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Abstract: Affected by global climate change and water shortages, food security continues to be
challenged. Improving agricultural water use efficiency is essential to guarantee food security. China
has been suffering from water scarcity for a long time, and insufficient water supply in the agricultural
sector has seriously threatened regional food security and sustainable development. This study
adopted the super-efficiency slack-based model (SBM) to measure the provincial agricultural water
use efficiency (AWUE). Then, we applied the vector autoregression (VAR) Granger causality test and
social network analysis (SNA) method to explore the spatial correlation of AWUE between different
provinces and reveal the interprovincial transmission mechanism of spillover effects in AWUE.
The results show the following: (1) In China, the provincial AWUE was significantly enhanced,
and the gaps in provincial AWUE have widened in the past 20 years. (2) There were apparent
spatial heterogeneity and correlations of provincial AWUE. The provinces with higher AWUE were
mainly located in economically developed and coastal areas. (3) The correlation of AWUE between
provinces showed significant network structure characteristics. Fujian, Hebei, Jiangsu, Shandong, and
Hubei Qinghai were central to the network, with high centrality. (4) The AWUE spatial correlation
network could be divided into four blocks. Each block played a different role in the cross-provincial
transmission of spillover effects. Therefore, it is necessary to manage the agricultural water resources
and improve water use efficiency from the perspective of the network.

Keywords: agricultural water use efficiency; undesirable super-efficiency SBM model; vector autore-
gression (VAR) Granger causality test; social network analysis (SNA); spatial correlation network

1. Introduction

Water is indispensable and irreplaceable for human well-being and socio-economic
sustainability. Among the 17 Sustainable Development Goals (SDGs) published by the
United Nations General Assembly in 2015, at least 4 goals are related to the sustainable
utilization and management of water resources, namely, SDG-6, SDG-7, SGD-12, and
SDG-13 [1]. However, due to the rising water demands associated with population growth
and economic development, coupled with diminishing water supplies caused by climate
change and contamination, water is becoming scarce in most regions of the world [2,3].
The recent literature demonstrates that nearly half of the global population faces severe
water scarcity, which directly conflicts with the above SDGs [4]. The agriculture sector is
the largest water user globally, accounting for approximately 70% of global water with-
drawal due to irrigation [5]. Insufficient water resources have posed a substantial threat to
agricultural production and food security [6]. In addition, backward agricultural irrigation
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technology, extensive water use patterns, and low water use efficiency have further intensi-
fied water scarcity [7]. Thus, sustainable agricultural water resource management is related
to regional food security and closely linked to economic development, ecological security,
and quality of life [8,9]. When water supplies are limited, agricultural production should
maximize net income per unit of water used rather than per land unit [10]. Evaluating
and improving agricultural water use efficiency (AWUE) are also the basis for promoting
regional water resource management [11,12].

Widening water demand and supply gaps have been a significant challenge for China.
China has been suffering from water scarcity for a long time [13], whose per capita wa-
ter supply is less than 2200 m3, only one quarter of the world average [14]. Since 1998,
agricultural water use in China has consumed over 60% of the total national water con-
sumption [15], and this figure is as high as 80–90% in some arid regions, such as Ningxia
and Xinjiang. Meanwhile, there has been severe conflict between water availability and
food production in China, feeding 21% of the world’s population needs with only 6%
of the global freshwater resources [16]. As one of the largest agricultural countries, the
improvement in AWUE in China could contribute to global sustainable water utilization
and food security [17].

Generally, AWUE refers to the ratio of physical and economic output to water resource
input during agricultural production, a broad concept of physiological, agronomic, and
engineering processes, and management practice [18]. Many studies evaluated AWUE with
a single-factor index. They focused on the ratio between crop biomass or grain production
and the amount of water consumed by crops, including rainfall, the irrigation water applied,
and crop transpiration [19–21]. Thus, AWUE also reflects the production ability of water
resources, such as crop water productivity, irrigation water productivity, and generalized
water productivity [22]. It was later recognized that water alone as the only input could not
produce the necessary outputs in the production process. Other inputs are also essential
in AWUE assessment [23]. Therefore, the total factor water use efficiency measured by
multiple input models has entered the mainstream. The frequently used assessment
methods are stochastic frontier analysis (SFA) and data envelopment analysis (DEA) [24,25].
Compared with SFA, DEA is a non-parametric evaluation model and does not require
any distributional assumptions about efficiency [26], avoiding the influences of subjective
factors on water resource efficiency assessment. In addition, improved DEA models
can even deal with both desirable and undesirable outputs simultaneously, significantly
improving the accuracy of resource use efficiency evaluation [27]. At present, DEA models
have been widely used globally to assess the water use efficiency of a decision-making unit
(e.g., farm, enterprise/company, irrigation district, industrial/agricultural sector) [25,28,29].

The spatial difference and correlation of water use efficiency have attracted significant
attention in recent years. On the one hand, water use efficiency exhibits noticeable regional
variation. The literature has shown that water use efficiency is sensitive to meteorological
factors, such as temperature, precipitation, and moisture [30]. Water use efficiency increases
with atmospheric CO2 but declines with increasing atmospheric evaporative demand [31].
Water use efficiency is also influenced by socio-economic factors. The value of AWUE is
higher in developed areas than in undeveloped areas in China [13]. On the other hand,
water use efficiency has demonstrated a significant spatial correlation. The AWUE of one
region is related to the geographical conditions and the economic development level, which
is likely to be influenced by the neighboring regions [32]. The adjacent regions’ agricultural
production behaviors also affect the local region’s AWUE, resulting in spatial spillover
effects on the local region [13]. Awareness of spatial correlation among regional AWUE is
essential for improving water utilization efficiency.

The temporal and spatial patterns of AWUE are related to various natural and socio-
economic elements, which are types of agricultural ecosystems, agricultural production
factors, and agricultural water resource management measures [3,25]. Agricultural produc-
tion factors will flow spontaneously from the area with a low factor return rate to a high
factor return rate [33]. In contrast, the management departments will actively guide the
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cross-region transfer of technology, information, talents, and goods to promote sustainable
water use and regional synergy development [34,35]. Due to the cross-regional mobility of
the agricultural production factors, various regions’ agricultural water resource utilization
may present close connections. As the scope of factors’ mobility continues to expand, an
increasing number of regions have shown relevance in AWUE, and the spatial correlation of
AWUE shows a network characteristic [36,37]. Meanwhile, the spatial correlation network
of AWUE could reflect the distribution pattern of spillover effects related to certain fac-
tors [38], which could guide the improvement in AWUE. However, this important feature
is often ignored in AWUE studies. Utilizing this information on the spatial correlation of
AWUE may help implement effective measures to improve AWUE.

In the spatial correlation of AWUE, different nodes (regions) have various resource
(such as information, technology, knowledge, and talents related to water saving) control
capabilities, resulting in diverse network structures [39]. Due to the spillover effects, the
nodes with strong power may influence various other nodes and be in the central position
of the network. Creating solid links among regions can enhance mutual learning and
sharing of resources and advice [40]. Moreover, nodes similar to one another are better able
to communicate information and apply the same governance [41]. For the whole network,
centralization helps form groups and build support for collective action, such as the fast
spread of particular water-saving technologies [42]. In contrast, over-centralization may
not be conducive to long-term planning and problem solutions [43]. Thus, it is necessary
to investigate the spatial network structure related to AWUE and propose appropriate
strategies to improve AWUE.

This study aimed to explore the spatial correlation of AWUE between different
provinces in China and provide support for the designation of agricultural water resource
management strategies. In this study, AWUE is defined as a total factor water efficiency in-
dex. The super-efficiency slack-based model (SBM) with undesirable outputs and the social
network analysis (SNA) method were used to: (1) evaluate AWUE at the province level
within and beyond China, and (2) investigate the characteristics of the spatial correlation
network of AWUE.

2. Materials and Methods

The analysis process for the spatial correlation of AWUE is illustrated in Figure 1.

Figure 1. Technical route for analysis of spatial correlation network of agricultural water use
efficiency (AWUE).

Firstly, to assess the AWUE of provinces in China, the super-efficiency SBM with
undesirable outputs was used. This model is an improved DEA method and needs to select
the appropriate input and output indicators for the production efficiency evaluation.

Secondly, the vector autoregression (VAR) Granger causality test model was used to
analyze the dynamic connections between different provinces in China.

3
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Thirdly, to investigate the characteristics of the spatial correlation network of AWUE,
the SNA model was used. In particular, the centrality and block analysis can reveal the
core provinces which influence the coordinated improvement in AWUE.

2.1. Undesirable Super-Efficiency SBM Model

DEA is a non-parametric evaluation method for measuring the relative efficiency of
units where they have multiple inputs and outputs [44]. The primary analysis unit is
defined as the decision-making unit (DMU). The efficiency value of a DMU is the distance
from the DMU to the best-practice frontier. The frontier shows the maximum of diverse
outputs with different input combinations or views the minimum combination of necessary
inputs for diverse outputs. DMUs below the frontier are considered inefficient, while
DMUs on the frontier are regarded as efficient. The traditional radial and angle DEA
models calculate the efficiency according to a certain input–output proportion, ignoring
the excess in inputs and shortfalls in outputs, which are likely to deviate from the efficiency
measurement. The slack-based model (SBM) [45] was applied to avoid the slack problem of
inputs and outputs, which belongs to a non-radial and non-angle DEA model. Moreover,
when using conventional SBM-DEA models, the efficiency values of all DMUs are within
the range of zero to one. This means that we fail to rank the DMUs with an efficiency value
of one. Then, the super-efficiency model in DEA was proposed to exclude each observation
from its own reference set, making it possible to obtain efficiency scores that exceed one [46].
Thus, the super-efficiency SBM model with undesirable outputs is suitable for the AUWE
assessment in this study, which is defined as follows:

ρ = min
1 − 1

m ∑m
i=1 xi/xio

1 + 1
S1+S2

[
∑S1

p=1

(
yg

p/yg
po

)
+ ∑S2

q=1

(
yb

q/yb
qo

)] (1)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x ≥ n
∑

j=1,j �=o
xijλj, yg

p ≤ n
∑

j=1,j �=o
yg

pjλj, yb
q ≤ n

∑
j=1,j �=o

yb
qjλj

x ≥ xio, yg
p ≤ yg

po, yb
q ≥ yb

qo
n
∑

j=1,j �=o
λj = 1, yg ≥ 0, yb ≥ 0, λ ≥ 0

i = 1, 2, · · ·m; p = 1, 2, · · · S1; q = 1, 2, · · · S2; j = 1, 2, · · · n

(2)

where ρ represents the AWUE value, n is the number of evaluation units, m is the input
elements, S1 and S2 are the number of desirable and undesirable outputs, x, yg, and yb

are slack variables for inputs, desirable outputs, and undesirable outputs, and λ is the
envelope multiplier. If ρ ≥ 1, the DMU is on the agricultural production frontier and DEA
effective. If 0 < ρ < 1, it means the DMU is not DEA effective, and there is still potential to
improve the agricultural water use efficiency in the evaluation unit.

2.2. Social Network Analysis

SNA is a sociological research method used to investigate the relationships of actors,
which consists of a set of nodes (actors) and ties (relationships between actors) [47]. SNA
has also invented graph-theoretic properties to characterize structures, positions, links, and
dyadic properties of the overall “shape” [39]. The AWUE of provinces is embedded in a
social network by formal or informal relationships, and their changes are affected by the
social network [48]. In the spatial correlation network of AWUE, the “nodes” are provinces,
which present the AWUE of a particular region, and “ties” are the connection between
these provinces, which show the spillover effects of factors related to AWUE. This section
contains two parts: firstly, establishing the correlations in the AWUE in different provinces
using the VAR Granger causality test; secondly, constructing the spatial correlation network
of provincial AWUE with the method of SNA.
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2.2.1. Vector Autoregression (VAR) Granger Causality Test

This step addresses the correlation among variables, which discusses a relationship
between two nodes. In general, the influence of AWUE in different provinces has a lag,
which means that the WUE information during a specific period in one area can predict
the changing trend of WUE in the other regions [37]. Therefore, this paper used the VAR
Granger causality test to build the dynamic correlation between provincial AWUE in China
and construct a spatial correlation network matrix.

Firstly, the time series of AWUE in any given two provinces x, y were defined as {xt}
and {yt}, respectively. Secondly, two VAR models were constructed to test whether there is
an interaction between the AWUE of the two regions.

xt = α1 +
m

∑
i=1

ρ1,ixt−i +
n

∑
i=1

σ1,iyt−i + ε1,t (3)

yt = α2 +
p

∑
i=1

ρ2,ixt−i +
q

∑
i=1

σ2,iyt−i + ε2,t (4)

where αi, ρi, and σi (i = 1, 2) are the parameters to be estimated, εi,t (i = 1, 2) represents
the residual terms, which obeys the standard normal distribution, m, n, p, and q are the lag
orders of the autoregressive terms. Through Equation (3), we can test whether the AWUE
in region x is affected with a lag by its AWUE and the AWUE in region y. If the test result
rejects the null hypothesis, the historical information of sequence {yt} is helpful to explain
the variable change of sequence {xt}, which means that {yt} is the Granger cause of {xt}, and
then create a directed link from region y to region x. According to this method, the links
between all pairs of two regions in the study area are tested, and the spatial correlation
network map of provincial AWUE is obtained. It should be noted that the stationarity test
of time series was carried out by a unit root test model, the ultimate hysteresis order was
set to an order of 2, and 1% was used as the significance test standard.

2.2.2. Spatial Correlation Network Characteristics

This step analyzes the spatial correlation network structure of provincial AWUE with
two indicators: overall network characteristics and network centrality analysis [38,49,50].
This paper used the software UCINET (v 6.659) to obtain them.

(1) Overall network characteristic analysis

Four items were used to describe the overall network characteristics: network affinity,
network density, network efficiency, and network hierarchy.

Network affinity describes the sum of all the actual connections in the network, which
reflect the overall scale of the network. It is represented by M.

Network density measures the degree of cohesion in the network. The more connec-
tions there are in the provincial AWUE, the greater the network density. It is expressed as
Equation (5). D represents the network density, N is the number of nodes in the network,
and N(N − 1) is the maximum potential connection.

D =
M

N(N − 1)
(5)

Network efficiency refers to the connection efficiency between nodes in the network.
The lower the network efficiency, the more redundant lines and overflow channels there
are, and the more stable the whole network.

Network hierarchy reflects the asymmetric accessibility in the network. The higher
the network hierarchy, the more rigid the network. The network hierarchy is calculated
by Equation (6). H represents the network hierarchy, K is the group number of symmetric

5
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reachable points in the network, and Max(K) is the number of groups of maximum possible
reachable points.

H = 1 − K
Max(K)

(6)

(2) Network centrality analysis

Three parameters are used to describe the power of the nodes: point centrality, be-
tweenness centrality, and closeness centrality. In a network, power means influence [47],
and there is a positive relationship between centrality and power [51].

Point centrality measures the degree of association between a node and other nodes,
indicating the degree to which a node is in the center of the network. The province with a
higher point centrality has more connections with other provinces in the AWUE network
and is likely to be the center node of the network. Point centrality (De) is calculated by
Equation (7).

De =
L

N(N − 1)− 1
(7)

where L stands for the number of provinces directly connected to the other; this centrality
has two types in directed graphs: in-degree and out-degree. The former refers to the
incoming spillover effects of factors related to AWUE from other provinces. In contrast, the
latter is the outgoing spillover effects to other provinces.

Betweenness centrality indicates the mediation and bridge function, investigating how
a node can control the communication between other nodes. It evaluates the number of
times a node acts as a bridge along the shortest path between two other nodes, indicating
the node’s control ability of the overall network [52]. It is represented by Cb and is calculated
by Equation (8).

Cb =
n

∑
j

n

∑
k

bjk(i); j �= k �= i, j < k (8)

Closeness centrality refers to the closeness of a node to all other nodes in the network,
which reflects the ability of a node to not be controlled by other nodes in the entire network.

2.2.3. Block Model Analysis

The block model is a primary social, spatial clustering analysis method [53]. It can
explore the network’s internal structure, investigate the position and role of each node in
the block, evaluate the path of sending and receiving information between blocks, and
conduct descriptive analysis. According to the block model, the social network is divided
into four sections: bidirectional block, agent block, net beneficial block, and net spillover
block. We used the CONCOR module in UCINET to finish the block model analysis. The
maximum depth was set to 2. The focus on the standard was set to 0.2, dividing the
30 provinces into 4 blocks.

2.3. Data Source

In terms of the measurement of AWUE, five variables related to agricultural production
were selected as input indicators, and the output indicators were from two aspects of
desirable outputs and undesirable outputs, as shown in Table 1. For the availability and
validity of the data, this research selected 30 provinces in China as the study area, excluding
Hong Kong, Macao, Taiwan, and Tibet, and chose 2000 to 2019 as the research period.

6
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Table 1. Input and output indicators in the assessment of agricultural water use efficiency.

Input and Output Elements Variables Unit

Input indicators

(I1) agricultural water use 108 m3

(I2) total sown area for crop 103 hm2

(I3) total power of agricultural machinery 104 kw
(I4) labor force in agricultural production 104 persons
(I5) fertilizer content application 104 t

Desirable output indicators (O1) added value of agriculture 108 RMB

Undesirable output indicators (O2) COD, TN, and TP emission from agriculture 104 ton

Since this paper evaluated agricultural water use efficiency, water withdrawal in
the agricultural sector (irrigation, forestry, farming, and fishery) was the primary input
indicator. As irrigation accounts for most of the agricultural water, this article prioritized
the production factors related to the planting industry, such as crop sown area, agricultural
machinery power, and fertilizer. In addition, the labor force was also included as an input
element. Corresponding to the water use in the agricultural sector, we selected added value
of agriculture as a desirable output indicator. To eliminate the influence of interannual
price changes, we used the comparable price index to re-calculate the price based on the
year 2000. Meanwhile, the undesirable output was mainly considered the non-point source
pollution caused by agricultural production.

The data relating to the AWUE assessment were obtained from the China Water Re-
sources Bulletin, China Rural Statistical Yearbook, and China Statistical Yearbook, covering
2000–2019. The discharges of agricultural non-point source pollution mainly come from
crop fertilization, livestock breeding, and straw burning, which are estimated through the
discharge of the pollution loads of chemical oxygen demand (COD), total nitrogen (TN),
and total phosphorus (TP). The inventory analysis method was used to assess the above
three indicators [54].

3. Results

3.1. Spatial and Temporal Differentiation of AWUE in China
3.1.1. Average AWUE of 30 Provinces

As shown in Table 2, all the average values of provincial AWUE were less than one,
meaning that the agricultural water resource usage was inefficient at the province level.
Thus, there is still room for improvement in agricultural water use in China.

Table 2. Average agricultural water use efficiency in China from 2000 to 2019.

Province Efficiency Rank Province Efficiency Rank

Beijing 0.625 2 Henan 0.415 9
Tianjin 0.398 11 Hubei 0.258 20
Hebei 0.358 13 Hunan 0.222 22
Shanxi 0.216 23 Guangdong 0.368 12

Inner Mongolia 0.178 28 Guangxi 0.190 27
Liaoning 0.346 14 Hainan 0.494 3

Jilin 0.270 16 Chongqing 0.464 6
Heilongjiang 0.278 17 Sichuan 0.278 18

Shanghai 0.657 1 Guizhou 0.237 21
Jiangsu 0.469 5 Yunnan 0.212 25

Zhejiang 0.477 4 Shaanxi 0.460 7
Anhui 0.211 26 Gansu 0.264 19
Fujian 0.438 8 Qinghai 0.136 30
Jiangxi 0.215 24 Ningxia 0.159 29

Shandong 0.326 15 Xinjiang 0.410 10
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There are distinct spatial disparities in AWUE among different provinces. In the
past twenty years, the top five provinces with the highest average AWUE were Shanghai
(0.657), Beijing (0.765), Hainan (0.494), Zhejiang (0.477), and Jiangsu (0.469). These five
provinces are located in economically developed regions or coastal areas with abundant
precipitation. In contrast, the bottom five districts with the lowest average AWUE were
Qinghai (0.136), Ningxia (0.159), Inner Mongolia (0.178), Guangxi (0.190), and Anhui (0.211).
These five provinces are mainly in arid and semi-arid areas with less precipitation, compar-
atively backward agricultural water technology, and large agricultural non-point pollution
discharge [55]. The average AWUE in Shanghai was about five times that of Qinghai.

3.1.2. Temporal Evolution of the Provincial AWUE

The AWUE of most provinces has increased significantly over time, which means that
the agricultural water use efficiency has considerably improved (Figure 2). In 2000, the
AWUE of all 30 provinces was less than 0.4. In 2019, the AWUE in more than 50% of the
provinces was more than 0.6. It is worth noting that the AWUE of 11 provinces gradually
exceeded 1 since 2015, which indicates that agricultural water usage in these provinces had
reached an utterly efficient state.

Figure 2. Temporal trends of provincial agricultural water use efficiency (AWUE) in China from
2000 to 2019. The above four charts are listed separately according to the geographical location of
the province within (a) North China (8 provinces), (b) East China (7 provinces), (c) South China
(6 provinces), and (d) West China (9 provinces).

In addition, the change trajectories of AWUE presented noticeable differences. The
AWUE in most provinces experienced a process of first rising slightly and then rising
drastically. The AWUE in Beijing and Shanghai started to increase around 2005, reaching 1

8



Land 2022, 11, 77

in 2015 and 2008. Meanwhile, the AWUE in most provinces such as Tianjin, Hebei, Jiangsu,
Zhejiang, Fujian, Shandong, Henan, Hainan, Shaanxi, Gansu, and Xinjiang entered a stage
of significant improvement since 2011 and exceeded 1 in 2019. Moreover, there are some
provinces where AWUE has been low, with a minimal increment during the observation,
including Inner Mongolia, Anhui, Guangxi, Qinghai, and Ningxia.

The average value of AWUE in China presented a significant increasing trend between
2000 and 2019. The variable coefficients of AWUE rose from 2000 to 2008 and reached
a peak in 2008. Then, they decreased between 2009 and 2012 and increased again later
(Figure 3). The fluctuations in variable coefficients revealed that the gaps in AWUE between
the 30 provinces were the smallest in 2000 and the widest in 2008. Moreover, the gaps in the
provincial AWUE are currently in the expanding stage. The spatial imbalance of China’s
agricultural water use efficiency is significant.

Figure 3. Average AWUE and the variable coefficients of AWUE in China.

3.1.3. Spatial Distribution of AWUE in 30 Provinces

To further analyze the spatial pattern of AWUE, the spatial distribution map of the
AWUE of the 30 provinces in 2019 is plotted and shown in Figure 4. Overall, it is clearly
illustrated that the AWUE in China presented apparent spatial aggregation and spatial
variability at the provincial scale. According to the evaluation results of AWUE in 2019,
we found that provinces with AWUE greater than one were mainly in southeastern and
northwestern China. Provinces with AWUE lower than 0.4 were primarily in southwestern,
south central, and northwestern China. The major grain-producing areas in northeast
China, e.g., Heilongjiang, Jilin, and Liaoning, had AWUE between 0.4 and 0.7. Moreover,
provinces whose AWUE was 0.6–0.8 were mainly concentrated on the Huang-Huai-Hai
Plain [56], such as Hebei and Shandong in East China. The lowest AWUE was found in
Inner Mongolia with 0.240 in 2019, followed by Qinghai (0.248) and Ningxia (0.273), all of
which are arid provinces with water resource per unit area less than 20 × 104 m3/km2.

3.2. Spatial Correlation Network of AWUE in China

With the VAR Granger causality test (1% significance level), the spatial correlation
matrix of AWUE in China was established. Then, the network map was drawn to show the
structure and pattern of the spatial correlation network of AWUE, as shown in Figure 5. The
spatial correlation of China’s interprovincial AWUE presents a typical network structure.
There are no isolated nodes in the whole spatial correlation network, which indicates that
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correlations of the agricultural water utilization of provinces in China have transcended
geographically adjacent areas and evolved to form a massive spatial network. In other
words, due to the frequent mobility of production factors related to AWUE, there has been
a close correlation of AWUE between geographically non-adjacent regions. Therefore, the
improvement in AWUE in any province will affect other provinces through the network.

Figure 4. Agricultural water use efficiency of 30 provinces in China in 2019.

Figure 5. Spatial correlation network of agricultural water use efficiency in China.
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3.2.1. Overall Network Characteristics and Evolution Trend

Table 3 shows the overall features of the spatial correlation network of AWUE. Mean-
while, to study the evolution trend of the interprovincial AWUE spatial correlation network,
this paper divided the whole sample investigation period into two stages, with 2000–2009
and 2010–2019.

Table 3. Overall characteristics of interprovincial agricultural water use efficiency spatial network.

Item 2000–2009 2010–2019 2000–2019

Network affinity 136 200 301
Network density 0.156 0.230 0.346

Network efficiency 0.746 0.616 0.404
Network hierarchy 0.537 0.242 0
Average distance 2.302 2.045 1.789

Clustering coefficient 0.210 0.305 0.371

The potential maximum spatial correlation of the spatial correlation network of AWUE
in the 30 provinces is 870 (30 × 29). From 2000 to 2019:

(1) The total actual spatial correlation (network affinity) was 307, and the network
density was 0.346, indicating that the level of spatial correlation in the provincial AWUE in
China was not high. There is still enormous scope to improve the interprovincial correlation
of AWUE in the network.

(2) The network correlation was 1, meaning all 30 provinces were in the spatial
correlation network of AWUE, and the accessibility and connectivity of the whole network
were good. The AWUE of each province always had direct or indirect links with that
of other provinces, presenting significant spillover effects of production factors related
to AWUE.

(3) The network hierarchy was 0, indicating that there was no rigid network structure,
and there was a close interrelation between these provinces.

(4) The network efficiency was 0.397, reflecting that there were many redundant links
in the network, and the spatial spillover effects of AWUE had a multiple superposition
phenomenon. The more redundant and invalid connections there are, the stabler and more
robust the network is, and the slower the transmission speed among the nodes.

(5) The average distance and clustering coefficient of the network were 1.775 and
0.378, implying that the spatial correlation network of AWUE in China had prominent
small-world characteristics. The short average distance revealed that we could establish a
connection between any two nodes in the network through 1–2 intermediary provinces.
The high clustering coefficient indicated a frequent connection and interaction in the
provincial AWUE.

From the perspective of evolution, the features of the spatial correlation network of
AWUE in China show a noticeable variation (Table 3). The network affinity and density
in 2010–2019 were higher than in 2000–2009. The network efficiency and hierarchy in
2010–2019 were lower than in 2000–2009. With the growth of AWUE in China, the spatial
correlations of AWUE in different provinces have risen significantly, indicating that the
spillover effects of interprovincial agricultural water use efficiency have been enhanced.

3.2.2. Centrality Analysis

The point centrality, betweenness centrality, and closeness centrality of the spatial
correlation network of AWUE in China were calculated to reveal the status and role of each
province (Table 4).
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Table 4. Central analysis of spatial correlation network of agricultural water use efficiency in China.

Province
Point Centrality Betweenness Centrality Closeness Centrality

Out-Degree In-Degree Centrality Rank Centrality Rank Centrality Rank

Beijing 7 5 37.931 27 1.029 23 61.702 27
Tianjin 11 8 55.172 20 1.969 16 69.048 20
Hebei 8 18 79.310 2 6.927 4 82.857 2
Shanxi 8 16 72.414 10 2.505 12 78.378 10

Inner Mongolia 7 5 34.483 28 1.474 17 60.417 28
Liaoning 11 2 44.828 25 0.442 29 64.444 25

Jilin 5 19 75.862 4 2.145 14 80.556 4
Heilongjiang 8 10 55.172 21 4.201 9 69.048 21

Shanghai 7 4 34.483 29 2.672 10 60.417 29
Jiangsu 17 8 79.310 3 4.319 8 82.857 3

Zhejiang 14 7 62.069 17 1.233 21 72.500 17
Anhui 11 2 44.828 26 0.66 28 64.444 26
Fujian 9 23 82.759 1 8.909 1 85.294 1
Jiangxi 12 13 68.966 13 8.797 2 76.316 13

Shandong 14 13 75.862 5 4.798 5 80.556 5
Henan 20 1 72.414 11 1.052 22 78.378 11
Hubei 15 8 75.862 6 2.601 11 80.556 6
Hunan 2 8 34.483 30 0.886 25 60.417 30

Guangdong 3 16 65.517 15 0.385 30 74.359 15
Guangxi 9 13 72.414 12 1.333 19 78.378 12
Hainan 14 2 55.172 22 0.917 24 69.048 22

Chongqing 3 16 65.517 16 1.465 18 74.359 16
Sichuan 13 6 62.069 18 0.707 27 72.500 18
Guizhou 11 13 75.862 7 4.407 7 80.556 7
Yunnan 11 14 75.862 8 2.220 13 80.556 8
Shaanxi 14 3 55.172 23 0.770 26 69.048 23
Gansu 11 8 51.724 24 1.299 20 67.442 24

Qinghai 8 16 75.862 9 7.640 3 80.556 9
Ningxia 4 15 58.621 19 2.140 15 70.732 19
Xinjiang 14 9 68.966 14 4.579 6 76.316 14

Mean 10.033 10.033 62.989 – 2.816 – 73.401 –

The average out-degree, in-degree, and point-degree of each province in China were
10.033, 10.033, and 62.989, respectively. The top nine provinces with the highest point
centrality were Fujian, Hebei, Jiangsu, Jilin, Shandong, Hubei, Guizhou, Yunnan, and
Qinghai. Their degree centrality value exceeded 80, which indicates that these provinces
had many more connections with other regions and played the role of central actors in the
network. As shown in Figure 6, the nodes representing these provinces had more links and
were in the center of the network. Meanwhile, Beijing, Inner Mongolia, Liaoning, Shanghai,
Anhui, Hunan, and Hainan had low ranks of point centrality and acted as marginal actors
in the whole network.

In terms of spillover and reception among the provinces (Figure 7), Henan, Jiangsu,
Hubei, Shandong, Zhejiang, Hainan, Shaanxi, and Xinjiang were overflowing with higher
out-degree, indicating these areas had more impacts on AWUE in the rest of the provinces
than the rest of the provinces on themselves. Meanwhile, Fujian, Jilin, Hebei, Shanxi,
Guangdong, Chongqing, and Qinghai were mainly beneficial with high in-degree, meaning
that the AWUE levels of these provinces were primarily affected by other regions. The
spillover and reception of Shandong, Jiangxi, and Guizhou were nearly equal.
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Figure 6. Network diagram corresponding to point centrality.

 
Figure 7. Spillover and reception correlation network of agricultural water use efficiency (AWUE)
in China.

In general, provinces with high average AWUE were likely to have higher out-degree
than in-degree, suggesting that regions with higher AWUE would have more significant
spillover effects of factors related to AWUE, which would benefit the improvement in
AWEU in other areas. On the contrary, provinces with low AWUE would have higher
in-degree and lower out-degree, and other districts may affect their AWUE.
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However, provinces with high AWUE, such as Fujian and Chongqing, did not have
apparent spillover effects as expected and had absorbed advanced experience from others
through high in-degree. Meanwhile, provinces with low AWUE, such as Liaoning, Anhui,
and Hubei, had more spillover effects than receiving effects. Considering these three regions
are main grain-producing areas in China, we must promote them to receive spillover effects
of factors related to effectively using water.

The average betweenness centrality in the network was 2.816, and nine provinces had
a higher value than that (Figure 8). The betweenness centrality in Fujian, Jiangxi, Qinghai,
and Hebei was about 7, indicating that these four provinces had controlled more than
seven transmission channels in the spatial correlation network of AWUE in China. The
betweenness centrality in Shandong, Xinjiang, Guizhou, Jiangsu, and Heilongjiang was
more than 4. Provinces with high betweenness centrality play a role as a “bridge” in the
network, meaning they are critical nodes for disseminating and exchanging information
technology related to agricultural water utilization.

Figure 8. Network diagram corresponding to betweenness centrality.

There are slight differences between the rankings of the centrality degree and between-
ness centrality of the 30 provinces in the network.

The average closeness centrality of the nodes in the network was 73.401, and more
than 50% of the provinces had a higher value than that, which indicates the whole network
was relatively balanced. As shown in Figure 9, Fujian, Hebei, Jiangsu, Jilin, Shandong,
Hubei, Guizhou, Yunnan, and Qinghai ranked higher in closeness centrality, meaning they
had a short distance to other nodes and could communicate with other provinces quickly
in the network.

By comparing the point centrality, betweenness centrality, and closeness centrality of
the spatial correlation network of AWUE in China, we found that Fujian, Hebei, Jiangsu,
Shandong, Guizhou, and Qinghai had high point centrality, centrality, and closeness
centrality at the same time. These provinces were essential nodes in the network and could
play a vital role in improving AWUE.
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Figure 9. Network diagram corresponding to closeness centrality.

3.2.3. Block Model Analysis

The total correlation in the network was 301. The number of correlations within blocks
was 63, with a ratio of 20.93%. Meanwhile, the correlation out of blocks was 238, with a
ratio of 79.07%, meaning that the spillover effects between blocks were more significant
(Table 5). Moreover, the net spillover block, bidirectional spillover block, and agent block
contained most of the nodes and links in the spatial correlation network of AWUE.

Table 5. Spillover effect of agricultural water use efficiency spatial correlation block in China.

Block

Reception Spillover Expected Internal
Relationship

Ratio %

Actual Internal
Relationship

Ratio %

Block PropertiesIntra
Block

Out of
Block

Intra
Block

Out of
Block

I 8 32 8 75 24 10 Net Spillover Block
II 34 43 34 106 31 24 Bidirectional Spillover Block
III 19 119 19 44 28 30 Agent Block
IV 2 44 2 13 7 13 Net Beneficial Block

Block I had eight nodes: Beijing, Inner Mongolia, Liaoning, Shanghai, Zhejiang, Anhui,
Jiangxi, and Hainan. There were 83 spillover relations in block I, and 75 issuing spillover
relations to other blocks. The expected internal relationship was 24%, while the actual
internal proportion was 10%. Therefore, block I was named the net spillover block, whose
members are more likely to send spillover effects on AWUE to other blocks. Among the
members, Inner Mongolia, Liaoning, Jiangxi, and Anhui are major grain-producing areas
in China, contributing about 20% of the grain production. Beijing, Shanghai, Zhejiang, and
Hainan have high agricultural water use efficiency levels.

Block II had ten nodes: Tianjin, Jiangsu, Shandong, Henan, Hubei, Sichuan, Guizhou,
Shaanxi, Gansu, and Xinjiang. There were 140 spillover relations in block II, 34 spillover
connections within the block, and 106 spillover relations to other blocks. The expected
internal relationship proportion was 31%, more than the actual relationship proportion of
24%. Therefore, we called block II the bidirectional spillover block. Members in this block
likely have bidirectional spillover effects on nodes inside and outside. Jiangsu, Henan, and
Hubei are also major grain-producing provinces.
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Block III had nine nodes: Hebei, Shanxi, Jilin, Heilongjiang, Guangdong, Guangxi,
Chongqing, Yunnan, and Qinghai. There were 63 spillover relations in block III, 19 within
this block, and 44 issuing spillovers to other blocks. The expected internal relationship was
28%, while the actual internal proportion was 30%. According to the above characteristics,
block III was classified as the agent block, which plays the role of an “intermediary” and
“bridge” in the correlation network. Provinces in this block are evenly distributed in the
northeast, northwest, southwest, southeast, and north central subregions of China, which
is conducive to the spread of the spillover effects of AWUE across provinces.

Block IV had three nodes: Fujian, Hunan, and Ningxia. There were only 15 spillover
relations in this block, 2 within the block, 44 receiving spillover relations in other blocks,
and 13 sending spillover relations to other blocks. The expected internal relationship
proportion was 7%, and the actual relationship proportion was 13%, meaning block IV was
classified as the net beneficial block. Provinces in the net beneficial block mainly receive the
spillover effects of other blocks. Fujian’s food demand is great, but the local grain output is
small, whose external food dependence is high.

Then, the density matrix was calculated to further analyze the spillover effects of
AWUE between the four blocks in the network. According to the results in Table 3, the
density of the whole spatial correlation network of AWUE was 0.346. If the density of
each block in the density matrix is higher than 0.346, the corresponding value in the image
matrix is 1; otherwise, the value is 0. The results are shown in Table 6.

Table 6. Density matrix and image matrix of agricultural water use efficiency in China.

Block
Density Matrix Image Matrix

I II III IV I II III IV

I 0.143 0.375 0.486 0.417 0 1 1 1
II 0.188 0.378 0.867 0.433 0 1 1 1
III 0.194 0.100 0.264 0.778 0 0 0 1
IV 0.125 0.133 0.222 0.333 0 0 0 0

Block I and block II mainly overflowed to block III and block IV, which meant that
the former two blocks had substantial spillover effects of AWUE on the latter two blocks.
Meanwhile, block III mainly overflowed to block IV. Moreover, only block II overflowed to
itself, which suggests that the AWUE of nodes in this block had a significant correlation.

Figure 10 shows the transmission mechanism of spillover effects of factors related to
agricultural water utilization between the four blocks. The net spillover block (block I)
was the “engine” of the AWUE spatial correlation network, driving changes in agricultural
water use efficiency in other members of the network. The net spillover block mainly sent
spillover effects of factors related to agricultural water utilization to block II and block III.
The bidirectional spillover block (block II) was the “steering wheel” of the network, leading
to improving agricultural water resource management. The agent block (block III) was
the “bridge” of the network, coordinating the exchange and dissemination of information
and technology concerning water resources among the provinces. The net beneficial block
(block IV) was the weak link of the whole network due to the low level of AWUE or the
great import of agricultural products from other blocks.
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Figure 10. Spatial correlation between the four blocks.

4. Discussion

4.1. Discussion of Overall Level of Provincial AWUE

The overall agricultural water use efficiency of China was at a low level. This result
is consistent with the research conclusion of Wang et al. [13]. The main reasons for this
were the backward irrigation technology, extensive water use pattern, and inefficient
agricultural water management. Only 1.1% of rural residents in major irrigation districts
have adopted modern water-saving technology [57], meaning there is great potential for
AWUE improvement. In addition, using chemical fertilizers will increase the grain yield,
but excessive use of them will affect the soil and water environment through non-point
source pollution [32]. Therefore, water-saving management and reducing non-point source
pollution should be involved when implementing measures to improve agricultural water
use efficiency.

4.2. Discussion of the Temporal Trend of AWUE

On the one hand, the evaluation value of AWUE is determined by the ratio of inputs
and outputs. Due to the rapid increase in the economic outputs of the agricultural sector,
and the reduction in non-point source pollution, AWUE in certain provinces showed a
significant upward trend, such as Beijing, Shanghai, Jiangsu, and Zhejiang. On the other
hand, AWUE reflects the condition of water conservancy facilities, the application of water-
saving measures, farmers’ awareness of water saving, etc. [13]. Economically developed or
major grain-producing provinces always have advanced agricultural water use technology
and information, causing their AWUE to have apparent temporal trends. In addition,
policies related to agricultural production also introduce significant drives for AWUE
improvement. In 2011, the Decision on Accelerating the Reform and Development of
Water Conservancy, released by the CPC Central Committee and State Council, required
the government to pay great attention to water conservancy construction and establish
the rational allocation and efficient utilization system of water resources. In 2015, the
Planning of National Agriculture Sustainable Development (2015–2030) was issued by the
China Ministry of Agriculture, which aims to increase the effective utilization coefficient
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of farmland irrigation water. Therefore, provincial AWUE showed growth after 2011 and
2015. Due to regional differences in policy implementation measures and standards, there
would be regional differences in the effects of the above policies on AWUE.

4.3. Discussion of Spatial Pattern of AWUE

The spatial performance of AWUE is primarily determined by the regional climate
and agricultural system characteristics [56]. In general, the southern subregions are rich in
precipitation and have well water resource endowment, which would benefit crop growth.
Moreover, developed provinces always have advanced agricultural production technology
and higher value-added agricultural products, which results in increased economic outputs
per unit of water use. Thus, provinces with high AWUE values were located in southeastern
China, while provinces with low values were mainly located in southwestern, south
central, and north central China. Meanwhile, neighboring provinces always have similar
geographical conditions and close communication, conducive to spreading spatial spillover
effects between the adjacent areas [13,22,32].

However, the AWUE in several major grain-producing areas was low, including Hubei,
Hunan, Jiangxi, and Anhui. Since it is often necessary to input a lot of irrigation water to
ensure grain outputs, redundancy and shortage of irrigation water are the main reasons for
low AWUE [58]. Moreover, the economic value per unit area for growing wheat and rice is
lower than that for planting vegetables, fruits, and other cash crops.

4.4. Discussion of Spatial Correlation of Provincial AWUE

In the context of regional coordinated development, mobility of agricultural produc-
tion factors has become more frequent [59], resulting in closer connections of resource
utilization efficiency between different regions [38]. Each province could receive and send
spillover effects of factors concerning agricultural water utilization, resulting in a significant
correlation of AWUE between provinces. Meanwhile, with the increase in connections of
AWUE between different provinces, the whole network became more robust.

The role of a particular province in the network may be related to its position in the
national agricultural system. Figure 11 shows the ranking of provinces in agricultural
economic outputs, grain outputs, and AWUE. Hebei, Jiangsu, Jilin, Shandong, and Hubei
are major grain-producing areas from functional zoning. Provinces with a high added
value of agriculture and large grain outputs may export many agricultural products to
other provinces. Along with the frequent agricultural products trade, information and
technology related to agricultural water utilization would be widespread. The AWUE in
these provinces is more likely to correlate with other regions. From water use efficiency,
agricultural sectors in Jilin, Shandong, Hubei, Guizhou, Yunnan, and Qinghai consumed
water with low-level efficiency. To alleviate their water shortage, they had urgent needs
to absorb information, technology, and the experience of water management from other
regions [37]. Accordingly, the low-AWUE provinces would receive more spillover effects of
water use efficiency from high-AWUE regions, resulting in the value of in-degree mostly in
low-AWUE areas being higher than the value of out-degree.

Beijing and Shanghai are highly developed cities and have a high average value of
AWUE. However, their agricultural outputs are significantly smaller than in other areas.
Hebei has replaced Beijing’s network functionality and has provided many resources for
developing the Beijing-Tianjin-Hebei region [60]. Shanghai’s network functionality was also
replaced by Jiangsu [38]. For Inner Mongolia and Liaoning, their crop yield and economic
output are high, and their agricultural water use efficiency is at the middle level. However,
they are located in northern China and face severe water shortages. Correspondingly, it
is more challenging to improve their water use efficiency, resulting in fewer connections
between these provinces and others in AWUE.
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Figure 11. Ranking of average value of added value of agriculture, grain outputs, and AWUE
(agricultural water use efficiency) in China from 2000 to 2019. (For comparison and display purposes,
the highest value rank is 30, and the lowest value rank is 1.).

Fujian, Jiangxi, Qinghai, Hebei, Shandong, Guizhou, Jiangsu, Xinjiang, and Hei-
longjiang had high betweenness centrality, playing the role of a “bridge” to promote the
dissemination of information, experience, knowledge, and technology concerning water
use efficiency in the network. Most of the above provinces are major agricultural pro-
duction regions. Generally, major grain-producing provinces are more sensitive to water
shortages and are willing to adopt new management strategies and technology to improve
agricultural water use efficiency [61]. For example, Jiangxi and Xinjiang are the primary
agricultural production areas in China, and there is great demand for agricultural water.
Xinjiang is even located in arid northwestern China. The two provinces are pilot regions
for water rights trading. They have accumulated rich experience in water saving and
constructed an advanced platform for the exchange and communication of water resource
information [62]. They could assume the role of a bridge to promote the interactions of
AWUE in other provinces.

Provinces in the net spillover block were mainly major grain-producing areas or had
high levels of AUWE. They always possessed an advanced agricultural water management
capacity and could drive the whole spatial correlation network, such as Inner Mongolia and
Shanghai. Provinces within the middle level of AWUE mainly belonged to the bidirectional
spillover block, which could receive spillover effects from other areas to improve AWUE
and send helpful knowledge and information to others. Members in the agent block
were more complex, including nodes with a high value, median value, and low value
of AWUE. Therefore, this block can serve as a transfer station for agricultural water use
efficiency information.

5. Conclusions

Affected by global climate change and water shortages, food security continues to
be challenged. Improving agricultural water use efficiency and increasing the outputs of
per unit water usage are essential to guarantee global food security. This article used the
undesirable super-efficiency SBM model to measure the AWUE of 30 provinces in China
from 2000 to 2019. Then, we investigated the spatial correlation of provincial AWUE with
the social network analysis (SNA) method. The results found that:
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(1) The overall agricultural water use efficiency in China was inefficient, and there
is still great potential to improve it. The focus of sustainable agricultural water resource
management included the broad application of water-saving technology and strict control
of water pollution.

