).

Remark 1. By the theory of constrained optimization [24], the equilibria (q∗, λ∗, β) of (8) where
d2F(q∗, β) is negative definite on ker J are local solutions of (1). Conversely, if (q∗, β) is a local
solution of (1), then there exists a vector of Lagrange multipliers λ∗ so that (q∗, λ∗, β) is an
equilibrium of (8) (this necessary requirement is called the Karush–Kuhn–Tucker conditions) such
that d2F(q∗, β) is non-positive definite on ker J.

2.3. Equilibria with Symmetry

Next, we categorize the equilibria of (8) according to their symmetries, which allows
us to determine when to expect symmetry-breaking bifurcations.

Let q ∈ Fix(SM) for some 1 ≤ M ≤ N. Then there exists a partition of {1, 2, . . ., N}
into the sets U and R, where |U | = M, so that qi = qj if and only if i, j ∈ U . Clearly, d2F
has M identical blocks, {d f (qi)}i∈U .

To ease the notation, and without loss of generality, we set

U := {1, . . ., M} and R := {M + 1, . . ., N}.

To distinguish between the blocks of d2F, we write

B := d2 f (qi) for 1 ≤ i ≤ M and Ri := d2 f (qi) for M + 1 ≤ i ≤ N. (9)

8



Entropy 2022, 24, 1231

As mentioned in the introduction, we assume that for each q ∈ ∆, each block d2 f (qi)
always has at least a one-dimensional kernel with basis vector(s) which depend on q. Thus,
dim ker d2F ≥ N. At an equilibrium of (q∗, λ∗, β∗) of (8) where q ∈ Fix(SM), we consider
the following three cases:

1. dim ker d2F(q∗) > N + 1;
2. dim ker d2F(q∗) = N + 1;
3. dim ker d2F(q∗) = N.

We will show that the first case necessitates a symmetry-breaking bifurcation (Theorem 3).
In the second case, there is no bifurcation (Corollary 1). Finally, in the third case, we expect
a saddle node [21], a symmetry-preserving bifurcation.

We are able to distinguish between the three cases above by considering which blocks
of d2F(q∗) have kernels that have more than one dimension. This motivates the follow-
ing definition.

Definition 1. An equilibrium (q∗, λ∗, β∗) of (8) is M-singular (or, equivalently, q∗ is M-
singular) if:

1. q ∈ Fix(SM) so that qi = qj for every 1 ≤ i, j ≤ M.
2. For B, the M block(s) of the Hessian defined in (9), ker B has dimension 2 with basis vectors

vvv, yyy ∈ <K. vvv is associated with the crossing eigenvalues, and yyy is associated with the constant
zero eigenvalue of B.

3. The N − M block(s) of the Hessian {Ri}i∈<, defined in (9), each have a one-dimensional
kernel with basis vector zzz(i) ∈ <K.

4. The vectors vvv, yyy and {zzz(i)} are linearly independent.
5. The matrix

A := B
N

∑
i=M+1

R−i + MIK (10)

is nonsingular. R−i is the Moore–Penrose inverse of Ri. When M = N, we define A := NIK.

We wish to emphasize that we showed in [21] that requirements 2–5 in Definition 1
hold generically.

A straightforward calculation shows that every block of the Hessian d2F of the Infor-
mation Bottleneck cost function (2) is singular for every (q, β), and the basis for ker d2 f (qi)
is yyy = qi for 1 ≤ i ≤ M and zzz(i) = qi for M + 1 ≤ i ≤ N (Lemma 42 in [25]), which assures
that these vectors are linearly independent, as in Definition 1.4. At a bifurcation, the kernels
of the identical blocks B expand by vvv as in Definition 1.2. Using the notation above, yyy = qi

for each i ∈ U , and zzz(i) = qi for each i ∈ R.

2.4. The Kernel at a Bifurcation

The equilibria of (8) change their stability with β, and hence change the solutions to (1).
The changes of stability are determined by the kernel of d2L(q∗) at a bifurcation point q∗.
In this section we show that for any q ∈ Fix(SM) with M > 1, d2L(q∗) has a perpetual
kernel Kp that is at least M − 1 dimensional. The zero eigenvalues associated with the
eigenvectors in Kp remain constant, so that at a bifurcation point (q∗, λ∗, β∗) of (8) where q∗

is M-singular, new eigenvalues of d2Lmust cross zero. Thus, the kernel expands, and the
bifurcating directions exist in an “expanded” kernel of d2L(q∗), ker d2L(q∗) = K∗ ×Kp.

We determine a basis for ker d2L at an M-singular q∗ when M > 1. If q is 1-singular
with a trivial isotropy group (i.e., no symmetery), then d2L(q∗) is non-singular—Kp disap-
pears. First, we ascertain a basis for ker d2F(q∗).

9



Entropy 2022, 24, 1231

Recall that in the preliminaries, when xxx ∈ <NK, we defined xxxj ∈ RK to be the jth
vector component of xxx. We now define the linearly independent vectors {vvvi}M

i=1, {yyyi}M
i=1,

and {zzzk}N
k=M+1 in <NK by

vvvj
i :=

{
vvv if 1 ≤ i = j ≤ M
000 otherwise

,yyyj
i :=

{
yyy if 1 ≤ i = j ≤ M
000 otherwise

, zzzj
k :=

{
zzz(i) if M + 1 ≤ j = k ≤ N
000 otherwise

(11)

where 000 ∈ <K, and vvv and yyy are defined in Definition 1.2. For example, if M = 2 and N = 3,
then vvv1 := (vvvT , 000,000)T and vvv2 := (000, vvvT , 000)T .

Due to the block diagonal form of d2F(q∗), it is easy to see that the N + M vectors
defined in (11) form a basis for ker d2F(q∗).

Now, let

Vi =

(
vvvi
000

)
−
(

vvvM
000

)
, Yi =

(
yyyi
000

)
−
(

yyyM
000

)
, Zk =

(
zzzk
000

)
−
(

zzzN
000

)
(12)

for i = 1, . . ., M − 1 and M + 1 ≤ k ≤ N − 1 where 000 ∈ <K. From (7), it is easy to
see that these three sets of vectors are in ker d2L(q∗). The next theorem shows that
{Vi}M−1

i=1
⋃{Yi}M−1

i=1 are a basis for ker d2L(q∗). This natural partition of the basis vec-
tors shows that ker d2L(q∗) can be written as ker d2L(q∗) = Kp × K∗. According to
Definition 1, the “perpetual kernel” corresponding to constant zero eigenvalues of d2L(q∗)
is generated by

Kp =< {Yi}M−1
i=1 > .

The part of the kernel that arises at a bifurcation corresponding to eigenvalues crossing
zero is

K∗ =< {Vi}M−1
i=1 > .

The vectors {Zk} do not contribute to ker d2L(q∗).

Theorem 2. If q∗ is M-singular for 1 < M ≤ N, then {Vi}
⋃{Yi} from (12) are a basis for

ker d2L(q∗).

Proof. To show that {Vi}M−1
i=1

⋃{Yi}M−1
i=1 span ker d2L(q∗), let kkk ∈ ker d2L(q∗) and decom-

pose it as

kkk =

(
kkkF
kkkJ

)
(13)

where kkkF is NK× 1, and kkkJ is K× 1. Hence,

d2L(q∗, λ∗, β)kkk =

(
d2F(q∗, β∗) JT

J 000

)(
kkkF
kkkJ

)
= 000

=⇒ d2F(q∗, β)kkkF = −JTkkkJ

JkkkF = 000. (14)

Now, from (6) and the fact that d2F is block diagonal, we have




d2 f (q1) 000 . . . 000
000 d2 f (q2) . . . 000
...

...
...

000 000 . . . d2 f (qN)


kkkF = −




kkkJ
kkkJ
...

kkkJ


. (15)

We set

kkkF := (xxxT
1 xxxT

2 . . . xxxT
N)

T , (16)

10



Entropy 2022, 24, 1231

and using the notation from (9), then (15) implies

Bxxxi = −kkkJ for 1 ≤ i ≤ M (17)

Rixxxi = −kkkJ for M + 1 ≤ i ≤ N.

It follows that xxxi = R−i Bxxx1 for every M + 1 ≤ i ≤ N. By (14), we have that ∑N
i=1 xxxi = 000,

and so

∑M
i=1 xxxi + ∑N

i=M+1 xxxi = 000

=⇒ ∑M
i=1 xxxi + ∑N

i=M+1 R−i Bxxx1+ = 000.

By (17), for every 1 ≤ i ≤ M, xxxi can be written as xxxi = xxxp + divvv+ eiyyy, where xxxp ∈ range(B),
dη , eη ∈ <, and vvv and yyy are the basis vectors of ker B from Definition 1.2. Thus,

B
M

∑
i=1

(xxxp + divvv + eiyyy) + B
N

∑
i=M+1

R−i B(xxxp + d1vvv + e1yyy) = 000

⇔ (B
N

∑
i=M+1

R−i + MIK)Bxxxp = 000

⇔ Bxxxp = 000

since A = B ∑N
i=M+1 R−i + MIK is nonsingular. This shows that xxxp = 000. Therefore, xxxi =

divvv + eiyyy for every 1 ≤ i ≤ M. Now (17) shows that kkkJ = 000, and so xxxi ∈ ker Ri for
M + 1 ≤ i ≤ N, which implies that

xxxi = cizzz(i) for M + 1 ≤ i ≤ N.

Hence, kkk =

(
kkkF
000

)
, where kkki

F =

{
divvv + eiyyy if 1 ≤ i ≤ M

cizzz(i) if M + 1 ≤ i ≤ N
, from which it follows that

JkkkF =
N

∑
i=1

xxxi =
M

∑
i=1

divvv +
M

∑
i=1

eiyyy +
N

∑
i=M+1

cizzz(i) = 000. (18)

Linear independence (Definition 1.4) implies that ∑ di = ∑ ei = di = 0. Thus, kkkF =

∑M−1
i=1 di(vvvi − vvvM) + ∑M−1

i=1 ei(yyyi − yyyM). Therefore, the linearly independent vectors {Vi} =
{
(

vvvi − vvvM
000

)
} and {Yi} = {

(
yyyi − yyyM

000

)
} span ker d2L(q∗). �

Corollary 1. If q∗ is 1-singular and has isotropy group equal to the identity, then d2L(q∗)
is nonsingular.

Proof. If q is 1-singular, then d2F(q∗) has a single block B with a two-dimensional kernel.
The other N − 1 blocks {Ri} are distinct with one-dimensional kernels. By constructing the
vectors as in (11), we see that dim ker d2F(q∗) = N + 1 with basis vectors vvv1, yyy1, {zzzi}N

i=2.
Now, following the proof of Theorem 2, we take an arbitrary kkk ∈ ker d2L(q∗, λ, β), and then
decompose kkk as in (13) and (16). The proof to Theorem 2 holds for the present case up until,
and including (18). Linear independence now shows that di = ei = ci = 0, which implies
that kkk = 000. �

Remark 2. The independent bases given for Kp and K∗ in Theorem 2 imply that each is invariant
to the action of SN , and so the decomposition ker d2L(q∗) = Kp ×K∗ shows that SN does not act
absolutely irreducibly on ker d2F(q∗). That is, by definition,

dxxxr(000, β) 6= c(β)I2M−2.

11



Entropy 2022, 24, 1231

The explicit bases show that Kp,K ∼= {xxx ∈ RM : ∑[xxx]i = 0}, which implies that SM acts
absolutely irreducibly on Kp and K∗ [26]. Thus, Kp and K∗ are each SM-irreducible.

2.5. Liapunov–Schmidt Reduction

To show the existence of bifurcating branches from a bifurcation point (q∗, λ∗, β∗) of
equilibria of (8), the Equivariant Branching Lemma requires that the bifurcation is translated
to (000,000, 0) and that the Jacobian vanishes at bifurcation. To accomplish the former, consider

F (q, λ, β) := ∇L(q + q∗, λ + λ∗, β + β∗).

To assure that the Jacobian vanishes, we restrict and project F onto ker d2L(q∗) in a neigh-
borhood of (000,000, 0). This is the Liapunov–Schmidt reduction of F [23],

r : RM−1 × R→ RM−1

r(xxx, β) = WT(I − E)F (Wxxx + U(Wxxx, β), β) (19)

where Wxxx +U(Wxxx, β) =

(
q
λ

)
. The (NK + K)× (NK + K) matrix I − E is the projection

matrix onto kerF (000, 0) = ker d2L(q∗) with ker(I − E) = range d2L(q∗). W is the (NK +
K) × (2M − 2) matrix whose columns are the basis vectors {Vi} ∪ {Yi} of ker d2L(q∗)
from (12) so that Wxxx is a vector in ker d2L(q∗). The vector function U(Wxxx, β) is the
component of (q, λ) that is in range d2L(q∗) such that EF (Wxxx +U(xxx, β), β) = 000, U(000, 0) =
000, and

dxxxU(000, 0) = 000. (20)

The system defined by the Liapunov–Schmidt reduction, ẋxx = r(xxx, β), has a bifurcation
of equilibria at (xxx = 000, β = 0), which are in 1− 1 correspondence with equilibria of (8).
However, the stability of these associated equilibria is not necessarily the same.

It is straightforward to verify the following derivatives ([23] p. 32), which we will
require in the sequel. The (2M− 2)× (2M− 2) Jacobian of (19) is

dxxxr(xxx, β) = WT(I − E)d2
q,λL(q + q∗, λ + λ∗, β + β∗)(W + dxxxU(Wxxx, β)), (21)

which shows that

dxxxr(000, 0) = 000 (22)

since ker(I − E) = range d2L(q∗).
Our crossing condition at a bifurcation depends on the matrix of derivatives

∂2ri
∂β∂xj

(000, 0) = dβd2L[wwwi, wwwj]− d3L[wwwi, wwwj, L−dβ∇L] (23)

where the derivatives of L are evaluated at (q∗, λ∗, β∗), and L− is the Moore–Penrose-
generalized inverse [27] of d2L(q∗). The vectors {wwwi}2M−2

i=1 are the basis vectors of ker d2L(q∗)
from Theorem 2.

The (2M− 2)× (2M− 2)× (2M− 2) three-dimensional array of second derivatives is

∂2ri
∂xj∂xk

(000, 0) = d3L(q∗, λ∗, β∗)[wwwi, wwwj, wwwk].

In [21], we showed that ∂2ri
∂xj∂xk

(000, 0) = 0 whenever i = j = k ≤ M− 1. In the present case,

there are more zero entries since now the basis vectors {wwwi} are of two types: wwwi = Vi for
1 ≤ i ≤ M− 1 (basis vectors of K∗); or wwwi = Yi−M+1 for M ≤ i ≤ 2M− 2 (basis vectors of

12



Entropy 2022, 24, 1231

Kp, see (12)). We now consider the case when i, j ≤ M− 1 and k > M− 1. All other cases
are dealt with using a similar argument. Substituting in for wwwi we have

∂2ri
∂xj∂xk

(000, 0) =
N

∑
ν,δ,η=1

K

∑
l,m,n=1

∂3F(q∗, β∗)
∂qν

l ∂qδ
m∂qη

n
[vvvi − vvvM]νl [vvvj − vvvM]δm[yyyk−M+1 − yyyM]

η
n

=
K

∑
l,m,n=1

∂3 f (qν∗, β∗)
∂qν

l ∂qν
m∂qν

n

(
δij(k−M+1)[vvv]l [vvv]m[yyy]n − [vvv]l [vvv]m[yyy]n

)
. (24)

The vectors vvv and yyy are defined in (2). An immediate consequence of this calculation is

that ∂2ri
∂xj∂xk

(000, 0) = 0 whenever i = j = k − M + 1. Thus, similar arguments show that
∂2ri

∂xj∂xk
(000, 0) = 0 whenever:

• i = j = k;
• i−M + 1 = j = k, i = j−M + 1 = k, i = j = k−M + 1;
• i−M+ 1 = j−M+ 1 = k, i−M+ 1 = j = k−M+ 1, i = j−M+ 1 = k−M+ 1.

Further, we get four different “cubes” of identical entries in the 3-D array. They are:

• For i, j, k ≤ M− 1, not all equal, the value of the cube is

−
K

∑
l,m,n=1

∂3 f (qν∗, β∗)
∂qν

l ∂qν
m∂qν

n
[vvv]l [vvv]m[vvv]n;

• For i, j ≤ M− 1, not both equal, and j > M− 1, the value of the cube is

−
K

∑
l,m,n=1

∂3 f (qν∗, β∗)
∂qν

l ∂qν
m∂qν

n
[vvv]l [vvv]m[yyy]n;

• For i ≤ M− 1 and j, k > M− 1, not both equal, the value of the cube is

−
K

∑
l,m,n=1

∂3 f (qν∗, β∗)
∂qν

l ∂qν
m∂qν

n
[vvv]l [yyy]m[yyy]n;

• For i, j, k > M− 1, not all equal, the value of the cube is

−
K

∑
l,m,n=1

∂3 f (qν∗, β∗)
∂qν

l ∂qν
m∂qν

n
[yyy]l [yyy]m[yyy]n.

The points above will prove useful when proving that d2r(000, 0) = 000.
The four-dimensional array of third derivatives of r is

∂3ri
∂xj∂xk∂xl

(000, 0) = d4L[wwwi, wwwj, wwwk, wwwl ] − d3L[wwwi, wwwj, L−d3L[wwwk, wwwl ]]

− d3L[wwwi, wwwk, L−d3L[wwwj, wwwl ]]

− d3L[wwwi, wwwl , L−d3L[wwwj, wwwk]] (25)

where the derivatives of L are evaluated at (q∗, λ∗, β∗), and L− is the Moore–Penrose-
generalized inverse [27] of d2L(q∗).

Since ker d2L(q∗) is not absolutely irreducible, but K∗ is, one might try to define a
Liapunov–Schmidt reduction by restricting and projecting ∇L onto K∗. One issue with
projecting the reduction onto K∗ is how to define the projection matrix E so that

EF = 0 and (I − E)F = 0 if and only if F = 0

13



Entropy 2022, 24, 1231

holds and E dxxxr(000, 0) is non-singular in range (E) so that the Implicit Function Theorem
assures the restriction (q, λ) = Wxxx + U(Wxxx, β), where U(Wxxx) ∈ range (d2L(q∗)), and
Wxxx ∈ K∗ instead of Wxxx ∈ ker d2L(q∗) as in (19) [23]. Simply ignoring the space Kp by
considering U ∈ range (d2L(q∗)) and Wxxx ∈ K∗ amounts to setting Wxxx = k∗ + kp and
kp = 0. Since Wxxx + U is still embedded in the larger <NK+K, which contains Kp, then
derivatives are affected by the implicit kp = 0 constraint. This constraint PKp(q, λ) = k∗+U
is nonlinear (and may not even be tractable) since Kp depends on q, where PKp is a
projection matrix that depends on q (see Theorem 7).

2.6. Isotropy Subgroups Sm × Sn of SN

The decomposition ker d2L(q∗) = Kp ×K∗ shows that Fix(Sm × Sn) ∩ ker d2L(q∗) is
two-dimensional with basis vectors

{(nyyyT , . . ., nyyyT ,−myyyT , . . .,−myyyT)T , (nvvvT , . . ., nvvvT ,−mvvvT , . . .,−mvvvT)T}.

Restricted toK∗, these isotropy subgroups Sm × Sn of SM have one-dimensional fixed point
spaces. This assures that we can use Theorem 1. We have the following Lemma.

Lemma 1. Let M = m + n such that M > 1 and m, n > 0. Let Um be a set of m classes, and
let Un be a set of n classes such that Um ∩ Un = ∅ and Um ∪ Un = {1, . . ., M}. Now define
ûuu(m,n) ∈ <NK such that

ûuui
(m,n) =





nvvv if i ∈ Um
−mvvv if i ∈ Un

000 otherwise

where vvv is defined as in Definition 1.2, and let

uuu(m,n) =

(
ûuu(m,n)

000

)
(26)

where 000 ∈ RK. Then the isotropy subgroup of uuu(m,n) is Σ(m,n) ⊂ ΓU such that Σ(m,n)
∼= Sm × Sn,

where Sm permutes uuui when i ∈ Um, and Sn permutes uuui when i ∈ Un. The fixed point space of
Σ(m,n) restricted to K∗ ⊂ d2L(q∗) is one dimensional.

2.7. Bifurcating Branches

Theorem 3. Let (q∗, λ∗, β∗) be an equilibrium of (8) such that q∗ is M-singular for 1 < M ≤ N,
and the crossing condition

dβd2L[uuu, uuu]− d3L[uuu, uuu, L−dβ∇L] 6= 0

is satisfied. Then there exists bifurcating solutions,




q∗

λ∗

β∗


+

(
tuuu(m,n)

β(t)

)
, where uuu(m,n) ∈ K∗ is

defined in (26), for every pair (m, n) such that M = m + n, each with an isotropy group isomorphic
to Sm × Sn.

Proof. We mimic the proof of the Equivariant Branching Lemma. Let uuu := uuu(m,n) ∈
Fix(Sm × Sn) ∩ K∗ and let V be a matrix with columns composed of the M − 1 vectors
{Vi}. Thus, there exists xxx0 ∈ <M−1 so that uuu = Vxxx0. Since r(Fix(Sm × Sn) ∩ K∗) ⊆
Fix(Sm × Sn) ∩K∗ (for every σ ∈ Sm × Sn, r(Vxxx) = r(σVxxx) (uuu ∈ Fix(SM × Sn) that equals
σr(Vxxx) (by equivariance)), then r(txxx0, β) = h(t, β)xxx0, where r is the Liapunov–Schmidt
reduction (19), and h is a polynomial in t.

Since K∗ is SM-irreducible, then Fix(SM) ∩ K∗ = {000} (otherwise, σxxx = xxx for some
xxx ∈ K∗ for every σ ∈ SM, which implies that span(xxx) is an invariant subspace of K∗).

14



Entropy 2022, 24, 1231

Now [22] p. 75 shows that r(000, β) = 000, and so h(0, β) = 0, from which it follows that
h(t, β) = tk(t, β). Thus,

r(txxx0, β) = tk(t, β)xxx0. (27)

Differentiating with respect to t yields

dxxxr(txxx0, β)xxx0 = (k(t, β) + tdtk(t, β))xxx0, (28)

from which it follows that

k(t, β)xxx0 = dxxxr(txxx0, β)xxx0 − tdtk(t, β)xxx0,

and so k(000, 0) = 0. Furthermore, we see that dβk(0, 0)xxx0 = d2
xxx,βr(0, 0)xxx0 6= 000 by assumption

(see (23)). This shows that dβk(0, 0) is a non-zero eigenvalue of dxxxr(txxx0, β) with associated
eigenvector xxx0. By the Implicit Function Theorem, k(t, β) = 0 has a non-zero unique
solution for β = β(t). �

2.8. The Crossing Condition for Annealing Problems

We next determine how to check the crossing condition in Theorem 3 when F is an
annealing problem, as in (2)

F(q, β) = H(q) + βD(q).

First, we show that the crossing condition can be checked in terms of the Hessian of the
function D. Furthermore, when G is strictly concave on span({vvvi}), then the crossing
condition is always satisfied, and every singularity is a bifurcation.

Theorem 4. The crossing condition

dβd2L[uuu, uuu]− d3L[uuu, uuu, L−dβ∇L] 6= 0

given in Theorem 3 is satisfied for M-singular q for M > 1 if d2D(q) is either positive or negative
definite on span({vvvi}).

Proof. Let xxx0 ∈ <2M−2 so that uuu = Wxxx0 ∈ Fix(Sm × Sn) ∩K∗. Multiplying Equation (21)
on the left by xxxT

0 and on the right by xxx0 yields

xxxT
0 dxxxr(000, β)xxx0 = uuuTd2

q,λL(q∗, λ∗, β + β∗)(INK+K + dwwwU(000, β))uuu. (29)

By Theorem 2, an arbitrary uuu ∈ K∗ can be written as uuu =

(
ûuu
000

)
, where ûuu ∈ span({vvvi}) ⊂

ker d2F(q∗, β∗). Substituting this into (29) and observing that d2F(q∗, β + β∗) = d2G(q∗) +
(β + β∗)d2D(q∗) = d2F(q∗, β∗) + βd2D(q∗) yields

xxxT
0 dxxxr(000, β)xxx0 = β

(
ûuuTd2D(q∗) 000T

)
(INK+K + ∂wwwU(000, β))

(
ûuu
000

)
.

Differentiating with respect to β, evaluating at β = 0, and using (20) yields

xxxT
0 d2

xxx,βr(000, 0)xxx0 = ûuuTd2D(q∗)ûuu, (30)

which must be non-zero since we assume that d2D(q) is either positive or negative definite
on span({vvvi}). �

15



Entropy 2022, 24, 1231

From (30), we can get an expression for ξ, the eigenvalue of d2
xxx,βr(0, 0) with eigenvector

xxx0. Substituting d2
xxx,βr(000, 0)xxx0 = ξxxx0 and observing that xxxT

0 xxx0 = xxxT
0 WTWxxx0 = ûuuTûuu yields

ξ =
ûuuTd2D(q∗)ûuu
||ûuu||2 . (31)

The requirement that d2D(q) is either positive or negative definite on span({vvvi}) holds
when d2G(q∗) is either negative or positive definite, respectively, on span({vvvi}).

Lemma 2. Let d2F(q∗, β∗ 6= 0) be singular where q∗ is M-singular such that d2G(q∗) is negative
(or positive) definite on span({vvvi}). Then d2D(q∗) is positive (or negative) definite on span({vvvi}).

Proof. If uuu ∈ span({Vi}) ⊂ ker d2F(q∗), then uuuTd2G(q∗)uuu + β∗uuuTd2D(q∗)uuu = 0. Since
uuuTd2G(q∗)uuu < 0, then uuuTd2D(q∗)uuu > 0. �

These results are important for the Information Bottleneck problem (2), where d2G(q) =
−d2 I(Y; Z) is only non-positive definite on ker d2F(q∗), but is negative definite on span({vvvi}).
Thus, every singularity of the Information Bottleneck with ker d2L(q∗) = K∗ ×Kp is a bifurca-
tion point. The space Kp does not contain bifurcating branches since the crossing condition is
never satisfied there: for uuu ∈ Kp, ûuuTd2G(q)ûuu + βûuuTd2D(q)ûuu = 0 + 0 (by Lemma 42 in [25]),

and so (Theorem 109, [25]) ξ = ûuuTd2D(q)ûuu
‖ûuu‖ = 0.

2.9. Bifurcation Type

Suppose that a bifurcation occurs at (q∗, λ∗, β∗), where q∗ is M-singular. This section
examines the type of bifurcation from which emanate the branches

((
q∗

λ∗

)
+ tuuu, β∗ + β(t)

)
,

whose existence is guaranteed by Theorem 3.
As we showed in [21], the derivative β′(0) 6= 0 indicates a transcritical bifurcation. If

β′(0) = 0, then the bifurcation is degenerate, and if β′′(0) 6= 0, then we have a pitchfork-like
bifurcation. Further, tβ′(t) < 0 for small t indicates a subcritical bifurcating branch, and
tβ′(t) > 0 for small t indicates a supercritical bifurcating branch.

Expressions for β′(0) and β′′(0) are derived as follows. Differentiating k(t, β) = 0
from (27) yields

dtk(t, β(t)) + dβk(t, β(t))β′(t) = 0, (32)

so that β′(t) = − dtk(t,β(t))
dβk(t,β(t)) . Differentiating (28) with respect to t and then evaluating at

t = 0 shows that

β′(0) =
−d2

xxxr(000, 0)[xxx0, xxx0, xxx0]

2||xxx0||2ξ
(33)

where d2
xxxr(000, 0)[xxx0, xxx0, xxx0] = ∑i,j,k

∂2r
∂[xxx]i∂[xxx]j∂[xxx]k

(000, 0)[xxx0]i[xxx0]j[xxx0]k (see (24)). As shown in the

proof to Theorem 3, ξ = dβk(000, 0) is the non-zero eigenvalue of d2
xxx,βr(0, 0) with eigenvec-

tor xxx0.
This expression is similar to the one given in [22] p. 90. The numerator can be

calculated via (24). In [21], we showed that β′(0) = 0. We have the same result in the
present case.

Theorem 5. If q∗ is M-singular for 1 < M ≤ N, then all of the bifurcating branches guaranteed
by Theorem 3 are degenerate, i.e., β′(0) = 0.

16



Entropy 2022, 24, 1231

Proof. To show that the numerator of (33) d2
xxxr(000, 0) = 000, expand ri, the ith component of r,

about xxx = 000,

ri(xxx, β) = ri(000, β) + dxxxri(000, β)Txxx + xxxTd2
xxxri(0, β)xxx +O(xxx3)

= dxxxri(000, β)Txxx + xxxTd2
xxxri(0, β)xxx +O(xxx3),

and so

ri(xxx, 0) = xxxTd2
xxxri(0, 0)xxx +O(xxx3).

Applying the equivariance relation Ar(xxx, 0) = r(Axxx, 0), where A is any element of the
group isomorphic to SM that acts on r in RM−1, and equating the quadratic terms yields

A




xxxTd2
xxxr1xxx

xxxTd2
xxxr2xxx
...

xxxTd2
xxxrM−1xxx


 =




xxxT ATd2
xxxr1 Axxx

xxxT ATd2
xxxr2 Axxx

...
xxxT ATd2

xxxrM−1 Axxx


.

By (24), the diagonal ∂2ri
∂xi∂xi

(000, 0) = 0 for each i as well as for all of the “multi-diagonals”.

This shows that ∂2ri
∂xj∂xk

(000, 0) = 0 for every i, j, k (see Theorem 124 in [25]). �
When β′(0) = 0, we need to compute β′′(0) to determine whether a branch is subcrit-

ical or supercritical. Differentiating (32) and setting t = 0 shows that β′′(0) = − d2
t k(0,0)

dβk(000,0) .

Differentiating (28) twice and solving for d2
t k(0, 0) shows that

β′′(0) =
−d3

xxxr(000, 0)[xxx0, xxx0, xxx0, xxx0]

3||xxx0||2ξ
(34)

where Wxxx0 = uuu = uuu(m,n). Use Equation (25) to calculate the numerator, and ξ = dβk(000, 0)
is the non-zero eigenvalue of d2

xxx,βr(0, 0) with eigenvector xxx0, for which we give an explicit
expression in (31) when F is an annealing problem.

If β′′(0) 6= 0, which we expect to be true generically, then Theorem 5 shows that the
bifurcation guaranteed by Theorem 3 is pitchfork-like.

2.10. Stability and Optimality

The next Theorem relates the stability of equilibria (q∗, λ∗, β) in the flow (8) with
optimality of q∗ in Problem (1). In particular, if a bifurcating branch corresponds to an
eigenvalue of d2L(q∗) changing from negative to positive, then the branch consists of
stationary points (q∗, β∗) that are not solutions of (1). Positive eigenvalues of d2L(q∗) do
not necessarily show that q∗ is not a solution of (1) (see Remark 1). For example, see page
668 of [21]. A proof of this theorem is given in [21].

Theorem 6. For each bifurcating branch guaranteed by Theorem 3, uuu is an eigenvector of d2L(
(

q∗

λ∗

)
+

tuuu, β∗ + β(t)) for sufficiently small t. Furthermore, if the corresponding eigenvalue is positive, then the
branch consists of unstable stationary points that are not solutions to (1).

2.11. Structure of the Symmetry Projection

The matrix PR(q∗) that projects (q, λ) ∈ <NK+K onto range (d2L(q∗))×K∗ by annihi-
lating Kp is important for numerical computations for equilibria of IB, since we may want
to take each equilibrium found by Newton’s method and take out any part in Kp. PR is
written as a function of q since its constitutive vectors yyy (from Definition 1) depend on q.
The following theorems clarify the structure of this projection.

17



Entropy 2022, 24, 1231

Theorem 7. PR(q) = I − PKp(q), where PKp =

(
A 000
000 000

)
. PR and PKp are (NK + K) ×

(NK + K). The matrix A is NK× NK with N2 blocks, {Aij}N
i,j=1, of size K× K, defined by

Ai,j =





(M− 1)yyyyyyT if 1 ≤ i = j ≤ M
−yyyyyyT if 1 ≤ i 6= j ≤ M

000 otherwise

For example, if M = N = 3, then

PR = I −




2yyyyyyT −yyyyyyT −yyyyyyT 000
−yyyyyyT 2yyyyyyT −yyyyyyT 000
−yyyyyyT −yyyyyyT 2yyyyyyT 000

000 000 000 000


 = I −




(N − 1) −1 −1 0
−1 (N − 1) −1 0
−1 −1 (N − 1) 0
0 0 0 0


⊗ yyyyyyT .

Proof. Theorem 2 gives the basis of Kp as {Yi}M−1
i=1 . Let Y be the (NK + K) × (M − 1)

matrix whose columns are the vectors {Yi}. For example, if M = 3 and N = 4, then

Y =




yyy 000
000 yyy
−yyy −yyy
000 000
000 000




. Thus, the matrix that projects onto Kp is PKp = Y(YTY)−1YT ,

and the projection matrix onto range(d2L(q∗)) is PR = I − PKp . Direct multiplication
of Y(YTY)−1YT , with an appeal to Lemma 34 in [25] to compute the inverse, shows that

PKp = 1
NyyyTyyy

(
A 000
000 000

)
. Dropping the constant yields the result. �

For the Information Bottleneck, the matrix PR is easy to calculate, since yyy = qi for any
i ∈ U . For example, when q = q 1

N
, then yyyTyyy = K

N2 and yyyyyyT = 1
N2 111, and so

PKp =
1

NK




(N − 1) −1 . . . −1 0
−1 (N − 1) . . . −1 0

...
...

...
...

−1 −1 . . . (N − 1) 0
0 0 0 0 0



⊗ 111

where 111 is a K× K matrix of 1s. Thus,

PR = INK+K −




(N − 1) −1 . . . −1 0
−1 (N − 1) . . . −1 0

...
...

...
...

−1 −1 . . . (N − 1) 0
0 0 0 0 0



⊗ 111.

Theorem 8. The symmetry group SM commutes with the matrix PR, which projects onto <NK+K \
Kp.

Proof. Let P := PR be the matrix that projects onto range d2L(q∗)×K∗ = <NK+K \ Kp.
Since <NK+K = range d2L(q∗)×K∗ ×Kp, then any x ∈ <NK+K can be decomposed in
the respective subspaces as x = r + k∗ + kp. Let σ be an arbitrary permutation matrix in

SM. Then σP
(

q
λ

)
= σP(r + k∗ + kp) = σ(r + v). Since range d2L(q∗), K∗ and Kp are

all SM invariant; then σ(r + v) ∈ range d2L(q∗)×K∗ implies that σ(r + v) = Pσ(r + v),
and σz ∈ Kp implies that Pσ(r + v) = Pσ(r + v + z). Thus, σPx = Pσx. �

18



Entropy 2022, 24, 1231

2.12. Visualizations of Sample Results

We illustrate these structures numerically. In [7], we introduced the toy “Four-blob”
probability distribution p(x, y) shown in Figure 1.

X

Y

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Figure 1. The probability distribution p(x, y) for the “Four-blob” toy problem for a system of interest
X → Y. We use this probability to illustrate some results of the bifurcation analysis reported here.

For the Information Distortion problem (3) [7,12,13] and the synthetic dataset com-
posed of a mixture of four Gaussians (Figure 1), we determined the bifurcation structure of
solutions to (3) by annealing in β and finding the corresponding stationary points to (1). A
typical run of the derived gradient dynamical system tends to follow the main bifurcation
branch SK → SK−1 from the fully symmetric uniform quantizer q 1

N
(N = 4 here) to the

fully resolved deterministic quantizer (hard clustering) seen at the end in Figure 2. The
permutation symmetry is also obvious there—the value of the cost function does not change
if the classes along the vertical axis in T are permuted/relabeled. The uniform quantizer q 1

N
(Item 1 in the figure) plays a special role in the formulation (3), as it is the unique solution to
the problem for β = 0 as the maximum entropy solution of maxq H(T|Y). Its loss of stability
at the first bifurcation for increasing β can hence be determined analytically and the first
bifurcation structure characterized completely. Because of the “perpetual kernel” of the
cost function in (4), the uniform quantizer is just one of a continuous set of “uninformative”
quantizers for the IB problem (4): all {q(t|y) : q(t|y) = f (t)}, having constant probability
of assignment of each y to class t, but the assignment weight can be different for different
classes. Such a structure does not change the value of the cost function in the IB problem (4)
(but does change it for (3), which hence does not have this degeneracy). We address the
degeneracy of the IB optimization by projecting onto the subspace that has the correct
symmetry (i.e., just the uniform quantizer q 1

N
in this case), as outlined in Remark 2.

A more-thorough structure of the bifurcation diagram, using the analysis presented
above, is shown in Figure 3.

Similar to the results we presented in [28], the close-up of the bifurcation at β ≈
1.038706 in Figure 3B shows a subcritical bifurcating branch (a first-order phase transition)
that consists of stationary points of Problem (1). By projecting the Hessian ∆q(G(q∗) +
βD(q∗)) onto each of the kernels referenced in Theorem 6, we determined that the points
on this subcritical branch are not solutions of (1), and yet they are solutions of (2).

Furthermore, observe that Figure 3B indicates that a saddle-node bifurcation occurs
at β ≈ 1.037479. That this is indeed the case was proved in [21]. In fact, for any problem
of the form (2), these are the only two types of bifurcations to be expected: pitchfork and
saddle-node.

19



Entropy 2022, 24, 1231

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

β

I(
X

;T
)

T

Y

1

Y

2

Y

3

Y

4

Y

5

Y

6

Figure 2. The bifurcations of the solutions (q∗, β) to the Information Distortion problem (3). For
the mixture of 4 well-separated Gaussians shown in Figure 1, the behavior of D(q) = I(X; T) as a
function of β is shown in the top panel, and some of the solutions q∗(T|Y) are shown in the bottom
panels. Item 1 shows the uniform quantizer q 1

N
, assigning equal probability of each y ∈ Y to belong

to one of the four clusters in T. Subsequent items 2–5 point to a set of partially resolved quantizations,
in which subsets of Y are assigned with high probability to one (2) or more (3–5) classes (dark colors,
close to 1), while other subsets are still unresolved (gray levels), albeit as a higher probability than q 1

N
(darker gray, as some of the classes are excluded after being resolved for another subset). Item 6 shows
an almost fully resolved quantizer at sufficiently high β. They become fully resolved (deterministic;
q(t|y) = 1 or 0) as β→ ∞ (not shown).

A B

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

β

I(
X

;Y
N

)

1.035 1.036 1.037 1.038 1.039 1.04 1.041 1.042 1.043

0

0.05

0.1

0.15

0.2

0.25

0.3

β

I(
X

;Y
N

)

A local solution of (4) and (7) 
A local solution of (4), not (7)
Not a solution of (4) nor (7)   
A bifurcation point             

Figure 3. (A) The bifurcation structure of stationary points of the Information Distortion problem (3),
a problem of form (2). We found these points by annealing in β and finding stationary points for
Problem (1) using the algorithm presented in [28]. A square indicates where a bifurcation occurs.
(B) A close-up of the subcritical bifurcation at β ≈ 1.038706, indicated by a square. Observe the
subcritical bifurcating branch, and the subsequent saddle-node bifurcation at β ≈ 1.037479, indicated
by another square. We applied Theorem 6 to show that the subcritical bifurcating branch is composed
of quantizers that are solutions of (3) but not of (1).

3. Conclusions and Discussion

The main goal of this contribution was to show that information-based distortion-
annealing problems such as (2) have an interesting mathematical structure. The most
interesting aspects of that mathematical structure are driven by the symmetries present in
the cost functions—their invariance to actions of the permutation group SN , represented as
relabeling of the reproduction classes. Such a structure would hold for any biclustering

20



Entropy 2022, 24, 1231

problem [4] that relies on the intrinsic interaction of a pair of variables for unsupervised
clustering. The second mathematical structure that we used successfully was bifurcation
theory, which allowed us to identify and study the discrete points at which the character
of the cost function changed. The combination of those two tools in [20] allowed us to
explicitly compute the value of the annealing parameter β at which the initial maximum at
the uniform quantizer q 1

N
of (1) loses stability. We concluded that for a fixed system C → Y

characterized by p(X, Y), this value is the same for both problems, that it does not depend
on the number of elements of the reproduction variable T, and that it is always greater
than 1. We further introduced an eigenvalue problem that links the critical values of β and
q for bifurcations, or phase transitions, branching off arbitrary intermediate solutions.

Even though the cost functions FIB (4) and FH (3) have similar properties, they also
differ in some important aspects. We have shown that the function FIB is degenerate since
its constitutive functions I(X; Y) and I(X; T) are not strictly convex in q. That introduces
additional invariances and singularities that are always preserved, which makes phase
transitions more difficult to detect (e.g., the ”uninformative quantizers” q(t|y) = f (t)
only) and post-transition directions more difficult to determine. In contrast, FH is strictly
convex except at points of phase transitions. The theory we developed here allows us
to identify bifurcation directions and determine their stability. Despite the presence of a
high-dimensional null space at bifurcations, the symmetries restrict the allowed transition
dimensions to multiple co-dimension 1 transitions, all related by group transformations.
We achieved that here with three main results. Theorem 8 extended the Equivariant Branch-
ing Lemma 1 to the Information Bottleneck case with additional translation invariance.
Theorem 4 identified specific conditions at which a bifurcation of the gradient flow (8)
occurs. This condition is computable analytically for the initial bifurcation off the uni-
form quantizer q 1

N
and with numeric continuation for subsequent bifurcation. Finally, in

Section 2.9, we provided checks for the types of bifurcations that occur, giving conditions
to detect saddle-node and pitchfork bifurcations and to determine whether pitchforks are
supercritical (second-order phase transitions) or subcritical (leading to first-order phase
transitions discontinuous in β). The combination of the three results, together with our pre-
vious results in [20], completely characterize the local bifurcation structure of Information
Bottleneck-type problems with or without the added translation symmetry.

Despite the further development of the bifurcation formalism for IB presented her,
there are still open questions that this manuscript did not resolve. In particular, we still
cannot confirm or reject the conjecture that the set of SK symmetric soft-clustering branches
connected through symmetry-breaking bifurcations leads to the global hard-clustering
optima at β→ ∞ (multiple equivalent solutions connected by the permutation symmetry
of the problem). We believe this is partially due to a discrepancy between practical obser-
vations and theoretical results. In particular, we and other practitioners [29,30] note that
the only observed symmetry-breaking bifurcations during optimization are of the kind
SM → SM−1, while the theory allows for arbitrary SM → Sm × Sn bifurcations. The latter
are known to happen and be stable in other biological systems and circumstances [26,31].
This suggests a research approach of comparing and contrasting the different systems
that possess the same SN symmetry and symmetry-breaking bifurcations to lead to break-
throughs in this application to optimization in the Information Bottleneck problem.

An additional open problem involves the use of continuous variables, already noted
in [5] and explored further in [32,33]. This approach, while important for many real-world
problems, involves the application of additional mathematical tools, namely Calculus of
Variations [34], which further increases the complexity of an otherwise already complex
problem. These difficulties are illustrated in a pair of papers [35,36] that use the continuous
formulation. They do present some significant results on conditions of learnability, but both
papers manage to only get bounds on β under which learnability (optimal solutions beyond
the “uninformative” quantizer) can be achieved. This is possibly due to the presence of
continuous spectra in covariance operators of continuous quantizers, something that we
avoid by focusing on finite spaces. As a consequence, here and in prior work [20], we

21



Entropy 2022, 24, 1231

show specific values for β for the initial bifurcation from the uniform quantizer, which
supports nontrivial clustering. We consider formulation with continuous variables beyond
the scope of this manuscript, but look forward to the development of additional techniques
to incorporate this important case in the bifurcation framework presented here. Regardless
of such developments, any practical problem with numeric optimization will involve
discretization of the continuous variables, which effectively converts a continuous problem
to the discrete state discussed here.

Author Contributions: Conceptualization, A.G.D.; Formal analysis, A.G.D. and A.E.P.; Investigation,
A.G.D. and A.E.P.; Writing–original draft, A.G.D. and A.E.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gray, R.M. Entropy and Information Theory; Springer: Berlin/Heidelberg, Germany, 1990.
2. Cover, T.; Thomas, J. Elements of Information Theory; Wiley Series in Communication; Wiley: New York, NY, USA, 1991.
3. Rose, K. Deteministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems.

Proc. IEEE 1998, 86, 2210–2239. [CrossRef]
4. Madeira, S.C.; Oliveira, A.L. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Comput. Biol.

Bioinform. 2004, 1, 24–45. [CrossRef] [PubMed]
5. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In 37th Annual Allerton Conference on Communication,

Control, and Computing; University of Illinois: Champaign, IL, USA, 1999.
6. Dimitrov, A.G.; Miller, J.P.; Aldworth, Z.; Gedeon, T.; Parker, A.E. Analysis of neural coding through quantization with an

information-based distortion measure. Netw. Comput. Neural Syst. 2003, 14, 151–176. [CrossRef]
7. Dimitrov, A.G.; Miller, J.P. Neural coding and decoding: Communication channels and quantization. Netw. Comput. Neural Syst.

2001, 12, 441–472. [CrossRef]
8. Gersho, A.; Gray, R.M. Vector Quantization and Signal Compression; Kluwer Academic Publishers: New York, NY, USA, 1992.
9. Mumey, B.; Gedeon, T. Optimal mutual information quantization is NP-complete. In Proceedings of the Neural Information

Coding (NIC) Workshop, Snowbird, UT, USA, 1–4 March 2003.
10. Slonim, N.; Tishby, N. Agglomerative Information Bottleneck. In Advances in Neural Information Processing Systems; Solla, S.A.,

Leen, T.K., Müller, K.R., Eds.; MIT Press: Cambridge, MA, USA, 2000; Volume 12, pp. 617–623.
11. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 2002.
12. Dimitrov, A.G.; Miller, J.P. Analyzing sensory systems with the information distortion function. In Proceedings of the Pacific

Symposium on Biocomputing 2001; Altman, R.B., Ed.; World Scientific Publishing Co.: Singapore, 2000.
13. Gedeon, T.; Parker, A.E.; Dimitrov, A.G. Information Distortion and Neural Coding. Can. Appl. Math. Q. 2003, 10, 33–70.
14. Slonim, N.; Somerville, R.; Tishby, N.; Lahav, O. Objective classification of galaxy spectra using the information bottleneck

method. Mon. Not. R. Astron. Soc. 2001, 323, 270–284. [CrossRef]
15. Bardera, A.; Rigau, J.; Boada, I.; Feixas, M.; Sbert, M. Image segmentation using information bottleneck method. IEEE Trans.

Image Process. 2009, 18, 1601–1612. [CrossRef]
16. Aldworth, Z.N.; Dimitrov, A.G.; Cummins, G.I.; Gedeon, T.; Miller, J.P. Temporal encoding in a nervous system. PLoS Comput.

Biol. 2011, 7, e1002041. [CrossRef]
17. Buddha, S.K.; So, K.; Carmena, J.M.; Gastpar, M.C. Function identification in neuron populations via information bottleneck.

Entropy 2013, 15, 1587–1608. [CrossRef]
18. Lewandowsky, J.; Bauch, G. Information-optimum LDPC decoders based on the information bottleneck method. IEEE Access

2018, 6, 4054–4071. [CrossRef]
19. Parker, A.E.; Dimitrov, A.G.; Gedeon, T. Symmetry breaking in soft clustering decoding of neural codes. IEEE Trans. Inf. Theory

2010, 56, 901–927. [CrossRef]
20. Gedeon, T.; Parker, A.E.; Dimitrov, A.G. The mathematical structure of information bottleneck methods. Entropy 2012, 14, 456–479.

[CrossRef]
21. Parker, A.E.; Gedeon, T. Bifurcations of a class of SN-invariant constrained optimization problems. J. Dyn. Differ. Equ. 2004,

16, 629–678. [CrossRef]
22. Golubitsky, M.; Stewart, I.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory II; Springer: New York, NY, USA, 1988.

22



Entropy 2022, 24, 1231

23. Golubitsky, M.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory I; Springer: New York, NY, USA, 1985.
24. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2000.
25. Parker, A.E. Symmetry Breaking Bifurcations of the Information Distortion. Ph.D. Thesis, Montana State University, Bozeman,

MT, USA, 2003.
26. Golubitsky, M.; Stewart, I. The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space; Birkhauser Verlag:

Boston, MA, USA, 2002.
27. Schott, J.R. Matrix Analysis for Statistics; John Wiley and Sons: New York, NY, USA, 1997.
28. Parker, A.; Gedeon, T.; Dimitrov, A. Annealing and the rate distortion problem. In Advances in Neural Information Processing

Systems 15; Becker, S.T., Obermayer, K., Eds.; MIT Press: Cambridge, MA, USA, 2003; Volume 15, pp. 969–976.
29. Dimitrov, A.G.; Cummins, G.I.; Baker, A.; Aldworth, Z.N. Characterizing the fine structure of a neural sensory code through

information distortion. J. Comput. Neurosci. 2011, 30, 163–179. [CrossRef] [PubMed]
30. Schneidman, E.; Slonim, N.; Tishby, N.; de Ruyter van Steveninck, R.R.; Bialek, W. Analyzing neural codes using the information

bottleneck method. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2003; Volume 15.
31. Stewart, I. Self-Organization in evolution: A mathematical perspective. Philos. Trans. R. Soc. 2003, 361, 1101–1123. [CrossRef]

[PubMed]
32. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. In Proceedings of the Advances

in Neural Information Processing Systems 16 (NIPS 2003), Vancouver, BC, Canada, 8–13 December 2003.
33. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information Bottleneck for Gaussian Variables. J. Mach. Learn. Res. 2005,

6, 165–188.
34. Gelfand, I.M.; Fomin, S.V. Calculus of Variations; Dover Publications: Mineola, NY, USA 2000.
35. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the information bottleneck. In Proceedings of the Uncertainty in

Artificial Intelligence, PMLR, Virtual, 3–6 August 2020; pp. 1050–1060.
36. Ngampruetikorn, V.; Schwab, D.J. Perturbation theory for the information bottleneck. Adv. Neural Inf. Process. Syst. 2021,

34, 21008–21018.

23



Citation: Agmon, S. The Information

Bottleneck’s Ordinary Differential

Equation: First-Order Root Tracking

for the Information Bottleneck.

Entropy 2023, 25, 1370. https://

doi.org/10.3390/e25101370

Academic Editors: Jan Lewandowsky

and Gerhard Bauch

Received: 16 May 2023

Revised: 8 August 2023

Accepted: 9 August 2023

Published: 22 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

The Information Bottleneck’s Ordinary Differential Equation:
First-Order Root Tracking for the Information Bottleneck
Shlomi Agmon

School of Computer Science and Engineering, The Hebrew University of Jerusalem,
Jerusalem 9190401, Israel; shlomi.agmon@mail.huji.ac.il

Abstract: The Information Bottleneck (IB) is a method of lossy compression of relevant information.
Its rate-distortion (RD) curve describes the fundamental tradeoff between input compression and the
preservation of relevant information embedded in the input. However, it conceals the underlying
dynamics of optimal input encodings. We argue that these typically follow a piecewise smooth
trajectory when input information is being compressed, as recently shown in RD. These smooth
dynamics are interrupted when an optimal encoding changes qualitatively, at a bifurcation. By lever-
aging the IB’s intimate relations with RD, we provide substantial insights into its solution structure,
highlighting caveats in its finite-dimensional treatments. Sub-optimal solutions are seen to collide or
exchange optimality at its bifurcations. Despite the acceptance of the IB and its applications, there
are surprisingly few techniques to solve it numerically, even for finite problems whose distribution
is known. We derive anew the IB’s first-order Ordinary Differential Equation, which describes the
dynamics underlying its optimal tradeoff curve. To exploit these dynamics, we not only detect IB
bifurcations but also identify their type in order to handle them accordingly. Rather than approaching
the IB’s optimal tradeoff curve from sub-optimal directions, the latter allows us to follow a solution’s
trajectory along the optimal curve under mild assumptions. We thereby translate an understanding
of IB bifurcations into a surprisingly accurate numerical algorithm.

Keywords: Information Bottleneck; bifurcations; ordinary differential equation; numerical approximation

1. Introduction

The Information Bottleneck (IB) describes the fundamental tradeoff between the
compression of information on an input X to the preservation of relevant information on a
hidden reference variable Y. Formally, let X and Y be random variables defined, respectively,
on finite source and label alphabets X and Y , and let pY|X(y|x)pX(x) be their joint probability
distribution, or p(y|x)p(x) for short (without loss of generality, p(x) > 0 for every x ∈ X
and so pY|X is well-defined). One seeks [1] to maximize the information I(Y; X̂) over
all Markov chains Y ←→ X ←→ X̂, subject to a constraint on the mutual information
I(X; X̂) := Ep(x̂|x)p(x) log p(x̂|x)

p(x̂) ,

IY(IX) := max
p(x̂|x)

{
I(Y; X̂) : I(X; X̂) ≤ IX

}
. (1)

The latter maximization is over conditional probability distributions or encoders p(x̂|x). The
graph of IY(IX) is the IB curve. We write T := |X̂ |, for a codebook or representation alphabet
X̂ . An encoder p(x̂|x) which achieves the maximum in (1) is IB optimal or simply optimal.

Written in a Lagrangian formulation L := I(X; X̂)− β I(Y; X̂) with β > 0 (normal-
ization constraints omitted for clarity), [1] showed that a necessary condition for extrema
in (1) is that the IB Equations hold. Namely,

24



Entropy 2023, 25, 1370

p(x̂|x) = p(x̂)
Z(x, β)

exp
{
−β DKL

[
p(y|x)||p(y|x̂)

]}
, (2)

p(y|x̂) = ∑
x

p(y|x)p(x|x̂) , and (3)

p(x̂) = ∑
x

p(x̂|x)p(x) . (4)

In these, Z(x, β) := ∑x̂ p(x̂) exp {−βDKL[p(y|x)||p(y|x̂)]} is the partition function, DKL
is the Kullback–Leibler divergence, DKL[p||q] := ∑i p(i) log p(i)/q(i), and p(x|x̂) in (3) is
defined by the Bayes rule p(x̂|x)p(x)/p(x̂). The IB Equations (2)–(4) are a necessary condition
for an extremum of L also when it is considered as a functional in three independent
families of normalized distributions {p(x̂|x)}, {p(y|x̂)} and {p(x̂)}, ref. [1] (Section 3.3),
rather than in {p(x̂|x)} alone. While satisfying them is necessary to achieve the curve (1),
it is not sufficient. Indeed, Equations (2)–(4) have solutions that do not achieve curve (1),
and so are sub-optimal. This results in sub-optimal IB curves, which intersect or bifurcate as
the multiplier β varies (see Section 3.4 in [1]).

Iterating over the IB Equations (2)–(4) is essentially Blahut–Arimoto’s algorithm vari-
ant for the IB (BA-IB) due to [1], brought below for reference. While the minimization
problem (1) can be solved exactly in special cases [2] (Section IV), exact solutions of an
arbitrary finite IB problem whose distribution is known are usually obtained nowadays
using BA-IB; see [3] (Section 3) for a survey of other computation approaches. Write BAβ

for a single iteration of BA-IB. Since BAβ encodes an iteration over the IB Equations (2)–(4),
then an encoder p(x̂|x) is its fixed point, BAβ[p(x̂|x)] = p(x̂|x), if and only if it satisfies the
IB Equations. Or equivalently, if p(x̂|x) is a root of the IB operator,

F := Id− BAβ , (5)

in a manner similar to [4]. We shall then call it an IB root. Agmon et al. [4] used a
similar formulation of rate-distortion (RD) and its relations in [5] to the IB, to show that
BA-IB suffers from critical slowing down near critical points, where the marginal p(x̂) of a
representor x̂ in an optimal encoder vanishes gradually. That is, the number of BA-IB
iterations required until convergence increases dramatically as one approaches such points.

Formulating fixed points of an iterative algorithm as operator roots can also be lever-
aged for computational purposes in a constrained optimization problem, as noted re-
cently by [6] for RD. Indeed, let F(·, β) be a differentiable operator on Rn for some n > 0,
F : Rn ×R → Rn, where β is a (real) constraint parameter. Suppose now that (x, β) is a
root of F,

F(x, β) = 0 , (6)

such that x = x(β) is a differentiable function of β. Write DxF :=
(

∂
∂xj

Fi
)

i,j for its Jacobian

matrix, and DβF :=
(

∂
∂β Fi

)
i for its vector of partial derivatives with respect to β. The point

(x, β) of evaluation is omitted whenever understood. As is often discussed along with the
Implicit Function Theorem, e.g., [7], applying the multivariate chain rule to F(x(β), β) in (6)
yields an implicit ordinary differential equation (ODE)

DxF dx
dβ = −DβF , (7)

for the roots of F. Plugging in explicit expressions for the first-order derivative tensors DxF
and DβF, one can specialize (7) to a particular setting, which allows one to compute the
implicit derivatives dx

dβ numerically. While [6] discovered the RD ODE this way, they showed
that (7) can be generalized to arbitrary order under suitable differentiability assumptions.
Namely, they showed that the derivatives dl x

dβl implied by F = 0 (6) can be computed via
a recursive formula, for an arbitrary-order l > 0. By specializing this with the higher

25



Entropy 2023, 25, 1370

derivatives of Blahut’s algorithm [8], they obtained a family of numerical algorithms for
following the path of an optimal RD root (Part I there).

In this work, we specialize the implicit ODE (7) to the IB. Namely, we plug into (7)
the first-order derivatives of the IB operator Id− BAβ (5) to obtain the IB ODE, and then
use it to reconstruct the path of an optimal IB root, in a manner similar to [6]. This is not
to be confused with the gradient flow (of arbitrary encoders) towards an optimal root at a
fixed β value, described in [9] (Equation (6)) by an ODE, which is a different optimization
approach. In contrast, the implicit Equation (7) describes how a root evolves with β. So, in
principle, one may compute an optimal IB root once and then follow its evolution along
the IB curve (1). While the discovery of the IB ODE is due to [10], we derive it here anew in
a form that is better suited for computational (and other) purposes, especially when there
are fewer possible labels Y than input symbols X , as often is the case. To that end, we
consider several natural choices of a coordinate system for the IB in Section 2 and compare
their properties. This allows us to make an apt choice for the ODE’s variable x in (7). In
Section 3, we present the IB ODE in these coordinates (Theorem 1). This enables one to
numerically compute the first-order implicit derivatives at an IB root, if it can be written as
a differentiable function in β. So long as an optimal root remains differentiable, a simple
way to reconstruct its trajectory is by taking small steps at a direction determined by the
IB ODE. This is Euler’s method for the IB. The error accumulated by Euler’s method from
the true solution path is roughly proportional to the step size, when small enough. For
comparison, reverse deterministic annealing [11] with BA-IB is nowadays common for
computing IB roots. The dependence of its error on the step size is roughly the same as in
Euler’s method. This is discussed in Section 4, where we combine Euler’s method with
BA-IB to obtain a modified numerical method whose error decreases at a faster rate than
either of the above.

However, the differentiability of optimal IB roots breaks where the solution changes
qualitatively. Such a point is often called a phase transition in the IB literature, or a bifurca-
tion—namely, a point where there is a change in the problem’s number of solutions; e.g., [12]
(Section 2.3) for basic definitions. As noted already by Tishby et al. in [1], their existence
in the IB stems from restricting the cardinality of the representation alphabet X̂ . Since IB
roots are the solutions of the fixed-point Equations (2)–(4), then the gap between achieving
the IB curve (1) to merely satisfying these Equations lies in understanding the solution
structure of the IB operator (5), or equivalently its bifurcations. While IB bifurcations were
analyzed in several works, including [9,13,14] and others, little is known about the practical
value of understanding them. In [15,16] it was shown that they correspond to the onset
of learning new classes, and in [4] that they inflict a hefty computational cost to BA-IB.
Following [6], this work demonstrates that understanding bifurcations can be translated
to a new numerical algorithm to solve the IB. To that end, merely detecting a bifurcation
along a root’s path does not suffice. Rather, it is also necessary to identify its type, as this
allows one to handle the bifurcation accordingly. One can then continue following the path
dictated by the IB ODE.

Almost all of the literature on IB bifurcations is based on a perturbative approach, in a
manner similar to [17] (Section IV.C). That is, suppose that the first variation

∂

∂ε
L[p(x̂|x) + ε∆p(x̂|x); β]

∣∣∣
ε=0

(8)

of the IB LagrangianL vanishes, for every perturbation ∆p(x̂|x). This condition is necessary
for extremality and implies [1] the IB Equations (2)–(4). Then,

(
p(x̂|x), β

)
is said to be a

phase transition only if there exists a particular direction ∆q(x̂|x) at which p(x̂|x) can be
perturbed without affecting the Lagrangian’s value to second order,

∂2

∂ε2L[p(x̂|x) + ε∆q(x̂|x); β]
∣∣∣
ε=0

= 0 . (9)

26



Entropy 2023, 25, 1370

For finite IB problems, condition (8) boils down to requiring that the gradient of L vanishes,
while condition (9) is equivalent to requiring that its Hessian matrix has a non-trivial kernel
(as both are conditions on the directional derivatives, e.g., [18]). The works [9,14–16] take
such an approach, while [13] focuses on one type of IB bifurcations.

While a perturbative approach is common in analyzing phase transitions, it has
several shortcomings when applied to the IB, as noted by [10]. First, the IB’s Lagrangian L
is constant on a linear manifold of encoders p(x̂|x) [9] (Section 3.1), and so condition (9)
leads to false detections. While this was considered there and in its sequel [19] by giving
subtle conditions on the nullity of the second variation in (9), in practice it is difficult to tell
whether a particular direction ∆q(x̂|x) is in the kernel due to a bifurcation or due to other
reasons, as they note. Second, note that a finite IB problem can be written as an infinite RD
problem [20]. As discussed in Section 5, representing an IB root by a finite-dimensional
vector leads to inherent subtleties in its computation. Among other things, these may well
result in a bifurcation not being detectable under certain circumstances (Section 5.3). To our
understanding, many of the difficulties that hindered the understanding of IB bifurcations
throughout the years are, in fact, artifacts of finite dimensionality. Third, conditions (8)
and (9) do not suffice to reveal the type of the bifurcation, information which is necessary
for handling it when following a root’s path. While [19] (Section 2.9) give conditions
for identifying the type, these partially agree with our findings and do not suggest a
straightforward way for handling a bifurcation.

Rather than imposing conditions on the scalar functional L, our approach to IB bifur-
cations follows that of [6] for RD. That is, we rely on the fact that the IB’s local extrema are
fixed points of an iterative algorithm, and so they also satisfy a vector equation F = 0 (6).
We shall now consider a toy problem to motivate our approach. “Bifurcation Theory can
be briefly described by the investigation of problem (6) in a neighborhood of a root where DxF
is singular” [21]. Indeed, recall that if DxF is non-singular at a root (x0, β0), then by the
Implicit Function Theorem (IFT), there exists a function x(β) through the root, x(β0) = x0,
which satisfies F

(
x(β), β

)
= 0 (6) at the vicinity of β0. The function x(β) is then not only

unique at some neighborhood of (x0, β0), but further, x(β) inherits the differentiability
properties of F [21] (I.1.7). In particular, if the operator F is real-analytic in its variables—as
with the IB operator (5)—then so is its root x(β). While a bifurcation can occur only if DxF
is singular, singularity is not sufficient for a bifurcation to occur. For example, the roots of
the operator

F(x, y; β) := (x− β, 0) (10)

on R2 consist of the vertical line x = β, {(β, y) : y ∈ R}, for every β ∈ R. For a fixed
y, each such root is real-analytic in β. However, one cannot deduce this directly from

the IFT, as the Jacobian
(

1 0
0 0

)
of F (10) is always singular. Note, however, that in this

particular example, the x coordinate alone suffices to describe the problem’s dynamics,
and so its y coordinate is redundant. One can ignore the y coordinate by considering the
“reduction” F̃(x; β) := x − β of F to R1. Further, discarding y also removes or mods-out

the direction
(

0
1

)
from ker DxF, which does not pertain to a bifurcation in this case. This

results in the non-singular Jacobian matrix (1) of F̃, and so it is now possible to invoke the
IFT on the reduced problem. The root guaranteed by the IFT can always be considered
in R2 by putting back a redundant y coordinate at some fixed value. In [6], a similarly
defined reduction of finite RD problems was used to show that their dynamics are piecewise
real-analytic under mild assumptions.

The intuition behind our approach is similar to [20] (Section III), who observed that
“in the IB one can also get rid of irrelevant variables within the model”. Nevertheless, the
details differ. Mathematically, we consider the quotient V/W of a vector space V by its
subspace W. Elements of V are identified in the quotient if they differ by an element of
W: v1 ∼ v2 ⇔ v1 − v2 ∈ W, for v1, v2 ∈ V. This way, one “mods-out” W, collapsing it
to a single point in the quotient vector space V/W. The resulting problem is smaller and
so easier to handle, whether for theoretical or practical purposes (although not needed

27



Entropy 2023, 25, 1370

for our purposes, this can be made precise in terms of the tangent space of a differentiable
manifold; cf., Section 3 in [22]). This is how the one-dimensional vector space ker DxF in
our toy example (10) was reduced to the trivial ker Dx F̃ = {0}. However, one needs to
understand the solution structure, for example, to ensure that the directions in W are not
due to a bifurcation. We note in passing that V/W has a simple geometric interpretation
as the translations of W in V, in a manner reminiscent of its better-known counterparts of
quotient groups and rings; e.g., [23] (Section 10.2). To keep things simple, however, we
shall not use quotients explicitly. Instead, the reader may simply consider the sequel as a
removal of redundant coordinates, for we shall only remove coordinates that the reader
does not care about anyway, as in the above toy example.

To achieve this approach, one needs to consider the IB in a coordinate system that
permits a simple reduction as in (10), and to understand its solution structure. We achieve
these in Section 5 by exploiting two properties of the IB which are often overlooked. First,
proceeding with the coordinates’ exchange of Section 2, the intimate relations [5,20] of the
IB with RD suggest a “minimally sufficient” coordinate system for the IB, just as the x axis is
for problem (10). Reducing an IB root to these coordinates is a natural extension of reduction
in RD [6]. Reduction of IB roots facilitates a clean treatment of IB bifurcations. These
are roughly divided into continuous and discontinuous bifurcations, in Sections 5.2 and 5.3,
respectively. While understanding continuous bifurcations is straightforward, the IB’s
relations with RD allow us to understand the discontinuous bifurcation examples of which
we are aware as a support switching bifurcation in RD, by leveraging [6] (Section 6). A second
property is the analyticity of the IB operator (5), which stems from the analyticity of the IB
Equations (2)–(4). By building on the first property, analyticity leads us to argue that the
Jacobian of the IB operator (5) is generally non-singular (Conjecture 1) when considered in
reduced coordinates as above. As an immediate consequence, the dynamics underlying
the IB curve (1) are piecewise real-analytic in β, in a manner similar to RD. Indeed, the
fact that there exist dynamics underlying the IB curve (1) in the first place can arguably
be attributed to analyticity (see the discussion following Conjecture 1). Combining both
properties sheds light on several subtle yet important practical caveats in solving the IB
(Section 5.3) due to using finite-dimensional representations of its roots. These subtleties
are compatible with our numerical experience. The results here suggest that, unlike RD,
the IB is inherently infinite-dimensional, even for finite problems.

Finally, Section 6 combines the modified Euler method of Section 4 with the under-
standing of IB bifurcations in Section 5, to obtain an algorithm for following the path of
an optimal IB root, in Section 6.1. That is, First-order Root Tracking for the IB (IBRT1).
For simplicity, we focus mainly on continuous IB bifurcations, as these are the ones most
often encountered in practice (see Section 6.3 on the algorithm’s handling of discontinuous
bifurcations). The resulting approximations in the information plane are surprisingly close
to the true IB curve (1), even on relatively sparse grids (i.e., with large step sizes), as seen in
Figure 1. See Section 6.2 for the numerical results underlying the latter. The reasons for
this are discussed in Section 6.3, along with the algorithm’s basic properties. Unlike BA-IB,
which suffers from an increased computational cost near bifurcations, our IBRT1 algorithm
suffers from a reduced accuracy there, in a manner similar to root tracking for RD [6].

With that, we note that there are standard techniques in Bifurcation Theory for han-
dling a non-trivial kernel of DxF at a root. For example, the Lyapunov–Schmidt reduction
replaces the high-dimensional problem F = 0 (6) onRn by a smaller but equivalent problem
Φ = 0, where Φ(·, β) maps vectors in the (right) kernel of DxF to vectors in its left kernel.
To achieve this, it separates the kernel and non-kernel directions of the problem, essentially
handling each in turn; e.g., [21] (Theorem I.2.3) or [24] (Section 9.7). This technique is
generic, as it does not rely on any particular property of the problem at hand. As such, it
is considerably more involved than removing redundant coordinates, which requires an
understanding of the solution structure. In contrast, reduction in the IB is straightforward.
For the purpose of following a root’s path, carrying on with redundant kernel directions is
burdensome, computationally expensive, and sensitive to approximation errors. Applying

28



Entropy 2023, 25, 1370

Lyapunov–Schmidt to our toy problem (10), for instance, reduces F = 0 (6) to choosing a
continuously differentiable function Φ on the y-axis there (which is obtained by first solving
for x = β; see the proof of Theorem I.2.3 in [21] for details). However, since y is redundant
in this example, then solving for Φ can provide no useful information on the dynamics
of its roots. In [19], a variant of the Lyapunov–Schmidt reduction was used to consider
IB bifurcations due to symmetry breaking. While our findings are in partial agreement
with theirs for continuous IB bifurcations, they differ for discontinuous bifurcations (see
Sections 5.2 and 5.3).

0.0 0.5 1.0

I(X; X̂)

0.00

0.06

0.12

I
(Y

;X̂
)

Exact

IBRT1, 20 points

IBRT1, 100 points

IBRT1, 1200 points

Figure 1. The approximate IB curves yielded by our algorithm, based on the IB ODE (16). Our
First-order Root Tracking algorithm for the IB (IBRT1) of Section 6.1 was used to approximate
the optimal IB roots of a binary symmetric channel with crossover probability 0.3 and a uniform
source, BSC(0.3), for several grid densities. The points in the information plane yielded from
these approximations are plotted on top of the problem’s exact solution (see Appendix E). Despite
the algorithm’s approximation errors (Section 6.2), the approximate curves it yields are visually
indistinguishable from the true IB curve (1), even on relatively few grid points. The reasons for this
are discussed below (Section 6.3).

Notations

Vectors are written in boldface x, and scalars in regular font x. A distribution p per-
taining to a particular multiplier value β of the IB Lagrangian L is denoted with a subscript,
pβ. Blahut–Arimoto’s algorithm for the IB (BA-IB) is brought below as Algorithm 1, with a
single iteration over the IB Equations (2)–(4) (in steps 1.4–1.8) denoted BAβ. The probability
simplex on a set S is denoted ∆[S] (see Section 5.1). The support of a probability distribution
p on S is supp p := {s ∈ S : p(s) 6= 0}. The source, label, and representation alphabets of an
IB problem are denoted X ,Y , and X̂ , respectively; we write T := |X̂ |. δ denotes Dirac’s
delta function, δi,j = 1 if i = j, and zero otherwise.

29



Entropy 2023, 25, 1370

Algorithm 1 Blahut–Arimoto for the Information Bottleneck (BA-IB), [1].

1: function BA-IB(p0(x̂|x); pY|X pX , β)
Input:

An initial encoder p0(x̂|x), a problem definition p(y|x)p(x), and β > 0.
Output:

A fixed point p(x̂|x) of the IB Equations (2)–(4).
2: Initialize i← 0.
3: repeat
4: pi(x̂)← ∑x pi(x̂|x)p(x)
5: pi(x|x̂)← pi(x̂|x)p(x)/pi(x̂)

6: pi(y|x̂)← ∑x p(y|x)pi(x|x̂)
7: Zi(x, β)← ∑x̂ pi(x̂) exp

{
− β DKL

[
p(y|x)||pi(y|x̂)

]}

8: pi+1(x̂|x)← pi(x̂)
Zi(x,β) exp

{
− β DKL

[
p(y|x)||pi(y|x̂)

]}

9: i← i + 1
10: until convergence.
11: end function

2. Coordinates Exchange for the IB

Just as a point in the plane can be described by different coordinate systems, so can
IB roots. As demonstrated recently by [6] for the related rate-distortion theory, picking
the right coordinates matters when analyzing its bifurcations. The same holds also for
the IB. Our primary motivations for exchanging coordinates are to reduce computational
costs and to mod-out irrelevant kernel directions, as explained in Section 1. In this Section,
we discuss three natural choices of a coordinate system for parameterizing IB roots and
the reasoning behind our choice for the sequel before setting to derive the IB ODE in the
following Section 3. This work is complemented by the later Section 5.1, which facilitates a
transparent analysis of IB bifurcations.

IB roots have been classically parameterized in the literature by (direct) encoders
p(x̂|x), following [1]. Considering the BA-IB Algorithm 1 reveals two other natural choices,
illustrated by Equation (11) below. First, an encoder p(x̂|x) determines a cluster marginal
p(x̂) and an inverse encoder p(x|x̂), via steps 4 and 5 of Algorithm 1 (denoted 1.4 and 1.5, for
short), respectively. These can be interpreted geometrically as p(x̂)-weighted points qx̂(x)
in the simplex ∆[X ] of X, so long as they are well-defined, ∀x̂ p(x̂) 6= 0. No more than
|X |+ 1 points in the simplex are required to represent an IB root [2]. The latter is readily
seen to analyze the IB in these coordinates, although it pre-dates [1] and has generally
escaped broader attention. Second, an inverse encoder determines a decoder p(y|x̂), via
step 6. Along with the cluster marginal,

(
p(y|x̂), p(x̂)

)
can be similarly interpreted as

p(x̂)-weighted points rx̂(y) in the simplex ∆[Y ] of Y. This choice of coordinates is implied
already by Theorem 5 in [1]. Cycling around Equation (11), a decoder

(
p(y|x̂), p(x̂)

)

determines via steps 7 and 8 a new encoder, which may differ from the one with which we
have started. For notational simplicity, we shall usually write

(
p(y|x̂), p(x̂)

)
rather than(

rx̂(y), p(x̂)
)

for decoder coordinates (similarly for inverse encoder coordinates).

p(x̂|x)Steps 1.4,1.5

��(
p(x|x̂), p(x̂)

)

Step 1.6

AA

(
p(y|x̂), p(x̂)

)

Steps 1.7,1.8nn

(11)

The above allows us to define three BA operators as the composition of three consecutive
maps in Equation (11), encoding an iteration of Algorithm 1. When starting at an encoder
p(x̂|x), its output is a newly defined encoder. Similarly, when starting at one of the other
two vertices, it sends an inverse encoder

(
p(x|x̂), p(x̂)

)
or a decoder pair

(
p(y|x̂), p(x̂)

)
to

30



Entropy 2023, 25, 1370

a newly defined one. By abuse of notation, we denote all three compositions by BAβ, with
the choice of coordinate system mentioned accordingly. Indeed, these are representations of
a single BA-IB iteration in three different coordinate systems, and so may be considered as
distinct representations of the same operator. For completeness, BAβ in decoder coordinates
is spelled out explicitly in Equation (A1) in Appendix A. A newly defined encoder (or
inverse encoder or decoder) at a cycle’s completion need not generally equal the one at
which we have started. These are equal precisely at IB roots, when the IB Equations (2)–(4)
hold. Therefore, the choice of a coordinate system does not matter then, and so moving
around Equation (11) from one vertex to another yields different parameterizations of the
same root, at least when ∀x̂ p(x̂) 6= 0. In particular, this shows that the inverse encoders
qx̂ in ∆[X ] of an IB root are in bijective correspondence with its decoders rx̂ in ∆[Y ], an
observation which shall come in handy in Section 5.

Next, we consider how well each of these coordinate systems can serve for following
the path of an IB root. The minimal number of symbols x̂ needed to write down an IB root
typically varies with the constraints, cf., [1] (Section 3.4) or [2] (Section II.A). Therefore,
inverse encoder and decoder coordinates are better suited than encoder coordinates for
considering the dynamics of a root with β, as they allow us to consider its evolution via
a varying number of points in a fixed space, ∆[X ] or ∆[Y ], respectively. Indeed, a direct
encoder p(x̂|x) can be interpreted geometrically as a point in the |X |-fold product ∆[X̂ ]X of
simplices ∆[X̂ ] [9] (Section 2). So, if a particular symbol x̂′ is not in use anymore, p(x̂′) = 0,
then one is forced to choose between replacing ∆[X̂ ] by a smaller space ∆[X̂ \ {x̂′}] or
carrying on with a redundant symbol x̂′. The latter leads to non-trivial kernels in the
IB due to duplicate clusters (e.g., Section 3.1 there), making it difficult to tell whether a
particular kernel direction pertains to a bifurcation (or to a “perpetual kernel” [9,19]). In
contrast, when considered in decoder coordinates, for example, an IB root is nothing but
p(x̂)-weighted paths r1, . . . , rT in ∆[Y ], with β 7→ rx̂(β) a path for each x̂. And so, once a
symbol x̂′ is not needed anymore, then one can discard the path rx̂′ without replacing the
underlying space ∆[Y ]. This permits the clean treatment of IB bifurcations in Section 5.

The computational cost of solving a first-order ODE as in (7) numerically in dx
dβ de-

pends on dim x. Much of this cost is due to computing a linear pre-image under DxF,
which is of order O(dim x)3 [25] (Section 28.4); cf., Section 6. Representing an IB root
on T clusters in encoder coordinates requires |X | · T dimensions (ignoring normaliza-
tion constraints), in inverse encoder coordinates (|X |+ 1) · T dimensions, and in decoder
coordinates (|Y|+ 1) · T dimensions. Thus, the computational cost is lowest in decoder
coordinates, at least when there are fewer possible labels Y than input symbols X .

A priori, one might expect that derivatives with respect to β vanish when the solution
barely changes, regardless of the choice of coordinate system. For example, at a very
large “β = ∞” value, an obvious IB root is the diagonal encoder (setting X̂ := X and
p(x̂|x) := δx,x̂), as can be seen by a direct examination of the IB Equations (2)–(4). It
consists of one IB cluster of weight (or mass) p(x) at pY|X=x ∈ ∆[Y ] for each x ∈ X , and
so one might expect that it would barely change so long as β is very large. However, the

logarithmic derivative
d log pβ(x̂|x)

dβ in encoder coordinates need not vanish even when the

derivatives
d log pβ(y|x̂)

dβ and
d log pβ(x̂)

dβ in decoder coordinates do (see Section 3 on logarithmic
coordinates), as seen to the right of Figure 2. Indeed, given the derivative in decoder
coordinates, one can exchange it to encoder coordinates by

dlog pβ(x̂|x)
dβ

= Jenc
dec

dlog pβ(y′|x̂′)
dβ

+ Jenc
mrg

dlog pβ(x̂′)
dβ

− DKL
[
p(y|x)||pβ(y|x̂)

]
+ ∑

x̂′′
pβ(x̂′′|x)DKL

[
p(y|x)||pβ(y|x̂′′)

]
, (12)

where Jenc
dec and Jenc

mrg are the two coordinate exchange Jacobian matrices of orders
(T · |X |)× (T · |Y|) and (T · |X |)× T, respectively, given by Equations (A68) and (A70) in

31



Entropy 2023, 25, 1370

Appendix B.4.2. And so,
d log pβ(x̂|x)

dβ would often be non-zero even if both
d log pβ(y|x̂)

dβ and
d log pβ(x̂)

dβ vanish. This unintuitive behavior of the derivative in encoder coordinates is due
to the explicit dependence of the IB’s encoder Equation (2) on β. This dependence is the
source of the last two terms in Equation (12) (see Equation (A73)). The comparison between
encoder and inverse encoder coordinates can be seen to be similar. See Appendix B.4 for
further details.

3 4 5

log2 β

−4

−2

0

lo
g

1
0
‖d

lo
g
p

d
β
‖ 2

Figure 2. Derivatives’ norm by coordinate system, for the exact solution of BSC(0.3) with a uniform
source, as in Figure 1; see Appendix E. The derivative’s L2-norm is plotted in green for encoder
coordinates and blue for decoder coordinates. The solution barely changes at high β values, and so
the derivative in decoder coordinates is smaller (see main text). Nevertheless, the derivative in encoder
coordinates does not vanish then, due to Equation (12). At low β values, however, the derivative
in either coordinate system may generally be large. Both vanish to the left of the bifurcation in
this problem (dashed red vertical), as the solution there is trivial (single-clustered). The derivatives
diverge near the bifurcation (to its right) regardless of the coordinate system, as might be expected by
the implicit ODE (7)—see also Section 6.1.

In light of the above, we proceed with decoder coordinates in the sequel.

3. Implicit Derivatives at an IB Root and the IB’s ODE

We now specialize the implicit ODE (7) (of Section 1) to the IB, using the decoder coor-
dinates of the previous Section 2. This allows us to compute first-order implicit derivatives
at an IB root (Theorem 1) with remarkable accuracy, under one primary assumption—that
the root is a differentiable function of β. While differentiability breaks at IB bifurcations
(Section 5), this allows us to reconstruct a solution path from its local approximations in the
following Section 4, so long as it holds.

To simplify calculations, we take the logarithm
(

log p(y|x̂), log p(x̂)
)

of the decoder
coordinates of Section 2 as our variables. Exchanging the BAβ operator to log-decoder
coordinates is immediate, by writing log BAβ[exp (log p(y|x̂)), exp (log p(x̂))]. For short,
we denote it BAβ[log p(y|x̂), log p(x̂)] when in these coordinates, by abuse of notation.
Similarly, exchanging the IB ODE (below) back to non-logarithmic coordinates is immediate,
via d

dβ log p = 1
p

d
dβ p. In Section 6, we shall assume that p(x̂) never vanishes. To ensure that

taking logarithms is well-defined, we require that no decoder coordinate p(y|x̂) vanishes
(while it may have a well-defined derivative d

dβ p(y|x̂) even with a vanished coordinate,
calculation details would differ). A sufficient condition for that is that p(y|x) > 0 for every
x and y (Lemma A1 in Appendix A).

Next, define a variable x ∈ RT·(|Y|+1) as the concatenation of the vector(
log pβ(y|x̂)

)
y∈Y ,x̂∈X̂ with

(
log pβ(x̂)

)
x̂∈X̂ . Differentiating ∂/∂ log p with respect to log-

32



Entropy 2023, 25, 1370

probabilities is given by p · ∂
∂p , by the chain rule (setting u := log p, d f (p)

du = d f
dp

dp
du , or

equivalently d f
d log p = p · d f

dp ; see Appendix B.1 for a gentler treatment). This gives mean-
ing to the Jacobian matrix Dx(·) with respect to our logarithmic variable x. The Jacobian
Dlog p(y|x̂),log p(x̂)BAβ of a single Blahut–Arimoto iteration in these log-decoder coordinates
is a square matrix of order T · (|Y|+ 1). Its (T · |Y|)× (T · |Y|) upper-left block (below)
corresponds to perturbations of BA’s output log-decoder log p(y|x̂) due to varying an input
log-decoder log p(y′|x̂′). Since we prime input but not output coordinates, this is to say that
the columns of this block are indexed by pairs (y′, x̂′) and its rows by (y, x̂) (one could also
enumerate Y := {y1, . . . , y|Y|} and X̂ := {x̂1, . . . , x̂T} explicitly, replacing (y, x̂) and (y′, x̂′)
throughout by (yi, x̂j) and (yk, x̂l), respectively, with i, k = 1, . . . , |Y| and j, l = 1, . . . , T). Its
(T · |Y|)× T upper-right block corresponds to perturbations in BA’s output log-decoder
log p(y|x̂) due to varying an input log-marginal log p(x̂′). That is, its columns are indexed
by x̂′ and rows by (y, x̂). Similarly, for the bottom-left and bottom-right blocks, of respec-
tive sizes T × (T · |Y|) and T × T. See (A25) ff., in Appendix B.2, and the end-result at
Equation (A44) there. Explicitly, when evaluated at an IB root

(
log p(y|x̂), log p(x̂)

)
, BA’s

Jacobian matrix is given by

Dlog p(y|x̂),log p(x̂)BAβ[log p(y|x̂), log p(x̂)] =




β ·∑x̂′′ ,y′′
(
δx̂′′ ,x̂′ − δx̂,x̂′

)
·
[

1− δy′′ ,y
pβ(y|x̂)

]
C(x̂, x̂′′; β)y′ ,y′′ (1− β) ·∑y′′

[
1− δy′′ ,y

pβ(y|x̂)
]

B(x̂, x̂′; β)y′′

β ·
[
δx̂,x̂′ pβ(y′|x̂)− B(x̂, x̂′; β)y′

]
(1− β) ·

[
δx̂,x̂′ − A(x̂, x̂′; β)

]




(13)

where δi,j = 1 if i = j and is 0 otherwise. As mentioned above, primed coordinates y′ and
x̂′ index the columns, and un-primed coordinates y and x̂ the rows. Indices y′′ and x̂′′ with
more than a single prime are summation variables. A, B, and C are a scalar, a vector, and a
matrix, each involving two IB clusters. They are defined by

A(x̂, x̂′; β) :=∑
x′′

pβ(x̂′|x′′)pβ(x′′|x̂) ,

B(x̂, x̂′; β)y :=∑
x′′

p(y|x′′)pβ(x̂′|x′′)pβ(x′′|x̂) , and

C(x̂, x̂′; β)y,y′ :=∑
x′′

p(y|x′′)p(y′|x′′)pβ(x̂′|x′′)pβ(x′′|x̂) .

(14)

In these, y indexes B and the rows of C, y′ the columns of C, and x′′ is a summation
variable. These (x̂, x̂′)-labeled tensors have only |Y| entries along each axis, thanks to our
choice of decoder coordinates. A and B can be expressed in terms of C via some obvious
relations; see Equation (A32) and below in Appendix B.2. Appendix B.1 elaborates on the
mathematical subtleties involved in calculating the Jacobian (13). See also Equation (A45)
in Appendix B.2 for an implementation-friendly form of (13).

Together with DβBAβ (Equations (A58) and (A57) in Appendix B.3), we have both
of the first-order derivative tensors of BAβ in log-decoder coordinates. This allows us
to specialize the implicit ODE (7) (of Section 1) to the IB, in terms of our variable x. By
abuse of notation, we write

(
log pβ(y|x̂), log pβ(x̂)

)
y,x̂ for its |Y| · T + T coordinates, and

similarly for its derivatives vector v (15) below.

Theorem 1 (The IB’s ODE). Let
(

p(y|x̂), p(x̂)
)

be an IB root, and suppose that it can be written
as a differentiable function β 7→

(
pβ(y|x̂), pβ(x̂)

)
in β. If none of its coordinates vanish, then

the vector

v :=
(dlog pβ(y|x̂)

dβ
,

dlog pβ(x̂)
dβ

)

y,x̂
(15)

33



Entropy 2023, 25, 1370

of its implicit logarithmic derivatives is well-defined and satisfies an ordinary differential equation
in β,

(
I − Dlog p(y|x̂),log p(x̂)BAβ

)
v =



−∑x,x̂′′

[
1− p(y|x)

pβ(y|x̂)

]
·
[
δx̂,x̂′′ − pβ(x̂′′|x)

]
pβ(x|x̂) DKL

[
p(y|x)||pβ(y|x̂′′)

]

∑x,x̂′′
[
δx̂,x̂′′ − pβ(x̂′′|x)

]
pβ(x|x̂) DKL

[
p(y|x)||pβ(y|x̂′′)

]


 (16)

where I is the identity matrix of order T · (|Y|+ 1), and the Jacobian matrix Dlog p(y|x̂),log p(x̂)BAβ

at the given IB root is given by Equation (13). The right-hand side of (16) is indexed as in (15), by
(y, x̂) at its top and x̂ at its bottom coordinates.

While the IB ODE was discovered by [10], it is derived here anew in log-decoder
coordinates due to the considerations in Section 2. It is analogous to the RD ODE, due to [6];
Corollary 1 and around (in Section 5.1) provides a relation between these two ODEs. We
emphasize that the first assumption of Theorem 1, that the IB root is a differentiable function
of β, is essential. It consists of two parts: (i) that the root can be written as a function of
β, and (ii) that this function is differentiable. These are precisely the assumptions needed
to compute the first-order implicit multivariate derivative v (15) at the given root [6]
(Section 2.1). Continuous IB bifurcations violate (ii) (Section 5.2), while discontinuous
ones violate (i) (Section 5.3). In contrast, the requirement that no coordinate vanishes is a
technical one, due to our choice of logarithmic coordinates.

It is not necessary for the Jacobian of the IB operator (5) (to the left of (16)) to be
non-singular in order to solve the IB ODE numerically. Nevertheless, non-singularity
of the Jacobian will follow from the sequel (see Conjecture 1 in Section 5). With that,
the derivatives v = d

dβ

(
log pβ(y|x̂), log pβ(x̂)

)
(15) computed numerically from the IB

ODE (16) at an exact root are remarkably accurate, as demonstrated in Figure 3. As in
RD [6], calculating implicit derivatives numerically loses its accuracy when approaching a
bifurcation because the Jacobian is increasingly ill-conditioned there. For comparison, the
BA-IB Algorithm 1 also loses its accuracy near a bifurcation. This is a consequence of BA’s
critical slowing down [4], just as with its corresponding RD variant.

Each coordinate of
(

p(y|x̂), p(x̂)
)

is treated by the IB ODE (16) as an independent
variable. However, the normalization of p(y|x̂) imposes one constraint per cluster x̂ (and
one for the normalization of p(x̂)). Thus, one might expect the behavior of BA’s Jacobian
(13) to be determined by fewer than T · (|Y|+ 1) coordinates, at least qualitatively. This
intuition is justified by the following Lemma 1, which allows us to consider the kernel of
the IB operator (5) by a smaller and simpler matrix S; see Appendix C for its proof.

Lemma 1. Given an IB root as above, define a square matrix of order T · |Y| by

S(y,x̂),(y′ ,x̂′) := ∑
x

pβ(x|x̂)
[

β · p(y|x)
pβ(y|x̂) + (1− 2β)

]
p(y′|x)

[
δx̂,x̂′ − pβ(x̂′|x)

]
. (17)

Then, the nullity of the Jacobian I − Dlog p(y|x̂),log p(x̂)BAβ of the IB operator (5) equals that of
I − S, where I is the identity matrix (of the respective order), and S is defined by (17),

dim ker(I − S) = dim ker
(

I − Dlog p(y|x̂),log p(x̂)BAβ

)
. (18)

Specifically, write v :=
(
vy,x̂

)
y,x̂ for a left eigenvector which corresponds to 1 ∈ eig S. Then, there

is a bijective correspondence between the left kernels at both sides of (18), mapping

v 7→ (v, u) , (19)

where u := (ux̂)x̂ is defined by ux̂ := 1−β
β ·∑y vy,x̂.

34



Entropy 2023, 25, 1370

3.0 3.5 4.0 4.5 5.0
log2 β

−10

−12

−14

−16

lo
g

10
‖e

rr
or

in
d

lo
g
p
β

d
β
‖ ∞

Machine’s precision

2 3 4 5 6

log2 β

−16

−14

−12

−10

−8

−6

−4

lo
g

1
0
‖e

rr
or

fr
om

ex
ac

t
so

lu
ti

on
‖ ∞

Stopping condition for Blahut-Arimoto

Machine’s precision

Figure 3. The implicit derivatives computed from the IB ODE (16) are very accurate, as is the
BA-IB Algorithm 1. However, both lose their accuracy near a bifurcation. To verify their accuracy,
we compared both to the exact solutions of BSC(0.3) with a uniform source (see Appendix E). (Top):
Derivatives were computed at the problem’s exact solution using the IB ODE (16) and compared to
the problem’s exact derivatives. These are accurate beyond the machine’s precision, except when
approaching the bifurcation (red vertical), since the Jacobian of the IB operator (5) is ill-conditioned
there. (Bottom): The L∞-errors of the solutions produced by the BA-IB Algorithm 1, with a 10−8

stopping condition, and uniform initial conditions. Error is measured from the true direct encoder to
avoid biases due to clusters of low mass. Both plots are as in Figure 2.3 of [6].

In addition to offering a form more transparent than BA’s Jacobian in (13), Lemma 1
also reduces the computational cost of testing I − Dlog p(y|x̂),log p(x̂)BAβ (16) for singularity,
by using the smaller I − S (17) in its place. This makes it easier to detect upcoming
bifurcations (see Conjecture 1 in Section 5). Further, one can verify directly that the IB ODE
(16) indeed follows the right path. Indeed, if the ODE is non-singular, then, by the Implicit
Function Theorem, there is (locally) a unique IB root, which is a differentiable function of β.
And so, there is a unique solution path for a numerical approximation to follow. Finally, we
note that a relation similar to (18) holds also for eigenvalues of Dlog p(y|x̂),log p(x̂)BAβ (13)
other than 1. This can be seen either empirically or by tracing the proof of Lemma 1.

35



Entropy 2023, 25, 1370

In Section 5, we shall proceed with this line of thought of removing redundant coor-
dinates. In the following Section 4, we turn to reconstruct a solution path from implicit
derivatives at a point, with bifurcations ignored for now.

4. A Modified Euler Method for the IB

We follow the path of a given IB root away from bifurcation by using its implicit
derivatives computed from the IB ODE (16), of Section 3. We follow the classic Euler
method for simplicity, modifying it slightly to get the most out of the calculated derivatives.
Improvements using more sophisticated numerical methods are left to future work. The
detection and handling of IB bifurcations are deferred to the following Section 5, and thus
are ignored in this section.

Let dx
dβ = f (x, β) and x(β0) = x0 define an initial value problem. In numerical

approximations of ordinary differential equations (ODEs), the Euler method for this problem
is defined by setting

xn+1 := xn + ∆β · f (xn, βn) , (20)

where βn+1 := βn + ∆β, and |∆β| is the step size. The global truncation error maxn ‖xn −
x(βn)‖∞ is the largest error of the approximations xn from the true solutions x(βn). A
numerical method for solving ODEs is said to be of order d if its global truncation error is of
order O(|∆β|d), for step sizes |∆β| small enough. Euler’s method error analysis is a standard
result, provided as Theorem 2 below. See [26] (Theorem 212A) or [27] (Theorem 2.4), for
example. It shows that Euler’s method (20) is of order d = 1, under mild assumptions, as
demonstrated in Figure 4. The immediate generalization of (20) using derivatives until
order d is Taylor’s method, which is a method of order d.

Theorem 2 (Euler’s method error analysis). Let an initial value problem be defined on [β0, β f ]

by dx
dβ = f (x, β) as above (with x0 allowed to deviate from x(β0)), and suppose that f satisfies the

Lipschitz condition with some constant L > 0. Namely, ‖ f (x, β)− f (x′, β)‖∞ ≤ L · ‖x− x′‖∞
for every x, x′ and β ∈ [β0, β f ].

Then, Euler’s method (20) global truncation error satisfies

max
β0≤βn≤β f

‖xn − x(βn)‖∞ ≤ e(β f−β0)L‖x0 − x(β0)‖∞ +
e(β f−β0)L − 1

L
· 1

2 |∆β| max
β0≤β≤β f

∥∥∥ d2x(β)
dβ2

∥∥∥
∞

. (21)

Specializing Euler’s method to our needs, replace x in (20) above by the log-decoder
coordinates of an IB root, as in Section 3. So long as an IB root pβ :=

(
pβ(y|x̂), pβ(x̂)

)
is a

differentiable function of β in the vicinity of βn, it can be approximated by

log pβn+1(y|x̂) ≈ log pβn(y|x̂) + ∆β · d log pβ(y|x̂)
dβ

∣∣∣∣
pβn

and

log pβn+1(x̂) ≈ log pβn(x̂) + ∆β · d log pβ(x̂)
dβ

∣∣∣∣
pβn

,
(22)

where
d log pβ(y|x̂)

dβ and
d log pβ(x̂)

dβ are calculated from the IB ODE (16). Thus, applying (22)
repeatedly, we obtain an Euler method for the IB. We shall take only negative steps ∆β < 0
when approximating the IB, due to reasons explained in Section 5.3 (after Proposition 1).
In contrast to the BA-IB Algorithm 1, Euler’s method (22) can be used to interpolate
intermediate points, yielding a piecewise linear approximation of the root.

The problem of tracking an operator’s root belongs in general to a family of hard-to-
solve numerical problems—known as stiff —if the problem has a bifurcation [6] (Section 7.2).
See [26] or [27] for example on stiff differential equations. Stopping early in the vicinity of
a bifurcation restricts the computational difficulty and permits convergence guarantees.
Early stopping in the IB shall be handled later, in Section 5.2. [6] (Theorem 5) proves that

36



Entropy 2023, 25, 1370

Euler’s method convergence guarantees (Theorem 2) hold for the closely related Euler
method for RD with early stopping. While Euler’s method may inadvertently switch
between solution branches of the IB ODE (16), the latter guarantees ensure that it indeed
follows the true solution path between bifurcations, if the step size |∆β| is small enough
and initializing close enough to the true solution (see Sections 5 and 6.3 on the distinction
between IB bifurcations and singularities of the IB ODE (16)). Although we do not dive into
these details for brevity, we note that similar convergence guarantees can also be proven
here. Alternatively, Euler’s method can be ensured to follow the true solution path by
noting that an optimal IB root is (strongly) stable when negative steps ∆β < 0 are taken;
these details are deferred to Section 6.3, as they depend on Section 5.

−4 −3 −2 −1 0

log10 |∆β|

−7

−6

−5

−4

−3

−2

−1

lo
g

1
0
L
∞

-e
rr

or

Euler method

Euler, with added BA iteration

Reverse annealing, single BA iteration

Figure 4. Error by step-size for a vanilla Euler method using the IB ODE (16), and with an added
BA-IB iteration at each step, for BSC(0.3) with a uniform source (Appendix E). The linear regression
(dashed black) of the third leftmost markers for the vanilla Euler method is of slope 0.99 (R2 ' 1),
matching the theory’s prediction almost perfectly. A similar regression (not shown) for Euler’s
method with a single added BA iteration is of nearly double slope 1.93. For comparison, reverse
deterministic annealing with a single BA iteration at each grid point yields a slope of 0.91 in this
example. Taking a larger (pre-determined) number of iterations at each grid point pushes the error
downwards, as expected. Yet, the resulting slopes approach 1 as the number of iterations is increased
(not shown). See main text and Appendix D for details. The error was calculated as the supremum
of the pointwise errors as in Figure 3, over the interval [βc +

1
10 , β0] which contains no bifurcation.

Each method was initialized with the exact solution at β0 = 25, with ∆β = − 103
32 halved between

consecutive markers.

Following the discussion in Section 2, there is a subtle disadvantage in choosing de-
coder coordinates as our variables compared to the other two coordinate systems there.
Indeed, recall that the IB is defined as a maximization over Markov chains Y ←→ X ←→ X̂.
An (arbitrary) encoder p(x̂|x) defines a joint probability distribution p(x̂|x)p(y|x)p(x)
which is Markov. An inverse encoder pair also similarly defines a Markov chain. In con-
trast, an arbitrary decoder pair

(
p(y|x̂), p(x̂)

)
need not necessarily define a Markov chain.

Rather, by invoking the error analysis of Euler’s method, one can see that Markovity is
approximated at an increasingly improved quality as the step-size |∆β| in (22) becomes
smaller. To enforce Markovity, we shall perform a single BA iteration (in decoder coordi-

37



Entropy 2023, 25, 1370

nates) after each Euler method step. This ensures that the newly generated decoder pair
satisfies the Markov condition, as it is now generated from an encoder.

As a side effect, adding a single BA-IB iteration after each Euler method step improves
the approximation’s quality significantly. By linearizing BAβ around a fixed point, one
can show that deterministic annealing with a fixed number of BA iterations per grid point
is a first-order method. Thus, deterministic annealing may arguably be considered a
first-order method, as is with Euler’s method. A similar argument shows that adding a
single BA iteration after each Euler method step yields a second-order method. However,
while a larger number of added BA iterations obviously improves the approximation’s
quality, it does not improve the method’s order. See Appendix D for an approximate error
analysis. The predicted orders are in good agreement with the ones found empirically,
shown in Figure 4. We note that while [6] did not attempt an added BA iteration, they do
discuss a variety of other improvements to root tracking (see Section 3.4 in [6]).

5. On IB Bifurcations

For the IB Equations (2)–(4) to exhibit a bifurcation, it is necessary that the Jacobian
of the IB operator (5) be singular, as illustrated by Figure 5. However, a priori singularity
is not sufficient to detect a bifurcation (cf., Section 3.1 in [9]), nor does this allow one to
distinguish between bifurcations of different types. At an IB root, singularities of the IB ODE
(16) (Section 3) coincide with those of Id− BAβ (5) (in log-decoder coordinates). Thus, in order
to be able to exploit the IB ODE (16), we shall now take a closer look into IB bifurcations. These
can be broadly classified into two types: where an optimal root is continuous in β and where
it is not. As noted after Theorem 1, each type violates an assumption necessary to compute
implicit derivatives. Sections 5.2 and 5.3 provide the means to identify bifurcations, distinguish
between their types, and handle them accordingly, mainly for continuous bifurcations. To
facilitate the discussion, Section 5.1 considers the IB as a rate-distortion problem, following [20]
and others. This allows us to leverage recent insights on RD bifurcations [6], while suggesting
a “minimally sufficient” choice of coordinates for the IB. The latter permits a clean treatment
of continuous IB bifurcations in Section 5.2. Viewing the IB as an infinite-dimensional RD
problem facilitates the understanding of its discontinuous bifurcations, which in turn highlight
subtleties in its finite-dimensional coordinate systems (of Section 2). These provide insight
into the IB and are also of practical implications (Section 5.3), and so are necessary for our
algorithms in Section 6.

3 4 5

log2 β

−5

−3

−1

1

ei
gs

of
D
p
(y
|x̂

),
p
(x̂

)B
A
β

Figure 5. While the Jacobian Dlog p(y|x̂),log p(x̂)(Id − BAβ) must be singular at a bifurcation, this
does not suffice to identify its type. The Jacobian eigenvalues of BAβ (13) with respect to log-
decoder coordinates are plotted for BSC(0.3) with a uniform source, as in Figure 1; see Appendix E
for its exact solution. An eigenvalue reaches one (dashed green) precisely at the bifurcation (dashed
red vertical), as expected by Conjecture 1 in Section 5.1. In particular, the Jacobian is increasingly
ill-conditioned when approaching the bifurcation, as noted in Figure 3 (top). While this allows one to
detect the bifurcation, identifying its type is necessary for handling it.

38



Entropy 2023, 25, 1370

5.1. The IB as a Rate-Distortion Problem

We now explore the intimate relation between the IB and RD, following [5,20]. This
leads to a “minimally sufficient” coordinate system for the IB, thereby completing the work
of Section 2. In this coordinate system, results [6] on the dynamics of RD roots are readily
considered in the IB context. This leads to Conjecture 1, that the IB operator (5) in these
coordinates is typically non-singular. The discussion here facilitates the treatment of IB
bifurcations in the following Sections 5.2 and 5.3.

First, recall a few definitions. A rate distortion problem on a source alphabet X and a
reproduction alphabet X̂ is defined by a distortion measure d : X × X̂ → R≥0 (a non-negative
function on X × X̂ with no further requirements—see Section 2.2 in [28]) and a source
distribution pX(x). One seeks the minimal rate I(X; X̂) subject to a constraint D on the
expected distortion E[d(x, x̂)] [29,30],

R(D) := min
p(x̂|x)

{
I(X; X̂) : Ep(x̂|x)pX(x)[d(x, x̂)] ≤ D

}
, (23)

known as the rate-distortion curve. The minimization is over test channels p(x̂|x). A test
channel that attains the RD curve (23) is called an achieving distribution. We say that an RD
problem is finite if both of the alphabets X and X̂ are finite. Using Lagrange multipliers
for (23) with I(X; X̂) + β E[d(x, x̂)] (normalization omitted for clarity), one obtains a pair
of fixed-point equations

p(x̂|x) = p(x̂)e−β d(x,x̂)

∑x̂ p(x̂)e−β d(x,x̂)
and p(x̂) = ∑

x
p(x̂|x)p(x) (24)

in the marginal p(x̂) and test channel p(x̂|x), similar to the IB Equations (2) and (4). Iterating
over these is Blahut’s algorithm for RD [8], denoted BARD

β here. As with the IB (1), β

parameterizes the slope of the optimal curve (23) also for RD. See [28] or [31] for an
exposition of rate-distortion theory.

We clarify a definition needed to rewrite the IB as an RD problem. We define the simplex
∆[S] on a (possibly infinite) set S as the collection of finite formal convex combinations
∑s as · s of elements of S. That is, as the S-indexed vectors (as)s∈S (equivalently, as functions
mapping each s in S to a real number as) that satisfy ∑s as = 1 and as ≥ 0, with as non-zero
for only finitely many elements s (the support of (as)s). Addition and multiplication are
defined pointwise, as in ∑s as · s + ∑s bs · s = ∑s(as + bs) · s. ∆[S] is closed under finite
convex combinations because the sum of finitely supported vectors is finitely supported.
When taking S = {e1, . . . , en} the standard basis vectors (ei)j = δi,j of Rn, then one can
identify the formal operations with those in Rn, reducing the simplex ∆[S] to its usual
definition. We write r for an element of ∆[Y ]. In particular, an element of ∆

[
∆[Y ]

]
is merely

a finite convex combination ∑x̂ p(x̂)rx̂ of distinct probability distributions rx̂(y) ∈ ∆[Y ] on
Y (note that ∆[S] is a set). When setting X̂ ⊂ ∆[Y ] to be a finite subset of distributions,
|X̂ | < ∞, then ∆[X̂ ] is a special case of the decoder coordinates of Section 2 (unlike ∆[X̂ ]
here, the decoder coordinates of Section 2 are not required to have their clusters r distinct).

Now, let a finite IB problem be defined by a joint probability distribution pY|X pX , as
in Section 1. To write it down as an RD problem [5,20], define the IB distortion measure by

dIB(x, r) := DKL

[
pY|X=x||r

]
, (25)

for x ∈ X , r ∈ ∆[Y ], and pY|X=x ∈ ∆[Y ] the conditional probability distribution at
X = x. The distortion measure dIB (25) and pX define an RD problem on the continuous
reproduction alphabet X̂ := ∆[Y ]. Minimizing the IB Lagrangian L (in Section 1) is
equivalent to minimizing the Lagrangian of this RD problem [20] (Theorem 5). That is, the
IB is a rate-distortion problem when considered in these coordinates. IB clusters r ∈ ∆[Y ]
assume the role of RD reproduction symbols, while an IB root (considered now as an RD
root) is equivalently described either by the probabilities of each cluster—namely, by a

39



Entropy 2023, 25, 1370

point in ∆
[
∆[Y ]

]
—or, by a test channel p(r|x). The astute reader might notice that the

IB Equations (2) and (4) are then equivalent to RD’s fixed-point Equations (24), with the
decoder Equation (3) implied by the IB’s Markovity. The IB’s Y-information I(Y; X̂) equals
the expected distortion E[dIB(x, x̂)] in (23) up to a constant [20] (Section 5), and so is linear
in the test channel p(r|x). Unlike the finite-dimensional coordinate systems of Section 2,
this definition of the IB entails no subtleties due to finite dimensionality, such as duplicate
clusters (see more below). However, while it allows us to spell out the IB explicitly as an
RD problem, handling an infinite reproduction alphabet is difficult for practical purposes.
Since no more than |X |+ 1 reproduction symbols are needed to write down an IB root [2],
this motivates one to consider the IB’s local behavior, with clusters fixed.

So instead, one may require the reproduction symbols of dIB (25) to be in a list (rx̂)x̂∈X̂
indexed by some finite set X̂ , with each rx̂ in ∆[Y ] (the elements rx̂1 , . . . , rx̂T need not be
distinct a priori). This defines a finite RD problem, for which dIB (25) is merely an |X |-by-T
matrix. Yet, placing identical clusters in the list (rx̂)x̂ inadvertently introduces degeneracy
to the matrix dIB (25), as discussed below. In [5] (Section 6), (rx̂)x̂ is taken to be the decoders
defined by a given encoder p(x̂|x), as in Equation (11) (Section 2). We shall then refer
to dIB (25) as the distortion matrix defined by p(x̂|x). When pβ0(x̂|x) is an optimal IB root
then the problem (dIB, pX) defined by it is called the tangent RD problem. Indeed, its RD
curve (23) coincides with the IB curve (1) at this point (since an optimal choice of IB clusters
is already encoded into dIB (25), then solving the IB boils down to finding the clusters’
optimal weights p(x̂), which is an RD problem). However, the curves differ outside this
point since IB clusters usually vary with β, while the distortion of the tangent problem was
defined at pβ0(x̂|x) and so is fixed. By definition (1), it follows that the IB curve is the lower
envelope of the curves of its tangent RD problems [5] (Corollary 2). We note that a similar
construction can also be carried out in inverse encoder coordinates, cf., [2].

Regardless of the formulation used to rewrite the IB as an RD problem, the associated
RD problem has an expected distortion E[dIB] of I(X; Y)− I(X̂; Y) at an IB root (Section 5
in [20] and Lemma 8 in [5]). That is, the IB is a method of lossy compression that strives to
preserve the relevant information I(X̂; Y). Due to the Markov condition, information on Y is
available only through X. Thus, one may intuitively consider the IB as a lossy compression
method of the information on Y that is embedded in X. These intimate relations between
the IB and RD suggest that studying bifurcations in either context could be leveraged to
understand the other. Bifurcations in finite RD problems are discussed at length in [6]
(Section 6). To facilitate the study of IB bifurcations in the sequel (Sections 5.2 and 5.3) using
results from RD, we need a “minimally-sufficient” coordinate system for the IB.

Consider an IB root in decoder coordinates as finitely many p(x̂)-weighted points
rx̂(y) in ∆[Y ], as in Section 2. Exchanging to decoder coordinates (Equation (11) there) is
well-defined as long as there are no zero-mass clusters, ∀x̂ p(x̂) 6= 0. Yet, even then, the
points rx̂ in ∆[Y ] yielded by BA’s steps 4 through 6 (Algorithm 1) need not be distinct.
Namely, they may yield identical clusters rx̂ = rx̂′ at distinct indices x̂ 6= x̂′. This leads to
a discussion of structural symmetries of the IB (its degeneracies), which is not of use for
our purposes; cf., [9]. To avoid such subtleties, we shall say that an IB root is reduced if it
has no zero-mass clusters, ∀x̂ p(x̂) 6= 0, and all its clusters are distinct, x̂ = x̂′ ⇔ rx̂ = rx̂′ .
A root that is not reduced is called degenerate or degenerately represented. An IB root can
be reduced by removing clusters of zero mass and merging identical clusters of distinct
indices—see our reduction algorithm in Section 5.2 below. It is straightforward to see
from the IB Equations (2)–(4) that reduction preserves the property of being an IB root.
Similarly, reducing a root does not change its location in the information plane. So, a root
achieves the IB curve (1) if and only if its reduction does. Therefore, reduction decreases the
dimension in which the problem is considered while preserving all its essential properties.
This allows us to represent an IB root on the smallest number of clusters possible—its
effective cardinality—by factoring out the IB’s structural symmetries. See also [13] (2.3 in
Chapter 7), upon which this definition is based.

40



Entropy 2023, 25, 1370

While the purpose of reduction is to mod-out redundant kernel coordinates (Section 1),
it highlights the differences between the various IB definitions found in the literature,
bringing to light a subtle caveat of finite dimensionality. To see this, note that reduction
could have been defined above in terms of the other coordinate systems of the IB. Its
definition in inverse encoder coordinates is nearly identical to that above, while defining
it in encoder coordinates is a straightforward exercise. Since the coordinate systems of
Section 2 are equivalent at an IB root (without zero-mass clusters), the precise definition
does not matter then. Each of these parameterizations encodes the coordinates r(y) of
a root’s clusters r using a finite-dimensional vector x (note Equation (11)). This enables
one to represent duplicate clusters x̂ 6= x̂′ with rx̂ = rx̂′ , and obliges one to choose the
order in which clusters are being encoded into the coordinates of x. A finite-dimensional
representation x of an IB root is invariant to interchanging clusters x̂ 6= x̂′ precisely when
they are identical, rx̂ = rx̂′ . The IB’s functionals (e.g., its X- and Y-information) are invariant
to any cluster permutation; cf., [9,19]. Both of these structural symmetries result from using
a finite-dimensional parameterization, with the former eliminated by reduction. In contrast,
the elements of ∆[Y ] are distinct by definition (since ∆[Y ] is a set), and so parameterizing
the IB by points in ∆[∆[Y ]] does not permit identical clusters. An element ∑r p(r)r of
∆[∆[Y ]] assigns a probability mass p(r) to every point r in ∆[Y ], with only finitely many
points r supported. Thus, it implicitly encodes all the entries r(y) of every probability
distribution r ∈ ∆[Y ] in a “one size fits all” approach, giving no room for the choices above.
This leads us to argue that the IB’s structural symmetries are not an inherent property but
rather an artifact of using its finite-dimensional representations. This is best understood in
the context of discontinuous bifurcations, in Section 5.3 below. For comparison, both of
the IB formulations [2,20] do not impose an a priori restriction on the number of clusters.
The latter does not enable one to encode duplicate clusters, while the former does. The
formulation [1] ignores these subtleties altogether, and [9,19] consider the IB on a pre-
determined number of possibly duplicate clusters.

In rate-distortion, the reduction of a finite RD problem is defined similarly [6] (Sec-
tion 3.1), by removing a symbol x̂ from the reproduction alphabet X̂ and its column d(·, x̂)
from the distortion matrix once it is not in use anymore (of zero mass). A distortion matrix d
is non-degenerate if its columns are distinct, d(·, x̂) 6= d(·, x̂′) for all x̂ 6= x̂′. Non-degeneracy
arises naturally when considering the RD problem tangent to a given IB root p(x̂|x). In-
deed, the distortion matrix dIB (25) defined by p(x̂|x) has duplicate columns if the root
has identical clusters, while the other direction holds under mild assumptions (if the |X |
vectors pY|X=x span R|Y|, then DKL[pY|X=x||rx̂] = DKL[pY|X=x||rx̂′ ] for all x implies that
rx̂ = rx̂′ ). Under these assumptions, the distortion matrix induced by an IB root p(x̂|x) is
reduced and non-degenerate precisely when p(x̂|x) is a reduced IB root.

Reduction in RD provides the means to show that the dynamics underlying the RD
curve (23) are piecewise analytic in β [6], under mild assumptions. Just as in definition (5)
of the IB operator, [4] (Equation (5)) similarly define the RD operator Id− BARD

β in terms
of Blahut’s algorithm for RD [8]. By using their Theorem 1, [6] (Section 3.1) observed that
reducing a finite RD problem to the support of a given RD root mods-out redundant kernel
coordinates if the distortion measure is finite and non-degenerate (the support of p(x̂) is
defined by supp p(x̂) := {x̂ : p(x̂) > 0}). That is, the Jacobian D(Id− BARD

β ) of the RD
operator on the reduced problem is then non-singular (in the right coordinate system—see
therein), just as with our toy problem (10) in Section 1. By the Implicit Function Theorem,
there is therefore a unique RD root of the reduced problem through the given one; this
root is real-analytic in β (details there). Considering this for the RD problem tangent to a
reduced IB root immediately yields the following:

Corollary 1. Let pβ0(x̂|x) be a reduced IB root of a finite IB problem defined by pY|X pX , such that
the matrix pY|X is of rank |Y|. Then, near β0, there is a unique function continuous in β, which is
a root of the tangent RD problem through pβ0(x̂|x); it is real-analytic in β.

41



Entropy 2023, 25, 1370

Corollary 1 shows that the local approximation of an IB problem (the roots of its
tangent RD problem) is guaranteed to be as well-behaved as one could hope for, provided
that the IB is viewed in the right coordinate system. Note, however, that the RD root
through pβ0(x̂|x) of the tangent problem does not in general coincide with the IB root
outside of β0 since the IB distortion dIB (25) varies along with the clusters that define it.
However, when the IB clusters are fixed, then one might expect that the Jacobian (13) of
BAβ in log-decoder coordinates would be the same as the Jacobian of its RD variant. Indeed,
the Jacobian matrix of BARD

β is the T × T bottom-right sub-block of the Jacobian (13) of
BAβ, up to a multiplicative factor. For this, see Equations (5) and (6) in [4], Equations (14)
and (13) in Section 3, and (A25) in Appendix B.2.

As in RD, we argue that reduction in the IB also provides the means to show that
the dynamics underlying the optimal curve (1) are piecewise analytic in β. Corollary 1
concludes that, under mild assumptions, through every reduced IB root passes a unique
real-analytic RD root. However, its crux is that the Jacobian of the RD operator Id− BARD

β is
non-singular at a reduced root. Due to the IB’s close relations with RD, and since reduction
in the IB is a natural extension of reduction in RD, we argue that the same is also to be
expected of the IB operator Id− BAβ (5) in decoder coordinates. To see this, note that IB
roots are finitely supported [2] (Lemma 2.2(i)), and so one may take finitely supported
probability distributions ∆

[
∆[Y ]

]
for the IB’s optimization variable. Thus, the IB’s BAβ

operator in decoder coordinates (of Section 2) may be considered as an operator on ∆
[
∆[Y ]

]
.

Next, consider the RD problem defined by pX and dIB (25) on the continuous reproduction
alphabet ∆[Y ], as in [20]. This defines on ∆

[
∆[Y ]

]
also the BA operator BARD

β for RD. Now
that both BA operators are considered on an equal footing, we note the following. First,
while BARD

β iterates over the IB Equations (2) and (4), its IB variant BAβ iterates also over
the decoder Equation (3) (plug the IB distortion measure dIB (25) into the Equations (24)
defining BARD

β to see this). The latter Equation (3) is a necessary condition for Y → X → X̂
to be Markov, and so can be understood as an enforcement of Markovity (in contrast, an
arbitrary triplet (Y, X, X̂) of random variables only satisfies p(y|x̂) = ∑x p(y|x, x̂)p(x|x̂)).
That is, IB roots are RD roots with an extra constraint. Second, by Theorem 1 in [4], reducing
Id − BARD

β from the continuous reproduction alphabet ∆[Y ] to a root of finite support
renders it non-singular, under mild assumptions. This suggests that reducing Id− BAβ (5)
from ∆

[
∆[Y ]

]
to a root’s effective cardinality should also render it non-singular, due to the

similarity between these operators, and since reduction in the IB is a natural extension of
reduction in RD. In line with the discussion of Section 1 on reduction, we therefore state
the following:

Conjecture 1. The Jacobian matrix I − Dlog p(y|x̂),log p(x̂)BAβ at (16) of the IB operator (5) in
log-decoder coordinates is non-singular at reduced IB roots so long as it is well-defined, except
perhaps at points of bifurcation.

The intuition behind this conjecture stems from analyticity, as follows. The IB operator
Id− BAβ (5) is real-analytic, since each of the Equations 1.4–1.8 defining it (in the BA-IB
Algorithm 1) is real-analytic in its variables. For a root x0 of a real-analytic operator F,
one might expect that, in general, (i) no roots other than x0 exist in its vicinity and that
(ii) DxF|x0 has no kernel. That is, unless the operator is degenerate at x0 in some manner
or x0 is a bifurcation. To see this, recall [32] (Section IX.3) that a real-valued function
Fi in x ∈ Rn is real-analytic in some open neighborhood of x0 if it is a power series in
x = (x1, . . . , xn), within some radius of convergence (although a strictly positive radius is
needed, we omit these details for clarity). For every practical purpose, one may replace Fi by
a polynomial in (x1, . . . , xn) when x is close enough to the base-point x0, by truncating the
power series. Viewed this way, a root of an operator F(x) =

(
F1(x), . . . , Fn(x)

)
is nothing

but a solution of n polynomial equations in n variables. However, a square polynomial
system typically has only isolated roots, which is (i). This is best understood in terms
of Bézout’s Theorem; see [33] (6 in IV.4) for example. For (ii), a vector v is in ker DxF

42



Entropy 2023, 25, 1370

precisely when it is orthogonal to each of the gradients ∇Fi. However, ∇Fi is the vector
of the first-order monomial coefficients of x1, . . . , xn in Fi. In a general position, these n
coefficient vectors∇F1, . . . ,∇Fn are linearly independent, and so v must vanish as claimed.
If F is degenerate such that Fi = Fj for particular i 6= j, for example, then both points fail, of
course. See also Section I.2 of [34] for (i) and (ii). This intuition accords with the comments
of [28] (Section 2.4) on RD: “usually, each point on the rate distortion curve [...] is achieved by
a unique conditional probability assignment. However, if the distortion matrix exhibits certain
form of symmetry and degeneracy, there can be many choices of [a minimizer]”. Indeed, the fact
that the dynamics underlying the RD curve (23) are piecewise real-analytic [6] (under mild
assumptions) can be similarly understood to stem from the analyticity of the RD operator
Id− BARD

β .
Subject to Conjecture 1, a Jacobian eigenvalue of the IB operator (5) must vanish

gradually as one approaches a bifurcation, causing the critical slowing down of BA-IB [4]
(observe that BA’s Jacobian (13) is continuous in the root at which it is evaluated). When
an IB root traverses a bifurcation in which its effective cardinality decreases, then it is
not reduced anymore. One can then handle the bifurcation by reducing the root anew.
To ensure proper handling by the bifurcation’s type, we consider the latter closely in
Sections 5.2 and 5.3 below. In a nutshell, following the IB’s ODE (16) along with a proper
handling of its bifurcations is the idea behind our root-tracking algorithm (in Section 6), for
approximating the IB numerically.

Conjecture 1 is compatible with our numerical experience. However, we leave its proof
to future work. To that end, one could examine closely the smaller matrix S (17) (of Lemma 1
in Section 3), for example. However, even if Conjecture 1 were violated, then one could
detect that easily by inspecting the Jacobian’s eigenvalues. Conjecture 1 also implies that
IB roots are locally unique outside of bifurcations when presented in their reduced form.
Non-uniqueness of optimal roots is detectable by inspecting the Jacobian’s eigenvalues—see
Corollary 3 in Section 5.3 and the discussion following it. See also Section 6.3 in [6] for the
respective discussion in RD. With that, most of the results in Sections 5.2 and 5.3 below do not
depend on the validity of Conjecture 1.

5.2. Continuous IB Bifurcations: Cluster Vanishing and Cluster Merging

Following [10], we consider the evolution of IB roots which are a continuous function
of β. By representing an IB root in its reduced form (Section 5.1), it is evident that there
are two types of continuous IB bifurcations. We provide a practical heuristic (Algorithm 2)
for identifying and handling such bifurcations. The discussion here is complemented by
Section 5.3 below, which considers the case where continuity does not hold.

The evolution of an IB root in β obeys the ODE (16) as long as it can be written as a
differentiable function in β, as in Theorem 1. Considering the root in decoder coordinates,
this amounts to an evolution of a T-tuple of points rx̂ in ∆[Y ] and their weights p(x̂). These
typically traverse the simplex smoothly as the constraint β is varied, as demonstrated
in Figure 6. We now consider two cases where this evolution does not obey the ODE (16),
due to violating differentiability.

Consider an optimal IB root in its reduced form (see Section 5.1). Namely, consider
the reduced form of a root that achieves the IB curve (1). Suppose that its decoders rx̂ and
weights p(x̂) are continuous in β. Then, a qualitative change in the root can occur only if
either (i) two (or more) of its clusters collide or (ii) the marginal probability p(x̂) of a cluster
x̂ vanishes. In either case, the minimal number of points in ∆[Y ] required to represent
the root decreases. That is, its effective cardinality decreases (a qualitative change where
the effective cardinality increases is obtained by merely reversing the dynamics in β). We
call the first a cluster-merging bifurcation and the second a cluster-vanishing bifurcation, or
continuous bifurcations collectively. Both types were observed already in [17] (Section IV.C)
in the related setting of RD problems with a continuous source alphabet. Among the two,
cluster-vanishing bifurcations are more frequent in practice than cluster merging. This can

43



Entropy 2023, 25, 1370

be understood by considering cluster trajectories in the simplex. In a general position, one
might expect clusters to seldom be at the same “time” and place (that is, β and r ∈ ∆[Y ]).

2 3 4 5
log2 β

0.3

0.5

0.7

p(
y

=
0|x̂

)

2 3 4 5
log2 β

0.5

1.0

p(
x̂

)

Figure 6. A cluster-merging bifurcation. The reduced form of the optimal IB root in decoder
coordinates as a function of β, for the exact solution of BSC(0.3) with a uniform source, as in Figure 1
(see Appendix E). At high enough β, the root consists of two clusters (in green and blue), each of
a marginal probability 1

2 . The clusters collide at βc = 61/4 (dashed red vertical) and merge to one,
yielding the trivial solution—a single cluster of probability 1 at pY . Carefully note that only a single
IB root is plotted here, in its reduced form, with one cluster to the left of βc and two to the right. The
violation of clusters’ differentiability at βc can be observed visually (top), and the root is otherwise
real-analytic in β, as can be deduced from Figure 5. Since the trivial solution is an IB root for every
β > 0 (not shown), then βc is indeed a bifurcation, where the trivial and non-trivial roots intersect. To
see this, consider the degenerate form of the trivial solution on two copies of pY , each of probability 1

2 .
The marginals p(x̂) (bottom) appear to be discontinuous at βc because the root was reduced before
plotted (the latter degenerate form of the trivial root is not plotted to the left of βc).

We argue that cluster merging and cluster vanishing are indeed bifurcations, where
IB roots of distinct effective cardinalities collide and merge into one. We offer two ways
to see this. First, using the inverse encoder formulation of the IB in [2] (Section II.A), one
can consider an optimization problem in which the number of IB clusters is constrained
explicitly (the inverse encoders of an IB root with no zero-mass clusters are in bijective
correspondence with its decoders, as noted in Section 2, and so inverse encoder and decoder
coordinates are interchangeable). By the arguments therein, the constrained problem has
an optimal root (due to compactness), which achieves the optimal curve of the constrained
problem. The latter curve must be sub-optimal if fewer clusters are allowed than needed
to achieve the IB curve (1). Thus, whenever the effective cardinality of an optimal root (in
the un-constrained problem) decreases, it must therefore collide with an optimal root of
the constrained IB problem (by Corollary 3 in Section 5.3 below). This accords with [1]
(Section 3.4), which describes IB bifurcations as a separation of optimal and sub-optimal IB
curves according to their effective cardinalities. Second, consider the reduced form of an IB
root at the point of a continuous bifurcation. Since its effective cardinality decreases there
strictly, say from T2 to T1, then the root can be represented on T1 clusters at the bifurcation
itself. However, the Jacobian of the IB operator (5) in log-decoder coordinates is non-
singular when represented on T1 clusters, as discussed after Proposition 1 (in Section 5.3).
Thus, by the Implicit Function’s Theorem, there is a unique IB root on T1 clusters through

44



Entropy 2023, 25, 1370

this point. It exists at both sides of the bifurcation (above and below the critical point).
When represented on T2 clusters, however, the latter intersects at the bifurcation with the
root of effective cardinality T2, and so the two roots collide and merge there to one. This
argument is identical to [6] (Section 6.2), which proves that distinct RD roots collide and
merge at cluster-vanishing bifurcations in RD.

At a continuous bifurcation, IB roots of distinct effective cardinalities collide and
merge into one, as discussed above. Specifically, one root achieves the minimal value of
the IB Lagrangian and so is stable, while the other root is sub-optimal. As we shall now
elaborate, continuous IB bifurcations are thus pitchfork bifurcations (e.g., Section 3.4 in [35]),
in accordance with [19]. Even though the optimal root is continuous in β (by assumption),
its differentiability is violated at the point of bifurcation. This can be inferred from the
comments following Theorem 1 and seen in Figure 6. Strictly speaking, several copies
of the root of larger effective cardinality collide at a continuous bifurcation. When two
clusters r 6= r′ collide in a cluster merging bifurcation, then the root itself is invariant to
interchanging their coordinates after the collision but not before it, breaking the IB’s first
structural symmetry discussed in Section 5.1. Interchanging the coordinates of r and r′ (and
their marginals) before the collision yields two distinct copies of essentially the same root.
For a cluster vanishing bifurcation, the IB’s functionals (e.g., its X- and Y-information) do
not depend on the coordinates (r(y))y of a vanished cluster r, rendering these redundant;
cf., [9] (Section 3.1). Before the cluster r vanishes, there is one copy of the root for each index
x̂, with r placed at its x̂ coordinates. Considered in reduced coordinates, these coincide to a
single copy after the cluster vanishes. This breaks the IB’s second structural symmetry.