(2) All the provinces had experienced increasing AWUE in the past 20 years, but with
apparent gaps. The growth rate of AWUE experienced a slight increase first and then a
substantial increase. Provinces with higher AWUE were primarily located in the east, while
the lower-AWUE areas were located in central and western China.

(3) There was a strong spatial correlation in provincial AWUE in China, presenting a
typical network structure. It was necessary to manage water resources from a system and
network perspective and improve coordinated agricultural water use efficiency.

(4) Fujian, Hebei, Jiangsu, Jilin, Shandong, Hubei, Guizhou, Yunnan, and Qinghai
had high centrality in the network. Improvement in AWUE should pay more attention
to the province with high centrality in the network and promote the spillover effects of
agricultural water utilization between different regions.

(5) The nodes and links in the network were highly concentrated in the net spillover
block, bidirectional spillover block, and agent block. We should focus on the driving role
of the net spillover block, which is the power source of the improvement in AWUE in the
whole network. Moreover, it is needed to strengthen the transmission of the bidirectional
spillover block and agent block to promote the coordinated development of AWUE.

Therefore, when formulating relevant measures and policies to improve agricultural
water use efficiency, they must pay attention to the spatial correlation of water resource
utilization in different provinces to promote the common improvement in water use
efficiency in all provinces.
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Abstract: Researchers have pointed out the urgent need to tackle food waste from customers’ plates,
considering its environmental and socioeconomic impacts. Nonetheless, little is known about reduc-
ing food waste from customers’ plates in the restaurant context. The present research successfully
addressed how customers can reduce food waste by using the Norm Activation Model (NAM). A
customer survey was employed to collect quantitative data to verify the hypotheses of this study.
The NAM of this study involved awareness of environmental impact (of the restaurant industry),
ascribed responsibility for food waste, and moral norm for food waste reduction as predictors for
food waste reduction intention. In addition, this study adopted self-efficacy to food waste reduction
as a moderator on the path from the moral norm for food waste reduction to food waste reduction
intention. Our empirical results supported all the hypotheses suggested in the research model.
Consequently, the findings of this study adequately explained how restaurant customers form their
intention to reduce food waste and thus provided important clues about how it can be encouraged.
For example, based on the findings, a nudging message may be displayed on the restaurant wall to
raise customers’ self-efficacy, saying, “Saving the earth is as easy as finishing your food or taking
it home”.

Keywords: food waste; norm activation model; self-efficacy; restaurant

1. Introduction

Food waste is increasingly drawing public attention, causing adverse environmental
and socioeconomic impacts [1]. The foodservice industry discharges substantial food waste
globally [2,3]. For example, the foodservice industry generates about 12% of the 28 EU
countries’ total food waste [4]. US foodservice wastes up to 40% of the nation’s total [5],
implying considerable resource, energy, and environmental costs. The literature indicates
that out-of-home dining results in more incredible food waste than home dining [6,7].
Nevertheless, foodservices have received much less scholarly attention than households
in terms of food waste [6]. Further, foodservices have been studied much less than hotels
regarding environmental impacts [2].

Although there is no official data available about amount of the food waste from
the foodservices in South Korea, the food waste from households has been reported as
decreasing every year [8] as households should pay costs in proportion to the amount of the
food waste discharged. This policy is equally applied to the foodservices in South Korea.
However, the cause of the problem lies in the fact that the foodservice operators directly
pay the costs, not customers. Hence, customers are not directly rewarded by reducing their
plate waste. It would be the fundamental reason people tend to be less motivated to reduce
their food waste in restaurants than at home.

Undoubtedly, food waste is at the center of the harmful environmental influence of
foodservices. Moreover, the food waste from foodservices is perfectly edible but discarded
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simply because it is no longer wanted [9]. This phenomenon is especially true for Korean
food as typical Korean meals are served with several side dishes, which are a default
option and thus easily left behind. Food waste causes climate change, land and water
pollution, biodiversity loss, overharvesting, fossil fuel consumption, and many others [10].
The landfill is the most common method of food waste disposal in Korea, as most countries
do [10]. In other words, food goes back to land, where it came from, as waste that pollutes
the land, water, and air. Thus, there is need to intervene to reduce food waste, which
is mostly ‘edible,’ in the foodservice sector [11]. Filimonau and De Coteau [12] asserts
that continuous scholarly support is required to help foodservice managers in reveal the
significance and determinants of effective mitigation of food waste.

In a broad sense, food waste is defined to include not only perfectly edible parts
but also inedible parts (e.g., eggshells) and occasionally edible parts (e.g., potato skins,
cucumber peels) [13]. However, given that the latter two food waste types are mostly un-
avoidable in the value-adding process in foodservices, this study pays particular attention
to the perfectly edible food waste generated by restaurant customers. It is critical to ad-
dress reducing edible food waste in the environmental perspective and the socioeconomic
perspective [14], given that 11% of the world population are in hunger as of 2017 [15].
In this sense, restaurant customers’ food waste reduction can be viewed from a moral
viewpoint [11,16]. Accordingly, this study adopted the Norm Activation Model (NAM),
which includes moral norm as a key driver of prosocial behavior [17], to predict restaurant
customers’ food waste reduction intention. The NAM is considered the most influential
theory in the environmental literature [18].

This study is the first attempt to predict restaurant consumers’ food waste reduction
intention through their moral norm formation process. In addition, this study adopted
self-efficacy to food waste reduction as a moderator on the path from the moral norm for
food waste reduction to food waste reduction intention. Self-efficacy is a self-appraisal of
one’s capacity to organize and guide the actions essential to deal with certain situations [19].
Therefore, it follows that when customers believe they are capable of behaving in the
ways required to mitigate food waste, their moral norm will drive them more strongly to
form food waste reduction intention. By revealing the central roles of the moral norm and
self-efficacy in forming customers’ food waste reduction intention, this study contributes
to drawing scholarly as well as managerial attention to how to simulate customers’ moral
norm and self-efficacy to food waste reduction, which is a win-win-win for the foodservices,
customers, and the general public.

In sum, as the first study adopting the NAM in explaining restaurant customers’ food
waste reduction intention, this study aimed to verify (1) whether the NAM can successfully
explain restaurant customers’ food waste reduction intention, and (2) whether customers’
self-efficacy to food waste reduction enhances the effect of their moral norm for food waste
reduction on their food waste reduction intention in the South Korean restaurant context.

2. Literature Review and Hypotheses

2.1. Food Waste

The term “food waste” is interchangeably used with “food loss” by some scholars [20].
However, it is more practical to distinguish “food waste” from “food loss” as “food waste”
represents the food lost at the consumption stage, whereas “food loss” represents the food
lost at the value-adding stage [16,21]. Thus, food waste takes place at the household level
as well as foodservice level. In the foodservice context, “food waste” refers to the food
waste from customers’ plates [22]. Given the growing dining-out trend, fueled by the
advance of the foodservice industry and growth in income, increasing amount of edible
food waste has been the focus of media, often blaming both foodservice businesses and
their customers [12,21]. Witzel et al. [23] investigated Northern and Western European
consumers, and applying cluster analysis led to the relationship between food-related
lifestyle and food waste. Janssen et al. [24] examine the Dutch customer’s household food
management and food waste relation. Customers’ overfull purchase behavior is the main
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reason for household food waste (Janssen et al.) [24]. Özbük [25] extension the theory of
planned behavior by included price perception and food taste to discuss customers’ food
waste behavior in a restaurant. Goh and Je [26] applied theory planned behavior to explain
the Generation Z hotel employees’ food wastage motivation. Their research also points out
that using fresh food material to improve customer satisfaction renders hotel employees
ascribed responsibility for food waste [26].

It implies that both foodservice operators and customers share responsibilities in
reducing edible food waste. They can easily cooperate to reduce edible food waste from
customers’ plates since it is a relatively low-hanging fruit [27] compared to reducing
food loss in the kitchen. Studies show that consumers are the biggest generator of food
waste [28], and the wasted food can be avoided mainly by consumers’ environment-
considerate behaviors [29,30]. Certainly, foodservice operators can facilitate their customers’
environment-considerate behaviors [31]. Fortunately, restaurants are gradually paying
attention to exemplary restaurant cases of food waste reduction [16].

2.2. Norm Activation Model

Developed by Schwartz [32], Norm Activation Model (NAM) has been extensively
adopted to explain various prosocial behaviors [33,34], including energy saving behavior
(e.g., Wittenberg, Blöbaum, and Matthies [35]), sustainable transport behavior (e.g., Bam-
berg, Hunecke, and Blöbaum [36]), environmental complaint behavior (e.g., Zhang, Liu,
and Zhao [37]), and recycling behavior (e.g., Han and Hyun [38]). Prosocial behavior refers
to the behavior intended to benefit other people or the general public [33]. In this regard,
food waste reduction is undoubtedly a type of prosocial behavior [39]. Therefore, the NAM
is the suitable theoretical model to explain food waste reduction behavior. However, no
study has empirically verified restaurant customers’ food waste reduction intention using
the NAM.

The NAM consists of three antecedents that predict people’s prosocial behavior.
Namely, they are awareness of consequences (AC), ascribed responsibility (AR), and
personal norm (PN) [32]. AC is defined as “whether someone is aware of the negative
consequences for others or for other things one values when not acting pro-socially” [33]
(p. 426). AR indicates “feelings of responsibility for the negative consequences of not acting
pro-socially” [33] (p. 426). PN refers to a feeling of a “moral obligation to perform or refrain
from specific actions” [33] (p. 426). The original norm activation model proposes that when
people are aware of the negative consequences of not acting pro-socially (i.e., AC), they
are likely to feel joint responsibility for the consequences of their non-prosocial behavior
(i.e., AR). Thus, they would have a moral obligation to quit the non-prosocial behavior or
adopt the alternative prosocial behavior (i.e., PN) [32]. Consequently, such felt moral norm
would lead people to protect the environment [32,33,40].

As mentioned, food waste reduction should be considered as a type of prosocial
behavior. Therefore, following the NAM, the more people are aware of the negative
consequences of the foodservice industry (i.e., AC), the more they will feel responsible
for the negative consequences of wasted foods (i.e., AR). In turn, the more people feel
responsibility for the negative consequences of wasted foods (i.e., AR), the more they will
feel a moral obligation to reduce food waste (i.e., PN). Finally, this felt moral obligation
would induce people to form food waste reduction intention.

Whereas the original model suggests sequential influences (i.e., AC → AR → PN
→ prosocial behavior), some scholars have suggested both AC and AR as the predictors
of PN [35] since AC initially triggers a person’s moral obligation (i.e., PN) [41]. As such,
previous studies have shown inconclusive viewpoints and each of the viewpoints has its
own sound theoretical bases and empirical supports [35]. Therefore, the mediation model
was adopted as the proposed model of this study to embrace both viewpoints. Using this
well-proven theoretical model of the NAM, the following hypotheses were suggested in
the context of customers’ food waste in restaurants.
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Hypothesis 1 (H1). Awareness of environmental impact of the foodservice industry positively
affects ascribed responsibility for food waste.

Hypothesis 2 (H2). Awareness of environmental impact of the foodservice industry positively
affects moral norm for food waste reduction.

Hypothesis 3 (H3). Ascribed responsibility for food waste positively affects moral norm for food
waste reduction.

Hypothesis 4 (H4). Moral norm for food waste reduction positively affects food waste reduction
intention.

2.3. Self-Efficacy to Food Waste Reduction

Self-efficacy represents a personal belief in one’s capability to act to tackle certain
situations [19]. It leads people to exert greater efforts to engage in and maintain certain
behaviors [19,42]. In other words, the more people believe they are capable of taking
actions to achieve certain goals, the more they tend to take the actions. As such, self-
efficacy motivates people to engage in specific behaviors. Therefore, with the same level
of the moral norm for food waste reduction, those with higher self-efficacy to food waste
reduction would form stronger food waste reduction intention than those who have lower
self-efficacy. Thus, integrated into the NAM, this motivational effect of self-efficacy would
work as a moderator as follows.

Hypothesis 5 (H5). Self-efficacy to food waste reduction will enhance the positive impact of moral
norm for food waste reduction on food waste reduction intention.

Figure 1 graphically illustrates the study constructs and hypotheses suggested above.

 

Figure 1. The proposed conceptual model.

3. Method

3.1. Measures

The measures of this study were borrowed from previous research in the environ-
mental psychology and consumer behavior literature. All the constructs were measured
with multiple items in a seven-point Likert scale ranging from “strongly disagree” (1) to
“strongly agree” (7). Three items were used to measure awareness of environmental impact
(e.g., “The restaurant industry causes pollution, climate change, and exhaustion of natural
resources”, “The restaurant industry may have a huge environmental impact on the at-
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mosphere, soil, and water”, “The restaurant industry causes environmental deteriorations
(e.g., excessive waste generation, waste of food materials)”) [43]. Ascribed responsibility
for food waste was evaluated with three items (e.g., “I feel jointly responsibility for re-
ducing food waste while eating out at restaurants”, “I feel jointly responsibility for the
negative consequences of not practicing efforts to reduce food waste while eating out at
a restaurant”, “I feel jointly responsibility for the environmental pollution and ecological
damage problems caused by not practicing efforts to reduce food waste while eating out
at a restaurant”) [44]. Four items were utilized to measure moral norm for food waste
reduction (e.g., “It is contrary to my principles when I have to discard food”, “I have been
raised to eat all food I have taken myself”, “Leaving leftovers give me a bad conscience”,
“It is contrary my principles when I have to discard food”) [9]. Food waste reduction
intention was evaluated with three items (e.g., “I try to eat all food that I have ordered”,
“The next time when I eat out at a restaurant, I intend to not throw food away”, “The next
time when I eat out at a restaurant, I will try to leave as little food as possible”) [9]. Lastly,
four items were adopted to assess self-efficacy to food waste reduction (e.g., “There are
simple things I can do that reduce the negative consequences of food waste”, “I can change
my daily routines to prevent the problem caused by food waste”, “My individual actions
will contribute to a solution of the problem caused by food waste”, “Changes in my daily
routines will contribute to reducing the negative con-sequences of food waste”) [45].

Along with these measures, the questionnaire included the research description and
questions asking the respondent’s demographic profiles. The face validity of the measures
was tested by two foodservice academics and two industry professionals. Since all the
measures adopted in this study had been well verified in various study contexts, no major
modification was made. Just slight wording changes on the questions were made to make
them clearer and easier to understand and finally the questionnaire was confirmed with a
thorough review from the foodservice academic experts, who are professors in a hospitality
program in a university in South Korea.

3.2. Data Collection and Respondent Profiles

The South Korean restaurant distinguished from other countries restaurant is the
typical Korean meals offer the side dished, the most classic example is Hanjongshik. It
means Korean consumers have potential food waste behavior. According to this situation,
we decided to explore South Korean consumers. The data for this study were collected
through the biggest online panel survey firm in South Korea. The firm’s database has
more than 1.4 million panel members, including all types of Koreans, from which the
samples were randomly selected through the firm’s random sampling algorithm. Then, the
firm’s system emailed an online invitation to the sampled panel members. Receiving the
invitation, they accessed and filled out the online questionnaire. Only those who had dined
out in a restaurant within the last three months were qualified to complete the survey. The
description of the research was provided at the beginning of the questionnaire. Through
this process, 315 usable responses were obtained. Because there were no incomplete or
inconsistent responses, all the 315 data points remained for the analysis.

Of the 315 samples, 50.2% were female while 49.8% were male. The mean age was
about 43.7 years old. 22.8% were in the 40′s, 20.0% were in the 30′s, 19.7% were in the 50′s,
19.4% were in the 20′s, and 18.1% were in 60′s. Regarding education level, 65.7% reported a
bachelor’s degree, 13.7% reported graduate school or higher, 11.1% reported a high school
diploma, and 9.5% reported an associate degree. Lastly, in terms of monthly income, 36.8%
reported an income less than US$2500, followed by 29.6% between US$2501–4500, 17.4%
between US$4501–6500, 8.9% between US$6501–8500, and 7.3% over US$8501. Overall, the
samples appeared to well represent typical restaurant customers in South Korea.
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4. Results

4.1. Measurement Model Evaluation

A confirmatory factor analysis (CFA) was conducted to evaluate the fit of the mea-
surement model to the data and verify the reliability, convergent validity, and discriminant
validity of the measures [46]. As shown in Tables 1 and 2, the results of the CFA showed
that the measurement model adequately fits the data (χ2 = 259.534 (df = 108, p < 0.001,
χ2/df = 2.403), RMSEA = 0.067, CFI = 0.969, IFI = 0.969, TLI = 0.961). All the measures sig-
nificantly loaded on their associated constructs at p < 0.001. The composite reliability values
of the constructs were all above the recommended cutoff of 0.700, ranging from 0.842 to
0.952, showing satisfactory internal consistency of the measures for each construct [47]. The
average variance extracted (AVE) values of the constructs all exceeded the suggested cutoff
of 0.500 [47], ranging from 0.574 to 869. It indicated that the measures of each construct
had adequate convergent validity [48]. Lastly, satisfactory discriminant validities of the
constructs were established since the AVE value of each construct was above the squared
correlations with the other constructs [48].

Table 1. Measurement model assessment.

Constructs and Measures Loading

Awareness of environmental impact (CR = 0.923, AVE = 0.800)
The restaurant industry causes pollution, climate change, and exhaustion of natural

resources. 0.882

The restaurant industry may have a huge environmental impact on the atmosphere,
soil, and water. 0.904

The restaurant industry causes environmental deteriorations (e.g., excessive waste
generation, waste of food materials). 0.897

Ascribed responsibility for food waste (CR = 0.952, AVE = 0.869)
I feel jointly responsibility for food waste reduction while eating out at a restaurant. 0.904
I feel jointly responsibility for the negative consequences of not practicing efforts to

reduce food waste while eating out at a restaurant. 0.954

I feel jointly responsibility for the environmental pollution and ecological damage
problems caused by not practicing efforts to reduce food waste while eating out at a

restaurant.
0.938

Moral norm for food waste reductio (CR = 0.842, AVE = 0.574)
I feel guilty about poor people when I leave leftover food. 0.612

Leaving leftovers give me a bad conscience. 0.762
I have been raised to eat all food I have taken myself. 0.789

It is contrary my principles when I have to discard food. 0.847

Food waste reduction intention (CR = 0.934, AVE = 0.826)
The next time when I eat out at a restaurant, I will try to eat all food that I order. 0.930

The next time when I eat out at a restaurant, I intend to not throw food away. 0.917
The next time when I eat out at a restaurant, I will try to leave as little food as

possible. 0.878

Self-efficacy to food waste reduction (CR = 0.933, AVE = 0.777)
There are simple things I can do to reduce the negative consequences of food waste. 0.823

I can change my daily routines to prevent the problem caused by food waste. 0.861
My individual actions will contribute to a solution of the problem caused by food

waste. 0.926

Changes in my daily routines will contribute to reducing the negative consequences
of food waste. 0.912

Note: All standardized loadings were significant at p < 0.001.
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Table 2. Results of the confirmatory factor analysis and correlations (n = 315).

Construct (a) (b) (c) (d) (e) CR AVE

(a) Awareness of environmental impact - 0.101 b 0.073 0.008 0.048 0.923 0.800
(b) Ascribed responsibility for food waste 0.318 a - 0.430 0.358 0.437 0.952 0.869
(c) Moral norm for food waste reduction 0.270 0.656 - 0.493 0.316 0.842 0.574
(d) Food waste reduction intention 0.092 0.598 0.702 - 0.494 0.934 0.826
(e) Self-efficacy to mitigate climate crisis 0.219 0.661 0.562 0.703 - 0.933 0.777

Mean 4.43 5.30 4.83 5.75 5.62
SD 1.24 1.19 1.20 1.10 0.94

Goodness-of-fit statistics:
χ2 = 259.534 (df = 108, p < 0.001, χ2/df = 2.403),
RMSEA = 0.067, CFI = 0.969, IFI = 0.969, TLI = 0.961

a Correlation
b Squared correlation

Note: CR = composite reliability; AVE = average variance extracted; SD = standard deviation; RMSEA = root
mean square error of approximation; CFI = comparative fit index; IFI = incremental fit index; TLI = Tucker-Lewis
index.

4.2. Structural Model Analysis and Hypotheses Testing

A structural equation modeling (SEM) was conducted to test the hypothesized rela-
tionships in the structural model. The model was shown to fit the data well (χ2 = 151.903
(df = 60, p < 0.001, χ2/df = 2.532), RMSEA = 0.070, CFI = 0.974, IFI = 0.974, TLI = 0.966). As
shown in Table 3 and Figure 2, the suggested causal relationships satisfactorily accounted
for the variance in food waste reduction intention (R2 = 0.542). 47.6% of the total vari-
ance in moral norm for food waste reduction and 10.1% of the total variance in ascribed
responsibility for food waste were accounted for by its antecedent(s).

Table 3. Results of the structural equation modeling (n = 315).

Independent Construct Dependent Construct Coefficient t-Value

H1 Awareness of environmental impact Ascribed responsibility for food waste 0.318 5.425 ***
H2 Awareness of environmental impact Moral norm for food waste reduction 0.032 0.607
H3 Ascribed responsibility for food waste Moral norm for food waste reduction 0.679 8.833 ***
H4 Moral norm for food waste reduction Food waste reduction intention 0.736 9.101 ***

Total variance explained (R2):
R2 for ascribed responsibility for food waste = 0.101
R2 for moral norm for food waste reduction = 0.476
R2 for food waste reduction intention = 0.542

Goodness-of-fit statistics:
χ2 = 151.903 (df = 60, p < 0.001,
χ2/df = 2.532), RMSEA = 0.070,
CFI = 0.974, IFI = 0.974,
TLI = 0.966
*** p < 0.001

Note: RMSEA = root mean square error of approximation; CFI = comparative fit index; IFI = incremental fit index;
TLI = Tucker-Lewis index.

The SEM results showed that awareness of environmental impact significantly and
positively affected ascribed responsibility for food waste (ß = 0.318, p < 0.001), supporting
H1. However, awareness of environmental impact did not significantly affect moral norm
for food waste reduction (H2) (ß = 0.032, p > 0.05). An additional mediation test revealed that
this insignificant effect was resulted from a full mediation by ascribed responsibility for food
waste. Specifically, when the path from ascribed responsibility for food waste to moral norm
for food waste reduction was constrained to zero, the effect of awareness of environmental
impact on moral norm for food waste reduction became significant (ß = 0.267, t = 4.05
(p < 0.001)). The χ2 difference between the original model and the constrained model
(Δχ2(1) = 135.681) was significant at p < 0.001, indicating that the mediation effect was
highly significant. Going back to the original model, ascribed responsibility for food
waste significantly and positively affected moral norm for food waste reduction (ß = 0.679,
p < 0.001) and, in turn, moral norm for food waste reduction significantly and positively
affected food waste reduction intention (ß = 0.736, p < 0.001), supporting H3 and H4.
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Figure 2. The structural model results.

Next, the indirect effects of the mediating constructs were tested. As in Table 4,
awareness of environmental impact (ß = 0.183, p < 0.05) and ascribed responsibility for
food waste (ß = 0.500, p < 0.01) showed a significant positive indirect impact on food waste
reduction intention. In addition, awareness of environmental impact showed a significant
positive indirect impact (ß = 0.216, p < 0.05) on moral norm for food waste reduction.
Lastly, in terms of the total effect, the findings showed that moral norm for food waste
reduction exerted the greatest effect on food waste reduction intention (ß = 0.736, p < 0.01),
followed by ascribed responsibility for food waste (ß = 0.500, p < 0.01), and awareness of
environmental impact (ß = 0.183, p < 0.05).

Table 4. Results of the indirect and total effect assessment.

Indirect Effect of

On Awareness of Environmental Impact
Ascribed Responsibility

for Food Waste

Moral norm for food waste reduction 0.216 * –
Food waste reduction intention 0.183 * 0.500 **

Total effect on food waste reduction intention:
β awareness of environmental impact = 0.183 *
β ascribed responsibility for food waste = 0.500 **
β moral norm for food waste reduction = 0.736 **

* p < 0.05, ** p < 0.01

4.3. Invariance Model Test

A metric invariance test was conducted to evaluate the hypothesized moderating
effect of self-efficacy to food waste reduction. The respondents were separated into high
and low self-efficacy to food waste reduction groups through a K-means cluster analysis.
187 respondents were clustered into the high group and 128 into the low group. In turn,
a baseline model involving both the high and low groups were created. Our results
showed that the baseline model satisfactorily fit the data (χ2 = 238.960 (df = 129, p < 0.001,
χ2/df = 1.852), RMSEA = 0.052, CFI = 0.962, IFI = 0.962, TLI = 0.954). Table 5 and Figure 2
show the detailed results of the baseline model test. Subsequently, the baseline model
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was compared with the nested model where the path from moral norm for food waste
reduction to food waste reduction intention was constrained to be equivalent. As expected,
our results showed that the influence of moral norm for food waste reduction on food waste
reduction intention differed significantly between the high and low self-efficacy groups
(Δχ2(1) = 4.70, p < 0.05), supporting H5. The χ2 difference test was shown in Table 5.

Table 5. Results of the invariance model assessment.

Linkage

High SMCC Group
(n = 187)

Low SMCC Group
(n = 128) Baseline Model

(Freely Estimated)
Nested Model
(Equally Constrained)

β t-Value β t-Value

Moral norm for food
waste reduction
→ Food waste
reduction intention

0.649 6.448 *** 0.612 5.719 *** χ2 (129) = 238.960 χ2 (130) = 243.658 a

Chi-square difference test:
a Δχ2 (1) = 4.70, p < 0.05 (H5: Supported)
***p < 0.001

Goodness-of-fit statistics for the baseline model:
χ2 = 238.960 (df = 129, p < 0.001, χ2/df = 1.852),
RMSEA = 0.052, CFI = 0.962, IFI = 0.962, TLI = 0.954

Note: SMCC = self-efficacy to mitigate climate crisis.

5. Discussions

5.1. Discussions and Implications

The current research tested the relationship of awareness of environmental impact.
Ascribed responsibility of food waste, moral norm for food waste reduction, self-efficacy to
food waste reduction, and food waste reduction intention, modeled restaurant consumers’
food waste reduction intention through the moral norm formation process. The hypothesis
also explored the mediate and moderate effect and robust evidence of the relationship
between self-efficacy to food waste reduction and its direct determinants. The norm
activation model in this research act as a firm theoretical framework that illuminates the
restaurant consumer’s moral obligation and food waste reduction intention. The Seoul
metropolitan government implement the “Pay as You Throw” system to encourage its
people to reduce food waste [49]. Moreover, as mentioned in the literature review, the
restaurant should make the customer aware that wasting food is not a good habit. It also
has irreversible environmental consequences [40].

The three antecedents of the norm activation model (awareness of the environmental
impact, ascribed responsibility for food waste, the moral norm for food waste reduction)
were adopted to explain the energy-saving behavior [35,37,38]. The goal of the restau-
rant is to avoid food wastage [16,31]. The findings of this study revealed that ascribed
responsibility for food waste fully mediated the relationship between awareness of envi-
ronmental impact (of the foodservice industry) and moral norm for food waste reduction.
This result is in line with previous studies that took such sequential relationships in green
research (e.g., Meng, Chua, Ryu, and Han [50]; Steg and De Groot [41]). As mentioned in
the literature review and hypotheses section, this study adopted the mediation version
of the NAM, where both AC and AR affect PN [35], to embrace both rivaling versions of
the NAM. The findings of this study indicate that the sequential version of the NAM is
more appropriate in the context of this study. It means that when customers are aware
of the environmental damage caused by the foodservice industry, they are more likely to
feel joint responsibility for the negative consequences of their food waste. This feeling
leads them to feel moral norm to reduce their food waste. Therefore, arousing people’s
attention to potential environmental impacts of foodservices is certainly the first step to
reduce customers’ food waste. Then, people will feel responsibility for their plate waste
and, in turn, form moral norm to decrease it. As shown in Figure 2, the awareness of envi-
ronmental impact is not significant to the moral norm for food waste reduction. This result
differs from some prior studies [35,41]. This result may be explained by customers’ lack of
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knowledge about restaurant food waste. Xu et al. [51] analyzed the Chinese restaurant and
detected the consumer’s food taste and the big meal directly influences customer’s dishes
waste. Combined with this research finding, the restaurants need to know food tastes
yucky and more significant portions are not pro-environment behavior. The most critical
point is consumers didn’t become aware that they didn’t eat the not tasty food or order
overfilled dishes is environmentally unfriendly behavior. As a South Korean situation, the
restaurant inquiry about the consumers’ need to freebie or not. According to the analysis
results, customers’ self-efficacy to food waste reduction enhanced the effect of moral norm
for food waste reduction on food waste reduction intention. It indicates that with the
same level of moral norm, the customers who recognize there are simple things they can
do to reduce their plate waste would develop stronger intention to reduce plate waste
than those who do not. This finding indicates that foodservice managers should make it
easy and convenient for customers, for example, to order just as much food as they can
finish and choose the right menu that suits their taste. Managers can even make customers
feel proud of taking leftover food home, for example, by putting a message saying “I am
proudly saving the earth” on a takeout bag. The restaurant can make rules like “Pay as You
Throw” [49]. Moreover, perhaps restaurants offer reduced-sized plates, or encouraging
eco-friendly “take-home” containers can solution the leftovers problem. On the other side,
government policymaking plays a key background role in food waste.

Filimonau et al. [52] pointed out that it is challenging for foodservice managers to
identify food waste and measure its exact amount. However, our society would not expect
managers to reduce food waste by 100%. We just hope they do their best in reducing
food waste together with their customers. Whatever the result would be, the general
public would appreciate their efforts and sincerity since people would believe the joint
effort by managers and customers will eventually produce meaningful results in our
society. The ultimate outcome to the restaurant would be their improved image as a
restaurant of “good influence” besides better financial outcomes through saved costs and
improved operational efficiency, coming from increased customer traffic owing to improved
reputation. Customers are smarter and increasingly environment-sensitive than ever before.

Research suggests customers’ food waste reduction intention would not be enough
to predict their actual actions. For example, Dolnicar, Juvan, and Grün [53] suggested
some interventions can promote customers’ actual food waste reduction behavior such as
using a stamp collection booklet for zero plate waste or a flyer asking customers to help in
reducing food waste in hotel buffets. Elhoushy [54] highlighted the importance of having
motivational balance for an intention to lead to an action. In other words, in a case where
a customer has conflicting motivations to avoid carrying doggy bags as well as to leave
zero plate waste, the probability for the customer to take leftover home would be less than
in a case where the customer has compatible motivations. To induce customers’ intention
to actual action, managers should be able to remove customers’ conflicting motivations
by changing their perceptions on food waste reduction practices such as carrying takeout
bags, asking to take back unwanted side dishes, ordering just enough food to eat, and so
on. Those are great practices to be proud of, not to be shame of. It is scientifically and
ethically correct. Therefore, it is what socially responsible foodservices should do in this
era of climate crisis.

Further, foodservices may consider providing customers with an option to choose
their portion size as pizzerias do. This practice can help customers to order right amount
of food for them to finish. This practice will not necessarily reduce foodservices’ revenue
since a half portion size does not mean a half price. Involving some fixed costs, a half-size
menu is reasonable to be priced, for example, around 75% of the price of a whole-size
menu. This practice would be especially welcomed by female one-person household
customers, who are steadily increasing in number globally. They are sensitive not only
about healthy diet but also about environment-friendliness and, critically, they are active in
online communication [55].
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5.2. Limitations and Future Research

This study includes the following limitations. First, the present study used the re-
sponses from South Korean customer samples. This may lead to a concern about the
generalizability of the results. Future research may extend this study by test a simi-
lar conceptual model in other countries as food waste is a global matter. Second, like
other socio-psychological studies dealing with people’s decision-making processes (e.g.,
Ajzen [56]; Perugini and Bagozzi [57]), this study investigated customers’ general decision
formation. Future research may measure customers’ actual food waste reduction behaviors
to assess their behavioral changes. Third, in this study, the impact of restaurant types (e.g.,
fine dining, casual dining, fast casual) was not considered. It increases the generalizability
of the results. Fourth, the current research uses the questionnaire to discuss consumers’
potential behavior. Fifth, future studies can research the relationship between government
policy and norm activation model theory. However, future research may focus on some
specific types of foodservices when interested in finding type-specific results.

6. Conclusions

When tested in the context of food waste from restaurant customers’ plates, the norm
activation model revealed moral norm for food waste reduction as the most influential
antecedent of customers’ food waste reduction intention (R2 = 54.2%, see Table 3). It implies
that when customers feel guilty or uncomfortable about leaving food behind, they are more
likely to intend to finish all the food on their plates or take it home. The previous research
shows that the preventive measures of food waste is stakeholders (e.g., government, local
enterprise, restaurant industry and so no) make a comprehensive action plan to promote
restaurant pro-environment programs [58]. Especially, there is some change of food waste
since COVID-19 pandemic [59–63]. Given that making customers happy is a basic role of
foodservice managers, they should make customers feel comfortable by helping them not
to leave food behind. Managers can help customers to order just as much as they can finish
or to take leftover food home easily and comfortably, or rather proudly. It is apparent that
if managers can do so, the amount of food waste from customers’ plates will be decreased
dramatically. At first glance, managers may think sales volume would decrease. However,
in the long run, such socially responsible practices will certainly pay back to them since
customers these days are increasingly becoming sensitive about climate change and socially
responsible management of all types of businesses [64,65]. Further, consumers are today
widely connected to so many people online to spread good word of mouth so easily and
quickly than ever before.

Author Contributions: Conceptualization, W.K.; methodology, W.K.; writing—original draft prepa-
ration, W.K.; writing—review and editing, C.C.; visualization, C.C.; supervision, C.J.; project adminis-
tration, C.J.; funding acquisition, C.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Because of the observational nature of the study, and in
the absence of any involvement of therapeutic medication, no formal approval of the Institutional
Review Board of the local Ethics Committee was required. Nonetheless, all subjects were informed
about the study and participation was fully on a voluntary basis. Participants were ensured of
confidentiality and anonymity of the information associated with the surveys. The study was
conducted in accordance with the Helsinki Declaration.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this research are available upon request from the
corresponding author. The data are not publicly available due to restrictions i.e., privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

33



Land 2022, 11, 109

References

1. Cosgrove, K.; Vizcaino, M.; Wharton, C. COVID-19-related changes in perceived household food waste in the united states: A
cross-sectional descriptive study. Int. J. Environ. Res. Public Health 2021, 18, 1104. [CrossRef]

2. Filimonau, V.; Sulyok, J. ‘Bin it and forget it!’: The challenges of food waste management in restaurants of a mid-sized Hungarian
city. Tour. Manag. Perspect. 2021, 37, 100759. [CrossRef]

3. Huang, C.H.; Liu, S.M.; Hsu, N.Y. Understanding global food surplus and food waste to tackle economic and environmental
sustainability. Sustainability 2020, 12, 2892. [CrossRef]

4. Stenmarck, Â.; Jensen, C.; Quested, T.; Moates, G.; Buksti, M.; Cseh, B.; Juul, S.; Parry, P.; Politano, A.; Redlingshofer, B.; et al.
Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016.

5. ReFED. The Foodservice Food Waste Action Guide. 2018. Available online: https://www.refed.com/downloads/Foodservice_
Guide_Web.pdf. (accessed on 20 July 2021).

6. Wang, L.E.; Liu, G.; Liu, X.; Liu, Y.; Gao, J.; Zhou, B.; Gao, S.; Cheng, S. The weight of unfinished plate: A survey based
characterization of restaurant food waste in Chinese cities. Waste Manag. 2017, 66, 3–12. [CrossRef] [PubMed]

7. Youngs, A.J.; Nobis, G.; Town, P. Food waste from hotels and restaurants in the UK. Waste Manag. Res. 1983, 1, 295–308.
8. Ministry of Environment. Available online: https://eng.me.go.kr/eng/web/index.do?menuId=466&firstItemIndex=Topics

(accessed on 3 November 2021).
9. Visschers, V.H.; Wickli, N.; Siegrist, M. Sorting out food waste behaviour: A survey on the motivators and barriers of self-reported

amounts of food waste in households. J. Environ. Psychol. 2016, 45, 66–78. [CrossRef]
10. FAO. Food Wastage Footprint: Impacts on Natural Resources; The Food and Agriculture Organization: Rome, Italy, 2013.
11. Filimonau, V.; Nghiem, V.N.; Wang, L.E. Food waste management in ethnic food restaurants. Int. J. Hosp. Manag. 2021, 92, 102731.

[CrossRef]
12. Filimonau, V.; De Coteau, D.A. Food waste management in hospitality operations: A critical review. Tour. Manag. 2019, 71,

234–245. [CrossRef]
13. Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; bin Ujang, Z. The food waste hierarchy as a framework for the

management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [CrossRef]
14. Attiq, S.; Chau, K.Y.; Bashir, S.; Habib, M.D.; Azam, R.I.; Wong, W.K. Sustainability of Household Food Waste Reduction: A Fresh

Insight on Youth’s Emotional and Cognitive Behaviors. Int. J. Environ. Res. Public Health 2021, 18, 7013. [CrossRef]
15. WFP—World Food Programme. Global Hunger Continues to Rise, New UN Report Says. 2018. Available online: https:

//www.wfp.org/news/global-hunger-continues-rise-new-un-report-says#:~{}:text=Global%20hunger%20continues%20to%
20rise%2C%20new%20UN%20report,children%20stunted%2C%20putting%20hunger%20eradication%20goal%20at%20risk.
(accessed on 20 July 2021).

16. Martin-Rios, C.; Demen-Meier, C.; Gössling, S.; Cornuz, C. Food waste management innovations in the foodservice industry.
Waste Manag. 2018, 79, 196–206. [CrossRef] [PubMed]

17. Han, H.; Chi, X.; Kim, C.; Ryu, H. Activators of airline customers’ sense of moral obligation to engage in pro-social behaviors:
Impact of CSR in the Korean marketplace. Sustainability 2020, 12, 4334. [CrossRef]

18. Han, H.; Hwang, J.; Lee, M.J.; Kim, J. Word-of-mouth, buying, and sacrifice intentions for eco-cruises: Exploring the function of
norm activation and value-attitude-behavior. Tour. Manag. 2019, 70, 430–443. [CrossRef]

19. Bandura, A. Environmental Sustainabiltiy by Sociocognitive Deceleration of Population Growth. In Psychology of Sustainable
Development; Springer: Boston, MA, USA, 2020; pp. 209–238.
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Abstract: Tibet constitutes a major part of the Qinghai–Tibet Plateau (QTP) and is a typical ethnic
minority (e.g., Tibetan) and ecologically fragile area in the world. Land resources are one of the most
important foundations of food production, and Tibet’s increasingly multi-type food demands are
putting new pressure on land resources. However, there is still debate on how many people can be
supported with the food production in Tibet. Investigating the land carrying capacity (LCC) in Tibet
is very important for maintaining food security and formulating sustainable land management and
utilization. Based on an analysis of the unique characteristics of the local farming, pastoral production,
and dietary consumption, the spatio-temporal patterns of theLCC in Tibet in 2000–2019 were quanti-
tatively assessed against the grain demands and calorie requirements at three different standards
of living (i.e., basic prosperity, comprehensive moderate prosperity, and affluence). The dietary
consumption was characterized by the high consumption of grains and meat products, and the low
consumption of fruits and vegetables. The LCC in Tibet has continued to increase. The LCC in
approximately 60% of the counties increased, with the high-LCC counties concentrated mainly in
the Yarlung Zangbo River—Nyangqu River—Lhasa River area, and municipal districts and pastoral
counties generally experiencing a low LCC. The load on land resources (LoL) in Tibet exhibited the
characteristic of overall balance with local overloads and increasing tensions. More than 50% of
the counties experienced population overload, mainly in municipal districts and pastoral counties.
Food surplus was mainly found in farming counties, while the food production in pastoral counties
was generally unable to meet the calorie demand. Considering the important role of land use in
maintaining regional food security and ecological security, the conversion of grassland to cultivated
land, the occupation of cultivated land, and the phenomenon of cultivated land was used to non
grain should be avoided. Trans-regional transport of food should be strengthened to meet the calorie
needs in population overload areas in the future. Our study provides a perspective for evaluating
the pressure of land resources. The result can provide a reference for realizing the balance of grain
and calorie supply–demand and lay a foundation for formulating sustainable land use policies in
the QPT.

Keywords: land carrying capacity; load on land resources; food supply–demand balance; spatio-temporal
patterns; Tibet

1. Introduction

Since the late 20th century, the population–land relationship focusing on popula-
tion, resources, environment, and development has become an increasingly important
topic in geography, resources sciences, and other scientific disciplines [1,2]. As a major
tool for describing the limitations to development and a major means for assessing the
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population–land relationship, the land carrying capacity (LCC) has become a major mea-
sure of sustainable development [1,2]. The resources and environmental carrying capacity
(RECC) has gained increasing attention in research areas such as regional planning, ecosys-
tem services assessment, and sustainable development, especially in the balance of food
supply and demand [3–5]. Land resources are the basis for the sustenance and develop-
ment of human society. LCC, a measure of the population size that can be sustained by the
current land resources, is a traditional hot topic in research on RECC [6].

The Qinghai–Tibet Plateau (QTP) occupies a unique ecogeographical position, serves
as a major barrier protecting the ecological security in China, and is among the areas in
the world that are most sensitive to climate change [7]. Moreover, the QTP is a major
gathering area for ethnic minorities (e.g., Tibetan) and an area where agricultural–pastoral
cultures intersect. The issues of resource environment and food security in the QTP have
always received high attention from the government and scholarly community. Because of
the unique geographical environmental limitations and the impact of stringent ecological
protection policies, the grain production on the QTP does not meet the local consumption
demand [8]. Maintaining a food supply–demand balance in the QTP has received high
attention from the Chinese Central Government. In his Congratulatory Letter to the Second
QTP Comprehensive Scientific Expedition Team of the Chinese Academy of Sciences,
for example, Chinese President Xi Jinping highlighted the necessity of further efforts to
investigate the resources and environmental carrying capacity (including LCC), disaster
risk, and other problems in the plateau [9]. Tibet constitutes a major part of the QTP, and
securing food supply–demand balance is of important strategic significance for securing
the ecological barrier, promoting stable development in the border areas, and protecting
China’s homeland security.

Focusing on the population size that can be sustained by current land resources, Park
et al. first introduced the concept of LCC in 1921 [10]. With nearly a century’s development,
LCC research has gradually broadened its scope from analysis of grain supply–demand
balance to research on food supply–demand balance, with the concepts of cereal equivalent
and nutrient equivalent gradually introduced into relevant research [11,12]. The dietary
consumption of Chinese residents has changed since the country succeeded in building a
moderately prosperous society, and this has led to increasing research on dietary consump-
tion [13–16] and the emergence of LCC research based on food consumption demand [17,18].
For Tibet, research has been conducted on the individual factors of RECC—such as water
resources [19], ecology [20], and grassland [21]—and on the overall RECC [22–24]. In
particular, long-standing research has been conducted on the LCC in Tibet. In the 1980s,
the Commission for Integrated Survey of Natural Resources of the Chinese Academy of
Sciences [25] was the first to study the LCC in theQTP. Shang [26] predicted the maxi-
mum output of agricultural crops and meat products using an agricultural ecological zone
method, and the results showed that Tibet would be short of approximately 50 thousand
tons of grain per annum in 2025. In the 1990s, Liu [27] assessed the land resources and
investigated the potential capacity of agricultural production in the middle reaches of the
Yarlung Zangbo river. Entering the 21st century, Zeng simulated the population carrying
capacity in Tibet during 1985–2005, and the results showed that Tibet would face severe
population overload in the future [28]. In recent years, Wang et al. [29] and Hao et al. [30]
used nutrient equivalent to estimate the LCC in Tibet. Existing research has provided
reference methods for LCC research, but there are controversies over whether the land
resources in Tibet are overloaded. In addition, the food consumption level is often assumed
to be temporally constant, and there is space for improvement with the measurement of
effective calorie supply.

In fact, in the vast geographical area of China, different regions differ in food pro-
duction and dietary consumption; thus, LCC research based on regional food production
structure and dietary consumption characteristics can reveal more truthfully the regional
levels of load on land resources (LoL). As a unique agricultural geographical unit of China,
Tibet consists of farming, pastoral, and farming–pastoral, counties with unique food pro-
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duction and consumption characteristics [31]. In terms of geographical environment and
land use in Tibet, the terrain slopes from northwest to southeast and is complex and
diverse. The climate is cold and dry in the northwest, and warm and humid in the south-
east. The land use type is mainly grassland (about 65% of the total land), and cultivated
land are scarce (merely 0.3% of the total land). In particular, there are obvious regional
differences between planting and animal husbandry. In terms of socioeconomics, both
urbanization and economic development have great potential. In fact, the problems of land
resources utilization and food security in Tibet are typical of mountainous–pastoral areas
and underdeveloped areas.