With that, we note that cluster-vanishing bifurcations cannot be detected directly by
standard local techniques (i.e., considering the derivative’s kernel directions at the bifurca-
tion point), whether considering the Hessian of the IB’s loss function as in [9] or the Jacobian
of the IB operator (5) as here. The technical reason for this is as follows, while the root cause
underlying it is best understood in the context of discontinuous bifurcations (after Proposi-
tion 1 in Section 5.3). Observe that the I(Y; X̂) and I(X; X̂) functionals do not depend on
the coordinates (r(y))y of clusters r of zero mass. Thus, the directions corresponding to
these coordinates are always in the kernel regardless of whether evaluating at a bifurcation
or not, and so cannot be used to detect a bifurcation (the direction corresponding to a
cluster’s marginal is useless when one does not know which coordinates (r(y))y to pick for
r). Indeed, with its dynamics in β reversed, “a new symbol grows continuously from zero mass”
in a cluster-vanishing bifurcation, as [17] (Section IV.C) comments in a related setting. It
is then not clear a priori which point in ∆[Y ] should be chosen for the new symbol, ren-
dering the perturbative condition at Equation (9) difficult to test. In accordance with this,
Ref. [9] (Section 5) offers a perturbative condition for detecting arbitrary IB bifurcations,
while ref. [13] (3.2 in Part III) offers a condition for detecting cluster-merging bifurcations
by analyzing cluster stability. However, both conditions are equivalent (Appendix F), and
so must detect the same type of bifurcations. In contrast, a cluster-splitting (or merging)
bifurcation is straightforward to detect because the stability of a particular cluster x̂ is a
property of the root itself—see Appendix F and the references therein for details.

One may wonder whether bifurcations exist in the IB for the same reason as they do
in RD. As in the IB, RD problems typically have many sub-optimal curves [6] (Section 6.1).
While (continuous) bifurcations in the IB stem from restricting the effective cardinality [1]
(Section 3.4), in RD they stem from the various restrictions that a reproduction alphabet has.
For example, a reproduction alphabet X̂ := {r1, r2, r3} of an RD problem may be restricted
to the distinct subsets {r1, r2} and {r2, r3}, usually yielding distinct sub-optimal RD curves
(e.g., Figure 6.1 in [6]). In contrast to RD, the IB’s distortion dIB (25) defined by a root’s
clusters is determined a posteriori by the problem’s solution rather than a priori by the
problem’s definition. As a result, both reasons for the existence of bifurcations coincide.
To see this, consider the IB as an RD problem whose reproduction symbols X̂ are a finite
subset of ∆[Y ] which is allowed to vary (i.e., as if defining the tangent RD problem anew at
each β). Distinct restrictions of a reproduction alphabet X̂ can be forced to agree by altering

45



Entropy 2023, 25, 1370

the symbols themselves, so long as they are of the same size. For example, restricting the set
{r1, r2, r3} of reproduction symbols to {r1, r2} is the same as restricting it to {r2, r3} instead,
and then replacing r3 with r1 ∈ ∆[Y ] in the restricted problem (this is not to be confused
with cluster permutations, which change the order in which clusters are listed but do not
alter the symbols themselves).

The dynamical point of view above, considering an IB root as weighted points travers-
ing ∆[Y ], offers a straightforward way to identify and handle continuous IB bifurcations. It
is spelled out as our root-reduction Algorithm 2. For cluster-vanishing bifurcations, one
can set a small threshold value δ1 > 0 and consider the cluster x̂ as vanished if p(x̂) < δ1
(Step 2.3), as in [6] (Section 3.1). Similarly, for cluster-merging bifurcations, one can set a
small threshold δ2 > 0 and consider the clusters x̂ 6= x̂′ to have merged if ‖rx̂ − rx̂′‖∞ < δ2
(Step 2.9). A vanished cluster is then erased (and merged clusters replaced by one), result-
ing in an approximate IB root on fewer clusters. This not only identifies continuous IB
bifurcations but also handles them, since the output of the root-reduction Algorithm 2 is a
numerically reduced root, represented in its effective cardinality. To re-gain accuracy, we
shall later invoke the BA-IB Algorithm 1 on the reduced root, as part of our root-tracking
algorithm (in Section 6). We note that one should pick the thresholds δ1 and δ2 small enough
to avoid false detections, and yet not too small so as to cause mis-detections. Mis-detections
will be handled later, in Section 6.1, using a heuristic algorithm.

Algorithm 2 Root reduction for the IB

1: function REDUCE ROOT(p(y|x̂), p(x̂); δ1, δ2)
Input:

An approximate IB root
(

p(y|x̂), p(x̂)
)

in decoder coordinates,
a cluster-mass threshold 0 < δ1 < 1 and a cluster-merging threshold 0 < δ2 < 1.

Output: An approximate IB root
(

p̃(y|x̂), p̃(x̂)
)

at its effective cardinality.
2: for x̂ do
3: if p(x̂) < δ1 then . Delete clusters of near-zero mass.
4: delete the coordinates of x̂, from p(x̂) and p(y|x̂).
5: end if
6: end for
7: p(x̂)← normalize p(x̂) . Preserve normalization, in case clusters were removed.

8: for x̂ 6= x̂′ do
9: if ‖p(y|x̂)− p(y|x̂′)‖∞ < δ2 then . Merge nearly identical points in ∆[Y ].

10: p(x̂)← p(x̂) + p(x̂′)
11: delete the coordinates of x̂′, from p(x̂) and p(y|x̂).
12: end if
13: end for

14: return
(

p(y|x̂), p(x̂)
)

15: end function

Using the root-reduction Algorithm 2 allows one to stop early in the vicinity of a
bifurcation when following the path of an IB root. As mentioned in Section 4, early
stopping restricts the computational difficulty of root tracking [6]. Further, reducing the
root before invoking BA-IB (Algorithm 1) allows us to avoid BA’s critical slowing down [4],
since reduction removes the nearly vanished Jacobian eigenvalues that pertain to the nearly
vanished (or nearly merged) cluster(s), which are the cause of BA’s critical slowing down.
cf., Proposition 1 (Section 5.3) and the discussion around it. See also [6] (Figure 3.1(C) and
Section 3.2) for the respective behavior in RD. Finally, we comment that the root-reduction
Algorithm 2 can also be implemented in the other two coordinate systems of Section 2.

46



Entropy 2023, 25, 1370

5.3. Discontinuous IB Bifurcations and Linear Curve Segments

In the previous Section 5.2, we considered continuous IB bifurcations—namely, when
the clusters rx̂ ∈ ∆[Y ] and weights p(x̂) of an IB root are continuous functions of β. By
exploiting the intimate relations between the IB and RD (Section 5.1), we now consider IB
bifurcations where these cannot be written as a continuous function of β. In our experience,
discontinuous bifurcations are infrequent in practice. However, the theory they evoke has
several subtle consequences of practical implications important for computing IB roots (in
Section 6). Though, perhaps more importantly, they oblige one to ask what is the IB? We
start with several examples before diving into the theory; e.g., Figure 7.

−0.5 0.0 0.5

log2 β

0.0

0.3

1.0

p(
y

=
0|x̂

)

−0.5 0.0 0.5

log2 β

0.3

0.7

1.0

p(
x̂

)

0.00 0.88

I(X; X̂)

0.00

0.88

I
(Y

;X̂
)

Figure 7. A discontinuous IB bifurcation at βc = 1, of the problem defined by pY|X pX =

(
0.3

0.7

)
.

(Left): to the left of βc, the optimal solution is the trivial one, supported on the IB cluster pY . To the
right it is supported on the boundary points (1, 0) and (0, 1) of ∆[Y ]. (Middle): the marginals are
constant, except at the point of bifurcation. Any convex combination of the trivial and non-trivial roots
is optimal there (dotted). That is, this is a support-switching bifurcation as in RD [6] (Figure 6.2).
(Right): the IB curve exhibits a linear segment of slope 1/βc = 1, connecting the image of the trivial
solution in the information plane (bottom-left) to that of the non-trivial one (top-right). See comments
in the main text.

The examples of discontinuous IB bifurcations of which we are aware can be under-
stood in RD context as follows. Consider the IB as an RD problem on the continuous repro-
duction alphabet ∆[Y ], with IB roots parameterized by points in ∆[∆[Y ]] (see Section 5.1).
In RD, the existence of linear curve segments is well-known [28]—e.g., Figure 2.7.6 in the
latter and its reproduction in [6] (Figure 6.2). Section 6.5 in [6] offers an explanation of
linear segments in terms of a support-switching bifurcation. Namely, a bifurcation where
two RD roots of distinct supports exchange optimality at a particular multiplier value
βc. Both roots evolve smoothly in β while only exchanging optimality at the bifurcation.
At βc itself, every convex combination of these two roots is also an RD root. In partic-
ular, the optimal RD root cannot be written as a continuous function of β. The sudden
emergence of an entire segment of roots at βc can be understood by RD’s convexity and
analyticity properties, as follows. The RD curve (23) is parameterized by the slope −β of
its tangents [28] (Theorems 2.5.1 and 2.5.2). Above and below βc, specifying the tangent’s
slope determines a curve-achieving distribution on the optimal root (the root whose curve
is lower at this slope value). Equivalently, the lower convex envelope of these roots in the
RD plane coincides with one root above βc and with the other below it, as seen in Figure 8
(black). At βc itself, specifying the slope determines a distribution on both roots. Thus, the
convexity of the RD curve and of the set of achieving distributions implies a linear segment
at βc (Theorem 2.4.1 in [28] and Theorem 5 below). Finally, this behavior is possible due to
analyticity, since the roots of a real-analytic operator Id− BARD

β are either isolated (typical)
or an algebraic curve (atypical) by Bézout’s Theorem—see (i) in the discussion following
Conjecture 1.

47



Entropy 2023, 25, 1370

0.0 0.1 0.2 0.3

Distortion

0.0

0.5

1.0

R
at

e
(b

it
s)

supp = {x̂2, x̂3}

supp = {x̂1, x̂2}

Figure 8. A support-switching bifurcation in RD, reproducing Figure 6.2(F) in [6] (details therein).
The RD curve (23) (black) is the envelope of its tangents, parameterized by their slope −β, [28]. At
high slopes, the envelope coincides with that of the problem restricted to the reproduction alphabet
{x̂1, x̂2} (green), and at low slopes with that restricted to {x̂2, x̂3} (blue). At a critical slope −βc, the
tangent touches both curves (red circles). Convexity then implies a linear segment (dashed)—see
main text.

For one example of linear curve segments in the IB, say that a matrix M decomposes if it
can be written (non-trivially) as a block matrix by permuting its rows or columns. In light
of the above, we have the following refinement of Theorem 2.6 in [2]:

Theorem 3. The IB curve (1) has a linear segment at β = 1 if and only if the problem’s definition
pY|X pX decomposes.

Recall that the slope of the IB curve is 1/β at a multiplier value β [1] (Equation (32)).
Thus, Theorem 3 equates decomposable problems with linear curve segments of slope 1
(the slope cannot exceed one due to the data processing inequality). Figure 7 provides
a simple decomposable example, exhibiting a support-switching bifurcation between its
trivial and non-trivial roots. Non-decomposable examples also exist, exhibiting a support-
switching bifurcation at lower slope values (higher critical β’s). For example, a symmetric
binary erasure channel exhibits a support-switching bifurcation [2] (Section IV.B), which is
manifested by a linear segment of slope 1/βc ≤ 1, for βc ≥ 1 (switching between the trivial
root at pY and a bi-clustered root supported on (β−1

c , 1− β−1
c , 0) and (0, 1− β−1

c , β−1
c ) ∈ ∆[Y ]; the

linear segment of slope β−1
c is Equation (4.8) there). See [2] (Section IV) for further examples.

We argue that in the IB, support-switching bifurcations exhibit the same behavior as in RD.
That is, two roots that evolve smoothly in β and exchange optimality at the bifurcation.
While the sequel can justify this in general, there is a simple way to see this in practice.
Namely, following the two roots of Figure 7 through the bifurcation by using BA-IB with
deterministic annealing [11] (follow the trivial root of Figure 7 from left to right and the
non-trivial one from right to left, through the bifurcation at βc = 1 there). As deterministic
annealing usually follows a solution branch continuously, this immediately reveals either
root at the region where it is sub-optimal (not displayed).

A support-switching bifurcation evidently has similar characteristics to a transcritical
bifurcation (e.g., Section 3.2 in [35]), though it should perhaps be classified as an imperfect
transcritical since the roots do not intersect per se as in a classical transcritical. This extends
the results of [19], who conclude that IB bifurcations “are only of pitchfork type” (Theorem 5
therein says that the bifurcations detected by their Theorem 3 are degenerate rather than
transcritical, concluding that “the bifurcation guaranteed by Theorem 3 is [generically] pitchfork-
like”). To see the reason for this discrepancy, note that they employ the mathematical
machinery in [36] of bifurcations under symmetry. Since pitchfork bifurcations are “common
in physical problems that have a symmetry” [35] (Section 3.4), then detecting only pitchforks
by using the above machinery might not come as a surprise. Both [9] and its sequel [19]
consider the IB’s symmetry to interchanging the coordinates of identical clusters (Definition

48



Entropy 2023, 25, 1370

1(1) in [19]). However, this is a structural symmetry of the IB which stems from represent-
ing IB roots by finite-dimensional vectors (Section 5.1), and is broken in continuous IB
bifurcations (Section 5.2). On the other hand, discontinuous IB bifurcations need not break
this symmetry, as can be seen by inspecting the roots of Figure 7 closely (the trivial solution
to the left of βc there may be given a degenerate bi-clustered representation, which is fully
supported on pY but has a second cluster r 6= pY of zero mass. Neither of its roots then
possesses a symmetry to interchanging cluster coordinates, at either side of βc).

A few convexity results from rate-distortion theory are needed to consider discontinu-
ous bifurcations in general. These have subtle practical implications, which are of interest
in their own right.

Theorem 4 (Theorem 2.4.2 in [28]). The set of conditional probability distributions p(x̂|x) which
achieve a point (D, R(D)) on the rate-distortion curve (23) is convex.

Viewing the IB as an RD problem as in [20] immediately yields an identical result for
the IB:

Corollary 2. The set of IB encoders that achieve a point (IX , IY) on the IB curve (1) is convex.

The proof is provided below for completeness. We note that a version of
Corollary 2 in inverse encoder coordinates can also be synthesized from the ideas leading
to Theorem 2.3 in [2].

Proof of Corollary 2. Consider a finite IB problem pY|X pX as an RD problem (dIB, pX) on
the continuous reproduction alphabet ∆[Y ], as defined by (25) in Section 5.1. As noted
above, its encoders (or test channels) are conditional probability distributions p(r|x), with
r ∈ ∆[Y ], supported on finitely many coordinates (r, x).

Let p1(r|x) and p2(r|x) be encoders achieving a point (IX, IY) on the IB curve (1).
Define their support by supp p(r|x) := supp p(r), where p(r) is defined from p(r|x) via
marginalization, as in (4). By Theorem 5 in [20], p1(r|x) and p2(r|x) may be considered
as test channels achieving the curve (23) of the RD problem (dIB, pX). The reproduction
symbols r ∈ ∆[Y ] supporting a convex combination pλ := λ · p1 + (1− λ) · p2, 0 ≤ λ ≤ 1,
are contained in the the supports of p1 and p2: supp pλ ⊆ supp p1 ∪ supp p2. Therefore,
pλ is finitely supported. Although Berger’s Theorem 4 assumes that the reproduction
alphabet is finite, one can readily see that its proof works just as well when the distributions
involved are finitely supported. Thus, by Theorem 4, pλ achieves the above point on the RD
curve (23). Since this point (IX , IY) is on the IB curve (1), then pλ is an optimal IB root.

The RD curve (23) is the envelope of lines of slope−β and intercept minp(x̂|x)
(

I(X; X̂)+

β E[d(x, x̂)]
)

along the R-axis, e.g., [28]. Thus, Theorem 4 can be generalized by considering
the achieving distributions that pertain to a particular slope value rather than to a particular
curve point (D, R(D))—see [6] (Section 6.3).

Theorem 5 (Theorem 20 in [6]). For any β > 0 value, the set of distributions achieving the RD
curve (23) that correspond to β is convex.

As with Corollary 2, we immediately have an identical result for roots achieving the
IB curve (1):

Corollary 3. For any β > 0 value, the set of optimal IB encoders that correspond to β is convex.

See also [2] (Section IV) for an argument in inverse encoder coordinates. In particular,
note the duality technique leading to (b) and (c) in Theorem 4.1 there. This duality boils
down to describing a compact convex set in the plane by its lines of support, as in the
observation leading to Theorem 5. Commensurate with the IB being a special case of RD,

49



Entropy 2023, 25, 1370

Corollary 3 can also be proven directly from the IB’s definitions in direct encoder terms [37].
Note that the requirement that the IB root indeed achieves the curve is necessary. Otherwise,
one could take convex combinations with the trivial IB root p(r|x) = δr,pY (which satisfies
the IB Equations (2)–(4) for every β > 0, as one can verify directly). This yields absurd
results, since the trivial root contains no information on either X or Y.

As in [6] (Section 6.3), the convexity of optimal IB roots (Corollary 3) has several
important consequences. For one, unlike the (local) bifurcations we have considered so far,
bifurcation theory also has global bifurcations. These are “bifurcations that cannot be detected by
looking at small neighborhoods of fixed points” [12] (Section 2.3). From convexity, it immediately
follows that

Corollary 4. There are no global bifurcations in finite IB problems.

Indeed, if at a given β value there exists more than one optimal root, then the Jacobian
of the IB operator Id− BAβ (5) must have a kernel vector pointing along the line connecting
these optimal roots, by Corollary 3.

With that comes an important practical caveat. Corollaries 2 and 3 hold for the IB
when parameterized by points in ∆[∆[Y ]]. However, the above kernel vector (which exists
due to convexity) may not be detectable if an IB root is improperly represented by a
finite-dimensional vector. For example, consider the bifurcation in Figure 7, where a line
segment at βc connects the trivial (single-clustered) root to the 2-clustered root. Obviously,
the bifurcation there cannot be detected by the Jacobian of the IB operator (5) when it is
computed on T = 1 clusters (Jacobian of order 1 · (|Y|+ 1)). Indeed, the root of effective
cardinality two cannot be represented on a single cluster, and so the line segment connecting
it to the trivial root does not exist in a 1-clustered representation. This is demonstrated
in Figure 9, which compares Jacobian eigenvalues at reduced representations to those at
2-clustered representations. The same reasoning gives the following necessary condition:

Proposition 1 (A necessary condition for detectability of IB bifurcations). A bifurcation at
βc in a finite IB problem which involves roots of effective cardinalities T1 and T2 is detectable by a
non-zero vector in ker(I−Dlog p(y|x̂),log p(x̂)BAβc) only if the latter is evaluated at a representation
on at least max{T1, T2} clusters.

Indeed, suppose that T1 � T2 (the conclusion is trivial if T1 = T2). By definition, a
root of effective cardinality T2 does not exist in representations with less than T2 clusters.
Thus, there is no bifurcation in a T-clustered representation if T < T2, and so there is then
nothing to detect. As a special case of this argument, note that Conjecture 1 (Section 5.1)
implies that the Jacobian is non-singular in a T1-clustered representation of the T1-clustered
root (namely, at its reduced representation). With that, we have observed numerically that
the eigenvalues of Dlog p(y|x̂),log p(x̂)BAβ do not depend on the representation’s dimension
if computed on strictly more clusters than the effective cardinality (which makes sense
considering Theorem 2.6.1 in [28] or Lemma 2.2(i) in [2]). Rather, only the eigenvalues’
multiplicities vary by dimension. We omit practical caveats on exchanging between the
coordinate systems of Section 2 for brevity.

50



Entropy 2023, 25, 1370

−0.5 0.0 0.5

log2 β

−1.0

−0.5

0.0

0.5

1.0

ei
gs

of
D

lo
g
p
(y
|x̂

),
lo

g
p
(x̂

)B
A
β

1 cluster 2 clusters

−0.5 0.0 0.5

log2 β

−1.0

−0.5

0.0

0.5

1.0

ei
gs

of
D

lo
g
p
(y
|x̂

),
lo

g
p
(x̂

)B
A
β

2 clusters

Figure 9. Bifurcations can be detected by BAβ’s Jacobian only if computed on enough clusters.
The approximate eigenvalues of Dlog p(y|x̂),log p(x̂)BAβ are plotted by the representation’s dimension
for the problem in Figure 7. The eigenvalues are evaluated at solutions obtained by the BA-IB
Algorithm 1 (stopping condition = 10−9), initialized anew at random for each β. While the random
initializations account for much of the eigenvalues’ spread, they reveal the solution’s behavior
through its various approximations. Other factors which contribute to this spread are the degeneracy
of the solutions (when β < 1, right panel), BA’s loss of accuracy near the bifurcation (Figure 3 bottom),
and the decoders’ proximity to the simplex boundaries (see Equation (13)). (Left): when computed
at reduced representations (on T = 1 clusters to the left, T = 2 to the right), then the eigenvalues at
the trivial solution give no indication of the upcoming bifurcation (at β < 1), unlike the eigenvalues
at the 2-clustered root (β > 1). (Right): the bifurcation’s presence is clearly noticed also at the
trivial solution (β < 1) when evaluated at its degenerate 2-clustered representations. Indeed, the
trivial solution is then represented on the same number of clusters (T = 2) as the root to the right
(β > 1)—see Proposition 1. However, due to the bifurcation, the eigenvalues’ trajectories are not
smooth at βc = 1. Both: a similar dependency on the representation’s dimension also exists in the
other bifurcation examples in this paper (though without the eigenvalues’ spread).

The discussion of discontinuous bifurcations naturally leads one to consider the IB as
an RD problem on the continuous reproduction alphabet ∆[Y ], as in Corollaries 2 and 3,
unlike its usual definitions in the literature. When considered this way, IB roots are merely
paths p(β) in ∆[∆[Y ]], following a piecewise smooth trajectory dictated by the IB ODE (16)
(which may be considered as a non-autonomous ODE on ∆[∆[Y ]]). Due to Conjecture 1 and
the IFT, these paths are isolated outside bifurcations. Two (or more) roots may intersect in a
continuous bifurcation. If one of the intersecting roots is optimal, then the other must be of
a strictly smaller effective cardinality due to the arguments in Section 5.2. If two distinct
roots are optimal simultaneously, then ∆[∆[Y ]] contains an entire segment of optimal IB
roots, due to Corollary 3. Viewing the IB this way also highlights several subtleties in its
calculation. First, parameterizing IB roots with ∆[∆[Y ]] avoids its structural symmetries
(Section 5.1). Second, it shows that, a priori, it is possible to follow the path of an optimal
root using local techniques (Corollary 4). Third, it highlights that one must compute on
enough clusters to detect a bifurcation (Proposition 1). Though obvious in retrospect, this
caveat was not given proper attention in the IB literature. Fourth, as we shall now see,
cluster-vanishing bifurcations can only be detected by following an optimal root to its
collision with a root of smaller effective cardinality. Fifth, this implies (below) that only
negative step sizes ∆β < 0 should be used to follow an optimal root.

The arguments above imply that cluster-vanishing bifurcations cannot be detected
directly by considering kernel directions of the IB operator (5) at the bifurcation, as argued in
Section 5.2. Indeed, consider a continuous bifurcation, where roots p1 and p2 of respective
effective cardinalities T1 < T2 intersect. These are paths in ∆[∆[Y ]] that coincide at the
bifurcation itself, p1(βc) = p2(βc), and so in particular are of the same effective cardinality
T1 there. This is in contrast to the situation in Corollary 3, where two distinct roots are

51



Entropy 2023, 25, 1370

simultaneously optimal at βc, leading to an entire segment of optimal roots. Asking whether
a bifurcation is detectable amounts to considering the evaluation of ker D(Id− BAβ) at a
finite-dimensional representation (or “projection”) of p. The Jacobian D(Id− BAβ) of the
IB operator (5) is non-singular when evaluated on a T1-clustered representation of p1(βc)
in log-decoder coordinates, as noted after Proposition 1. We argue that evaluating it on
representations with more clusters T 	 T1 does not allow one to detect the bifurcation (even
if T ≥ T2). See Appendix H for a formal argument. Intuitively, this is because picking a
degenerate representation amounts to duplicating clusters of the reduced representation or
adding clusters of zero mass (see reduction in Section 5.1). Introducing degeneracies to a
reduced root adds no information about the problem at hand.

Due to the above, cluster-vanishing bifurcations cannot be detected by following a
root p1 of effective cardinality T1 through the bifurcation point, but only by following a root
p2 with T2 > T1 to its collision with p1. As discussed after Conjecture 1 (Section 5.1), the
Jacobian of Id− BAβ in reduced log-decoder coordinates can then be used to indicate the
upcoming collision of p2 with p1, in addition to the root-reduction Algorithm 2. The exact
same arguments as above apply also to cluster-merging bifurcations. However, as noted in
Section 5.2 (and Appendix F), the stability of a particular IB cluster x̂ is a property of the
root itself. Thus, these are detectable by standard local techniques at the point of bifurcation.
Unlike continuous bifurcations, discontinuous bifurcations are inherently detectable due to
the line segment in ∆[∆[Y ]] connecting the roots at the bifurcation (Corollary 3), as long as
the IB root is represented on sufficiently many clusters (Proposition 1)—see Figure 9. These
results make sense, considering that cluster-vanishing bifurcations are more frequent in
practice than other types. Intuitively, branching from a suboptimal root p1 to an optimal one
p2 is harder than the other way around, just as learning new relevant information is harder
than discarding it. Cases where both directions are equally difficult are the exception, as
one might expect. This is consistent with the later discussion in Section 6.3 on the stability
of optimal IB roots (Appendix G).

When following the path of a reduced IB root (as in Section 4), one would like to
ensure that its bifurcations are indeed detectable by BA’s Jacobian. Due to the caveats
involved in detecting bifurcations of either type, it is necessary to follow the path as the
effective cardinality decreases rather than increases. As a result, we take only negative
step sizes ∆β < 0, since the effective cardinality of an optimal IB root cannot decrease
with β. To see this, first note that the IB curve IY(IX) (1) is concave, and so its slope 1/β

cannot increase with IX. That is, β cannot decrease with IX. Second, note that allowing
more clusters cannot decrease the X-information ∑x̂ p(x̂)H

(
p(x|x̂)

)
achieved by the IB’s

optimization variables. Indeed, a T-clustered variable
(

p(x|x̂), p(x̂)
)

(not necessarily a
root) can always be considered as (T + 1)-clustered, by adding a cluster of zero mass;
cf., the construction of [2] (Section II.A). Thus, the effective cardinality of an optimal root
cannot decrease as the constraint IX on the X-information is relaxed. With both points
combined, the effective cardinality cannot decrease with β, as argued. In contrast to the IB,
we note that the behavior of RD problems is more complicated since the distortion of each
reproduction symbol is fixed a priori; e.g., Example 2.7.3 and Problems 2.8–2.10 in [28].

Returning to discontinuous IB bifurcations, we proceed with the argument
of Section 5.2 when continuity fails. That is, consider the reduced form of an optimal
IB root, and suppose that either its decoders or its weights (or both) cannot be written as
a continuous function of β at βc. Write r+x̂ and r−x̂ for its distinct decoders as β→ β+

c and
β→ β−c , respectively. Similarly, write p+(x̂) and p−(x̂) for its non-zero weights. Consider
the tangent RD problem on the reproduction alphabet X̂ := {r+x̂ }x̂ ∪ {r−x̂ }x̂ ⊂ ∆[Y ], as in
Section 5.1. See also [4] (Section V), upon which this argument is based. By construction, the
IB coincides with its tangent RD problem at the two points

(
r+x̂ , p+(x̂)

)
, and

(
r−x̂ , p−(x̂)

)
.

Since both points achieve the optimal curve at the same slope value 1/βc, then the linear
segment of distributions connecting these points is also optimal, by Theorem 5. Alterna-
tively, one could apply Corollary 3 directly to the IB problem. Either way, there exists a line
segment of optimal IB roots, which pertain to the given slope value. In summary,

52



Entropy 2023, 25, 1370

Theorem 6. Let a finite IB problem have a discontinuous bifurcation at βc ≥ 1. Then, its IB curve
(1) has a linear segment of slope 1/βc.

Unless the decoder sets {r+x̂ }x̂ and {r−x̂ }x̂ are identical, then this is a support-switching
bifurcation [6] (Section 6.5), as in Figure 7. A priori, the IB roots

(
r+x̂ , p+(x̂)

)
and

(
r−x̂ , p−(x̂)

)

may achieve the same point in the information plane, in which case the linear curve segment
is of length zero. However, we are unaware of such examples. Yet, even if such bifurcations
exist, they would be detectable by the Jacobian of BA-IB (when represented on enough
clusters), subject to Conjecture 1.

6. First-Order Root Tracking for the Information Bottleneck

Gathering the results of Sections 2–5, we can now not only follow the evolution of an
IB root along the first-order Equation (16), but can also identify and handle IB bifurcations.
This is summarized by our First-order Root-Tracking algorithm for the IB (IBRT1) in
Section 6.1, with some numerical results in Section 6.2. Section 6.3 discusses the basic
properties of IBRT1, and mainly the surprising quality of approximations of the IB curve (1)
that it produces, as seen in Figure 1. We focus on continuous bifurcations (Section 5.2),
since these are far more frequent in our experience than discontinuous ones and are
straightforward to handle (see Section 6.3 on the handling of discontinuous bifurcations).

6.1. The IBRT1 Algorithm 5

To assist the reader, we first present a simplified version of IBRT1 as Algorithm 3, with
edge cases handled later by Algorithm 4—clarifications follow. When combined, these two
form our IBRT1 Algorithm 5, specified below.

We now elaborate on the main steps of the Simplified First-order Root Tracking for the
IB (Algorithm 3), following Root Tracking for RD [6] (Algorithm 3). Its purpose is to follow
the path of a given IB root pβ0(x̂|x) in a finite IB problem. The initial condition pβ0(x̂|x) is
required to be reduced and IB-optimal. Its optimality is needed below to ensure that the
path traced by the algorithm is indeed optimal. The step-size ∆β is negative, for reasons
explained in Section 5.3 (Proposition 1 ff.). The cluster mass and cluster merging thresholds
are as in the root-reduction Algorithm 2 (Section 5.2).

Denote p̃ (step 3 of Algorithm 3) for the distributions generated from an encoder (see
Equation (11) in Section 2). Algorithm 3 iterates over grid points p̃, with each while iteration
generating the reduced form of the next grid point, as follows. On step 6, evaluate the IB
ODE (16) at the current root p̃, solving the linear equations numerically. By Conjecture 1
(Section 5.1), the IB ODE has a unique numerical solution v if p̃ is a reduced root and
not a bifurcation. Steps 7 and 8 approximate the root at the next grid point at β + ∆β, by
exponentiating Euler method’s step (22) (Section 4). Normalization is enforced on step 9,
since it is assumed throughout. Off-grid points can be generated by repeating steps 7
through 9 for intermediate ∆β values if desired. The approximate root at β + ∆β is reduced
on step 11, by invoking the root-reduction Algorithm 2 (Section 5.2). Note that Algorithm 2
returns its input root unmodified unless reducing it numerically. If reduced, then the
root is a vector of a lower dimension—either a cluster mass p(x̂) has nearly vanished
or distinct clusters have nearly merged. To re-gain accuracy, we invoke (on step 14) the
Blahut–Arimoto Algorithm 1 for the IB until convergence, on the encoder defined at step 13
by the reduced root. Although BA-IB is invoked near a bifurcation, this does not incur a
hefty computational cost due to its critical slowing down [4]—see comments at the bottom
of Section 5.2. Invoking BA (on step 14) before reducing (on step 11) would have inflicted a
hefty computational cost to BA-IB due to the nearby bifurcation. Finally, a single BA-IB
iteration in decoder coordinates is invoked on the approximate root (step 17), whether
reduced earlier or not. This enforces Markovity while improving the order of this method
(see Section 4, and Figure 4 in particular). Algorithm 3 continues this way (step 4) until the
approximate solution is trivial (single-clustered), or β is non-positive. In the IB, the trivial
solution is always optimal for tradeoff values β < 1. However, here β plays the role of

53



Entropy 2023, 25, 1370

the ODE’s independent variable instead. Thus, we allow Algorithm 3 to continue beyond
β = 1, as long as β > 0, which is assumed throughout (the condition β > |∆β| on step 4
ensures that the target β value of the next grid point is non-negative). This shall be useful
for overshooting—see below.

Algorithm 3 Simplified First-order Root-Tracking for the IB

1: function SIBRT1(pY|X pX , β0, pβ0(x̂|x); ∆β, δ1, δ2)
Input:

An IB problem definition pY|X pX with ∀x pX(x) > 0.
A reduced IB-optimal root pβ0(x̂|x) at β0. A step size ∆β < 0.
Cluster-mass threshold δ1 and cluster-merging threshold δ2, with 0 < δi < 1.

Output: Approximations p̃βn of the optimal IB roots pβn at βn := β0 + n∆β.
2: Initialize β← β0 and results← {}.
3: Initialize p̃ :=

(
p̃(x̂|x), p̃(x|x̂), p̃(y|x̂), p̃(x̂)

)
from pβ0(x̂|x), via Steps 1.4–1.6.

4: while β > |∆β| and |supp p̃(x̂)| > 1 do . See main text on stopping condition.
5: Append p̃ to results.

6: v :=
(

d log p̃(y|x̂)
dβ , d log p̃(x̂)

dβ

)
← solve the IB ODE (16) at p̃.

7: p̃(y|x̂)← p̃(y|x̂) exp
(

∆β · d log p̃(y|x̂)
dβ

)

8: p̃(x̂)← p̃(x̂) exp
(

∆β · d log p̃(x̂)
dβ

)
. Exponentiate the linear approximations (22).

9:
(

p̃(y|x̂), p̃(x̂)
)
← normalize

(
p̃(y|x̂), p̃(x̂)

)

10: old_dim← dim p̃(x̂)
11:

(
p̃(y|x̂), p̃(x̂)

)
← REDUCE ROOT( p̃(y|x̂), p̃(x̂); δ1, δ2). . Algorithm 2.

12: if old_dim 6= dim p̃(x̂) then . Root was reduced due to bifurcation.
13: p̃(x̂|x)← the encoder defined by

(
p̃(y|x̂), p̃(x̂)

)
, via Steps 1.7–1.8.

14: p̃← BA-IB( p̃(x̂|x); pY|X pX , β + ∆β).

. Ensure accuracy of the reduced root, using BA-IB Algorithm 1 till convergence.

15: end if
16: β← β + ∆β.
17: p̃← BAβ( p̃(y|x̂), p̃(x̂)) . A single BA-IB iteration in decoder coordinates.
18: end while
19: Append p̃ to results.
20: return results.
21: end function

With that, there are caveats in Algorithm 3, which stem from passing too far or close
to a bifurcation. For one, suppose that the error accumulated from the true solution is
too large for a bifurcation to be detected. The approximations generated by the algorithm
will then overshoot the bifurcation. Namely, it will proceed with more clusters than
needed until the conditions for reduction are met later on (see Section 6.3 below), as
demonstrated by the two sparse grids in Figure 10 (Section 6.2). For another, suppose
that the current grid point p̃ is too close to a bifurcation. This might happen due to a
variety of numerical reasons, e.g., thresholds δ1, δ2 too small, or due to the particular grid
layout. The coefficients matrix I − Dlog p(y|x̂),log p(x̂)BAβ of the IB ODE (16) (which is the
Jacobian of the IB operator (5)) would then be ill-conditioned, typically resulting in very
large implicit numerical derivatives v on step 6; cf., Conjecture 1 ff. in Section 5.1. Any
inaccuracy in v might then send the next grid point astray, derailing the algorithm from
there on (e.g., inaccuracies due to the accumulated approximation error or due to the error
caused by computing implicit derivatives in the vicinity of a bifurcation—see Figure 3
(top) in Section 3). Indeed, the derivatives dx

dβ = −(DxF)−1DβF defined by the implicit
ODE (7) are in general unbounded near a bifurcation of F (in our case, DxF is always
non-singular outside bifurcations, due to Conjecture 1 and the use of reduced coordinates).
This can be seen in Figure 2 (Section 2) for example, where the derivatives “explode” at

54



Entropy 2023, 25, 1370

the bifurcation’s vicinity. See also [6] (Section 7.2) on the computational difficulty incurred
by a bifurcation. While overshooting a bifurcation is not a significant concern for our
purposes (see Section 6.3), passing too close to one is. The latter is important, especially
when the step size |∆β| is small. While decreasing |∆β| generally improves the error of
Euler’s method, it also makes it easier for the approximations to come close to a bifurcation,
thus potentially worsening the approximation dramatically if it derails. This motivates one
to consider how singularities of the IB ODE (16) should be handled.

Algorithm 4 A heuristic for handling singularities of the IB ODE (16)

1: function HANDLE SINGULARITY(pY|X pX ,
(

p̃(y|x̂), p̃(x̂)
)
, v, β)

Input:
An IB problem definition pY|X pX , with ∀x pX(x) > 0.
An approximate root

(
p̃(y|x̂), p̃(x̂)

)
of the given problem, near a singularity of the IB

ODE (16).
Approximate numerical derivatives v :=

(
d log p̃(y|x̂)

dβ , d log p̃(x̂)
dβ

)
at the given root.

The β > 0 value of the next (output) grid point.
Output: An approximate IB root p̃ at β on one fewer cluster.

2: x̂′, x̂′′ ← the two indices x̂ of largest
∥∥∥ d log p̃(y|x̂)

dβ

∥∥∥
∞

value (norm of y-indexed vectors).

3: p̃(y|x̂′)← 1
2 ·
(

p̃(y|x̂′) + p̃(y|x̂′′)
)
. Replace fastest-moving clusters by their mean.

4: Erase x̂′′ from the decoder p̃(y|x̂).
5: p̃(x̂′)← p̃(x̂′) + p̃(x̂′′)
6: Erase x̂′′ from the marginal p̃(x̂).
7: p̃(x̂|x)← the encoder generated from ( p̃(y|x̂), p̃(x̂)), via Steps 1.7–1.8.

. A new encoder on one cluster less than the input.

8: p̃← BA-IB( p̃(x̂|x); pY|X pX , β). . Re-gain accuracy, by the BA-IB Algorithm 1.
9: return p̃

10: end function

Next, we elaborate on our heuristic for handling singularities of the IB ODE (16),
Algorithm 4. The inputs of this heuristic are defined as in Algorithm 3. It starts with
the assumption that the coefficients matrix I − Dlog p(y|x̂),log p(x̂)BAβ of the IB ODE (16)
is nearly singular at the current grid point p̃ due to a nearby bifurcation (although a
priori the Jacobian Dlog p(y|x̂),log p(x̂)(Id− BAβ) may be singular also due to other reasons,
by Conjecture 1 it is non-singular at the approximations generated so far since they are
assumed to be in their reduced form—see Section 5.1). As a result, the implicit derivatives v
at p̃ are not to be used directly to extrapolate the next grid point, as explained above. Instead,
we use them to identify the two fastest moving clusters, on step 2 of Algorithm 4 (while this
can be refined to handle more than two fast-moving clusters at once, that is not expected
to be necessary for typical bifurcations). These are replaced by a single cluster (steps 3
through 6), resulting in an approximate root on one fewer cluster. To re-gain accuracy,
the BA-IB Algorithm 1 is then invoked (on step 8) on the encoder generated (on step 7)
from the latter root, thereby generating the next grid point. If the fastest-moving clusters
have merged (in the true solution) by the next grid point, then the output of Algorithm 4
will be an IB-optimal root if its input grid point is so. Namely, the branch followed by the
algorithm remains an optimal one. Otherwise, if these clusters merge shortly after the next
grid point, then Algorithm 4 yields a sub-optimal branch. However, optimality is re-gained
shortly afterward since the sub-optimal branch collides and merges with the optimal one
in continuous IB bifurcations (Section 5.3). Figure 10 below demonstrates Algorithm 4.
cf., [6] (Section 3.2) on the similar heuristic in root tracking for RD, which may also lose
optimality near a bifurcation and re-gain it shortly after.

55



Entropy 2023, 25, 1370

Algorithm 5 First-order Root Tracking for the IB (IBRT1)

1: function IBRT1(pY|X pX , β0, pβ0(x̂|x); ∆β, δ1, δ2, δ3)
Input:

An IB problem definition pY|X pX with ∀x pX(x) > 0.
A reduced IB-optimal root pβ0(x̂|x) at β0. A step size ∆β < 0.
Thresholds 0 < δ1, δ2 < 1 for the root-reduction Algorithm 2 (cluster mass and merg-
ing).
A threshold 0 < δ3 < 1 for eigenvalues’ singularity.

Output: Approximations p̃βn of the optimal IB roots pβn at βn := β0 + n∆β.
2: Initialize β← β0 and results← {}.
3: Initialize p̃ :=

(
p̃(x̂|x), p̃(x|x̂), p̃(y|x̂), p̃(x̂)

)
from pβ0(x̂|x), via Steps 1.4–1.6.

4: while β > |∆β| and |supp p̃(x̂)| > 1 do
5: Append p̃ to results.

6: v :=
(

d log p̃(y|x̂)
dβ , d log p̃(x̂)

dβ

)
← solve the IB ODE (16) at p̃.

7: eigs← eig(I − S)
∣∣

p̃ . Test ODE for singularity, using S (17) from Lemma 1.

8: if
(
minv∈eigs |v|

)
< δ3 then . ODE is nearly singular.

9: p̃← HANDLE SINGULARITY(pY|X pX ,
(

p̃(y|x̂), p̃(x̂)
)
, v, β + ∆β)

. Handle an otherwise undetected singularity using Algorithm 4.

10: else
11: p̃(y|x̂)← p̃(y|x̂) exp

(
∆β · d log p̃(y|x̂)

dβ

)

12: p̃(x̂)← p̃(x̂) exp
(

∆β · d log p̃(x̂)
dβ

)

13:
(

p̃(y|x̂), p̃(x̂)
)
← normalize

(
p̃(y|x̂), p̃(x̂)

)

14: old_dim← dim p̃(x̂)
15:

(
p̃(y|x̂), p̃(x̂)

)
← REDUCE ROOT( p̃(y|x̂), p̃(x̂); δ1, δ2).

16: if old_dim 6= dim p̃(x̂) then
17: p̃(x̂|x)← encoder defined from

(
p̃(y|x̂), p̃(x̂)

)
, via Steps 1.7–1.8.

18: p̃← BA-IB( p̃(x̂|x); pY|X pX , β + ∆β).
19: end if
20: end if
21: β← β + ∆β.
22: p̃← BAβ( p̃(y|x̂), p̃(x̂))
23: end while
24: Append p̃ to results.
25: return results.
26: end function

The heuristic Algorithm 4 is motivated by cluster-merging bifurcations. In these, the
implicit derivatives are very large only at the coordinates d log p(y|x̂)

dβ of the points colliding
in ∆[Y ] (note that cluster masses barely change in the vicinity of a cluster merging, until the
point of bifurcation itself). While intended for cluster-merging bifurcations, this heuristic
works nicely in practice also for cluster-vanishing ones. To see why, note that one can always
add a cluster of zero mass to an IB root without affecting the root’s essential properties,
regardless of its coordinates in ∆[Y ] (cf., Section 5.1 on reduction in the IB). Therefore, a
numerical algorithm may, in principle, do anything with the coordinates p(y|x̂) ∈ ∆[Y ] of
a nearly vanished cluster x̂, p(x̂) ' 0, without affecting the approximation’s quality too
much. Thus, for numerical purposes, one may treat a cluster-vanishing bifurcation as a
cluster-merging one. Conversely, in a cluster-merging bifurcation, a numerical algorithm
may, in principle, zero the mass of one cluster while adding it to the remaining cluster,
again without affecting the approximation’s quality too much. To conclude, for numerical
purposes, cluster vanishing is very similar to cluster merging. A variety of treatments
between these extremities may be possible by a numerical algorithm. Empirically, we have
observed that our ODE-based algorithm treats both as cluster-merging bifurcations. To our

56



Entropy 2023, 25, 1370

understanding, this is because our algorithm operates in decoder coordinates, unlike the
BA-IB Algorithm 1, for example, which operates in encoder coordinates.

Finally, we combine the simplified root-tracking Algorithm 3 with the heuristic
Algorithm 4 for handling singularities, yielding our IBRT1 Algorithm 5. It follows the
lines of the simplified Algorithm 3, except that after solving for the implicit derivatives
on step 6, we test the IB ODE (16) for singularity. To that end, we propose using the
matrix S (17) (from Lemma 1 in Section 3), since its order T · |Y| is smaller than the order
T · (|Y|+ 1) of the ODE’s coefficients matrix. This might make it computationally cheaper
to test for singularity (on steps 7 and 8 of Algorithm 5). Our heuristic Algorithm 4 is
invoked (on step 9) if the ODE (16) is found to be nearly singular, otherwise proceeding as
in Algorithm 3.

6.2. Numerical Results for the IBRT1 Algorithm 5

To demonstrate the IBRT1 Algorithm 5, we present the numerical results used to ap-
proximate the IB curve in Figure 1 (Section 1)—see Section 6.3 below on the approximation
quality and the algorithm’s basic properties. This example was chosen both because it has
an analytical solution (Appendix E) and because it allows one to get a good idea of the
bifurcation handling added (in Section 6.1) on top of the modified Euler method (from
Section 4).

2 3 4 5

log2 β

0.3

0.5

0.7

p
(y

=
0
|x̂

)

Exact

IBRT1, 20 points

IBRT1, 100 points

IBRT1, 1200 points

x5

Figure 10. Clusters of the approximate IB roots generated by the IBRT1 Algorithm 5 for several
step-sizes, on top of the exact solutions of BSC(0.3) with a uniform source (Appendix E). Carefully
note that only a single IB root is plotted here; its two clusters merge at βc (dashed red vertical), as seen
in Figure 6 (Section 5.2). At 20 and 100 grid points, the approximations overshoot the bifurcation,
terminating due to (approximate) cluster collision, while on 1200 grid points, the approximations
pass too close to the bifurcation, terminating due to the nearby singularity. This can be seen in the
inset to the right: The leftmost green marker has passed the cluster-merging threshold (dashed green
lines), and so was numerically reduced to the trivial (single-clustered) solution by the root-reduction
Algorithm 2. On the other hand, the orange markers to the right are still far from the cluster-merging
threshold; the leftmost one was reduced by the singularity-handling heuristic Algorithm 4 since the IB
ODE (16) is nearly singular there. Indeed, the numerical derivative is about five orders of magnitude
larger there than at the algorithm’s initial condition (see Figure 2) due to the bifurcation’s proximity.
The leftmost green and orange markers were drawn after the reductions took place. See main text
and Section 6.1 for details, Figure 11 for errors, and Figure 1 (in Section 1) for the approximate IB
curves. The marginals p(x̂) are not shown, as these barely deviate from their true value in this
problem. For each step-size ∆β, the algorithm was initialized at the problem’s exact solution at
β = 25, with thresholds set to δi = 10−2, for i = 1, 2, 3. The lines connecting consecutive markers are
for visualization only.

57



Entropy 2023, 25, 1370

We discuss the numerical examples of this Section in light of the explanations provided
in the previous Section 6.1. The error of the IBRT1 Algorithm 5 generally improves as
the step-size |∆β| becomes smaller, as expected. The single BA-IB iteration added to
Euler’s method (in Section 4) typically allows one to achieve the same error by using
much fewer grid points, thus lowering computational costs. For example, the two denser
grids in Figure 10 require about an order of magnitude fewer points to achieve the same
error compared to Euler’s method for the IB; this can be seen from Figure 4 (Section 4).

In sparse grids, the approximations often pass too far away from a bifurcation for the
root-reduction Algorithm 2 to detect it. When overshooting it, the conditions for numerical
reduction are generally met later on, as discussed in Section 6.3 below. Decreasing |∆β|
further often leads the approximations too close to a bifurcation, as can be seen in the
densest grid of Figure 10. The implicit derivatives are typically very large at the proximity
of a bifurcation, while the least accurate there (see Section 6.1). As these might send
subsequent grid points off-track, the heuristic Algorithm 4 is invoked to handle the nearby
singularity (see inset of Figure 10). As noted earlier, the computational difficulty in tracking
IB roots (or root tracking in general) stems from the presence of a bifurcation, manifested
here by large approximation errors in its vicinity. While the algorithm’s error peaks at the
bifurcation, it typically decreases afterward when overshooting, as seen in Figure 11. The
reasons for this are discussed below in Section 6.3.

2 3 4 5

log2 β

−12

−10

−8

−6

−4

−2

0

lo
g

1
0
L
∞

-e
rr

o
r

fr
o
m

ex
ac

t
so

lu
ti

on

IBRT1, 20 points

IBRT1, 100 points

IBRT1, 1200 points

Figure 11. The error of the IBRT1 Algorithm 5 from the exact solution for several step-sizes. The
figure shows the (log-) L∞-error of the numerical approximations in Figure 10 from the exact solutions;
the error is measured as in Figure 3 (bottom). Increasing the grid density decreases the error, as one
might expect. While the error peaks at the bifurcation (dashed red vertical), it decreases afterward—see
main text and Section 6.3 below. The rightmost marker for each grid density is missing since the initial
error is zero.

6.3. Basic Properties of the IBRT1 Algorithm 5 and Why It Works

Apart from presenting the basic properties of the IBRT1 Algorithm 5, the primary
purpose of this section is to understand why it approximates the problem’s true IB curve (1)
so well, despite its apparent errors in approximating the IB roots. While shown here only
in Figures 1 and 10 (in Sections 1 and 6.2), this behavior is consistent in the few numerical
examples that we have tested. We offer an explanation why this may be true in general.

To understand why the IBRT1 Algorithm 5 approximates the true IB curve (1) so
well, we first explain why overshooting is not a significant concern, as noted earlier
in Section 6.1. To that end, consider the implicit ODE (7)

dx
dβ = −(DxF)−1DβF ,

58



Entropy 2023, 25, 1370

from Section 1. As long as DxF and DβF at its right-hand side are well-defined, it defines
a vector field on the entire phase space of admissible x values, at least when DxF is non-
singular. That is, even for x’s which are not roots (6) of F. Ignoring several technicalities,
the IB ODE (16) therefore defines a vector field also outside IB roots (although at a reduced
root singularities of the IB ODE (16) coincide with IB bifurcations, the IB’s vector field
might a priori be singular elsewhere). Indeed, due to Conjecture 1, the Jacobian of the IB
operator Id− BAβ (5) is non-singular in the vicinity of a reduced root (Dlog p(y|x̂),log p(x̂)BAβ

(13) is continuous in the distributions defining it, and thus so are its eigenvalues, under
mild assumptions—cf., Lemma A1 in Appendix A). Now, suppose that pβ is an optimal IB
root, and consider a point p′ 6= pβ in its vicinity. An argument based on a strong notion of
Lyapunov stability (in Appendix G) shows that p′ flows along the IB’s vector field towards
pβ in regions that do not contain a bifurcation, though only if flowing in decreasing β as done
by our IBRT Algorithm 5. An approximation p′ would then be “pulled” towards the true
root. Stability in decreasing (rather than increasing) β values is very reasonable, considering
that pβ follows a path of decreasingly informative representations as β decreases. Indeed,
all the paths to oblivion lead to one place—the trivial solution, whose representation in
reduced coordinates is unique. As a result, a numerical approximation p′ would gradually
settle in the vicinity of the true root pβ as seen in Figures 10 and 11, so long as pβ does
not change much and the step-size |∆β| is small enough. While this explanation obviously
breaks near a bifurcation, it does suggest that the approximation error should decrease
when overshooting it (see Section 6.1), once the true reduced root has settled down. In a
sense, overshooting is similar to being in the right place but at the wrong time.

The above suggests that the IBRT1 Algorithm 5 should generally approximate the true
IB curve (1) well, despite its errors in approximating IB roots. To see this, note that while
β−1 is the slope of the optimal curve (1) of the IB [1] (Equation (32)), for the IB ODE (16) it is
merely an independent “time-like” variable. When solving for the optimal curve (1), one is
not interested in an optimal root or in its β value, but rather in its image

(
I(X; X̂), I(Y; X̂)

)

in the information plane. As a result, achieving the optimal roots but with the wrong β
values does yield the true IB curve (1), as required. This is the reason that the true curve (1)
is achieved in Figure 1 (Section 1) even on sparse grids, despite the apparent approximation
errors in Figures 10 and 11 (Section 6.2). With that, we expect the approximate IB curve
produced by the IBRT1 Algorithm 5 to be of lesser quality when there are more than two
possible labels y. To see why, note that the space ∆[Y ] traversed by approximate clusters is
not one-dimensional when |Y| > 2, and so it is possible to maneuver around the clusters
of an optimal root.

Next, we briefly discuss the basic properties of the IBRT1 Algorithm 5. Its compu-
tational complexity is determined by the complexity of a single grid point. The latter is
readily seen to be dominated by the complexity O

(
T2 · |Y|2 · (|X |+ T · |Y|)

)
of computing

the coefficients matrix of the IB ODE (16) and of solving it numerically (on step 6). To
that, one should add the complexity of the BA-IB Algorithm 1 each time a root is reduced.
However, the critical slowing down of BA-IB [4] is avoided since we reduce the root before
invoking BA-IB (see Section 5.2). The complexity is only linear in |X | thanks to the choice
of decoder coordinates. Had we chosen one of the other coordinate systems in Section 2,
then solving the ODE would have been cubic in |X | rather than linear (see there). The
computational difficulty in following IB roots stems from the existence of bifurcations
(Section 4), as it generally is with following an operator’s root [6] (Section 7.2).

As noted in Section 4, convergence guarantees can be derived for Euler’s method
for the IB when away from bifurcation, in terms of the step-size |∆β|, in a manner similar
to [6] (Theorem 5) for RD. These imply similar guarantees for the IBRT1 Algorithm 5, since
adding a single BA-IB iteration in our modified Euler method improves its order (see there).
These details are omitted for brevity, however.

For a numerical method of order d > 0 (see Section 4) with a fixed step-size |∆β| and a
fixed computational cost per grid point, the cost-to-error tradeoff is given by

error ∝ cost−d , (26)

59



Entropy 2023, 25, 1370

as in [6] (Equation (3.6)), when |∆β| is small enough. See [26] for example. Figure 3.4 in [6]
demonstrates for RD that methods of higher order achieve a better tradeoff, as expected,
as in the fixed-order Taylor methods they employ. Since computing implicit derivatives
of higher orders requires the calculation of many more derivative tensors of Id− BAβ (5)
than done here [6] (Section 2.2), we have used only first-order derivatives for simplicity.
However, while the vanilla Euler method for the IB is of order d = 1, the discussion in
Section 4 (and Figure 4 in particular) suggests that the order d of the modified Euler method
used by the IBRT1 Algorithm 5 is nearly twice than that; cf., Section 6.2 and Appendix D.

With that, we comment on the behavior of the IBRT1 Algorithm 5 at discontinuous bi-
furcations. Consider the problem in Figure 7 (Section 5.3), for example. When Algorithm 5
follows the optimal 2-clustered root there, the Jacobian’s singularity (in Figure 9) is de-
tectable by it because the step size ∆β is negative (see the discussion in Section 5.3 there).
Indeed, due to Conjecture 1 ff., the algorithm can detect discontinuous bifurcations in
general. Whether a particular discontinuous bifurcation is detected by Algorithm 5 in
practice depends on the details, of course, as with continuous bifurcations (e.g., on the
threshold value δ3 for detecting singularity and on the precise grid point layout). Indeed,
the details may or may not cause a particular example to be detected by the conditions on
steps 7 and 8 (in Algorithm 5). If missed, Algorithm 5 will continue to follow the 2-clustered
root in Figure 7 to the left of the bifurcation, where it is sub-optimal, just as BA-IB with
reverse deterministic annealing would. Once detected, though, one may wonder whether
the heuristic Algorithm 4 works well also for discontinuous bifurcations. The example of
Figure 7 has just one single-clustered root to the left of the bifurcation. Thus, the BA-IB
Algorithm 1 invoked on step 8 (of Algorithm 4) must converge to it. However, there
may generally be more than a single root of smaller effective cardinality to the left of the
bifurcation, to which BA-IB may converge. The handling of discontinuous bifurcations
is left to future work. Such handling is expected to be easier in the IB than in RD, since,
in contrast to RD, the effective cardinality of an optimal IB root cannot decrease with β
(bottom of Section 5.3). See Problems 2.8–2.10 in [28] for counter-examples in RD. This
makes detecting discontinuous bifurcations easier in the IB and is also expected to assist
with their handling.

We list the assumptions used along the way for reference. These are needed to guar-
antee the optimality of the IBRT1 Algorithm 5 at the limit of small step-sizes |∆β|, except
at a bifurcation’s vicinity. In Section 1, it was assumed without loss of generality that
the input distribution pX is of full support, p(x) > 0 for every x (otherwise, one may
remove symbols x with pX(x) = 0 from the source alphabet). The requirement p(y|x) > 0
was added in Section 3 as a sufficient technical condition for exchanging to logarithmic
coordinates (Lemma A1 in Appendix A), and could perhaps be alleviated in alternative
derivations. Together, these are equivalent to having a never-vanishing IB problem defi-
nition, p(y|x)p(x) > 0 for every x and y. The algorithm’s initial condition is assumed to
be a reduced and optimal IB root, since reduction is needed by Conjecture 1 in Section 5.1.
Finally, the given IB problem is assumed to have only continuous bifurcations, except
perhaps for its first (leftmost) one. While these assumptions are sufficient to guarantee
optimality, we note that milder conditions might do in a particular problem.

7. Concluding Remarks

The IB is intimately related to several problems in adjacent fields [3], including cod-
ing problems, inference, and representation learning. Despite its importance, there are
surprisingly few techniques to solve it numerically. This work attempts to fill this gap by
exploiting the dynamics of IB roots.

The end result of this work is a new numerical algorithm for the IB, which follows the
path of a root along the IB’s optimal tradeoff curve (1). A combination of several novelties
was required to achieve this goal. First, the dynamics underlying the IB curve (1) obeys an
ODE [10]. Following the discussion around Conjecture 1 (in Section 5.1), the existence of
such a dynamics stems from the analyticity of the IB’s fixed-point Equations (2)–(4), thus

60



Entropy 2023, 25, 1370

typically resulting in piece-wise smooth dynamics of IB roots. Several natural choices of
a coordinate system for the IB were considered, both for computational purposes and to
facilitate a clean treatment of IB bifurcations below. The IB’s ODE (16) was derived anew in
appropriate coordinates, allowing an efficient computation of implicit derivatives at an IB
root. Combining BA-IB with Euler’s method yields a modified numerical method whose
order is higher than either.

Second, one needs to understand where the IB ODE (16) is not obeyed, thereby vio-
lating the differentiability of an optimal root with respect to β. To that end, one not only
needs to detect IB bifurcations but also needs to identify their type in order to handle them
properly. Unlike standard techniques, our approach is to remove redundant coordinates,
following root tracking for RD [6] (see Section 1). To achieve a reduction, we follow the
arguably better definition of the IB in [20]. Namely, a finite IB problem is an RD problem on
the continuous reproduction alphabet ∆[Y ]. Therefore, the IB may be intuitively considered
as a method of lossy compression of the information on Y embedded in X. Viewing a finite
IB problem as an infinite RD problem suggests a particular choice of a coordinate system
for the IB, which enables reduction in the IB; this extends reduction in RD [6]. Furthermore,
this point of view highlights subtleties of finite dimensionality in computing representa-
tions of IB roots. To our understanding, these subtleties hindered the understanding of IB
bifurcations throughout the years.

Combining the above allows us to translate an understanding of IB bifurcations to a
new numerical algorithm for the IB (the IBRT1 Algorithm 5). There are several directions
that one could consider to improve our algorithm. Near bifurcations, one could improve
its handling of discontinuous bifurcations. While we used implicit derivatives only of
the first order for simplicity, higher-order derivatives generally offer a better cost-to-error
tradeoff when away from bifurcations. See also [6] (Section 3.4) on possible improvements
for following an operator’s root.

Funding: This work was partially funded by the Israel Science Foundation grant 1641/21.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Or Ordentlich for helpful conversations and for his
support, and to Noam and Dafna Agmon for their unwavering support throughout this journey. The
author thanks the late Naftali Tishby for insightful conversations and Etam Benger for his involvement
during the early stages of this work. The author thanks the reviewers for their helpful comments.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IB Information Bottleneck
RD Rate Distortion
IFT Implicit Function Theorem
ODE Ordinary Differential Equation
BA Blahut–Arimoto

Appendix A. The BA-IB Operator in Decoder Coordinates

For reference, we give an explicit expression for the BA-IB operator in decoder coordi-
nates, defined in Section 2.

Denote by pY|X̂ and pX̂ the vectors whose coordinates are
(

p(y|x̂), p(x̂)
)
. We denote

the evaluation of BAβ at this point by BAβ[pY|X̂ , pX̂ ]. Its output is again a decoder–marginal

61



Entropy 2023, 25, 1370

pair, whose coordinates are denoted, respectively, BAβ[pY|X̂ , pX̂ ](y|x̂) and BAβ[pY|X̂ , pX̂ ](x̂).
Explicitly, BAβ in decoder coordinates is given by

BAβ[pY|X̂ , pX̂ ](y|x̂) := ∑
x

p(y|x)p(x)
Z(x, β)

exp
{
− β DKL

[
p(y′|x)||p(y′|x̂)

]}
and

BAβ[pY|X̂ , pX̂ ](x̂) := ∑
x

p(x̂)p(x)
Z(x, β)

exp
{
− β DKL

[
p(y′|x)||p(y′|x̂)

]}
,

(A1)

where Z(x, β) is defined in terms of p(y|x̂) and p(x̂) as in the IB’s encoder Equation (2)
(Section 1).

The following lemma is handy when exchanging to logarithmic coordinates in Section 3.

Lemma A1. Let p(y|x)p(x) define a finite IB problem, such that p(y|x) > 0 for every x and y.
Let p(y|x̂) be the decoder of an IB root, and x̂′ such that p(x̂′) > 0. Then p(y|x̂′) > 0 for every y.

Proof of Lemma A1. This follows immediately from the IB’s decoder Equation (3), since
p(x|x̂′) is a well-defined normalized conditional probability distribution if p(x̂′) > 0.

Appendix B. The First-Order Derivative Tensors of Blahut–Arimoto for the IB

We calculate the first-order derivative tensors of the Blahut–Arimoto operator BAβ in log-
decoder coordinates (see Sections 2 and 3). Namely, its Jacobian matrix Dlog p(x̂|x),log p(x̂)BAβ,
and the vector DβBAβ of its partial derivatives with respect to β. See also Appendix A for
explicit formulae of BAβ in decoder coordinates.

While these are “just” differentiations, many subtleties are involved in getting the
math right. For example, one needs to correctly identify the inputs and outputs of BAβ,
when considered as an operator on log-decoder coordinates. For another, one must take
special care as to which variable depends on which, and especially on which they do not
depend, since multiple variables are involved. Above all, these calculations require a deep
understanding of the chain rule. With that, a common caveat in such calculations is that
the BAβ operator (and the equations defining it) should be differentiated before they are
evaluated. While this is obvious for real functions, where f ′(3) stands for the derivative
function of f (x) evaluated at x = 3, for the BAβ operator, this might be obfuscated by the
myriad of variables and variable dependencies that comprise it. Although calculating the
derivative of BAβ (at an arbitrary point) first and only then evaluating at a fixed point
might appear as a mere technical necessity, it is required by this work, for example, when
considering the vector field defined by the IB operator (5) in Section 6.3. cf., [6] (Section 5),
for the derivative tensors of Blahut’s algorithm [8] for RD, of arbitrary order.

The subtitles involved in these differentiations are discussed in Appendix B.1, with the
bulk of the calculations carried out in Appendix B.1.1. The latter are gathered and simplified
in Appendix B.2 to obtain the Jacobian matrix Dlog p(x̂|x),log p(x̂)BAβ, and in Appendix B.3 to
obtain the partial-derivatives vector DβBAβ. The results provided here naturally depend on
the choice of coordinate system. To compare results between log-decoder and log-encoder
coordinates in Section 2 (e.g., in Figure 2), we derive in Appendix B.4 the coordinate-
exchange Jacobians between these coordinate systems.

Appendix B.1. Calculation Setups and Partial Derivatives of Unnamed Functions

We explain the mathematical subtitles relevant to the sequel.
As we are interested in the derivatives of the Blahut–Arimoto Algorithm 1 for the

IB (in Section 1), we shall follow its notation. Namely, distributions are subscripted i or
i + 1 by the algorithm’s iteration number. A subscript i is usually considered an input
distribution, and a subscript i + 1 is usually considered an output distribution, e.g., pi(x̂)
or pi+1(y|x̂). These need not be IB roots but rather are arbitrary distributions. On the other
hand, a subscript β denotes a distribution of an IB root at a tradeoff value β, as in pβ(y|x̂)

62



Entropy 2023, 25, 1370

for a root’s decoders. To avoid subtleties due to zero-mass clusters, we usually assume in
the sequel that pi(x̂) 6= 0 for every x̂. cf., Sections 2 and 5.1 on reduction in the IB.

It is important to distinguish which variables are dependent and which are indepen-
dent in a particular calculation, e.g., in Appendix B.3. Since this task is easier for a single
real variable (as opposed to distributions, for example), we consider simplifications to
the real case. Note that each of the Steps 1.4 through 1.8 defining the BA-IB Algorithm 1
yields a new distribution in terms of already-specified ones. These define unnamed functions,
whose variables and values are probability distributions. For example, one could have
formally defined pi(x|x̂) in 1.5 by the function

F [pi(x̂|x), pi(x̂)](x, x̂) := pi(x̂|x)p(x)/pi(x̂) , (A2)

where pi(x̂|x) and pi(x̂) are the variables of F , and its output is a conditional probability
distribution, with x conditioned upon x̂. As the input and representation alphabets X and
X̂ are finite, N := |X | and T := |X̂ |, the arguments pi(x̂|x), pi(x̂) and values pi(x|x̂) of
F (A2) are merely real vectors. Thus, enumerating the variables x1, . . . , xN and x̂1, . . . , x̂T
allows us to spell out (A2) by its coordinates,

F [pi(x̂1|x1), pi(x̂1|x2), . . . , pi(x̂1|xN), . . . , pi(x̂T |xN), pi(x̂1), . . . , pi(x̂T)](x, x̂) := pi(x̂|x)p(x)/pi(x̂) . (A3)

While (A3) is too cumbersome to work with, it does highlight that F is merely a vector
of N · T real vector-valued functions, in T + N · T real variables. This allows us to use
partial derivatives rather than their infinite-dimensional counterparts (namely, variational
derivatives), as in

∂F [pi(x̂|x), pi(x̂)]
∂pi(x̂j|xk)

:= lim
h→0

F
[
pi(x̂1|x1), . . . , pi(x̂j|xk) + h, . . . , pi(x̂T)

]
−F

[
. . . , pi(x̂j|xk), . . .

]

h
. (A4)

This is the derivative of F (A3) with respect to a particular (j, k)-entry of its argument, by
definition. However, to maintain a concise notation, we shall carry on with un-named
function definitions, writing ∂pi(x|x̂)/∂pi(x̂j |xk) for the partial derivative of (A2) rather than its
explicit form (A4). If disoriented, the reader is encouraged to return to the definitions (A4).

We often exchange variables implicitly to logarithmic coordinates, as in Section 3.
For example, ∂F [pi(x̂|x),pi(x̂)]

∂ log pi(x̂i |xj)
is to be understood as exchanging variables to ui(x̂, x) :=

log pi(x̂|x), with G[ui(x̂, x), ui(x̂)] := F [exp ui(x̂, x), exp ui(x̂)] now differentiated with
respect to its variables ui(x̂, x) and ui(x̂),

∂F [pi(x̂|x), pi(x̂)]
∂ log pi(x̂i|xj)

=
∂F [exp ui(x̂, x), exp ui(x̂)]

∂ui(x̂, x)
=:

∂G[ui(x̂, x), ui(x̂)]
∂ui(x̂, x)

(A5)

The output of F may similarly be exchanged to logarithmic coordinates, as in
logF [exp ui(x̂, x), exp ui(x̂)].

To proceed, carefully note the dependencies between the various variables in a BA-IB
iteration, in Steps 1.4 through 1.8. These are summarized compactly by the following
diagram:

. . . // pi(x̂|x) //
��

pi(x̂) //
��

..

pi(x|x̂) // pi(y|x̂) //

��

pi+1(x̂|x) // . . .

Zi(x, β)

MM (A6)

by their order of appearance in the BA-IB Algorithm 1. This diagram proceeds to both
sides by the iteration number i. Each node in (A6) serves both as a function of the nodes
preceding it and as a variable for those succeeding it, and so it is a “function-variable”.

63



Entropy 2023, 25, 1370

To differentiate along the dependencies graph (A6), we shall need the multivariate
chain rule

d f
dy

=
∂ f
∂y

+
∂ f
∂z

dz
dy

, (A7)

for a function f
(
y, z(y)

)
. As the dependencies graph (A6) involves multiple function

variables, such as z(y), we pause on the definition’s subtleties. The partial derivative of a
function g in several variables x1, . . . , xN with respect to its i-th entry is defined by

∂g
∂xi

:= lim
h→0

g(x1, . . . , xi + h, . . . , xN)− g(x1, . . . , xi, . . . , xN)

h
. (A8)

We emphasize that variables x1, . . . , xi−1, xi+1, . . . , xN other than xi are fixed when calcu-
lating ∂g

∂xi
. And so, it makes no difference in (A8) whether or not they depend on xi, as in

xj = xj(xi) for j 6= i.
Next, suppose we would like to calculate how changing an input distribution affects

some output distribution. This is relevant in Appendix B.2 for example, when considering
how a change in a coordinate of an input decoder pi(y|x̂) or marginal pi(x̂) affects a
particular coordinate of the output decoder or marginal. For exposition’s simplicity, though,
suppose that we would like to calculate how a change in the (k1, k2) coordinate pi(x̂k1 |xk2)
of an input encoder affects the (j1, j2) coordinate pi+1(x̂j1 |xj2) of the output encoder. That
is, deriving the rightmost node in (A6) with respect to a coordinate of the leftmost one,

d log pi+1(x̂j1 |xj2)

d log pi(x̂k1 |xk2)
, (A9)

where we have exchanged to logarithmic coordinates to simplify calculations. To calculate
(A9), one needs to apply the multivariate chain rule (A7) along all the possible dependencies
of the output log pi+1(x̂j1 |xj2) on the input coordinate log pi(x̂k1 |xk2). This amounts to
following all the paths in (A6) connecting these two nodes, summing the contributions of
every possible path. For example, traversing from the input pi(x̂k1 |xk2) rightwards at (A6)
to pi(x̂), then downwards to Zi(x, β) and then to the output pi+1(x̂j1 |xj2) yields the term

∂ log pi(x̂′′)
∂ log pi(x̂k1 |xk2)

∂ log Zi(x, β)

∂ log pi(x̂′′)
∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)

corresponding to this path, at particular x and x̂′′ coordinates. To collect the contribution
from every intermediate function variable coordinate, we need to sum the latter over x and
x̂′′. Writing down all such paths, one has for (A9),

d log pi+1(x̂j1 |xj2)

d log pi(x̂k1 |xk2)

=
∂ log pi(x̂′′)

∂ log pi(x̂k1 |xk2)
·
{

∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)
· ∂ log Zi(x, β)

∂ log pi(x̂′′)
+

∂ log pi+1(x̂j1 |xj2)

∂ log pi(x̂′′)

+

[
∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)
· ∂ log Zi(x, β)

∂ log pi(y|x̂)
+

∂ log pi+1(x̂j1 |xj2)

∂ log pi(y|x̂)

]
· ∂ log pi(y|x̂)

∂ log pi(x′|x̂′) ·
∂ log pi(x′|x̂′)
∂ log pi(x̂′′)

}

+

[
∂ log pi+1(x̂j1 |xj2)

∂ log Zi(x, β)
· ∂ log Zi(x, β)

∂ log pi(y|x̂)
+

∂ log pi+1(x̂j1 |xj2)

∂ log pi(y|x̂)

]
· ∂ log pi(y|x̂)

∂ log pi(x′|x̂′) ·
∂ log pi(x′|x̂′)

∂ log pi(x̂k1 |xk2)
(A10)

Repeated unbounded variables are understood to be summed over, as in Einstein’s summa-
tion convention.

64



Entropy 2023, 25, 1370

Appendix B.1.1. Differentiating along the Dependencies Graph

Next, we differentiate each edge in (the logarithm of) the dependency graph (A6).
These are necessary to evaluate derivatives along dependency paths, which underlie the
subsequent sections’ calculations.

Step 1.4 in the BA-IB Algorithm 1 defines the cluster marginal in terms of the direct
encoder,

∂ log pi(x̂)
∂ log pi(x̂′|x′)

Step 1.4
=

1
pi(x̂) ∑

x
p(x)

∂

∂ log pi(x̂′|x′) pi(x̂|x)

=
1

pi(x̂) ∑
x

p(x)pi(x̂|x) ∂ log pi(x̂|x)
∂ log pi(x̂′|x′)

Step 1.5
= pi(x′|x̂) · δx̂,x̂′ (A11)

In the first and second equalities we have used the identity ∂
∂x y = y ∂

∂x log y for the differen-
tiation of a function’s logarithm, when y is a function of x.

Following the comments around the definition (A8) of a partial derivative, note that
Step 1.5 defines the inverse encoder log pi(x|x̂) as a function of the variables log pi(x̂|x)
and log pi(x̂) (and p(x), which we ignore under differentiation). Thus, differentiating this
equation with respect to an entry of the variable log pi(x̂|x) implies that the entries of
the other variable log pi(x̂) are held fixed, and vice versa. So, for the Bayes rule Step 1.5
we have

∂ log pi(xj1 |x̂j2)

∂ log pi(x̂)
=

∂

∂ log pi(x̂)
[
((((

(((log pi(x̂j2 |xj1)− log pi(x̂j2)
]
= −δx̂,x̂j2

(A12)

where log pi(x̂j2 |xj1) at the right-hand side is different from the variable log pi(x̂) of differ-
entiation, and so its partial derivative vanishes. Next, differentiating Step 1.5 with respect
to a coordinate of its other variable log pi(x̂|x),

∂ log pi(xj1 |x̂j2)

∂ log pi(x̂′|x′) =
∂ log pi(x̂j2 |xj1)

∂ log pi(x̂′|x′) −
��
��

��
�

∂ log pi(x̂j2)

∂ log pi(x̂′|x′) = δxj1
,x′ · δx̂j2 ,x̂′ (A13)

Using again the logarithmic derivative identity ∂
∂x y = y ∂

∂x log y, by the decoder Step 1.6 we
have

∂ log pi(y|x̂′′)
∂ log pi(xk1 |x̂k2)

=
1

pi(y|x̂′′) ∑
x′′′

p(y|x′′′) ∂

∂ log pi(xk1 |x̂k2)
pi(x′′′|x̂′′)

=
1

pi(y|x̂′′) ∑
x′′′

p(y|x′′′)pi(x′′′|x̂′′) δx̂k2
,x̂′′ · δxk1

,x′′′ = δx̂k2
,x̂′′ ·

p(y|xk1)pi(xk1 |x̂′′)
pi(y|x̂′′)

(A14)

Next, consider the KL-divergence term in the Definition 1.7 of the partition function Zi,

∂

∂ log pi(y|x̂′′)
DKL

[
p(y|x′′)||pi(y|x̂)

]
= −∑

y′
p(y′|x′′) ∂

∂ log pi(y|x̂′′)
log pi(y′|x̂)

︸ ︷︷ ︸
δx̂,x̂′′ ·δy,y′

= −δx̂,x̂′′ · p(y|x′′) (A15)

Since the partition Function 1.7 depends on the decoder pi(y|x̂) only via the KL-divergence,

65



Entropy 2023, 25, 1370

∂Zi(x′′, β)

∂ log pi(y|x̂′′)
=

∂

∂ log pi(y|x̂′′) ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x′′)||pi(y|x̂)

]}

= −β ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x′′)||pi(y|x̂)

]} ∂

∂ log pi(y|x̂′′)
DKL

[
p(y|x′′)||pi(y|x̂)

]

(A15)
= β pi(x̂′′) exp

{
− β DKL

[
p(y|x′′)||pi(y|x̂′′)

]}
p(y|x′′)

Step 1.8
= β pi+1(x̂′′|x′′)Zi(x′′, β)p(y|x′′) (A16)

Hence,
∂ log Zi(x′′, β)

∂ log pi(y|x̂′′)
= β pi+1(x̂′′|x′′)p(y|x′′) (A17)

For the derivative of the partition function with respect to the marginal pi(x̂),

∂Zi(x, β)

∂ log pi(x̂′)
Step 1.7
=

∂

∂ log pi(x̂′) ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x)||pi(y|x̂)

]}

= ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x)||pi(y|x̂)

]} ∂ log pi(x̂)
∂ log pi(x̂′)

= ∑̂
x

pi(x̂) exp
{
− β DKL

[
p(y|x)||pi(y|x̂)

]}
· δx̂,x̂′

Step 1.8
= Zi(x, β) · pi+1(x̂′|x) (A18)

where the second equality follows from the logarithmic derivative identity. Hence,

∂ log Zi(x, β)

∂ log pi(x̂′)
= pi+1(x̂′|x) (A19)

Finally, for the encoder Step 1.8,

log pi+1(x̂′|x′) := log pi(x̂′)− log Zi(x′, β)− β DKL
[
p(y|x′)||pi(y|x̂′)

]
(A20)

The first two terms to the right, pi(x̂) and Zi(x, β), take the role of a variable in Step 1.8. In
contrast, we consider the last divergence term as a shorthand for summing over pi(y|x̂).
Thus, the latter is a variable of (A20). With (A15), we thus have

∂ log pi+1(x̂′|x′)
∂ log pi(y|x̂′′)

= β δx̂′ ,x̂′′ · p(y|x′) . (A21)

For the other derivatives of the encoder Step 1.8,

∂ log pi+1(x̂′|x′)
∂ log Zi(x′′, β)

= − ∂ log Zi(x′, β)

∂ log Zi(x′′, β)
= −δx′ ,x′′ (A22)

and

∂ log pi+1(x̂|x)
∂ log pi(x̂′)

=
∂ log pi(x̂)
∂ log pi(x̂′)

−
��

��
���∂ log Zi(x, β)

∂ log pi(x̂′)
− β
���

���
���

��
∂DKL

[
p(y|x)||pi(y|x̂)

]

∂ log pi(x̂′)
= δx̂,x̂′ (A23)

where the variable pi(x̂) of Step 1.8 differs from the variables Zi and pi(y|x̂), on which the
crossed-out terms depend.

We summarize the calculations of this subsection in the following diagram:

66



Entropy 2023, 25, 1370

log pi(x̂|x)
pi(x′ |x̂) δx̂,x̂′

//

δx,x′ δx̂,x̂′

��

log pi(x̂) −δx̂,x̂′
//

δx̂,x̂′

$$

pi+1(x̂′ |x)
--

log pi(x|x̂)
p(y|x′)pi(x′ |x̂)

pi(y|x̂)
·δx̂′ ,x̂
// log pi(y|x̂)

β δx̂,x̂′ p(y
′ |x)
//

β pi+1(x̂′ |x)p(y′ |x)

��

log pi+1(x̂|x)

log Zi(x, β)
−δx,x′

JJ
(A24)

A differentiation variable is denoted with commas, at an arrow’s source in this diagram. A
coordinate of the function which we differentiate is written without commas, at an arrow’s
end, e.g.,

log pi(x̂|x)
∂ log pi(x|x̂)

∂ log pi(x̂′ |x′) = ...

// log pi(x|x̂)

Appendix B.2. The Jacobian Matrix of BA-IB in Log-Decoder Coordinates

By gathering the results of Appendix B.1.1 and following the lines of Appendix B.1,
we calculate the Jacobian matrix (13) (in Section 3) of the Blahut–Arimoto operator BAβ in
log-decoder coordinates, defined in Section 2.

The derivative of BAβ in decoder coordinates boils down to the four quantities: the

effect d log pi+1(y|x̂)
d log pi(y′ |x̂′) that varying a coordinate log pi(y′|x̂′) of an input cluster has on a co-

ordinate log pi+1(y|x̂) of an output cluster, the effect d log pi+1(y|x̂)
d log pi(x̂′) that varying an input

marginal coordinate log pi(x̂′) has on a coordinate log pi+1(y|x̂) of an output cluster, and
so forth. And so, the Jacobian Dlog p(y|x̂),log p(x̂)BAβ it is a block matrix,




d log pi+1(y|x̂)
d log pi(y′ |x̂′)

d log pi+1(y|x̂)
d log pi(x̂′)

d log pi+1(x̂)
d log pi(y′ |x̂′)

d log pi+1(x̂)
d log pi(x̂′)




(A25)

Its rows correspond to the output coordinates of BAβ. We index its upper rows by y ∈ Y
and x̂ ∈ {1, . . . , T}, while its lower rows are indexed by x̂ alone. Similarly, its columns
correspond to the input coordinates of BAβ. We index its leftmost columns by y′ and x̂′, and
its rightmost columns by x̂′ alone. Each block in (A25) consists of contributions along all
the distinct paths connecting two vertices in the dependencies graph (A6). For example, the
lower-left block in (A25) consists of the contributions along all the paths in (A6) connecting
pi(y′|x̂′) to pi+1(x̂).

We now spell out the paths contributing to each block in (A25), with repeated dummy
indices understood to be summed over. Afterward, we shall calculate the contributing
paths explicitly, carrying out the summations. The upper-left block of (A25) consists of

d log pi+1(y|x̂)
d log pi(y′|x̂′)

=
∂ log pi+1(y|x̂)

∂ log pi+1(x1|x̂2)
·
[

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂3)

∂ log pi+1(x̂3)

∂ log pi+1(x̂4|x5)
+

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂4|x5)

]

·
[

∂ log pi+1(x̂4|x5)

∂ log pi(y′|x̂′)
+

∂ log pi+1(x̂4|x5)

∂ log Zi(x6, β)

∂ log Zi(x6, β)

∂ log pi(y′|x̂′)

]
(A26)

This Equation (A26) encodes the four paths connecting the vertex pi(y′|x̂′) to pi+1(y|x̂) in
(A6). When accumulating the contributions in (A26), one must carefully sum only over
repeated dummy indices that appear in the given term. For example, the two paths in (A26)

67



Entropy 2023, 25, 1370

which traverse the edge ∂ log pi+1(x1|x̂2)
∂ log pi+1(x̂4|x5)

(pointing from pi+1(x̂|x) to pi+1(x|x̂)) do not involve

a summation over x̂3. In contrast, the two paths involving ∂ log pi+1(x1|x̂2)
∂ log pi+1(x̂3)

∂ log pi+1(x̂3)
∂ log pi+1(x̂4|x5)

there
do entail a summation over x̂3. This is relevant for the calculations below, as in (A31) for
example.

Similarly, for the upper-right block of (A25),

d log pi+1(y|x̂)
d log pi(x̂′)

=
∂ log pi+1(y|x̂)

∂ log pi+1(x1|x̂2)
·
[

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂3)

∂ log pi+1(x̂3)

∂ log pi+1(x̂4|x5)
+

∂ log pi+1(x1|x̂2)

∂ log pi+1(x̂4|x5)

]

·
{

∂ log pi+1(x̂4|x5)

∂ log pi(x̂′)
+

∂ log pi+1(x̂4|x5)

∂ log pi(y7|x̂8)

∂ log pi(y7|x̂8)

∂ log pi(x9|x̂10)

∂ log pi(x9|x̂10)

∂ log pi(x̂′)

+
∂ log pi+1(x̂4|x5)

∂ log Zi(x6, β)

[
∂ log Zi(x6, β)

∂ log pi(x̂′)
+

∂ log Zi(x6, β)

∂ log pi(y7|x̂8)

∂ log pi(y7|x̂8)

∂ log pi(x9|x̂10)

∂ log pi(x9|x̂10)

∂ log pi(x̂′)

]}
(A27)

For the lower-left block of (A25),

d log pi+1(x̂)
d log pi(y′|x̂′)

=
∂ log pi+1(x̂)

∂ log pi+1(x̂1|x2)

[
∂ log pi+1(x̂1|x2)

∂ log pi(y′|x̂′)
+

∂ log pi+1(x̂1|x2)

∂ log Zi(x3, β)

∂ log Zi(x3, β)

∂ log pi(y′|x̂′)

]
(A28)

Last, for the lower-right block of (A25),

d log pi+1(x̂)
d log pi(x̂′)

=
∂ log pi+1(x̂)

∂ log pi+1(x̂1|x2)
·
{

∂ log pi+1(x̂1|x2)

∂ log pi(x̂′)
+

∂ log pi+1(x̂1|x2)

∂ log pi(y3|x̂4)

∂ log pi(y3|x̂4)

∂ log pi(x5|x̂6)

∂ log pi(x5|x̂6)

∂ log pi(x̂′)

+
∂ log pi+1(x̂1|x2)

∂ log Zi(x7, β)

[
∂ log Zi(x7, β)

∂ log pi(x̂′)
+

∂ log Zi(x7, β)

∂ log pi(y3|x̂4)

∂ log pi(y3|x̂4)

∂ log pi(x5|x̂6)

∂ log pi(x5|x̂6)

∂ log pi(x̂′)

]}
(A29)

Next, by using the intermediate results summarized in (A24) (Appendix B.1.1), we calculate
each of the four blocks of (A25) explicitly. For the upper-left block (A26), we have

d log pi+1(y|x̂)
d log pi(y′|x̂′)

=
p(y|x1)pi+1(x1|x̂)

pi+1(y|x̂)
δx̂,x̂2 ·

[(
−δx̂2,x̂3

)
pi+1(x5|x̂3)δx̂3,x̂4 + δx1,x5 δx̂2,x̂4

]

·
[
βδx̂4,x̂′ p(y

′|x5) + (−δx5,x6)βpi+1(x̂′|x6)p(y′|x6)
]

(A30)

For clarity, we elaborate on each step needed to complete the calculation of the upper-left
block (A26) while providing only the main steps for the other blocks. To carry out the
summations over the dummy variables x1, x̂2, x̂3, x̂4, x5, and x6 in (A30), we carefully sum
only over repeated dummy indices, as explained after (A26). We carry out one summation
at a time, starting with x̂2. This yields

β
p(y|x1)pi+1(x1|x̂)

pi+1(y|x̂)
·
[
−δx̂,x̂3 pi+1(x5|x̂3)δx̂3,x̂4 + δx1,x5 δx̂,x̂4

]
·
[
δx̂4,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= β ·
[
−δx̂,x̂3 pi+1(x5|x̂3)δx̂3,x̂4 + δx̂,x̂4

p(y|x5)pi+1(x5|x̂)
pi+1(y|x̂)

]
·
[
δx̂4,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= β · pi+1(x5|x̂)
[
−δx̂,x̂4 + δx̂,x̂4

p(y|x5)

pi+1(y|x̂)

]
·
[
δx̂4,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= −β · pi+1(x5|x̂)
[

1− p(y|x5)

pi+1(y|x̂)

]
·
[
δx̂,x̂′ p(y

′|x5)− δx5,x6 pi+1(x̂′|x6)p(y′|x6)
]

= −β · p(y′|x5)pi+1(x5|x̂)
[

1− p(y|x5)

pi+1(y|x̂)

]
·
[
δx̂,x̂′ − pi+1(x̂′|x5)

]

= −β ∑
x

p(y′|x)pi+1(x|x̂) ·
[

1− p(y|x)
pi+1(y|x̂)

]
·
[
δx̂,x̂′ − pi+1(x̂′|x)

]
(A31)

68



Entropy 2023, 25, 1370

In the first equality above we carried out the summation over x1, in the second over x̂3, in
the third over x̂4, in the fourth over x6, and in the fifth over x5.

To simplify the notation, we replace summations over x with definitions as in
Equation (14) (Section 3),

C(x̂, x̂′; i)y,y′ :=∑
x

p(y|x)p(y′|x)pi(x̂′|x)pi(x|x̂)

B(x̂, x̂′; i)y :=∑
x

p(y|x)pi(x̂′|x)pi(x|x̂) = ∑
y′

C(x̂, x̂′; i)y,y′

A(x̂, x̂′; i) :=∑
x

pi(x̂′|x)pi(x|x̂) = ∑
y

B(x̂, x̂′; i)y

D(x̂; i)y,y′ :=
1

pi(y|x̂) ∑
x

p(y|x)p(y′|x)pi(x|x̂) = 1
pi(y|x̂) ∑

x̂′
C(x̂, x̂′; i)y,y′

(A32)

and note that
∑

y′ ,x̂′
C(x̂, x̂′; i)y,y′ = pi(y|x̂) . (A33)

The quantities A, B, and C involve two IB clusters. They are a scalar, a vector, and a
matrix, respectively. The definition of D involves only one IB cluster and coincides with CY
in [13] (3.2 in Part III). The relations to the right of (A32) show that each can be expressed
in terms of C(x̂, x̂′; i)y,y′ . Equation (A33) shows that the latter can be rewritten as a right-
stochastic matrix, up to trivial manipulations. As seen below, the Jacobian matrix (A25) of a
BA-IB step in log-decoder coordinates can be computed in terms of the quantities in (A32).

With the latter definitions (A32), (A31) can be rewritten as

d log pi+1(y|x̂)
d log pi(y′|x̂′)

(A31)
= − β ∑

x

[
δx̂,x̂′ p(y′|x)pi+1(x|x̂)− p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)

− δx̂,x̂′
1

pi+1(y|x̂) p(y|x)p(y′|x)pi+1(x|x̂) + 1
pi+1(y|x̂) p(y′|x)p(y|x)pi+1(x̂′|x)pi+1(x|x̂)

]

(A32)
= − β

[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′ − δx̂,x̂′ D(x̂; i + 1)y,y′ +

1
pi+1(y|x̂)C(x̂, x̂′; i + 1)y,y′

]

= β ∑
x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)(
1− δy′′ ,y

pi+1(y|x̂)

)
C(x̂, x̂′′; i + 1)y′ ,y′′ (A34)

The third equality above follows from (A33), the identities to the right of (A32), and
simple algebra.

For the upper-right block (A27),

d log pi+1(y|x̂)
d log pi(x̂′)

=
p(y|x1)pi+1(x1|x̂2)

pi+1(y|x̂2)
δx̂2,x̂ ·

[(
−δx̂2,x̂3

)
pi+1(x5|x̂3)δx̂3,x̂4 + δx1,x5 δx̂2,x̂4

]

·
{

δx̂4,x̂′ + βδx̂4,x̂8 p(y7|x5)
p(y7|x9)pi(x9|x̂8)

pi(y7|x̂8)
δx̂8,x̂10

(
−δx̂10,x̂′

)

+(−δx5,x6)

[
pi+1(x̂′|x6) + βpi+1(x̂8|x6)p(y7|x6)

p(y7|x9)pi(x9|x̂8)

pi(y7|x̂8)
δx̂8,x̂10

(
−δx̂10,x̂′

)]}
(A35)

In a manner similar to (A31), summing over all ten dummy variables other than x1
and x5 yields

(1− β) · p(y|x1)pi+1(x1|x̂)
pi+1(y|x̂)

·
(

δx1,x5 − pi+1(x5|x̂)
)
·
(

δx̂,x̂′ − pi+1(x̂′|x5)
)

= (1− β) ·
(

−1
pi+1(y|x̂) ∑

x
p(y|x)pi+1(x̂′|x)pi+1(x|x̂) + ∑

x
pi+1(x̂′|x)pi+1(x|x̂)

)

= (1− β) ·∑
x

(
1− p(y|x)

pi+1(y|x̂)
)

pi+1(x̂′|x)pi+1(x|x̂) (A36)

69



Entropy 2023, 25, 1370

The two terms involving δx̂,x̂′ cancel out when summing over x1 and x5 at the first equality.
Rewriting with the definitions (A32) of A and B further simplifies (A36) to

(1− β) ·
[

A(x̂, x̂′; i + 1)− 1
pi+1(y|x̂)B(x̂, x̂′; i + 1)y

]

= (1− β) ·∑
y′′

[
1− δy′′ ,y

pi+1(y|x̂)
]

B(x̂, x̂′; i + 1)y′′ (A37)

For the lower-left block (A28),

d log pi+1(x̂)
d log pi(y′|x̂′)

= pi+1(x2|x̂)δx̂,x̂1

[
βδx̂1,x̂′ p(y

′|x2) + (−δx2,x3)βpi+1(x̂′|x3)p(y′|x3)
]

(A38)

Summing over dummy variables and simplifying yields

β ·
[
δx̂,x̂′ pi+1(y′|x̂)−∑

x
p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)

]
(A39)

In terms of definitions (A32), this simplifies to

β ·
[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(A40)

Finally, for the lower-right block (A29),

d log pi+1(x̂)
d log pi(x̂′)

= pi+1(x2|x̂)δx̂,x̂1 ·
{

δx̂1,x̂′ + βδx̂1,x̂4 p(y3|x2)
p(y3|x5)pi(x5|x̂4)

pi(y3|x̂4)
δx̂4,x̂6

(
−δx̂6,x̂′

)

+(−δx2,x7)

[
pi+1(x̂′|x7) + βpi+1(x̂4|x7)p(y3|x7)

p(y3|x5)pi(x5|x̂4)

pi(y3|x̂4)
δx̂4,x̂6

(
−δx̂6,x̂′

)]}
(A41)

This simplifies to

(1− β)

(
δx̂,x̂′ −∑

x
pi+1(x̂′|x)pi+1(x|x̂)

)
(A42)

With definitions (A32), this can be written as

(1− β)
(

δx̂,x̂′ − A(x̂, x̂′; i + 1)
)

(A43)

Collecting the results from (A34), (A37), (A40), and (A43) back into (A25), BA’s Jacobian in
these coordinates is




β ∑x̂′′ ,y′′(δx̂′′ ,x̂′−δx̂,x̂′)

·
(

1−
δy′′ ,y

pi+1(y|x̂)

)
C(x̂,x̂′′ ;i+1)y′ ,y′′

(1− β) ·∑y′′
[
1− δy′′ ,y

pi+1(y|x̂)
]

B(x̂, x̂′; i + 1)y′′

β ·
[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(1− β)

(
δx̂,x̂′ − A(x̂, x̂′; i + 1)

)




(A44)

When evaluated at an IB root, this is Equation (13) of Section 3. Equivalently, it can be
written in the following form, which is more convenient for implementation:

70



Entropy 2023, 25, 1370




β

[
B(x̂,x̂′ ;i+1)y′−δx̂,x̂′ pi+1(y′ |x̂)

+δx̂,x̂′ D(x̂;i+1)y,y′−
1

pi+1(y|x̂)C(x̂,x̂′ ;i+1)y,y′
] (1− β) ·

[
A(x̂, x̂′; i + 1)− 1

pi+1(y|x̂)B(x̂, x̂′; i + 1)y

]

β ·
[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
(1− β)

(
δx̂,x̂′ − A(x̂, x̂′; i + 1)

)




(A45)

Appendix B.3. The Partial β-Derivatives of BA-IB in Log-Decoder Coordinates

We calculate the vector DβBAβ of partial derivatives of the BAβ operator in log-
decoder coordinates (of Section 2), which appears at the right-hand side of the IB-ODE (16)
(in Section 3).

To that end, we differentiate backward along the dependencies graph (A6)
(in Appendix B.1) with respect to β, starting at the output coordinates pi+1(y|x̂) and pi+1(x̂)
of BAβ. After differentiating, we mind our independent variables. Here, these are β, and
the input coordinates pi(y|x̂) and pi(x̂) of BAβ. The differentiation of these with respect

to β vanishes (except for dβ
dβ = 1), as they are independent. Finally, we compose the dif-

ferentiations to obtain the effect DβBAβ of changing β on BA’s output. We note that, in
principle, one can differentiate the explicit formulae (A1) of BAβ in decoder coordinates
(Appendix A) with respect to β. However, we find that to be cumbersome and far more
error-prone than our approach, and so proceed in the spirit of the previous Appendix B.2.

We start by differentiating each of the equations defining the Blahut–Arimoto
Algorithm 1 with respect to β, as if all its variables are dependent. For the cluster marginal
Step 1.4,

d
dβ

pi(x̂) = ∑
x

p(x)
d

dβ
pi(x̂|x) (A46)

For the inverse encoder Step 1.5,

d
dβ

pi(x|x̂) = p(x)
pi(x̂)

dpi(x̂|x)
dβ

− pi(x̂|x)p(x)
pi(x̂)2

dpi(x̂)
dβ

(A47)

For the decoder Step 1.6,

d
dβ

pi(y|x̂) = ∑
x

p(y|x) d
dβ

pi(x|x̂) (A48)

For the KL-divergence,

d
dβ

DKL
[
p(y|x)||pi(y|x̂)

]
=

d
dβ ∑

y′′
p(y′′|x) log

p(y′′|x)
pi(y′′|x̂)

= −∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂) (A49)

And for its exponent,

d
dβ

exp
{
− β Dx,x̂

}
= −

(
Dx,x̂ + β

dDx,x̂

dβ

)
· exp

{
− β Dx,x̂

}

(A49)
= −


Dx,x̂ − β ∑

y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)

 · exp

{
− β Dx,x̂

}
(A50)

where we have written Dx,x̂ := DKL
[
p(y|x)||pi(y|x̂)

]
for short. Thus, for the partition

function’s Step 1.7, we have

71



Entropy 2023, 25, 1370

d
dβ

Zi(x, β) =
d

dβ ∑
x̂′′

pi(x̂′′) exp
{
− β Dx,x̂′′

}

(A50)
= ∑

x̂′′


dpi(x̂′′)

dβ
− pi(x̂′′)Dx,x̂′′ + β pi(x̂′′)∑

y′′

p(y′′|x)
pi(y′′|x̂′′)

d
dβ

pi(y′′|x̂′′)

 · exp

{
− β Dx,x̂′′

}
(A51)

Finally, for the encoder Step 1.8 we have

d
dβ

pi+1(x̂|x) = d
dβ

(
pi(x̂)e−β Dx,x̂

Zi(x, β)

)

(A50)
=

pi(x̂)e−β Dx,x̂

Zi(x, β)

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)
)
− 1

Zi(x, β)

dZi(x, β)

dβ

]

Step 1.8
= pi+1(x̂|x) ·

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)
)
− 1

Zi(x, β)

dZi(x, β)

dβ

]
(A52)

Next, picking β and the inputs log pi(y|x̂) and log pi(x̂) of BAβ as our independent vari-
ables, we compose the differentiations above to obtain DβBAβ at an output coordinate.
That is, we seek d

dβ log pi+1(y|x̂) and d
dβ log pi+1(x̂). By the chain rule, we trace the de-

pendencies graph (A6) (Appendix B.1) backwards, from the output nodes pi+1(y|x̂) and
pi+1(x̂) back to the input nodes. The derivatives of the latter with respect to β vanish, as
these are our independent variables.

Starting with a decoder output coordinate,

d
dβ

log pi+1(y|x̂) =
1

pi+1(y|x̂)
d

dβ
pi+1(y|x̂)

(A48)
=

1
pi+1(y|x̂) ∑

x
p(y|x) d

dβ
pi+1(x|x̂)

(A47)
=

1
pi+1(y|x̂) ∑

x
p(y|x)

[
p(x)

pi+1(x̂)
dpi+1(x̂|x)

dβ
− pi+1(x̂|x)p(x)

pi+1(x̂)2
dpi+1(x̂)

dβ

]

(A46)
= ∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

[
dpi+1(x̂|x)

dβ
− pi+1(x̂|x)

pi+1(x̂) ∑
x′

p(x′)
dpi+1(x̂|x′)

dβ

]

(A52)
= ∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx,x̂ − β ∑
y′′

p(y′′|x)
pi(y′′|x̂)

dpi(y′′|x̂)
dβ

)
− 1

Zi(x, β)

dZi(x, β)

dβ

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)

(
pi+1(x̂|x′) ·

[
1

pi(x̂)
dpi(x̂)

dβ
−
(

Dx′ ,x̂ − β ∑
y′′

p(y′′|x′)
pi(y′′|x̂)

dpi(y′′|x̂)
dβ

)
− 1

Zi(x′, β)

dZi(x′, β)

dβ

])}
(A53)

Since pi(y|x̂) and pi(x̂) are independent input variables, their derivatives with respect to
the independent variable β vanish, yielding

−∑
x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
Dx,x̂ +

1
Zi(x, β)

dZi(x, β)

dβ

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)pi+1(x̂|x′) ·

[
Dx′ ,x̂ +

1
Zi(x′, β)

dZi(x′, β)

dβ

]}
(A54)

To complete the calculation at (A53), note that the same argument can be used for two of
the three summands in (A51), reducing it to

dZi(x, β)

dβ
= −∑

x̂′′
pi(x̂′′)Dx,x̂′′ e

−β Dx,x̂′′ (A55)

since pi(y|x̂) and pi(x̂) are considered as independent variables. Therefore,

72



Entropy 2023, 25, 1370

d
dβ

log pi+1(y|x̂)
(A54)
=

(A55)
−∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
Dx,x̂ −∑

x̂′′

(
pi(x̂′′)

Zi(x, β)
e−β Dx,x̂′′

)
Dx,x̂′′

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)pi+1(x̂|x′) ·

[
Dx′ ,x̂ −∑

x̂′′

(
pi(x̂′′)

Zi(x′, β)
e−β Dx′ ,x̂′′

)
Dx′ ,x̂′′

]}

Step 1.8
= −∑

x

p(y|x)p(x)
pi+1(y|x̂)pi+1(x̂)

{
pi+1(x̂|x) ·

[
Dx,x̂ −∑

x̂′′
pi+1(x̂′′|x)Dx,x̂′′

]

− pi+1(x̂|x)
pi+1(x̂) ∑

x′
p(x′)pi+1(x̂|x′) ·

[
Dx′ ,x̂ −∑

x̂′′
pi+1(x̂′′|x′)Dx′ ,x̂′′

]}

Step 1.5
=

Step 1.6
∑
x

pi+1(x|x̂)Dx,x̂ −∑
x

p(y|x)
pi+1(y|x̂)

pi+1(x|x̂)Dx,x̂

+ ∑
x,x̂′′

p(y|x)
pi+1(y|x̂)

pi+1(x̂′′|x)pi+1(x|x̂)Dx,x̂′′ − ∑
x,x̂′′

pi+1(x̂′′|x)pi+1(x|x̂)Dx,x̂′′

= ∑
x

[
1− p(y|x)

pi+1(y|x̂)

]
pi+1(x|x̂)Dx,x̂ − ∑

x,x̂′′

[
1− p(y|x)

pi+1(y|x̂)

]
pi+1(x̂′′|x)pi+1(x|x̂)Dx,x̂′′ (A56)

At the second equality to the bottom we started with the third summand, then with the
first, and only then with the third and fourth summands. And so,

d
dβ

log pi+1(y|x̂) = ∑
x,x̂′′

[
1− p(y|x)

pi+1(y|x̂)

]
·
[
δx̂,x̂′′ − pi+1(x̂′′|x)

]
· pi+1(x|x̂)Dx,x̂′′ (A57)

Next, consider a cluster marginal output coordinate,

d
dβ

log pi+1(x̂) =
1

pi+1(x̂)
d

dβ
pi+1(x̂)

(A46)
=

1
pi+1(x̂) ∑

x
p(x)

d
dβ

pi+1(x̂|x)

(A52)
=

1
pi+1(x̂) ∑

x
p(x)pi+1(x̂|x) ·


 1

pi(x̂)
dpi(x̂)

dβ
−

Dx,x̂ − β ∑

y′′

p(y′′|x)
pi(y′′|x̂)

d
dβ

pi(y′′|x̂)

− 1

Zi(x, β)

dZi(x, β)

dβ


 (A58)

Since pi(y|x̂) and pi(x̂) are independent variables, their derivatives with respect to β vanish,
yielding

− 1
pi+1(x̂) ∑

x
pi+1(x̂|x)p(x)

[
Dx,x̂ +

1
Zi(x, β)

dZi(x, β)

dβ

]

(A55)
= − 1

pi+1(x̂) ∑
x

pi+1(x̂|x)p(x)

[
Dx,x̂ −∑

x̂′′

(
pi(x̂′′)

Zi(x, β)
e−β Dx,x̂′′

)
Dx,x̂′′

]

Step 1.8
=

Step 1.5
− ∑

x,x̂′′

[
δx̂,x̂′′ − pi+1(x̂′′|x)

]
· pi+1(x|x̂)Dx,x̂′′ (A59)

Thus, for the marginals’ coordinates, we have obtained

d
dβ

log pi+1(x̂) = − ∑
x,x̂′′

[
δx̂,x̂′′ − pi+1(x̂′′|x)

]
· pi+1(x|x̂)Dx,x̂′′ (A60)

When evaluated at an IB root, Equations (A57) and (A60) form, respectively, the de-
coder and marginal coordinates of DβBAβ, which appears at the right-hand side of the
IB ODE (16) (note the extra minus sign in the implicit ODE (7)).

73



Entropy 2023, 25, 1370

Appendix B.4. The Coordinate Exchange Jacobians between Log-Decoder
and Log-Encoder Coordinates

Following the discussion in Section 2 on the pros and cons of each coordinate system,
we leverage the observations of Appendix B.1 in order to derive the coordinate exchange
Jacobians between the log-decoder and log-encoder coordinate systems. Exchanging
between the other coordinate system pairs adds little to the below and thus is omitted.

Given the encoder’s logarithmic derivative d
dβ log pβ(x̂′|x′), we would like to compute

from it the logarithmic derivative
( d

dβ log pβ(y|x̂), d
dβ log pβ(x̂)

)
in decoder coordinates,

and vice versa. To that end, recall that an (arbitrary) encoder p(x̂′|x̂) determines a decoder–
marginal pair

(
p(y|x̂), p(x̂)

)
and vice versa (e.g., Equation (11) in Section 2). So, one can

follow the dependencies graph (A6) (in Appendix B.1) backward between these coordinate
systems to exchange the coordinates of an implicit derivative. For example, consider pi(y|x̂)
and pi(x̂) as functions of the encoder pi(x̂′|x′) preceding it in the graph (A6). When at an
IB root, multiplying by the coordinates’ exchange Jacobian yields

dlog pβ(y|x̂)
dβ

=
d log pβ(y|x̂)

d log pβ(x̂′|x′)
dlog pβ(x̂′|x′)

dβ
and (A61)

dlog pβ(x̂)
dβ

=
d log pβ(x̂)

d log pβ(x̂′|x′)
dlog pβ(x̂′|x′)

dβ
. (A62)

Similarly, considering an encoder pβ(x̂|x) as a function of pβ(y′|x̂′) and pβ(x̂′),

dlog pβ(x̂|x)
dβ

=
d log pβ(x̂|x)

d log pβ(y′|x̂′)
dlog pβ(y′|x̂′)

dβ
+

d log pβ(x̂|x)
d log pβ(x̂′)

dlog pβ(x̂′)
dβ

+
∂log pβ(x̂|x)

∂β
. (A63)

The last term
∂log pβ(x̂|x)

∂β in (A63) stems from the fact that the encoder Step 1.8 depends
explicitly on β, unlike the marginal and decoder Steps 1.4 and 1.6. cf., the comments around
(A8) in Appendix B.1.

The matrices
d log pβ(y|x̂)

d log pβ(x̂′ |x′) and
d log pβ(x̂)

d log pβ(x̂′ |x′) for exchanging from encoder to decoder

coordinates follow from the chain rule, and are calculated in Appendix B.4.1 below,

at Equations (A64) and (A66). Similarly, the matrices
d log pβ(x̂|x)

d log pβ(y′ |x̂′) and
d log pβ(x̂|x)
d log pβ(x̂′) and

the partial derivative
∂log pβ(x̂|x)

∂β for exchanging from decoder to encoder coordinates are
Equations (A68), (A70), and (A73), in Appendix B.4.2.

Appendix B.4.1. Exchanging from Encoder to Decoder Coordinates

An input encoder pi(x̂′|x′) determines a decoder pi(y|x̂) and a marginal pi(x̂). As
in previous subsections, we follow the dependencies graph (A6) along all the paths
between these.

Using diagram (A24) from Appendix B.1.1, for the marginal one has

d log pi(x̂)
d log pi(x̂′|x′) = pi(x′|x̂′) δx̂,x̂′ , (A64)

while for the decoder,

d log pi(y|x̂)
d log pi(x̂′|x′) =

∂ log pi(y|x̂)
∂ log pi(x1|x̂2)

[
∂ log pi(x1|x̂2)

∂ log pi(x̂′|x′) +
∂ log pi(x1|x̂2)

∂ log pi(x̂3)

∂ log pi(x̂3)

∂ log pi(x̂′|x′)

]

=
p(y|x1)pi(x1|x̂2)

pi(y|x̂2)
δx̂2,x̂

[
δx1,x′ δx̂2,x̂′ − δx̂2,x̂3 pi(x′|x̂3) δx̂3,x̂′

]
(A65)

74



Entropy 2023, 25, 1370

Summing over the three dummy variables as before, the latter simplifies to

d log pi(y|x̂)
d log pi(x̂′|x′) =

[
p(y|x′)
pi(y|x̂)

− 1
]

pi(x′|x̂) δx̂,x̂′ . (A66)

Appendix B.4.2. Exchanging from Decoder to Encoder Coordinates

In the other way around, a decoder pi(y′|x̂′) and a marginal pi(x̂′) determine the
subsequent encoder pi+1(x̂|x). Using diagram (A24), one has

d log pi+1(x̂|x)
d log pi(y′|x̂′)

=
∂ log pi+1(x̂|x)
∂ log pi(y′|x̂′)

+
∂ log pi+1(x̂|x)

∂ log Zi(x1)

∂ log Zi(x1)

∂ log pi(y′|x̂′)
= β δx̂,x̂′ p(y′|x)− δx,x1 β pi+1(x̂′|x1)p(y′|x1) (A67)

Summing over the dummy variable x1, this is the coordinates’ exchange Jacobian Jenc
dec

mentioned in Section 2:

d log pi+1(x̂|x)
d log pi(y′|x̂′)

= β p(y′|x)
[
δx̂,x̂′ − pi+1(x̂′|x)

]
(A68)

Next, for the derivative with respect to the marginal,

d log pi+1(x̂|x)
d log pi(x̂′)

=
∂ log pi+1(x̂|x)

∂ log pi(x̂′)
+

∂ log pi+1(x̂|x)
∂ log Zi(x1)

∂ log Zi(x1)

∂ log pi(x̂′)

+

[
∂ log pi+1(x̂|x)

∂ log Zi(x1)

∂ log Zi(x1)

∂ log pi(y2|x̂3)
+

∂ log pi+1(x̂|x)
∂ log pi(y2|x̂3)

]
∂ log pi(y2|x̂3)

∂ log pi(x4|x̂5)

∂ log pi(x4|x̂5)

∂ log pi(x̂′)

=δx̂,x̂′ − δx,x1 pi+1(x̂′|x1)

+
[
− δx,x1 β pi+1(x̂3|x1)p(y2|x1) + β δx̂3,x̂ p(y2|x)

] p(y2|x4)pi(x4|x̂3)

pi(y2|x̂3)
δx̂3,x̂5 · (−δx̂5,x̂′) (A69)

Summing over the five dummy variables, this is the coordinates’ exchange Jacobian Jenc
mrg

from Section 2:
d log pi+1(x̂|x)

d log pi(x̂′)
= (1− β)

[
δx̂,x̂′ − pi+1(x̂′|x)

]
(A70)

Finally, note that the encoder Step 1.8 depends on β explicitly, rather than indirectly only
via its other variables. So, to calculate the partial derivative term ∂log pi+1(x̂|x)

∂β in (A63), write
as follows for log Z:

∂

∂β
Zi(x, β)

Step 1.7
= ∑̂

x
pi(x̂)

∂

∂β
exp

{
−β DKL

[
p(y|x)||pi(y|x̂)

]}

= − ∑̂
x

pi(x̂)DKL
[
p(y|x)||pi(y|x̂)

]
exp

{
−β DKL

[
p(y|x)||pi(y|x̂)

]}
(A71)

Thus,

∂

∂β
log Zi(x, β) =

1
Zi(x, β)

∂

∂β
Zi(x, β)

(A71)
= −∑

x̂

pi(x̂) exp
{
−β DKL

[
p(y|x)||pi(y|x̂)

]}

Zi(x, β)
DKL

[
p(y|x)||pi(y|x̂)

]

Step 1.8
= −∑

x̂
pi+1(x̂|x)DKL

[
p(y|x)||pi(y|x̂)

]
. (A72)

75



Entropy 2023, 25, 1370

And so, from the encoder Step 1.8, we have

∂log pi+1(x̂|x)
∂β

=
∂log pi(x̂)

∂β
− ∂log Zi(x, β)

∂β
− ∂

∂β

(
βDKL

[
p(y|x)||pi(y|x̂)

])

(A72)
= ∑

x̂′′
pi+1(x̂′′|x)DKL

[
p(y|x)||pi(y|x̂′′)

]
− DKL

[
p(y|x)||pi(y|x̂)

]
(A73)

where the term ∂log pi(x̂)
∂β vanishes since it is considered as an independent variable here.

Appendix C. Proof of Lemma 1, on the Kernel of the Jacobian of the IB Operator in
Log-Decoder Coordinates

We prove Lemma 1 from Section 3, using the results of Appendix B.
In the first direction, suppose that

((
vy,x̂

)
y,x̂, (ux̂)x̂

)
is a vector in the left kernel of the

Jacobian of the IB operator (5) in log-decoder coordinates, I − Dlog p(y|x̂),log p(x̂)BAβ, as in
(16) in Section 3. Using the Jacobian’s implicit form (A25) (Appendix B.2), this is to say that

vy′ ,x̂′ = ∑
y,x̂

vy,x̂
d log pi+1(y|x̂)
d log pi(y′|x̂′)

+ ∑̂
x

ux̂
d log pi+1(x̂)
d log pi(y′|x̂′)

and (A74)

ux̂′ = ∑
y,x̂

vy,x̂
d log pi+1(y|x̂)

d log pi(x̂′)
+ ∑̂

x
ux̂

d log pi+1(x̂)
d log pi(x̂′)

(A75)

hold, for every y′ and x̂′. We spell out and manipulate these equations to obtain the desired
result.

By the Jacobian’s explicit form (A44) from Appendix B.2, Equation (A74) spells out as

vy′ ,x̂′ = β ·∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)
·
(

1− δy′′ ,y
pi+1(y|x̂)

)
C(x̂, x̂′′; i + 1)y′ ,y′′

+ β · ∑̂
x

ux̂

[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]
, (A76)

while the second Equation (A75) spells out as

ux̂′ = (1− β) ·∑
y,x̂

vy,x̂ ∑
y′′

[
1− δy′′ ,y

pi+1(y|x̂)
]

B(x̂, x̂′; i + 1)y′′

+ (1− β) · ∑̂
x

ux̂

(
δx̂,x̂′ − A(x̂, x̂′; i + 1)

)
. (A77)

Next, we expand and simplify each of the terms in (A76) and (A77), using the definition
(A32) of A, B, and C from Appendix B.2.

For the first summand to the right of (A76),

β ·∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)(
1− δy′′ ,y

pi+1(y|x̂)

)
C(x̂, x̂′′; i + 1)y′ ,y′′

(A32)
= β ·∑

y,x̂
vy,x̂ ∑

x̂′′ ,y′′

(
δx̂′′ ,x̂′ − δx̂,x̂′

)(
1− δy′′ ,y

pi+1(y|x̂)

)
∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂) (A78)

76



Entropy 2023, 25, 1370

We simplify each of the four addends to the right of (A78) while temporarily ignoring the β
coefficient. For the δx̂′′ ,x̂′ · 1 term,

∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂′′ ,x̂′ ∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= ∑
y,x̂

vy,x̂ ∑
x

p(y′|x)pi+1(x̂′|x)pi+1(x|x̂) (A79)

For the −δx̂′′ ,x̂′ ·
δy′′ ,y

pi+1(y|x̂) term,

−∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂′′ ,x̂′δy′′ ,y ∑
x

1
pi+1(y|x̂) p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= −∑
y,x̂

vy,x̂ ∑
x

1
pi+1(y|x̂) p(y′|x)p(y|x)pi+1(x̂′|x)pi+1(x|x̂) (A80)

For the −δx̂,x̂′ · 1 term,

−∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂,x̂′ ∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= −∑
y

vy,x̂′ ∑
x

p(y′|x)pi+1(x|x̂′) = −∑
y

vy,x̂′ pi+1(y′|x̂′) (A81)

And for the last −δx̂,x̂′ ·
−δy′′ ,y

pi+1(y|x̂) term,

∑
y,x̂

vy,x̂ ∑
x̂′′ ,y′′

δx̂,x̂′ ·
δy′′ ,y

pi+1(y|x̂) ∑
x

p(y′|x)p(y′′|x)pi+1(x̂′′|x)pi+1(x|x̂)

= ∑
y

vy,x̂′

pi+1(y|x̂′) ∑
x

p(y′|x)p(y|x)pi+1(x|x̂′) (A82)

Collecting (A79)–(A82) back into (A78), we obtain

β ·∑
y,x̂

vy,x̂ ∑
x

p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]

+ β ·∑
y

vy,x̂′
1

pi+1(y|x̂′) ∑
x

p(y|x)p(y′|x)pi+1(x|x̂′)− β · pi+1(y′|x̂′)∑
y

vy,x̂′ (A83)

for the first summand to the right of (A76).
The second summand to the right of (A76) equals

β · ∑̂
x

ux̂

[
δx̂,x̂′ pi+1(y′|x̂)− B(x̂, x̂′; i + 1)y′

]

(A32)
= β · ux̂′ pi+1(y′|x̂′)− β ·∑

x
p(y′|x)pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A84)

Combining (A83) and (A84), Equation (A76) is equivalent to

1
β · vy′ ,x̂′ + pi+1(y′|x̂′)∑

y
vy,x̂′ − ux̂′ pi+1(y′|x̂′)

= ∑
y,x̂

vy,x̂ ∑
x

p(y′|x)pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]

+ ∑
y

vy,x̂′ ∑
x

p(y′|x)pi+1(x|x̂′) p(y|x)
pi+1(y|x̂′) −∑

x
p(y′|x)pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A85)

77



Entropy 2023, 25, 1370

for any y′ and x̂′. Summing (A85) over y′ and simplifying, we obtain
1
β ·∑

y
vy,x̂′ − ux̂′

= ∑
y,x̂

vy,x̂ ∑
x

pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]
−∑

x
pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A86)

for any x̂′.
Next, we expand and simplify Equation (A77). Using the definition (A32) of B, the

first summand to its right can be written as

(1− β) ·∑
y,x̂

vy,x̂ ∑
x

pi+1(x̂′|x)pi+1(x|x̂)
[
1− p(y|x)

pi+1(y|x̂)
]

. (A87)

Similarly, the second summand to the right of (A77) can be written as

(1− β) ·
[
ux̂′ −∑

x
pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂)

]
. (A88)

Combining (A87) and (A88), Equation (A77) can now be written explicitly,

β
1−β · ux̂′ = ∑

y,x̂
vy,x̂ ∑

x
pi+1(x̂′|x)pi+1(x|x̂)

[
1− p(y|x)

pi+1(y|x̂)
]
−∑

x
pi+1(x̂′|x) ∑̂

x
ux̂ pi+1(x|x̂) (A89)

for every x̂′. Next, subtracting (A89) from (A86), we obtain

ux̂ = 1−β
β ·∑

y
vy,x̂ (A90)

for any x̂.
Substituting (A90) into (A85) and using the decoder Step 1.6 to expand

pi+1(y′|x̂′) there,

1
β · vy′ ,x̂′ = ∑

y,x̂
vy,x̂ ∑

x
pi+1(x̂′|x)p(y′|x)pi+1(x|x̂)

[
2β−1

β − p(y|x)
pi+1(y|x̂)

]

−∑
y

vy,x̂′ ∑
x

p(y′|x)pi+1(x|x̂′) · 2β−1
β + ∑

y
vy,x̂′ ∑

x
p(y′|x)pi+1(x|x̂′) p(y|x)

pi+1(y|x̂′) (A91)

Next, inserting ∑x̂ δx̂,x̂′ into the sums on the last line,

1
β · vy′ ,x̂′ = ∑

y,x̂
vy,x̂ ∑

x
pi+1(x̂′|x)p(y′|x)pi+1(x|x̂)

[
2β−1

β − p(y|x)
pi+1(y|x̂)

]

−∑
y,x̂

vy,x̂ ∑
x

δx̂,x̂′ p(y′|x)pi+1(x|x̂)
[

2β−1
β − p(y|x)

pi+1(y|x̂)
]

(A92)

Finally, this simplifies to

vy′ ,x̂′ = ∑
y,x̂

vy,x̂ ∑
x

p(y′|x)
[
δx̂,x̂′ − pi+1(x̂′|x)

]
pi+1(x|x̂)

[
β · p(y|x)

pi+1(y|x̂) + (1− 2β)
]

(A93)

The latter is to say that
(
vy,x̂

)
y,x̂ is a left-eigenvector of the eigenvalue 1 of the matrix to

the right. At an IB root, this is precisely the matrix S (17) from the Lemma’s statement, as
desired.

As a side note, we comment that Equations (A74) and (A75) also imply

∀y ∑̂
x

vy,x̂ = 0 and ∑̂
x

ux̂ = 0 , (A94)

78



Entropy 2023, 25, 1370

which can be seen by summing (A85) and (A89), respectively, over x̂′, and simplifying.
In the other direction, let v :=

(
vy,x̂

)
y,x̂ be a left-eigenvector of the eigenvalue

1 of S (17). That is, assume that Equation (A93) holds. Define a vector u := (ux̂)x̂
by Equation (A90). Reversing the algebra, (A93) is equivalent to (A91). Substituting (A90)
into the latter yields back (A85), which is equivalent to the explicit form (A76) of Equation
(A74). Next, summing (A85) over y′ and simplifying yields (A86). Adding the latter to
(A90) yields back (A89), which is equivalent to Equation (A77), the explicit form of (A75).
To conclude, both of the Equations (A74) and (A75) hold, as claimed.

Appendix D. Approximate Error Analysis for Deterministic Annealing and for Euler’s
Method with BA

Complementing the results of Section 4, we provide an approximate error analysis for
two computation methods for the IB: deterministic annealing and Euler’s method combined
with a fixed number of BA iterations.

First, we recap the linearization argument around Equation (10) in [4]. Denote repeated
BA iterations initialized at p0 by

pk+1 := BAβ[pk] . (A95)

Linearizing around a fixed-point pβ of BA,

BA[pk] ' pβ + D BAβ|pβ
·
(

pk − pβ

)
, (A96)

where D BAβ|pβ
denotes the Jacobian matrix of BAβ evaluated at pβ. Rewriting in terms

of the error δpk := pk − pβ of the k-th iterate,

δpk+1 ' D BAβ|pβ
· δpk . (A97)

Thus, to first order, repeated applications of BAβ reduce the initial error according to

‖δpk+1‖ '
∥∥∥∥
(

D BAβ|pβ

)k
· δp0

∥∥∥∥ . (A98)

Next, consider k > 0 applications of BAβ+∆β to a root pβ at β. This is similar to deter-
ministic annealing, but with a capped number of BA iterations. Plugging the initial error
δp0 := pβ − pβ+∆β ' −∆β

dp
dβ

∣∣
β

into Equation (A98) shows that this method is of the first
order:

‖δpk+1‖ ' |∆β| ·
∥∥∥∥
(

D BAβ+∆β|pβ+∆β

)k dp
dβ

∣∣
β

∥∥∥∥ . (A99)

Finally, we combine BA with Euler’s method for the IB, Equation (22). Consider k > 0
applications of BAβ+∆β to the approximation pβ + ∆β

dp
dβ

∣∣
β

produced by an Euler method
step. Its initial error is

δp0 := pβ + ∆β
dp
dβ

∣∣
β
− pβ+∆β = − 1

2 (∆β)2 d2 p
dβ2

∣∣
β′ , (A100)

where the last equality follows from the second-order expansion pβ+∆β = pβ + ∆β
dp
dβ

∣∣
β
+

1
2 (∆β)2 d2 p

dβ2

∣∣
β′ , with β′ ∈ [β, β + ∆β]. Similar to before, plugging this into Equation (A98)

shows that this method is of the second order:

‖δpk+1‖ ' 1
2 |∆β|2 ·

∥∥∥∥
(

D BAβ+∆β|pβ+∆β

)k d2 p
dβ2

∣∣
β′

∥∥∥∥ . (A101)

79



Entropy 2023, 25, 1370

Appendix E. An Exact Solution for a Binary Symmetric Channel

Define an IB problem by Y ∼ Bernoulli( 1
2 ) and X := Y ⊕ Z for Z ∼ Bernoulli(α)

independent of Y, 0 < α < 1
2 , where ⊕ denotes addition modulo 2. Explicitly, it is given

by pY|X =
(

1− α α
α 1− α

)
and pX = ( 1

2 , 1
2 ). We synthesize exact solutions for this problem

using Mrs. Gerber’s Lemma [38] and by following [2].
Let h(p) := −p log p− (1− p) log(1− p) be the binary entropy, with h(0) := h(1) := 0.

It is injective on [0, 1
2 ], with a maximal value of log 2 at p = 1

2 . So, its inverse function h−1

is well-defined on [0, log 2]. Given a constraint IX ∈ [0, log 2] on I(X̂; X), I(X̂; X) ≤ IX,
define a random variable V ∼ Bernoulli(δ) and set X̂ := X ⊕ V, where δ is defined by
h(δ) = log 2 − IX or equivalently in terms of h−1 by δ := h−1(log 2 − IX). Explicitly,

p(x̂|x) =
(

1− δ δ
δ 1− δ

)
, with its rows indexed by x̂ and columns by x. X̂ is also a

Bernoulli( 1
2 ) variable since X is, and so

I(X̂; X) = H(X̂)− H(X̂|X) = log 2− h(δ) = IX , (A102)

showing that the constraint on I(X̂; X) holds. The chain X̂ → X → Y of random variables
is readily seen to be Markov. By Corollary 4 in [38], it follows that I(X̂; Y) ≤ log 2− h(α ∗ δ),
where a ∗ b := a(1− b) + b(1− a). Finally, equality follows by Theorem 1 there. Thus, the
above p(x̂|x) is IB-optimal.

The above defines an IB solution p(x̂|x) as a function of IX . However, our numerical
computations are phrased in terms of the IB’s Lagrange multiplier β. To that end, note
that [2] (Section IV.A) show that

β · (1− 2α) log
1− α ∗ δ

α ∗ δ
= log

1− δ

δ
, (A103)

and that the bifurcation of this problem occurs at

βc =
1

(1− 2α)2 . (A104)

To conclude, we have β = β(δ) as a function of δ, δ = δ(IX) as a function of IX, and
the encoder p(x̂|x) as a function of δ. These functional dependencies are summarized
as follows:

p(x̂|x) // δ

yy
IX β

OO (A105)

where the variable at the tail of each arrow is a function of that at its head.
Writing p =

(
p(x̂|x)

)
x̂,x, its derivative with respect to β can be calculated by the

chain rule:
dp
dβ

=
d

dβ

(
p
(

β−1(δ)
))

=
dp
dδ

(
dβ

dδ

)−1
, (A106)

where we have applied the derivative of an inverse function ( f−1)′ = 1/ f ′ to β(δ) in (A103),

to differentiate δ(β). From the argument around (A102), dp
dδ =

(−1 1
1 −1

)
. While this yields

an analytical expression for the derivative dp
dβ , both of the terms to the right of (A106) are

evaluated at δ(β), for a given β value. Although it is straightforward to compute δ(β)
numerically from (A103), this entails numerical error, especially as δ approaches 1/2 near the
bifurcation. For the solution with respect to decoder coordinates, an immediate application
of the Bayes rule shows that

p(x̂) =
1
2

and p(y|x̂) =
(

α ∗ (1− δ) α ∗ δ
α ∗ δ α ∗ (1− δ)

)
, (A107)

80



Entropy 2023, 25, 1370

where the rows of p(y|x̂) are indexed by y, and columns by x̂. Along with dp(y|x̂)
dδ =

(2α− 1) ·
(

1 −1
−1 1

)
, its derivatives with respect to β follow as in (A106).