Generally, livestock products (mainly beef, mutton, and dairy products) have consti-
tuted a major part of the dietary consumption of Tibetan residents, while the local grain
production does not satisfy the local demand. The per capita share of grain was only
300 kg in 2019 in Tibet, less than 65% of the national average. In recent years, Tibet has en-
joyed rapid socioeconomic development and increasing communication with other Chinese
provinces; Meanwhile, the food consumption levels of Tibetan farmers and herdsmen have
increased, and their dietary structures have become increasingly diversified. In particular,
the consumption demand for rice, wheat, vegetables, and fruits has increased [8]. How-
ever, there remain prominent problems, such as imbalanced dietary structures. Overall,
Tibet produces only a limited range of plant foods, while the supply of livestock products
is constrained by increasingly stringent policies on animal husbandry [32], resulting in
prominent structural problems in food supply and demand. Particularly, grazing exclusion
increased grazing pressure in unfenced areas, and lowered the satisfaction of herders and
food production [33]. Investigating the LCC in Tibet by considering only the demand for
grain or the demand for food in individual scenarios cannot reveal the true state and future
trends of food supply–demand balance.

In Tibet, food security is not only related to the lives of residents, but also has special
significance in socio-economic development, ethnic unity, and border security. After the
COVID-19 pandemic, the port blockade led to the interruption of food markets, supply
chains, and trade. The issue of “food security” has once again been raised [34]. It is
particularly important to consider the security of the food supply considering its own food
production capacity. From a long-term perspective, exploring the LCC of Tibet, an area
with interlaced farming–pastoral culture and fragile ecological environment, and clarifying
the relationship between population and food production–consumption in this area will
help promote the sustainable use of land resources on the QTP and socio-economic as well
as ecological sustainable development.

Therefore, the present study was aimed at investigating the spatio-temporal patterns of
the LCC in Tibet against the grain demands and calorie requirement at different standards
of living. This study attempted to answer the following questions. (1) What are the charac-
teristics of the residents’ dietary consumption structure? (2) What is the population size
that can be sustained by the land resources (or the LCC)? (3) What is the spatial–temporal
pattern of the LoL level? Considering that food is a bond of land resource utilization and
human demand, the balance of food supply and demand can not only reflect the degree of
food security, but the pressure of the population on land resources. To achieve the research
objective and answer the research questions, this study analyzed the food consumption
levels and estimated the effective calorie supply levels in Tibet using food production and
consumption data and a food–calorie conversion model. The spatio-temporal patterns of
the LCC in Tibet in the past nearly two decades (2000–2019) at three spatial scales (i.e.,
provinces, cities/prefectures and counties) were assessed systematically against different
standards of living using an LCC model from two perspectives: population–grain balance
that considers the supply and demand for grain only, and calorie supply–demand balance
that considers the supply and demand for all major categories of livestock and plant foods.
The aim was to quantitatively reveal the LoL and provide scientific support for food security
and sustainable development in ecologically fragile areas (e.g., the QTP) across the globe.

39



Land 2022, 11, 380

2. Study Approach, Materials and Methods

2.1. Study Approach

LCC is essentially a measure of the balance between human consumption and food
production, and that between human demand and resources supply. The present study
focused on the quantities of land resources and the population. First, the effective calorie
supply and dietary nutrition levels were estimated using a food–calorie conversion model
based on an analysis of the characteristics of land use and farming and pastoral production.
Then, the LCC and LoL levels in Tibet were assessed against the different food demand and
calorie requirement levels at different standards of living using an LCC model. Figure 1
shows the theoretical framework of our study.

 

Figure 1. Study framework and approach.

2.2. Research Methodology
2.2.1. Food–Calorie Conversion Model

Foods differ in calorie content, and a consistent measurement of food supply and
demand levels was realized using the food–calorie conversion model:

Energy = ∑ Fi × Cal (1)

where Energy is the calorie supply level, Fi is the ith category of food (see Table 1), and
Cal is the calorie contained in the ith category of food. For estimating the calorie intake
on the consumption side, food edibility was considered and estimated using an edibility
coefficient. On the supply side, food edibility (as measured using the edibility coefficient)
and food waste (measured using a food waste coefficient) were considered. For livestock
foods, feedstuff (measured using a feedstuff coefficient) was considered. Table 1 gives the
food–calorie conversion parameters for the major categories of foods.
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Table 1. Food–calorie conversion parameters for major categories of foods.

Foods
Calorie

Coefficient
(kcal/100 g)

Edibility
Coefficient

Waste Coefficient
(%)

Feedstuff
Coefficient

Rice 347 0.78 10 /
Wheat 339 0.85 10 /

Highland barley 342 0.85 10 /
Beans 390 0.9 4 /

Roots and tubes 77 0.85 15 /
Rapeseed 899 0.4 4 /

Peanut 899 0.45 4 /
Vegetables 73 0.85 15 /

Apple 54 0.76 15 /
Pear 50 0.82 15 /
Pork 395 1 6 2.53
Beef 125 1 6 0.28

Mutton 203 1 6 0.28
Cow milk 54 1 1.5 0.1

Sheep milk 59 1 1.5 0.1

2.2.2. LCC Model

Based on the characteristics of food production in Tibet, the LCC was analyzed against
grain demand and calorie requirement using the following model:

LCC =

{
CLCC = C/CPC
ELCC = E/EPC

(2)

LCCI =
{

CLCCI = Pa/CLCC
ELCCI = Pa/ELCC

(3)

where CLCC is the LCC estimated against grain demand, ELCC is the LCC estimated
against calorie requirement, C is the grain production, E is the calorie supply, CPC is the per
capita grain demand, EPC is the per capita calorie requirement (Table 2), Pa is the current
population size, LCCI is the LCC index, CLCCI is the LCCI estimated against grain demand
and measures the degree of population–grain balance, and ELCCI is the LCCI estimated
against calorie requirement and measures the degree of calorie supply–demand balance.
LCCI values are classified into three levels and six sub-levels (Table 3) for describing the
LoL level.

Table 2. Grain demand and calorie requirement levels in Tibet at different standards of living.

Standard of Living Grain (kg/person/y) Calories (kcal/person/y)

Basic prosperity 340 2400
Comprehensive moderate

prosperity 400 3000

Affluence 440 3500

2.2.3. Definitions of Food Demand and Calorie Requirement Levels

The quantities of grain and calories required for maintaining the basic physiological
activities of Chinese residents have usually been estimated to be 400 kg/person/y and
2400 kcal/person/y, respectively [25]. Considering that different types of counties in Tibet
differ in grain demand and that the ratio between farming and pastoral populations has
been sustained at 7:3, and referencing the grain demand in pastoral counties estimated by
existing research (200 kg/person/y) [35], the amount of grain required for maintaining a
basic prosperity standard of living in Tibet is estimated to be 340 kg/person/y. Considering
that the food consumption structure in Tibet will become increasingly similar to the overall
food consumption structure in China, i.e., the grain demand for feedstuff and industrial
purposes will increase, the per capita share of grain required for maintaining a compre-
hensive moderate prosperity standard of living and an affluent standard of living was
estimated to be 400 kg/y and 440 kg/y (total of all grain uses, such as feed, seed, process-
ing, losses waste), respectively. To reveal more accurately the degree of population–grain
balance in different types of counties in Tibet, the grain demand in the farming counties
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was assumed to be equal to that in Tibet, and the ratio between farming and pastoral
populations in farming–pastoral counties was assumed to be 5:5. On this basis, the grain
demand was estimated against the three different standards of living (i.e., basic prosperity,
comprehensive moderate prosperity, and affluence. Pastoral counties have low or no grain
output, and the degree of population–grain balance in these counties was not analyzed.
The calorie requirement was also estimated against the three different standards of living
(Table 2).

Table 3. Classification of LoL levels and sub-levels according to the value of LCCI.

LoL Level LoL Sub-Level LCCI Value Range

Food surplus Abundant surplus ≤0.5
Surplus 0.5–0.875

Balanced supply and demand Overall balance with small surplus 0.875–1.0
Overall balance with small overload 1.0–1.125

Population overload Overload 1.125–1.5
Severe overload >1.5

2.3. Data Sources and Treatment

(1) The food production structure in Tibet is relatively simple, with ten main categories
of plant foods (e.g., rice, wheat, highland barley, beans, roots and tubers, rapeseed, peanut,
vegetables, apple, and pear) and five main categories of livestock foods (beef, mutton, cow
milk, sheep milk, and pork). The food output data for 2000–2019 came mainly from the
statistics yearbooks of Tibet and its cities (prefectures). (2) The food consumption data
came mainly from the statistics yearbooks of Tibet and China. Considering that the data
for urban and rural food consumption in the statistics yearbooks after 2017 have included
the major categories of food consumption quantities, the average data for 2017–2019 were
used to measure the current food consumption levels, and the calorie intake levels in
Tibet were calculated using the food–calorie conversion model fed by the consumption
data for 43 subcategories of foods. (3) The population data came from the Tibet Statistics
Yearbooks and China Population and Employment Statistics Yearbooks for the study time
period. (4) The calorie coefficients and edibility coefficients for the major categories of
foods came from the China Food Composition 2009 [36]. The waste coefficients (covering
waste in mainly the storage and distribution links) and feedstuff coefficients were based
on previous studies [37,38] and adjusted according to the actual farming and pastoral
production structure in Tibet. (5) The definition of county types in the Tibet Statistics
Yearbooks (Table 4) was used.

Table 4. Classification of Tibetan counties.

Type Quantity Name

Farming county/district 35

Chengguan*, Duilongdeqing*, Dazi*, Nimu, Qushui, Mozhugongka, Sangzhuzi,
Nanmulin, Jiangzi, Dingri, Sajia, Lazi, Bailang, Renbu, Dingjie, Jilong, Nielamu,
Zuogong, Mangkang, Luolong, Bianba, Bayi, Milin, Motuo, Bomi, Chayu, Lang,

Naidong*, Zhanang, Gongga, Sangri, Qiongjie, Luozha, Jiacha, Longzi

Pastoral county/district 15 Dangxiong, Zhongba, Saga, Seni*, Jiali, Nierong, Anduo, Shenzha, Bange, Baqing, Nima,
Shuanghu, Geji, Gaize, Cuoqin

Farming–pastoral county/district 24
Linzhou, Angren, Xietongmen, Kangma, Yadong, Gangba, Karuo*, Jiangda, Gongjue,
Leiwuqi, Dingqing, Chaya, Basu, Gongbujiangda, Qusong, Cuomei, Cuona, Langkazi,

Biru, Suo, Pulan, Zhada, Gaer, Ritu

Counties/district in the Yarlung Zangbo
River—Nyangqu River—Lhasa River

(YNL) development area

18
Chengguan*, Duilongdeqing*, Dazi*, Linzhou, Nimu, Qushui, Mozhugongka,

Sangzhuzi, Nanmulin, Jiangzi, Lazi, Xietongmen, Bailang, Naidong, Zhanang, Gongga,
Sangri, Qiongjie

Note: Regions with a * are urban areas (districts) and regions without a * are counties, according to China’s
differentiation criteria between counties and urban areas.

3. Study Area

Tibet is located in the southwest of the QTP (26◦50′~36◦53′ N, 78◦25′~99◦06′ E), and
borders with India, Nepal, Bhutan, Bangladesh, and other countries. The average altitude
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is more than 4000 m, known as the roof of the world. The terrain slopes from northwest
to southeast and is complex and diverse. The climate is cold and dry in the northwest
and warm and humid in the southeast [39]. Tibet serves as a major barrier protecting the
ecological security in China.

Tibet is one of the 34 provincial-level administrative regions in China and is the
second largest province at 1.23 million km2, accounting for one-eighth of the geographic
expanse. Tibet has a vast territory, but a sparse population [22]. However, as of 2019,
its population was 3.506 million people (86% are Tibetan), only accounting for 0.25% of
China’s population. At same time, the natural growth rate of the population reached 10.1‰
in Tibet, which is three times that of China’s (3.3‰). Tibet’s GDP was CNY 169.78 billion,
accounting for only 0.17% of China’s GDP. The per capita disposable income is CNY 19,501,
only 63.45% of China’s. Its urbanization rate is 31.5%, less than half of China’s (68.5%).
The economy and urbanization level of Tibet lags behind China’s level. The land use
type in Tibet is mainly grassland (about 65% of the total land area), of which Naqu City
has the largest grassland area (Figure 2). Forests are mainly distributed in southeastern
Tibet (about 10.38% of the land area). Cultivated land and construction land (which,
combined, account for 0.40% of the land area) are mainly distributed in the Yarlung Zangbo
River—Nyangqu River—Lhasa River area. Water area and water conservancy facilities
account for about 4.56%, and other unused land accounts for about 14.71%. Above all, Tibet
has the characteristics of mountainous–pastoral–underdeveloped areas and border areas.
The rapid population growth and socioeconomic development will bring new challenges
to the food supply and new pressure on land resources.

 
Figure 2. Land use map of Tibet in 2019 [40].

4. Results

4.1. Food Consumption and Dietary Nutrition

The dietary consumption in Tibet is dominated by grains, with a high consumption
of livestock products. At the present stage, grains (97.15% cereals) ranked first in terms of
the food consumption by Tibetan residents (227.07 kg/person/y), followed by vegetables
(42.40 kg/person/y) and meat products (29.07 kg/person/y). Meat consumption was
dominated by beef (56.54%), followed by pork (22.94%) and mutton (18.46%). Edible oil
and dairy products ranked fourth (17.63 kg/person/y) and fifth (16.13 kg/person/y),
respectively. The per capita per year consumption of grains was 1.76 times the national
average (97.93 kg higher than the national average). The consumptions of sugar, edible
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oil, dairy products, and meat products were higher than the national averages, being 2.74,
1.79, 1.32, and 1.05 times the national averages, respectively. The consumptions of pork,
poultry, eggs, dried and fresh fruits, and aquatic products were significantly lower than
the national averages. The dietary consumption exhibited the overall characteristics of
high consumption of grains and livestock products and low consumption of fruits and
vegetables (Figure 3).

Figure 3. Consumptions of major categories of foods in Tibet vs. China. Note: China refers to the
average level of the whole of China, while Tibet refers to the average level of Tibet.

Urban and rural food consumption levels differed considerably, and the dietary struc-
ture in Tibet was remarkably different from the overall situation in China. The urban
and rural grain consumptions were 239.07 and 191.50 kg/person/y, respectively, with the
urban consumption being 1.25 times the rural consumption. The consumptions of all major
categories of foods by rural residents were lower than those by urban residents, except
that the consumption of sugar by rural residents was 0.83 kg/person/y higher than for
urban residents. In particular, the consumptions of poultry, dried and fresh fruits, eggs,
vegetables, and meat products by rural residents were lower than 40% of those by urban
residents. The consumptions of edible oil and dairy products by rural residents were only
67.29% and 69.28%, respectively, of those by urban residents. The urban and rural con-
sumptions of grains, edible oil, dairy products, and sugar in Tibet were 1.57 and 1.74 times,
1.57 and 2.38 times, 7.40 and 4.27 times, and 2.73 and 2.29 times the national averages,
respectively. The consumptions of vegetables, fruits, and eggs by rural residents in Tibet
were 30%, less than 10%, and 21%, respectively, of the national average rural consumptions.
The meat consumption by urban residents in Tibet was 1.8 times the national average
urban consumption, whereas that by rural residents was only 81% of the national average
rural consumption.

Calorie intake differed insignificantly between urban and rural residents, with plant
foods being the major source of calories. The per capita calorie intakes of urban and rural
residents were 2960 and 2986 kcal, respectively, with the latter being slightly higher than
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the former. Plant foods were the major source of calorie intake by both urban and rural
residents, with grains accounting for the largest share (about 60%), followed by vegetable
oil (approximately 14%) and vegetables and confections (merely 4% each). Livestock foods
accounted for nearly 18% of the total calorie supply, which were dominated by meat and
dairy products, accounting for 10% and 4% of the total, respectively. For rural residents,
grains accounted for nearly 75% of the total calorie intake, and vegetable oil accounted for
8%. Livestock foods accounted for approximately 11% of the total calorie intake, which
were dominated by animal oil and meat, each accounting for about 4% of the total calorie
intake (Figure 4).

Figure 4. Composition of the sources of calorie intake by (a) rural and (b) urban residents in Tibet.
Note: in the part of food consumption, meat products include pork, beef, mutton meat; poultry meat
includes chicken, duck, and goose meat.

4.2. LCC
4.2.1. LCC Based on Grain Demand

In 2000–2019, the grain production in Tibet increased from 962.23 thousand tons to
1047.06 thousand tons, and the LCC gradually increased when estimated against the grain
demand. This translates into an increase in the LCC at the basic prosperity standard of living
from 2830.10 thousand persons to 3079.57 thousand persons. The LCC in 2019 estimated
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against the comprehensive moderate prosperity and affluent standards of living was
2617.64 and 2379.67 thousand persons, respectively (Figure 5).

Figure 5. LCC and LCCI in Tibet estimated against grain demands at different standards of living.
Note: CLCC340, CLCC400, and CLCC450 indicate the LCC estimated against the three grain demand
levels of 340, 400, and 450 kg, respectively, and CLCCI340, CLCCI400, and CLCCI450 indicate the
LCCI estimated against the three grain demand levels, respectively.

For the LCC in individual cities/prefectures (Figure 6a), at the basic prosperity stan-
dard of living, Rikaze City had the highest LCC of 1025 thousand persons in 2000, followed
by Lasa City (565 thousand persons), Shannan City (490 thousand persons), Changdu
City (465.8 thousand persons), Linzhi City (more than 200 thousand persons), and the
two pastoral cities/prefectures of Naqu City (30.7 thousand persons) and Ali Prefecture
(17.8 thousand persons). In 2019, the LCC in four cities/prefectures (Lasa City, Shannan
City, Naqu City, and Ali Prefecture) decreased to 460.1 thousand, 483.0 thousand, 24.1 thou-
sand, and 14.5 thousand persons, respectively. The LCC in the other three cities/prefectures
increased: Rikaze City achieved the highest increase (274.4 thousand persons), followed by
Changdu City (90.4 thousand persons) and Linzhi City (10.4 thousand persons).

For the LCC in individual counties, at the basic prosperity standard of living, six
counties (Linzhou, Sangzhuzi District, Jiangzi, Lazi, Bailang, and Duilongdeqing District)
had a high LCC of above 100 thousand persons in 2000, while the farming–pastoral counties
(Yadong, Zhada, Ritu, and Gaer counties) had a low LCC of less than 10 thousand persons
because of low grain output. In 2019, the number of counties with an LCC of higher
than 100 thousand persons increased to 11, with 5 farming counties (Sangzhuzi District,
Jiangzi, Bailang, Lazi, and Gongga) having an LCC in the range of 100–250 thousand
persons. However, farming–pastoral counties such as Yadong, Ritu, Zhada, and Gaer, and
some municipal districts, still had a low LCC because of low grain output (Figure 7a). For
temporal variations, compared with 2000, 41 non-pastoral counties (most located in farming
regions) achieved increases in LCC. In particular, Linzhou, Dingqing, Angren, Karuo
District, Jiangda, and Bailang achieved an increase of higher than 50 thousand persons. In
contrast, municipal districts (including Dazi, Naidong, Chengguan, and Duilongdeqing
District) experienced decreases in LCC because of the impact of urbanization.
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Figure 6. LCC in individual cities/prefectures estimated against the grain demands (a) and calorie
requirements (b) at the basic prosperity standard of living.

 

Figure 7. Spatial pattern of LCC and LoL in Tibet estimated against the basic prosperity standard of
living in 2019.

4.2.2. LCC Based on Calorie Requirement

In 2000–2019, the meat output in Tibet increased from 149.30 thousand tons to 277.50 thou-
sand tons, and the milk output increased from 204.00 thousand tons to 466.6 thousand
tons, with livestock products being a major source of calorie supply. The calorie supply
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increased from 2.79 × 1012 kcal/y to 3.43 × 1012 kcal/y, and the LCC gradually increased
when estimated against the calorie requirement. At the basic prosperity standard of living,
the LCC increased from 3184.97 thousand persons to 3913.80 thousand persons. At the
comprehensive moderate prosperity and affluent standards of living, the LCC reached
3131.04 and 2683.75 thousand persons, respectively, in 2019 (Figure 8).

Figure 8. LCC and LCCI in Tibet estimated against the calorie requirements at different standards
of living. Note: ELCC2400, ELCC3000, and ELCC3500 indicate the LCC estimated against the three
calorie intake levels of 2400, 3000, and 3500 kcal, respectively, and ELCCI2400, ELCCI3000, and
ELCCI3500 indicate the LCCI estimated against the three different calorie intake levels, respectively.

For the LCC in individual cities/prefectures, at the basic prosperity standard of living,
Rikaze City had the highest LCC (1186.60 thousand persons) in 2000, followed by Lasa
City (661.11 thousand persons), Changdu City (491.20 thousand persons), Shannan City
(545.88 thousand persons), Linzhi City (204.79 thousand persons), and the two pastoral
cities/prefectures of Naqu City (60.89 thousand persons) and Ali Prefecture (26.52 thousand
persons). In 2019, the LCC in Rikaze City increased to 1717.97 thousand persons, followed
by Lasa City (686.02 thousand persons), Changdu City (617.11 thousand persons), Shannan
City (568.13 thousand persons), Lizhi City (212.72 thousand persons), and the two pastoral
cities/prefectures of Naqu City (85.81 thousand persons) and Ali Prefecture (28.00 thousand
persons). The seven cities/prefectures differed in LCC temporal variations. In particular,
Rikaze City enjoyed the largest increase (531.37 thousand persons), followed by Changdu
City (125.91 thousand persons). The LCC in Lasa City first increased and then decreased,
experiencing an insignificant overall increase during the period. The LCC in Naqu City and
Ali Prefectures remained at low levels, with the increases being insignificant (Figure 6b).

For the LCC in individual counties, six farming and farming–pastoral counties (Sangzhuzi
District, Linzhou, Lazi, Duilongdeqing District, and Bailang) had a high LCC of above
100 thousand persons in 2000, whereas pastoral counties such as Gaize, Baqing, Cuoqin,
Shenzha, and Gaer of Ali Prefecture had a low LCC of less than 10 thousand persons
because of limited food output. As of 2019, the spatial pattern of the LCC in individual
counties varied insignificantly. The number of counties with an LCC of above 100 thousand
persons increased to eight. The counties with a low LCC were mainly concentrated in Ali
Prefecture and Naqu City. A total of 23 counties had an LCC of less than 10 thousand
persons, including Nierong, Shenzha, Zhada, Baqing, Shuanghu, and Gaer (Figure 7b).
Compared with 2000, the LCC increased in 43 counties. The counties with a low LCC were
mainly pastoral counties and municipal districts such as Chengguan District.
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4.3. LoL
4.3.1. LoL Based on Grain Demand

At the basic prosperity standard of living, the LCCI in Tibet increased from 0.92 to
1.14 in 2000–2019, i.e., the LoL changed from the overall balance with small surplus sub-
level to the population overload level, and the population–grain relationship became
increasingly strained. At the comprehensive moderate prosperity standard of living, the
LCCI fell in the range of 1.08–1.47, i.e., the LoL changed from the overall balance with small
overload sub-level to the severe overload sub-level. At the affluent standard of living, the
LoL changed from the overload sub-level to the severe overload sub-level (Figure 5).

For LCCI in individual cities/prefectures, at the basic prosperity standard of living,
the LCCI in all seven cities/prefectures increased in 2000–2019. In particular, the LCCI in
Lasa City increased from 0.71 to 1.57, with the LoL increasing from the surplus sub-level to
the severe overload sub-level. The LCCI in Linzhi City increased from 0.63 to 0.99, with
the LoL changing from the surplus sub-level to the overall balance with small overload
sub-level. The LCCI in Rikaze City fell in the range of 0.59–0.70, and in Shannan City
fell in the range of 0.64–0.79, with the LoL remaining at the surplus sub-level. The LCCI
in Changdu City fell in the range of 1.17–1.38, with the LoL remaining at the overload
sub-level. Naqu City and Ali Prefecture were dominated by pastoral production and
experienced a strained population–grain relationship, with the LoL remaining at the severe
overload sub-level. The LoL in Lasa City, Changdu City, Naqu City, and Ali Prefecture
was at the severe overload sub-level in 2019; the LoL in Linzhi City was at the overload
sub-level, with a large load on land resources. The LoL in Shannan and Rikaze Cities was
at the overall balance with small surplus and surplus sub-levels, respectively, experiencing
a small load on land resources. At the affluent standard of living, only the LoL in Rikaze
City was at the surplus sub-level; in Linzhi city it was at the overload sub-level, and in
Shannan City it increased to the overall balance with small overload sub-level (Figure 9a).

Figure 9. LoL in individual cities/prefectures estimated against the grain demands (a) and calorie
requirement (b) at the basic prosperity standard of living. Note: the food production in Naqu City
and Ali Prefecture is mainly beef, mutton and milk, with limited grain output, and the LoL estimated
against the grain demands is above 10 and 4, respectively. Not shown in figure (a).

For the LCCI in individual counties, at the basic prosperity standard of living, the
numbers of farming and farming–pastoral counties with an LoL at the food surplus, bal-
anced supply and demand, and population overload levels changed from 38, 9, and 12 in
2000 to 36, 10, and 13 in 2019, respectively, with most counties enjoying a food surplus
(Figure 10a). In 2019, the LoL in Chengguan District, Gaer, Biru, Zhada, Suo, Yadong,
Duilongdeqing District, and Ritu was at the severe overload sub-level, experiencing a
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strained population–grain relationship (Figure 7c). The numbers of counties with an LoL at
the levels of food surplus, balanced supply and demand, and population overload were
25, 9, and 25, respectively, at the comprehensive moderate prosperity standard of living
and 20, 11, and 28, respectively, at the affluent standard of living. Nearly half of the county
facing population overloaded (Figure 11a).

Figure 10. LoL in individual counties estimated against the grain demand (a) and calorie requirements
(b) at different standards of living. Note: the label on the columns is the number of counties.

Figure 11. Percentage of LoL level in individual counties estimated against the grain demand (a) and
calorie requirements (b) at different standards of living. Note: the label on the columns is the number
of counties.

Restricted by the limited grain production capacity and rapid population growth rate,
the LoL in Tibet is overloaded to varying degrees. It is difficult to meet the food demand of
local residents in terms of grain. With the increase in the food demand level in the future, a
large amount of grain from inland China will be needed, particularly in the pastoral and
farming–pastoral counties, as well as in municipal districts with a high urbanization rate.
At the same time, the LOL in Shannan City and Rikaze City is relatively low. There is a
certain grain surplus, which is an important grain supply base for Tibet.

4.3.2. LoL Based on Calorie Requirement

At the basic prosperity standard of living, the LCCI in Tibet increased from 0.82 to
0.90 in 2000–2019, with the LoL changing from the surplus sub-level to the overall balance
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with small surplus sub-level, but remaining low. At the comprehensive moderate prosperity
standard of living, the LCCI fell in the range of 1.02–1.12, with the LoL always remaining
at the overall balance with small overload sub-level. At the affluent standard of living, the
LoL always remained at the overload sub-level (Figure 8).

For the LoL in individual cities/prefectures, at the basic prosperity standard of living,
the LCCI in Rikaze City decreased slightly, but the LCCI in the other six cities/prefectures
increased by different degrees in 2000–2019. In particular, the LCCI in Ali Prefecture
increased from 2.79 to 3.99, with the LoL always remaining at the severe overload sub-level
and continuing to increase. The LCCI in Lasa City increased from 0.61 to 1.05, with the LoL
changing from the surplus sub-level to the overall balance with small overload sub-level.
The LCCI in Linzhi City increased from 0.7 to 1.12, with the LoL changing from the surplus
sub-level to the overall balance with small overload sub-level. The LCCI in the other four
cities/prefectures varied insignificantly. In 2019, the LoL in Rikaze and Shannan cities was
at the abundant surplus and surplus sub-levels, respectively, and the LoL in Changdu and
Naqu cities was at the overload and severe overload sub-levels, respectively. For the LCCI
in individual cities/prefectures in 2019 estimated against different standards of living, the
LoL estimated against the comprehensive moderate prosperity standard of living in Naqu
City and Ali Prefecture was at the severe overload sub-level, in Lasa, Changdu, and Linzhi
cities was at the overload sub-level, and in Rikaze and Shannan cities was at the surplus
sub-level. At the affluent standard of living, the LoL in Rikaze and Shannan cities was at
the surplus and overall balance with small surplus sub-levels, respectively, and in the other
five cities/prefectures was at the severe overload sub-level (Figure 9b).

For the LoL in individual counties, at the basic prosperity standard of living, the
numbers of counties with an LoL at the food surplus, balanced supply and demand, and
population overload levels increased from 28, 10, and 35 in 2000 to 26, 10, and 41 in 2019,
respectively. The major characteristic of the temporal variations during this period is the
increased number of overloaded counties (Figure 10b). In 2019, the number of severely over-
loaded counties reached 34, mainly consisting of pastoral (15) and farming–pastoral (14)
counties. The 21 counties with surplus land resources were mainly farming counties and
also included five farming–pastoral counties (Linzhou, Kangma, Qusong, Angren, and
Xietongmen) (Figure 7d). In 2019, the numbers of counties with an LoL at the food surplus,
balanced supply and demand, and population overload levels were 18, 10, and 46, respec-
tively, at the comprehensive moderate prosperity standard of living, and 14, 9, and 51,
respectively, at the affluent standard of living, with nearly 70% of the counties experiencing
population overload and a large LoL (Figure 11b).

The LCC in Tibet has increased after considering the supplementation of foods other
than grains. As we are aware, the calorie content of non-grain food per unit mass is lower
than grain. Compared with grain demand, the spatial difference of LoL is more obvious
than when estimated against the calorie requirement. In Tibet, where grassland is the main
land use (about 70% of the land area), beef and mutton meat and milk play an important
role in calorie supply, especially in pastoral counties. The unique land use and animal
husbandry-based production activities determine the animal-based food supply mode
in pastoral counties, and the total calorie value of the food supply is low. Therefore, the
LCC is low in pastoral counties, and the LoL is relatively large. These counties face the
pressure of population overload, and the amount of extraterritorial food, especially grain,
is required. On the contrary, after considering other food (no grains), farming counties
have improved calorie supply capacity, which is mainly characterized by food surplus.
For municipal districts, the population overload is mainly caused by the huge permanent
resident population.

5. Conclusions and Discussion

Based on an analysis of the characteristics of farming and pastoral production, the
regional differences in Tibet, and of the dietary structure of Tibetan residents, the spatio-
temporal patterns of the LCC in Tibet in 2000–2019 were assessed quantitatively at three
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different spatial scales (i.e., provinces, cities/prefectures and counties) based on the grain
demands and calorie requirements at three different standards of living (i.e., basic prosper-
ity, comprehensive moderate prosperity, and affluence) using a food–calorie conversion
model and an LCC model. The major contributions of the present study were as follows.
(1) Based on the comparative analyses, the dietary consumption characteristics and calorie
intake levels in Tibet were summarized. (2) The LCC in Tibet was estimated based on both
grain consumption and calorie requirements, and the spatio-temporal patterns of the LCC
were analyzed. (3) The spatial patterns of the LoL in Tibet were analyzed against different
standards of living.

The results revealed the following. (1) The dietary structure in Tibet is characterized
by the high consumption of grains and livestock products and low consumption of fruits
and vegetables, with the per capita grain consumption being 1.76 times the national
average. The food consumption pattern is the reflection of Tibet’s social and economic
development stage and its unique food production structure. According to Bennett’s
law [41,42], with the income increasing, the consumption of starchy staple food (cereals,
roots and tubers) will decrease relatively, and the consumption of high-nutrition food
(livestock products, fruits and vegetables, etc.) will increase. For Tibet, the relatively lagging
level of socioeconomic development has resulted in grain-based food consumption. Animal
husbandry-based agricultural production activities lead to high meat consumption and
relatively low fruit and vegetable consumption. The urban and rural dietary consumption
levels differ remarkably. The consumptions of grains and sugar by rural residents are
higher than those by urban residents, whereas the consumptions of most other foods by
rural residents are less than 40% of those by urban residents, and are significantly lower
than the national average rural consumptions. The urban and rural calorie intake levels
differ insignificantly, with both being approximately 3000 kcal/person/d. Plant foods are
the major source of calorie intake, with grains accounting for a high proportion of calorie
intake by urban (60%) and rural (75%) residents.

(2) The LCC in Tibet has been improving and is generally sustained at the balanced sup-
ply and demand level. At the basic prosperity standard of living, the grain demand-based
LCC in Tibet increased to 3079.6 thousand persons in 2019, and the calorie requirement-
based LCC (also considering livestock products and other foods) increased to 3913.8 thou-
sand persons. With increasing population growth, the grain demand-based LCCI and
calorie requirement-based LCCI have increased, but remained at approximately 1.0, with
the LoL being at the overall balance with small overload and overall balance with small
surplus sub-levels, respectively. The LoL estimated against the comprehensive moderate
prosperity and affluent standards of living is at the overall balance with small overload and
severe overload sub-levels, respectively, indicating an off-balance, strained food supply–
demand relationship.

(3) The temporal variations in LCC differ between the cities/prefectures in Tibet, and
there are significant spatial differences, with the LoL in some areas being at the severe over-
load sub-level. Since 2000, the grain demand-based LCC in Lasa City, Shannan City, Naqu
City, and Ali Prefecture has decreased at different degrees. Overall, at the basic prosperity
standard of living, the LCC in Rikaze City fell in the range of 1000–1700 thousand persons,
the LCC in Lasa, Changdu, and Shannan Cities fell in the range of 450–700 thousand per-
sons, the LCC in Linzhi City fell to 200 thousand persons, and the LCC in the two pastoral
cities/prefectures of Naqu City and Ali Prefecture is at a low level of below 100 thousand
persons. The LCCI in all seven cities/prefectures has increased with the population growth.
Rikaze and Shannan cities have exhibited a relatively eased calorie supply–demand re-
lationship, and the other five cities/prefectures have exhibited population overload to
different degrees.

(4) More than half of the counties experienced increases in the LCC. Most farming and
farming–pastoral counties exhibited a basically balanced population–grain relationship;
however, nearly half of the counties exhibited a strained calorie supply–demand relation-
ship. Since 2000, the grain demand-based LCC in 41 of the 59 farming and farming–pastoral
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counties has increased, with the high-LCC counties concentrated mainly in the YNL area.
At the basic prosperity standard of living, the number of counties with grain surplus
has decreased slightly; however, 60% of the counties have a grain surplus of different
degrees. At the comprehensive moderate prosperity and affluent standards of living, nearly
half of the counties have exhibited a strained population–grain relationship. The calorie
requirement-based LCC in 43 of the 74 counties has increased, with the low-LCC counties
being mainly pastoral counties and municipal districts. At the basic prosperity standard of
living, the number of counties with an off-balance, strained calorie supply–demand relation-
ship has increased, with approximately 55% of the counties exhibiting population overload
of different degrees. At the comprehensive moderate prosperity and affluent standards
of living, more than 60% of the counties have exhibited a strained food supply–demand
relationship and an increased LoL.

The LCC in Tibet exhibits the characteristic of “overall balance with local overloads
and increasing tensions”. The counties experiencing population overload include municipal
districts with high urbanization levels, and most pastoral counties. These counties/districts
have a high population density or a simple agricultural production structure, thus expe-
riencing a low level of self-sufficiency in terms of calorie supply. For pastoral counties
dominated by livestock product production, the LCC is low because of the low calorie
volume produced by a unit of land resources, resulting in an off-balance, strained calo-
rie supply–demand relationship. Therefore, ensuring stable, effective food imports is an
important option for alleviating the LoL in these municipal districts and pastoral counties.

The results of the LCC in this study are lower than those of Hao et al. [30]. This
difference is mainly on the calorie supply side, and we use more detailed parameters.
The calorie coefficient of grain is mainly calculated based on the proportion of highland
barley, wheat, and rice (mainly highland barley). Meat and dairy are also refined into
subcategories. Such coefficients make the results more accurate, because the calorie per
unit of pork is 3.16 times that of beef and 1.95 times that of lamb. In a previous study [30],
391.5 kcal/kg was used for the calorie content of meat. We also consider both the feedstuff
coefficient in relation to pork meat production and the edible portion of the food, so our
study is closer to the actual calorie supply level in Tibet. This difference is also reflected in
the consumption side. As we explained in the data processing, this study combines the
consumption data of fine class foods (43 kinds), so the calorie intake level is also lower than
the results of Wang et al. [29].

It should be noted that agricultural production activities and food consumption in Ti-
bet are unique. In terms of social economy, Tibet is still underdeveloped compared with the
whole country. However, as Tibet has historically achieved comprehensive poverty allevia-
tion, the income of residents, regional transportation conditions, and agricultural/animal
husbandry production conditions have been greatly improved. On the other hand, with
the change of social environment, the scope and frequency of cultural exchanges between
agricultural and pastoral areas, Tibet, and inland China have increased, and the food con-
sumption structure and demands of residents have also changed with those exchanges [43].
All of these factors will promote the development of the local food consumption structure
as well as the food consumption structure on a larger geographical scale [44,45].

The demands for vegetables, fruits, and other plant foods in Tibet are expected to
increase in the future because of the unique agricultural production and food consumption
structures, and the fact that Tibet is still socioeconomically underdeveloped and is under-
going transformations in dietary consumption structure [46]. In 2000–2019, the ratio of the
sown area of vegetables and fruits to the sown area of all crops in Tibet increased from 3%
to 10%. Because of the impact of policies on pastoral production, the ratio of the sown area
of green fodders increased from 2% to 14%, whereas that of grain crops decreased from
87% to 68%. The changes in consumption demand and policies on pastoral development
have brought new pressure on the grain production in Tibet and posed a new challenge to
the grain supply security.
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The limitations and future research of the study are as follows. (1) Because of the
availability of limited statistical data, the measurement of the food supply did not include
poultry, eggs, or aquatic products. In addition, the present study was based on the current
productivity (food output) of land resources, without considering the potential improve-
ment in land productivity. On the consumption side, more in-depth analysis of the trends of
food consumption in Tibet is necessary. (2) In fact, supply and demand are two inseparable
aspects of LCC and food security. An in-depth analysis of the future consumption demands
for foods, especially plant foods, in Tibet will be conducted as the next step, so that the pres-
sure posed by population growth and dietary consumption variations on land resources
can be understood systematically. On the production side, the potential for improving the
productivity of highland barley and other major grain crops can be investigated further [47]
so that the upper limit of the local food supply can be analyzed, thus providing a basis for
assessing the food supply–demand balance in Tibet. (3) Another future research direction
is the scientific planning of the development of crop farming and animal husbandry, and
fine-tuning of the ratio of grain crop to non-grain crop farming, in order to realize the
sustainable development of farming and pastoral production and coordinate the ecological
and economic benefits with food security based on a scientific understanding of the upper
limit of the LCC. Investigating the food production–consumption and LCC of other regions
belonging to the QTP (such as Nepal and the Qinghai province of China), and conducting
horizontal comparisons to propose the third-pole dimension of food security and land use
sustainability policy on a larger scale, would be meaningful.
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Abstract: Growth in total factor productivity (TFP) indicates the sustainable and/or judicious use
of scarce resources, including non-renewables. This paper identifies sources of growth in global
agricultural TFP and its finer components, ranging from climate, production environment, and
socio-economic factors, using a panel data of 104 countries, covering a 45-year period (1969–2013);
and, finally, projects changes in TFP from increased climate variability. The results revealed that
global agricultural productivity grew consistently at a rate of 0.44% p.a., driven by technological
progress and mix-efficiency change, with negligible contributions from technical- and scale-efficiency
changes; albeit with variations across regions. Both long-term and short-term climatic factors and
the natural production environment significantly reduce global agricultural productivity, whereas
a host of socio-economic factors have a significant but varied influence. The projected increased
level of future climate variability will significantly reduce future agricultural productivity. Policy
implications include investments in crop diversification, education, agricultural spending, number of
researchers, and country specific R&D.

Keywords: Färe–Primont TFP index; technical-, scale- and mix-efficiency changes; climate change;
socio-economic factors; determinants; multivariate Tobit model

1. Introduction

Technological change is an important factor in economic growth and development.
Historical experience suggests that technology, by raising the productivity of factors (e.g.,
labor, capital, land, and other natural resources), plays an important role in economic
growth [1]. The major technological breakthrough in agricultural history was the devel-
opment of high-yielding modern varieties of rice and wheat, which are highly responsive
to inorganic fertilizers, pesticides/insecticides, effective soil management, and water con-
trol [2]. The overwhelming belief in the pursuit of this ‘high-input payoff’ model of
agricultural development, known as the ‘green revolution’ (GR), is due to its potential for
increasing food-grain productivity and employment, as well as income; thereby, alleviat-
ing poverty and hunger [3]. However, this pioneering scientific method-based modern
agriculture has overlooked the sustainability of this input-intensive production system.
In fact, GR technology enabled rapid global food-grain output growth by bringing more
land under cultivation, as well as by increasing the efficiency of the inputs used, but not by
increasing total factor productivity (TFP) growth [4,5], which can contribute towards the
sustainability of the production system [6]. The modern agricultural production process
does not adequately address sustainability issues and increasing environmental concerns,
including biodiversity loss, greenhouse gas emissions, and reduced availability of fertile
soils and clean water [7–9]. Since the mid-1980s, there has been reduced returns from
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different inputs, which Singh [10] characterized as high input-use and a decelerating pro-
ductivity growth phase for India. The concern is even greater today because, to meet global
food requirements, production needs to increase 2.5 fold by 2050 [11].

There is a need for sustainable intensification of the agricultural production system
that does not require trade-offs between productivity and other ecosystem services [11–13].
In other words, the global food production system requires TFP growth, which will ensure
increased productivity, while maintaining the sustainability of the system and contributing
towards poverty reduction [14–16]. Exploration of agricultural TFP, not only provides
information about the diversity of agricultural growth, but increased TFP can ensure
increased agricultural production, while reducing environmental externalities, which is
also important for increasing the resilience and ensuring sustainability of the farming
system [6]. Moreover, given the changing nature of climate and weather, concerns about
their effects on agriculture and livelihoods are increasing globally [17,18]. Therefore, TFP
growth in agriculture has become more critical than ever.

Researchers believe that agricultural productivity growth is the most effective long-
term strategy to tackle the problems of poverty, hunger, and malnutrition [19], which are
amenable through devising policies and investments in agriculture [20]. Abbott et al. [21]
noted that the global spike in food prices during 2008–2009 was largely due to declining
agricultural productivity and cereal crop failure in food exporting economies, which are
likely to be repeated more frequently and with higher intensity in the future, owing to
increasing anomalies in climate, weather events, and other factors; thereby, threatening
agricultural sustainability [22,23]. However, the declining yield trend can be addressed
through adjusting production systems, technology, and/or input combinations. In this
respect, examination of TFP change is appropriate, because it allows decomposition of total
production growth into various components (technology, efficiency, and scale changes) and
enables identification of specific sources of productivity growth, thereby leading to better
policy prescriptions [24]. Increased TFP has implications beyond national boundaries and
can help in achieving internationally set development targets, including the sustainable
development goal (SGD). For instance, to attain SDG2 (zero hunger) there is a target of
doubling productivity in smallholder farms by 2030. TFP growth will also help in achieving
sustainability related SGD targets, viz. SGD 12 (responsible consumption and production)
targeting the strengthening of scientific and technological capacities (i.e., use of modern
technologies in production); SDG 13 (climate action) focusing on resilience and adaptive
capacity to climate-related hazards and natural disasters (i.e., climate change adaptation in
production); and SDG 15 (life on land), which is aimed at ensuring conservation, restoration,
and sustainable use of ecosystems.

Conventionally, agricultural policies, whether designed at the regional or country
level, are targeted at attaining higher productivity, so that enough food is produced [25].
Most Asian countries have followed the Asian path of productivity growth, where land
productivity increased faster than labor productivity in the early period, followed by
fairly rapid growth of labor productivity, even after the mid-1980s [26]. On the contrary,
the Common Agricultural Policy of the European Union focused on mechanization of
agriculture to boost labor productivity, as labor supplies were relatively scarce in these
economies. Japan followed the European path (i.e., increasing labor productivity), which
is closely related to an increase in farm size and mechanization. Although the policies of
various regions were different, the goal was to increase total agricultural productivity. There
are examples of support policies, such as innovation policies related to agriculture, captured
in the OECD’s classification as part of the General Services Support Estimate (GSSE), and
other policies (environmental regulations or taxes), which may also influence producers’
decision-making and ultimately influence productivity and sustainability outcomes in
agriculture [27]. African farmers faced more discriminatory agricultural policies than in
other parts of the world [28]. Nevertheless, different agricultural policies in Sub-Saharan
Africa, e.g., national and international agricultural research investment policies, economic
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policy reforms, and irrigation investments, had a positive and significant effect on total
factor productivity [29].