Appendix F. Equivalent Conditions for Cluster-Merging Bifurcations

We briefly discuss the equivalent conditions for cluster-merging bifurcations in the IB
(Section 5.2) found in the literature.

Rose et al. [39] (Section 4) derive a condition for cluster-splitting phase transitions
(Equation (17) there) in the context of fuzzy clustering. Following this, [13] (3.2 in Part III)
derives an analogous condition for cluster splitting in the IB (Equation (12) there):

(I − β CX(x̂; β))u = 0 , (A108)

where I is the identity. Namely, for a cluster x̂ to split, it is necessary that 1/β be an
eigenvalue of an |X |-by-|X |matrix CX(x̂; β), whose entries at an IB root are given by

CX(x̂; β)x,x′ := ∑
y

p(y|x)p(y|x′)pβ(x′|x̂)
pβ(y|x̂)

. (A109)

While the coefficients matrix (A109) for the IB differs from the one for fuzzy clustering,
inter-cluster interactions are explicitly neglected in both derivations (see therein). Indeed,
the definition (A109) of CX involves the coordinates of cluster x̂ alone, as one might expect
when considering a root in either decoder or in inverse encoder coordinates (Section 2).
Reversing the dynamics in β, condition (A108) characterizes cluster-merging bifurcations
in the IB (Section 5.2).

In [13] it is noted that (A108) is closely related to the bifurcation analysis of [9]. The
latter provides a condition to identify the critical β values of IB bifurcations, given in
their Theorem 5.3. Indeed, their condition is equivalent to (A108), and therefore it also
characterizes cluster-merging bifurcations. To see this, the necessary condition they give
for a phase transition at β is that 1/β must be an eigenvalue of a matrix V (Equation (21)
there). When written in our notation, this matrix is given by

V(x̂; β)x,x′ := ∑
y

p(x′, y)p(x, y)pβ(x̂|x)
pβ(y, x̂)p(x′)

. (A110)

However, V (A110) is readily seen to be the transpose of CX (A109), and so they have the
same eigenvalues.

Appendix G. Lyapunov Stability of an Optimal IB Root

We provide the essential parts of a proof that an optimal IB root is Lyapunov uniformly
asymptotically stable on closed intervals which do not contain a bifurcation when following
the flow dictated by the IB’s ODE (16) in decreasing β. Definitions for the below are as in [40]
(see especially Section 4.2 there). See Section 6.3 for a discussion of the results below.

Let p∗(β) be an optimal IB root. We start by rewriting it as an equilibrium of a non-
autonomous ODE, as in [40] (Equation (4.1)). Consider the implicit ODE (7)
dp
dβ = −(DpF)−1DβF, specialized to the IB by setting F := Id − BAβ (5). Denote
δp := p − p∗, for an arbitrary p. Subtracting the ODE at p from that at p∗ yields a
non-autonomous ODE in the error δp from the optimal root:

dδp
dβ = (DpF)−1DβF|p∗ − (DpF)−1DβF|p∗+δp (A111)

This rewrites the given root p∗ as an equilibrium δp = 0 of this ODE (A111), simplifying
the below.

81



Entropy 2023, 25, 1370

Next, we define a Lyapunov function for the flow of the equilibrium δp = 0 along the ODE
(A111), when its dynamics in β is reversed. Consider the IB’s Lagrangian
Lβ := I(X; X̂)− β · I(Y; X̂) as a functional in p, and let L∗β := Lβ[p∗] be its optimal value at
β. Then, (

Lβ −L∗β
)
(δp) (A112)

is the desired Lyapunov function. Specifically, (i) Lβ − L∗β is positive definite and (ii)
d

dβ

(
Lβ −L∗β

)
is negative definite, when the dynamics in β are reversed. Theorem 4.1 in [40]

then implies that δp = 0 is uniformly asymptotically stable [40] (Definition 4.6).
For (i), Lβ − L∗β (A112) is immediately seen to be positive semi-definite from the

definition of L∗β, up to technicalities ignored here (cf., Definition 4.7 in [40]). The results of
Section 5.3 (after Proposition 1) imply that representing p in reduced log-decoder coordi-
nates renders (A112) strictly positive definite. Indeed, D(Id− BAβ) is non-singular in a
reduced representation in these coordinates, as mentioned there, and so an optimal root p∗

is locally unique. As for condition (ii), from the definition of Lβ we have

d
dβLβ = d

dβ I(X; X̂)− β d
dβ I(Y; X̂)− I(Y; X̂) = −I(Y; X̂) , (A113)

where d
dβ I(X; X̂) = β d

dβ I(Y; X̂) in the last equality follows by direct calculations similar to
those in the Appendix of [13] (Part III). Thus, for the β-derivative of (A112), we have

d
dβ

(
Lβ −L∗β

)
(δp) = I(Y; X̂)|p∗ − I(Y; X̂)|p . (A114)

The latter is always positive semi-definite around p∗, since by definition (1) p∗ yields the
maximal Y-information subject to a constraint on the X-information. The same argument
as above shows that it is strictly positive definite. Finally, reversing the dynamics in β
leaves the ODE (A111) unaffected but flips the sign of (A114), rendering it negative definite
as required.

Appendix H. Introducing Degeneracies to the IB Operator in Decoder Coordinates Is
Uninformative at an Isolated Optimal Root

Suppose that the Jacobian of the IB operator Id− BAβ (5) in log-decoder coordinates
is non-singular at a reduced representation of an IB root, as in the argument following
Proposition 1 (Section 5.3). We show that evaluating it on a non-reduced (degenerate)
representation only permits one to detect kernel directions which are due to the selected
degeneracy. Thus, it is inadequate for detecting bifurcations, as explained in Section 5.3.

Let p ∈ ∆[∆[Y ]] be an IB root of effective cardinality T1. A T-clustered representation
of a root (e.g., in decoder coordinates) is a function π : ∆[∆[Y ]] → R(|Y|+1)·T , defined
on some neighborhood of p. In the other way around, one can consider the inclusion
i : R(|Y|+1)·T → ∆[∆[Y ]], defined in the obvious way on normalized decoder coordinates at
some neighborhood of π(p). Let π be a representation of p in its effective cardinality T1,
and π̃ a degenerate one on T2 > T1 clusters. These satisfy

π = reduc ◦ π̃ , (A115)

where reduc is the reduction map (defined similar to the root-reduction Algorithm 2, by
setting its thresholds to zero, δ1 = δ2 = 0, and replacing its strict inequalities with non-strict
ones. Note that Algorithm 2 has a well-defined output for every input). In the other way
around, one can pick a particular degenerating map degen (e.g., “split the third cluster to
two copies of probability ratio 1:2”). Applying a particular degeneracy and then reducing
is the identity,

reduc ◦ degen = Id , (A116)

82



Entropy 2023, 25, 1370

though not the other way around. Let i and ĩ be the inclusions corresponding to π and π̃,
respectively. Similar to (A115), degenerating a root has no effect before it is included into
∆[∆[Y ]],

i = ĩ ◦ degen (A117)

Recall from Section 5.1 (before Conjecture 1) that BAβ in decoder coordinates may be
considered as an operator on ∆[∆[Y ]]. To summarize, we have the following diagram:

R
p

// ∆[∆[Y ]]

BAβ

��

π̃

,,

π

**

R(|Y|+1)·T2

reduc
��

ĩ
uu

R(|Y|+1)·T1
i

PP

degen

OO
(A118)

Next, consider the representations of the IB operator Id− BAβ (5) on T1 and T2 clusters.
These amount to pre-composing with the inclusions and post-composing with the repre-
sentation maps. Denote by Idi the identity operator on R(|Y|+1)·Ti . By identities (A115),
(A116), and (A117), the T1-clustered representation of Id− BAβ (5) satisfies

Id1 − π ◦ BAβ ◦ i = reduc ◦ degen− reduc ◦ π̃ ◦ BAβ ◦ ĩ ◦ degen

= reduc ◦
[
Id2 − π̃ ◦ BAβ ◦ ĩ

]
◦ degen (A119)

Differentiating, by the chain rule we have

D
(

Id1 − π ◦ BAβ ◦ i
)
= D(reduc)D

(
Id2 − π̃ ◦ BAβ ◦ ĩ

)
D(degen) . (A120)

Multiplying a matrix B from the left can only enlarge the kernel, dim ker(AB) ≥ dim ker B,
and so

dim ker D
(

Id1 − π ◦ BAβ ◦ i
)
≥ dim ker

(
D
(

Id2 − π̃ ◦ BAβ ◦ ĩ
)

D(degen)
)

. (A121)

Since the left-hand side is evaluated at a reduced representation, it vanishes by assumption.
Thus, D

(
Id2 − π̃ ◦ BAβ ◦ ĩ

)
D(degen) is of full rank, yielding

ker D
(

Id2 − π̃ ◦ BAβ ◦ ĩ
)
⊂ (Im D(degen))⊥ , (A122)

where (Im D(degen))⊥ denotes the vectors tangent to the column space Im D(degen) of
D(degen). Stated differently, the Jacobian D

(
Id2 − π̃ ◦ BAβ ◦ ĩ

)
of a T2-clustered represen-

tation of Id− BAβ (5) can only detect directions in (Im D(degen))⊥, which are determined
by the choice of the degenerating map degen, as argued.

For completeness, splitting a cluster r ∈ ∆[Y ] into two at some fixed ratio 0 < λ < 1 is
of the form (r, p(r)) 7→ (r, λ · p(r), r, (1− λ) · p(r)). Adding a pre-defined cluster r′ ∈ ∆[Y ]
of zero mass is constant (. . . ) 7→ (. . . , r′, 0) on the newly added coordinates. A general
degeneracy map degen is a composition of these, and is otherwise the identity map on
unaffected coordinates.

References
1. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the 37th Annual Allerton Conference

on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.
2. Witsenhausen, H.; Wyner, A. A Conditional Entropy Bound for a Pair of Discrete Random Variables. IEEE Trans. Inf. Theory 1975,

21, 493–501. [CrossRef]

83



Entropy 2023, 25, 1370

3. Zaidi, A.; Estella-Aguerri, I.; Shamai, S. On the Information Bottleneck Problems: Models, connections, Applications and
Information Theoretic Views. Entropy 2020, 22, 151. [CrossRef] [PubMed]

4. Agmon, S.; Benger, E.; Ordentlich, O.; Tishby, N. Critical Slowing Down Near Topological Transitions in Rate-Distortion Problems.
In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021;
pp. 2625–2630. [CrossRef]

5. Gilad-Bachrach, R.; Navot, A.; Tishby, N. An Information Theoretic Tradeoff between Complexity and Accuracy. In Learning
Theory and Kernel Machines; Springer: Berlin/Heidelberg, Germany, 2003. [CrossRef]

6. Agmon, S. Root Tracking for Rate-Distortion: Approximating a Solution Curve with Higher Implicit Multivariate Derivatives.
IEEE Trans. Inf. Theory 2023, in press.

7. De Oliveira, O. The Implicit and the Inverse Function Theorems: Easy Proofs. Real Anal. Exch. 2014, 39, 207–218. [CrossRef]
8. Blahut, R. Computation of Channel Capacity and Rate-Distortion Functions. IEEE Trans. Inf. Theory 1972, 18, 460–473. [CrossRef]
9. Gedeon, T.; Parker, A.E.; Dimitrov, A.G. The Mathematical Structure of Information Bottleneck Methods. Entropy 2012, 14, 456–479.

[CrossRef]
10. Agmon, S. On Bifurcations in Rate-Distortion Theory and the Information Bottleneck Method. Ph.D. Thesis, The Hebrew

University of Jerusalem, Jerusalem, Israel, 2022.
11. Rose, K.; Gurewitz, E.; Fox, G. A deterministic annealing approach to clustering. Pattern Recognit. Lett. 1990, 11, 589–594.

[CrossRef]
12. Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 3rd ed.; Springer Science & Business Media: New York, NY USA, 2004;

Volume 112. [CrossRef]
13. Zaslavsky, N. Information-Theoretic Principles in the Evolution of Semantic Systems. Ph.D. Thesis, The Hebrew University of

Jerusalem, Jerusalem, Israel, 2019.
14. Ngampruetikorn, V.; Schwab, D.J. Perturbation Theory for the Information Bottleneck. Adv. Neural Inf. Process. Syst. 2021, 34,

21008–21018. [PubMed]
15. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the Information Bottleneck. PMLR 2020, 115, 1050–1060. [CrossRef]
16. Wu, T.; Fischer, I. Phase Transitions for the Information Bottleneck in Representation Learning. In Proceedings of the Eighth

International Conference on Learning Representations (ICLR 2020), Virtual Conference, 26 April–1 May 2020.
17. Rose, K. A Mapping Approach to Rate-Distortion Computation and Analysis. IEEE Trans. Inf. Theory 1994, 40, 1939–1952.

[CrossRef]
18. Giaquinta, M.; Hildebrandt, S. Calculus of Variations I; Springer: Berlin/Heidelberg, Germany, 2004; Volume 310. [CrossRef]
19. Parker, A.E.; Dimitrov, A.G. Symmetry-Breaking Bifurcations of the Information Bottleneck and Related Problems. Entropy 2022,

24, 1231. [CrossRef] [PubMed]
20. Harremoës, P.; Tishby, N. The Information Bottleneck Revisited or How to Choose a Good Distortion Measure. In Proceedings of

the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 566–570. [CrossRef]
21. Kielhöfer, H. Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, 2nd ed.; Springer: New York, NY,

USA, 2012. [CrossRef]
22. Lee, J.M. Introduction to Smooth Manifolds, 2nd ed.; Spinger: New York, NY, USA, 2012. [CrossRef]
23. Dummit, D.S.; Foote, R.M. Abstract Algebra, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004.
24. Teschl, G. Topics in Linear and Nonlinear Functional Analysis; University of Vienna: Vienna, Austria, 2022. Available online:

https://www.mat.univie.ac.at/~gerald/ftp/book-fa/fa.pdf (accessed on 20 December 2022).
25. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001.
26. Butcher, J.C. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [CrossRef]
27. Atkinson, K.E.; Han, W.; Stewart, D. Numerical Solution of Ordinary Differential Equations; John Wiley & Sons: Hoboken, NJ, USA,

2009; Volume 108. [CrossRef]
28. Berger, T. Rate Distortion Theory: A Mathematical Basis for Data Compression; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971.
29. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
30. Shannon, C.E. Coding Theorems for a Discrete Source with a Fidelity Criterion. IRE Nat. Conv. Rec. 1959, 4, 325–350.
31. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 748. [CrossRef]
32. Dieudonné, J. Foundations of Modern Analysis; Academic Press: Cambridge, MA, USA, 1969.
33. Gowers, T.; Barrow-Green, J.; Leader, I. The Princeton Companion to Mathematics; Princeton University Press: Princeton, NJ, USA, 2008.
34. Coolidge, J.L. A Treatise on Algebraic Plane Curves; Dover: Dover, NY, USA, 1959.
35. Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed.; CRC Press:

Boca Raton, FL, USA, 2018.
36. Golubitsky, M.; Stewart, I.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory II; Springer: New York, NY, USA, 1988.

[CrossRef]
37. Benger, E. (The Hebrew University of Jerusalem, Jerusalem, Israel). Private communications, 2019.
38. Wyner, A.; Ziv, J. A Theorem on the Entropy of Certain Binary Sequences and Applications: Part I. IEEE Trans. Inf. Theory 1973,

19, 769–772. [CrossRef]

84



Entropy 2023, 25, 1370

39. Rose, K.; Gurewitz, E.; Fox, G.C. Statistical Mechanics and Phase Transitions in Clustering. Phys. Rev. Lett. 1990, 65, 945.
[CrossRef] [PubMed]

40. Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

85



Citation: Charvin, H.; Catenacci

Volpi, N.; Polani, D. Successive

Refinement of the Information

Bottleneck. Entropy 2023, 25, 1355.

https://doi.org/10.3390/e25091355

Academic Editors: Jan Lewandowsky

and Gerhard Bauch

Received: 25 July 2023

Revised: 8 September 2023

Accepted: 13 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Exact and Soft Successive Refinement of the Information
Bottleneck
Hippolyte Charvin * , Nicola Catenacci Volpi and Daniel Polani

School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
n.catenacci-volpi@herts.ac.uk (N.C.V.); d.polani@herts.ac.uk (D.P.)
* Correspondence: h.charvin@herts.ac.uk

Abstract: The information bottleneck (IB) framework formalises the essential requirement for efficient
information processing systems to achieve an optimal balance between the complexity of their
representation and the amount of information extracted about relevant features. However, since the
representation complexity affordable by real-world systems may vary in time, the processing cost of
updating the representations should also be taken into account. A crucial question is thus the extent to
which adaptive systems can leverage the information content of already existing IB-optimal representations
for producing new ones, which target the same relevant features but at a different granularity. We
investigate the information-theoretic optimal limits of this process by studying and extending, within
the IB framework, the notion of successive refinement, which describes the ideal situation where no
information needs to be discarded for adapting an IB-optimal representation’s granularity. Thanks in
particular to a new geometric characterisation, we analytically derive the successive refinability of
some specific IB problems (for binary variables, for jointly Gaussian variables, and for the relevancy
variable being a deterministic function of the source variable), and provide a linear-programming-
based tool to numerically investigate, in the discrete case, the successive refinement of the IB. We
then soften this notion into a quantification of the loss of information optimality induced by several-
stage processing through an existing measure of unique information. Simple numerical experiments
suggest that this quantity is typically low, though not entirely negligible. These results could have
important implications for (i) the structure and efficiency of incremental learning in biological
and artificial agents, (ii) the comparison of IB-optimal observation channels in statistical decision
problems, and (iii) the IB theory of deep neural networks.

Keywords: information bottleneck; successive refinement; unique information; incremental learning;
coarse-graining; Blackwell order; deep learning

1. Introduction
1.1. Conceptualisation and Organisation Outline

Consider the problem, for an information-processing system, of extracting relevant
information about a target variable Y within a correlated source variable X, under con-
straints on the cost of the information processing needed to do so—yielding a compressed
representation T. This situation can be formalised in an information-theoretic language,
where the information-processing cost is measured with the mutual information I(X; T)
between the source X and the representation T of it, while the relevancy about Y of the
information extracted by T is measured by I(Y; T). The problem thus becomes that of
maximising the relevant information I(Y; T) under bounded information-processing cost
I(X; T), i.e., we are interested in the information bottleneck (IB) problem [1,2], which, in
primal form, can be formulated as

arg max
q(T|X) :

T−X−Y, I(X;T)≤λ

I(Y; T). (1)

86



Entropy 2023, 25, 1355

Here, the trade-off parameter λ controls the bound on the permitted information-processing
cost and thus, intuitively, the resulting representation’s granularity. The Markov chain
condition T − X−Y ensures that any information that the bottleneck T extracts about the
relevancy variable Y can only come from the source X. The solutions to (1) for varying λ
trace the so-called information curve, i.e., the λ-parameterised curve

(
Iλ(X; T), Iλ(Y; T)

)
λ≥0 ⊆ R2, (2)

where Iλ(X; T) and Iλ(X; T) are defined by a bottleneck T of parameter λ (see the black
curve in the first figure in Section 2 below). This curve indicates the informationally optimal
bounds on the feasible trade-offs between relevancy I(Y; T) and complexity I(X; T) of the
representation T. In this sense, the IB method provides a fundamental understanding of
the informationally optimal limits of information-processing systems.

These limits are crucial for both understanding and building adaptive behaviour. For
instance, choosing X to be an agent’s past and Y to be its future leads it to extract the most
relevant features of its environment [3–6]. More generally, the IB point of view on modelling
embodied agents’ representations has been leveraged for unifying efficient and predic-
tive coding principles in theoretical neuroscience—at the level of single neurons [3,7–9]
and neuronal populations [9–13]—but also for studying sensor evolution [14–16], the
emergence of common concepts [17] and of spatial categories [18], the evolution of hu-
man language [19–21], or for implementing informationally efficient control in artificial
agents [22–24]. This line of research brings increasing support to the hypothesis that, partic-
ularly for evolutionary reasons, biological agents are often poised close to optimality in the
IB sense. It also provides a framework for both measuring and improving artificial agents’
performance.

However, one aspect of the IB framework conflicts with a crucial feature of real-
world systems: the informationally optimal limits that it describes only consider a given
representation T taken in isolation from any other one in the system. This point of view
a priori disregards the relationship between representations, which is crucial in real-world
information-processing systems. Thus, it is crucial to consider the following question:
does the relationship between a set of internal representations T1, . . . , Tn impact their
individual information optimality? In this paper, we are mostly interested in a specific
kind of relationship: when T1, . . . , Tn are successively produced in this order, and each new
Ti builds on both the previous representation Ti−1 and new information from the fixed
source X to extract information about the fixed relevancy Y. This scenario formalises the
incorporation of information into already learned representations—as is the case in developmental
learning, or, more generally, any kind of learning process that goes through identifiable
successive steps.

More precisely, consider an informationally bounded agent that extracts information
about a relevant variable Y within an environment X. If the agent is informationally optimal,
given an affordable complexity cost λ1, it must maximise the relevant information that it
extracts from the environment—resulting in a bottleneck representation T1, i.e., a solution
to (1) with parameter λ1. Then, assume that at, a later stage, the complexity cost that the
agent can afford increases to λ2 > λ1, while the goal is still to extract information about the
same relevant feature Y within the same environment X. To keep being informationally
optimal, the agent should thus update its representation so it becomes a bottleneck of
parameter λ2. Given this setting, the question we ask is: to which extent can the content
learned into T1 be leveraged for the production of T2? It is indeed not intuitively clear
that T2 should keep all the information from T1. An informal example is the fact that most
pedagogical curricula teach knowledge via successive approximations, where, at a more
advanced level, the content learned at the beginner level must sometimes be unlearned to
successively proceed further, even though it was perfectly reasonable—in our language,
informationally optimal—to deliver the first beginner sketch to students that would never
progress to learn the expert level.

87



Entropy 2023, 25, 1355

This question has been formalised, in the rate-distortion literature, with the notion
of successive refinement (SR) [25–29], which, in short, refers to the situation where several-
stage processing does not incur any loss of information optimality. More precisely, in
the context outlined above, there is successive refinement if the processing cost of first
producing a coarse bottleneck T1 of parameter λ1 and then refining it to a finer bottleneck
T2 of parameter λ2 > λ1 is no larger than the processing cost of directly producing a
bottleneck T2 of parameter λ2 without any intermediary bottleneck T1 (see Section 2.1 and
Appendix B.2 for formal definitions). The aim of this work is to push the understanding of
successive refinement in the IB framework [30–32] further, as well as to expand the analysis
to a quantification of the lack of SR, in cases where the latter does not hold exactly. We
start by leveraging general results in existing IB literature [33,34] to prove that successive
refinement always holds for jointly Gaussian (X, Y), and when Y is a deterministic function
of X. However, it is seems crucial, for further progress on more general scenarios, to design
specifically tailored mathematical and numerical tools. In this regard, we provide two
main contributions.

First, we present a simple geometric characterisation of SR, in terms of convex hulls of
the decoder symbol-wise conditional probabilities q(X|t), for t varying in the bottleneck
alphabet T . This characterisation is proven in the discrete case under an additional but
mild assumption of injectivity of the decoder q(X|T). This new point of view fits well with
an ongoing convexity approach to the IB problem [35–39] and might thus help develop
a new geometric perspective on the successive refinement of the IB. As an example, we
use this geometric characterisation to prove that SR always holds for binary source X and
binary relevancy Y. Moreover, this characterisation makes it straightforward to numerically
assess, with a linear program checking convex hull inclusions, whether or not two discrete
bottlenecks T1 and T2 achieve successive refinement. As we demonstrate with minimal
numerical examples, this can help in investigating the SR structure of any given IB prob-
lem, i.e., how successive refinement depends on the particular combination of trade-off
parameters λ1 and λ2.

Second, we soften [18] the traditional notion of successive refinement and study the
extent to which several-stage processing incurs a loss of information optimality. More
precisely, we propose to measure soft successive refinement with the unique information [40]
(UI) that the coarser bottleneck T1 holds about the source X, as compared to the finer one
T2. Explicitly, this UI is defined as the minimal value of Iq(X; T1|T2) over all distributions
q := q(X, T1, T2) whose marginals q(X, T1) and q(X, T2) coincide with the corresponding
bottleneck distributions (see Section 3.1 for details). As a first exploration of soft SR’s
qualitative features, we investigate the landscapes of unique information over trade-off
parameters, for again some simple example distributions p(X, Y). These landscapes seem
to unveil a rich structure, which was largely hidden by the traditional notion of SR, that
only distinguished between SR being present or absent. Among the general features
suggested by these experiments, the most significant are that (i) soft SR seems strongly
influenced by the trajectories of the decoders qλ(X|T) over λ; (ii) the UI often goes through
sharp variations at the bifurcations [41–44] undergone by the bottlenecks (in a fashion
compatible with the presence of discontinuities of either the UI itself, or its differential,
with regard to trade-off parameters); and (iii) the loss of information optimality seems
always small—more precisely, the global bound on the UI was observed to be typically
one or two orders of magnitude lower than the system’s globally processed information
(see Section 3.2 for formal statements). These three conclusions are phenomenological and
limited to our minimal examples, but they shed light on the kind of structure that can
be investigated by further research. They also suggest the relevance that developing this
theoretical framework might have for the scientific question that motivates it. In particular,
the link with IB bifurcations and the overall small loss of information optimality would, if
generalisable, have interesting consequences for the structure and efficiency of incremental
learning.

88



Entropy 2023, 25, 1355

As a side contribution, we draw along the paper formal equivalences between our
framework and other notions proposed in the literature, thus making the formal framework
also relevant to decision problems [40,45] and to the information-theoretic approach to deep
learning [46]. This flexibility of interpretation stems from the fact that even though our
formal framework crucially depends on the order of the bottleneck representations’ trade-
off parameters, it does not depend on the order in which these representations are produced.
Thus, a sequence of bottlenecks can be equally well interpreted as produced from coarsest
to finest—as is the case for the information incorporation interpretation outlined above—or
from finest to coarsest—as is the case in feed-forward processing. This conceptual unity
sheds light on the common formal structure shared by these diverse phenomena.

In the next Section 1.2, we review related work. After having established notations
and recalled some general notions in Section 1.3, we formally introduce the notion of the
successive refinement of the IB in Section 2.1, where we also prove successive refinability
in the case of Gaussian vectors and deterministic channel p(Y|X). We then present the
convex hull characterisation in Section 2.2, before using it to prove successive refinement
for the case of binary source and relevancy variables. The following Section 2.3 leverages
the convex hull characterisation to gather some first insights from minimal experiments.
These experiments suggest an intuition for defining soft successive refinement, which we
formalise in Section 3.1 through a measure of unique information [40], where we provide
theoretical motivations for our choice. This new measure is explored in Section 3.2 with
additional numerical experiments that highlight the general features described above. The
alternative interpretations of both exact and soft SR, in terms of decision problems and
feed-forward deep neural networks, are developed in Sections 4.1 and 4.2, respectively.
We then describe the limitations and potential future work in Section 5, and conclude in
Section 6.

1.2. Related Work

The notion of successive refinement has been long studied in the rate-distortion
literature [25–29]. However, classic rate-distortion theory [47] usually considers distortion
functions defined on the random variables’ alphabets, whereas the IB framework can be
regarded as a rate-distortion problem only if one allows the distortion to be defined on the
space of probability distributions [48]. Successive refinement thus needed to be adapted to
the IB framework, which was achieved starting from various perspectives.

In [30,31], successive refinement is formulated within the IB framework. Then, Ref. [32]
goes further by considering the informationally optimal limits of several-stage processing
in general, without comparing it to single-stage processing. In both these works, the
problem is initially defined in asymptotic coding terms, and only then given a single-
letter characterisation. On the contrary, we will directly define successive refinement
from a single-letter perspective. It turns out that our single-letter definition and the
operational multi-letter definition from [30,31] are equivalent. The two latter works—as
well as [32]—thus provide our single-letter definition with an operational interpretation
that also formalises the intuition of an informationally optimal incorporation of information
(see Proposition 1 and Appendix B.2).

Another notion named “successive refinement” as well can be found in [46]. This
work, instead of modelling information incorporation, rather considers the successive
processing of data along a feed-forward pipeline—which encompasses the example of
deep neural networks. Fortunately, the “successive refinement” defined in [46] happens to
encompass the notion we develop here; more precisely, in [46], the relevancy variable is
allowed to vary across processing stages, but if we choose it to be always the same, then
“successive refinement” as defined in [46] and “successive refinement” as defined here are
formally equivalent (see Section 4.2). In other words, the situation considered in this paper
is a particular case of [46], so our results, methods, and phenomenological insights are
directly relevant to [46]. For instance, our proof of SR for binary X and Y (see Proposition 5)

89



Entropy 2023, 25, 1355

is a generalisation of Lemma 1 in [46], which proves SR when X is a Bernoulli variable of
parameter 1

2 and p(Y|X) is a binary symmetric channel.
More generally speaking, the link between successive refinement and the IB theory of

deep learning [49–56] has been noted since the inception of the latter research agenda [49],
and, besides in [46], it was also further developed in [57]. Section 4.2 makes clear in
which sense our results are relevant to this line of research. In particular, our minimal
experiments suggest (if they are scalable to the much richer deep learning setting) that
trained deep neural networks should lie close to IB bifurcations: i.e., if X is the network’s
input, Y the feature to be learnt and L1, . . . , Ln the network’s successive layers, the points
(I(X; Li), I(Y, Li)) should lie close to points of the information curve corresponding to IB
bifurcations. This feature was already suggested in [49,50], but for reasons not explicitly
related to successive refinement. Note that while the phenomenon of IB bifurcations has
been studied from a variety of perspectives (see, e.g., [41–44]), here, we adopt that of [43],
which frames IB bifurcations as parameter values where the minimal number of symbols
required to represent a bottleneck increases.

In [58], successive refinability is proved for discrete source X and relevancy Y = X.
Our Proposition 3 generalises this result to either discrete or continuous source X, with
relevancy Y being an arbitrary function of X, with a similar argument as that in [58].

In [33], links between the IB framework and renormalisation group theory are exhib-
ited. Even though the questions addressed in the latter work are thus distinct from those
addressed here, the Gaussian IB’s semigroup structure defined and proven in [33] implies
the successive refinability of Gaussian vectors (see Proposition 2, and see Appendix 2 for
more details on the semigroup structure). This generalises Lemma 3 in [46], which proves
SR when X and Y are jointly Gaussian, but each one-dimensional (see Section 4.2 for the
relevance of [46] to our framework).

The geometric approach in which we propose to study the successive refinement of the
IB is closely related to the convexity approach to the IB [35–39], which frames the IB problem
as that of finding the lower convex hull of a well-chosen function. This formulation happens
to fit neatly with our convex hull characterisation of successive refinement; we use it to
apply the characterisation to proving successive refinability in the case of a binary source
and relevancy. Moreover, it is worth noting that our convex hull characterisation makes
successive refinement tightly related to the notion of input-degradedness [59], through which
additional operational interpretations can be given to successive refinement, particularly in
terms of randomised games.

The loss of information optimality induced by several-stage processing has already
been studied in [60] (see next paragraph), but a quantification of it based on soft Markovian-
ity was, to the best of our knowledge, only considered in [18]. Here, we take inspiration in
the latter work to quantify soft successive refinement, but we explicitly address the problem
that joint distributions over distinct bottlenecks are not uniquely defined. This leads us to
use the unique information defined in [40] within the context of partial information decom-
position [61–64] as our measure of soft SR. This unique information has tight links with
the Blackwell order [45,65], which allows us in Section 4.1 to provide a second alternative
interpretation of (exact and soft) successive refinement in terms of decision problems.

Ref. [60] proves the near-successive refinability of rate-distortion problems when the
distortion measure is the squared error. However, the latter work’s approach is different
from ours in two respects. First, the distortion measures are different: in particular, as
mentioned above, the IB distortion is defined over the space of probability distributions
on symbols, unlike the squared error, which is defined on the space of symbols itself.
Second, Ref. [60] quantifies the lack of SR as the respective differences between sequences
of optimal rates (for given distortion sequences) of a several-stage processing system and
the corresponding optimal rates (for the same distortions) of a single-stage processing
system. Here, we quantify the lack of SR with a single quantity: the unique information
defined by bottlenecks with different granularities. We are, at this stage, not aware of a link

90



Entropy 2023, 25, 1355

between this value of unique information and differences in one-stage and several-stage
optimal rates.

1.3. Technical Preliminaries

In this section, we fix the notations and conventions that we will use along the paper
and recall some general notions that we will need.

1.3.1. Notations and Conventions

The random variables are denoted by capital letters, e.g., X, their alphabets by calli-
graphic ones, e.g., X , and their symbols by lower-case letters, e.g., x. Sometimes, we will
mix upper- and lower-case notations to denote a family where some symbols vary, while
others are fixed, e.g., q(X|t) :=

(
q(x|t)

)
x∈X , or q(x|T) :=

(
q(x|t)

)
t∈T . Throughout the

whole paper, X is the fixed source and Y the fixed relevancy of the IB problem. The variable
T defined by the solution q(T|X) to the primal IB problem (1) is called a primal bottleneck.
We use the same symbol T for Lagrangian bottlenecks, i.e., variables defined by solutions
q(T|X) to the Lagrangian bottleneck problem (see Equation (3) below). By “bottleneck”
without further specification, we refer to either a primal or Lagrangian bottleneck. The
fixed source-relevancy distribution is denoted p(X, Y), and any distribution involving
at least one bottleneck is denoted with the letter q, e.g., q(X, Y, T). When it is necessary
to make the trade-off parameter explicit, we index the corresponding objects by λ, e.g.,
qλ(T|X) or Iλ(Y; T). Unless explicitly stated otherwise, the source X, relevancy Y, and any
considered bottleneck T are defined as either all discrete or all continuous. Probability
simplices, and sometimes some of their subsets are written using the generic symbol ∆; for
instance, the source simplex is denoted by ∆X .

Without loss of generality, we always restrict X, Y, and the bottleneck T to their re-
spective supports so that, in particular, all the conditional distributions are unambiguously
well-defined, both in the discrete and the continuous case.

We will denote by IY the function from R+ to R+ defined by IY(λ) := I(Y; T), where
T is a solution to the primal IB problem (1) for the parameter λ. The information curve,
defined above in Equation (2), is thus also the graph of the function IY.

1.3.2. General Facts and Notions

The following properties of the IB framework will be useful [35,37]:

• A bottleneck must saturate the information constraint, i.e., solutions T to (1) must
satisfy Iλ(X; T) = λ. In other words, the primal trade-off parameter is the complexity
cost of the corresponding bottleneck.

• The function IY : λ 7→ Iλ(T; Y) is constant for λ ≥ H(X). We will thus always
assume, without loss of generality, that λ ∈ [0, H(X)].

• In the discrete case, choosing a bottleneck cardinality |T | = |X | + 1 is enough to
obtain optimal solutions. Thus, we always assume, without loss of generality, that
|T | ≤ |X |+ 1, where |T | < |X |+ 1 might occur if needed to make T full support .

To compute bottleneck solutions, instead of directly solving the primal problem (1),
following common practice, we will solve its Lagrangian relaxation [66]:

arg min
q(T|X) : T−X−Y,

I(X; T) − β I(Y; T), (3)

where the complexity-relevancy trade-off is now parameterised by β ≥ 0, which corre-
sponds to the inverse of the information curve’s slope [41]. As the information curve is
known to be concave, the Lagrangian parameter β is an increasing function of the primal pa-
rameter λ = I(X; T). Moreover, we can, without loss of generality, assume that β ≥ 1 [43].
(Note that when the information curve is not strictly concave, the Lagrangian formulation
does not allow one to obtain all the solutions to the primal problem [39,67]. However,

91



Entropy 2023, 25, 1355

in our simple numerical experiments, we always obtained strictly concave information
curves.)

We will also need the following concepts [43]:

Definition 1. Let T be a (primal or Lagrangian) discrete bottleneck. The effective cardinality
k = k(T) is the number of distinct pointwise conditional probabilities q(X|t) for varying t.

Definition 2. A discrete (primal or Lagrangian) bottleneck T is a canonical bottleneck, or is in
canonical form, if all the pointwise conditional probabilities q(X|t) are distinct, i.e., equivalently,
if |T | = k(T), where k(T) is the effective cardinality of T.

Our definition of effective cardinality, even though slightly different from the original
one in [43], is equivalent to the latter for Lagrangian bottlenecks. And, importantly, every
(primal or Lagrangian) bottleneck can be reduced to its canonical form by merging the
symbols with identical q(X|t) (see Appendix A.1 for more details). We will be particu-
larly interested in the change of effective cardinality, which has been identified in [43] as
characterising the bottleneck phase-transitions, or bifurcations.

In Figure 1, we present examples of bottleneck conditional distributions q(X|T), vi-
sualised as the family of points {q(X|t), t ∈ T } on the source simplex ∆X , where, here,
|X | = 3, and the bottleneck is computed with |T | = 3 in both examples. However, in
Figure 1 (left), there are only two distinct q(X|t), so there must be two equal pointwise
probabilities q(X|t1) and q(X|t2); thus, k = 2 and the canonical form of T is obtained by
merging t1 and t2. On the contrary, in Figure 1 (right), there are three distinct q(X|t), so,
here, k = 3 and the bottleneck is already in canonical form.

Figure 1. Examples of distributions q(X|T), visualised as families of points {q(X|t), t ∈ T } on
the source simplex ∆X , where, here, |X | = 3. Each of the triangle’s vertices represents the Dirac
probability of some x ∈ X . The bottleneck’s effective cardinality is k = 2 on the left and k = 3 on
the right.

Eventually, the notions of consistency and extension will be crucial to us.

Definition 3. Let A := A1 × · · · × Am be a Cartesian product of (continuous or discrete)
alphabets. For C = {c1, . . . , cr} ⊆ {1, . . . , m} a subset of coordinates, we write

×
c∈C
Ac := Ac1 × · · · × Acr .

For each 1 ≤ i ≤ n, we consider a subset of coordinates Ci and a probability distribution qi
over×c∈Ci

Ac. The distributions q1, . . . , qn are said to be consistent if, for every 1 ≤ i, j ≤ n, the
respective marginals of qi and qj on their common coordinates×c∈Ci∩Cj

Ac are equal.

92



Entropy 2023, 25, 1355

For instance, if T1 and T2 are two bottlenecks, they define consistent distributions
q1(X, Y, T1) and q2(X, Y, T2) because, by definition, their respective marginals on their
common coordinates X ×Y are q1(X, Y) = q2(X, Y) = p(X, Y).

Definition 4. Let A := A1 × · · · × Am be a Cartesian product of (continuous or discrete) alpha-
bets, and q1, . . . , qn be consistent probability distributions over distinct but potentially overlapping
coordinates of A. A distribution q over the whole A is called an extension of the family of
distributions {q1, . . . , qn} if it is consistent with each qi.

Consider bottlenecks T1, . . . , Tn of same source X and relevancy Y for resp. parameters
λ1, . . . , λn. They define a consistent family of distributions {qλi (X, Ti), 1 ≤ i ≤ n}. One
of the central mathematical objects of this work is the set of their extensions into joint
distributions q(X, T1, . . . , Tn):

Notation 1. For given bottlenecks T1, . . . , Tn of respective parameters λ1, . . . , λn, we denote by
∆λ1,...,λn the set of extensions q(X, T1, . . . , Tn) of the family of distributions {qλi (X, Ti), 1 ≤ i ≤ n}.

In general, for a fixed family of bottlenecks, there is a multitude of possible ways to
extend them into a joint distribution; indeed, ∆λ1,...,λn traces a polytope on the simplex
∆X×T1×···×Tn of joint distributions (see Appendix A in [40]). This feature is the formal
version of our previous statement that the IB framework does not entirely specify the
relationship between representations T1, . . . , Tn: it only constrains it through the set ∆λ1,...,λn .
Questions about possible relationships between IB representations are thus questions about
properties of the set ∆λ1,...,λn .

2. Exact Successive Refinement of the IB
2.1. Formal Framework and First Results

Here, we formally describe, within the IB framework, the rate-distortion-theoretic no-
tion of successive refinement (SR) [25–27,29]. We propose a purely single-letter definition (i.e.,
we only consider single source, relevancy, and bottleneck variables), which makes the pre-
sentation simpler but still conveys the intuition of information incorporation. After having
presented the notion of SR in the IB framework, we describe its Markov chain characterisa-
tion (see Proposition 1), which mirrors the characterisation of SR for classic rate-distortion
problems [26], and makes our formulation equivalent to previous multi-letter operational
definitions, which also formalise the intuition of information incorporation [30–32]. We
then leverage this characterisation to prove SR in the case of Gaussian vectors and deter-
ministic channel p(Y|X).

Intuitively, there is successive refinement when a finer bottleneck T2 does not discard
any of the information extracted by a coarser bottleneck T1. This can be imposed by
requiring that T2 = (T1, S2) for some variable S2, which encodes the “supplement” of
information that “refines” T1 into T2. In the general case:

Definition 5. Let 0 < λ1 < · · · < λn, and a discrete or continuous p(X, Y) be given. There is
successive refinement (SR) for parameters (λ1, . . . , λn) if there exist variables (T1, S2, S3, . . . , Sn)
such that

• T1 is a bottleneck with parameter λ1;
• For every 2 ≤ i ≤ n, the variable Ti := (Ti−1, Si) is a bottleneck with parameter λi.

Note that even though it does not appear explicitly in this definition, the relevancy
variable Y is indeed crucial to it, as it defines what a bottleneck is (see Equation (1)).
If the conditions of Definition 5 hold, we will also say that the IB problem defined by
p(X, Y) is (λ1, . . . , λn)-refinable. If bottlenecks T1, . . . , Tn satisfy the definition’s conditions,
we will say that they achieve successive refinement, or, simply, that there is successive
refinement between these bottlenecks. If there is successive refinement for all combina-

93



Entropy 2023, 25, 1355

tions 0 < λ1 < · · · < λn of trade-off parameters, we will say that the corresponding IB
problem is successively refinable. Eventually, when it will be needed in later sections
to contrast this notion with that of soft successive refinement, we will refer to it as exact
successive refinement.

For instance, let 0 < λ1 < λ2 and X = Y = {0, 1}. We consider Y := X ⊕ Z, where
⊕ denotes the modulo-2 addition, and X and Z are Bernouilli variables with parameters
1
2 and a, respectively, for an arbitrary 0 ≤ a ≤ 1

2 . In this case, it is proven in Lemma 1
of [46] that, for well-chosen binary variables S1 and S2, we have that X, S1, and S2 are
mutually independent, and the variables X⊕ S1 and X⊕ S1 ⊕ S2 are bottlenecks of resp.
parameters λ1 and λ2. Moreover, using the independence of S2 with (X, X⊕ S1) and the
assumed Markov chain Y− X− X⊕ S1 ⊕ S2, a straightforward computation shows that to
get a bottleneck of parameter λ2, the variable X⊕ S1 ⊕ S2 can be replaced by (X⊕ S1, S2).
Thus, here, the IB problem is (λ1, λ2)-refinable, where successive refinement is achieved by
T1 := X⊕ S1 and T2 = (T1, S2).

It is helpful to visualise SR on the information plane, i.e., that on which lies the
information curve. Indeed, successive refinement can be understood in terms of specific
translations on the information plane: those resulting from concatenating an already
existing variable Ti−1 with a new variable Si—let us call them “accumulative translations”
because they result from a processing that does not discard any of the information already
collected. Let us focus on the case n = 2 and first note that, whether or not (T1, S2) is a
bottleneck, we have

I(X; T1, S2) = I(X; T1) + I(X; S2|T1),

and, similarly,

I(Y; T1, S2) = I(Y; T1) + I(Y; S2|T1).

In other words, the measure of both the complexity cost and relevance for (T1, S2) can
be decomposed into the same measures first for T1 and then for the “supplement” of infor-
mation S2, conditionally on the “already collected” information T1. In Figure 2 (left and
right), we first fix a coarse bottleneck T1, understood here as a point

(
I(X; T1), I(Y; T1)

)
on

the information curve. Once T1 is known, we supplement it with a new variable S2, which
incurs both an additional complexity cost I(X; S2|T1) and an additional relevant informa-
tion gain I(Y; S2|T1). The question of successive refinement is that of whether the additional
complexity cost can be leveraged enough for the resulting relevant information gain to take
(T1, S2) “up to the information curve”, i.e., to be such that

(
I(X; T1, S2), I(Y; T1, S2)) is on

the information curve. This is the case in Figure 2, right, and not the case in Figure 2, left.
In short, there is successive refinement between two points on the information curve if and
only if there exists an “accumulative translation” from the coarser one to the finer one.

Figure 2. Successive refinement visualised on the information plane. On the left, adding the infor-
mation from the variable S2 (the supplement variable) is not efficient enough to achieve successive
refinement. On the right, it is. See main text for details (the values of I(X; S2|T1) and I(Y; S2|T1) have
been chosen arbitrarily to illustrate each case).

94



Entropy 2023, 25, 1355

Let us now describe a more formal characterisation, where point (ii) will mirror the
characterisation of SR for classic rate-distortion problems [26].

Proposition 1. Let 0 < λ1 < · · · < λn. The following are equivalent:

(i) There is successive refinement for parameters (λ1, . . . , λn);
(ii) There exist bottlenecks T1, . . . , Tn, of common source X and relevancy Y, with respective

parameters λ1, . . . , λn, and an extension q(X, T1, . . . , Tn) of the qi := qi(X, Ti), such that,
under q, we have the Markov chain

X− Tn − · · · − T1. (4)

(iii) There exist bottlenecks T1, . . . , Tn, of common source X and relevancy Y, with respective
parameters λ1, . . . , λn, and an extension q(Y, X, T1, . . . , Tn) of the qi := qi(Y, X, Ti), such
that, under q, we have the Markov chain

Y− X− Tn − · · · − T1. (5)

Proof. See Appendix B.1. It is relatively straightforward because we started directly from
a single-letter definition.

Proposition 1 was already known to be a characterisation of SR of the IB [30–32].
However, as the latter references start from an operational problem in terms of asymptotic
rates and distortions for multi-letter systems, here, Proposition 1 shows that our single-letter
Definition 5 is equivalent to the operational definitions in [30–32]. See Appendix B.2 for
more details.

Remark 1. Crucially, the order of the indexing in (4) and (5) depends only on the order of the
trade-off parameters λ1 < · · · < λn, and not on the order in which the bottlenecks Ti are produced,
which is just the interpretation we started from. In particular, Proposition 1 makes equally legitimate
the interpretation of bottlenecks produced from the finest one to the coarsest one, each new bottleneck
thus implementing a further coarsening of the source X. This alternative interpretation renders
successive refinement relevant to feed-forward processing, including in particular the Blackwell
order (see Section 4.1) and deep neural networks (see Section 4.2). For ease of presentation, though,
we will stick to the information incorporation interpretation along most of the paper.

Moreover, from Proposition 1, we can leverage existing IB literature to prove the
successive refinability of two specific settings. (For an explicit definition of what we mean,
in Proposition 2, by successive refinement in the case of the Lagrangian IB problem, see
Appendix B.3.)

Proposition 2. If X, Y are jointly Gaussian vectors, then the Lagrangian IB problem defined by
p(X, Y) is (λ1, . . . , λn)-refinable for all λ1 < · · · < λn.

This result is a direct consequence of a property named a semigroup structure, and is
proven for the Gaussian IB framework in [33], which relates the latter framework with renor-
malisation group theory. The semigroup structure denotes, in short, the situation where
iterating the operation of coarse graining a variable by computing a bottleneck—where,
at each iteration, the previous bottleneck becomes the source of the next IB problem—still
outputs a bottleneck for the original problem. This semigroup structure is a stronger prop-
erty than successive refinement and, as it is satisfied in the Gaussian case, this implies the
successive refinability of Gaussian vectors (see Appendix B.3 for more details). Beyond
Proposition 2, this relationship between successive refinement and the semigroup structure
hints at potentially interesting links between the composition of coarse-graining operators
and successive refinement. In this respect, note that our numerical results below (see
Sections 2.3 and 3.2) suggest that, for non-Gaussian vectors, successive refinement does not

95



Entropy 2023, 25, 1355

always hold and thus, a fortiori, that the semigroup structure might not always be satisfied
in the IB framework—or at least not perfectly.

Eventually, in the case of deterministic channel p(Y|X), an explicit solution to the IB
problem (1) is known [34]: T = Y with probability α, and T = e with probability 1− α, for
e a dummy symbol, and some well-chosen 0 < α < 1. This specific solution allows one to
address successive refinement for the deterministic case:

Proposition 3. Let X be a discrete or continuous variable, and Y be a deterministic function of
X. Then, the IB problem defined by p(X, Y) is successively refinable for all trade-off parameters
λ1 < · · · < λn.

Proof. See Appendix B.4. A proof was already proposed, from an asymptotic coding
perspective, for discrete X and Y = X, in [58]. We use a similar argument here.

Note, though, that the solution used here to prove successive refinement is, as noted
in [34], not very interesting: it is nothing more than an increasingly noisy version of Y.
It is not clear whether or not there exists more interesting bottleneck solutions in the
deterministic case, and if so, whether these other solutions are successively refinable.
Proposition 3 will in any case be useful for our own purposes: we will use it to set aside the
deterministic case in the proof of SR for binary X and Y (Proposition 5 below).

Until now, we used existing results from the IB literature that, even though not
originally aimed at it, happen to yield interesting consequences for the problem of the
successive refinement of the IB. However, it seems crucial, for further progress on the latter
topic, to design specifically tailored mathematical and numerical tools. This is the purpose
of the following sections of this paper; in particular, in the next section, we present a simple
geometric characterisation of the IB’s successive refinability.

2.2. The Convex Hull Characterisation and the Case |X | = |Y| = 2

In this section, we present our convex hull characterisation of successive refinement.
We then show its relevance both to numerical computations—thanks to a linear program
for checking the condition—and to proving new mathematical results—which we exem-
plify by proving, thanks to this new characterisation, the successive refinability of binary
variables. Here, as in our subsequent numerical experiments in Section 2.3, we will focus
on discrete variables and n = 2 processing stages, even though our results are thought of
as a first step towards a generalisation to continuous variables and an arbitrary number of
processing stages.

The convexity approach that we propose hinges upon changing the perspective on the
IB problem (1) from an optimisation over the encoder channels q(T|X) to an optimisation
over the decoder channels q(X|T); indeed, (1) can be equivalently presented as the “reversed”
optimisation problem

arg max
(q(T),q(X|T)) :

∑t q(t)q(X|t)=p(X)
T−X−Y, I(X;T)≤λ

I(Y; T). (6)

Formulations (1) and (6) yield the same solutions because, through the Markov chain
T− X−Y, the joint distribution q(X, Y, T) is equivalently determined by specifying some
q(T|X) or specifying some pair

(
q(T), q(X|T)

)
that satisfies the consistency condition

∑t q(t)q(X|t) = p(X). This condition says that the source distribution p(X) must be
retrievable as a convex combination of the q(X|t), where the weights are given by the q(t).

Moreover, this formulation leads to a crucial intuition concerning the relationship
between successive refinement and the set HT := Hull{q(X|t), t ∈ T }, where, for a set
E ⊆ Rn, we denote by Hull(E) the convex hull of E, i.e., the set of points obtained as convex
combinations of points in E. First, note that, for a bottleneck T, the setHT is reduced to a
single point if and only if T is independent from the source X. Conversely,HT coincides

96



Entropy 2023, 25, 1355

with the whole source simplex ∆X if and only if T captures all the information from the
source, i.e., if I(X; T) = H(X). Generalising these extreme cases suggests the intuition that
HT describes the information content held by the bottleneck T about the source X. Now,
let us recall that successive refinement from a coarse bottleneck T1 to a finer bottleneck
T2 means intuitively that T2 can be obtained without discarding any of the information
extracted by T1 about the source X; in other words, that the information content of T1 about
the source X is included in that of T2. Combining this latter intuition with the one aboutHT
being the information content of a bottleneck T suggests the following characterisation of
successive refinement:

Hull{q(X|t1), t1 ∈ T1} ⊆ Hull{q(X|t2), t2 ∈ T2}, (7)

where T1 and T2 are bottlenecks of parameters λ1 < λ2, respectively. This condition is
visualised in Figure 3. The characterisation indeed holds, at least for the discrete case and
under a mild assumption of injectivity of the finer bottleneck’s decoder:

Proposition 4. Let 0 < λ1 < λ2, and assume that p(X, Y) is discrete.
If there is successive refinement for parameters (λ1, λ2), then there exist bottlenecks T1, T2 of

parameters λ1, λ2, respectively, such that the convex hull condition (7) is satisfied.
Conversely, if there exist bottlenecks T1, T2 of parameters λ1, λ2, respectively, such that the

convex hull condition (7) holds and such that the decoder q(X|T2), seen as a probability transition
matrix, is injective, then there is successive refinement for parameters (λ1, λ2). Moreover in this
latter case, if T1, T2 are bottlenecks that achieve successive refinement, the extension q̃(X, T1, T2) of
q(X, T1) and q(X, T2) such that X− T2 − T1 holds is uniquely defined.

Proof. See Appendix B.5. The idea consists in translating the Markov chain characterisation
X− T2 − T1 into the convex hull condition (7). The direct sense is straightforward. For the
converse direction, observe that, even though as soon as (7) is satisfied it provides a joint
distribution q̃(X, T1, T2) that satisfies the Markov chain X− T2 − T1, it is not clear whether
this distribution is consistent with q(X, T1). The potential problem stems from the fact that
q̃ must be such that the channel q̃(T2|T1) maps the marginal q(T1) to the marginal q(T2).
The injectivity assumption, however, provides a sufficient condition for it to be the case.
This assumption happens to also imply the uniqueness of the extension, among all those
that satisfy the Markov chain X− T2 − T1.

Figure 3. Illustration of the convex hull condition. The black triangle represents the source simplex
∆X with, here, |X | = 3, and the pointwise bottleneck decoder probabilities {q(X|t), t ∈ T } are
represented on it (in cyan for the coarser bottleneck T1 and in red for the finer one T2). The convex
hull of the respective families of points are shaded with the corresponding color. On the left, the
condition is not satisfied; on the right, it is.

Even though the injectivity assumption might seem restrictive, in practice, in our
numerical experiments below (see Sections 2.3 and 3.2), we always found that the decoder
channel q(X|T2) could be chosen as injective by reducing it to its effective cardinality (see
Section 1.3)—a process that leaves the convex hull condition (7) unchanged because it leaves

97



Entropy 2023, 25, 1355

the points q(X|t2) unchanged. See also Appendix D for a conjecture that, if true, would
simplify our convex hull characterisation in the case of a strictly concave information curve.

Remark 2. The convex hull condition happens to be equivalent to the input-degradedness pre-
order on channels (see Proposition 1 in [59]). Even though we will not develop this point further
when considering alternative interpretations of SR (Section 4), it is worth noting that, through
input-degradedness, SR can be given additional operational interpretations, particularly in terms of
randomised games (see Section IV-C in [59]).

Our new characterisation provides a simple way of checking whether or not two bot-
tlenecks T1 and T2 achieve SR. Recall that the Markov chain characterisation (Proposition 1,
point (ii)) shows that SR is a feature of the space ∆q1,q2 of all extensions q(X, T1, T2) of
individual bottleneck distributions q1(X, T1) and q2(X, T2). While this set might, a priori, be
difficult to study directly, our characterisation (7) reduces the problem to a simple geometric
property relating only two explicitly given conditional distributions: q(X|T1) and q(X|T2).
Moreover, note that (7) is equivalent to

∀t1 ∈ T1, q(X|t1) ∈ Hull{q(X|t2), t2 ∈ T2},

and that checking whether a point is in the convex hull of a finite set of other points can
be cast as a linear programming problem [68]. As a consequence, one can bound the time
complexity of checking condition (7) as O(|X |K), where K is the time complexity bound
of a linear program with 2|X |+ 2 variables and 3|X |+ 2 constraints. As a consequence,
using the bound on K proved in [69], the time complexity of checking (7) is no worse that
Õ(|X |ω+1 log( |X |δ )), where ω ≈ 2.38 corresponds to the complexity of matrix multiplica-
tion, δ is the relative accuracy, and the Õ(·) notation hides polylogarithmic factors (see
Appendix B.6 for details).

We deem this convex hull characterisation to be important for theory as well. Indeed,
it reduces the question of successive refinement to a question about the structure of the
trajectories, on the source probability simplex ∆X , of the points qλ(X|t) for varying λ. Thus,
any theoretical progress on the description of these bottleneck trajectories might lead to
theoretical progress on the side of successive refinement. As a first step in this direction,
we show that this geometric point of view helps to solve the question of SR in the case of a
binary source and relevancy (This result generalises the already known fact that there is
always successive refinement when X is a Bernoulli variable of parameter 1

2 and p(Y|X) is
a binary symmetric channel (see Lemma 1 in [46] and see Section 4.2 for explanations on
why the latter work’s framework encompasses ours). Moreover, a potential generalisation
of our result to an arbitrary number of processing stages is left to future work).

Proposition 5. If |X | = |Y| = 2, then, for any discrete distribution p(X, Y) and any trade-off
parameters λ1 < λ2, the IB problem defined by p(X, Y) is (λ1, λ2)-successively refinable.

Proof. Let us here outline the proof presented in Appendix B.7. The case of deterministic
p(Y|X) was already dealt with in Proposition 3, so we can assume that p(Y|X) is not
deterministic. In this case, the IB problem with |X | = |Y| = 2 and n = 2 has been
extensively studied in [35]. In short, the latter approach leverages the fact that a pair
(q(T), q(X|T)) is a solution to the IB problem (6) if the convex combination of the points
Fβ(q(X|t)), with weights given by q(T), achieves the lower convex envelope of the function
Fβ, where Fβ is a well-chosen function on the source simplex ∆X and β is the information
curve’s inverse slope. This work, along with considerations from [37], which uses the same
convexity approach, yields in particular that (i) the points qβ(X|t) are the extreme points
of a non-empty open segment uniquely defined by β, and (ii) this latter segments grows as
a function of the inverse slope β and thus, by concavity, as a function of λ. This implies
that the convex hull condition is always satisfied for λ1 < λ2. As point (i) also implies

98



Entropy 2023, 25, 1355

that, here, qλ2(X|T2) must be injective, Theorem 4 allows us to conclude the successive
refinability for n = 2 processing stages.

The proof of Proposition 5 exemplifies how our convex hull characterisation interlocks
well with the convexity approach to the IB [35–39]. In this sense, our characterisation brings
a new theoretical tool to the study of the successive refinement of the IB.

2.3. Numerical Results on Minimal Examples

In this section, we leverage our new convex hull characterisation to investigate suc-
cessive refinement on minimal numerical examples, i.e., with discrete and low-cardinality
distributions p(X, Y). Our experiments suggest that, in general, successive refinement does
not always hold exactly. However, they also highlight two other features: first, it seems
that successive refinement is often shaped by IB bifurcations [41–44]. Second, even though
successive refinement is often not satisfied exactly, visualisations suggest that it is often
“close” to being satisfied. The formalisation of this latter intuition will be the topic of the
next section.

We consider the Lagrangian form (3) of the IB problem (see Section 1.3). We compute
solutions to it with the Blahut–Arimoto (BA) algorithm [1], combined with reverse deter-
ministic annealing [19,70], starting from β ≈ ∞ (i.e., in practice, β� 1) at the IB solution
T = X (we noticed that regular deterministic annealing sometimes yielded sub-optimal
solutions because they followed sub-optimal branches at IB bifurcations [1,71], which
was not the case for reverse annealing). We always obtained that I(X; T) was a strictly
increasing function of the Lagrangian parameter β, so it makes sense to index the solutions
by λ = I(X; T) rather than β; for instance, in this section and Section 3.2, we will write
qλ(T|X) for our algorithm’s output for a β such that I(X; T) = λ.

In all our numerical experiments, after reducing a bottleneck T to its canonical form
(see Section 1.3), the decoder channel qλ(X|T) was injective. Therefore, thanks to Theorem 4,
the convex hull condition (7) being satisfied here does imply successive refinement. In
the remainder of the paper, we will thus use the convex hull condition as a proxy for
numerically assessing successive refinement (see Appendix D for more details on what we
mean by “proxy”). This condition can be investigated in two ways. First, for two distinct
trade-off parameters λ1 < λ2, we can compute whether the convex hull condition (7) holds
or not with the linear program described in Appendix B.6. Second, for |X | ≤ 3, we can
visualise the whole trajectories, for varying λ, of the points qλ(X|t) on the source simplex
∆X . As we will see, this yields interesting qualitative insights.

As a sanity check for our algorithm, we compute bottleneck solutions for binary X and
Y, which we proved in Proposition 5 to be successively refinable for all trade-off parameters.
We used the linear program to check the convex hull condition numerically for all pairs
λ1 < λ2 and for distributions p(X, Y) uniformly sampled on the joint probability simplex
∆X×Y . We find that the convex hull condition is indeed always numerically satisfied.

Then, we study the case |X | = |Y| = 3, once again uniformly sampling example
distributions p(X, Y) on ∆X×Y . Figures 4–6 show, for representative examples, visu-
alisations of the trajectories over λ of the qλ(X|t) (left)—which we will refer to as the
bottleneck trajectories—along with the corresponding computations of the convex hull
condition as a function of λ1 and λ2 ≥ λ1 (right)—which we will refer to as the SR
patterns (The correspodning p(Y|X) are plotted in Appendix E, and p(X) is shown in
Figures 4–6 (left). The explicit p(X, Y) corresponding to each of these paper’s figures
can be found at: https://gitlab.com/uh-adapsys/successive-refinement-ib/(accessed on
12 September 2023).

99



Entropy 2023, 25, 1355

Figure 4. Left: bottleneck trajectories for an example distribution p(X, Y) such that |X | = |Y| = 3,
i.e., trajectory of qλ(X|T), represented as the family of points {qλ(X|t), t ∈ T } on the source simplex
∆X , as a function of λ = I(X; T) (crosses: value of qλc (X|T) just before a symbol split at a critical
parameter λc, where the crosses’ color corresponds to the value of λc). The conditional distribution
qλ(X|T) is defined by the single point p(X) when λ = 0 (dark blue cross on the black square), or by
two distinct points between the first and second symbol splits (dark blue to cyan), or by three distinct
points after the second symbol split (cyan to red). Note the discontinuity of qλ(X|T) at each symbol
split (without the discontinuity, the trajectory around a symbol split would look like a branching).
Right: corresponding SR pattern, i.e., corresponding output for the convex hull condition (blue:
satisfied; red: not satisfied; dashed white lines: critical values λc(i) of either λ1 or λ2). For instance,
the critical value λc(2) ≈ 0.33 corresponds, on the bottleneck trajectories (left), to the symbol split
from two to three symbols (cyan crosses). Note that λc(1) ≈ 0. The respective p(Y|X) corresponding
to this figure and to Figures 5 and 6 are plotted in Appendix E.

Figure 5. Same as Figure 4, with a different example distribution p(X, Y) such that |X | = |Y| = 3.

Figure 6. Same as Figure 4, with a different example distribution p(X, Y) such that |X | = |Y| = 3.

100



Entropy 2023, 25, 1355

Let us first give a general description of the bottleneck trajectories. For λ ≈ 0, the
qλ(X|t) all coincide with the source distribution p(X). This should be the case, as, for
0 = λ = I(X; T), the bottleneck T is independent of X. Then, when λ increases, the
trajectories seem piecewise continuous, where each discontinuity corresponds to a symbol
split, i.e., a change in effective cardinality (see Section 1.3). We mark with a cross, for each
t ∈ T , the qλ(X|t) = qλc(X|t) located just before such a change in effective cardinality.

In the examples of Figures 4–6, as |X | = 3, there are two symbol splits, corresponding
to that from one to two and two to three symbols, respectively. Eventually, for large λ,
the last continuous segment of bottleneck trajectories corresponds to effective cardinality
k(Tλ) = |X |, and, for the maximal λ, each corner of the source simplex ∆X is reached by
q(X|t) for some t ∈ T . This means that for maximum λ, there is a deterministic bijective
relationship between T and X. The latter is expected: for maximum λ, bottlenecks are
minimal sufficient statistics of X for Y [72]; where for p(X, Y) sampled uniformly on the
simplex, these minimal sufficient statistics are, with probability 1, just permutations of X.

Definition 6. In the following, we refer to the piece of trajectory where the bottleneck’s effective
cardinality k = k(Tλ) is equal to the integer i as the “segment k = i”, i.e., it is the segment where
qλ(X|T) corresponds to exactly i distinct points on the source simplex ∆X ; for instance, in Figure 4,
the segment k = 2 corresponds to the first piece of trajectory spanning colors from dark blue to cyan.

Notation 2. We denote by λc(i) the trade-off parameter’s critical value corresponding to the i-th
change in effective cardinality, i.e., the symbol split from i to i + 1 symbols. Here, we will only need
to consider the critical values λc(1) = 0 and λc(2), corresponding to the splits from one to two and
two to three symbols, respectively.

Let us now come back to the question of successive refinement: for which parameters
λ1 < λ2 is the convex hull condition satisfied? The right-hand sides of Figures 4–6 provide
the answers corresponding to trajectories on the respective left-hand sides—where blue
and red mean that the condition is and is not satisfied, respectively. Moreover, we highlight
with dashed white vertical and horizontal lines the critical parameter values λ1 = λc(i)
and λ2 = λc(i), respectively, at which the symbol split occurs (see Appendix B.8 for details
on the computation of these symbols splits). Note that we always have λc(1) ≈ 0, which is
expected, as a bottleneck T corresponding to some λ = I(X; T) > 0 must necessarily define
at least two distinct qλ(X|t).

First, in these examples as in most non-reported examples, the convex hull condition
(right) breaks as long as λ2 < λc(2), i.e., as long as the finer bottleneck’s effective cardinality
is at most k = 2. This can also be read from the bottleneck trajectories (left): if the condition
was satisfied for all λ1 < λ2 < λc(2), for instance, then the segment k = 2 would be a line
segment. This is clearly not the case in Figures 4 and 6, and even though visually it virtually
seems to be the case in Figure 5, the segment k = 2 happens to be very slightly curved,
which is enough to break the convex hull condition. In other words, for λ1 < λ2 < λc(i),
several-stage processing seems to induce, in these examples, a nonzero loss of information
optimality.

Then, for λ2 > λc(2), even though there is no single general pattern, the trajectory’s
structure at the bifurcation seems to impact successive refinement. Indeed, at the bifurcation
at λc(2), the set Hull{qλ2(X|t), t ∈ T } opens up along a new, third dimension, and keeps
widening when λ2 increases. This allows it to (gradually in Figures 4 and 6, or virtually
straight away in Figure 5) encompass the segment k = 2 because it “overcomes” the
curvature of this piece of trajectory. For instance, in Figure 4, because the segment k = 2
is strongly curved, the convex hull condition gets satisfied for all λ1 < λc(2) only if λ2 is
significantly larger than λc(2). On the contrary, because in Figure 5, the segment k = 2 is
virtually not curved, it is almost as soon as λ2 > λc(2) that the convex hull condition is
satisfied for all λ1 < λc(2).

101



Entropy 2023, 25, 1355

In Figure 6, the lack of successive refinement for λ2 > λc(2) does not seem to be due to
the same phenomenon as the one just described. Generally speaking, we observed a whole
variety of SR patterns (see Appendix F for more examples), and our aim here is not to try
to interpret all of them. However, despite this diversity, the SR patterns that we studied
typically shared a common qualitative feature: the bifurcation structure of the bottleneck
trajectories seemingly participates in shaping these SR patterns. Mostly, it seems typically
necessary, for SR to hold, that the larger parameter λ2 has crossed the bifurcation value
λc(2), because the non-zero curvature of the segment k = 2 can only be “overcome” by
opening the set Hull{qλ2(X|t), t ∈ T } along a new dimension, through the symbol split at
λ2 = λc(2). This phenomenon will be explored in more details in Section 3.2.

Besides this relationship between SR and the structure of bottleneck bifurcations, this
numerical study suggests a generalisation of the notion of successive refinement. Indeed,
in Figure 5 for instance, even though the right-hand side asserts that successive refinement
does not hold for λ1 < λ2 < λc(2), the virtually linear piece of trajectory on the left-hand
side suggests that this is “almost” the case. In the next section, we formalise this intuition.

3. Soft Successive Refinement of the IB

The minimal experiments from Section 2.3 suggest the intuition that even though
successive refinement might not always hold exactly, when broken, it might still be “close”
to being satisfied. More generally speaking, let us recall that we are trying here to under-
stand the informationally optimal limits of several-stage information processing. As our
numerical experiments suggest that the IB problem is not always successively refinable,
it is desirable to quantify the lack of successive refinement—i.e., the lack of informational
optimality induced by several-stage processing. These considerations lead to the notion of
soft successive refinement [18], which we define and motivate in this section. As we will see,
this generalisation of exact SR does not depend on the specific structure of the IB setting;
rather, it can also be used as a generalisation of exact SR for any rate-distortion scenario.

3.1. Formalism

Let us first focus on the case n = 2: we thus want to quantify the amount of information
captured by a coarse bottleneck T1 and then discarded by a finer bottleneck T2. Let us
recall that, from Proposition 1, bottlenecks T1 and T2 achieve successive refinement if
there exists an extension q(X, T1, T2) of q1(X, T1) and q2(X, T2) such that, under q, we have
the Markov chain X − T2 − T1, which is equivalent to Iq(X; T1|T2) = 0. It thus seems
natural to quantify soft successive refinement with the conditional mutual information
Iq(X; T1|T2). However, the IB method does not entirely define the relationship between
distinct bottlenecks; formally, there is a whole polytope ∆q1,q2 ⊆ ∆X×T1×T2 of possible
extensions q(X, T1, T2) of q1(X, T1) and q2(X, T2) (see Section 1.3). Among these possible
extensions, it seems natural to search for those that minimise the violation of the SR
condition Iq(X; T1|T2) = 0. This leads us to use the unique information [40]

UI(X : T1 \ T2) := min
q∈∆q1,q2

Iq(X; T1|T2). (8)

This quantity was already defined in [40] in the context of partial information decom-
position [61–64], and it happens to be relevant to us for several reasons.

First of all, it depends only on the distributions q1(X, T1) and q2(X, T2), which are
indeed the only distributions provided by the IB framework. Second, from Proposition 1,
there is successive refinement if and only if there are two bottlenecks T1 and T2 such that
UIq1,q2(X : T1 \ T2) = 0. Third, it is thoroughly argued in [40] that (8) is a good measure of
the information that only T1, and not T2, has about X, which is an interpretation that coin-
cides neatly with the intuition that we want to operationalise here. Eventually, Proposition 6
below, which first requires some definitions, provides an information-geometric justification.

102



Entropy 2023, 25, 1355

Definition 7. For ∆ a probability simplex and E1, E2 ⊆ ∆, we define

DKL(E1||E2) := inf
r1∈E1, r2∈E2

DKL(r1||r2),

where DKL is the Kullback–Leibler divergence: DKL(r1||r2) := ∑a∈A r1(a) log
(

r1(a)
r2(a)

)
, if the

probability distributions r1 and r2 are defined on the discrete alphabet A.

Definition 8. The successive refinement set ∆SR,n ⊆ ∆X×T1×···×Tn is the set of distributions r
on X × T1 × · · · × Tn such that, under r, the Markov chain X− Tn − · · · − T1 holds.

Note that ∆SR,n does not require its elements to be extensions of any fixed bottle-
neck distributions qi(X, Ti) but imposes the Markov chain that characterises SR (see
Proposition 1). SR is achieved for bottlenecks q1(X, T1), . . . , qn(X, Tn) if and only if the
successive refinement set ∆SR,n and the extension set ∆q1,...,qn share a common distribution
q ∈ ∆SR,n ∩ ∆q1,...,qn . In general (for n = 2), the following proposition can easily be derived:

Proposition 6. For fixed distributions q1 = q1(X, T1), q2 = q2(X, T2), we have

UI(X : T1 \ T2) = DKL(∆q1,q2 ||∆SR,2). (9)

Proof. See Appendix C.1.

In this sense, UI(X : T1 \ T2) quantifies “how far” the joint distributions extending
the bottlenecks T1 and T2 are from making the successive refinement condition X− T2 − T1
hold true, where the “distance” is understood as a minimised Kullback–Leibler divergence.

Our new measure of soft SR is continuous:

Proposition 7 ([73], Property P.7). The unique information UI(X : T1 \ T2) is a continuous
function of the probabilities q1(X, T1) and q2(X, T2).

Remark 3. In particular, if UI(X : T1 \ T2) has a discontinuity as a function of the parameter
λ1 or λ2, which define the bottleneck distribution qλ1(X, T1) or qλ2(X, T2), respectively, then this
can only be a consequence of a discontinuity of the probability qλ1(X, T1) as a function of λ1 or
qλ2(X, T2) as a function of λ2, itself, respectively. This consideration will be useful for analysing
our numerical experiments in Section 3.2.

Moreover, the formulation (9) of unique information suggests a natural generalisation
to an arbitrary number of processing stages:

Definition 9. Let T1, . . . , Tn be bottlenecks with respective parameters λ1 < · · · < λn, and
qi(X, Ti) their respective individual distributions. One can quantify soft successive refinement,
or, equivalently, the lack of successive refinement, through the divergence DKL(∆q1,...,qn ||∆SR,n).

While [74] proposes a provably convergent algorithm to compute UI(X : T1 \ T2),
to the best of our knowledge, there currently exists no provably convergent algorithm to
compute DKL(∆q1,...,qn ||∆SR,n) for n > 2. Our numerical investigations (see Section 3.2)
will stick to the case n = 2, but this generalisation makes soft SR in particular, at least
conceptually for now, more relevant to deep learning (see Section 4.2).

For the sake of completeness, let us point out that for each λ, there is a whole set of
solutions qλ(T|X)—or, equivalently, qλ(X, T)—to the IB problem (1). Thus, the unique
information, which is defined as a function of specific bottleneck distributions q1(X, T1) and
q2(X, T2), could a priori not be uniquely defined by the corresponding trade-off parameters
λ1 and λ2. This subtlety is further explained in Appendix D, where we also formulate a
conjecture that would prove that, at least in the case of a strictly concave information curve,
the trade-off parameters do uniquely define the unique information.

103



Entropy 2023, 25, 1355

3.2. Numerical Results on Minimal Examples

A provably convergent algorithm that computes, in the discrete case, the unique
information (8), was provided in [74]. In this section, we use the authors’ implementation of
this algorithm (https://github.com/infodeco/computeUI, accessed on 12 September 2023)
to qualitatively investigate, on minimal examples, the landscapes of unique information
(UI) and their relationship to the bottleneck trajectories on the simplex.

In Figures 7–9 (left), we plot again the same bottlenecks trajectories as in
Figures 4–6 (left), but compare them this time with the unique information UI(X : T1 \ T2),
plotted as a function of λ1 and λ2 (right). We also plot, in Figures 10–12, some repre-
sentative examples of the exact SR patterns (left) and UI landscapes (right) for slightly
larger source and relevancy cardinalities, where p(X, Y) is, as above, uniformly sam-
pled — the explicit distributions p(X, Y) corresponding to Figures 10–12 can be found
at https://gitlab.com/uh-adapsys/successive-refinement-ib/. (see Appendix F for addi-
tional examples of comparison of the UI landscapes with bottleneck trajectories, and with
the exact SR patterns.) Once again, we highlight with dashed white vertical and horizontal
lines the critical parameter values λ1 = λc(i) and λ2 = λc(i), respectively, where, as
expected, λc(1) ≈ 0. We will first describe, for a fixed p(X, Y), the relative variations in
unique information as a function of λ1 and λ2. Then, we will compare the absolute values
of unique information to the information globally processed by the system.

For all Figures from Figures 7–9, the UI landscape partly mirrors the respective exact
SR pattern of Figures 4–6 (right). However, within the region where these latter figures
answered a binary “no” to the question of exact SR, Figures 7–9 reveal a sharply uneven
variation in the violation of SR, where, for important ranges of trade-off parameters, the
unique information is negligible comparative to others. For instance, even though Figure 5
(right) seems to indicate that SR does not hold for λ1 < λ2 < λc(2), the corresponding
UI in Figure 8 (right) is virtually zero on a large part of this set of parameters, while still
peaking for λ2 close to λc(2). This richer structure of the unique information landscape is
further evidenced by Figures 10–12.

Moreover, the unique information landscapes seem shaped by the bottleneck trajec-
tories. Most importantly, the influence of IB bifurcations on SR can be seen even more
clearly with soft than with exact SR. In particular, in Figures 10–12, it seems that along
the lines where one of the trade-off parameters crosses a critical value, the UI often goes
through discontinuities, or at least sharp variations in either λ1, λ2, or both directions.
In particular, even though patterns widely vary across different example distributions
p(X, Y), unique information can significantly drop when λ2 crosses a critical value from
below—a feature observed in both shown and non-shown examples. As we know that
the unique information is continuous, the apparent discontinuity should be one of the
bottleneck probability qλ2(X, T2) itself (see Proposition 7 and Remark 3). This is consistent
with the observation from Section 2.3 that, at symbol splits, the trajectory of qλ(X|T) often
seems to go through a discontinuity. Further, the fact that the sharp variation in UI is a
decrease in this quantity (in increasing order of λ2) is intuitively consistent with the fact that
the bottleneck trajectory’s discontinuity often induces a sudden “widening” (in increasing
order of λ) of

HT := Hull{q(X|t), t ∈ T }.

Indeed, for fixed λ1, when λ2 crosses a critical value from below, the corresponding
symbol split means thatHT2 “widens” by opening up a new dimension, so it “more easily”
encompassesHT1 , yielding as a consequence a drop in unique information. Recalling our
intuition (see Section 2.2) that HT describes the information content that a bottleneck T
contains about the source X, the feature just described can be interpreted in the following
way: the IB bifurcations seem to induce a sudden “expansion” (in increasing order of λ)
of the information content carried by the bottleneck about the source, which makes the
latter’s content more easily contain the information content of coarser bottlenecks.

104



Entropy 2023, 25, 1355

Figure 7. Left: example trajectory of qλ(X|T) as a function of λ = I(X; T) (crosses: value of qλc (X|T)
just before a symbol split at a critical parameter λc). Right: corresponding unique information, in bits
(color), expressed as a function of the pair of trade-off parameters (white dashed lines indicate critical
values λc(i) of either λ1 or λ2.). For instance, the critical value λc(2) ≈ 0.33 (right) corresponds, on
the bottleneck trajectories (left), to the symbol split from two to three symbols (cyan crosses). The
respective p(Y|X) corresponding to this figure and to Figures 8 and 9 are plotted in Appendix E.

Figure 8. Same as Figure 7, where the example distribution p(X, Y) is that of Figure 5.

Figure 9. Same as Figure 7, where the example distribution p(X, Y) is that of Figure 6.

105



Entropy 2023, 25, 1355

Figure 10. New example of an exact SR pattern and the corresponding UI landscape over trade-off
parameters λ1 < λ2, where, here, |X | = 5 and |Y| = 3. Left: exact SR pattern, i.e., output for the
convex hull condition (blue: satisfied, red: not satisfied). Right: corresponding UI landscape, in bits
(color). White dashed lines indicate critical values λc(i) of either λ1 or λ2. Note that (i) the binary
notion of exact SR (left) filters out most of the structure unveiled by UI (right), (ii) the UI landscape
seems highly impacted by IB bifurcations, and (iii) the UI is in any case always small, even though
not entirely negligible. See main text for more details.

Figure 11. Same as Figure 10, with a new example distribution p(X, Y), where, here, |X | = 5 and
|Y| = 3. Besides the white orthogonal dashed lines, other white dots correspond to values of (λ1, λ2)

for which the algorithm did not converge (see main text for a comment on this lack of convergence).

Figure 12. Same as Figure 10, with a new example distribution p(X, Y), where, here, |X | = 7 and
|Y| = 5.

106



Entropy 2023, 25, 1355

Note, however, that these simple numerical results do not allow one to discriminate
between the interpretation of the UI’s sharp variations at bifurcations as a discontinuity with
regard to trade-off parameters, or a discontinuity of the UI’s differential. For instance, if the
derivative with regard to λ2 discontinuously takes a value close to−∞ for λ2 slightly larger
than some λc, then the UI graph can seem discontinuous at finite numerical resolution, even
if, formally, only the UI’s differential is so. On the other hand, as an example, bifurcations
can be characterised precisely as points of discontinuities of the derivatives, with regard to
the trade-off parameter, of I(T; X) and I(T; Y) [43,75], even though the functions themselves
are continuous [2,75]. A more involved analysis distinguishing discontinuities of UI from
those of its differential is left to future work. In any case, the interpretation as a discontinuity
of the differential rests on a weaker assumption, which is still sufficient for explaining the
numerical results.

More generally, these results suggest that for a several-stage processing that is IB-
optimal at each stage, to minimise the information discarded along stages, the trade-off
parameters should rather lie close to well-chosen IB bifurcations. If this happens to be a
general feature of the IB framework, it would have implications for incremental learning.
Indeed, coming back to the modelling of embodied agents (see Section 1), for instance, it
would mean that organisms that are poised close to information optimality by evolution
should have a very specific structure of developmental learning, where the stages of
learning should be discrete and determined by the right trade-off parameters.

Eventually, a last crucial feature was also satisfied on these minimal examples: what-
ever the structure of bottleneck trajectories, the maximal UI was significantly lower than the
mutual information I(X; T1, T2) between the external source X and the system’s internal
representations (T1, T2). More precisely, for an extension q(X, T1, T2) of qλ1 := qλ1(X, T1)
and qλ2 := qλ2(X, T2) that achieves the minimum in (8), let us define

σ(qλ1 , qλ2) :=
UIqλ1

,qλ2
(X : T1 \ T2)

Iq(X; T1, T2)
.

Note that decomposing Iq(X; T1, T2), where q ∈ ∆q1,q2 , with the chain rule for mutual
information shows that this quantity only depends on qλ1 and qλ2 : thus here, σ(qλ1 , qλ2) is
indeed well-defined by qλ1 and qλ2 . The maximum ratio over all trade-off parameters λ1 <
λ2 was typically of the order of 1% in our minimal experiments; for instance, it was 1.89%,
0.39%, 1.82%, 2.03%, 1.34%, and 0.31% for the IB problems corresponding to Figures 7–12,
respectively. Among all the (shown and non-shown) studied examples, it never exceeded
5.4%, and we did not notice an increase in this maximum ratio when the source or relevancy
cardinalities were increased (the largest cardinalities that we experimented with were
|X | = 20, |Y| = 10). In short, even though several-stage processing might incur a non-
negligible loss of information optimality in the IB sense, these results suggest that this loss
could often be significantly limited. Of course, here as in Section 2.3, on the one hand, the
numerical results are purely phenomenological, and, on the other, it is at this stage far from
being clear that the qualitative insights brought by these minimal experiments generalise
well to more complex situations. However, they exhibit the potentially crucial qualitative
features of exact and soft successive refinement in the IB framework, which can be targeted
by further theoretical research.

4. Alternative Interpretations: Decision Problems and Deep Learning

The notion of successive refinement presented in this work builds on the intuition
of the optimal incorporation of information. However, alternative interpretations can be
given to the very same mathematical notion. First, thanks to the Sherman–Stein–Blackwell
theorem [45,65], the rate-distortion-theoretic notion of SR can be shown to be equivalent
to a specific order relation between the encoder of the finer bottleneck q(T2|X) and that of
the coarser one q(T1|X), namely the Blackwell order. This point of view turns SR into an
operational decision-theoretic statement; in short, there is SR when, for any task and any source

107



Entropy 2023, 25, 1355

distribution p(X), the optimal performance is better (or at least as good) when decisions are
based on the output of q(T2|X) than when they are based on the output of q(T1|X). Second,
the Markov chain (4) characterising successive refinement makes it directly relevant [46] to
the IB analysis of deep neural networks [49–56]. In the next two sections, we make these
connections explicit and relate them to this paper’s investigations.

4.1. Successive Refinement, Decision Problems, and Orders on Encoder Channels

Here, we show that exact and soft successive refinement can be, in the discrete case
at least, understood in terms of optimally solving decision problems on arbitrary tasks,
through orders on the encoder channels q(T|X) (or more precisely, pre-orders: i.e., we will
consider binary relations that are reflexive and transitive). We will rely on [45], where these
orders were considered.

Let us first make clear what we mean here by a decision problem. Consider a state
variable X over a finite set X , another finite setA of possible actions, and a reward function
u = u(x, a) that depends on both the value x of the state X, and the chosen action a ∈ A.
The agent’s observation is not the state X itself, but only the output T of X through some
stochastic channel κ := p(T|X) (where we assume here that the observation space T is
finite). To each observation-dependent policy π = π(A|T) corresponds an expected reward

Eπ(u(X, A)) := ∑
t

p(t)E(X,A)∼p(X|t)π(A|t)(u(X, A)),

where p(X|t) is determined from κ := p(T|X), p(X) through the Bayes rule, and p(X|t)
π(A|t) denotes the product measure of p(X|t) and π(A|t). Solving the decision problem
(p(X),A, u) for the observation channel κ means choosing a policy that yields an optimal
expected reward

R(p(X), κ, u) := max
π

Eπ(u(X, A)).

For instance, any Markov decision process can be seen as a decision problem as defined
above (for discrete time and finite state-space, number of possible actions at each state,
and horizon). In this case, X and T are the spaces of state trajectories and observation
trajectories, respectively, that an agent can go through along one episode; A is the space
of action sequences that can be chosen along the episode; and u is the cumulative reward,
i.e., the (potentially discounted) sum of rewards obtained at each time-step in the episode.
(See, e.g., [76] for more details on the terminology used in this example.)

We can now define the following order [45]:

Definition 10. For two channels κ and µ, we write κ wX µ, if, for any decision problem
(p(X),A, u), we have

R(p(X), κ, u) ≥ R(p(X), µ, u).

In short, κ wX µ means that, for any conceivable task based on any data distribution
p(X) over the fixed data space X , the observation channel κ can yield a performance at
least as good as that of the observation channel µ—if combined with a well-chosen policy.
The second order is the Blackwell order [65]:

Definition 11. For two channels κ and µ, we write κ w′X µ if there exists a channel η such that
µ = η ◦ κ, where “◦” denotes the composition of channels, i.e., such that Mµ = Mη Mκ , where Mµ,
Mη , and Mκ are the column transition matrices corresponding to µ, η, and κ.

It turns out that successive refinement can be characterised by either of these two
orders, thanks to the Sherman–Stein–Blackwell theorem [45,65]. In other words, SR, which
is a priori not a decision-theoretic statement, turns into one through its equivalence with the
Blackwell order:

108



Entropy 2023, 25, 1355

Proposition 8. Let 0 < λ1 < λ2. The following are equivalent:

(i) There is successive refinement for parameters (λ1, λ2).
(ii) There are bottlenecks T1, T2 of respective parameters λ1, λ2 such that

q(T2|X) wX q(T1|X).

(iii) There are bottlenecks T1, T2 of respective parameters λ1, λ2 such that

q(T2|X) w′X q(T1|X).

Proof. Using the Markov chain characterisation (point (ii) in Proposition 1), the result is
nothing more than a reformulation of Theorem 4 in [45] in the language of the present paper.
Note that, to use this theorem, we need to assume that the source X is fully supported, but
this is indeed an assumption that we are using along the whole paper because it does not
incur any loss of generality (see Section 1.3).

Let us highlight the intuitive meaning of Proposition 8. Point (ii) means that there is
SR when the coarse representation T1 can be retrieved by post-processing the finer repre-
sentation T2—which has implications in terms of feed-forward processing (see Section 4.2).

Now, the equivalence of SR with point (iii) relies on the mathematically deep part
of the Sherman–Stein–Blackwell theorem [45], and provides a new operational meaning
to SR. Namely, there is SR when, for any distribution p(X) on the source, and any reward
function, the optimal performance is at least as good when the decisions are based on the
output of q(T2|X), seen as an observation channel, than when they are based on the output
of q(T1|X). Let us stress that the fact that q(T2|X) defines a finer bottleneck than q(T1|X)
crucially depends on p(X, Y), i.e., on the specific source distribution p(X), and on how the
latter relates to the specific relevancy variable through p(Y|X). Proposition 8 shows that
SR describes a much more “universal” relation between the channels q(T1|X) and q(T2|X).

For example, assume that evolution poises the sensors of a given biological organism
at optimality in the IB sense [10,16], i.e., if X is the environment, S some sensor’s output
(e.g., a retina’s ganglion cells activation), and Y a behaviourally relevant feature (e.g., the
edibility of food), then S is a bottleneck for p(X, Y). Successive refinement here means
that if the sensor S2 is finer than S1 as a bottleneck for the fixed feature Y relevant to a
particular task, then S2 will afford to the organism—if combined with the right decision
making—better performances than S1 on any other task, for any other input distribution
p(X). In other words, S2 is then “universally better” than S1, which is a very strong (and
somewhat unexpected) generalisation.

Eventually, the unique information that we chose as our measure of soft SR has initially
been thought precisely as measuring the deviation from the order “wX ” (see arguments
in [45]). Unique information can thus, for instance, be understood as quantifying the
deviation from a finer IB-optimal sensor to be “universally better” than a coarser one.

4.2. Successive Refinement and Deep Learning

As suggested by Remark 1 and Proposition 8-(ii), successive refinement can be equally
well understood in terms of feed-forward processing, an interpretation which is particularly
relevant to deep neural networks. Indeed, while the information bottleneck theory of deep
learning [49–51] is still under debate [52–56], our results can be connected to some of this
theory’s specific claims concerning the benefits of hidden and output layers’ IB-optimality.

Let L1, . . . , Ln denote the successive layers of a feed-forward deep neural network
(DNN), which is fed with an input X and attempts to extract, within it, information about a
target variable Y,thus satisfying the Markov chain [49]

Y− X− L1 − · · · − Ln. (10)

109



Entropy 2023, 25, 1355

One of the claims of the IB theory of DNNs [49–51] is that, once converged, a DNN’s
hidden and output layers lie close to the information curve of the IB problem defined
by p(X, Y), with each new layer corresponding to a coarser trade-off parameter. The
performance and generalisation abilities of DNNs would rely on this IB-optimality of
networks after training. While these claims have been challenged [52,77], the identified
caveats have sparked a still ongoing line of research [54–56], which suggests that more
nuanced versions of the initial claims might still hold. Most importantly for us here,
numerical results suggest that layer-by-layer training with the IB Lagrangian as the loss
function induces a performance on par with end-to-end training with cross-entropy
loss [54], while recent theoretical work proved that the IB trade-off optimises a bound on
the generalisation error [56]. In other words, the IB method seems to be relevant at least as
a normative, if not descriptive, framework for DNNs. Thus, an interesting informationally
optimal limit to compare a given DNN to is a sequence of variables L1, . . . , Ln that

(i) Satisfy the Markov chain (10); and
(ii) Are each bottlenecks with source X and relevancy Y, for respective trade-off parame-

ters λ1 > · · · > λn.

However, it is not clear that variables satisfying those conditions even exist; actually, it is
the case if and only if the IB problem is (λn, . . . , λ1)-successively refinable. Indeed, points
(i) and (ii) are exactly the conditions of point (iii) in Proposition 1, with Ti := Ln−i, and the
order of trade-off parameters reversed as well. In this sense, the notion of exact successive
refinement is relevant to deep learning; in particular—as suggested by the numerical results
from Section 2.3—it might well be the case that there is successive refinement only for
well-chosen combinations of trade-off parameters. In this case, an IB-optimal DNN should
be designed and trained in such a way that its successive layers implement a compression
corresponding to these well-chosen trade-off parameters.

Remark 4. The single-letter formulation above mirrors, in large part, the asymptotic coding version
of [46]. More precisely, Ref. [46] defines in asymptotic coding terms a feed-forward processing
pipeline where each layer tries to extract, from the input coming from the previous layer, information
about a potentially distinct relevancy Yi. Theorem 2 in [46] shows that, for constant relevancy
Yi := Y, the notion of “successive refinement” defined there by the authors happens to be equivalent
to points (i) and (ii) above, and thus to our notion of “successive refinement”. In particular, the
deep learning interpretation presented in this section also has an operational formulation in terms of
asymptotic coding.

Now, if exact SR describes the situation where each layer of a DNN can potentially
reach the information curve, is our notion of soft SR also relevant to deep learning? Note
that, here,

• We know that the variables L1, . . . , Ln must satisfy X − L1 − · · · − Ln, i.e., we know
that the joint distribution q := q(X, Ln, . . . , L1) must be in ∆SR;

• And we want to know “how close” we can choose this joint distribution q to one whose
marginals q(X, L1), . . . , q(X, Ln) coincide with bottleneck distributions
q1 := q1(X, T1), . . . , qn := qn(X, Tn), respectively, of parameters λ1 > · · · > λn,
respectively, i.e., we want to know how close we can choose q to the set ∆q1,...,qn .

Thus, the quantity DKL(∆q1,...,qn ||∆SR,n) can also be interpreted as a measure of the defi-
ciency of a DNN’s layers from all those simultaneously being bottlenecks. Note, however,
that, in previous sections, we knew that any joint distribution q(X, T1, . . . , Tn) had to be in
the extension set ∆q1,...,qn , and wanted to know “how close” to the successive refinement
set ∆SR,n, in the KL sense, we could choose it. On the contrary, in the case of DNNs, we
know that any q(X, T1, . . . , Tn) must be in ∆SR,n—because the bottlenecks correspond to a
DNN’s layer—and want to know “how close” to ∆q1,...,qn we can choose it.

From this perspective, the numerical results of Section 3.2 suggest interesting prop-
erties, or at least desirable features, of DNNs. First, if the fact that the UI is typically low

110



Entropy 2023, 25, 1355

generalises well from our minimal investigation to the much richer deep learning setting,
this would imply that even in situations where a DNN’s successive layers cannot all lie
exactly along the information curve, they might still be able to remain reasonably close to
it. Second, the fact that UI (or its differential) seems to go through a discontinuity close to
well-chosen bifurcations—such that the UI sharply drops when λ2 crosses the bifurcation
from below—suggests that, for each layer of the DNN to be individually as IB-optimal
as possible, their corresponding trade-off parameters should each lie close to these IB
bifurcations. This resonates with previous considerations suggesting that DNNs’ hidden
layers should [49] or might indeed do [50] lie at IB bifurcations.

5. Limitations and Future Work

Our convex hull characterisation intertwines the question of exact SR with the more
fundamental question of the structure of decoder curves

{(
λ 7→ qλ(X|t)

)
, t ∈ T

}
(11)

on the source simplex ∆X , a question for which the convexity approach to the IB prob-
lem [35–39] seems promising. In short, this approach reformulates the IB problem to that of
finding the lower convex envelope of a well-chosen function Fβ, defined on the source sim-
plex ∆X , and parameterised by the information curve’s inverse slope β (see Appendix B.7).
More precisely, bottlenecks are essentially characterised by the fact that the lower convex
envelope must be achieved by convex combinations of the points Fβ(q(X|t)); this approach
thus provides analytical tools for proving key properties of the set of trajectories (11), which
would then have consequences for SR through the convex hull condition. Despite the
limited scope of the result itself, the proof of Proposition 5 gives an example of such a
fruitful interaction, thus suggesting a way forward for further theoretical progress. As a
first step, one could try to use the convexity approach to the IB to prove our Conjecture 1
about the unicity, up to permutations and injectivity of q(X|T), for canonical bottlenecks
and the strictly concave information curve. This would both simplify our convex hull char-
acterisation of SR for the case of the strictly concave information curve (see Appendix D)
and provide in itself a crucial property of the curves (11). Generally speaking, leveraging,
through our convex hull characterisation, the convexity approach to the IB problem might
allow one to (i) identify new wholly refinable IB problems, but also (ii) produce general
methods to identify, for a given distribution p(X, Y), the combination of parameters for
which exact SR holds.

It must be stressed that even though we motivate the successive refinement of the IB by
diverse scientific questions in Sections 2 and 4, in this work, we do not model any concrete
system. Rather, our minimal numerical experiments target the qualitative exploration of
the formalised problem. Our results might in turn be relevant for future modelling work
(see the last paragraph of this section), but the most pressing aspect is to first develop
further the theoretical and computational framework. In particular, it seems important
to describe formally the apparent discontinuity of UI (or its differential) as a function
of the trade-off parameters λ1 and λ2 at IB bifurcations (through that of the qλ(X, T) as
functions of λ); to describe more formally why the UI tends to peak and then drop close
to IB bifurcations; to provide global bounds on UI in general or as functions of the source
and relevancy distribution p(X, Y); or to make formal the informal relationship between
the “extent to which” the convex hull condition is broken, and variations in UI. Another
interesting contribution would be to provide an asymptotic coding interpretation to unique
information; indeed, the deviation from successive refinement is more classically quantified
as a difference between asymptotic rates or distortions (see, e.g., [60]), and it is not clear
whether or not this interpretation can be made for UI. Numerically speaking, one could
design algorithms allowing for the computation of UI for continuous p(X, Y) and/or more
than two processing stages. Indeed, the algorithm from [74] only encompasses the case
of discrete variables and two processing stages. One could, for instance, take inspiration

111



Entropy 2023, 25, 1355

from [74] to formulate the quantity DKL(∆q1,...,qn ||∆SR,n) as a double minimisation problem
over separate parameters, allowing for an alternating optimisation algorithm.

The deep learning interpretation of (exact and soft) SR depends crucially on some
aspects of the ongoing debate on the IB theory of deep learning [49–52,54–56]. In this regard,
it would be interesting to directly measure the unique information between different layers
of a DNN or determine whether or not having the layers lying close to IB bifurcations does
induce better performance or generalisation capabilities.

Let us point out that our framework considers that the source of information X and the
target variable Y are the same along all processing stages. More general frameworks could
allow for variations in either the source of information (as in the case in temporal series) or
the target variable (as is the case in transfer learning). Frameworks for both these kinds
of extensions have already been proposed [46,78], and it would be interesting to study if,
in these cases as well, the specific nature of the IB problem imprints the informationally
optimal limits of several-stage processing.

Eventually, we deem the interpretation in terms of the incorporation of information
to be particularly relevant to modelling adaptive behaviour. For instance, for a given
developmental or skill-learning problem on a given task, our framework could help in
distinguishing situations where the choice of the successive representations’ complexity
along incrementally learning the task does not matter (i.e., when there is successive refine-
ment) from situations where these complexities must be minutely weighed, so as to avoid
as much as possible the “waste” of cognitive work along the way (i.e., when the unique
information is not negligible and unevenly distributed). In the latter case, our framework,
once mature, might precisely describe those sequences of representations’ complexity that
minimise the “waste” of cognitive work from one learning stage to another, thereby po-
tentially identifying key stages of skill or developmental learning. Future work should
keep in mind the horizon of identifying such qualitative features and producing measures
capturing the relevant phenomena for experimental research in these areas.

6. Conclusions

Our approach in this paper is three-fold: to bring together in a common framework
existing work on the exact successive refinement of the IB and related topics; to develop
further this common framework, particularly through a geometric approach to the problem;
and to then open up a line of research on the soft successive refinement of the IB.

The formal unity that we make explicit in this paper is mainly that between these
three scientific questions: (i) that of informationally optimal incorporation of information—
relevant in particular to developmental and skill learning; (ii) that of informationally
optimal feed-forward processing—relevant in particular to describing and designing deep
neural networks (DNNs); and (iii) that of channel order in statistical decision theory—
which provides clear interpretations of distinct bottlenecks’ comparison in terms of univer-
sal informativeness of an agent’s sensor. Indeed, while we focused for most of the paper on
the information incorporation interpretation, we saw in Section 4 that the two other ones
are as legitimate as the first one.

Once the formal problem is motivated and set, we turn to the mathematical analysis
of it. We first note that, for jointly Gaussian vectors (X, Y) or for deterministic p(Y|X),
successive refinability can be easily drawn from existing IB literature [33,34]. Then, we
propose a new geometric characterisation of SR, which builds on the intuition that what is
“known” by a bottleneck is the convex hull of its decoder conditional probabilities. This
new point of view, associated with an active approach that reformulates the IB problem
as that of finding the lower convex envelope of a well-chosen function [35–39], provides
a new tool for theoretical research on this topic. We exemplify this potential fertility by
proving, thanks to the combination of our convex hull characterisation with the convexity
approach to the IB, the successive refinability of binary source X and binary relevancy Y
(Proposition 5). This convex hull characterisation also allows one to numerically investigate
SR with a linear program, which can be helpful for computational studies on this topic.

112



Entropy 2023, 25, 1355

Our own minimal numerical experiments suggest that (i) successive refinement does not
always hold for the IB, (ii) the successive refinement patterns are shaped by IB bifurcations,
and (iii) even when successive refinement seems to break, sometimes it is “close” to being
satisfied, in the sense of the convex hull condition being only “slightly” violated.

To formalise this latter intuition, we propose to soften the traditional notion of SR into
a quantification of the loss of information optimality incurred by several-stage processing.
For that purpose, we call on the measure of unique information (UI) used in [40]. Intuitively,
this quantity measures the information that only the coarser bottleneck T1, and not the
finer one T2, holds about the source X, and it can be generalised to an arbitrary number of
processing stages. Our minimal experiments, in the case of two processing stages, unveil
a rich structure of soft SR that was partially hidden by exact SR, which only makes the
distinction between vanishing UI (if there is SR) and positive UI (if there is no SR). Even
though the UI landscapes depend strongly on the distribution p(X, Y) that defines the
IB problem, some qualitative features seem to emerge: (i) the “more” the convex hull
condition is broken, the higher the unique information; (ii) the IB bifurcations crucially
shape the UI landscape, with sharp decreases in unique information in particular when
the finer trade-off parameter λ2 crosses a bifurcation critical value; and (iii) in any case,
this violation of successive refinement seems to always be mild compared to the system’s
globally processed information.

The features exhibited by these numerical experiments offer a “first outlook” of
potentially general properties of exact and soft successive refinement for the IB problem,
thus providing a guide for future theoretical research. These potential properties might
provide interesting perspectives on the scientific questions that motivate the formalism,
particularly in terms of the incorporation of fresh information into already learned models,
and deep learning. For instance, the apparently important role of bifurcations in exact and
soft successive refinement suggests that informationally optimal several-stage learning or
processing should ideally be organised along well-chosen “checkpoints” on the information
plane. Moreover, if the loss of information optimality induced by this sequential processing
is indeed typically low (even though not entirely negligible) for the IB framework, this
could be taken as an indication that incremental learning might be made highly efficient.
These potential features thus provide a strong incentive to bring the formal framework
presented here closer to maturity—for instance, along the lines of research proposed in
Section 5.

Author Contributions: Conceptualisation, H.C., N.C.V. and D.P.; methodology, H.C., N.C.V. and D.P.;
software, H.C.; validation, H.C., N.C.V. and D.P.; formal analysis, H.C., N.C.V. and D.P.; investigation,
H.C., N.C.V. and D.P.; resources, N.C.V. and D.P.; writing—original draft preparation, H.C.; writing—
review and editing, H.C., N.C.V. and D.P.; visualisation, H.C.; supervision, N.C.V. and D.P.; project
administration, D.P.; funding acquisition, D.P. All authors have read and agreed to the published
version of the manuscript.

Funding: H.C. and D.P. were funded by the Pazy Foundation under grant ID 195.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The code that we used for this work can be found at https://gitlab.com/
uh-adapsys/successive-refinement-ib/, along with the explicit values of the example distributions
p(X, Y) that we used to generate our figures.

Acknowledgments: Thanks to Johannes Rauh and Pradeep Banerjee for insightful comments on
unique information [40] and the iterative algorithm proposed to compute it in [74].

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

113



Entropy 2023, 25, 1355

Abbreviations
The following abbreviations are used in this manuscript:

IB Information Bottleneck
SR Successive Refinement
UI Unique Information
DNN Deep Neural Network

Appendix A. Section 1 Details

Appendix A.1. Effective Cardinality

In [43], the effective cardinality of a Lagrangian bottleneck T is defined as the num-
ber of distinct q(Y|t), whereas it is defined as that of distinct q(X|t) in our Definition 1.
However, as mentioned in Section 1.3, both choices happen to be equivalent:

Proposition A1. Let q(T|X) be a fixed solution to the Lagragian IB problem (3) for some β, where
p(X, Y) is discrete. The number of distinct q(X|t) and that of distinct q(Y|t) are equal.

Proof. It is proven in [1] that a solution to the Lagrangian IB must satisfy for all t ∈ T ,
x ∈ X the self-consistent equation

q(t|x) =
q(t)
Z(x)

exp
(
− β DKL(p(Y|x) || q(Y|t))

)
, (A1)

where Z(x) is the normalisation factor, and

q(t) := ∑
x

q(t|x)p(x), (A2)

q(y|t) := ∑
x

p(y|x)q(x|t), (A3)

with

q(x|t) :=
q(t|x)p(x)

q(t)
. (A4)

If q(Y|t1) = q(Y|t2), then (A1) implies that q(t1|X) = q(t2|X), which, combined
with (A2), implies that we also have q(t1) = q(t2). These two new equalities, combined
with (A4), then prove that q(X|t1) = q(X|t2). Conversely, if q(X|t1) = q(X|t2), then
Equation (A3) proves that q(Y|t1) = q(Y|t2).

Crucially, it is proven in [43] that a given Lagrangian bottleneck T can be reduced to
effective cardinality while still being a bottleneck for the same trade-off parameter β by
merging all bottleneck symbols t1 . . . , tr with equal decoder distributions q(X|t1) = · · · =
q(X|tr) into a new symbol [t] defined by

q([t]|x) :=
r

∑
i=1

q(ti|x).

Moreover, this merging can also be carried out for primal bottlenecks (this is not a direct
consequence of Proposition A1, as it is known that when the information curve is not strictly
concave, the primal and Lagrangian problems might not be exactly equivalent [39,67]).

Proposition A2. Let T be a primal bottleneck of parameter λ, i.e., a solution to (1), where p(X, Y)
is discrete. The bottleneck obtained from T by merging the symbols t with identical q(X|t) is still a
solution to (A38) for the same parameter λ.

114



Entropy 2023, 25, 1355

Proof. We will use the following reparametrisation of the IB problem (1) (see Section 2.2):

arg max
(q(T),q(X|T)) :

∑t q(t)q(X|t)=p(X)
T−X−Y, I(X;T)≤λ

I(Y; T). (A5)

We thus consider the bottleneck T from Proposition A2’s statement as defined by a pair
(q(T), q(X|T)) satisfying ∑t q(t)q(X|t) = p(X). Now, assume that there exist t1, t2 ∈ T
such that q(X|t1) = q(X|t2). Then,

∑
x

q(x|t1) log
(

q(x|t1)

p(x)

)
= ∑

x
q(x|t2) log

(
q(x|t2)

p(x)

)
,

so that

I(X; T) = ∑
t,x

q(t)q(x|t) log
(

q(x|t)
p(x)

)

= αt1,t2 ∑
x

q(x|t1) log
(

q(x|t1)

p(x)

)
+ ∑

t/∈{t1,t2}, x
q(t)q(x|t) log

(
q(x|t)
p(x)

)
,

(A6)

where αt1,t2 := q(t1) + q(t2). Moreover,

q(Y|t1) = ∑
x

q(x|t1)p(y|x) = ∑
x

q(x|t2)p(y|x) = q(Y|t2),

so that, similarly,

I(Y; T) = αt1,t2 ∑
y

q(y|t1) log
(

q(y|t1)

p(y)

)
+ ∑

t/∈{t1,t2},y
q(t)q(y|t) log

(
q(y|t)
p(y)

)
. (A7)

Eventually,

p(X) = ∑
t

q(t)q(X|t) = αt1,t2 q(X|t1) + ∑
t/∈{t1,t2}

q(t)q(X|t), (A8)

where the first equality comes from the fact that (q(T), q(X|T)) is a solution to (A5) (so, in
particular, it must satisfy the hard constraints required in the optimisation problem). Let us
define the bottleneck T̃ on T̃ := T \ t2 by

q̃(t) :=

{
αt1,t2 if t = t1

q(t) if t ∈ T \ {t1, t2},

and, for all t ∈ T \ {t2},

q̃(X|t) := q(X|t).

The last line of (A6) can then be rewritten as

I(X; T) = q̃(t1) ∑
x

q̃(x|t1) log
(

q̃(x|t1)

p(x)

)
+ ∑

t/∈{t1,t2}, x
q̃(t)q̃(x|t) log

(
q̃(x|t)
p(x)

)

= ∑
t∈T̃ x∈X

q̃(t)q̃(x|t) log
(

q̃(x|t)
p(x)

)

= I(X, T̃).

Similarly, from (A7), we obtain I(Y; T̃) = I(Y; T), while from (A8), we have ∑t q̃(t)q̃(X|t) =
p(X). In other words, T̃ is also a solution to the reparametrised primal bottleneck problem

115



Entropy 2023, 25, 1355

(A5), for the same parameter λ. Moreover, it is clear that our definition of (q̃(T), q̃(X|T))
implies that q̃(t1|x) = q(t1|x) + q(t2|x) and q̃(t|x) = q(t|x) for t ∈ T \ {t1, t2}, so T̃ is the
variable obtained from T by merging the symbols t1 and t2. The result follows by iterating
this argument until all the q̃(X|t) are distinct.

Appendix B. Section 2 Details

Appendix B.1. Proof of Proposition 1

(i)⇒ (ii): Suppose that there are variables T1 and Ti := (Ti−1, Si) for 2 ≤ i ≤ n such
that each Ti is a bottleneck with parameter λi. Unrolling the iterative definitions of the Ti,
we obtain

Ti = (T1, S2, . . . , Si),

which implies that, if j < i, then Tj is a deterministic function of Ti; in other words, given
Ti, the variable Tj is independent of any other variable. So, first, we have X − Tn − Tn−1.
Now, assume that for a given i, we have

X− Tn − · · · − Ti. (A9)

Given Ti, the variable Ti−1 is independent of any other variable, so, in particular,

(X, Tn, . . . , Ti+1)− Ti − Ti−1. (A10)

The Markov chains (A9) and (A10) together imply that

X− Tn − · · · − Ti−1.

Thus, a recurrence from i = n to i = 1 proves that we do have X − Tn − · · · − T1,
where, by assumption, each Ti is indeed a bottleneck of parameter λi.

(iii)⇒ (i): For all i, the Markov chain (5) implies that

I(X; Ti) = I(X; T′i ),

I(Y; Ti) = I(Y; T′i ),

where T′i := (Ti, . . . , T1). The Markov chain (5) also implies that these T′i satisfy Y− X− T′i .
Thus, the T′i are also bottlenecks with respective trade-off parameters λ1, . . . , λn. But, by
construction, they satisfy T′i = (T′i−1, Si), where, here, Si := Ti.

(ii)⇒ (iii). We merely define q(X, T1, . . . , Tn, Y) through the density

q(x, t1, . . . , tn, y) := q(x, t1, . . . , tn)q(y|x).

From this construction and the fact that each individual bottleneck must by definition
satisfy Y− X− Ti, it is clear that q(X, T1, . . . , Tn, Y) is indeed an extension of the individual
bottleneck probabilities q(X, Y, Ti). Moreover, by construction, we have

Y− X− (Tn, . . . , T1).

This latter Markov chain, combined with the assumed Markov chain (4), together
imply that the Markov chain (5) holds.

Appendix B.2. Operational Interpretation of Successive Refinement

This section describes the operational interpretation—for the case of discrete variables
X,Y—of successive refinement, which was already proposed in [30,31], as well as, in a
slightly more general fashion, in [32]. We will here rely on the content from the latter work
(even though our notations will be different). We will denote, for a variable Z, by Zl , the
concatenation of l i.i.d. variables with the same law as Z.

116



Entropy 2023, 25, 1355

Definition A1. For l ∈ N, an n-stage (l, M1, . . . , Mn)-code consists of n encoder functions

φl
i : X l → {1, . . . , Mi}

and n decoder functions

ψl
i : {1, . . . , M1} × · · · × {1, . . . , Mi} → Y l .

For a given source X, the i-th output of the (l, M1, . . . , Mn)-code will be written

Ŷl
i := ψl

i (φ
l
1(Xl), . . . , φl

i (Xl)).

Intuitively, each new encoder extracts additional information from the same source,
and, crucially, each new decoder is allowed to rely on all the information encoded until the
i-th stage. Note that the output space of the decoder is modelled on that of the relevancy
variable because this is the one about which one wants to extract information.

Definition A2. The relevance-complexity region is the set of tuples (R1, . . . , Rn, µ1, . . . , µn)
such that there exists a sequence of n-stage (l, M1, . . . , Mn)-codes for all 1 ≤ i ≤ n,

∀l ∈ N,
1
l

log Mi ≤ Ri

and

∀l ∈ N,
1
l

I(Yl ; Ŷl
i ) ≥ µi.

Intuitively, for a tuple to be in the relevance-complexity region, there must be an
n-stage code such that the i-th encoder adds information at a rate no larger than Ri, and
the i-th decoder yields information about the target variable Y no lower than µi. In other
words, the relevance-complexity region is made of all the tuples that are achievable by
n-stage codes.

Now, let us give the operational definition of successive refinement. We will denote,
for a parameter λ, by IY(λ), the maximum value of I(Y; T) in the primal IB problem (1).

Definition A3. Let 0 ≤ λ1 < · · · < λn. An IB problem defined by p(X, Y) is said to be
operationally successively refinable, or O-SR, for rates (λ1, . . . , λn), if the tuple

(λ1 , λ2 − λ1 , . . . , λn − λn−1, IY(λ1), . . . , IY(λn))

is in the relevance-complexity region.

Intuitively, in the case n = 2, assume one is given a total rate λ2 to “spend” on encoding
a source X. One can choose to encode the source in a single processing stage, yielding at
best, after decoding, asymptotic relevant information IY(λ2) (see [2]). Alternatively, one can
choose to break up the total rate λ2 into two rates R1 := λ1 < λ2 and R2 := λ2 − λ1, and
successively encode potentially different aspects of the source at these rates. Operational
SR means that even though this second alternative “spends” the total rate λ2 along two
distinct stages, it can still, after decoding, also yield asymptotic relevant information of
IY(λ2). Naturally, in this case, the relevant information decodable from only the first stage
must also be the optimal one, i.e., IY(λ1)—otherwise, the “waste” in spending the rate λ1
would prevent the second-stage decoder, which partially relies on the information encoded
at the first stage, from ever achieving the optimal relevant information IY(λ2).

We then have the following single-letter characterisation:

117



Entropy 2023, 25, 1355

Proposition A3. The IB problem defined by p(X, Y) is O-SR for rates (λ1, . . . , λn) if and only if
there exist variables T1, . . . , Tn such that

(i) We have the Markov chain Y− X− Tn − · · · − T1;
(ii) The variables T1, . . . , Tn are each bottlenecks with respective parameters λ1, . . . , λn.

Proof. This single-letter characterisation is a consequence of Remark 1 in [32], which states
the following: a tuple (R1, . . . , Rn, µ1, . . . , µn) is in the relevance-complexity region if and
only if there exist variables T1, . . . , Tn such that the Markov chain Y − X − Tn − · · · − T1
holds, and such that, for all i = 1, . . . , n,

i

∑
j=1

I(X; Tj|T1, . . . , Tj−1) ≤
i

∑
j=1

Rj, (A11)

I(Y; Ti) ≥ µi. (A12)

By simplifying the left-hand side in (A11) through the chain rule for mutual informa-
tion, defining λi := ∑i

j=1 Rj, and applying the statement with µi := IY(λi), we obtain that
the IB problem is O-SR for rates (λ1, . . . , λn) if and only if there exist variables T1, . . . , Tn
such that

1. We have the Markov chain Y− X− Tn − · · · − T1; and
2. We have, for all i = 1, . . . , n,

I(X; Ti) ≤ λi, (A13)

I(Y; Ti) ≥ IY(λi). (A14)

However, if point 1 above holds, then, particularly for all i = 1, . . . , n, we have the
Markov chain Y − X − Ti. As a consequence, by definition of the primal IB problem (1),
the inequality in (A14) can be replaced by an equality, and thus point 2 as a whole can be
replaced by the condition that Ti is a bottleneck of parameter λi for the IB problem defined
by p(X, Y). Hence, we are left with points (i) and (ii) of Theorem A3’s statement.

It is worth mentioning that our Proposition A3 is also essentially Theorem 7 in [30],
which proves the same single-letter characterisation for the same operational problem—up
to the difference that the result is limited to n = 2, and that the latter work does not consider
any decoder functions ψl

i . Moreover, Proposition A3 is a consequence of Lemma 4 in [31].
It is clear that the conditions of Theorem A3 are exactly those of Proposition 4-(iii),

so the operational Definition A3 and the single-letter Definition 5 are equivalent; in other
words, the notion studied in our work does have an operational interpretation. Crucially,
the operational construction of Definitions A1–A3 also goes clearly along the interpretation
in terms of the successive incorporation of information.

Appendix B.3. Proof of Proposition 2

First of all, note that even though in the Definition 5 of successive refinement, the term
“bottleneck” refers to a solution to the primal problem (1), the definition makes as much
sense if now by “bottleneck” we mean a solution to the Lagrangian problem (3). This is,
therefore, what we will be speaking about in this section. With this Lagrangian version, the
Markov chain characterisation given by Proposition 1 still holds. More precisely:

Proposition A4. Let (X, Y) be jointly Gaussian, and 1 ≤ β1 < · · · < βn. The following are
equivalent:

(i) There is successive refinement for Lagrangian parameters (β1, . . . , βn).

118



Entropy 2023, 25, 1355

(ii) There exist Lagrangian bottlenecks T1, . . . , Tn, of common source X and relevancy Y, with re-
spective parameters β1, . . . , βn, and an extension q(Y, X, T1, . . . , Tn) of the qi := qi(Y, X, Ti),
such that, under q, we have the Markov chain

Y− X− Tn − · · · − T1. (A15)

Proof. One can directly verify that the proof given for Proposition 1 (see Appendix B.1)
does not involve the explicit form of the IB problem, so the very same proof can be used for
the Lagrangian formulation.

The statement of Proposition 2 is now fully explicit.

Proof of Proposition 2. For the case of the Lagrangian IB problem with jointly Gaussian
source X and relevancy Y, an analytic solution was given in [75], which proves among other
things that the functions (β 7→ Iβ(X; T)) and (β 7→ Iβ(Y; T)) are continuous and increasing,
where Iβ(X; T) and Iβ(Y; T) are defined by bottlenecks T of Lagrangian trade-off parameter
β. Let us define

β IB(X, Y) := sup {β ∈ R : Iβ(X; T) = 0},

where we must have β IB(X, Y) ≥ 1 (see Section 1.3). Moreover, from the continuity of the
function (β 7→ Iβ(X; T)), this supremum is a maximum, and from the monotonicity of the
latter function, Iβ(X; T) = 0 for all β ≤ β IB(X, Y), whereas, by definition of β IB(X, Y), we
have Iβ(X; T) > 0 for all β > β IB(X, Y). Thus, β IB(X, Y) delimits trivial from non-trivial
solutions, and we can, without loss of generality, choose β ≥ β IB(X, Y).

Let us now turn to the semigroup structure of the Gaussian IB problem, which was both
defined and proved in [33]. In short, this structure means that one can compose two Gaussian
bottlenecks, while still obtaining a Gaussian bottleneck for the original problem. More
precisely, let β2 > β IB(X, Y), and define T2 as the analytical solution to the Lagrangian IB
from [75]. This provides one with a joint distribution q2(Y, X, T2), which, importantly for
us here, happens to define a Gaussian vector as well. Then, we consider a new IB problem
with still the same relevancy variable Y, but now with T2 as the source, i.e.,

arg min
q(T1|T2) : T1−T2−Y,

I(T2; T1) − β′1 I(Y; T1), (A16)

where β′1 ≥ β IB(T2, Y). As T2 and Y are jointly Gaussian, the problem above is again a
Gaussian IB problem, so we can again analytically define a solution T1 with the formulas
from [75], yielding a distribution q1(Y, T2, T1). The semigroup structure proven in [33]
refers to the following feature:

Proposition A5. Assume that T1 and T2 are built as above, and define the extension q(Y, X, T1, T2)
of q1(Y, X, T1) and q2(Y, X, T2) through

q(y, x, t1, t2) := q2(y, x, t2)q1(t1|t2). (A17)

Then, the marginal q(Y, X, T1) defines a Lagrangian bottleneck of source X and relevancy Y
for some parameter β1 uniquely defined, with β IB(X, Y) ≤ β1 < β2.

Thus, we can define a binary operator “◦”, which, for every β2 > β IB(X, Y) ≥ 1 and
β′1 ≥ β IB(T1, Y), provides the parameter β1 := β′2 ◦ β1 defined by Proposition A5. Ref. [33]
gives an explicit formula for this binary operator :

β′1 ◦ β2 =
β′1β2

β′1 + β2 − 1
, (A18)

119



Entropy 2023, 25, 1355

which is well-defined for β2 > β IB(X, Y) and β′1 ≥ β IB(T2, Y), because β IB(X, Y) ≥ 1 and
β IB(T2, Y) ≥ 1 ≥ 0 imply that β′1 + β2 − 1 > 0. This formula implies the following:

Proposition A6. Let β2 > β IB(X, Y). For any β1 such that β IB(X, Y) ≤ β1 < β2, there exists
a β′1 such that β1 = β′1 ◦ β2.

Proof. Let f denote the function β′1 7→ β′1 ◦ β2, which is well-defined and continuous on
the interval [β IB(T1, Y),+∞[. It is clear from formula (A18) that

lim
β′1→∞

f (β′1) = β2. (A19)

On the other hand, note first that as β IB(T2, Y) delimits trivial from non-trivial solu-
tions, we have Iβ IB(T2,Y)(T2; T1) = 0. But, by construction, under q given by Equation (A17),
we have the Markov chain Y− X − T2 − T1. Thus, Iβ IB(T2,Y)◦β2

(X; T1) ≤ Iβ IB(T2,Y)(T2, T1),
i.e., Iβ IB(T2,Y)◦β2

(X; T1) = 0. So, by definition of β IB(X, Y), we have

β IB(T2, Y) ◦ β2 ≤ β IB(X, Y), (A20)

i.e.,

f (β IB(T2, Y)) ≤ β IB(X, Y). (A21)

Now, Equations (A19) and (A21), combined with the continuity of f , imply that

[β IB(X, Y), β2[⊆ f
(
[β IB(T2, Y), ∞[

)
,

which yields the result.

Now let us consider a family of parameters β IB(X, Y) ≤ β1 < · · · < βn. By iterating
Propositions A5 and A6 used together, we obtain that there exist bottlenecks T1, . . . , Tn of
common source X and relevancy Y, with respective parameters β1, . . . , βn, and an extension
q(Y, X, T1, . . . , Tn) of these bottlenecks defined by

q(y, x, t1, . . . , tn) := q(y, x, tn)q(tn−1|tn) . . . q(t1|t2).

By construction, under q, the Markov chain Y − X − Tn − · · · − T1 holds. In other
words, condition (ii) from Proposition A4 is satisfied, which proves the successive refin-
ability of jointly Gaussian vectors for the Lagrangian IB problem.

Appendix B.4. Proof of Proposition 3

Here, for α ∈ [0, 1], we denote by Tα the variable defined by

q(Tα = Y|X) = α

q(Tα = e|X) = 1− α,
(A22)

where e denotes a dummy symbol not pertaining to either X or Y . It was proven in [67] that,
for every primal parameter λ ∈ [0, I(X; Y)], there exists an α such that Tα is a bottleneck of
parameter λ. Note that we must have

λ = I(X; Tα) = αI(X; Y), (A23)

where the first equality comes the general fact that a bottleneck must saturate the infor-
mation constraint in (1) (see Section 1.3), and the second equality is a direct computation
from (A22). Thus, α is a bijective and increasing function of λ, and it is sufficient, for

120



Entropy 2023, 25, 1355

proving successive refinement, to prove that, for 0 ≤ α1 < · · · < αn ≤ 1, we can design a
joint distribution q(X, Tα1 , . . . , Tαn) such that we have the Markov chain

X− Tαn − · · · − Tα1 .

Let us first focus on the case n = 2. We define a bottleneck T2 := Tα2 , i.e, we set
q(X, T2) := q(X, Tα2) and then a distribution q(T1, T2) through

q(T1 = Y|T2 = Y) :=
α1

α2

q(T1 = e|T2 = Y) :=
α2 − α1

α2

q(T1 = Y|T2 = e) := 0

q(T1 = e|T2 = e) := 1.

We then define an extension q(X, T1, T2) of q(X, T2) and q(T1, T2) through

q(x, t1, t2) := q(x, t2)q(t1|t2),

which implies by construction the Markov chain X− T2 − T1. But it also implies that

q(T1 = Y|x) = q(T1 = Y|T2 = Y)q(T2 = Y|x) + q(T1 = Y|T2 = e)q(T2 = e|x)
=

α1

α2
α2 + 0× (1− α2)

= α1,

and thus, necessarily, q(T1 = e|X) = 1− α1. So, q(X, T1) = q(X, Tα1). Thus, we built a
joint law q(X, Tα1 , Tα2) such that X− Tα2 − Tα1 , which proves successive refinement for the
case n = 2. The case of arbitrary n follows by direct iteration of the previous reasoning,
where one starts from defining q(X, Tn) through Tn := Tαn , and then iteratively defines
q(X, Ti, Ti+1, . . . , Tn) through a well-chosen q(Ti|Ti+1) and the Markov chain condition
X− Tn − · · · − Ti+1 − Ti.

Appendix B.5. Proof of Proposition 4

The result is a consequence of the following general fact, where we will eventually set
U := T1, V := T2, and W := X.

Proposition A7. Let q(U, W) and q(V, W) be full-support consistent distributions, defined on
discrete alphabets U ×W and V ×W , respectively. Consider the following properties:

(i) There exists an extension q̃(U, V, W) of q(U, W) and q(V, W) under which the Markov
chain U −V −W holds.

(ii) For each u ∈ U , there exists a family of convex combination coefficients {αv,u , v ∈ V} such
that

q(W|u) = ∑
v

αv,u q(W|v).

Then, we always have (i)⇒ (ii) and, if, moreover, the channel q(W|V) is injective, then we
also have (ii)⇒ (i), and the extension q̃ is uniquely defined.

Note the abuse of notations in the statement of Proposition A7: we write q for both
q(U, V) and q(V, W), which are distinct distributions on partially distinct alphabets, even
though they are consistent; in addition, along the proof, context, if not explicit statements,
will make clear which distribution we are referring to.

121



Entropy 2023, 25, 1355

Proof. Along the proof, we will be using the fact that a probability distribution is equivalent
to a family of convex combination coefficients several times; indeed, both notions define a
family of non-negative numbers such that their sum equals one.

(i)⇒ (ii). For all u, w, assumption (i) provides a q̃(U, V, W) such that

q(w|u) = q̃(w|u)
= ∑

v
q̃(w, v|u)

= ∑
v

q̃(v|u) q̃(w|v)

= ∑
v

q̃(v|u) q(w|v),

where the first and fourth equalities use the fact that q̃(U, V, W) is an extension of q(U, W)
and q(V, W), and the third equality uses the fact that, under q̃(U, V, W), the Markov chain
U −V −W holds. Let us define αv,u := q(v|u). For each u ∈ U , the family {αv,u, v ∈ V} is
a probability distribution, and thus a family of convex combination coefficients.

(ii)⇒ (i). We want to design a distribution q̃ that is both consistent with q(U, W) and
q(V, W), and satisfies U −V −W. Thus, such a distribution is wholly defined by q̃(V|U),
because it must satisfy

q̃(u, v, w) = q̃(u)q̃(v|u)q̃(w|v)
= q(u)q̃(v|u)q(w|v), (A24)

where q(U) is obtained by marginalising q(U, W), whereas q(W|V) is obtained from
q(V, W). Assumption (ii) provides a candidate: let us define q̃(v|u) := αv,u, which makes
sense because, for each u, the family (αv,u)v is made of convex combination coefficients.
From assumption (ii), for all u, w,

q(w|u) = ∑
v

q̃(v|u) q(w|v), (A25)

and the corresponding q̃(U, V, W) defined through Equation (A24) satisfies the Markov
chain U −V −W.

To prove that q̃ is an extension of q(U, W) and q(V, W), let us prove first that q̃ is
consistent with q(U, W). We have

q̃(u, w) = ∑
v

q̃(u, v, w)

= ∑
v

q(u)q̃(v|u)q(w|v)

= q(u)∑
v

q̃(v|u)q(w|v)

= q(u)q(w|u)
= q(u, w),

where the first equality is the definition of the marginal q̃(u, w); the second equality uses
Equation (A24); and the fourth equality uses (A25). Thus, q̃(U, V, W) is consistent with
q(U, W).

Now, let us prove that q̃(V, W) = q(V, W). This is equivalent to the channel q̃(V|U)
sending the marginal q(U) on the marginal q(V):

Lemma A1. We have q̃(V, W) = q(V, W) if and only if

Q̃vuqu = qv, (A26)

122



Entropy 2023, 25, 1355

where qu and qv are the column vectors defined by q(U) and q(V), respectively, and Q̃vu is the
column transition matrix defined by q̃(V|U).

Proof. For all v, w,

q̃(v, w) = ∑
u

q̃(u, v, w)

=
(

∑
u

q(u)q̃(v|u)
)

q(w|v),

where the first equality is the definition of the marginal q̃(v, w), and the second one uses
Equation (A24). Thus, for all v, w,

q̃(v, w) = q(v, w) ⇔ q(v, w) =
(

∑
u

q(u)q̃(v|u)
)

q̃(w|v)

⇔ q(v)q(w|v) =
(

∑
u

q(u)q̃(v|u)
)

q(w|v),

and, eventually, for all v, w,

q̃(v, w) = q(v, w) ⇔ q(w|v) = 0 or q(v) = ∑
u

q(u)q̃(v|u). (A27)

Let us momentarily fix v ∈ V . Since q(W|v) is a probability, there must be some
w0 such that q(w0|v) > 0. Choosing that w0, we find that, for the given v, the vector
equality q̃(v, W) = q(v, W) implies, through Equation (A27), that the scalar equality q(v) =
∑u q(u)q̃(v|u). By now applying this reasoning to each v ∈ V , we obtain that q̃(V, W) =
q(V, W) implies that

∀v ∈ V , ∑
u

q(u)q̃(v|u) = q(v), (A28)

whose matrix formulation is precisely (A26). Conversely, if (A28) holds, then Equation (A27)
shows that q̃(V, W) = q(V, W).

We now prove that Equation (A26) indeed holds. Let us also write Qwv and Qwu
for the column transition matrices defined by q(W|V) and q(W|U), respectively. Then,
Equation (A25), which, here, is our assumption, can be rewritten as

Qwu = QwvQ̃vu. (A29)

Thus,

QwvQ̃vuqu = Qwuqu = qw = Qwvqv

where qw is the column vector defined by q(W), and the second and third equalities are the
matrix versions of the decompositions q(W) = ∑u q(u)q(W|u) and q(W) = ∑v q(v)q(W|v),
respectively. In other words,

Qwv(Q̃vuqu − qv) = 0. (A30)

The injectivity of Qwv implies that (A26) indeed holds, so, from Lemma A1, we have
q̃(V, W) = q(V, W). We have thus proven that q̃ extends both q(U, W) and q(V, W), so
point (ii) holds.

Eventually, let us prove the uniqueness. Let q̃′ := q̃′(U, V, W) be another extension
of q(U, W) and q(V, W) such that, under q̃′, the Markov chain U −V −W holds. For the
same reasons as above, q̃′ must satisfy Equation (A24) with q̃ replaced by q̃′, so q̃′ is wholly

123



Entropy 2023, 25, 1355

specified by q̃′(V|U), and is enough to prove that q̃′(V|U) = q̃(V|U). Now, using the
assumptions of consistency and the Markov chain for q̃′, we obtain

q(w|u) = q̃′(w|u)
= ∑

v
q̃′(v, w|u)

= ∑
v

q̃′(v|u)q̃′(w|v)

= ∑
v

q̃′(v|u)q(w|v),

(A31)

i.e., in matrix terms, if Q̃′uv is the column transition matrix representing q̃′(V|U),

Qwu = QwvQ̃′vu.

Combining this with Equation (A29), we have Qwv(Q̃′vu − Q̃vu) = 0. In other words, if ci
is the i-th column of Q̃′vu − Q̃vu, then Qwvci = 0 , which, by injectivity of Qwv, means that
ci = 0. Thus, Q̃′vu − Q̃vu = 0, i.e., q̃(U|V) = q̃′(U|V).

This ends the proof of Proposition A7.

Now, first of all, note that if we set U := T1, V := T2 and W := X, then point (ii) in
Proposition A7 is equivalent to the convex hull condition (7).

If there is successive refinement for parameters (λ1, λ2), then, from Proposition 1,
there are bottlenecks T1, T2 of parameters λ1, λ2, respectively, such that X− T2 − T1; and
the direction (i) ⇒ (ii) of Proposition A7 implies that the convex hull condition (7) is
satisfied.

Conversely, assume that the convex hull condition is satisfied for some bottlenecks
T1, T2 of parameters λ1, λ2, respectively, such that q2(X|T2) is injective. Then, the sense
(ii) ⇒ (i) of Proposition A7 shows that there exists a unique extension q̃(X, T1, T2) of
q1(X, T1) and q2(X, T2) such that we have X− T2 − T1. We then conclude with the Markov
chain characterisation of successive refinement (Proposition 1).

Appendix B.6. Linear Program Used to Compute the Convex Hull Condition (7)

Consider, for points u, v1, . . . , vk ∈ Rm, the condition

u ∈ Hull{vi, i = 1, . . . , k}. (A32)

A linear program can be used to check whether this condition holds or not; in short, it
consists of the first step of the simplex method (see, e.g., [68], Section 5.6), which asserts
the existence or not of an initial feasible basis, and computes this basis if it exists. More
precisely, let us first note V the m× k matrix whose columns are the points vi, and define

M :=
(

V
1 . . . 1

)
, ũ :=

(
u
1

)
.

Then, condition (A32) can be reformulated as

∃α := (α1, . . . , αk) ∈ Rk :

{
Mα = ũ,
αi ≥ 0 for i = 1, . . . , k.

(A33)

We now consider the linear program defined for the augmented variable

α̃ := (α1, . . . , αk, αk+1, . . . , αk+m+1) ∈ Rk+m+1

124



Entropy 2023, 25, 1355

as

min
M̃α̃=ũ

∀i=1,...,k+m+1, αi≥0

αk+1 + · · ·+ αk+m+1, (A34)

where M̃ := (M|Im+1) is obtained by appending the (m + 1)× (m + 1) identity matrix to
M to the right. It can be directly verified that (A33), and thus, equivalently, (A32), holds if
and only if the minimum is 0 in the linear program (A34), and that if this is the case, then
the first k coordinates α1, . . . , αk of any of the program’s solutions provide coefficients for
obtaining u as a convex combination of the vi.

Now, consider two bottleneck distributions q1 := q1(X, T1) and q2 := q2(X, T2) such
that q(X|T2) is injective. We want to check the convex hull condition (7), which holds if
and only if for every t1 ∈ T1, we have

q(X|t1) ∈ Hull{q(X|t2), t2 ∈ T2}. (A35)

This condition can be checked, for every fixed t1, with the linear program described
above, where if the condition holds, the algorithm also outputs a family of coefficients
(αt2,t1)t2 such that

q(X|t1) = ∑
t2

αt2,t1 q(X|t2). (A36)

Let us define q(t2|t1) := αt2,t1 and a joint distribution q(X, T1, T2) through

q(x, t1, t2) := q1(t1)q(t2|t1)q2(x|t2). (A37)

By construction, under q, we have the Markov chain X − T2 − T1. Moreover thanks
to Equation (A36) and the injectivity of q(X|T2), Proposition A7 shows that q is indeed
an extension of q1(X, T1) and q2(X, T2) . Thus, the linear program above allows one both
to check whether or not the convex hull condition holds and, when it does, to obtain
Theorem 4’s unique extension q(X, T1, T2) such that X− T2 − T1.

Let us turn to considering the algorithm’s complexity. For each t1 ∈ T1, we want to
know if the point q(X|t1), which is made of m = |X | coordinates, is in the convex hull of
k = |T2| points, where we can always choose |T2| ≤ |X |+ 1 (see Section 1.3). One can
directly verify that the linear program (A34) thus consists of at most 2|X |+ 2 variables and
3|X |+ 2 equality and inequality constraints. Moreover, we want to check condition (A35)
for every t1 ∈ T1, where we can always choose |T1| ≤ |X |+ 1. As a consequence, the time
complexity of checking the convex hull condition (7) can be bounded as O((|X |+ 1)K),
where K is the complexity bound of a linear program with 2|X |+ 2 variables and 3|X |+ 2
constraints. By changing the multiplicative constant in the definition of the O(·) notation,
the bound O((|X |+ 1)K) clearly simplifies to O(|X |K). Eventually, Ref. [69] shows that

K = Õ
(
|X |ω log

( |X |
δ

))

where ω ≈ 2.38 corresponds to the complexity of matrix multiplication and δ is the relative
accuracy. Here the notation Õ(·) hides polylogarithmic factors: i.e., for two functions f and
g defined over positive integers, f (n) = Õ(g(n)) means that there exists some r ∈ N such
that f (n) = O(g(n)logr(g(n))). Overall, the convex hull condition (7) can thus be checked
with an algorithm of time complexity no worse than Õ(|X |ω+1 log( |X |δ )).

Note that as the convex hull condition holds if and only if the linear program’s output
is 0 for all t1 ∈ T1, in numerical computations, the threshold for rounding the program’s
output impacts the answer. In our numerical experiments, we chose the threshold 10−6.

125



Entropy 2023, 25, 1355

Appendix B.7. Proof of Proposition 5

We will first present the framework developed in [35,37] and the original content of
this proof, which starts with Lemma A4 below. A full plan of this proof is presented in the
main text.

We already noticed (in Section 2.2) that the primal IB problem (1) can be reformulated
as an optimisation over the pairs (q(T), q(X|T)), i.e., Equation (6). Using the identity
I(U; V) = H(U)− H(U|V), and recalling that a bottleneck T must satisfy I(X; T) = λ [37],
we can further reformulate the problem (6) as

arg min
(q(T), q(X|T))

∑t q(t)q(X|t)=p(X)
H(X|T)=ν

H(Y|T), (A38)

where ν := H(X) − λ. In particular, we can assume, without loss of generality, that
0 ≤ ν ≤ H(X) (see Section 1.3), where ν = H(X) corresponds to I(X; T) = 0. Similarly as
we denoted before by IY(λ) the maximum in the classic IB problem (1), here, we denote
by HY(ν) the minimum in (A38). Rather than considering the information curve, i.e., the
graph of IY, and following [35] upon which we rely, here, we consider the graph of HY,
which we will refer to as the conditional entropy (CE) curve. This curve is convex [35], and
it is just an affine translation of the information curve. Let us now define, for β ≥ 1, the
function

Fβ : ∆X → R

p 7→ H(κp)− β−1H(p),

where κ is the column transition matrix defined by the conditional probability p(Y|X).
Note that, for p = p(X), we have κp = p(Y). (In this section, we choose notations close to
those from [37], as long as they do not clash with the ones we already established; most
notably, what we denote here by β would correspond to β−1 in [37].)

Figure A1. The function Fβ for example values of β and p(X, Y), where the source and relevancy are
binary. Here, on the x-axis, p parameterises the binary distribution [p, 1− p].

The function Fβ is plotted in Figure A1 for example values of β and p(X, Y), where
the source and relevancy are binary. As a difference in concave functions, the function is a
priori neither concave nor convex, but we can define its lower convex envelope, i.e., the largest
convex function, which is still inferior or equal to Fβ everywhere: we will denote it by

126



Entropy 2023, 25, 1355

K∪
(

Fβ

)
. In Section IV in [35], through convex duality arguments, the following relationship

between bottlenecks and Fβ was proven:

Proposition A8. If a pair (q(T), q(X|T)) solves the reformulated primal IB problem (A38), then

∑
t

q(t)Fβ(q(X|t)) = K∪
(

Fβ

)
(p(X)), (A39)

for some β ≥ 1 such that β−1 is the slope of a tangent to the CE curve at the point (ν, HY(ν)).

Let us also define the set of points where Fβ differs from its lower convex envelope:

P(β) :=
{

p ∈ ∆X : Fβ(p) 6= K∪
(

Fβ

)
(p)
}

, (A40)

which will happen to be crucial for our considerations on successive refinement. As already
noted (see [37], Section II.B), this set grows when β increases:

Lemma A2. If β1 ≤ β2, then P(β1) ⊆ P(β2).

Proof. For the sake of self-containedness, we reproduce the computation from [37]. Let

p /∈ P(β2), which means that K∪
(

Fβ2

)
(p) = Fβ2(p). For all β1 ≤ β2,

Fβ1(p) = H(κp)− β−1
1 H(p)

= Fβ2(p)− (β−1
1 − β−1

2 )H(p),

so

K∪
(

Fβ1

)
(p) = K∪

(
Fβ2 − (β−1

1 − β−1
2 )H

)
(p)

≥ K∪
(

Fβ2

)
(p) +K∪

(
− (β−1

1 − β−1
2 )H

)
(p)

= K∪
(

Fβ2

)
(p)− (β−1

1 − β−1
2 )H(p),

where the last equality comes from the convexity of the function p 7→ −(β−1
1 − β−1

2 )H(p).
Thus,

K∪
(

Fβ1

)
(p) ≥ K∪

(
Fβ1

)
(p)− (β−1

1 − β−1
2 )H(p)

= Fβ2(p)− (β−1
1 − β−1

2 )H(p)

= Fβ1(p).

But, by definition, we have K∪
(

Fβ1

)
(p) ≤ Fβ1(p), so K∪

(
Fβ1

)
(p) = Fβ1(p); in other

words, p /∈ P(β1). Thus, we have proved that P(β2)
c ⊆ P(β1)

c, which is equivalent to
P(β1) ⊆ P(β2).

Let us now assume that |X | = |Y| = 2. As we already proved successive refinability
for deterministic p(Y|X) in Proposition 3, we can assume that p(Y|X) is not deterministic.
But, the case of |X | = |Y| = 2 and non-deterministic p(Y|X) is exhaustively studied in [35]
(Section IV.A, IV.B and IV.D). The latter work implies that, in this case:

Lemma A3. Let 0 ≤ ν < H(X), let (q(T), q(X|T)) be a a solution to (A38) with parameter ν,
and let β be given by Proposition A8. Then, the set P(β) is a non-empty open interval and, for a
pair (q(T), q(X|T)) to satisfy (A39), the set of points

{q(X|t), t ∈ T }

127



Entropy 2023, 25, 1355

must coincide with the extreme points of the interval P(β).

Equipped with these previously established facts, we can leverage them to prove
successive refinement when |X | = |Y| = 2 and p(Y|X) is not deterministic. Note that
the computations from [35] that yield Lemma A3 extract crucial information from the fact
that the sign of F′′β is given here by a quadratic polynomial. These computations are not
straightforwardly generalisable to larger source and relevancy cardinalities—even though
they might serve as inspiration for potential generalisations. Let us start with the following
lemma.

Lemma A4. Let 0 ≤ ν < H(X). Then, we can assume, without loss of generality, that |T | = 2.
Moreover, in this case, a solution (q(T), q(X|T)) to the reformulated IB problem (A38) is such that
q(X|T), seen as a probability transition matrix, is injective.

Proof. Let (q(T), q(X|T)) be a solution to (A38) for parameter ν, and let β be given by
Proposition A8. From Lemma A3, each q(X|t) must correspond to one of the two extreme
points of the interval P(β). Moreover, Proposition A2 ensures that, for any primal bot-
tleneck (or equivalently, any solution to (A38)), we still obtain a bottleneck for the same
parameter if we merge symbols t with identical q(X|t). Thus, we can assume, without loss
of generality, that |T | = 2, and, in this case, the decoder q(X|T) is, up to permutation of
bottleneck symbols, uniquely defined by β.

Moreover, as P(β) is open and non-empty, these extreme points are distinct; in other
words, the column transition matrix Q defined by q(X|T) has its columns made of two
distinct points on the simplex ∆X . These points must thus be linearly independent as
vectors in R2, so the rank of Q is 2. By the null rank theorem and as |T | = 2, this implies
that Q is injective.

Let us now first consider SR for the case of n = 2 processing stages. Let 0 < λ1 <
λ2 ≤ H(X), and let T1, T2 be solutions to the primal IB problem (1) of respective parameters
λ1, λ2. Equivalently, T1 and T2 are solutions to the reformulated IB problem (A38) with
resp. parameters ν1, ν2, where 0 ≤ ν2 < ν1 < H(X). From Lemma A4, we can assume that
q(X|T2) is injective. Moreover, from Proposition A8, the bottleneck pairs (q(T1), q(X|T1))
and (q(T2), q(X|T2)) are solutions to (A39) for parameters β1, β2, respectively, which corre-
spond to inverse slopes of the CE curve at (ν1, HY(ν1)) and (ν2, HY(ν2)), respectively. By
convexity of the CE curve [35], we have β1 ≤ β2. Thus, from Lemma A2,

P(β1) ⊆ P(β2).

This is equivalent to

Hull
(
P(β1)

)
= P(β1) ⊆ P(β2) = Hull

(
P(β2)

)
,

where E denotes the closure of a set E, so, here, P(βi) and P(βi) only differ by taking or
not taking the segment’s extreme points, and the equalities come from the convexity of this
segment. From Lemma A3, this can be rewritten as

Hull
{

q(X|t1), t1 ∈ T1
}
⊆ Hull

{
q(X|t2), t2 ∈ T2

}
.

But this is exactly the convex hull condition (7). As we chose an injective q(X|T2), we
can use the convex hull characterisation (Theorem 4) to conclude that T1 and T2 achieve
successive refinement. Thus, we have proved SR for n = 2 stages.

Appendix B.8. Computation of Bifurcations Values

In this work, we compute the bottlenecks’ bifurcation parameters as the values where
the effective cardinality changes [43]: i.e., a bifurcation is a trade-off parameter value λ for

128



Entropy 2023, 25, 1355

which the number of distinct qλ(X|t) changes in a neighborhood of λ (see Section 1.3). With
this naive method, the threshold chosen to numerically equate points q(X|t) impacts the
computed critical values, which could be avoided by using more sophisticated methods for
computing these bifurcation values [42,43,71]. However, the bifurcation values computed
by our naive method did correspond, on our minimal examples, to parameters where the
smoothness of the functions IX(β) := Iβ(X; T) and IY(β) := Iβ(Y; T) breaks. Thus, our
method seemingly identifies discontinuities of the first-order derivative of IX and IY, which
are those of second-order derivatives of the Lagrangian in (3) (see Corollary 1 in [43]). In
this sense, our naive method still identifies the IB bifurcations, if defined as second-order
bifurcations of the IB Lagragian as in, e.g., [42,43].

Appendix C. Section 3 Details

Appendix C.1. Proof of Proposition 6

We recall that ∆q1,q2 is the space of extensions q(X, T1, T2) of q1(X, T1) and q2(X, T2),
and that ∆SR,2 is the space of all distributions r(X, T1, T2) (not necessarily consistent with q1
and q2) under which the Markov chain X− T2 − T1 holds. We write the proof for discrete
variables for ease of presentation, but the very same proof works for continuous variables
if we replace sums by integrals. For q(X, T1, T2) ∈ ∆q1,q2 and r(X, T1, T2) ∈ ∆SR,2,

DKL(q||r) = ∑ q(x, t1, t2) log
(

q(x, t1, t2)

r(x, t1, t2)

)

= ∑ q(x, t1, t2) log
(

q(x, t2)q(t1|x, t2)

r(x, t2)r(t1|t2)

)

= ∑ q(x, t1, t2) log
(

q(t1|x, t2)

r(t1|t2)

)
+ DKL(q(X, T2)||r(X, T2))

≥∑ q(x, t1, t2) log
(

q(t1|x, t2)

r(t1|t2)

)

= ∑ q(x, t1, t2) log
(

q(t1|x, t2)

q(t1|t2)

)
+ ∑ q(t2)DKL(q(T1|t2)||r(T1|t2))

≥∑ q(x, t1, t2) log
(

q(t1|x, t2)

q(t1|t2)

)

(A41)

The last term is DKL(q||r0), with

r0(X, T1, T2) := q(X)q(T2|X)q(T1|T2) ∈ ∆SR,2,

because, under r0, the Markov chain X− T2− T1 holds. So, from the last inequality in (A41),

inf
r∈∆SR,2

DKL(q||r) = DKL(q||r0).

But, the last term of (A41) is also Iq(X; T1|T2). Thus,

DKL(∆q1,q2 ||∆SR) = inf
q∈∆q1,q2

inf
r∈∆SR

DKL(q, r)

= inf
q∈∆q1,q2

DKL(q||r0)

= inf
q∈∆q1,q2

Iq(X; T1|T2)

= UI(X : T1 \ T2).

129



Entropy 2023, 25, 1355

Appendix D. The Unicity and Injectivity Conjecture, and Technical Subtleties It
Would Solve

In this section, we describe in more details some technical subtleties encountered in
the main text, and present a conjecture that, if true, would make them fade away in cases
where the information curve is strictly concave. Let us start by stating the conjecture, which
is also interesting in itself. We recall that a bottleneck T is in canonical form when all
the pointwise conditional probabilities q(X|t) are distinct (see Section 1.3), and that every
primal bottleneck can be reduced to canonical form (see Proposition A2).

Conjecture 1. Let p(X, Y) be such that the information curve is strictly concave. Then, the set
of solutions (q(T), q(X|T)) to the primal IB problem (6) that are expressed in canonical form is
such that

(i) The pair (q(T), q(X|T)) is, up to permuting bottleneck symbols, uniquely determined.
(ii) The channel q(X|T), seen as a linear operator on probability distributions, is injective.

Note that point (ii) in the conjecture was always numerically satisfied in our minimal
numerical experiments, where we also always observed a strictly concave information
curve. The strict concavity assumption is necessary for this conjecture to be possibly true,
because it has been shown that for a non-strictly concave information curve, the channel
q(X|T) can be non-injective [39].

The convex hull characterisation of exact SR, i.e., Theorem 4, would, with Conjecture 1,
be made more complete for the strictly concave case. Indeed, one can prove that the
conjecture would imply the following one (Conjecture 2 can be obtained by combining
Theorem 4 and Conjecture 1; as the latter is in any case not a statement for now, we omit
the details):

Conjecture 2. Let X and Y be discrete variables, let λ1 < λ2, and assume that the information
curve is strictly concave. Then, there is successive refinement for parameters (λ1, λ2) if and only if,
equivalently:

(i) There exist bottlenecks T1, T2 of parameters λ1, λ2, respectively, such that the convex hull
condition (7) holds;

(ii) For any bottlenecks T1, T2 of parameters λ1, λ2, respectively, the convex hull condition (7)
holds.

In particular, assuming that the information curve is strictly concave and that Con-
jecture 1 is true, then if the convex hull condition breaks for some bottlenecks T1 and T2
of parameters λ1 and λ2, respectively, this is enough to conclude that there is not SR for
parameters (λ1, λ2). Recalling that, in our numerical experiments, we observed strictly
concave information curves, this would make the exact SR patterns in Figures 4–6 (right),
Figures 10–12 (left), and Figure A3 (middle) exact characterisations of successive refinement.
On the contrary, with Theorem 4 in its current state, in the latter figures, we are indeed
guaranteed that SR holds in the blue areas where the convex hull condition is satisfied, but
we are not formally guaranteed that SR does not hold in the red areas where the convex
hull condition breaks. This is the reason for why, in the main text, we refer to these figures
as mere numerical proxies for successive refinement.

Conjecture 1 being true would also, in the strictly concave case, solve a potential
ambiguity in the definition of soft SR. Indeed, we do not provide, in Section 3.1, any formal
guarantee that the quantity UI(X : T1 \ T2) does not depend on the choice of the bottlenecks
T1 and T2, among all those that solve the IB problems with respective trade-off parameters
λ1 and λ2. To make sure that there is no such dependency, we should rather consider

δ(λ1, λ2) := inf
q(T1|X)∈IB(λ1), q(T2|X)∈IB(λ2)

UI(X : T1 \ T2),

where, here, IB(λ) denotes the set of distributions q(T|X) that solve the IB problem (1) with
trade-off parameter λ. In practice, there currently exists, to the best of our knowledge, no

130



Entropy 2023, 25, 1355

algorithm to compute, for a given bottleneck problem, all the solutions in IB(λ). This is the
reason for why, in this paper, we stick to computing UI(X : T1 \ T2) for fixed bottlenecks
T1 and T2. Careful readers should take this number to be, a priori, only an upper bound on
the true measure of soft successive refinement δ(λ1, λ2).

However, one can directly verify that either permuting bottleneck symbols t or merging
those with identical q(X|t)—so as to obtain a canonical bottleneck—leaves the unique
information invariant. Thus, if Conjecture 1-(i) is true, it proves that, for a strictly concave
information curve, UI(X : T1 \ T2) is actually uniquely defined by the trade-off parameters
λ1, λ2, because any pair of corresponding bottlenecks T1 and T2 results in the same unique
information.

Eventually, Conjecture 1 seems interesting in itself. Indeed, it would provide crucial
information on the trajectory of the bottlenecks’ pointwise decoders qλ(X|t) over λ, which
could then help for theoretical advances on the successive refinement of the IB.

Appendix E. Sample p(Y|X) Used in Sections 2.3 and 3.2

Figure A2. Plot of the sample distributions p(Y|X) used in, respectively, from top to bottom:
(i) Figures 4 and 7; (ii) Figures 5 and 8; (iii) Figures 6 and 9. The simplex depicted here is ∆Y , where
|Y| = 3, and each black square corresponds to a symbol-wise conditional probability p(Y|x) ∈ ∆Y .
Note that the corresponding p(X) ∈ ∆X is shown in the left parts of Figures 4–9, which depict the
simplex ∆X , where, here, we also have |X | = 3. The explicit values of the corresponding p(X, Y) can
be found at: https://gitlab.com/uh-adapsys/successive-refinement-ib/.

131



Entropy 2023, 25, 1355

Appendix F. Additional Plots for Exact and Soft Successive Refinement

Figure A3. Additional examples for |X | = |Y| = 3: comparison of bottleneck trajectories (left)
with exact SR patterns (center) and unique information landscapes (right). See Figures 4 and 7 for
more details on the legends. The conditional distributions p(Y|X) corresponding to each row in this
figure are plotted in Figure A4. The explicit values of the corresponding p(X, Y) can be found at:
https://gitlab.com/uh-adapsys/successive-refinement-ib/.

132



Entropy 2023, 25, 1355

Figure A4. Sample distributions p(Y|X) used in Figure A3, where the vertical order here corresponds
to that of Figure A3. The simplex depicted here is ∆Y , where |Y| = 3, and each black square
corresponds to a symbol-wise conditional probability p(Y|x) ∈ ∆Y . Note that the corresponding
p(X) ∈ ∆X is shown in the left parts of each row in Figure A3, which depict the simplex ∆X , where,
here, we also have |X | = 3. The explicit values of the corresponding p(X, Y) can be found at:
https://gitlab.com/uh-adapsys/successive-refinement-ib/.

133



Entropy 2023, 25, 1355

References
1. Tishby, N.; Pereira, F.; Bialek, W. The Information Bottleneck Method. In Proceedings of the 37th Allerton Conference on

Communication, Control and Computation, 22–24 September 1999; Volume 49.
2. Gilad-Bachrach, R.; Navot, A.; Tishby, N. An Information Theoretic Tradeoff between Complexity and Accuracy. In Learning

Theory and Kernel Machines; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003. [CrossRef]
3. Bialek, W.; De Ruyter Van Steveninck, R.R.; Tishby, N. Efficient representation as a design principle for neural coding and

computation. In Proceedings of the 2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006;
pp. 659–663. [CrossRef]

4. Creutzig, F.; Globerson, A.; Tishby, N. Past-future information bottleneck in dynamical systems. Phys. Rev. E 2009, 79, 041925.
[CrossRef]

5. Amir, N.; Tiomkin, S.; Tishby, N. Past-future Information Bottleneck for linear feedback systems. In Proceedings of the 2015 54th
IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 5737–5742. [CrossRef]

6. Sachdeva, V.; Mora, T.; Walczak, A.M.; Palmer, S.E. Optimal prediction with resource constraints using the information bottleneck.
PLoS Comput. Biol. 2021, 17, e1008743. [CrossRef] [PubMed]

7. Klampfl, S.; Legenstein, R.; Maass, W. Spiking Neurons Can Learn to Solve Information Bottleneck Problems and Extract
Independent Components. Neural Comput. 2009, 21, 911–959. [CrossRef] [PubMed]

8. Buesing, L.; Maass, W. A Spiking Neuron as Information Bottleneck. Neural Comput. 2010, 22, 1961–1992. [CrossRef]
9. Chalk, M.; Marre, O.; Tkačik, G. Toward a unified theory of efficient, predictive, and sparse coding. Proc. Natl. Acad. Sci. USA

2018, 115, 186–191. [CrossRef]
10. Palmer, S.E.; Marre, O.; Berry, M.J.; Bialek, W. Predictive information in a sensory population. Proc. Natl. Acad. Sci. USA 2015,

112, 6908–6913. [CrossRef]
11. Wang, S.; Segev, I.; Borst, A.; Palmer, S. Maximally efficient prediction in the early fly visual system may support evasive flight

maneuvers. PLoS Comput. Biol. 2021, 17, e1008965. [CrossRef] [PubMed]
12. Buddha, S.K.; So, K.; Carmena, J.M.; Gastpar, M.C. Function Identification in Neuron Populations via Information Bottleneck.

Entropy 2013, 15, 1587–1608. [CrossRef]
13. Kleinman, M.; Wang, T.; Xiao, D.; Feghhi, E.; Lee, K.; Carr, N.; Li, Y.; Hadidi, N.; Chandrasekaran, C.; Kao, J.C. A cortical

information bottleneck during decision-making. bioRxiv 2023. [CrossRef]
14. Nehaniv, C.L.; Polani, D.; Dautenhahn, K.; te Beokhorst, R.; Cañamero, L. Meaningful Information, Sensor Evolution, and the

Temporal Horizon of Embodied Organisms. In Artificial life VIII; ICAL 2003; MIT Press: Cambridge, MA, USA, 2002; pp. 345–349.
15. Klyubin, A.; Polani, D.; Nehaniv, C. Organization of the information flow in the perception-action loop of evolved agents. In

Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, Seattle, WA, USA, 24–26 June 2004; pp. 177–180.
[CrossRef]

16. van Dijk, S.G.; Polani, D. Informational Drives for Sensor Evolution. Vol. ALIFE 2012: The Thirteenth International Conference
on the Synthesis and Simulation of Living Systems, ALIFE 2022: The 2022 Conference on Artificial Life. 2012. Available
online: https://direct.mit.edu/isal/proceedings-pdf/alife2012/24/333/1901044/978-0-262-31050-5-ch044.pdf (accessed on
12 September 2023).

17. Möller, M.; Polani, D. Emergence of common concepts, symmetries and conformity in agent groups—An information-theoretic
model. Interface Focus 2023, 13, 20230006. [CrossRef]

18. Catenacci Volpi, N.; Polani, D. Space Emerges from What We Know-Spatial Categorisations Induced by Information Constraints.
Entropy 2020, 20, 1179. [CrossRef]

19. Zaslavsky, N.; Kemp, C.; Regier, T.; Tishby, N. Efficient compression in color naming and its evolution. Proc. Natl. Acad. Sci. USA
2018, 115, 201800521. [CrossRef]

20. Zaslavsky, N.; Garvin, K.; Kemp, C.; Tishby, N.; Regier, T. The evolution of color naming reflects pressure for efficiency: Evidence
from the recent past. bioRxiv 2022. [CrossRef]

21. Tucker, M.; Levy, R.P.; Shah, J.; Zaslavsky, N. Trading off Utility, Informativeness, and Complexity in Emergent Communication.
Adv. Neural Inf. Process. Syst. 2022, 35, 22214–22228.

22. Pacelli, V.; Majumdar, A. Task-Driven Estimation and Control via Information Bottlenecks. arXiv 2018, arXiv:1809.07874.
[CrossRef]

23. Lamb, A.; Islam, R.; Efroni, Y.; Didolkar, A.; Misra, D.; Foster, D.; Molu, L.; Chari, R.; Krishnamurthy, A.; Langford, J. Guaranteed
Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models. arXiv 2022, arXiv:2207.08229. [CrossRef]

24. Goyal, A.; Islam, R.; Strouse, D.; Ahmed, Z.; Larochelle, H.; Botvinick, M.; Levine, S.; Bengio, Y. Transfer and Exploration via the
Information Bottleneck. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA,
6–9 May 2019.

25. Koshelev, V. Hierarchical Coding of Discrete Sources. Probl. Peredachi Inf. 1980, 16, 31–49.
26. Equitz, W.; Cover, T. Successive refinement of information. IEEE Trans. Inf. Theory 1991, 37, 269–275. [CrossRef]
27. Rimoldi, B. Successive refinement of information: Characterization of the achievable rates. IEEE Trans. Inf. Theory 1994,

40, 253–259. [CrossRef]
28. Tuncel, E.; Rose, K. Computation and analysis of the N-Layer scalable rate-distortion function. IEEE Trans. Inf. Theory 2003,

49, 1218–1230. [CrossRef]

134



Entropy 2023, 25, 1355

29. Kostina, V.; Tuncel, E. Successive Refinement of Abstract Sources. IEEE Trans. Inf. Theory 2019, 65, 6385–6398. [CrossRef]
30. Tian, C.; Chen, J. Successive Refinement for Hypothesis Testing and Lossless One-Helper Problem. IEEE Trans. Inf. Theory 2008,

54, 4666–4681. [CrossRef]
31. Tuncel, E. Capacity/Storage Tradeoff in High-Dimensional Identification Systems. In Proceedings of the 2006 IEEE International

Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 1929–1933. [CrossRef]
32. Mahvari, M.M.; Kobayashi, M.; Zaidi, A. On the Relevance-Complexity Region of Scalable Information Bottleneck. arXiv 2020,

arXiv:2011.01352. [CrossRef]
33. Kline, A.G.; Palmer, S.E. Gaussian information bottleneck and the non-perturbative renormalization group. New J. Phys. 2022,

24, 033007. [CrossRef]
34. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios. arXiv 2018,

arXiv:1808.07593. [CrossRef]
35. Witsenhausen, H.; Wyner, A. A conditional entropy bound for a pair of discrete random variables. IEEE Trans. Inf. Theory 1975,

21, 493–501. [CrossRef]
36. Hsu, H.; Asoodeh, S.; Salamatian, S.; Calmon, F.P. Generalizing Bottleneck Problems. In Proceedings of the 2018 IEEE International

Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 531–535. [CrossRef]
37. Asoodeh, S.; Calmon, F. Bottleneck Problems: An Information and Estimation-Theoretic View. Entropy 2020, 22, 1325. [CrossRef]
38. Dikshtein, M.; Shamai, S. A Class of Nonbinary Symmetric Information Bottleneck Problems. arXiv 2021, arXiv:cs.IT/2110.00985.
39. Benger, E.; Asoodeh, S.; Chen, J. The Cardinality Bound on the Information Bottleneck Representations is Tight. arXiv 2023,

arXiv:cs.IT/2305.07000.
40. Bertschinger, N.; Rauh, J.; Olbrich, E.; Ay, N. Quantifying Unique Information. Entropy 2013, 16, 2161–2183. [CrossRef]
41. Parker, A.E.; Gedeon, T.; Dimitrov, A. The Lack of Convexity of the Relevance-Compression Function. arXiv 2022, arXiv:2204.10957.

[CrossRef]
42. Wu, T.; Fischer, I. Phase Transitions for the Information Bottleneck in Representation Learning. arXiv 2020, arXiv:2001.01878.
43. Zaslavsky, N.; Tishby, N. Deterministic Annealing and the Evolution of Information Bottleneck Representations. 2019. Available

online: https://www.nogsky.com/publication/2019-evo-ib/2019-evo-IB.pdf (accessed on 12 September 2023).
44. Ngampruetikorn, V.; Schwab, D.J. Perturbation Theory for the Information Bottleneck. Adv. Neural Inf. Process. Syst. 2021, 34,

21008–21018.
45. Bertschinger, N.; Rauh, J. The Blackwell relation defines no lattice. In Proceedings of the 2014 IEEE International Symposium on

Information Theory, Honolulu, HI, USA, 29 June–4 July 2014; pp. 2479–2483. [CrossRef]
46. Yang, Q.; Piantanida, P.; Gündüz, D. The Multi-layer Information Bottleneck Problem. arXiv 2017, arXiv:1711.05102. [CrossRef]
47. Cover, T.; Thomas, J. Elements of Information Theory; Wiley-Interscience: Hoboken, NJ, USA, 2006.
48. Zaidi, A.; Estella-Aguerri, I.; Shamai (Shitz), S. On the Information Bottleneck Problems: Models, Connections, Applications and

Information Theoretic Views. Entropy 2020, 22, 151. [CrossRef] [PubMed]
49. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. In Proceedings of the 2015 IEEE Information

Theory Workshop, ITW 2015, Jerusalem, Israel, 26 April–1 May 2015. [CrossRef]
50. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. 2017. Available online: http:

//xxx.lanl.gov/abs/1703.00810 (accessed on 12 September 2023).
51. Shwartz-Ziv, R.; Painsky, A.; Tishby, N. Representation Compression and Generalization in Deep Neural Networks, 2019.

Available online: https://openreview.net/pdf?id=SkeL6sCqK7 (accessed on 12 September 2023).
52. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of

deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]
53. Achille, A.; Soatto, S. Emergence of Invariance and Disentanglement in Deep Representations. In Proceedings of the 2018

Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 11–16 February 2018; pp. 1–9. [CrossRef]
54. Elad, A.; Haviv, D.; Blau, Y.; Michaeli, T. Direct Validation of the Information Bottleneck Principle for Deep Nets. In Proceedings

of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019;
pp. 758–762. [CrossRef]

55. Lorenzen, S.S.; Igel, C.; Nielsen, M. Information Bottleneck: Exact Analysis of (Quantized) Neural Networks. In Proceedings of
the International Conference on Learning Representations, Virtual Event, 25–29 April 2022.

56. Kawaguchi, K.; Deng, Z.; Ji, X.; Huang, J. How Does Information Bottleneck Help Deep Learning? 2023. Available online:
https://proceedings.mlr.press/v202/kawaguchi23a/kawaguchi23a.pdf (accessed on 12 September 2023).

57. Yousfi, Y.; Akyol, E. Successive Information Bottleneck and Applications in Deep Learning. In Proceedings of the 2020
54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–4 November 2020; pp. 1210–1213.
[CrossRef]

58. No, A. Universality of Logarithmic Loss in Successive Refinement. Entropy 2019, 21, 158. [CrossRef]
59. Nasser, R. On the input-degradedness and input-equivalence between channels. In Proceedings of the 2017 IEEE International

Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2453–2457. [CrossRef]
60. Lastras, L.; Berger, T. All sources are nearly successively refinable. IEEE Trans. Inf. Theory 2001, 47, 918–926. [CrossRef]
61. Williams, P.L.; Beer, R.D. Nonnegative Decomposition of Multivariate Information. 2010. Available online: https://arxiv.org/

pdf/1004.2515 (accessed on 12 September 2023).

135



Entropy 2023, 25, 1355

62. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J. Shared Information—New Insights and Problems in Decomposing Information in
Complex Systems. In Proceedings of the European Conference on Complex Systems, 2012; Springer International Publishing:
Berlin/Heidelberg, Germany, 2013; pp. 251–269. [CrossRef]

63. Griffith, V.; Koch, C. Quantifying Synergistic Mutual Information. In Guided Self-Organization: Inception; Prokopenko, M., Ed.;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 159–190. [CrossRef]

64. Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Phys. Rev. E 2013, 87, 012130. [CrossRef] [PubMed]
65. Blackwell, D. Equivalent Comparisons of Experiments. Ann. Math. Stat. 1953, 24, 265–272. [CrossRef]
66. Lemaréchal, C. Lagrangian Relaxation. In Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions;

Jünger, M.; Naddef, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 112–156. [CrossRef]
67. Kolchinsky, A.; Tracey, B.; Wolpert, D. Nonlinear Information Bottleneck. Entropy 2017, 21, 1181. [CrossRef]
68. Matousek, J.; Gärtner, B. Understanding and Using Linear Programming, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007.
69. van den Brand, J. A Deterministic Linear Program Solver in Current Matrix Multiplication Time. In Proceedings of the Thirty-First

Annual ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics (SODA’20), Salt Lake
City, UT, USA, 5–8 January 2020; pp. 259–278.

70. Rose, K. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc.
IEEE 1998, 86, 2210–2239. [CrossRef]

71. Gedeon, T.; Parker, A.E.; Dimitrov, A.G. The Mathematical Structure of Information Bottleneck Methods. Entropy 2012, 14, 456–479.
[CrossRef]

72. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck. Theor. Comput. Sci. 2010,
411, 2696–2711. [CrossRef]

73. Rauh, J.; Banerjee, P.K.; Olbrich, E.; Jost, J. Unique Information and Secret Key Decompositions. In Proceedings of the 2019 IEEE
International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019. [CrossRef]

74. Banerjee, P.; Rauh, J.; Montufar, G. Computing the Unique Information. In Proceedings of the 2018 IEEE International Symposium
on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 141–145. [CrossRef]

75. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. J. Mach. Learn. Res. 2005,
6, 165–188.

76. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
77. Goldfeld, Z.; Polyanskiy, Y. The Information Bottleneck Problem and its Applications in Machine Learning. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 19–38. [CrossRef]
78. Mahvari, M.M.; Kobayashi, M.; Zaidi, A. Scalable Vector Gaussian Information Bottleneck. In Proceedings of the 2021 IEEE

International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 37–42. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

136



Citation: Dikshtein, M.; Ordentlich,

O.; Shamai, S. The Double-Sided

Information Bottleneck Function.

Entropy 2022, 24, 1321. https://

doi.org/10.3390/e24091321

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 25 July 2022

Accepted: 13 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

The Double-Sided Information Bottleneck Function †

Michael Dikshtein 1,* , Or Ordentlich 2 and Shlomo Shamai (Shitz) 1

1 Department of Electrical and Computer Engineering, Technion, Haifa 3200003, Israel
2 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
* Correspondence: michaeldic@campus.technion.ac.il
† This paper is an extended version of our paper published in 2021 IEEE International Symposium on

Information Theory.

Abstract: A double-sided variant of the information bottleneck method is considered. Let (X,Y) be
a bivariate source characterized by a joint pmf PXY . The problem is to find two independent channels
PU|X and PV|Y (setting the Markovian structure U→ X→ Y → V), that maximize I(U;V) subject to
constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian
X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general
SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are
optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z
and S channels are optimal when the correlation is 1 (i.e., X = Y) and provide supporting numerical
evidence. Furthermore, we present a Blahut–Arimoto type alternating maximization algorithm and
demonstrate its performance for a representative setting. This problem is closely related to the
domain of biclustering.

Keywords: information bottleneck; lossy compression; remote source coding; biclustering

1. Introduction

The information bottleneck (IB) method [1] plays a central role in advanced lossy source
compression. The analysis of classical source coding algorithms is mainly approached
via the rate-distortion theory, where a fidelity measure must be defined. However, speci-
fying an appropriate distortion measure in many real-world applications is challenging
and sometimes infeasible. The IB framework introduces an essentially different concept,
where another variable is provided, which carries the relevant information in the data to
be compressed. The quality of the reconstructed sequence is measured via the mutual
information metric between the reconstructed data and the relevance variables. Thus, the
IB method provides a universal fidelity measure.

In this work, we extend and generalize the IB method by imposing an additional
bottleneck constraint on the relevant variable and considering noisy observation of the
source. In particular, let (X,Y) be a bivariate source characterized by a fixed joint probability
law PXY and consider all Markov chains U→ X→ Y → V. The Double-Sided Information
Bottleneck (DSIB) function is defined as [2]:

RPXY
(Cu, Cv) , max I(U;V), (1)

where the maximization is over all PU|X and PV|Y satisfying I(U;X) ≤ Cu and I(V;Y) ≤ Cv.
This problem is illustrated in Figure 1. In our study, we aim to determine the maximum
value and the achieving conditional distributions (PU|X,PV|Y) (test channels) of (1) for
various fixed sources PXY and constraints Cu and Cv.

137



Entropy 2022, 24, 1321

Stochastic
Encoder
PU|X

Bivariate
Source
PXY

Stochastic
Encoder
PV|Y

I(U;X) ≤ Cu I(V;Y) ≤ Cv

max I(U;V)

U
X Y

V

Figure 1. Block diagram of the Double-Sided Information Bottleneck function.

The problem we consider originates from the domain of clustering. Clustering is
applied to organize similar entities in unsupervised learning [3]. It has numerous practical
applications in data science, such as: joint word-document clustering, gene expression [4],
and pattern recognition. The data in those applications are arranged as a contingency table.
Usually, clustering is performed on one dimension of the table, but sometimes it is helpful
to apply clustering on both dimensions of the contingency table [5], for example, when
there is a strong correlation between the rows and the columns of the table or when high-
dimensional sparse structures are handled. The input and output of a typical biclustering
algorithm are illustrated in Figure 2. Consider an S× T data matrix (ast). Find partitions
Bk ⊆ {1, . . . , S} and Cl ⊆ {1, . . . , T}, k = 1, . . . , K, l = 1, . . . , L such that all elements of the
“biclusters” [6] (ast)s∈Bk ,t∈Cl are homogeneous. The measure of homogeneity depends on
the application.

Biclustering
Algorithm

1 2 3 4 5 6 7 8 9 10 11
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

A
B
C
E
F
H
J
K
L
N

2 4 10
D
G
I

M
O

1 5 6 7

B
K

1 7

D
G
I

M
O

1 2 3 4 5 6 7 8 9 10 11

Clusters

Figure 2. Illustration of a typical biclustering algorithm.

This problem can also be motivated by a remote source coding setting. Consider a
latent random variable W, which satisfies U← X← W→ Y → V and represents a source
of information. We have two users that observe noisy versions of W, i.e., X and Y. Those
users try to compress the observed noisy data so that their reconstructed versions, U and
V, will be comparable under the maximum mutual information metric. The problem we
consider also bears practical applications. Imagine a distributed sensor network where
the different edges measure a noisy version of a particular signal but are not allowed to
communicate with each other. Each of the nodes performs compression of the received
signal. Under the DSIB framework, we can find the optimal compression schemes that
preserve the reconstructed symbols’ proximity subject to the mutual information measure.

Dhillon et al. [7] initiated an information-theoretic approach to biclustering. They have
regarded the normalized non-negative contingency table as a joint probability distribution
matrix of two random variables. Mutual information was proposed as a measure for
optimal co-clustering. An optimization algorithm was presented that intertwines both

138



Entropy 2022, 24, 1321

row and column clustering at all stages. Distributed clustering from a proper information-
theoretic perspective was first explicitly considered by Pichler et al. [2]. Consider the
model illustrated in Figure 3. A bivariate memory-less source with joint law PXY generates
n i.i.d. copies (Xn,Yn) of (X,Y). Each sequence is observed at two different encoders,
and each encoder generates a description of the observed sequence, fn(Xn) and gn(Yn).
The objective is to construct the mappings fn and gn such that the normalized mutual
information between the descriptions would be maximal while the description coding
has bounded rate constraints. Single-letter inner and outer bounds for a general PXY

were derived. An example of a doubly symmetric binary source (DSBS) was given, and
several converse results were established. Furthermore, connections were made to the
standard IB [1] and the multiple description CEO problems [8]. In addition, the equivalence
of information-theoretic biclustering problem to hypothesis testing against independence
with multiterminal data compression and a pattern recognition problem was established
in [9,10], respectively.

Encoder 1 PXY Encoder 2

| fn(Xn)| ≤ 2nCx |gn(Yn)| ≤ 2nCy

max 1
n I( fn(Xn); gn(Yn))

fn(Xn) Xn Yn gn(Yn)

Figure 3. Block diagram of the information-theoretic biclustering problem.

The DSIB problem addressed in our paper is, in fact, a single-letter version of the
distributed clustering setup [2]. The inner bound in [2] coincides with our problem defini-
tion. Moreover, if the Markov condition U→ X→ Y → Z is imposed on the multi-letter
variant, then those problems are equivalent. A similar setting, but with a maximal correla-
tion criterion between the reconstructed random variables, has been considered in [11,12].
Furthermore, it is sometimes the case that the optimal biclustering problem is more straight-
forward to solve than its standard, single-sided, clustering counterpart. For example, the
Courtade–Kumar conjecture [13] for the standard single-sided clustering setting was ulti-
mately proven for the biclustering setting [14]. A particular case, where (X,Y) are drawn
from DSBS distribution and the mappings fn and gn are restricted to be Boolean functions,
was addressed in [14]. The bound I( fn(Xn); gn(Yn)) ≤ I(X;Y) was established, which is
tight if and only if fn and gn are dictator functions.

1.1. Related Work

Our work extends the celebrated standard (single-sided) IB (SSIB) method introduced
by Tishby et al. [1]. Indeed, consider the problem illustrated in Figure 4. This single-sided
counterpart of our work is essentially a remote source coding problem [15–17], choosing
the distortion measure as the logarithmic loss. The random variable U represents the noisy
version (X) of the source (Y) with a constrained number of bits (I(U;X) ≤ C), and the
goal is to maximize the relevant information in U regarding Y (measured by the mutual
information between Y and U). In the standard IB setup, I(U;X) is referred to as the
complexity of U, and I(Y;U) is referred to as the relevance of U.

For the particular case where (U,X,Y) are discrete, an optimal PU|X can be found
by iteratively solving a set of self-consistent equations. A generalized Blahut–Arimoto
algorithm [18–21] was proposed to solve those equations. The optimal test-channel PU|X
was characterized using a variation principle in [1]. A particular case of deterministic
mappings from X to U was considered in [22], and algorithms that find those mappings
were described.

139



Entropy 2022, 24, 1321

Bivariate
Source

PXY

Stochastic
Encoder

PU|X

I(X;U) ≤ C
max I(Y;U)

U
X

Y

Figure 4. Block diagram of the Single-Sided Information Bottleneck function.

Several representing scenarios have been considered for the SSIB problem. The setting
where the pair (X,Y) is a doubly symmetric binary source (DSBS) with transition probability
p was addressed from various perspectives in [17,23,24]. Utilizing Mrs. Gerber’s Lemma
(MGL) [25], one can show that the optimal test-channel for the DSBS setting is a BSC.
The case where (X, Y) are jointly multivariate Gaussians in the SSIB framework was first
considered in [26]. It was shown that the optimal distribution of (U, X, Y) is also jointly
Gaussian. The optimality of the Gaussian test channel can be proven using EPI [27], or
exploiting I-MMSE and Single Crossing Property [28]. Moreover, the proof can be easily
extended to jointly Gaussian random vectors (X, Y) under the I-MMSE framework [29].

In a more general scenario where X = Y + Z and only Z is fixed to be Gaussian, it
was shown that discrete signaling with deterministic quantizers as test-channel sometimes
outperforms Gaussian PX [30]. This exciting observation leads to a conjecture that discrete
inputs are optimal for this general setting and may have a connection to the input ampli-
tude constrained AWGN channels where it was already established that discrete input
distributions are optimal [31–33]. One reason for the optimality of discrete distributions
stems from the observation that constraining the compression rate limits the usable input
amplitude. However, as far as we know, it remains an open problem.

There are various related problems considered in the literature that are equivalent to
the SSIB; namely, they share a similar single-letter optimization problem. In the conditional
entropy bound (CEB) function, studied in [17], given a fixed bivariate source (X,Y) and
an equality constraint on the conditional entropy of X given U, the goal is to minimize
the conditional entropy of Y given U over the set of U such that U→ X→ Y constitute a
Markov chain. One can show that CEB is equivalent to SSIB. The common reconstruction CR
setting [34] is a source coding with a side-information problem, also known as Wyner–Ziv
coding, as depicted in Figure 5; with an additional constraint, the encoder can reconstruct
the same sequence as the decoder. Additional assumption of log-loss fidelity results in
a single-letter rate-distortion region equivalent to the SSIB. In the problem of information
combining (IC) [23,35], motivated by message combining in LDPC decoders, a source of
information, PY, is observed through two test-channels PX|Y and PZ|Y. The IC framework
aims to design those channels in two extreme approaches. For the first, IC asks what those
channels should be to make the output pair (X,Z) maximally informative regarding Y. On
the contrary, IC also considers how to design PX|Y and PZ|Y to minimize the information
in (X,Z) regarding Y. The problem of minimizing IC can be shown to be equivalent to
the SSIB. In fact, if (X,Y) is a DSBS, then by [23], PZ|Y is a binary symmetric channel (BSC),
recovering similar results from (Section IV.A of [17]).

PXY Enc Dec
Xn M ∈ [1 : 2nR]

Un

Yn

Figure 5. Block diagram of Source Coding with Side Information.

140



Entropy 2022, 24, 1321

The IB method has been extended to various network topologies. A multilayer exten-
sion of the IB method is depicted in Figure 6. This model was first considered in [36]. A
multivariate source (X,Y1, . . . ,YL) generates a sequence of n i.i.d. copies (Xn,Yn

1 , . . . ,Yn
L).

The receiver has access only to the sequence Xn while (Yn
1 , . . . ,Yn

L) are hidden. The decoder
performs a consecutive L-stage compression of the observed sequence. The representa-
tion at step k must be maximally informative about the respective hidden sequence Yk,
k ∈ {1, 2, . . . , L}. This setup is highly motivated by the structure of deep neural networks.
Specific results were established for the binary and Gaussian sources.

PXY1 ...YL f (n)1 f (n)2 f (n)L

g(n)1 g(n)2 g(n)L

Xn M1 M2 ML

Ŷn
1

I(Yn
1 ; Ŷn

1 ) ≥ nµ1

Ŷn
2

I(Yn
2 ; Ŷn

2 ) ≥ nµ2

Ŷn
L

I(Yn
L; Ŷn

L) ≥ nµL

Figure 6. Block diagram of the Multi-Layer IB.

The model depicted in Figure 7 represents a multiterminal extension of the standard IB.
A set of receivers observe noisy versions (X1,X2, . . . ,XK) of some source of information Y.
The channel outputs (X1,X2, . . . ,XK) are conditionally independent given Y. The receivers
are connected to the central processing unit through noiseless but limited-capacity backhaul
links. The central processor aims to attain a good prediction Ŷ of the source Y based on
compressed representations of the noisy version of Y obtained from the receivers. The
quality of prediction is measured via the mutual information merit between Y and Ŷ. The
Distributive IB setting is essentially a CEO source coding problem under logarithmic loss
(log-loss) distortion measure [37]. The case where (X,Y1, . . . ,YK) are jointly Gaussian ran-
dom variables was addressed in [20], and a Blahut–Arimoto-type algorithm was proposed.
An optimized algorithm to design quantizers was proposed in [38].

Source
PY

PX1|Y Enc 1

PX2|Y Enc 2

PXK |Y Enc K

PŶ|MK
1

Y

X1

X2

XK

M1

M2

MK

Ŷ

Figure 7. Block diagram of the Distributive IB.

A cooperative multiterminal extension of the IB method was proposed in [39]. Let
(Xn

1 ,Xn
2 ,Yn) be n i.i.d. copies of the multivariate source (X1,X2,Y). The sequences Xn

1 and
Xn

2 are observed at encoders 1 and 2, respectively. Each encoder sends a representation of
the observed sequence through a noiseless yet rate-limited link to the other encoder and
the mutual decoder. The decoder attempts to reconstruct the latent representation sequence
Yn based on the received descriptions. As shown in Figure 8, this setup differs from the
CEO setup [40] since the encoders can cooperate during the transmission. The set of all
feasible rates of complexity and relevance were characterized, and specific regions for the
binary and Gaussian sources were established. There are many additional variations of
multi-user IB in the literature [20,26,35–37,39–44].

141



Entropy 2022, 24, 1321

Encoder 1

Decoder

Encoder 2Xn
1 Xn

2
R1 R2

Ŷn

Figure 8. Block diagram of the Collaborative IB.

The IB problem connects to many timely aspects, such as capital investment [43], dis-
tributed learning [45], deep learning [46–52], and convolutional neural networks [53,54]. More-
over, it has been recently shown that the IB method can be used to reduce the data transfer
rate and computational complexity in 5G LDPC decoders [55,56]. The IB method has
also been connected with constructing good polar codes [57]. Due to the exponential
output-alphabet growth of polarized channels, it becomes demanding to compute their
capacities to identify the location of “frozen bits". Quantization is employed in order to
reduce the computation complexity. The quality of the quantization scheme is assessed via
mutual information preservation. It can be shown that the corresponding IB problem upper
bounds the quantization technique. Quantization algorithms based upon the IB method
were considered in [58–60]. Furthermore, a relationship between the KL means algorithm
and the IB method has been discovered in [61].

A recent comprehensive tutorial on the IB method and related problems is given
in [24]. Applications of IB problem in machine learning are detailed in [26,45–47,51,52,62].

1.2. Notations

Throughout the paper, random variables are denoted using a sans-serif font, e.g., X,
their realizations are denoted by the respective lower-case letters, e.g., x, and their alphabets
are denoted by the respective calligraphic letters, e.g., X . Let X n stand for the set of all
n-tuples of elements from X . An element from X n is denoted by xn = (x1, x2, . . . , xn) and
substrings are denoted by xj

i = (xi, xi+1, . . . , xj). The cardinality of a finite set, say X , is
denoted by |X |. The probability mass function (pmf) of X, the joint pmf of X and Y, and
the conditional pmf of X given Y are denoted by PX, PXY, and PX|Y, respectively. The
expectation of X is denoted by E[X]. The probability of an event E is denoted as P(E).

Let X and Y be an n-ary and m-ary random variables, respectively. The marginal
probability vector is denoted by a lowercase boldface letter, i.e.,

q , (P(X = 1),P(X = 2), . . . ,P(X = n))T . (2)

The probability vector of an n-ary uniform random variable is denoted by un. We
denote by T the transition matrix from X to Y, i.e.,

Tij , P(Y = i|X = j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3)

The entropy of n-ary probability vector q is given by h(q), where

h(q) , −
n

∑
i=1

qi log qi. (4)

Throughout this paper all logarithms are taken to base 2 unless stated otherwise.
We denote the ones complemented with a bar, i.e., x̄ = 1− x. The binary convolution
of x, y ∈ [0, 1] is defined as x ∗ y , xȳ + x̄y. The binary entropy function is defined by
hb(p) : [0, 1] → [0, 1], i.e., hb(p) , −p log p− p̄ log p̄, and h−1

b (·) its inverse, restricted to
[0, 1/2].

142



Entropy 2022, 24, 1321

Let X and Y be a pair of random variables with joint pmf PXY and marginal pmfs
PX = qx and PY = qy. Furthermore, let T (T̄) be the transition matrix from X (Y) to Y (X).
The mutual information between X and Y is defined as:

I(X;Y) = I(qx, T) = I(qy, T̄) = ∑
x∈X

∑
y∈Y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
. (5)

1.3. Paper Outline

Section 2 gives a proper definition of the DSIB optimization problem, mentions various
results directly related to this work, and provides some general preliminary results. The
spotlight of Section 3 is on the binary (X,Y), where we derive bounds on the respective
DSIB function and show a complete characterization for extreme scenarios. The jointly
Gaussian (X,Y) is considered in Section 4, where an elegant representation of an objective
function is presented, and complete characterization in the low-SNR regime is established.
A Blahut–Arimoto-type alternating maximization algorithm will be presented in Section 5.
Representative numerical evaluation of the bounds and the proposed algorithm will be
provided in Section 6. Finally, a summary and possible future directions will be described
in Section 7. The prolonged proofs are postponed to the Appendix A.

2. Problem Formulation and Basic Properties

The DSIB function is a multi-terminal extension of the standard IB [1]. First, we briefly
remind the latter’s definition and give related results that will be utilized for its double-
sided counterpart. Then, we provide a proper definition of the DSIB optimization problem
and present some general preliminaries.

2.1. The Single-Sided Information Bottleneck (SSIB) Function

Definition 1 (SSIB). Let (X,V) be a pair of random variables with |X | = n, |V| = m, and fixed
PXV. Denote by q the marginal probability vector of X, and let T be the transition matrix from X to
V, i.e.,

Tij , P(V = i|X = j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Consider all random variables U satisfying the Markov chain U→ X→ V. The SSIB function
is defined as:

R̂T(q, C) , maximize
PU|X

I(U;V)

subject to I(X;U) ≤ C.
(6)

Remark 1. The SSIB problem defined in (6) is equivalent (has similar solution) to the CEB problem
considered in [17].

Although the optimization problem in (6) is well defined, the auxiliary random vari-
able U may have an unbounded alphabet. The following lemma provides an upper bound
on the cardinality of U , thus relaxing the optimization domain.

Lemma 1 (Lemma 2.2 of [17]). The optimization over U in (6) can be restricted to |U | ≤ n + 1.

Remark 2. A tighter bound, namely |U | ≤ n, was previously proved in [63] for the corresponding
dual problem, namely, the IB Lagrangian. However, since R̂T(q, C) is generally not a strictly
convex function of C, it cannot be directly applied for the primal problem (6).

Note that the SSIB optimization problem (6) is basically a convex function maximiza-
tion over a convex set; thus, the maximum is attained on the boundary of the set.

Lemma 2 (Theorem 2.5 of [17]). The inequality constraint in (6) can be replaced by equality
constraint, i.e., I(X;U) = C.

143



Entropy 2022, 24, 1321

2.2. The Double-Sided Information Bottleneck (DSIB) Function

Definition 2 (DSIB). Let (X,Y) be a pair of random variables with |X | = n, |Y| = m and fixed
PXY. Consider all the random variables U and V satisfying the Markov chain U→ X→ Y → V.
The DSIB function R : [0, H(X)]× [0, H(Y)]→ R+ is defined as:

RPXY
(Cu, Cv) , maximize

PU|X,PV|Y
I(U;V)

subject to I(X;U)≤Cu and I(Y;V)≤Cv.
(7)

The achieving conditional distributions PU|X and PV|Y will be termed as the optimal test-
channels. Occasionally, we will drop the subscript denoting the particular choice of the bivariate
source PXY.

Note that (7) can be expressed in the following equivalent form:

R(Cu, Cv) , maximize
PV|Y

maximize
PU|X

I(U;V).

subject to subject to

I(Y;V) ≤ Cv I(X;U) ≤ Cu

(8)

Evidently, we can define (8) using (6). Indeed, fix PV|Y so that it satisfies I(Y;V) ≤ Cv.
Denote by TV|Y the transition matrix from Y to V and by TY|X the transition matrix from X
to Y, respectively, i.e.,

(TV|Y)ik , P(V = i|Y = k), 1 ≤ i ≤ |V|, 1 ≤ k ≤ m,

(TY|X)kj , P(Y = k|X = j), 1 ≤ k ≤ m, 1 ≤ j ≤ n.

Denote by qx and qy the marginal probability vectors of X and Y, respectively, and
consider the inner maximization term in (8). Since PV|Y and PXY are fixed, then PXV =

∑y PV|Y(·|y)PXY(·, y) is also fixed. Denote by TV|X , TV|YTY|X the transition matrix from X
to V. Therefore, the inner maximization term in (8) is just the SSIB function with parameters
TV|X and Cu, namely, R̂TV|X(qx, Cu). Hence, our problem can also be interpreted in the
following two equivalent ways:

R(Cu, Cv) , maximize
TV|Y

R̂TV|YTY|X(qx, Cu)

subject to I(qy, TV|Y) ≤ Cv;
(9)

or, similarly, by interchanging the order of maximization in (8), it can be expressed as fol-
lows:

R(Cu, Cv) , maximize
TU|X

R̂TU|XTX|Y (qy, Cv)

subject to I(qx, TU|X) ≤ Cu,
(10)

where TU|X is the transition matrix from X to U, and TX|Y is the transition matrix from Y
to X. This representation gives us a different perspective on our problem as an optimal
compressed representation of the relevance random variable for the IB framework.

Remark 3. Taking Cv = ∞ in (9) results in an deterministic channel from Y to V, i.e., V = Y.
Thus, the DSIB problem defined in (7) reduces to the SSIB problem (6).

The bound from Lemma 1 can be utilized to give cardinality bounding for the double-
sided problem.

144



Entropy 2022, 24, 1321

Proposition 1. For the DSIB optimization problem defined in (7), it suffices to consider random
variables U and V with cardinalities |U | ≤ n + 1 and |V| ≤ m + 1.

Proof. Let TU|X and TV|Y be two arbitrary transition matrices. By Lemma 1, there exists
TŨ|X with |Ũ | ≤ n + 1 such that I(Ũ;V) ≥ I(U;V) and I(X; Ũ) ≤ Cu. Similarly, TV|Y can be
replaced with TṼ|Y, |Ṽ | ≤ m + 1 such that I(Ũ; Ṽ) ≥ I(Ũ,V) ≥ I(U;V), and I(Y; Ṽ) ≤ Cv.
Therefore, there exists an optimal solution with |U | ≤ n + 1 and |V| ≤ m + 1.

In the following two sections, we will present the primary analytical outcomes of our
study. First, we consider the scenario where our bivariate source is binary, specifically
DSBS. Then, we handle the case where X and Y are jointly Gaussian.

3. Binary (X,Y)

Let (X,Y) be a DSBS with parameter p, i.e.,

PXY(x, y) =
1
2
(p · 1(x 6= y) + (1− p)1(x = y)). (11)

We entitle the respective optimization problem (7) as the binary double-sided information
bottleneck (BDSIB) and emphasize its dependence on the parameter p as R(Cu, Cv, p).

The following proposition states that the cardinality bound from Lemma 1 can be
tightened in the binary case.

Proposition 2. Considering the optimization problem in (6) with X = Ber(q) and |Y| = 3, binary
U is optimal.

The proof of this proposition is postponed to Appendix A. Using similar justification
for Proposition 1 combined with Proposition 2, we have the following strict cardinality
formula for the BDSIB setting.

Proposition 3. For the respective DSBS setting of (7), it suffices to consider random variables U
and V with cardinalities |U | = |V| = 2.

Note that the above statement is not required for the results in the rest of this section
to hold and will be mainly applied to justify our conjectures via numerical simulations.

We next show that the specific objective function for the binary setting of (7), i.e, the
mutual information between U and V, has an elegant representation which will be useful in
deriving lower and upper bounds.

Lemma 3. The mutual information between U and V can be expressed as follows:

I(U;V) = EPU×PV
[K(U,V, p) log K(U,V, p)], (12)

where the expectation is taken over the product measure PU × PV, U and V are binary random
variables satisfying:

P(U = 0) =
α1 − 1

2
α1 − α0

, P(V = 0) =
β1 − 1

2
β1 − β0

, (13)

the kernel K(u, v, p) is given by:

K(u, v, p) = 2αu ∗ βv ∗ p = 1− (1− 2p)(1− 2αu)(1− 2βv), (14)

145



Entropy 2022, 24, 1321

and the reverse test-channels are defined by: αu , P(X = 1|U = u), βv , P(Y = 0|V = v).
Furthermore, since |(1− 2p)(1− 2αu)(1− 2βv)| < 1, utilizing Taylor’s expansion of log(1− x),
we obtain:

I(U;V) =
∞

∑
n=2

(1− 2p)nE[(1− 2αU)
n]E[(1− 2βV)

n]

n(n− 1)
. (15)

The general cascade of test-channels and the DSBS, defined by {αu}1
u=0, {βv}1

v=0 and
p, is illustrated in Figure 9. The proof of Lemma 3 is postponed to Appendix B.

0

1

0

1

U X Y V

α
0

α1

p

p

β0

β
1

Figure 9. General test-channel construction of the BDSIB function.

We next examine some corner cases for which R(Cu, Cv, p) is fully characterized.

3.1. Special Cases

A particular case where we have a complete analytical solution is when p tends to
1/2.

Theorem 1. Suppose p = 1
2 − ε, and consider ε→ 0. Then

R(Cu, Cv, ε) = 2ε2 log e · (1− 2h-1
b (1− Cu))

2(1− 2h-1
b (1− Cv))

2 + o(ε2), (16)

and it is achieved by taking PU|X and PV|Y as BSC test-channels satisfying the constraints
with equality.

This theorem follows by considering the low SNR regime in Lemma 3 and is proved
in Appendix D. For the lower bound we take PU|X and PV|Y to be BSCs.

In Section 6 we will give a numerical evidence that BSC test-channels are in fact
optimal provided that p is sufficiently large. However, for small p this is no longer the case
and we believe the following holds.

Conjecture 1. Let X = Y, i.e., p = 0. The optimal test-channels PU|X and PV|X that achieve
R(Cu, Cv, 0) are Z-channel and S-channel respectively.

Remark 4. Our results in the numerical section strongly support this conjecture. In fact they prove
it within the resolution of the experiments, i.e., for optimizing over a dense set of test-channels rather
then all test-channels. Nevertheless, we were not able to find an analytical proof for this result.

Remark 5. Suppose X = Y, I(X;U) = Cu, and I(X;V) = Cv. Since I(U;V) = I(U;X) +
I(V;X)− I(X;U,V) (as U→ X→ Y → V form a Markov chain in this order) then maximizing
I(U;V) is equivalent to minimizing I(X;U,V), namely, minimizing information combining as
in [23,35]. Therefore, Conjecture 1 is equivalent to the conjecture that among all channels with
I(X;U) ≥ Cu and I(Y;V) ≥ Cv, Z and S are the worst channels for information combining.

This observation leads us the following additional conjecture.

Conjecture 2. The test-channels PU|X and PV|X that maximize I(X;U,V) are both Z channels.

146



Entropy 2022, 24, 1321

Remark 6. Suppose now that p is arbitrary and assume that one of the channels PU|X or PV|Y
is restricted to be a binary memoryless symmetric (BMS) channel (Chapter 4 of [64]), then the
maximal I(U;V) is attained by BSC channels, as those are the symmetric channels minimizing
I(X;U,V) [23]. It is not surprising that once the BMS constraint is removed, symmetric channels
are no longer optimal (see the discussion in (Section VI.C of [23])).

Consider now the case X = Y (p = 0) with an additional symmetry assumption
Cu = Cv. The most reasonable apriori guess is that the optimal test-channels PU|X and PV|X
are the same up to some permutation of inputs and outputs. Surprisingly, this is not the
case, unless they are BSC or Z channels, as the following negative result states.

Proposition 4. Suppose Cu = Cv and the transition matrix from X to V, given by

TV|X =

(
a b

1− a 1− b

)
, (17)

satisfies I(u2, TV|X) = Cv. Consider the respective SSIB optimization problem

R̂TV|X(u2, Cu) = max
PU|X : I(U;X)≤Cu

I(U;V). (18)

The optimal PU|X that attains (6) with qX = u2 and C = Cu does not equal to PV|X or any
permutation of PV|X, unless PV|X is a BSC or a Z channel.

The proof is based on [17] and is postponed to Appendix E.
As for the case of X 6= Y, i.e., p 6= 0, we have the following conjecture.

Conjecture 3. For every (Cu, Cv) ∈ [0, 1] × [0, 1], there exists θ(Cu, Cv), such that for every
p > θ(Cu, Cv) the achieving test-channels PU|X and PV|Y are BSC with parameters α = h−1

b (1−
Cu) and β = h−1

b (1− Cv) respectively.

We will provide supporting arguments for this conjecture via numerical simulations
in Section 6.

3.2. Bounds

In this section we present our lower and upper bounds on the BDSIB function, then we
compare them for various channel parameters. The proofs are postponed to Appendix F.
For the simplicity of the following presentation we define

gb(x) , 1
2(1− x)

hb(x), x ∈ [0, 1/2], (19)

denote g−1
b (·) as its inverse restricted to [0, 1], and h̄(x) , −x log x.

Proposition 5. The BDSIB function is bounded from below by

R(Cu, Cv, p) ≥

max





1− hb(α ∗ β ∗ p),

1− 1
2δ̄ζ̄

[
h̄(δ ∗ ζ ∗ p) + (1−2ζ) · h̄(δ̄ ∗ p) + (1−2δ) · h̄(ζ̄ ∗ p) + (1−2δ)(1−2ζ) · h̄(p)

]
,

(20)

where α = h−1
b (1− Cu), β = h−1

b (1− Cv), δ = g−1
b (1− Cu), and ζ = g−1

b (1− Cv).

147



Entropy 2022, 24, 1321

All terms in the RSH of (20) are attained by taking test-channels that match the con-
straints with equality and plugging them in Lemma 3. In particular: the first term is
achieved by BSC test channels with transition probabilities α and β; the second term is
achieved by taking PU|X be a Z(δ) channel and PV|Y be an S(ζ) channel. The aforemen-
tioned test-channel configurations are illustrated in Figure 10.

0

1

0

1

U X Y V

α

ᾱ

p

p

β̄

β

(a) Two BSCs.

0

1

0

1

U X Y V

δ
p

p
ζ

(b) Z and S channels.
Figure 10. Test-channel that achieve the lower bound of Proposition 5.

We compare the different lower bounds derived in Proposition 5 for various values of
constraints. The achievable rate vs channel transition probability p is shown in Figure 11.
Our first observation is that BSC test-channels outperform all other choices for almost all
values of p. However, Figure 12 gives a closer look on small values of p. It is evident that
the combination of Z and S test-channels outperforms any other schemes for small values
of p. We have used this observation as one supporting evidence to Conjecture 1.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−2

p

I(
U

;V
)

BSC-BSC
Z-S

(a) Cu = Cv = 0.1

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

p

I(
U

;V
)

BSC-BSC
Z-S

(b) Cu = Cv = 0.5

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

p

I(
U

;V
)

BSC-BSC
Z-S

(c) Cu = Cv = 0.7

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9
·10−2

p

I(
U

;V
)

BSC-BSC
Z-S

(d) Cu = 0.1, Cv = 0.7
Figure 11. Comparison of the lower bounds.

148



Entropy 2022, 24, 1321

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−2

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
·10−2

p

I(
U

;V
)

BSC-BSC
Z-S

(a) Cu = Cv = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−2

0.27

0.27

0.27

0.28

0.28

0.28

0.28

0.28

0.29

0.29

0.29

0.29

0.29

p

I(
U

;V
)

BSC-BSC
Z-S

(b) Cu = Cv = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−2

0.5

0.5

0.51

0.51

0.52

0.52

0.53

0.53

0.54

0.54

p

I(
U

;V
)

BSC-BSC
Z-S

(c) Cu = Cv = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−2

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2
·10−2

p

I(
U

;V
)

BSC-BSC
Z-S

(d) Cu = 0.1, Cv = 0.7
Figure 12. Comparison of the lower bounds in high SNR regime.

We proceed to give an upper bound.

Proposition 6. A general upper bound on BDSIB is given by

R(Cu, Cv, p) ≤ min

{
(1− 2p)2(1− 2h−1

b (1− Cu)
2(1− 2h−1

b (1− Cv)
2,

min{1− hb(h−1
b (1− Cu) ∗ p), 1− hb(h−1

b (1− Cv) ∗ p)}.
(21)

Note that the first term can be derived by applying Jensen’s inequality on (12), and
the second term is a combination of the standard IB and the cut-set bound. We postpone
the proof of Proposition 6 to Appendix F.

Remark 7. Since p = 1
2 − ε, we have a factor 2 loss in the first term compared to the precise

behavior we have found for p ≈ 1
2 in Theorem 1. This loss comes from the fact that the bound in (21)

actually upper bounds the χ-squared mutual information between U and V. It is well-known that
for very small I(X;Y) we have that I(X;Y) ≈ 1/2Iχ2(X;Y), see [65].

We compare the different upper bounds from Proposition 6 in Figure 13 for various
bottleneck constraints, and in Figure 14 for various values of channel transition probabilities
p. We observe that there are regions of C and p for which Jensen’s based bound outperforms
the standard IB bound.

149



Entropy 2022, 24, 1321

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

0.11

0.12

p

I(
U

;V
)

Jensen
IB

(a) Cu = Cv = 0.1

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

I(
U

;V
)

Jensen
IB

(b) Cu = Cv = 0.5

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

I(
U

;V
)

Jensen
IB

(c) Cu = Cv = 0.7

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

0.11

0.12

p

I(
U

;V
)

Jensen
IB

(d) Cu = 0.1, Cv = 0.7
Figure 13. Comparison of the upper bounds for various values of (Cu, Cv).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

I(
U

;V
)

Jensen
IB

(a) p = 0.001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

I(
U

;V
)

Jensen
IB

(b) p = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C

I(
U

;V
)

Jensen
IB

(c) p = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
·10−2

C

I(
U

;V
)

Jensen
IB

(d) p = 0.4
Figure 14. Comparison of the upper bounds for various values of p.

150



Entropy 2022, 24, 1321

Finally, we compare the best lower and upper bounds from Propositions 5 and 6 for
various values of channel parameters in Figure 15. We observe that the bounds are tighter
for asymmetric constraints and high transition probabilities.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

I(
U

;V
)

UB Cu = Cv=0.1
LB Cu = Cv=0.1
UB Cu = Cv=0.5
LB Cu = Cv=0.5
UB Cu = Cv=0.9
LB Cu = Cv=0.9
UB Cu = 0.9 Cv=0.1
LB Cu = 0.9 Cv=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

I(
U

;V
)

UB P=0.001
LB P=0.001
UB P=0.01
LB P=0.01
UB P=0.1
LB P=0.1
UB P=0.3
LB P=0.3

Figure 15. Capacity bounds for various values of p and C = Cu = Cv.

4. Gaussian (X,Y)

In this section we consider a specific setting where (X,Y) is the normalized zero mean
Gaussian bivariate source, namely,

(
X
Y

)
∼ N

((
0
0

)
,
(

1 ρ
ρ 1

))
. (22)

We establish achievability schemes and show that Gaussian test-channels PU|X and PV|Y
are optimal for vanishing SNR. Furthermore we show an elegant representation of the
problem through probabilistic Hermite polynomials which are defined by

Hn(x) , (−1)ne
x2
2

dn

dxn e−
x2
2 , n ∈ N0. (23)

We denote the Gaussian DSIB function with explicit dependency on ρ as R(Cu, Cv, ρ).

Proposition 7. Let Hn(·) be the nth order probabilistic Hermite polynomial, then the objective
function of (7) for the Gaussian setting is given by

I(U;V)=EUV

[
log

(
∞

∑
n=0

ρn

n!
E[Hn(X)|U]E[Hn(Y)|V]

)]
. (24)

This representation follows by considering I(U;V) = D(PUV||PU · PV) and expressing
PUV

PU·PV
using Mehler Kernel [66]. Mehler Kernel decomposition is a special case of a much

richer family of Lancaster distributions [67]. The proof of Proposition 7 is relegated to
Appendix G.

Now we give two lower bounds on R(Cu, Cv, ρ). Our first lower bound is estab-
lished by choosing PU|X and PV|Y to be additive Gaussian channels, satisfying the mutual
information constraints with equality.

Proposition 8. A lower bound on R(Cu,Cv, ρ) is given by

R(Cu, Cv, ρ)≥−1
2

log
(
1−ρ2

(
1−2−2Cu

)(
1−2−2Cv

))
. (25)

The proof of this bound is developed in Appendix H.

151



Entropy 2022, 24, 1321

Although it was shown in [26] that choosing the test-channel to be Gaussian is optimal
for the single-sided variant, it is not the case for its double-sided extension. We will
show this by examining a specific set of values for the rate constraints, (Cu, Cv) = (1, 1).
Furthermore, we choose the test channels PU|X and PV|Y to be deterministic quantizers.

Proposition 9. Let (Cu, Cv) = (1, 1), then

R(1, 1, ρ) ≥ 1− h2

(arccos ρ

π

)
. (26)

The proof of this bound is developed in Appendix I.
We compare the bounds from Propositions 8 and 9 with (Cu, Cv) = (1, 1) in Figure 16.

The most unexpected observation here is that the deterministic quantizers lower bound
outperform the Gaussian test-channels for high values of ρ. The crossing point of those
bounds is given by

ρcros =
e√

1 + e2
→
√

SNRcros =
ρcros√

1− ρ2
cros

= e. (27)

We proceed to present our upper bound on R(Cu, Cv, ρ). This bound is a combination
of the cutset bound and the single-sided Gaussian IB.

Proposition 10. An upper bound on (7) with Gaussian (X,Y) setting (22) is given by

R(Cu, Cv, ρ) ≤ min
{
−1

2
log(1− ρ2(1− 2−2Cu)),−1

2
log(1− ρ2(1− 2−2Cv))

}
. (28)

We compare the best lower and upper bounds from Propositions 8–10 in Figure 17.
We observe that the bounds become tighter as the constraint increases and in the low-SNR
regime.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρX
ρ

R
(l

og
2,

lo
g

2,
ρ
)

Gaussian
Determenistic

Figure 16. Comparison of the lower bounds from Propositions 8 and 9.

4.1. Low-SNR Regime

For ρ→ 0, the exact asymptotic behavior of the Gaussian (Proposition 8) and deter-
ministic (Proposition 9) test-channels, respectively, for Cu = Cv = 1 bit is given by:

lim
ρ→0
−1

2
log
(
1−ρ2(1−2−2Cu)(1−2−2Cv)

)
=

9 log e
32

ρ2+o(ρ2),

lim
ρ→0

1− h2

(arccos ρ

π

)
=

2 log e
π2 ρ2+o(ρ2).

152



Entropy 2022, 24, 1321

Hence, the Gaussian choice outperforms the second lower bound for vanishing SNR. The
following theorem establishes that Gaussian test-channels are optimal for low-SNR.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

C
ap

ac
it

y
Bo

un
ds

IB UB
Gaussian LB
Determenistic LB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

ρ

C
ap

ac
it

y
Bo

un
ds

UB Cu = Cv = 0.1
LB Cu = Cv = 0.1
UB Cu = Cv = 0.5
LB Cu = Cv = 0.5
UB Cu = Cv = 2
LB Cu = Cv = 2
UB Cu = Cv = 3
LB Cu = Cv = 3

Figure 17. Capacity bounds for various values of p and C = Cu = Cv = 1.

Theorem 2. For small ρ, the GDSIB function is given by:

R(Cu,Cv,ρ) =
ρ2 log e

2
(1− 2−2Cu)(1− 2−2Cv)+ o(ρ2). (29)

The lower bound follows from Proposition 8. The upper bound is established by
considering the kernel representation from Proposition 7 in the limit of vanishing ρ. The
detailed proof is given in Appendix J.

4.2. Optimality of Symbol-by-Symbol Quantization When X = Y

Consider an extreme scenario for which X = Y ∼ N (0, 1). Taking the encoders PU|X
and PV|X as a symbol-by-symbol deterministic quantizers satisfying:

H(U) = H(V) = min{Cu, Cv},

we achieve the optimum
I(U;V) = min{Cu, Cv}.

5. Alternating Maximization Algorithm

Consider the DSIB problem for DSBS with parameter p analyzed in Section 3. The
respective optimization problem involves simultaneous search of the maximum over the
sets {PU|X} and {PV|Y}. An alternating maximization, namely, fixing PU|X, then finding
the respective optimal PV|Y and vice versa, is sub-optimal in general and may result in
convergent to a saddle point. However, for the case p = 0 with symmetric bottleneck
constraints, Proposition 4 implies that such point exists only for the BSC and Z/S channels.
This motivates us to believe that performing an alternating maximization procedure on (9)
will not result in sub-optimal saddle point, but rather converge to the optimal solution also
for the general discrete (X,Y).

Thus, we propose an alternating maximization algorithm. The main idea is to fix
PV|Y and then compute P∗U|X that attains the inner term in (9). Then, using P∗U|X, we find
the optimal P∗V|Y that attains the inner term in (10). Then, we repeat the procedure in
alternating manner until convergence.

Note that inner terms of (9) and (10) are just the standard IB problem defined in (6).
For completeness, we state here the main result from [1] and adjust it for our problem.
Consider the respective Lagrangian of (6) given by:

L(PU|X, λ) = I(U;V) + λ(C− I(X;U)). (30)

153



Entropy 2022, 24, 1321

Lemma 4 (Theorem 4 of [1]). The optimal test-channel that maximizes (30) satisfies the equation:

PU|X(u|x) =
PU(u)
Z(x, β)

e−βD(PV|X=x‖PV|U=u), (31)

where β , 1/λ and PV|U is given via Bayes’ rule, as follows:

PV|U(v|u) =
1

PU(u)
∑
x
PV|X(v|x)PU|X(u|x)PX(x). (32)

In a very similar manner to the Blahut–Arimoto algorithm [18], the self-consistent
equations can be adapted into converging, alternating iterations over the convex sets
{PU|X} = ∆⊗n

n , {PU} = ∆n, and {PV|U} = ∆⊗n
n , as stated in the following lemma.

Lemma 5 (Theorem 5 of [1]). The self-consistent equations are satisfied simultaneously at the
minima of the functional:

F(PU|X,PU,PY|U) = I(U;X) + βE
[

D(PV|X‖PV|U)
]
, (33)

where the minimization is performed independently over the convex sets of {PU|X} = ∆⊗n
n ,

{PU} = ∆n, and {PV|U} = ∆⊗n
n . The minimization is performed by the converging alternation

iterations as described in Algorithm 1.

Algorithm 1: IB iterative algorithm IBAM(args)

Input: P(0)
U|X,PXY, β, ε

R(0) = 0
t← 0
while ∆R ≥ ε do

PU(u)← ∑x PX(x)P(t)
U|X(u|x)

PX|U ←
P
(t)
U|XPX

PU

PY|U(y|u)← ∑x PY|X(y|x)PX|U(x|u)
P
(t+1)
U|X (u|x)← PU(u) exp(−βD(PY|X=x‖PY|U=u))

∑u PU(u) exp(−βD(PY|X=x‖PY|U=u))

R(t+1) ← I(P(t+1)
U ,P(t+1)

Y|U )

∆R = |R(t+1) − R(t)|
t← t + 1

Output: P(t)
U|X(u|x)

Next, we propose a combined algorithm to solve the optimization problem from (7).
The main idea is to fix one of the test-channels, i.e., PV|Y, and then find the correspond-
ing optimal opposite test-channel, i.e., PU|X, using Algorithm 1. Then, we apply again
Algorithm 1 by switching roles, i.e., fixing the opposite test-channel, i.e., PU|X, and then
identifying the optimal PV|Y. We repeat this procedure until convergence of the objective
function I(U;V). We summarize the proposed composite method in Algorithm 2.

Remark 8. Note that every alternating step of the algorithm involves finding an optimal (β∗, η∗)
that corresponds to the respective problem constraints (Cu, Cv). We have chosen to implement this
exploration step using a bisection-type method. This may result that the actual pair (Cu, Cv) is
ε-far away from the desired constraint.

154



Entropy 2022, 24, 1321

Algorithm 2: DSIB iterative algorithm DSIBAM(args)

Input: P(0)
U|X,P(0)

V|Y,PXY, Cu, Cv, ε

R(0) = 0
s← 0
while ∆R ≥ ε do

PXV(x, v)← ∑y P
(s)
V|Y(v|y)PXY(x, y)

PU|X(β)← IBAM(P
(s)
U|X,PXV, β, ε)

β∗ ← arg minβ |I(PX,PU|X(β))− Cu|
P
(s+1)
U|X ← PU|X(β∗)

PYU(y, u)← ∑x P
(s+1)
U|X (u|x)PXY(x, y)

PV|Y(η)← IBAM(P
(s)
V|Y,PYU, η, ε)

η∗ ← arg minη |I(PY,PV|Y(η))− Cv|
P
(s+1)
V|Y ← PV|Y(η∗)

PUV(u, v) = ∑y P
(s+1)
V|Y (v, y)PYU(y, u)

R(s+1) ← I(PUV)

∆R← |R(s+1) − R(s)|
s← s + 1

C(s)
u ← I(PX,P(s)

U|X)

C(s)
v ← I(PY,P(s)

V|Y)

Output: P(s)
U|X,P(s)

V|Y, R(s), C(s)
u , C(s)

v

6. Numerical Results

In this section, we focus on the DSBS setting of Section 3. In the first part of this
section, we will show using a brute-force method the existence of a sharp, phase-transition
phenomena in the optimal test-channels PU|X and PV|Y vs. DSBS parameter p. In the second
part of this section, we will evaluate the alternating maximization algorithm proposed in
Section 5; then, we compare its performance to the brute-force method.

6.1. Exhaustive Search

In this set of simulations, we again fix the transition matrix from Y to V characterized
by the parameters:

T =

(
a b

1− a 1− b

)
, (34)

chosen such that I(Y;V) = Cv. This choice defines a path b = f (a) in the (a, b) plain. Then,
for every such T we optimize I(U;V) for different values of the DSBS parameter p. The
results for a specific choice of (Cu, Cv) = (0.4, 0.6) vs. a for different values of p are plotted
in Figure 18. Note that the region of a corresponds to the continuous conversion from a
Z channel (a = 0) to a BSC (a = amax). We observe here a very sharp transition from the
optimality of Z-S channels to BSC channels configuration for a small change in p. This kind
of behavior continues to hold with a different choice of (Cu = 0.1, Cv = 0.9), as can be seen
in Figure 19.

155



Entropy 2022, 24, 1321

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
·10−2

0.27

0.27

0.28

0.28

0.28

0.28

0.28

0.28

0.28

a

I(
U

;V
)

Cu = 0.4, Cv = 0.6, p = 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
·10−2

0.27

0.27

0.27

0.27

0.27

0.27

0.27

0.27

0.27

0.27

0.27

0.27

0.27

a

I(
U

;V
)

Cu = 0.4, Cv = 0.6, p = 0.005

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
·10−2

0.26

0.26

0.26

0.26

0.26

0.26

0.26

0.26

0.26

a

I(
U

;V
)

Cu = 0.4, Cv = 0.6, p = 0.01

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
·10−2

0.21

0.21

0.21

0.21

0.21

0.21

0.22

0.22

0.22

0.22

a

I(
U

;V
)

Cu = 0.4, Cv = 0.6, p = 0.05

Figure 18. Maximal I(U;V) for fixed values (Cu, Cv) = (0.4, 0.6) and different values of p.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
·10−2

9.47

9.48

9.49

9.5

9.51

9.52

9.53

9.54

9.55
·10−2

a

I(
U

;V
)

Cu = 0.1, Cv = 0.9, p = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
·10−2

9.28

9.28

9.28

9.28

9.28

9.29

9.29

9.29
·10−2

a

I(
U

;V
)

Cu = 0.1, Cv = 0.9, p = 0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
·10−2

9.19

9.19

9.2

9.2

9.2

9.2

9.2

9.21
·10−2

a

I(
U

;V
)

Cu = 0.1, Cv = 0.9, p = 0.007

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
·10−2

9.07
9.07
9.07
9.07
9.07
9.08
9.08
9.08
9.08
9.08
9.09
9.09
9.09
9.09
9.09

·10−2

a

I(
U

;V
)

Cu = 0.1, Cv = 0.9, p = 0.01

Figure 19. Maximal I(U;V) for fixed values (Cu, Cv) = (0.1, 0.9) and different values of p.

156



Entropy 2022, 24, 1321

Next, we would like to emphasize this sharp phase transition phenomena by plotting
the optimal a that achieves the maximal I(U;V) vs the DSBS parameter p. The results for
various combinations of Cu and Cv are presented in Figures 20 and 21. We observe that the
curves are convex for p ∈ [0, pth) and constant for p > pth with a = absc. Furthermore, the
derivative of a(p) for p→ pth tends to ∞.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

p

a
Cu = 0.1, Cv = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
·10−2

0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

0.11

0.12

p

a

Cu = 0.5, Cv = 0.5

Figure 20. Optimal value of a for various values of Cu and Cv.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−2

p

a

Cu = 0.9, Cv = 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
·10−2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−2

p

a
Cu = 0.5, Cv = 0.9

Figure 21. Optimal value of a for various values of Cu and Cv = 0.9.

One may further claim that there is no sharp transition to the BSC test-channels
PU|X and PV|Y as p grows away from zero, but rather only approaches BSC. To convince
the reader that the optimal test channels are exactly BSC, we performed an alternating
maximization experiment. We fixed p > 0, Cu and Cv. Then we have chosen PV|Y as an
almost BSC channel satisfying I(Y;V) ≤ Cv and found the channel PX|U that maximizes
I(U;V) subject to I(X;U) ≤ Cu. Then, we fixed the channel PX|U and found the PY|V that
maximizes I(U;V) subject to I(Y;V) ≤ Cv. We have repeated this alternating maximization
procedure until it converges. The transition matrices were parameterized as follows:

TY|V =

(
q0 q1

1− q0 1− q1

)
, TX|U =

(
p0 p1

1− p0 1− p1

)
. (35)

The results for different values of p, Cu, and Cv are shown in Figures 22–24. We
observe that p0 and q0 rapidly converge to their respective BSC values satisfying the
mutual information constraints. Note that the last procedure is still an exhaustive search,
but it is performed in alternating fashion between the sets {PU|X} and {PV|Y}.

157



Entropy 2022, 24, 1321

0 10 20 30 40 50 60 70 80 90 100
0.11

0.11

0.11

0.12

0.12

0.12

0.12

0.12

Iteration

p = 0.1, Cu = 0.5, Cv = 0.5

p0
q0

0 10 20 30 40 50 60 70 80 90 100
1.3

1.3

1.31

1.31

1.32

1.32

1.33

1.33

1.34

1.34

1.35
·10−2

Iteration

p = 0.1, Cu = 0.9, Cv = 0.9

p0
q0

Figure 22. Alternating maximization with exhaustive search for various p, Cu, Cv.

0 10 20 30 40 50 60 70 80 90 100
0.32
0.32
0.32
0.32
0.32
0.33
0.33
0.33
0.33
0.33
0.34
0.34
0.34
0.34
0.34

Iteration

p = 0.1, Cu = 0.1, Cv = 0.1

p0
q0

0 10 20 30 40 50 60 70 80 90 100
0.32

0.32

0.32

0.32

0.32

0.33

0.33

0.33

0.33

Iteration

p = 0.25, Cu = 0.1, Cv = 0.1

p0
q0

Figure 23. Alternating maximization with exhaustive search for various p, Cu, Cv.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Iteration

p = 0.1, Cu = 0.1, Cv = 0.5

p0
q0

0 10 20 30 40 50 60 70 80 90 100
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

p = 0.1, Cu = 0.1, Cv = 0.9

p0
q0

Figure 24. Alternating maximization with exhaustive search for various p, Cu, Cv.

6.2. Alternating Maximization

In this section, we will evaluate the algorithm proposed in Section 5. We focus on the
DSBS setting of Section 3 with various values of problem parameters.

158



Entropy 2022, 24, 1321

First, we explore the convergence behavior of the proposed algorithm. Figure 25
shows the objective function I(U;V) on every iteration step for representative fixed-channel
transition parameters p and the constraints Cu and Cv. We observe a slow convergence
to a final value for p = 0 and Cu = Cv = 0.2, but once the constraints and the transition
probability are increased, the algorithm converges much more rapidly. The non-monotonic
behavior in some regimes is justified with the help of Remark 8. In Figure 26, we see the
respective test-channel probabilities α0 + α1, 1− α0, β0 + β1, and 1− β1. First, note that if
α0 + α1 = 1, then PX|U is a BSC. Similarly, if β0 + β1 = 1, then PY|V is a BSC. Second, if
1− α0 = 1, then PX|U is a Z-channel. Similarly, if 1− β1 = 1, then PY|V is an S-channel.
We observe that for p = 0, the test-channels PX|U and PY|V converge to Z- and S-channels,
respectively. As for all other settings, the test-channels converge to BSC channels.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
5.06
5.08

5.1
5.12
5.14
5.16
5.18

5.2
5.22
5.24

5.26
5.28

5.3
5.32
5.34

·10−2

Iteration

I(
U

;V
)

(a) p = 0, Cu = Cv = 0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.53

0.53

0.53

0.53

0.53

0.53

0.54

0.54

0.54

Iteration

I(
U

;V
)

(b) p = 0, Cu = Cv = 0.7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.18

0.18

0.18

0.18

0.18

0.18

0.18

0.18

0.18

0.18

Iteration

I(
U

;V
)

(c) p = 0.1, Cu = Cv = 0.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47

Iteration

I(
U

;V
)

(d) p = 0.001, Cu = 0.9 and Cv = 0.5
Figure 25. Convergence of I(U;V) for various values of p, Cu and Cv.

Finally, we compare the outcome of Algorithm 2 to the optimal solution achieved by
the brute-force method, namely, evaluating (12) for every PU|X and PV|Y that satisfy the
problem constraints. The results for various values of channel parameters are shown in
Figure 27. We observe that the proposed algorithm achieves the optimum for any DSBS
parameter p and some representative constraints Cu and Cv.

159



Entropy 2022, 24, 1321

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration

α0+α1
1-α0
β0+β1
1-β1

(a)

0 10 20 30 40 50 60 70 80 90 100 110 120
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iteration

α0+α1
1-α0
β0+β1
1-β1

(b)

0 10 20 30 40 50 60 70 80 90 100 110 120
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Iteration

α0+α1
1-α0
β0+β1
1-β1

(c)

0 5 10 15 20 25 30 35 40 45 50 55 60

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iteration

α0+α1
1-α0
β0+β1
1-β1

(d)
Figure 26. Convergence of I(U;V) p with: (a) Cu = Cv = 0.2, p = 0; (b) Cu = Cv = 0.7, p = 0; (c)
Cu = Cv = 0.5, p = 0.1; (d) Cu = 0.65, Cv = 0.4, p = 0.1.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

I(
U

;V
)

AM Cu=Cv=0.2
BF Cu=Cv=0.2
AM Cu=Cv=0.5
BF Cu=Cv=0.5
AM Cu=Cv=0.65
BF Cu=Cv=0.65
AM Cu=Cv=0.5
BF Cu=Cv=0.3

Figure 27. Comparison of the proposed alternating maximization algorithm and the brute-force
search method for various problem parameters.

7. Concluding Remarks

In this paper, we have considered the Double-Sided Information Bottleneck prob-
lem. Cardinality bounds on the representation’s alphabets were obtained for an arbitrary
discrete bivariate source. When X and Y are binary, we have shown that taking binary
auxiliary random variables is optimal. For DSBS, we have shown that BSC test-channels
are optimal when p → 0.5. Furthermore, numerical simulations for arbitrary p indi-
cate that Z -and S-channels are optimal for p = 0. As for the Gaussian bivariate source,

160



Entropy 2022, 24, 1321

representation of I(U;V) utilizing Hermite polynomials was given. In addition, the opti-
mality of the Gaussian test-channels was demonstrated for vanishing SNR. Moreover, we
have constructed a lower bound attained by deterministic quantizers that outperforms
the jointly Gaussian choice at high SNR. Note that the solution for the n-letter problem
max 1

n I(U;V) for U→ Xn → Yn → V under constraints I(U;Xn) ≤ nCu and I(V;Yn) ≤ nCv
does not tensorize in general. For Xn = Yn ∼ Ber⊗n(0.5), we can easily achieve the cut-
set bound I(U;V)/n = min{Cu, Cv}. In addition, if time-sharing is allowed, the results
change drastically.

Finally, we have proposed an alternating maximization algorithm based on the stan-
dard IB [1]. For the DSBS, it was shown that the algorithm converges to the global
optimal solution.

Author Contributions: Conceptualization, O.O. and S.S.; methodology, M.D., O.O., and S.S.; software,
M.D.; formal analysis, M.D.; writing—original draft preparation, M.D.; writing—review and editing,
M.D.; supervision, S.S. All authors have read and agreed to the published version of the manuscript.

Funding: The work has been supported by the European Union’s Horizon 2020 Research And
Innovation Programme, grant agreement no. 694630, by the ISF under Grant 1641/21, and by the
WIN consortium via the Israel minister of economy and science.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Proposition 2

Before proceeding to proof Proposition 2, we need the following auxiliary results.

Lemma A1. Let PY|X be an arbitrary binary-input, ternary-output channel, parameterized using
the following transition matrix:

T ,




a b
c d

1− a− c 1− b− d


. (A1)

Consider the function p 7→ φ(p, λ) = h(Tp)− λhb(p) defined on [0, 1]. This function has the
following properties:

1. If φ(p, λ) is linear on a sub-interval of [0, 1], then it is linear for every p ∈ [0, 1].
2. Otherwise, it is strictly convex over [0, 1] or there are points pl and pu such that 0 < pl <

pu < 1 where

φ(p, λ) =





strictly convex 0 < p < pl = I1,
strictly concave pl < p < pu = I2,
strictly convex pu < p < 1 = I3.

(A2)

We postpone the proof of this lemma to Appendix K.

Lemma A2. The convex envelope of φ(·) at any point q ∈ [0, 1] can be obtained as a convex
combination of only points in I1 and I3.

We postpone the proof of this lemma to Appendix L and proceed to proof Proposition 2.
Note that if FT(x) is strictly convex in [0, hb(q)], then by the paragraph following (Theorem
2.3 of [17]) |U | = 2, we are done.

From now on, we consider the case where FT(x) is not strictly convex. Then, there is
an interval L ⊂ [0, h(q)] and a ∈ R+ such that

FT(x) = a + λL · x ∀x ∈ L. (A3)

161



Entropy 2022, 24, 1321

Let t0 and t1 represent the columns of T corresponding to X = 0 and X = 1, respectively,
Moreover let q , P(X = 0) and p , (p, p̄)T be the probability vector of an arbitrary binary
random variable, where p̄ , 1− p.

Assume x1, x2 ∈ L and x1 6= x2. Then, there must be {α1i, p1i}i=1,2,3 and {α2i, p2i}i=1,2,3
such that

3

∑
i=1

α1i p1i = q,
3

∑
i=1

α1ihb(p1i) = x1,
3

∑
i=1

α1ih(Tp1i) = a + λLx1, (A4)

3

∑
i=1

α2i p2i = q,
3

∑
i=1

α2ihb(p2i) = x2,
3

∑
i=1

α2ih(Tp2i) = a + λLx2. (A5)

Lemma A3. The set {p11, p12, p13, p21, p22, p23} must contain at least three distinct points.

We postpone the proof of this lemma to Appendix M.
Consider the function p 7→ φ(p) = φ(p, λL) = h(Tp)− λLhb(p) defined on [0, 1]. We

have that
3

∑
i=1

α1iφ(p1i) =
3

∑
i=1

α2iφ(p2i) = a. (A6)

In addition, if we define ψ(·) to be the lower convex envelope of φ(·), then ψ(q) = a. Thus,
the lower convex envelope of φ(·) at q is attained by two linear combinations.

By Lemma Lemma A3, the set {p11, p12, p13, p21, p22, p23}must contain at least three
distinct points, say {p11, p21, p22}. Due to Lemma A2, they are all in I1 ∪ I3. Furthermore,
by the pigeonhole principle, we must have that one of the intervals contains at least two
points. Assume WLOG that {p11, p21} ∈ I1. For any γ ∈ [0, 1], let S = γ̄α11 + γα21 and
consider the following set of weights/probabilities:
{(

S,
γ̄α11

S
· p11 +

γα21

S
· p21

)
, (γ̄α12, p12), (γ̄α13, p13), (γα22, p22), (γα23, p23)

}
. (A7)

Note that
S + γ̄α12 + γ̄α13 + γα22 + γα23 = 1, (A8)

and
γ̄α11 · p11 + γα21 · p21γ̄α12 · p12 + γ̄α13, p13 + γα22 · p22 + γα23 · p23 = q, (A9)

but since {p11, p21} ∈ I1

S · φ
(

γ̄α11

S
· p11 +

γα21

S
· p21

)
+ γ̄α12φ(p12) + γ̄α13φ(p13) + γα22φ(p22) + γα23φ(p23) (A10)

<S ·
(

γ̄α11

S
·φ(p11)+

γα21

S
·φ(p21)

)
+ γ̄α12φ(p12)+ γ̄α13φ(p13)+γα22φ(p22)+γα23φ(p23) = a, (A11)

thus, it attains a smaller value than a, provided that φ is strictly convex on I1. This
contradicts our assumption that the convex envelope at q equals a, and thus φ(·) must
contain a linear segment in I1.

By Lemma A1, this can happen only if p is linear for every p ∈ [0, 1]. In particular:

h(Tp)− λLhb(p) = φ(p) = (1− p)φ(0) + pφ(1) = (1− p)h(t0) + ph(t1). (A12)

Note that for any choice of PX|U=u

H(Y|U = u) = h(Tpu) (A13)

= φ(pu) + λLhb(pu) (A14)

= (1− pu)h(t0) + puh(t1) + λLhb(pu). (A15)

162



Entropy 2022, 24, 1321

Taking the expectation we obtain:

H(Y|U) = (1− q)h(t0) + qh(t1) + λLx. (A16)

This implies that
FT(x) = (1− q)h(t0) + qh(t1) + λLx, (A17)

and this is attained by any choice of PU|X satisfying H(X|U) = x. In particular the choice
U = X⊕ Z, where Z ∼ Ber(δ) is statistically independent of X and is chosen such that
H(X|U) = x, attains FT(x). Thus, |U | = 2 suffices even if FT(x) is not strictly convex.

Appendix B. Proof of Lemma 3

Let PU|X and PV|Y be the test-channels from X to U and from Y to V, respectively. The
joint probability function of U and V can be expressed via Bayes’ rule and the Markov chain
condition U→ X→ Y → V as:

PUV(u, v) = 4 · PU(u)PV(v)∑
x,y

PX|U(x|u)PXY(x, y)PY|V(y|v). (A18)

Since I(U;V) = E[log(PUV/PU × PV)], we define K(u, v, p) as the ratio between the
joint distribution of U and V relative to the respective product measure. Note that:

K(u, v, p) , PUV(u, v)
PU(u)PV(v)

(A19)

= 4 ∑
x,y

PX|U(x|u)PXY(x, y)PY|V(y|v) (A20)

= 2(PX|U(0|u) · p̄ · PY|V(0|u) + PX|U(1|u) · p · PY|V(0|u)) (A21)

+ 2(PX|U(0|u) · p · PY|V(1|u) + PX|U(1|u) · p̄ · PY|V(1|u)). (A22)

Denoting αu , PX|U(1|u) and βv , PY|V(0|v), we obtain:

K(u, v, p) = 2(ᾱu p̄βv + αu pβv + ᾱu pβ̄v + αu p̄β̄v) = 2αu ∗ βv ∗ p. (A23)

The last expression can also be represented as follows:

2αu ∗ βv ∗ p = 2(1− p)(αu + βv − 2αuβv) + 2p(1− αu − βv + 2αuβv) (A24)

= 2αu + 2βv − 4αuβv + 2p(1− 2αu − 2βv + 4αuβv) (A25)

= 1− (1− 2p)(1− 2αu − 2βv + 4αuβv) (A26)

= 1− (1− 2p)(1− 2αu)(1− 2βv). (A27)

Thus,

I(U;V) = ∑
u,v

PUV(u, v) log
PUV(u, v)

PU(u)PV(v)
(A28)

= ∑
u,v

PU(u)PV(v)K(u, v, p) log K(u, v, p). (A29)

Furthermore, note that since |(1− 2p)(1− 2αu)(1− 2βv)| < 1, we can utilize Taylor’s
expansion of log(1− x) to obtain:

log K(u, v, p) = −
∞

∑
n=1

(1− 2p)n(1− 2αu)n(1− 2βv)n

n
, (A30)

163



Entropy 2022, 24, 1321

and

K(u, v, p) log K(u, v, p) = −
∞

∑
n=1

(1− 2p)n(1− 2αu)n(1− 2βv)n

n

+
∞

∑
n=1

(1− 2p)n+1(1− 2αu)n+1(1− 2βv)n+1

n
. (A31)

Therefore:

I(U;V) = −
∞

∑
n=1

(1− 2p)nE[(1− 2αU)
n]E[(1− 2βV)

n]

n
(A32)

+
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αV)

n+1]E
[
(1− 2βV)

n+1]

n
(A33)

(a)
= −

∞

∑
n=2

(1− 2p)nE[(1− 2αU)
n]E[(1− 2βV)

n]

n
(A34)

+
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αV)

n+1]E
[
(1− 2βV)

n+1]

n
(A35)

= −
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αU)

n+1]E
[
(1− 2βV)

n+1]

n + 1
(A36)

+
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αV)

n+1]E
[
(1− 2βV)

n+1]

n
(A37)

=
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αU)

n+1
]
E
[
(1− 2βV)

n+1
]
· 1

n(n + 1)
, (A38)

where (a) follows since E[αU] = E[βV] =
1
2 . This completes the proof.

Appendix C. Auxiliary Concavity Lemma

As a preliminary step to proving Theorem 1, we will need the following auxiliary
lemma.

Lemma A4. The function f (x) = (1− 2h−1
b (x))2 is concave.

Proof. Denoting g(x) , h−1
b (x), we have f (x) = (1− 2g(x))2. Since f (x) is twice differen-

tiable, it is sufficient to show that f ′(x) is decreasing. The first derivative is given by:

f ′(x) = −4(1− 2g(x))g′(x). (A39)

Since

hb(x) = −x log x− (1− x) log(1− x), (A40)

h′b(x) = log
1− x

x
, (A41)

h′′b (x) = − 1
(1− x) ln 2

− 1
x ln 2

= − 1
x(1− x) ln 2

, (A42)

utilizing the inverse function derivative property, we obtain:

g(x) = h−1
b (x), (A43)

g′(x) =
1

h′(g(x))
=

1

log 1−g(x)
g(x)

. (A44)

164



Entropy 2022, 24, 1321

In addition, the second order derivative is given by:

g′′(x) =
log e

log3 1−g(x)
g(x)

g(x)
1− g(x)

1
(g(x))2 (A45)

=
log e

log3 1−g(x)
g(x)

1
(1− g(x))g(x)

(A46)

=
(g′(x))3

ln 2g(x)(1− g(x))
. (A47)

Define

r(t) , −4(1− 2t)
log 1−t

t
. (A48)

Note that f ′(x) = r(g(x)). Since g(x) is increasing, in order to show that f ′(x)
decreasing, it suffices to show that r(t) decreasing. The first order derivative of r(t) is
given by:

r′(t) =
8

log2 1−t
t

1
t(1− t)

(
t(1− t) log

1− t
t
− 1− 2t

ln 4

)
.

Define α , 1− 2t such that t = 1
2 (1− α). Note that α ∈ [0, 1]. We obtain:

r′(t) =
32

log2 1+α
1−α

1
1− α2

(
1
4
(1− α2) log

1 + α

1− α
− α

ln 4

)
.

Now, making use of the expansion log(1 + x) = ∑∞
k=1(−1)k+1 xk

k , we have:

log
1+α

1−α
=

∞

∑
k=1

(−1)k+1 αk

k
−

∞

∑
k=1

(−1)k+1 (−α)k

k
= 2 ∑

k odd

αk

k
.

Thus,

1
4
(1− α2) log

1 + α

1− α
− α

ln 4

=
1
2 ∑

k odd

αk

k
− 1

2 ∑
k odd

αk+2

k
− α

ln 4

= α

(
1
2
− 1

ln 4

)
+

1
2 ∑

k odd
k≥3

αk
(

1
k
− 1

k− 2

)

(a)
< α

(
1
2
− 1

ln e2

)
− ∑

k odd
k≥3

αk

k(k− 2)
< 0,

where (a) follows since α > 0. Thus, r′(t) < 0 and f (x) is concave.

Appendix D. Proof of Theorem 1

Plugging p← 1
2 − ε (ε , 1

2 − p) in (14), we obtain:

K(u, v, ε) = 1 + 2ε(1− 2αu)(1− 2βv). (A49)

Now, we rewrite I(U;V) with explicit dependency on ε as:

I(ε) = ∑
u,v

PU(u)PV(v)K(u, v, ε) log K(u, v, ε). (A50)

165



Entropy 2022, 24, 1321

We would like to expand I(ε) with Taylor series around ε = 0. Note that I(0) = 0 =
I′(ε)|ε=0. Furthermore, the second derivative is given by:

I′′(ε)|ε=0 = 4 log e ·
(

∑
u

PU(u)(1− 2αu)
2
)(

∑
v

PV(v)(1− 2βv)
2
)

.

Hence,

I(ε) = 2ε2 log e ·
(

∑
u

PU(u)(1− 2αu)
2
)(

∑
v

PV(v)(1− 2βv)
2
)
+ o(ε2).

Now, note that

αu =

{
h−1

2 (H(X|U = u)), αu ≤ 1
2

1− h−1
2 (H(X|U = u)), αu > 1

2
(A51)

with similar relation for βv. Therefore,

I(ε) =
2ε2

ln 2
·Eu

[
(1− 2h−1

2 (H(X|U = u)))2
]
·Ev

[
(1− 2h−1

2 (H(Y|V = v)))2
]
+ o(ε2)

≤ 2ε2 log e · (1− 2h−1
2 (H(X|U)))2(1− 2h−1

2 (H(Y|V)))2 + o(ε2)

≤ 2ε2 log e · (1− 2h−1
2 (1− Cx))

2(1− 2h−1
2 (1− Cy))

2 + o(ε2),

where the first inequality follows since the function f : x 7→ (1− 2h−1
2 (x))2 is concave by

Lemma A4 and applying Jensen’s inequality, and the second inequality follows from rate
constraints.

Appendix E. Proof of Proposition 4

Suppose that the optimal test-channel PV|X is given by the following transition matrix:

TV|X =

(
a b

1− a 1− b

)
. (A52)

Assume in contradiction that the opposite optimal test-channel PU|X is symmetric to
PV|X and is given by:

TU|X =

(
1− b 1− a

b a

)
. (A53)

Applying Bayes’ rule on (A53), we obtain:

TX|U =

(
1− α0 1− α1

α0 α1

)
=

(
b̄

ā+b̄
b

a+b
ā

ā+b̄
a

a+b

)
. (A54)

It was shown in (Section IV.D of [17]) that for fixed PV|X given by (A52), the optimal
PX|U must satisfy the following equation:

(a− b)(hb(α1)− hb(α0))(h′b(α̂0)− h′b(α̂1)) + (h′b(α1)− h′b(α0))(hb(α̂1)− hb(α̂0))

+ (a− b)(α1 − α0)(h′b(α0)h′b(α̂1)− h′b(α1)h′b(α̂0)) = 0, (A55)

where α̂0 , aα0 + bᾱ0 and α̂1 , aα1 + bᾱ1. Plugging α0 and α1 from (A54) in (A55) results
in a contradiction, thus establishing the proof of Proposition 4.

166



Entropy 2022, 24, 1321

Appendix F. Proof of Proposition 6

By Lemma 3, the objective function of (7) for a DSBS setting, denoted here by I(p), is
given by:

I(p) = EPU×PV
[K(U,V, p) log K(U,V, p)], (A56)

where K(u, v, p) can be expressed as:

K(u, v, p) = 1 + (1− 2p)(1− 2αu ∗ βv) = 1 + (1− 2p)(1− 2αu)(1− 2βv). (A57)

Since log(1 + x) ≤ x, we have the following upper bound on I(p):

I(p) = ∑
u,v

PU(u)PV(v)K(u, v, p) log K(u, v, p) (A58)

≤∑
u,v

PU(u)PV(v)(1 + (1− 2p)(1− 2αu)(1− 2βv))(1− 2p)(1− 2αu)(1− 2βv) (A59)

= (1− 2p)(1− 2 ∑
u

PU(u)αu)(1− 2 ∑
v

PV(v)βv) (A60)

+ (1− 2p)2 ∑
u

PU(u)(1− 2αu)
2 ∑

v
PV(v)(1− 2βv)

2 (A61)

= (1− 2p)(1− 2 ∑
u

PU(u)P(X = 1|U = u))(1− 2 ∑
v

PV(v)P(Y = 1|V = v)) (A62)

+ (1−2p)2 ∑
u

PU(u)(1−2P(X = 1|U = u))2 ∑
v

PV(v)(1−2P(Y = 1|V = v))2

= (1− 2p)(1− 2P(X = 1))(1− 2P(Y = 1)) (A63)

+ (1−2p)2 ∑
u

PU(u)(1−2h−1
2 (H(X|U = u)))2 ∑

v
PV(v)(1−2h−1

2 (H(Y = |V = v)))2

(a)
≤ (1− 2p)2(1− 2h−1

2 (H(X|U)))2(1− 2h−1
2 (H(Y = |V)))2 (A64)

(b)
≤ (1− 2p)2(1− 2h−1

2 (1− Cx)
2(1− 2h−1

2 (1− Cy)
2, (A65)

where the inequality in (a) follows from Lemma A4 and inequality in (b) follows from the
problem constraints.

Appendix G. Proof of Proposition 7

We assume U and V are continuous RVs. The proof for the discrete case is identical.
The joint density fUV(u, v) can be expressed with explicit dependency on ρ as follows:

f(u,v;ρ), fU(u) fV(v)
∫∫

R2
fX|U(x|u)M(x, y; ρ) fY|V(y|v)dxdy,

where M(x, y; ρ) = ∑∞
n=0

ρn

n! Hn(x)Hn(y) [66]. Similarly, I(U;V) can also be written with
explicit dependency on ρ

I(ρ) , Iρ(U;V) =
∫ ∫

f (u, v; ρ) log
f (u, v; ρ)

fU(u) fV(v)
dudv.

Appendix H. Proof of Proposition 8

Let (U,X,Y,V) be jointly Gaussian Random variables, such that

X = σUXU+
√

1− σ2
UXZu, Y = σYVV+

√
1− σ2

YVZv,

167



Entropy 2022, 24, 1321

where Zu ∼ N (0, 1), Zv ∼ N (0, 1), Zu ⊥ U, Zv ⊥ V. Due to Proposition 7, the mutual
information for jointly Gaussian (U,X,Y,V) is given by

I(U;V) = EUV

[
log

(
∞

∑
n=0

ρn

n!
E[Hn(X)|U]E[Hn(Y)|V]

)]

(a)
= EUV

[
log

(
∞

∑
n=0

(ρσUXσYV)
n

n!
Hn(U)Hn(V)

)]

(b)
= EUV


log


 1√

1− ρ2σ2
UXσ2

YV

exp

(
2ρσUXσYVUV− ρ2σ2

UXσ2
YV(U

2 + V2)

2(1− ρ2σ2
UXσ2

YV)

)




= −1
2

log(1−ρ2σ2
UXσ2

YV) +
ρσUXσYV

1−ρ2σ2
UXσ2

YV

E[UV]− ρ2σ2
UXσ2

YV

2(1−ρ2σ2
UXσ2

YV)
(E
[
U2
]
+E

[
V2
]
)

= −1
2

log(1− ρ2σ2
UXσ2

YV),

where (a) and (b) follow from the properties of Mehler Kernel [66].
By the Mutual Information constraints we have:

σ2
UX = 1− e−2Cu σ2

YV = 1− e−2Cv . (A66)

Hence,

I(U;V) = −1
2

log(1− ρ2(1− e−2Cu)(1− e−2Cv)). (A67)

Appendix I. Proof of Proposition 9

We choose U and V to be deterministic functions of X and Y, respectively, i.e., U =
sign(X) and V = sign(Y). In such case, the rate constraints are met with equality, namely,
I(U;X) = 1 = I(Y;V). We proceed to evaluate the achievable rate:

I(U;V) = 1− P(U = 0)h2(P(V = 1|U = 0))− P(U = 1)h2(P(V = 0|U = 1))
(a)
= 1− h2(P(U 6= V)),

where equality in (a) follows since P(V = 1|U = 0) = P(V = 0|U = 1) by symmetry. We
therefore obtain the following formula for the “error probability”:

P(V 6= U) = 1− P(X < 0,Y < 0)− P(X > 0,Y > 0)
(a)
= 1− 2P(X < 0,Y < 0),

where (a) also follows from symmetry. Utilizing Sheppard’s Formula (Chapter 5, p.107
of [68]), we have 1− 2P(X < 0,Y < 0) = arccos ρ

π . This completes the proof of the proposi-
tion.

Appendix J. Proof of Theorem 2

We would like to approximate I(ρ) in the limit ρ → 0 using a Taylor series up to a
second order in ρ. As a first step, we evaluate the first two derivatives of f (u, v; ρ) at ρ = 0.
Note that M(x, y; 0) = 1 and

dM
dρ

∣∣
ρ=0 = xy,

d2M
dρ2

∣∣
ρ=0 = (x2 − 1)(y2 − 1). (A68)

Thus, f (u, v; 0) = fU(u) fV(v),

d f
dρ

∣∣∣∣
ρ=0

= fU(u) fV(v)E[X|U = u]E[Y|V = v],

168



Entropy 2022, 24, 1321

and

d2 f
dρ2

∣∣
ρ=0 = fU(u) fV(v)

∫ ∞

−∞

∫ ∞

−∞
fX|U(x|u)d2M(x, y; ρ)

dρ2

∣∣
ρ=0 fY|V(y|v)dxdy (A69)

= fU(u) fV(v)
(∫ ∞

−∞
(x2 − 1) fX|U(x|u)dx

)(∫ ∞

−∞
(y2 − 1) fY|V(y|v)dy

)
(A70)

= fU(u) fV(v)
(
E[X2|U = u]− 1

)(
E[Y2|V = v]− 1

)
. (A71)

Expanding I(ρ) in Taylor series around ρ = 0 gives us I(0) = 0 = dI(ρ)
dρ

∣∣
ρ=0 and

d2 I(ρ)
dρ2

∣∣
ρ=0 = log e ·E

[
(E[X|U])2

]
E
[
(E[Y|V])2

]
.

Thus,

I(ρ) =
ρ2 log e

2
E
[
(E[X|U])2

]
E
[
(E[Y|V])2

]
+ o(ρ2). (A72)

Note that E[X] = E[E[X|U]] and

1 = E[X2] = E
[
E[X2|U]

]
= E[var[X|U]] +E

[
(E[X|U])2

]
. (A73)

In addition, by (Corollary to Theorem 8.6.6 of [69]), E[var[X|U]] ≥ 1
2πe e2h(X|U).

Moreover, from MI constraint, we have

I(X;U) = h(X)− h(X|U) = 1
2

log(2πe)− h(X|U) ≤ Cu,

and therefore h(X|U) ≥ log(2πe)− Cu. Thus, we obtain:

− Cu ≤
1
2

log(E[var[X|U]])→ E[var[X|U]] ≥ 2−2Cu . (A74)

Combining (A73) and (A74), we obtain E
[
(E[X|U])2] ≤ 1− 2−2Cu .

In a very similar method, one can show that E
[
(E[Y|V])2] ≤ 1− 2−2Cv .

Thus, for ρ→ 0

I(ρ) ≤ ρ2 log e
2

(1− 2−2Cu)(1− 2−2Cv) + o(ρ2). (A75)

Appendix K. Proof of Lemma A1

The function φ(p, λ) is a twice differentiable continuous function with respective
second derivative given by

∂2φ(p, λ)

∂p2 = φpp(p, λ)=− (a−b)2

ap + bp̄
− (c−d)2

cp + dp̄
− (a−b +c−d)2

1−(a+c)p−(b+d) p̄
+

λ

pp̄
. (A76)

The former can also be written as a proper rational function [70], i.e., φpp(p, λ) = N(p)
D(p) ,

where

N(p) = λ(ap + bp̄)(cp + dp̄)(1−(a + c)p−(b + d) p̄)−(a−b)2(cp + dp̄)(1−(a + c)p

−(b + d) p̄)pp̄−(c−d)2(ap + bp̄)(1−(a + c)p−(b + d) p̄)pp̄

−(a−b + c−d)2(ap + bp̄)(cp + dp̄)pp̄, (A77)

and
D(p) = pp̄(ap + bp̄)(cp + dp̄)(1− (a + c)p− (b + d) p̄). (A78)

169



Entropy 2022, 24, 1321

Note that φpp(p, λ) equals +∞ for p ∈ {0, 1} and hence is positive for this set of points.

1. Suppose φ(p, λ) is linear over some interval I ⊂ [a, b]. In such case, its second
derivative must be zero over this interval, which implies that N(p) is zero over this
interval. Since N(p) is a degree 3 polynomial, it can be zero over some interval if and
only if it is zero everywhere. Thus, if φ(p, λ) is linear over some interval I , then it is
non-linear for every p ∈ [0, 1].

2. For p ∈ (0, 1), D(p) > 0 and N(p) is a degree 3 polynomial in p. Since N(0+) > 0 and
N(1−) > 0, this polynomial has no sign changes or has exactly two sign changes in
(0, 1). Therefore, either φ(p, λ) is convex or there are two points p1 and p2, 0 < p1 <
p2 < 1, such that φ(p, λ) is convex in p ∈ [0, p1] ∪ [p2, 1] and concave in p ∈ [p1, p2].

Appendix L. Proof of Lemma A2

Let I2 = [c, d] ⊂ [0, 1] and assume in contradiction that {αi, pi}i=1,2,3 attains the lower
convex envelope at point q, and that p2 ∈ I2. By assumption, we have that

α1 p1 + α2 p2 + α3 p3 = q. (A79)

We can write p2 = γ̄c + γd for some γ ∈ (0, 1) and still

α1 p1 + α2γ̄c + α2γd + α3 p3 = q. (A80)

However, due to concavity of φ(·) in I2, we must have

α1φ(p1) + α2γ̄φ(c) + α2γφ(d) + α3φ(p3) ≤ α1φ(p1) + α2φ(γ̄c + γd) + α3φ(p3)

= α1φ(p1) + α2φ(p2) + α3φ(p3). (A81)

This implies that there is a linear combination of point from I1 ∪ I3 that attains a lower
value than φ(q), contradicting the assumption that φ(q) is the lower convex envelope at
point q. Since p2 was arbitrary, the lemma holds.

Appendix M. Proof of Lemma A3

Assume in contradiction that there are no distinct points, i.e., it has p11 = p12 = p13 =
p21 = p22 = p23 = p, then p = q and x1 = x2 ,which contradicts the initial assumption
that x1 6= x2. Assume WOLG that p11 = p12 = p13 = p21 = p22 = p but p23 6= p. Since
p11 = p12 = p13 = p implies p = q, then p23 must be q as well in contradiction to the initial
assumption.

Consider the following cases:

• p11 = p12 = p13 = p21 = p1, p22 = p23 = p2 , p1 6= p2: This implies p1 = q.
Furthermore,

α21q + α22 p2 + (1− α21 − α22)p2 = q→ (1− α21)p2 = (1− α21)q, (A82)

which holds only if p2 = q in contradiction to our initial assumption.
• p11 = p12 = p21 = p22 = p1, p13 = p23 = p2 , p1 6= p2: This implies

(α11 + α12)p1 + (1− α21 − α22)p2 = q = (α21 + α22)p1 + (1− α21 − α22)p2, (A83)

which holds only if α11 + α12 = α21 + α22. In such case

x1 = (α11 + α12)h(p1) + (1− α11 − α12)h(p2)

= (α21 + α22)h(p1) + (1− α21 − α22)h(p2) = x2, (A84)

in contradiction to the assumption x1 6= x2.

Thus, the lemma holds.

170



Entropy 2022, 24, 1321

References
1. Tishby, N.; Pereira, F.C.N.; Bialek, W. The information bottleneck method. In Proceedings of the 37th Annual Allerton Conference

on Communication, Control and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.
2. Pichler, G.; Piantanida, P.; Matz, G. Distributed information-theoretic clustering. Inf. Inference J. Ima 2021, 11, 137–166. [CrossRef]
3. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall: Hoboken, NJ, USA, 1988.
4. Gupta, N.; Aggarwal, S. Modeling Biclustering as an optimization problem using Mutual Information. In Proceedings of the

International Conference on Methods and Models in Computer Science (ICM2CS), Delhi, India, 14–15 December 2009 ; pp. 1–5.
5. Hartigan, J. Direct Clustering of a Data Matrix. J. Am. Stat. Assoc. 1972, 67, 123–129. [CrossRef]
6. Madeira, S.; Oliveira, A. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinform.

2004, 1, 24–45. [CrossRef] [PubMed]
7. Dhillon, I.S.; Mallela, S.; Modha, D.S. Information-Theoretic Co-Clustering. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2003, (KDD ’03), Washington, DC, USA, 24–27 August 2003;
pp. 89–98.