Literature is available which provides valuable insights on the effects of climate change
on agricultural production (e.g., [18,24,30–32]) and productivity (e.g., [33,34]). However,
research on climate change and TFP is confined to a specific region or country, e.g., Ryan [35],
Mullen and Cox [36], and Salim and Islam [33] focused on a specific Australian region.
Liang et al. [37] explored impacts on US agriculture, whereas Kunimitsu et al. [38] studied
the effects in Japan. Furthermore, there are limitations in terms of the scope of analysis,
content coverage, methodology applied, and identification of determinants of agricultural
productivity [20]. Although climate, weather, agro-ecological and socio-economic factors
influence agricultural land use change and/or production [30,31], the exact nature and
magnitude of their influence on productivity and efficiency is not clear. Lobell and Field
observed that the literature did not duly emphasize climate change effects on agriculture,
despite the increasing trend in surface temperature rise over the past few decades [30].
The dominant trend in the literature is to model changes in crop production, as explained
by different climatic variables (mainly rainfall and temperature) and natural factors (soil
quality) only (e.g., [22,30,31,39]), but they do not consider the influence of socio-economic
and other factors [40]. Some even proxied weather by rainfall only while exploring the
impact of climate change on farm cost (e.g., [35]) or TFP (e.g., [34]). Mullen and Cox [37]
explained TFP variations in Australian broadacre agriculture through time trends, which
is an even more distant proxy. In their subsequent work, Mullen and Cox [41] used
pasture growth based on rainfall data to supplement weather. Most importantly, the TFP
measures used in these studies have their own limitations. For instance, Liang et al. [37]
used Wang et al.’s [42] estimates for US agriculture, where TFP was defined simply as the
ratio of output to input. In the case of Western Australia, Salim and Islam [33] used TFP
measured through the Tornqvist index method, whereas Kunimitsu et al. [38] applied the
Tornqvist–Theil index for paddy production in Japan. Mullen and Cox [36] adopted the
Divisia indices of aggregate output to aggregate input. All these are biased measures and
do not possess the required features of multiplicative completeness or transitivity, and the
scope to decompose estimated TFP growth into finer components of associated efficiency
measures is limited [43].

Finally, and most importantly, the aforementioned studies lack a holistic approach, as
none has explicitly explored the impacts of climate change, the production environment,
and relevant socio-economic factors together, which are driving global agricultural pro-
ductivity and efficiency changes over time and, hence, carry little interest in the policy
arena. Rather, efforts are limited to exploring the impact of climatic variables only along
with research and development (e.g., [33,37]). Alternatively, TFP-focused global-level
studies did not try to explain the growth factors, particularly climatic factors. Avila and
Evenson [44] and Fuglie [4] concentrated only on technology and human capital index
to explain TFP growth, and Fuglie [4] admitted that due to ‘left-out’ variables (such as,
climate change, production environment, and other socio-economic factors), the results may
suffer from omitted variable bias. Furthermore, the future possible effect of the changing
climate and associated anomalies on TFP is yet to be explored in the literature. Although,
Anik et al. [45] circumvented all of the aforementioned weaknesses and provided an es-
timate of global agricultural TFP growth and efficiency changes, they did not attempt to
identify the determinants and/or drivers of these changes, which is important for policy
purposes. They also did not conduct any predictive analysis regarding future climate
variability on agricultural TFP.

Given these backdrops, the main objectives of the present study were to (a) jointly
identify the influences of climate change, natural production environment, and socio-
economic factors on global agricultural productivity growth and its finer components (i.e.,
technical-, scale-, and mix-efficiency changes); and (b) predict the effect of future climate
variabilities on global agricultural productivity. To achieve these objectives, we used the TFP
and efficiency estimates of Anik et al. [45], which are based on a panel data of 104 countries,
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covering a 45-year period (1969–2013). Our study revealed three important insights and/or
contributions to the existing literature: (i) established linkages, including magnitude and
direction, amongst climate, production environment and socio-economic factors with
global agricultural productivity and its efficiency components; (ii) identified synergies
amongst agricultural productivity and various efficiency components; and (iii) provided
the magnitude and direction of agricultural TFP change from future climate variabilities.

Although we explored different potential dimensions of agricultural productivity,
due to a lack of the necessary data covering a long time-series for the majority of the
countries investigated in this study, we could not explore two potential dimensions. The
first one is related to waste management in agriculture from the viewpoint of the circular
economy and the bioeconomy. While agriculture is both a cause and effect of climate
change, it also contributes to climate change mitigation and resilience, since all the inputs
from its production process are not lost, and the concept of circular economy addresses this.
Although several notable related works are available (e.g., [46,47]), more rigorous work
regarding these themes aimed at exploring the linkages, and possible policy options are
suggested for future research.

Another crucial research area is related to the role of agricultural trade in TFP growth.
Trade can enable a country to explore markets beyond its own geography and gain
through comparative advantages originating from various factors, including natural and
bio-physical factors and the institutional culture and skills that farmers possess over
time. Edwards [48] noted that countries having greater trade barriers experienced slower
productivity growth. Farmers of a middle-income country producing traditional and
non-traditional crops, and those producing only traditional crops, are facing different
international trade effects on crop yields [49]. They also revealed that exporting channels
include international technology and knowledge spillovers because of trade and also gains
in productivity, due to product specialization in trade. In global market exports, the EU
countries held comparative advantages in exporting products of animal origin, whereas the
US had comparative advantages in the exports of cereals, preparations of cereals, oilseeds,
oleaginous fruits, and meat products [50]. Future studies focusing on the linkages between
international trade, comparative advantages of an individual country, and TFP growth in
agriculture could unpack new insights and knowledge on the subject matter.

2. Methodology

2.1. TFP Index and Its Components

We utilized the estimated values of TFP, technical-, scale-, and mix-efficiency indices
from Anik et al. [45], who applied O’Donnell’s [51] Färe–Primont index (FPI) approach, and
produced estimates of TFP and its six finer components (i.e., technical change, technical
efficiency change, scale efficiency change, mix efficiency change, residual mix efficiency
change, and residual scale efficiency change). The advantage of the FPI method is that it
only requires specification of the production technology (i.e., output and/or input distance
functions), and it is free from any restrictive assumptions related to the nature of production
technology, optimizing behavior of the firms, structure of markets and prices, and it also
satisfies the condition of multiplicative completeness and transitivity of index number
theory [52]. Anik et al. [45] constructed all relevant input and output variables, using the
FAOSTAT database to estimate output oriented TFP and efficiency changes for 104 countries
where agriculture contributed at least 4% of the GDP and/or 4% of total employment,
covering a period of 45 years (1969–2013).

The estimation used eight outputs and five inputs, which circumvented aggregation
issues, a common concern in global level TFP studies [53,54]. The panel-data series used in
this study covered the period 1969–2013. This is because, prior to 1969, many data points
were missing for most of the variables for many countries. In addition, although data
from FAOSTAT for production inputs and outputs are available up to 2018 (i.e., prior to
COVID-19, since data from the pandemic period are not considered as normal years), other
data variables used to identify determinants of TFP change and its components are not
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available for most of the countries in the sample. Moreover, we believe that, since our study
covers a historically long period of 45 years covering 137 countries, adding another 5 years
of data, with incomplete information, would not have any discernible impact on the main
conclusions and policy implications drawn from this study.

2.2. Determinants of TFP Change and Its Components: A Multivariate Tobit Analysis

Having the estimates of TFP and efficiency change indices in hand, which are censored
in nature, we applied a multivariate Tobit model (MVTOBIT) to identify the determi-
nants/drivers jointly influencing agricultural TFP and its efficiency components. Further-
more, the model enables testing correlations between error terms of different equations,
which ultimately will inform how countries substitute or compliment TFP and its efficiency
components. The general form of the model can be written as

Y∗
it = γ′Xit + μit (1)

where Y∗
i is the estimated value of TFP or its various components (log transformed) for

country i in year t; xijt is the vector of different explanatory variables j of country I in time
t; εi is the error. In any equation, Y∗

i equals the actual level of TFP of its components (Yi);
whereas for other countries, Y∗

i is an index reflecting potential score, such that

Yit = Y∗
it i f γ′Xit + μit > 0

= 0 i f γ′Xit + μit < 0
(2)

We developed four equations for TFP change index (dTFP) and its output-oriented
components: technical efficiency change index (dOTE), scale efficiency change index
(dOSE), and mix-efficiency change index (dOME). The general form of the four equations
can be written as

dTFP∗
it= γ′XdTFPit

+ μdTFPit

dTFPit= Maximum
(
dTFP∗

it, 0
)
(the usual Tobit speci f ication as in 2)

dOTE∗
it= γ′XdOTEit

+ μdOTEit

dOTEit= Maximum
(
dOTE∗

it, 0
)
(the usual Tobit speci f ication as in 2)

dOSE∗
it= γ′XdOSEit

+ μdOSEit

(3)

dOSEit= Maximum
(
dOSE∗

it, 0
)
(the usual Tobit speci f ication as in 2)

dOME∗
it= γ′XdOMEit

+ μdOMEit

dOMEit= Maximum
(
dOME∗

it, 0
)
(the usual Tobit speci f ication as in 2)

A list of the explanatory variables and their estimation procedures are presented in
Table 1.

2.3. Predicting Future TFP under Different Climatic Scenarios: A Sensitivity Analysis

Using the parameter estimates of the aforementioned MVTOBIT model, we predicted
change in global agricultural TFP up to 2033. The predict command available in STATA
16 software enables both in-sample and out-of-sample forecasting. The out-of-sample pre-
diction process requires forecasting explanatory variables, which we did for each country,
using the annual compound growth rate estimated as the parameter β in lnY = α + βt
(where y is the relevant explanatory variable and t is time) of the existing in-sample data.
The assumption is that the explanatory variables will follow the same rate of growth in the
future as experienced over the past 45 years (1969–2013). Therefore, the projected values of
the explanatory variables can be considered as the natural change over the next 20 years
(2014–2033) and provide us with the counterfactual scenario. This is because, along with
this natural growth rate of explanatory variables, we assumed additional changes in cli-
matic variables and developed four different models. The first of these is the ‘counterfactual
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model’, where we assumed the natural growth rate for all the explanatory variables, includ-
ing climate variables. In the second model (Model 2), to capture the impact of increased
rainfall and temperature variabilities, we imposed a 1% additional change in total rainfall
and mean temperature variabilities annually on top of the counterfactual model. In the
third model (Model 3), we imposed a 0.1% additional change in LTP and LTT annually, on
top of the counterfactual model. In the final model (Model 4), we incorporated changes in
Models 2 and 3, simultaneously, on top of the counterfactual model. All other remaining
explanatory variables followed the natural growth rate, as explained previously.

Table 1. Definition and construction of the determinants.

Variables Description of Variables

Technology enhancing variables

Researcher Agricultural researchers defined as ‘000 FTEs, collected from IFPRI’s ASTI database.

Spending Total agricultural spending, defined as share of Agricultural GDP, collected from IFPRI’s
ASTI database.

Institutional capacity variables

Literacy

Log of literacy rate defined as share of people aged 15 years and above, collected from World
Bank Data Bank (https://data.worldbank.org/indicator/SE.ADT.LITR.ZS; accessed on 21

February 2021). The data are available for different time periods for different countries. The
standard interpolation method was applied to fill missing data.

Employment

Log of employment in agriculture, defined as share of total employment. The standard
interpolation method was applied for missing years. A constant value of 4% (minimum

threshold level for a country to be selected as a sample in our analysis) was applied to those
countries where the method was not applicable because they had only one or no observations.

Economic openness
Log of trade, which is the sum of exports and imports of goods and services, measured as share
of total GDP. Information compiled from the World Bank’s national accounts data and OECD

National Accounts data files.

Socio-economic variables

Crop diversification
Log of Herfindahl index of crop diversification, which is constructed using land area under the
different crops available at FAOSTAT. A zero value means complete diversification, and a value

of 1 means complete specialization.

Dummy for income category
(base = upper-middle income

countries)

Based on GNI per capita. World Bank classifies countries into four categories, and three dummy
variables are used: dummy for low income country (=1 for countries belonging to low income

category, 0 otherwise); dummy for low-middle income country (=1 for low-middle income
category countries, 0 otherwise); and dummy for high income country (=1 for the high income

category, 0 otherwise).

Agro-ecological and physical location variables

Elevation Log of mean elevation (meters above sea level), available at
https://www.pdx.edu/econ/country-geography-data; accessed on 7 June 2020.

Dummy for country’s location
in a typical weather regime

(base = temperate zone)

The countries were classified into three broad typical weather regimes, and dummies for two
regimes were used. These are dummy for arid and semiarid regions (=1 if the country belongs
to arid and semi-arid region, 0 otherwise), and dummy for tropical sub-tropical regions (=1 if
the country belongs to tropical and sub-tropical region, 0 otherwise). Some countries fall into

multiple categories. The classification is available at:
https://www.cia.gov/library/publications/the-world-factbook/fields/284.html; accessed

on 17 December 2018

Climatic variables

Under this category four variable are used. The first four are climatic variables used to represent
climate change and are constructed by exploring the World Bank’s Climate Change Knowledge
Portal (https://climateknowledgeportal.worldbank.org; accessed on 3 April 2020); whereas the

fifth one represents the impact of climate change, and was collected from The International
Disaster Database (available at: https://www.emdat.be; accessed on 25 March 2020).

62



Land 2022, 11, 512

Table 1. Cont.

Variables Description of Variables

Long-term-precipitation–
LTP (mm)

As climate is the average weather over a long period of time [39] and as the IPCC [55]
considered 30 years as an example of a long time-period, a 30-year moving average (starting

from 1901) of total annual rainfall was used, in logarithmic form.

Rainfall variability (mm) Log of standard deviation of monthly rainfall per year is estimated using monthly total
rainfall data.

Long-term-mean-
temperature–LTT (0C)

Similarly to LTP, a log of the 30-year moving average (starting from 1901) of mean annual
temperature is used as a measure of climate change.

Temperature-variability (0C) The annual temperature variability is estimated as the difference between monthly maximum
and minimum average temperature.

Regional dummy
(base = Middle East and North

Africa (MENA))

The countries belonged to six different regions, and, therefore, five dummies were constructed.
These are dummy for Sub-Saharan Africa (SSA) = 1 if the country belongs to SSA, 0 otherwise;

dummy for South Asia (SA) = 1 if the country belongs to SA, 0 otherwise; dummy for Latin
America and Caribbean (LAC) =1 for LAC countries, 0 otherwise; dummy for East Asia and the
Pacific (EAP) =1 if the country belongs to EAP, 0 otherwise; and dummy for Europe and Central

Asia (ECA) = 1 if the country belongs to ECA, 0 otherwise.

Year An integer variable represents time, t = 1 for 1969, 2 for 1970, and so forth.

3. Results

3.1. Global Agricultural TFP Change and Its Components

The estimated global agricultural TFP indices and its various components are pre-
sented in Table 2. The global TFP grew annually at a rate of 0.44%, and the estimated level
was 0.20. The global technical efficiency level was estimated at 0.91, scale efficiency level at
0.97, mix-efficiency level at 0.78, residual- scale-efficiency level at 0.37, and residual-mix-
efficiency level at 0.29, respectively.

Table 2. Total factor productivity and efficiency levels in global agriculture.

TFP and Its Components Geometric Mean Growth Rate (%)

Max-TFP level 0.75 0.23

Technical efficiency level 0.91 0.05

Scale efficiency level 0.97 0.04

Mix-efficiency level 0.78 0.32

Residual scale efficiency level 0.37 0.19

Scale–mix efficiency level 0.29 0.55

Total factor productivity level 0.20 0.44

The geometric mean of agricultural TFP and its components across regions and differ-
ent categories are presented in Table 3. At the global level, the geometric mean of the TFP
change index for the last four and half decade was 1.014, meaning the output increased at
a higher rate than inputs. For the other three TFP components, i.e., technical-, scale-, and
mix-efficiency changes, the index values remained less than unitary. The TFP change index
values across all the categories are statistically significant.

3.2. Climate, Production Environment, and Socio-Economic Drivers of Productivity Change

Table 4 presents the joint estimates of the determinants of the TFP change and its
three efficiency components by applying the MVTOBIT model. The key hypothesis in this
multivariate analysis is that the ‘correlation of the disturbance term between any pair of
equations is zero

(
i.e. ρjk = 0

)
’. We found all correlations to be positive and significantly

different from zero. This implies that complementary relationships exist amongst TFP and
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its three efficiency components, i.e., growth in TFP or any of its components is associated
with growth in another component. The signs associated with the time variable imply that
technical-, scale-, and mix-efficiency grew significantly over time.

Table 3. Geometric mean of TFP change and its components for different categories.

Country Categories
TFP Change Index

*
Technical Efficiency

Change Index
Scale Efficiency
Change Index

Mix-Efficiency
Change Index

Income classes
Low income countries 1.001 0.940 0.980 0.944

Low middle income countries 0.975 0.879 0.965 0.947
Upper-middle income countries 1.105 0.916 0.978 1.041

High income countries 1.236 0.963 0.995 1.012

Production environment: land elevation
Low elevation (185.39 MASL) 0.851 0.901 0.964 0.942

Medium elevation (503.19
MASL) 1.147 0.914 0.977 0.959

High elevation (1252.73 MASL) 1.068 0.921 0.981 0.981

Production environment: weather regime/zone
Arid and semiarid 0.975 0.892 0.968 0.859

Tropical and subtropical 1.083 0.915 0.976 0.979
Temperate 0.803 0.922 0.972 1.017

Region/geographic location
SSA 0.913 0.881 0.964 0.878
SA 0.791 0.981 0.982 1.015

ECA 1.516 0.975 0.991 1.109
LAC 0.964 0.922 0.979 1.024
EAP 1.231 0.926 0.979 1.006

MENA 0.928 0.868 0.967 0.874
Global 1.014 0.912 0.974 0.960

Note: * We conducted a one-way ANOVA test and found that the TFP change index across all the categories was
significantly different at a 1% level of significance.

3.2.1. Socio-Economic Factors Explaining TFP Growth and Its Components

The negative signs on the coefficient of the Herfindahl index of crop diversification
imply that crop diversification positively contributed towards TFP growth, technical-, and
mix-efficiency changes. A 1% increase in crop diversity index will increase the likelihood
of an increase in TFP, technical-, scale-, and mix-efficiency by 0.585%, 0.031%, and 0.074%,
respectively (Table 4).

To understand whether the growth in TFP and its three components across countries
belonging to different income classes is different, countries were categorized into four
income classes, following the World Bank classification. Except for the mix-efficiency
change index, high-income countries had the highest index values compared to the other
three income classes (Table 3). However, the econometric analysis revealed that, compared
to the upper-middle income countries, low-income countries attained significantly higher
growth in TFP and its three components, and that the high-income countries experienced
significantly higher technical- and scale-efficiency growth. However, for low-middle
income countries, the mix-efficiency change was significantly lower than for the upper-
middle income countries (Table 4).
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Table 4. Joint estimation of the determinants of TFP change and its components.

Variables MVTOBIT (Marginal Effects)

TFP Change Index
Technical Efficiency

Change Index
Scale Efficiency
Change Index

Mix-Efficiency
Change Index

Technology enhancing variables
Spending 0.043 *** 0.006 * 0.002 * −0.003

Researcher 0.006 0.005 *** 0.0003 0.010 ***

Institutional capacity variables
Literacy 0.010 −0.019 *** 0.003 * 0.021 ***

Employment 0.023 *** 0.004 *** −0.001 0.007 ***
Economic openness 0.004 −0.002 ** 0.002 *** 0.0003

Socio-economic variables
Crop diversification −0.585 *** −0.031 ** −0.007 −0.074 ***

Income class dummy
(base = upper-middle income

countries)
Low income 0.112 *** 0.031 *** 0.015 *** 0.030 ***

Low middle income 0.016 −0.003 0.001 −0.011 *
High income 0.024 0.033 *** 0.008 *** 0.009

Production environment and
weather regime dummy
(base = temperate zone)

Land elevation 0.046 *** −0.024 *** 0.006 *** −0.051 ***
Square of land elevation −0.003 *** 0.002 *** −0.0002 * 0.005 ***

Arid and semiarid 0.126 *** 0.006 0.005 *** −0.015 ***
Tropical and subtropical 0.203 *** 0.015 *** 0.006 *** 0.045 ***

Climatic variables
LTP 0.016 −0.021 *** 0.004 *** 0.004

Rainfall variability −0.139 *** 0.002 −0.004 *** −0.051 ***
LTT −0.056 *** −0.011 *** −0.002 −0.013 ***

Temperature variability −0.021 *** −0.011 *** −0.002 * −0.017 ***

Region/Geographic location
dummy (base = MENA)

SSA 0.068 *** −0.004 −0.010 *** 0.011
SA 0.047 * 0.030 *** −0.004 0.063 ***

ECA 0.301 *** 0.074 *** 0.009 *** 0.103 ***
LAC 0.146 *** 0.054 *** 0.0005 0.081 ***
EAP 0.260 *** 0.045 *** −0.002 0.073 ***

Year 0.0002 0.0004 *** 0.0001 *** 0.0003 *

Model diagnostic
LR χ2 (92) 2547.31 ***

Log likelihood 248.36
ρ12 0.329 ***
ρ13 0.223 ***
ρ14 0.345 ***
ρ23 0.098 ***
ρ24 0.356 ***
ρ34 0.243 ***

N 4680

Note: ***, ** and * indicate significance at 1%, 5% and 10% level respectively.

3.2.2. Role of Technology-Enhancing and Institutional Capacity Variables in TFP Change
and Its Components

The positive sign on the coefficient of employment variable in the TFP, technical-,
and mix-efficiency change model implies that a 1% increase in the quantity of agricultural
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labor increases the likelihood of an increase in TFP, technical-, and mix-efficiency efficiency
change by 0.023%, 0.004%, and 0.007%, respectively (Table 4). Our results reveal that a 1%
increase in the adult literacy rate increases the likelihood of a 0.003% and 0.021% increase in
scale- and mix-efficiency change, while technical efficiency is likely to be reduced by 0.019%
(Table 4). Contrary to the common notion of the efficiency-enhancing role of education, in
many instances empirical literature was inconclusive about the relationship between the
two, while some noted a negative relationship [56,57]. A commonly mentioned reason is
the wider livelihood domain beyond agriculture, which is more likely to be explored by
educated farmers.

To capture the impact of economic openness on TFP and its associated components,
an explanatory variable, defined as the ratio of trade (sum of exports and imports of goods
and services) with GDP was included. The coefficient on this variable has a positive sign in
the scale efficiency change equation, but negative sign in the technical efficiency change
equation (Table 4). The implication is that the likelihood of enhancing scale efficiency is
significantly higher in open economies.

Agricultural spending (measured as the share of agricultural GDP) positively increases
the likelihood of TFP growth, technical-, and scale-efficiency improvements. Similarly,
increase in the number of agricultural researchers increases the likelihood of an increase in
technical- and mix efficiency changes (Table 4).

3.2.3. Climate, Agroecology, and Weather Regimes as Drivers of TFP and Its Components

We incorporated four variables to represent climate change: two of these are to capture
the long-term change in climate, i.e., a 30-year moving average of annual mean temperature
(LTT) and annual total rainfall (LTP), whereas the remaining two capture annual variations
in total rainfall and mean temperature.

Among these four variables used to represent climate change, except the LTP variable
in the scale-efficiency equation, all coefficients have negative signs, especially where the
effect is significant. The estimated marginal effects with the variable LTP imply that a 1%
increase in LTP is associated with a likelihood of 0.021% reduction and 0.004% increase in
the technical- and scale-efficiency change indices, respectively. We also found that a 1%
increase in LTT is associated with the likelihood of a 0.056%, 0.011%, and 0.013% decrease
in TFP, technical-, and mix-efficiency change indices, respectively, which is in-line with
Rahman and Anik’s [58] findings about agriculture in Bangladesh. Moreover, climatic
vulnerability, in the form of increasing LTP and LTT, creates risk and uncertainty, which can
negatively contribute to efficiency. Annual mean temperature and total rainfall variations
have severe implications on agriculture, as expected. Except for rainfall variation in the
technical efficiency change equation, both variables have a significant growth reducing
role across equations, with relatively higher marginal effects of variation in annual total
rainfall (Table 4). Increasing precipitation within the growing season may cause crop
loss, particularly in tropical and sub-tropical countries that are prone to flood. Within a
certain temperature range, crop growth is positively and linearly related with temperature.
However, beyond the base and the upper threshold temperature, growth is affected, and
the relationship is inverse for temperature between optimum and a ceiling levels [59].
Increasing temperature in the growing season has an adverse effect on yield [60].

Based on the mean elevation of the landscape, the countries were divided into three
categories, and countries belonging to the medium elevation category had the highest
level of TFP change, whereas the high elevation countries had the highest technical-, scale-,
and mix-efficiency changes (Table 3). To further investigate the dynamics between land
elevation and agriculture performance, we included land elevation and squared land
elevation as explanatory variables and found a significant negative effect of both across
four equations. With increasing land elevation, TFP first increases. However, as land
elevation increases at an increasing rate, the TFP level then reduces. A similar pattern was
observed with the scale-efficiency change model. However, the relationship was opposite
for the technical- and mix-efficiency change models (Table 4).
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Based on weather regime, we classified the countries into three categories, and the
descriptive statistics presented in Table 3 show that the arid and semiarid region was
the worst performing. The econometric analysis shows that, compared to the temperate
zone, the likelihood of growth in TFP and its three efficiency components is significantly
higher in the tropical and subtropical zone. The arid and semiarid region also showed
significantly higher TFP and scale-efficiency changes than the temperate region, although
the mix-efficiency change was relatively higher in the temperate zone than the arid and
semiarid zones (Table 4).

3.2.4. TFP and Its Components across Regions

TFP and its three different components have regional patterns. Among the regional
dummies, except for scale-efficiency change in SSA, all showed a positive effect, especially
where the effect is significant, implying that the likelihood of increase in TFP and its
efficiency components is significantly higher in these regions compared to the base region,
MENA (Table 4).

3.3. Predicting Impact of Future Climate Change on TFP: Sensitivity Analysis

Table 5 presents predicted TFP based on parameter estimates of the MVTOBIT model
up to 2033, under four different climatic scenarios. For all four models, the predicted TFP
in 2033 is significantly higher compared to the baseline year of 2013, but the TFP increases
more in the counterfactual model, where no additional climate variabilities are assumed.
The bottom two rows of Table 5 show the mean-differences in TFP between the counterfac-
tual and other three models, which shows that with any additional climatic variabilities,
the TFP reduces significantly from its natural rate of change, i.e., the counterfactual model.

Table 5. Predicted changes in TFP index under different scenarios.

Year/Time-Period
TFP Change Index

Counterfactual Model 1 Model 2 2 Model 3 3 Model 4 4

Terminal year, 2013 1.038

Projected final year, 2033 1.102 1.098 1.102 1.098

% change from 2013 to 2033 +6.20 +5.75 +6.19 +5.74

t-test statistics 5.201 *** 4.766 *** 5.192 *** 4.757 ***

Mean difference with the
counterfactual model (%) Not applicable −0.431 −0.009 −0.440

t-test statistics Not applicable 48.949 *** 29.052 *** 49.680 ***

Note: 1 changing at the same rate as observed from 1969 to 2013. 2 1% additional change in annual rainfall and
temperature variabilities on top of the counterfactual model. 3 0.1% additional change in LTP and LTT annually,
on top of the counterfactual model. 4 combined changes in Models 2 and 3, on top of the counterfactual model.
*** indicate significance at 1% level.

4. Discussion

Although the estimated annual TFP growth rate was below a modest level (Table 2), an
important and encouraging feature of this rate is that global agriculture has maintained this
positive rate of growth over four and half decades, which certainly contributed towards
enhancing global food security. The econometric analysis also confirmed that, over the
years, TFP and its three efficiency components increased significantly (Table 4). Meanwhile,
the estimated high values of technical- and scale-efficiency indices, and relatively lower
values of mix-efficiency index, imply that global agriculture has performed well, in terms
of operating at a technically efficient and optimal scale, but lacked the ability to derive
economies of scale, by changing optimal input and output mixes (Table 2). The estimated
geometric mean of TFP change index implies that during the last four and half decades,
global agricultural output increased at a higher rate than the input growth, which is
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encouraging. However, the estimated less than unitary values for the three efficiency
components imply that global agriculture is not only incapable of optimizing economies of
scale and judiciously deciding on input-output mixes, it also failed to enhance technical
efficiency to its maximum level; along with notable regional differences (Table 3). The
existence of notable regional differences is further confirmed by the significant effects of
production environment (i.e., land elevation and weather regime) and regional dummies in
the econometric analysis (Table 4).

Farming is sensitive to topography, as both climatic variables (precipitation and
temperature) and associated changes are related to elevation and extreme topography and
can severely affect plant growth [61]. For instance, low temperature at higher elevation can
progressively increase plant duration [62]. Farm management practices become complex
and different at higher elevation as the topography is also complex [63]. Alternatively, at
mid-elevations, precipitation and temperature are likely to be at a level that is optimal for
crop growth [61], and we observed relatively higher TFP change index values for countries
located at medium elevation level (Table 3). These dynamisms can probably explain the
positive sign in the TFP change index, where, as elevation increases at an increasing rate,
TFP reduces (Table 4).

Weather regime dummies significantly influence changes in TFP and its three efficiency
components. Sachs [64] highlighted the importance of physical geography while explaining
growth differences across regions. Compared to the tropics, the yield of major agricultural
crops is higher in the temperate zone [65]. However, when it comes to inputs, except for
labor, use of other inputs (e.g., fertilizer, machinery) is much lower in the tropics [65], as is
the level of agricultural technology use [64].

Similarly, regional dummies are critical in explaining changes in TFP and its efficiency
components, as is evident from Tables 3 and 4. The positive associations with regional
dummies imply that the TFP in MENA has changed at a relatively lower rate than in other
regions, except for technical efficiency for the SSA region. The findings in the literature
about regional patterns are mixed. For instance, while Fuglie [5] noted that SSA has the
lowest agricultural TFP growth, Headey et al. [20] observed that SSA has been doing
remarkably better in recent years. Ludena et al. [53] noted that the TFP for MENA between
1981 and 2000 was much lower than the LAC, SSA, and SA regions.

The growth reducing role of increasing temperature (Table 4) is consistent with the
literature, reporting increasing temperature as a major threat to agricultural production and
yield [31,66]. Zhao et al. [67] analyzed historical trends in production and climatic variables
and demonstrated the impact of increasing temperature on agricultural production. Finally,
they argued for the importance of understanding temperature impacts while formulating
agricultural policies. Our econometric analysis also confirmed a growth reducing role for
both temperature and rainfall variabilities (Table 4), which is in line with previous literature.
For instance, Lansigan et al. [68] discussed the different short- and long-term agronomic
impacts of climatic variability. Such variabilities do not only have bio-physical impacts, but
also contribute to associated risks and uncertainties (e.g., shifting dates of plantation and
other farming activities). Pest and disease infestations vary according to seasonal variations
in weather parameters [69]. Most importantly, although climatic variations are forcing
changes in agricultural cycle [70] and the literature argues for proper forecasting [68] and
adaptive strategies [70], farmers fail to cope properly with environmental changes [70].
The forecasted TFP under different climatic scenarios presented in Table 5 implies that,
although agricultural TFP will increase in the future following past growth patterns, any
additional changes in climate are likely have a significant growth-reducing role.

In such situations, agricultural spending for R&D becomes critical, as we observed in
our results (Table 4). However, globally there has been a relatively low allocation to this
sector, which is an unfortunate trend, given the proven positive effect of investment in
R&D in enhancing food security and employment. For instance, Rahman and Salim [71]
found a positive impact of R&D expenditure on technical change, technical- and scale-
efficiency changes, and TFP in Bangladesh, which is also consistent with the findings
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of Coelli et al. [72]. Anik et al. [16] highlighted the importance of technology capital
through investments in R&D, to obtain a higher level of agricultural productivity growth
in South Asia.

Crop diversification significantly contributes in increasing TFP, technical-, and mix-
efficiency changes (Table 4). In the literature, there is ample empirical evidence that crop
diversification positively contributes to farming efficiency [73] and income [74], while
reducing variability in income [75]; and that it ultimately can contribute to agricultural
growth [76]. The strategy further helps in building resilience against a changing climate [77].

The importance and role of labor and its productivity in agricultural growth and
development is repeatedly mentioned in many countries’ policy documents (e.g., [78,79]).
We also found that increasing employment in agriculture positively contributes to TFP
growth, technical-, and mix-efficiency change (Table 4). However, in general, for several rea-
sons, including the increasing use of agricultural technology and mechanization that leads
to increased labor productivity, and the growth in the non-farming sector creating more
lucrative job opportunities beyond the farm sector, employment in agriculture is showing a
downward trend globally, which again points towards the need to enhance agricultural
productivity through R&D. Furthermore, our results for the literacy variable establish the
importance of human capital development, which is possible through education. However,
we also saw a negative influence of literacy on technical efficiency (Table 4). In fact, the
nexus between education and agricultural productivity and efficiency is ambiguous [57].
For instance, while some observed a production, profitability, and efficiency enhancing role
of education (e.g., [58,80]), Hasnah et al. [81] reported a negative relationship.

5. Conclusions and Policy Implications

Globally, the agricultural sector was successful in maintaining a modest level of
positive TFP growth rate, mainly through reaping the benefits of technological progress
and deriving economies of scale by optimally changing input and output mixes. There were
many more factors, including natural resources, that led to the concentration of production
and specialization. The revealed complementary relationships amongst TFP and its three
efficiency components imply that growth over time in TFP, or any of its components, is
associated with growth in another component. This insightful finding is a methodological
improvement, which is not found in the conventional literature exploring determinants
of TFP. For instance, the land-rich and resourceful Central Asian countries specialized
in grain and cotton production [82], and African countries concentrated on traditional
agricultural products (e.g., cocoa, coffee, cotton, fish and fish products, fruits, legumes, and
tea, etc.) [83]. However, it failed to improve regarding technical efficiency changes and
the ability to operate at an optimal scale, although the actual levels of technical and scale
efficiency were quite high at the beginning but became stagnant over time. A wide range of
climate, production environment, and socio-economic factors exert significant and varied
influences on TFP growth and its efficiency components. Climatic variables have a robust
effect across models, particularly the variation in annual mean temperature and annual
total rainfall. Alarmingly, future TFP projections show that any incremental variabilities in
climatic variables will have a further growth-reducing effect.

Therefore, based on the observations of the varied performance of TFP and its compo-
nents and findings from the econometric analysis, the following policy implications are
suggested: At the strategic level, the main thrust should be geared towards technologi-
cal progress and mix-efficiency improvements, while special attention needs to be paid
to remove stagnancy in pure technical and scale efficiency changes at the global level.
First, investment in agriculture, particularly in R&D activities needs to increase, which
has been on the decline in many economies. Second, research and extension organiza-
tions have a vital role to play in promoting crop diversification, through identifying and
developing appropriate crop diversification portfolios suited to each agro-ecology and
its socio-economic settings. Third, the above two strategies need to be backed up with a
favorable institutional and policy environment, particularly given that the existing low
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institutional efficiency and low adoption rate of innovative agricultural technologies re-
mains a worldwide phenomenon [84]. Enhanced institutional efficiency will specifically
contribute to a higher scale- and mix-efficiency. Fourth, due to its undisputed role, invest-
ment is needed in education, particularly in the developing economies and focusing on
agriculture. Finally, there is strong evidence that increasing temperature and volatility
in climatic variables are adversely affecting TFP growth. Therefore, given the regional
variations in TFP performance, country and region-specific research and policies to mitigate
and adapt to climate change should have topmost priority. Although various climate-smart
agricultural technologies are being developed and advocated, their adoption is subjected to
several socio-economic, political, and institutional constraints [85,86]. Crop insurance may
be an effective instrument, and has been suggested across different agricultural settings,
including pastoral regions of Kenya and other East African countries [87]. While, the Indian
policy of banning conventional urea, and producing neem-coated urea only, is a successful
example of enhancing both nitrogen use efficiency and farm efficiency [88], the recent Sri
Lankan policy of banning fertilizers and agro-chemicals has created an economically and
politically chaotic situation [89].

Governments, alone, may not be capable of bringing about the required changes in
the agricultural future; rather, international donors, development partners, and private
sectors need to contribute as well. Furthermore, individual farmers and/or farm managers
in their respective countries also have an important role to play by implementing the
economic optimization of their production process, by adopting appropriate/modern
technologies and improving technical, scale, and mix-efficiencies, while acknowledging the
limitations posed by climate change and the natural production environment within which
they are operating.
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Abstract: As a powerful actor in the global food system, China experienced a significant drop in
crop production from 1998 to 2003, which posed a substantial threat to national food security and
led to the establishment of 13 major grain-producing areas (MGPA). Although some qualitative
research has found that the MGPA policy plays an important role in ensuring the national food
security, quantitative evidence on the effect of the MGPA policy and its potential mechanism remains
scarce. Based on China’s interprovincial panel data from 1998 to 2018, this study used a difference-in-
differences (DD) estimation strategy to analyze the treatment effect of the MGPA policy by taking the
assignment of 13 MGPA as a quasi-experiment. The results showed that the enforcement of the MGPA
policy significantly increased crop production, especially in terms of grain, rice and wheat yields. The
average grain yields were raised by 27.5%. The results of the event study analysis showed that the
treatment effects were sustainable in the following years of the policy implementation. This study
also explored alternative causal channels and found that the MGPA policy raised crop yields mainly
by expanding planting areas, improving the level of mechanization and increasing transfer payments.
These findings demonstrate the effectiveness of the MGPA policy in increasing crop production
in a developing country setting, which could enlighten policymakers in some less well-developed
countries on boosting crop production and maintaining food security.

Keywords: major grain-producing areas; crop production; food security; China

1. Introduction

“Food security” literally translates as “grain security” in Chinese, which is not only re-
lated to the security of a country, but also to world peace and social stability [1]. The United
Nations post-2015 sustainable development agenda has set the eradication of hunger as one
of important targets of the 17 Sustainable Development Goals (SDGs) in 2030. However,
nearly 750 million people were exposed to severe levels of food security globally in 2019,
and the number of people with food insecurity has been slowly increasing since 2014 (FAO,
2020). It was estimated that between 720 and 811 million people went hungry in 2020
according to the State of Food Security and Nutrition in the World 2021 report. Meanwhile,
in addition to the climate change [2] and economic inequality [3], the widespread of COVID-
19 pandemic also triggered a crisis on the global food security [4]. The COVID-induced
economic shock has threatened food security by reducing incomes and disrupting supply
chains, resulting in people’s reduced availability and affordability of food in both higher
and lower-income countries [5]. Therefore, transformations to increase the productive
capacity and stability of agricultural production are urgently needed, which requires the
building of a knowledge base to support.

As a powerful actor in the global food system, China has traditionally struggled to
feed its large population. China feeds approximately 18% of the world population with
only 8% of the global cultivated land (FAO, 2020). It is evident that China’s food security
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is closely related to the stability of the global food system. To ensure its food security,
the Chinese government has long put it high priority on the national political agenda [6].
However, from 1998 to 2003, China experienced a significant drop in crop production with
the production of rice, wheat and corn in 2003 falling down almost 18 percent from the
harvest in 1998. It posed a substantial threat to the national food security. After this crop
production crisis, 13 major grain-producing areas (MGPA) were established by Ministry
of Finance China, and a package of MGPA-oriented policies was implemented in the
13 regions. Although some qualitative research has found that the MGPA regions play
an important role in ensuring the national food security and improving the production
capacity [7,8], quantitative evidence on the effect of the MGPA policy and its potential
mechanism remains scarce. Quantitatively verifying the efficacy of the implementation of
the MGPA policy is important for China, as the ineffectiveness of such agricultural policy
may deepen China’s food crisis and threaten its food security. Furthermore, if the MGPA
policy failed to increase China’s crop production sustainably, the international crop price
would increase as a result of increased crop imports from China. This would threaten the
food security of low-income countries. Thus, the effectiveness of China’s MGPA policy is
not only a concern nationally but globally too.

A line of literature closely related to our work studies a certain set of factors affecting
agricultural production. The theoretical and empirical literature acknowledges that the
determinants of agricultural production can be categorized into mainly four types: physical
factors (e.g., terrain, topography and climate), infrastructural factors (e.g., irrigation, roads
and crop insurance), technological factors (e.g., farm machinery, pesticides and chemical fer-
tilizer) and institutional factors (e.g., land tenure, land tenancy and land reforms). In terms
of physical factors, they are defined as some natural resources including biophysical frame-
work of soils, water, temperature, flora and fauna. It is worth mentioning that these factors
do not work in isolation but the agricultural activity of a place is the product of combi-
nations of different physical factors [9–11]. In terms of infrastructural factors, following
the World Bank Report (1994), the definition of agricultural infrastructure was narrowed
down to comprise long-lived engineered facilities and other services which include roads,
electricity supplies and telecommunication. As illustrated by empirical studies, roads,
electricity supplies, telecommunication and other infrastructure are important stimulants to
agricultural output [12–15]. In terms of technological factors, empirical studies have found
the adoption of improved agricultural technologies remains to be a promising strategy to
achieve food security in many developing countries [16–18]. Institutional factors, which
refers to the particular system under which land is owned and managed, have a direct
bearing on agricultural production [19]. In practice, many developing countries have
implemented many institutional reforms in agriculture sector, including providing security
of tenure, computerization of land records and ceilings on agricultural holdings. Many
of these institutional reforms have been empirically evaluated their effectiveness [20,21].
Despite the growing interests and enthusiasm for analyzing agricultural production from
the perspectives of physical, infrastructural and technological dimensions, many studies
note that these practices are still finite and farmers in developing countries are faced with
a challenging environment [22], hence more focus should be on the role of institutional
factors in agriculture. In particular, for China’s MGPA policy, an institutional reform of
redistributing regions for agricultural production, the research on its effectiveness still
remains scarce. Given these, there is dire need to investigate the impact of the institutional
factors on agricultural production.

Another strand of literature related to our analysis is research on the agricultural
production in the MGPA regions. So far, many studies have been done to understand
the agricultural production in the MGPA regions. Zhang et al. [23] estimated the grain
production efficiency of the 13 MGPA regions between 2008 and 2017 and found that the
overall level of total factor productivity of grain production in China’s MGPA regions was
relatively high and fluctuated, with an average annual rise rate of 1.85%. Yang et al. [24]
identified the efficiency of the crop insurance in increasing crop production of the MGPA
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regions which exhibit a higher level of spatial farming risk accumulation and larger natural
disaster pressures on farmers. Zhang et al. [25] empirically estimated the impact of the
farmland protection on the security of grain supply in the MGPA areas using the panel
data from 2010 to 2019 and found that the protection of cultivated land resources positively
impacted the security of grain supply. Although all results in these studies have shown
a significant increase in crop production in the MGPA regions, none of them empirically
examined the causality between the establishment of the MGPA policy and crop production.
The MGPA policy pertains to land management practices as it involves the allocation of
land resources for agricultural growth. Theoretically, the exchange of inputs may avoid
resource misallocation, which achieves higher marginal products and therefore improves
input elasticities in agriculture [26].The effective land and resource governance systems
that provide improved access, control, and rights to land and other natural resources is a
necessary condition for achieving stable crop production [27]. Besides, land management
practices are often with some production-oriented policies, which can be categorized
as input support [28,29] (e.g., subsidies for fertilizers and seeds and farm equipment),
output support [30,31] (e.g., countercyclical payments and price incentives), technical
support [32,33] (e.g., extension services and investment in structural development) and
financial support [34,35] (e.g., cash subsidies, loan aid and insurance aid). Although the
four types of agricultural policies often interact with each other, previous studies have
rarely treated them as a whole to investigate their impact on crop production.

Although China’s food security is now guaranteed [6], in the long run, it is still faced
with great challenges such as the rapid urbanization and spatial mismatch in agriculture
resources. The rapid urbanization coincides with a large-scale transfer of China’s cropland
to “marginal land”, which substantially imperiled food security and environmental sus-
tainability [36]. This urbanization trend has led a large number of people to migrate from
rural areas to cities. This rural-to-urban migration pattern intensifies the abandonment
of cultivated land, while increasing its non-agricultural use [37]. Furthermore, a serious
spatial mismatch exists between grain production and farmland resources in China, which
also poses a threat to China’s food security [38]. Thus, identifying the impact of the MGPA
policy on crop production and clarifying its mechanism could provide insightful policy
implications for alleviating food crisis in the future.