8. Courtade, T.A.; Kumar, G.R. Which Boolean Functions Maximize Mutual Information on Noisy Inputs? IEEE Trans. Inf. Theory
2014, 60, 4515–4525. [CrossRef]

9. Han, T.S. Hypothesis Testing with Multiterminal Data Compression. IEEE Trans. Inf. Theory 1987, 33, 759–772. [CrossRef]
10. Westover, M.B.; O’Sullivan, J.A. Achievable Rates for Pattern Recognition. IEEE Trans. Inf. Theory 2008, 54, 299–320. [CrossRef]
11. Painsky, A.; Feder, M.; Tishby, N. An Information-Theoretic Framework for Non-linear Canonical Correlation Analysis. arXiv

2018, arXiv:1810.13259.
12. Williamson, A.R. The Impacts of Additive Noise and 1-bit Quantization on the Correlation Coefficient in the Low-SNR Regime.

In Proceedings of the 57th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 24–27
September 2019; pp. 631–638.

13. Courtade, T.A.; Weissman, T. Multiterminal Source Coding Under Logarithmic Loss. IEEE Trans. Inf. Theory 2014, 60, 740–761.
[CrossRef]

14. Pichler, G.; Piantanida, P.; Matz, G. Dictator Functions Maximize Mutual Information. Ann. Appl. Prob. 2018, 28, 3094–3101.
[CrossRef]

15. Dobrushin, R.; Tsybakov, B. Information transmission with additional noise. IRE Trans. Inf. Theory 1962, 8, 293–304. [CrossRef]
16. Wolf, J.; Ziv, J. Transmission of noisy information to a noisy receiver with minimum distortion. IEEE Trans. Inf. Theory 1970,

16, 406–411. [CrossRef]
17. Witsenhausen, H.S.; Wyner, A.D. A Conditional Entropy Bound for a Pair of Discrete Random Variables. IEEE Trans. Inf. Theory

1975, 21, 493–501. [CrossRef]
18. Arimoto, S. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans. Inf. Theory 1972,

18, 14–20. [CrossRef]
19. Blahut, R. Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 1972, 18, 460–473. [CrossRef]
20. Aguerri, I.E.; Zaidi, A. Distributed Variational Representation Learning. IEEE Trans. Pattern Anal. 2021, 43, 120–138. [CrossRef]
21. Hassanpour, S.; Wuebben, D.; Dekorsy, A. Overview and Investigation of Algorithms for the Information Bottleneck Method. In

Proceedings of the SCC 2017: 11th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany,
6–9 February 2017; pp. 1–6.

22. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem,
Israel, 2002.

23. Sutskover, I.; Shamai, S.; Ziv, J. Extremes of information combining. IEEE Trans. Inf. Theory 2005, 51, 1313–1325. [CrossRef]
24. Zaidi, A.; Aguerri, I.E.; Shamai, S. On the Information Bottleneck Problems: Models, Connections, Applications and Information

Theoretic Views. Entropy 2020, 22, 151. [CrossRef]
25. Wyner, A.; Ziv, J. A theorem on the entropy of certain binary sequences and applications–I. IEEE Trans. Inf. Theory 1973,

19, 769–772. [CrossRef]
26. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information Bottleneck for Gaussian Variables. J. Mach. Learn. Res. 2005,

6, 165–188.
27. Blachman, N. The convolution inequality for entropy powers. IEEE Trans. Inf. Theory 1965, 11, 267–271. [CrossRef]
28. Guo, D.; Shamai, S.; Verdú, S. The interplay between information and estimation measures. Found. Trends Signal Process. 2013,

6, 243–429. [CrossRef]
29. Bustin, R.; Payaro, M.; Palomar, D.P.; Shamai, S. On MMSE Crossing Properties and Implications in Parallel Vector Gaussian

Channels. IEEE Trans. Inf. Theory 2013, 59, 818–844. [CrossRef]
30. Sanderovich, A.; Shamai, S.; Steinberg, Y.; Kramer, G. Communication Via Decentralized Processing. IEEE Trans. Inf. Theory 2008,

54, 3008–3023. [CrossRef]
31. Smith, J.G. The information capacity of amplitude-and variance-constrained scalar Gaussian channels. Inf. Control. 1971,

18, 203–219. [CrossRef]
32. Sharma, N.; Shamai, S. Transition points in the capacity-achieving distribution for the peak-power limited AWGN and free-space

optical intensity channels. Probl. Inf. Transm. 2010, 46, 283–299. [CrossRef]

171



Entropy 2022, 24, 1321

33. Dytso, A.; Yagli, S.; Poor, H.V.; Shamai, S. The Capacity Achieving Distribution for the Amplitude Constrained Additive Gaussian
Channel: An Upper Bound on the Number of Mass Points. IEEE Trans. Inf. Theory 2019, 66, 2006–2022. [CrossRef]

34. Steinberg, Y. Coding and Common Reconstruction. IEEE Trans. Inf. Theory 2009, 55, 4995–5010. [CrossRef]
35. Land, I.; Huber, J. Information Combining. Found. Trends Commun. Inf. Theory 2006, 3, 227–330. [CrossRef]
36. Yang, Q.; Piantanida, P.; Gündüz, D. The Multi-layer Information Bottleneck Problem. In Proceedings of the IEEE Information

Theory Workshop (ITW), Kaohsiung, Taiwan, 6–10 November 2017; pp. 404–408.
37. Berger, T.; Zhang, Z.; Viswanathan, H. The CEO Problem. IEEE Trans. Inf. Theory 1996, 42, 887–902. [CrossRef]
38. Steiner, S.; Kuehn, V. Optimization Of Distributed Quantizers Using An Alternating Information Bottleneck Approach. In

Proceedings of the WSA 2019: 23rd International ITG Workshop on Smart Antennas, Vienna, Austria, 24–26 April 2019; pp. 1–6.
39. Vera, M.; Rey Vega, L.; Piantanida, P. Collaborative Information Bottleneck. IEEE Trans. Inf. Theory 2019, 65, 787–815. [CrossRef]
40. Ugur, Y.; Aguerri, I.E.; Zaidi, A. Vector Gaussian CEO Problem Under Logarithmic Loss and Applications. IEEE Trans. Inf. Theory

2020, 66, 4183–4202. [CrossRef]
41. Estella, I.; Zaidi, A. Distributed Information Bottleneck Method for Discrete and Gaussian Sources. In Proceedings of the

International Zurich Seminar on Information and Communication (IZS), Zurich, Switzerland, 21–23 February 2018; pp. 35–39.
42. Courtade, T.A.; Jiao, J. An Extremal Inequality for Long Markov Chains. In Proceedings of the 52nd Annual Allerton Conference

on Communication, Control, and Computing, Monticello, IL, USA, 1–3 October 2014; pp. 763–770.
43. Erkip, E.; Cover, T.M. The Efficiency of Investment Information. IEEE Trans. Inf. Theory 1998, 44, 1026–1040. [CrossRef]
44. Gács, P.; Körner, J. Common information is far less than mutual information. Probl. Contr. Inform. Theory 1973, 2, 149–162.
45. Farajiparvar, P.; Beirami, A.; Nokleby, M. Information Bottleneck Methods for Distributed Learning. In Proceedings of the 56th

Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 2–5 October 2018; pp. 24–31.
46. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. In Proceedings of the Information Theory

Workshop (ITW), Jeju Island, Korea, 11–15 October 2015; pp. 1–5.
47. Alemi, A.; Fischer, I.; Dillon, J.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of the International

Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
48. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017, arXiv:1703.00810.
49. Gabrié, M.; Manoel, A.; Luneau, C.; Barbier, j.; Macris, N.; Krzakala, F.; Zdeborová, L. Entropy and mutual information in models

of deep neural networks. In Advances in NIPS; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.
50. Goldfeld, Z.; van den Berg, E.; Greenewald, K.H.; Melnyk, I.; Nguyen, N.; Kingsbury, B.; Polyanskiy, Y. Estimating Information

Flow in Neural Networks. arXiv 2018, arXiv:1810.05728.
51. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using the Information Bottleneck

Principle. IEEE Trans. Pattern Anal. 2020, 42, 2225–2239. [CrossRef]
52. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of

deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 1–34. [CrossRef]
53. Cheng, H.; Lian, D.; Gao, S.; Geng, Y. Evaluating Capability of Deep Neural Networks for Image Classification via Information

Plane. In Lecture Notes in Computer Science, Proceedings of the Computer Vision-ECCV 2018-15th European Conference, Munich, Germany,
8–14 September 2018, Proceedings, Part XI; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Berlin/Heidelberg,
Germany, 2018; Volume 11215, pp. 181–195.

54. Yu, S.; Wickstrøm, K.; Jenssen, R.; Príncipe, J.C. Understanding Convolutional Neural Networks with Information Theory: An
Initial Exploration. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 435–442. [CrossRef]

55. Lewandowsky, J.; Stark, M.; Bauch, G. Information bottleneck graphs for receiver design. In Proceedings of the IEEE International
Symposium on Information Theory, Barcelona, Spain, 10–15 July 2016; pp. 2888–2892.

56. Stark, M.; Wang, L.; Bauch, G.; Wesel, R.D. Decoding rate-compatible 5G-LDPC codes with coarse quantization using the
information bottleneck method. IEEE Open J. Commun. Soc. 2020, 1, 646–660. [CrossRef]

57. Bhatt, A.; Nazer, B.; Ordentlich, O.; Polyanskiy, Y. Information-distilling quantizers. IEEE Trans. Inf. Theory 2021, 67, 2472–2487.
[CrossRef]

58. Stark, M.; Shah, A.; Bauch, G. Polar code construction using the information bottleneck method. In Proceedings of the 2018 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; pp. 7–12.

59. Shah, S.A.A.; Stark, M.; Bauch, G. Design of Quantized Decoders for Polar Codes using the Information Bottleneck Method. In
Proceedings of the SCC 2019: 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany,
11–14 February 2019; pp. 1–6.

60. Shah, S.A.A.; Stark, M.; Bauch, G. Coarsely Quantized Decoding and Construction of Polar Codes Using the Information
Bottleneck Method. Algorithms 2019, 12, 192. [CrossRef]

61. Kurkoski, B.M. On the Relationship Between the KL Means Algorithm and the Information Bottleneck Method. In Proceedings
of the 11th International ITG Conference on Systems, Communications and Coding (SCC), Hamburg, Germany, 6–9 February
2017; pp. 1–6.

62. Goldfeld, Z.; Polyanskiy, Y. The Information Bottleneck Problem and its Applications in Machine Learning. IEEE J. Sel. Areas Inf.
Theory 2020, 1, 19–38. [CrossRef]

63. Harremoes, P.; Tishby, N. The Information Bottleneck Revisited or How to Choose a Good Distortion Measure. In Proceedings of
the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 566–570.

172



Entropy 2022, 24, 1321

64. Richardson, T.; Urbanke, R. Modern Coding Theory; Cambridge University Press: Cambridge, UK, 2008.
65. Sason, I. On f-divergences: Integral representations, local behavior, and inequalities. Entropy 2018, 20, 383. [CrossRef] [PubMed]
66. Mehler, F.G. Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung.

J. Reine Angew. Math. 1866, 66, 161–176.
67. Lancaster, H.O. The Structure of Bivariate Distributions. Ann. Math. Statist. 1958, 29, 719–736. [CrossRef]
68. O’Donnell, R. Analysis of Boolean Functions, 1st ed.; Cambridge University Press: New York, NY, USA, 2014.
69. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2006.
70. Corless, M.J. Linear Systems and Control : An Operator Perspective; Monographs and Textbooks in Pure and Applied Mathematics;

Marcel Dekker: New York, NY, USA, 2003; Volume 254.

173



Citation: Deng, B.; Jia, K.

Counterfactual Supervision-Based

Information Bottleneck for

Out-of-Distribution Generalization.

Entropy 2023, 25, 193. https://

doi.org/10.3390/e25020193

Academic Editors: Sotiris Kotsiantis,

Gerhard Bauch and Jan

Lewandowsky

Received: 10 October 2022

Revised: 14 December 2022

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Counterfactual Supervision-Based Information Bottleneck for
Out-of-Distribution Generalization
Bin Deng * and Kui Jia *

School of Electronic and Information Engineering, South China University of Technology,
Guangzhou 510641, China
* Correspondence: eebindeng@mail.scut.edu.cn (B.D.); kuijia@scut.edu.cn (K.J.)

Abstract: Learning invariant (causal) features for out-of-distribution (OOD) generalization have
attracted extensive attention recently, and among the proposals, invariant risk minimization (IRM) is
a notable solution. In spite of its theoretical promise for linear regression, the challenges of using IRM
in linear classification problems remain. By introducing the information bottleneck (IB) principle into
the learning of IRM, the IB-IRM approach has demonstrated its power to solve these challenges. In
this paper, we further improve IB-IRM from two aspects. First, we show that the key assumption of
support overlap of invariant features used in IB-IRM guarantees OOD generalization, and it is still
possible to achieve the optimal solution without this assumption. Second, we illustrate two failure
modes where IB-IRM (and IRM) could fail in learning the invariant features, and to address such
failures, we propose a Counterfactual Supervision-based Information Bottleneck (CSIB) learning algorithm
that recovers the invariant features. By requiring counterfactual inference, CSIB works even when
accessing data from a single environment. Empirical experiments on several datasets verify our
theoretical results.

Keywords: out-of-distribution generalization; information bottleneck; causal learning

1. Introduction

Modern machine learning models are prone to catastrophic performance loss during
deployment when the test distribution is different from the training distribution. This
phenomenon has been repeatedly witnessed and intentionally exposed in many exam-
ples [1–5]. Among the explanations, shortcut learning [6] is considered as a main factor
causing this phenomenon. A good example is the classification of images of cows and
camels—a trained convolutional network tends to recognize cows or camels by learning
spurious features from image backgrounds (e.g., green pastures for cows and deserts for
camels), rather than learning the causal shape features of the animals [7]; decisions based
on the spurious features would make the learned models fail when cows or camels appear
in unusual or different environments. Machine learning models are expected to have the
capability of out-of-distribution (OOD) generalization and avoid shortcut learning.

To achieve OOD generalization, recent theories [8–12] are motivated by causality liter-
ature [13,14] and resort to extraction of the invariant, causal features and establishing the
relevant conditions under which machine learning models have guaranteed generalization.
Among these works, invariant risk minimization (IRM) [8] is a notable learning paradigm
that incorporates the invariance principle [15] into practice. In spite of the theoretical
promise of IRM, it is only applicable to problems of linear regression. For other problems,
such as linear classification, Ahuja et al. [12] first show that for OOD generalization, linear
classification is more difficult (see Theorem 1) and propose a new learning method of infor-
mation bottleneck-based invariant risk minimization (IB-IRM) based on the support overlap
assumption (Assumption 7). In this work, we closely investigate the conditions identified
in [12] and propose improved results for OOD generalization of linear classification.

174



Entropy 2023, 25, 193

Our technical contributions are as follows. In [12], a notion of support overlap of in-
variant features is assumed in order to make the OOD generalization of linear classification
successful. In this work, we first show that this assumption is strong, but it is still possible
to achieve such goal without this assumption. Then, we examine whether the IB-IRM
proposed in [12] is sufficient to learn invariant features for linear classification and find
that IB-IRM (and IRM) could fail in two modes. We then analyze two failure modes of
IB-IRM and IRM, in particular when the spurious features in training environments capture
sufficient information for the task of interest but have less information than the invariant
features. Based on the above analyses, we propose a new method, termed counterfactual
supervision-based information bottleneck (CSIB), to address such failures. We prove that
without the need of the support overlap assumption, CSIB is theoretically guaranteed for
the success of OOD generalization in linear classification. Notably, CSIB works even when
accessing data from a single environment. Finally, we design three synthetic datasets and a
colored MINST dataset based on our examples; experiments demonstrate the effectiveness
of CSIB empirically.

The rest of this article is organized as follows. The learning problem of out-of-
distribution (OOD) generalization is formulated in Section 2. In Section 3, we study
the learnability of the OOD generalization with different assumptions to the training and
test environments. Using these assumptions, two failure modes of previous methods (IRM
and IB-IRM) are analysed in Section 4. Based on the above analysis, our method is then
proposed in Section 5. The experiments are reported in Section 6. Finally, we discuss the
related works in Section 7 and provide some conclusions and limitations of our work in
Section 8. All the proofs and details of experiments are given in the Appendices A and B.

2. OOD Generalization: Background and Formulations
2.1. Background on Structural Equation Models

Before introducing our formulations of OOD generalization, we provide a detailed
background on structural equation models (SEMs) [8,13].

Definition 1 (Structural Equation Model (SEM)). A structural equation model (SEM) C :=
(S , N) governing the random vector X = (X1, . . . , Xd) is a set of structural equations:

Si : Xi ← fi(Pa(Xi), Ni),

where Pa(Xi) ⊆ {X1, . . . , Xd} \ {Xi} are called the parents of Xi, and Ni are independent noise
random variables. For every SEM, we yield a directed acyclic graph (DAG) G by adding one vertex
for each Xi and directed edges from each parent in Pa(Xi) (the causes) to child Xi (the effect).

Definition 2 (Intervention). Consider an SEM C = (S , N). An intervention e on C consists of
replacing one or several of its structural equations to obtain an intervened SEM Ce = (S e, Ne),
with structural equations:

S e
i : Xe

i ← f e
i (Pae(Xe

i ), Ne
i ),

The variable Xe is intervened if Si 6= S e
i or Ni 6= Ne

i .

In an SEM C, we can draw samples from the observational distribution P(X) according
to the topological ordering of its DAG G. We can also manipulate (intervene) a unique
SEM C in different ways, indexed by e, to different but related SEMs Ce, which results in
different interventional distributions P(Xe). Such family of interventions are used to model
the environments.

2.2. Formulations of OOD Generalization

In this paper, we study the OOD generalization problem by following the linear
classification structural equation model below [12].

175



Entropy 2023, 25, 193

Assumption 1 (Linear classification SEM Cood).

Y ← 1(w∗inv · Zinv)⊕ N, N ∼ Bernoulli(q), q <
1
2

;

X ← S(Zinv, Zspu),
(1)

where w∗inv ∈ Rm is the labeling hyperplane, Zinv ∈ Rm, Zspu ∈ Ro, X ∈ Rd, ⊕ is the XOR
operator, S ∈ Rd×(m+o) is invertible (d = m + o), · is the dot product function, and 1(a) = 1 if
a ≥ 0 otherwise 0.

The SEM Cood governs four random variables {X, Y, Zinv, Zspu}, and its directed acyclic
graph (DAG) is illustrated in Figure 1a, where the exogenous noise variable N is omitted.
Following Definition 2, each intervention e generates a new environment e with interven-
tional distribution P(Xe, Ye, Ze

inv, Ze
spu). We assume only the variables of Xe and Ye are

observable. In OOD generalization, we are interested in a set of environments Eall defined
as below.

(a) (b) (c) (d)

Figure 1. (a) DAG of the SEM Cood (Assumption 1); (b–d) DAGs of the interventional SEM Ce
ood in the

training environments Etr with respect to different correlations between Zinv and Zspu. Grey nodes
denote observed variables, and white nodes represent unobserved variables. Dashed lines denote the
edges which might vary across the interventional environments and even be absent in some scenarios,
whilst solid lines indicate that they are invariant across all the environments. All exogenous noise
variables are omitted in the DAGs.

Definition 3 (Eall). Consider the SEM Cood (Assumption 1) and the learning goal of predicting
Y from X. Then, the set of all environments Eall(Cood) indexes all the interventional distributions
P(Xe, Ye) obtainable by valid interventions e. An intervention e ∈ Eall(Cood) is valid as long
as (i) the DAG remains acyclic, (ii) P(Ye|Ze

inv) = P(Y|Zinv), and (iii) P(Xe|Ze
inv, Ze

spu) =
P(X|Zinv, Zspu).

Assumption 1 shows that Zinv is the cause of the response Y. We name Zinv the
invariant features or causal features because P(Ye|Ze

inv) = P(Y|Zinv) always holds among
all valid interventional SEMs Ce

ood, as defined in Definition 3. The Zspu is called spurious
features because P(Ye|Ze

spu) may vary in different environments of Eall .
Let D = {De}e∈Etr be the training data gathered from a set of training environments

Etr ⊂ Eall , where De = {(xe
i , ye

i )}
ne
i=1 is the dataset from environment e with each instance

(xe
i , ye

i ) i.i.d. drawn from P(Xe, Ye). Let X e ⊆ Rd and Y ⊆ {0, 1} be the support sets of Xe

and Y, respectively. Given observed data D, the goal of OOD generalization is to find a
predictor f : Rd → Y such that it can perform well across a set of OOD environments (test
environments) Eood of interest, where Eood ⊆ Eall . Formally, it is expected to minimize

max
e∈Eood

Re( f ), (2)

where Re( f ) := EXe ,Ye [l( f (Xe), Ye)] is the risk under the environment e with l(·, ·) the 0-1
loss function. Since Eood may be different from Etr, this learning problem is called OOD
generalization. We assume the predictor f = w ◦Φ includes a feature extractor Φ : X → H
and a classifier w : H → Y . With a slight abuse of notation, we also let the classifier w

176



Entropy 2023, 25, 193

and feature extractor Φ be parameteried by themselves, respectively, as w ∈ Rc+1 and
Φ ∈ Rc×d with c the number of feature dimension.

2.3. Background on IRM and IB-IRM

To minimize Equation (2), two notable solutions of IRM [8] and IB-IRM [12] are listed
as follows:

IRM: min
w,Φ

1
|Etr| ∑

e∈Etr

Re(w ◦Φ), s.t. w ∈ arg min
w̃

Re(w̃ ◦Φ), ∀e ∈ Etr, (3)

IB-IRM: min
w,Φ

∑
e∈Etr

he(Φ), s.t.
1
|Etr| ∑

e∈Etr

Re(w ◦Φ) ≤ rth, w ∈ arg min
w̃

Re(w̃ ◦Φ), ∀e ∈ Etr, (4)

where Re(w ◦Φ) = EXe ,Ye [l(w ◦Φ(Xe), Ye)], and he(Φ) = H(Φ(Xe)) with H the Shannon
entropy (or a lower bounded differential entropy), and rth is the threshold on the average
risk. If we drop the invariance constraint from IRM and IB-IRM, we obtain standard empiri-
cal risk minimization (ERM) and information bottleneck-based empirical risk minimization
(IB-ERM), respectively. The use of an entropy constraint in IB-IRM is inspired from the
information bottleneck principle [16] where mutual information I(X; Φ(X)) is used for
information compression. Since the representation Φ(X) is a deterministic mapping of X,
we have

I(X; Φ(X)) = H(Φ(X))− H(Φ(X)|X) = H(Φ(X)), (5)

thus minimizing the entropy of Φ(X) is equivalent to minimizing the mutual information
I(X; Φ(X)). In brief, the optimization goal of IB-IRM is to select the one that has the least
entropy among all highly predictive invariant predictors.

3. OOD Generalization: Assumptions and Learnability

To study the learnability of OOD generalization, we make following definition.

Definition 4. Given Etr ⊂ Eall and Eood ⊆ Eall . We say an algorithm succeeds to solve OOD
generalization with respect to (Etr, Eood) if the predictor f ∗ ∈ F returned by this algorithm satisfies
the following equation:

max
e∈Eood

Re( f ∗) = min
f∈F

max
e∈Eood

Re( f ), (6)

where F is the learning hypothesis (a function set including all possible linear classifier). Otherwise
we say it fails to solve OOD generalization.

So far, we have omitted how different environments of Etr and Eood exactly are to
enable OOD generalization. Different assumptions about Etr and Eood make the OOD
generalization problem different.

3.1. Assumptions about the Training Environments Etr

Define the support set of the invariant (resp., spurious) features Ze
inv (resp., Ze

spu) in
environment e as Z e

inv (resp., Z e
spu). In general, we make following assumptions to the

invariant features Z e
inv in the training environments Etr.

Assumption 2 (Bounded invariant features). ∪e∈EtrZ e
inv is a bounded set. (A set Z is bounded

if ∃M < ∞ such that ∀z ∈ Z , ‖z‖ ≤ M).

Assumption 3 (Strictly separable invariant features). ∀z ∈ ∪e∈EtrZ e
inv, w∗inv · z 6= 0.

177



Entropy 2023, 25, 193

The difficulties of OOD generalization are due to the spurious correlations between
Zinv and Zspu in the training environments Etr. In this paper, we consider three modes
induced by different correlations between Zinv and Zspu as shown below.

Assumption 4 (Spurious correlation 1). Assume each e ∈ Etr,

Ze
spu ← AZe

inv + We; (7)

where A ∈ Ro×m, and We ∈ Ro is a continuous (or discrete with each component supported on at
least two distinct values), bounded, and zero mean noise variable.

Assumption 5 (Spurious correlation 2). Assume each e ∈ Etr,

Ze
inv ← AZe

spu + We; (8)

where A ∈ Rm×o, and We ∈ Rm is a continuous (or discrete with each component supported on at
least two distinct values), bounded, and zero mean noise variable.

Assumption 6 (Spurious correlation 3). Assume each e ∈ Etr,

Ze
spu ←We

1Ye + We
0(1−Ye); (9)

where We
0 ∈ Ro and We

1 ∈ Ro are independent noise variables.

For each e ∈ Etr, the DAGs of its corresponding interventional SEMs Ce
ood with re-

spect to Assumptions 4–6 are illustrated in Figure 1b–d, respectively. It is worth noting
that although the DAGs are identical across all training environments in each mode of
Assumptions 4–6, the interventional SEMs Ce

ood among different training environments are
different due to the interventions on the exogenous noise variables.

3.2. Assumptions about the OOD Environments Eood

Theorem 1 (Impossibility of guaranteed OOD generalization for linear classification [12]).
Suppose Eood = Eall . If for all the training environments Etr, the latent invariant features are
bounded and strictly separable, i.e., Assumptions 2 and 3 hold, then every deterministic algorithm
fails to solve the OOD generalization.

The above theorem shows that it is impossible to solve OOD generalization if
Eood = Eall . To make it learnable, Ahuja et al. [12] propose the support overlap assumption
(Assumption 7) to the invariant features.

Assumption 7 (Invariant feature support overlap). ∀e ∈ Eood,Z e
inv ⊆ ∪e′∈EtrZ e′

inv.

However, Assumption 7 is strong, and we would show that it is still possible to
solve OOD generalization without this assumption. For better illustration, consider an
OOD generalization task from P(Xe1 , Ye2) to P(Xe2 , Ye2) with Etr = {e1} and Eood = {e2},
and the support sets of the corresponding invariant features Ze1

inv and Ze2
inv are intuitively

illustrated in Figure 2c (assume dim(Zinv) = 2 in this example). From Figure 2c, it is clear
that although the support sets of invariant features between the two environments are
different, it is still possible to solve OOD generalization if the learned feature extractor Φ
only captures the invariant features, e.g., Φ(X) = Zinv.

178



Entropy 2023, 25, 193

(a) (b) (c)

Figure 2. (a) Example 1; (b) example 2; (c) example illustration. Here, dim(Zinv) = 2 and
Zinv = (Z1, Z2). The blue and black regions represent the support sets of Ze1

inv and Ze2
inv, corresponding

to the environments e1 and e2, respectively. Etr = {e1} is the training environment and Eood = {e2}
is the OOD environment. Although Assumption 7 does not hold in this example, any zero-error
classifier with Φ(X) = Zinv on the e1 environment data would clearly make the classification error
zero in e2, thus succeeding to solve OOD generalization.

To make Assumption 7 weaker, we propose the following assumption.

Assumption 8. Let P(Ztr
inv, Ytr) = 1

|Etr | ∑e∈Etr P(Ze
inv, Ye) be the mixture distribution of in-

variant features in the training environments. Denote A be a hypothesis set including all linear
classifiers mapping from Rm to Y . ∀e ∈ Eood, assume Fl(P(Ztr

inv, Ytr)) ⊆ Fl(P(Ze
inv, Ye)), where l

is the 0-1 loss function and Fl(P(Z, Y)) = arg min f∈A EZ,Y[l( f (Z), Y)].

Clearly, under the assumption of separable invariant features (Assumption 3), for any
e ∈ Eood, Assumption 7 holds ⇒ Z e

inv ⊆ Z tr
inv ⇒ Fl(P(Ztr

inv, Ytr)) ⊆ Fl(P(Ze
inv, Ye)) ⇒.

Assumption 8 holds, but not vice versa. Therefore, Assumption 8 is weaker than
Assumption 7. We show that Assumption 8 could be substituted for Assumption 7 for
the success of OOD generalization in our proposed method in Section 5.

4. Failures of IRM and IB-IRM

Under Spurious Correlation 1 (Assumption 4), the IB-IRM algorithm has been shown
to enable OOD generalization, while IRM fails [12]. In this section, we would show that both
IRM and IB-IRM could fail under Spurious Correlations 2 and 3 (Assumptions 5 and 6).

4.1. Failure under Spurious Correlation 2

Example 1 (Counter-Example 1). Under Assumption 5, let Ze
inv ← Ze

spu + We with dim(Ze
inv)

= dim(Ze
spu) = dim(We) = 1 and w∗inv = 1 be the generated classifier in Assumption 1. We

assume two training environments and a OOD environment as:

Etr = {e1, e2}; Eood = {e3};
e1 : P(Ze1

spu = −2) = 1,P(We1 = −1) = 0.5,P(We1 = 1) = 0.5;

e2 : P(Ze2
spu = 2) = 1,P(We2 = −1) = 0.5,P(We2 = 1) = 0.5;

e3 : P(Ze3
spu = 1) = 1,P(We3 = −2) = 0.5,P(We3 = 2) = 0.5.

Figure 2a shows the support points of these features in the training environments.
Then, by applying any algorithm to solve the above example with rth = q, we would obtain
a predictor of f ∗ = w∗ ◦Φ∗. Consider the prediction made by this model as (we ignore the
classifier bias for convenience)

f ∗(Xe) = f ∗(S(Ze
inv, Ze

spu)) = 1(Φ∗invZe
inv + Φ∗spuZe

spu). (10)

It is trivial to show that the f ∗ of Φ∗inv = 0 and Φ∗spu = 1 is an invariant predictor across
training environments with classification error Re1 = Re2 = q, and it achieves the least
entropy of he(Φ∗) = 0 for each training environment e. Therefore, it is a solution of IB-IRM

179



Entropy 2023, 25, 193

and IRM. However, the predictor of f ∗ relies on spurious features and has the test error
Re3 = 0.5; thus, it fails to solve the OOD generalization.

4.2. Failure under Spurious Correlation 3

Example 2 (Counter-Example 2). Under Assumption 6, let Ze
spu ←We

1Ye + We
0(1−Ye) with

dim(Zinv) = dim(Zspu) = dim(We
0) = dim(We

1) = 1, Ze
inv be a discrete variable supported uni-

formly on six points {−4,−3,−2, 2, 3, 4} among all environments, and w∗inv = 1 be the generated
classifier in Assumption 1. We assume two training environments and a OOD environment as:

Etr = {e1, e2}; Eood = {e3}
e1 : P(We1

0 = −1) = 1,P(We1
1 = 1) = 1;

e2 : P(We2
0 = −0.5) = 1,P(We2

1 = 0.5) = 1;

e3 : P(We3
0 = 1) = 1,P(We3

1 = −1) = 1;

Figure 2b shows the support points of these features in the training environments.
Then, by applying any algorithm to solve the above example with rth = q, we would obtain
a predictor of f ∗ = w∗ ◦Φ∗. Consider the prediction made by this model as (we ignore the
classifier bias for convenience):

f ∗(Xe) = f ∗(S(Ze
inv, Ze

spu)) = 1(Φ∗invZe
inv + Φ∗spuZe

spu). (11)

It is trivial to show that the f ∗ of Φ∗inv = 0 and Φ∗spu = 1 is an invariant predictor across
training environments with classification error Re1 = Re2 = 0, and it achieves the least
entropy of he(Φ∗) = 1 among all highly predictive predictors for each training environ-
ment e. and Therefore, it is a solution of IB-IRM and IRM. However, the predictor of
f ∗ relies on spurious features and has the test error Re3 = 1; thus, it fails to solve the
OOD generalization.

4.3. Understanding the Failures

From the illustrations of the above simple examples, we can conclude that the failure of
the invariance constraint for removing the spurious features is because the spurious features
among all training environments are strictly linearly separable by their corresponding labels.
This would make the predictor rely only on spurious features to achieve minimum training
error and also be the invariant predictor across training environments. Since the label set
is finite (with only two values in binary classification) in classification problems, such a
phenomenon may exist. We state such failure mode formally as below.

Theorem 2. Given any Etr ⊂ Eall and Eood ⊆ Eall satisfying Assumptions 2, 3, and 7, if two sets
∪e∈EtrZ e

spu(Ye = 1) and ∪e∈EtrZ e
spu(Ye = 0) are linearly separable and H(Ze

inv) > H(Ze
spu) on

each training environment e, then IB-IRM (and IRM, ERM, or IB-ERM) with any rth ∈ R fails to
solve the OOD generalization.

The understanding of Theorem 2 is intuitive since when the spurious features in the
training environments with respect to different labels are linearly separable, there is no
algorithm that can distinguish spurious features from invariant features. Although the
assumption of linear separation of the spurious features seems strong for this failure,
it is easy to hold in high-dimensional space when dim(Zspu) is large (common cases in
practice such as image data). We show one case in Appendix A.3 that if the number
of environments is |Etr| < dim(Zspu)/2 under Assumption 6, the spurious features in
the training environments are probably separable by their labels. This is because in o-
dimensional space there is a high probability that o randomly drawn distinct points are
linearly separable for any two subsets.

180



Entropy 2023, 25, 193

5. Counterfactual Supervision-Based Information Bottleneck

In the above analyses, we have shown two failure modes of IB-IRM and IRM for
OOD generalization in the linear classification problem. The key reason for the failure is
due to the learned features Φ(X) that rely on spurious features. To prevent such failure,
we present the counterfactual supervision-based information bottleneck (CSIB) learning
algorithm for removing the spurious features progressively.

In general, the IB-ERM method is applied to extract features from the beginning of
each iteration:

min
w,Φ

∑
e∈Etr

he(Φ) s.t.
1
|Etr| ∑

e∈Etr

Re(w ◦Φ) ≤ rth (12)

Due to the information bottleneck, only a part of the information of the input X are exploited
in Φ(X). If the information of spurious features Zspu exists in the learned features Φ(X),
the idea of CSIB is to drop such information and meanwhile maintain the causal information
(represented by invariant features Zinv) as well. However, achieving such a goal faces two
challenges: (1) how to determine whether Φ(X) contains spurious information of Zspu?
and (2) how to remove the information of Zspu?

Fortunately, due to the orthogonality in the linear space, it is possible to disentangle
the features that are exploited by Φ(X) (denoted as X1) and the features that are not
exploited by Φ(X) (denoted as X2) via Singular Value Decomposition (SVD). Based on that,
we could construct an SEM Cnew governing three variables of X1, X2, and X. Therefore,
by conducting counterfactual interventions on X1 and X2 in Cnew, we could solve the first
challenge by requiring a single supervision on the counterfactual examples X′. For example,
if we intervene on X1 and find that the causal information remains in the resulting X′, then
the extracted features Φ(X) are definitely the spurious features. To address the second
challenge, we replace the input by X2 by filtering out the information of X1 and conduct
the same learning procedure from the beginning.

The learning algorithm of CSIB is illustrated in Algorithm 1, and Figure 3 shows the
framework of CSIB. We show in Theorem 3 that CSIB is theoretically guaranteed to succeed
to solve OOD generalization.

Figure 3. A simplified framework for the illustration of the proposed CSIB method.

Theorem 3 (Guarantee of CSIB). Given any Etr ⊂ Eall and Eood ⊆ Eall satisfying Assumptions 2,
3, and 8, then for every spurious correlation of Assumptions 4, 5, and 6 (in this correlation mode, as-
sume the spurious features are linearly separable in the training environments), the CSIB algorithm
with rth = q succeeds in solving the OOD generalization.

181



Entropy 2023, 25, 193

Algorithm 1 Counterfactual Supervision-based Information Bottleneck (CSIB)
Input: P(Xe, Ye), e ∈ Etr, rth > 0, c ≥ dim(Zinv), M � 0, and (x, y) is an example
randomly drawn from P(Xe, Ye).
Output: classifier w ∈ Rc+1, feature extractor Φ = Rc×d.
Begin:

1: Lv← []; Lr ← []; Φ′ ← Id×d

2: d′ ← dim(Xe)
3: Apply IB-ERM method (Equation (12)) to P(Xe, Ye) and obtain w∗ ∈ Rc+1 and Φ∗ ∈

Rc×d′

4: Apply SVD to Φ∗ as Φ∗ = UΛVT = [U1, U2][Λ1, 0; 0, 0][VT
1 ; VT

2 ]
5: r ← rank(Φ∗)
6: z1

1:r ← [−M, ...,−M]; z1
r+1:d′ ← VT

2 Φ′x
7: z2

1:r ← [M, ..., M]; z2
r+1:d′ ← VT

2 Φ′x
8: x1 ← Vz1; x2 ← Vz2

9: if Lv is not empty then
10: zold ← []; i← 0; x′ ← x
11: while i < len(Lv) do
12: z← Lv[i]x′

13: zold.append(z)
14: x′ ← zLr[i]:
15: i← i + 1
16: end while
17: i← 0
18: while i < len(Lv) do
19: j← len(Lv)− i
20: z1 ← zold[j]; z2 ← zold[j]
21: z1

Lr[j]: ← x1; z2
Lr[j]: ← x2

22: x1 ← Lv[j]Tz1; x2 ← Lv[j]Tz2

23: i← i + 1
24: end while
25: end if
26: if label(x1) = label(x2) then
27: Lr.append(r); Lv.append(VT)
28: Xe ← VT

2 Xe; Φ′ ← VT
2 Φ′

29: Goto Step 2
30: end if
31: w← w∗; Φ← Φ∗

End

Remark 1. CSIB succeeds to solve OOD generalization without assuming the support overlap
to invariant features and could apply to multiple spurious modes where IB-IRM (as well as ERM,
IRM, and IB-ERM) may fail. By introducing counterfactual inference and further supervision
(usually conducted by a human) with several steps, CSIB works even when accessing data from a
single environment, which is significant especially in the cases where multiple environments’ data
are not available.

6. Experiments
6.1. Toy Experiments on Synthetic Datasets

We perform experiments on three synthetic datasets from different spurious correla-
tions modes to verify our method—counterfactual, supervision-based, and information
bottleneck (CSIB)—and compare them to ERM, IB-ERM, IRM, and IB-IRM. We follow the
same protocol for tuning hyperparameters from [8,12,17] and report the classification error
for all experiments. In the following, we first briefly describe the designed datasets and
then report the main results. More experimental details can be found in the Appendix.

182



Entropy 2023, 25, 193

6.1.1. Datasets

Example 1/1S. The example is a modified one from the linear unit tests introduced
in [17], which generalizes the cow/camel classification task with relevant backgrounds.

θcow = 1m, θcamel = −θcow, νanimal = 10−2

θgrass = 1o, θsand = −θgrass, νbackground = 1.

The dataset De of each environment e ∈ Etr is sampled from the following distribution

Ue ∼ Categorical(pese, (1− pe)se, pe(1− se), (1− pe)(1− se)),

Ze
inv ∼

{
(Nm(0, 0.1) + θcow)νanimal if Ue ∈ {1, 2},
(Nm(0, 0.1) + θcamel)νanimal if Ue ∈ {3, 4},

Ze
spu ∼

{
(No(0, 0.1) + θgrass)νbackground if Ue ∈ {1, 4},
(No(0, 0.1) + θsand)νbackground if Ue ∈ {2, 3},

Ze ← (Ze
inv, Ze

spu), Xe ← S(Ze), N ∼ Bernoulli(q), q < 0.5, Ye ← 1(1T
mZe

inv)⊕ N

We set se0 = 0.5, se1 = 0.7, and se2 = 0.3 for the first three environments, and sej ∼ Uniform
(0.3, 0.7) for j > 3. The scrambling matrix S is an identical matrix in Example 1 and a
random unitary matrix in Example 1S. Here, we set pe = 1 and q = 0 for all environ-
ments to make the spurious features and the invariant features both linearly separable to
confuse each other. The experiments on different values of q and pe are presented in the
Appendix, where we have found very interesting observations related to the inductive bias
of neural networks.

Example 2/2S. This example is extended from Example 1 to show one of the failure
modes of IB-IRM (as well as ERM, IRM, and IB-ERM) and how our method can be im-
proved by intervention (counterfactual supervision). Given we ∈ R, each instance in the
environment data De is sampled by

θspu = 5 · 1o, θw = we · 1m, νspu = 10−2, νw = 1, p, q ∼ Bernoulli(0.5),

Ze
spu = No(0, 1)νspu + (2p− 1) · θspu, We = Nm(0, 1)νw + (2q− 1) · θw

Ze
inv = AZe

spu + We, Ze ← (Ze
inv, Ze

spu), Xe ← S(Ze), Ye = 1(1T
mZe

inv),

where we set m = o = 5, and A ∈ Rm×o is the identical matrix in our experiments. We
set we0 = 3, we1 = 2, we2 = 1, and wej = Uniform(0, 3) if j > 3 for different training
environments. This example shows clearer smaller entropy of spurious features than that
of invariant features, which is opposite Example 1/1S.

Example 3/3S. This example extends from Example 2 and is similar to the construction
of Example 2/2S. Let we ∼ Uniform(0, 1) for different training environments. Each instance
in the environments e is sampled by

θinv = ·10 · 1m, νinv = 10, νspu = 1, p, q ∼ Bernoulli(0.5),

Ze
inv = Nm(0, 1)νinv + (2p− 1) · θinv, Ye = 1(1T

mZe
inv),

Ze
spu = 2(Ye − 1) · νspu + (2q− 1) · we · 1o, Ze ← (Ze

inv, Ze
spu), Xe ← S(Ze),

where we set m = o = 5 in our experiments. The spurious features have smaller entropy
than the invariant features in this example, which is similar to Example 2/2S, but the
invariant features significantly enjoy much larger margin than the spurious features, which
is very different from the above two examples. We show a summary of the properties of
these three datasets in Table 1 for a general view.

183



Entropy 2023, 25, 193

Table 1. Summary of three synthetic datasets. Note that for linearly separable features, their margin
levels significantly influence the final learning classifier due to the implicit bias of the gradient
descent [18]. Such bias would push the standard learning (such as cross-entropy loss) to focus more
on the large-margin features. The margin with respect to a dataset (or features) Z (each instance has
a label 0 or 1) is the minimum distance between a point in Z and the max-margin hyperplane, which
separates Z by its labels.

Datasets Margin Relationship Entropy Relationship Diminv Dimspu

Example 1/1S Margininv � Marginspu Entropyinv < Entropyspu 5 5
Example 2/2S Margininv ≈ Marginspu Entropyinv > Entropyspu 5 5
Example 3/3S Margininv � Marginspu Entropyinv > Entropyspu 5 5

6.1.2. Summary of Results

Table 2 shows the classification errors of different methods when training data comes
from single, three, and six environments. We can see that ERM and IRM fail to recognize
the invariant features in the experiment of Example 1/1S, where invariant features have
smaller margin than spurious features do, while information bottleneck-based methods (IB-
ERM, IB-IRM, and CSIB) show improved results due to the smaller entropy of the invariant
features. Our method CSIB shows results consistent with IB-IRM in Example 1/1S when
invariant features are extracted in the first run, which verifies the effectiveness of using
the information bottleneck for OOD generalization. In another dataset of Example 2/2S,
where the invariant features have larger entropy than spurious features do, we can see that
only CSIB can remove the spurious features compared with the other method, although the
information bottleneck-based method IB-ERM would degrade the performance of ERM
by focusing more on the spurious features. In the third experiment of Example 3/3S, we
can see that although ERM shows not-bad results due to the significantly larger margin of
invariant features, our CSIB method still shows improvements by removing more spurious
features. Notably, comparing the IB-ERM and IB-IRM when only spurious features are
extracted (Example 2/2S, Example 3/3S), our CSIB method could effectively remove them
by counterfactual supervision and then refocus on the invariant features. Note that the
reason of non-zero average error and the fluctuant results of CSIB in some experiments
is that the entropy minimization in the training process is less accurate, where entropy is
substituted by variance for the ease of the optimization. Nevertheless, there always exists a
case where the entropy is indeed truly minimized, and the error reaches zero (see (min) in
the table) in Example 2/2S and Example 3/3S. In summary, CSIB consistently performs
better in different spurious correlations modes and is especially more effective than IB-ERM
and IB-IRM when the spurious features enjoy much smaller entropy than the invariant
features do.

6.2. Experiments on Color MNIST Dataset

In this experiment, we set up a binary classification task for digit recognition and
identify whether the digit is less than five or more than five. We use real-world dataset,
the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/), for the
construction. Following our learning setting, we use color information as the spurious
features that correlates strongly with the class label. By construction, the label is more
strongly correlated with the color than with the digit in the training environments, but this
correlation is broken in the test environment. Specifically, the three designed environments
(two training environments and one test environment containing 10,000 points each) of
the color MNIST are as follows: first, we define a preliminary binary label ŷ to the image
base on the digit: ŷ = 0 for digits 0–4 and ŷ = 1 for 5–9. Second, we obtain the final
label y by flipping ŷ with probability 0.25. Then, we flip the final labels to obtain the color
id, where the flipping probabilities with respect to two training environments and one
test environment are 0.2 and 0.1, and 0.9. For better understanding, we randomly draw
20 examples for each label from each environment and visualize them in Figure 4.

184



Entropy 2023, 25, 193

Table 2. Main results: #Envs means the number of training environments, and (min) reports the
minimal test classification error across different running seeds.

#Envs ERM (min) IRM (min) IB-ERM (min) IB-IRM (min) CSIB (min)

Example 1 1 0.50 ± 0.01 (0.49) 0.50 ± 0.01 (0.49) 0.23 ± 0.02 (0.22) 0.31 ± 0.10 (0.25) 0.23 ± 0.02 (0.22)
Example 1S 1 0.50 ± 0.00 (0.49) 0.50 ± 0.00 (0.50) 0.46 ± 0.04 (0.39) 0.30 ± 0.10 (0.25) 0.46 ± 0.04 (0.39)
Example 2 1 0.40 ± 0.20 (0.00) 0.50 ± 0.00 (0.49) 0.50 ± 0.00 (0.49) 0.46 ± 0.02 (0.45) 0.00 ± 0.00 (0.00)
Example 2S 1 0.50 ± 0.00 (0.50) 0.31 ± 0.23 (0.00) 0.50 ± 0.00 (0.50) 0.45 ± 0.01 (0.43) 0.10 ± 0.20 (0.00)
Example 3 1 0.16 ± 0.06 (0.09) 0.18 ± 0.03 (0.14) 0.50 ± 0.01 (0.49) 0.40 ± 0.20 (0.01) 0.11 ± 0.20 (0.00)
Example 3S 1 0.17 ± 0.07 (0.10) 0.09 ± 0.02 (0.07) 0.50 ± 0.00 (0.50) 0.50 ± 0.00 (0.50) 0.21 ± 0.24 (0.00)

Example 1 3 0.45 ± 0.01 (0.45) 0.45 ± 0.01 (0.45) 0.22 ± 0.01 (0.21) 0.23 ± 0.13 (0.02) 0.22 ± 0.01 (0.21)
Example 1S 3 0.45 ± 0.00 (0.45) 0.45 ± 0.00 (0.45) 0.41 ± 0.04 (0.34) 0.27 ± 0.11 (0.11) 0.41 ± 0.04 (0.34)
Example 2 3 0.40 ± 0.20 (0.00) 0.50 ± 0.00 (0.50) 0.50 ± 0.00 (0.50) 0.33 ± 0.04 (0.25) 0.00 ± 0.00 (0.00)
Example 2S 3 0.50 ± 0.00 (0.50) 0.37 ± 0.15 (0.15) 0.50 ± 0.00 (0.50) 0.34 ± 0.01 (0.33) 0.10 ± 0.20 (0.00)
Example 3 3 0.18 ± 0.04 (0.15) 0.21 ± 0.02 (0.20) 0.50 ± 0.01 (0.49) 0.50 ± 0.01 (0.49) 0.11 ± 0.20 (0.00)
Example 3S 3 0.18 ± 0.04 (0.15) 0.08 ± 0.03 (0.03) 0.50 ± 0.00 (0.50) 0.43 ± 0.09 (0.31) 0.01 ± 0.00 (0.00)

Example 1 6 0.46 ± 0.01 (0.44) 0.46 ± 0.09 (0.41) 0.22 ± 0.01 (0.20) 0.37 ± 0.14 (0.17) 0.22 ± 0.01 (0.20)
Example 1S 6 0.46 ± 0.02 (0.44) 0.46 ± 0.02 (0.44) 0.35 ± 0.10 (0.23) 0.42 ± 0.12 (0.28) 0.35 ± 0.10 (0.23)
Example 2 6 0.49 ± 0.01 (0.48) 0.50 ± 0.01 (0.48) 0.50 ± 0.00 (0.50) 0.30 ± 0.01 (0.28) 0.00 ± 0.00 (0.00)
Example 2S 6 0.50 ± 0.00 (0.50) 0.35 ± 0.12 (0.25) 0.50 ± 0.00 (0.50) 0.30 ± 0.01 (0.29) 0.20 ± 0.24 (0.00)
Example 3 6 0.18 ± 0.04 (0.15) 0.20 ± 0.01 (0.19) 0.50 ± 0.00 (0.49) 0.37 ± 0.16 (0.16) 0.01 ± 0.01 (0.00)
Example 3S 6 0.18 ± 0.04 (0.14) 0.05 ± 0.04 (0.01) 0.50 ± 0.00 (0.50) 0.50 ± 0.00 (0.50) 0.11 ± 0.20 (0.00)

Figure 4. Visualization of the color mnist dataset.

The classification results on the color MNIST dataset are shown in Table 3. From the re-
sults, we can see that both ERM and IB-ERM methods almost surely use the color features to
achieve the task. Although IRM and IB-IRM methods have shown some improvements over
ERM, only our method can perform better than a random prediction, which demonstrates
the effectiveness of CSIB.

Table 3. Classification accuracy (%) on color MNIST dataset. “Oracle” in the table means that the
training and test data are in the same environment.

Methods ERM IRM IB-ERM IB-IRM CSIB Oracle

Accuracy 9.94 ± 0.28 20.39 ± 2.76 9.94 ± 0.28 43.84 ± 12.48 60.03 ± 1.28 84.72 ± 0.65

7. Related Works

We divide the works related to OOD generalization into two categories: theory and
methods, though some of them belong to both.

185



Entropy 2023, 25, 193

7.1. Theory of OOD Generalization

Based on different definitions to the distributional changes, we review the correspond-
ing theory by the following three categories.

Based on causality. Due to the close connection between the distributional changes
and the interventions discussed in the theory of causality [13,14], the problem of OOD
generalization is usually built in the framework of causal learning. The theory states that
a response Y is directly caused only by its parents variables XPa(Y), and all interventions
other that those on Y do not change the conditional distribution of P(Y|XPa(Y)). Such
theory inspires a popular learning principle—the invariance principle—that aims to dis-
cover a set of variables such that they remain invariant to the response Y in all observed
environments [15,19,20]. Invariant risk minimization (IRM) [8] is then proposed to learn
a feature extractor Φ in an end-to-end way such that the optimal classifier based on the
extracted features Φ(X) remains unchanged in each environment. The theory in [8] shows
the guarantee of IRM for OOD generalization under some general assumptions but only
focuses on the linear regression tasks. Different from the failure analyses of IRM for the
classification tasks in [21,22], where the response Y is the cause of the spurious feature,
Ahuja et al. [12] analyse another scenario when the invariant feature is the cause of the
spurious feature and show that in this case, linear classification is more difficult than linear
regression, where the invariance principle itself is insufficient to ensure the success of OOD
generalization. They also claim that the assumption of support overlap of invariant features
is necessarily needed. They then propose a learning principle of information bottleneck-
based invariant risk minimization (IB-IRM) for linear classification, which shows how
to address the failures of IRM by adding information bottleneck [16] into the learning.
In this work, we closely investigate the conditions identified in [12] and first show that
support overlap of invariant features is not necessarily needed for the success of OOD
generalization. We further show several failure cases of IB-IRM and propose improved
results for it.

Recently, some works tackle the challenge of OOD generalization in the nonlinear
regime [23,24]. Commonly, both of them use variational autoencoder (VAE)-based mod-
els [25,26] to identify the latent variables from observations in the first stage. Then, these in-
ferring latent variables are separated into two distinct parts of invariant (causal) and spurious
(non-causal) features based on different assumptions. Specifically, Lu et al. [23,27] assume
that the latent variables conditioned on some accessible side information such as the envi-
ronment index or class label follow the exponential family distributions, and Liu et al. [24]
directly disentangle the latent variables to two different parts during the inferring stage
and assume that the marginal distributions of them are independent of each other. These
assumptions, however, are rather strong in general. Nevertheless, these solutions aim
to capture the latent variables such that the response given these variables is invariant
for different environments, which could still fail because the invariance principle itself
is insufficient for OOD generalization in the classification tasks, as shown in [12]. In this
work, we focus on the linear classification only and show a new theory of a new method
that addresses several OOD generalization failures in the linear settings. Our method could
extend to the nonlinear regime by combining with the disentangled representation learn-
ing [28] or causal representation learning [29]. Specifically, once the latent representations
are well disentangled, i.e., the latent features are represented by a linear transform of the
causal features and spurious features, we then could apply our method to filter out the
spurious features in the latent space such that only causal features remain.

Based on robustness. Different from those based on the causality, where different
distributions are generated by intervention on a same SEM and the goal is to discover causal
features, the robustness-based methods aim to protect the model against the potential distri-
butional shifts within the uncertainty set, which is usually constrained by f-divergence [30]
or Wasserstein distance [31]. This series of works is theoretically addressed by distribution-
ally robust optimization (DRO) under a minimax framework [32,33]. Recently, some works
tend to discover the connections between causality and robustness [34]. Although these

186



Entropy 2023, 25, 193

works show less relevance to us, it is possible that a well-defined measure of distribution
divergence could help to effectively extract causal features under the robustness framework.
This would be an interesting avenue for future research.

Others. Some other works assume that the distributions (domains) are generated from
a hyper-distribution and aim to minimize the average risk estimation error bound [35–37].
These works are often built based on the generalization theory under the independent and
identically distributed (IID) assumption. The authors in [38] do not make any assumption
on the distributional changes and only study the learnability of OOD generalization in a
general way. All of these theories do not cover the OOD generalization problem under a
single training environment or domain.

7.2. Methods of OOD Generalization

Based on the invariance principle. Inspired from the invariance principle [15,19], many
methods are proposed by designing various loss to extract features to better satisfy the
principle itself. IRMv1 [8] is the first objective to address this in an end-to-end way by adding
a gradient penalty to the classifier. Following this work, Krueger et al. [9] suggest penalizing
the variance of the risks, while Xie et al. [39] give the same objective but take the square
root of the variance, and many other alternatives can also be found [40–42]. It is clear that
all of these methods aim to find an invariant predictor. Recently, Ahuja et al. [12] found
that for the classification problem, finding the invariant predictor is not enough to extract
causal features since the features could include spurious information to make the predictor
invariant across training environments, and they propose IB-IRM to address such a failure.
Similar ideas to IB-IRM can also be found in the work [43,44], where different loss functions
are proposed to achieve the same purpose. Specifically, Alesiani et al. [44] also use the
information bottleneck (IB) for the help in dropping spurious correlations, but their analyses
only focus on the scenario when spurious features are independent from the causal features,
which could be considered as a special case of ours. More recently, Wang et al. [45] propose
similar ideas to ours but only tackle the situation when the invariant features have the same
distribution among all environments. In this work, we further show that IB-IRM could
still fail in two cases due to the model only relying on spurious features to meet the task
of interest. We then propose a counterfactual supervision-based information bottleneck
(CSIB) method to address such failures and show improving results to prior works.

Based on distribution matching. It is worth noting that there are many works focused
on learning domain invariant features representations [46–48]. Most of these works are
inspired by the seminal theory of domain adaptation [49,50]. The goal of these methods is to
learn a feature extractor Φ such that the marginal distribution of P(Φ(X)) or the conditional
distribution of P(Φ(X)|Y) is invariant across different domains. This is different from the
invariance principle, where the goal is to make P(Y|Φ(X)) (or E(Y|Φ(X))) invariant. We
refer readers to the papers of [8,51] for better understanding the details of why these
distribution-matching-based methods often fail to address OOD generalization.

Others. Other related methods are varied, including by using data augmentation
in both image level [52] or feature level [53], by removing spurious correlations through
stable learning [54], and by utilizing the inductive bias of neural networks [3,55], etc.
Most of these methods are empirically inspired from experiments and are verified on
some specific datasets. Recently, empirical studies in [56,57] notice that the real effects of
many OOD generalization (domain generalization) methods are weak, which indicates
that the benchmark-based evaluation criteria may be inadequate to validate the OOD
generalization algorithms.

8. Conclusions, Limitations and Future Work

In this paper, we focus on the OOD generalization problem of linear classification. We
first revisit the fundamental assumptions and results of prior works and show that the
condition of invariant features supporting overlap is not necessarily needed for the success
of OOD generalization and thus propose a weaker counterpart. Then, we show two failure

187



Entropy 2023, 25, 193

cases of IB-IRM (as well as ERM, IB-ERM, and IRM) and illustrate its intrinsic causes by
theoretical analysis. We further propose a new method—counterfactual supervision-based
information bottleneck (CSIB)—and theoretically prove its effectiveness under some weaker
assumptions. CSIB works even when accessing data from a single environment and can
easily extend to the multi-class problems. Finally, we design several synthetic datasets with
our examples for experimental verification. Empirical observations among all comparing
methods illustrate the effectiveness of the CSIB.

Since we only take the linear problem into account, including linear representation
and linear classifier, any nonlinear case would not be guaranteed by our theoretical results,
and thus CSIB may fail. Therefore, the same as prior works (IRM [8] and IB-IRM [12]), the
nonlinear challenge is still an unsolved problem [21,22]. We believe this is of great value for
investigating in future work since widely used data in the wild are nonlinearly generated.
Another fruitful direction is to design a powerful algorithm for entropy minimization
during the learning process of CSIB. Currently, we use the variance of features to replace
the entropy of the features during optimization. However, variance and entropy are
essentially different. A truly effective entropy minimization is the key to the success of
CSIB. Another limitation of our method is that we have to require further supervision to
the counterfactual examples during the learning process, although it only takes one time
for a single step.

Author Contributions: Conceptualization, B.D. and K.J.; methodology, B.D.; software, B.D.; vali-
dation, B.D. and K.J.; formal analysis, B.D.; investigation, B.D.; resources, B.D.; data curation, B.D.;
writing—original draft preparation, B.D.; writing—review and editing, B.D. and K.J.; visualization,
B.D.; supervision, K.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research (including the APC) was funded by Guangdong R&D key project of China
(No.: 2019B010155001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OOD Out-of-distribution
ERM Empirical risk minimization
IRM Invariant risk minimization
IB-ERM Information bottleneck-based empirical risk minimization
IB-IRM Information bottleneck-based invariant risk minimization
CSIB Counterfactual supervision-based information bottleneck
DAG Directed acyclic graph
SEM Structure equation model
SVD Singular value decomposition

Appendix A. Experiments Details

In this section, we provide more details on the experiments. The code to reproduce
the experiments can be found at https://github.com/szubing/CSIB.

Appendix A.1. Optimization Loss of IB-ERM

The objective function of IB-ERM is as follows:

min
w,Φ

∑
e∈Etr

he(Φ) s.t.
1
|Etr| ∑

e∈Etr

Re(w ◦Φ) ≤ rth. (A1)

188



Entropy 2023, 25, 193

Since the entropy of he(Φ) = H(Φ(Xe)) is hard to estimate by a differential variable that
can be optimized by using gradient descent, we follow [12] by using the variance instead
of the entropy for optimization. The total loss function is given by

loss(w, Φ) = ∑
e∈Etr

(Re(w ◦Φ) + λVar(Φ)) (A2)

with a hyperparameter λ onto it.

Appendix A.2. Experiments Setup

Model, hyperparameters, loss, and evaluation. In all experiments, we follow the
same protocol as prescribed by [12,17] for the model / hyperparameter selection, training,
and evaluation. Except those specified, for all experiments across three examples and five
comparing methods, the model is the same with a linear feature extractor Φ ∈ Rd×d fol-
lowed by a linear classifier w ∈ Rd+1. We use binary cross-entropy loss for classification. All
hyperparameters, including the learning rate, the penalty term in IRM, or the λ associated
with the Var(Φ) in Equation (A2), etc., are randomly searched and selected by using 20 test
samples for validation. The results reported in the main manuscript use three hyperpa-
rameter queries of each and average over five data seeds. The results when searching over
more hyperparameter values are reported in the supplementary experiments. The search
spaces of all the hyperparameters follow the same as in [12,17]. The classification test errors
between 0 and 1 are reported.

Compute description. Our computing resource is one GPU of NVIDIA GeForce GTX
1080 Ti with 6 CPU cores of Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

Existing codes and datasets used. In our experiments, we mainly rely on the follow-
ing two github repositories: InvarianceUnitTests (https://github.com/facebookresearch/
InvarianceUnitTests) and IB-IRM (https://github.com/ahujak/IB-IRM).

Appendix A.3. Supplementary Experiments

The purpose of the first supplementary experiment is to illustrate what the result
would be when we increase the number of running seeds in the hyperparameters selection.
These results are shown in Table A1, where we increase the number of hyperparameter
queries to 10 of each. It is clear that overall, the results of the CSIB in Table A1 are much
better and have less fluctuations than those in Table 2, and the conclusions remain almost
the same as we have summarized in Section 6.1.2. This further verifies the effectiveness of
the CSIB method.

Observation on different settings in Example 1/1S. In our main experiments of
Example 1/1S, we set pe = 1 and q = 0 to make the spurious features and the invari-
ant features both linearly separable to confuse each other. Here, we analyse what the result
would be if we vary their values. Following [17], we set pe0 = 0.95, pe1 = 0.97, pe2 = 0.99,
and pej ∼ Uniform(0.9, 1) to make spurious features linearly inseparable, and q is set to
0/0.05 to make invariant features linearly separable/inseparable. Table A2 shows the
corresponding results. Interestingly, we find that all methods except for IB-IRM have an
ideal error rate (the same as the Oracle) when the spurious features are linearly inseparable
(pe 6= 1), even when the invariant features are linearly inseparable too (q = 0.05). Why
would this happen? We then remove the linear embedding Φ. The results are presented in
Table A3. Comparing the results between Tables A2 and A3, we found there is a significant
inductive bias of the neural network, though the model is linear. Further analysis to such
observation is out of the scope of this paper, but this would be an interesting avenue for
future research.

189



Entropy 2023, 25, 193

Table A1. Supplementary results when using 10 hyperparameter queries. #Envs means the number
of training environments, and (min) reports the minimal test classification error across different
running data seeds.

#Envs ERM (min) IRM (min) IB-ERM (min) IB-IRM (min) CSIB (min) Oracle (min)

Example 1 1 0.50 ± 0.01 (0.49) 0.50 ± 0.01 (0.49) 0.23 ± 0.02 (0.22) 0.31 ± 0.10 (0.25) 0.23 ± 0.02 (0.22) 0.00 ± 0.00 (0.00)
Example 1S 1 0.50 ± 0.00 (0.49) 0.50 ± 0.00 (0.49) 0.09 ± 0.04 (0.04) 0.30 ± 0.10 (0.25) 0.08 ± 0.04 (0.04) 0.00 ± 0.00 (0.00)
Example 2 1 0.40 ± 0.20 (0.00) 0.00 ± 0.00 (0.00) 0.50 ± 0.00 (0.49) 0.48 ± 0.03 (0.43) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 2S 1 0.50 ± 0.00 (0.50) 0.30 ± 0.25 (0.00) 0.50 ± 0.00 (0.50) 0.50 ± 0.01 (0.48) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3 1 0.16 ± 0.06 (0.09) 0.03 ± 0.00 (0.03) 0.50 ± 0.01 (0.49) 0.41 ± 0.09 (0.25) 0.02 ± 0.01 (0.00) 0.00 ± 0.00 (0.00)
Example 3S 1 0.16 ± 0.06 (0.10) 0.04 ± 0.01 (0.02) 0.50 ± 0.00 (0.50) 0.41 ± 0.12 (0.26) 0.01 ± 0.01 (0.00) 0.00 ± 0.00 (0.00)

Example 1 3 0.44 ± 0.01 (0.44) 0.44 ± 0.01 (0.44) 0.21 ± 0.00 (0.21) 0.21 ± 0.10 (0.06) 0.21 ± 0.00 (0.21) 0.00 ± 0.00 (0.00)
Example 1S 3 0.45 ± 0.00 (0.44) 0.45 ± 0.00 (0.44) 0.09 ± 0.03 (0.05) 0.23 ± 0.13 (0.01) 0.09 ± 0.03 (0.05) 0.00 ± 0.00 (0.00)
Example 2 3 0.13 ± 0.07 (0.00) 0.00 ± 0.00 (0.00) 0.50 ± 0.00 (0.50) 0.33 ± 0.04 (0.25) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 2S 3 0.50 ± 0.00 (0.50) 0.14 ± 0.20 (0.00) 0.50 ± 0.00 (0.50) 0.34 ± 0.01 (0.33) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3 3 0.17 ± 0.04 (0.14) 0.02 ± 0.00 (0.02) 0.50 ± 0.01 (0.49) 0.43 ± 0.08 (0.29) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3S 3 0.17 ± 0.04 (0.13) 0.02 ± 0.00 (0.02) 0.50 ± 0.00 (0.50) 0.36 ± 0.18 (0.07) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)

Example 1 6 0.46 ± 0.01 (0.44) 0.46 ± 0.09 (0.41) 0.22 ± 0.01 (0.21) 0.41 ± 0.11 (0.26) 0.22 ± 0.01 (0.21) 0.00 ± 0.00 (0.00)
Example 1S 6 0.46 ± 0.02 (0.44) 0.46 ± 0.02 (0.44) 0.06 ± 0.04 (0.02) 0.45 ± 0.07 (0.41) 0.06 ± 0.04 (0.02) 0.00 ± 0.00 (0.00)
Example 2 6 0.21 ± 0.03 (0.17) 0.00 ± 0.00 (0.00) 0.50 ± 0.00 (0.50) 0.36 ± 0.03 (0.31) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 2S 6 0.50 ± 0.00 (0.50) 0.10 ± 0.20 (0.00) 0.50 ± 0.00 (0.50) 0.19 ± 0.16 (0.01) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3 6 0.17 ± 0.03 (0.14) 0.02 ± 0.00 (0.02) 0.50 ± 0.00 (0.49) 0.37 ± 0.16 (0.16) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)
Example 3S 6 0.17 ± 0.03 (0.14) 0.02 ± 0.00 (0.02) 0.50 ± 0.00 (0.50) 0.46 ± 0.09 (0.28) 0.01 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)

Observation on linearly separable properties of high-dimensional data. Here, we
empirically show that for o-dimensional data, we have high probability that o randomly
drawn points are linearly separable for any two subsets. To verify that, we design a random
experiment as follows: (1) Let o ∈ [100, 10,000], and we randomly draw o points from
[−1, 1]o, and give random labels to these o points of 0 or 1. (2) We train a linear classifier to
fit these o points and report the final training error. (3) We perform (1) and (2) 100 times for
different seeds. Our results show that for 100 runs, all training errors reach 0 for every o,
which proves our conjecture.

Table A2. Results in Example 1/1S, where the learning model is a linear embedding Φ ∈ Rd×d

followed by a linear classifier w ∈ Rd+1.

#Envs pe = 1? q ERM IB-ERM IB-IRM CSIB IRM Oracle

Example 1 1 Yes 0 0.50 ± 0.01 0.23 ± 0.02 0.31 ± 0.10 0.23 ± 0.02 0.50 ± 0.01 0.00 ± 0.00
Example 1S 1 Yes 0 0.50 ± 0.00 0.46 ± 0.04 0.30 ± 0.10 0.46 ± 0.04 0.50 ± 0.00 0.00 ± 0.00
Example 1 3 Yes 0 0.45 ± 0.01 0.22 ± 0.01 0.23 ± 0.13 0.22 ± 0.01 0.45 ± 0.01 0.00 ± 0.00
Example 1S 3 Yes 0 0.45 ± 0.00 0.41 ± 0.04 0.27 ± 0.11 0.41 ± 0.04 0.45 ± 0.00 0.00 ± 0.00
Example 1 6 Yes 0 0.46 ± 0.01 0.22 ± 0.01 0.37 ± 0.14 0.22 ± 0.01 0.46 ± 0.09 0.00 ± 0.00
Example 1S 6 Yes 0 0.46 ± 0.02 0.35 ± 0.10 0.42 ± 0.12 0.35 ± 0.10 0.46 ± 0.02 0.00 ± 0.00

Example 1 1 No 0 0.00 ± 0.00 0.00 ± 0.00 0.15 ± 0.20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1S 1 No 0 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1 3 No 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1S 3 No 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1 6 No 0 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example 1S 6 No 0 0.00 ± 0.00 0.00 ± 0.00 0.31 ± 0.20 0.00 ± 0.00 0.04 ± 0.06 0.00 ± 0.00

Example 1 1 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.32 ± 0.22 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1S 1 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.19 ± 0.17 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1 3 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.07 ± 0.03 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1S 3 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1 6 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.30 ± 0.21 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Example 1S 6 No 0.05 0.05 ± 0.00 0.05 ± 0.00 0.32 ± 0.19 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00

190



Entropy 2023, 25, 193

Table A3. Results in Example 1/1S, where the learning model is a linear classifier w ∈ Rd+1 without
linear embedding Φ. The CSIB must require a feature extractor, so there are not results related
to the CSIB.

#Envs pe = 1? q ERM IB-ERM IB-IRM IRM Oracle

Example 1 1 Yes 0 0.50 ± 0.01 0.25 ± 0.01 0.31 ± 0.10 0.50 ± 0.01 0.00 ± 0.00
Example 1S 1 Yes 0 0.50 ± 0.00 0.49 ± 0.01 0.30 ± 0.10 0.50 ± 0.00 0.00 ± 0.00
Example 1 3 Yes 0 0.44 ± 0.01 0.23 ± 0.01 0.21 ± 0.10 0.44 ± 0.01 0.00 ± 0.00
Example 1S 3 Yes 0 0.45 ± 0.00 0.44 ± 0.01 0.42 ± 0.04 0.45 ± 0.00 0.00 ± 0.00
Example 1 6 Yes 0 0.46 ± 0.01 0.27 ± 0.07 0.41 ± 0.11 0.46 ± 0.01 0.01 ± 0.01
Example 1S 6 Yes 0 0.46 ± 0.02 0.42 ± 0.08 0.46 ± 0.09 0.46 ± 0.02 0.01 ± 0.02

Example 1 1 No 0 0.50 ± 0.01 0.00 ± 0.00 0.15 ± 0.20 0.50 ± 0.01 0.00 ± 0.00
Example 1S 1 No 0 0.50 ± 0.00 0.00 ± 0.00 0.13 ± 0.19 0.50 ± 0.00 0.00 ± 0.00
Example 1 3 No 0 0.45 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.45 ± 0.01 0.00 ± 0.00
Example 1S 3 No 0 0.45 ± 0.00 0.01 ± 0.02 0.08 ± 0.14 0.46 ± 0.02 0.00 ± 0.00
Example 1 6 No 0 0.46 ± 0.01 0.10 ± 0.16 0.30 ± 0.20 0.46 ± 0.01 0.01 ± 0.01
Example 1S 6 No 0 0.46 ± 0.01 0.24 ± 0.19 0.41 ± 0.12 0.47 ± 0.03 0.01 ± 0.02

Example 1 1 No 0.05 0.50 ± 0.01 0.05 ± 0.00 0.32 ± 0.22 0.50 ± 0.01 0.05 ± 0.00
Example 1S 1 No 0.05 0.50 ± 0.01 0.05 ± 0.01 0.20 ± 0.17 0.50 ± 0.00 0.05 ± 0.00
Example 1 3 No 0.05 0.45 ± 0.01 0.05 ± 0.00 0.07 ± 0.03 0.47 ± 0.01 0.05 ± 0.00
Example 1S 3 No 0.05 0.45 ± 0.01 0.07 ± 0.03 0.11 ± 0.11 0.46 ± 0.01 0.05 ± 0.00
Example 1 6 No 0.05 0.47 ± 0.01 0.14 ± 0.14 0.30 ± 0.21 0.47 ± 0.01 0.05 ± 0.00
Example 1S 6 No 0.05 0.47 ± 0.01 0.27 ± 0.18 0.42 ± 0.11 0.47 ± 0.01 0.05 ± 0.01

Then, we look back to Theorem 2. For real data, such as an image, the dimension of
spurious features o is often high. Assume different environments enjoy different spurious
points randomly; then, from the above observation, there is a high probability that the
following events will occur: For any labeling data in the n training environments with
n < o/2 (2 is due to the binary label), models could achieve zero training error by relying
on spurious features only. This illustrates why prior methods easily fail to address OOD
generalization under Assumption 6.

Appendix B. Proofs

Appendix B.1. Preliminary

Before our proofs, we first review some useful properties related to the entropy [12,58].
Entropy. For discrete random variable X ∼ PX with support X , its entropy (Shannon

entropy) is defined as

H(X) = − ∑
x∈X

PX(X = x) log(PX(X = x)) (A3)

The differential entropy of the continuous random variable X ∼ PX with support X is
given by

h(X) = −
∫

x∈X
pX(x) log(pX(x))dx, (A4)

where pX(x) is the probability density function of the distribution PX. Sometimes, we
may confuse using H(X) or h(X) to represent its entropy no matter whether X is discrete
or continuous.

Lemma A1. If X and Y are discrete random variables that are independent, then

H(X + Y) ≥ max{H(X), H(Y)}. (A5)

191



Entropy 2023, 25, 193

Proof. Define Z = X + Y. Since X ⊥ Y, we have

H(Z|X) = − ∑
x∈X

PX(x) ∑
z∈Z

PZ|X(Z = z|X = x) log(PZ|X(Z = z|X = x))

= − ∑
x∈X

PX(x) ∑
z∈Z

PY|X(Y = z− x|X = x) log(PY|X(Y = z− x|X = x))

= − ∑
x∈X

PX(x) ∑
z∈Z

PY(Y = z− x) log(PY(Y = z− x))

= − ∑
x∈X

PX(x) ∑
y∈Y

PY(Y = y) log(PY(Y = y))

= H(Y),

and similar we have H(Z|Y) = H(X). Therefore,

H(X + Y) = I(Z, X) + H(Z|X) = I(Z, X) + H(Y) ≥ H(Y) (A6)

H(X + Y) = I(Z, Y) + H(Z|Y) = I(Z, Y) + H(X) ≥ H(X). (A7)

This completes the proof.

Lemma A2. If X and Y are continuous random variables that are independent, then

h(X + Y) ≥ max{h(X), h(Y)}. (A8)

Proof. Define Z = X + Y. Since X ⊥ Y, we have

h(Z|X) = −
∫

x∈X
pX(x)

∫

z∈Z
pZ|X(Z = z|X = x) log(pZ|X(Z = z|X = x))dxdz

= −
∫

x∈X
pX(x)

∫

z∈Z
pY|X(Y = z− x|X = x) log(pY|X(Y = z− x|X = x))dxdz

= −
∫

x∈X
pX(x)

∫

z∈Z
pY(Y = z− x) log(pY(Y = z− x))dxdz

= −
∫

x∈X
pX(x)dx

∫

y∈Y
pY(Y = y) log(pY(Y = y))dy

= h(Y),

and similar, we have h(Z|Y) = h(X). Therefore,

h(X + Y) = I(Z, X) + h(Z|X) = I(Z, X) + h(Y) ≥ h(Y) (A9)

h(X + Y) = I(Z, Y) + h(Z|Y) = I(Z, Y) + h(X) ≥ h(X). (A10)

This completes the proof.

Lemma A3. If X and Y are discrete random variables that are independent with the supports
satisfying 2 ≤ |X | < ∞, 2 ≤ |Y| < ∞, then

H(X + Y) > max{H(X), H(Y)}. (A11)

Proof. From Lemma A1 and due to the symmetry of X and Y, we only need to prove
H(X + Y) 6= H(X). The proof is by contradiction. Suppose H(X + Y) = H(X), then
from Equation (A7) it follows that I(X + Y, Y) = 0, thus X + Y ⊥ Y. However, P(Y =
ymax|X + Y = xmax + ymax) = 1, which is different from P(Y = ymax) < 1 (due to |Y| ≥ 2).
This contradicts X + Y ⊥ Y.

Lemma A4. If X and Y are continuous random variables that are independent and have a bounded
support, then

h(X + Y) > max{h(X), h(Y)}. (A12)

192



Entropy 2023, 25, 193

Proof. From Lemma A2 and due to the symmetry of X and Y, we only need to prove
h(X + Y) 6= h(X). The proof is by contradiction. Suppose h(X + Y) = h(X), then from
Equation (A10) it follows that I(X + Y, Y) = 0, thus X + Y ⊥ Y. For any δ > 0, define an
eventM : xmax + ymax − δ ≤ X + Y ≤ xmax + ymax. IfM occurs, then Y ≥ ymax − δ and
X ≥ xmax − δ. Thus, PY(Y ≤ ymax − δ|M) = 0. However, we can always choose a δ > 0
that is small enough to make PY(Y ≤ ymax − δ) > 0. This contradicts X + Y ⊥ Y.

Appendix B.2. Proof of Theorem 2

Proof. The proof is trivial. Since two sets ∪e∈EtrZ e
spu(Ye = 1) and ∪e∈EtrZ e

spu(Ye = 0) are
linearly separable, there exists a linear classifier w that only relies on spurious features
and can achieve zero classification error on each environment. Therefore, w is an invariant
predictor across different training environments. In addition, H(Ze

inv) > H(Ze
spu) would

make IB-IRM prefer to choose these spurious features. Therefore, w would be an opti-
mal solution of IB-IRM, ERM, IRM, and IB-ERM. However, since w relies on spurious
features which may change arbitrary in unseen environments, it thus fails to solve OOD
generalization.

Appendix B.3. Proof of Theorem 3

Proof. Assume Φ∗ ∈ Rc×d and w∗ are the feature extractor and classifier learned by
IB-ERM. Consider the feature variable extracted by Φ∗ as

Φ∗Xe = Φ∗S(Ze
inv, Ze

spu) = ΦinvZe
inv + ΦspuZe

spu. (A13)

We first show that Φinv = 0 or Φspu = 0. We prove this by contradiction. Assume Φinv 6= 0
and Φspu 6= 0. By observing that a solution of Φinv = 1, Φspu = 0, w∗ = w∗inv could make
the average training error to q; therefore any solution returned by IB-ERM should also
achieve the error no larger than q (because rth = q in the constraint of Equation (12)).
Therefore w∗ 6= 0.

1. In the case when each e ∈ Etr follows Assumption 4 of Ze
spu ← AZe

inv + We, we have

w∗ · (ΦinvZe
inv + ΦspuZe

spu) = w∗ ·ΦinvZe
inv + w∗ ·Φspu(AZe

inv + We)

= w∗ · (Φinv + Φspu A)Ze
inv + w∗ ·ΦspuWe.

Then, for any z = (ze
inv, ze

spu) of 1(w∗inv · ze
inv) = 1, we must have w∗ · (Φinv +

Φspu A)ze
inv + w∗ ·Φspuwe ≥ 0 for any we to make error no larger than q. Since We is

zero mean with at least two distinct points in each component, we can conclude that
w∗ · (Φinv + Φspu A)ze

inv ≥ 0. Similarly, for any z = (ze
inv, ze

spu) of 1(w∗inv · ze
inv) = 0,

we have w∗ · (Φinv + Φspu A)ze
inv < 0. From Lemma A3 or Lemma A4, we obtain

H((Φinv + Φspu A)Ze
inv + ΦspuWe) > H((Φinv + Φspu A)Ze

inv). Therefore, there ex-
ists a more optimal solution to IB-ERM with zero weight to Ze

spu, which contradicts
the assumption.

2. In the case when each e ∈ Etr follows Assumption 5 of Ze
inv ← AZe

spu + We, we have

w∗ · (ΦinvZe
inv + ΦspuZe

spu) = w∗ ·Φinv(AZe
spu + We) + w∗ ·ΦspuZe

spu

= w∗ · (Φspu + Φinv A)Ze
spu + w∗ ·ΦinvWe.

From Lemma A3 or Lemma A4, we obtain H((Φspu + Φinv A)Ze
spu + ΦinvWe) >

H((Φspu + Φinv A)Ze
spu). In addition, the spurious features are assumed to be linearly

separable. Therefore, there exists a more optimal solution to IB-ERM with zero weight
to Ze

inv, which contradicts the assumption.

193



Entropy 2023, 25, 193

3. In the case when each e ∈ Etr follows Assumption 6 of Ze
spu ← We

1Ye + We
0(1− Ye),

we have

w∗ · (ΦinvZe
inv + ΦspuZe

spu) = w∗ ·ΦinvZe
inv + w∗ ·Φspu(We

1Ye + We
0(1−Ye))

= w∗ ·ΦinvZe
inv + w∗ ·ΦspuWe

1Ye + w∗ ·ΦspuWe
0(1−Ye).

Then, for any z = (ze
inv, ze

spu) of 1(w∗inv · ze
inv) = 1, we must have w∗ ·Φinvze

inv + w∗ ·
Φspuwe

1ye + w∗ ·Φspuwe
0(1− ye) ≥ 0 for any we

1 and we
0 to make error no larger than q.

Since We
1 and We

0 are both zero mean variables with at least two distinct points in each
component, we can conclude that w∗ ·Φinvze

inv ≥ 0; Similarly, for any z = (ze
inv, ze

spu)
of 1(w∗inv · ze

inv) = 0, we have w∗ ·Φinvze
inv < 0. From Lemma A3 or Lemma A4, we

obtain H(ΦinvZe
inv + ΦspuWe

1Ye + ΦspuWe
0(1−Ye)) > H(ΦinvZe

inv). Therefore, there
exists a more optimal solution to IB-ERM with zero weight to Ze

spu, which contradicts
the assumption.

So far, we have proved that the feature extractor Φ∗ learned by IB-ERM would never extract
both spurious features and invariant features together. Then, we perform singular value
decomposition (SVD) to the Φ∗ as

Φ∗ = UΛVT = [U1, U2][Λ1, 0; 0, 0][VT
1 ; VT

2 ] = U1Λ1VT
1 (A14)

Let S ∈ Rd×d be the orthogonal matrix. Set r as the rank of the matrix Φ∗, i.e., r = Rank(Φ∗),
and let VT

1 S = [V′1, V′2] with V′1 ∈ Rr×m and V′2 ∈ Rr×o, and VT
2 S = [V′′1 , V′′2 ] with V′′1 ∈

R(d−r)×m and V′′2 ∈ R(d−r)×o, then

Φ∗Xe = U1Λ1VT
1 S[Ze

inv; Ze
spu] = U1Λ1(V′1Ze

inv + V′2Ze
spu). (A15)

Since Φ∗Xe contains the information either from spurious features or from invariant fea-
tures, we must have U1Λ1V′1 = 0 or U1Λ1V′2 = 0, and thus, V′1 = 0 or V′2 = 0 due to
Rank(U1Λ1) = r. If V′2 = 0, then Φ∗ extract invariant features only. Otherwise when
V′1 = 0, we decompose the VTS by

VTS = [VT
1 ; VT

2 ]S = [VT
1 S; VT

2 S] = [V′1, V′2; V′′1 , V′′2 ]. (A16)

Since VT and S are both the orthogonal matrix, VTS is also orthogonal; thus V′1 = 0 ⇒
V′T2 V′′2 = 0, and then Rank(V′′2 ) = Rank([V′2; V′′2 ]) − Rank(V′2) = o − r (note that r ≤
min{m, o}). Then,

VT
2 Xe = VT

2 S[Ze
inv; Ze

spu] = [V′′1 , V′′2 ][Z
e
inv; Ze

spu] = V′′1 Ze
inv + V′′2 Ze

spu. (A17)

Therefore, by running the CSIB for one iteration, the rank of spurious features would be
decreased by r > 0. This would result in zero weight to spurious features by finite runs
of CSIB.

Then, we intend to show why the counterfactual supervision step could help to
distinguish whether V′1 is 0 or not. For a specific instance x = S[zinv; zspu], let two new
features be z1 and z2, then do(z1

1:r) = [−M, ...,−M] and do(z1
r+1:d) = VT

2 x; do(z2
1:r) =

[M, ..., M] and do(z2
r+1:d) = VT

2 x. Back the new features z1 and z2 to the input space as
x1 = Vz1 and x2 = Vz2. If V′1 = 0, then

S−1x1 = S−1Vz1 = S−1V[z1
1:r; V′′1 zinv + V′′2 zspu]

= (VTS)T [z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 , V′′T1 ; V′T2 , V′′T2 ][z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 z1
1:r + V′′T1 (V′′1 zinv + V′′2 zspu); V′T2 z1

1:r + V′′T2 (V′′1 zinv + V′′2 zspu)]

= [zinv; V′T2 z1
1:r + V′′T2 V′′2 zspu],

194



Entropy 2023, 25, 193

and similarly we have S−1x2 = [zinv; V′T2 z2
1:r + V′′T2 V′′2 zspu]. Therefore, the ground truths

of x1 and x2 are the same. On other hand, if V′1 6= 0, then V′2 = 0, and

S−1x1 = S−1Vz1 = S−1V[z1
1:r; V′′1 zinv + V′′2 zspu]

= (VTS)T [z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 , V′′T1 ; V′T2 , V′′T2 ][z1
1:r; V′′1 zinv + V′′2 zspu]

= [V′T1 z1
1:r + V′′T1 (V′′1 zinv + V′′2 zspu); V′T2 z1

1:r + V′′T2 (V′′1 zinv + V′′2 zspu)]

= [V′T1 z1
1:r + V′′T1 V′′1 zinv; zspu],

and similarly we have S−1x2 = [V′T1 z2
1:r + V′′T1 V′′1 zinv; zspu]. Since z1

1:r = −z2
1:r and their

magnitudes are large enough to make sgn(w∗inv · (V′T1 z1
1:r + V′′T1 V′′1 zinv)) 6= sgn(w∗inv ·

(V′T1 z2
1:r + V′′T1 V′′1 zinv)); thus the ground truths of x1 and x2 would be different. Therefore,

the counterfactual supervision step could help to detect whether invariant features or
spurious features are extracted by using a single sample only.

Finally, when only invariant features are extracted by Φ, the training error is mini-
mized, i.e., w∗Φinv ∈ arg min f EP[l( f (Ztr

inv), Ytr)]. Then, based on our assumption to the
OOD environments (Assumptions 8), i.e., ∀e ∈ Eood, Fl(P(Ztr

inv, Ytr)) ⊆ Fl(P(Ze
inv, Ye)),

therefore, for any e ∈ Eood, we have EP[l((Xe, Ye), w∗Φ)] = EP[l((Ze
inv, Ye), w∗Φinv)] =

EP[l((Ztr
inv, Ytr), w∗Φinv)] = q.

It is worth noting that the proof of Theorem 3 does not rely on how many labels
there would be, so it is easily extended to the multi-class classification case as long as the
corresponding assumptions and conditions are satisfied.

References
1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:1312.6199.
2. Rosenfeld, A.; Zemel, R.; Tsotsos, J.K. The elephant in the room. arXiv 2018, arXiv:1808.03305.
3. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards

texture; increasing shape bias improves accuracy and robustness. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

4. Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.
In Proceedings of the Computer Vision and Pattern Recognition Conference, Boston, MA, USA, 7–12 June 2015; pp. 427–436.

5. Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz, R.; Bowman, S.R.; Smith, N.A. Annotation Artifacts in Natural Language
Inference Data. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers); Association for Computational Linguistics: New Orleans, LA, USA, 2018.

6. Geirhos, R.; Jacobsen, J.H.; Michaelis, C.; Zemel, R.; Brendel, W.; Bethge, M.; Wichmann, F.A. Shortcut learning in deep neural
networks. Nat. Mach. Intell. 2020, 2, 665–673. [CrossRef]

7. Beery, S.; Van Horn, G.; Perona, P. Recognition in terra incognita. In Proceedings of the European Conference on Computer
Vision, Munich, Germany, 8–14 September 2018; pp. 456–473.

8. Arjovsky, M.; Bottou, L.; Gulrajani, I.; Lopez-Paz, D. Invariant risk minimization. arXiv 2019, arXiv:1907.02893.
9. Krueger, D.; Caballero, E.; Jacobsen, J.H.; Zhang, A.; Binas, J.; Zhang, D.; Le Priol, R.; Courville, A. Out-of-distribution

generalization via risk extrapolation (rex). In Proceedings of the International Conference on Machine Learning, PMLR, Virtual,
18–24 July 2021; pp. 5815–5826.

10. Ahuja, K.; Shanmugam, K.; Varshney, K.; Dhurandhar, A. Invariant risk minimization games. In Proceedings of the International
Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 145–155.

11. Pezeshki, M.; Kaba, O.; Bengio, Y.; Courville, A.C.; Precup, D.; Lajoie, G. Gradient starvation: A learning proclivity in neural
networks. In Proceedings of the Neural Information Processing Systems, Virtual, 6–14 December 2021; Volume 34.

12. Ahuja, K.; Caballero, E.; Zhang, D.; Gagnon-Audet, J.C.; Bengio, Y.; Mitliagkas, I.; Rish, I. Invariance principle meets information
bottleneck for out-of-distribution generalization. In Proceedings of the Neural Information Processing Systems, Virtual, 6–14
December 2021; Volume 34.

13. Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009.
14. Peters, J.; Janzing, D.; Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms; The MIT Press: Cambridge,

MA, USA, 2017.
15. Peters, J.; Bühlmann, P.; Meinshausen, N. Causal inference by using invariant prediction: Identification and confidence intervals.

J. R. Stat. Soc. Ser. B 2016, 78, 947–1012. [CrossRef]

195



Entropy 2023, 25, 193

16. Tishby, N. The information bottleneck method. In Proceedings of the Annual Allerton Conference on Communications, Control
and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.

17. Aubin, B.; Słowik, A.; Arjovsky, M.; Bottou, L.; Lopez-Paz, D. Linear unit-tests for invariance discovery. arXiv 2021,
arXiv:2102.10867.

18. Soudry, D.; Hoffer, E.; Nacson, M.S.; Gunasekar, S.; Srebro, N. The implicit bias of gradient descent on separable data. J. Mach.
Learn. Res. 2018, 19, 2822–2878.

19. Heinze-Deml, C.; Peters, J.; Meinshausen, N. Invariant causal prediction for nonlinear models. arXiv 2018, arXiv:1706.08576.
20. Rojas-Carulla, M.; Schölkopf, B.; Turner, R.; Peters, J. Invariant models for causal transfer learning. J. Mach. Learn. Res. 2018,

19, 1309–1342.
21. Rosenfeld, E.; Ravikumar, P.K.; Risteski, A. The Risks of Invariant Risk Minimization. In Proceedings of the International

Conference on Learning Representations, Virtual, 3–7 May 2021.
22. Kamath, P.; Tangella, A.; Sutherland, D.; Srebro, N. Does invariant risk minimization capture invariance? In Proceedings of the

International Conference on Artificial Intelligence and Statistics, PMLR, San Diego, CA, USA, 13–15 April 2021; pp. 4069–4077.
23. Lu, C.; Wu, Y.; Hernández-Lobato, J.M.; Schölkopf, B. Invariant Causal Representation Learning for Out-of-Distribution

Generalization. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 December 2022.
24. Liu, C.; Sun, X.; Wang, J.; Tang, H.; Li, T.; Qin, T.; Chen, W.; Liu, T.Y. Learning causal semantic representation for out-of-distribution

prediction. In Proceedings of the Neural Information Processing Systems, Virtual, 6–14 December 2021; Volume 34.
25. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
26. Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In

Proceedings of the International Conference on Machine Learning, PMLR, Beijing, China, 21–26 June 2014; pp. 1278–1286.
27. Lu, C.; Wu, Y.; Hernández-Lobato, J.M.; Schölkopf, B. Nonlinear invariant risk minimization: A causal approach. arXiv 2021,

arXiv:2102.12353.
28. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
29. Schölkopf, B.; Locatello, F.; Bauer, S.; Ke, N.R.; Kalchbrenner, N.; Goyal, A.; Bengio, Y. Toward causal representation learning.

Proc. IEEE 2021, 109, 612–634. [CrossRef]
30. Namkoong, H.; Duchi, J.C. Stochastic gradient methods for distributionally robust optimization with f-divergences. In

Proceedings of the Neural Information processing Systems, Barcelona, Spain, 5–10 December 2016; Volume 29.
31. Sinha, A.; Namkoong, H.; Volpi, R.; Duchi, J. Certifying some distributional robustness with principled adversarial training.

arXiv 2017, arXiv:1710.10571.
32. Lee, J.; Raginsky, M. Minimax statistical learning with wasserstein distances. In Proceedings of the Neural Information Processing

Systems, Montreal, Canada, 3–8 December 2018; Volume 31.
33. Duchi, J.C.; Namkoong, H. Learning models with uniform performance via distributionally robust optimization. Ann. Stat. 2021,

49, 1378–1406. [CrossRef]
34. Bühlmann, P. Invariance, causality and robustness. Stat. Sci. 2020, 35, 404–426. [CrossRef]
35. Blanchard, G.; Lee, G.; Scott, C. Generalizing from several related classification tasks to a new unlabeled sample. In Proceedings

of the Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24.
36. Muandet, K.; Balduzzi, D.; Schölkopf, B. Domain generalization via invariant feature representation. In Proceedings of the

International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 16–21 June 2013; pp. 10–18.
37. Deshmukh, A.A.; Lei, Y.; Sharma, S.; Dogan, U.; Cutler, J.W.; Scott, C. A generalization error bound for multi-class domain

generalization. arXiv 2019, arXiv:1905.10392.
38. Ye, H.; Xie, C.; Cai, T.; Li, R.; Li, Z.; Wang, L. Towards a Theoretical Framework of Out-of-Distribution Generalization. In

Proceedings of the Neural Information Processing Systems, Virtual, 6–14 December 2021.
39. Xie, C.; Chen, F.; Liu, Y.; Li, Z. Risk variance penalization: From distributional robustness to causality. arXiv 2020, arXiv:2006.07544.
40. Jin, W.; Barzilay, R.; Jaakkola, T. Domain extrapolation via regret minimization. arXiv 2020, arXiv:2006.03908.
41. Mahajan, D.; Tople, S.; Sharma, A. Domain generalization using causal matching. In Proceedings of the International Conference

on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 7313–7324.
42. Bellot, A.; van der Schaar, M. Generalization and invariances in the presence of unobserved confounding. arXiv 2020,

arXiv:2007.10653.
43. Li, B.; Shen, Y.; Wang, Y.; Zhu, W.; Reed, C.J.; Zhang, J.; Li, D.; Keutzer, K.; Zhao, H. Invariant information bottleneck for domain

generalization. In Proceedings of the Association for the Advancement of Artificial Intelligence, Virtual, 22 Februay–1 March 2022.
44. Alesiani, F.; Yu, S.; Yu, X. Gated information bottleneck for generalization in sequential environments. Knowl. Informat. Syst. 2022,

1–23, in press. [CrossRef]
45. Wang, H.; Si, H.; Li, B.; Zhao, H. Provable Domain Generalization via Invariant-Feature Subspace Recovery. In Proceedings of

the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022.
46. Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International conference on

machine learning, PMLR, Lille, France, 6–11 July 2015; pp. 1180–1189.
47. Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; Tao, D. Deep domain generalization via conditional invariant adversarial

networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 624–639.

196



Entropy 2023, 25, 193

48. Zhao, S.; Gong, M.; Liu, T.; Fu, H.; Tao, D. Domain generalization via entropy regularization. In Proceedings of the Neural
Information Processing Systems, Virtual, 6–12 December 2020; Volume 33, pp. 16096–16107.

49. Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation. In Proceedings of the Neural
Information Processing Systems, Hong Kong, China, 3–6 October 2006; Volume 19.

50. Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A theory of learning from different domains. Mach.
Learn. 2010, 79, 151–175. [CrossRef]

51. Zhao, H.; Des Combes, R.T.; Zhang, K.; Gordon, G. On learning invariant representations for domain adaptation. In Proceedings
of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 7523–7532.

52. Xu, Q.; Zhang, R.; Zhang, Y.; Wang, Y.; Tian, Q. A fourier-based framework for domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14383–14392.

53. Zhou, K.; Yang, Y.; Qiao, Y.; Xiang, T. Domain Generalization with MixStyle. In Proceedings of the International Conference on
Learning Representations, Vienna, Austria, 3–7 May 2021.

54. Zhang, X.; Cui, P.; Xu, R.; Zhou, L.; He, Y.; Shen, Z. Deep stable learning for out-of-distribution generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–25 June 2021; pp. 5372–5382.

55. Wang, H.; Ge, S.; Lipton, Z.; Xing, E.P. Learning robust global representations by penalizing local predictive power. In Proceedings
of the Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.

56. Gulrajani, I.; Lopez-Paz, D. In Search of Lost Domain Generalization. In Proceedings of the International Conference on Learning
Representations, Virtual, 2–4 December 2020.

57. Wiles, O.; Gowal, S.; Stimberg, F.; Rebuffi, S.A.; Ktena, I.; Dvijotham, K.D.; Cemgil, A.T. A Fine-Grained Analysis on Distribution
Shift. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022.

58. Thomas, M.; Joy, A.T. Elements of Information Theory; Wiley-Interscience: Hoboken, NJ, USA, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

197



Citation: Lyu, Z.; Aminian, G.;

Rodrigues, M.R.D. On Neural

Networks Fitting, Compression, and

Generalization Behavior via

Information-Bottleneck-like

Approaches. Entropy 2023, 25, 1063.

https://doi.org/10.3390/e25071063

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 30 April 2023

Revised: 11 July 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

On Neural Networks Fitting, Compression, and Generalization
Behavior via Information-Bottleneck-like Approaches
Zhaoyan Lyu 1,* , Gholamali Aminian 2 and Miguel R. D. Rodrigues 1

1 Department of Electronic and Electrical Engineering, University College London, Gower St.,
London WC1E 6BT, UK; m.rodrigues@ucl.ac.uk

2 The Alan Turing Institute, British Library, 96 Euston Rd., London NW1 2DB, UK; gaminian@turing.ac.uk
* Correspondence: z.lyu.17@ucl.ac.uk

Abstract: It is well-known that a neural network learning process—along with its connections to
fitting, compression, and generalization—is not yet well understood. In this paper, we propose
a novel approach to capturing such neural network dynamics using information-bottleneck-type
techniques, involving the replacement of mutual information measures (which are notoriously
difficult to estimate in high-dimensional spaces) by other more tractable ones, including (1) the
minimum mean-squared error associated with the reconstruction of the network input data from
some intermediate network representation and (2) the cross-entropy associated with a certain class
label given some network representation. We then conducted an empirical study in order to ascertain
how different network models, network learning algorithms, and datasets may affect the learning
dynamics. Our experiments show that our proposed approach appears to be more reliable in
comparison with classical information bottleneck ones in capturing network dynamics during both
the training and testing phases. Our experiments also reveal that the fitting and compression phases
exist regardless of the choice of activation function. Additionally, our findings suggest that model
architectures, training algorithms, and datasets that lead to better generalization tend to exhibit more
pronounced fitting and compression phases.

Keywords: deep learning; information theory; information bottleneck; generalization; fitting;
compression

1. Introduction

Deep learning models have gained enormous attention thanks to their impressive
performance compared with traditional learning models in a variety of areas, such as
computer vision, speech processing, natural language processing, and many more [1,2].
However, despite their stunning performance, we still do not fully understand how deep
neural networks work [3].

A number of recent approaches have been proposed to study the generalization/
optimization properties of over-parameterized models, such as deep neural networks [4,5].
However, these approaches do not fully capture certain neural network representation
properties, including how these evolve during the neural network training procedure. Such
an understanding of the role of different components of the model and their impact on the
learning process can be essential for selecting or designing better neural network models
and associated learning algorithms.

Another popular approach to studying the generalization/optimization dynamics of
deep neural networks has been the information bottleneck (IB). This approach, which is
based on the information bottleneck theory [6,7], employs the mutual information (MI)
between the data and their neural network representation, as well as MI between labels
and the neural network representation to capture neural network behavior. In particular,
in classification problems, it is typical to model the relationship between the data label

198



Entropy 2023, 25, 1063

Y, the data themselves X, and some neural network intermediate data representation Z
via a Markov chain Y → X → Z, where Y, X, and Z represent random variables/vectors
associated with these different objects. Then, the IB principle is described via two MIs:
(1) I(Z; X) to measure the amount of information contained in the data representation
about the input data, and (2) I(Z; Y) to measure the information in the data representation
that could contribute to the prediction of ground-truth labels. One can capture how
the value of I(Z; X) and I(Z; Y) evolve as a function of the number of training epochs
for a neural network by plotting pairs of these mutual information values on a two-
dimensional plane [8]. The plane defined by these MI terms is called the information plane
(IP), and the trace of the MI value versus training epoch is called the information plane
dynamic (IP-dynamic).

This approach has led to the identification of some trends associated with the opti-
mization of neural networks. In particular, by observing the IP-dynamic of the networks
trained on a synthetic dataset and the MNIST dataset, ref. [8] found that, in early epochs,
both I(Z; X) and I(Z; Y) increase; and, in later epochs, I(Z; Y) will keep increasing while
I(Z; X) decreases. This led to the conjecture that the training of a neural network contains
two different phases: (1) a fitting phase, where the network representation Z fits the input
data X as much as possible, and (2) a subsequent compression phase in which the network
compresses the useless information in the representation Z about the labels Y.

However, the IB approach requires estimating I(Z; X) and I(Z; Y), which is notori-
ously difficult to accomplish because the inputs and representations typically lie in very
high-dimensional spaces. For example, non-parametric mutual information estimators—
such as [9,10]—suffer from either high bias or high variance, especially in high-dimensional
settings [10]. This will directly affect any conclusions extracted from the IP-dynamics
because high bias prevents recognizing the existence of fitting or compression phases,
whereas high variance leads to inconsistent results across different numerical experiments.
Indeed, with different mutual information estimators, researchers drew diverse or opposite
conclusions about trends in IP-dynamics [8,11–25]. For instance, Saxe et al. [24] argued that
the reported phenomena of fitting and compression in Shwartz et al.’s study [8] are highly
dependent on the simple binning MI estimator setup adopted.

Therefore, the trends that one often extracts from an IB analysis may not always hold.

1.1. Paper Contributions

This paper attempts to resolve these issues by introducing a different approach to
studying the dynamics of neural networks. Our main contributions are as follows:

1. First, we propose to use more tractable measures to capture the relationship between
an intermediate network data representation and the original data or the intermediate
network representation and the data label. In particular, we used the minimum mean-
squared error between the intermediate data representation and the original data to
try to capture fitting and compression phenomena occurring in a neural network; we
also used the well-known cross-entropy between the intermediate data representation
and the data label to capture performance.

2. Second, by building upon the variational representations of these quantities, we also
propose to estimate such measures using neural networks. In particular, our experi-
mental results demonstrate that such an approach leads to consistent estimates of the
measures using different estimator neural network architectures and initializations.

3. Finally, using our proposed approach, we conducted an empirical study to reveal
the influence of various factors on neural network learning processing, including
compression, fitting, and generalization phenomena. Specifically, we considered the
impact of (1) the machine learning model, (2) the learning algorithm (optimizer and
regularization techniques), and (3) the data.

The main findings deriving from our empirical study—along with the literature that
explored similar network architecture, training algorithm, or data setups—are summa-
rized in Table 1. In particular, we highlight that our study suggests that (1) a neural

199



Entropy 2023, 25, 1063

network generalization performance improves with the magnitude of the network’s fitting
and compression phase; (2) a network tends to undergo a fitting phase followed by a
compression phase, regardless of the activation function; and (3) the specific behavior of
the fitting/compression phases depends on a number of factors, including the network
architecture, the learning algorithm, and the nature of the data.

Table 1. Overview of our main results and related literature results. Fit., Com., and Gen. are
abbreviations for fitting, compression, and generalization, respectively. Note that the related literature
listed explored the information bottleneck under similar setups but may report different observations
or focus on different phenomena in the dynamics.

Study Model Training
Algorithm Dataset Section Our Observation Related

Literature

Effects
of model
architec-
tures

Tishby-nets with
saturated or non-
saturated activa-
tion functions

SGD

Tishby-
dataset Section 5.2.1 Fit./Com. phases exist regardless of

the type of activation function.
[8,11,14,
24,26,27]

MLPs with more
or fewer neurons
per layer

MNIST Section 5.2.2

MLPs with more neurons per layer
exhibit faster Fit., more Com., and
better Gen.

-

MLPs with more
or fewer layers

MLPs with more layers have less
Fit. but more Com. The MLP that
exhibits more pronounced Fit. and
Com. also tends to Gen. better.

[27]

CNNs with more
or fewer kernels

Adam

CIFAR-10

Section 5.2.3

CNNs with fewer kernels cannot Fit.
and Com. effectively, and do not
Gen. well. Increasing the number of
kernels on a well-generalized CNN
does not have a significant impact
on Fit., Com., or Gen.

-

CNNs with big-
ger or smaller
kernels

Both very large and very small ker-
nel sizes tend to result in less Fit. and
Com., and can harm Gen.

ResCNN Section 5.2.4

The representations at the outputs
of residual blocks do not exhibit
Fit./Com. phases, while the repre-
sentations in the residual blocks ex-
hibit Fit./Com. phases.

[13,18,28]

Effects of
training al-
gorithms

CNN

SGD, SGD-
momentum,
RMSprop,
Adam

Section 5.3.1 Adaptive optimizers compress more
on layers closer to the input. [29]

MLP

SGD with
or without
weight de-
cay

MNIST

Section 5.3.2

Weight decay does not significantly
affect the Fit. phase, but it can in-
crease the Com. capability of the
model and improve its Gen. perfor-
mance.

[11,18,21]

CNN

Adam
with or
without
dropout

CIFAR-10

A low dropout rate does not signifi-
cantly impact Fit., but it can enhance
Com. and improve Gen. In contrast,
a high dropout rate can lead to less
Fit. and Com., resulting in worse
Gen.

-

Effects of
dataset
size

Adam CIFAR-10,
CINIC Section 5.4

CINIC dataset enhances Fit., Com.,
and Gen. CIFAR-10 subset has less
Com. and worse Gen..

[8,14]

200



Entropy 2023, 25, 1063

1.2. Scope of Study

Finally, we note that the information bottleneck technique has been used as a tool to
cast insight into other machine learning paradigms, including semi-supervised learning [30]
and unsupervised learning [31–33]. However, we focused exclusively on supervised
learning settings—with an emphasis on neural networks—in order to contribute to a
deeper understanding of deep learning techniques.

1.3. Paper Organization

This paper is organized as follows: Section 2 offers an overview of the literature that
relates to our work. Section 3 proposes our approach to studying the compression, fitting,
and generalization dynamics of neural networks, whereas Section 4 discusses practical
implementation details associated with our proposed approach. Section 5 leverages our
approach to conducting an empirical study of the impact of various factors on the compres-
sion, fitting, and generalization behavior of a neural network, including the underlying
architecture, learning algorithm, and nature of the data. Finally, we summarize the paper,
discuss its limitations, and propose future directions in Section 6.

1.4. Paper Notation

We adopt the following convention for random variables and their distributions
throughout the paper. A random variable (or vector) is denoted by an upper-case letter
(e.g., Z), and its space of possible values is denoted with the corresponding calligraphic
letter (e.g., Z). The probability distribution of the random variable Z is denoted by PZ.
The joint distribution of a pair of random variables (Z1, Z2) is denoted by PZ1,Z2 . H(Z)
represents the entropy (or differential entropy) of random variable Z, H(Z1|Z2) represents
the entropy (or differential entropy) of random variable Z1 given random variable Z2,
and I(Z1; Z2) represents the mutual information between random variables Z1 and Z2. We
denote the set of integers from 1 to n by [n] , {1, · · · , n}.

2. Related Work

There are various lines of research that connect to our work.
Information bottleneck (IB) and information plane (IP) dynamics: Many works

have adopted the IB and the IP to study the optimization dynamics of neural networks.
Refs. [8,18,19,26,28] concluded that there is a different fitting and compression phase
during the training of a deep neural network, while [24,34] claim that neural networks
with saturating activation functions exhibit a fitting phase but do not exhibit a compression
phase. Ref. [11] conveyed that the network may occasionally compress only for some
random initializations. On the other hand, ref. [11] found that weight decay regularization
will increase the magnitude of the compression, while [14] did not observe compression
unless weight decay is applied. Finally, overfitting was observed from the IP associated
with hidden layers in [8,23,34].

While these works mentioned above explore various aspects of deep learning tech-
niques, such as how network behaviors are affected by varying training dataset sizes and
regularization techniques, their conclusions may not always be reliable due to the fact
that MI estimation can be inaccurate and unstable in high-dimensional settings, as argued
in [12].

IB and IP based on other information measures: Many works have also adopted
IBs/IPs based on other information measures to study the dynamics of neural networks.
Motivated by source coding, ref. [35] proposes to replace the I(Z; X) with the entropy of the
representation Z. The authors in [36] introduced a generalized IB based on f -divergence.
The authors also proposed an estimation bottleneck based on χ2-information, but this
quantity is difficult to estimate in practice, preventing its applicability in various problems.
The paper [37] proposed an information bottleneck approach based on MMSE and Fisher
information to develop robust neural networks. However, the authors utilized MMSE to
substitute mutual information between the representation and ground truth label, whereas

201



Entropy 2023, 25, 1063

we employed it to evaluate the association between representation and data. Inspired
by [38], ref. [39] introduced a new IB—called the V-information bottleneck—that articulates
the amount of useful information a representation embodies about a target usable by a
classifier drawn from a family of classifiers V . Recently, refs. [40,41] have used sliced
mutual information to study fitting in neural networks. However, their work mainly
focused on the fitting phase and did not explore the role of compression and its relationship
with generalization.

Mutual information estimation: Relying on mutual information to study the dy-
namics of neural networks leads to various challenges. The first challenge relates to the
fact that the MI between two quantities that lie in continuous space and are linked by a
functional relationship, such as the input and the output of a neural network, is theoreti-
cally infinite [42]. This limits its use since a neural network representation is typically a
deterministic function of the neural network input [8,11,21,24]. Many works have circum-
vented this issue by adding additional noise to the random variables. For instance, kernel
density estimation (KDE) [43,44] was used by [11,13,24,45], and the k-nearest-neighbor
based Kraskov estimator [46] was used in [18,24,47]. Other works using variational mutual
information estimators address the challenge by adding noise to the neural network rep-
resentations [14,19]. However, adding noise to the representations of a neural network is
not a widespread practice in most deep learning implementations. An alternative measure
of dependence between two variables is sliced mutual information, which was proposed
by [48]. This method involves random projections and the averaging of mutual information
across pairs of projected scalar variables. Our approach differs from this method as we
directly processed the random variables in high-dimensional space.

The second challenge relates to the fact that many mutual information estimators
exhibit high bias and/or high variance in a high-dimensional setting. For example, simple
binning methods [8,49] are known to lead to mutual information estimates that vary greatly
depending on the bin size choice. Further, variational mutual information estimators, such
as MINE [9], are also known to produce mutual information estimates that suffer from high
bias or high variance [10,50].

Our work departs from existing work because we propose to study the evolution of
two more stable measures during a neural network optimization process: (1) the minimum
mean-squared error associated with the estimation of the original data given some interme-
diate network representation and (2) the cross-entropy associated with the original data
label given an intermediate data representation. This offers a more reliable lens for studying
compression, fitting, and generalization phenomena occurring in neural networks.

3. Proposed Framework

We now introduce our approach to studying the compression, fitting, and general-
ization dynamics of neural networks. We focused exclusively on classification problems
characterized by a pair of random variables {(X, Y)|X ∈ X , Y ∈ Y}, where X is the input
data and Y is the ground-truth label, that follow a distribution PX,Y. We delivered an
estimate of the ground-truth label Ŷ ∈ Y given the data X ∈ X using an L-layer neural
network as follows:

Ŷ = fθ(X) = f (L)
θL

(
f (L−1)
θL−1

(
· · · f (1)θ1

(X)
))

(1)

where f (l)θl
(·) models the operation of the l-th (l ∈ [L]) network layer, where θl represents the

parameters of this layer (the weights and biases). The network parameters were optimized
using standard procedures given a (training) dataset containing various (training) samples.

The optimized network can then be used to make new output predictions Ŷ given
new input data X.

The network optimization procedure involves the application of iterative learning
algorithms such as stochastic gradient descent. Therefore, at a certain epoch i associated

202



Entropy 2023, 25, 1063

with the learning algorithm, we can model the flow of information in the neural network
via a Markov chain as follows:

Y → X → Z(i)
1 → Z(i)

2 → · · · → Z(i)
L → Ŷ (2)

where the random variable Z(i)
l = f (l)θl

(
Z(i)

l−1

)
∈ Rnl represents the network representation

at layer l at epoch i in the nl-dimension (with a convention that Z(i)
0 = X). Our goal was to

examine how certain quantities—capturing the compression, fitting, and generalization
behavior—associated with the network optimization process evolve as a function of the
number of algorithm training epochs.

Z-X measure: Our first quantity describes the difficulty in recovering the original data
X from some intermediate network representation Z(i)

l as follows:

m
Z(i)

l ;X
= inf

fx∈C(Rnl→X )
E
[
`X

(
fx

(
Z(i)

l

)
; X
)]

(3)

where fx(·) : Rnl → X is an estimator living in the function space C(Rnl → X ) and `X(·; ·)
is a loss function. We will take the loss function to correspond to the squared error so that
the Z-X measure reduces to the well-known minimum mean-squared error given by:

m
Z(i)

l ;X
= mmse

(
X|Z(i)

l

)
= E

[(
X−E

[
X|Z(i)

l

])2
]

(4)

where the function fx(·) that minimizes the right-hand side of Equation (3) is the well-
known conditional mean estimator. Our rationale for adopting this quantity to capture
the relationship between the network representation and the data in lieu of mutual
information—which is used in the conventional IB—is manifold:

• First, the minimum mean-squared error can act as a proxy to capture fitting—the
lower the MMSE, the easier it is to recover the data from the representation—and
compression—the higher the MMSE, the more difficult it is to estimate the data from
the representation.

• Second, this quantity is also easier to estimate than mutual information, allowing us
to capture the phenomena above reliably (see Section 5.1).

• Finally, the minimum mean-squared error is also connected to mutual information
(see Section 3.1).

Z-Y measure: Our second quantity describes the difficulty in recovering the original
label Y from some intermediate network representation Z(i)

l as follows:

m
Z(i)

l ;Y
= inf

fy∈C(Rnl→Y)
E
[
`Y

(
fy

(
(Z(i)

l

)
; Y
)]

(5)

where fy(·) : Rnl → Y is an estimator living in the function space C(Rnl → Y) and `Y(·; ·)
is a loss function. We will take the loss function to correspond to the cross-entropy so that
the Z-Y measure reduces to the well-known conditional entropy given by:

m
Z(i)

l ;Y
= H(Y|Z(i)

l ) (6)

where the function fy(·) that minimizes the right-hand side of Equation (5) should model
the distribution of the label given the representation. We also adopted this measure because
it connects directly to performance—hence the ability of the network to generalize—but
also to mutual information (see Section 3.1).

Plane and Dynamics of the Z-X and Z-Y Measures: Equipped with the measures in
Equations (4) and (6), one can immediately construct a two-dimensional plane plotting the
Z-X measure m

Z(i)
l ;X

against the Z-Y measure m
Z(i)

l ;Y
as a function of the number of network

203



Entropy 2023, 25, 1063

training epochs i = 1, 2, 3, . . . in order to understand (empirically) how a particular neural
network operates. Such a plane and the associated dynamics are the analogue of the IB
plane and the IB dynamics introduced in [8].

3.1. Connecting our Approach to the Information Bottleneck

Our approach is also intimately connected to the conventional information bottleneck
because—as alluded to earlier—our adopted measures are also connected to mutual infor-
mation. First, in accordance to [51] (Theorem 10), we can bound the mutual information
between the data X and the representation Z(i)

l as follows:

1
2

I(X; Z(i)
l ) ≥ var(X)−mmse(X|Z(i)

l ) (7)

where var(·) represents the variance of the random variable.
Second, we can also trivially express the mutual information between the data Y and

the representation Z(i)
l as follows:

I(Z(i)
l ; Y) = H(Y)−H(Y|Z(i)

l ) (8)

However, the main advantage of our approach in relation to the traditional IB is that
it is much easier to estimate the proposed Z-X and Z-Y measures than the corresponding
mutual information in high-dimensional settings; see Section 5.1.

4. Implementation Aspects
4.1. Experimental Procedure

The crux of our approach involves tracking how the Z-X and Z-Y measures evolve
during the network optimization process as a function of the learning algorithm epochs.
However, we cannot estimate the measures in Equations (4) and (6) directly because we
do not have access to the relevant probability distributions. Instead, we will leverage the
variational representations of the Z-X measure in Equation (3) and the Z-Y measure in
Equation (5) to approximate the measures in a data-driven manner, given access to a dataset
S = {X(k), Y(k)}n

k=1 consisting of various input–label pairs.
In particular, given this dataset S = {X(k), Y(k)}n

k=1, we used learnable functions
fφ : Rnl → X and fψ : Rnl → Y—which are neural networks parameterized by φ and ψ,
respectively—to approximate the measures in Equations (4) and (6) as follows:

m
Z(i)

l ;X
= inf

fx
E
[
`x

(
fx(Z(i)

l ); X
)]
≤ min

φ
E
[
`x

(
fφ(Z(i)

l ); X
)]
≈ min

φ

1
n

n

∑
k=1

`x

(
fφ(Z(i)

l (k)); X(k)
)

= m̂
Z(i)

l ;X
(9)

and

m
Z(i)

l ;Y
= inf

fy
E
[
`y

(
fy(Z(i)

l ); Y
)]
≤ min

ψ
E
[
`y

(
fψ(Z(i)

l ); Y
)]
≈ min

ψ

1
n

n

∑
k=1

`y

(
fψ(Z(i)

l (k)); Y(k)
)

= m̂
Z(i)

l ;X
(10)

respectively, where the learnable function parameters φ and ψ are drawn from Φ and
Ψ, Z(i)

l = f (l)θl

(
Z(i)

l−1

)
, and Z(i)

l (k) = f (l)θl

(
Z(i)

l−1(k)
)

. Note that—in view of the fact that
{

fφ : φ ∈ Φ
}
⊂ C(Rnl → X ) and

{
fψ : ψ ∈ Ψ

}
⊂ C(Rnl → Y)—one is confronted with

an immediate trade-off: the higher the number of parameters in the learnable functions, the
closer the upper bounds to the measures in Equations (9) and (10) are to the actual measure
but also the higher the number of samples that may be required to approximate the upper
bound reliably. This will be further discussed in Section 5.1.

204



Entropy 2023, 25, 1063

Our setup is summarized in Figure 1. We re-emphasize that there were three neural
networks involved in our study: (1) fθ(·) is the network whose dynamics we wish to study
(in the green box of Figure 1), (2) fφ(·) represents the neural network used to approximate
the Z-X measure (in the blue box of Figure 1), and (3) fψ(·) represents the neural network
used to estimate the Z-Y measure (in the yellow box of Figure 1)

subject network

Z-X measure estimator

Z-Y measure estimator

(SE)

(CE)

Figure 1. Proposed approach. We used two estimator neural networks fφ(·) and fψ(·) to study the
behavior of the Z-X measure and the Z-Y measure associated with the different representations of the
subject network fθ(·). The `x(·) and `y(·) are squared loss and cross-entropy, respectively.

We optimized these networks using the procedure outlined in Algorithms 1 and 2. The
algorithm used to optimize the neural network fθ can be used with different neural network
models, different learning algorithms, or different datasets. Note that this algorithm saves
the neural network learnable parameters as checkpoints every several epochs (as shown
in Algorithm 1), where we used T to control the total number of checkpoints to limit
computational overhead.

In turn, the algorithm used to train the estimator networks fφ(·) and fψ(·) uses the
Adam optimizer with a learning rate of 0.01 for efficient and stable estimation. The estimator
networks were initialized using the standard Xavier [52] initialization (unless otherwise
specified), and the estimator networks were also optimized until convergence (which is
identified by the increase in loss value on the validation set).

We note that we trained the subject network on a training set, but we trained the
estimator networks on a different (independent) validation set in order to obtain estimates
of the Z-X and Z-Y measures that can also capture generalization behavior. The Tishby-
dataset is an exception since it does not have a separate validation set. Note, however,
that, in the IB literature, few studies have reported differences in trends by estimating the
relevant mutual information quantities on the training set or an independent validation
set. Some studies (e.g., [8]) also do not specify the dataset used to compute the mutual
information measures.

We will be referring for simplicity in the sequel to the network whose dynamics we
wish to study (i.e., fθ(·)) as the subject network and to the networks whose purpose is to
estimate the relevant measures (i.e., fφ(·) and fψ(·)) as the estimator networks.

205



Entropy 2023, 25, 1063

Algorithm 1: Train the subject network
Input: number of epochs I, number of checkpoints T
Data: {(X(k); Y(k))}n

k=1
Output: T checkpoint files containing network parameters associated with the

different intermediate points
initialize fθ with random θ(0);
i← 1, t← 1;
while i ≤ I do

if i%bI/Tc = 0 then
save θ(i) to a checkpoint file θ(t);
t← t + 1;

end
optimize the parameters θ(i) of the subject neural network with a standard
learning algorithm given dataset {(X(k); Y(k)}n

k=1 ;
end

Algorithm 2: Estimate Z-X measure and Z-Y measure
Input: fθ(t) from Algorithm 1, t, random seed s
Data: {(X(k); Y(k)}n

k=1
Output: {m̂Z1;X , . . . , m̂ZL ;X}, {m̂Z1;Y, . . . , m̂ZL ;Y}
Obtain subject network representations {{Zl(k)}n

k=1}L
l=1 ← fθ(t)({X(k)})|nk=1;

l ← 1;
while l ≤ L; // This loop is parallelizable.
do

initialize fφl , fψl with random seed s;
while fφl not converge; // Estimating Z-X measure.
do

m̂Zl ;X(φl)← 1
n ∑n

k=1 `x( fφl (Zl(k)); X(k));
update φl to minimize m̂Zl ;X with a standard learning algorithm;

end
while fψl not converge; // Estimating Z-Y measure.
do

m̂Zl ;Y(ψl)← 1
n ∑n

k=1 `y( fψl (Zl(k)); Y(k));
update ψl to minimize m̂Zl ;Y with a standard learning algorithm;

end
end

4.2. Experimental Setups

Our experiments studied the effect of the (subject) network model architecture, the (sub-
ject) network learning algorithm, and the dataset on key aspects, such as network fitting,
compression, and generalization, via the Z-X and the Z-Y dynamics; see also Table 1. We
therefore summarize next the main models, learning algorithms, and datasets used in the
study reported in Section 5.

Subject Network Models: We adopted a series of neural network models, including:
(1) the Tishby-net, proposed by [8], with the Tishby-dataset, consisting of 4096 samples
with binary labels; (2) MLP models with varying number of layers and varying width per
layer with an MNIST dataset [53], which has 60,000 grayscale handwritten digit images
for training and 10,000 for validation; (3) a convolutional neural network (CNN) with
VGG-like [54] architecture trained on the CIFAR-10 [55] and CINIC [56] dataset, where
the CIFAR-10 dataset comprises 50,000 RGB images categorized into 10 classes for training
and 10,000 for validation, and the CINIC dataset consists of 900,000 training samples labeled

206



Entropy 2023, 25, 1063

in the same way as the CIFAR-10 dataset; and (4) a ResCNN model on the CIFAR-10 dataset,
which is a CNN architecture with residual connections modified from the original CNN.
The various models and datasets will allow us to study the effect of model architectures
and datasets on network dynamics. These models are illustrated in Figure 2. Note that,
for MNIST and CIFAR-10 datasets, we separated the validation sets into two halves of the
same size: one half was used for plotting the dynamics, and the other half served as the
test set for evaluating generalization performance.

Subject Network Learning Algorithm: We also adopted a series of learning algo-
rithms, including (1) training a CNN on the CIFAR-10 dataset using different optimizers,
such as non-adaptive (SGD, SGD-momentum) and adaptive (RMSprop, Adam); (2) training
an MLP on the MNIST dataset with or without weight decay regularization, where the
regularization hyper-parameter was set to 0.001; and (3) training a CNN on the CIFAR-10
dataset with or without dropout regularization, where the dropout was only applied on
the fully connected layer of the CNN as implemented in [54]. These setups allowed us
to study the effect of different optimization algorithms and regularization methods on
network dynamics.

Estimator Neural Network Model and Algorithms: We deployed a variety of estima-
tor network architectures that depend on the architecture of the subject network (namely,
the specific shape of the subject network representations in the different layers) as follows:

• For Tishby-net and MLP WxL models, the models for both the Z-X measure estimator
and Z-Y measure estimator are fully connected neural networks. The input layer of the
estimator networks matches the dimension of the representation (Zl), while the output
layer has a dimension equivalent to either the input vector (for Z-X measures) or label
length (for Z-Y measures). If the estimator network has multiple layers, its hidden
layers will be connected using ReLU non-linearity and have a number of neurons
equal to the dimension of representation (Zl).

• To estimate the Z-Y measure for CNN and ResCNN, we flattened the representation
into a vector and employed the same network architecture as for the Z-Y measure
estimator of Tishby-net and MLP WxL models. In turn, to estimate the Z-X measure,
we used a convolution layer with a 3 × 3 kernel size to map the representation into
the input space of 32 × 32 × 3. However, if the representation is down-sampled
by a pooling layer (e.g., Figure 2 CNN Z2), we up-sampled it using a transposed
convolutional layer with a 2 × 2 kernel size before feeding it into the convolutional
layer. The number of transposed convolutional layers equals the number of pooling
layers that the representation has gone through since each transposed convolutional
layer can only up-sample the representation by a factor of 2. ReLU non-linearity exists
between all hidden layers. For example, when the representation is generated by a
layer with two pooling layers before it (e.g., Figure 2 CNN Z3), the estimator for the
Z-X measure would contain two transposed convolutional layers.

These estimators have been shown to be computationally efficient, offering stable results.

4.3. Other Practical Considerations

In view of the fact that we computed the relevant measures for different layers of the
subject network at different learning epochs, we also adopted various other practical tricks
to improve the computation efficiency as follows:

1. Parallelize checkpoint enumeration t ∈ {1, 2, . . . , T}: To plot the Z-X / Z-Y measures
dynamics, we need to calculate these quantities at different checkpoints saved from
various epochs during the training of the subject network.
We can easily deploy multiple Algorithm 2 instances on different checkpoints saved
per Algorithm 1 in parallel;

2. Parallelize layer iteration l ∈ {1, 2, . . . , L}: We can also break up the iteration of l
layers in Algorithm 2 into parallel processes since the estimations of the measures on
different layers are independent;

207



Entropy 2023, 25, 1063

3. Parallelize estimation of Z-X measure and Z-Y measure: We can also deploy the Z-X
measure estimator and the Z-Y measure estimator on different processes because they
are also independent;

4. Warm-start: Moreover, we can accelerate the convergence of estimator networks by
using warm-start. We randomly initialized and trained the estimators from scratch in
the first checkpoint for Tishby-net and MLP WxL models. We then used the learned
parameters as initialization for the estimators in subsequent checkpoints. However,
we did not use warm-start in CNN and ResCNN estimator networks as it does not
noticeably accelerate convergence in these cases.

We deployed our algorithms on a server equipped with one NVIDIA Tesla V100 GPU.

Tishby-net

FC
-1

2×
10

ac
tiv

at
io

n 
fu

nc
tio

n

FC
-1

0×
7

ac
tiv

at
io

n 
fu

nc
tio

n

FC
-7

×5
ac

tiv
at

io
n 

fu
nc

tio
n

FC
-5

×4
ac

tiv
at

io
n 

fu
nc

tio
n

FC
-4

×3
ac

tiv
at

io
n 

fu
nc

tio
n

FC
-3

×2
so

ftm
ax

FC
-7

84
×W

R
eL

U

FC
-W

×W
R

eL
U

FC
-W

×W
R

eL
U

FC
-W

×1
0

so
ftm

ax...