Given the above practical and theoretical background, to our knowledge, systematic
empirical evidence on the effectiveness of the implementation of the MGPA policy remains
scarce. Therefore, the objectives of this study are twofold: (i) The first is to investigate the
effects of the MGPA policy on crop production by carrying out a difference-in-differences
(DD) estimation and taking the assignment of 13 MGPA as a quasi-experiment based on
China’s interprovincial panel data from 1998 to 2018. To consolidate the reliability of the
baseline results, several robustness checks are also performed. (ii) The second objective is
to identify alternative causal channels of the treatment effects of the MGPA policy in terms
of agricultural planting areas, mechanization level and transfer payments using a causal
steps approach. This analysis could shed new light on maintaining food security from a
perspective of land management practice.

2. Major-Grain-Producing-Areas Oriented Policy in China

China’s production of rice, wheat and corn fell to around 400 million tons in 2003,
down almost 18 percent from the record harvest of 486 million tons in 1998, according
to statistics from the US Department of Agriculture. Meanwhile, this food crisis was
accompanied by a growing population and shrinking arable land area. To eliminate the
threat to food security, 13 major grain-producing areas were established at the end of 2003
by the Ministry of Finance China. These areas were Heilongjiang, Liaoning, Jilin, Inner
Mongolia, Hebei, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, and Sichuan.
Before 2003, the MGPA regions had been unofficially identified and were slightly different
from those announced in 2003. Specifically, Guangdong, Guangxi, Zhejiang, Gansu and
Shanxi had been classified as MGPA pre-2003, however, they were not included in the list
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of 2003. Figure 1 illustrates the geographic distribution of the MGPA regions in China.
Dark grey areas indicate the 13 MGPA regions, and white areas the non-MGPA regions.
The 13 MGPA regions cover 64% of the geographical area, are home to more than 50% of
the population, and produce 75.4% of China’s grain output [7]. Geographically, seven of the
13 MGPA regions are located in northern China, which is to the north of the Qinling-Huai
line1. This is consistent with the current observation that China’s agricultural center is
shifting from the south to the north, especially to the northeast of China.

Figure 1. MGPA provinces.

The establishment of the MGPA is supplemented by some MGPA-specific policies.
After carefully sorting out the MGPA oriented policies during our research period from 1998
to 2018, as Table 1 shows, we classify these policies into three types: production support,
market management and natural resources management. Such classification is based on
the food and agriculture policy classification of FAO. Among these MGPA oriented policies,
several MGPA-specific policies are widely recognized. In terms of the production support
policy, rewarding counties that produced large harvests, was added to the MGPA policy
package in 2005. Specifically, a county was deemed to have produced a large harvest
when its average yearly crop yields for the past five years were above 200 thousand tons
and commodity crops above 5000 tons. Also, when a county’s yields were ranked in the
top 100 of all areas in the MGPA, it received some extra bonus subsidy from the central
government. This MGPA-specific policy not only increased the willingness of farmers
to plant crops, but also reduced the financial pressure on local government. In terms
of the agricultural risk management policy, subsidies for the disaster prevention and
mitigation in agriculture were implemented in 2012. The central government implemented
for the first time the subsidy policy for agricultural disaster prevention and mitigation
by subsidizing six key technologies for winter wheat, northern corn and southern early
rice production. Abdur and Wang [39] found that these policies played an important
role in helping farmers restore production and living. For the value-chain-development
oriented policy, China formulated a plan for the construction of a high-quality grain
industry (2004–2010) immediately after identifying the 13 MGPA regions. This policy
was designed to accelerate the upgrading of the grain industry for the 13 MGPA regions
by cultivating superior crop breeds, promoting the construction of standard farmland,
improving agricultural mechanization and advancing disease and pest control techniques.
Meanwhile, it also incorporated technology advancement into the existing agricultural
value chain through better training, financing and fertilizer. As for the conservation and
management of resources policy, the central government of China officially launched the
Action Plan for the Zero Increase of Fertilizer Use in 2015. The goal of this plan was
to reduce the fertilizer use without reducing food production especially in the MGPA
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regions. Lastly, the establishment of grain production functional area in 2017 scientifically
demarcated the grain production functional areas of rice, wheat and corn, the production
and protection areas of soybean, cotton and rapeseed, and management of groundwater
overexploitation funnel areas in North China.

In general, the MGPA policy can be summarized as following features: (i) The spatial
agglomeration of the MGPA regions. China’s agricultural center had been in the south for
a quite long time and the traditional pattern of grain transportation was from the southern
regions to the northern regions during the long-term historical accumulation of agricultural
production [40]. However, with the establishment of MGPA policy, seven of the 13 MGPA
regions are located in northern China and the spatial pattern of the food production has
shifted from transporting grain to the north to relying mainly on the northern regions as a
result of the conversion of farmland in the southern regions, the expansion of cultivated
land in the northern regions [41], the transfer of agricultural labor to non-agricultural
industries [42] and the adjustment of the planting structure [40]. The regions with high grain
output per capita are now concentrated in northern and eastern China, while regions with
low grain output per capita are mainly in southern and western China [43]. The proportion
of grain output in 15 northern provinces in the national grain output has increased from
45.65% in 2000 to 59.22% in 2020, while for the southern areas, it declined from 54.35% in
2000 to 40.78% in 2020. In addition, the MGPA regions agglomerate to the relatively less
developed areas when compared with the non-MGPA regions. Existing studies indicate
that the MGPA regions sacrifice their economic development for China’s food security [44].
In contrast, the food supply of the non-MGPA regions is largely supported by the MGPA
regions’ grain production, and the development of the non-MGPA regions is more economic-
oriented. For example, Zhejiang was not included in the 2003 list, despite being one of
the unofficial major grain-producing provinces and having better agricultural resources.
Zhejiang was not included on the list because it may take more economic responsibility
with its well-equipped industry and intensified city groups. (ii) The comprehensiveness
of the MGPA policy. The MGPA policy is not merely a land management practice for
reallocating land resources for food production. It is also followed by a comprehensive
MGPA-regions-specific agricultural policies. The MGPA policy has multiple areas of
action, mainly including financial subsidies (e.g., rewarding the county for large harvests ),
technical support (e.g., upgrading local agricultural infrastructure) and input support (e.g.,
promoting the adoption of superior crop breeds). These integrated sub-policies support
and complement each other to increase grain output. In terms of the source of funds,
formal financial institutions are less interested in financing the agricultural sector because
it is a high-risk business with high transaction costs, asymmetric information and low
profits [45]. However, the funds for implementing the MGPA policy are provided by
both the central financial budget and local supporting funds, which can safeguard the
stability and sustainability of the MGPA policy from financial constraints. In addition,
the MGPA policy is also a dynamic policy which, through successive reforms, has adapted
to new challenges faced by China’s agriculture. The Chinese government has so far
created and implemented a series of MGPA sub-policies to meet new challenges such as
addressing national market fluctuations and price volatility, using natural resources in a
more sustainable manner and contributing to climate change mitigation.
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3. Methodology and Data

3.1. Regression Model
3.1.1. Difference-in-Differences Model

In order to identify the effect of the MGPA policy, a difference-in-differences model
(DD) is widely used as an effective method for separating the time trend effect and the
policy effect [46]. DD is a quasi-experimental design that makes use of longitudinal data
from treatment and control groups to obtain an appropriate counterfactual to estimate a
causal effect. It is typically used to estimate the effect of a specific intervention or treatment
by comparing the changes in outcomes over time between the intervention group and the
control group. In our analysis, the provincial variations in the adoption of MGPA policy
enables us to carry out DD analysis. Specifically, there are two groups of provinces: those
designated as MGPA (treated provinces) and those not (control provinces). There are two
sample periods, pre-MGPA and post-MGPA, with the pre-MGPA period ranging from 1998
to 2004 and the post-MGPA period ranging from 2005 to 2018. The grain yield of MGPA
provinces was compared to that of non-MGPA provinces (the first difference) before and
after the implementation of the MGPA policy (the second difference).

The DD estimation specification is as follows:

Yit = α + β(Di × Tt) + γZit + λi + δt + εit (1)

where Yit, our measure of grain yield from province i in year t, is proxied by grain yield,
rice yield and wheat yield; Di indicates whether the province has been designated as
MGPA i.e., Di = 1 if province i is a MGPA province and Di = 0 if province i is a non-
MGPA province; Tt = 1 indicates the post-treatment period and Tt = 0 indicates the
pre-treatment period2; Zit are other independent variables; λi are province fixed effects, cap-
turing province i’s time-invariant characteristics, such as natural, climate and geographic
features; δt are year fixed effects, capturing all yearly shocks common to all provinces, such
as monetary policy and business cycles; εit is the error term.

One concern with the above specification is that province-specific annual variations
may bias the estimation. One of these potential variations is natural disaster. Specifically,
if grain yield was affected by some specific disasters, the estimates could be mistakenly
attributed to the implementation of the MGPA policy. For example, during China’s 2008
snow storms, the excessive snowfall and ice in February paralyzed the southern provinces
and badly damaged their crops. To address such province-specific annual variations, we
followed the approach of Li et al. [47] and included the interaction of province i and year t
(λi × δt) into Equation (1). We therefore used the following equation for DD estimation to
account for province-fixed, year-fixed and province-specific annual effects:

Yit = α + β(Di × Tt) + γZit + λi + δt + μ(λi × δt) + εit (2)

3.1.2. Event-Study Difference-in-Differences Model

DD relies on the parallel trends assumption which requires that in the absence of
treatment, the difference between the treatment and control group is constant over time [46].
Despite the estimated coefficients of treatment effects being statistically significant in the DD
estimation, the parallel trends assumption might still be a cause of concern. One estimation
strategy widely used is to implement an “event-study difference-in-differences” estimator
(ET-DD) [48]. The ET-DD estimation can also show the dynamic effects of the MGPA policy
on crop production if the parallel trends assumption is satisfied. The specification of the
ET-DD estimation model is:

Yit = α +
14

∑
k=−6

βk(Di × Tt) + γZit + λi + δt + μ(λi × δt) + εit (3)

where k describes the year before or after the enactment of the MGPA policy and k = 0 is
normalized to 2004. In the regressions, k = −1 is left out as the reference year of 2003.
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3.1.3. Propensity Score Matching Method

China exhibits appreciable regional differences across its huge territory and some of
these differences are closely associated with the enactment of the MGPA policy. It suggests
that the MGPA policy is more easily implemented in provinces with developed agricultural
resources. If so, this reduces the comparability between the treatment and control provinces
and confounds our estimation. To provide a good counterfactual for the treatment provinces
in the period studied, the propensity score matching (PSM) method was used to mitigate
selection bias by matching observations of treatment provinces with control provinces.
Besides, PSM can also serve as a robustness check of our baseline estimation using DD
method. Following Rosenbaum and Rubin [49], the PSM is modeled as:

p(X) = Pr(D = 1|X) = E(D|X) (4)

where D = 0, 1 is an indicator of whether the province has been assigned as a MGPA
province; X is a vector of pre-treatment characteristics.

Following Heckman et al. [50], we let Y1 be the grain yield if the province i is a MGPA
province (D = 1) and Y0 if the province i is a non-MGPA province (D = 0). Thus, the average
treatment effect on the treated (ATT) is specified as:

ATT = E(Y1 − Y0|D = 1) = E(Y1|D = 1)− E(Y0|D = 1) (5)

Then the treatment effects based on the propensity score is estimated as follows:

ATT = E(Y1|D = 1, p(X))− E(Y0|D = 0, p(X)) (6)

3.2. Indicators and Variable Selection
3.2.1. Explained Variables

As discussed in Section 2, the major grain-producing areas were established as a result
of China’s falling grain production. The MGPA policy is aimed at increasing grain-oriented
production. Hence we select the yearly provincial grain yield as the outcome of interest,
which is defined as the output of grain, wheat, maize, sorghum, tubers, soybean and several
other crops by China Agricultural Statistical Yearbooks. Besides, rice and wheat yield are
also incorporate as two supplementary dependent variables because they are the two most
important crops [51]. In 2021, the outputs of rice and wheat were respectively 21.29 million
tons and 13.70 million tons, both ranking the highest in the world and accounting for about
55% of China’s total food production. The increase of grain yield is expected to be mainly
illustrated by the increase of the rice and wheat yield. Therefore, the estimation of the
MGPA policy’s effect on the two supplementary dependent variables can also serve as a
robustness check for our baseline regression which employs the yearly provincial grain
yield as the explained variable .

3.2.2. Key Explanatory Variable

According to the DD model setting, the core explanatory variable of this paper is the
implementation of the MGPA policy, which is a dummy variable. Specifically, the core
explanatory variable equals to 1 when the province has been designated as a MGPA
province and 0 if province is a non-MGPA province. In addition, a dummy variable is often
used in regression analysis to distinguish different treatment groups [52]. In our paper,
whether the province has been assigned as a MGPA province is our interest. In other words,
we just focus on whether the MGPA policy has been implemented, which does not involve
building an explicit index system for the implementation of the MGPA policy. Therefore,
a dummy variable can represent the implementation status with two distinct categories in
our analysis.
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3.2.3. Control Variables

A number of control variables relating to crop production have been included. Fer-
tilizer consumption and pesticide consumption per mu3 are two important inputs for
agricultural production [53]. As China’s agricultural growth has mainly been attributed to
the improvement of productivity, especially the improvement of mechanization level in
agriculture [26], the fixed asset which is closely related to the investment of technical equip-
ments in agriculture is also included. Research shows that participation in rural non-farm
activities exerts a pronounced impact on agriculture, household farm decisions and house-
hold food security [54]. Hence, non-agricultural income earned from non-farm activities has
been included as a control variable. Following Janvry et al. [55], non-agricultural income
was measured as the farmer’s wage income per capita4. Due to the fact that the agricultural
production system can benefit from participation in trade through the introduction of new
skills and techniques [56], trade openness which is defined as the ratio of a province’s
sum of exports and imports to that province’s GDP is also incorporated. The rate of ur-
banization is also included because a person’s diet and demand for agricultural products
will be transformed by urban expansion [57]. Zhong et al. [58] suggest that the frequent
use of modern technologies resulting from the industrial revolution has increased crop
yields, thus we included industrialization which is measured as the ratio of the output in
the secondary industry to GDP. Lastly, rural financial efficiency also affects agricultural
yields by extending agriculture-oriented financial services to farmers. Following Wang and
Sun [59], we use the ratio of yearly rural loans to deposits as an indicator of rural financial
efficiency, with data obtained from Chinese Rural Credit Cooperatives (1998–2018).

A threat to the identification is that the treatment effects would be confounded when
there were other policies being enacted around the same time as implementation of the
MGPA policy. After studying Chinese government documents, we found two agricultural
policies that may have biased the estimation. One was the enactment of Law of Rural Land
Contract (LRLS) in 20025, which enabled farmers to legally transfer, re-contract, enter into
share-holding ventures and exchange the rights of land use. The other was the abolition of
China’s agricultural tax in 20066, which had been in existence over 2600 years. Existing
studies have found that these two policies can affect farmers’ grain production [60,61].
To relieve any confounding effects of these policies, two dummy variables were included.
LRLS indicated the enactment of Law of Rural Land Contract in 2002 and Tax indicated
the abolition of agricultural tax in 2006.

3.3. Data Sourcing

Our list of provinces designated as MGPA was derived from an official Ministry of
Finance of the People’s Republic of China document from December 2013, “The Plan for the
Reform and Improvement of Agricultural Development.”. The 13 MGPA were Heilongjiang,
Liaoning, Jilin, Inner Mongolia, Hebei, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei,
Hunan, and Sichuan. During the sample period, this list remained unchanged.

In order to estimate the treatment effects, a balanced panel of provincial data was
constructed to estimate the effects of interest. The sample periods covered 1998 to 2018,
as Chongqing was separated from Sichuan and designated a provincial-level municipality
in 1997. In almost all cases, data were collected from various sources, including China
Rural Statistical Yearbooks (Ministry of Agriculture, 1998–2018), National Agricultural
Product Cost and Revenue Survey Data books (Ministry of Agriculture, 1998–2018), China
Agricultural Statistical Yearbooks (Ministry of Agriculture, 1998–2018), China Statistical
Yearbooks on Environment (Ministry of Environment, 1998–2018), and China Statistical
Yearbooks (NBSC, 1998–2018). In addition, all economic variables were deflated using
1997’s CPI. Detailed descriptive statistics are presented in Table 2.
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Table 2. Descriptive statistics of variables.

Variables Definition of Variables Mean S.D. Min Max

Grain Annual grain yields (log) 16.16 1.23 12.74 18.15
Rice Annual rice yields (log) 5.11 2.45 −2.30 7.94
Wheat Annual wheat yields (log) 4.10 2.40 −3.22 8.22
Pesticide Pesticide use per 10,000 yuan of the primary industry output (log) −7.81 1.15 −11.68 −5.73
Fertilizer Fertilizer use per 10,000 yuan of the primary industry output (log) −1.18 0.62 −6.14 3.59
Fixed-asset investment Fixed-asset investment per capita (log) 5.91 0.69 3.48 7.62
Non-agricultural income Non-agricultural income per capita (log) 6.76 0.97 3.49 9.07
Trade openness The ratio of a province’s sum of exports and imports to that province’s GDP 0.29 0.37 0.02 1.70
Urbanization The ratio of urban population to rural’s 0.43 0.18 0.10 0.90
Industrialization The ratio of the secondary industry output to GDP 0.44 0.08 0.19 0.60
Rural financial level The ratio of annual rural loans to deposits 0.68 0.14 0.33 1.97
Grain planting areas Grain planting areas per capita (log) 0.09 0.06 0.00 0.38
Wheat planting areas Wheat planting areas per capita (log) 0.02 0.02 0.00 0.06
Rice planting areas Rice planting areas per capita (log) 0.02 0.02 0.00 0.10
Transfer payment Transfer payment per capita (log) 5.26 1.25 2.58 8.13
Mechanization Mechanization level per capita (log) −0.04 0.81 −1.57 9.49

4. Results

4.1. Tests for Some Statistical Problems

To check for the variable collinearity, we perform a variance inflation factor (VIF)
analysis, which has been widely used to test collinearity. The VIF test results of the
explanatory variables in this study are summarized in Table 3. Among all variables,
the largest VIF value is 2.75. Generally, a VIF above 4 indicates that multicollinearity might
exist, therefore multicollinearity is free from concern in our analysis.

Table 3. The result of VIF test.

Variables Pesticide Fertilizer
Fixed-Asset
Investment

Non-
Agricultural

Income

Trade
Openness

Urbanization Industrialization
Rural

Financial
Level

VIF 2.03 1.28 2.50 2.75 1.73 2.05 1.30 1.12
1

VIF 0.49 0.78 0.40 0.36 0.58 0.49 0.77 0.89

To verify whether the regression model contains a heteroskedastic error, White’s test
proposed by White [62], has been widely used. White’s test, which compares the esti-
mated variances of regression coefficients under homoskedasticity with the ones under
heteroskedasticity, has an asymptotic chi-squared distribution and works well in large
samples [63]. We perform a White’s test and the p-value is 0.492, suggesting that the null
hypothesis of homoscedasticity or no heteroscedasticity should be accepted. For the possi-
ble autocorrelation, a test proposed by Wooldridge [64] is very attractive because it requires
relatively few assumptions and is easy to implement [65]. The result of the Wooldridge
test shows that p-value is 0.0751, indicating that there is no first-order autocorrelation at
a 5% confidence level in our linear panel-data model. Besides, following most empirical
studies using panel data, all our empirical estimation is built on a robust-standard-errors
technique for panel regression which is invented by Hoechle [66]. The code program pre-
sented by Hoechle not only could enable the estimates to be heteroskedasticity consistent
but also make the standard error estimates be robust to general forms of cross-sectional
and temporal dependence, i.e., autocorrelation. Therefore, the statistical problems of the
heteroscedasticity and autocorrelation are relieved by using the estimation program.

In terms of the linearity and adequacy of the model setting, on the one hand, our
select of control variables are based on the literature review (Section 3.2) and hence these
control variables’ linear relationship with the dependent variable has been examined by
previous studies. Besides, the adequacy of the model can be partly illustrated by R2,
and the R2 of our baseline regression model is above 92%, as reported in the baseline
regression, suggesting that at least 92% of variance in the dependent variable that can be
explained by the independentvariables. Therefore, the performance of our regression model
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is good. On the other hand, linearity in parameters within linear regression requires that
model equation has correct functional form specification. This can be evaluated through
Ramsey RESET test [67] which evaluates whether linear regression fitted values non-linear
combinations explain dependent variable. If linear regression fitted values non-linear
combinations explain dependent variable, then model equation has incorrect functional
form specification. The result of Ramsey RESET test reported in Table 4 shows that the
linearity is valid and model specification is correct.

Table 4. The results of White’s test, Wooldridge test and Ramsey RESET test.

Test Null Hypothesis For χ2-Statistic p-Value

White’s test There is no heteroscedasticity. 555.000 0.492
Wooldridge test There is no first-order autocorrelation. 3.385 0.076
Ramsey RESET test Model has no omitted variable. 1.660 0.175

For the normality, the assumption requires a normal distribution that applies only to
the residuals, not to the independent variables as is often believed [68]. We have tested the
residuals’ normality of the model and the result below (Table 5) shows that the residuals of
our model are normally distributed.

Table 5. The results of skewness/kurtosis tests for normality.

Variable Observations Pr(skewness) Pr(kurtosis) χ2 p-Value

Residuals 535 0.359 0.944 0.870 0.647
H0: the variable is normally distributed.

Lastly, in terms of the endogeneity which may result from the omission of variables,
errors-in-variables, and simultaneous causality [64], we have employed an instrumental
variables (IV) estimation in the section of robustness check to relieve potential endogeneity
and our baseline results remain significant after using an IV estimation. IV estimation is
a widely used approach to relieve potential endogeneity in many empirical studies [69].
Besides, to avoid the omission of variables, we also include some topographic and mete-
orological factors that may affect crop production in the section of robustness check and
our baseline results remain significant after controlling for other variables. Such treatment
could relieve the potential estimation bias resulted from the endogeneity.

4.2. DD Estimation

Figure 2 shows the annual yield of grain, rice and wheat in the treated and control
groups, namely MGPA and non-MGPA provinces. These graphs show that the yields for the
three crops approximately perform some similarity in the years before the enactment of the
MGPA policy, which agrees with the parallel historic paths assumption of DD estimation.
The trends tentatively suggest that the MGPA provinces saw a higher output growth after
2003 than the non-MGPA provinces, and this will be examined in more detail next.

Table 6 shows the results for grain, rice and wheat. Columns (1), (3) and (5) include
the controls of province-specific annual effects except year and province effects to reduce
the estimation bias caused by potential province-specific annual variations. To control for
other ongoing policies that may bias the estimation, columns (2), (4) and (6) also include
the dummy variables for the two agricultural policies discussed above. The coefficients for
the treatment effects, Di × Tt, are all positively significant suggesting that across the three
crops, the implementation of MGPA policy increased crop yields, with an average increase
of 27.5% for grain yields, 47.8% for rice yields and 35.5% for wheat yields. These treatment
effects seem to be greater than expected, but are better explained after controlling other
independent variables (planting areas per capita, mechanization and transfer payment per
capita) in the following mechanism analysis which explores the potential causal channels
of the treatment effects.
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Figure 2. Yields of grain, rice and wheat.

In addition to the baseline result, there are also several interesting findings concerning
factors affecting crop production. First, the positive relationship between crop production
and pesticide use is valid for all three crops. However, only wheat production is positively
associated with fertilizer use. The non-significant estimates for grain and rice yields may
be attributed to the overuse of fertilizer. Chemical fertilizer overuse is common and
serious in China with fertilizer use already severely exceeding international standards [70].
Second, the statistically significant coefficients for urbanization agree with previous findings
showing that crop production increases with urban expansion because people’s diets and
demand for agricultural products are changed and diversified food consumption needs
greater crop production [57]. Third, improving rural finances is beneficial to the increase
in crop production. China has many smallholder farmers who are extremely vulnerable
to unexpected events, so rural financial services, such as agricultural insurance, could
protect farmers when these events occur and therefore encourage farmers to increase their
investment in crops.
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Table 6. The baseline DD estimation.

Dep. Var.: Yields
Grain Rice Wheat

(1) (2) (3) (4) (5) (6)

Di × Tt 0.271 *** 0.275 *** 0.481 *** 0.478 *** 0.350 *** 0.355 ***
(0.027) (0.027) (0.055) (0.055) (0.106) (0.107)

Pesticide 0.275 *** 0.280 *** 0.178 *** 0.174 *** 0.535 *** 0.524 ***
(0.029) (0.029) (0.056) (0.054) (0.163) (0.160)

Fertilizer 0.016 0.022 0.032 0.017 0.214 * 0.231 *
(0.020) (0.022) (0.032) (0.029) (0.124) (0.126)

Fixed-asset investment 0.099 *** 0.095 *** −0.040 −0.042 0.372 *** 0.362 ***
(0.030) (0.030) (0.064) (0.066) (0.112) (0.111)

Non-agricultural income −0.008 −0.010 0.243 *** 0.249 *** 1.071 *** 1.083 ***
(0.063) (0.065) (0.073) (0.069) (0.195) (0.195)

Trade openness −0.116 −0.115 −0.172 −0.168 1.025 *** 1.030 ***
(0.090) (0.090) (0.105) (0.105) (0.318) (0.318)

Urbanization −0.429 *** −0.374 *** −0.221 ** −0.339 ** −0.862 ** −0.750 **
(0.093) (0.087) (0.153) (0.149) (0.417) (0.372)

Industrialization −0.023 0.082 0.727 * 0.372 −2.007 *** −1.812 **
(0.231) (0.227) (0.387) (0.387) (0.762) (0.811)

Financial level 0.166 *** 0.164 *** 0.156 * 0.167 * 0.242 * 0.237 *
(0.054) (0.053) (0.087) (0.091) (0.101) (0.100)

LRLS Yes Yes Yes
Tax Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes

Observations 555 555 535 535 535 535
R2 0.929 0.927 0.986 0.986 0.962 0.962

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

4.3. ET-DD Estimation

Figure 3 shows the estimated coefficients along with the 95% confidence intervals for
the dynamic treatment effects. The coefficients for the pre-MGPA years (k = −2∼k = −6) are
all statistically distinguishable from zero, suggesting that the parallel trends assumption
holds. After the implementation of MGPA policies, there is an immediate and lasting
increase in grain and rice yields implying that the treatment effects of the MGPA policy
are sustainable. For wheat yields, the treatment effect becomes significant six years after
the policy’s implementation. Such a delayed treatment effect may be attributed to farmers
being less motivated to plant wheat as a result of its decreasing profitability7.
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Figure 3. Cont.
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Figure 3. Tests for parallel trends.

4.4. PSM-DD Estimation

When selecting matching covariates, one rule for selection is that the covariates are
meant to be predictors of post-intervention outcomes, which are not themselves affected
by the event [50]. To this end, our matching covariates include rural family size, sex ratio,
educational attainment and agricultural land per capita. To improve the sample efficiency
of the estimates [71], we removed treated observations whose propensity scores were out
of the range of those of the control groups. The PSM-DD estimates based on the matched
sample are shown in Table 7. The coefficients of the treatment effect (Di × Tt) for grain, rice
and wheat are all positively significant whether controlling for province-specific annual
effects or two other ongoing policies. The magnitudes of the coefficients are quite similar
to the results of the DD estimation. Thus, our baseline findings from the DD estimation
remain valid after using the PSM-DD for mitigating selection bias.

Table 7. The PSM-DD estimation.

Dep. Var.: Yields
Grain Rice Wheat

(1) (2) (3) (4) (5) (6)

Di × Tt 0.246 *** 0.253 *** 0.448 *** 0.442 *** 0.382 *** 0.383 ***
(0.026) (0.025) (0.054) (0.054) (0.107) (0.108)

Control Variables Yes Yes Yes Yes Yes Yes
LRLS Yes Yes Yes
Tax Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes

Observations 546 546 526 526 526 526
R2 0.928 0.926 0.987 0.987 0.963 0.963

Standard errors in parentheses. *** p < 0.01.

4.5. Robustness Checks

In this section, we perform three further robustness checks on our baseline findings.
They are placebo tests using alternative treatment provinces, an instrumental variables
estimation using local annual production of raw coal as the instrumental variable for the
enactment of the MGPA policy, and case studies using synthetic control methods.

Placebo tests: To verify DD estimation, Chetty et al. [72] recommended using “fake”
treatment groups, namely, randomly assigning policy shocks to sample areas. Specifically,
for our estimation sample, 13 fake MGPA provinces were randomly selected from the
31 provinces and the remaining 18 provinces become fake control groups. Then, a series of
fake treatment variables i.e., D f ake

i × Tt, were constructed based on that random assignment.
Given that these randomly constructed treatment provinces were not necessarily imple-
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mented with real MGPA oriented policies, the outcome of interest should be insignificant.
In other words, any significant coefficients for fake treatment effects, β f ake, would suggest the
invalidity of our baseline DD estimation. Following the method of Cai et al. [73], to rule out
bias from any rare events, we carried out this random data generating procedure for 500 times.
Figure 4 shows the kernel density of 500 random estimates and associated p-values for
grain, rice and wheat yields. The mean values of the fake treatment effect for three crops
are all around zero, specifically, the mean coefficient is −0.001 for grain, 0.003 for rice and
0.001 for wheat. The distribution center of 500 random estimates for three crops are all
close to zero and their associated p-values are mostly larger than 0.1. Our real coefficients
for treatment effects, represented by the red line, clearly differ from that of the placebo tests.
Thus, these results again lend support to our baseline DD estimation.
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Figure 4. Placebo tests.

Instrumental variables (IV) estimation: Using IV estimation can help remove potential
bias arising from the pre-existing differences between the treatment and control groups [74].
Specifically, instrumental variables can rule out the pre-trends caused by confounders
between the treatment and control groups [47]. In this study, we selected local annual
production of raw coal as the instrumental variable for the enactment of the MGPA policy.
There are two reasons that display the validity of using this instrumental variable. First,
the origin of most coal is plant debris in wetlands from hundreds of millions of years ago
in swampy forests. Hence, regions that have a large production capacity of raw coal are
often agriculture-friendly places with rich natural resources, and MGPA policy is more
likely to be implemented in such provinces. Second, to our knowledge, there is no direct
relationship between the production of raw coal and crop yields.

Table 8 shows the two-stage least squares (2SLS) regression of the instrumental vari-
ables estimation. The first-stage results are presented in columns (1), (3) and (5). The coeffi-
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cients of the instrumental variable, Rawcoali × Tt, are all significantly positive suggesting
that the large production capacity of raw coal is a valid indicator for the enactment of
MGPA policies. Columns (2), (4) and (6) show the second-stage results for grain, rice
and wheat, respectively. The treatment effects remain statistically positive and significant,
with the magnitude of coefficients being even bigger. These 2SLS results imply that our
baseline findings in DD estimation are robust.

Table 8. Instrumental variables estimation.

Grain Rice Wheat

Dep. Var.: Di × Tt
Grain
Yields

Di × Tt Rice Yields Di × Tt
Wheat
Yields

(1) (2) (3) (4) (5) (6)

Rawcoali × Tt 0.055 *** 0.052 *** 0.052 ***
(0.010) (0.002) (0.010)

Di × Tt 1.332 *** 1.072 *** 3.116 ***
(0.231) (0.360) (0.962)

Year FE Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes

Observations 571 571 550 550 563 563
R2 0.783 0.927 0.784 0.978 0.782 0.873

Standard errors in parentheses. *** p < 0.01.

Synthetic control methods: The synthetic control method, proposed by Abadie et al.
(2007) [75], can effectively be used for comparative studies when exact matches are un-
available, which offers a sensible generalization of DD estimation [76]. We carried out
comparative case studies focusing on the grain yields of three MGPA provinces. The three
provinces were Shandong, Jiangxi and Liaoning, located in three traditional agricultural
zones, specifically the Yellow River, Huai River and Hai River, the middle reaches of the
Yangtze River, and the northeast of China.

We first constructed a synthetic Shandong, Jiangxi and Liaoning from the donor pool,
all the non-MGPA provinces. The synthetic Shandong, Jiangxi and Liaoning mirrored the
values of the predictors8 of grain yields in real Shandong, Jiangxi and Liaoning before the
establishment of MGPA. We then estimated the treatment effect of the MGPA policy on
grain yields as the difference in grain yields between case provinces and their synthetic
versions in the years after the MGPA were established. Figure A1 shows that the post-
intervention growth paths of the three provinces significantly increased over the growth
paths of their synthetic versions.

We further carried out a series of placebo tests confirming that our estimated treatment
effects for the three case provinces were unusually larger relative to the distribution of
fake treatment effects obtained from applying the same synthetic control analysis to the
donor provinces. Figure 5 shows the results of the placebo tests for Shandong, Jiangxi
and Liaoning. The dotted lines show the difference in grain yields between each province
in the donor pool and their synthetic versions. The superimposed solid lines indicate
the differences for case provinces. As the graphs show, the estimated difference for case
provinces during the 2004–2018 period was unusually larger relative to the distribution of
the differences for the donor provinces. These results illustrate the link between the MGPA
policy and grain yields, which further support our baseline findings.

89



Land 2022, 11, 1375

the enactment of the MGPA policy

Shandong

control provinces

-1.0

-0.5

0.0

0.5

1.0

g
a

p
 i
n

 g
ra

in
 y

ie
ld

s
 (

lo
g

)

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year

(a) Shandong

the enactment of the MGPA policy

Jiangxi

control provinces

-1.0

-0.5

0.0

0.5

g
a

p
 i
n

 g
ra

in
 y

ie
ld

s
 (

lo
g

)

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year

(b) Jiangxi

the enactment of the MGPA policy

Liaoning
control provinces

-1.0

-0.5

0.0

0.5

g
a

p
 i
n

 g
ra

in
 y

ie
ld

s
 (

lo
g

)

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year

(c) Liaoning

Figure 5. Synthetic control methods.

Controls for other variables: It is evident that the agricultural activity is closely related
to some topographic and meteorological factors. To test the validity of our baseline result,
several topographic and meteorological variables are incorporated into the regression anal-
ysis. Given the data accessibility at the provincial level, relief degree of land surface (RDLF),
surface water resources (SF), sunshine hours (SH), temperature (TEM) and precipitation
(Pre) are included as control variables. Following Feng et al. [77], RDLS is defined as the
topographic relief above the horizontal surface of average elevation in a certain area, and it
is an important index for evaluating environment conditions9. The dataset uses provinces
as the statistical unit and is based on 1 km × 1 km raster data for extraction which serves as
a macro scale regional assessment [78]. The surface water resources data is collected from
China Water Statistical Yearbook (1998–2018). The data of sunshine hours, temperature and
precipitation are collected from China Meteorological Data Network.

Table 9 reports the result of controlling for the topographic and meteorological factors.
The coefficients for the treatment effects, Di × Tt, are still positively significant and similar
to the baseline results, suggesting that the treatment effect of the MGPA policy is still sig-
nificant even after controlling the topographic and meteorological factors. One interesting
finding is that RDLS is negatively associated with the agricultural output, which shares the
similar conclusion of Krummel and Su [79].
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Table 9. Controls for other variables.

Dep. Var.:
Grain Rice Wheat

(1) (2) (3) (4) (5) (6)

Di × Tt 0.277 *** 0.277 *** 0.496 *** 0.496 *** 0.346 *** 0.346 ***
(0.026) (0.026) (0.055) (0.055) (0.109) (0.109)

Control variables Yes Yes Yes Yes Yes Yes
RDLS −5.258 *** −5.258 *** −13.296 *** −13.296 *** −10.102 *** −10.102 ***

(1.785) (1.785) (3.741) (3.741) (9.205) (9.205)
SF −0.027 ** −0.027 ** −0.010 −0.010 −0.006 −0.006

(0.014) (0.014) (0.017) (0.017) (0.043) (0.043)
SH 0.002 0.002 0.024 0.024 −0.838 −0.838

(0.154) (0.154) (0.205) (0.205) (0.529) (0.529)
TEM 0.114 0.114 −0.123 −0.123 −0.224 −0.224

(0.177) (0.177) (0.235) (0.235) (0.542) (0.542)
Pre 0.139 0.139 −0.188 −0.188 −0.173 −0.173

(0.085) (0.085) (0.153) (0.153) (0.305) (0.305)
Year FE Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes

Observations 571 571 550 550 563 563
R2 0.985 0.985 0.987 0.987 0.962 0.962

Standard errors in parentheses. ** p < 0.05, *** p < 0.01.

Controls for other cultivated land spatial planning schemes: A threat to the identifica-
tion is that the treatment effects would be confounded by some other cultivated land spatial
planning schemes. After studying Chinese government documents, we found two land
spatial planning schemes that may have biased the estimation. One is the cultivated land
balance program (CLB). In 1999, given the magnitude of the cultivated land loss in China,
the National Bureau of Land Management (the predecessor of the MLRC) adopted the CLB
of maintaining the existing amount of cultivated land nationally. CLB focused particularly
on the balance between cultivated land losses by construction occupation and cultivated
land supplement. According to this approach, if a plot of cultivated land was replaced by
construction, the land developer should create another plot of cultivated land [80]. Another
one is the main functional areas planning (MFAP) which incorporated national nature
reserves, world cultural and natural heritage sites, national scenic attractions and forest
parks into the national list of prohibited development areas. Specifically, it divided the
national land space into four main functional areas: optimized development areas, key
development areas, restricted development areas and prohibited development areas. It
was aimed to effectively improve the efficiency of space utilization and realize the goal of
sustainable development, which also incorporated the space utilization of arable lands [81].
Therefore, both land planning programs had the potential to involve the redistribution
of cultivated land and confound the treatment effect of the MGPA policy. To relieve any
confounding effects of the two land planning programs, two dummy variables for the im-
plementation of these land planning programs were included. CLB indicates the enactment
of the cultivated land balance program and MFAP indicates the implementation of the
main functional areas planning.

Table 10 shows the estimation result of controlling for the cultivated land balance
program and the main functional areas planning. The coefficients for the treatment effects,
Di × Tt, are still positively significant, suggesting that the contribution of the MGPA
policy to the increase in grain production is still significant even after controlling the
potential confounding effect of other land spatial planning schemes. For the empirical
comparison between the MGPA policy and other land spatial planning schemes, it may
require systematic evaluation and is waiting for future research.
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Table 10. Controls for other cultivated land spatial planning schemes.

Dep. Var.:
Grain Rice Wheat

(1) (2) (3) (4) (5) (6)

Di × Tt 0.296 *** 0.293 *** 0.415 *** 0.415 *** 0.285 ** 0.288 **
(0.025) (0.025) (0.042) (0.042) (0.105) (0.106)

Control variables Yes Yes Yes Yes Yes Yes
CLB 0.155 *** 0.158 * 0.256 *

(0.042) (0.084) (0.149)
MFAP 0.178 *** 0.093 ** 0.101

(0.033) (0.041) (0.104)
Year FE Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes

Observations 571 571 550 550 563 563
R2 0.982 0.982 0.985 0.985 0.956 0.956

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

4.6. Alternative Causal Channels

The analysis so far has provided evidence that the MGPA policy can significantly
increase local grain, rice and wheat yields. In this section, we will further explore the causal
channels of such positive treatment effects in terms of agricultural planting areas, mecha-
nization level and transfer payments using the causal steps approach built by Heerink et al.
(2006) [82]. The analysis of causal channels here only focuses on grain yields and the results
for rice and wheat can be found in the Appendix A.

Expanding planting areas: Column (1) of Table 11 shows the first-step results, suggesting
that the implement of the MGPA policy significantly increased local grain planting area per
capita. Specifically, the grain planting area increased by 2.7% on average, with the figures for
rice and wheat being 0.92% and 0.48%, respectively (in Appendix A Tables A1 and A2).

Column (3) of Table 11 shows the second-step results. The coefficients of Di × Tt
and planting area per capita are all positively significant at the 1% level indicating that,
combined with the first-step result, the causal channel of expanding planting areas is
statistically valid for grain. The coefficient of Di × Tt fell from 0.271 (column (2)) to
0.166 after controlling for planting area per capita. This consolidates the idea that the
implementation of the MGPA policy raised grain yields by increasing planting areas. This
is also the case for the increase in rice yields with the treatment effect decreasing from 0.48
to 0.39 when the rice planting area is included in regression. However, no causal link was
found between wheat yields and expanding planting areas.

Table 11. Channel 1—expanding planting areas.

Dep. Var.:
Planting Area per Capita Grain Yields Grain Yields

(1) (2) (3)

Di × Tt 0.027 *** 0.271 *** 0.166 ***
(0.003) (0.027) (0.048)

Planting area per capita 3.895 ***
(1.410)

Control Variables Yes Yes Yes
Year FE Yes Yes Yes
Province FE Yes Yes Yes
Province × Year Yes Yes Yes

N 555 555 555
R2 0.940 0.984 0.987

Standard errors in parentheses. *** p < 0.01.

Improving mechanization level: Column (1) of Table 12 shows that the estimated
impact of the MGPA policy on local mechanization, Di × Tt, was significant and positive.
Specifically, the implementation of the MGPA policy improved local mechanization by
21.8%. This can be attributed to the MGPA-preferred agricultural machinery subsidies,
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a sub-project of the MGPA policies. Many studies suggest that agricultural mechanization
in China, and especially in MGPA, has been accelerated by the government’s increase of
the subsidy for agricultural machinery purchases since 2004 [83].

The coefficients in the first two rows of column (3) are significantly positive. The treat-
ment effect, the coefficient of Di × Tt, in regression (3) is slightly smaller than that in
regression (2). These results suggest that the treatment effect of the MGPA policy is partially
caused by boosting mechanization. For rice, such a causal channel exists, however, it is
statistically insignificant for wheat.

Table 12. Channel 2—improving mechanization.

Dep. Var.:
Mechanization Grain Yields Grain Yields

(1) (2) (3)

Di × Tt 0.218 *** 0.271 *** 0.263 ***
(0.040) (0.027) (0.027)

Mechanization 0.037 *
(0.021)

Control Variables Yes Yes Yes
Year FE Yes Yes Yes
Province FE Yes Yes Yes
Province × Year Yes Yes Yes

N 555 555 555
R2 0.783 0.984 0.985

Standard errors in parentheses. * p < 0.1, *** p < 0.01.

Increasing transfer payments: As column (1) in Table 13 shows, the transfer payments
for MGPA have increased by 30.2% since the enactment of the MGPA policy. The second-
stage results in columns (2) and (3) illustrate that the causal channel that the MGPA policy
boosts grain yields by increasing the transfer payments to MGPA farmers. Such direct
financial support can be realized in many ways, including rewarding counties for producing
a large harvest. This MGPA-specific policy not only motivates farmers to plant more crops,
but also reduces the financial pressure on local governments. Heilongjiang, one of the
MGPA, was offered a 21.13 billion yuan reward in total from 2005 to 2013. Meanwhile,
Heilongjiang has doubled its crop yields in under five years.

The causal channel for transfer payments is very obvious for wheat yields. The results,
reported in Appendix A Table A2, show that the treatment effect falls from 0.350 to 0.244
when including the transfer payments into the baseline DD regression. Combined with the
fact that the profit from planting wheat is shrinking, expanding direct transfer payments
for wheat-growing farmers has become one of the few effective ways of increasing their
motivation to plant the crop. However, for rice, there is no robust causal link between rice
yields and increased transfer payments.

Table 13. Channel 3—increasing transfer payments.

Dep. Var.:
Transfer Payment Grain Yields Grain Yields

(1) (2) (3)

Di × Tt 0.302 *** 0.271 *** 0.229 ***
(0.059) (0.027) (0.026)

Transfer payment per capita 0.140 ***
(0.023)

Control Variables Yes Yes Yes
Year FE Yes Yes Yes
Province FE Yes Yes Yes
Province × Year Yes Yes Yes

N 555 555 555
R2 0.942 0.984 0.986

Standard errors in parentheses. *** p < 0.01.
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5. Discussion

5.1. The Policy Recommendations

The global food security challenge is straightforward in the context of the climate
change and widespread of COVID-19 pandemic. As China feeds approximately 18% of
the world population, China’s food security is closely related to the stability of the global
food system. In the long run, China’s stable food production is still faced with great
challenges, e.g., the rapid urbanization and spatial mismatch in agriculture resources.
Looking back to history, China experienced a significant drop in crop production in 2003
which posed a substantial threat to national food security. After this crop production crisis,
13 MGPA regions were established by Ministry of Finance China. However, the empirical
evidence of such land management practice’s effect on crop production remains unclear.
Identification of the mechanism that how the MGPA policy affect crop production will
provide important policy implications for maintaining food security from a perspective of
land management practices.

This paper focuses on exploring the impact of the MGPA policy on food security from
the perspective of crop (grain, rice and wheat) production. The baseline results of this paper
demonstrated that the establishment of the MGPA regions provided favorable conditions
for increasing crop production. This result is consistent with the findings of the research on
the relationship between land management policy and food production, which finds that
the effective land and resource governance system that provides improved access, control,
and rights to land and other natural resources is a necessary condition for achieving stable
crop production [27]. Therefore, the implementation of the MGPA policy is without doubt
a successful land management policy for achieving food security. Given the uncertainty
in future trends of global food production due to a series of challenges, China should
continue to consolidate policy support in the MGPA regions. Meanwhile, the fact that
natural resources, especially land resources, is irreversible [84] reminds policymakers that
they should fundamentally recognize the value of natural resources in the MGPA regions.
Then the future policy preference in agriculture should be given more to the MGPA regions.
Besides, the features of the MGPA policy could provide some policy implications for
maintaining food security by some land management practice. First, as the MGPA policy
is followed by some sub-policies which aim at dealing with different issues in China’s
agriculture at different times, the land management policy should be a dynamic policy
which could be adaptive to new challenges faced by agricultural production. The reason is
that the global food problem concerns the dynamics of economic growth, trade policy and
even climate change [53]. The land management practice must be designed for continual
improvement and adjustment to meet the needs of a changeable environment. Second,
the MGPA policy is not merely for reallocating land resources for food production, but an
integrated policy which is combined with some monetary and technical support policies.
Similarly, such finding is acknowledged by Barry and Augustinus [85], who find that the
comprehensive land policies which utilize sub-policies with different domains could exert
a larger impact. Hence, the design of land management policy should incorporate other
policy packages. In this way, these integrated sub-policies support and complement each
other to realize the policy objective.

The findings in investigating alternative causal channels of the treatment effect found
that the MGPA policy raised crop yields mainly by expanding planting areas, improving the
level of mechanization and increasing transfer payments. It is evident that the irreversible
land resource is the most important factor for agricultural production. However, in the
context of China’s rapid urbanization, the expansion of large cities and regions that have
experienced rapid economic growth and urban development, causing the loss of cultivated
land [86,87]. Hence, the policies designed to protect cultivated land, especially in the MGPA
regions, are urgently needed. To preserve arable land, it is necessary not only to maintain
quantity but also to improve quality, and to keep the double red line of quantity and
quality [88]. It is also necessary to invest in agricultural research as agricultural technology
is considered the main driver in solving China’s shortage of arable land [89]. In terms of
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the second causal channel of improving the level of mechanization, it is consistent with
many empirical research’s finding. For example, Gong finds that over the past 25 years,
China’s agricultural growth has mainly been attributed to the improvement of productivity,
especially the improvement of mechanization level in agriculture [26]. Therefore, the gov-
ernment should enhance the knowledge and skills of adult members, including household
head, to adopt the latest mechanization technologies for land management. Agricultural
policy should also focus on promoting agricultural mechanization technologies that are
economically viable and friendly to females and older people to increase the adoption of
agricultural mechanization. For the last causal channel of increasing transfer payments, it
is also in keeping with the conclusion of Hu et al. that the financial support significantly
improves agricultural TFP growth [90]. With the easy access to financial support, farmers
can use these financial resources to adopt and foster technology innovations, which are well
documented to improve agricultural production [91]. Local governments and banks should
continue to improve the financial support for farmers, particularly the usage of financial
services in rural areas and in agricultural production. In addition, paying attention to
the financial services usage and the availability of credit to individuals with real needs is
effective in promoting agricultural production.

5.2. The Methods’ Applicability and Results’ Reliability

In this paper, the DD model has been employed as a starting point for identifying
the treatment effect of the MGPA policy. The applicability of this method is illustrated
by other research on identifying treatment effects in policy analysis (see Cheng et al. [92];
Tan et al. [93] and Wang [94]). In general, different from the case of randomized exper-
iments that allow for a simple comparison of treatment and control groups, DD is an
evaluation method used in non-experimental settings, which has been widely used in
economics, public policy, health research, management and other fields. The use of the DD
model is detailedly discussed by Fredriksson et al. [95]. Due to the DD model relies on the
parallel trends assumption which requires that in the absence of treatment, the difference
between the treatment and control group is constant over time [48], an ET-DD model was
employed to not only perform a parallel trends but also served as a robustness check for the
baseline DD estimation. Although the DD method is a common strategy for evaluating the
effects of policies or programs that are instituted at a particular point in time, sometimes the
cross-sectional difference may reduce the comparability between the treatment and control
group which eventually leads to a biased estimate. To relieve such concern and provide
a good counterfactual for the treatment group, the PSM method was used to mitigate
selection bias by matching observations of treatment provinces with control provinces.
Such treatment has gained popularity in many empirical studies [96,97].

Although the results in this study could be comparable with the previous findings
arguing that land management policy is one of the major driving forces for agricultural
development [27,98], however, this research has certain drawbacks. First, agricultural
production is a complicated process which is influenced by many factors. The results
will be more unbiased if these factors, especially some climatic and topographic factors,
are comprehensively considered. Second, this paper evaluated the effectiveness of the
MGPA policy merely from the perspective of crop production. However, the indicator
system for the MGPA policy can be improved and the results will be more reliable if future
research is built in other perspectives. Third, this study used provincial data and could only
provide insights into practice at the level of provincial areas and could not be refined at the
municipal level. One possible direction for future work is to use more detailed county data,
even micro-data to study the effectiveness of the MGPA policy.

6. Conclusions

Based on China’s interprovincial panel data from 1998 to 2018, this study used a
difference-in-differences (DD) estimation strategy to analyze the treatment effect of the
MGPA policy by taking the assignment of 13 MGPA as a quasi-experiment. It primarily

95



Land 2022, 11, 1375

draws the following conclusions: (i) the MGPA policy did indeed increase crop production,
specifically, grain, rice and wheat yields, and such positive treatment has been sustainable
over the long term. Across the three kinds of crops, the MGPA policy led to an average rise
of 27.5% for grain yields, 47.8% for rice yields and 35.5% for wheat yields. (ii) After the
implementation of the MGPA policy, there is an immediate and lasting increase in grain
and rice yields, however, for wheat yields, the treatment effect became significant six years
after the policy’s implementation. Such a delayed treatment effect may be attributed to
farmers’ being less motivated to plant wheat as a result of its decreasing profitability in the
first few years after the policy implementation. (iii) The MGPA policy has increased grain
yields mainly by expanding planting areas, improving mechanization levels and increasing
transfer payments. Specifically, due to the establishment of the MGPA regions, the grain
planting area increased by 2.7% on average, with the figures for rice and wheat being
0.92% and 0.48%, respectively. The implementation of the MGPA policy improved local
mechanization by 21.8% and increased the transfer payments by 30.2%. These findings from
the evaluation of the MGPA policy greatly increase understanding of how land management
policies positively affect crop production in such a large developing country. Given the
great similarity to agriculture production in developing countries, these findings may
enlighten policymakers in some less well-developed countries on boosting crop production
and eradicating hunger.
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the enactment of the MGPA policy
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Figure A1. Synthetic control methods without placebo tests.

Table A1. The channels of rice.

Dep. Var.:

Channel 1 Channel 2 Channel 3

Planting
Area per
Capita

Rice Yields Rice Yields Mechanization Rice Yields Rice Yields
Transfer

Payments
Rice Yields Rice Yields

Di × Tt 0.009 *** 0.481 *** 0.391 *** 0.218 *** 0.481 *** 0.475 *** 0.302 *** 0.481 *** 0.483 ***
(0.001) (0.055) (0.064) (0.040) (0.055) (0.055) (0.059) (0.055) (0.061)

Planting area per capita 9.752 ***
(1.953)

Mechanization 0.029 **
(0.043)

Transfer payment −0.006
(0.041)

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 537 535 535 555 535 535 555 535 535
R2 0.942 0.986 0.987 0.783 0.986 0.987 0.942 0.986 0.986

Standard errors in parentheses. ** p < 0.05, *** p < 0.01.

Table A2. The channels of wheat.

Dep. Var.:

Channel 1 Channel 2 Channel 3

Planting
Area per
Capita

Wheat
Yields

Wheat
Yields

Mechanization
Wheat
Yields

Wheat
Yields

Transfer
Payments

Wheat
Yields

Wheat
Yields

Di × Tt 0.005 *** 0.350 *** 0.339 *** 0.218 *** 0.350 *** 0.351 *** 0.302 *** 0.350 *** 0.244 **
(0.001) (0.106) (0.109) (0.040) (0.106) (0.106) (0.059) (0.106) (0.104)

Planting area per capita 2.297
(5.167)

Mechanization −0.003
(0.057)

Transfer payment 0.365 ***
(0.083)

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Province × Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 537 535 535 555 535 535 555 535 535
R2 0.942 0.986 0.987 0.783 0.986 0.987 0.942 0.986 0.986

Standard errors in parentheses. ** p < 0.05, *** p < 0.01.

Notes

1 The geographical dividing line of North-South China is formed by the Qinling Mountains and the Huai River, which are also
environmental features affecting climate regulation, soil conservation, water maintenance and biodiversity conservation.

2 In this paper, the enactment year of MGPA policy is set to 2004 because the official release of MGPA documents was on
3 December 2003 and the MGPA policy started in 2004.

3 Mu is a Chinese unit of land measurement. It is commonly 806.65 square yards (0.165 acre, or 666.5 square meters).
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4 The income is classified into four types: (i) income earned from agriculture, forestry, livestock, and fishery; (ii) income earned
from self-employment in non-farm activities such as industry, transportation, construction, and services, (iii) income earned
from formal or informal wage, including salary, allowance, bonus, dividend, and other kinds of remuneration, and (iv) other
non-productive incomes, such as pensions, transfers, grants/subsidies, rents, and financial income. (ii) and (iii) are normally
considered as non-farm household income.

5 This law was formulated in accordance with the Constitution for the purpose of stabilizing and improving the two-level
management system based on household contract management, giving the people long-term and guaranteed land use rights,
and protecting the legitimate rights and interests of the parties to the rural land contract.

6 For a long time, China’s industrialization and modernization have benefited from agricultural tax. However, agricultural tax was
cancelled due to the decline of the relative importance of agricultural tax in the whole fiscal revenue.

7 From 2008 to 2016, the profit from planting wheat decreased from 164.51 yuan per mu to 21.29 yuan per mu. This fall was mainly
a result of the slow upward trend of wheat price relative to the rapid rise in planting costs. Meanwhile, the profit from planting
rice is about 13 times higher than that of wheat.

8 The predictors of grain yields are rural household size, sex ratio, educational attainment, agricultural land per capita, and grain
yields in 1998, 2000 and 2002.

9 RDLS is defined as follows: RLDS = ALT/100 + {((Max(H)− Min(H))× (1 − P(A)/A))}/500, where RDLS is relief degrees
of land surface; ALT is the average elevation in a grid cell (m); Max(H) and Min(H) represent the highest and lowest altitudes in
this grid cell respectively (m); P(A) is the area of flat land (km2); and A is the total area of the extraction unit.
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Abstract: With economic growth, people’s living standards improve, and more cultivated land is
needed to meet food demand. Meanwhile, the economic growth and urban expansion in China since
1978 has led to the loss of considerable amounts of cultivated land. Thus, the contradiction between
“economic growth” and “food security” becomes increasingly prominent. Studying the impact of
economic growth on cultivated land population support pressure is the basis for easing this problem.
This study uses the cultivated land pressure index to represent cultivated land population support
pressure, and explores the relationship between economic growth and cultivated land pressure
based on the panel data of 31 provinces in China from 2000 to 2017. The feasibility generalized
least squares estimation and the fixed effect model based on Driscoll and Kraay standard errors are
used. The results show that: (1) the impact of economic growth on cultivated land pressure is an
N-shaped or U-shaped curve; and (2) there are regional differences in the impact of economic growth
on cultivated land pressure. The cultivated land pressure in economically developed regions and
main grain production regions responds slowly to the impact of economic growth. Therefore, some
policy recommendations are put forward, such as paying attention to cultivated land protection and
controlling disorderly urban expansion.

Keywords: economic growth; cultivated land pressure; food security; Kuznets curve

1. Introduction

Food is the foundation of human survival and development, and food security attracts
worldwide attention [1]. Food production is inseparable from cultivated land, and sufficient
cultivated land is an important foundation for ensuring food security [2,3]. However, rapid
economic growth and urbanization consume a large amount of cultivated land, which leads
to a decrease in cultivated land and a threat to food security [4,5]. As a country with a
large population and little cultivated land, China’s food security has attracted considerable
attention. In 1995, Lester R. Brown published a report entitled “Who Will Feed China?”,
which alerted people to pay attention to the food security and cultivated land pressure [6].
Since then, scholars have increased their research in related fields [7–9].

At the end of 2017, China’s cultivated land area was 134.88 million hm2, ranking third
in the world [10]. However, China is the country with the largest population in the world.
According to the statistics of FAO, China successfully feeds 19.25% of the global population
with only 8.61% of the global cultivated land. In 2017, the global per capita cultivated land
area was 0.18 hm2, while this index was only 0.096 hm2 in China [3]. China’s cultivated land
is under great pressure to support its population. In addition, over the past 40 years, China
experienced rapid urbanization and economic growth, which exacerbated food insecurity
in China. From 1978 to 2017, the GDP increased from 367.87 billion yuan (USD 21.85 billion
at the exchange rate of 1978) to 83,203.59 billion yuan (USD 12,323.17 billion at the exchange
rate of 2017), and the urbanization rate increased from 17.92% to 60.24% in China. A large
number of studies show that urban expansion would encroach on cultivated land [11,12].
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This phenomenon is more pronounced in developing countries, such as China, Vietnam,
and India [13–15]. Statistics from the Ministry of Housing and Urban–Rural Development
in the People’s Republic of China show that 13,258.14 km2 of cultivated land was occupied
by urban construction in China from 2000 to 2017.

In recent years, global food insecurity increases significantly under the influence
of the COVID-19 pandemic, the Russia–Ukraine conflict, weather extremes, and water
scarcity [16–19]. The latest edition of the “State of Food Security and Nutrition in the World”
report notes that almost 924 million people faced severe levels of food insecurity in 2021,
207 million more than in 2019 [20]. Under the unstable international situation, trade is
restricted, and nations relying on imports are vulnerable to food supply shocks [17]. The
statistics of FAO show that China is one of the top ten cereal importers in the world, and
its cereal imports in 2020 were about 20% lower than in 2019. The Chinese government
begins to advocate using its own cultivated land to feed its population. Xi Jinping, the
president of the People’s Republic of China, says that “The rice bowls of Chinese people
must always be held in their own hands, and the rice bowls are mainly filled with Chinese
grains”. It is particularly important to coordinate the relationship between economic
growth and cultivated land pressure in China. However, the grain supply capacity in
different regions of China is diverse. Regions with economic development and high grain
production have stronger grain supply capacity and greater grain supply flexibility. The
pressure of cultivated land population support may be less affected by economic growth.

Most studies on the relationship between economic growth and cultivated land pres-
sure are based on the Kuznets curve. A Kuznets curve means that the relationship between
two variables is an “inverted U”, which refers to the way that as one variable increases,
the other variable shows a trend of rising first and then falling. In 1955, Simon Kuznets
put forward the hypothesis that the relationship between economic growth and wealth
distribution takes an inverted U-shaped curve at the Annual Conference of American
Economics [21]. In 1991, Grossman introduced the Kuznets curve into the study of the
relationship between economic growth and environmental pollution, and put forward the
environmental Kuznets curve (EKC) [22]. Since then, scholars have carried out considerable
verification and generalization of the traditional inverted U-shaped EKC, and have pro-
posed various shapes of EKC, such as U-shaped, N-shaped, and inverted-N-shaped [23–29].
The research applications are extended to deforestation, ecological footprint, land use, and
other aspects [30–36]. Cultivated land has both production and ecological functions, and
it is a valuable natural resource. Converting too much cultivated land into construction
land would damage the ecological environment. Some scholars believe that the impact of
economic growth on cultivated land pressure first rises and then falls, which is similar to
the environmental Kuznets curve (EKC). Qu is the first to propose the hypothesis that there
is an “inverted U” Kuznets curve between economic growth and farmland conversion [37].
Many studies verify the “inverted U” and “inverted N” Kuznets curves between economic
growth and cultivated land conversion based on the provincial panel data in China [37–40].
However, some scholars believe that the existence of a cultivated land Kuznets curve is
limited by time and space, and it is not universal [41]. There are monotonically increasing,
monotonically decreasing, U-shaped, N-shaped, and inverted N-shaped curves between
economic growth and cultivated land conversion [42].

Existing studies only focus on the impact of economic growth on cultivated land
loss [38,40,43], without further considering the food security risks and population support
pressure caused by cultivated land loss. Based on this, the cultivated land pressure index is
used to represent the pressure of cultivated land population support [44]. Then, the impact
of economic growth on cultivated land pressure can be studied. It not only enriches the
existing research in theory, but also provides new ideas for formulating cultivated land
protection strategies and alleviating cultivated land pressure.

Based on EKC hypothesis and the cultivated land pressure index model, this paper
studies the impact of economic growth on cultivated land pressure. The main concerns
are as follows: (1) whether economic growth increases cultivated land pressure; and
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(2) whether there are regional differences in the impact of economic growth on cultivated
land pressure. Compared with the existing research, this paper has two innovations. Firstly,
the influence path of economic growth on cultivated land pressure is analyzed theoretically.
Secondly, the cultivated land pressure index is used to reflect the pressure of cultivated
land food security and population support in the empirical study. This research provides a
theoretical basis and practical direction for realizing the “double guarantee” of economic
growth and food security.

2. Materials and Methods

2.1. Theoretical Analysis

Research shows that the possible causes of an environmental Kuznets curve (EKC)
include the equity of income distribution, international trade, structural changes, technolog-
ical progress, government governance, and consumer preferences [45]. Cultivated land is
an important resource in the environment. Economic structural changes could alter the area
of cultivated land occupied by construction. Technological progress could improve land
use efficiency. Government policy improvement could restrain the loss of cultivated land,
and changes in residents’ preferences could increase attention on the ecological function of
cultivated land. Some studies have confirmed the influence of these factors [37,46]. There-
fore, this paper analyzed the influence of economic growth on cultivated land pressure
from the above four aspects.

(1) Economic structural changes. In the era of the agricultural economy, cultivated
land was an important means of production. Cultivated land was effectively protected, and
cultivated land pressure was small [47]. In the early stage of the industrial economy, land
became a key factor to promote economic growth [48]. Urbanization and industrialization
transformed large amounts of high-quality cultivated land into construction land [49].
Cultivated land pressure increased rapidly [50]. In the later stage of the industrial economy,
land was gradually replaced by capital and labor [51]. The demand for construction land
decreased, and cultivated land pressure began to decrease. China entered the later stage of
industrialization in 2010 [52], and the area of land requisitioned for construction decreased
after reaching the maximum value of 2161.48 km2 in 2012.

(2) Technological progress. In the early stage of economic development, the techno-
logical level was low. The proportion of land elements in industrial production was high,
and the construction occupied a large amount of cultivated land. Moreover, the level of
agricultural technology was also low, and the grain yield per unit area was low. Thus,
cultivated land pressure was great. With the advancement of technology, the input of land
elements required for economic growth decreases [53], and the grain yield per unit area
and land reclamation technology improves [54]. Cultivated land pressure gradually eases.
From 2004 to 2017, China’s industrial land use efficiency increased from 0.457 to 0.599 [55].
During the same period, the grain yield per unit area of cultivated land in China increased
from 4266.94 kg/hm2 to 5607.36 kg/hm2.

(3) Government policy improvement. The focuses of government policies are diverse
in different stages of economic and social development. In the beginning stage of reform
and opening up, the Chinese government paid attention to economic growth rather than
cultivated land protection. With the increasingly serious environmental problems brought
by development, the government pays more attention to the ecological environment and
sustainable development [56]. In 1998, the “Regulations on the Protection of Basic Farm-
land” and “Balance between the Occupation and Supplement of Arable Land” were issued,
and cultivated land protection measures were gradually tightened [57]. Since then, the
Chinese government has issued many policies to continuously strengthen the protection of
cultivated land, which effectively control the population support pressure caused by the
reduction of cultivated land [4].

(4) Changes in public environmental preferences. The EKC and Inglehart’s subjec-
tive values hypothesis suggest that as the economy grows, people’s priorities shift from
economics and materialism to quality of life and subjective wellbeing [58]. Cultivated
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land has various ecological functions, such as improving the environment and protecting
biodiversity [59,60]. With economic development and income growth, the cultivated land
protection gradually attracts public attention.

Based on the analysis, it can be found that the impacts of factors, such as economic
structure changes, technological progress, government policy improvement, and public
preference changes, on cultivated land pressure are sometimes positive and sometimes
negative. Therefore, the relationship between economic growth and cultivated land pres-
sure might be similar to the Kuznets curve. In addition, the territory of China is very vast.
There are great differences in the economic development levels and cultivated land-reserve
resources in distinct regions. The economically developed regions are mainly distributed
on the eastern coast. These regions have limited grain output and are the main grain
sales regions. The economically underdeveloped regions are mainly distributed in the
central and western regions. The central regions have a flat terrain and are the main grain
producing region. The land in the western regions is poor, and most provinces are grain
production and sales balance regions. The impact of economic growth on cultivated land
pressure may be different in the regions with distinct levels of economic development and
grain production and sales.

2.2. Regional Division

Based on theoretical analysis, there are differences in the influence of economic growth
on cultivated land pressure in the regions with different economic development levels. In
addition, China has a vast territory, and the grain production capacity of different provinces
is diverse. The cultivated land pressure in main grain production regions might be less
affected by economic growth. Therefore, when analyzing the regional differences in the
impact of economic growth on cultivated land pressure, the 31 provinces were divided
according to the degree of economic development and the situation of grain production
and sales. Referring to Tang (2021) [61], the provinces were divided into developed regions
and undeveloped regions based on the median of the average per capita GDP from 2000
to 2017. According to the “National Food Security and Long-Term Planning Framework
(2008-2020)” proposed by the China National Development and Reform Commission, the
provinces were divided into three categories, including the main grain sales regions, the
grain production and sales balance regions, and the main grain production regions. The
spatial distributions of each region are shown in Figure 1.

Figure 1. The spatial distributions of regions with different levels of economic development and
grain production and sales.
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2.3. Models and Variables
2.3.1. Model Settings

Theoretical analysis shows that the impact of economic growth on cultivated land
pressure might be positive first and then negative. This is in line with the characteristics
of the environmental Kuznets curve (EKC) model, in that the influence direction of the
independent variable changes after reaching a certain value. Most studies applying Kuznets
curve model employ reduced-form models, in which the explained variable is the quadratic
or cubic function of the explanatory variable [62–65]. Simplified EKC models can clearly
specify the form of variable relationships and provide empirical explanations for the
solution of research problems [66]. However, the model also has limitations. Firstly, the
model only reflects the correlation rather than the causality, and there may be a reverse
causality problem in the actual situation [67]. Secondly, the symmetry of quadratic function
makes the slope of the uphill and downhill parts of the curve the same, which hardly exists
in reality. In addition, the shape of the curve and the number of turning points are affected
by the model form. Therefore, the quadratic and cubic function models were established to
reduce the fitting error caused by the function form. Since the data of 31 specific provinces
in China were used, the following fixed effect model was established:

CLPit = α + β1PGDPit + β2PGDPit
2 + βiXit + δi + λt + μit (1)

CLPit = α + β1PGDPit + β2PGDPit
2 + β3PGDPit

3 + βiXit + δi + λt + μit (2)

where i and t represent the provinces and periods under consideration; CLPit is the cul-
tivated land pressure index; PGDPit is the per capita GDP; α is a constant; β1, β2, β3, βi
are the coefficients to be estimated; Xit are control variables, including population (POPit),
urbanization rate (URit), proportion of secondary industry (SIit), proportion of tertiary
industry (TIit), effective irrigation rate (EIit), fertilizer application (FAit), pesticide input
(PIit), and agricultural machinery power (MPit). POPit and URit, respectively, reflect the
impacts of population growth and urban expansion on cultivated land pressure. SIit and
TIit reflect the impacts of industrial structure change on cultivated land pressure. EIit,
FAit, PIit and MPit reflect the impacts of agricultural cultivation level and technology on
cultivated land pressure. δi and λt, respectively, denote the region and time effects. μit is a
random error term.

According to different situations of estimation coefficients β1 − β3, the different shapes
and possible turning points of the Kuznets curve are shown in Table 1.

Table 1. Possible results of the cultivated land pressure Kuznets curve model.

Function Type β1 β2 β3 Curve Shape Possible Turning Points

Cubic function — — >0 N or monotonically
increasing −β2 ±

√
β2

2−3β1 β3
3β3— — <0 Inverted N or

monotonically decreasing
Quadratic
function

— >0 =0 U − β1
2β2— <0 =0 Inverted U

Linear function >0 =0 =0 Monotonically increasing —
<0 =0 =0 Monotonically decreasing —

2.3.2. Variables Selection

(1) Explained variable. Cultivated land pressure index was used to characterize the
cultivated land pressure, which is proposed by Cai Yunlong (2002) [44]. It takes into
account the food demand of the population, the grain production capacity, and the area of
cultivated land, and it can comprehensively reflect the pressure of cultivated land to ensure
population support in a certain region. The cultivated land pressure index is the ratio of
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the minimum per capita cultivated land area to the actual per capita cultivated land area,
and the basic calculation formula of it is as follows:

Ki =
Smini

Si
=

βi × Gri
pi ·qi ·ki

Si
(3)

where Ki is the cultivated land pressure index. Smini is the minimum per capita cultivated
land area, which refers to the area of cultivated land required to ensure the normal food
consumption of each person under a certain level of grain self-sufficiency and cultivated
land production capacity in a certain region (Smini = βi × Gri/(pi · qi · ki)). Si is the actual
per capita cultivated land area, which is the ratio of the total cultivated land area to the total
population in a region. βi is the grain self-sufficiency rate, which refers to the proportion of
grain production to grain consumption in the region. Gri is the per capita grain demand,
usually calculated based on calories consumed or statistics [68,69]. pi is the grain yield per
unit area. qi is the proportion of grain crop sown area in the total crop sown area. ki is the
multiple cropping index, which represents the ratio of crop sown area to cultivated land
area within a year. When Ki < 1, the cultivated land grain production is greater than the
demand, and there is no cultivated land pressure. When Ki = 1, the cultivated land grain
production is equal to the demand, and cultivated land pressure is at a critical value. When
Ki > 1, the cultivated land grain production is less than the demand, and there is cultivated
land pressure.

Due to the different levels of economic development, the relationship of grain pro-
duction and sales among provinces is different. That is to say, there are differences in the
economic acquisition capacity of grain in distinct provinces. Referring to Zhu (2016) [70],
the first revision of the cultivated land pressure index was carried out by using the economic
acquisition capacity of grain. In addition, there are differences in the quality of cultivated
land in distinct provinces. Referring to Luo (2016) [71], the second revision of the cultivated
land pressure index was carried out by using the standard coefficient of cultivated land
productivity. The calculation formula of the revised cultivated land pressure index is
as follows:

Ki
′ = Ki × 1

θi
× 1

σi
=

βi × Gri
pi ·qi ·ki

Si
× X

Xi
× p · k

pi · ki
(4)

where Ki
′ is the revised cultivated land pressure index. θi is the grain economic acquisition

capacity of province i, which is expressed by the ratio of the per capita GDP of province i to
that of the nation (θi = Xi/X). X is the national average per capita GDP. Xi is the per capita
GDP of province i. σi is the standard coefficient of cultivated land productivity, which is
expressed by the ratio of the cultivated land production capacity of province i to that of the
nation (σi = (pi · ki)/(p · k)). p is the national grain yield per unit area. k is the national
multiple cropping index. The meanings of the other indicators are the same as those in
formula (3).

(2) Explanatory variable. The explanatory variable of this paper is economic growth.
Existing studies mostly use indicators such as GDP, per capita GDP, and GDP growth
rate to characterize economic growth [72–75]. Among them, per capita GDP can better
reflect the average level of regional economic growth. In recent years, China’s economy has
developed rapidly, and both population and GDP has grown. Thus, per capita GDP was
used to represent economic growth.

(3) Control variables. In the process of economic growth, other factors can affect the
pressure of cultivated land population support. Theoretical analysis shows that industrial
structure changes and agricultural technology progress would affect cultivated land pres-
sure. Some studies have confirmed the impact of population growth and urbanization on
cultivated land [76–78]. In recent years, China’s major industries transforms from the sec-
ondary industry to the tertiary industry [79]. Firstly, the development of non-agricultural
industries may occupy cultivated land, which results in the reduction of cultivated land.
Secondly, it may promote the labor force to leave agricultural production and reduce the ef-
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ficiency of grain production [80]. In addition, agricultural production technology is rapidly
improved, agricultural irrigation and mechanization are popularized, and the inputs of
fertilizer and pesticide are increased. The above factors have a significant impact on ensur-
ing the quantity and productivity of cultivated land [76]. Therefore, when analyzing the
factors affecting cultivated land pressure, eight control variables were selected, including
population, urbanization rate, proportion of secondary industry, proportion of tertiary
industry, irrigation rate, fertilizer application, pesticide input, and agricultural machinery
power. The explanation of the variables is shown in Table 2.

Table 2. Explanation of the variables.

Variable Types Variable Names Variable Connotation Unit

Explained
variable Cultivated land pressure (CLP) Cultivated land pressure

index —

Explanatory
variable Economic growth (PGDP) Per capita GDP (at the price

in 2000)
104

yuan/person

Control
variables

Population (POP) Total population 108 persons

Urban expansion (UR) Urban population/total
population %

Proportion of secondary industry (SI) Added value of secondary
industry/GDP %

Proportion of tertiary industry (TI) Added value of tertiary
industry/GDP %

Effective irrigation rate (EI) Effective irrigation
area/cultivated land area %

Fertilizer application (FA)
Fertilizer

application/cultivated land
area

104 t/hm2

Pesticide input (PI) Pesticide input/cultivated
land area 104 t/hm2

Agricultural machinery power (MP) Agricultural machinery
power/cultivated land area KW/hm2

2.4. Data Sources

Since China conducted the third national land survey in 2017, the data of cultivated
land area has not been continuously updated. Therefore, the panel data of 31 provinces
(excluding Hong Kong, Macao, and Taiwan) in China from 2000 to 2017 were used.

The level of economic development is expressed by per capita GDP (PGDP). The
consumer price index (CPI) was used to convert the per capita GDP into a comparable price
in 2000. The data on the grain yield per unit area, grain crop sown area, total crop sown
area, cultivated land area, population, urbanization rate, proportion of secondary industry,
proportion of tertiary industry, irrigation rate, fertilizer application, pesticide input, agricul-
tural machinery power, GDP, and CPI were obtained from the “China Statistical Yearbook
(2001–2018)” and the “Provincial Statistical Yearbook”. Referring to the existing research,
the grain self-sufficiency rate was set as 1 [81]; the per capita grain demand was set as
350 kilos per person in 1981, with an increase of 4 kg per year after 1981 and a decrease
of 4 kg per year before 1981 [70]. The descriptive statistics for the data are illustrated in
Table 3.

Table 3. Descriptive statistics of the variables.

Variable
Names

Mean Std. Dev. Min. Max. Obs. Skewness Kurtosis

CLP 2.2487 2.1445 0.3447 21.3217 558 2.672 16.051
PGDP 2.2412 1.6428 0.2742 9.9292 558 1.629 6.118
POP 0.4273 0.2734 0.0258 1.2141 558 0.608 2.606
UR 48.8493 15.9550 19.4700 89.6000 558 0.579 3.057
SI 42.9756 8.2835 16.8972 61.9603 558 −0.719 3.508
TI 44.5186 8.6279 29.6445 82.6948 558 1.769 7.639
EI 50.6619 22.5083 13.6963 115.2961 558 0.411 2.118
FA 0.0431 0.0215 0.0068 0.1001 558 0.391 2.485
PI 0.0015 0.0013 0.0001 0.0065 558 1.167 4.029

MP 0.6870 0.3773 0.1297 1.7545 558 0.725 2.547
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The correlation matrix of the variables and the variance expansion factor (VIF) of the
multicollinearity tests are shown in Table 4.

Table 4. The correlation matrix of the variables and the results of the multicollinearity tests.

Variables CLP PGDP POP UR SI TI EI FA PI MP VIF

CLP 1.000 — — — — — — — — — —
PGDP 0.042 1.000 — — — — — — — — 5.66
POP −0.419 *** 0.025 1.000 — — — — — — — 2.12
UR −0.113 *** 0.849 *** −0.079 * 1.000 — — — — — — 4.60
SI −0.400 *** −0.091 ** 0.446 *** 0.026 1.000 — — — — — 4.38
TI 0.399 *** 0.629 *** −0.395 *** 0.530 *** −0.699 *** 1.000 — — — — 7.21
EI −0.325 *** 0.541 *** 0.229 *** 0.446 *** 0.092 ** 0.275 *** 1.000 — — — 2.29
FA −0.369 *** 0.430 *** 0.543 *** 0.353 *** 0.215 *** 0.018 0.612 *** 1.000 — — 4.27
PI −0.214 *** 0.332 *** 0.320 *** 0.297 *** 0.063 0.047 0.472 *** 0.764 *** 1.000 — 2.61

MP −0.132 *** 0.404 *** 0.352 *** 0.294 *** 0.176 *** 0.176 *** 0.620 *** 0.533 *** 0.364 *** 1.000 1.99
Mean VIF — — — — — — — — — — 3.90

Note: *, **, and *** indicate the significance of 10%, 5% and 1%, respectively.

3. Empirical Results

3.1. Unit Root Tests

The unit root test can prevent spurious regression by testing the stationarity of panel
data [82]. Depending on the null hypothesis, unit root tests can be divided into two
categories. The first type assumes that each section has the same unit root, including the
LLC (Levin–Lin–Chu) test and the Breitung test. The second type assumes that each section
has a different unit root, including the IPS (Im–Pesaran–Shin) test, the Fisher-ADF test and
the Fisher-PP test. In this paper, four methods are used to test the unit root. The results of
the unit root test show that the variables are first-order stable (Table 5), and it is valid to
perform regression analysis.

Table 5. Results of unit root tests.

Variables LLC Test IPS Test Fisher−ADF Test Fisher−PP Test

d(CLP) −21.306 *** −18.720 *** 427.301 *** 851.230 ***
d(PGDP) −5.490 *** −3.635 *** 101.489 *** 83.893 ***
d(POP) −7.136 *** −6.107 *** 149.611 *** 146.907 ***
d(UR) −10.539 *** −9.226 *** 208.395 *** 321.182 ***
d(SI) −8.111 *** −5.680 *** 139.542 *** 202.138 ***
d(TI) −10.461 *** −7.930 *** 173.880 *** 164.494 ***
d(EI) −19.443 *** −14.645 *** 300.356 *** 446.513 ***
d(FA) −10.566 *** −8.908 *** 193.441 *** 224.793 ***
d(PI) −9.748 *** −9.964 *** 227.856 *** 263.869 ***

d(MP) −14.500 *** −11.045 *** 229.555 *** 245.916 ***
Note: *** indicates the significance of 1%.

3.2. Basic Estimation Results

In order to ensure the reliability of the regression results, the Hausman test and F
statistic are used for model selection. According to the test results, the fixed-effects model
is considered to be superior to the random-effects or mixed model. The heteroscedasticity,
cross-sectional dependency. and serial correlation tests are necessary for the panel data [83].
The modified Wald test, Frees test, and Wooldridge test are used to check for the above prob-
lems, respectively [84–86]. The test results show that the standard fixed-effects model has
heteroscedasticity and correlation problems, which may cause estimation inefficiency [87].
Therefore, the estimation method is changed in the robustness test. The basic estimation
results are shown in Table 6.

According to the estimation results of the cubic model, the coefficients of PGDP3

are significantly positive at the level of 1%. This shows that with economic growth, the
cultivated land pressure increases firstly, then decreases, and increases again finally. There
is an N-shaped cultivated land pressure Kuznets curve. According to the estimation results
of the quadratic model, the coefficients of PGDP2 are significantly positive at the level of
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1%. This shows that with economic growth, the cultivated land pressure first decreases and
then increases. When the per capita GDP is about 40,000 yuan/person, the pressure on
cultivated land begins to rebound. From 2000 to 2017, the average per capita GDP in each
province increased from 8430 yuan/person to 41,270 yuan/person. Hence, the rebound
point of cultivated land pressure is approaching.

Table 6. The results of basic estimation.

Variables Fe_c Fe_cc Fe_q Fe_qc

PGDP3 0.037 *** (9.663) 0.033 *** (6.417) — —
PGDP2 −0.337 *** (−5.923) −0.271 *** (−3.287) 0.193 *** (11.548) 0.246 *** (13.637)
PGDP 0.856 *** (3.215) 0.448 (0.962) −1.157 *** (−6.427) −2.172 *** (−9.327)
POP 10.968 *** (6.001) 10.632 *** (5.727) 4.102 ** (2.243) 6.441 *** (3.566)
UR −0.008 (−0.690) −0.014 (−1.104) 0.010 (0.797) −0.011 (−0.876)
SI 0.085 *** (4.428) 0.097 *** (4.820) 0.137 *** (6.816) 0.125 *** (6.165)
TI 0.081 *** (3.788) 0.067 *** (2.848) 0.124 *** (5.453) 0.062 ** (2.534)
EI −3.098 *** (−4.400) −3.206 *** (−4.376) −3.787 *** (−4.980) −4.003 *** (−5.334)
FA −27.000 *** (−2.991) −23.124 ** (−2.469) −8.406 (−0.878) −13.375 (−1.392)
PI 453.960 *** (4.400) 479.197 *** (4.453) 433.659 *** (3.872) 452.687 *** (4.050)

MP −1.038 *** (−3.205) −1.038 *** (−3.079) −0.637 * (−1.828) −0.816 ** (−2.341)
Cons −7.228 *** (−4.163) −6.451 *** (−3.350) −8.212 *** (−4.364) −4.110 ** (−2.091)

Time−fixed effect No Yes No Yes
Region−fixed effect Yes Yes Yes Yes

R2 0.604 0.612 0.532 0.580
Modified Wald test 46,481.77 *** 24,021.74 *** 89,123.87 *** 28,739.68 ***

Frees test 5.052 *** (0.144) 4.723 *** (0.144) 4.836 *** (0.144) 4.642 *** (0.144)
Wooldridge test 14.076 *** 13.942 *** 14.515 *** 12.895 ***

F test 71.44 *** 28.12 *** 58.75 *** 25.58 ***
F statistic 43.03 *** 40.47 *** 34.93 *** 36.23 ***

Hausman test 118.26 *** 115.44 *** 46.22 *** 48.40 ***
Curve shape N N U U

Maximum extreme point 1.813 1.019 — —
Minimum extreme point 4.239 4.386 3.005 4.416

Obs. 558 558 558 558

Note: (1) The data outside the brackets are coefficients, and the data inside the brackets are t values; the critical
value of 10% significance is shown in the brackets of the Frees test. (2) Fe_c, Fe_q are the estimation results after
controlling the region effect; Fe_cc, Fe_qc are the estimation results after controlling the region effect and the time
effect. (3) *, **, and *** indicate the significance of 10%, 5%, and 1%, respectively.

The effects of control variables on cultivated land pressure are basically identical in all
models. The impact of population on cultivated land pressure is significantly positive at
the level of 5%. This is consistent with the research results of other scholars [88]. It shows
that population growth increases the demand for food and the space for construction land,
which increases the cultivated land pressure. The impact of urbanization is negative, but not
significant. This may be due to the offsetting effect between cultivated land abandonment
and the increase in the ratio of grain crops caused by the migration of rural population to
cities [76]. On the one hand, urban expansion occupies a large amount of cultivated land,
which results in the reduction of cultivated land [11,89]. On the other hand, population
urbanization leads to the transfer of labor from agricultural industries to non-agricultural
industries, which may force the increase of agricultural operation scale and mechanization,
and the proportion of grain crops may increase [90]. The coefficients of the proportion of
the secondary industry and the proportion of the tertiary industry are significantly positive
at the level of 5%. This shows that the increases of secondary and tertiary industries
exacerbate the cultivated land pressure. The coefficients of effective irrigation rate, fertilizer
application, and agricultural machinery power are significantly negative. This shows that
the improvement of agricultural production level and technology can reduce the cultivated
land pressure. However, pesticide input has a positive impact on cultivated land pressure.
This may be because China’s pesticide input has exceeded the economic optimal level [91].
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The increase of pesticide input would lead to many adverse effects and increase the pressure
on cultivated land [92].

3.3. Robustness Analysis
3.3.1. Replacement of Explanatory Variable

The per capita disposable income can reflect the wealth level of residents, and can
be used to measure economic growth [93]. Therefore, the per capita disposable income
(PDI) of residents is selected as the alternative variable of per capita GDP (PGDP) for the
robustness test. The estimation results are shown in Table 7.

Table 7. Estimation results of the replacement explanatory variable.

Variables Fe_c Fe_cc Fe_q Fe_qc

PDI3 0.370 *** (6.529) 0.283 *** (3.670) — —
PDI2 −1.354 *** (−3.740) −0.659 (−1.219) 0.945 *** (10.843) 1.289 *** (12.302)
PDI 1.517 ** (2.198) −0.640 (−0.467) −2.177 *** (−5.303) −5.085 *** (−7.819)
POP 9.943 *** (5.132) 9.732 *** (4.929) 3.856 ** (2.184) 6.533 *** (3.642)
UR −0.007 (−0.563) −0.012 (−0.911) 0.008 (0.665) −0.004 (−0.323)
SI 0.092 *** (4.802) 0.092 *** (4.499) 0.119 *** (6.112) 0.094 *** (4.538)
TI 0.085 *** (3.856) 0.064 *** (2.588) 0.098 *** (4.255) 0.055 ** (2.233)
EI −3.359 *** (−4.591) −3.801 *** (−4.898) −3.811 *** (−5.034) −4.470 *** (−5.853)
FA −28.534 *** (−3.010) −26.084 *** (−2.673) −11.393 (−1.203) −18.525 * (−1.918)
PI 526.875 *** (5.023) 562.301 *** (5.186) 505.879 *** (4.642) 556.790 *** (5.073)

MP −1.235 *** (−3.672) −1.246 *** (−3.549) −0.803 ** (−2.341) −1.038 *** (−2.958)
Cons −7.040 *** (−4.022) −4.912 ** (−2.379) −6.265 *** (−3.451) −2.242 (−1.146)

Time−fixed effect No Yes No Yes
Region−fixed effect Yes Yes Yes Yes

R2 0.574 0.584 0.539 0.573
Modified Wald test 36,987.34 *** 20,376.38 *** 48,921.38 *** 22,332.70 ***

Frees test 4.225 *** (0.144) 4.378 *** (0.144) 4.362 *** (0.144) 4.457 *** (0.144)
Wooldridge test 10.060 *** 9.986 *** 13.568 *** 12.517 ***

F test 63.22 *** 25.05 *** 60.42 *** 24.86 ***
F statistic 37.11 *** 40.91 *** 36.60 *** 37.84 ***

Hausman test 45.87 *** 99.69 *** 48.75 *** 79.93 ***
Curve shape N N U U

Maximum extreme point 0.872 −0.388 — —
Minimum extreme point 1.568 1.941 1.152 1.972

Obs. 558 558 558 558

Note: (1) The data outside the brackets are coefficients, and the data inside the brackets are t values; the critical
value of 10% significance is shown in the brackets of the Frees test. (2) Fe_c, Fe_q are the estimation results after
controlling the region effect; Fe_cc, Fe_qc are the estimation results after controlling the region effect and the time
effect. (3) *, **, and *** indicate the significance of 10%, 5%, and 1%, respectively.

After replacing the explanatory variable, the estimation results are consistent with
basic estimation. The cubic model shows that as per capita disposable income increases, the
cultivated land pressure increases firstly, then decreases, and increases again finally. The
estimation results of the squared model show that there is a U-shaped curve relationship
between per capita disposable income growth and cultivated land pressure. When the
PDI is between 15,000–20,000 yuan/person, the cultivated land pressure starts to rebound.
From 2000 to 2017, the average per capita disposable income in each province increased
from 4010 yuan/person to 17,620 yuan/person. The rebound points of cultivated land
pressure are close to basic estimations. The influence direction and significance of the
control variables are basically consistent with basic estimation. This shows that the impact
of economic growth on cultivated land pressure is stable.

3.3.2. Change of Estimation Methods

With the existence of heteroscedasticity, cross-sectional dependence, and autocorre-
lation, the feasibility generalized least squares (FGLS) technique and Driscoll and Kraay
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standard error are employed [61,94]. Driscoll and Kraay standard errors are produced
through weighted heteroskedasticity autocorrelation (HAC), which can effectively address
the complications caused by heteroscedasticity, cross-sectional dependence, and autocor-
relation [87]. The estimation results after changing the estimation methods are shown in
Table 8.

Table 8. Estimation results after changing the estimation methods.