MLP WxL

so
ftm

ax
FC

-1
28

×1
0

R
eL

U

R
eL

U

C
on

v 
32

×3
×3

C
on

v 
32

×3
×3

R
eL

U

R
eL

U

C
on

v 
64

×3
×3

C
on

v 
64

×3
×3

Po
ol

 2
×2

R
eL

U

R
eL

U

C
on

v 
12

8×
3×

3

C
on

v 
12

8×
3×

3

Po
ol

 2
×2

R
eL

U
FC

-2
04

8×
12

8

Po
ol

 2
×2

Fl
at

te
n

block 1 block 2 block 3 block 4 block 5

CNN

ResCNN

R
eL

U
FC

-2
04

8×
12

8

Po
ol

 2
×2

Fl
at

te
n

so
ftm

ax
FC

-1
28

×1
0

R
eL

U
C

on
v 

32
×3

×3

C
on

v 
32

×3
×3

R
eL

U

R
eL

U
C

on
v 

64
×3

×3

R
eL

U
C

on
v 

64
×3

×3
Po

ol
 2

×2

R
eL

U
C

on
v 

12
8×

3×
3

R
eL

U
C

on
v 

12
8×

3×
3

Po
ol

 2
×2

Res-block 1 Res-block 2 Res-block 3

Figure 2. The architectures of subject neural networks involved in this paper. Tishby-net will be
trained on the Tishby-dataset proposed in [8], MLP W×L will be trained by MNIST dataset [53],
and CNN and ResCNN will be trained on CIFAR-10 dataset [55]. FC stands for fully connected
layer, Conv represents the convolutional layer, and Pool refers to the max pooling layer. Note
that we intentionally kept the architecture of the CNN as close to ResCNN as possible to enable a
better-controlled comparison in later experiments.

5. Results

We now build upon the proposed framework to explore the dynamics of the Z-X
and Z-Y measures and their relationship with fitting/compression (F/C) phases and
generalization in a range of neural network models. In particular, the fitting phase refers to
the initial phase of training where the Z-X measure decreases with the number of epochs,
indicating that the network is attempting to fit the dataset. This phase commonly occurs
during early training. On the other hand, the compression phases refer to the subsequent
increase in the Z-X measure, indicating the compression of information in the network.

Firstly, we experimentally examined whether the estimation of the proposed measures
is stable. Then, we examined the impact of (1) the model architecture; (2) the learning
algorithm including optimizer and regularization techniques; and (3) the data on the
dynamics of the measures.

208



Entropy 2023, 25, 1063

The results will be presented using Z-X and/or Z-Y dynamics, and the tables show
the losses, accuracy, and generalization error of each experiment. In the figures, the x-axes
or y-axes will be shared unless specified otherwise by the presence of ticks.

5.1. Z-X and Z-Y Measures Estimation Stability

The reliability of the estimation of the proposed measures is critical for extracting
robust conclusions about the behavior of the Z-X and Z-Y dynamics in a neural network.
Such studies are, however, largely absent in the information bottleneck literature [12].

5.1.1. Criteria to Describe the Stability of Estimated Measures

We assessed the stability of the Z-X and Z-Y measures estimation using two criteria:

• Stability with regard to the initialization of estimator networks: First, we explored
how different initializations of an estimator network affect the Z-X and Z-Y measures.

• Stability with regard to the architecture of estimator networks: Second, we also
explored how (estimator) neural network architectures—with different depths—affect
the estimation of the Z-X and Z-Y measures.

5.1.2. Subject Networks, Estimator Networks, and Datasets Involved

We examined the stability of Z-X and Z-Y measures estimates in both fully connected
and convolutional subject networks. In particular, we used: (1) a Tishby-net (which has
an MLP-like architecture) trained on the Tishby-dataset classification task with a standard
stochastic gradient descent (SGD) optimizer, and (2) a CNN trained on the CIFAR-10
classification task trained with an Adam optimizer. However, we noticed that the Tishby-
net may not always converge due to its simple architecture and small dataset size of
4096 samples. Therefore, we repeated the training process multiple times with different
initializations and only retained converged subject networks to ensure meaningful results.
We built estimator networks as elaborated in the previous sections, and their architectures
are detailed in Appendix A.

To verify the first stability criterion, we tested different initializations by modifying the
random seed of the Xavier initializer. For the second stability criterion, we experimented
with estimators at different depths.

5.1.3. Are the Measures Stable in the MLP-like Subject Neural Networks?

Figure 3 depicts the Z-X and Z-Y measures estimates on the Tishby-net. Specifically,
panels (a) and (b) display the behavior of such measures under different initializations of a
one-layer and two-layer estimator network, respectively. Our results indicate that these
measures are robust to changes in the initialization of the estimator network (for a given
estimator network architecture).

In turn, panels (c) and (d) depict the behavior of the Z-X and Z-Y measure estimates for
different estimator network architectures. It is clear that the capacity of the estimator (which
depends on the number of estimator network layers) may affect the exact value of the Z-X
and Z-Y measures estimate, indicating the presence of a bias; however, such estimators
can still capture consistent trends (such as increases and decreases in the measures that are
critical to identifying fitting or compression behavior; see panel (d)).

We however note—as we had elaborated previously—that the estimator networks
need to be sufficiently complex to emulate a conditional mean estimator—to estimate the Z-
X measure—or to emulate the conditional distribution of the label given the representation—
to estimate the Z-Y measure. This may not always be possible depending on the complex-
ity/capacity of the estimator network e.g., one-layer estimator networks are only capable
of representing linear estimators whereas two-layer networks can represent more complex
estimators (therefore, linear one-layer networks cannot reliably estimate the minimum
mean-squared error unless the random variables are Gaussian). However, our results sug-
gest that, with a two-layer network, we may already obtain a reliable estimate since—except
for some representations—the difference in the measures estimated using a two-layer net-

209



Entropy 2023, 25, 1063

work does not differ much from those using a three-layer network. Naturally, with an
increase in the capacity of the estimator networks, one may also need additional data in
order to optimize the estimator network to deliver a reliable network, but our results also
suggest that the variance of the estimates is relatively low for both two-layer and three-layer
estimators. Further, the results in [57] suggest that the difference between the estimated
value and the true value for our Z-X measure decays rapidly with the number of points
in the (validation) dataset (note, however, that these results only apply for scalar random
variables). Therefore, we will adopt a two-layer estimator network in our study of MLPs in
the sequel.

We conducted a more robust analysis of the efficacy of different estimators using
a Gaussian mixture data model in Appendix B, where we can also directly analytically
compute the mean-squared error for comparison purposes.

-0.04
0.00

-0.08
-0.12

0.008

0.004

0.000

stability w.r.t. initialization

Z-
X

 m
ea

su
re

Z-
Y

 m
ea

su
re

stability w.r.t. estimator architecture

subject network epoch (  1000) subject network epoch (  1000)
(a) (b) (c) (d)

3 4210 3 4210 3 4210 3 4210

0.6

0.4

0.2

0.0

0.20

0.10

0.00
0.6

0.4

0.2

0.0

0.20

0.10

0.00

1-layer 2-layer 3-layer

Figure 3. Z-X and Z-Y measures estimate on the Tishby-net: (a,b) stability with regard to the
initialization of estimator networks, and (c,d) stability with regard to the architecture of estimator
networks. The lines are averaged over five different initializations, and the shadow is five times
the standard deviation. The representations (e.g., Z1) are taken from the corresponding layer of
the Tishby-net in Figure 2. The measures in (a) are estimated with 1-layer estimators with varying
initializations, and measures in (b) are estimated with 2-layer estimators with different initializations.
(c) compares the measures estimated by estimators with different depths, while the curves in (d)
depict the measures increasing/decreasing trend, obtained by taking the derivative of (c).

5.1.4. Are the Measures Stable in the Convolutional Subject Neural Networks?

Figure 4 shows the Z-X and Z-Y measure estimates on the CNN. To test the stability
criteria, we again used different estimator network initializations (varying the random seed
of the Xavier initializer) and different estimator network architectures. We first plotted
the Z-X dynamics and Z-Y dynamics based on the setup described in Section 4, and the
results are shown in the left column of Figure 4. Then, for comparison, we added an extra
convolutional layer to all Z-X estimators and a fully connected layer to all Z-Y estimators,
and the results are displayed in the right column of Figure 4.

210



Entropy 2023, 25, 1063

1.4
1.0
0.6
0.2

0.06
0.04
0.02
0.00

0 10 20 40 50 0 10 20 4030 50

Z-
Y

 m
ea

su
re

Z-
X

 m
ea

su
re

standard w/ one extra layer

30
subject network epoch subject network epoch

Figure 4. Z-X and Z-Y measures estimate on the CNN: the lines are averaged over five different
initializations, and the shadow is five times the standard deviation. The representations (e.g., Z1)
are taken from the corresponding layer of the CNN in Figure 2. Note that the violation of the data
processing inequality (DPI) observed in the Z-Y measure is attributed to the use of a pre-defined
estimator model. This aspect is also acknowledged in the context of the V-information framework,
as discussed in [38].

The results show that both estimator networks lead to relatively consistent and stable
measure estimates. This suggests that our proposed measures can be reliably inferred using
such estimator networks—under different initializations—even in this high-dimensional
setting that poses significant challenges to mutual information estimators. Comparing the
dynamics estimated by the standard estimator architecture and the one with an extra layer,
we observed that the trends of the dynamics are similar. Hence, we used the standard
setup in the rest of the paper due to its higher computational efficiency, which is illustrated
in Figure A3.

We next relied on this approach to estimate the Z-X and the Z-Y dynamics for different
(subject) neural network models and algorithms in order to cast further insights into the
compression, fitting, and generalization dynamics of deep learning.

5.2. The Impact of Model Architectures to the Network Dynamics

We started our study by investigating the effect of the neural network model on the Z-X
and Z-Y dynamics of neural networks. We considered both MLPs with different activation
functions, depths, and widths. We also considered CNN and res-net architectures. Our
study will allow us to identify possible fitting, compression, and generalization behavior.

5.2.1. Does the Activation Function Affect the Existence of F/C Phases?

We began by examining whether the presence of the fitting and compression (F/C)
phases is dependent on the activation function used in the network. This topic has been
explored in previous studies using the IB approach [8,11,24,27], but different studies have
led to different conclusions [27].

Setups: We deployed Tishby-net architecture with various activation functions, in-
cluding both saturating (tanh and softsign [58]) and non-saturating (ReLU [59], ELU [60],
GELU [58], swish [61,62], PELU [63], and leaky-ReLU [64]) options. The Tishby-net was
trained on the Tishby-dataset using the same optimizer and hyper-parameter setups as
described in the literature [8,24]. The Z-X and Z-Y measures were estimated using two-layer
estimators, as argued in Section 5.1.

Results: Figure 5 reveals that the Z-X dynamics exhibit a consistent pattern among all
Tishby-nets, characterized by an initial decrease in Z-X measures followed by an increase.
Note that the initial decrease happens prior to the decrease in the subject network loss.
There can be a longer period of epochs where the network struggles to converge and, during
this phase, the changes in the Z-X measure may not be easily visible. The Z-X dynamics in
some experimental setups, such as PELU, display fluctuation, which we attribute to the

211



Entropy 2023, 25, 1063

unstable convergence of the subject network, as evidenced by the fluctuations in the subject
network loss. Moreover, the increases in Z-X measures coincide with epochs where the
network experiences a decrease in loss. These observations suggest that the F/C phases
are likely to occur in the network, regardless of the activation function employed. Our
observation is in line with some of the previous studies that have used MI measures, such
as [8,11].

tanh ReLU GELU PELU

softsign ELU swish leaky-ReLU

0.4

0.6

0.2

0.0

0.4

0.6

0.2

0.0

su
bj

ec
t n

et
w

or
k

lo
ss

su
bj

ec
t n

et
w

or
k

lo
ss

0.2

0.1

0.0

0.2

0.1

0.0

Z-
X

 m
ea

su
re

Z-
X

 m
ea

su
re

subject network loss
subject network epoch (  1000)

21 430 21 430 21 430 21 430

Figure 5. Z-X dynamics on Tishby-net with different activation functions. The left y-axes displays
the Z-X measure estimate values, while the right y-axes represent the cross-entropy loss value of the
subject network.

5.2.2. How Do the Width and Depth of an MLP Impact Network Dynamics?

We now examine the effect of the MLP width (number of neurons per layer) and depth
on the Z-X and Z-Y dynamics.

Setups: For the MLP width analysis, we constructed four-layer MLPs with different
numbers of neurons per layer: 16, 64, and 512. For the MLP depth experiment, we fixed
the width of the subject network to 64 and varied its depth from two to six hidden layers.
All models were trained on the full MNIST dataset using a standard SGD optimizer with a
fixed learning rate of 0.001. We also used two-layer estimator networks to estimate the Z-X
and Z-Y measures.

Figure 6 depicts the dynamics of the Z-X measure against the Z-Y measure for MLP
networks with four layers and with different widths. As shown in Table 2, the best
generalization performance is associated with the model MLP 512 × 4. We can observe
that all MLP networks exhibit fitting and compression phases. However, wider networks
(e.g., MLP 512 × 4) tend to begin compressing earlier, while the thinner ones (e.g., MLP
16 × 4) tend to have a longer fitting phase. This trend suggests that wider networks are
able to fit data more quickly. We can also observe that the networks with more neurons per
layer (MLP 512 × 4) exhibit more compression than network with fewer neurons per layer
(MLP 16 × 4). Interestingly, the MLP 512 × 4 model also exhibits the best generalization
performance, so one can potentially infer that significant compression may be necessary for
good generalization [8,29].

Z-
Y

 m
ea

su
re

va
lid

at
io

n 
se

t

Z-X measure Z-X measure Z-X measure

MLP 16  4 MLP 64  4 MLP 512  4
1.2

0.8

0.4

0.2
0.04 0.05 0.03 0.04 0.05 0.01 0.03 0.05

su
bj

ec
t n

et
w

or
k 

ep
oc

h
30

0
0

10
0

20
0

Figure 6. Z-X/Z-Y measures dynamics plane of MLP networks with different widths. The represen-
tations (e.g., Z1) are taken from the corresponding layer of the MLP WxL network in Figure 2.

212



Entropy 2023, 25, 1063

Table 2. The epoch that reached the minimum validation loss (ep.), the training losses, test losses (test
loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of the MLPs
with different widths and depths. The experiment with the best generalization error is highlighted
using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

MLP 16 × 4 197 0.0890 0.1471 0.0581 0.9740 0.9572
MLP 64 × 4 168 0.0344 0.0967 0.0623 0.9919 0.9748
MLP 512 × 4 142 0.0191 0.0697 0.0506 0.9967 0.9800

MLP 64 × 2 299 0.0688 0.1247 0.0559 0.9815 0.9760
MLP 64 × 3 275 0.0338 0.0570 0.0232 0.9919 0.9762
MLP 64 × 4 142 0.0344 0.0967 0.0623 0.9919 0.9748
MLP 64 × 5 85 0.0659 0.1185 0.0526 0.9822 0.9672
MLP 64 × 6 68 0.0736 0.1320 0.0584 0.9798 0.9616

Figure 7 depicts the dynamics of the Z-X measure (associated with the first and
last layers) of MLPs with a width of 64 and with different depths (we note that the best
generalization performance is associated with the model MLP 64 × 3). In terms of fitting,
we can observe that the different MLPs experience a fitting phase. However, deeper models
such as MLP 64 × 5 and MLP 64 × 6 appear to experience a more pronounced fitting
phase than shallower models, though deeper models still exhibit a higher Z-X measure
than shallower ones toward the end of this fitting phase (see marker #1). In terms of
compression, we find that deeper networks (e.g., MLP 64 × 5, MLP 64 × 6) compress data
more aggressively than shallower ones. Indeed, the gap between the Z-X measure value
between the last layer and the first layer of the network is much higher for a deeper model
than for shallower ones (as indicated by marker #2).

0.06

0.04

0.05

0.02

0.03Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

0 100 200 300
subject network epoch

MLP 64  2

MLP 64  3

MLP 64  4

MLP 64  5

MLP 64  6 first layer
last layer

1 2

Figure 7. Z-X dynamics of the MLP 64 networks with different depths. The curves with higher
saturation correspond to the last layer of the MLP model, while those with lower saturation belong to
the first MLP layer.

We also highlight that the MLP 64× 3 network, which demonstrated the best general-
ization performance (refer to Table 2), exhibited a significant fitting phase similar to MLP
64 × 2, as well as a notable compression phase close to MLP 64-4.

Overall, shallow networks may have difficulty compressing data effectively, while the
layers close to the output in the deep networks may lose important information and cannot
fit data well. We hypothesize that both of these phenomena—which are both present in the
MLP 64× 3 network—can have an impact on a network’s ability to generalize effectively.

5.2.3. How Do the Number of Kernels and Kernel Size of a CNN Impact
Network Dynamics?

We now examine the effect of the kernels, including their number and size, on the Z-X
and Z-Y dynamics in a CNN.

213



Entropy 2023, 25, 1063

Setups: To analyze the impact of the number of kernels on network F/C phases in
CNNs, we adjusted the number of kernels by a factor derived from the baseline CNN
architecture shown in Figure 2. To analyze the impact of the kernel size, we used 1 × 1,
3 × 3 (baseline), 5 × 5, and 7 × 7 kernel sizes for all convolutional layers The CNN models
were trained on the CIFAR-10 dataset using the Adam optimizer with a learning rate of
0.001. We utilized minimal estimator networks, as described in the previous section.

Results: Figure 8 depicts the Z-X dynamics of our CNN network with different
numbers of kernels. We observe that having a low number of kernels (e.g., /4, /8) seems to
impair both the fitting and compression process, particularly in early layers (e.g., layers 1
and 2). In contrast, we observed that a high number of kernels do not significantly impact
the F/C phases or the generalization performance. Indeed, as shown in Table 3, CNNs with
more kernels (e.g., ×2, ×4) have a similar test loss performance to the baseline model (note
that the best test loss performance corresponds to the ×4 model, and that its generalization
performance is also similar to that of the baseline model). This suggests that adding more
kernels to a well-generalized CNN may not significantly impact the F/C phases and may
not lead to an improved generalization.

Table 3. The epoch that reached the minimum validation loss (ep.), the training losses, test losses (test
loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of the CNNs
with a different number of kernels and kernel sizes. The experiment with the best generalization
error is highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

CNN baseline 5 0.6747 0.8300 0.1553 0.7657 0.7190
CNN ×2 7 0.3826 0.8303 0.4477 0.8637 0.7514
CNN ×4 4 0.5667 0.7801 0.2135 0.8001 0.7332
CNN /2 11 0.6015 0.9055 0.3040 0.7871 0.7008
CNN /4 14 0.7704 1.0494 0.2790 0.7306 0.6492
CNN /8 26 0.9515 1.1353 0.1838 0.6589 0.6060

CNN 1 × 1 18 1.0307 1.1860 0.1553 0.6343 0.5978
CNN 3 × 3 5 0.6747 0.8065 0.1318 0.7657 0.7190
CNN 5 × 5 9 0.6001 0.9805 0.3804 0.7887 0.6958
CNN 7 × 7 6 0.8372 1.2011 0.3639 0.7031 0.6042

Figure 9 depicts the Z-X dynamics of our CNN network with different kernel sizes.
It appears that networks with large kernels fail to fit and compress, but networks with
small kernels also exhibit little fitting and compression. Indeed, the best test loss and
generalization performance are associated with the CNN model with a 3 × 3 kernel size,
which also exhibits a more pronounced fitting and compression phase (refer to Table 3).

Overall, we hypothesize that selecting an appropriate kernel size can improve a net-
work’s ability to both fit and compress data, leading to a better generalization performance,
which is in line with the conclusion in [8,29].

214



Entropy 2023, 25, 1063

su
bj

ec
t n

et
w

or
k

lo
ss

su
bj

ec
t n

et
w

or
k

lo
ss

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t
Z-

X
 m

ea
su

re
va

lid
at

io
n 

se
t

subject network epcohs

baseline

/8 kernels/4 kernels

100 20 30 40 50 100 20 30 40 50 100 20 30 40 50

/2 kernels

  2 kernels   4 kernels 2.0

1.0

0.0

2.0

1.0

0.0

0.04

0.06

0.02

0.00

0.04

0.06

0.02

0.00

training loss validaion loss

Figure 8. Z-X dynamics of the CNN network with different number of kernels on each layer. We
make modifications based on the baseline CNN structure shown in Figure 2. For example, “×2”
means doubling the number of kernels in each convolutional layer, while “/2” means halving the
number of kernels in each convolutional layer. The representations (e.g., Z1) are taken from the
corresponding block of the CNN network in Figure 2.

0.05

0.03
0.04

0.06

0.01
0.02

0.00

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

su
bj

ec
t n

et
w

or
k 

lo
ss

10 3020 400 50 10 3020 400 50 10 3020 400 50 10 3020 400 50

2.0

1.0

0.0

baseline (3  3) 7  75  51  1

subject network epcohs
training loss validaion loss

Figure 9. Z-X dynamics of the CNN network with different kernel sizes. The representations (e.g.,
Z1) are taken from the corresponding block of the CNN network in Figure 2.

5.2.4. How Does Residual Connection Affect the Network Dynamics?

We finally assessed the impact of residual connections—introduced in [65]—on neural
network learning dynamics, since these have been frequently used to address the gradient
vanishing problem in very deep neural networks. We note that some works [13,18] have
studied the behavior of ResNet or DenseNet (which also contain residual connections [66]).
However, these studies did not delve into how residual connections may impact the
information bottleneck of hidden layer representations and their relation to generalization.

Setup: We deployed a ResCNN, as elaborated in the previous section, that was trained
using an Adam optimizer with a learning rate of 0.001 on the CIFAR-10 dataset. We
also used the standard estimator network setups elaborated in Section 4.2 and shown in
Appendix A Figure A3.

Results: We first analyzed the behavior of the Z-X dynamics at the output of the
residual blocks (e.g., Z1,out) and the fully connected layers, and compared it with the CNN
with a similar architecture but without residual connections; see Figure 10.

215



Entropy 2023, 25, 1063

su
bj

ec
t n

et
w

or
k

lo
ss

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

w/o residual 2.0

1.0

0.0

0.04

0.06

0.02

0.00
10 30 500 20 40 10 30 500 20 40

w/ residual

subject network epoch

training losstraining loss
validation loss

/

/
/

Figure 10. Z-X dynamics of CNNs with or without residual connections. The representations (e.g.,
Z1, Z1,out) are taken from the corresponding locations of the CNN or ResCNN network shown in
Figure 2.

We notice that the ResCNN tends to have less pronounced compression in the (residual)
convolutional blocks, e.g., the Z-X dynamic of Z3 (without residual connection) shows a
more pronounced increase than that of Z3,out (with residual connection). Additionally, we
can see that the model with residual connection depends more on the fully connected layers
to compress the Z-X measure, which is demonstrated by the significantly wider gap between
representations Z4 and Z5, as well as between Z4 and Z3/Z3,out in the residual model.

We then inspected the behavior of the Z-X measure and the Z-Y measure within
each residual block; see Figure 11 (note that the dynamics of the Z-X and Z-Y measures
associated with Z1,in are flat because Z1,in corresponds to X).

0.03

0.01

0.00

0.02

va
lid

at
io

n 
se

t
Z-

X
 m

ea
su

re

subject network epoch
10 30 500 20 40 10 30 500 20 40 10 30 500 20 40

Figure 11. Z-X dynamics of the ResCNN in each residual block. l is the index of the residual block.
The representations (e.g., Z1,in) are taken from the corresponding block of the ResCNN network in
Figure 2.

We can observe that, within each residual block (i.e., for a given index l), the Z-X
measure of Zl,out is generally lower than that of Zl,res1 and Zl,res2 . This is because the repre-
sentation Zl,out is the sum of Zl,res2 and Zl,in and thus retains more information associated
with the data.

We can also observe that, in every residual block, the Z-X dynamics of Zl,res1 and Zl,res2
have a pronounced increase over the epoch, while the Z-X dynamics of Zl,in and Zl,out are
relatively stable. This suggests that each residual block may learn to form a mini-bottleneck.
However, the overall network does not exhibit a visible compressing phase when observing
the output of the residual blocks alone. Our experiments demonstrate the distinct behavior
of networks with residual connections compared to those without.

5.3. The Impact of Training Algorithm to the Network Dynamics

A neural network generalization ability also tends to depend on the training procedure,
including the learning algorithm and regularizers. Therefore, we now explore how different
learning settings affect neural network Z-X and Z-Y measures dynamics.

5.3.1. How Does the Optimizer Impact the Network Dynamics?

It was suggested by [29] that the Adam optimizer leads to a better performance
during the fitting phase, but it tends to perform worse during the compression phase.

216



Entropy 2023, 25, 1063

We investigated, under the lens of our approach, the effect of Adam and various other
optimizers on neural network learning dynamics.

Setup: Our experiments were conducted on CNNs (with the standard architec-
ture illustrated in Figure 2) trained on the CIFAR-10 dataset using different optimiz-
ers. Specifically, we experimented with non-adaptive optimizers such as SGD and SGD-
momentum [67], as well as adaptive optimizers such as RMSprop [68]. We also considered
the Adam optimizer [69], which can be viewed as a combination of a momentum op-
timizer and RMSprop optimizer, representing a hybrid approach. We used standard
hyper-parameters commonly used for CIFAR-10 classification tasks, setting the learning
rate to 0.001 for all optimizers and a momentum parameter of 0.9 (if applicable). Our
estimator networks are akin to those used in previous studies.

Results: Figure 12 shows the behavior of the normalized Z-X measure for CNNs
trained with different optimizers. We normalized this measure using min-max normaliza-
tion to allow for a better visualization of relative changes in performance. Specifically, each
Z-X dynamic curve was normalized individually, and the minimum and maximum values
were taken from the curve after the 50th epoch, as we observed that all Z-X dynamics enter
the compression phase before this epoch.

0.10

0.05

0.00

RMSpropSGD SGD-momentum Adam

0 100 200 300 0 100 200 300 0 10 20 300 10 20 30

Z-
X

 m
ea

su
re

no
rm

al
iz

ed
va

lid
at

io
n 

se
t

1.00

0.00

0.75

0.50

0.25

subject network epoch
training loss validaion loss

su
bj

ec
t n

et
w

or
k 

lo
ss

Figure 12. Z-X dynamics for a CNN trained with different optimizers. The representations (e.g., Z1)
are taken from the corresponding block of the CNN network in Figure 2.

We observe that SGD and SGD-momentum exhibit similar fitting phases, while Adam
and RMSprop also display similar fitting phases. We can also note that, when trained on
the Adam and RMSprop optimizer—which are adaptive optimizers—the representations
associated with the various layers exhibit major compression; in contrast, when trained
with the SGD optimizer, the representations {Z2, Z3} do not show noticeable compression
and, likewise, when trained with SGD-momentum optimizers, the representations {Z2, Z3}
also do not exhibit much compression. Note that, in our experiment with the CNN trained
on the CIFAR classification task, we can see from Table 4 that the model trained with the
RMSprop optimizer achieved the best generalization performance, followed closely by the
model trained with Adam. Therefore, it appears that adaptive optimizers—which adjust
the learning rate per parameter—may be critical for leading to network compression, and
hence generalization [70].

Table 4. The epoch that reached the minimum validation loss (ep.), the training losses, test losses
(test loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of
the CNNs trained with different optimizers. The experiment with the best generalization error is
highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

CNN SGD 106 0.0202 0.0429 0.0226 0.9945 0.9882
CNN SGD-momentum 131 0.0130 0.0356 0.0226 0.9972 0.9882
CNN Adam 24 0.0067 0.0275 0.0208 0.9979 0.9896
CNN RMSproop 11 0.0123 0.0263 0.0139 0.9965 0.9908

217



Entropy 2023, 25, 1063

5.3.2. How Does Regularization Impact the Network Dynamics?

It has been suggested by [11,12] that weight decay regularization can significantly
enhance the compression phase associated with a neural network learning dynamic. It
has also been argued by others [18] that compression is only possible with regularization.
Therefore, we also investigated, under the lens of our approach, the effect of regularization
on the learning dynamics of MLPs and CNNs.

Setup: We deployed MLP 64× 4 models trained on the MNIST dataset with or without
weight decay (WD) regularization and CNN models trained with the CIFAR-10 dataset
with or without dropout regularization. The weight decay was applied to all layers in
the MLP 64 × 4 model with its hyper-parameter set to 0.001, while the dropout was only
adopted in the first fully connected layer in the CNN with a 30%, 60%, or 90% dropout
rate (which is a common approach in the literature [54]). The MLP with weight decay
regularization requires more epochs to converge. Therefore, we trained the MLP 64 × 4
without weight decay for 300 epochs and the model with weight decay for 1200 epochs.

Results: We offer the dynamics of the Z-X and Z-Y measures associated with the MLP
setting in Figure 13. We infer that weight decay regularization does not significantly impact
the fitting phase; however, weight decay does seem to affect network compression, leading
networks to compress more aggressively. Moreover, weight decay not only prevents the
subject network from overfitting [2] but also prevents its representations from overfitting.
Therefore, we conjecture that the weight decay regularization boosts the compression in
MLPs (as also observed in [11]) and prevents the representation overfitting to improve the
generalization performance (shown in Table 5), which is also in line with [11].

Z-X measure
w/o w/0.2 0.3 0.4 0.5

Z-
Y

 m
ea

su
re

0.6

0.4

0.2

0.0 0 0

10
0 40

0

20
0 80

0

30
0

12
00

su
bj

ec
t n

et
w

or
k 

ep
oc

h

Figure 13. Z-X and Z-Y dynamics of MLP 64 × 4 trained on the MNIST dataset with or without
weight decay regularization. The subject network regularized by weight decay gives relatively better
test loss. The representations (e.g., Z1) are taken from the corresponding block of the MLP 64 × 4
network in Figure 2.

We also offer the dynamics of the Z-X measure associated with the CNN setting in
Figure 14 (Table 5 shows that the best generalization performance is obtained for a CNN
with dropout regularization at a 60% dropout rate on the first fully connected layer). Our
results suggest that tuning the dropout rate on the first fully connected layer affects not
only the dynamics of its representation (Z4) but also the dynamics of other layers. When a
high dropout rate (e.g., 90%) is used, we observe less pronounced fitting and compression
phases, which also lead to a worse generalization performance (refer to Table 5). Conversely,
a low dropout rate (30%) showed similar fitting phases to the no-dropout group, but with
more compression. These results support our conjecture that the F/C phases are linked to
the generalization behavior of the model.

218



Entropy 2023, 25, 1063

Table 5. The epoch that reached the minimum validation loss (ep.), the training losses, test losses
(test loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of
the MLPs and CNNs trained w/ or w/o regularization algorithms. The experiment with the best
generalization error is highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

MLP w/o WD 168 0.0344 0.0967 0.0623 0.9919 0.9748
MLP w/ WD 626 0.0216 0.0722 0.0505 0.9976 0.9784

CNN 0% dropout 5 0.6747 0.8300 0.1553 0.7657 0.7190
CNN 30% dropout 12 0.4993 0.7985 0.2992 0.7608 0.7398
CNN 60% dropout 10 0.6888 0.7606 0.0718 0.8237 0.7510
CNN 90% dropout 19 1.0768 0.8765 0.2003 0.5959 0.7000

On the other hand, it can be observed that adopting dropout regularization dimin-
ishes the visibility of fitting phases across multiple layers. This suggests that the training
algorithm effectively leverages the neurons and connections within the model, enabling
rapid dataset fitting.

0.06

0.04

0.02

0.00 0.0

2.0

1.0

su
bj

ec
t n

et
w

or
k 

lo
ss

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

0% (baseline) 30% 60% 90%

subject network epoch
training loss validaion loss

Figure 14. The Z-X dynamics for a CNN trained on the CIFAR-10 dataset with different amounts
of dropout in its fully connected layers. The subject network regularized with a 60% dropout rate
provides the best test loss and generalization error. The representations (e.g., Z1) are taken from the
corresponding block of the CNN network in Figure 2.

5.4. The Impact of Dataset to the Network Dynamics

It is well established that the size of the training set directly affects a machine learn-
ing model’s generalization performance [71]. Our goal was to also understand how the
dataset size affects neural network model learning dynamics, including its fitting and
compression phases.

Setup: We compared the learning dynamics of CNN models trained on three different
datasets: 1% of CIFAR-10 (0.5k samples), CINIC [56] (which has the same classes as CIFAR-
10 but contains 180k samples), and the full CIFAR-10 dataset (50k samples).

We used the Adam optimizer with a learning rate of 0.001 to train the neural networks.
We also estimated the Z-X and Z-Y measures using the network in Figure A3 using the
CIFAR-10 validation and test sets.

Results: Figure 15 shows the Z-X dynamics of CNNs trained on datasets of different
sizes. We can observe from Table 6 that the model trained on the CINIC dataset achieves
the best generalization performance, while the model trained on the smallest dataset (1%
CIFAR-10) performs the worst.

219



Entropy 2023, 25, 1063

Table 6. The epoch that reached the minimum validation loss (ep.), the training losses, test losses
(test loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of
the CNNs trained on different datasets or dataset sizes, including 1% CIFAR-10 dataset (w/0.5k
training samples), 100% CIFAR-10 dataset (w/50k training samples), and CINIC dataset (180k training
samples). The experiment with the best generalization error is highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

CNN 1% CIFAR-10 38 1.2497 1.9902 0.7405 0.5380 0.3248
CNN 100% CIFAR-10 5 0.6747 0.8300 0.1553 0.7657 0.7190
CNN CINIC 12 0.5952 0.6395 0.0443 0.7744 0.7872

0.06

0.00

0.02

0.04

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

su
bj

ec
t n

et
w

or
k

lo
ss

0 4030 502010 0 4030 502010 0 4030 502010
0.0

1.0

2.0

1% CIFAR-10 (0.5k) 100% CIFAR-10 (50k) CINIC (180k)

subject network epcohs
training loss validaion loss

Figure 15. Z-X measures of representations in CNN trained on 1% CIFAR-10 dataset, full CIFAR-10
dataset, and CINIC dataset. The representations (e.g., Z1) are taken from the corresponding block of
the CNN network in Figure 2.

Our experiments show that the fitting behavior of the network trained on the small
dataset is identical to that of the network trained on the standard CIFAR-10 dataset. How-
ever, the degree of compression exhibited by the network optimized on the 1% CIFAR-10
dataset was much less pronounced than that of the model trained on richer datasets. This
suggests that compression may only be possible for sufficiently large datasets. Our experi-
ments also show that the behavior of the Z-X measure associated with the network trained
on the CINIC dataset rapidly increases during the optimization process. This indicates a
significant F/C phase that may also justify the superior generalization performance.

Overall, these observations suggest that providing sufficient training data can amplify
the magnitude of compression. This in turn helps the model learn to abstract key informa-
tion for predicting labels more effectively, leading to a better generalization performance.
Therefore, we conclude that compression may be a crucial factor for effective generalization
in neural networks, and providing sufficient training data is essential for amplifying this
phase [8].

6. Conclusions

In this paper, we proposed to replace the mutual information measures associated
with information bottleneck studies with other measures capable of capturing fitting,
compression, and generalization behavior. The proposed method includes: (1) the Z-
X measure corresponding to the approximation of the minimum mean-squared error
associated with the recovery of the network input (X) from some intermediate network
representation (Z) and (2) the Z-Y measure associated with the cross-entropy of the data
label/target (Y) given some intermediate data representation (Z). We also proposed to
estimate such measures using neural-network-based estimators. The proposed approach
can handle representations in high-dimension space, is computationally stable, and is also
computationally affordable.

Our series of experiments explored—via the dynamics between the Z-X and Z-Y
measure estimates—the interplay between network fitting, compression, and generalization
on different neural networks, with varying architectures, learning algorithms, and datasets,
that are as complex or more complex than those used in traditional IB studies [12]. Our
main findings are as follows:

220



Entropy 2023, 25, 1063

• Impact of Neural Network Architecture:

– We have found that MLPs appear to compress regardless of the non-linear activa-
tion function.

– We have observed that MLP generalization, fitting, and compression behavior
depend on the number of neurons per layer and the number of layers. In general,
the MLPS offering the best generalization performance exhibit more pronounced
fitting and compression phases.

– We have also observed that CNN generalization, fitting, and compression behav-
ior also depend on the kernel’s number/size. In general, CNNs exhibiting the
best generalization performance also exhibit pronounced fitting and compression
phases.

– Finally, we have seen that the fitting/compression behavior exhibited by networks
with residual connections is rather distinct from that shown in networks without
such connections.

• Impact of Neural Network Algorithms: We have observed that adaptive optimizers
seem to lead to more compression/better generalization in relation to non-adaptive
ones. Likewise, we have also observed that regulation can help with compres-
sion/generalization.

• Impact of Dataset: Our main observation is that insufficient training data may prevent
a model from compressing and hence generalizing; in turn, models trained with
sufficient training data exhibit both a fitting phase followed by a compression phase,
resulting in a higher generalization performance.

Overall, our findings are in line with an open conjecture that good neural network
generalization is associated with the presence of a neural network fitting phase followed
by a compression phase during the learning process [8,11,29].

There are some interesting directions for further research. First, it would be intriguing
to explore the dynamics of state-of-the-art machine learning models, including transform-
ers, which have demonstrated exceptional performance in various tasks. By analyzing
the behavior of transformers under the lens of the information bottleneck theory, we
may be able to gain additional insights into how these advanced models learn, compress
information, and generalize.

Second, it would also be interesting to extend the study to other learning paradigms
such as semi-supervised or unsupervised tasks. In semi-supervised learning, where a
limited amount of labeled data are available along with a larger unlabeled dataset, using the
proposed approach to study the learning process may help to uncover effective strategies
for leveraging unlabeled data. Similarly, in unsupervised learning tasks, where the goal is
to discover patterns and structure in unlabeled data, a similar approach could potentially
uncover the interplay between compression and fitting and their implications in leading
up to meaningful representations capturing essential information.

Finally, although our study has shed some light on the interplay between compression
and generalization using the proposed method, conducting a specialized study and analysis
to obtain a more comprehensive understanding of the relationship between these two
factors would be interesting.

Author Contributions: Methodology, Z.L.; Software, Z.L.; Validation, Z.L. and G.A.; Formal analysis,
Z.L., G.A. and M.R.D.R.; Writing—original draft, Z.L. and G.A.; Writing—review & editing, Z.L. and
M.R.D.R.; Supervision, M.R.D.R. All authors have read and agreed to the published version of the
manuscript.

Funding: The APC was funded by UCL Dean’s Prize and China Scholarship Council.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

221



Entropy 2023, 25, 1063

Appendix A. Estimator Network Architectures

This appendix lists the architectures of the Z-X and Z-Y estimator networks.

FC
-  

   
×1

2

ta
nh

FC
-4

09
6×

12

FC
-  

   
×1

2

ta
nh

FC
-1

2×
12

ta
nh

FC
-1

2×
12

FC
-  

   
×1

2

1-layer 2-layer 3-layer

Z-X estimators

FC
-  

   
×2

so
ftm

ax

ta
nh

FC
-2

×2
so

ftm
ax

FC
-  

   
×2

ta
nh

FC
-2

×2
ta

nh
FC

-2
×2

so
ftm

ax

FC
-  

   
×2

1-layer 2-layer 3-layer

Z-Y estimators

Figure A1. Architecture of the Z-X and Z-Y estimator networks for Tishby-net models. Note that
estimators with different depths are used for the stability tests.

R
eL

U
FC

-3
2×

10
so

ftm
ax

FC
-  

   
×3

2

R
eL

U
FC

-6
4×

78
4

FC
-  

   
×6

4

Z-X estimator Z-Y estimator

Figure A2. Architecture of the Z-X and Z-Y estimator networks for MLP WxL models.

FC
-2

04
8×

12
8

FC
-1

28
×1

28
R

eL
U

R
eL

U

TC
on

v 
12

8×
2×

2
R

eL
U

R
eL

U
C

on
v 

3×
3×

3

C
on

v 
3×

3×
3

TC
on

v 
12

8×
2×

2
R

eL
Uye

s

no

...

no

ye
s

re
pr

es
en

ta
tio

n 
fr

om
 F

C
 la

ye
rs

?

ne
ed

up
sa

m
pl

in
g?

up-sampling block

no

ye
s

re
pr

es
en

ta
tio

n 
fr

om
 C

on
v 

la
ye

rs
?

so
ftm

ax
FC

-d
×1

0

Fl
at

te
n

R
eL

U
FC

-d
×d

Z-X estimatorZ-X estimator Z-Y estimator

Figure A3. Architectures of the Z-X and Z-Y estimator networks for CNN and ResNet. The number
of up-sampling blocks in the Z-X estimator is set to be equal to the number of down-sampling blocks
in the network being analyzed, and the dimension of the fully connected layer d in the Z-Y measure
is determined by the shape of the flattened input vector length. To test the stability of the estimators
at different depths (as described in Section 5.1), we added an extra convolutional layer with ReLU
non-linearity at the end of the Z-X estimator, and a fully connected layer with a width of d before the
first fully connected layer in the Z-Y estimator.

Appendix B. Empirical Comparison of MMSE Estimator and MI Estimator for
Multivariant Gaussian Random Variables

We experimentally compared the minimal mean-squared estimator and mutual infor-
mation estimator for multivariant Gaussian random variables.

Consider a simple case where random vector X ∈ Rd (target) and Y ∈ Rd (ob-
servation) follow a multivariate normal distribution with correlation ΣXY = ρI, i.e.,
Y = ρX +

√
1− ρ2N. Under this setup, the mutual information between X and Y is

I(X; Y) = − d
2 log(1− ρ2), and the minimal mean-squared error is mmse(X|Y) = 1− ρ2.

222



Entropy 2023, 25, 1063

Now, we estimate I(X; Y) with MI estimators from the literature and estimate minimal
mean-squared error with neural-network-based mean-squared error estimators. The results
are shown in Figure A4. We show the case where d = 20 and change ρ from −0.99 to 0.99.
Each test takes 4000 randomly generalized samples.

We can see from Figure A4a that the variational estimators tend to have high biases
when the mutual information is high. The simple binning method failed to estimate the
correct value of mutual information. Although the Kraskov estimator shows a relatively
consistent trend, the time consumption of this algorithm grows exponentially as the dimen-
sion and number of samples increase [46]. On the other hand, the results of the estimated
minimal mean-squared error are shown in Figure A4b. We can see that the estimated values
are very close to the ground-truth values.

0.8

1.0

0.6

0.4

0.2

0.0

30

40

20

10

0

ground-truth

TNCE
infoNCE

JS
Kraskov
Simple binning

depth=1
depth=2
depth=3

ground-truth

(a) (b)

  0.99
  0.9

  0.7
  0.5

  0.3
  0.1

0 0.99
0.9

0.7
0.5

0.3
0.1

  0.99
  0.9

  0.7
  0.5

  0.3
  0.1

0 0.99
0.9

0.7
0.5

0.3
0.1

Figure A4. (a) The estimated mutual information, and (b) the neural network estimated MMSE for
20-dimension correlated Gaussian random variables. In both panels, the hollow purple circles are
ground-truth values. In panel (a), the infoNCE [10], TNCE [72], and JS [73] are variational estimators,
and the error bar is the variance. The simple binning method is adopted via the same implementation
as in [24] and the Kraskov estimator is implemented based on the original paper [46]. For panel (b),
we use a 1-layer (linear), 2-layer, and 3-layer network to estimate the minimal mean-squared error,
respectively. The networks have 20 neurons per layer, and the activation function is the hyperbolic
tangent function. The estimators are trained with Adam optimizer for 5000 epochs, and the learning
rate is set to 0.001.

References
1. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
2. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017; Volume 1,
3. Raukur, T.; Ho, A.C.; Casper, S.; Hadfield-Menell, D. Toward Transparent AI: A Survey on Interpreting the Inner Structures of

Deep Neural Networks. arXiv 2022, arXiv:2207.13243.
4. Ma, S.; Bassily, R.; Belkin, M. The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized

Learning. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
5. Frei, S.; Chatterji, N.S.; Bartlett, P.L. Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient

Descent for Noisy Linear Data. arXiv 2022, arXiv:2202.05928.
6. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
7. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE Information

Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.
8. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017, arXiv:1703.00810.
9. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual information neural estimation. In

Proceedings of the International Conference on Machine Learning, PMLR, Vienna, Austria, 25–31 July 2018; pp. 531–540.
10. Poole, B.; Ozair, S.; Van Den Oord, A.; Alemi, A.; Tucker, G. On variational bounds of mutual information. In Proceedings of the

International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5171–5180.
11. Chelombiev, I.; Houghton, C.; O’Donnell, C. Adaptive estimators show information compression in deep neural networks. arXiv

2019, arXiv:1902.09037.
12. Geiger, B.C. On Information Plane Analyses of Neural Network Classifiers–A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021,

33, 7039–7051. [CrossRef]
13. Fang, H.; Wang, V.; Yamaguchi, M. Dissecting deep learning networks—Visualizing mutual information. Entropy 2018, 20, 823.

[CrossRef]
14. Elad, A.; Haviv, D.; Blau, Y.; Michaeli, T. Direct validation of the information bottleneck principle for deep nets. In Proceedings of

the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.

223



Entropy 2023, 25, 1063

15. Yu, S.; Wickstrøm, K.; Jenssen, R.; Principe, J.C. Understanding convolutional neural networks with information theory: An
initial exploration. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 435–442. [CrossRef]

16. Elidan, G.; Friedman, N.; Chickering, D.M. Learning Hidden Variable Networks: The Information Bottleneck Approach. J. Mach.
Learn. Res. 2005, 6, 81–127.

17. Wickstrøm, K.; Løkse, S.; Kampffmeyer, M.; Yu, S.; Principe, J.; Jenssen, R. Information plane analysis of deep neural networks
via matrix-based Renyi’s entropy and tensor kernels. arXiv 2019, arXiv:1909.11396.

18. Kirsch, A.; Lyle, C.; Gal, Y. Scalable training with information bottleneck objectives. In Proceedings of the International Conference
on Machine Learning (ICML): Workshop on Uncertainty and Robustness in Deep Learning, Virtual, 17–18 July 2020.

19. Jónsson, H.; Cherubini, G.; Eleftheriou, E. Convergence behavior of DNNs with mutual-information-based regularization.
Entropy 2020, 22, 727. [CrossRef]

20. Schiemer, M.; Ye, J. Revisiting the Information Plane. 2020. Available online: https://openreview.net/forum?id=Hyljn1SFwr
(accessed on 5 May 2023).

21. Goldfeld, Z.; Berg, E.v.d.; Greenewald, K.; Melnyk, I.; Nguyen, N.; Kingsbury, B.; Polyanskiy, Y. Estimating information flow in
deep neural networks. arXiv 2018, arXiv:1810.05728.

22. Lorenzen, S.S.; Igel, C.; Nielsen, M. Information Bottleneck: Exact Analysis of (Quantized) Neural Networks. arXiv 2021,
arXiv:2106.12912.

23. Shwartz-Ziv, R.; Alemi, A.A. Information in infinite ensembles of infinitely-wide neural networks. In Proceedings of the
Symposium on Advances in Approximate Bayesian Inference, PMLR, Vancouver, BC, Canada, 8 December 2020; pp. 1–17.

24. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of
deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]

25. Zeitler, G.; Koetter, R.; Bauch, G.; Widmer, J. Design of network coding functions in multihop relay networks. In Proceedings
of the 2008 5th International Symposium on Turbo Codes and Related Topics, Lausanne, Switzerland, 1–5 September 2008;
pp. 249–254.

26. Noshad, M.; Zeng, Y.; Hero, A.O. Scalable mutual information estimation using dependence graphs. In Proceedings of the
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May
2019; pp. 2962–2966.

27. Abrol, V.; Tanner, J. Information-bottleneck under mean field initialization. In Proceedings of the ICML 2020 Workshop on
Uncertainty and Robustness in Deep Learning, Virtual, 17–18 July 2020.

28. Darlow, L.N.; Storkey, A. What Information Does a ResNet Compress? arXiv 2020, arXiv:2003.06254.
29. Cheng, H.; Lian, D.; Gao, S.; Geng, Y. Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for

Image Classification †. Entropy 2019, 21, 456. [CrossRef]
30. Voloshynovskiy, S.; Taran, O.; Kondah, M.; Holotyak, T.; Rezende, D.J. Variational Information Bottleneck for Semi-Supervised

Classification. Entropy 2020, 22, 943. [CrossRef]
31. Yu, S.; Príncipe, J.C. Understanding Autoencoders with Information Theoretic Concepts. Neural Netw. 2018, 117, 104–123.

[CrossRef]
32. Tapia, N.I.; Est’evez, P.A. On the Information Plane of Autoencoders. In Proceedings of the 2020 International Joint Conference

on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
33. Lee, S.; Jo, J. Compression phase is not necessary for generalization in representation learning. arXiv 2021, arXiv:2102.07402.
34. Raj, V.; Nayak, N.; Kalyani, S. Understanding learning dynamics of binary neural networks via information bottleneck. arXiv

2020, arXiv:2006.07522.
35. Strouse, D.; Schwab, D.J. The deterministic information bottleneck. Neural Comput. 2017, 29, 1611–1630. [CrossRef]
36. Hsu, H.; Asoodeh, S.; Salamatian, S.; Calmon, F.P. Generalizing bottleneck problems. In Proceedings of the 2018 IEEE International

Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 531–535.
37. Pensia, A.; Jog, V.; Loh, P.L. Extracting robust and accurate features via a robust information bottleneck. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 131–144. [CrossRef]
38. Xu, Y.; Zhao, S.; Song, J.; Stewart, R.; Ermon, S. A Theory of Usable Information under Computational Constraints. In Proceedings

of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
39. Dubois, Y.; Kiela, D.; Schwab, D.J.; Vedantam, R. Learning optimal representations with the decodable information bottleneck.

Adv. Neural Inf. Process. Syst. 2020, 33, 18674–18690.
40. Wongso, S.; Ghosh, R.; Motani, M. Using Sliced Mutual Information to Study Memorization and Generalization in Deep Neural

Networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Valencia, Spain,
25–27 April 2023; pp. 11608–11629.

41. Wongso, S.; Ghosh, R.; Motani, M. Understanding Deep Neural Networks Using Sliced Mutual Information. In Proceedings of
the 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 133–138.

42. Polyanskiy, Y.; Wu, Y. Lecture notes on information theory. Lect. Notes ECE563 (UIUC) 2014, 6, 7.
43. Kolchinsky, A.; Tracey, B.D. Estimating mixture entropy with pairwise distances. Entropy 2017, 19, 361. [CrossRef]
44. Moon, Y.I.; Rajagopalan, B.; Lall, U. Estimation of mutual information using kernel density estimators. Phys. Rev. E 1995, 52, 2318.

[CrossRef]
45. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear information bottleneck. Entropy 2019, 21, 1181. [CrossRef]

224



Entropy 2023, 25, 1063

46. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [CrossRef]
47. Kirsch, A.; Lyle, C.; Gal, Y. Learning CIFAR-10 with a simple entropy estimator using information bottleneck objectives. In

Proceedings of the Workshop Uncertainty and Robustness in Deep Learning at International Conference on Machine Learning,
ICML, Virtual, 17–18 July 2020.

48. Goldfeld, Z.; Greenewald, K. Sliced mutual information: A scalable measure of statistical dependence. Adv. Neural Inf. Process.
Syst. 2021, 34, 17567–17578.

49. Li, J.; Liu, D. Information Bottleneck Theory on Convolutional Neural Networks. arXiv 2019, arXiv:1911.03722.
50. Song, J.; Ermon, S. Understanding the Limitations of Variational Mutual Information Estimators. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
51. Wu, Y.; Verdú, S. Functional properties of minimum mean-square error and mutual information. IEEE Trans. Inf. Theory 2011,

58, 1289–1301. [CrossRef]
52. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010.
53. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. ATT Labs [Online]. 2010, Volume 2 Available online:

http://yann.lecun.com/exdb/mnist (accessed on 1 May 2023).
54. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
55. Krizhevsky, A.; Hinton, G.; Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto,

ON, Canada, 2009.
56. Darlow, L.N.; Crowley, E.J.; Antoniou, A.; Storkey, A.J. CINIC-10 is not ImageNet or CIFAR-10. arXiv 2018, arXiv:1810.03505.
57. Díaz, M.; Kairouz, P.; Liao, J.; Sankar, L. Neural Network-based Estimation of the MMSE. In Proceedings of the 2021 IEEE

International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 1023–1028.
58. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2020, arXiv:1606.08415.
59. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323.

60. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv
2015, arXiv:1511.07289.

61. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
62. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement

learning. Neural Netw. 2018, 107, 3–11. [CrossRef] [PubMed]
63. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

64. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the
International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3.

65. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

66. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

67. Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]
68. Hinton, G. Coursera Neural Networks for Machine Learning; Lecture 6; University of Toronto: Toronto, ON, Canada, 2018.
69. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
70. Choi, D.; Shallue, C.J.; Nado, Z.; Lee, J.; Maddison, C.J.; Dahl, G.E. On Empirical Comparisons of Optimizers for Deep Learning.

arXiv 2019, arXiv:1910.05446.
71. Bianchini, B.; Halm, M.; Matni, N.; Posa, M. Generalization Bounded Implicit Learning of Nearly Discontinuous Functions. In

Proceedings of the Conference on Learning for Dynamics & Control, Virtual Event, 7–8 June 2021.
72. Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
73. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations

by mutual information estimation and maximization. arXiv 2018 arXiv:1808.06670.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

225



Citation: Moldoveanu, M.; Zaidi, A.

In-Network Learning: Distributed

Training and Inference in Networks.

Entropy 2023, 25, 920. https://doi.org/

10.3390/e25060920

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 27 April 2023

Revised: 2 June 2023

Accepted: 6 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

In-Network Learning: Distributed Training and Inference
in Networks †
Matei Moldoveanu 1,2 and Abdellatif Zaidi 1,2,*

1 Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, 77454 Marne-la-Vallée, France
2 Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies,

92100 Boulogne-Billancourt, France
* Correspondence: abdellatif.zaidi@univ-eiffel.fr
† This paper is an extended version of our paper published in 2021 IEEE Globecom Workshops, Madrid, Spain,

7–11 December 2021.

Abstract: In this paper, we study distributed inference and learning over networks which can be
modeled by a directed graph. A subset of the nodes observes different features, which are all
relevant/required for the inference task that needs to be performed at some distant end (fusion)
node. We develop a learning algorithm and an architecture that can combine the information from
the observed distributed features, using the processing units available across the networks. In
particular, we employ information-theoretic tools to analyze how inference propagates and fuses
across a network. Based on the insights gained from this analysis, we derive a loss function that
effectively balances the model’s performance with the amount of information transmitted across the
network. We study the design criterion of our proposed architecture and its bandwidth requirements.
Furthermore, we discuss implementation aspects using neural networks in typical wireless radio
access and provide experiments that illustrate benefits over state-of-the-art techniques.

Keywords: distributed learning; AI at the edge; inference over graphs

1. Introduction

The unprecedented success of modern machine learning (ML) techniques in areas
such as computer vision [1], neuroscience [2], image processing [3], robotics [4] and natural
language processing [5] has led to an increasing interest for their application to wireless
communication systems in recent years.

Early efforts along this line of work fall into what is sometimes referred to as the
“learning to communicate” paradigm, in which the goal is to automate one or more
communication modules such as the modulator-demodulator, the channel coder-decoder,
or others, by replacing them with suitable ML algorithms. Although important progress
has been made for some particular communication systems, such as the molecular one [6],
it is still not yet clear whether ML techniques can offer a reliable alternate solution to model-
based approaches, especially as typical wireless environments suffer from time-varying
noise and interference.

Wireless networks have other important intrinsic features which may pave the way
for more cross-fertilization between ML and communication, as opposed to applying ML
algorithms as black boxes in replacement of one or more communication modules. For
example, while in areas such as computer vision, neuroscience, and others, relevant data is
generally available at one point, it is typically highly distributed across several nodes in
wireless networks.

Examples include self-driving cars where multiple sensors, both external and internal to
the car can be used to help the car navigate its environment, medical applications to diagnose
a patient based on data from different medical institutions or environmental monitoring to
detect hazardous events or pollution, and others, see [7,8] for more information. We give

226



Entropy 2023, 25, 920

more details of the usefulness of such setups in Examples 1 and 2. A prevalent approach for
the implementation of ML solutions in such cases would consist of collecting all relevant
data at one point (a cloud server) and then training a suitable ML model using all available
data and processing power. Because the volumes of data needed for training are generally
large, and with the scarcity of network resources (e.g., power and bandwidth), that approach
might not be appropriate in many cases, however. In addition, some applications might
have stringent latency requirements which are incompatible with sharing the data, such as
in automatic vehicle driving. In other cases, it might be desired not to share the raw data
for the sake of enhancing the privacy of the solution, in the sense that infringing the user’s
privacy is generally more easily accomplished from the raw data itself than from the output
of a neural network (NN) that takes the raw data as input.

The above has called for a new paradigm in which intelligence moves from the heart
of the network to its edge, which is sometimes referred to as “Edge Learning”. In this new
paradigm, communication plays a central role in the design of efficient ML algorithms
and architectures because both data and computational resources, which are the main
ingredients of an efficient ML solution, are highly distributed. A key aspect towards
building suitable ML-based solutions is whether the setting assumes only the training phase
involves distributed data, sometimes referred to as distributed learning, such as the Federated
Learning (FL) of [9] or if the inference (or test) phase also involves distributed data.

The considered problem setup is strongly related to the problems of distributed
estimation and detection (see, e.g., [10–13] and references therein). We differentiate
ourselves from these problems as we assume no prior knowledge of distribution of the data.
This is a common setup in many practical applications, such as image or speech processing,
or text analysis, where the distribution between the observed data and the target variable is
unknown or too complex to model.

In particular, of those most closely related to this paper, a growing line of works focus
on developing distributed learning algorithms and architectures. The works of [14,15]
address the problem of distributed learning using kernel methods when each node observes
independent samples drawn from the same distribution. In our specific setup, however, the
nodes observe correlated data, necessitating collaboration among all nodes during inference.
On the other hand, works such as [16,17] are focused on the narrower problem of detection
and impose certain restrictions on the scope of their investigation. However, perhaps most
popular and related to our work is the FL of [9] which, as we already mentioned, is most
suitable for scenarios in which the training phase has to be performed distributively, while
the inference phase has to be performed centrally at one node. To this end, during the
training phase, nodes (e.g., base stations) that possess data are all equipped with copies
of a single NN model which they simultaneously train on their locally available data-sets.
The learned weight parameters are then sent to a cloud or parameter server (PS) which
aggregates them, e.g., by simply computing their average. The process is repeated, every
time re-initializing using the obtained aggregated model, until convergence. The rationale
is that, this way, the model is progressively adjusted to account for all variations in the
data, not only those of the local data-set. For recent advances on FL and applications in
wireless settings, the reader may refer to [18–20] and references therein. Another relevant
work is the Split Learning (SL) of [21] in which, for a multiaccess type network topology, a
two-part NN model, split into an encoder part and a decoder part, is learned sequentially.
The decoder does not have its own data and in every round the NN encoder part is fed with
a distinct data-set and its parameters are initialized using those learned from the previous
round. The learned two-part model is then used as follows during the inference: one part
of this model is used by an encoder, and the other one by a decoder. Another variation
of SL, sometimes called “vertical SL”, was proposed recently in [22]. The approach uses
vertical partitioning of the data; in the special case of a multi-access topology, it is similar to
the in-network learning solution that we propose in this paper.

Compared to both SL and FL, which consider only the training phase to be distributed,
in this paper we focus on the problem in which the inference phase also takes place

227



Entropy 2023, 25, 920

distributively. More specifically, in this paper, we study a network inference problem in
which some of the nodes possess each, or can acquire, part of the data that is relevant for
inference on a random variable Y. The node at which the inference needs to be performed
is connected to the nodes that possess the relevant data through a number of intermediate
other nodes. We assume that the network topology is fixed and known. This may model,
e.g., a setting in which a macro BS needs to make inference on the position of a user on the
basis of summary information obtained from correlated CSI measurements X1, . . . , XJ that
are acquired at some proximity edge BSs. Each of the edge nodes is connected with the
central node either directly, via an error free link of given finite capacity, or via intermediary
nodes. While in some cases it might be enough to process only a subset of the J nodes, we
assume that processing only a (any) strict subset of the measurements cannot yield the
desired inference accuracy and, as such, the J measurements X1, . . . , XJ need to be processed
during the inference or test phase.

Example 1. (Autonomous Driving) One basic requirement of the problem of autonomous driving
is the ability to cope with problematic roadway situations, such as those involving construction,
road hazards, hand signals, and reckless drivers. Current approaches mainly depend on equipping
the vehicle with more on-board sensors. Clearly, while this can only allow a better coverage of the
navigation environment, it seems unlikely to successfully cope with the problem of blind spots due,
e.g., to obstruction or hidden obstacles. In such contexts, external sensors such as other vehicles’
sensors, cameras installed on the roofs of proximity buildings or wireless towers may help perform a
more precise inference, by offering a complementary, possibly better, view of the navigation scene.
An example scenario is shown in Figure 1. The application requires real-time inference which might
be incompatible with current cellular radio standards, thus precluding the option of sharing the
sensors’ raw data and processing it locally, e.g., at some on-board server. When equipped with
suitable intelligence capabilities, each sensor can successfully identify and extract those features of its
measurement data that are not captured by other sensors’ data. Then, it only needs to communicate
those, not its entire data.

Figure 1. Fusion of inference from on-board and external sensors for automatic vehicle navigation.

Example 2. (Public Health) One of the early applications of machine learning is in the area of
medical imaging and public health. In this context, various institutions can hold different modalities
of patient data in the form of electronic health records, pathology test results, radiology, and other
sensitive imaging data such as genetic markers for disease. The correct diagnosis may be contingent
on being able to using all relevant data from all institutions. However, these institutions may not
be authorized to share their raw data. Thus, it is desired to distributively train machine learning
models without sharing the patient’s raw data in order to prevent illegal, unethical or unauthorized
usage of it [23]. Local hospitals or tele-health screening centers seldom acquire enough diagnostic

228



Entropy 2023, 25, 920

images on their own; collaborative distributed learning in this setting would enable each individual
center to contribute data to an aggregate model without sharing any raw data.

1.1. Contributions

In this paper, we study the aforementioned network inference problem in which the
network is modeled as a weighted acyclic graph and inference about a random variable is
performed on the basis of summary information obtained from possibly correlated variables
at a subset of the nodes. Following an information-theoretic approach in which we measure
discrepancies between true values and their estimated fits using average logarithmic loss,
we first develop a bound on the best achievable accuracy given the network communication
constraints. Then, considering a supervised setting in which nodes are equipped with NNs
and their mappings need to be learned from distributively available training data-sets,
we propose a distributed learning and inference architecture and we show that it can be
optimized using a distributed version of the well-known stochastic gradient descent (SGD)
algorithm that we develop here. The resulting distributed architecture and algorithm,
which we herein name “in-network (INL) learning”, generalize those introduced in [24]
(see also [25,26]) for a specific case, multiaccess type, network topology. We investigate
in more detail what the various nodes need to exchange during both the training and
inference phases, as well as associated requirements in bandwidth. Finally, we provide a
comparative study with (an adaptation of) the FL and the SL algorithms, and experiments
that illustrate our results. Part of the results this paper have also been presented in [27,28].
However, in this paper, we go beyond those works by offering a more comprehensive and
detailed review of the state-of-the-art. Additionally, we provide proofs for the theorem
and lemmas presented in this paper, which were not included in the previous publications.
Furthermore, we introduce additional insights and conclusions that further contribute to
the overall understanding and significance of the research findings.

1.2. Outline and Notation

In Section 2 we describe the studied network inference problem formally. In Section 3
we present our in-network inference architecture, as well as a distributed algorithm for
training it distributively. Section 4 contains a comparative study with FL and SL in terms of
bandwidth requirements; as well as some experimental results. Finally, in Section 5 we
summarize the insights and results presented in this paper.

Throughout the paper, the following notation will be used. Upper case letters denote
random variables, e.g., X; lower case letters denote realizations of random variables, e.g.,
x, and calligraphic letters denote sets, e.g., X. The cardinality of a set is denoted by |X|.
For a random variable X with probability mass function PX, the shorthand p(x) = PX(x),
x ∈ X is used. Boldface letters denote matrices or vectors, e.g., X or x. For random variables
(X1, X2, . . .) and a set of integersK ⊆ N, the notation XK designates the vector of random
variables with indices in the set K , i.e., XK , {Xk : k ∈ K}. If K = ∅ then XK = ∅. In
addition, for zero-mean random vectors x and y, the quantities

∑
x,

∑
x,y and

∑
x|y denote,

respectively, the covariance matrix of the vector x, the covariance matrix of vector (x, y)
and the conditional covariance of x given y. Finally, for two probability measures PX
and QX over the same alphabet X, the relative entropy or Kullback-Leibler divergence is
denoted as DKL(PX||QX). That is, if PX is absolutely continuous with respect to QX, then
DKL(PX||QX) = EPX [log(PX(X)/QX(X))], otherwise DKL(PX||QX) = ∞.

2. Network Inference: Problem Formulation

We consider the distributed supervised learning setup, in which multiple nodes
observe different features relating to the same sample, sometimes refered to as distributed
learning with vertically partitioned dataset, see [8,29]. We additionally assume the learning
takes place over a communication constrained network. Specifically, consider an N node
distributed network. Of these N nodes, J ≥ 1 nodes possess or can acquire data that
is relevant for inference on a random variable (r.v.) of interest Y, with alphabet Y. Let

229



Entropy 2023, 25, 920

J = {1, . . . , J} denote the set of such nodes, with node j ∈ J observing samples from
the random variable X j, with alphabet X j. The relationship between the r.v. of interest
Y and the observed ones, X1, . . . , XJ, is given by the joint probability mass function
PXJ ,Y := PX1,...,XJ ,Y(x1, . . . xJ, y), with (x1, . . . , x j) ∈ X1 × · · · × XJ and y ∈ Y. For simplicity,
we assume that random variables are discreet, however our technique can be applied
to continuous variables as well. Inference on Y needs to be performed at some node
N which is connected to the nodes that possess the relevant data through a number of
intermediate other nodes. It has to be performed without any sharing of raw data. The
network is modeled as a weighted directed acyclic graph and may represent, for example,
a wired network or a wireless mesh network operated in time or frequency division, where
the nodes may be servers, handsets, sensors, base stations or routers. We assume that
the network graph is fixed and known. The edges in the graph represent point-to-point
communication links that use channel coding to achieve close to error-free communication
at rates below their respective capacities. For a given loss function `(·, ·) that measures
discrepancies between true values of Y and their estimated fits, what is the best precision
for the estimation of Y? Clearly, discarding any of the relevant data X j can only lead to
a reduced precision. Thus, intuitively features that collectively maximize information
about Y need to be extracted distributively by the nodes from the set J , without explicit
coordination between them and they then need to propagate and combine appropriately
at the node N. How should that be performed optimally without sharing raw data? In
particular, how should each node process information from the incoming edges (if any)
and what should it transmit on every one of its outgoing edges? Furthermore, how should
the information be fused optimally at Node N?

More formally, we model an N-node network by a directed acyclic graphG = (N ,E,C),
whereN = [1 : N] is the set of nodes,E ⊂ N ×N is the set of edges andC = {C jk : ( j, k) ∈ E}
is the set of edge weights. Each node represents a device and each edge represents a
noiseless communication link with capacity C jk. See Figure 2. The processing at the nodes
of the setJ is such that each of them assigns an index m jl ∈ [1, M jl] to each x j ∈ X j and each
received index tuple (mi j : (i, j) ∈ E), for each edge ( j, l) ∈ E. Specifically, let for j ∈ J and
l such that ( j, l) ∈ E, the setM jl = [1 : M jl]. The encoding function at node j is

ω j : X j ×
{

Πi : (i, j) ∈ EMi j
}
−→ Πl : ( j,l) ∈ EM jl, (1)

where Π designates the Cartesian product of sets. Similarly, for k ∈ [1 : N − 1]/J , node k
assigns an index mkl ∈ [1, Mkl] to each index tuple (mik : (i, k) ∈ E) for each edge (k, l) ∈ E.
That is,

ωk : Πi : (i,k) ∈ EMik −→ Πl : (k,l) ∈ EMkl. (2)

The range of the encoding functions {ωi} are restricted in size, as

log |Mi j| ≤ Ci j ∀i ∈ [1, N − 1] and ∀ j : (i, j) ∈ E. (3)

Node N needs to infer on the random variable Y ∈ Y using all incoming messages, i.e.,

ψ : Πi : (i,N) ∈ EMiN −→ Ŷ. (4)

In this paper, we choose the reconstruction set Ŷ to be the set of distributions on Y, i.e.,
Ŷ = P(Y) and we measure discrepancies between true values of Y ∈ Y and their estimated
fits in terms of average logarithmic loss, i.e., for (y, P̂) ∈ Y ×P(Y)

d(y, P̂) = log
1

P̂(y)
. (5)

230



Entropy 2023, 25, 920

As such, the performance of a distributed inference scheme
(
(ω j) j∈J , (ωk)k∈[1,N−1]/J ,ψ

)
for

which (3) is fulfilled is given by its achievable relevance given by

∆ = H(Y) −E
[
d(Y, Ŷ)

]
, (6)

which, for a discrete setY, is directly related to the error of misclassifying the variable Y ∈ Y.
It is imporant to note that H(Y) is problem specific constant and as such the relavance given
by (6) is simply a another form of the logarithmic loss.

Figure 2. Studied network inference model.

In practice, in a supervised setting, the mappings given by (1), (2) and (4) need to be
learned from a set of training data samples {(x1,i, . . . , xJ,i, yi)}ni=1. The data is distributed
such that the samples x j := (x j,1, . . . , x j,n) are available at node j for j ∈ J and the desired
predictions y := (y1, . . . , yn) are available at the end decision node N. We parametrize the
possibly stochastic mappings (1), (2) and (4) using NNs. This is depicted in Figure 3. We
denote the parameters of the NNs that parameterize the encoding function at each node
i ∈ [1 : (N − 1)] with θi and the parameters of the NN that parameterizes the decoding
function at node N with φ. Let θ = [θ1, . . . ,θN−1], we aim to find the parameters θ,φ that
maximize the relevance of the network, given the network constraints of (3). Given that the
actual distribution is unknown and we only have access to a dataset, the loss function needs
to strike a balance between its performance on the dataset, given by empirical estimate of
the relevance, and the network’s ability to perform well on samples outside the dataset.

The NNs at the various nodes are arbitrary and can be chosen independently—for
instance, they need not be identical as in FL. It is only required that the following mild
condition which, as will become clearer from what follows, facilitates the back-propagation
be met. Specifically, for every j ∈ J and x j ∈ X j, under the assumtion that all elements of
X j have the same dimension, it holds that

Size of first layer of NN ( j) =

Dimension (x j) +
∑

i : (i, j) ∈ E
(Size of last layer of NN (i)). (7)

Similarly, for k ∈ [1 : N]/J we have

Size of first layer of NN (k) =∑

i : (i,k) ∈ E
(Size of last layer of NN (i)). (8)

Remark 1. Conditions (7) and (8) were imposed only for the sake of ease of implementation of
the training algorithm; the techniques present in this paper, including optimal trade-offs between
relevance and complexity for the given topology, the associated loss function, the variational lower
bound, how to parameterize it using NNs and so on, do not require (7) and (8) to hold. Alternative
aggregation techniques, such as element-wise multiplication or element-wise averaging, can be

231



Entropy 2023, 25, 920

employed to combine the information received by each node, in replacement to concatenation. The
impact of these aggregation techniques has been analyzed in [22].

(a)

(b)
Figure 3. In-network learning and inference using neural networks. (a) Training phase. (b) Inference
phase.

3. Proposed Solution: In-Network Learning and Inference

For convenience, we first consider a specific setting of the model of network inference
problem of Figure 3 in which J = N − 1 and all the nodes that observe data are only
connected to the end decision node, but not among them.

3.1. A Specific Model: Fusing of Inference

In this case, a possible suitable loss function was shown by [25] to be:

LNN
s (n) =

1
n

n∑

i=1

log QφJ (yi|u1,i, . . . , uJ,i)

+
s
n

n∑

i=1

J∑

j=1


log Qφ j(yi|u j,i) − log




Pθ j(u j,i|x j,i)

Qϕ j(u j,i)




, (9)

where s is a Lagrange parameter and for j ∈ J the distributions Pθ j(u j|x j), Qφ j(y|u j),
QφJ (y|uJ ) are variational ones whose parameters are determined by the chosen NNs using
the re-parametrization trick of [30] and Qϕ j(u j) are priors known to the encoders. For
example, denoting by fθ j the NN used at node j ∈ J whose (weight and bias) parameters
are given byθ j, for regression problems the conditional distribution Pθ j(u j|x j) can be chosen
to be multivariate Gaussian, i.e., Pθ j(u j|x j) = N(u j;µθj , Σθj ), where µθj , Σθj are outputs of
fθ j(x j). For discrete data, concrete variables (i.e., Gumbel-Softmax) can be used instead.

The rationale behind the choice of loss function (9) is that in the regime of large n,
if the encoders and decoder are not restricted to use NNs under some conditions. The
optimality is proved therein under the assumption that for every subset S ⊆ J , it holds
that XS −
− Y −
−XSc . The RHS of (10) is achievable for arbitrary distributions, however,
regardless of such an assumption; the optimal stochastic mappings PU j |X j , PU, PY|U j and

232



Entropy 2023, 25, 920

PY|UJ are found by marginalizing the joint distribution that maximizes the following
Lagrange cost function [25] (Proposition 2)

Loptimal
s = −H(Y|UJ ) − s

J∑

j=1

[
H(Y|U j) + I(U j; X j)

]
. (10)

where the maximization is over all joint distributions of the form PY
∏J

j=1 PX j |Y
∏J

j=1 PU j |X j .

3.1.1. Inference Phase

During this phase node j observes a new sample x j. It uses its NN to output an encoded
value u j which it sends to the decoder. After collecting (u1, . . . , uJ) from all input NNs, node
(J + 1) uses its NN to output an estimate of Y in the form of soft output QφJ (Y|u1, . . . , uJ).
The procedure is depicted in Figure 4b.

(a)

(b)
Figure 4. In-network learning for the network model for the case without hops. (a) Training phase.
(b) Inference phase.

Remark 2. One can combine our proposed technique with an appropriate transmission scheme and
channel coding. One possible suitable practical implementation in wireless settings can be obtained
using Orthogonal Frequency-Division Multiple Access (OFDMA). That is, the J input nodes are
allocated non-overlapping bandwidth segments and the output layers of the corresponding NNs are
chosen accordingly. The encoding of the activation values can be performed, e.g., using entropy type
coding [31].

3.1.2. Training Phase

During the forward pass, every node j ∈ J processes mini-batches of size, say, b j
of its training data-set x j. Node j ∈ J then sends a vector, u j, whose elements are the
activation values of the last layer of (NN j), see Figure 4a. Due to (8) the activation vectors
are concatenated vertically at the input layer of NN (J + 1). The forward pass continues on
the NN (J + 1) until the last layer of the latter. The parameters of NN (J + 1) are updated

233



Entropy 2023, 25, 920

using standard backpropagation. Specifically, let LJ+1 denote the index of the last layer of

NN (J + 1). Additionally, let w[l]
J+1, b[l]

J+1 and a[l]J+1 denote the weights, biases and activation
values at layer l ∈ [2 : LJ+1] for the NN (J + 1) and σ is the activation function, respectively.
Node (J + 1) computes the error vectors

δ
[LJ+1]

J+1 = ∇
a
[LJ+1 ]

J+1

LNN
s (b) � σ′(w[LJ+1]

J+1 a
[L(J+1)−1]
J+1 + b

[LJ+1]

J+1 ) (11a)

δ[l]J+1 = [(w[l+1]
J+1 )Tδ[l+1]

J+1 ] � σ′(w[l]
J+1a[l−1]

J+1 + b[l]
J+1) ∀ l ∈ [2, LJ+1 − 1], (11b)

δ[1]J+1 = [(w[2]
J+1)

Tδ[2]J+1] (11c)

and then updates its weight- and bias parameters as

w[l]
J+1 → w[l]

J+1 − ηδ
[l]
J+1(a

[l−1]
J+1 )

T, (12a)

b[l]
J+1 → b[l]

J+1 − ηδ
[l]
J+1, (12b)

where η designates the learning parameter; for simplicity, η and σ are assumed here to be
identical for all NNs.

Remark 3. It is important to note that for the computation of the RHS of (11a) node (J + 1), which
knows QφJ (yi|u1,i, . . . , uJ,i) and Qφ j(yi|u j,i) for all i ∈ [1 : n] and all j ∈ J , only the derivative of

LNN
s (n) w.r.t. the activation vector a

LJ+1
J+1 is required. For instance, node (J + 1) does not need to

know any of the conditional variationals Pθ j(u j|x j) or the priors Qϕ j(u j).

The backward propagation of the error vector from node (J + 1) to the nodes j,
j ∈ {1, . . . , J}, is as follows. Node (J + 1) horizontally splits the error vector of its input
layer into J sub-vectors with sub-error vector j having the same size as the dimension of
the last layer of NN j [recall (8) and that the activation vectors are concatenated vertically
during the forward pass]. See Figure 4a. The backward propagation then continues on each
of the J input NNs simultaneously, each of them essentially applying operations similar
to (11) and (12).

Remark 4. Let δ[1]J+1( j) denote the sub-error vector sent back from node (J + 1) to node j ∈ J . It
is easy to see that, for every j ∈ J ,

∇
a

Lj
j

LNN
s (b j) = δ[1]J+1( j) − s∇

a
Lj
j




b∑

i=1

log




Pθ j(u j,i|x j,i)

Qϕ j(u j,i)





; (13)

and this explains why node j ∈ J needs only the part δ[1]J+1( j), not the entire error vector at node
(J + 1).

3.2. General Model: Fusion and Propagation of Inference

Consider now the general network inference model of Figure 2. Part of the difficulty
of this problem is in finding a suitable loss function which can be optimized distributively
via NNs that only have access to local data-sets each. The next theorem provides a bound
on the achievable relevance (under some assumptions) for an arbitrary network topology
(E,N). The result of Theorem 1 is asymptotic in the size of the training data-sets, while
the inference problem is a one-shot problem. One-shot results for this problem can be

234



Entropy 2023, 25, 920

obtained, e.g., along the approach of [32]. For convenience, we define for S ⊆ [1, . . . , N − 1]
and non-negative (Ci j : (i, j) ∈ E) the quantity

C(S) =
∑

(i, j) : i∈S, j∈Sc

Ci j. (14)

Theorem 1. For the network inference model of Figure 2, in the regime of large data-sets the
following relevance is achievable,

∆ = max I(U1, . . . , UJ; Y) (15)

where the maximization is over joint measures of the form

PQPX1,...,XJ ,Y

J∏

j=1

PU j |X j,Q (16)

for which there exist non-negative R1, . . . , RJ that satisfy
∑

j∈S
R j ≥ I(US; XS|USc , Q), for all S ⊆ J

∑

j∈S∩J
R j ≤ C(S) for all S ⊆ [1 : N − 1] with S∩J , ∅.

Proof. The proof of Theorem 1 appears in Appendix A. An outline is as follows. The result
is achieved using a separate compression-transmission-estimation scheme in which the
observations (x1, . . . , xJ) are first compressed distributively using Berger-Tung coding [33]
into representations (u1, . . . , uJ) and then the bin indices are transmitted as independent
messages over the network G using linear-network coding [34] (Section 15.5). The decision
node N first recovers the representation codewords (u1, . . . , uJ) and then produces an
estimate of the label y. The scheme is illustrated in Figure 5. �

(a)

(b)
Figure 5. Block diagram of the separate compression-transmission-estimation scheme of Theorem 1.
(a) Compression using Berger-Tung coding. (b) Transmission of the bin indices using linear coding.

235



Entropy 2023, 25, 920

Part of the utility of the loss function of Theorem 1 is in that it accounts explicitly for the
network topology for inference fusion and propagation. In addition, although as seen from
its proof the setting of Theorem 1 assumes knowledge of the joint distribution of the tuple
(X1, . . . , XJ, Y), the result can be used to train, distributively, NNs from a set of available
date-sets. To do so, we first derive a Lagrangian function, from Theorem 1, which can be
used as an objective function to find the desired set of encoders and decoder. Afterwards,
we use a variational approximation to avoid the computation of marginal distributions,
which can be costly in practice. Finally, we parameterize the distributions suing NNs. For a
given network topology in essence, the approach generalizes that of Section 3.1 to more
general networks that involve hops. For simplicity, in what follows, this is illustrated
for the example architecture of Figure 6. While the example is simple, it showcases the
important aspect of any such topology, the fusion of the data at an intermediary nodes,
i.e., a hop. Firstly, we leverage Theorem 1 to establish a feasible trade-off between the
performance of the network illustrated in Figure 6, quantified by its relevance, and the
quantity of information that must be communicated between the nodes. Subsequently,
employing the aforementioned approach, we derive a loss function tailored for the scenarios
where the nodes are equipped with neural networks, as depicted in Figure 7.

Figure 6. An example in-network learning with inference fusion and propogation.

SettingN = {1, 2, 3, 4, 5} andE = {(3, 4), (2, 4), (4, 5), (1, 5)} in Theorem 1, we obtain that

∆ = max I(U1, U2, U3; Y) (17)

where the maximization is over joint measures of the form

PQPX1,X2,X3,YPU1 |X1,QPU2 |X2,QPU3 |X3,Q (18)

for which the following holds for some R1 ≥ 0, R2 ≥ 2 and R3 ≥ 0:

C15 ≥ R1, C24 ≥ R2, C34 ≥ R3, C45 ≥ R2 + R3 (19a)

R1 ≥ I(U1; X1|U2, U3, Q), (19b)

R2 ≥ I(U2; X2|U1, U3, Q), (19c)

R3 ≥ I(U3; X3|U1, U2, Q) (19d)

R3 + R2 ≥ I(X2, X3; U2, U3|U1, Q), (19e)

R3 + R1 ≥ I(X1, X3; U1, U3|U2, Q) (19f)

R2 + R1 ≥ I(X1, X2; U1, U2|U3, Q), (19g)

R2 + R1 + R3 ≥ I(X1, X2, X3; U1, U2, U3|Q). (19h)

Let Csum = C15 +C24 +C34 +C45; consider the region of all pairs (∆, Csum) ∈ R2
+ for which

the relevance level ∆ as given by the RHS of (17) is achievable for some C15 ≥ 0, C24 ≥ 0,
C34 ≥ 0 and C45 ≥ 0 such that Csum = C15 + C24 + C34 + C45. Hereafter, we denote such

236



Entropy 2023, 25, 920

region as RIsum. Applying Fourier-Motzkin elimination on the region defined by (17)
and (19), we obtain that the region RIsum is given by the union of pairs (∆, Csum) ∈ R2

+ for
which (the time sharing random variable is set to a constant for simplicity)

∆ ≤ I(Y; U1, U2, U3) (20a)

Csum ≥ I(X1, X2, X3; U1, U2, U3) + I(X2, X3; U2, U3|U1) (20b)

for some measure of the form

PYPX1,X2,X3 |YPU1 |X1PU2 |X2PU3 |X3 . (21)

The next proposition gives a useful parameterization of the region RIsum as described
by (20) and (21).

(a)

(b)
Figure 7. Forward and backward passes for the inference problem of Figure 6. (a) Training phase.
(b) Inference phase.

Proposition 1. For every pair (∆, Csum) that lies on the boundary of the region described by (20)
and (21) there exists s ≥ 0 such that (∆, Csum) = (∆s, Cs), with

∆s = H(Y) + max
P
Ls(P) + sCs (22a)

Cs = I(X1, X2, X3; U∗1, U∗2, U∗3) + I(X2, X3; U∗2, U∗3|U∗1), (22b)

and P∗ is the set of pmfs P := {PU1 |X1 , PU2 |X2 , PU3 |X3 } that maximize the cost function

Ls(P) := −H(Y|U1, U2, U3) − sI(X1, X2, X3; U1, U2, U3)

237



Entropy 2023, 25, 920

− sI(X2, X3; U2, U3|U1). (23)

Proof. See Appendix B. �

In accordance with the studied example network inference problem shown in Figure 6,
let a random variable U4 be such that U4 −
− (U2, U3)−
− (X1, X2, X3, Y, U1). That is, the joint
distribution factorizes as

PX1,X2,X3,Y,U1,U2,U3,U4 = PX1,X2,X3,YPU1 |X1PU2 |X2PU3 |X3PU4 |U2,U3 . (24)

Let for given s ≥ 0 and conditional PU4 |U2,U3 the Lagrange term

Llow
s (P, PU4 |U2,U3) = −H(Y|U1, U4) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U2; U1) − I(U3; U1, U2)

]
. (25)

The following lemma shows that Llow
s (P, PU4 |U2,U3) lower bounds Ls(P) as given by (23).

Lemma 1. For every s ≥ 0 and joint measure that factorizes as (24), we have

Ls(P) ≥ Llow
s (P, PU4 |U2,U3), (26)

Proof. See Appendix C. �

For convenience let P+ := {PU1 |X1 , PU2 |X2 , PU3 |X3 , PU4 |U2,U3 }. The optimization of (25)
generally requires the computation of marginal distributions, which can be costly in practice.
Hereafter, we derive a variational lower bound on Llow

s with respect to some arbitrary
(variational) distributions. Specifically, let

Q := {QY|U1,U4 , QU3 , QU2 , QU1 }, (27)

where QY|U1,U4 represents variational (possibly stochastic) decoders and QU3 , QU2 and QU1

represent priors. Additionally, let

Lv-low
s (P+, Q) :=E[log QY|U1,U4(Y|U1, U4)] − sDKL(PU1 |X1‖QU1)

− 2sDKL(PU2 |X2‖QU2) − 2sDKL(PU3 |X3‖QU3). (28)

The following lemma, the proof of which is essentially similar to that of [25] (Lemma 1),
shows that for every s ≥ 0, the cost function Llow

s (P, PU4 |U2,U3) is lower-bounded by
Lv-low

s (P+, Q) as given by (28).

Lemma 2. For fixed P+, we have

Llow
s (P+) ≥ Lv-low

s (P+, Q) (29)

for all pmfs Q, with equality when:

QY|U1,U4 = PY|U1,U4 , (30)

QU3 = PU3 |U2,U1 , (31)

QU2 = PU2 |U1 , (32)

QU1 = PU1 , (33)

where PY|U1,U4 , PU3 |U2,U1 , PU2 |U1 , PU1 are calculated using (24).

238



Entropy 2023, 25, 920

Proof. See Appendix D. �

From the above, we get that

max
P+

Llow
s (P+) = max

P+

max
Q
Lv-low

s (P+, Q). (34)

Since, as described in Section 2, the distribution of the data is not known, but only a set of
samples is available {(x1,i, . . . , xJ,i, yi)}ni=1, we restrict the optimization of (28) to the family
of distributions that can be parameterized by NNs. Thus, we obtain the following loss
function which can be optimized empirically, in a distributed manner, using gradient
based techniques,

LNN
s (n) :=

1
n

n∑

i=1


 log Qφ5(yi|u1,i, u4,i) − s log

(
Pθ1(u1,i|x1,i)

Qϕ1(u1,i)

)

− 2s
n

n∑

i=1


 log

(
Pθ2(u2,i|x2,i)

Qϕ2(u2,i)

)
+ log

(
Pθ3(u3,i|x3,i)

Qϕ3(u3,i)

), (35)

with s stands for a Lagrange multiplier and the distributions Qφ5 , Pθ4 , Pθ3 , Pθ2 , Pθ1 are
variational ones whose parameters are determined by the chosen NNs using the re-
parametrization trick of [30] and {Qϕi : i ∈ {1, 2, 3}} are priors known to the encoders. The
parameterization of the distributions with NNs is performed similarly to that for the setting
of Section 3.1.

3.2.1. Inference Phase

During this phase, nodes 1, 2 and 3 each observe (or measure) a new sample. Let x1
be the sample observed by node 1 and x2 and x3 those observed by node 2 and node 3,
respectively. Node 1 processes x1 using its NN and sends an encoded value u1 to node 5 and
so do nodes 2 and 3 towards node 4. Upon receiving u2 and u3 from nodes 2 and 3, node 4
concatenates them vertically and processes the obtained vector using its NN. The output u4
is then sent to node 5. The latter performs similar operations on the activation values u1
and u4 and outputs an estimate of the label y in the form of a soft output Qφ5(y|u1, u4).

3.2.2. Training Phase

During the forward pass, every node j ∈ {1, 2, 3} processes mini-batches of size, b j of
its training data set x j. Nodes 2 and 3 send their vector formed of the activation values of
the last layer of their NNs to node 4. Because the sizes of the last layers of the NNs of nodes
2 and 3 are chosen according to (8) the sent activation vectors are concatenated vertically at
the input layer of NN 4. The forward pass continues on the NN at node 4 until its last layer.
Next, nodes 1 and 4 send the activation values of their last layers to node 5. Again, as the
sizes of the last layers of the NNs of nodes 1 and 4 satisfy (8) the sent activation vectors are
concatenated vertically at the input layer of NN 5 and the forward pass continues until the
last layer of NN 5.

During the backward pass, each of the NNs updates its parameters according to (11)
and (12). Node 5 is the first to apply the back propagation procedure in order update the
parameters of its NN. It applies (11) and (12) sequentially, starting from its last layer.

Remark 5. It is important to note that, similar to the setting of Section III-A, for the computation
of the RHS of (11a) for node 5, only the derivative of LNN

s (n) w.r.t. the activation vector aL5
5 is

required, which depends only on Qφ5(yi|u1,i, u4,i). The distributions are known to node 5 given only
u1,i and u4,i.

239



Entropy 2023, 25, 920

The error propagates back until it reaches the first layer of the NN of node 5. Node
5 then splits horizontally the error vector of its input layer into 2 sub-vectors with the
top sub-error vector having as size that of the last layer of the NN of node 1 and the
bottom sub-error vector having as size that of the last layer of the NN of node 4—see
Figure 7a. Similarly, the two nodes 1 and 4 continue the backward propagation at their
turns simultaneously. Node 4 then splits horizontally the error vector of its input layer into
2 sub-vectors with the top sub-error vector having as size that of the last layer of the NN of
node 2 and the bottom sub-error vector having as size that of the last layer of the NN of
node 3. Finally, the backward propagation continues on the NNs of nodes 2 and 3. The
entire process continues until convergence.

Remark 6. Let δ[1]J ( j) denote the sub-error vector sent back from node J to node j. It is easy to see
that, for every j ∈ J ,

∇
a[L]4
LNN

s (b) = δ[1]5 (4),

∇
a[L]3
LNN

s (b) = δ[1]4 (3) − 2s∇
a[L]3




1
b

b∑

i=1

[
log

(
Pθ3(u3,i|x3,i)

Qϕ3(u3,i)

)],

∇
a[L]2
LNN

s (b) = δ[1]4 (2) − 2s∇
a[L]2




1
b

b∑

i=1

[
log

(
Pθ2(u2,i|x2,i)

Qϕ2(u2,i)

)],

∇
a[L]1
LNN

s (b) = δ[1]5 (1) − s∇
a[L]1




1
b

b∑

i=1

[
log

(
Pθ1(u1,i|x1,i)

Qϕ1(u1,i)

)].

and this explains why, for back propagation, nodes 1, 2, 3, 4 need only part of the error vector at the
node they are connected to.

3.3. Bandwidth Requirements

In this section, we study the bandwidth requirements of our in-network learning. Let q
denote the size of the entire data set (each input node has a local dataset of size q

J ), p = LJ+1

the size of the input layer of NN (J + 1) and s the size in bits of a parameter. Since as per (8),
the output of the last layers of the input NNs are concatenated at the input of NN (J + 1)
whose size is p, and each activation value is s bits, one then needs 2sp

J bits for each data
point—the factor 2 accounts for both the forward and backward passes and so, for an epoch,
our in-network learning requires 2pqs

J bits.
Note that the bandwidth requirement of in-network learning does not depend on the

sizes of the NNs used at the various nodes, but does depend on the size of the dataset. For
comparison, notice that with FL one would require 2NJs, where N designates the number
of (weight- and bias) parameters of a NN at one node. For the SL of [21], assuming for
simplicity that the NNs j = 1, . . . , J all have the same size ηN, where η ∈ [0, 1], SL requires
(2pq + ηNJ)s bits for an entire epoch.

The bandwidth requirements of the three schemes are summarized and compared
in Table 1 for two popular NNs architectures, VGG16 (N = 138,344,128 parameters) and
ResNet50 (N = 25,636,712 parameters) and two example datsets, q = 50, 000 data points and
q = 500,000 data points. The numerical values are set as J = 500, p = 25,088 and η = 0.88 for
ResNet50 and 0.11 for VGG16.

Compared to FL and SL, INL has an advantage in that all nodes work jointly also
during inference to make a prediction,not just during the training phase. As a consequence
nodes only need to exchange latent representations, not model parameters, during training.

240



Entropy 2023, 25, 920

Table 1. Comparison of bandwidth requirements.

Federated Learning Split Learning In-Network Learning

Bandwidth requirement 2NJs (2pq + ηNJ)s 2pqs
J

VGG 16
50,000 data points

4427 Gbits 324 Gbits 0.16 Gbits

ResNet 50
50,000 data points

820 Gbits 441 Gbits 0.16 Gbits

VGG 16
500,000 data points

4427 Gbits 1046 Gbits 1.6 Gbits

ResNet 50
500,000 data points

820 Gbits 1164 Gbits 1.6 Gbits

4. Experimental Results

We perform two series of experiments for which we compare the performance of our
INL with those of FL and SL. The dataset used is the CIFAR-10 and there are five client
nodes. In the first experiment, the three techniques are implemented in such a way such
that during the inference phase the same NN is used to make the predictions. In the second
experiment, the aim is to implement each of the techniques such that the data is spread in
the same manner across the five client nodes for each of the techniques.

4.1. Experiment 1

In this setup, we create five sets of noisy versions of the images of CIFAR-10. To this
end, the CIFAR images are first normalized, and then corrupted by additive Gaussian noise
with standard deviation set respectively to 0.4, 1, 2, 3, 4. For our INL each of the five input
NNs is trained on a different noisy version of the same image. Each NN uses a variation
of the VGG network of [35], with the categorical cross-entropy as the loss function, L2
regularization, and Dropout and BatchNormalization layers. Node (J + 1) uses two dense
layers. The architecture is shown in Figure 8. In the experiments, all five (noisy) versions of
every CIFAR-10 image are processed simultaneously, each by a different NN at a distinct
node, through a series of convolutional layers. The outputs are then concatenated and then
passed through a series of dense layers at node (J + 1).

Figure 8. Network architecture. Conv stands for a convolutional layer, Fc stand for a fully con-
nected layer.

For FL, each of the five client nodes is equipped with the entire network of Figure 8.
The dataset is split into five sets of equal sizes and the split is now performed such that all
five noisy versions of a same CIFAR-10 image are presented to the same client NN (distinct
clients observe different images, however). For SL of [21], each input node is equipped with
an NN formed by all fives branches with convolutional networks (i.e., all the network of

241



Entropy 2023, 25, 920

Figure 8, except the part at Node (J + 1)) and node (J + 1) is equipped with fully connected
layers at Node (J + 1) in Figure 8. Here, the processing during training is such that each
input NN concatenates vertically the outputs of all convolutional layers and then passes
that to node (J + 1), which then propagates back the error vector. After one epoch at one
NN, the learned weights are passed to the next client, which performs the same operations
on its part of the dataset.

The model depicted in Figure 8, which utilizes convolutional layers with a filter size of
3 × 3, comprises of approximately seventy-four million parameters, with 99.5% of these
parameters constituting the encoding parts of the neural network. Table 2 presents the
bandwidth requirements per epoch for the three techniques, considering the variation of the
CIFAR-10 dataset used in the experiment, as well as the scenario where a dataset with ten
times the amount of data is employed. It is observed that increasing the data size results in
higher bandwidth requirements for both SL and INL, whereas the bandwidth requirements
for FL remain unaffected.

Table 2. Experiment 1 bandwidth requirements of INL, FL and SL.

Federated Learning Split Learning In-Network Learning

Bandwidth requirement 2NJs (2pq + ηNJ)s
2pqs

J
250,000 data points 2.96 GB 2.5 GB 0.2 GB

2,500,000 data points 2.96 GB 11.71 GB 2.05 GB

Figure 9a depicts the evolution of the classification accuracy on CIFAR-10 as a function
of the number of training epochs, for the three schemes. As visible from the figure, the
convergence of FL is relatively slower comparatively. The final result is also less accurate.
Figure 9b shows the amount of data needed to be exchanged among the nodes (i.e.,
bandwidth resources) in order to get a prescribed value of classification accuracy. Observe
that both our INL and SL require significantly less data exchange than FL and our INL
is better than SL especially for small values of bandwidth. This experiment showcases
that the INL framework can save bandwidth, compared to SL and FL, when training large
models by exchanging latent representations as opposed to model parameters. This is
particularly relevant as some works argue to overparametrizing models can result in better
model performance [36].

(a)
Figure 9. Cont.

242



Entropy 2023, 25, 920

(b)
Figure 9. Comparison of INL, FL and SL—Experiment 1. (a) Accuracy vs. # of epochs. (b) Accuracy
vs. bandwidth cost.

4.2. Experiment 2

In Experiment 1, the entire training dataset was partitioned differently for INL, FL
and SL (in order to account for the particularities of the three). In this second experiment,
they are all trained on the same data. Specifically, each client NN sees all CIFAR-10 images
during training and its local dataset differs from those seen by other NNs only by the
amount of added Gaussian noise (standard deviation chosen as 0.4, 1, 2, 3, 4, respectively).
Additionally, for the sake of a fair comparison between INL, FL and SL the nodes are set to
utilize fairly the same NNs for the three of them (see, Figure 10).

Figure 10. Used NN architecture for FL in Experiment 2.

The model shown in Figure 10, for convolutional layers with filter of size 3 × 3,
has approximately fifteen million parameters, with 97.6% of the parameters forming the
decoding part of the network. Table 3 shows the bandwidth requierments for the three
techniques per epoch for the variation of the CIFAR-10 dataset used in the experiment as
well as for the case in which another dataset would be used that had ten times the amount of
data. It is observed that increasing the data size results in higher bandwidth requirements
for both SL and INL, whereas the bandwidth requirements for FL remain unaffected.

Table 3. Experiment 2 bandwidth requirements of INL, FL and SL.

Federated Learning Split Learning In-Network Learning

Bandwidth requirement 2NJs (2pq + ηNJ)s
2pqs

J
250,000 data points 0.6 GB 1.32 GB 0.2 GB

2,500,000 data points 0.6 GB 10.53 GB 2.05 GB

Figure 11b shows the performance of the three schemes during the inference phase
in this case (for FL the inference is performed on an image which has average quality of
the five noisy input images for INL and SL). Again, observe the benefits of INL over FL

243



Entropy 2023, 25, 920

and SL in terms of both achieved accuracy and bandwidth requirements. This experiment
showacases INL’s ability to make use of the correlations between the data observed by the
different nodes, thus resulting in better network performance.

(a)

(b)
Figure 11. Comparison of INL, FL and SL—Experiment 2. (a) Accuracy vs. # of epochs. (b) Accuracy
vs. bandwidth cost.

5. Conclusions

In this paper, our focus is on addressing the problem of distributed training and
inference. We introduce INL, a novel framework which enables multiple nodes to collab-
oratively train a model that can be utilized in a distributed manner during the inference
phase. Unlike existing works on distributed estimation and detection, our framework does
not require prior knowledge of the data distribution; instead, it only necessitates access
to a set of training samples. Furthermore, while other approaches to distributed training,
such as FL and SL, assume local decision-making during the inference phase, we consider
a scenario where the nodes observe data associated with the same event, thus enabling
a joint decision that can lead to improved accuracy. The proposed INL algorithm offers
a loss function derived through theoretical analysis, aiming to achieve the best trade-off
between prediction accuracy, measured by logarithmic loss, and the amount of information
exchanged among the nodes in the communication network.

Author Contributions: Conceptualization, A.Z.; methodology, A.Z.; software, M.M.; validation,
M.M.; formal analysis, A.Z. and M.M.; investigation, M.M.; data curation, M.M.; writing—original
draft preparation, A.Z. and M.M.; writing—review and editing, A.Z. and M.M.; visualization, M.M.;
supervision, A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

244



Entropy 2023, 25, 920

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

The proof of Theorem 1 is based on a scheme in which the observations {x j} j∈J
are compressed distributively using Berger-Tung coding [33], then, the compression bin
indices are transmitted as independent messages over the network G using linear-network
coding [34] (Section 15.4). The decision node N first decompresses the compression
codewords and then uses them to produce an estimate Ŷ of Y. In what follows, for
simplicity we set the time-sharing random variable to be a constant, i.e., Q = ∅. Let
0 < ε

′′
< ε

′
< ε.

Appendix A.1. Codebook Generation

Fix a joint distribution PX1,...,XJ ,Y,U1,...,UJ that factorizes as given by (16). Addition-
ally, let D = H(Y|U1, . . . , UJ), for (u1, . . . , uJ) ∈ U1 × . . .×UJ, the reconstruction function

ŷ(·|u1, . . . , uJ) ∈ P(Y) such that E
[
d(Y, Ŷ)

]
≤ D

1 + ε
, where d : Y ×P(Y) −→ R+ is the

distortion measure given by (5). For every j ∈ J , let R̃ j ≥ R j. In addition, randomly and inde-

pendently generate 2nR̃ j sequences un
j (l j), l j ∈ [1 : 2nR̃ j ], each according to

∏n
i=1 pU j(u ji). Par-

tition the set of indices l j ∈ 2nR̃ j into equal size bins B j(m j) =
[
(m j − 1)2nR̃ j−R j : m j2

nR̃ j−R j
]
,

m j ∈ [1 : 2nR j ]. The codebook is revealed to all source nodes j ∈ J as well as to the decision
node N, but not to the intermediary nodes.

Appendix A.2. Compression of the Observations

Node j ∈ J observes xn
j and finds an index l j ∈ [1 : 2nR̃ j ] such that (xn

j , un
j (l j)) ∈ T (n)

ε′′
.

If there is more than one index the node selects one at random. If there is no such index,
it selects one at random from [1 : 2nR̃ j ]. Let m j be the index of the bin that contains the
selected l j, i.e., l j ∈ B j(m j).

Appendix A.3. Transmission of the Compression Indices over the Graph Network

In order to transmit the bins indices (M1, . . . , MJ) ∈ [1 : 2nR1 ] × . . . × [1 : 2nRJ ] to the
decision node N over the graph network G = (E,N ,C), they are encoded as if they were
independent-messages using the linear network coding scheme of [34] (Theorem 15.5) and
then transmitted over the network. The transmission of the multimessage (M1, . . . , MJ) ∈ [1 :
2nR1 ]× . . .× [1 : 2nRJ ] to the decision node N is without error as long as for all S ⊆ [1 : N − 1]
we have ∑

j∈S∩J
R j ≤ C(S) (A1)

where C(S) is defined by (14).

Appendix A.4. Decompression and Estimation

The decision node N first looks for the unique tuple (l̂1, . . . , l̂J) ∈ B1(m1)× . . .×BJ(mJ)

such that (un
1(l̂1), . . . , un

J (l̂J)) ∈ T (n)
ε . With high probability, Node N finds such a unique

tuple as long as n is large and for all S ⊆ J it holds that [33] (see also [34] (Theorem 12.1))
∑

j∈S
R j ≥ I(US; XS|USc). (A2)

245



Entropy 2023, 25, 920

The decision node N then produces an estimate ŷn of yn as ŷ(un
1(l̂1), . . . , un

J (l̂J)). It can be
shown easily that the per-sample relevance level achieved using the described scheme is
∆ = I(U1, . . . , UJ; Y) and this completes the proof of Theorem 1.

Appendix B. Proof of Proposition 1

For Csum ≥ 0 fix s ≥ 0 such that Cs = Csum and let P∗ = {PU∗1 |X1 , PU∗2 |X2 , PU∗3 |X3 } be the
solution to (23) for the given s. By making the substitution in (22):

∆s =I(Y; U∗1, U∗2, U∗3) (A3)

≤∆ (A4)

where (A4) holds since ∆ is the maximum I(Y; U1, U2, U3) over all distribution for
which (20b) holds, which includes P∗.

Conversely, let P∗ be such that (∆, Csum) is on the bound of the RIsum then:

∆ =H(Y) −H(Y|U∗1, U∗2, U∗3)
≤H(Y) −H(Y|U∗1, U∗2, U∗3) + sCsum

− s
[
I(X2, X3; U∗2, U∗3|U∗1) + I(X1, X2, X3; U∗1, U∗2, U∗3)

]
(A5)

≤H(Y) + max
P
Ls(P) + sCsum (A6)

=∆s − sCs + sCsum

=∆s + s(Csum −Cs). (A7)

where (A5) follows from (20b). Inequality (A6) holds due to the fact that maxPL(P) takes
place over all P, including P∗. Since (A7) is true for any s ≥ 0 we take s such that Csum = Cs,
which implies ∆ ≤ ∆s. Together with (A4) this completes the proof.

Appendix C. Proof of Lemma 1

We have

Ls(P) = −H(Y|U1, U2, U3) − sI(X1, X2, X3; U1, U2, U3)

− sI(X2, X3; U2, U3|U1) (A8)

= −H(Y|U1, U2, U3)

− s


I(X1; U1) + 2I(X2, X3; U2, U3|U1)


 (A9)

= −H(Y|U1, U2, U3) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U3; U1, U2) − I(U2; U1)

]
(A10)

= −H(Y|U1, U2, U3) − sI(X1; U1) − 2sI(X2; U2)

+ 2s
[
I(U2; U1) + I(U3; U1, U2) − I(X3; U3)

]
(A11)

≥−H(Y|U1, U4) − sI(X1; U1) − 2s
[
I(X2; U2) + I(X3; U3)

]

+ 2s
[
I(U2; U1) + I(U3; U1, U2)

]
(A12)

where (A9) holds since U1 −
−X1 −
− (X2, X3, U2, U3) and (U2, U3) −
− (X2, X3) −
− (U1, X1)
(A10) holds since U2 −
− X2 −
− (U1, X3) and U3 −
− X3 −
− (U1, U2, X2); (A12) hold since
U4 −
− (U2, U3) −
− (Y, U1).

246



Entropy 2023, 25, 920

Appendix D. Proof of Lemma 2

From [25] (eq. (55)) it can be shown that for any pmf QY|Z(y|z), y ∈ Y and z ∈ Z the
conditional entropy H(Y|Z) is:

H(Y|Z) = E[− log QY|Z(Y|Z)] −DKL(PY|Z||QY|Z). (A13)

From [25] (eq. (81)):

I(X; Z) = H(Z) −H(Z|X)

= DKL(PZ|X‖QZ) −DKL(PZ‖QZ). (A14)

Now substituting Equations (A13) and (A14) in (28) the following result is obtained:

Llow
s (P+) = −H(Y|U1, U4) − sI(X1; U1) − 2sI(X2; U2)

− 2sI(X3; U3) + 2s
[
I(U2; U1) + I(U3; U1, U2)

]

=E[log QY|U1,U4 ] + DKL(PY|U1,U4 ||QY|U1,U4)

− sDKL(PU1 |X1‖QU1) + sDKL(PU1‖QU1)

− 2sDKL(PU2 |X2‖QU2) + 2sDKL(PU2‖QU2)

− 2sDKL(PU3 |X3‖QU3) + 2sDKL(PU3‖QU3)

+ 2sDKL(PU2 |U1‖QU2) − 2sDKL(PU2‖QU2)

+ 2sDKL(PU3 |U1,U2‖QU3) − 2sDKL(PU3‖QU3)

=Lv-low
s + sDKL(PU1‖QU1) + 2sDKL(PU2 |U1‖QU2)

+ 2sDKL(PU3 |U1,U2‖QU3) + DKL(PY|U1,U4 ||QY|U1,U4)

≥Lv-low
s (A15)

The last inequality (A15) holds due to the fact that KL divergence is always positive and
s ≥ 0, thus proving the lemma.

References
1. Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. arXiv 2019, arXiv:1905.05055.
2. Glaser, J.I.; Benjamin, A.S.; Farhoodi, R.; Kording, K.P. The roles of supervised machine learning in systems neuroscience. Prog.

Neurobiol. 2019, 175, 126–137. [CrossRef]
3. Pluim, J.P.W.; Maintz, J.B.A.; Viergever, M.A. Mutual-information-based registration of medical images: A survey. IEEE Trans.

Med. Imaging 2003, 22, 986–1004. [CrossRef]
4. Kober, J.; Bagnell, J.; Peters, J. Reinforcement Learning in Robotics: A Survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
5. Vinyals, O.; Le, Q.V. A Neural Conversational Model. arXiv 2015, arXiv:1506.05869.
6. Farsad, N.; Yilmaz, H.B.; Eckford, A.; Chae, C.; Guo, W. A Comprehensive Survey of Recent Advancements in Molecular

Communication. IEEE Commun. Surv. Tutor. 2016, 18, 1887–1919. [CrossRef]
7. Peter Hong, Y.W.; Wang, C.C. In-Network Learning via Over-the-Air Computation in Internet-of-Things. In Proceedings of the

2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy,
27–30 September 2021; pp. 141–145. [CrossRef]

8. Du, R.; Magnusson, S.; Fischione, C. The Internet of Things as a deep neural network. IEEE Commun. Mag. 2020, 58, 20–25.
[CrossRef]

9. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017,
Fort Lauderdale, FL, USA, 20–22 April 2017; Volume 54, pp. 1273–1282.

10. Xiao, J.J.; Ribeiro, A.; Luo, Z.Q.; Giannakis, G. Distributed compression-estimation using wireless sensor networks. IEEE Signal
Process. Mag. 2006, 23, 27–41.

11. Kreidl, O.P.; Tsitsiklis, J.N.; Zoumpoulis, S.I. Decentralized detection in sensor network architectures with feedback. In
Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL,
USA, 29 September–1 October 2010; pp. 1605–1609. [CrossRef]

12. Chamberland, J.f.; Veeravalli, V.V. Wireless Sensors in Distributed Detection Applications. IEEE Signal Process. Mag. 2007,
24, 16–25.

247



Entropy 2023, 25, 920

13. Tsitsiklis, J.N. Decentralized detection. In Advances in Statistical Signal Processing; JAI Press: Stamford, CT, USA, 1993; pp. 297–344.
14. Simic, S. A learning-theory approach to sensor networks. IEEE Pervasive Comput. 2003, 2, 44–49.
15. Predd, J.; Kulkarni, S.; Poor, H. Distributed learning in wireless sensor networks. IEEE Signal Process. Mag. 2006, 23, 56–69.
16. Nguyen, X.; Wainwright, M.; Jordan, M. Nonparametric decentralized detection using kernel methods. IEEE Trans. Signal Process.

2005, 53, 4053–4066. [CrossRef]
17. Jagyasi, B.; Raval, J. Data aggregation in multihop wireless mesh sensor Neural Networks. In Proceedings of the 2015 9th

International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; pp. 65–70. [CrossRef]
18. Tran, N.H.; Bao, W.; Zomaya, A.; Nguyen, M.N.H.; Hong, C.S. Federated Learning over Wireless Networks: Optimization Model

Design and Analysis. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris,
France, 29 April–2 May 2019; pp. 1387–1395. [CrossRef]

19. Amiri, M.M.; Gündüz, D. Federated learning over wireless fading channels. IEEE Trans. Wirel. Commun. 2020, 19, 3546–3557.
[CrossRef]

20. Yang, H.H.; Liu, Z.; Quek, T.Q.S.; Poor, H.V. Scheduling Policies for Federated Learning in Wireless Networks. IEEE Trans.
Commun. 2020, 68, 317–333. [CrossRef]

21. Gupta, O.; Raskar, R. Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 2018, 116, 1–8.
[CrossRef]

22. Ceballos, I.; Sharma, V.; Mugica, E.; Singh, A.; Roman, A.; Vepakomma, P.; Raskar, R. SplitNN-driven Vertical Partitioning. arXiv
2020, arXiv:2008.04137.

23. National Institutes of Health. NIH Data Sharing Policy and Implementation Guidance; National Institutes of Health: Bethesda, MD,
USA, 2003; Volume 18, p. 2009.

24. Aguerri, I.E.; Zaidi, A. Distributed Information Bottleneck Method for Discrete and Gaussian Sources. In Proceedings of the IEEE
International Zurich Seminar on Information and Communications, Zurich, Switzerland, 21–23 February 2018.

25. Aguerri, I.E.; Zaidi, A. Distributed Variational Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 120–138.
[CrossRef]

26. Zaidi, A.; Aguerri, I.E.; Shamai (Shitz), S. On the Information Bottleneck Problems: Models, Connections, Applications and
Information Theoretic Views. Entropy 2020, 22, 151. [CrossRef]

27. Moldoveanu, M.; Zaidi, A. On in-network learning. A comparative study with federated and split learning. In Proceedings of
the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy,
27–30 September 2021; pp. 221–225.

28. Moldoveanu, M.; Zaidi, A. In-network Learning for Distributed Training and Inference in Networks. In Proceedings of the IEEE
Globecom 2021 Workshops, Madrid, Spain, 7–11 December 2021; pp. 1–6. [CrossRef]

29. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol.
(TIST) 2019, 10, 1–19. [CrossRef]

30. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
31. Flamich, G.; Havasi, M.; Hernández-Lobato, J.M. Compressing images by encoding their latent representations with relative

entropy coding. Adv. Neural Inf. Process. Syst. 2020, 33, 16131–16141.
32. Li, C.T.; Gamal, A.E. Strong Functional Representation Lemma and Applications to Coding Theorems. IEEE Trans. Inf. Theory

2018, 64, 6967–6978. [CrossRef]
33. Berger, T.; Yeung, R. Multiterminal source encoding with one distortion criterion. IEEE Trans. Inf. Theory 1989, 35, 228–236.

[CrossRef]
34. El Gamal, A.; Kim, Y.H. Network Information Theory; Cambridge University Press: Cambridge, UK, 2011. [CrossRef]
35. Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In

Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November
2015; pp. 730–734. [CrossRef]

36. Liu, H.; Chen, M.; Er, S.; Liao, W.; Zhang, T.; Zhao, T. Benefits of overparameterized convolutional residual networks: Function
approximation under smoothness constraint. In Proceedings of the International Conference on Machine Learning. PMLR,
Baltimore, MD, USA, 17–23 July 2022; pp. 13669–13703.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

248



Citation: Steiner, S.; Aminu, A.D.;

Kuehn, V. Distributed Quantization

for Partially Cooperating Sensors

Using the Information Bottleneck

Method. Entropy 2022, 24, 438 .

https://doi.org/10.3390/e24040438

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 24 February 2022

Accepted: 18 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Distributed Quantization for Partially Cooperating Sensors
Using the Information Bottleneck Method
Steffen Steiner 1,* , Abdulrahman Dayo Aminu 2 and Volker Kuehn 1

1 Institute of Communications Engineering, University of Rostock, 18119 Rostock, Germany;
volker.kuehn@uni-rostock.de

2 Pydro GmbH, 18119 Rostock, Germany; aminuabdulrahmandayo@gmail.com
* Correspondence: steffen.steiner@uni-rostock.de

Abstract: This paper addresses the optimization of distributed compression in a sensor network
with partial cooperation among sensors. The widely known Chief Executive Officer (CEO) problem,
where each sensor has to compress its measurements locally in order to forward them over capacity
limited links to a common receiver is extended by allowing sensors to mutually communicate. This
extension comes along with modified statistical dependencies among involved random variables
compared to the original CEO problem, such that well-known outer and inner bounds do not hold
anymore. Three different inter-sensor communication protocols are investigated. The successive
broadcast approach allows each sensor to exploit instantaneous side-information of all previously
transmitting sensors. As this leads to dimensionality problems for larger networks, a sequential
point-to-point communication scheme is considered forwarding instantaneous side-information to
only one successor. Thirdly, a two-phase transmission protocol separates the information exchange
between sensors and the communication with the common receiver. Inspired by algorithmic solutions
for the original CEO problem, the sensors are optimized in a greedy manner. It turns out that partial
communication among sensors improves the performance significantly. In particular, the two-phase
transmission can reach the performance of a fully cooperative CEO scenario, where each sensor has
access to all measurements and the knowledge about all channel conditions. Moreover, exchanging
instantaneous side-information increases the robustness against bad Wyner–Ziv coding strategies,
which can lead to significant performance losses in the original CEO problem.

Keywords: distributed compression; chief executive officer problem; cooperating sensors; distributed
source coding; information bottleneck

1. Introduction

This contribution considers a special case of the distributed source coding problem
where each sensor observes the same source signal. In order to forward their measurements
over capacity limited links to a common receiver, the sensors have to compress their
measurements. In the case where a direct communication among operating sensors is
not possible, this problem is termed as the CEO problem. Here, the compression at each
sensor is optimized according to the Wyner–Ziv coding principle exploiting only statistical
side-information. Within this paper, the term CEO problem always stands for this non-
cooperative CEO problem, which means that sensors cannot communicate with each other
during runtime.

We extend this scenario and allow sensors to cooperate with each other by exchanging
instantaneous side-information. The fully cooperative Chief Executive Officer (fcCEO)
problem is obtained if sensors can forward their uncompressed observations over inter-
sensor links to all other sensors. The partially cooperative Chief Executive Officer (pcCEO)
problem represents a scenario where instantaneous side-information is compressed before
it is forwarded to other sensors.

249



Entropy 2022, 24, 438

1.1. The CEO Problem

The CEO problem has been investigated for various system assumptions which mainly
differ in the distribution of the variable of interest and the applied distortion measure.
The quadratic Gaussian CEO problem considers jointly Gaussian signals and the mean
squared error (MSE) distortion measure [1–6]. Using an infinite number of encoders,
Oohama analytically derived an asymptotic version of the sum-rate distortion in [1]. In [2],
the authors investigated the influence of cooperating and non-cooperating encoders on
the distortion measure. It turns out that the distortion decreases asymptotically with
the reciprocal sum-rate R for non-cooperating encoder. In scenarios with cooperating
sensors, the MSE distortion decays exponentially with 2−2R. The non-asymptotic case
was first investigated in [3] where the authors derived an upper bound on the sum-rate
distortion function. Moreover, they showed that this bound is tight when each encoder
has the same measurement SNR. Prabhakaran et al. [4], Oohama [5] and Wagner et al. [6]
characterized the complete rate-region for this quadratic Gaussian CEO problem. Results
also exist for multivariate Gaussian relevant processes [7,8]. The CEO problem for arbitrary
discrete source distributions and the logarithmic loss distortion measure has been analyzed
in [9–11]. For this scenario, Courtade and Weissman completely characterized the CEO
rate-region in [9]. In [10,11], asymptotic analyses for an infinite number of sensors have
been performed. Using the Hamming distance as a distortion measure, in [10] an inevitable
loss in error rate performance due to non-cooperating sensors has been discovered. For
arbitrary distortion measures, a scaling law on the sum-rate distortion function has been
derived in [11]. In [12,13], the authors developed a variational bound on the optimal
trade-off between relevance and complexity of the CEO setup and used neural networks
for encoder and decoder to compute this bound.

There exist several algorithmic approaches to solve the CEO problem [8,14–17]. In
our previous work [14,15], a Greedy Distributed Information Bottleneck (GDIB) algorithm
based on the inner bound of the CEO problem with log-loss distortion measure defined
in [9] has been introduced to determine extreme points of the contra-polymatroid solu-
tion space. Equivalently to Wyner–Ziv coding, the algorithm optimizes the quantizer
of a specific sensor using the mappings of previously designed quantizers as statistical
side-information. We showed that the GDIB algorithm outperforms an individual scalar
information bottleneck optimization of sensors without Wyner–Ziv coding, especially
for larger networks. For asymmetric scenarios, we demonstrated the dependency of the
performance on the optimization order, i.e., the Wyner–Ziv coding strategy. Since the
memory complexity of this optimization algorithm depends exponentially on the network
size, we introduced a way to compress the Wyner–Ziv side-information by means of the
information bottleneck principle. However, there still remains a large performance gap
between non-cooperative and fully cooperative distributed compression.

1.2. Partially Cooperating Sensors

In order to close the gap between non-cooperative and fully cooperative distributed
compression, we consider an extension of the CEO system model allowing partial coopera-
tion among sensors. While a rich literature can be found on the classical CEO problem, less
results are known for partially cooperating sensors. Most work has been done for jointly
Gaussian signals because they allow an analytical treatment at least in parts. In [18], it is
shown that cooperation among sensors can reduce the compression sum-rate except for
the quadratic Gaussian CEO problem. In [19], the authors consider estimation problems
under communication constraints and propose coding strategies for tree-structured sensor
networks. Exploiting the Wyner–Ziv coding principle, the authors developed solutions for
general trees and provide particular results for serial and parallel networks. A two sensor
system with a Gaussian source was investigated in [20] for two transmission scenarios:
orthogonal but rate-limited links between sensors and the common receiver as well as the
Gaussian multiple access channel. It was shown that cooperation between the sensors
over rate-limited inter-sensor links leads in both cases to substantial gains in terms of the

250



Entropy 2022, 24, 438

compression sum-rate. Finally, a simple three node network consisting of encoder, helper
and decoder was analyzed in [21]. The authors showed that side-information provided by
the helper to the encoder need not exceed that given to the decoder.

1.3. Structure and Notation

This paper is structured as follows: Section 2 gives a short introduction to the infor-
mation bottleneck principle. Sections 3 and 4 introduce the non-cooperative distributed
sensing scenario with the Greedy Distributed Information Bottleneck as an algorithmic
solution defined in [14,15] and the fully cooperative distributed sensing scenario being
equivalent to a centralized quantization approach, respectively. The main contribution of
this paper can be found in Section 5, which introduces the partially cooperative distributed
sensing scenario containing three different inter-sensor communication protocols, i.e., suc-
cessive broadcasting, successive point to point transmission and two-phase transmission.
Section 6 concludes this paper.

Throughout this paper, the following notation is used. Calligraphic letters X ,Y ,Z
denote random variables with realizations x, y, z, which are elements of the sets X,Y,Z
with cardinalities |X|, |Y| and |Z|, respectively. Bold letters y = [y1 . . . yM]T denote vectors
while boldface calligraphic letters Y ,Z denote multivariate random variables. Note that
Z<m covers only the processes Z1 to Zm−1. I(X ;Y) represents the mutual information
between the random variables X and Y . Conditional and joint probability mass functions
(pmfs) are termed p(y|x) and p(x, y), respectively. The Kullback-Leibler (KL) divergence is
given as DKL[·‖·]. Finally, the expectation of a function f (x) with respect to the random
variable X is denoted as EX [ f (X )].

2. The Information Bottleneck Principle

The information bottleneck (IB) principle was first introduced by Tishby et al. in [22,23]
and defines a clustering framework based on information theoretic measures. An overview
about algorithmic solutions for this basic optimization problem is given in [23,24]. The IB
principle finds application in various fields in communications [25–30].

The general IB setup is depicted in Figure 1. It contains the relevant process X , a noisy
observation Y of X and a compressed version Z of Y . The IB approach aims to optimize
the mapping p(z|y) in order to preserve as much information about the relevant process
X in Z as possible. More precisely, it tries to maximize the relevant mutual information
I(X ;Z) while fulfilling a rate constraint I(Y ;Z) ≤ C. This general goal is summarized
in Figure 2a. The optimization can be formulated as a maximization of the Lagrangian
function

LIB = I(X ;Z)− βI(Y ;Z) . (1)

It turns out to be a non-convex optimization problem, since I(X ;Z) and I(Y ;Z) are both
convex functions of the mapping p(z|y). The parameter β is a trade-off parameter steering
the focus between the preservation of relevant information and the compression of the
observation. In the case of β = 0, the focus only lies on preservation of relevant information.
By increasing β the compression becomes more and more important up to the case of
β→ ∞. Here, the functional in (1) becomes maximal if I(Y ;Z) = 0, which means that all
information is compressed to a single cluster. Therefore, the parameter β can be used to
adjust the compression rate I(Y ;Z) in order to fulfill a desired rate constraint I(Y ;Z) ≤ C.
Since the compression-rate curve is a monotonic increasing function in 1

β , a simple bi-
section search can be applied. The optimization problem in (1) can be solved by taking
the derivative with respect to the mapping p(z|y) and equating it to zero. It results in the
implicit update equation

p(z|y) = e−dβ(y,z)

∑z e−dβ(y,z)
(2)

251



Entropy 2022, 24, 438

with

dβ(y, z) =
1
β

DKL[p(x|y)‖p(x|z)]− log p(z) (3)

=
1
β
EX |y

[
log

p(x|y)
p(x|z)

]
− log p(z) .

In (3), DKL[p(x|y)‖p(x|z)] denotes the Kullback–Leibler divergence. This implicit solution
can be solved by an iterative Blahut–Arimoto-like algorithm.

+ encoder receiver
x

w

y

C
x̂

Figure 1. Illustration of a remote sensing problem for a single sensor.

X Y Z
I(Y ;Z) ≤ C

max
p(z|y)

I(X ;Z)

(a)

y1

x z
y2

(b)

Figure 2. (a) Illustration of the IB setup, (b) Exemplary IB graph.

In the case of focusing solely on preservation of relevant information with β = 0, the
optimization algorithm yields a deterministic clustering p(z|y) ∈ {0, 1}. For β > 0, the
clustering p(z|y) ∈ [0, 1] is generally stochastic. The IB method can easily be extended
to multiple input values. A graphical tool for visualization are IB graphs [31]. Figure 2b
illustrates an example where the observations y1, y2 are compressed into the cluster index
z. The trapezoid represents the IB compression with respect to the relevant variable written
inside the trapezoid.

3. Non-Cooperative Distributed Sensing System

Figure 3 illustrates the CEO system model without communication among operating
sensors. Here, M sensors observe noisy versions ym of the same relevant signal x. The
measurement processes can be modeled as statistically independent memoryless channels
(MCs).

Exemplarily, a measurement ym = x + wm represents the relevant signal x corrupted
by zero mean white Gaussian measurement noise wm with measurement signal-to-noise-

ratio (SNR) γm = σ2
x

σ2
wm

, where σ2
x , σ2

wm denote signal and noise variances, respectively. In

order to be able to forward the measurements over capacity limited links with capacities
C1, . . . , CM, each sensor has to compress its observations using a specific encoding process.
More precisely, each sensor compresses its observations ym to a cluster index zm using the
mapping p(zm|ym) leading to the Markov property:

p(z, y, x) =
M

∏
m=1

p(zm|ym)p(ym|x)p(x). (4)

The encoding process contains a second lossy compression step if the mapping p(zm|ym) is
stochastic and lossless entropy coding if the mapping p(zm|ym) is deterministic. Therefore,
a compressed version of the index zm is transmitted without any further loss to the common
receiver. The optimization of p(zm|ym) for each sensor is done offline.

252



Entropy 2022, 24, 438

The mathematical analysis of the CEO problem and the structure of its rate-region
for discrete input alphabets and the log-loss distortion measure was presented in [9] and
exploits (4). It was proved that the extreme points of the contra-polymatroid solution space
can be determined by greedy algorithms as the one described next. Since the communica-
tion among sensors during run-time is not possible in this approach, the solution represents
a lower bound on the performance of cooperative distributed compression in this paper.

sensor 1

sensor M

MC1

MCM

encoder 1

encoder M

common
receiver

x

y1

yM

C1

CM

x̂

Figure 3. Non-cooperative distributed sensing system with M sensors, a common receiver and
individual link capacities Cm.

An algorithmic solution to solve the CEO problem has previously been proposed
in [14,15] as the so called Greedy Distributed Information Bottleneck (GDIB) algorithm.
It is based on the inner bound of the CEO rate-region for the logarithmic loss distortion
measure [9] and optimizes the quantization at the sensors successively. Replacing the
logarithmic loss function H(X |Z) by the relevant mutual information I(X ;Z) delivers the
optimization problem

max
P

I(X ;Z) s.t. I(YS;ZS|ZS) ≤ ∑
m∈S

Cm

∀ S ⊆ {1, 2, . . . , M}. (5)

The set P =
[
p(z1|y1) · · · p(zM|yM)

]
defines the set of all mappings. According to [9],

the compression rates I(YS;ZS|ZS) are supermodular set functions with respect to the sets
S [32], while the relevant information I(X ;Z) does not depend on S. Therefore, the greedy
optimization structure of the GDIB algorithm is optimal and finds the extreme points of the
solution space. It has to be emphasized that since the GDIB algorithm is based on the inner
bound of the rate-region, it does not find the complete rate-region of the CEO problem.
Following this approach, M IB related Lagrangian optimization problems are obtained, one
for each sensor.