Variables FGLS_c FGLS_q Fe_ccd Fe_qcd

PGDP3 0.012 ** (2.491) — 0.033 *** (4.473) —
PGDP2 −0.011 (−0.171) 0.172 *** (9.834) −0.271 ** (−2.567) 0.246 *** (6.360)
PGDP −0.467 (−1.553) −1.448 *** (−8.478) 0.448 (0.888) −2.172 *** (−5.755)
POP 5.594 *** (6.033) 5.004 *** (4.955) 10.632 *** (9.856) 6.441 *** (3.356)
UR −0.008 (−1.150) 0.004 (0.488) −0.014 ** (−2.339) −0.011 *** (−2.755)
SI 0.044 *** (3.672) 0.059 *** (5.025) 0.097 *** (6.751) 0.125 *** (8.330)
TI 0.035 *** (2.628) 0.045 *** (3.266) 0.067 * (1.742) 0.062 (1.516)
EI −1.579 *** (−3.634) −1.326 *** (−2.670) −3.206 *** (−3.494) −4.003 *** (−3.523)
FA −12.364 *** (−3.271) −16.843 *** (−4.529) −23.124 ** (−2.646) −13.375 (−1.259)
PI 342.547 *** (3.959) 349.341 *** (3.988) 479.197 *** (2.930) 452.687 *** (2.850)

MP −0.340 ** (−2.038) −0.165 (−0.909) −1.038 ** (−2.418) −0.816 ** (−2.284)
Cons 1.730 (1.389) 1.319 (0.960) −5.740 * (−1.789) −0.681 (−0.173)

Time−fixed effect Yes Yes Yes Yes
Region−fixed effect Yes Yes Yes Yes

R2 — — 0.612 0.580
F/Wald test 4404.25 *** 5169.83 *** 795.44 *** 236.26 ***
Curve shape N U N U

Maximum extreme point −3.309 — 1.019 —
Minimum extreme point 3.92 4.209 4.386 4.416

Obs. 558 558 558 558

Note: (1) The data outside the brackets are coefficients, and the data inside the brackets are t values. (2) FGLS_c
and FGLS_q are the estimation results with FGLS; Fe_ccd, Fe_qcd demonstrate Driscoll and Kraay standard errors.
(3) *, **, and *** indicate the significance of 10%, 5%, and 1%, respectively.

After changing the estimation method, the influence direction and significance of the
explanatory variable and control variables are basically consistent with the basic estimation.
The N-shaped or U-shaped curve relationship between economic growth and cultivated
land pressure is proved to be stable again.

3.4. Endogenous Analysis

There are many factors that affect the pressure of cultivated land. Although the basic
estimation has controlled the main influencing factors, there are still some factors that
have been missed. In addition, there may also be a reverse causal relationship between the
explanatory variable and the explained variable. These may lead to endogeneity problems
in the model. The generalized moment estimation (GMM) proposed by Arellano and Bond
(1991) can deal with endogeneity problems by introducing a lag of explained variables [95].
In this paper, an improved system generalized moment estimation (sys-GMM) is used for
endogenous analysis [96]. The endogenous test results are shown in Table 9.

The results of system generalized moment estimation are basically consistent with
basic estimation. Only the influence direction and significance of a few control variables
change. In addition, the model passes the serial correlation test (the p value of AR(1) is
less than 0.1, the p value of AR(2) is greater than 0.1) and the validity test of instrumental
variables (the p value of the Hansen test is greater than 0.1) [97]. Therefore, it can be
considered that the estimation results are stable and reliable.
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Table 9. Estimation results with generalized moments.

Variables GMM_ct GMM_qt GMM_cr GMM_qr

L.CLP 0.872 *** (84.645) 0.873 *** (101.989) 0.868 *** (17.452) 0.869 *** (17.639)
PGDP3 0.017 *** (8.869) — 0.018 * (1.768) —
PGDP2 −0.146 *** (−6.203) 0.070 *** (9.892) −0.163 (−1.538) 0.068 * (1.896)
PGDP 0.362 *** (4.989) −0.393 *** (−7.737) 0.417 (1.348) −0.350 * (−1.753)
POP −0.295 *** (−3.313) −0.406 *** (−5.436) −0.295 * (−1.699) −0.372 ** (−2.286)
UR −0.010 *** (−5.296) −0.009 *** (−5.769) −0.011 ** (−2.068) −0.010 ** (−1.973)
SI 0.013 *** (4.454) 0.019 *** (4.170) 0.012 (1.432) 0.013 (1.366)
TI 0.028 *** (8.977) 0.031 *** (6.181) 0.028 ** (2.466) 0.025 * (1.882)
EI −1.057 *** (−10.045) −1.326 *** (−11.241) −0.954 *** (−2.638) −1.218 ** (−2.371)
FA 0.532 (0.249) 1.313 (1.311) 0.037 (0.015) 0.145 (0.074)
PI 77.834 *** (2.864) 85.714 *** (4.618) 76.243 ** (2.144) 78.439 ** (2.134)

MP 0.238 *** (2.843) 0.391 *** (9.189) 0.234 * (1.870) 0.370 ** (2.181)
Cons −0.941 *** (−3.699) −0.692 * (−1.706) −0.874 * (−1.679) −0.179 (−0.247)
AR(1) −2.38 (0.017) −2.39 (0.017) −2.56 (0.011) −2.54 (0.011)
AR(2) 1.11 (0.269) 1.05 (0.296) 1.19 (0.234) 1.10 (0.272)

Hansen test 23.12 (0.145) 21.01 (0.226) 23.12 (0.145) 21.01 (0.226)
Curve shape N U N U

Maximum extreme point 1.802 — 1.827 —
Minimum extreme point 3.979 2.814 4.246 2.560

Obs. 527 527 527 527

Note: (1) The data outside the brackets are coefficients, and the data inside the brackets are t values. (2) GMM_ct,
GMM_qt are the results of two-step estimation; GMM_cr, GMM_qr are the results of robust estimation. (3) The p
values of AR(1), AR(2), and the Hansen test are in parentheses. (4) *, **, and *** indicate the significance of 10%,
5%, and 1%, respectively.

3.5. Heterogeneity Analysis
3.5.1. Different Economic Development Regions

The estimation results of different economic development regions are shown in Table 10.

Table 10. Estimation results for different economic development regions.

Variables
Developed Regions Undeveloped Regions

FE_ccd FE_qcd FE_ccd FE_qcd

PGDP3 0.053 *** (6.647) — −0.668 *** (−4.885) —
PGDP2 −0.642 *** (−4.739) 0.242 *** (5.896) 4.864 *** (6.652) 1.245 *** (6.478)
PGDP 3.006 *** (3.597) −1.898 *** (−5.305) −14.291 *** (−8.886) −8.046 *** (−7.558)
POP 15.051 *** (7.225) 12.546 *** (7.309) −5.955 ** (−2.720) −1.804 (−0.699)
UR −0.004 (−0.806) −0.007 (−1.263) 0.032 ** (2.570) 0.003 (0.194)
SI 0.077 ** (2.617) 0.294 *** (5.092) 0.179 *** (11.780) 0.135 *** (10.230)
TI 0.012 (0.442) 0.127 ** (3.213) 0.141 *** (5.348) 0.088 *** (3.505)
EI −3.716 *** (−4.198) −6.194 *** (−3.421) 1.225 (0.875) 0.038 (0.030)
FA −76.620 *** (−4.503) −48.076 *** (−3.611) −10.096 (−0.750) 2.569 (0.171)
PI 1474.904 *** (5.470) 1022.763 *** (4.473) −50.447 (−0.668) 95.053 (1.140)

MP −2.527 *** (−4.674) −1.636 *** (−3.575) 0.735 (1.611) 0.827 (1.701)
Cons 0 0 5.455 ** (2.271) 5.793 * (2.122)

Time−fixed effect Yes Yes Yes Yes
Region−fixed effect Yes Yes Yes Yes

R2 0.827 0.771 0.415 0.365
F test 1432.66 *** 291.56 *** 87,740.96 *** 5617.11 ***

Curve shape Increment U Decrement U
Maximum extreme point — — — —
Minimum extreme point — 3.922 — 3.231

Obs. 270 270 288 288

Note: (1) The data outside the brackets are coefficients, and the data inside the brackets are t values. (2) Fe_ccd,
Fe_qcd demonstrate Driscoll and Kraay standard errors. (3) *, **, and *** indicate the significance of 10%, 5%, and
1%, respectively.
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In economically developed regions, the coefficient of PGDP3 in the cubic model is
significantly positive, but there is no extreme point. With economic growth, the cultivated
land pressure continues to rise. The coefficient of PGDP2 in the square model is significantly
positive. With economic growth, the pressure of cultivated land first decreases and then
increases. The influence of control variables on cultivated land pressure in developed
regions is consistent with basic estimation.

In economically underdeveloped regions, the coefficient of PGDP3 in the cubic model
is significantly negative, and there is also no extreme point. As the economy grows, the
cultivated land pressure continues to decrease. The estimation result of the squared model
shows that the relationship between economic growth and cultivated land pressure in
underdeveloped regions is a U-shaped curve. The coefficients of control variables show
that their influence direction and significance are different from the regression results
with the whole sample. The impact of population growth becomes negative, while the
impact of urbanization becomes positive. This might be because the population loss in
underdeveloped regions is serious, and the rise in population can increase the agricultural
labor force. The effects of effective irrigation, fertilizer application, pesticide input, and agri-
cultural machinery power on cultivated land pressure in underdeveloped regions become
insignificant. This shows that the agricultural cultivation technology in underdeveloped
regions need to be improved.

Comparing the rebound points of cultivated land pressure in developed regions and
underdeveloped regions, it can be found that the rebound point in economically developed
regions is larger. This is due to the higher level of agricultural production and technology
in developed regions, which delays the rebound of cultivated land pressure.

3.5.2. Different Grain Production and Sales Regions

The estimation results of different grain production and sales regions are shown in
Table 11.

From the impact of economic growth on cultivated land pressure, there are differences
in distinct grain production and sales regions. The coefficient of PGDP3 in the cubic model
is significantly positive in the main sales regions. That is to say, with economic growth, the
cultivated land pressure increases firstly, then decreases, and finally increases again. The
coefficients of PGDP3 in the cubic model are significantly negative in the production and
sales balance regions and the main production regions, and there is no extreme point. As
the economy grows, the cultivated land pressure decreases. The coefficients of PGDP2 in
the squared model are significantly positive in all regions, and the cultivated land pressure
first decreases and then increases with economic growth. The rebound point of cultivated
land pressure in the main grain producing regions is much larger than other regions. This
shows that the cultivated land in the main production regions has a stronger population
support capacity (average cultivated land pressure: production and sales balance regions
= 3.686 > main sales regions = 2.514 > main production region = 0.890), which delays the
rebound of cultivated land pressure.

The coefficients of the control variables show that the influence direction and sig-
nificance of a few variables change compared with the basic estimation. The impact of
urbanization on cultivated land pressure is positive in the main production regions, but
negative in the main grain sales areas. This is because the population urbanization in the
main sales regions promotes the improvement of agricultural machinery power and the
proportion of grain crops, which eases the cultivated land pressure. However, the high
proportion of grain crops planted in the main production regions is highly dependent
on labor, and the excessive population loss makes agricultural operations develop in an
extensive direction. This is consistent with other scholars’ research [76]. The influence of
pesticide input on cultivated land pressure is significantly negative in the production and
sales balance regions and the main production regions. This is because the pesticide input
in these two regions is low (pesticide input per unit of cultivated land: main sales regions =
0.0029 > main production regions = 0.0015 > production and sales balance regions = 0.0005).
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Table 11. Estimation results of different grain production and sales regions.

Variables
Main Sales Regions

Production and Sales Balance
Regions

Main Production Regions

FE_ccd FE_qcd FE_ccd FE_qcd FE_ccd FE_qcd

PGDP3 0.076 ***
(11.323) — −0.223 ***

(−3.956) — −0.015 *
(−1.879) —

PGDP2 −1.039 ***
(−9.227) 0.299 *** (4.937) 2.363 *** (4.922) 0.707 *** (8.364) 0.222 * (2.150) 0.042 ** (2.767)

PGDP 4.611 *** (6.919) −2.760 **
(−2.867)

−9.605 ***
(−7.616)

−5.856 ***
(−11.789)

−1.311 **
(−2.914)

−0.584 ***
(−3.962)

POP 10.370 ***
(4.048)

12.447 ***
(5.408) −0.885 (−0.138) 7.835 (1.407) 3.308 *** (4.985) 4.069 *** (6.525)

UR 0.008 (0.742) −0.059 *
(−1.951) −0.035 (−1.033) −0.045 (−1.344) 0.002 (0.324) 0.001 (0.272)

SI 0.124 (0.638) 0.779 ** (3.260) 0.180 ** (3.018) 0.189 *** (3.355) 0.027 ** (2.912) 0.016 ** (2.466)
TI 0.002 (0.009) 0.484 * (2.329) 0.133 ** (2.557) 0.135 ** (2. 650) 0.018 (1.480) 0.010 (0.802)

EI −4.625 ***
(−3.664)

−7.054 **
(−3.683) −4.520 (−1.589) −4.394 (−1.638) −0.664 (−1.758) −1.032 **

(−2.614)

FA −1.031 (−0.045) 10.732 (0.470) −3.352 (−0.205) 6.334 (0.382) −11.268 ***
(−3.134)

−11.395 ***
(−3.221)

PI 130.368 (0.564) −73.659
(−0.371)

−1800.000 ***
(−5.121)

−2100.000 ***
(−7.533)

−202.606 **
(−2.683)

−193.238 **
(−2.618)

MP −4.592 **
(−2.954)

−3.064 *
(−1.968) 1.040 (1.087) 0.505 (0.546) 0.290 (1.733) 0.261 (1.590)

Cons −5.438 (−0.294) −39.526 *
(−2.061) 7.640 (0.949) 2.833 (0.435) 0.163 (0.194) −0.227 (−0.295)

Time−fixed
effect Yes Yes Yes Yes Yes Yes

Region−fixed
effect Yes Yes Yes Yes Yes Yes

R2 0.891 0.846 0.555 0.527 0.463 0.443
F test 436.79 *** 85.41 *** 213.74 *** 201.87 *** 779.63 *** 365.65 ***

Curve shape N U Decrement U Decrement U
Maximum

extreme point 3.794 — — — — —

Minimum
extreme point 5.342 4.619 — 4.144 — 6.924

Obs. 126 126 198 198 234 234

Note: (1) The data outside the brackets are coefficients, and the data inside the brackets are t values. (2) Fe_ccd
and Fe_qcd demonstrate Driscoll and Kraay standard errors. (3) *, **, and *** indicate the significance of 10%, 5%,
and 1%, respectively.

4. Conclusions

Land is of great significance for ensuring food security and promoting economic
development. Under the influence of many uncertain factors, such as the COVID-19 pan-
demic, the Sino–US trade friction, and the Russia–Ukraine conflict, global food security
is seriously threatened. The issue of using limited cultivated land resources to guarantee
food security and ensure “the rice bowl must be held in our own hands” has become a
research hotspot. Based on the cultivated land pressure index and Kuznets curve model,
this study analyzes the impact of economic growth on cultivated land pressure. The con-
clusions are as follows: (1) The relationship between economic growth and cultivated
land pressure is an N-shaped or U-shaped curve in China from 2000 to 2017. When
the per capita GDP is about 40,000 yuan/person, the cultivated land pressure rebounds.
(2) There are regional differences in the impact of economic growth on cultivated land pres-
sure. The per capita GDP at the rebound points of cultivated land pressure in economically
developed regions and major grain producing regions are relatively high.

The research of this paper shows that economic growth and cultivated land pres-
sure are sometimes synchronized and sometimes decoupled. With economic growth, the
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cultivated land pressure would fluctuate. Cultivated land pressure is affected by many
factors, such as population growth, industrial structural changes, technological progress,
government policies, and awareness of cultivated land protection. At the current stage,
the cultivated land pressure is facing a rebound period from reduction to increase. We
should always be vigilant. More attention should be paid to cultivated land protection, and
cultivated land pressure should be controlled. Only in this way can we prevent cultivated
land pressure from long-term synchronous growth with the economy.

Thus, the following policy recommendations are put forward: (1) We must pay at-
tention to cultivated land protection in the process of economic growth. A decrease in
cultivated land pressure is supported by many factors, such as industrial structural changes,
technological progress, and increased awareness of cultivated land protection. Only by
directing more capital and technology to cultivated land protection in the process of eco-
nomic development can we effectively control the cultivated land pressure. Some specific
measures should be implemented, including improving the compensation system of cul-
tivated land protection, increasing subsidies for the purchase of agricultural machinery,
and supporting the development of modern seed industry. (2) We must also prevent an
increase of cultivated land pressure caused by urban expansion. By implementing land use
control and national land and space planning, the impact of disorderly urban expansion
on cultivated land pressure might be weakened. Meanwhile, improving the economical
and intensive utilization of urban construction land can reduce the occupation of culti-
vated land for construction, which might alleviate cultivated land pressure. In practice,
it is necessary to strictly delineate and adhere to the control lines of urban development
boundaries, permanent basic farmland, and ecological protection. Only in this way can
we guide the orderly development of cities and effectively protect cultivated land and
ecological environment.

There are some limitations in this study. Firstly, this paper only analyzes the relation-
ship between economic growth and cultivated land pressure at the provincial level, due to
the availability of data. However, some provinces have broad jurisdictions, and there are
differences in economic growth and cultivated land pressure within the province. Taking
cities or counties as the basic research unit can more accurately reflect cultivated land
pressure and its influencing factors, which is a research direction worthy of being carried
out in the future. Secondly, this paper does not pay attention to the spatial correlation of the
cultivated land pressure and its influencing factors. However, grain production and sales,
economic development level, and population mobility may have spatial characteristics,
which is also a content worthy to study.
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Abstract: Due to the environmental radicalization of European politics, which is reflected in the
European Green Deal, Farm to Fork strategy, and new CAP 2023–2027, this paper aims to determine
the impact of agri-environmental indicators on soil productivity based on the land productivity
function model. The paper focuses on the Western Balkans countries, which are in the process of
European integration and which, in the coming period, need to harmonize their agricultural policy
with the CAP. First, the aggregate Cobb–Douglas production function has been used to create a land
productivity function. Then, the sources of land productivity growth have been calculated, which can
be particularly interesting in the context of agri-environmental indicators, such as fertilizer use and
livestock density. The research results showed that land productivity is the most elastic concerning
changes in the number of livestock units per hectare. Consequently, reducing livestock units had a
markedly negative effect on productivity. In addition, the research results showed that using mineral
fertilizers is a crucial source of growth in land productivity in these countries. These results imply
that the creators of the agricultural policy must carefully assess the pace at which they will harmonize
ecological and economic goals, especially if they take into account the current Ukraine crisis that can
disrupt the food market.

Keywords: agri-environmental indicators; fertilizer use; European Green Deal; CAP 2023–2027

1. Introduction

In the last few years, there has been an environmental radicalization of European
politics, which is also present in the new proposal of the Common Agricultural Policy
(CAP) for 2023–2027. Several important events preceded such changes. The Birds Directive
(79/409/EEC) was adopted in 1979. In addition, the Green Paper (1985) is very signifi-
cant, emphasizing the importance of environmental awareness of farmers and support
for areas essential for preserving rural environments. Furthermore, the Nitrate Directives
(91/676/EEC), whose aim is to reduce water pollution due to using nitrogen fertilizers, is
particularly interesting for this paper. Indeed, the first significant turning point was Agenda
2000, which declared the new CAP goals, which include integration with environmental
protection goals and sustainable agriculture promotion, and finally, the previous CAP re-
form in 2013 tried to respond to new concerns such as climate change, animal welfare, food
safety, and the sustainable use of natural resources by including greening of payments to
make agriculture more sustainable. According to [1], the new CAP will be vital to securing
the future of agriculture and forestry and achieving the objectives of the European Green
Deal. The first sentence in the brief overview of the new CAP suggests a strong connection
with the European Green Deal. In addition, the Farm to Fork strategy (F2F) stands out as
a special strategy that should provide a fair, healthy, and environmentally friendly food
system [2]. One of the main goals of F2F is to create a sustainable food system that should
have a neutral or positive environmental impact. As Schebesta and Candel (2020) [3]
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pointed out some precision targets should be achieved by 2030: a reduction of chemical
and hazardous pesticides by 50% and a reduction of fertilizer use by 20%. This new state of
European policies is particularly interesting for Western Balkan (WB) countries in the Euro-
pean integration process, which includes harmonization with EU policies and strategies.
Potentially, this radicalization of EU policies, specifically CAP, could be very harmful to the
agricultural sector’s economic performance in countries with lower development levels.

These changes in agricultural policy and its goals are the critical motive for choosing
this topic. In the context of ecology, it is exciting to analyze the use of mineral fertilizers and
the intensification of livestock production due to the opposition of economic and ecological
goals. In addition, it is interesting to analyze land productivity in countries with primary
economic goals, such as the Western Balkans countries, which will have to harmonize their
agricultural policy. Moreover, due to the specific political circumstances (the Ukraine crisis)
disrupting the food supply chain, research examining the sources of productivity growth is
crucial due to the need for increased food production.

So, this paper is focused on the agricultural sector of Albania, Bosnia and Herzegovina,
North Macedonia, Montenegro, and Serbia. More precisely, the main focus is on land
productivity and its interrelation with agri-environmental indicators: fertilizer use and
livestock density. Therefore, this paper aims to determine the influence of fertilizer use
intensification and livestock density on land productivity growth in WB countries. In order
to quantify this influence, the land productivity function will be estimated. The application
of this model to determine the impact of agri-environmental indicators on the growth of
land productivity is the main contribution of this paper (in addition to the quantification of
the impact itself). This research fills the gap in the literature that focuses on agricultural
productivity because it looks at this phenomenon in the context of environmental goals,
not just economic ones. This is particularly important for countries that have yet to adapt
their agricultural policy to achieve environmental goals, such as the WB countries.

This paper is structured as follows. Section 2 provides a literature review on land
productivity and agri-environmental indicators. Section 3 describes productivity and land
productivity function, while the Sections 4 and 5 show results and discussion. The main
conclusions are summarized in Section 6.

2. Literature Review

According to Kurduys-Kujawska et al. (2021) [4], productivity in agriculture is a
measure of resource efficiency. This definition is crucial because of agriculture’s global
challenges, such as food security, natural resources degradation, and climate change adap-
tation and mitigation. Fuglie (2018) [5] points out that improving agricultural productivity
is essential regarding global food security. Furthermore, the author claims that the rising
agricultural productivity in developing countries increases income and encourages broader
economic development. Improving the productivity of agriculture is very important due
to the reduction of poverty through providing food security and higher income for farm-
ers. Improving agricultural productivity is particularly significant in the case of countries
where the agricultural sector is very important and where there is a large gap between
the productivity of the agricultural sector and other sectors of the economy [6]. One of
the most comprehensive studies of the partial productivity of agriculture was conducted
by Yamada and Ruttan (1980) [7]. They analyzed the partial agricultural productivity of
41 states in 1970, and results showed significant differences in levels of partial productivity
among these groups. Sharma, Rao, and Shepherd (1990) [8] observed partial productivity
for different regions of the world in 1975 and 1980 and concluded that developed countries
achieved higher levels of agricultural productivity than developing countries. In addition,
they showed that the differences are more significant in the case of labor productivity than
in the case of land productivity. Many authors have analyzed the agricultural sector of
the WB. For example, Gajić et al. (2015) [9] compared the production performance of the
countries of the Danube region. They showed that higher levels of partial productivity of
agriculture are characteristic of EU countries in this region than WB. A similar conclusion
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is reached by Birovljev et al. (2017) [10]. They showed significant differences in the pro-
duction and export performance of agriculture of the EU and the Central European Free
Trade Agreement (CEFTA) countries (which are WB countries also). Therefore, they point
out that it is necessary to create adequate agricultural policy instruments to improve the
agricultural sector’s performance in these countries before EU accession.

In order to increase productivity, especially land productivity, producers (and poli-
cymakers) usually decide to intensify chemical inputs’ use, potentially endangering the
environment and fostering land degradation. According to Xie et al. (2019) [11], crop
production intensification in the developing world began with the Green Revolution. The
Green Revolution significantly impacted the widespread use of new, input-responsive
seeds and irrigation, fertilizer, and pesticides to increase cereal crop yields and improve
food security [12]. With the activities of the Green Revolution, the main agricultural crop
productivity more than doubled. The doubling of global food production in the previous
decades was accompanied by the intensive use of inputs [13]. Although agricultural inten-
sification led to the increasing productivity of land and volume of food supply, the negative
impact on the environment, especially land, was also present. Land is a multifunctional,
nonrenewable resource, and its limits are finite [14]. Moreover, besides producing food,
fiber, fodder, and biofuel, the land performs many other vital functions, such as climate
regulation, flood management, water quality, soil functionality, and cultural landscape
and recreation. However, the land used nowadays is not sustainable and causes degra-
dation [15,16]. Taddese (2018) [17] considers land degradation a complex phenomenon
induced by natural and socio-economic factors and refers to the loss of biological and
economic productivity of the land. The causes of land degradation are numerous, but in the
case of agriculture, the negative impacts on land are mainly related to intensive agricultural
production. According to ELD (2015) [18], 52% of agricultural land is already moderately
or severely damaged by land degradation, and in the next 25 years, it is predicted that
further degradation could reduce land productivity by 12% and thus lead to a 30% rise in
prices of agricultural products. Agricultural intensification considers producing more per
unit of input, and it is a way to increase agricultural productivity and food production [12].
According to Kopittke et al. (2019) [19] intensive agricultural production has so far signifi-
cantly degraded the soil. The main forms of this degradation include the loss of organic
matter, soil pollution due to excessive use of fertilizers, release of the greenhouse effect, loss
of biodiversity, etc. Land degradation caused by intensive agricultural production can have
a long-term negative impact on ensuring food security in the future. In order to increase
agricultural production, the excessive use of agrochemical inputs had negative effects on
the environment and human health [20]. Therefore, it is necessary to apply a sustainable
method of agricultural production that will enable the recovery of soil, human health, and
at the same time, food security.

As awareness of environmental problems caused by agricultural production grows, the
number of methods for analyzing this problem is also growing. For example, the European
Commission, together with all member states, defined a set of 28 agri-environmental
indicators covering various areas that can be used to assess the impact of agriculture on
the environment [21]. An empirical assessment of agriculture’s environmental effects
represents a problem that includes the inability to define and quantify all the impacts of
agricultural production on the environment.

3. Materials and Methods

In the last decade, the total factor productivity (TFP) index has been mainly used to
measure productivity [22]. The DEA method is the most common, based on which it is
possible to obtain the Malmquist TFP index [23]. In addition, authors often decide to use
the Färe–Primont Index to estimate agricultural total factor productivity growth [24,25].

However, in the second half of the 20th century, the focus of agricultural economists
was mainly on the determinants of the growth of agricultural production and productiv-
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ity. Very often, authors estimated aggregate agricultural Cobb–Douglas type production
function [26–28], which can be presented in the following form:

y = A
n

∏
i=1

xβi
i (1)

where y—agricultural production; xi—inputs; A, βi—estimated parameters.
When the Cobb–Douglas production function is considered in agricultural economics,

in many papers, five inputs (the most common are: labor, land, capital, fertilizers and
livestock) and one output (value of agricultural production) were taken [29,30]. It can be
presented as:

lnY = α + β1lnXw + β2lnL+ β3lnXc + β4lnXf + β5lnXl + γ (2)

where Y—output, Xw—labor; L—land; Xc—capital; Xf—fertilizers; Xl—livestock units;
γ—residual.

This model is very useful for determining the causes of production growth. However,
there is one more important advantage: it is possible to create a function of partial (land
or labor) productivity of agriculture [31–33] simply by dividing the whole function with
values for labor or land. As a main aim of this paper is the analysis of land productivity,
this function can be expressed as:

ln
Y
L
= α+ β1 ln

Xw

L
+β2 ln

Xc

L
+β3 ln

Xf
L
+β4 ln

Xl
L

+ γ (3)

where Y/L—land productivity, Xw/L—labor per land; Xc/L—capital per land; Xf/L—
fertilizers use; Xl/L—livestock density; γ—residual.

In the context of modern times, this model can be suitable for determining the impact
of agri-environmental indicators on land productivity. Based on the European Commis-
sion [21], agri-environmental indicators are the use of mineral fertilizers (Mineral fertilizer
consumption) and livestock density (Cropping patterns, Livestock patterns) (among other
28 indicators presented in Table A1). Indeed, the biggest drawback of the Cobb–Douglas
production function is that it shows constant returns to scale. In addition, this function is
based on the unrealistic assumption of perfect competition in the factor market. However,
in this paper, the model is used to approximate the impact of agri-environmental indicators
on land productivity.

After estimation of the land productivity function, it is possible to determine the
contribution of individual production factors to the growth of land productivity:

rY/L =
n

∑
i=1

βiri + γ (4)

where rY/L—growth rate of land productivity, ri—growth rate of use of production factors
per land, βi—coefficients, γ—residual.

This is precisely the most significant advantage of this model. It should also be noted
that other models measure land productivity, but they belong more to the domain of
agronomy and technology [34].

In the analysis, all data were collected from FAOSTAT [35] due to the lack of data
from national statistics. Besides this, data for economic relevance for agriculture were col-
lected from World Bank [36] and Agricultural Policy Plus (APP) [37] databases. Countries
included are Albania, Bosnia and Herzegovina, North Macedonia, Montenegro, and Serbia
(all of them are WB countries that are still in the process of European integration). The
observed period is 2006–2018 due to missing data in the period before.
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4. Results

Figure 1 shows indicators of agriculture’s economic relevance in the Western Balkans
and the EU countries. The lowest share of agriculture in employment is in Montenegro
(8% on average), which is expected considering that some other parts of the economy, such
as tourism, are far more important for the economy of this country and that the resource
potentials are relatively unfavorable for agricultural production. In Serbia, Bosnia and
Herzegovina, and North Macedonia, the share of employees ranges from 10 to 20%, which
is four to five times higher than the EU average [38]. In Albania, the share of employment
in agriculture is at a very high level (39%).

Figure 1. Economic relevance of agriculture in Western Balkans countries. Source: own research on
the basis of FAOSTAT, World Bank, and APP Plus.

Note: Employment in agriculture and Export of agriculture (data from FAOSTAT)
average for period 2005–2018; GDP of agriculture (data from World Bank) average for
period 2005–2018; Budgetary support to agriculture (data from APP Plus) for 2019.

As expected, among the countries of the Western Balkans, the largest share of GDP in
agriculture was achieved in Albania, and it is about 19% on average. In the other countries
of the Western Balkans, the share of the agricultural sector is at a significantly lower level
and ranges from 6 to 9%, with the present decline in the importance of the agricultural
sector in the formation of GDP. The largest share of agricultural products in the total
value of exports is present in Serbia, where one-fifth of the value of exports is agricultural
products. Serbia has the largest comparative advantages on the international market, while
only Albania has no comparative advantages in exporting these products [39]. The high
share of agriculture in employment and GDP formation and the relatively low share of
agricultural products in the total export of Albania (about 5%) imply that the greater part
of the production is realized on the domestic market. Total budgetary support to the
agricultural sector also greatly influences production performance. The largest volume
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of funds for agriculture is determined in Serbia, while the smallest volume of funds is in
Montenegro, which is the smallest country in this sample, with relatively poor performance
for agricultural production. Although all the Western Balkans countries aspire to become
EU members, and to harmonize their agricultural policy with the CAP, current support
from the budget is more directed towards optimal measures from the domestic (national)
political economy perspective [40].

Figure 2 shows land productivity in WB countries in international US dollars per
hectare and the productivity growth rate (r). Serbia has the highest level of land produc-
tivity, around USD 2000 per hectare, while the highest growth was achieved in Albania
(3.01%). In Montenegro and North Macedonia, there was a decrease of 3.07% and 0.69%,
respectively. Primarily, agroecological and climatic conditions determine these differences
in land productivity as well as overall economic development.

Figure 2. Land productivity in Western Balkans countries. Source: own research on basis of FAOSTAT.

Table 1 shows the regression results for the land productivity function of the WB. The
coefficient of determination and the F-test show the validity of the model. All evaluated
parameters are statistically significant, except the capital/land ratio. Land productivity
is the most elastic in relation to changes in livestock density (0.37) and mineral fertilizer
used per hectare (0.24). Both of these variables can be seen as indicators of the intensity of
agricultural production.

Table 1. Estimation of land productivity function (OLS model).

Variables Coefficients Std. Error t-Ratio p-Value

const. 1.82 0.430308 4.234422 0.00 ***
Labor/Land 0.16 0.055803 2.804541 0.01 **
Capital/Land 0.02 0.058507 0.333235 0.74
Fertilizers/Land 0.24 0.029196 8.242370 0.00 ***
Livestock/Land 0.37 0.142243 2.602155 0.01 **

R2 0.76

Adjusted R2 0.74
F (4,73) 56.37
p-value 0.00

Note: ***, ** level of significance is 1% and 5%, respectively. Source: own research on basis of FAOSTAT [35].

Table 2 shows an estimation of the contribution of production factors to land produc-
tivity change. The most significant influence on land productivity has the use of mineral
fertilizer per hectare, among the agricultural inputs. Such results are expected given that
the average annual growth rate of mineral fertilizer use per hectare is very high (4.05%)
compared to EU-27 (0.7%), which indicates an intensification of production. On the other
hand, the decline in the number of employees and the reduction in the number of livestock
units per hectare harmed land productivity. The estimated parameter for Labor/Land (0.16)
is in line with the study conducted by Khan (1979) [41].
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Table 2. Estimation of contribution of production factors to land productivity change.

Inputs
Estimated

Parameters (C)
r (Growth Rate) C x r

Contribution to Land
Productivity Change (%)

Labor/Land 0.16 −1.65% −0.26% −43%
Capital/Land 0.02 1.81% 0.04% 6%
Fertilizers/Land 0.24 4.05% 0.97% 160%
Livestock/Land 0.37 −1.83% −0.68% −111%
Production

factors 0.07% 12%

Residual 0.54% 88%
Land

productivity
growth rate

0.61% 0.61% 100%

Source: own research on basis of FAOSTAT [35].

This indicator could be very interesting from the socio-economic point of view and
rural politics because results imply that workers’ migration to other sectors has a negative
impact on land productivity in WB. All production factors contribute to land productivity
change only by 12%, primarily due to the bad influence of livestock unit reduction. Another
88% are linked to residual, which was often explained as technical progress in the past.
However, there is still debate about such a conclusion [42].

5. Discussion

As it was explained, in the focus of this paper are land productivity and agri-environmental
indicators, so the influence of fertilizer use and livestock density on land productivity will
be discussed. The research results clearly showed that land productivity is the most elastic
concerning changes in the number of livestock units per hectare, and the decrease in the
number of livestock units per hectare had a negative impact on land productivity.

It indicates the extensiveness of agriculture in these countries, where crop production
dominates, and livestock production has been stagnant for many years [43]. From an
economic point of view, an increase in livestock production would influence the growth
of production intensity and, therefore, the growth of land productivity. In all the WB
countries, there was a decrease in livestock production in the analyzed period (2006–2018)
at an average annual rate of −1% to −2% [35]. In addition, if the livestock density is
considered, it is clear that WB countries are far behind EU-27, and a negative growth rate is
present in all countries, except Montenegro (Table 3).

Table 3. Livestock unit per hectare (livestock density) in WB countries and EU-27.

Average 2007–2010 Average 2011–2014 Average 2015–2018 Average Growth Rate

Albania 0.62 0.62 0.64 0.63 −0.36%
B & H 0.33 0.34 0.31 0.33 −0.58%

Montenegro 0.19 0.28 0.37 0.27 7.65%
N.

Macedonia 0.32 0.25 0.25 0.28 −2.76%

Serbia 0.54 0.49 0.48 0.50 −1.14%
EU-27 0.75 0.75 0.76 0.75 0.11%

Source: own research on basis of FAOSTAT [35].

A significant lag in the livestock sector is observed in comparison with the EU coun-
tries, especially regarding yields [44]. Although the countries of the WB as a whole have
recently achieved some increases in crucial crop and livestock yields and labor productivity
over time [38], they are still significantly lagging behind the EU [45]. For example, in Serbia,
only one-third of Gross Agricultural Output comes from livestock production. At the
same time, since the beginning of the 2000s, the contribution of this sector has decreased
significantly, primarily due to the negative development of the meat sector, i.e., negative
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tendencies in the production of pig and beef meat. The main reasons are the effects of the
transition period, poor competitiveness, the poor purchasing power of domestic producers,
an inadequate system of incentives, and the disintegration of the value chain [46]. Similar
tendencies were followed by all Central and Eastern European Countries where there was
a decline in livestock production after 1990, i.e., an orientation towards more extensive
sectors. As a result, the contribution of livestock production to the Gross Agricultural
Output in these countries does not exceed 50% in these countries, so it is important to note
that both labor and land productivity significantly increased for most of these countries
after the accession to the EU [46].

In order to improve the performance of livestock production in the WB countries, it is
necessary to encourage more intensive production through agricultural policy measures,
which would positively affect the food industry [39]. Furthermore, it is very important
in ensuring a safe supply of food and reducing import dependence [47], which can be
particularly problematic in livestock production in the WB countries. Therefore, in the
following period, the focus of short-term policy should be incentives to improve livestock
production [48] and improve quality standards to increase competitiveness [49]. Previous
research shows that it is easier and faster to start product-level agri-food competitiveness
concerning country-level competitiveness [50]. Regional-level competitiveness is also
important in creating export opportunities on the international market [51] Therefore,
support should be directed toward products with comparative advantages, but also in
research and development, which significantly influence competitiveness [52] and higher
education that also significantly affect competitiveness and sustainable development [53].

However, insufficient intensification of livestock production can have a positive en-
vironmental effect. Namely, livestock contributes to releasing nitrogen, phosphorus, and
potassium into the environment as much, if not more, than mineral fertilizer [54]. In
addition, traces of antibiotics are noticeable in groundwater due to intensive livestock
production [55]. The negative effect of livestock production can further adversely affect the
food industry and the regularity in the supply chain of raw materials, which can further
lead to economic and social insecurity [56].

The impact of livestock production on the environment depends not only on the live-
stock density index but also on the agricultural practice itself, so the increase in this index
does not necessarily mean increased environmental degradation [57]. However, future
policy planning based on the Common Agriculture Policy (CAP) and European Green
Deal, adoption of appropriate regulations, the establishment of monitoring of financial
instruments, regional cooperation, and improvement of risk management can influence the
mitigation of these effects on the environment [56]. The results of previous research show
that the WB countries have taken steps towards successful strategic planning of policies in
the direction of the CAP, but the applied mechanisms are still not in line with the EU [58],
both due to the uncertain moment of entry into the EU and the changing character of the
CAP [40]. Because of that, livestock production management will play a significant role in
improving environmental performance [59].

Estimates are that the relationship between livestock production and environmental
protection will become particularly significant in the future, primarily due to the signif-
icant growth in demand for livestock products (mainly meat and milk). The growth of
livestock production has, as a rule, in recent years generally led to negative effects on the
environment [60]. In order to achieve sustainability, it will be required to strive for a double
goal, the growth of livestock production, but also the reduction of negative effects on the
environment, and ‘sustainable intensifications’ will be a solution for ‘win–win’ outcomes
for grasslands, the environment, and smallholders [61].

The key source of agricultural growth in the WB countries was the use of mineral
fertilizers in the observed period. This result was expected because the average annual
growth rate of mineral fertilizer use was very high due to the intensification of the mineral
fertilizer application in the transition period. Mineral fertilizers are one of the most im-
portant products in the agricultural industry that provide essential nutrients for crops and
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increase crop yield, agricultural productivity, and food security [62], but, at the same time,
the intensive use of mineral fertilizers harms the environment and human health. The neg-
ative impacts of mineral fertilizers are mainly related to their production and application.
According to Jensen et al. (2020) [63], the production and application of fertilizers have a
wide range of environmental impacts, but the authors state that the most critical impacts
are the consumption of valuable natural resources, eutrophication, acidification, and global
warming. Namely, the authors assert that the production of mineral fertilizer has a high
impact on climate change, resource depletion, and acidification, while eutrophication is a
consequence of the mineral fertilizer application. There is evidence that fertilizer use has
reached critical environmental limits [64], and it is necessary to consider their application
in the coming period. Thus, policymakers in the Western Balkan countries must take this
harmful effect into account when creating long-term development strategies.

Furthermore, bearing in mind the evolution of the CAP, it is possible to conclude that
over time, due to the increasing degradation of the environment and climate changes, its
focus shifted from economic to environmental goals. In addition, for the same reasons, the
European Green Deal strategy is within the six priorities of the European Commission for
the period 2019–2024. For the agricultural sector, the most important is F2F as a part of the
Green Deal. When it comes to the use of mineral fertilizers, according to F2F, excess use of
nutrients is a significant source of air, soil, and water pollution and climatic impacts. One
of the aims of the Farm to Fork strategy is to reduce fertilizer use by up to 20% till 2030,
and some of the objectives of the new CAP 2023–2027 should facilitate the achievement
of the Farm to Fork strategy aim related to the reduction of the fertilizer application. So,
because all the WB countries are aiming to become a member of the EU and that have a
relatively high level of mineral fertilizer use, it is important to raise the level of knowledge
about the importance of more sustainable agricultural practices, which is at the center of
European policies, strategies, and values.

In addition, recent events indicate that specific problems can be expected in the coming
period considering the situation in the mineral fertilizers market. Due to the pandemic and
Ukraine crisis, the fertilizer price index rose by 43% from around 890 (25 February 2022)
to 1270 (25 March 2022) [65]. Indeed, it is difficult to assess the final effects of this crisis,
but there will most likely be some instability regarding the supply of mineral fertilizers
on the global market. Certainly, this can be a significant threat to the further growth of
agricultural production in WB countries.

In the end, it is important to point out that demand for agricultural products will
increase due to population and income growth, and by 2050 it will be necessary to pro-
duce 60% more food than today which will create additional pressure on land and other
scarce natural resources used in food production. In order to satisfy increasing demand,
agricultural production will have to grow, and at the same time, it will have to minimize
the environmental impact [66]. Furthermore, considering options to expand cultivated land
areas are limited [67], future agricultural production will have to be more productive and
sustainable at the same time. Willet et al. (2019) [68] pointed out that the current food system
needs to be transformed in terms of productivity, resource use, and environmental effect.

6. Conclusions

Based on the research results, it is possible to summarize three key conclusions. First,
the main booster of land productivity growth is the increased use of mineral fertilizers
in the countries of the WB. However, considering the environmental consequences of
the intensive use of chemical inputs, it is questionable how sustainable this growth is.
Second, the decrease in livestock units has had a markedly negative impact on land
productivity, implying that policymakers must pay special attention to the livestock sector
in these countries. Of course, to increase competitiveness in meat and milk production, it is
necessary to develop an adequate strategy that includes agricultural and other economic
policies. Indeed, the development of this sector must be sustainable due to the negative
environmental impact of intensive animal production. Third, as much as 88% of the increase
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in land productivity is due to other factors, suggesting that technical progress’s influence
is crucial for growth. The impact of technical progress on productivity growth will be the
subject of future research. In addition, the research focus will be on EU countries. The
originality of the research is the application of models that were very often used in the
second half of the 20th century to observe the impact of agri-environmental indicators on
land productivity which is one of the most critical questions of these days. In addition, the
paper contributes to the literature concerning WB’s agricultural sector and can influence
policymakers’ decisions in these countries. However, the paper’s main limitations are the
lack of a more extended time series of data due to specific regional political events (such as
Yugoslavia’s breakup) and the limitations of the Cobb–Douglas function itself. In the end,
it is essential to emphasize that the creators of the agricultural policy must carefully assess
the pace at which they will harmonize ecological and economic goals, especially if they
take into account the current Ukraine crisis that can disrupt the food market, especially in
the livestock sector and threaten food security in WB.
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Appendix A

Table A1. Agri-environmental indicators.

Indicator

1. Agri-environmental commitments
2. Agricultural areas under Natura 2000
3. Farmers’ training level and use of environmental farm advisory services
4. Area under organic farming
5. Mineral fertilizer consumption
6. Consumption of pesticides
7. Irrigation
8. Energy use
9. Land use change
10. Cropping patterns, Livestock patterns
11. Soil cover, Tillage practices, Manure storage
12. Intensification/extensification
13. Specialization
14. Risk of land abandonment
15. Gross nitrogen balance
16. Risk of pollution by phosphorus
17. Pesticide risk
18. Ammonia emissions
19. Greenhouse gas emissions
20. Water abstraction
21. Soil erosion
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Table A1. Cont.