L(1)
GDIB = I(X ;Z1)− β1 I(Y1;Z1) (6)

...

L(M)
GDIB = I(X ;ZM|Z<M)− βM I(YM;ZM|Z<M) (7)

Obviously, the optimization problem of the first sensor resembles the optimization problem
for the scalar IB problem given in (1) since there is no predecessor. Subsequent sensors
exploit the mappings of previously designed quantizers as statistical side-information
leading to the well-known Wyner–Ziv coding strategy. Naturally, each Lagrange multiplier
βm has to be chosen such that the corresponding compression rate fulfills the individual rate

253



Entropy 2022, 24, 438

constraint I(Ym;Zm|Z<m) ≤ Cm. The objectives in (6) and (7) can be solved by equating
the derivative with respect to the mapping p(zm|ym) to zero delivering the update rule

p(zm|ym) =
e−dβm (ym ,zm)

∑zm e−dβm (ym ,zm)
(8)

with the exponent

dβm(ym, zm) := EZ<m |ym

[
1

βm
DKL[p(x|ym, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]
. (9)

Similar to the scalar IB optimization, the implicit expression in (8) can be solved using a
Blahut–Arimoto like algorithm, providing local optimal solutions. It has to be mentioned
that for asymmetric scenarios, this optimization has to be performed for all M! possible
permutations of the optimization order to find the best solution.

A detailed derivation and performance analysis of this algorithm can be found
in [14,15]. If the capacity is equally distributed over all sensors in the network, e.g.,
sensors share the same channel in an orthogonal way and a round robin fashion, numerical
results demonstrate that the GDIB algorithm outperforms an individual scalar IB opti-
mization at each sensor. However, there is still a large gap to the performance of a fcCEO
scenario, which is defined in Section 4. Moreover, in asymmetric scenarios, the performance
highly depends on the optimization order. Although no clear conclusion about the optimal
Wyner–Ziv coding strategy can be drawn, a good solution can be expected when starting
the optimization with the best forward channel conditions, i.e., the lowest compression
(highest compression rate).

4. Fully Cooperative Distributed Sensing—A Centralized Quantization Approach

This section introduces the fcCEO scenario, which considers distributed sensors being
able to forward their uncompressed observations to all other sensors in the network
over ideal noiseless inter-sensor links. In this case, sensors can perfectly exchange their
measurements ym before they jointly compress the received signals taking into account the
rate constraints of all individual forward channels. Naturally, the exchange has to be done
by a two-phase transmission protocol, consisting of a cooperation phase and a transmission
phase. During the cooperation phase sensors exchange information until every sensor
knows measurements y = [y1 . . . yM]T of all M sensors. The actual forwarding of the
compressed observations to the common receiver is performed during the transmission
phase. This full cooperation is equivalent to a single central quantizer having access to all
measurements y as depicted in Figure 4. Applying the IB principle, this central quantizer
can be designed in order to compress the vector y onto a cluster index z using the mapping
p(z|y), which motivates the name centralized IB (CIB) for the algorithmic solution in a
fcCEO scenario. The optimization problem can be formulated as the maximization of

LCIB = I(X ;Z)− βI(Y ;Z) (10)

and is solved using update Equation (2) with (3) substituting the scalar y by vector y. The
number of output clusters |Z| has to be chosen to |Z| = ∏M

m=1 |Zm| while the single link
from the imaginary central quantizer to the receiver in Figure 4 has a channel capacity of
Csum = ∑M

m=1 Cm. The actual transmission over the M links has to be coordinated such that
each sensor m transmits a specific part of the bits corresponding to its link capacity Cm.

254



Entropy 2022, 24, 438

MC1

MCM

encoder common
receiver

Csumx

y1

yM

x̂

Figure 4. Model of a centralized compression approach representing the fully cooperative Chief
Executive Officer scenario.

In the special case of the measurement process being modeled as additive noise,
the algorithm can be simplified to a scalar optimization problem where maximum ratio
combining of all inputs ym delivers a scalar sufficient statistics

ȳ =
M

∑
m=1

γm · ym

of the desired relevant signal x with an overall SNR γ = ∑m γm. The solution of the fcCEO
scenario serves as an upper bound in this paper.

5. Partially Cooperative Distributed Sensing

In order to investigate how the gap between non-cooperative and fully-cooperative dis-
tributed compression can be reduced, partially cooperating sensors shall now be considered.
Partial cooperation means a limited exchange of instantaneous side-information among
the sensors during runtime due to a rate-limitation of inter-sensor links. Non-cooperative
CEO and fully-cooperative CEO problems represent the extreme cases for zero rate and
unlimited rate inter-sensor links, respectively. The rate limitation requires the compression
of instantaneous side-information before forwarding it to other sensors.

In this paper, only deterministic mappings are considered for this compression, while
indexes zm are still obtained by stochastic mappings. This is motivated by the fact that
deterministic mappings do not require further lossy compression and the resulting side-
information indices sm can be exploited at other sensors by choosing a particular mapping
p(zm|ym) from a list of possible mappings designed offline in advance. As a consequence,
the compression rates for instantaneous side-information can only be adjusted by changing
the cardinalities |Sm|. For all results presented below, inter-sensor links are modeled as bit
pipes being able to deliver sm reliably.

The GDIB algorithm to solve the non-cooperative CEO problem is based on the inner
bound (5) of the CEO rate-region. Moreover, a greedy optimization approach is optimal
due to the supermodularity of the compression rates in (5). Both require the Markovian
structure in (4). However, cooperation among sensors changes the Markovian structure and
implies different statistical dependencies among involved random variables. As (4) does
not hold anymore in pcCEO scenarios, the inner bound on the rate-region in (5) cannot be
utilized to find solutions of the pcCEO scenario. To the knowledge of the authors, tight
bounds on the rate-region are not available for the cooperative case. Therefore, a heuristic
approach based on the greedy optimization structure of the GDIB algorithm will be applied
to solve the pcCEO scenario, which is not proven to be optimal. Nevertheless, the numerical
evaluation of the found solutions demonstrate their usefulness. However, the computation
of required pmfs becomes more challenging and results in recursive calculations given in
Appendices A.1 and A.2 because the Markovian structure of (4) does not hold anymore in
pcCEO scenarios.

This paper introduces three different inter-sensor communication protocols for ex-
changing this instantaneous side-information: successive broadcasting, a successive point-
to-point transmission and a two-phase transmission. The first two protocols perform the
exchange of instantaneous side-information sm with other sensors and the forwarding of

255



Entropy 2022, 24, 438

compressed versions of zm to the common receiver in the same time slot. Contrarily, the
two-phase transmission protocol separates the exchange of instantaneous side-information
among sensors and the communication with the common receiver into two distinct phases.
The latter starts after the exchange among sensors has been completed such that all sensors
have (approximately) the same amount of side-information.

5.1. Successive Broadcasting Protocol

The system model for the successive broadcasting protocol is illustrated in Figure 5. In
the same time slot, sensor m− 1 not only forwards a compressed version of the quantization
index zm−1 to the common receiver, but also broadcasts instantaneous side-information
sm−1 to all other sensors. However, due to the greedy optimization structure, only subse-
quent sensors can exploit this instantaneous side-information. Thus, sensor m can exploit
indices s<m of all previously transmitting sensors in order to select its quantization index
zm as well as a new instantaneous side-information index sm. This scenario leads to the
Markov model

p(x, y, z, s) =
M

∏
m=1

p(zm|ym, s<m)p(sm|ym, s<m)p(ym|x)p(x). (11)

sensor 1

sensor 2

sensor M

MC1

MC2

MCM

encoder 1

encoder 2

encoder M

common
receiver

x

y1

y2

yM

s1

s2 sM−1

C1

C2

CM

x̂

s1

Figure 5. Partially cooperative CEO scenario using broadcast exchange of side-information among
sensors.

The indices sm and zm are obtained by deterministic mappings p(sm|ym, s<m) ∈ {0, 1}
and stochastic mappings p(zm|ym, s<m) ∈ [0, 1], respectively. The design of these mappings
can be performed offline leveraging the IB principle as illustrated in Figure 6. It combines
the observation ym and the instantaneous side-information s<m to indexes sm and zm while
maintaining as much information as possible about the relevant signal x.

ym

x sm

s<m

(a)

ym

x zm

s<m

(b)

Figure 6. Graphical illustration of IB fusion of involved inputs to determine instantaneous side-
information sm (a) and the quantizer sensor output zm (b) for a broadcast exchange of instantaneous
side-information.

256



Entropy 2022, 24, 438

5.1.1. Generation of Broadcast Side-Information

The design of p(sm|ym, s<m) is inspired by the general GDIB algorithm, i.e., the optimiza-
tion is done in a greedy manner. Again, there emerges one optimization problem for each
sensor:

L(1)
BC-SIDE = I(X ;S1)− βI(Y1;S1) (12)

...

L(M−1)
BC-SIDE = I(X ;SM−1|S<M−1)− βI(YM−1;SM−1|S<M−1) . (13)

The optimization problem of the first sensor equals the individual scalar optimization
without any side-information at all, as described in Section 2. Subsequent sensors combine
the instantaneous side-information of all previously transmitting sensors s<m with its
observation ym. The relevant mutual information and the compression rate of sensor m
are conditioned on S<m since broadcasting instantaneous side-information ensures all
successive sensors to have access to s<m allowing Wyner–Ziv coding for generating sm.
Each optimization problem given in (12) and (13) can be solved by taking the derivative
with respect to the mapping p(sm|ym, s<m) and equating it to zero. This results in the
implicit update equation

p(sm|ym, s<m) =
e−dβm (ym ,sm ,s<m)

∑sm e−dβm (ym ,sm ,s<m)
(14)

with

dβm(ym, sm, s<m) :=
1

βm
DKL[p(x|ym, s<m)‖p(x|s≤m)]− log p(sm|s<m) . (15)

As in the general GDIB algorithm, the implicit update equation in (14) can be solved using
a Blahut–Arimoto like algorithm resulting in local optimal solutions.

Algorithmic pcCEO Solution for the Successive Broadcasting Protocol

After designing the mapping for the instantaneous side-information, the mapping
p(zm|ym, s<m) can be optimized, again by means of the IB principle. Therefore, the original
GDIB algorithm is modified to exploit the broadcasted instantaneous side-information,
defining the GDIB-BC algorithm. The optimization problem for each sensor is given as

L(1)
GDIB-BC = I(X ;Z1)− β1 I(Y1;Z1) (16)

...

L(M)
GDIB-BC = I(X ;ZM|Z<M)− βM I(YM,S<M;ZM|Z<M). (17)

The main difference to the original GDIB optimization problem in (6) and (7) lies in the def-
inition of the compression rate I(Ym,S<m;Zm|Z<m) which emerges from the combination
of the observation ym and the instantaneous side-information s<m. Taking the derivative
of the optimization problem for sensor m with respect to the mapping p(zm|ym, s<m) and
equating it to zero delivers

p(zm|ym, s<m) =
e−dβm (ym ,zm ,s<m)

∑zm e−dβm (ym ,zm ,s<m)
(18)

257



Entropy 2022, 24, 438

with

dβm(ym, zm, s<m) := EZ<m |ym ,s<m

[
1

βm
·

DKL[p(x|ym, s<m, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]
. (19)

Again, the implicit update equation in (18) can be solved using a Blahut–Arimoto like algo-
rithm. The extended Blahut–Arimoto like algorithm to design the mapping p(zm|ym, s<m)
of sensor m for a specific Lagrange parameter βm and instantaneous side-information s<m
is given in Algorithm 1. The input pmf p(ym−1, s<m−1, z<m−1, x) can be computed during
the optimization of previous sensors. Lines 3 to 5 determine the required pmfs for the
calculation of the KL-divergence of (19) in lines 6 to 9. The statistical distance of (19) is
determined in lines 10 to 14. It is used to update the quantizer mapping p(zm|ym, s<m) of
sensor m. This procedure is repeated until no significant changes of the desired mappings
occur anymore. The algorithm returns the updated mapping p(zm|ym, s<m) as well as the
pmf p(ym, s<m, z<m, x), which is used as an input for the successive sensor.

Algorithm 1: Extended Blahut–Arimoto algorithm for broadcast cooperating sensors.

input : m, pinit(zm|ym, s<m), p(yi, x), βm, ε
p(si|yi, s<i) ∀i ≤ m
recursively calculated input from previous
sensor optimizations:
p(ym−1, s<m−1, z<m−1, x)

output : p(zm|ym, s<m) ∈ [0, 1], p(ym, s<m, z<m, x)
1 begin

initialization :
p(zm|ym, s<m)(0) ← pinit(zm|ym, s<m),
l ← 1

2 do

3 // calculate required pmfs (see Appendix A.1)
4 p(ym, s<m, z<m, x) = ∑ym−1

p(zm−1|ym−1, s<m−1)p(ym|x)
· p(sm−1|ym−1, s<m−1)p(ym−1, s<m−1, z<m−1, x)

5 p(z≤m, x) = ∑s<m ∑ym p(zm|ym, s<m)p(ym, s<m, z<m, x)

6 // KL-Divergence DKL of (19)

7 p(x|ym, s<m, z<m) =
p(ym ,s<m ,z<m ,x)

∑x p(ym ,s<m ,z<m ,x)

8 p(x|z≤m) =
p(z≤m ,x)

∑x p(z≤m ,x)

9 DKL = ∑x p(x|ym, s<m, z<m) · log p(x|ym ,s<m ,z<m)
p(x|z≤m)

10 // distance dβm(ym, zm, s<m) (19)

11 p(z<m|ym, s<m) =
∑x p(ym ,s<m ,z<m ,x)

∑x ∑z<m p(ym ,s<m ,z<m ,x)

12 p(z≤m) = ∑x p(z≤m, x)

13 p(zm|z<m) =
p(z≤m)

∑zm p(z≤m)

14 dβm(zm, ym, s<m) = ∑z<m p(z<m|ym, s<m) ·
[

1
βm

DKL − log p(zm|z<m)

]

15 // update quantizer p(zm|ym, s<m)

16 p(zm|ym, s<m)(l) =
e−dβm (ym ,zm ,s<m)

∑z e−dβm (ym ,zm ,s<m)

17 l ← l + 1
18 while DJS[ p(l)(zm|ym, s<m) || p(l−1)(zm|ym, s<m) ] < ε

258



Entropy 2022, 24, 438

The parameter βm, which determines the compression rate at sensor m, has to be
adjusted such that I(Ym,S<m;Zm|Z<m) ≤ Cm is fulfilled. Similar to the original GDIB
algorithm, the GDIB-BC algorithm has to be performed for each sensor and all possible
optimization orders.

5.1.2. Evolution of Instantaneous Side-Information

Figure 7 illustrates the amount of instantaneous side-information available at the
different sensors in a network of size M = 6 considering the broadcast of side-information.
It depicts the relevant mutual information I(X ;S≤m) versus the sensor number m for
different cardinalities |Sm| and SNRs γm. The relevant signal is chosen to be a uniformly
distributed 4-ASK signal leading to |X| = 4. As expected, the amount of available instan-
taneous side-information increases with each additional sensor for all |Sm| and γm. To be
more specific, the resolution and the quality of instantaneous side-information available
at sensor m increases with growing m. In the considered symmetric scenario, the amount
of information I(X ;Sm|S<m) a sensor can contribute to I(X ;S≤m) gets smaller for each
additional sensor and the slopes of the curves decrease. Since one bit is not enough to
represent the information of |X| = 4, the largest gain can be observed between |Sm| = 2 and
|Sm| = 4. Increasing the cardinality further to |Sm| = 8 results only in a small additional
improvement. Certainly, this observation depends on the relevant signal X and can not be
generalized.

1 2 3 4 5 6

0.5

1

1.5

2

γm = 8 dB

sensor m

I(
X

;S
≤

m
)

|Sm| = 2 |Sm| = 4 |Sm| = 8

1 2 3 4 5 6

γm = 3 dB

sensor m

Figure 7. Available mutual information I(X ;S≤m) for sensor m in a network with M = 6 sensors
and different cardinalities |Sm| using the successive broadcasting protocol; |X| = 4, |Ym| = 64.

5.1.3. Performance for Different Network Sizes

Figures 8 and 9 illustrate the overall performance of the GDIB-BC approach when
broadcasting instantaneous side-information for different network sizes. The relevant
mutual information I(X ;Z) is depicted versus the number of sensors M in the network.
The gray colored area represents the non-achievable region, since I(X ;Z) cannot exceed
I(X ;Y) due to the data-processing inequality. Both figures consider a scenario where all
sensors in the network share the same channel to the common receiver with a fixed sum-
rate Csum in an orthogonal way and a round robin fashion. Consequently, larger network
sizes correspond to smaller individual capacities Cm = Csum

M for each forward link. The
performance of partially cooperating sensors broadcasting instantaneous side-information
(pcCEO-BC) is compared to the non-cooperative case (CEO) of Section 3 and the fully
cooperative case (fcCEO) of Section 4. As already mentioned, these two scenarios provide
upper and lower bounds. In general, it can be observed that increasing the number of
sensors in the network also increases the overall relevant mutual information I(X ;Z).

259



Entropy 2022, 24, 438

This holds even for the case without cooperation, since each sensor applies Wyner–Ziv
coding and exploits the mapping of previously designed quantizers as statistical side-
information [14]. Independent of the cardinality |Sm|, the performance of the pcCEO-BC
scenario is superior to the case without cooperation among sensors. This difference grows
for larger network sizes because the amount of information s<m has about the relevant
variable x increases. As expected from Figure 7, increasing the cardinality |Sm| not only
improves the relevant information I(X ;S≤m), but also the overall performance measured
by I(X ;Z). However, it can be observed that even for large |Sm| there remains a gap to
the fcCEO upper bound, especially for smaller network sizes or lower SNRs. This gap can
be explained by the successive transmission protocol resulting in a gradually increasing
amount of instantaneous side-information at the sensors. For instance, the first sensors
does not profit at all from the partial cooperation in contrast to the fcCEO scenario where
all sensors exploit almost the same amount of side-information.

2 3 4 5 6
0.8

1

1.2

1.4

1.6

1.8

2
I(X ;Y)

γm = 8 dB
fcCEO
CEO

number of sensors M

I(
X

;Z
)

|Sm| = 2 |Sm| = 4 |Sm| = 8

2 3 4 5 6

I(X ;Y)

γm = 3 dB

fcCEO
CEO

number of sensors M

Figure 8. Relevant mutual information I(X ;Z) versus the network size for a fixed sum-rate of
Csum = 2.5 bit/s/Hz and Cm = Csum

M using the successive broadcasting protocol with different
cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4.

2 3 4 5 6
0.8

1

1.2

1.4

1.6

1.8

2
I(X ;Y)

γm = 8 dB
fcCEO
CEO

number of sensors M

I(
X

;Z
)

|Sm| = 2 |Sm| = 4 |Sm| = 8

2 3 4 5 6

I(X ;Y)

γm = 3 dB
fcCEO
CEO

number of sensors M

Figure 9. Relevant mutual information I(X ;Z) versus the network size for a fixed sum-rate of
Csum = 4 bit/s/Hz and Cm = Csum

M using the successive broadcasting protocol with different
cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4.

260



Entropy 2022, 24, 438

Considering the pmfs in Algorithm 1, it becomes obvious that larger networks might
suffer from the curse of dimensionality. More precisely, pmfs like p(ym, s<m, z<m, x) can
become very large during the optimization for larger network sizes. Moreover, the mapping
p(zm|ym, s<m) also depends on the network size, i.e., this problem does not only occur
during the optimization, but also when storing the already optimized mapping. This
numerical issue is the reason why there is no result for |Sm| = 8 and a network size of M = 6
in Figures 8 and 9. In this case, it requires 2024 GiB (1 GiB = 1024 MiB, 1 MiB = 1024 KiB,
1 KiB = 1024 byte) just for storing a single instance of the pmf p(ym, s<m, z<m, x).

5.2. Successive Point-to-Point Protocol

For larger network sizes, broadcasting side-information might not be feasible any-
more, since the dimensions of the mappings p(zm|ym, s<m) and p(sm|ym, s<m) as well as
intermediate pmfs used within the optimization become huge. In order to relax this curse
of dimensionality, the successive way of cooperation is exploited and the instantaneous
side-information of sensor m shall only be forwarded to the direct successor m + 1 as
depicted in Figure 10. Hence, a sequential chain is established from the first to the last
sensor leading to the Markov Model:

p(x, y, z, s) =
M

∏
m=1

p(zm|ym, sm−1)p(sm|ym, sm−1)p(ym|x)p(x). (20)

Again, the instantaneous side-information is obtained by a deterministic mapping opti-
mized by means of the information bottleneck principle, illustrated in Figure 11. With each
step in the sequential chain, the information sm has about the relevant signal x increases.

sensor 1

sensor 2

sensor M

MC1

MC2

MCM

encoder 1

encoder 2

encoder M

common
receiver

x

y1

y2

yM

s1

s2

sM−1

C1

C2

CM

x̂

Figure 10. Partially cooperative CEO scenario using successive point-to-point transmission of side-
information.

ym

x sm

sm−1

(a)

ym

x zm

sm−1

(b)

Figure 11. Graphical illustration of IB fusion of two inputs to determine instantaneous side-
information sm (a) and the quantizer sensor output zm (b) for a successive point-to-point transmission
of instantaneous side-information.

261



Entropy 2022, 24, 438

5.2.1. Generation of Point-to-Point Side-Information

Similar to the broadcast case, the design of p(sm|ym, sm−1) is inspired by the original
GDIB algorithm. The optimization problem can be formulated in a greedy manner as

L(1)
PTP-SIDE = I(X ;S1)− βI(Y1;S1) (21)

...

L(M−1)
PTP-SIDE = I(X ;SM−1)− βI(YM−1,SM−2;SM−1) , (22)

where Equation (21) equals the individual scalar optimization without any side-information.
Subsequent sensors combine the instantaneous side-information sm−1 sent by the previous
sensor with its observation ym. In contrast to the broadcast case, the relevant mutual
information is not conditioned on S<m as in (12) and (13) because sensor m will only have
access to sm−1 and not to indices of any other sensor. Therefore, Wyner–Ziv coding cannot
be applied for exchanging instantaneous side-information with the successive point-to-
point protocol. The optimization problems can be solved by taking the derivative with
respect to the mapping p(sm|ym, sm−1) and equating it to zero, resulting in the implicit
update equation

p(sm|ym, sm−1) =
e−dβm (ym ,sm ,sm−1)

∑sm e−dβm (ym ,sm ,sm−1)
(23)

with

dβm(ym, sm, sm−1) :=
1

βm
· DKL[p(x|ym, sm−1)‖p(x|sm)]− log p(sm) . (24)

As in the broadcast case, using a Blahut–Arimoto like algorithm to solve the update
Equation (23) results in local optimal solutions.

5.2.2. Algorithmic pcCEO Solution Applying the Successive Point-to-Point Protocol

After the optimization of the mapping for instantaneous side-information, the map-
ping p(zm|ym, sm−1) can be designed by means of the information bottleneck principle.
Inspired by the original GDIB algorithm, the optimization problem can be formulated as

L(1)
GDIB-PTP = I(X ;Z1)− β1 I(Y1;Z1) (25)

...

L(M)
GDIB-PTP = I(X ;ZM|Z<M)− βM I(YM,SM−1;ZM|Z<M). (26)

The main difference to the original GDIB optimization problem in (6) and (7) now lies in
the compression rate I(Ym,Sm−1;Zm|Z<m), which emerges from the combination of the
instantaneous side-information sm−1 of the previous sensor m − 1 and the observation
ym of sensor m. Taking the derivative with respect to the mapping p(zm|ym, sm−1) and
equating it to zero, the optimization problem for sensor m can be solved, leading to the
implicit update equation

p(zm|ym, sm−1) =
e−dβm (ym ,zm ,sm−1)

∑zm e−dβm (ym ,zm ,sm−1)
(27)

with

262



Entropy 2022, 24, 438

dβm(ym, zm, sm−1) := EZ<m |ym ,sm−1

[
1

βm
·

DKL[p(x|ym, sm−1, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]
. (28)

Thus, the mapping p(zm|ym, sm−1) can be optimized using a Blahut–Arimoto-like algorithm.
The specific algorithm for a given sensor m and a Lagrange parameter βm is given in
Algorithm 2. The input pmfs p(zi|yi, si−1) ∀i < m and p(si|z≤i, x) ∀i < m as well as
p(z<m−1, x) are calculated in advance by previous sensor optimizations. Lines 3 to 7
calculates required pmfs as given the Appendix A.2. The KL-divergence is calculated in
lines 8 to 11. Using this, the statistical distance dβm(zm, ym, sm−1) of (28) can be calculated
in lines 12 to 16, which is then used to update the quantizer mapping p(zm|ym, sm−1). The
algorithm stops if this mapping does not change significantly anymore during subsequent
iterations. Finally, the output pmfs p(sm|z≤m, x) and p(z<m, x) need to be calculated in
lines 21 to 25 for their usage in the optimization of the next sensor.

Similar to the original GDIB algorithm, the optimization needs to be done for all
possible optimization orders. A simple bisection search can be applied to find the rate-
fulfilling parameter βm, such that I(Ym,Sm−1;Zm|Z<m) ≤ Cm holds.

5.2.3. Evolution of Instantaneous Side-Information

Figure 12 illustrates the amount of instantaneous side-information I(X ;Sm) at a spe-
cific sensor m in a network of size M = 6 using the successive point-to-point transmission
protocol for different cardinalities |Sm|. Obviously, I(X ;Sm) increases with each further
sensor. The main difference to the broadcast case is that the instantaneous side-information
provided to sensor m is represented by a single highly compressed index sm−1 with cardinal-
ity |Sm−1|. While the resolution |S<m| of the available instantaneous side-information s<m
increases with m in the broadcast case, it remains the same for the successive point-to-point
protocol. Therefore, a higher cardinality |Sm| is required compared to the broadcast case to
avoid additional compression losses.

1 2 3 4 5 6

0.5

1

1.5

2

γm = 8 dB

sensor m

I(
X

;S
m
)

|Sm| = 2 |Sm| = 4 |Sm| = 8 |Sm| = 16 |Sm| = 32

1 2 3 4 5 6

γm = 3 dB

sensor m

Figure 12. Evolution of I(X ;Sm) for sensor m in a network with M = 6 sensors and different
cardinalities |Sm| for the successive point-to-point transmission protocol; |X| = 4, |Ym| = 64.

263



Entropy 2022, 24, 438

Algorithm 2: Extended Blahut–Arimoto algorithm for the successive point-to-
point protocol.

input : m, pinit(zm|ym, sm−1), p(yi, x),
p(si|yi, si−1) ∀i ≤ m, βm, ε
recursively calculated inputs from previous
sensor optimizations:
p(zi|yi, si−1), p(si|z≤i, x) ∀i < m,
p(z<m−1, x)

output : p(zm|ym, sm−1) ∈ [0, 1], p(z<m, x), p(sm|z≤m, x)
1 begin

initialization :
p(zm|ym, sm−1)

(0) ← pinit(·|·, ·),
l ← 1

2 do

3 // calc. pmfs (see Appendix A.2)
4 p(zm−1, sm−1|x, z<m−1) = ∑sm−2 ∑ym−1

p(zm−1|ym−1, sm−2)p(sm−2|z≤m−2, x)
· p(sm−1|ym−1, sm−2)p(ym−1|x)

5 p(z<m−1, ym, x) = p(z<m−1, x)p(ym|x)
6 p(ym, sm−1, z<m, x) = p(zm−1, sm−1|x, z<m−1)p(z<m−1, ym, x)
7 p(z≤m, x) = ∑sm−1 ∑ym p(zm|ym, sm−1)p(zm−1, sm−1|x, z<m−1)

· p(z<m−1, x)p(ym|x)
8 // KL-Divergence DKL of (28)

9 p(x|ym, sm−1, z<m) =
p(ym ,sm−1,z<m ,x)

∑x p(ym ,sm−1,z<m ,x)

10 p(x|z≤m) =
p(z≤m ,x)

∑x p(z≤m ,x)

11 DKL = ∑x p(x|ym, sm−1, z<m) log p(x|ym ,sm−1,z<m)
p(x|z≤m)

12 // distance dβm(ym, zm, sm−1) (28)

13 p(z<m|ym, sm−1) =
∑x p(ym ,sm−1,z<m ,x)

∑x ∑z<m p(ym ,sm−1,z<m ,x)

14 p(z≤m) = ∑x p(z≤m, x)

15 p(zm|z<m) =
p(z≤m)

∑zm p(z≤m)

16 dβm(zm, ym, sm−1) = ∑z<m p(z<m|ym, sm−1) ·
[

1
βm

DKL − log p(zm|z<m)

]

17 // update quantizer p(zm|ym, sm−1)

18 p(zm|ym, sm−1)
(l) = e−dβm (ym ,zm ,sm−1)

∑z e−dβm (ym ,zm ,sm−1)

19 l ← l + 1
20 while DJS[ p(l)(zm|ym, sm−1) || p(l−1)(zm|ym, sm−1) ] < ε

21 // cal.p(sm|z≤m, x) and p(z<m, x) for successive sensor
22 p(z<m, x) = ∑zm p(z≤m, x)
23 p(ym, x, zm) = ∑sm−1

p(ym, x)p(zm|ym, sm−1)p(sm−1|x)
24 p(ym|x, zm) =

p(ym ,x,zm)
∑ym p(ym ,x,zm)

25 p(sm|z≤m, x) = ∑sm−1 ∑ym p(sm−1|z≤m−1, x)p(ym|x, zm)p(sm|ym, sm−1)

5.2.4. Performance for Different Network Sizes

Figures 13 and 14 illustrate the overall performance of the pcCEO system with point-to-
point exchanged instantaneous side-information where all sensors share the same channel
to the common receiver with a fixed sum-rate Csum = ∑M

m=1 Cm in an orthogonal way and

264



Entropy 2022, 24, 438

a round robin fashion. Again, the black curves represent the non-cooperative CEO scenario
and the fcCEO scenario. Hence, they serve as lower and upper bound, respectively. In
general, the curves are very similar to those for broadcasting instantaneous side-information
in Figures 8 and 9. Independent of the SNR or the sum-rate Csum, the relevant mutual
information I(X ;Z) increases for larger networks and even a single bit as instantaneous
side-information |Sm| = 2 leads to slight improvements compared to the non-cooperative
case. However, there still remains a gap to the fcCEO scenario even for large |Sm|, which
results from the successive communication strategy, since sensors at the beginning of the
optimization chain can exploit no or little instantaneous side-information.

2 3 4 5 6
0.8

1

1.2

1.4

1.6

1.8

2
I(X ;Y)

γm = 8 dB
fcCEO
CEO

number of sensors M

I(
X

;Z
)

|Sm| = 2 |Sm| = 4 |Sm| = 8 |Sm| = 16 |Sm| = 32

2 3 4 5 6

I(X ;Y)

γm = 3 dB

fcCEO
CEO

number of sensors M

Figure 13. Relevant mutual information I(X ;Z) versus the network size for a fixed sum-rate of
Csum = 2.5 bit/s/Hz and Cm = Csum

M using the successive point-to-point transmission protocol with
different cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4.

2 3 4 5 6
0.8

1

1.2

1.4

1.6

1.8

2
I(X ;Y)

γm = 8 dB
fcCEO
CEO

number of sensors M

I(
X

;Z
)

|Sm| = 2 |Sm| = 4 |Sm| = 8 |Sm| = 16 |Sm| = 32

2 3 4 5 6

I(X ;Y)

γm = 3 dB

fcCEO
CEO

number of sensors M

Figure 14. Relevant mutual information I(X ;Z) versus the network size for a fixed sum-rate of
Csum = 4 bit/s/Hz and Cm = Csum

M using the successive point-to-point transmission protocol with
different cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4.

5.2.5. Performance for Different Sum-Rates

Figure 15 illustrates the influence of the sum-rate Csum = ∑M
m=1 Cm for a scenario

with M = 5 sensors. Naturally, larger sum-rates correlate with higher individual link
capacities. Again, CEO and fcCEO scenarios provide lower and upper bounds, respectively.

265



Entropy 2022, 24, 438

For a cardinality of |Sm| = 2, only a small gain compared to the non-cooperative CEO
scenario can be observed. However, the gain gets more and more significant with increasing
|Sm|. Comparing the results to the upper fcCEO bound illuminates the loss due to limited
available side-information at early transmitting sensors. The largest difference can be
observed for sum-rates between 2 ≤ Csum ≤ 4 bit/s/Hz.

0 2 4 6 8
0.5

1

1.5

2
I(X ;Y)

γm = 8 dB

fcCEO
CEO

sum capacity Csum

I(
X

;Z
)

|Sm| = 2 |Sm| = 4 |Sm| = 8 |Sm| = 16 |Sm| = 32

0 2 4 6 8

I(X ;Y)

γm = 3 dB

fcCEO
CEO

sum capacity Csum

Figure 15. Relevant mutual information I(X ;Z) versus sum-rate Csum with Cm = Csum
M using the

successive point-to-point transmission protocol with different cardinalities |Sm|; M = 5, |X| = 4,
|Ym| = 64, |Zm| = 4.

5.2.6. Asymmetric Scenarios

A very important part is the investigation of asymmetric scenarios. As the achievable
relevant information I(X ;Z) of a non-cooperative CEO scenario is very sensitive to the
optimization order, i.e., the Wyner–Ziv coding strategy, in asymmetric scenarios [14]
the question arises if the exchange of instantaneous side-information can improve the
robustness against bad optimization orders. Therefore, the same two asymmetric setups
as in [14] are analyzed. Scenario 1 considers the case where sensors with low SNRs γm
have low link capacities Cm while sensors with high SNRs γm have high link capacities
Cm. Scenario 2 considers the opposite case, where sensors with low SNRs have high link
capacities and vice versa.

Figure 16 illustrates the relevant mutual information I(X ;Z) for all M! = 24 sensor
permutations for a network of M = 4 sensors. The dots represent the results from [14] for a
non-cooperative CEO scenario. Blue dots show Scenario 1 while the red dots represent Sce-
nario 2. The results for the pcCEO scenario with successive point-to-point side-information
exchange is depicted as bars.

Comparing the non-cooperative case with the successive point-to-point exchange of
side-information for Scenario 1, we observe a slight increase of the overall relevant mutual
information I(X ;Z) for partial cooperation and this particular scenario. Moreover, the
influence of the Wyner–Ziv coding strategy (optimization order) becomes smaller due to
cooperation. The performance for Scenario 2 is worse than the performance for Scenario 1,
again for both the cooperative and the non-cooperative case. In this scenario, accurate
measurements have to be strongly compressed in order to forward them to the common
receiver while unreliable measurements cannot contribute much to the overall performance
although they can be forwarded to the common receiver at high rates. However, the loss
due to bad optimization orders is much lower for partial cooperation. A sensor with a bad
forward channel and a high SNR can still forward its information to the next sensor, which
might have a better forward channel. Therefore, exchanging instantaneous side-information
can improve the robustness against bad optimization orders.

266



Entropy 2022, 24, 438

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

1.5

1.55

1.6

1.65

1.7

CEO Scenario 1
CEO Scenario 2

permutations

I(
X

;Z
)

Scenario 1: C = [1, 1.5, 2, 2.5] bit/s/Hz;|Z| = [4, 4, 8, 8]
Scenario 2: C = [2.5, 2, 1.5, 1] bit/s/Hz,|Z| = [8, 8, 4, 4]

Figure 16. Relevant mutual information I(X ;Z) for non-symmetric scenario with M = 4 sensors,
SNRs γm= [2,4,6,8] dB and |X| = 4, |Ym| = 64, |Zm| = 4 using the successive point-to-point
transmission protocol with |Sm| = 8.

5.3. Two-Phase Transmission Protocol with Artificial Side-Information

Previous subsections revealed that partial cooperation by exchanging instantaneous
side-information improves the overall performance. However, a gap to the fcCEO sce-
nario still remains, and we claimed that the successive exchange of instantaneous side-
information is the reason for this difference. Due to the sequential forwarding protocols
considered so far, early sensors have no or little instantaneous side-information. They
hardly profit from the cooperation as opposed to the full cooperation case where all sen-
sors have access to the complete information. In order to substantiate this statement, a
third transmission protocol consisting of two phases is considered. Inspired by the fcCEO
scenario, the first cooperation phase is used to exchange instantaneous side-information
between all sensors, while the transmission phase is used to forward the information to
the common receiver in the usual way. The difference to the fcCEO scenario is that only
compressed versions of the observations can be exchanged during the cooperation phase.

For simplicity, we assume that each sensor obtains the same instantaneous side-
information represented by s∗, independent of its position in the optimization chain, see
Figure 17. Moreover, we pursue the EXIT chart philosophy [33], where extrinsic information
is artificially created to analyze the information exchange between decoders in concatenated
coding schemes. In the pcCEO context, the artificial side-information can be interpreted as
extrinsic information about the relevant signal x being generated by adding AWGN to x.
The noise variance is adapted to obtain a specific SNR γextr or equivalently a desired mutual
side-information I(X ;S∗). It has to be emphasized that γextr can be chosen independently
from the measurement SNRs at the sensors in order to obtain general conclusions. Since
the instantaneous side-information is created artificially, s∗ is assumed to be independent
of the indexes ym given the relevant signal x, i.e., p(ym, s∗|x) = p(ym|x)p(s∗|x) holds. This
simplifies the Markovian structure of the optimization problem which equals the one of
the original CEO problem. With the same argumentation as in the original CEO problem,
we claim that the supermodularity holds and the greedy optimization structure is optimal.
This model leads to the modified optimization problem

267



Entropy 2022, 24, 438

L(1)
GDIB-TP = I(X ;Z1)− β1 I(Y1,S∗;Z1) (29)

...

L(M)
GDIB-TP = I(X ;ZM|Z<M)− βM I(YM,S∗;ZM|Z<M). (30)

Theoptimization problem can be solved using the same strategy as described in previous
Sections 5.1 and 5.2. This leads to the implicit update equation

p(zm|ym, s∗) =
e−dβm (ym ,zm ,s∗)

∑zm e−dβm (ym ,zm ,s∗) (31)

with

dβm(ym, zm, s∗) := EZ<m |ym ,s∗

[
1

βm
·

DKL[p(x|ym, s∗, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]
. (32)

sensor 1

sensor 2

sensor M

MC1

MC2

MCM

encoder 1

encoder 2

encoder M

common
receiver

x

y1

y2

yM

C1

C2

CM

s∗

s∗

s∗

x̂

Figure 17. Partially cooperative CEO scenario using the two-phase transmission protocol.

5.3.1. Performance of Two-Phase Transmission

Figure 18 illustrates the same experiment as in Figure 8 or Figure 13, but for the
two-phase transmission protocol. The extrinsic information is chosen independent of the
measurement SNR and has its own SNR γext represented by different colors in Figure 18.
The cardinality of the extrinsic information is chosen as |S∗| = 512 to not introduce any
compression losses. As before, the black dashed line represents the fcCEO scenario. The
curve for γextr = γm = 8 dB represents the case where each sensor forwards instantaneous
side-information whose quality corresponds to its measurement SNR. We observe the same
performance as for the fcCEO scenario. This demonstrates that the remaining performance
gap to the fcCEO scenario disappears completely for appropriate cooperation among
sensors. Naturally, decreasing the SNR of the extrinsic information γext or equivalently
I(X ;S∗) leads to a lower overall performance I(X ;Z).

268



Entropy 2022, 24, 438

2 3 4 5 6
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

I(X ;Y)

γm = 8 dB

reduce I(X ;S∗)

number of sensors M

I(
X

;Z
)

fcCEO γext = 0 dB
γext = 8 dB γext = −4 dB
γext = 4 dB γext = −8 dB

Figure 18. Relevant mutual information I(X ;Z) versus the network size for a fixed sum-rate of
Csum = 2.5 bit/s/Hz and Cm = Csum

M using a two-phase transmission protocol for artificially decoupled
extrinsic information with different γext; γm = 8 dB,|X| = 4, |Ym| = 64, |Zm| = 4, |S∗| = 512.

5.3.2. Influence of Extrinsic Information

The influence of extrinsic information is depicted in Figure 19 for γm = 8 dB and
γm = 3 dB. Therefore, the overall relevant mutual information I(X ;Z) is depicted versus
the mutual information of the extrinsic information I(X ;S∗) for different network sizes.
As before, all sensors share the same forward channel with Csum = 2.5 bit/s/Hz and
Cm = Csum

M . Providing no extrinsic information, i.e., I(X ;S∗) = 0 delivers the same result
as the non-cooperative CEO scenario of Section 3. Naturally, enhancing the quality of the
extrinsic information increases the overall relevant mutual information I(X ;Z) up to the
maximum of 2 bit/s/Hz.

0 0.5 1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

2

γm = 8 dB

I(X ;S∗)

I(
X

;Z
)

M = 5 M = 4 M = 3 M = 2

0 0.5 1 1.5 2

γm = 3 dB

I(X ;S∗)

Figure 19. Relevant mutual information I(X ;Z) versus extrinsic mutual information I(X ;S∗) for
different network sizes and a fixed sum-rate of Csum = 2.5 bit/s/Hz and Cm = Csum

M and |X| = 4,
|Ym| = 64, |Zm| = 4.

269



Entropy 2022, 24, 438

6. Conclusions

This paper extends the non-cooperative CEO scenario allowing partial cooperation
among sensors in the network. Therefore, it extends the algorithmic solution introduced
in [14] for three different inter-sensor communication protocols: successive broadcasting,
successive point-to-point communication and a two-phase transmission protocol. The first
two protocols perform the exchange of instantaneous side-information and forwarding in-
formation to the common receiver at the same time step. Therefore, successive broadcasting
exploits the instantaneous side-information of all previous sensors within the optimization
chain. Since this may cause dimensionality problems during the optimization, the suc-
cessive point-to-point transmission protocol forwards the instantaneous side-information
only to the next sensor. It turns out that allowing this partial communication outperforms
the non-cooperative compression where no communication among sensors is possible.
Moreover, cooperative compression shows a larger robustness to suboptimal Wyner–Ziv
coding strategies in asymmetric scenarios. However, a small performance gap to the fcCEO
scenario still remains for the proposed successive broadcasting and successive point-to-
point transmission protocols. This gap can be closed by a third protocol separating the
cooperation from the forwarding phase and allowing each sensor to access the maximal
available side-information. Although no formal conclusion about the optimality of the
pcCEO can be drawn, the closeness to the fcCEO scenario in the investigated simulations
reveals that solutions found by the proposed greedy algorithms are at least close to optimal.

Author Contributions: Conceptualization, S.S. and V.K.; formal analysis, S.S. and V.K.; investigation,
S.S., A.D.A. and V.K.; methodology, S.S.; software, S.S. and A.D.A.; supervision, V.K.; validation, S.S.;
visualization, S.S.; writing—original draft, S.S.; writing—review and editing, S.S. and V.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the University of Rostock, and in part by the Ger-
man Research Foundation (DFG) in the funding programme Open Access Publishing under Grant
325496636. Parts of the computation were done by using a compute cluster funded by DFG (grant:
440623123).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Optimization for Broadcasting Side-Information

According to Section 5.1, partial cooperation by broadcasting side-information requires
the maximization of

L(m)
GDIB-BC = I(X ;Zm|Z<m)− βm I(Ym,S<m;Zm|Z<m). (A1)

The variational problem can be solved by taking the derivative with respect to the mapping
p(zm|ym, s<m) and equating it to zero. In the following, the derivatives of both mutual
information are given.

Appendix A.1.1. Derivative of I(X ;Zm|Z<m)

The relevant mutual information in (A1) can be rewritten such that the desired map-
ping occurs explicitly.

270



Entropy 2022, 24, 438

I(X ;Zm|Z<m) = EX ,Zm ,Z<m

[
log

p(zm|x, z<m)

p(zm|z<m)

]

= ∑
zm

∑
z<m

∑
x

∑
ym

∑
s<m

p(zm|ym, s<m)p(ym, s<m, z<m, x)

· log ∑
a∈Ym

∑
b∈S<m

p(zm|a, b)p(a, b|z<m, x)

−∑
zm

∑
z<m

∑
x

∑
ym

∑
s<m

p(zm|ym, s<m)p(ym, s<m, z<m, x)

· log ∑
a∈Ym

∑
b∈S<m

p(zm|a, b)p(a, b|z<m) (A2)

The derivative of (A2) delivers

∂I(X ;Zm|Z<m)

∂p(zm|ym, s<m)

= ∑
x

∑
z<m

p(ym, s<m, z<m, x) · log p(zm|x, z<m)

+ ∑
x

∑
z<m

[
∑
s<m

∑
ym

p(zm|ym, s<m)p(ym, s<m, z<m, x)

]

︸ ︷︷ ︸
=p(zm ,z<m ,x)

· p(ym, s<m|x, z<m)

p(zm|x, z<m)

−∑
x

∑
z<m

p(ym, s<m, z<m, x) · log p(zm|z<m)

−∑
x

∑
z<m

[
∑
s<m

∑
ym

p(zm|ym, s<m)p(ym, s<m, z<m, x)

]

︸ ︷︷ ︸
=p(zm ,z<m ,x)

· p(ym, s<m|z<m)

p(zm|z<m)

= ∑
z<m

p(ym, s<m, z<m)∑
x

p(x|ym, s<m, z<m) log
p(zm|x, z<m)

p(zm|z<m)
. (A3)

Exploiting Bayes’ theorem, the argument of the logarithmic function can be rewritten

p(zm|x, z<m)

p(zm|z<m)
=

p(x|z≤m)

p(x|z<m)

=
p(x|z≤m)

p(x|ym, s<m, z<m)
· p(x|ym, s<m, z<m)

p(x|z<m)
. (A4)

The last ratio in (A4) can be dropped because it does not depend on p(zm|ym, s<m) and its
contribution can be incorporated into the Lagrange multiplier βm. The insertion of the first
ratio into (A3) yields the contribution of the derivative of the relevant mutual information

∂I(X ;Zm|Z<m)

∂p(zm|ym, s<m)
→ − ∑

z<m

p(ym, s<m, z<m)∑
x

p(x|ym, s<m, z<m) log
p(x|ym, s<m, z<m)

p(x|z≤m)

= − ∑
z<m

p(ym, s<m, z<m)DKL[p(x|ym, s<m, z<m)‖p(x|z≤m)] . (A5)

271



Entropy 2022, 24, 438

Appendix A.1.2. Derivative of I(Ym,S<m;Zm|Z<m)

With the definition of the conditional compression rate

I(Ym,S<m;Zm|Z<m) = EYm ,Zm ,Z<m ,S<m

[
log

p(zm|ym, s<m, z<m)

p(zm|z<m)

]

= ∑
zm

∑
z<m

∑
s<m

∑
ym

p(zm|ym, s<m)p(ym, s<m, z<m) log p(zm|ym, s<m)

−∑
zm

∑
z<m

∑
s<m

∑
ym

p(zm|ym, s<m)p(ym, s<m, z<m) log ∑
a∈Ym

∑
b∈S<m

p(zm|a, b)p(a, b|z<m) (A6)

its derivative becomes

∂I(Ym,S<m;Zm|Z<m)

∂p(zm|ym, s<m)

= ∑
z<m

p(ym, s<m, z<m) log p(zm|ym, s<m)

+ ∑
z<m

p(ym, s<m, z<m)
p(zm|ym, s<m)

p(zm|ym, s<m)

− ∑
z<m

p(ym, s<m, z<m) log p(zm|z<m)

− ∑
z<m

[
∑
ym

∑
s<m

p(zm|ym, s<m)p(ym, s<m, z<m)

]

︸ ︷︷ ︸
=p(zm ,z<m)

· p(ym, s<m|z<m)

p(zm|z<m)

= ∑
z<m

p(ym, s<m, z<m) log
p(zm|ym, s<m)

p(zm|z<m)
. (A7)

Appendix A.1.3. Fusion of Derived Parts

Combining the result in (A5) and (A7) delivers the complete derivative

− ∑
z<m

p(ym, s<m, z<m)DKL[p(x|ym, s<m, z<m)‖p(x|z≤m)]

− βm ∑
z<m

p(ym, s<m, z<m) log p(zm|ym, s<m)

+ βm ∑
z<m

p(ym, s<m, z<m) · log p(zm|z<m) = 0 . (A8)

Following the idea of Blahut and Arimoto [34], p(x|z≤m) and p(zm|z<m) are assumed to
be independent of p(zm|ym, s<m). With this trick, (A8) can be resolved with respect to the
desired mapping of sensor m leading to the implicit solution

p(zm|ym, s<m) =
e−dβm (ym ,zm ,s<m)

∑zm e−dβm (ym ,zm ,s<m)
(A9)

with

dβm(ym, zm, s<m)

:= ∑
z<m

p(z<m|ym, s<m)

[
1

βm
DKL[p(x|ym, s<m, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]

= EZ<m |ym ,s<m

[
1

βm
DKL[p(x|ym, s<m, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]
. (A10)

272



Entropy 2022, 24, 438

Appendix A.1.4. Calculating Required pmfs

This section covers the calculation of the required pmfs for the previously described
algorithm. The first term in the KL divergence in (A10) is defined by

p(x|ym, s<m, z<m) =
p(x, ym, s<m, z<m)

∑x p(x, ym, s<m, z<m)
(A11)

where p(x, ym, s<m, z<m) is determined recursively as

p(x, ym, s<m, z<m) = ∑
ym−1

p(zm−1|ym−1, s<m−1)·

p(sm−1|ym−1, s<m−1)p(ym|x)p(x, ym−1, s<m−1, z<m−1) . (A12)

In (A12), the pmf p(zm−1|ym−1, s<m−1) represents the quantizer mapping of the previous
sensor m− 1 while p(sm−1|ym−1, s<m−1) denotes its the mapping for the instantaneous
side-information. Hence, both have already been determined when optimizing sensor
m− 1 leading to a recursive computation. The second term in the KL divergence in (A10)
is calculated by

p(x|z≤m) =
p(z≤m, x)

∑x p(z≤m, x)
(A13)

where p(z≤m, x) can be calculated by

p(z≤m, x) = ∑
s<m

∑
ym

p(zm|ym, s<m)p(x, ym, s<m, z<m) (A14)

with p(zm|ym, s<m) being the quantizer mapping of the current sensor. The joint pmf
p(x, ym, s<m, z<m) has already been calculated in (A12). The argument of the logarithm
in (A10) can be derived as

p(zm|z<m) =
∑x p(z≤m, x)

∑zm ∑x p(z≤m, x)
. (A15)

Finally, the pmf to calculate the conditional expectation in (A10) is determined as

p(z<m|ym, s<m) =
∑x p(x, ym, s<m, z<m)

∑z<m ∑x p(x, ym, s<m, z<m)
. (A16)

Note that all above equations simplify to the scalar IB equations given in Section 2 when
optimizing the first sensor.

Appendix A.2. Optimization for Point-to-Point Exchange of Side-Information

According to Section 5.2, partial cooperation using a point-to-point communication
protocol requires the maximization of

L(m)
GDIB-PTP = I(X ;Zm|Z<m)− βm I(Ym,Sm−1;Zm|Z<m). (A17)

The variational problem can be solved by taking the derivative with respect to the mapping
p(zm|ym, sm−1) and equating it to zero. In the following, the derivatives of both mutual
information are given.

273



Entropy 2022, 24, 438

Appendix A.2.1. Derivative of I(X ;Zm|Z<m)

The relevant mutual information in (A17) can be rewritten such that the desired
mapping occurs explicitly.

I(X ;Zm|Z<m) = EX ,Zm ,Z<m

[
log

p(zm|x, z<m)

p(zm|z<m)

]

= ∑
z≤m

∑
x

∑
ym

∑
sm−1

p(zm|ym, sm−1)p(ym, sm−1, z<m, x)

· log ∑
a∈Ym

∑
b∈Sm−1

p(zm|a, b)p(a, b|z<m, x)

− ∑
z≤m

∑
x

∑
ym

∑
sm−1

p(zm|ym, sm−1)p(ym, sm−1, z<m, x)

· log ∑
a∈Ym

∑
b∈Sm−1

p(zm|a, b)p(a, b|z<m) (A18)

The derivative of (A18) delivers

∂I(X ;Zm|Z<m)

∂p(zm|ym, sm−1)

= ∑
x

∑
z<m

p(ym, sm−1, z<m, x) · log p(zm|x, z<m)

+ ∑
x

∑
z<m

[
∑

sm−1

∑
ym

p(zm|ym, sm−1)p(ym, sm−1, z<m, x)

]

︸ ︷︷ ︸
=p(zm ,z<m ,x)

· p(ym, sm−1|x, z<m)

p(zm|x, z<m)

−∑
x

∑
z<m

p(ym, sm−1, z<m, x) · log p(zm|z<m)

−∑
x

∑
z<m

[
∑

sm−1

∑
ym

p(zm|ym, sm−1)p(ym, sm−1, z<m, x)

]

︸ ︷︷ ︸
=p(zm ,z<m ,x)

· p(ym, sm−1|z<m)

p(zm|z<m)

= ∑
x

∑
z<m

p(ym, sm−1, z<m, x) · log
p(zm|x, z<m)

p(zm|z<m)

= ∑
z<m

p(ym, sm−1, z<m)∑
x

p(x|ym, sm−1, z<m) log
p(zm|x, z<m)

p(zm|z<m)
. (A19)

Exploiting Bayes’ theorem the argument of the logarithmic function can be rewritten

p(zm|x, z<m)

p(zm|z<m)
=

p(x|z≤m)

p(x|z<m)

=
p(x|z≤m)

p(x|ym, sm−1, z<m)

p(x|ym, sm−1, z<m)

p(x|z<m)
. (A20)

The last ratio in (A20) can be dropped because it does not depend on p(zm|ym, sm−1) and its
contribution can be incorporated into the Lagrange multiplier βm. The insertion of the first
ratio into (A19) yields the contribution of the derivative of the relevant mutual information

∂I(X ;Zm|Z<m)

∂p(zm|ym, sm−1)
→ − ∑

z<m

p(ym, sm−1, z<m)∑
x

p(x|ym, sm−1, z<m) log
p(x|ym, sm−1, z<m)

p(x|z≤m)

= − ∑
z<m

p(ym, sm−1, z<m)DKL[p(x|ym, sm−1, z<m)‖p(x|z≤m)] . (A21)

274



Entropy 2022, 24, 438

Appendix A.2.2. Derivative of I(Ym,Sm−1;Zm|Z<m)

With the definition of the conditional compression rate

I(Ym,Sm−1;Zm|Z<m) = EYm ,Zm ,Z<m ,Sm−1

[
log

p(zm|ym, sm−1, z<m)

p(zm|z<m)

]

= ∑
zm

∑
z<m

∑
sm−1

∑
ym

p(zm|ym, sm−1)p(ym, sm−1, z<m) log p(zm|ym, sm−1)

−∑
zm

∑
z<m

∑
sm−1

∑
ym

p(zm|ym, sm−1)p(ym, sm−1, z<m) log ∑
a∈Ym

∑
b∈Sm−1

p(zm|a, b)p(a, b|z<m) (A22)

its derivative becomes

∂I(Ym,Sm−1;Zm|Z<m)

∂p(zm|ym, sm−1)

= ∑
z<m

p(ym, sm−1, z<m) log p(zm|ym, sm−1)

+ ∑
z<m

p(ym, sm−1, z<m)
p(zm|ym, sm−1)

p(zm|ym, sm−1)

− ∑
z<m

p(ym, sm−1, z<m) log p(zm|z<m)

− ∑
z<m

[
∑
ym

∑
sm−1

p(zm|ym, sm−1)p(ym, sm−1, z<m)

]

︸ ︷︷ ︸
=p(zm ,z<m)

· p(ym, sm−1|z<m)

p(zm|z<m)

= ∑
z<m

p(ym, sm−1, z<m) log
p(zm|ym, sm−1)

p(zm|z<m)
. (A23)

Appendix A.2.3. Fusion of Derived Parts

Combining the result in (A21) and (A23) delivers the complete derivative

− ∑
z<m

p(ym, sm−1, z<m)DKL[p(x|ym, sm−1, z<m)‖p(x|z≤m)]

− βm ∑
z<m

p(ym, sm−1, z<m) log p(zm|ym, sm−1)

+ βm ∑
z<m

p(ym, sm−1, z<m) · log p(zm|z<m) = 0 . (A24)

Following the idea of Blahut and Arimoto [34], p(x|z≤m) and p(zm|z<m) are assumed to be
independent of p(zm|ym, sm−1). With this trick, (A24) can be resolved with respect to the
desired mapping of sensor m leading to the implicit solution

p(zm|ym, sm−1) =
e−dβm (ym ,zm ,sm−1)

∑zm e−dβm (ym ,zm ,sm−1)
(A25)

with

dβm(ym, zm, sm−1)

:= ∑
z<m

p(z<m|ym, sm−1)

[
1

βm
DKL[p(x|ym, sm−1, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]

= EZ<m |ym ,sm−1

[
1

βm
DKL[p(x|ym, sm−1, z<m)‖p(x|z≤m)]− log p(zm|z<m)

]
. (A26)

275



Entropy 2022, 24, 438

Appendix A.2.4. Calculating Required pmfs

This section covers the calculation of the required pmfs for the previously described
algorithm. The first term in the KL divergence in (A26) is defined by

p(x|ym, sm−1, z<m) =
p(x, ym, sm−1, z<m)

∑x p(x, ym, sm−1, z<m)
(A27)

with

p(x, ym, sm−1, z<m) = p(zm−1, sm−1|x, z<m−1)p(x, ym, z<m−1) . (A28)

The first term on the right hand side in (A28) can be calculated by

p(zm−1, sm−1|x, z<m−1) = ∑
ym−1

∑
sm−2

p(zm−1|ym−1, sm−2)

p(sm−1|ym−1, sm−2)p(ym−1|x)p(sm−2|x, z<m−1) (A29)

where p(zm−1|ym−1, sm−2) represents the mapping of previously designed quantizer m− 1,
p(sm−1|ym−1, sm−2) denotes its mapping of instantaneous side-information and p(ym−1|x)
statistically describes the corresponding known measurement channel. The last term
p(sm−2|x, z<m−1) has already been calculated when optimizing previous sensors (in this
case the pre-predecessor) in a recursive way

p(sm|x, z<m) = ∑
ym

∑
sm−1

p(sm|ym, sm−1)p(ym|x, zm)p(sm−1|x, z<m−1) (A30)

with

p(ym|x, zm) =
p(ym, x, zm)

∑ym p(ym, x, zm)
(A31)

and

p(ym, x, zm) = ∑
sm−1

p(zm|ym, sm−1)p(ym|x)p(sm−1|x)p(x) . (A32)

The second term on the right hand side in (A28) can be determined by

p(x, ym, z<m−1) = p(ym|x)p(z<m−1, x) . (A33)

Again, the last term in (A33) is obtained as side product when optimizing the previous
sensor by

p(z≤m, x) = ∑
ym

∑
sm−1

p(zm|ym, sm−1)p(zm−1, sm−1|x, z<m−1)p(x, ym, z<m−1) (A34)

where p(zm−1, sm−1|x, z<m−1) and p(x, ym, z<m−1) are already defined in (A29) and (A33),
respectively. The second term in the KL divergence in (A26) is calculated by

p(x|z≤m) =
p(z≤m, x)

∑x p(z≤m, x)
(A35)

where p(z≤m, x) is already defined in (A34). The term in the logarithm in (A26) can be
expressed as

p(zm|z<m) =
∑x p(z≤m, x)

∑x ∑zm p(z≤m, x)
. (A36)

276



Entropy 2022, 24, 438

Finally, the required pmf to calculate the conditional expectation in (A26) can be determined
by

p(z<m|ym, sm−1) =
∑x p(x, ym, sm−1, z<m)

∑x ∑z<m p(x, ym, sm−1, z<m)
(A37)

with p(x, ym, sm−1, z<m) being already defined in (A28). Note that all above equations
simplify to the scalar IB equations given in Section 2 when optimizing the first sensor.
Moreover, when optimizing the second sensor, there is no pre-predecessor m− 2 and its
impact on the above equations can be omitted.

References
1. Oohama, Y. The rate-distortion function for the quadratic Gaussian CEO problem. IEEE Trans. Inf. Theory 1998, 44, 1057–1070.

[CrossRef]
2. Viswanathan, H.; Berger, T. The Quadratic Gaussian CEO Problem. IEEE Trans. Inf. Theory 1997, 43, 1549–1559. [CrossRef]
3. Chen, J.; Zhang, X.; Berger, T.; Wicker, S.B. An upper bound on the sum-rate distortion function and its corresponding rate

allocation schemes for the CEO problem. IEEE J. Sel. Areas Commun. 2004, 22, 977–987. [CrossRef]
4. Prabhakaran, V.; Tse, D.; Ramachandran, K. Rate region of the quadratic Gaussian CEO problem. In Proceedings of the

International Symposium on Information Theory (ISIT 2004), Chicago, IL, USA, 27 June–2 July 2004; p. 119. [CrossRef]
5. Oohama, Y. Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the

decoder. IEEE Trans. Inf. Theory 2005, 51, 2577–2593. [CrossRef]
6. Wagner, A.; Tavildar, S.; Viswanath, P. Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem. IEEE Trans.

Inf. Theory 2008, 54, 1938–1961. [CrossRef]
7. Ugur, Y.; Aguerri, I.E.; Zaidi, A. Vector Gaussian CEO problem under logarithmic loss. In Proceedings of the 2018 IEEE

Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; pp. 1–5.
8. Uğur, Y.; Aguerri, I.E.; Zaidi, A. Vector Gaussian CEO Problem Under Logarithmic Loss and Applications. IEEE Trans. Inf. Theory

2020, 66, 4183–4202. [CrossRef]
9. Courtade, T.A.; Weissman, T. Multiterminal Source Coding Under Logarithmic Loss. IEEE Trans. Inf. Theory 2014, 60, 740–761.

[CrossRef]
10. Berger, T.; Zhang, Z.; Viswanathan, H. The CEO Problem [Multiterminal Source Coding]. IEEE Trans. Inf. Theory 1996, 42, 887–902.

[CrossRef]
11. Eswaran, K.; Gastpar, M. Remote Source Coding under Gaussian Noise: Dueling Roles of Power and Entropy Power. arXiv 2018,

arXiv:1805.06515v2.
12. Zaidi, A.; Aguerri, I.E. Distributed Deep Variational Information Bottleneck. In Proceedings of the 2020 IEEE 21st International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5.
[CrossRef]

13. Aguerri, I.E.; Zaidi, A. Distributed Variational Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 120–138.
[CrossRef] [PubMed]

14. Steiner, S.; Kuehn, V.; Stark, M.; Bauch, G. Reduced-Complexity Optimization of Distributed Quantization Using the Information
Bottleneck Principle. IEEE Open J. Commun. Soc. 2021, 2, 1267–1278. [CrossRef]

15. Steiner, S.; Kuehn, V. Distributed Compression using the Information Bottleneck Principle. In Proceedings of the ICC 2021—IEEE
International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

16. Estella Aguerri, I.; Zaidi, A. Distributed information bottleneck method for discrete and Gaussian sources. In Proceedings of the
International Zurich Seminar on Information and Communication (IZS 2018) Proceedings, Zurich, Switzerland, 21–23 February
2018; ETH Zurich: Zurich, Switzerland, 2018; pp. 35–39.

17. Uğur, Y.; Aguerri, I.E.; Zaidi, A. A generalization of blahut-arimoto algorithm to compute rate-distortion regions of multiterminal
source coding under logarithmic loss. In Proceedings of the 2017 IEEE Information Theory Workshop (ITW), Kaohsiung, Taiwan,
6–10 November 2017; pp. 349–353.

18. Prabhakaran, V.; Ramchandran, K.; Tse, D. On the Role of Interaction Between Sensors in the CEO Problem. In Proceedings of the
42nd Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 29 September–1 October
2004.

19. Draper, S.; Wornell, G. Side Information Aware Coding Strategies for Sensor Networks. IEEE J. Sel. Areas Commun. 2004,
22, 966–976. [CrossRef]

20. Simeone, O. Source and Channel Coding for Homogeneous Sensor Networks with Partial Cooperation. IEEE Trans. Wirel.
Commun. 2009, 8, 1113–1117. [CrossRef]

21. Permuter, H.; Steinberg, Y.; Weissman, T. Problems we can solve with a helper. In Proceedings of the 2009 IEEE Information
Theory Workshop on Networking and Information Theory, Volos, Greece, 10–12 June 2009; pp. 266–270. [CrossRef]

277



Entropy 2022, 24, 438

22. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the 37th Annual Allerton Conference
on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.

23. Slonim, N. The Information Bottleneck Theory and Applications. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem,
Israel, 2002.

24. Hassanpour, S.; Wuebben, D.; Dekorsy, A. Overview and Investigation of Algorithms for the Information Bottleneck Method. In
Proceedings of the SCC 2017—11th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany,
6–9 February 2017.

25. Lewandowsky, J.; Bauch, G. Information-Optimum LDPC Decoders Based on the Information Bottleneck Method. IEEE Access
2018, 6, 4054–4071. [CrossRef]

26. Zeitler, G. Low-precision analog-to-digital conversion and mutual information in channels with memory. In Proceedings of the
48th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, 29 September–1 October
2010; pp. 745–752.

27. Meidlinger, M.; Matz, G. On Irregular LDPC Codes with Quantized Message Passing Decoding. In Proceedings of the 2017 IEEE
18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [CrossRef]

28. Romero, F.; Kurkoski, B. LDPC Decoding Mappings That Maximize Mutual Information. IEEE J. Sel. Areas Commun. 2016,
34, 2391–2401. [CrossRef]

29. Zeitler, G. Low-Precision Quantizer Design for Communication Problems. Ph.D. Thesis, Technische Universitaet Muenchen,
Muenchen, Germany, 2012.

30. Chen, D.; Kuehn, V. Alternating information bottleneck optimization for the compression in the uplink of C-RAN. In Proceedings
of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–7.
[CrossRef]

31. Lewandowsky, J.; Stark, M.; Bauch, G. Information Bottleneck Graphs for Receiver Design. In Proceedings of the 2016 IEEE
International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2888–2892. [CrossRef]

32. Fujishige, S. Submodular Functions and Optimization; Elsevier: Amsterdam, The Netherlands, 2005.
33. ten Brink, S. Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes. IEEE Trans. Commun. 2001, 49, 1727–1737.

[CrossRef]
34. Cover, T.; Thomas, J. Elements of Information Theory, 2nd ed.; Wiley & Sons: New York, NY, USA, 2006.

278



Citation: Toledo, A.; Venezian, E.;

Slonim, N. Revisiting Sequential

Information Bottleneck: New

Implementation and Evaluation.

Entropy 2022, 24, 1132. https://

doi.org/10.3390/e24081132

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 11 July 2022

Accepted: 4 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Revisiting Sequential Information Bottleneck: New
Implementation and Evaluation
Assaf Toledo * , Elad Venezian and Noam Slonim *

IBM Research AI, Haifa University Campus, Mount Carmel Haifa, Haifa 3498825, Israel
* Correspondence: assaf.toledo@ibm.com (A.T.); noams@il.ibm.com (N.S.)

Abstract: We introduce a modern, optimized, and publicly available implementation of the sequential
Information Bottleneck clustering algorithm, which strikes a highly competitive balance between
clustering quality and speed. We describe a set of optimizations that make the algorithm computation
more efficient, particularly for the common case of sparse data representation. The results are
substantiated by an extensive evaluation that compares the algorithm to commonly used alternatives,
focusing on the practically important use case of text clustering. The evaluation covers a range of
publicly available benchmark datasets and a set of clustering setups employing modern word and
sentence embeddings obtained by state-of-the-art neural models. The results show that in spite of
using the more basic Term-Frequency representation, the proposed implementation provides a highly
attractive trade-off between quality and speed that outperforms the alternatives considered. This
new release facilitates the use of the algorithm in real-world applications of text clustering.

Keywords: clustering; information bottleneck; sequential algorithm

1. Introduction

Unsupervised clustering of texts is a central problem in the domain of Natural Lan-
guage Processing (NLP) [1–3], which has various applications in contemporary data anal-
ysis. For example, in the field of customer aid, clustering support tickets is helpful for
identifying classes of user complaints and estimating their volume [4,5]. In research on
public opinion, clustering data from social media such as Twitter or Reddit is useful for
discovering active topics and learning about user engagement [6–8].

The Lloyd K-Means algorithm [9] is perhaps the most common choice for text clustering. It
is also readily available in a modern, fast, and free implementation as part of the popular Scikit-
Learn package [10]. The algorithm can be executed on top of a range of vector representations
for the texts at hand, offering different trade-offs between clustering quality and speed.

The Term Frequency–Inverse Document Frequency (TF/IDF) [11] is a traditional
method for textual data representation that was developed in the field of Information
Retrieval. In this method, a text is first represented by a vector of term frequency (count)
over a fixed vocabulary, and then, the value of each term is weighted by the inverse of its
frequency in the overall corpus. In this weighting scheme, words that are common in the
full corpus will be given a lesser weight compared to rare words when representing the
text instance. This method is very fast to compute and process but suffers from the curse of
dimensionality [12]. In addition, as a Bag-of-Words (BoW) method, it ignores word order.

More modern approaches that tackle the high dimensionality issue rely on Word
Embeddings, such as Word2Vec [13,14] and GloVe [15]. In these cases, every word is
assigned a fixed-size dense representation (embedding) trained by a neural network based
on contextual information such as word–word co-occurrence statistics. With these methods,
a common practice for obtaining the representation of a text instance is by averaging the
embeddings of its words. These representations, however, still ignore word order, and
while being relatively fast to generate and to work with, they disregard the sentential
context in which words are meant to be interpreted.

279



Entropy 2022, 24, 1132

With the surge of Deep Neural Networks [16] and advanced network architectures [17]
and Language Models such as BERT [18], new records have been set in benchmarks of
Natural Language Understanding [19,20]. Sentence-BERT (S-BERT) [21] is one of the latest
advancements in creating models for general-purpose text vector representation that serve
tasks such as semantic similarity, semantic search, and clustering. A common technique for
creating these models is by adding a pooling layer to a BERT neural network. The pooling
layer averages the contextualized word embeddings that BERT outputs and returns a single
fixed-size vector for the whole text.

However, using an advanced language model typically comes at the expense of
requiring more processing power and in many cases necessitates a GPU. The main concern
in relying on vector representations from this kind of neural models is that in the age of
Big Data, when the volume of texts is high and grows ever so quickly, it is critical for a
clustering setup to be not only of high quality but also very efficient.

The sequential Information Bottleneck (sIB) [22] algorithm has shown strong results that
outperform K-Means by a large margin on benchmark datasets such as [23]. However, sIB has
never been available in a fast implementation that makes it comparable to K-Means for practical
applications. Thus, despite being superior in lab testing, sIB was not commonly used in practice.

This paper introduces an efficient implementation of sIB that leverages a set of op-
timizations for obtaining a substantial improvement in speed compared to the original
Matlab implementation. This is achieved while maintaining the same quality of clustering
analysis provided by the original implementation.

The optimizations are focused on the case of sparse data representation, as sIB is
usually running on top of sparse TF vectors, and it includes a mathematical derivation that
computes the Jensen–Shannon divergence (JS) more efficiently on this type of representation.
Our work builds on the analysis proposed in [24] and extends it to the case of a weighted
JS, as this is the divergence used in sIB. In addition, we show an optimization that reduces
the computational load by means of caching.

We present an evaluation scheme for assessing the quality and speed of the new sIB imple-
mentation and for comparing it against a set of competing clustering setups and over a range
of benchmark datasets. Empirical results indicate that sIB is as fast as the fastest setups on most
datasets, and in some cases, it is even the fastest. Quality-wise, sIB outperforms most competing
setups by a large margin, and it maintains a small edge even over the best-performing setup of
K-Means—when this algorithm leverages the advanced S-Bert representation.

In this manner, the new implementation strikes an attractive trade-off between quality
and speed of text clustering, and it facilitates the use of sIB in real-world applications.
The implementation is released as an open-source Python package under a permissive
license (https://github.com/IBM/sib, available since 14 July 2020).

2. Algorithm Overview

In this section, we review the main properties of sIB, highlight key-differences between
sIB and Lloyd K-Means, and put the focus on the main part of the algorithm that the new
implementation optimizes.

2.1. Theoretical Foundation

sIB builds on the work of Tishby, Pereira, and Bialek [25] and views the clustering
task as an Information Bottleneck (IB) problem. The algorithm first appeared in [22]
and was explained in detail in [26]. Before formulating it, we present some assumptions
and definitions.

sIB adopts the Bag-of-Words (BoW) approach with TF (count) vector representation for
the texts to cluster. We use the following notation:

• X—the list of vectors to cluster;
• Y—the vocabulary used for representing the texts;
• p(X, Y)—the estimated joint distribution between X and Y;
• K—the number of clusters to produce;

280



Entropy 2022, 24, 1132

• T—a partition of X into K clusters.

According to the IB method, given the joint distribution p(X, Y), we look for the
partition T—in our case, a compressed representation of X into K clusters—that preserves
as much information about Y as possible. Quoting from the original paper of sIB [22]:

“Intuitively, in this procedure the information contained in X about Y is ‘squeezed’
through a compact ‘bottleneck’ of clusters T, that is forced to represent the
‘relevant’ part in X with respect to Y” (p. 2)

Formally, the IB method is stated as:

min
p(t|x)

I(X; T)− βI(T; Y) ,

where I(X; T) and I(T; Y) are the mutual information (MI) between X and T and between
T and Y, respectively. MI is defined as:

I(A; B) = ∑
a∈A,b∈B

p(a) · p(b|a) · log
p(b|a)
p(b)

.

The optimization is over the conditional probability p(t|x), and the non-negative parameter
β is a Lagrange multiplier. The IB method [25] provides an exact optimal formal solution
to this problem without any assumption about the origin of the joint distribution p(X, Y).
In this analysis, the compactness of the representation T is determined by I(X; T), while
the quality of T is measured by the fraction of the information that T and X capture about
Y: I(T; Y)/I(X; Y). For a more detailed and technical discussion, see [22,25,26].

2.2. Divergence Function

As shown in [25], minimizing the IB functional defined above is obtained by using the
Kullback–Leibler (KL) divergence [27] as the clustering divergence function between the
conditional distributions p(y|x) and p(y|t):

KL(p(y|x)‖p(y|t)) = ∑
y

p(y|x) logp(y|x)
p(y|t) .

However, as shown in [26,28], in the hard-clustering setup—which is the focus of
this work—to optimize the IB functional while merging x to t; one should use a weighted
Jensen–Shannon divergence (JS) between p(y|x) and p(y|t). This divergence is defined
based on the KL divergence with the additional features of being symmetric and always
returning a finite value:

JS(p(y|x)‖p(y|t)) = π1 · KL(p(y|x)‖M) + π2 · KL(p(y|t)‖M) ,

where M = π1 · p(y|x) + π2 · p(y|t), and π1, π2 ∈ [0, 1] are two weights such that
π1 + π2 = 1. For conciseness, we skip the definitions of π1 and π2 at this point and provide
it in Section 3 where they are relevant for the formal analysis. The experimental setup
in [22] confirms that the quality of the clustering analysis obtained when using JS as the
clustering divergence function is superior to the clustering obtained when using KL. On
the other hand, in terms of computational workload, JS is more demanding than KL as
every computation of JS involves two computations of KL.

Let us compare this to K-Means. The traditional Lloyd K-Means algorithm is used with a
geometrical distance function such as the Euclidean or cosine distance. This results in spatial
clustering of the representations in a vector space. From a computational standpoint, the ge-
ometrical distances are lightweight and in some cases reduce to the computation of the dot
product, which is fairly fast in comparison to the intensive log calculations as part of JS in sIB.
Theoretically, this gives the traditional K-Means setup a substantial speed advantage over sIB.

The KL-Means algorithm [29–31] is a variant of the traditional algorithm with the
distance function set to be the KL divergence. This effectively creates a version of K-

281



Entropy 2022, 24, 1132

Means that performs distributional clustering. It has been shown by [32] that in this setup,
K-Means is algorithmically equivalent to the IB method where β → ∞. In this sense,
KL-Means is more similar to sIB than the traditional K-Means algorithm. sIB is still unique,
however, in using JS divergence rather than KL divergence.

In the next section we provide the pseudo code for the algorithm and then move to
another distinctive feature of sIB—namely, its sequential nature.

2.3. Pseudo-Code

The pseudo-code of the algorithm’s main loop is given in Algorithm 1, which is quoted
from [22] with slight adjustments. The only modifications from the original pseudo-code are
in the inner for-loop, where we explicitly mention the shu f f le function and use x instead of
xj. The pseudo-code outlines the sequential workflow in which sIB works. In this code, recall
that K is the number of clusters to generate, n is the number of (random) initializations, maxL
is the maximal number of iterations per initialization, and ε is a lower bound threshold on
the cluster updates for continuing to another iteration. In addition, shu f f le is a function that
randomizes the order of elements, t is used as a cluster identifier, x as a sample identifier,
c is a counter of cluster changes during an iteration over X and C is a counter of iterations
per initialization. Using several random initializations is a common practice with many
clustering algorithms, as each initialization converges to a local maximum/minimum.

Algorithm 1 Algorithm pseudo-code.
Input:
|X| objects to be clustered
Parameters: K, n, maxL, ε

Output:
A partition T of X into K clusters

Main Loop:
For i = 1, . . . , n

Ti ← random partition of X.
c← 0, C ← 0, done = FALSE
While not done

For x in shuffle(X)
draw x out of t(x)
tnew(x) = arg mint′ dF(x, t′)
If tnew(x) 6= t(x) then c← c + 1
Merge x into tnew(x)

C ← C + 1
if C ≥ maxL or c ≤ ε · |X| then

done← TRUE
T ← arg maxTi f (Ti)

2.4. Sequential Clustering Algorithm

As shown in the pseudo-code, sIB is a sequential algorithm. This means that: (a) before
selecting the new cluster for a sample, sIB withdraws that sample from its current cluster
to prevent it from biasing the distance calculation toward keeping the sample in the same
cluster, and (b) sIB updates the centroids while iterating over the samples and not only at
the end of a full iteration over all samples.

Overall, while iterating over X, every sample is withdrawn from its cluster, the centroid of
that cluster is updated, a new cluster is selected for that sample using the weighted JS divergence
distance function, and then, the sample is added to the new cluster and the centroid of the new
cluster is updated. In total, sIB performs 2 · |X| centroid updates during a full iteration.

282



Entropy 2022, 24, 1132

As discussed in detail in [33], this is a more powerful partition optimization method
than the one employed by Lloyd K-Means, where there are no centroid updates while
iterating over the samples during the assignment step. Lloyd K-Means performs only K
centroid updates, which are all happening at the end of an iteration. Since K << 2|X|
under normal circumstances, this gives Lloyd K-Means another substantial advantage in
terms of computational workload.

2.5. Vector Representation

We distinguish between two vector representations: (a) for the texts to cluster and
(b) for the centroids of clusters. Typically, the number of unique terms found in a specific
text is much smaller than the vocabulary size. Therefore, it is more efficient to represent
texts using sparse vector representations, both in terms of memory usage and processing
time. In the sparse representation, it is sufficient to hold the list of IDs of vocabulary items
found in the text and their frequency rather than an array of the size of the full vocabulary
in which most of the values are zero. With regard to centroid vectors, as a centroid-based
clustering algorithm, sIB constructs a centroid vector from the vectors of the samples that
are associated with that cluster. Therefore, centroid vectors refer to a large part of the
vocabulary and are encoded as regular non-sparse vectors.

2.6. Focus of This Work

This work focuses on the inner for-loop of the pseudo-code, which is the partition
optimization part, and more specifically the computation of tnew(x). We investigate it in
the next section.

3. Methods

In this section, we present mathematical derivations and code optimizations that are
at the center of the new implementation of sIB.

3.1. Computation of tnew(x) and Associated Intuition

Recall that finding the new cluster assignment for x relies on computing

tnew(x) = arg min
t

dF(x, t) , (1)

where dF is given by

dF(x, t) = (p(x) + p(t)) · JS(p(y|x), p(y|t)) , (2)

and JS is a weighted Jensen–Shannon divergence defined with weights π1 and π2:

π1 =
p(x)

p(x) + p(t)
, π2 =

p(t)
p(x) + p(t)

. (3)

Intuitively, when selecting the new cluster assignment for x, we examine the distri-
bution over the vocabulary induced by x (p(y|x)) and compare it to the distribution over
the vocabulary induced by each cluster’s centroid (p(y|t)) using the weighted JS diver-
gence multiplied by p(x) + p(t). The cluster tnew is selected as the cluster for which this
multiplication is minimized.

In what follows, we use the following notation:

• x̂ = p(y|x)—the TF vector representing the sample x normalized by the L1-norm. Let
u ∈ Rn, the L1-norm |u|1 of u is defined by: |u|1 = ∑n

i=1 |ui|;
• t̂ = p(y|t)—the vector representing the centroid of cluster t, normalized by L1;
• m = π1 · x̂ + π2 · t̂—the average of x̂ and t̂ weighted by π1 and π2, respectively.

Using these notations:

JS(x̂, t̂) = π1 · KL(x̂‖m) + π2 · KL(t̂‖m) , (4)

283



Entropy 2022, 24, 1132

where KL is the Kullback–Leibler divergence [27] defined as:

KL(u‖v) = ∑
i

u[i] · log(
u[i]
v[i]

) . (5)

Following the analysis in [24], simple algebra gives the form in (6):

JS(x̂, t̂) = H(m)− π1 · H(x̂)− π2 · H(t̂) , (6)

where H is Shannon’s entropy function: H(u) = −∑i u[i] · log(u[i]).
Since (p(x) + p(t)) · π1 = p(x) and (p(x) + p(t)) · π2 = p(t):

dF(x, t) = (p(x) + p(t)) · H(m)− p(x) · H(x̂)− p(t) · H(t̂) . (7)

Because p(x) · H(x̂) is a constant with respect to t, we get:

arg min
t

(dF(x, t)) = arg min
t

(
(p(x) + p(t)) · H(m)− p(t) · H(t̂)

)
. (8)

To obtain some insight into how sIB selects the cluster t for a sample x, we examine
two pairs of components in Equation (8)—(a) H(m) and H(t̂); and (b) (p(x) + p(t)) and
p(t). Starting with (a), since m is a weighted average of x̂ and t̂, a better fit of x to t implies
lower discrepancy between m and t̂, which in turn results in a smaller difference between
H(m) and H(t̂). Thus, the preference is for selecting a cluster t that represents a good fit for
x. Moving to (b), as the cluster t increases, the relative difference between p(x) + p(t) and
p(t) decreases. Therefore, the components in (b) can be seen as balancing factors for the
selection of t by taking into account the size of the cluster and giving preference to larger
clusters. Typically, these two parts compete, since as t becomes larger, it often also becomes
less distinctive; hence, it is harder for it to provide a good fit for x.

3.2. Optimization for Sparse Vector Representation

In this section, we show a computation of tnew(x) that is optimized for sparse vector
representation. Let xind be the indices of non-zero values in x. As explained in Section 2.5,
a sparse representation is the natural choice for TF vectors since typically |xind| << |Y|.

We evaluate Equation (6) as:

JS(x̂, t̂) = ∑
i∈xind

Ri,x̂,t̂ + ∑
i 6∈xind

Ri,x̂,t̂ , (9)

where Ri,x̂,t̂ is defined as:

Ri,x̂,t̂ := π1 · x̂i · log(x̂i) + π2 · t̂i · log(t̂i)− (π1 · x̂i + π2 · t̂i) · log(π1 · x̂i + π2 · t̂i) . (10)

Since the computation of Ri,x̂,t̂ involves a constant number of operations, the first
component in (9) has a computational complexity of O(|xind|). Let us now evaluate the
second component and show that it has the same complexity.

By definition, ∀i 6∈ xind x̂i = 0. Consequently,

∑
i 6∈xind

Ri,x̂,t̂ = ∑
i 6∈xind

[
π2 · t̂i · log(t̂i)− π2 · t̂i · log(π2 · t̂i)

]
. (11)

Since log(π2 · t̂i) = log(π2) + log(t̂i),

∑
i 6∈xind

Ri,x̂,t̂ = ∑
i 6∈xind

[
π2 · t̂i · log(t̂i)− π2 · t̂i · (log(π2) + log(t̂i))

]
. (12)

With simple algebra, we obtain:

284



Entropy 2022, 24, 1132

∑
i 6∈xind

Ri,x̂,t̂ = −π2 · log(π2) · ∑
i 6∈xind

t̂i . (13)

Since t̂ is normalized by L1-norm, ∑i t̂i = 1. Therefore:

∑
i 6∈xind

Ri,x̂,t̂ = −π2 · log(π2) · (1− ∑
i∈xind

t̂i) . (14)

This means that the second component of (9) also has a computational complexity of
O(|xind|), which shows that (6) and consequently (2) have the same computational com-
plexity of O(|xind|). In the non-sparse case, the computational complexity is O(|Y|), which
is significantly higher.

With respect to (1), since there are K centroids to select from, the overall complexity of
computing tnew(x) is O(K · |xind|) in the sparse case and O(K · |Y|) in the non-sparse case.

3.3. Caching Log Computations

The most time-consuming operation in the computation of a new cluster for a sample
is the log function. In this section, we show a way to reduce the number of log computations
via caching. Let us recall Equation (8), which is repeated below:

arg min
t

(dF(x, t)) = arg min
t

(
(p(x) + p(t)) · H(m)− p(t) · H(t̂)

)
.

We observe that H(t̂) is independent of the sample x for which we calculate the new
cluster. Thus, we can cache this computation and reuse it when we iterate over the samples.
When a sample is drawn out of a cluster or merged into a cluster, we update only the entries
in the cache that refer to the clusters that have been updated. The gain can be summarized
as follows. Given a sample x for which we compute a new cluster, instead of computing
the entropy over all centroids, we compute it only for two centroids—the centroid of the
cluster from where x is drawn out and the one to which x is merged into.

3.4. Implementation

The new implementation of sIB is based on the optimizations presented above. See
Appendix A for information about the source-code availability and its Python packaging.

4. Experimental Setup

We evaluate the quality and speed of the new implementation of sIB against the
robust open source implementation of Lloyd K-Means [9] from Scikit-Learn [10]. We use a
set of five datasets that are common in text classification and text clustering benchmarks
and measure the clustering quality by standard clustering metrics. We use multiple setups
for K-Meams, each on top of a different vector representation type.

4.1. Materials

In order to cover various use cases, we employ datasets of different source, size, text
length and number of classes. The datasets are described below, and statistical information
is summarized in Table 1. All datasets are publicly available online at the locations specified
in the Data Availability Statement.

• BBC News [34] consists of 2225 articles from the BBC news website. The articles are
from 2004–2005 and cover stories in five topical areas: business, entertainment, politics,
sport, and tech.

• 20 News Groups [23] consists of 18,846 emails sent through 20 news groups. The topics
are diverse and cover tech, religion, and politics, among others.

• AG News [35] consists of 127,600 pairs of titles and snippets of news articles from the
AG corpus, covering four topical areas: World, Sports, Business, and Sci/Tech. The title
and snippet of each article are concatenated when the data is clustered.

285



Entropy 2022, 24, 1132

• DBPedia [35] consists of 630,000 pairs of titles and abstracts of documents from 14 non-
overlapping ontology classes such as Artist, Film, and Company. The title and abstract
are concatenated when the data are clustered.

• Yahoo! Answers [35] consists of 1,460,000 triplets of question title, question content,
and best answer from the Yahoo! Answers Comprehensive Questions and Answers
version 1.0 dataset. The data covers the 10 largest topical categories, such as Society &
Culture, Computers & Internet, and Health. The question title, content, and best answer
are concatenated when the data are clustered.

Table 1. Benchmark datasets for evaluation. The column #Texts indicates the number of texts in the
dataset. The column #Words shows the average text length in terms of word count in the dataset, and
#Classes shows the number of classes in the dataset.

Dataset #Texts #Words #Classes

BBC News 2225 390 5

20 News Groups 18,846 284 20

AG NEWS 127,600 38 4

DBPedia 630,000 46 14

Yahoo! Answers 1,460,000 92 10

4.2. Clustering Metrics

We use five metrics to evaluate the clustering quality: (a) Adjusted Mutual-Information
(AMI): the mutual-information corrected for chance [36,37], (b) Adjusted Rand-Index (ARI):
the rand index corrected for chance [36], (c) V-Measure: the harmonic mean between
homogeneity and completeness [38], (d) Micro-F1: the micro average of F1 scores over all
classes in the dataset, and (e) Macro-F1: the macro average of F1 scores over all classes in
the dataset. All metrics are calculated against the ground-truth labels of each dataset.

4.3. Clustering Setups

sIB runs on top of sparse TF representations. The encoding is done using a vocabulary
of the 10,000 most common words in each dataset after stop-words filtering. We use the
Scikit-Learn [10] TF encoder. The algorithm runs with 10 random partitions of equally
sized clusters in parallel. Each initialization is optimized by up to 15 iterations or until the
number of samples changing cluster is less than 2% (all are default values). This generates 10
partitions of the data, and the algorithm returns the partition that maximizes I(T;Y)/I(X;Y)
as explained in Section 2.1. The sIB version is 0.1.8, and the Scikit-Learn version is 1.1.1.

K-Means runs on top of several representations: TF, TF/IDF [11], GloVe [15] mean
vectors and Sentence-Bert (S-Bert) [21]. The TF is the same as used for sIB (described
above). The TF/IDF representation is generated using Scikit-Learn [10] TF/IDF encoder
with the same settings as TF and is also sparse. For GloVe, each text is represented by
averaging the embeddings of its words after punctuation and stop-words filtering. We use
the glove-840b-300d pre-trained model, which was trained on 840 billion tokens and produces
300-dimensional dense vectors. For S-Bert, we employ the pre-trained model all-MiniLM-L6-
v2 which aims to provide a fine balance between quality and processing time. This model
was trained on 1 billion sentence pairs and produces 384-dimensional dense vectors.

We use the Scikit-Learn [10] Lloyd K-Means implementation in its default settings.
The algorithm runs with 10 random centroid initializations obtained by K-Means++ [39]
in parallel, yielding 10 partitions of the data. Each initialization is optimized by up to
300 iterations or until the centroids movement between iterations, as measured by Frobenius
norm, is less than 10−4. The algorithm returns the partition that minimizes the sum of
distances between each sample and the centroid of its cluster. All are default values. The
distance function used in this version of K-Means is the squared Euclidean distance [40].
Minimizing the squared distance is equivalent to minimizing the Euclidean distance since

286



Entropy 2022, 24, 1132

squaring is a monotonic function of non-negative values. Oftentimes, the squared distance
is preferred because it is faster to compute.

4.4. Robustness Considerations

Since both sIB and K-Means rely on random initialization, every run of these algo-
rithms converges to a different local minimum and yields a different clustering result.
For robustness, we run every setup described above 10 times and apply the metrics de-
scribed in Section 4.2 to every such run. We obtain 10 scores for each metric for a given
setup and report only the average score per metric. We also use the distribution of the
metric scores for calculating confidence intervals.

4.5. Hardware

The hardware used is a MacBook Pro 2019 with an 8-Core Intel Core i9 running at
2.3 Ghz. Hyper-threads: 16. Memory is 64 GB 2667 MHz DDR4. This simulates a local run
by a data scientist.

4.6. Code

The evaluation code is available on the sIB open source repository and can be extended
and tweaked to cover more algorithms, representations, and settings.

5. Results

The results are detailed in Table 2. In terms of clustering quality, the metrics indicate
that sIB has the edge over the setup of K-Mean on top of S-Bert on the 20 News Groups and
AG News datasets. On the BBC News dataset they are even, and then the trend reverses and
K-Means on top of S-Bert takes the lead by a relatively small margin on the DBPedia and
Yahoo! Answers datasets. Overall, these two setups are roughly on par with a slight edge to
sIB. The other K-Means setups are trailing behind by a large margin, with the GloVe setup
being better than the TF/IDF setup, and the TF setup being the weakest. Figure 1 illustrates the
results on the AMI and ARI metrics. We include charts also for the Micro-F1, Macro-F1 and
V-Measure in Appendix B. As explained in Section 4.4, the reported result of every metric is the
average of 10 runs of each setup. Error bars in the figures indicate the 95% confidence interval
obtained by bias-corrected and accelerated (BCa) bootstrapping of the 10 results per metric.

As for run-time measurements, we can see in Table 2 that sIB is as fast as the quickest
K-Means setups (TF and TF/IDF) on the datasets of 20 News Groups, AG News, BBC News
and DBPedia, and it is the fastest setup on the Yahoo! Answers dataset. sIB is also faster
than the setup of K-Means on top of GloVe by a noticeable margin.

The setup of K-Means on top of S-Bert, which is the only setup that is competitive with sIB
quality-wise, is substantially slower due to the neural vectorization on CPU. On average, this
setup is 200 times slower than sIB. More generally, the S-Bert model is more power demanding
than any other representation type evaluated here, and for practical use cases, especially on
large datasets such as DBPedia and Yahoo! Answers, it is likely to necessitate a GPU or even
more than one. A chart of the total run-time measurements is included in Appendix B.

Discussion

The results emphasize the premise of the sIB implementation proposed in this work:
delivering a clustering analysis that is as good as can be obtained by a state-of-the-art neural
model while being far less demanding in terms of run-time. In this way, sIB offers a more
attractive trade-off between quality and speed than the rest of the setups evaluated here.

Looking at the run-time measures in absolute terms, sIB is able to cluster the 630,000 texts
of DBPedia in about 1 minute and the 1,460,000 texts of Yahoo! Answers in about 3.5 min
using standard CPU hardware. Both are very practical and workable run-times for real-
world applications.

287



Entropy 2022, 24, 1132

Table 2. Assessment of clustering quality using the metrics: AMI, ARI, V-Measure (VM), Micro-F1
(Mic-F1) and Macro-F1 (Mac-F1), and of clustering speed based on measurements of the vectorization
time (Vector), clustering time (Cluster), and their sum (Total).

Dataset Algorithm Embed AMI ARI VM Mic-F1 Mac-F1 Vector Cluster Total

20 News Groups K-Means TF 0.01 0.00 0.01 0.06 0.01 00:03 00:07 00:10
K-Means TF/IDF 0.36 0.14 0.36 0.35 0.32 00:03 00:10 00:14
K-Means GloVe 0.36 0.17 0.36 0.34 0.31 00:19 00:09 00:28
K-Means S-Bert 0.59 0.44 0.59 0.61 0.58 22:27 00:08 22:35
sIB TF 0.65 0.53 0.65 0.66 0.61 00:03 00:11 00:14

AG NEWS K-Means TF 0.03 0.00 0.03 0.29 0.20 00:03 00:02 00:05
K-Means TF/IDF 0.04 0.01 0.04 0.31 0.24 00:03 00:03 00:06
K-Means GloVe 0.53 0.55 0.53 0.80 0.80 00:19 00:07 00:26
K-Means S-Bert 0.60 0.63 0.60 0.84 0.84 38:18 00:11 38:29
sIB TF 0.66 0.70 0.66 0.87 0.87 00:03 00:03 00:06

BBC News K-Means TF 0.24 0.11 0.24 0.41 0.32 00:01 00:00 00:01
K-Means TF/IDF 0.70 0.62 0.70 0.83 0.83 00:00 00:00 00:01
K-Means GloVe 0.75 0.76 0.75 0.90 0.90 00:05 00:00 00:06
K-Means S-Bert 0.87 0.90 0.87 0.96 0.96 02:55 00:00 02:56
sIB TF 0.88 0.90 0.88 0.96 0.96 00:01 00:01 00:01

DBPedia K-Means TF 0.56 0.21 0.56 0.50 0.47 00:20 00:43 01:04
K-Means TF/IDF 0.61 0.24 0.61 0.56 0.55 00:20 00:45 01:06
K-Means GloVe 0.73 0.63 0.73 0.76 0.72 01:28 02:08 03:37
K-Means S-Bert 0.79 0.71 0.79 0.82 0.79 03:38:31 02:00 03:40:31
sIB TF 0.79 0.68 0.79 0.78 0.74 00:20 00:44 01:05

Yahoo! Answers K-Means TF 0.03 0.01 0.03 0.15 0.08 01:15 04:22 05:37
K-Means TF/IDF 0.16 0.05 0.16 0.29 0.25 01:16 03:44 05:01
K-Means GloVe 0.32 0.23 0.32 0.49 0.44 06:21 06:42 13:03
K-Means S-Bert 0.41 0.33 0.41 0.59 0.56 16:20:10 06:18 16:26:28
sIB TF 0.39 0.32 0.39 0.57 0.54 01:15 02:20 03:35

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Adjusted Mutual Information

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Adjusted Rand-Index

K-Means on top of TF K-Means on top of TF/IDF K-Means on top of GloVe K-Means on top of S-Bert sIB on top of TF

Figure 1. Adjusted Mutual-Information (left) and Adjusted Rand-Index (right) scores for the cluster-
ing setups over all benchmark datasets. The scores are means of 10 samples per metric. Error bars
indicate the 95% confidence interval obtained by bias-corrected and accelerated bootstrapping.

288



Entropy 2022, 24, 1132

A question can be raised as to how sIB can match or even improve on the K-Means run-
time. Given that sIB is a more demanding algorithm in terms of computational workload, it
would have been expected to show inferior run-time measurements compared to the more
lightweight K-Means. We look into this in Appendix C and provide a hypothesis to this
phenomenon. Note that we ignore here the discrepancy between sIB and K-Means with
respect to the default maximal number of partition optimization iterations (15 for sIB, 300
for K-Means). This is because internal testing with fewer iterations for K-Means proved
ineffective for reducing the algorithm run-time. We assume that this is because the algorithm
declared convergence (to a local minimum) long before the iteration limit is reached.

6. Conclusions

The sIB algorithm was introduces more than 15 years before the rise of the language
models revolution in NLP. Although sIB uses simple TF representations, it utilizes a
powerful probabilistic framework and a robust optimization method. This work is the
first to offer a highly efficient implementation of the algorithm and also to evaluate it on
contemporary benchmark datasets against competing, more popular, clustering setups.

Empirical results indicate that sIB creates a high-quality clustering analysis, which is
comparable to the level of analysis obtained when using representations from a state-of-
the-art language model. Speed-wise, the results show that the new implementation enables
users to easily run sIB on a standard CPU hardware, and that it is far less demanding than
a neural solution. In this manner, sIB offers an attractive trade-off between quality and
speed, outperforming the rest of the setups considered in this work.

In the future, we plan to look into new ways to reduce sIB’s run-time further by creating
“lossy” modes of the algorithm. In such modes, rather then iterating over all samples per
iteration, the algorithm can allow certain samples to be skipped based on information
from previous iterations. For example, if a sample remains in the same cluster for several
consecutive iterations, or if it fits much better in one cluster compared to the others, it can
be considered as locked-in in its current cluster. In this manner, one can further reduce the
algorithm run-time and offer more control in tuning the desired trade-off between quality
and speed, allowing sIB to fit an even broader set of use-cases and reach a wider audience.

The new implementation of sIB is released as open-source under a permissive license,
and it can be integrated as part of a more complex pipeline of natural language processing
in research projects as well as in real-world applications. We hope that practitioners of
text clustering and researchers interested in the IB line of study will find this work and the
released code valuable.

Author Contributions: Conceptualization, A.T. and E.V.; methodology, A.T. and N.S.; software, A.T.;
validation, A.T.; formal analysis, A.T. and E.V.; investigation, A.T.; writing—original draft preparation,
A.T.; writing—review and editing, N.S. and E.V.; visualization, A.T.; supervision, N.S.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These datasets
were accessed on 30 June 2022 at: 20 News Groups: https://scikit-learn.org/stable/datasets/real_
world.html#the-20-newsgroups-text-dataset; AG News: https://huggingface.co/datasets/ag_news;
BBC News: https://huggingface.co/datasets/SetFit/bbc-news; DBPedia: https://huggingface.co/
datasets/dbpedia_14; Yahoo! Answers: https://huggingface.co/datasets/yahoo_answers_topics.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Package Distribution

The source code of the new implementation is publicly available under a permissive
license (https://github.com/ibm/sib, available since 14 July 2020). The core computational
part of partition optimization is written in C++ to obtain fast processing and direct memory
access. This code is wrapped by Python and released as a Python package. The algorithm

289



Entropy 2022, 24, 1132

API entry point, parallelism, iteration loop with stopping condition, and selection of best
partition are all written in Python. We also include a Python implementation of the partition
optimization part, but the C++ code is the default as it is faster.

The Python package is available on the Python Index for easy access and integration in
research projects and applications (https://pypi.org/project/sib-clustering, available since
6 October 2020). Since the C++ code necessitates compilation to binary code, we release
pre-compiled versions for popular operating systems: Windows, MacOS and Linux.

Appendix B. Illustrations of Micro-F1, Macro-F1, V-Measure and Total Run-Time

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Micro Average F1

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Macro Average F1

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
V-Measure

20 News Groups AG NEWS BBC News DBPedia Yahoo! Answers

00
:10

00
:05

00
:01

01
:04

05
:37

00
:14

00
:06

00
:01

01
:06

05
:01

00
:28

00
:26

00
:06

03
:37

13
:03

22:35

38:29

02:56

03:40:31

16:26:28

00
:14

00
:06

00
:01

01
:05

03
:35

Total Run-Time

K-Means on top of TF K-Means on top of TF/IDF K-Means on top of GloVe K-Means on top of S-Bert sIB on top of TF

Figure A1. Micro-F1 (top-left), Macro-F1 (top-right) V-Measure (bottom-left) scores, and Total Run-
Time (bottom-right) measurements for the clustering setups over all benchmark datasets. The Total
Run-Time chart is presented on a log2 scale for the y-axis. The scores and measurements are means of
10 samples per metric. Error bars indicate the 95% confidence interval obtained by bias-corrected and
accelerated bootstrapping.

290



Entropy 2022, 24, 1132

Appendix C. Comparing sIB and K-Means Parallelism Models

Given that sIB is inherently more demanding than K-Means in terms of computational
load, as explained in Sections 2.1 and 2.4, it could be somewhat puzzling how sIB can even
match K-Means run-time when working on top of the same representation type. In what
follows, we aim to provide a hypothesis that explains this phenomenon. We focus on the
distinctions between the models of parallelism that these algorithms employ.

As explained in Section 4.3, in every run, sIB starts off by generating 10 random
partitions of the data and then optimizes them in parallel by several iterations over the
samples. The number of random partitions is configurable. We demonstrate the logic
with 10 since this is the default value. Since every partition is optimized independently
of the rest, sIB allocates a single, dedicated, CPU core per partition and avoids any task
switching. This means that a CPU core which is allocated to optimize partition i will never
be interrupted and switched to partition j while i is still being processed. On the machine
used for the clustering evaluation (see Section 4.5), which can be considered as having
16 cores (8 physical × 2 virtual), each of the 10 partitions will be allocated a core and
perform the optimization work. The remaining six cores are left idle.

This approach has pros and cons. The pros are that the cores (hyper-threads) that
perform partition optimization work without any interruption and no time is wasted on
task switching. The cons are that idle cores cannot take some of the workload off the
working cores. This also limits the number of cores that can be used simultaneously to the
number of partitions to optimize.

The Scikit-Learn K-Means implementation that we use here works very differently.
While it also starts off with 10 random partitions of the data, in contrast to sIB, it iterates
over these 10 partitions sequentially and uses parallel computing to optimize each partition
using all available cores.

The advantage of this approach is that it utilizes all available machine power. There-
fore, even when running on a server with a high number of cores (e.g., 100), this K-Means
implementation will be able to utilize all of them.

The downside here is that during the optimization of a partition, the assignment
stage of K-Means is a stage consisting of a high number of relatively lightweight and
short computations of Euclidean distance between a sample and a list of centroids. Thus,
every core is utilized for a very short task and then immediately switched to another with
no continuity.

Our hypothesis is that the overhead of intensive task switching in such a fine-grained
parallelism model is what holds K-Means back. Had sIB and K-Means been implemented
with the same parallelism, it would be expected from K-Means to be much faster. However,
establishing this hypothesis is beyond the scope of this paper.

As a final remark, we note that even though a different, faster, K-Means implementa-
tion can be offered, the main reason for the slow performance of sIB’s main competitor—the
setup of K-Means on top of S-Bert—is its power-hungry neural vectorization stage and not
the clustering itself.

References
1. Aggarwal, C.C.; Zhai, C. A Survey of Text Clustering Algorithms. In Mining Text Data; Aggarwal, C.C., Zhai, C., Eds.; Springer

US: Boston, MA, USA, 2012; pp. 77–128. [CrossRef]
2. Huang, A. Similarity measures for text document clustering. In Proceedings of the Sixth New Zealand Computer Science

Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, 6–9 April 2008; Volume 4, pp. 9–56.
3. Abualigah, L.M.Q. Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering, 1st ed.; Springer Publishing

Company, Incorporated: Berlin/Heidelberg, Germany, 2018.
4. Roy, S.; Muni, D.P.; Tack Yan, J.J.Y.; Budhiraja, N.; Ceiler, F. Clustering and Labeling IT Maintenance Tickets. In Proceedings

of the Service-Oriented Computing, Banff, AB, Canada, 10–13 October 2016; Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S., Eds.;
pp. 829–845.

5. Compton, J.E.; Adams, M.C. Clustering Support Tickets with Natural Language Processing: K-Means Applied to Transformer Embeddings;
Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2020.

291



Entropy 2022, 24, 1132

6. Poomagal, S.; Visalakshi, P.; Hamsapriya, T. A novel method for clustering tweets in Twitter. Int. J. Web Based Commun. 2015,
11, 170–187. [CrossRef]

7. Rosa, K.D.; Shah, R.; Lin, B.; Gershman, A.; Frederking, R.E. Topical Clustering of Tweets. In Proceedings of the ACM SIGIR:
SWSM, Beijing, China, 28 July 2011.

8. Curiskis, S.A.; Drake, B.; Osborn, T.R.; Kennedy, P.J. An evaluation of document clustering and topic modelling in two online
social networks: Twitter and Reddit. Inf. Process. Manag. 2020, 57, 102034. [CrossRef]

9. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 1982, 28, 129–137. [CrossRef]
10. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
11. Salton, G.; McGill, M.J. Introduction to Modern Information Retrieval; McGraw-Hill, Inc.: New York, NY, USA, 1986.
12. Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [CrossRef] [PubMed]
13. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781.
14. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Composi-

tionality. Adv. Neural Inf. Process. Syst. 2013, 26, 1421. [CrossRef]
15. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the Empirical

Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
16. Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 2003, 3, 1137–1155.
17. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

CoRR 2017, 30, 3058.
18. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.
[CrossRef]

19. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv 2018, arXiv:1804.07461.

20. Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. SuperGLUE: A Stickier Benchmark
for General-Purpose Language Understanding Systems. Adv. Neural Inf. Process. Syst. 2019, 32, 1828.

21. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084.
22. Slonim, N.; Friedman, N.; Tishby, N. Unsupervised Document Classification Using Sequential Information Maximization. In

Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR’02, Tampere, Finland, 11–15 August 2002; pp. 129–136. [CrossRef]

23. Lang, K. NewsWeeder: Learning to Filter Netnews. In Proceedings of the 12th International Machine Learning Conference
(ML95), Tahoe City, CA, USA, 9–12 July 1995.

24. Connor, R.C.H.; Cardillo, F.A.; Moss, R.; Rabitti, F. Evaluation of Jensen-Shannon Distance over Sparse Data. In Proceedings of
the SISAP, A Coruna, Spain, 2–4 October 2013.

25. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
26. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem,

Israel, 2002.
27. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience:

Hoboken, NJ, USA, 2006.
28. Slonim, N.; Tishby, N. Agglomerative Information Bottleneck. In Proceedings of the Advances in Neural Information Processing

Systems, Denver, CO, USA, 29 November–4 December 1999; Solla, S., Leen, T., Müller, K., Eds.; Volume 12.
29. Zhang, J.A.; Kurkoski, B.M. Low-complexity quantization of discrete memoryless channels. In Proceedings of the 2016

International Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA, 3 October–2 November 2016;
pp. 448–452.

30. Chou, P. Optimal partitioning for classification and regression trees. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 340–354.
[CrossRef]

31. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman Divergences. J. Mach. Learn. Res. 2005, 6, 1705–1749.
32. Kurkoski, B.M. On the relationship between the KL means algorithm and the information bottleneck method. In Proceedings of the

SCC 2017, 11th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 6–9 February 2017;
pp. 1–6.

33. Slonim, N.; Aharoni, E.; Crammer, K. Hartigan’s K-Means versus Lloyd’s K-Means: Is It Time for a Change? In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI’13, Beijing, China, 3–9 August 2013; pp. 1677–1684.

34. Greene, D.; Cunningham, P. Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering. In
Proceedings of the 23rd International Conference on Machine Learning (ICML’06), New York, NY, USA, 25–29 June 2006;
pp. 377–384.

35. Zhang, X.; Zhao, J.; LeCun, Y. Character-level Convolutional Networks for Text Classification. Adv. Neural Inf. Process. Syst. 2015,
28, 456. [CrossRef]

292



Entropy 2022, 24, 1132

36. Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization
and Correction for Chance. J. Mach. Learn. Res. 2010, 11, 2837–2854.

37. Meilă, M. Comparing clusterings—An information based distance. J. Multivar. Anal. 2007, 98, 873–895. [CrossRef]
38. Rosenberg, A.; Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; pp. 410–420.

39. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, Louisiana, 7–9 January 2007; pp. 1027–1035.

40. Spencer, N. Essentials of Multivariate Data Analysis; Taylor & Francis: Abingdon, UK, 2013; p. 95.

293



Citation: Monsees, T.; Griebel, O.;

Herrmann, M.; Wübben, D.; Dekorsy,

A.; Wehn, N. Minimum-Integer

Computation Finite Alphabet

Message Passing Decoder: From

Theory to Decoder Implementations

towards 1 Tb/s. Entropy 2022, 24,

1452. https://doi.org/

10.3390/e24101452

Academic Editor: Syed A. Jafar

Received: 26 August 2022

Accepted: 8 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Minimum-Integer Computation Finite Alphabet Message
Passing Decoder: From Theory to Decoder Implementations
towards 1 Tb/s
Tobias Monsees 1,* , Oliver Griebel 2 , Matthias Herrmann 2 , Dirk Wübben 1 , Armin Dekorsy 1

and Norbert Wehn 2

1 Department of Communications Engineering, University of Bremen, 28359 Bremen, Germany
2 Microelectronic Systems Design Research Group, TU Kaiserslautern, 67663 Kaiserslautern, Germany
* Correspondence: tmonsees@ant.uni-bremen.de; Tel.: +49-421-218-62407

Abstract: In Message Passing (MP) decoding of Low-Density Parity Check (LDPC) codes, extrinsic
information is exchanged between Check Nodes (CNs) and Variable Nodes (VNs). In a practical
implementation, this information exchange is limited by quantization using only a small number of
bits. In recent investigations, a novel class of Finite Alphabet Message Passing (FA-MP) decoders are
designed to maximize the Mutual Information (MI) using only a small number of bits per message
(e.g., 3 or 4 bits) with a communication performance close to high-precision Belief Propagation (BP)
decoding. In contrast to the conventional BP decoder, operations are given as discrete-input discrete-
output mappings which can be described by multidimensional LUTs (mLUTs). A common approach
to avoid exponential increases in the size of mLUTs with the node degree is given by the sequential
LUT (sLUT) design approach, i.e., by using a sequence of two-dimensional Lookup-Tables (LUTs) for
the design, leading to a slight performance degradation. Recently, approaches such as Reconstruction-
Computation-Quantization (RCQ) and Mutual Information-Maximizing Quantized Belief Propaga-
tion (MIM-QBP) have been proposed to avoid the complexity drawback of using mLUTs by using
pre-designed functions that require calculations over a computational domain. It has been shown
that these calculations are able to represent the mLUT mapping exactly by executing computations
with infinite precision over real numbers. Based on the framework of MIM-QBP and RCQ, the
Minimum-Integer Computation (MIC) decoder design generates low-bit integer computations that
are derived from the Log-Likelihood Ratio (LLR) separation property of the information maximizing
quantizer to replace the mLUT mappings either exactly or approximately. We derive a novel criterion
for the bit resolution that is required to represent the mLUT mappings exactly. Furthermore, we
show that our MIC decoder has exactly the communication performance of the corresponding mLUT
decoder, but with much lower implementation complexity. We also perform an objective comparison
between the state-of-the-art Min-Sum (MS) and the FA-MP decoder implementations for throughput
towards 1 Tb/s in a state-of-the-art 28 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) technology.
Furthermore, we demonstrate that our new MIC decoder implementation outperforms previous
FA-MP decoders and MS decoders in terms of reduced routing complexity, area efficiency and energy
efficiency.

Keywords: LDPC code; decoding; finite alphabet message passing; information bottleneck;
implementation efficiency

1. Introduction

Beyond 5G and 6G wireless communication systems, target peak data rates of 100 Gb/s
to 1 Tb/s with processing latencies between 10–100 ns [1]. For such high data rate and low
latency requirements, the implementation of a Forward Error Correction (FEC) decoder,
which is one of the most complex and computationally intense components in the baseband

294



Entropy 2022, 24, 1452

processing chain, is a major challenge [2]. Low-Density Parity Check (LDPC) codes [3]
are FEC codes with capacity approaching error correction performance [4] and are part
of many communication standards, e.g., DVB-S2x, Wi-Fi, and 3GPP 5G-NR. In contrast
to other competitive FEC codes, like Polar and Turbo codes, the decoding of LDPC codes
is dominated by data transfers [2] making very high-throughput decoders in advanced
silicon technologies challenging, especially from routing and energy efficiency perspectives.
For example, in a state-of-the-art 14 nm silicon technology, the transfer of 8 bits on a 1 mm
wire costs about 1 pJ, whereas the cost of an 8 bit integer addition is only 10 fJ, which is
two orders of magnitude less than the wiring energy cost. During Message Passing (MP)
decoding, two sets of nodes, the Check Node (CN) and Variable Node (VN), iteratively
exchange messages over the edges of a bipartite graph (Tanner graph of the LDPC code).
High-throughput decoding can be achieved by mapping the Tanner graph one-to-one onto
hardware, i.e., dedicated processing units are instantiated for each node and the edges
of the Tanner graph are hardwired. Unrolling and pipelining the decoding iterations can
further boost the throughput towards 1 Tb/s [5], called unrolled full parallel (FP) decoders
in the following. However, FP decoders imply large routing challenges, since every edge
in the Tanner graph corresponds to 2 · I · nE wires, with I being the number of decoding
iterations and nE being the quantization-width of the exchanged messages. Moreover,
to enable good error correction performance, the Tanner graph exhibits limited locality
and regularity, which makes efficient routing even more difficult. This problem is even
exacerbated in advanced silicon technologies, as routing scales much worse than transistor
density [6].

Finite Alphabet Message Passing (FA-MP) decoding has been investigated as a method
to mitigate the routing challenges in FP LDPC decoders to reduce the bit-width, i.e., the
quantization-width nE, of the exchanged messages and, thus, the number of necessary
wires [7–9]. In contrast to conventional MP decoding algorithms like the Belief Propagation
(BP) and its approximations, i.e., Min-Sum (MS), Offset Min-Sum (OMS) and Normalized
Min-Sum (NMS) [10], FA-MP use non-uniform quantizers and the node operations are
derived by maximizing MI between exchanged messages. Nodes in state-of-the-art FA-MP
decoders have to be implemented as Lookup-Tables (LUTs). Since the size of the LUT
exponentially increases with the node degree and nE, investigations were performed to
decompose this multidimensional LUT (mLUT) into a chain or tree with only two-input
LUTs (denoted as sequential LUT (sLUT) in this paper) yielding only a linear dependency
of the node degree but at the cost of a decreased communications performance [11,12].
The Minimum-LUT (Min-LUT) decoder [13] approximates the CN update by a simple
minimum search and can be implemented as Minimum-mLUT (Min-mLUT) or Minimum-
sLUT (Min-sLUT), i.e., with mLUT or sLUT for VNs, respectively. Other approaches,
e.g., Mutual Information-Maximizing Quantized Belief Propagation (MIM-QBP) [14–16]
and Reconstruction-Computation-Quantization (RCQ) [17,18], are adding non-uniform
quantizers and reconstruction mappings to the outputs and inputs of the nodes, respectively,
and performing the standard functional operations inside the nodes, e.g., additions for
VNs and minimum search for CNs. The reconstruction mappings generally increase the
bit resolution required for node internal representation and processing. It can be shown
that this approach is equivalent in terms of error correction performance compared to the
mLUT, if the internal quantization after the reconstruction mapping is sufficiently large.

Based on the framework of MIM-QBP and RCQ, the proposed MIC decoder [19]
realizes CN updates by a minimum search and VN updates by integer computations that
are designed to realize the information maximizing mLUT mappings either exactly or
approximately. In this paper, we provide more detailed explanations, extend the discussion
to irregular LDPC codes and present a comprehensive implementation analysis. The
new contributions of this paper (Notation: Random variables are denoted by sans-serif
letters x, random vectors by bold sans-serif letters x, realizations by serif letters x and
vector-valued realizations by bold serif letters x. Sets are denoted by calligraphic letters
X . The distribution px(x) of a random variable x is abbreviated as p(x). x → y → z

295



Entropy 2022, 24, 1452

denotes a Markov chain, and R, Z, F2 denotes the real numbers, integers and Galois field
2, respectively.) are summarized as follows:

• We provide a novel criterion for the resolution of internal node operations to ensure that
the MIC decoder can always replace the information maximizing VN mLUT exactly;

• we show that this MIC decoder has the same communication performance compared
to an MI maximizing Min-mLUT decoder;

• we make an objective comparison between different FA-MP decoder implementations
(Min-mLUT, Min-sLUT, MIC) in an advanced silicon technology and compare them
with a state-of-the-art MS decoder for throughput towards 1 Tb/s;

• we show that our MIC decoder implementation outperforms state-of-the-art FP de-
coders in terms of routing complexity, area efficiency and energy efficiency and enables
the processing of larger block sizes in state-of-the-art FP decoders since the routing
complexity is largely reduced.

The remainder of this paper is structured as follows: Section 2 reviews the system
model, conventional decoding techniques for LDPC codes such as BP and NMS decoding,
and Information Bottleneck (IB) based quantization. Section 3 describes the Min-mLUT and
Min-sLUT decoder design for regular and irregular LDPC codes. In Section 4, we introduce
the proposed MIC decoder and, in Section 5, we discuss the MIC decoder implementation
along with a detailed comparison with state-of-the-art FP MP decoders. Finally, Section 6
concludes the paper.

2. Preliminaries

This section briefly reviews the transmission model, conventional decoding techniques
for LDPC codes, and the quantizer design based on IB.

2.1. Transmission Model

The transmission model is shown in Figure 1. An information word u ∈ FK
2 is encoded

into the codeword c ∈ FN
2 via a binary LDPC code [3] of rate R = K

N . The Binary Phase
Shift Keying (BPSK) modulated vector x = 1− 2c is transmitted over an Additive White
Gaussian Noise (AWGN) channel leading to the received vector y ∈ RN given by y = x+ n
with AWGN n of variance σ2

n. A particular LDPC code is defined via a sparse parity check
matrix H ∈ FM×N

2 . The Tanner graph [20] of an LDPC code is a visual representation of
its parity check matrix H and consists of a CN for each parity check equation χm with
m = 1, ..., M and a VN for each codebit cn with n = 1, ..., N. An edge connects VN n and CN
m if and only if Hm,n = 1. The degree of a node is determined by the number of connected
edges. Furthermore, the fraction of edges that is connected to a node of a specific degree is
characterized by the edge-degree distributions

λ(ξ) = ∑
dV∈DV

λdV ξdV−1 and ρ(ξ) = ∑
dC∈DC

ρdC ξdC−1 (1)

where λdV is the fraction of edges that are connected to VNs of degree dV ∈ DV , and ρdC
denotes the fraction of edges that is connected to CNs of degree dC ∈ DC.

LDPC BPSK AWGN Quantizer Decoder
u ∈ FK

2 c ∈ FN
2 x ∈ X N y ∈ RN z ∈ ZN û ∈ FK

2

Figure 1. Transmission model for transmission of LDPC encoded messages over an AWGN channel
with quantization prior to FEC decoding.

2.2. Iterative Decoding via Belief-Propagation (BP)

LDPC codes are usually decoded by iterative BP, where extrinsic information for each
codebit cn is propagated along the edges of the resulting Tanner graph. Figure 2 shows
the CN χ1 that generates extrinsic information for the VN cn by processing the incoming

296



Entropy 2022, 24, 1452

Variable Node to Check Node (VN-to-CN) messages from the other VNs connected to CN
χ1, i.e., c1 and c2. For BP decoding, we define the Variable Node to Check Node (VN-to-CN)
messages as Ln→m ∈ R and the Check Node to Variable Node (CN-to-VN) messages as
Ln←m ∈ R. In the first iteration, all messages are initialized by the channel LLRs

L(0)
n→m = L(yn) =

2
σ2
n

yn . (2)

In iteration i, a CN m generates extrinsic information for the connected VNs n ∈ Mm via the
box-plus operation

L(i)
n←m = 2 arctanh


 ∏

j∈Mm\n
tanh

(
1
2 L(i−1)

j→m

)

 , ∀n ∈ Mm . (3)

c1

c2

...

cn

...

cN

χ1

χ2

...

χm

...

χM

L1→1

L2→1

Ln←1

Figure 2. Illustrative example of a CN update on a Tanner graph. The CN χ1 generates the CN-to-VN
message Ln←1 for the VN cn based on the VN-to-CN messages L1→1 and L2→1 from VN c1 and c2,
respectively.

In case of Normalized Min-Sum (NMS) decoding, the CN update (3) is approxi-
mated by

L(i)
n←m ≈ γ


 ∏

j∈Mm\n
sign

(
L(i−1)

j→m

)

 min

j∈Mm\n

∣∣∣L(i−1)
j→m

∣∣∣ , ∀n ∈ Mm . (4)

where γ is the normalization factor. In the case of γ = 1, (4) is the CN update of the MS
decoder.

In similar fashion, a VN n generates extrinsic information for the connected CNs m ∈ Nn
by adding the corresponding LLRs

L(i)
n→m = L(yn) + ∑

v∈Nn\m
L(i)

n←v , ∀m ∈ Nn . (5)

The final bit decision ĉ(i)n,BP at iteration i is determined by

ĉ(i)n,BP =
1
2

(
1− sign

(
L(yn) + ∑

v∈Nn

L(i)
n←v

))
. (6)

297



Entropy 2022, 24, 1452

2.3. Information Bottleneck Based Quantizer Design

For the design of our proposed MIC decoder, we utilize MI maximizing quantization
to design an information optimized processing chain that uses only quantizer labels instead
of real valued representations [12]. To that end, we first review the principle idea of
the MI based quantizer design approach. The considered system model is visualized in
Figure 3. The observed signal y ∈ Y is mapped to a compressed representation z ∈ Z
via the scalar quantization function Q : Y → Z . The objective is to find a quantizer
function Q? that maximizes MI I(x; z) between the relevant source x ∈ X and the quantizer
output Q(y) = z ∈ Z under the condition that the three random variables form a Markov
chain x → y → z. Given the joint distribution p(x, y) = p(y|x)p(x), the mapping of the
information maximizing quantizer Q? is determined by solving the optimization problem

Q? = argmax
Q

I(x; z) s.t. |Z| = 2nQ < |Y| (7)

where the number of possible quantizer outputs is set to 2nQ . The optimization problem in
(7) is a special case of the Information Bottleneck Method (IBM) [12,21–23]. The optimal
solution is a deterministic quantization function where the conditional probability of the
quantizer output z given the relevant source x is

p(z|x) = ∑
y∈Yz

p(y|x) (8)

with Yz = {y ∈ Y | Q?(y) = z} as the set of observed signals y that are mapped to one
specific quantizer output z. Since the maximum of (7) depends only on the cardinality of Z ,
we utilize a convenient signed integer based representation Z = {− 2nQ

2 , ...,−1, 1, ..., 2nQ

2 }
that simplifies the MIC decoder processing. For the special case where the relevant source
x is a binary random variable (i.e., |X | = 2), the algorithm that finds the optimal quantizer
via dynamic programming has been derived in [24]. We denote the LLRs of the quantizer
output z ∈ Z by

L(z) = log
(

p(z|x = +1)
p(z|x = −1)

)
. (9)

An important property of the MI maximizing quantizer for binary input is that any two
different sets of LLRs Lz′ = {L(y) | y ∈ Yz′} and Lz′′ = {L(y) | y ∈ Yz′′} for z′, z′′ ∈ Z and
z′ 6= z′′ are separated by a single threshold [19,24,25]. This property will be exploited in
the design of the MIC decoder in Section 4.

source channel quantizer
x ∈ X y ∈ Y z ∈ Z

Figure 3. Considered system model for quantizer design.

3. LUT Decoder Design

This section describes the design of the LUT decoder that is optimized via Discrete
Density Evolution (DDE) [11] to maximize extrinsic information between the codebits and
its messages, under the assumption that the Tanner graph is cycle free. In contrast to the
BP algorithm, the LUT is optimized to process the quantizer labels z in (7) directly and the
bit resolution of the message exchange on the Tanner graph is limited to nE bits, e.g., 3 or
4 bits. Furthermore, we exploit the signed integer-based representation to simplify the CN
update by using the label-based minimum search [13]. In the Min-mLUT decoder design,
the VN update functions are optimized to maximize MI. For the Min-sLUT decoder design,
the VN update is decomposed into a sequence of two-dimensional updates that generally
results in a MI loss compared to the Min-mLUT decoder design.

In the following, we review the calculation of the CN and VN distributions for each
iteration that are required for the design of the MI maximizing VN update. As illustrated
in Figure 4, we omit the iteration index i and consider messages of an arbitrary CN and

298



Entropy 2022, 24, 1452

VN for CN degrees dC ∈ DC and VN degrees dV ∈ DV to calculate the distributions that
are required for the Min-mLUT design.

...

...

...

...

t1
...

tdC−1

a

(a) CN update

...

...

...

...

a1
...

adV−1

t

(b) VN update
Figure 4. Illustrative example for generation of extrinsic information in case of LUT decoding using
discrete messages. (a) visualizes a CN that generates the CN-to-VN message a based on incoming
VN-to-CN messages t1, ..., tdC−1. In (b), a VN generates the VN-to-CN message t based on incoming
CN-to-VN messages a1, ..., adV−1.

3.1. Check Node LUT Design

The LUT decoder design is based on discrete alphabets Z , T and A for the channel
information, the VN-to-CN and the CN-to-VN messages, respectively. For the first iteration,
the VN-to-CN messages tj for j = 1, ..., dV − 1 are initialized by the signed integer valued
channel information, i.e., tj = zj ∈ Z . The distribution of the dC − 1 VN-to-CN messages
t = [t1, ..., tdC−1] ∈ T (dC−1) and an arbitrary codebit c of a check equation χ is [11]

pdC (t|c) =
(

1
2

)dC−2

∑
b:
⊕

b=c

dC−1

∏
j=1

p(tj|bj) (10)

with
⊕

b = b1⊕ ...⊕ bdC−1 as the modulo 2 sum of connected codebits. The VN-to-CN mes-
sages tj are processed by a CN update function that generates quantized output messages
a ∈ A that are represented only by nE bits.

Given the distribution in (10), the CN update (We keep the node degrees dC or dV as
index of random variables to indicate that the distribution changes with the correspond-
ing degrees.) fdC (tdC ) = adC that maximizes MI is determined by the solution of the
quantization problem for binary input (c→ tdC → fdC (tdC ) = adC )

f MI
dC

= argmax
fdC

I
(
c; tdC

)
s.t. |A| = 2nE for dC ∈ DC . (11)

As discussed in Section 2.3, the optimal solution of (11) is found via dynamic programming.
However, we utilize the minimum update [13] as a CN update for all iterations as an

approximation of the MI maximizing CN update in (11). We observed that the output of
the minimum update is quite close to the optimal IB update. As visualized for a degree 3
CN in Figure 5, the difference between the optimal IB CN and the minimum update can be
interpreted as an additive correction LUT where only a small fraction of entries are nonzero.
For the label-based minimum search, the CN update rule reads

a = f min
dC

(t)=

(
dC−1

∏
j=1

sign
(
tj
)
)

min{|t1|, ..., |tdC−1|} . (12)

299



Entropy 2022, 24, 1452

If the CN update function is given, the conditional distribution of the CN-to-VN messages
a ∈ A = T is

pdC (a|c) = ∑
t∈T (dC−1) : f min

dC
(t)=a

pdC (t|c) for dC ∈ DC . (13)

In the design via DDE, the connections between VNs and CNs are considered on average
by the degree distribution [26]. Hence, the design considers only the marginal CN-to-VN
message distribution p(a|c) that includes averaging over all possible CN degrees by

p(a|c) = ∑
dC∈DC

pdC (a|c)ρdC . (14)

-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

t1

t 2

(a) MI maximizing update

-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

t1

t 2

(b) Minimum update

-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

t1

t 2

−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8

(c) correction LUT

Figure 5. Graphical representation of a discrete CN update using nE = 4 bit input messages t1

and t2 and a color-coded output message a ∈ A = {−4, ...,−1, 1, ..., 4}. Subfigure (a) shows the MI
maximizing update f MI

3 (t1, t2) and subfigure (b) the minimum update f min
3 (t1, t2). The difference

f MI
3 (t1, t2)− f min

3 (t1, t2) in subfigure (c) contains only a few non-zero elemets and can be interpreted
as a correction LUT.

3.2. Variable Node LUT Design

For designing the VN update, we require the joint distribution of the discrete channel
information z ∈ Z together with the CN-to-VN messages am ∈ A combined in a =
[z, a1, ..., adV−1] ∈ Z ×AdV−1 = V and a codebit c [11]

pdV (a|c) = p(z|c)
dV−1

∏
m=1

p(am|c) (15)

where p(am|c) = p(a|c) for m = 1, ..., dV,max − 1 and V is the set of all possible states of
the vector a, i.e., |V| = 2nQ+(dV−1)nE . Given the distribution (15), the individual degree-
dependent VN update gdV (adV ) = tdV that maximizes MI I(c; tdV ) is determined as the
solution of the optimization problem (c→ adV → gdV (adV ) = tdV )

gMI
dV

= argmax
gdV

I
(
c; tdV

)
s.t. |T | = 2nE for dV ∈ DV . (16)

The parameter nE defines the bit-width of the messages exchanged between VN and CN
and controls the complexity of the message exchange. The optimization problem in (16)
is the channel quantization problem for binary input (Section 2.3). The optimal solution
is a deterministic input–output relation that can be stored as a dV dimensional LUT with
2nQ+(dV−1)nE entries, e.g., for dV = 6 and nE = nQ = 4, we have approximately 16.8 million
entries. Furthermore, the communication performance can be increased by considering the
degree distribution in the design of the node updates [13,26]. The gain in communication
performance generally depends on the degree distribution and the message resolution
nE [13]. However, a comparison of the different design approaches in [13,26] is beyond the

300



Entropy 2022, 24, 1452

scope of this paper. The distribution of the VN-to-CN messages for the next iteration in
(10) is

pdV (t|c) = ∑
a∈V : gMI

dV
(a)=t

p(a|c) for dV ∈ DV . (17)

Again, the marginal distribution is determined by averaging over all possible VN degrees, i.e.,

p(tj|cj) = p(t|c) = ∑
dV∈DV

pdV (t|c)λdV , with j = 1, ..., dC,max . (18)

In case of a regular LDPC code, there is only one possible degree for all VNs and CNs, i.e.,
the summation term in (14) and (18) vanishes but all other steps remain the same.

For the design of the MI maximizing Min-mLUT decoder, we start with an initial
VN-to-CN distribution p(tj|cj) and iterate over (10), (13)–(18) and declare convergence
if I(c; t) approaches the maximum value of one bit for binary input after I number of
iterations.

3.3. Sequential LUT Design

For the sequential design approach sLUT, the node update is split into a sequence
of degree two updates that are optimized independently to maximize MI. This approach
serves as an approximation of the mLUT design described in Section 3.2 and reduces the
number of possible memory locations within each update. In general, multidimensional
optimization without decomposition conserves more MI compared to a design that de-
composes the optimization problem into a sequence of two-dimensional updates [11,12] or
more general nested tree decompositions [13].

4. Minimum-Integer Computation Decoder Design

The MI maximizing Min-mLUT decoder realizes the discrete VN updates by LUTs
with 2nQ+(dV−1)nE entries leading to prohibitively large implementation complexity. Nev-
ertheless, determining these multidimensional LUTs in the laboratory is feasible with
sufficient computing resources. Thus, the idea is to search for the MI maximizing mLUTs
but implement the corresponding discrete functions by relatively simple operations in
order to avoid performance degradations. As visualized in Figure 6, the computational
domain framework [14,16] replaces the VN update by an operation that is decomposed into

(i) mappings φV and φ of the nE-bit CN-to-VN messages am and nQ-bit channel
information z into node internal nR-bit signed integers with nR ≥ nE and nR ≥ nQ,
respectively;

(ii) execution of integer additions for nR-bit signed integers;
(iii) threshold quantization QV to nE bits determining the VN-to-CN message t.

For the MIC decoder design, we derive a criterion for sufficient internal node res-
olution nR such that the mLUT mapping is replaced exactly. Note that the information
maximizing mLUT is generated offline and is replaced by an integer function that replaces
its functionality exactly or approximately during execution.

To keep the notation simple, we omit the dependency on the iteration index i and
node degree in this section.

301



Entropy 2022, 24, 1452

φ(z)

φV (a1)

φV (a2)

...

φV (adv−1)

+ QV

z

a1

a2

adv−1

r

r1

r2

rdv−1

Ws t

Figure 6. VN update for computational domain framework [14,16]. The nQ-bit channel information
z ∈ Z and the nE-bit CN-to-VN messages a1, ..., adV−1 ∈ A are transformed to nR-bit signed integers.
This transformation generally increases the required bit resolution for the representation, i.e., nR ≥ nQ

and nR ≥ nE . The internal signed integers are summed and quantized back into a nE-bit VN-to-CN
message t ∈ T .

4.1. Equivalent LLR Quantizer

To motivate the integer calculation of the MIC approach, we review the connection
between the equivalent LLR quantizer and the VN update of the BP algorithm. Analogous
to the VN update of the BP algorithm in (5), the LLR of the combined message vector a ∈ V
equals the addition of the LLRs of the channel output z and of the individual messages am,
i.e., for every possible combination a ∈ V , the LLR of the combined message is

L(a)= log
(

p(a|c = 0)
p(a|c = 1)

)
=L(z)+

dV−1

∑
m=1

L(am) . (19)

The LLRs L(am) of the individual messages are determined by (14) during DDE. As
described in Section 2.3, the information maximizing quantizer for binary input separates
the LLR L(a) by using a |T | − 1 threshold quantizer QL : R→ T , i.e., the relation

t = gMI(a) = QL(L(a)) = QL

(
L(z)+

dV−1

∑
m=1

L(am)

)
(20)

can be determined that achieves the same output as the information optimal mLUT in (16).
However, to ensure that (20) produces the same output as the information optimal mLUT,
calculations over real numbers are required. In the next subsection, we show that we can
exploit (20) to find a calculation that requires only a finite resolution. We also provide a
condition to limit the resolution that is required for exact calculation of the information
optimal mLUT.

4.2. Computations over Integers

The VN update structure using the computational domain framework is visualized in
Figure 6. As suggested by [14,16], a possible choice for the integer mappings φv(m) and
φch(z) is given by scaling and rounding the corresponding LLRs L(m) and L(z), respectively.
In addition to [14,16], we provide further insights on the optimal choice of the scaling factor
based on the relation between the VN update of the BP algorithm and the MI maximizing
quantizer design. More precisely, based on the established relation in (20), we define an
integer mapping for the channel information z and the CN-to-VN messages am in order to
replace the computations over real numbers by computations over signed integers (With
b·e as round to nearest integer (away from 0 if fraction part is .5))

gMIC(a) = QV(Ws(a)) = QV


 bsL(z)e︸ ︷︷ ︸

r=φ(z)∈R

+
dV−1

∑
m=1

bsL(am)e︸ ︷︷ ︸
rm=φV(am)∈RV


=QV

(
r +

dV−1

∑
m=1

rm

)
. (21)

302



Entropy 2022, 24, 1452

Compared to (20), the LLRs L(z) and L(am) have been multiplied by a non-negative scaling
factor s and quantized to the next nR-bit signed integer r and rm, respectively. Subsequently,
the sum of integers is limited again to nE bits by threshold quantizer QV . We can interpret
the scaling and rounding operation also directly as a mapping of signed integer messages z
and am to nR-bit signed integer messages

r = φ(z) ∈ R and rm = φV(am) ∈ RV (22)

that requires nR bits for the representation, depending on the scaling factor s.
In the following, we show that we can always find a threshold quantizer QV :W → T

that maps the summation Ws(a) into a VN-to-CN message t ∈ T that is identical to the
VN-to-CN message of the information optimal VN update in (20), i.e., t = gMIC(a) =
gMI(a). First, we consider the set of messages At = {a ∈ V : gMI(a) = t ∈ T } that are
mapped into a specific output t via the information maximizing VN update gMI(a) in (16).
Thus, we can identify a corresponding set of integers Wt = {Ws(a) ∈ W : a ∈ At}. By
varying the scaling factor s, we can always find a scaling value s? ≤ dV

∆min
such that the sets

of integer valuesWt for all t ∈ T are non-overlapping intervals, i.e.,

[Dt′ , Et′ ] ∩ [Dt′′ , Et′′ ] = ∅ ∀t′′, t′ ∈ T , (23)

with Dt = minWt and Et = maxWt. Condition (23) ensures that any two different clusters
t′ and t′′ can be separated by a simple threshold operation. The value ∆min is the minimum
separation between the LLRs L(a) of the elements of any two neighbouring clusters in (20)
and is always larger than zero since QL is a threshold quantizer. If we consider a scaled
version of the LLRs sL(a) with any real valued scaling factor s > 1, we can always find a
threshold quantizers QL,s that achieves the same output as the information optimal mLUT.
Scaling the LLRs L(a) by a factor of dV

∆min
ensures that the minimum separation between

any two neighbouring clusters is dV . Since the influence of the rounding operation can be
bounded by − dV

2 ≤Ws(a)− sL(a) < dV
2 , scaling with a factor of at least dV

∆min
ensures that

any two neighbouring clustersWt andWt+1 are separated by at least one integer and, thus,
condition (23) is satisfied. Hence, we can always find a corresponding integer function
gMIC(a) in (21) that generates exactly the same output as gMI(a) in (20).

Furthermore, an approximate integer calculation is found if the integer valued range
of φ and φV are limited to nR-bits

max
z
|φ(z)| < 2nR < 2n?

R , max
a
|φV(a)| < 2nR < 2n?

R (24)

where n?
R = dlog2(bs?Lmaxe)e+ 1 is the bit resolution that is required for exact representa-

tion if the largest magnitude of the individual LLRs in (20) is Lmax. If condition (23) is not
fulfilled, we select the output cluster that maximizes MI. If (24) is satisfied, the required bit
resolution of the summation Ws(a) in (21) is limited by

nW = dlog2

(
dV(2(nR−1) − 1)

)
e+ 1 . (25)

To consider the influence of this new mapping in the design of subsequent iterations, we
also update the VN-to-CN distribution in (17).

We note that the MIC design approach can also be applied for the design of CN
operations and can also be used to generate exact or approximate representations of
nested tree decompositions similar to the sLUT method. However, the corresponding
investigations are beyond the scope of this paper.

Illustrative Example for MIC Calculations

To illustrate the proposed MIC approach, we consider the design of a VN node update
for a (dV=3, dC=6) regular LDPC codes at iteration i = 1 with design Eb/N0 = 2.5 dB.
Figure 7a shows the equivalent LLR quantizer (20) with 2nE non-overlapping clusters on the

303



Entropy 2022, 24, 1452

real number line, i.e., T = {−4, ...,−1, 1, ..., 4}. E.g. all LLRs L(a) between 0 and 1.1 are
mapped into cluster t = 1. The threshold values are shown by dashed lines in Figure 7a.
Additionally, Figure 7b–d show the output of the integer addition in (21) on the x-axis and
the output clusters of the optimal mLUT on the y-axis if the scaling factor is set to s = 10,
s = 3, and s = 1, respectively.

−10 0 10
−4
−3
−2
−1

1
2
3
4

Quantizer
threshold

L(a)

gM
I (

a)

(a) Equivalent LLR quantizer

−100 0 100
−4
−3
−2
−1

1
2
3
4

W10(a)

gM
I (

a)

(b) s = 10

−40 −20 0 20 40
−4
−3
−2
−1

1
2
3
4

Overlap

W3(a)

gM
I (

a)

(c) s = 3

−10 0 10
−4
−3
−2
−1

1
2
3
4

W1(a)

gM
I (

a)

(d) s = 1

Figure 7. Visualization of the relationship between the result of the calculation in the computational
domain and the assignment to mutual information maximizing mLUT mapping. Subfigure (a) shows
the addition the real valued LLRs of (20) on the x-axis and the mutual information maximizing mLUT
assignment of (16) on the y-axis. In Subfigure (b)–(d), the values on the x-axis are replaced by the
corresponding integer additions of (21) for different scaling factors s ∈ {1, 3, 10}.

In the case of s = 10, all output clusters are separated by using seven integer thresholds,
which are indicated by dashed lines in Figure 7b. In this case, the integer computation fully
replaces the original mLUT functionality by using only signed integers of low-range. To
clarify the example, the numeric values of the corresponding LLRs and integer mappings of
(19) and (21) for s = 10 are shown in Table 1. For example, the quantized receive message
z = 2 corresponds to an LLR of L(z) = 1.56 leading to the nR-bit signed integer message
r = φ(z) = b15.6e = 16. After summation of r and rm, all results 12 ≤ W10(a) ≤ 23 are
again mapped back to the nE message t = 2.

304



Entropy 2022, 24, 1452

Table 1. Numeric values of integer based VN update gMIC
10 with scaling parameter s = 10.

Cluster index z, a, t ±4 ±3 ±2 ±1

Channel LLR L(z) ±5.07 ±2.90 ±1.56 ±0.49

Integer mapping φ(z) ±51 ±29 ±16 ±5

Message LLR L(a) ±3.46 ±2.08 ±1.02 ±0.25

Integer mapping φV(a) ±35 ±21 ±10 ±3

IntervalWt ±[121, 42] ±[41, 25] ±[23, 12] ±[11, 1]

For s = 3 and s = 1, the integer range is further reduced, but the original mLUT
functionality cannot be represented exactly since some integer additions are mapped to
more than one output cluster of the original mLUT (e.g., some values of Ws(a) are mapped
into cluster t = 1 and t = 2 as highlighted in Figure 7c). If some values of Ws(a) are
assigned to more than one cluster of the information maximizing mLUT mapping, a
merging of these values into a single cluster is required. This merging generally leads to an
inevitable loss of information. In order to find a corresponding threshold quantizer for this
case, we select the output cluster that minimizes the information loss under the condition
that (23) is fulfilled.

4.3. FER Results

In this section, we discuss the communication performance of the proposed MIC
decoder for an irregular LDPC code from the 802.11n standard [27] of length N = 648 with
rate R = 0.75 and edge degree distributions λ(ξ) = 0.2083ξ1 + 0.3333ξ2 + 0.25ξ3 + 0.2083ξ5

and ρ(ξ) = 1
3 ξ13 + 2

3 ξ15. The realization of the MIC decoder is characterized by three
quantization parameters and specified by MIC(nE, nQ, nR). In contrast, the Min-mLUT
decoder with label based minimum operation as CN update has only two parameters
and is denominated by Min-mLUT(nE, nQ). Figure 8 shows the Frame Error Rate (FER)
performance of Min-mLUT and MIC for nE = nQ = 3 and I = 10 iterations, but varying
resolution of internal messages nR ∈ {4, 5, 6, 7, 11} for MIC.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
Min-mLUT(3,3)
MIC(3,3,11)
MIC(3,3,7)
MIC(3,3,6)
MIC(3,3,5)
MIC(3,3,4)

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
Min-mLUT(3,3)
MIC(3,3,11)
MIC(3,3,7)
MIC(3,3,6)
MIC(3,3,5)
MIC(3,3,4)

Figure 8. FER performance of nE = nQ = 3 bit Min-mLUT and MIC decoders using different internal
message resolutions nR for VN update.

305



Entropy 2022, 24, 1452

The BP decoder with double precision serves as our benchmark simulation. The
Min-mLUT decoder with nE = nQ = 3 bit quantization for the message exchange and
channel information results in a minor performance degeneration of only 0.2 dB at a FER
of 10−3 w.r.t. the benchmark simulation. In comparison, the proposed MIC decoder that
replaces the VN update of the Min-mLUT decoder by using the computational domain
framework with internal messages of size nR = 4 results in a loss of 0.25 dB compared to the
Min-mLUT decoder. The performance gain of the MIC decoder by using nR = 5 compared
to nR = 4 is around 0.1 dB. The MIC decoder with nR = 7 has basically identical FER
performance compared to the Min-mLUT decoder. If nR = 11, the MIC decoder represents
the mLUT functionality exactly by meeting the criterion (23), but the gain in communication
performance compared to the MIC decoder with nR = 7 is negligible. Additionally, MIC
decoding does not require LUTs with up to 262k entries for each iteration.

5. Finite Alphabet Message Passing (FA-MP) Decoder Implementation

In this section, we investigate the implementation complexity of different LUT-based
FA-MP decoders in terms of area, throughput, latency, power, area efficiency, and energy
efficiency and compare them with a state-of-the-art Normalized Min-Sum (NMS) decoder.
As already stated, we focus on unrolled full parallel (FP) decoder architectures that enable
throughput towards 1 Tb/s. The architecture template is shown in Figure 9. Input to
the decoder are compressed messages z from the channel quantizer. The decoder uses
two-phase decoding. Hence, each iteration consists of two stages: one stage comprises M
Check Node Functional Units (CFUs) and the second stage N Variable Node Functional
Units (VFUs). The stages are connected by hardwired routing networks, which implement
the edges of the Tanner graph. Since the decoding iterations are unrolled, the decoder
consists of 2 · I stages. Deep pipelining is applied to increase the throughput. For more
details on this architecture, the reader is referred to [5].

Figure 9. Unrolled full-parallel decoding architecture.

In FP decoders that use the NMS algorithm, node operations are implemented as
additions and minimum searches on uniformly quantized messages [5]. In contrast, node
functionality in Finite Alphabet (FA) decoders is implemented as LUTs. Implementing
a single LUT as memory is impractical in Application-Specific Integrated Circuit (ASIC)
technologies since the area and power overhead would be too large. Hence, a single LUT is
transformed into nE Boolean functions b : Binp → B with inp being the number of inputs
of the LUT, which is the node degree multiplied by nE. b can consist of up to 2inp product
terms if b is represented in sum-of-product form. State-of-the-art logic synthesis tools try
to minimize b such that it can be mapped onto a minimum number of gates. Despite this
optimization, the resulting logic can be very large for higher node degrees and/or nE,
making this approach unsuitable for efficient FP decoder implementation. It was shown
in [7] that the mLUT can be decomposed into a set of two-input sLUTs arranged in a tree
structure, which largely reduces the resulting logic at the cost of a small degradation in
error correction performance. To compare these approaches with our new decoder, we
implemented four different types of FP decoders:

306



Entropy 2022, 24, 1452

• NMS decoder with extrinsic message scaling factor of 0.75;
• Two LUT-based decoders: in these decoders, we implemented the VN operation

by LUTs and the CN operations by a minimum search on the quantized messages.
The latter corresponds to the CN Processor implementation of [7]. The LUTs are
implemented either as a single LUT (mLUT), or as a tree of two-input LUTs (sLUT);

• Our new MIC decoder in which the VN is replaced by the new update algorithms,
presented in the previous section.

For MIC and LUT based decoders, we investigated message quantization nE = 3 and
nE = 4. The reference is an NMS decoder with nE = 4 and nE = 5, respectively. For all
decoders, the channel and message quantization were set to be identical, i.e., nE = nQ. We
used a different code for our implementation investigation than in the previous sections.
This code has a larger block size, which implies increased implementation complexity.
The code is a (816, 406) regular LDPC code with dV = 3 and dC = 6 and the number of
decoding iterations is I = 8.

We applied a Synopsys Design Compiler and IC Compiler II for implementation in a
28 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) technology under worst-case Process,
Voltage and Temperature (PVT) conditions (125 °C, 0.9 V for timing, 1.0 V for power). A
process with eight metal layers was chosen. Metal layers 1 to 6 are used for routing, with
metals 1 and 2 mainly intended for standard cells. The metal layers 7 and 8 are only used
for power supply. Power numbers were calculated with back-annotated wiring data and
input data for a FER of 10−4. All designs were optimized for high throughput with a target
frequency of 1 GHz during synthesis and back-end. To assess the routing congestion, we
fixed the utilization to 70 % for all designs as a constraint. The utilization specifies the ratio
between logic cell area and total area (=logic cell area plus routing area). Thus, by fixing
this parameter, all designs have the same routing area available in relation to their logic
cell area.

5.1. FER Performance of Implemented FA-MP Decoders

Figures 10 and 11 show the FER performance for the different decoders. We compare
the NMS decoder with the MIC decoder and the two LUT-based decoders. The LUTs of
the FA-MP decoders are elaborated to a design Signal-to-Noise-Ratio (SNR) optimized at
an FER of 10−4. It should be noted that this may result in an error floor behavior below the
target FER. This phenomenon can be mitigated by selecting a larger design SNR at the cost
of decreased performance in the waterfall region [13]. For comparison, we also added the
BP performance with double precision floating point number representation.

In the previous section, we showed that, for the (648, 486) code, the MIC decoder
achieves the same error correction performance as the Min-mLUT decoder for nR = 7.
A similar observation was made for the (816, 406) code considered here. In our imple-
mentation comparison, we reduced nR such that the MIC’s FER stays below that of the
NMS at the target FER of 10−4. In this way, we obtained an nR = 5, which yields a small
degradation in the MIC FER compared to the Min-sLUT and Min-mLUT decoders, but
outperforms the NMS decoder. We observe that the MIC and Min-mLUT decoders with
one bit smaller message quantization nE have better error correction capability than the
NMS decoder at the target FER. In addition, due to the low message quantization and the
resulting low dynamic range, the NMS runs into an error floor below FER 10−4.

307



Entropy 2022, 24, 1452

2.5 3 3.5 4 4.5 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
NMS(4,4)
Min-mLUT(3,3)
Min-sLUT(3,3)
MIC(3,3,5)

2.5 3 3.5 4 4.5 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
NMS(4,4)
Min-mLUT(3,3)
Min-sLUT(3,3)
MIC(3,3,5)

Figure 10. Communication performance of nE = 3 bit FA-MP decoders.

2.5 3 3.5 4 4.5 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
NMS(5,5)
Min-mLUT(4,4)
Min-sLUT(4,4)
MIC(4,4,5)

2.5 3 3.5 4 4.5 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
NMS(5,5)
Min-mLUT(4,4)
Min-sLUT(4,4)
MIC(4,4,5)

Figure 11. Communication performance of nE = 4 bit FA-MP decoders.

5.2. FD-SOI Implementation Results

Table 2 shows the implementation results for MIC(3,3,5), Min-mLUT(3,3), Min-sLUT(3,3)
and NMS(4,4) decoders, whereas Table 3 shows the implementation results for MIC(4,4,5),
Min-mLUT(4,4), Min-sLUT(4,4) and NMS(5,5) decoders. As already stated, we fixed the target
frequency to 1 GHz and the utilization to 70% for all decoders. Maximum achievable frequency
f , final utilization, area A and power consumption P were extracted from the final layout data.
From these data, we can derive the important implementation metrics: throughput, latency, area
efficiency and energy efficiency. Since the decoders are pipelined, the coded decoder throughput
T is f ·N. The latency is 1/ f · 26 (each iteration consists of three pipeline stages, decoder input
and output are also buffered, yielding 8 · 3+ 2 = 26 pipeline stages in total). The area efficiency
is defined as T/A and the energy efficiency as P/T.

308



Entropy 2022, 24, 1452

The Min-mLUT decoder has the largest area, the worst area efficiency, and the worst
energy efficiency. We see an improvement in these metrics for the Min-sLUT at the cost of
a slightly decreased error correction performance. The difference in the implementation
metrics largely increases when nE = 3 changes to nE = 4. The area increases by a factor
of 10 for the Min-mLUT(4,4), but only by a factor of 2.7 for the Min-sLUT(4,4) decoder.
Moreover, we had to reduce the utilization to 50 % to achieve a routing convergence for the
Min-mLUT(4,4) decoder. The large area increase is explainable with the increase of the LUT
sizes from 512 to 4096 entries per LUT when increasing nE from 3 to 4. Moreover, the fre-
quency largely breaks down, yielding a very low area efficiency and energy efficiency. The
Min-sLUT decoders scale better with increasing nE. Both Min-sLUT decoders outperform
the corresponding NMS decoders in throughput and efficiency metrics.

The MIC decoder has the best implementation metric numbers in all cases. It outper-
forms all other decoders in throughput, area, area efficiency and energy efficiency while
having the same or even slightly improved error correction performance compared to the
other decoders. It can also be seen that the MIC decoder has a lower routing complexity
compared to the Min-sLUT and the NMS decoder. We observe a large drop in the frequency
from 595 MHz down to 183 MHz (70 % decrease) when comparing NMS(4,4) with NMS(5,5)
under the utilization constraint of 70 %. The large drop in the frequency is explainable with
the increased routing complexity for the given routing area constraint that yields longer
wires and corresponding delays. This problem is less severe for the Min-sLUT, where the
frequency drops from 670 MHz to 492 MHz (27 % decrease). The MIC achieves the highest
frequency for all cases and drops from 775 MHz to 633 MHz (18% decrease), only. This
shows that the MIC scales much better with increasing nE.

It should be noted that the CFU implementation is identical for the MIC, Min-mLUT
and Min-sLUT decoders. Compared to the corresponding NMS, the CFU implementation
is less complex [19] due to: (i) a 1 bit smaller message quantization, (ii) the omission of the
scaling unit, and (iii) the omission of the sign-magnitude to two’s complement conversion.
Hence, the CFU complexity of the FA-MP is always lower than that of the NMS independent
of the respective CN degree. Moreover, in contrast to the NMS decoder, the messages from
the CFUs to the VFUs are transmitted in sign-magnitude representation via the routing
network which reduces the toggling rate and thus the average power consumption.

Table 2. Post-layout results of FA-MP decoders with nE = nQ = 3, nR = 5.

MIC Min-mLUT Min-sLUT NMS

nE, nQ 3 3 3 4
Eb/N0 @ FER 10−4 [dB] 4.20 4.16 4.35 4.26

Utilization [%] 70 68 71 71
Frequency [MHz] 775 662 670 595
Coded Throughput [Gb/s] 633 540 547 486
Area [mm2] 2.73 4.23 2.86 3.04
Area Efficiency [Gb/s/mm2] 231.6 128 190 159.7
Latency [ns] 33.5 39.3 35.8 43.7
Power [W] 4.49 5.07 4.38 4.39
Energy Efficiency [pJ/bit] 7.10 9.4 8.0 9.0

Figure 12 shows the layout of the MIC and the NMS decoder in the same scale. Each
color represents one iteration stage, which is composed of CFUs, VFUs, and the routing
between the nodes (see also Figure 9). When comparing the same iteration stages (same
color) of the two decoders, we can observe that the iteration stages in the MIC decoder are
smaller than the corresponding iteration stages in the NMS decoder, although the frequency
of the MIC decoder is more than three times higher compared to the NMS decoder. This
shows once again that the MIC has a lower implementation complexity, especially from a
routing perspective.

309



Entropy 2022, 24, 1452

Table 3. Post-layout results of FA-MP decoders with nE = nQ = 4, nR = 5.

MIC Min-mLUT Min-sLUT NMS

nE, nQ 4 4 4 5
Eb/N0 @ FER 10−4 [dB] 3.94 3.87 3.93 4.01

Utilization [%] 69 49 66 69
Frequency [MHz] 633 267 492 183
Coded Throughput [Gb/s] 516 218 401 149
Area [mm2] 3.66 40.51 7.82 3.99
Area Efficiency [Gb/s/mm2] 141.1 5.4 51.3 37.4
Latency [ns] 41.1 97.2 48.0 142.0
Power [W] 5.61 11.85 8.68 2.25
Energy Efficiency [pJ/bit] 10.9 54.3 21.6 15.1

(a) NMS(5,5), (3.99 mm2) (b) MIC(4,4,5), (3.66 mm2)
Figure 12. Layout of decoders in the same scale; each color indicates one iteration stage from dark
red (first iteration) to dark blue (eighth iteration).

Our analysis shows that the new MIC approach largely improves the implementation
efficiency and exhibits better scaling compared to the state-of-the-art sLUT and NMS
implementations of FP decoder architectures. This enables the processing of larger block
sizes, which is mainly due to the reduced routing complexity. Larger block sizes improve
the error correction capability and further increase the throughput of FP architectures.

6. Conclusions

This paper provides a detailed investigation of the Minimum-Integer Computation
(MIC) decoder for regular and irregular Low-Density Parity Check (LDPC) codes. The
MIC decoder utilizes the computational domain framework to realize Variable Node
(VN) updates by an equivalent low-range signed integer computation and Check Node
(CN) updates by a minimum search. For the VN update, we provide further insights for
the design of an Mutual Information (MI) maximizing signed integer computation. To
discuss implementation issues on FA-MP decoding architectures, we exemplified this on
different LUT-based decoder designs. Furthermore, we compared MIC to state-of-the-art
Normalized Min-Sum (NMS) decoder implementations to show the improvement in area
efficiency and energy efficiency.

310



Entropy 2022, 24, 1452

Author Contributions: Conceptualization, T.M., O.G., M.H., D.W., A.D. and N.W.; Funding acqui-
sition, A.D., D.W. and N.W.; Investigation, T.M., D.W., O.G. and M.H.; Software, T.M., O.G. and
M.H.; Validation, T.M., O.G., M.H., D.W. and N.W.; Visualization, T.M.; Writing—original draft, T.M.,
O.G., M.H., D.W. and N.W.; Writing—review and editing, T.M., O.G., M.H., D.W., A.D. and N.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the German Ministry of Education and Research (BMBF)
projects “FunKI” (grants 16KIS1180K and 16KIS1185) and “Open6GHub” (grants 16KISK016 and
16KISK004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research

Problems. IEEE Netw. 2020, 34, 134–142. [CrossRef]
2. Kestel, C.; Herrmann, M.; Wehn, N. When Channel Coding Hits the Implementation Wall. In Proceedings of the IEEE 10th

International Symposium on Turbo Codes Iterative Information (ISTC 2018), Hong Kong, China, 3–7 December 2018. [CrossRef]
3. Gallager, R. Low-Density Parity-Check Codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [CrossRef]
4. MacKay, D. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 1999, 45, 399–431. [CrossRef]
5. Schläfer, P.; Wehn, N.; Alles, M.; Lehnigk-Emden, T. A New Dimension of Parallelism in Ultra High Throughput LDPC Decoding.

In Proceedings of the IEEE Workshop on Signal Processing Systems (SIPS 2013), Taipei, Taiwan , 16–18 October 2013; pp. 153–158.
[CrossRef]

6. IEEE. International Roadmap for Devices and Systems, 2021 Update, More Moore. 2021. Available online: https://irds.ieee.org/
images/files/pdf/2021/2021IRDS_MM.pdf (accessed on 8 August 2022)

7. Balatsoukas-Stimming, A.; Meidlinger, M.; Ghanaatian, R.; Matz, G.; Burg, A. A Fully-Unrolled LDPC Decoder based on
Quantized Message Passing. In Proceedings of the IEEE Workshop on Signal Processing Systems (SIPS 2015), Hangzhou, China,
14–16 October 2015. [CrossRef]

8. Ghanaatian, R.; Balatsoukas-Stimming, A.; Müller, T.C.; Meidlinger, M.; Matz, G.; Teman, A.; Burg, A. A 588-Gb/s LDPC Decoder
Based on Finite-Alphabet Message Passing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 329–340. [CrossRef]

9. Lee, J.S.; Thorpe, J. Memory-efficient decoding of LDPC codes. In Proceedings of the International Symposium on Information
Theory (ISIT 2005), Adelaide, SA, Australia, 4–9 September 2005; pp. 459–463. [CrossRef]

10. Chen, J.; Fossorier, M. Density Evolution for Two Improved BP-Based Decoding Algorithms of LDPC Codes. IEEE Commun. Lett.
2002, 6, 208–210. [CrossRef]

11. Romero, F.J.C.; Kurkoski, B.M. LDPC Decoding Mappings that Maximize Mutual Information. IEEE J. Sel. Areas Commun. 2016,
34, 2391–2401. [CrossRef]

12. Lewandowsky, J.; Bauch, G. Information-Optimum LDPC Decoders based on the Information Bottleneck Method. IEEE Access
2018, 6, 4054–4071. [CrossRef]

13. Meidlinger, M.; Matz, G.; Burg, A. Design and Decoding of Irregular LDPC Codes Based on Discrete Message Passing. IEEE
Trans. Commun. 2020, 68, 1329–1343. [CrossRef]

14. Kang, P.; Cai, K.; He, X.; Li, S.; Yuan, J. Generalized Mutual Information-Maximizing Quantized Decoding of LDPC Codes With
Layered Scheduling. IEEE Trans. Veh. Technol. 2022, 71, 7258–7273. [CrossRef]

15. He, X.; Cai, K.; Mei, Z. On Mutual Information-Maximizing Quantized Belief Propagation Decoding of LDPC Codes. In
Proceedings of the IEEE Global Communications Conference (GLOBECOM 2019), Waikoloa, HI, USA, 9–13 December 2019.
[CrossRef]

16. He, X.; Cai, K.; Mei, Z. Mutual Information-Maximizing Quantized Belief Propagation Decoding of LDPC Codes. arXiv 2019,
arXiv:1904.06666. Available online: https://arxiv.org/abs/1904.06666 (accessed on 7 October 2022).

17. Wang, L.; Wesel, R.D.; Stark, M.; Bauch, G. A Reconstruction-Computation-Quantization (RCQ) Approach to Node Operations
in LDPC Decoding. In Proceedings of the IEEE Global Communications Conference (GLOBECOM 2020), Taipei, Taiwan, 7–11
December 2020. [CrossRef]

18. Wang, L.; Terrill, C.; Stark, M.; Li, Z.; Chen, S.; Hulse, C.; Kuo, C.; Wesel, R.D.; Bauch, G.; Pitchumani, R. Reconstruction-
Computation-Quantization (RCQ): A Paradigm for Low Bit Width LDPC Decoding. IEEE Trans. Commun. 2022, 70, 2213–2226.
[CrossRef]

19. Monsees, T.; Wübben, D.; Dekorsy, A.; Griebel, O.; Herrmann, M.; Wehn, N. Finite-Alphabet Message Passing using only Integer
Operations for Highly Parallel LDPC Decoders. In Proceedings of the IEEE 23rd International Workshop on Signal Processing
Advances in Wireless Communication (SPAWC 2022), Oulu, Finland, 4–6 July 2022. [CrossRef]

311



Entropy 2022, 24, 1452

20. Tanner, R. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 1981, 27, 533–547. [CrossRef]
21. Kurkoski, B.M. On the Relationship Between the KL Means Algorithm and the Information Bottleneck Method. In Proceedings of

the 11th International ITG Conference on Systems, Communications and Coding (SCC), Hamburg, Germany, 6–9 February 2017.
22. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the 37th Annual Allerton Conference

on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.
23. Hassanpour, S.; Wübben, D.; Dekorsy, A. Overview and Investigation of Algorithms for the Information Bottleneck Method. In

Proceedings of the 11th International Conference on Systems, Communications and Coding (SCC), Hamburg, Germany, 6–9
February 2017.

24. Kurkoski, B.M.; Yagi, H. Quantization of Binary-Input Discrete Memoryless Channels. IEEE Trans. Inf. Theory 2014, 60, 4544–4552.
[CrossRef]

25. Burshtein, D.; Pietra, V.D.; Kanevsky, D.; Nadas, A. Minimum Impurity Partitions. Ann. Stat. 1992, 20, 1637–1646. [CrossRef]
26. Stark, M.; Wang, L.; Bauch, G.; Wesel, R.D. Decoding Rate-Compatible 5G-LDPC Codes With Coarse Quantization Using the

Information Bottleneck Method. IEEE Open J. Commun. Soc. 2020, 1, 646–660. [CrossRef]
27. IEEE. IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for
Higher Throughput. In IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std
802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009); IEEE: Piscatvey, NJ, USA, 2009; pp. 1–565. [CrossRef]

312



Citation: Lewandowsky, J.; Bauch, G.;

Stark, M. Information Bottleneck

Signal Processing and Learning to

Maximize Relevant Information for

Communication Receivers. Entropy

2022, 24, 972. https://doi.org/

10.3390/e24070972

Academic Editor: Jerry D. Gibson

Received: 10 May 2022

Accepted: 12 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Information Bottleneck Signal Processing and Learning to
Maximize Relevant Information for Communication Receivers
Jan Lewandowsky 1,* , Gerhard Bauch 2 and Maximilian Stark 2

1 Fraunhofer Institute for Communication, Information Processing and Ergonomics, Fraunhoferstraße 20,
53343 Wachtberg, Germany

2 Institute of Communications, Hamburg University of Technology, Eißendorfer Straße 40,
21073 Hamburg, Germany; bauch@tuhh.de (G.B.); maximilian.stark@tuhh.de (M.S.)

* Correspondence: jan.lewandowsky@fkie.fraunhofer.de; Tel.: +49-228-9435-731

Abstract: Digital communication receivers extract information about the transmitted data from the
received signal in subsequent processing steps, such as synchronization, demodulation and channel
decoding. Technically, the receiver-side signal processing for conducting these tasks is complex
and hence causes bottleneck situations in terms of power, delay and chip area. Typically, many
bits per sample are required to represent and process the received signal in the digital receiver
hardware accurately. In addition, demanding arithmetical operations are required in the signal
processing algorithms. A popular recent trend is designing entire receiver chains or some of their
crucial building blocks from an information theoretical perspective. Signal processing blocks with
very simple mathematical operations can be designed to directly maximize the relevant information
that flows through them. At the same time, a strong quantization reduces the number of bits processed
in the receiver to further lower the complexity. The described system design approach follows the
principle of the information bottleneck method. Different authors proposed various ideas to design
and implement mutual information-maximizing signal processing units. The first important aim of
this article is to explain the fundamental similarities between the information bottleneck method and
the functionalities of communication receivers. Based on that, we present and investigate new results
on an entire receiver chain that is designed following the information bottleneck design principle.
Afterwards, we give an overview of different techniques following the information bottleneck design
paradigm from the literature, mainly dealing with channel decoding applications. We analyze the
similarities of the different approaches for information bottleneck signal processing. This comparison
leads to a general view on information bottleneck signal processing which goes back to the learning of
parameters of trainable functions that maximize the relevant mutual information under compression.

Keywords: information bottleneck; mutual information; machine learning

1. Introduction

As Claude Elwood Shannon postulated in [1], the “fundamental problem of commu-
nication is that of reproducing at one point either exactly or approximately a message
selected at another point”. Hence, in information theoretical terms, the most essential task
of any digital communication receiver is to provide a maximum possible amount of mutual
information on the transmitted data to its user. One could loosely say that the message
selected at the transmitter is relevant to the receiver. Assuming that the possible trans-
mitted messages are chosen from a finite set with certain probabilities at the transmitter,
this introduces a quite intuitive understanding of a discrete relevant random variable in
the communications context. The transmitted data sequence is relevant to the user of the
receiver, but the latter can typically only observe a degraded version of this sequence in the
form of a noisy and disturbed received signal.

313



Entropy 2022, 24, 972

Interestingly, the concept of a relevant random variable was also introduced by
Tishby et al. in [2] in a very generic information theoretical setup termed the information
bottleneck method. Conceptually, this method is not directly linked to the communication
problem considered above. The elementary idea of the information bottleneck method is to
compress an observed random variable Y to a compressed variable T using a compression
rule. The compression rule is tailored to preserve relevant mutual information I(X;T),
where I(X;T) ≤ I(X;Y). In this problem formulation, X is a chosen random variable of
interest. This variable defines which features of the observation Y are relevant and should
be preserved under the invoked compression. Hence, this concept can be understood as
defining relevance through another variable [2]. The information bottleneck method al-
ready has numerous very successful applications, such as in image and speech processing,
astronomy and neuroscience [3–6]. A comprehensive tutorial on the information bottleneck
method, its applications in source coding and its connections to inference and representa-
tion learning problems can be found in [7]. In addition, a survey on the applicability and
usefulness of the information bottleneck for machine learning is provided in [8].

In the past few years, the information bottleneck method gained massive popularity
in the communications community. Various authors brought up different ideas to design
and implement receiver subsystems and other parts of communcation systems using the
information bottleneck principle of maximizing the preserved relevant information. The
applications studied in the communications context lead from the design of channel output
quantizers [9–11] over the decoding of low-density parity-check (LDPC) codes [12–31]
and polar codes [32–34] to entire receiver chains that include channel estimation and de-
tection [35–38]. Moreover, the information bottleneck method has been applied in joint
source–channel coding, forwarding and relaying applications [39–48] and in distributed
sensor networks [49–53] successfully. Related works with a focus on inference with the dis-
tributiveness of data among multiple nodes and network learning aspects include [54–56].

It needs to be noted that some of the aforementioned works do not explicitly state
themselves to be instances of the information bottleneck method. However, their funda-
mental ideas are in line with the key principle of the preservation of relevant information
under compression. Please also note that even though the references provided above are
numerous, we cannot claim to have mentioned all applications of the information bottle-
neck method and the related principles in communications here. Facing the huge variety of
research on applications of the information bottleneck method in communications above,
we note that a number of techniques have been proposed to apply information bottleneck
signal processing lately.

In this article, as a first contribution, we aim to give a quite general introduction to
the ideas of receiver-side information bottleneck signal processing. For that purpose, we
explain the general idea of the information bottleneck method and link it to the fundamental
task of a communication receiver. To illustrate the applicability of the presented ideas
to real-world communication receivers, we present and investigate a strongly quantized
iterative receiver that is entirely designed with the information bottleneck method and
compare its performance to a conventional receiver chain. The presented information
bottleneck receiver implements all signal processing operations using lookup tables that are
designed with an information bottleneck algorithm. Surprisingly, the presented quantized
receiver that is designed with the information bottleneck method performs just as well
as a double-precision reference receiver that employs state-of-the-art signal processing
algorithms and uses much more costly signal processing operations.

Some very fundamental ideas of information bottleneck signal processing were pre-
sented already in 2008 for LDPC decoding by Kurkoski et al. [12]. In fact, a special focus lies
on the application of information bottleneck signal processing for the coarsely quantized
message passing decoding of LDPC codes in the available literature [12–31]. It needs to be
appreciated that various authors have proposed very interesting ideas to solve this problem
using the paradigm of maximizing the preserved relevant information under quantization
with very few bits per message.

314



Entropy 2022, 24, 972

The literature describes quantized decoders that replace the classical node opera-
tions of LDPC decoders completely with lookup tables [12,14–16,18,20,21,23]. In addition,
the hybrid min-LUT approach from [17,22] uses lookup tables only for the variable node
operations and a simple arithmetical operation for the check node operations. Moreover,
computational domain approaches that pair relatively simple arithmetical operations with
mutual information-maximizing quantizers to implement the node operations of LDPC
decoders were studied in [24,25,30,31]. Finally, the idea to learn and implement mutual
information-maximizing node operations using neural networks was studied in [28,29].
We note that the design goals of the mentioned methods for LDPC decoding are similar
and mainly rely on the information bottleneck idea of maximizing the preserved relevant
information. However, what differs is how the mutual information-maximizing operations
for the LDPC decoders are designed and implemented.

Therefore, as a second contribution, we discuss what the approaches from the litera-
ture have in common, compare them and, based on that, draw some novel conclusions on
information bottleneck signal processing in general. Our conclusions break down infor-
mation bottleneck signal processing to the learning of parameters of trainable functions.
The parameters are tuned to maximize the relevant information under compression.

This article is structured as follows. The next section first provides an introduction
to the information bottleneck method and its application in coarsely quantized informa-
tion bottleneck signal processing units. A quite general comparison of the information
bottleneck method and a communication system is used to explain the applicability of
the information bottleneck method for the design of quantized communication receivers.
Afterwards, we substantiate the presented ideas by developing and analyzing a particular
information bottleneck receiver structure for an LDPC-encoded transmission over a fad-
ing channel. This receiver implements all signal processing operations designed with the
information bottleneck method using lookup tables.

Section 3 then starts by recalling and comparing other approaches to information
bottleneck signal processing for LDPC decoders from the literature that do not use lookup
tables. From this analysis, we draw the conclusion that a unified view on lookup table-based
and other approaches is considering information bottleneck signal processing as learning
the optimum parameters of trainable functions that maximize the relevant information.
Finally, Section 4 summarizes and concludes this article.

2. The Information Bottleneck Method and Coarsely Quantized Information
Bottleneck Signal Processing

This section gives an overview of the information bottleneck method and explains its
connection to the fundamental design purpose of communication receivers (i.e., extract-
ing relevant information on the transmitted data from the received signal). From that,
the idea of information bottleneck signal processing is derived and explained using
several examples.

2.1. The Information Bottleneck Method

The information bottleneck method is a quite generic information theoretical setup
that was introduced by Tishby et al. in [2]. The basic setup consists of three discrete random
variables X, Y and T with realizations x ∈ X , y ∈ Y and t ∈ T . These variables follow
the Markov relation X → Y → T and interact as illustrated in Figure 1 and explained in
the following.

315



Entropy 2022, 24, 972

observed
Y

y ∈ Y
p(x, y)⇒ I(X;Y) relevant

X
x ∈ X

compressed
T

t ∈ T

p(t|y), p(y)
⇒ I(Y;T)

p(x|t), p(t)
⇒ I(X;T)

minimize
I(Y;T)

preserve
I(X;T)

Figure 1. Illustration of the information bottleneck method. The variables X,Y and T form a Markov
chain X → Y → T and are termed the relevant, observed and compressed variables, respectively.
The fundamental principle is to minimize I(Y;T) while preserving I(X;T).

The random variable Y is considered to be observed and, therefore, termed the ob-
served random variable in the information bottleneck problem setup. The baseline model
is that observing the realizations y ∈ Y of Y could deliver information that could be clas-
sified into relevant and irrelevant information. In order to define which features of Y are
considered relevant, the so-called relevant random variable X is introduced. As a result,
the relevance is defined through another variable, and the relevant information that X and
Y share is

I(X;Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= DKL{p(x, y) | p(x)p(y)}, (1)

where p(x, y) is the joint distribution and p(x) and p(y) are the marginal distributions of X
and Y, respectively. DKL{. | .} in Equation (1) is the Kullback–Leibler divergence.

The aims of the information bottleneck method are now twofold:

1. Conduct a lossy compression of the realizations y ∈ Y to a compressed realiza-
tion t ∈ T to yield a compact compressed representation T of the observation Y.
The information theoretical notion of such a compression is the minimization of the
compression information I(Y;T) (i.e., the transmission rate, relating to rate–distortion
theory).

2. While conducting the compression mentioned above, preserve the relevant informa-
tion I(X;T) ≤ I(X;Y).

The goals mentioned above are contradictory. Typically, a strong compression will
limit the possibility to keep the preserved relevant information I(X;T) above a desired
lower bound. Similarly, aiming for a certain minimum amount of I(X;T) ≤ I(X;Y) typically
provides a lower bound to I(Y;T). As a result, an optimum rule to compress Y onto T
in the information bottleneck sense describes a trade-off between achieving a minimum
possible compression information I(Y;T) that also allows keeping the preserved relevant
information I(X;T) above a desired minimum level.

In technical terms, the compression rule that maps Y onto T is described as a condi-
tional probability distribution p(t|y). This conditional distribution provides the probabili-
ties of a certain t ∈ T for a given y ∈ Y and hence describes a possibly stochastic mapping
of y onto t.

The information bottleneck problem can be understood as the optimization problem
of finding a suitable conditional probability distribution p(t|y) with the desired character-
istics of minimizing I(Y;T) while preserving I(X;T) for the Markov chain X → Y → T.
Tishby et al. proposed finding an optimum mapping p(t|y) using the Lagrange method
in [2] and introduced the Lagrangian

L(p(t|y)) = I(Y;T)− βI(X;T) (2)

316



Entropy 2022, 24, 972

which has to be minimized over the set of all valid conditional probability distributions
p(t|y). The Lagrangian multiplier β ≥ 0 is a trade-off parameter that allows tuning the
aforementioned trade-off between the compression and preservation of relevant informa-
tion. For β = 0, the focus is only on compression, and the preservation of I(X;T) is not
taken into account, while β→ +∞ aims to maximize the preserved relevant information.

In [2], Tishby et al. also derived a set of equations characterizing p(t|y), p(t) and p(x|t)
such that

p(t|y) =
p(t)

Z(y, β)
exp(−βDKL{p(x|y) | p(x|t)}) (3)

p(t) = ∑
y∈Y

p(t|y)p(y) (4)

p(x|t) =
1

p(t) ∑
y∈Y

p(t|y)p(x, y), (5)

where Z(y, β) is a normalization function that guarantees that p(t|y) is a valid condi-
tional distribution.

In general, the optimization problem of finding a p(t|y) solution that minimizes the La-
grangian from Equation (2) is neither concave nor convex [2]. Nevertheless, the mentioned
equations (Equations (3–5)) naturally suggest an iterative algorithm termed the iterative
information bottleneck algorithm to obtain p(t|y) for a given joint distribution p(x, y),
a trade-off parameter β and an intended cardinality |T | of the compression variable T that
is also described in [2]. This algorithm provably converges to at least a local minimum
of the Lagrangian in Equation (2). Details on its convergence are discussed in [3]. In
addition to the iterative information bottleneck algorithm from [2], many other information
bottleneck algorithms appeared in the literature (e.g., [57,58]). These algorithms can be
understood as the work horses of the information bottleneck method, as they can deter-
mine the compression mapping p(t|y) for a given p(x, y), β and a desired cardinality |T |.
The information bottleneck algorithms also deliver the distributions p(x|t) and p(t), and
thus p(x, t) = p(x|t)p(t) according to Equations (4) and (5) as side products.

Figure 2 provides an overview of the inputs taken and the outputs delivered by an
information bottleneck algorithm.

Information
Bottleneck
algorithm

p(x, y)

|T |

β

p(t|y)

p(x|t)

p(t)

}
⇒ p(x, t)

Figure 2. Overview of the inputs taken and the outputs delivered by an information
bottleneck algorithm.

An important notion of the resulting conditional probability distribution p(t|y) is
that it clusters the event space Y of the observed random variable Y into clusters Yt,
t ∈ {0, 1, . . . , |T | − 1}. This concept covers deterministic mappings of y onto t (i.e., p(t|y) ∈
{0, 1}∀(y, t)) that result in a hard clustering of Y and also probabilistic mappings that
describe a soft clustering. For the latter, the realizations y can be contained in various
clusters Yt with different probabilities.

In the very important special case of aiming to preserve a maximum desired amount
of I(X;T) (i.e., β→ +∞ for a given cardinality |T |), the clustering of Y described by p(t|y)
becomes a hard clustering [58]. In this case, it is easy to limit the compression information
I(Y;T) by a proper choice of the cardinality |T | of the compressed representation. In the
context of this article, this cardinality determines the number of bits required to process
the compressed realizations t ∈ T in the digital hardware of a communication receiver.
The remainder of this article will only focus on deterministic compression mappings,
as these are most practical to be applied in digital communication receivers.

317



Entropy 2022, 24, 972

It will be important in the following that a deterministic mapping p(t|y) can also be
interpreted as a deterministic input/output relation of a system with input y ∈ Y and
output t ∈ T . Such a system can be implemented, for example, as a lookup table that
holds the respective t ∈ T for each possible y ∈ Y if the input space Y has a manageable
cardinality. As we will discuss later in Section 3, the lookup table interpretation is just one
possibility for implementing deterministic information bottleneck compression mappings in
communication receivers. We want to mention here that we only formally consider discrete
observed variables Y in this article. The reason for this is that every digital communication
receiver needs to quantize the continuous received signal with a limited number of bits per
sample before conducting further digital signal processing steps, as will be explained in
more detail later.

Before we continue, an important concept from [35] shall be revisited. As the mutual
information relation between X, Y and T in the information bottleneck method is quite abstract,
it is reasonable to introduce a compact graph notation that allows one to visualize the intended
mutual information relations between the variables involved in an information bottleneck
problem. In [35], information bottleneck graphs were introduced for that purpose.

Information bottleneck graphs are extended factor graphs that aim to compactly vi-
sualize the intended mutual information relations of the information bottleneck method.
In an information bottleneck graph, a compression mapping p(t|y) designed with an in-
formation bottleneck algorithm is visualized as a trapezoid node that is labeled with the
respective relevant random variable. The compressed variable is connected to the shortest
side of the trapezoid. The other connected variables form the observation. This concept
allows one to cover compression mappings with a single scalar input y or multiple scalar
inputs yn, n ∈ {0, 1, . . . , N − 1}. Figure 3 shows an example for a compression mapping
p(t|y) with one scalar input on the left. On the right of the figure, an example for a com-
pression mapping p(t|y0, y1, y2, y3, y4) with five scalar inputs is shown. A compression
mapping p(t|y0, y1, . . . , yN−1) with N scalar inputs can equivalently be seen as a compres-
sion mapping p(t|y) for a row vector y = [y0, y1, . . . , yN−1]. In this case, the observed
random variable Y is a random vector, but the principle of the information bottleneck
method remains unchanged, and the compression mapping p(t|y) can still be designed
with the available information bottleneck algorithms. Problems arise, however, for a large
number of inputs N, as the number of possible conditions y might grow massively with N.
Nonetheless, Figure 3 illustrates that the intended information relations can be visualized
very compactly in information bottleneck graphs. Information bottleneck graphs will be
used extensively in Section 2.3.

y x t

y0

y1

y2 x t

y3

y4

Figure 3. Examples of information bottleneck graphs. The trapezoid nodes correspond to the com-
pression mappings p(t|y) and p(t|y0, y1, y2, y3, y4), respectively. Both are designed to preseve I(X;T).

2.2. General View on Information Bottleneck Signal Processing for Receiver Design

Conceptually, the purpose of the information bottleneck method is intuitively related
to the most famous fundamental problem of communications cited at the beginning. In

318



Entropy 2022, 24, 972

order to explain this connection, Figure 4 compares the information bottleneck method at
the top with a model view of a communication system at the bottom.

physical
transmission

channel

transmitter
forms S,
s = s(x)

user
data X,
x ∈ X
∼ p(x)

analog/
digital

conversion
fQ(.)

digital
signal

processing

Output T,
t = f (y),

t ∈ T ,
informative

about X,
decide on x̂
from p(x|t)p(t|y)p(y|ỹ)

relevant
variable X

observed
variable Y

compressed
variable T

digital receiver p(t|ỹ)

ỹ y

joint distribution p(x, y)

mutual information I (X;Y)

compression
mapping

p(t|y)

communication system:

information bottleneck method:

maximize relevant information I (X;T) ≤ I (X;Y) ≤ I(X; Ỹ)

Figure 4. Illustration of the information bottleneck design idea of a communication system. The digi-
tal communication receiver shall be designed such that the relevant information I(X;T) is maximized
from end to end.

As shown in the figure and discussed above, the transmitted user data X can be
considered to be relevant, and the task is to estimate the realization x after the transmitter
has transformed it into a transmit signal s(x) to prepare it for the transmission over
a physical transmission channel. The transmission of s(x) then results in the received
realization ỹ, which is typically continuous.

As shown in Figure 4, we assume that ỹ is quantized to a discrete representation
y by an analog-to-digital converter with the quantization function fQ(.) in the receiver
(i.e., y = fQ(ỹ)). The quantized representation y is then used for further digital signal
processing steps to estimate x. Digital communication receivers often have to process huge
blocks of the received samples at once due to the transmitter-side channel coding and
modulation techniques that spread information on a transmitted bit x over a huge block
of transmitted symbols. To obtain a simple notation that is coherent with the information
bottleneck notation used above, we do not explicitly highlight the fact the variables X,Y
and T could be random vectors in the communication system from Figure 4. However,
one should keep in mind that a communication receiver typically estimates a vector x of
transmitted bits from a long vector ỹ of channel observations. In this case, the application
of fQ(.) has to be understood as an element-wise application (i.e., yk = fQ(ỹk), with the
time index k enumerating subsequent samples).

The amount of information present about X in the quantized received signal Y is bounded
by the capacity of the quantized output transmission channel p(y|x) at the upper bound,
which is given by

C = max
p(x)

I(X;Y) ≤ max
p(x)

I(X; Ỹ). (6)

Hence, the task of the communication receiver is to extract the information on the
relevant X and to provide the best possible estimate x̂ at its output. Clearly, such an estimate
can be obtained from a receiver output variable T that fulfils I(X;T)→ max. As a result,
the further receiver-side digital signal processing modeled by p(t|y) should maximize

319



Entropy 2022, 24, 972

I(X;T). Then, p(x|t) can provide an estimate of the transmitted data x, for example, using
the maximum a-posteriori criterion:

x̂ = arg max
x

p(x|t). (7)

Please note that p(x|t) is inherently obtained when the information bottleneck method
is applied according to Equation (4). This already indicates that it is possible to estimate x
based on a compressed representation t of the quantized received signal y.

An interesting fact in this context is that in information theoretical terms, all signal
processing of Y can only preserve or lower the information on X as a direct result of the
data processing inequality [59] (i.e., I(X;T) ≤ I(X;Y)). Due to the typically very advanced
channel coding and modulation steps conducted at the transmitter, obtaining an estimate x̂
for x, for example, based on the straightforward application of the maximum likelihood
criterion via the equation

x̂ = arg max
x

p(y|x) (8)

is often prohibitively complex. The reason for this is that the transmitter spreads infor-
mation on the user data x over huge blocks of transmitted symbols to protect it against
transmission errors, as already mentioned above. In addition, it might include control data
in the transmitted data stream to simplify the receiver-side detection process, for example,
for channel estimation. As a result, the digital communication receiver has to aggregate the
information on the user data X by undoing the transmitter-side encoding and modulation
process using suitable algorithms composed in a signal processing chain to process the
received y.

In order to overcome the complexity of a straightforward maximum likelihood sequence
detection, it is common practice to separate and distribute receiver-side signal processing
tasks such as synchronization, channel estimation, detection and channel decoding over con-
catenated signal processing blocks that exchange messages or signals. Unfortunately, the per-
formance of such signal processing algorithms still relies on sufficient precision. The number
of bits per sample has to be large enough to adequately represent the received signal in the
digital hardware without a degrading quantization distortion. In addition, the required signal
processing operations are often computationally demanding.

It is well known that a coarse quantization (i.e., a low resolution of the analog-to-digital
converter) can help to reduce the implementation efforts of communication receivers, as it
directly reduces the number of bits needed to process the signal in the digital hardware.
In addition, simplified arithmetical operations can reduce the implementation efforts of
optimum or close-to-optimum signal processing algorithms. However, both typically result
in performance degradations.

Therefore, the fundamental idea of information bottleneck signal processing is to
build subptimum receiver components that, despite being strongly quantized, are designed
to preserve the maximum possible amount of relevant information and only use simple
arithmetical operations. This design idea inherently minimizes the inevitable performance
degradation resulting from the quantization and from using potentially suboptimal signal
processing operations.

Information bottleneck signal processing has already been applied to various receiver-
side signal processing tasks in the past, such as quantized detection and channel estima-
tion [35–38]. In the following, we will analyze a receiver chain that applies information
bottleneck signal processing extensively. In this receiver, we consider the mutual informa-
tion preserving input/output relations of p(t|y) to be implemented as lookup tables that
replace the conventional signal processing operations.

2.3. An Example of Information Bottleneck Receiver Design with Iterative Detection and Decoding

In this section, we illustrate the idea of information bottleneck signal processing by
considering data transmission with binary phase shift keying (BPSK) modulation over

320



Entropy 2022, 24, 972

a frequency flat block fading channel. The presented study continues and extends the
investigation from our conference publication [60].

We consider data transmission over a frequency-flat block fading channel. The complex-
valued continuous received signal at time instance k in the symbol clock is given by

ỹk = h̃sk + ñk = ỹre
k + jỹim

k , (9)

where h̃ is a complex channel coefficient from a zero-mean circularly complex Gaussian
process that is modelled as a constant for B symbol durations and sk ∈ {−1,+1} is the
transmitted BPSK symbol. The noise sample ñk is also a realization from a complex zero-
mean white Gaussian process with variance σ2

ñ . Please note that in our notation, we use
a tilde to indicate that a signal has not been quantized and hence is continuous, and the
superscripts re and im distinguish real and imaginary parts, respectively.

For clarity, Figure 5 provides an overview of the considered transmitter that is ex-
plained in the following.

LDPC-
encoder

pilot data
generation

M
U

X

BPSK
modulation

sk ∈ {−1,+1}

input
data

resulting burst structure:

transmitter:

P pilots B− P codeword symbols P pilots B− P codeword symbols . . .

︸ ︷︷ ︸
B symbols

︸ ︷︷ ︸
B symbols

Figure 5. Overview of the considered transmitter. P pilot bits are multiplexed into a length
NLDPC >> B LDPC codeword periodically with a distance of B − P bits, and the resulting data
stream is modulated using BPSK modulation.

The transmitter transmits codewords from a regular LDPC code with a codeword
length NLDPC >> B over the channel using BPSK modulation. In order to simplify the
receiver-side detection and decoding, the transmitter multiplexes P known pilot symbols
into a transmitted codeword with a distance of B − P symbols such that each block of
B symbols weighted with the same channel coefficient h̃ starts with a few known pilot
symbols. The resulting burst structure is also sketched at the bottom of Figure 5. These
pilots shall serve as a reference signal to enable a simple receiver-side channel estimation.

Figure 6 shows a conventional receiver structure for the considered transmitter that
uses classical signal processing operations and does not employ any quantization beyond
the numerical limits of double-precision at the top. This receiver shall serve as a reference
receiver that illustrates the performance of the considered data transmission scheme if no
quantization is applied at all. It initially employs minimum mean squared error (MMSE)
channel estimation based on the inserted pilot symbols. Based on the obtained channel
estimate, it then performs a matched soft demodulation. The term matched reflects that
the demodulator takes into account the uncertainty of the estimated channel coefficient.
The demodulator then delivers log-likelihood ratios (LLRs) and provides them to a belief
propagation decoder for the decoding of the LDPC code. This decoder performs imax
decoding iterations. After one such decoding round, the receiver has estimates of the
transmitted codeword bits. The reliability of the different codeword bits can be judged
by analyzing the absolute magnitudes of the decision LLRs from the decoder. In order to
further improve the detection and decoding quality, the receiver then iteratively employs
decision feedback (FB) of the NFB most reliable decision bits within a block to virtually

321



Entropy 2022, 24, 972

enlarge the number of available pilot symbols used for channel estimation. The considered
receiver implements a hard-decision turbo channel estimation scheme. Its decision feedback
loop is repeated iFB times, and then the final decision bits are provided.

conventional receiver chain:

MMSE
channel

estimation

matched
soft

demodulator

belief
propagation

decoder

sa
m

pl
es

ṽ k
,w̃

l
fo

r
ch

an
ne

le
st

.

NFB most reliable

decisions
ŝl

decision
feedback loop,
iFB iterations

	

received
samples ỹk

ˆ̃h

decision
bits

LLRs

imax decoder
iterations

information bottleneck receiver chain:

channel
estimation

lookup table

detection
lookup table

information
bottleneck

decoder

in
te

ge
rs

vre k
,v

im k
,w

re l
,w

im l
fo

r
ch

an
ne

le
st

. NFB most reliable

decisions
ŝl

decision
feedback loop,
iFB iterations

	

quantization
indices
yre

k , yim
k

integers
ĥre, ĥim

decision
bits

integers tk

imax decoder
iterations

Figure 6. Conventional and information bottleneck receiver chains for LDPC-encoded data transmis-
sion over a frequency-flat fading channel. The conventional receiver uses quasi-continuous received
samples ỹk with double-precision and processes them in state-of-the-art detection and decoding
algorithms. The information bottleneck receiver works on quantization indices and implements all
signal processing using information bottleneck lookup tables.

Underneath the conventional receiver chain in Figure 6, the proposed information bot-
tleneck receiver chain is depicted. At first glance, both receiver chains look similar. The most
important difference is, however, that the information bottleneck receiver chain does not
have access to the continuous received samples ỹk. Instead, it only processes quantization
indices from a coarse channel output quantizer, which quantizes the real and imaginary
parts of the received signal to quantization indices (i.e., yre

k , yim
k ∈ {0, 1, . . . , 2q − 1}). Based

on these observed quantization indices, the rest of the signal processing chain for channel
estimation, detection and LDPC decoding can also be developed using the information
bottleneck method. This will be explained in detail in the following.

2.3.1. Information Bottleneck Channel Estimation

In the considered conventional receiver chain, the task of the channel estimation is to
obtain a reliable estimate ˆ̃h of h̃ from the knowledge of P pilot symbols and their respective
received samples. We denote these received samples by ṽ0, ṽ1, . . . , ṽP−1. The MMSE channel
estimate is then given by

ˆ̃h =
1

P + σ2
ñ/σ2

h̃

P−1

∑
k=0

ṽksp
k , (10)

322



Entropy 2022, 24, 972

where sp
k ∈ {−1,+1} are the known pilot symbols.

It is obvious, that the evaluation of Equation (10) requires high-precision arithmetic.
In a digital receiver, a high quantization resolution is required such that the quantized
received samples adequately approximate the continuous ṽk to obtain a good estimate with
high accuracy. As mentioned above, we assume that the conventional reference receiver is
implemented using double floating-point precision and therefore does not suffer from any
mentionable quantization loss.

In the information bottleneck receiver, however, the aim is to directly process the q-bit
integer indices vre

k = fQ
(
ṽre

k
)

and vim
k = fQ

(
ṽim

k
)
. The function fQ(.) describes a channel

output quantizer that is also designed to preserve the maximum relevant information with
the information bottleneck method as explained in [35]. Please note that the design of
the channel output quantizer fQ(.) is not discussed in detail in this article. However, we
want to mention that it requires handling continuous observed random variables with
the information bottleneck method, which has not been discussed in this article so far.
A simple method to deal with continuous observations for the quantizer design problem
is approximating the continuous variables as very finely quantized discrete variables.
More details on the quantizer design with a desired maximum preservation of relevant
information can be found in [35,61].

The quantization function fQ(.) conducts threshold decisions on the real and imaginary
parts of the received signal ỹk. It delivers quantization indices from the set {0, 1, . . . , 2q − 1}.
This reflects an analog-to-digital conversion with q bits per sample in the real and imaginary
parts, respectively. The obtained unsigned integers neither approximate the continuous
received samples nor can they be used to obtain a channel estimate with an arithmetic rule
such as that in Equation (10).

Essentially, the task of channel estimation is to extract information on the unknown
channel coefficient h̃ from P pairs of integers

(
vre

k , vim
k
)

that correspond to the coarsely
quantized received samples for the pilot symbols. Please note that due to the considered
channel model and the fact that the pilot symbols are BPSK symbols, it is possible to
handle vre

k and vim
k independently. In the following, the signal processing of vim

k will not be
discussed, as it is equivalent to that of vre

k .
Note that the quantizer fQ(.) leads to the fact that up to the distortion caused by

the receiver noise and the influence of sk ∈ {−1,+1}, the real part of the continuous
channel coefficient h̃ is also observed in a quantized manner. Therefore, the integer hre

is the index of the quantization region the continuous h̃re falls into; that is, hre = fQ
(
h̃re).

From an information theoretical perspective, the task of a pilot-based channel estimator is
to map the unsigned integers vre

0 , vre
1 , . . . , vre

P−1 onto ĥre
FW such that the mutual information

I
(
Ĥre

FW;Hre) is maximized. Please note that we add the index forward (FW) to distinguish
the channel estimation from the one conducted in the feedback (FB) iterations, which will
be discussed later.

An intuitive approach to designing an information bottleneck equivalent to the pilot-
based channel estimation in the forward path of the conventional receiver is to design
an information bottleneck compression mapping p

(
ĥre

FW|vre
0 , vre

1 , . . . , vre
P−1

)
which aims to

maximize I
(
Ĥre

FW;Hre). However, designing and implementing this compression mapping
as a lookup table would typically result in prohibitive complexity, since the cardinality of
the observation random variable (Vre

0 ,Vre
1 , . . . ,Vre

P−1, ) is 2q·P. For example, with q = 5 for
bit quantization and P = 6 pilot symbols, this would result in a lookup table with more
than 109 entries. This cardinality exceeds the afordable runtime and space complexities of
all available information bottleneck algorithms, as these algorithms typically have to handle
a dense matrix representation of p(x, y) that consists of |X ||Y| real numbers. Moreover,
the resulting lookup table would be prohibitively large.

In order to cope with the resulting complexity, a particularly useful feature of in-
formation bottleneck compression mappings is that they can be concatenated to reduce
the complexity. Such a concatenation is shown in an information bottleneck graph in the
upper part of Figure 7 for the considered channel estimation scheme for the pilot-based

323



Entropy 2022, 24, 972

forward channel estimation. As shown, the task of processing P quantized samples is split
into a series of P− 1 concatenated compression mappings, each of which processes two
inputs. This way, the space complexity of the component compression mappings that we
implement as lookup tables is drastically reduced to a concatenation of lookup tables with
22q + (P− 2)2qce+q entries, where qce denotes the number of bits needed to represent the
intermediate results ĥre

m from Figure 7. Please note that this number of bits is a design
choice, and it can be adjusted by the choice of the cardinality of the compression variable of
the information bottleneck algorithm that is used. For simplicity, all compression mappings
shall use the same output bit width qce such that all intermediate results ĥre

m and the final
output ĥre

FW are from the same set
{

0, 1, . . . , 2qce − 1
}

. With qce = 5 and P = 6 pilot symbols,
as considered before, the overall size of the lookup tables to implement the concatenated
scheme from Figure 7 is reduced from roughly 109 to 5120.

forward channel estimator:

vre
0 hre ĥre

0 hre ĥre
1

. . . hre ĥre
FW

vre
1 vre

2
. . . vre

P−1

p
(

ĥre
FW|vre

0 , vre
1 , . . . , vre

P−1

)

feedback channel estimator:

w̄re
3 w̄re

2 w̄re
1

ĥre
FW ĥre

FB ĥre
1 ĥre

0 w̄re
0

ĥre

hre hre hre

hre

p
(

ĥre
FB|w̄re

NFB−1, w̄re
NFB−2, . . . , w̄re

1 , w̄re
0

)

Figure 7. Information bottleneck graphs of the forward and feedback channel estimation schemes for
the information bottleneck receiver. The upper part of the figure shows the forward channel estimator
consisting of P− 1 two-input information bottleneck compression mappings. The lower part shows
the feedback channel estimator with a similar structure to process NFB = 4 inputs.

All compression mappings appearing inside the forward channel estimator from
Figure 7 preserve information on the same variable Hre. The design of the compression
mappings from Figure 7 requires feeding the joint distributions

p
(

hre, vre
0 , vre

1 |s
p
0 , sp

1

)
= p

(
hre, vre

0 |s
p
0

)
p
(

hre, vre
1 |s

p
1

) 1
p(hre)

(11)

324



Entropy 2022, 24, 972

and

p
(

hre, ĥre
m−1, vre

m+1|s
p
0 , sp

1 , . . . , sp
m+1

)
=

p
(

hre, ĥre
m−1|s

p
0 , sp

1 , . . . , sp
m

)
p
(

hre, vre
m+1|s

p
m+1

) 1
p(hre)

for m ≥ 1. (12)

to an information bottleneck algorithm.
One question that is still open is how to obtain the joint distributions p

(
hre, vre

m |sp
m

)

needed to evaluate Equations (11) and (12). Recall that hre and vre
m are quantization indices of

h̃re and ṽre
m , respectively. Hence, hre = fQ

(
h̃re) and vre

m = fQ(ṽre
m), where fQ(.) characterizes

the threshold decisions of the channel output quantizer. The quantizer fQ(.) for h̃re and
ṽre can also be described by p

(
hre|h̃re) and p(vre

m |ṽre
m). This allows expressing the joint

distribution p
(

hre, vre
m |sp

m

)
as

p(hre, vre
m |sp

m) =

+∞∫

−∞

+∞∫

−∞

p
(

h̃re, ṽre
m |sp

m

)
p
(
hre|h̃re)p(vre

m |ṽre
m)d h̃re d ṽre

m . (13)

In this integral, the factors p
(
hre|h̃re) and p(vre

m |ṽre
m) gather all the probability masses of the

continuous h̃re and ṽre
m , which are mapped onto the same pair (hre, vre

m) by application of the
channel output quantizer on these variables. Therefore, they determine the integration area
for a particular pair (hre, vre

m). The distribution p
(

h̃re, ṽre
m |sp

m

)
for the considered channel

model is a multivariate Gaussian distribution. Both components have a zero mean. As a
result, the multivariate Gaussian distribution p

(
h̃re, ṽre

m , |sp
m

)
is fully characterized by the

covariance matrix

CH̃re,Ṽre
m |Sp

m
=

σ2
h̃

2

[
1 sp

m
sp

m 1

]
+

σ2
ñ

2

[
0 0
0 1

]
. (14)

The integral from Equation (13) with the considered Gaussian distributions and covariance
matrices characterized by Equation (14) is easily solved numerically using the method
described in [62]. This allows one to obtain the joint distributions p(hre, vre

m |sp
m) and hence

construct the concatenated structure of information bottleneck compression mappings
from the top of Figure 7 using Equations (11) and (12). We apply the KL-means algorithm
from [57] to construct the proposed information bottleneck channel estimator, as this
algorithm can be highly parallelized and is very fast.

The design process of the information bottleneck channel estimator delivers the joint
distribution p

(
ĥre, hre

)
= p

(
hre|ĥre

)
p
(

ĥre
)

, which has to be used further to construct an
information bottleneck detection lookup table. Its design is explained in the next subsection.

A very similar concept of information bottleneck channel estimation can also be used
in the feedback iterations of the iterative information bottleneck receiver structure from
Figure 6 to implement a turbo-like channel estimation scheme. After decoding the LDPC
code, the receiver can identify the most reliable bit decisions ŝl and their corresponding
received samples wre

l .
Let wre

l , l ∈ {0, 1, . . . , NFB − 1} denote the quantized integer indices yre
k , which cor-

respond to the most reliable bit decisions in the decoded codeword. Moreover, let ŝl
denote the respective hard decision BPSK symbols corresponding to the respective decision
bits. The task of an information bottleneck feedback channel estimator is to extract the
information on hre from ŝl and wre

l . Please note that the transformation

w̄re
l =

{
wre

l ŝl = +1
2q − wre

l − 1 ŝl = −1.
(15)

325



Entropy 2022, 24, 972

undoes the influence of ŝl and makes all w̄re
l look like quantization indices received for the

transmitted symbol sl = +1 if the decision ŝl is correct.
The integers w̄re

l can be used in the feedback channel estimation scheme shown in
the bottom part of Figure 7. The design of the concatenated compression mappings is
completely equivalent to the one for the forward channel estimator above, with the
only difference being that one assumes the transmitted symbol to be sl = +1 due to the
transformation from Equation (15). In fact, this transformation is a simple way to make
the feedback channel estimation lookup tables independent of the symbol decision and
thus keep them minimal in size. However, we want to mention that this method only
works for BPSK modulation. Higher-order modulation schemes are not studied in this
article. The presented information bottleneck channel estimation could be implemented
for higher-order modulation schemes equivalenty, but this might also require feeding the
symbol decisions ŝl to the feedback channel estimation lookup tables.

The final compression mapping p(ĥre|ĥre
FW, ĥre

FB) combines the relevant information on
hre from the forward and feedback channel estimator lookup tables to finally deliver the
integer ĥre that is highly informative about hre. The obtained ĥre can be used for detection
in the next step.

2.3.2. Information Bottleneck Detection

In a conventional receiver with high precision, the obtained MMSE channel estimate ˆ̃h
from Equation (10) can be used for soft demodulation. The LLRs of the soft demodulator
are given by

Lch(sk) =
1

1 + 1
P+σ2

ñ/σ2
h̃

·
4 Re

{
ˆ̃h∗ r̃k

}

σ2
ñ

, (16)

where Re{.} denotes the real part of a complex number and .∗ denotes the conjugate
complex. Using these channel LLRs, it is easy to apply the LLR-based belief propagation
decoding algorithm in the conventional receiver at the top of Figure 6.

When the information bottleneck channel estimator from the preceding section is ap-
plied, it delivers the pair

(
ĥre, ĥim

)
of unsigned integers. Moreover, the quantizer delivers a

pair
(
yre

k , yim
k
)

for each symbol sk. The task of an information bottleneck demodulator equiv-

alent for the considered channel is extracting relevant information on sk from
(

ĥre, ĥim
)

and
(
yre

k , yim
k
)
.

Figure 8 shows the information bottleneck graph performing this task. In this graph,
one first successively combines ĥre, yre

k and ĥim, yim
k to obtain tre

k and tim
k . The compression

mappings p
(

tre
k |ĥre, yre

k

)
and p

(
tim
k |ĥim, yim

k

)
are identical, as their inputs are identically

distributed. To design p
(

tre
k |ĥre, yre

k

)
with an information bottleneck algorithm, one needs

the joint probability distribution

p
(

sk, ĥre, yre
k

)
=

2q−1

∑
hre=0

p(hre, yre
k |sk)

p
(

hre, ĥre
)

p(hre)︸ ︷︷ ︸
p(ĥre|hre)

p(sk). (17)

In Equation (17), the distributions p
(

hre, ĥre
)

and p(hre) are known from the design

of the channel estimation lookup table. The distribution p
(
hre, yre

k |sk
)

is again an integral of
a multivariate Gaussian distribution, where

p(hre, yre
k |sk) =

+∞∫

−∞

+∞∫

−∞

p
(
h̃re, ỹre

k |sk
)

p
(
hre|h̃re)p(yre

k |ỹre
k )d h̃re d ỹre

k . (18)

326



Entropy 2022, 24, 972

Again, the integral can be solved using the method from [62]. The required covariance
matrix is obtained analogously with Equation (14).

ĥre

sk tre
k

yre
k

sk tk

ĥim

sk tim
k

yim
k

p
(

tk|ĥre, yre
k , ĥim, yim

k

)

Figure 8. Information bottleneck graph of the detection scheme for the information bottleneck receiver.
The detection scheme first extracts information on sk from (yre

k , ĥre) and (yim
k , ĥim) independently.

Afterwards, it yields a an integer output tk from tre
k and tim

k that is informative about sk using the
mapping p(tk|tre

k , tim
k ).

An important note is that the design of the final concatenated information bottle-
neck compression mapping p(tk|tre

k , tim
k ) inherently delivers the distributions p(sk|tk) and

p(tk) and, therefore, p(sk, tk). Reviewing Figure 4, the concatenation of the transmitter,
channel, quantizer and the proposed concatenation of information bottleneck compression
mappings therefore corresponds to a discrete input, discrete output transmission scheme.
This discrete input, discrete output transmission scheme delivers tk ∈ {0, 1, . . . , 2qdet − 1}
for each transmitted modulation symbol sk at the receiving end, where 2qdet

is the output
cardinality of the information bottleneck algorithm used to design p(tk|tre

k , tim
k ). The sta-

tistical properties of (sk, tk) and the preserved relevant mutual information I(Sk;Tk) are
completely determined by p(sk, tk), which describes a discrete source and channel model
for the considered data transmission scheme. This model is needed to construct the iterative
information bottleneck LDPC decoder from Figure 6. The design of this LDPC decoder is
sketched in the following section. More details can be found in [18,61].

2.3.3. Information Bottleneck LDPC Decoder Design

As briefly mentioned above, the design of an information bottleneck LDPC decoder
requires knowledge of the joint probability distribution p(sk, tk). Luckily, this distribution
is delivered inherently by the information bottleneck algorithm used to design the detection
scheme from the previous section.

This probability distribution is iteratively processed in a discretized density evolu-
tion algorithm [12,18,61] to construct a coarsely quantized information bottleneck LDPC
decoder. The density evolution algorithm is needed to determine the input distributions of
the information bottleneck algorithms used to design the lookup tables that implement the
variable and the check node operations of a message passing LDPC decoder in the subse-
quent decoder iterations. The lookup tables only process and deliver integer indices and
therefore are fundamentally different in their operation than conventional LDPC decoders,
which process real-valued LLRs.

Figure 9 gives an overview of the notation used to describe the design of the infor-
mation bottleneck LDPC decoder. We consider a regular LDPC code with a variable node
degree dv and check node degree dc. In decoder iteration i, the variable nodes pass quan-

327



Entropy 2022, 24, 972

tized messages (i.e., unsigned integers y(i)k ) to the check nodes. The check nodes generate

outgoing integer messages t(i)c→v for all their connected edges from these incoming messages.
This process is illustrated for one particular target edge at the top of Figure 9. The check
node operation is designed such that the mutual information shared between the outgoing
message and the codeword bit that this message represents in the LDPC codeword is
maximized with the information bottleneck method. This codeword bit is denoted by x in
the upper part of Figure 9. The other dc − 1 codeword bits connected to the check node are
denoted by b0, b1, . . . , bdc−2.

check nodes:

b0 b1 bdc−2 x. . .

. . .

. . . . . . . . . . . .

. . .

y(i)0

y(i)1
y(i)dc−2

t(i)c→v

variable nodes:

x. . . . . .

. . .. . .

t(i)v→c

y(i)1 y(i)dv−1
. . .

y0 from quantizer

Figure 9. Message generation of a check node and a variable node in an iterative information
bottleneck LDPC decoder. The nodes generate integer messages for their connected edges.

As the variable nodes pass the received messages from the channel to the check nodes
in the first decoding iteration, in principle, the check node operation could be designed in a
straightforward manner by feeding the joint probability distribution

p
(

x, y(i)0 , y(i)1 , . . . , y(i)dc−2

)
= ∑

(b0,b1,...,bdc−2):
x=b0⊕b1⊕...⊕bdc−2

dc−2

∏
k=0

p(bk, yk) (19)

to an information bottleneck algorithm. This approach, however, suffers from intractable
complexity, as the number of input configurations (y(i)0 , y(i)1 , . . . , y(i)dc−2) grows exponentially
with the node degree dc. As a result, the authors of [12] proposed splitting the check node
operation into a series of concatenated two-input operations, exactly as was performed
in Section 2.3.1 for the channel estimation scheme to reduce the complexity. In this way,
a series of concatenated two-input lookup tables can be designed with an information

328



Entropy 2022, 24, 972

bottleneck algorithm that processes unsigned integers and aims to maximize the preserved
relevant information I(X;T(i)

c→v).
The information bottleneck algorithm used for the design of the check node operation

finally delivers p(x, t(i)c→v). Based on this distribution, a very similar process can be used to
design the variable node operation depicted in the bottom part of Figure 9. The variable
nodes create outgoing messages t(i)v→c that shall be highly informative of their corresponding
codeword bit x (i.e., I(X;T(i)

v→c)→ max). To obtain extrinsic information on the codeword
bit x, the variable nodes process dv − 1 messages from the connected check nodes and a
message y0 from the channel. In the considered data transmission scheme, the channel
messages correspond to tk ∈ {0, 1, . . . , 2qce − 1} from the detection scheme described in
Section 2.3.2. As a result, the design of the variable node operation with the information
bottleneck method processes the joint probability distribution p(x, y0), which is equivalent
to p(sk, tk) and p(x, t(i)c→v) from the design process of the check node operation. For the
equations needed to obtain all involved joint probability distributions, the reader is asked
to refer to [18,61]. Most importantly, the information bottleneck algorithm applied to the
variable node design delivers p(x, t(i)v→c). This distribution has to be processed to design
the check node operation for the next decoder iteration i + 1, which will in turn deliver
p(x, t(i+1)

c→v ) for the check nodes in the next decoding iteration. This naturally suggests an
iterative algorithm to determine lookup tables used as node operations in an information
bottleneck LDPC decoder. This algorithm is iterated for a desired number of imax iterations
of the constructed LDPC decoder, and the lookup tables constructed for the variable and
the check node operations in each iteration of the decoder are stored.

Finally, an important note on the proposed receiver design shall be made. Obviously,
the joint probability distributions that are processed for the decoder design and also
for the channel estimation and detection scheme studied before depend on the channel
conditions. As a result, the reader might expect that the lookup tables designed with
the information bottleneck method need to be adjusted to the signal-to-noise ratio or,
equivalently, to the current Eb/N0 on the channel. As the design process of the detection,
channel estimation and especially the LDPC decoder is computationally quite complex
and involves numerous information bottleneck algorithms, this would clearly question the
practical use of the proposed receiver design. However, interestingly, the proposed receiver
design provides excellent performance, even with information bottleneck lookup tables
that are used being mismatched to the actual channel conditions. This allows conducting
the entire receiver design process offline to store the resulting lookup tables and to use them
in a receiver with coarse quantization and very simple operations only. We will analyze the
performance of the resulting receiver and compare it to several reference receivers in the
following to prove our statement on excellent performance.

2.3.4. Comparison of Iterative Receiver Performances

In this section, we investigate the bit error rate performance of the proposed infor-
mation bottleneck receiver and compare it to the one of several reference receivers. As
mentioned above, the proposed information bottleneck receiver from Figure 6 was de-
signed for a manually chosen design Eb/N0 and was not matched to the actual Eb/N0 on
the channel in the results presented next. The lookup tables were constructed offline with
the information bottleneck method.

The bit error rate performances of the considered receivers are compared in Figure 10
for a number of iFB = 0 and iFB = 5 feedback iterations of the decision feedback channel
estimation. The applied LDPC code was a length of 8000 (dv, dc) = (3, 6) regular LDPC
code from [63]. In the studied scenario, we considered a block fading channel that was
constant for B = 35 symbol durations before a new independent channel coefficient was
drawn, which weighted the transmitted symbols according to Equation (9). The first P = 3
symbols transmitted for each of these blocks were the known pilot symbols for the initial
channel estimation.

329



Entropy 2022, 24, 972

The quantization bit widths of the information bottleneck receiver were chosen as
follows. We used q = 5 bits per sample for channel output quantization in the real and
imaginary parts of the received signal, respectively, qce = 8 bits for channel estimation and
qdet = 5 bits for the detection lookup table.

0 1 2 3 4 5 6 7

10−6

10−5

10−4

10−3

10−2

10−1

100

iFB = 0

iFB = 5

Eb/N0 in dB

bi
te

rr
or

ra
te

double-precision,
conventional receiver, iFB = 5

(q, qce, qdet) = (5, 8, 5) bit,
information bottleneck, iFB = 5
8 bit fixed-point precision,
conventional receiver, iFB = 5
double-precision,
conventional receiver, iFB = 0

(q, qce, qdet) = (5, 8, 5) bit,
information bottleneck, iFB = 0

Figure 10. Bit error rates of different quantized receivers and the conventional receiver from Figure 6,
which did not suffer from a quantization loss at all. The quantized information bottleneck receiver
with q = 5 bit channel output quantization, qce = 8 bit channel estimation and qdet = 5 bit detection
and LDPC decoding met the performance of the double-precision reference receiver for iFB = 5
feedback iterations.

We also used qdet = 5 bit messages in the information bottleneck LDPC decoder. The
decoder applied imax = 25 iterations in each of the outer feedback iterations for the channel
estimation. In each outer iteration, the NFB = 20 most reliable bit decisions from this
decoder in each block were fed to the feedback channel estimator illustrated in Figure 7
to supplement the channel estimation. The red curves in Figure 10 show the bit error rate
performance of the proposed information bottleneck receiver with these parameters for
iFB = 0 and iFB = 5 outer iterations of the decision feedback loop for channel estimation. A
comparison of the receiver’s performance for iFB = 0 and iFB = 5 outer iterations of the
channel estimation feedback loop clearly illustrates the gain resulting from improving the
initial channel estimate based on the decision feedback from the channel decoder.

The blue curves in Figure 10 correspond to the conventional receiver chain from
Figure 6 with the respective numbers of feedback iterations iFB = 0 and iFB = 5 and also
used iFB = 25 iterations of the conventional belief propagation LDPC decoder. We want to
stress again that this receiver does not suffer from any mentionable quantization loss.

Despite that, it can clearly be observed that the performance of the quantized in-
formation bottleneck receiver chain that only processed unsigned integers and replaced
all conventional arithmetical operations in the signal processing algorithms with simple
lookup operations for iFB = 5 iterations was tremendously close to the one of the conven-
tional reference receiver. It is also observable that without feedback iterations (i.e., iFB = 0),
the loss of the information bottleneck receiver was slightly higher. The reason for this is
that all of the lookup tables in the information bottleneck receiver were designed only
for a single design Eb/N0, which we optimized to yield the best performance for the case

330



Entropy 2022, 24, 972

with iFB = 5 feedback iterations. It is, however, possible to also tune the design Eb/N0 to
minimize the performance gap with respect to the non-quantized receiver without feedback
iterations to achieve a negligible loss over Eb/N0 for iFB = 0 [61].

The numbers of bits (q, qce, qdet) = (5, 8, 5) used in the information bottleneck signal
processing units were determined by carefully analyzing which settings resulted in the
optimum performance. While for the detection and decoding stage we found qdet = 5
bit processing sufficient, during our investigations, we noted that the channel estimation
appeared to require a larger bit width of qce = 8 bits to perform that close to the non-
quantized reference system. A possible intuitive explanation is that other than for all the
detection and decoding parts of the receiver, the relevant variable of the channel estimator
Hre = fQ(H̃

re) is not binary. Instead, with a q-bit channel output quantizer fQ(.) in place,
it can take 2q different values. This intuitively suggests that in order to achieve close-to-
optimum performance, the channel estimation stage requires a larger bit width to preserve
the relevant information.

As another reference, the bit error rate of an 8-bit fixed-point implementation of the
conventional receiver is included in Figure 10 for iFB = 5 feedback iterations in black. This
receiver used the Q5.3 fixed-point format in the detection and channel estimation stages
and the Q4.4 fixed-point format for the messages in the belief propagation decoder. In this
notation, Qm.n denotes using m bits for the integer part and n bits for the fractional part of
the processed fixed-point numbers. In order to not disadvantage the conventional receiver
chain, all other possible combinations of 8-bit fixed-point formats were also tested, but the
chosen selection offered the best performance. The 8-bit fixed-point conventional receiver
was clearly outperformed by the information bottleneck receiver. This is particularly inter-
esting because the information bottleneck receiver only used 8-bit integers in its channel
estimation stage and shorter 5-bit integers in all other detection and decoding stages.

So far, Figure 10 shows that the performance of the proposed receiver was very close to
that of the conventional receiver with double-precision if iFB = 5 feedback iterations were
performed. It is, however, still unclear whether or not the same information bottleneck
receiver suffers from performance degradation if fewer feedback iterations are performed.

As a result, Figure 11 shows the bit error rates of both receivers for all iFB ∈ {0, 1, 2, 3, 4, 5}.
The figure illustrates that the performance of the information bottleneck receiver can compete
with the double-precision conventional receiver for all investigated numbers of feedback itera-
tions iFB. The figure also indicates that the gains of the feedback loop were very significant in the
first three feedback iterations for both receivers and then became less significant. It was found
that using more than five feedback iterations hardly improved the bit error rate performance of
any investigated receiver.

As the most important result so far, we can summarize that the information bottle-
neck design of the proposed receiver yielded a quantized information bottleneck receiver
with very simple and homogenous operations that could deliver performance practically
identical to that of a conventional receiver with double-precision arithmetic. This receiver
employs advanced signal processing concepts, such as decision feedback for quantized
channel estimation and quantized LDPC decoding. All of the signal processing operations
used in the receiver were designed using the same principle of maximizing the flow of
relevant information through the quantized signal processing operations of the receiver
with the information bottleneck method.

331



Entropy 2022, 24, 972

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
10−6

10−5

10−4

10−3

10−2

10−1

100

(q, qce, qdet) = (5, 8, 5) bit,
information bottleneck, mismatched
double-precision conventional receiver

Eb/N0 in dB

bi
te

rr
or

ra
te

iFB = 0
iFB = 1
iFB = 2
iFB = 3
iFB = 4
iFB = 5

Figure 11. Bit error rates of different receiver implementations as a function of the number iFB of
feedback iterations. The quantized information bottleneck receiver with q = 5-bit channel output
quantization, qce = 8-bit channel estimation and qdet = 5-bit detection and LDPC decoding offered
performance similar to the double-precision conventional receiver for all investigated iFB.

3. Parameter Learning of Trainable Functions to Maximize the Relevant Information

In the information bottleneck receiver presented above, as we have often emphasized,
all signal processing operations were implemented as lookup tables. As mentioned in the
introduction, however, there exist several other approaches to implementing information
bottleneck signal processing units in the literature, especially in the context of LDPC
decoding. In this section, our goal is to provide an overview of the lookup table approach,
the computational domain methods used in [24,25,30,31] and the neural network approach
from [28,29]. All can be seen as mappings t = fθ(y) implied by a trainable function fθ(y),
with parameters θ that are trained to maximize the preserved relevant information I(X;T).

This view on information bottleneck signal processing is depicted in Figure 12 and
was introduced previously in [64,65].

signal
processing
t = fθ(y)

y ∈ Y t ∈ T

relevant
variable X,

realizations x

observed
variable Y,

realizations y

I(X;Y)

trainable parameters
θ

max
θ

I(X;T)

Figure 12. General illustration of an information bottleneck signal processing unit. The signal
processing unit consists of a trainable function with parameters θ that can be learned to maximize
I(X;T).

332



Entropy 2022, 24, 972

3.1. Lookup Tables

As mentioned in Section 2.1, it is intuitive that any deterministic compression mapping
p(t|y) for discrete t and y can be implemented in a lookup table. For that purpose, one just
has to store the respective t ∈ T for all possible y ∈ Y . Of course, this also holds if the
realizations of Y are random vectors y = [y0, y1, . . . , yN−1].

For simplicity, we assume that yn ∈ {0, 1, . . . , |Y|n − 1} in this section (i.e., the yn in
vector y are unsigned integers). Please note that the elements of the event space are totally
irrelevant for the mutual information I(X;Y), as this mutual information only depends
on the probabilities implied by p(x, y), p(x) and p(y). We can easily understand a lookup
table holding the t for each possible y as a trainable function fθ(y) with parameters θ.

Consider a software implementation of a lookup table consisting of a row vector
θ = [θ0, θ1, . . . , θ|Y|−1]. This vector holds the outcome t for every possible input vector y
at a certain position that is termed the address. To obtain the output t, the input y has to
be mapped onto the address of the corresponding output t in the vector. Let the function
implementing this address transformation be denoted by ξ(y). It is not important which
address transformation ξ(y) is used as long as it maps the input vector y onto the address
of the corresponding t ∈ T uniquely. Then, the lookup table delivers t = fθ(y) = θξ(y) by
just accessing the vector θ at the calculated address.

With this quite formal description of a simple lookup table, it is clear that the problem
of maximizing the preserved relevant information I(X;T) with t ∈ T and y ∈ Y is formally
equivalent to determining a vector of the optimum discrete parameters:

θIB
β→∞ = arg max

θ
I(X; fθ(Y)). (20)

Therefore, we can summarize that any deterministic mapping of y onto t that is imple-
mented in a lookup table and determined to maximize the preserved relevant information
with an information bottleneck algorithm can equivalently be interpreted as a trainable
function fθ(y) with a maximum of |Y| discrete parameters θξ(y) ∈ T . The number of
parameters |Y| is identical to all possible input configurations y ∈ Y . This allows rep-
resenting arbitrary mappings in this setup and has the consequence that a lookup table
can implement every possible input/output relation for discrete y and t, including one
that maximizes I(X;T) globally. This holds independent of the probability distribution
p(x, y). Yet, we note that finding an optimum mapping with the available information
bottleneck algorithms is not guaranteed. However, for discrete y ∈ Y and discrete t ∈ T ,
we can conclude that no other mapping can offer more flexibility than a lookup table.
Therefore, in theory, a lookup table can be seen as an optimum choice in terms of providing
the possibility to maximize I(X; fθ(Y)) with properly tuned parameters θ. The way to
learn these parameters in the receiver presented above was feeding the joint probability
distributions p(x, y) to the information bottleneck algorithms.

Unfortunately, however, problems arise if the number N of scalar inputs to be pro-
cessed by a lookup table is large, as was the case, for example, for the node operations in the
information bottleneck LDPC decoders from Section 2.3.3. These operations have to process
a huge number of scalar input variables, and the number of possible input configurations
of a lookup table scales exponentially with the number of scalar inputs. However, we
have seen that in the studied cases, it was possible to split the signal processing operations
designed as information bottleneck lookup tables into concatenated two-input tables to
reduce the complexity. This, however, results in a concatenation of several lossy two-input
lookup tables. Hence, the authors of [24,25] argued reasonably that such a splitting proce-
dure likely results in losses of the preserved relevant information in comparison with an
input/output mapping that can process all scalar inputs consolidated in the input vector y
at once.

333



Entropy 2022, 24, 972

3.2. Computational Domain Technique

The authors of [24,25] proposed an interesting idea to implement check and variable
node operations of LDPC decoders that, just as with the information bottleneck approaches
based on lookup tables described above, aims at maximizing the preserved relevant in-
formation under compression. Their approach is called mutual information-maximizing
quantized belief propagation decoding. We briefly recall this approach that is illustrated in
Figure 13 in the following.

Φ(.) Qθ(.) t ∈ {0, 1, . . . , 2q − 1}

φ(y0)

φ(y1)

...

φ(yN−1)

y0

y1

yN−1

a ∈ A

t = fθ(y)yk ∈ {0, 1, . . . , 2q − 1}

Figure 13. Illustration of the computational domain approach for information bottleneck-like LDPC
decoding from [24,25]. Figure adapted from [24,25] with minor adaptions of the notation.

The authors of [24,25] distinguished between variable and check node operations in
an LDPC decoder. Here, however, we study a general input/output relation that maps
an incoming vector y = [y0, y1, . . . , yN−1] onto an outgoing t. For simplicity, we assume
the most practical approach of all yn and t to be from the same set {0, 1, . . . , 2q − 1} of
q-bit unsigned integers. The computational domain approach consists of three subsequent
steps [24,25]:

1. Use a predefined reconstruction function φ(.) to transfer the incoming messages yn to
numbers φ(yn) in a computational domain D;

2. Use a function Φ : DN −→ A to process the numbers in the computational domain
and to map them onto a single number a ∈ A;

3. Apply a scalar quantizer Qθ(.) with 2q − 1 ordered thresholds θ = [θ0, θ1, . . . , θ2q−2]
on a that quantizes a ∈ A back to the set {0, 1, . . . , 2q − 1}.
In [24,25], certain reconstruction functions for the check and variable nodes of LDPC

decoders and also reasonable functions Φ(.) for these applications, which we do not recall
here in detail for brevity, are proposed.

The idea of maximizing the preserved relevant mutual information in the information
bottleneck sense is applied in the design of the scalar quantizer Qθ(.) in the computational
domain approach from [24,25]. The thresholds θ = [θ0, θ1, . . . , θ2q−2] of this quantizer are
chosen such that I(X;T) is maximized.

Of course, one can understand the quantization thresholds stored in vector θ =
[θ0, θ1, . . . , θ2q−2] as parameters of a function implementing the node operation

t = fθ(y) = Qθ(Φ(φ(y0), φ(y1), . . . , φ(yN−1))), (21)

334



Entropy 2022, 24, 972

such that the design of the node operation ends up in the exact same problem formulation
as that given in Equation (20) (that is, the learning parameters θ of a trainable function
fθ(y) such that I(X; fθ(Y)) −→ max).

The major difference is that the number of parameters that are tuned to maximize
I(X; fθ(Y)) can be drastically reduced in the computational domain approach with respect
to the lookup table. Essentially, only 2q − 1 quantization thresholds instead of 2qN entries
of a lookup table need to be learned and optimized to maximize I(X;T). Interestingly,
the computational domain approach employs arithmetical operations in the function Φ(.).
In return, it needs much fewer parameters to preserve significant amounts of I(X;T) than
the lookup table approach. We note, however, that the choice of the reconstruction function
φ(.) and the function Φ(.) as well as their abilities to preserve significant amounts of I(X;T)
are problem-specific and depend on p(x, y).

It has to be appreciated that the proposed method from [24,25] offers excellent bit error
rate performance for LDPC decoding.

To illustrate this fact, Figure 14 compares the bit error rate performances of the compu-
tational domain approach and two lookup table-based information bottleneck decoders for
the (dv, dc) = (3, 6) regular LDPC code that was already used in Section 2.3.4. For these
simulations, all quantized decoders exchanged q = 4-bit messages in the iterative message
passing process for their respective decoding. The bit width used internally to represent
a ∈ A in the computational domain decoders was 10 bits for the check nodes and variable
nodes. The shown results for the computational domain decoder were adopted from [24].
The bit error rate curves refer to data transmission with BPSK modulation over an additive
white Gaussian noise channel. The number of decoder iterations was imax = 50 for all
investigated decoders.

The relatively small node degrees of the applied code allow constructing lookup
table-based information bottleneck decoders with and without splitting the node operation
into two-input operations. We want to mention that the decoder without splitting has
an impractically large memory demand but shall be used as a benchmark here. For the
relatively small node degrees of the (3, 6) regular LDPC code used here, the lookup tables
in the decoder without splitting already had more than 300 million entries [28].

As can be seen, the computational domain decoder performed just as well as a lookup
table-based decoder without internal splitting of the node operations. Both quantized
decoders effectively reached the performance of the non-quantized belief propagation
decoder with double-precision up to a negligible gap over Eb/N0.

As can also be seen, splitting the node operation of the information bottleneck decoder
into a series of two-input operations offered slightly worse performance but yielded much
smaller lookup tables in return. The number of lookup table entries used for this decoder
was just 384,000 and therefore drastically reduced to a tractable number in comparison
with the lookup table-based decoder without two-input splitting of the node operations.

Again, we want to stress here that the information bottleneck decoders and the compu-
tational domain decoder [24] were entirely constructed offline and used mismatched to the
Eb/N0 on the channel. For reference, the bit error rate of the well-known min-sum decoder
with double-precision is also shown in Figure 14. This decoder was outperformed by all
decoders designed with the information bottleneck principle of maximizing the preserved
relevant information.

Finally, we note that the computational domain approach is well suited for LDPC
decoding. Thus far, to the best of our knowledge, studies of computational domain
approaches that maximize the relevant information for other applications of information
bottleneck signal processing such as the channel estimation studied in Section 2.3.1, cannot
be found in the literature.

335



Entropy 2022, 24, 972

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.210−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

bi
te

rr
or

ra
te

double-precision,
belief propagation
computational domain,
4 bit messages, 10 bit internal
information bottleneck,
4 bit messages, no splitting
information bottleneck,
4 bit messages, with splitting
double-precision,
min-sum

Figure 14. Bit error rates of several LDPC decoders for data transmission with BPSK over an additive
white Gaussian noise channel. The applied code was a (3, 6) regular LDPC code. All decoders
conducted imax = 50 decoding iterations. The computational domain approach refers to [24].

3.3. Neural Networks

Another idea to implement information bottleneck signal processing for LDPC de-
coding was introduced in [28]. In order to get rid of the need for implementing very large
lookup tables to process the incoming messages of a check or variable node in one shot
(i.e., without splitting the node operation), neural networks were trained to maximize the
preserved relevant information. Learning the parameters of such neural networks was con-
ducted in a supervised manner in [28] first. To accomplish this, as a first step, lookup tables
that did not use two-input table splitting were constructed with the information bottleneck
method for the variable and check node operations. Afterwards, different neural network
structures were trained to mimic the resulting node operations. The key is, of course, that
the trained networks have much fewer parameters θ than there are entries in the original
lookup tables.

We want to recall a certain neural network structure proposed to implement the node
operations in [28] here. This neural network directly inputs the binary representations of the
integer messages exchanged to implement the node operations of the check or the variable
nodes. Moreover, this network is iteration-aware [28], meaning that the decoder iteration
i is used as an additional input to the network together with the incoming messages of a
node. In this way, only one network for the check nodes and one network for the variable
nodes are required to implement all node operations for all iterations of the decoder.

For the (3, 6) regular LDPC code considered in the prior section, this architecture
results in a neural network-based decoder with 25,564 parameters of the involved neural
networks. Recall again that the lookup table-based information bottleneck decoder without
split node operations required more than 300 million lookup table entries, and the one with
splitting required 384,000 lookup table entries (for more quantitative details, see Table I
from [28]).

Figure 15 shows the bit error rate results of the neural network method for implemen-
tation of the node operations from [28]. The simulation setup, the used LDPC code and
the number of decoding iterations were the same as those for the computational domain
approach from the prior section.

336



Entropy 2022, 24, 972

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.210−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

bi
te

rr
or

ra
te

double-precision,
belief propagation
computational domain,
4 bit messages, 10 bit internal
information bottleneck,
4 bit messages, no splitting
binary input neural network,
4 bit messages
double-precision,
min-sum

Figure 15. Bit error rates of several LDPC decoders for data transmission with BPSK over an additive
white Gaussian noise channel. The applied code was a (3, 6) regular LDPC code. All decoders
conducted imax = 50 decoding iterations. The computational domain approach refers to [24].

As can clearly be seen, the neural network implementation of the node operations
achieved a practically identical performance to the lookup table-based information bottle-
neck decoder without split node operations as well as the computational domain decoder
studied before. All these decoders approach the performance of the double-precision belief
propagation decoder with quite different approaches to implement the node operations
which, however, all are motivated by the information bottleneck idea of maximizing the
preserved relevant information under quantization.

The supervised learning approach to train a neural network that shall maximize I(X;T)
presented in [28] still requires designing huge lookup tables used to generate the training
data as an intermediate step. Hence, the idea was also extended to unsupervised learning
in [29] such that the parameters of the neural networks involved were directly trained to
maximize the preserved relevant information with standard gradient methods that are
commonly used to train the parameters of neural networks. This eliminates the interme-
diate step of designing lookup tables with impractical sizes for decoder implementation.
Moreover, it directly leads back to the problem formulation from Equation (20), which
again illustrates that this neural network-based approach of information bottleneck signal
processing can also be understood as the learning parameters of a trainable function that
shall maximize the preserved relevant information.

However, if the number N of scalar inputs consolidated in the input vector y is large,
representing p(x, y) in closed form to calculate p(x, t) and from that I(X;T) is also infeasible.
As a way out, a number of samples (x, y) can be used to determine the corresponding
t = fθ(y) for all samples and, from that, estimate p(x, t) and I(X;T).

Finally, we want to mention that obtaining an accurate estimate of I(X;T) in this
unsupervised learning procedure typically requires a vast amount of samples (x, y) if the
number of scalar inputs consolidated in y is large. This problem is well known in the
machine learning community and often referred to as the curse of dimensionality. However,
this number of samples only influences the construction complexity of the node operations
in the LDPC decoder but not their implementation complexity.

337



Entropy 2022, 24, 972

3.4. Further Discussion, Other Approaches and Future Work

The discussion of the lookup table approach, the computational domain approach
and the neural network approach to information bottleneck signal processing reveals the
key principles of information bottleneck signal processing. These are choosing appropriate
functions fθ(y) with trainable parameters θ and determining the values of these parameters
that maximize the relevant information. The functions used should only use a small number
of simple arithmetical operations, and the number of parameters should also be small for
complexity reasons.

As was discussed above, lookup tables have strengths regarding flexibility, as for dis-
crete inputs y and discrete outputs t, they can implement arbitrary input/output relations
t = fθ(y). However, they often need too many parameters if the number of inputs is large.
The studied computational domain approach requires much fewer parameters but needs a
sophisticated choice for the reconstruction function φ(.) and the function Φ(.) for the signal
processing problem of interest, (e.g., LDPC decoding). Neural network approaches offer
an almost endless choice of network architectures. These are determined by the number
of layers, the types of the layers and their respective activation functions. All these as-
pects influence their implementation complexity and the number of parameters. However,
neural networks enable realizing almost arbitrary mappings with proper architectures
and a reasonable number of parameters. Moreover, they can be trained efficiently using
gradient-based algorithms.

In future work, it will be interesting to further study flexible, trainable functions for
information bottleneck signal processing units. To illustrate that many more options exist,
we briefly mention a quite different approach from [64,65] as an example. This approach is
based on efficient nearest neighbor search algorithms in graphs. These search algorithms
are used to implement trainable functions fθ(y) that aim to maximize I(X;T) in [64,65].

The mappings t = fθ(y) in [64,65] use a small number of distance calculations between
the incoming vector y and some trained parameter vectors θt to determine the system
output t such that I(X;T)→ max. An exemplary nearest neighbor search is illustrated in
Figure 16.

θ0

θ1

θ2

θ3
θ4

θ5

θ6
θ7

y
minimum distance

d(y, θ7)⇒ t = 7

Figure 16. Illustration of a mapping t = fθ(y) based on the nearest neighbor search. The output t is
the index of the nearest neighbor θt of y. It can be found by using graph-based algorithms efficiently.

In the figure, the parameters θ = [θ0, θ1, . . . , θ7] reflect the positions of the points
labeled θt in the two-dimensional plain. In addition, an exemplary two-dimensional input
vector y is shown as a red dot. The outcome of the operation t = fθ(y) is the integer index
t of an approximate or exact nearest neighbor θt of the input vector y under some arbitrary
distance measure d(y, θt). In Figure 16, the distance is the Euclidean distance, and the exact
nearest neighbor is considered for illustration purposes. Please note that it is not required
to calculate all possible distances d(y, θt) to determine the system output t. Instead, either
an exact or approximate nearest neighbor search using very efficient search algorithms
in graph structures of the parameter vectors θt can be applied [64,65]. The parameters
involved in nearest neighbor search-based mappings were trained using genetic algorithms
in [64,65]. Genetic algorithms are parameter optimization algorithms which are inspired by
the natural evolution of the species [66].

338



Entropy 2022, 24, 972

Clearly, this realization of a mapping t = fθ(y), which aims to maximize I(X;T),
differs a lot from the lookup table-based method, the computational domain approach and
also the neural network method studied above. Yet, the results from [64,65] prove it to be
quite powerful in terms of the preservation of I(X;T), with few parameters for distance-
based quantization and demodulation in communication receivers. This illustrates that
there is a lot of potential in finding different flexible and simple trainable functions fθ(y)
to design information bottleneck signal processing units for different signal processing
problems in the future. In addition, efficient training of the parameters involved offers
interesting research directions.

4. Conclusions

In this article, we first gave an overview of the information bottleneck method and
explained how it can be linked to the fundamental task of a digital communication receiver.
The application of the information bottleneck method for receiver-side signal processing
in this context effectively allows building quantized signal processing units that aim to
maximize the relevant information that flows through them. This concept is fundamentally
different from conventional quantized signal processing approaches, which typically aim to
minimize an expected error measure, such as the mean squared error. Based on the principle
of maximizing the preserved relevant information under quantization, we presented and
investigated an iterative receiver structure for a frequency-flat fading channel that employs
advanced signal processing concepts for iterative LDPC decoding, decision feedback-
aided channel estimation and detection. All signal processing units in this receiver were
designed using the information bottleneck principle of maximizing the preserved relevant
information under quantization. The corresponding signal processing operations applied in
the constructed receiver were implemented as static lookup tables that were designed offline
with the information bottleneck method. Despite this fact, the designed receiver did not
suffer from any mentionable performance degradation in comparison with a conventional
receiver with double-precision signal processing and belief propagation decoding.

After having studied the fundamental idea and the lookup table-based implementa-
tion of information bottleneck signal processing units in the receiver implementation, other
methods for learning and implementing mutual information-maximizing signal processing
units for LDPC decoders were also recalled from the literature and investigated. Our main
conclusion is that the considered approaches to information bottleneck signal processing,
including the one based on lookup tables, effectively aim to learn the parameters θ of
trainable functions fθ(y) that are tuned to maximize the preserved relevant information
I(X; fθ(Y)) under a constraint for the cardinality of the value set of fθ(y). We note that the
ways to learn the respective parameters differ depending on the kind of function that is
designed to preserve the relevant information. While the lookup table based approaches
typically employ information bottleneck algorithms, the computational domain approach
from [24,25] uses a quantizer design algorithm to determine the optimum quantization
thresholds. The neural network-based approaches from [28,29] mimic lookup tables or di-
rectly use gradient-based algorithms to maximize the preserved relevant information. Even
more ideas that use nearest neighbor search algorithms to implement information bottle-
neck signal processing units and genetic algorithms to tune their parameters were proposed
in the literature [64,65]. Finally, what all these approaches have in common is the learning of
trainable parameters to maximize the preserved relevant information under quantization.

A lot of very interesting open research questions on information bottleneck signal
processing arise from the problem of finding powerful and, at the same time, simple
trainable functions for different signal processing applications that allow preserving huge
amounts of relevant information. Moreover, exploring the methods for efficient training
of the involved parameters, such as using genetic algorithms or gradient-based schemes,
is interesting.

339



Entropy 2022, 24, 972

Author Contributions: Conceptualization, J.L., G.B. and M.S.; methodology, J.L. and M.S.; software,
J.L. and M.S.; validation, J.L., G.B. and M.S.; formal analysis, J.L., G.B. and M.S.; investigation, J.L.,
G.B. and M.S.; resources, J.L.; writing—original draft preparation, J.L.; writing—review and editing,
J.L., G.B. and M.S.; visualization, J.L., G.B. and M.S.; supervision, G.B.; project administration, G.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the 37th Allerton Conference on

Communication and Computation, Monticello, NY, USA, 22–24 September 1999; 368–377.
3. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Dissertation, Hebrew University, Jerusalem, Israel, 2002.
4. Slonim, N.; Somerville, R.; Tishby, N.; Lahav, O. Objective classification of galaxy spectra using the information bottleneck method.

Mon. Not. R. Astron. Soc. 2001, 323, 270–284. [CrossRef]
5. Bardera, A.; Rigau, J.; Boada, I.; Feixas, M.; Sbert, M. Image segmentation using information bottleneck method. IEEE Trans. Image

Process. 2009, 18, 1601–1612. [CrossRef]
6. Buddha, S.; So, K.; Carmena, J.; Gastpar, M. Function identification in neuron populations via information bottleneck. Entropy

2013, 15, 1587–1608. [CrossRef]
7. Zaidi, A.; Agueri, I.-E.; Shamai, S. On the information bottleneck problems, connections, applications and information theoretic

views. Entropy 2020, 22, 151. [CrossRef]
8. Goldfeld, Z.; Polyanskiy, Y. The information bottleneck problem and its applications in machine learning. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 19–38. [CrossRef]
9. Zeitler, G.; Low-precision analog-to-digital conversion and mutual information in channels with memory. In Proceedings of

the 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton’2010), Monticello, NY, USA,
29 September–1 October 2010; pp. 745–752.

10. Zeitler, G.; Singer, A.C.; Kramer, G. Low-precision A/D conversion for maximum information rate in channels with memory.
IEEE Trans. Commun. 2012, 60, 2511–2521. [CrossRef]

11. Kurkoski, B.M.; Yagi, H. Quantization of binary-input discrete memoryless channels. IEEE Trans. Inf. Theory 2014, 60, 4544–4552.
[CrossRef]

12. Kurkoski, B.M.; Yamaguchi, K.; Kobayashi, K. Noise thresholds for discrete LDPC decoding mappings. In Proceedings of the
2008 IEEE Global Telecommunications Conference (GLOBECOM’2008), New Orleans, LA, USA, 30 November–4 December 2008;
pp. 1–5.

13. Meidlinger, M.; Balatsoukas-Stimming, A.; Burg, A.; Matz, G. Quantized message passing for LDPC codes. In Proceedings of the
2015 49th Asilomar Conference on Signals, Systems and Computers (ACSSC’2015), Pacific Grove, CA, USA, 8–11 November 2015;
pp. 1606–1610.

14. Lewandowsky, J.; Bauch, G. Trellis based node operations for LDPC decoders from the information bottleneck method. In
Proceedings of the 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS’2015), Cairns,
Australia, 14–16 December 2015; pp. 1–10.

15. Romero, F.J.C.; Kurkoski, B.M. LDPC decoding mappings that maximize mutual information. IEEE J. Sel. Areas Commun. 2016, 34,
2391–2401. [CrossRef]

16. Lewandowsky, J.; Stark, M.; Bauch, G. Optimum message mapping LDPC decoders derived from the sum-product algorithm. In
Proceedings of the 2016 IEEE International Conference on Communications (ICC’2016), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–5.

17. Meidlinger, M.; Matz, G. On irregular LDPC codes with quantized message passing decoding. In Proceedings of the 2017
IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC’2017), Sapporo, Japan,
3–6 July 2017; pp. 1–5.

18. Lewandowsky, J.; Bauch, G. Information-optimum LDPC decoders based on the information bottleneck method. IEEE Access
2018, 6, 4054–4071. [CrossRef]

19. Stark, M.; Lewandowsky, J.; Bauch, G. Information-optimum LDPC decoders with message alignment for irregular codes. In
Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM’2018), Abu Dhabi, United Arab Emirates,
9–13 December 2018; pp. 1–6.

340



Entropy 2022, 24, 972

20. Stark, M.; Lewandowsky, J.; Bauch, G. Information-bottleneck decoding of high-rate irregular LDPC codes for optical communi-
cation using message alignment. Appl. Sci. 2018, 8, 1884. [CrossRef]

21. Stark, M.; Bauch, G.; Lewandowsky, J. Decoding of non-binary LDPC codes using the information bottleneck method. In
Proceedings of the 2019 IEEE International Conference on Communications (ICC’2019), Shanghai, China, 20–24 May 2019;
pp. 1–6.

22. Meidlinger, M.; Matz, G.; Burg, A. Design and decoding of irregular LDPC codes based on discrete message passing. IEEE Trans.
Commun. 2019, 68, 1329–1343. [CrossRef]

23. Lewandowsky, J.; Bauch, G.; Tschauner, M.; Oppermann, P. Design and evaluation of information bottleneck LDPC decoders for
digital signal processors. IEICE Trans. Commun. 2019, E102-B, 1363–1370. [CrossRef]

24. He, X.; Cai, K.; Mei, Z. Mutual information-maximizing quantized belief propagation decoding of regular LDPC codes. arXiv
2019, arXiv:1904.0666.

25. He, X.; Cai, K.; Mei, Z. On mutual information-maximizing quantized belief propagation decoding of LDPC codes. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM’2019), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

26. Stark, M.; Bauch, G.; Wang, L.; Wesel, R. Information bottleneck decoding of rate-compatible 5G-LDPC codes. In Proceedings of
the 2020 IEEE International Conference on Communications (ICC’2020), Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

27. Stark, M.; Bauch, G.; Wang, L.; Wesel, R. Decoding rate-compatible 5G-LDPC codes with coarse quantization using the information
bottleneck method. IEEE Open J. Commun. Soc. 2020, 1, 646–660. [CrossRef]

28. Stark, M.; Lewandowsky, J.; Bauch, G. Neural information bottleneck decoding. In Proceedings of the 2020 14th International
Conference on Signal Processing and Communication Systems (ICSPCS’2020), Adelaide, Australia, 14–16 December 2020; pp. 1–7.

29. Stark, M.; Machine Learning for Reliable Communication under Coarse Quantization. Ph.D. Dissertation, Hamburg University of
Technology, Hamburg, Germany, 2021.

30. Mohr, P.; Bauch, G. Coarsely Quantized Layered Decoding Using the Information Bottleneck Method. In Proceedings of the 2021
IEEE International Conference on Communications (ICC’2021), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.

31. Wang, L.; Terrill, C.; Stark, M.; Li, Z.; Chen, S.; Hulse, C.; Kuo, C.; Wesel, R.; Bauch, G. Reconstruction-Computation-Quantization
(RCQ): A Paradigm for Low Bit Width LDPC Decoding. IEEE Trans. Commun. 2022, 70, 2213–2226. [CrossRef]

32. Stark, M.; Shah, A.; Bauch, G. Polar code construction using the information bottleneck method. In Proceedings of the 2018 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW’2018), Barcelona, Spain, 15–18 April 2018; pp. 7–12.

33. Shah, S.A.A.; Stark, M.; Bauch, G. Design of quantized decoders for polar codes using the information bottleneck method. In
Proceedings of the 12th International ITG Conference on Systems, Communications and Coding 2019 (SCC’2019), Rostock,
Germany, 11–14 February 2019; pp. 1–6.

34. Shah, S.A.A.; Stark, M.; Bauch, G. Coarsely Quantized Decoding and Construction of Polar Codes Using the Information
Bottleneck Method. Algorithms 2019, 12, 192. [CrossRef]

35. Lewandowsky, J.; Stark, M.; Bauch, G. Information bottleneck graphs for receiver design. In Proceedings of the 2016 IEEE
International Symposium on Information Theory (ISIT’2016), Barcelona, Spain, 10–15 July 2016; pp. 1–5.

36. Lewandowsky, J.; Stark, M.; Bauch, G. Message alignment for discrete LDPC decoders with quadrature amplitude modulation. In
Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT’2017), Aachen, Germany, 25–30 June 2017;
pp. 2925–2929.

37. Lewandowsky, J.; Stark, M.; Mendrzik, R.; Bauch, G. Discrete channel estimation by integer passing in information bottleneck
graphs. In Proceedings of the 2017 11th International ITG Conference on Systems, Communications and Coding (SCC’2017),
Hamburg, Germany, 6–9 February 2017; pp. 1–6.

38. Bauch, G.; Lewandowsky, J.; Stark, M; Oppermann, P. Information-optimum discrete signal processing for detection and decoding.
In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–6.

39. Hassanpour, S.; Monsees, T.; Wübben, D.; Dekorsy, A. Forward-aware information bottleneck-based vector quantization for noisy
channels. IEEE Trans. Commun. 2020, 68, 7911–7926. [CrossRef]

40. Hassanpour, S.; Wübben, D.; Dekorsy, A. Forward-aware information bottleneck-based vector quantization: Multiterminal
extensions for parallel and successive retrieval. IEEE Trans. Commun. 2021, 69, 6633–6646. [CrossRef]

41. Zeitler, G.; Koetter, R.; Bauch, G.; Widmer, J. Design of network coding functions in multihop relay networks. In Proceedings of
the 5th International Symposium on Turbo Codes and Related Topics (ISTC’2008), Lausanne, Switzerland, 1–5 September 2008;
pp. 249–254.

42. Zeitler, G.; Koetter, R.; Bauch, G.; Widmer, J. On quantizer design for soft values in the multiple-access relay channel. In
Proceedings of IEEE International Conference on Communications (ICC’2009), Dresden, Germany, 14–18 June 2009; pp. 1–5.

43. Winkelbauer, A.; Matz, G. Joint network-channel coding for the asymmetric multiple-access relay channel. In Proceedings of
IEEE International Conference on Communications (ICC’2012), Ottawa, ON, Canada, 10–15 June 2012; pp. 2485–2489.

44. Winkelbauer, A.; Matz, G. Joint network-channel coding in the multiple-access relay channel: Beyond two sources. In Proceedings
of 5th International Symposium on Communications, Control and Signal Processing, Rome, Italy, 2–4 May 2012; pp. 1–5.

45. Kern, D.; Kühn, V. Practical aspects of compress and forward with BICM in the 3-node relay channel. In Proceedings of 20th
International ITG Workshop on Smart Antennas (WSA), Munich, Germany, 9–11 March 2016; pp. 1–7.

341



Entropy 2022, 24, 972

46. Kern, D.; Kühn, V. On compress and forward with multiple carriers in the 3-node relay channel exploiting information bottleneck
graphs. In Proceedings of 11th International ITG Conference on Systems, Communications and Coding (SCC’2017), Hamburg,
Germany, 6–9 February 2017; pp. 1–6.

47. Kern, D.; Kühn, V. On implicit and explicit channel estimation for compress and forward relaying OFDM schemes designed
by information bottleneck graphs. In Proceedings of 21th International ITG Workshop on Smart Antennas (WSA’2017), Berlin,
Germany, 15–17 March 2017; pp. 1–6.

48. Chen, D.; Kühn V. Alternating information bottleneck optimization for the compression in the uplink of C-RAN. In Proceedings
of the 2016 IEEE International Conference on Communications (ICC’2016), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–7.

49. Stark, M.; Lewandowsky, J.; Bauch, G. Iterative message alignment for quantized message passing between distributed sensor
nodes. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring’2018), Porto, Portugal, 3–6 June 2018;
pp. 1–6.

50. Steiner, S.; Kühn, V. Distributed compression using the information bottleneck principle. In Proceedings of the 2021 IEEE
International Conference on Communications (ICC’2021), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.

51. Steiner, S.; Kühn, V.; Stark, M.; Bauch, G. Reduced-complexity greedy distributed information bottleneck algorithm. In Proceed-
ings of the 2021 IEEE Statistical Signal Processing Workshop (SSP’2021), Rio de Janeiro, Brazil, 11–14 July 2021; pp. 361–365.

52. Steiner, S.; Kühn, V.; Stark, M.; Bauch, G. Reduced-complexity optimization of distributed quantization using the information
bottleneck principle. IEEE Open J. Commun. Soc. 2021, 2, 1267–1278. [CrossRef]

53. Steiner, S.; Aminu, A.D.; Kühn, V. Distributed quantization for partially cooperating sensors using the information bottleneck
method. Entropy 2022, 24, 438. [CrossRef] [PubMed]

54. Aguerri, I.-E.; Zaidi, A. Distributed variational representation learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 120–138.
[CrossRef] [PubMed]

55. Moldoveanu, M.; Zaidi, A. On In-network learning. A comparative study with federated and split learning. In Proceedings of the
2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC’2021), Lucca, Italy,
27–30 September 2021; pp. 221–225.

56. Moldoveanu, M.; Zaidi, A. In-network learning for distributed training and inference in networks. In Proceedings of the 2021
IEEE Globecom Workshops (GC Wkshps’2021), Madrid, Spain, 7–11 December 2021; pp. 1–6.

57. Zhang, J.A.; Kurkoski, B.M. Low-complexity quantization of discrete memoryless channels. In Proceedings of the 2016 Inter-
national Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA, 30 October–2 November 2016;
pp. 448–452.

58. Hassanpour, S.; Wübben. D.; Dekorsy, A. On the equivalence of double maxima and KL-means for information bottleneck-based
source coding. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona,
Spain, 15–18 April 2018; pp. 1–6.

59. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: New York, NY, USA, 2006.
60. Lewandowsky, J.; Stark, M.; Bauch, G. A discrete information bottleneck receiver with iterative decision feedback channel

estimation. In Proceedings of the 2018 IEEE 10th International Symposium on Turbo Codes and Iterative Information Processing
(ISTC’2018), Hong Kong, China, 25–29 November 2018; pp. 1–5.

61. Lewandowsky, J. The Information Bottleneck Method in Communications. Ph.D. Dissertation, Hamburg University of Technology,
Hamburg, Germany, 2020.

62. Genz, A. Numerical computation of multivariate normal probabilities. J. Comput. Graph. Stat. 1992, 1, 141–149.
63. MacKay, D. J. C. Encyclopedia of Sparse Graph Codes. Available online: http://www.inference.phy.cam.ac.uk/mackay/codes/

data.html (accessed on 14 November 2017).
64. Lewandowsky, J.; Dongare, S.J.; Adrat, M; Schrammen, M.; Jax, P. Optimizing parametrized information bottleneck compres-

sion mappings with genetic algorithms. In Proceedings of the 2020 14th International Conference on Signal Processing and
Communication Systems (ICSPCS’2020), Adelaide, Australia, 14–16 December 2020; pp. 1–8.

65. Lewandowsky, J.; Dongare, S.J.; Martín Lima, R.; Adrat, M.; Schrammen, M.; Jax, P. Genetic Algorithms to Maximize the Relevant
Mutual Information in Communication Receivers. Electronics 2021, 10, 1434. [CrossRef]

66. Coley, D. A. An Introduction to Genetic Algorithms for Scientists and Engineers; World Scientific Publishing Co., Inc.: Singapore, 1998.

342



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-0461-0