Indicator

22. Genetic diversity
23. High Nature Value farmland
24. Production of renewable energy
25. Population trends of farmland birds
26. Soil quality
27. Water Quality—Nitrate pollution, Pesticide pollution
28. Landscape—state and diversity

Source: European Commision [21].
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Kerolli Mustafa, M.; Spahić, M.; Kovačević, V.; et al. Recent Agricultural Policy Developments in the Context of the EU Approximation
Process in the Pre-Accession Countries; Martinovska Stojcheska, A., Kotevska, A., Ciaian, P., Ilic, B., Pavloska-Gjorgjieska, D.,
Salputra, G., Eds.; Publications Office of the European Union: Luxembourg, 2021. [CrossRef]
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Abstract: Nowadays, the challenges of energy depletion, environmental pollution and food security
caused by extensive agriculture development are attracting global attention. In China, the construc-
tion of ecological farms is a key initiative to effectuate the goal of peaking carbon dioxide emissions
and achieving carbon neutrality, contributing to high-quality agricultural development. Based on this,
this study selects the national-level ecological farms directories issued by the Ministry of Agriculture
and Rural Affairs (MARA) of China in 2021 and 2022, and collects the corresponding economic, social
and physical geographic data for GIS spatial analysis and Geodetector. The results are as follows:
(1) The distribution of ecological farms in various provinces of China is uneven and spatially clustered.
It generally presents a ‘high in the east and low in the west with concentrated cores’ pattern. The
construction scope significantly expanded over time, and the high-value areas of nuclear density are
concentrated in East China, with the development core transitioned from East China to Central China.
(2) Environmental conditions, industrial foundation, economic and social development level, science
and technology level and financial support all significantly affect the spatial distribution of ecological
farms in China, among which the science and technology level has the most significant enhancement
effect on other factors. (3) Environmental conditions provide the construction basis for ecological
farms, while economic and social development level and financial support determine the number of
ecological farms. The industrial foundation affects the scale of ecological farms in China, while the
level of science and technology eliminates the restrictions of other factors to a certain extent. This
study provides a reference for optimizing the spatial distribution pattern of ecological farms in China
and promoting ecological agriculture. In addition, it presents a viable approach to safeguarding
food security.

Keywords: ecological agriculture; sustainable development; spatial distribution pattern and
evolution; Geodetector; influencing mechanism

1. Introduction

Nowadays, the rapid development of agriculture is facing the challenges of reducing
crop yields and food supply caused by finite natural resources and changing climatic con-
ditions [1,2]. On a global scale, agriculture triggers serious environmental and ecological
problems [3]. The excessive use of chemical fertilizers and pesticides has destroyed the
environment, a large increase in agricultural irrigation water has led to over-exploitation
of water resources and excessive land reclamation has caused soil erosion and land de-
sertification [4,5]. Agricultural production activities are also one of the important sources
of greenhouse gas and carbon emissions, which are constantly increasing [6]. These de-
structive activities result in impaired functioning of agro-ecosystem services and threaten
human well-being [7,8]. But at the same time, these challenges have also become an urgent
force to promote agricultural transformation [9]. How to improve agricultural productivity
and ensure food security is a problem in need of global attention.
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With the emergence of systems theory, information theory and cybernetics in the sci-
entific community since the 1940s, agricultural production has been promoted to develop
in a comprehensive and systematic direction, and conventional agriculture has gradually
shifted towards modern agriculture and ecological agriculture [10]. Various countries
worldwide adopted diversified practices to attain sustainable agricultural development,
which is the origin of Agroecology. In 1942, the Rodale Institute published Organic Farming
and Gardening and other publications to promote the idea of organic farming and practiced
‘Organic Agriculture’ on their farms [11]. In the 1950s, a ‘Natural Agriculture’ without
tillage, fertilizer and pesticide emerged in Japan [12]. In 1974, Mollison and Holmgren
of Australia proposed the permanent agriculture method based the ethics of caring for
the earth, caring for human beings and sharing surpluses [13]. With the convening of
the United Nations Conference on the human environment in 1972, human awareness
of ecological and environmental protection gradually increased and sustainable agricul-
ture and green ecological farms became the goals of agricultural development in many
countries. In 1981, British scholar Worthington summed up a diversified and nutrient
self-sufficient ‘Ecological Agriculture’ mode based on the practice of European agricultural
production [14]. The U.S. federal government proposed the ‘Low Input Sustainable Agri-
culture’ in 1988, the ‘High Efficiency Sustainable Agriculture’ in 1990 and promulgated
the ‘National Organic Program’ in the same year [15]. The EU proposed the concept of
‘Multifunctional Agriculture’ in 1997, emphasizing the ecological function of agriculture
and implementing specific implementation measures in the EU’s common agricultural
policy [16]. The Japanese government promulgated the Sustainable Agriculture Act in
1999 and the Organic Agriculture Promotion Act in 2006. Since the 21st century, more and
more scholars, institutions, groups and governments have paid attention to Agroecology
at the international level. In 2014, the Food and Agriculture Organization of the United
Nations (FAO) organized an International Symposium on Agroecology to promote the
concept and methods of Agroecology and promote the action and policy formulation of
Agroecology in various countries [17]. Reviewing the origin, formation and evolution of the
concept of Agroecology, it can be found that the principles and propositions for ecological
agriculture are similar internationally. The current practice of ecological agriculture aims
to optimize the ecological environment, public health and well-being, and to minimize
the socio-ecological costs of agriculture, such as soil degradation, water pollution, green-
house gas emissions and resource exhaustion [18,19]. The essential goal of Agroecological
practices includes reducing the consumption of external inputs such as fossil fuels while
improving the quality and efficiency of internal inputs. Originating from continuous im-
provement by experience, experimentation and research, these evolving Agroecological
practices improve food security, nutrition and health while adapting to and mitigating
climate change without harming ecosystems [20,21]. Currently, ecological agriculture is at
a high level of development in many countries. For instance, according to the International
Federation of Organic Agriculture Movements (IFOAM), there were 15.6 million hectares of
organic farmland in Europe in 2018. The National Agricultural Statistics Service’s Census
of Agriculture conducted in 2017 revealed that there were 11,650 certified organic farms in
the U.S. The market for organic products in the U.S. topped USD 50 billion in 2018 [22].

The studies around Agroecology and ecological farms focus on the construction pro-
cess and policy formulation of Agroecology, the economic and social effects of Agroecology,
the analysis of the influential factors of ecological farms and the path to achieve sustainable
agricultural development. For example, Paul et al. analyzed the sustainability challenges
faced by Indian agriculture and proposed an analytical framework including scale, afford-
ability and sustainable input to promote the sustainable development of Indian agricultural
systems [23]. Pimbert et al. revealed the development dilemma of agricultural ecological
practice projects, aiming to explore agricultural production models that support agricul-
tural ecological development [24]. Kujala et al. used the organic agriculture area in Finland
as a case study. Through large-scale investigation and comparative analysis, they found
that the development of Agroecology in Finland was affected by factors such as planting
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tradition, farmers’ attention and government subsidies [25]. Brown draws on three case
studies of civil society organizations promoting sustainable agriculture in India to assess
their potential to address contemporary agricultural issues [26]. Research on Agroecology
also pays attention to the political, economic, social and cultural impacts brought about
by its development. Researchers believe that ecological agriculture is closely related to
food security and national governance [27]. Compared with conventional fossil agriculture,
Agroecology increases farm income and creates more employment opportunities while
helping connect agriculture downstream in the industrial chain, which creates strong links
between rural areas and urban consumers [28,29]. To sum up, Agroecology enhances the
resilience and sustainability of rural and agricultural areas [30–32]. Moreover, Agroecology
has made positive contributions to enriching agricultural landscapes and maintaining
biodiversity [17]. However, some scholars argue that developing ecological agriculture
may also mean higher input costs, lower output efficiency and potentially higher prices for
agricultural products [33–35]. The need for agricultural specialty talents is also a challenge
for ecological agriculture [36]. In any case, according to the above studies, Agroecology in
modern society is a multifunctional complex integrating production, living and ecology as
a comprehensive system composed of nature and human beings [37]. However, few studies
have concretely offered solutions for evaluating the development potential of Agroecology
in different countries. No consistent criteria have been defined to regulate the development
of Agroecology, which, on the contrary, hinders the development of Agroecology and
food security.

Corresponding to ’Agroecology’ in the West, China began its exploration in modern
ecological agriculture in the 1980s, with the term ’China Ecological Agriculture’ (CEA) ap-
pearing. In the process of rapid modernization, China’s agricultural land area is generally
decreasing [38], and the service value of agro-ecosystems is also declining [39]. In order to
solve these problems, the Chinese government began to carry out ecological agriculture
pilot work in nationwide areas. Over time, the level and scope of pilot areas have been
continuously enriched, and significant social, economic and ecological benefits have been
achieved [40]. The ecological farm is the basic unit of China’s ecological agriculture con-
struction following the principles of ’Integration, Coordination, Circulation, Regeneration,
and Diversity’, which play a leading and exemplary role in green agricultural development.
The development of ecological agriculture is an indispensable way to promote the green
transformation and development of agriculture, while the construction of ecological farms
is providing a stronger carrier for this program. As of 2022, China’s gross agricultural
product is CNY 5194.2 billion, and more than 1 billion mu of high-standard farmland
has been constructed. The number of registered family farms and farmers’ cooperatives
reached 3.9 million and 2.22 million, respectively, which are potential actors in developing
of organic agriculture. In addition, the total number of green food and organic agricultural
units nationwide is 27,246 as 102 organic agricultural bases are constructed [41,42].

Currently, there are obvious differences and diversity of China’s ecological farms in
different regions, and discussions on China’s ecological agriculture begin. On the one
hand, existing studies have explored the ecological issues faced in the process of China’s
agricultural development, such as carbon footprint and the risk of pesticide application [34].
On the other hand, researches have discussed more about China’s specific ecological
agriculture practices and processes, most of which focus on specific provincial cases [43–45].
On a national scale, some researchers apply panel data of China to measure the role of
agricultural green production technologies such as water-saving irrigation in reducing
carbon emissions [46]. Some scholars, based on Chinese Internet agricultural news, use text
analysis methods to explore the differences in ecological agriculture development pattern,
but there are large deviations in their data sources [47]. To sum up, the existing research
helps us better understand the characteristics of China’s ecological farms in the context of
digital transformation in rural areas. Nevertheless, they mostly discuss the specific cases
of ecological agriculture practice at the provincial level, lacking a macroscopic discussion
on the spatial distribution pattern at a national scale. At the same time, as an important
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carrier of ecological agriculture, the construction of ecological farms will be affected by
many factors from the selection of pilot sites and construction practice to evaluation and
acceptance, which determine the spatial distribution of ecological farms. Due to the large
differences in economic and social development between different regions, coupled with
the long construction period of ecological farms, large capital investment and slow return
on investment, there are great differences in the spatial distribution of ecological farms in
China. How to explain this distribution difference is an urgent problem to be discussed.
However, the research on ecological farms is mainly based on qualitative analysis. There is
a lack of discussion on the spatial pattern, influential factors and formation mechanism of
ecological farms in specific countries or regions, which is not conducive to the formation
of holistic cognition and deepening understanding from spatial distribution to internal
logic. In addition, due to the large differences in the standards and definitions of ecological
agriculture in various regions, and the fact that the accuracy of the diversified data sources
cannot be guaranteed, the existing research still has shortcomings in the generalizability of
the research results.

Therefore, this study selects the directories of national-level ecological farms released
by the MARA. First, spatial analysis methods such as the nearest neighbor index, the
imbalance index and kernel density are used to explore the spatial distribution pattern
and evolution characteristics of ecological farms in China. At the same time, based on
Geodetector, this study analyzes the influential factors of the construction and distribution
of ecological farms in China from five aspects: environmental conditions, industrial foun-
dation, economic and social development level, science and technology level and financial
support. This study not only fills in the gaps in the current research on the spatial distribu-
tion of ecological farms in China but also clarifies the influencing mechanism of the spatial
distribution of ecological farms, leading to a better understanding of the development
pattern of ecological agriculture. Then, we put forward feasible suggestions for optimizing
the spatial distribution of ecological farms and balancing the development of ecological
agriculture in China. Furthermore, we present a viable approach for countries that are
facing population, ecology and food security issues to develop ecological agriculture.

2. Materials and Methods

2.1. Data Sources

This study selects the first batch and the second batch of national-level ecological
farm directories released by the MARA in 2021 and 2022 for spatial analysis, covering
31 provinces and cities in China (data from Hong Kong, Macao and Taiwan are temporar-
ily absent), a total of 432, of which the first batch consisted of 132 directories and the
second batch 300. These ecological farms are awarded a national-level title in strict com-
pliance with the ‘Technical Specification for the Assessment of Ecological Farm’ (NY/T
3667-2020) released by the MARA in 2020, which sets out detailed and strict regulations
on land conditions, location selection, surrounding environment, planting and breeding
patterns, packaging of agricultural products and farm management. In particular, the
technical specification details green development indicators such as livestock and poultry
density, pesticide and fertilizer application, water-saving ratio, organic waste recycling,
feed composition and other aspects.

Since ecological farms in China are represented as point elements on the provincial
scale, we obtain the coordinate data of each ecological farm through the AutoNavi map
open platform, then convert and verify them in order to build a spatial attribute database.
In particular, the datasets of 2021 and 2022 are constructed using the same methodological
basis, and there are no identical data. All maps in this article are based on the standard
map No. GS (2020) No. 4619 from the standard map service website of the China Ministry
of Natural Resources, whose base map has not been modified.

The construction, operation and acceptance of ecological farms in China require a
certain period of time, and the evaluation of agricultural technology also requires a certain
development period [48]. Therefore, taking account of the availability and timeliness of
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data, the cross-sectional data in 2020 are selected to construct the indicator system in the
link of Geodetector. The data of each indicator come from the China Statistical Yearbook,
China Rural Statistical Yearbook and China Science and Technology Statistical Yearbook.

2.2. Research Methods
2.2.1. The Nearest Neighbor Analysis

The nearest neighbor index R is the ratio of the actual nearest distance to the theoretical
nearest distance of a point element in geographic space, which is used to indicate the spatial
distribution type (random, uniform or clustered) of point elements. In this study, the nearest
neighbor analysis is used to figure out the overall distribution of ecological farms in China.
The formula for the index is

R =

−
ri
−
rj

=
2
−
ri√

n
A

(1)

where
−
ri denotes the actual nearest distance,

−
rj denotes the theoretical nearest distance,

n denotes the total number of ecological farms and A denotes the research area. When
R = 1, it indicates that ecological farms are randomly scattered throughout the space; R > 1
indicates that ecological farms tend to be uniformly spatially dispersed; and R < 1 indicates
ecological farms tend to be spatially clustered [49].

2.2.2. The Imbalance Index Analysis

The imbalance index S can analyze the distribution balance of ecological farms in
various provinces. This study applies the Lorenz curve to figure out the imbalance index S
of ecological farms. The formula for the index is

S =
∑n

i=1 Yi − 50(n + 1)
100n − 50(n + 1)

(2)

where n denotes the total number of provinces researched and Yi denotes the cumulative
percentage of ecological farms in the ith province. When S = 0, it shows that ecological
farms are evenly distributed in each province, and S = 1 shows that the ecological farms are
concentrated in a certain province. When S is between 0 and 1, a larger value of S indicates
a more uneven distribution of ecological farms [50].

2.2.3. Kernel Density Analysis

Kernel density analysis is a nonparametric estimation method that analyzes charac-
teristics of spatial distribution based on the spatial properties of data. This study uses the
kernel density formula to analyze the spatial distribution characteristics of ecological farms
in China. The higher the kernel density, the denser the ecological farm, and vice versa. The
formula is

F(x) =
1

nh2π ∑n
i=1 K

[
1 −

(
(x − xi)

2 + (y − yi)
2

h2

)]2

(3)

where h denotes the search radius, (x − xi)
2 + (y − yi)

2 denotes the distance from the
estimated point X to the ith point and n is the total number of ecological farms [51].

2.2.4. Standard Deviation Ellipse Analysis

The standard deviation ellipse (SDE) analysis can reveal the directionality, extension,
centrality and spatial form of the spatial distribution of the elements studied. This study
applies SDE to analyze the distribution scope, direction changes and gravity center transfer.
The formulas are as follows:

SDEx =

√√√√∑n
i=1

(
xi − −

x
)2

n
, SDEy =

√√√√∑n
i=1

(
yi − −

y
)2

n
(4)
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where SDEx and SDEy are the axis lengths in the x and y directions of the standard

deviation ellipse. (xi ,yi) are the coordinates of every ecological farm. (
−
x,

−
y ) is the average

center of ecological farms’ distribution; n is the total number of them. The long axis is the
direction with the most spatial distribution, while the short one is the direction with the
least spatial distribution [52].

2.2.5. GeoDetector Analysis

GeoDetector is a type of statistical method which mainly compares the total variance
of various impact factors in different regions with the total variance in the total region to
detect whether their spatial changes are consistent. The formula is

qDH = 1 − 1
nσ2

H
∑m

i=1 nDiσ
2
HDi

(5)

where D is the factor selected; H is the dependent variable; qDH denotes the explanatory
power of the factor D to the dependent variable H; n and σ2

HD
denote the total number

of ecological farms and the total variance; m is the classification number of type i factors;
and nDi and σ2

HDi
denote the number and variance of ecological farms for type i factors.

According to the principle of Geodetector, the qDH ranges from 0 to 1. And the larger the q
value, the stronger the explanatory power of the differentiation factor D for the dependent
variable H [53].

3. Results

3.1. The Overall Spatial Distribution Pattern and Evolution Characteristics of Ecological
Farms in China
3.1.1. Spatial Agglomeration Analysis

As shown in Figure 1, the vast majority of ecological farms in China are distributed
in the southeast side of the Heihe–Tengchong Line, which is a basic dividing line of the
physical geography and human geography in China. The distribution of ecological farms
on both sides of the line has significant differences and shows a strong agglomeration.
The results of the nearest neighbor index analysis in Table 1 show that the actual nearest
distance of ecological farms in both 2021 and 2022 is smaller than the theoretical nearest
distance. The overall R-value is less than 1 (0.477), which passes the significance test,
indicating that ecological farms in China are spatially agglomerating.

Table 1. Analysis results of nearest neighbor index.

Year
Theoretical Nearest

Distance/km
Actual Nearest
Distance/km

Z R

2021 106.652 62.210 −8.953 0.593 ***
2022 103.437 53.750 −15.917 0.520 ***
Total 87.099 41.541 −20.798 0.477 ***

Notes: *** represent significance at 1%.

The reduction of the R-value from 0.593 to 0.520 shows that the degree of agglomera-
tion is strengthening, although the scope of ecological farms in China is expanding with
more provinces covered. The quantity of ecological farms in different provinces shows
significant spatial differentiation. This also tells us that ecological farms have great potential
for development, and the ecological farms constructed can drive the synergetic construction
of others in the same region.

At the same time, the imbalance index S of ecological farms of the provinces from
the first batch (0.699) to the second batch (0.371) shows a decreasing trend, but the overall
imbalance index was 0.448. It indicates that even though the distribution scope of ecological
farms has expanded over time, the overall distribution is still imbalanced. Thus, the
unbalanced state of ecological farms is still relatively serious. It is of necessity to further
balance the construction quantity of every province. Specifically, the number of ecological
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farms in Jiangsu Province currently ranks first in the country, with 50, followed by Zhejiang,
Anhui, Shanghai, Hubei and Shandong provinces, each with more than 20 ecological farms.
However, a total of 12 provinces have a small number of ecological farms, each of which
is less than 10 (Figure 2). Moreover, the two provinces of Tibet and Qinghai have no
national-level ecological farms yet. Compared with the pattern of uniform distribution, the
Lorenz curve of ecological farms in various provinces shows a clear upward form. The
total number of ecological farms owned by the seven provinces with the largest number of
ecological farms accounts for more than 50% of the total number of ecological farms in the
country. Central China has a high concentration.

Figure 1. Overall spatial distribution of ecological farms in China. (Data from Hong Kong, Macao
and Taiwan are temporarily absent.)
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Figure 2. Quantities and Lorentz curve of ecological farms in each province of China. (Data from
Hong Kong, Macao and Taiwan are temporarily absent.)

3.1.2. Spatial Density Analysis

The results of kernel density analysis (Figure 3) show that in recent years, the two
batches of ecological farms have shown a spatial distribution pattern of ’high in the east
and low in the west with a concentrated core’, manifesting as a circle structure with
the Yangtze River Delta as the core and radiating outward. The area with high nuclear
density continues to spread. The first batch of ecological farms formed a high-value area
in East China with Yangtze River Delta as the core, which mainly concentrated in the
four provinces of Jiangsu, Zhejiang, Anhui and Shanghai. And there are scattered lower-
value areas in Central China, North China, South China and Southwest China. Compared
with the first batch, the distribution range of the second batch of ecological farms has
spread significantly, spreading almost all around the country. At the same time, sub-high-
value areas appeared in Hubei Province, Fujian Province and Beijing. The area with high
nuclear density expanded to North China and Central China. On the whole, since there are
300 ecological farms in the second batch which account for a relatively high proportion
of the total ecological farms, their distribution kernel density also determines the overall
spatial kernel density of the current ecological farms to a certain extent.

3.1.3. Spatial Density Analysis

According to the construction sequence of ecological farms in China, its overall scope
has gradually expanded. The area of the SDE of ecological farms is obviously enlarged,
and both the major axis and the minor axis of the SDE show an increasing trend, with
growth rates of 45.82% and 53.79%, respectively. The center of the SDE has moved by
267.118 km (Table 2, Figure 4). These indicate that the agglomeration core area of ecological
farms continues to expand, and the distribution center gradually transitions from Huainan
City, Anhui Province (East China), to Zhumadian City, Henan Province (Central China),
while the current overall distribution center is located in Xinyang City, Henan Province
(Central China). The azimuth angle of the SDE of ecological farms has changed from 50.46◦
to 87.18◦, which means that the number of ecological farms in each province, especially
the provinces in the east–west direction, has increased more evenly, mainly resulting from
the construction of the second batch of ecological farms. Specifically, the number of the
second batch of ecological farms in eight provinces and cities including Zhejiang, Hubei,
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Jiangsu, Shandong, Hunan, Fujian, Shanghai and Anhui exceeded 15, showing a contiguous
distribution in the east–west direction.

Figure 3. Kernel density estimation programs of ecological farms in China. (Data from Hong Kong,
Macao and Taiwan are temporarily absent.)

Table 2. Parameter of standard deviation ellipse of ecological farms in China.

Batch Area/10,000 km2 SDEx
(◦E)

SDEy
(◦N)

XStdDist
/100 km

YStdDist
/100 km

Azimuth
Angle (◦)

First 129.325 116.933 32.029 8.570 12.442 50.461
Second 290.022 114.145 32.473 13.179 18.144 87.179

Total 248.114 114.997 32.337 12.308 16.621 82.495

Figure 4. Analysis results of standard deviation ellipse of ecological farms in China. (Data from Hong
Kong, Macao and Taiwan are temporarily absent.)
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3.2. Analysis of Influential Factors Based on Geodetectors
3.2.1. Construction of the Influential Factor Indicator System

Referring to the existing research results and combined with the actual construction of
ecological farms in China, this study mainly explores the influential factors of their spatial
distribution from five aspects (Table 3): environmental conditions (A), industrial foundation
(B), economic and social development level (C), science and technology level (D) and financial
support (E). In terms of environmental conditions, compared with the conventional decentral-
ized agricultural production, the construction of ecological farms requires contiguous land.
According to the ‘Technical Specification for the Assessment of Ecological Farm’ issued by the
MARA, an area greater than 2 hm2 is one of the basic conditions for application of an ecological
farm. So, the farmland density (A1) of the region can be a factor to measure the environmental
conditions, which is the ratio of sown area to administrative area of each province. At the same
time, the water resource endowment is another significant factor to agricultural development,
which is measured by the amount of water resources per unit administrative area (A2). The
road network density (A3) reflects the traffic basis of ecological farm construction. Industrial
foundation (B) is also an important factor in the construction of ecological farms. The number of
agricultural legal entities (B1) indicates the scale of agriculture in the region. At the same time,
due to the strict and scientific construction standards of ecological farms, leading enterprises
with great scale and strength are the key players in the construction and operation of ecological
farms. Therefore, the number of leading agricultural enterprises (B2) is also one of the impor-
tant influential factors, and the degree of agricultural modernization (B3) is the technical basis
for the construction of ecological farms, expressed by the total power of agricultural machinery
per unit area [54]. Per capita GNP (C1) and the size of the resident population (C2), which are
important indicators to measure the regional economic and social development level (C), can
reflect the market demand of ecological farms and the social investment in the construction of
ecological farms [44]. In terms of science and technology level (D), agricultural technological
innovation is an important drive for the construction of ecological farms, and there is a demand
for R&D expenditure on the application of science and technology. Therefore, R&D expendi-
ture (D1) could reflect the intensity of scientific and technological activities that contribute to
ecological agriculture from every sector. Meanwhile, the Internet access rate (D2) reflects the
digital development level of a region to a certain extent [48,55]. As for financial support (E),
financial support is another important drive for the construction of ecological farms, measured
by total fiscal expenditure (E1) and agriculture-related expenditure intensity (E2) [56]. As
the convergence of the primary sector with the secondary and tertiary sectors is a distinctive
feature of ecological farms, and as infrastructure construction is also an indispensable condition,
we are concerned with the overall fiscal expenditure of the government.

Based on the selected factors, this study adopts the Jenks Natural Breaks Classification to
discretize the data of each factor, which are divided into five levels. Following the classification
results, we adjust the classification of a few critical data of B2, C1, D1 and D2 in order to
get a better discretization result. Finally, the schematic diagram of the discretization result
of different influential factors is drawn as follows (Figure 5). According to the number N
of ecological farms in every province from left to right, it can be seen that there is a certain
gradient differentiation among the influential factors in different provinces, which shows a
trend from small to large as a whole.

Table 3. Influential dimensions and factors of the construction of ecological farms in China.

Dimensions Factors Definitions Unit

Environmental
conditions

(A)

Farmland density(A1) The ratio of farmland area to
administrative area %

Water resource
endowment (A2)

Water resources per unit
administrative area t/km

Road network
density (A3)

Road length per unit
administrative area km
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Table 3. Cont.

Dimensions Factors Definitions Unit

Industrial
foundation

(B)

The number of agricultural
legal entities (B1)

Total number of legal entities
in agriculture,

forestry, animal husbandry
and fishery

Number

The number of
leading agricultural

enterprises (B2)

Number of national-level key
leading enterprises in

agricultural
industrialization by province

Number

The degree of agricultural
modernization (B3)

Total power of agricultural
machinery

per unit administrative area
kW/km2

Economic and social
development level (C)

Per capita GNP (C1)
Per capita gross national

product
by province for the year

10 thousand CNY

The size of the resident
population (C2)

The size of the resident
population

at the end of the year
Number

Science and
technology

level (D)

R&D expenditure (D1) R&D expenditure by province
for the year 10 thousand CNY

Internet access rate (D2)
Number of Internet access

ports
per unit administrative area

Number/km2

Financial
Support (E)

Total fiscal
expenditure (E1)

Total financial expenditure
by province for the year Billion CNY

Agricultural expenditure
intensity (E2)

Expenditure on agricultural,
forestry and water affairs per

unit administrative area
Billion CNY

Figure 5. Discretization results of every influential factor in different provinces. (Data from Hong
Kong, Macao and Taiwan are temporarily absent.)
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3.2.2. Factor Detection Analysis

The analysis results of Geodetector (Table 4) show that the values of the selected
twelve factors are all greater than 0 and are positive factors, of which nine are significant at
the 0.05 level and one is significant at the 0.1 level. The q value represents the explanatory
power of each influential factor. The q value of all factors is higher than 0.2, among which
the q value of nine factors exceeds 0.4, up to 0.556, showing that all factors have strong
explanatory power. The factors are sorted according to the q value from high to low, which
are A1 (0.556) > B1 (0.496) > C1 (0.485) > D1 (0.462) > C2 (0.447) > E1 (0.447) > A2 (0.438) >
B2 (0.435) > A3 (0.410) > B3 (0.392) > D2 (0.355) > E2 (0.226).

Table 4. Single-factor detection results.

Factors q Value Rank

Farmland density (A1) 0.556 ** 1
Water resource endowment (A2) 0.438 ** 7

Road network density (A3) 0.410 ** 9
The number of agricultural legal entities (B1) 0.496 ** 2

The number of leading agricultural enterprises (B2) 0.435 8
The degree of agricultural modernization (B3) 0.392 * 10

Per capita GNP (C1) 0.485 ** 3
The size of the resident population (C2) 0.447 ** 5

R&D expenditure (D1) 0.462 * 4
Internet access rate (D2) 0.355 * 11

Total fiscal expenditure (E1) 0.447 ** 6
Agricultural expenditure intensity (E2) 0.226 12

Notes: *, ** represent significance at 10%, 5%, respectively.

In factor interaction detection, the types of enhancement between factors in-
clude bifactor enhancement and nonlinear enhancement. Bifactor enhancement means
q(X1∩X2) > Max(q(X1), q(X2)), while nonlinear enhancement means
q(X1∩X2) > q(X1) + q(X2). The result of factor interaction detection (Figure 6) shows
that the combined explanatory power of any two factors after interaction is stronger
than that of a single factor, whose enhancement types are mostly bifactor enhancement.
Among the 66 bifactor combinations formed by 12 factors, the q values of the three
factor combinations of ‘D1∩B1’, ‘B1∩A1’ and ‘E1∩D1’ all exceed 0.9, which has high
explanatory power. The number of factor combinations with a q value exceeding
0.8 reaches 20 (Table 5). Among these factor combinations, the science and technology
level (D) appears most frequently. The number of factor combinations containing
the D1 factor is eight, while the number of factor combinations containing the D2
factor is six, so these two factors have a greater strengthening effect on other factors.
This shows that the science and technology level of the region can eliminate the con-
straints of environmental conditions, industrial foundation and other factors on the
development and construction of ecological farms.

Table 5. The top 20 factor combinations with the highest explanatory power after interaction.

Factor Combination q Value Factor Combination q Value Factor Combination q Value

D1∩B1 0.921 C3∩B1 0.856 D1∩A2 0.831
B1∩A1 0.911 D1∩B2 0.854 E1∩D2 0.825
E1∩D1 0.904 D2∩B1 0.845 D2∩C2 0.823
C2∩A1 0.897 D1∩C2 0.842 E2∩C2 0.822
D2∩A2 0.887 D1∩C3 0.841 E2∩B1 0.818
D2∩B3 0.863 D1∩B3 0.834 E1∩A1 0.801
D2∩B2 0.857 D1∩A1 0.832
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Figure 6. Interaction detection results of factor combination. (The detection results with an under-
line indicate nonlinear enhancement, while the other detection results are bifactor enhancement.
*, ** represent significance at 10%, 5%, respectively).

4. Discussion

4.1. Influence Mechanism of Construction and Distribution Ecological Farms in China
4.1.1. Environmental Conditions as a Fundamental Factor

Environmental conditions provide the natural basis for the construction of ecological
farms in China, and the concentration of agricultural natural production resources is
an important condition for the high-quality development of agriculture. China has a
vast territory where the natural conditions of different regions vary greatly [57,58]. So,
farmland density and water resource endowment are the two basic reasons for the uneven
distribution of ecological farms. The higher the farmland density in the region and the
greater the water resource endowment, the greater the number of ecological farms will
be constructed. Compared with conventional scattered agricultural production units,
ecological farms are generally larger in size, meaning that their construction requires more
land. Most of the provinces in East China, Central China and North China are located in
the plains with flat terrain and good terrain conditions. There is more farmland per unit
area, so their farmland density ranks among the top in China. Provinces such as Jiangsu,
Shandong, Anhui and Hubei have a large number of ecological farms, all of which are more
than 20. These provinces are located in the monsoon region with abundant average annual
precipitation and a dense river network, which provides sufficient water resources for
ecological farms. And the improvement of farmland water conservancy facilities of these
provinces further guarantees the supply of agricultural water. In contrast, due to the large
number of mountains and plateaus, there is less available farmland in the northwest and
southwestern regions of China where the number of ecological farms is generally low. There
are currently no farms in Qinghai and Tibet that meet the construction standards. Although
the water and heat conditions are sufficient in South China, the number of ecological
farms is relatively small as a result of the numerous mountains and hills and low-density
farmland. In addition, road network density is another basic condition for the construction
of ecological farms [59]. As the most crucial rural infrastructure, the accessibility of rural
roads is a basic condition for rural production and living activities. Compared with
conventional agriculture, the extension of the industrial chain from production to sales
is a perceptible transformation of ecological farms. Well-developed road construction is
conducive to market connection and industrial chain integration [60]. The road network
density in eastern China is significantly higher than that in western China, which also
promotes the construction of ecological farms. However, some rural areas in China are still
faced with underdeveloped transportation, and the accessibility of farmland for agricultural
machinery is low, which also hinders the modernization of agriculture.
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4.1.2. Economic and Social Development Level and Financial Support as Decisive Factors

The government’s policy and funding support is a decisive factor in the construction
of ecological farms. It is specifically reflected in the normative documents issued by the
government that determine the quota allocation for the evaluation of ecological farms
in various provinces. In recent years, the MARA has initiated a number of construction
standards and technical specifications, guiding agricultural entities to practice the concept
of green development. The construction of ecological farms needs to go through working
procedures such as government recommendation, material submission, review and release.
In 2021, the MARA carried out the evaluation of ecological farms with the Yangtze River
Delta as the focus on the basis of comprehensive consideration of the environmental
conditions and economic and social conditions of each province. So, the pilot work also
directly determines the distribution of ecological farms. Therefore, there are 80 ecological
farms in Jiangsu, Anhui, Zhejiang and Shanghai among the first batch of ecological farms,
accounting for more than 60% of the country’s total. The second batch of ecological farms in
2022 expanded the scope of the pilot project, so that the number of provinces with ecological
farms passing the acceptance increases from the 21 to 29. In eastern China, the per capita
GDP is relatively high, and the population is dense, leading to high demand for ecological
farms and promoting the circulation of factors between ecological farms and the outside
world. The government’s policy and financial support are also important forces for the
reclamation of abandoned farmland. The rapid advancement of urbanization in China has
brought about the transfer of rural labor force, triggering a contradiction between the input
cost of rural agriculture and the scale of development. Thus, the abandonment of a large
amount of farmland restricts the scale of agriculture transformation and development [61].
Against the background of China’s territorial planning, strictly adhering to the boundary
line of prime farmland protection is a strategic need to ensure national food security.
Various policies have been introduced and large funds have been invested to promote the
reclamation of abandoned farmland and reduce farmland fragmentation. The increase in
expenditure on agriculture, forestry and water affairs is conducive to the improvement of
infrastructure such as farmland water conservancy and protection, thereby improving the
suitability for agricultural production, which provides a suitable environmental foundation
for the construction of ecological farms. In addition, the policy adapting measures to local
conditions has further expanded the reclamation of abandoned farmland by increasing
financial subsidies to agricultural enterprises and farmers. It is also conducive to the
expansion of China’s current overall farm area and provides reserve land resources for
the construction of ecological farms. Meanwhile, the government’s financial support
also promotes the development of agricultural science and technology, providing strong
support for the construction of ecological farms [62]. Under the MARA’s policy guidance,
provincial and municipal governments in China provide funding and subsidies to support
the construction of ecological farms, with follow-up supervision and eligibility verification.
In contrast to conventional agriculture, these funds and subsidies are mainly applied to the
purchase of agricultural machinery, compensation for ecological production and tax relief
for farms.

4.1.3. Industrial Foundation and Science and Technology Level as Key Factors

Industrial foundation and science and technology level are the key factors in the
construction of ecological farms in China. Agricultural enterprises are the basic subjects
of agricultural production, among which the leading enterprises are the key subjects
of applying agricultural technology to the construction of ecological farms. According
to the result of Geodetector, the science and technology level is a vital driving factor
for the construction of ecological farms for it can significantly enhance the explanatory
power of other factors after interaction. The level of R&D expenditure in economically
developed areas is also relatively high, which drives the improvement of local scientific and
technological innovation capabilities. And it promotes agricultural development through
the transformation, output and application of agricultural technological achievements and
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further transforms scientific and technological benefits into ecological benefits [63]. Existing
studies have shown that there is an agglomeration effect on agricultural R&D investment
and agricultural GDP, and it has a certain spillover effect which enables enterprises to
conduct technical learning and exchanges based on similar locations and environment [64].
This is mainly reflected in the construction of ecological farms. The cooperation and
interaction between agricultural enterprises and scientific research institutions promotes
the intelligentization of agricultural production and management, which is one of the
most important construction standards of ecological farms. And the technologic exchange
between different agricultural enterprises has also improved the scope of agricultural
technology application. In addition, with the help of the increasing Internet access rate, the
technology acceptance of surrounding farmers has also been improved accordingly after
receiving information and training [65]. This also means that the technological practice
of the ecological farm does not limit to the interior but expands to the entire surrounding
production area. Taking East China and Central China as examples, the agriculture in these
two regions has a relatively solid industrial foundation where there are a large number
of national-level leading enterprises whose R&D activities are relatively active. A case
in point is Shanghai. Although it is not a large agricultural province where the area and
density of farmland are very limited, Shanghai’s high R&D investment equips it with
more active scientific and technological innovation capabilities than other provinces. The
ecological farms in Shanghai introduce multiplex modern agricultural technologies to
promote agricultural transformation and upgrading, which makes the number of ecological
farms rank among the top provinces in China. The application of agricultural science and
technology brings great economic, social and ecological benefits.

Above all, the mutual influence of five dimensions of environmental conditions,
industrial foundation, economic and social development level, science and technology level
and financial support can be represented by Figure 7, which explains the mechanism that
affects the spatial distribution of ecological farms in China.

Figure 7. Influencing mechanism of the construction and spatial distribution of ecological farms in China.

4.2. Development and Research Prospects of Ecological Farms

Whether from the development background or specific practice, the principles and
specific practices followed by ecological farms in the West are similar to those in China,
that is, pay attention to the social and economic effects brought by ecological farms, and
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strive to explore the development model of ecological agriculture that adapts to its own
reality [66–69]. However, in the context of China, the construction of ecological farms is
largely influenced by land system, national strategy and local government. Especially in the
context of rural revitalization and common prosperity, the practice of ecological agriculture
provides an emerging power for promoting the modernization and in-depth transformation
of agriculture [70]. Therefore, this study attempts to reveal the spatial distribution and
formation mechanism of ecological farms from three aspects: pattern, influential factors and
mechanism, so as to provide a systematic and comprehensive analysis for understanding
the formation and development of ecological farms in China. At the same time, it reveals a
development mode different from Western ecological farms and strengthens the new trend
of ecological farm development under the background of rural digitalization in China.
We found that the spatial distribution pattern of China’s ecological farms in this study is
highly consistent with the pattern of agricultural green production efficiency [71]. And it
provides possible evidence that ecological agriculture has the potential to promote green
production [72]. Based on existing research, we are able to attain a clearer understanding
of the irreplaceable role of ecological farms in scientific and technological innovation
activities as a part of the private agriculture sector [73]. Moreover, this study focuses
on the requisite role of science and technology level in the construction of ecological
farms based on Geodetector. It also corresponds with the view of existing research which
regards digital transformation and innovation as the core driving force of green agriculture
development [74,75]. Thus, China’s ecological agriculture has the potential for sustainable
development. In recent years, it has gradually played a leading role in the international
community and received extensive attention and high evaluation. The research is expected
to provide reference for the development of ecological agriculture in other countries around
the world, especially in developing countries for which developing ecological agriculture
is an effective measure to address population, food and pollution issues.

This study conducts some analysis on the spatial distribution pattern of ecological
farms at a national scale. Honestly speaking, there are still some deficiencies in this
study. On one hand, since the construction of ecological farms is a continuous work, the
development level of ecological farms varies among every province in China, which it is
difficult to compare in the same study. This study selects national-level ecological farms
and has not yet discussed provincial-level ecological farms whose amount is larger. On
the other hand, due to the diversity in environmental conditions and industrial foundation
in most provinces, the construction of ecological farms within each province and city is
also in a significant imbalance. Therefore, the measurement method based on a fixed
indicator system needs further improvement. How to evaluate the construction and spatial
distribution of ecological farms more accurately in the future is a problem in need of
solution. Above all, safeguarding food security is a systemic project that requires multi-
dimensional consideration. Ecological farms play an exemplary role in both strengthening
agricultural infrastructure and improving agricultural technology and equipment. In
addition, how to establish a sustainable investment and financing mechanism, improve the
compensation pattern for ecological production and enhance the training of agricultural
specialty talents are also significant issues in need of more attention in the future to
safeguard food security and empower rural revitalization.

5. Conclusions

This study explores the spatial distribution patterns of national-level ecological farms
in China by spatial analysis. And the Geodetector method is used to deeply analyze the
influential factors with relevant economic and social data. The main conclusions of this
study are as follows:

(1) The imbalance indexes of China’s ecological farm distribution in each province is
less than 1, and the second batch has decreased compared with the first batch. The
nearest neighbor index is similarly less than 1 but increases with time. This shows that
currently the distribution of China’s ecological farms in various provinces is relatively
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uneven, but the imbalance of ecological farms is weakening with the expansion of the
distribution scope, while the agglomeration is increasing. Generally speaking, the
distribution of China’s ecological farms presents a spatial pattern of ‘high in the east
and low in the west with concentrated cores’. The high-value areas of core density are
mainly concentrated in East China and Central China, which continue to expand. As
construction progresses, the overall development focus has gradually shifted from
East China to Central China, with the number of ecological farms growing in the
provinces that lie on the southwest–northeast direction.

(2) The analysis result of Geodetector shows that the q value of every factor included in
the five dimensions of environmental conditions, industrial foundation, economic
society, technological level and financial support is more than 0.2, most of which are
concentrated above 0.4, meaning that the selected factors have a significant impact
on the spatial distribution of ecological farms. When sorting the results of factor
detection, the water resource endowment, the number of agricultural legal entities,
per capita GDP, R&D expenditure and resident population are the top five influential
factors of the distribution of ecological farms. The result of interaction detection
shows that R&D expenditure and Internet access rate under the technological level
dimension have a significant enhancement effect after interacting with other factors.

(3) As a basic factor, environmental conditions determine the construction foundation of
ecological farms. The economic and social development level and financial support
are the decisive factors for the construction of ecological farms. The level of economic
development affects the number of ecological farms built, while financial support
in conjunction with policy from government plays a decisive role in the process of
piloting, evaluation and acceptance of ecological farms. The industrial foundation
and scientific and technological conditions are the key factors. The technological
conditions are based on the original industrial foundation to promote the upgrading of
agricultural science and technology. To a certain extent, they can offset the limitations
of environmental conditions and enhance the impact of financial support. It has
greatly promoted the modernization of ecological farms.
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Abstract: Agricultural trade, which involves the exchange of virtual water and land resources, can
effectively regulate the allocation of resources among countries while enhancing the well-being of
resource-rich and resource-poor nations. China’s animal products trade market concentration is
greater, and the livestock industry consumes more water than other agricultural sectors. In order
to alleviate the pressure on China’s domestic water and land resources and to ensure that Chinese
residents have access to animal products, this article examines the trade situation and drivers of
virtual water and land resources related to Chinese animal products trade. This study used the heat
equivalent method to measure the virtual water and land flows of the import and export of beef,
pork, and mutton from 1992 to 2018, which is followed by the gravity model to investigate the factors
impacting China’s flow of virtual land and water related to livestock products trade. We found that
the economic development and the agricultural resources of exporters, as well as China’s agricultural
employment rates, have a stable beneficial impact on China’s livestock imports. The population of
importing nations, China’s cultivated land area, and the livestock production index of importers and
exporters have a positive impact on the export of livestock products from China. Our results remain
robust following a series of additional tests.

Keywords: livestock products; gravity model; virtual water; virtual land; economic distance

1. Introduction

Recent animal diseases and public health crises have had a significant effect on China’s
livestock business and animal product supply [1]. Due to African swine fever, China’s
pork output dropped significantly in 2019. Since the implementation of COVID-19 in
2020, both the volume of imported animal goods into China and the effective supply
of animal products have declined. Nonetheless, as China’s urbanization process has
advanced, the food consumption structure and consumptive mode of locals have altered
substantially, with the demand for high-protein, high-nutrition livestock goods such as
meat and eggs increasing greatly. Between 1982 and 2018, China’s per-capita consumption
of livestock products climbed by 37 kg [2], and the country now has the fastest-growing
meat consumption [3]. Despite recent years, the consumption of livestock products has
expanded dramatically, but there is still a large structural gap in the consumption of
animal products, which is impacted by climate, dietary patterns, and other factors. The
consumption of animal products has historically been led by pork, whereas mutton has
the highest growth rate. In this regard, China outlined in the Central Document No. 1 of
2022 its intention to protect the supply of food basket products for residents, accelerate
the expansion of beef and dairy production, and promote the pilot demonstration of the
transformation and upgrading of the grassland livestock industry. This demonstrates the
nation’s increasing importance in the provision of livestock products.

Farmland is necessary for the production of food and livestock products. Countries
place a premium on the preservation of arable land. For example, Japan places a premium
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on the sustainable management of agricultural land [4]. The livestock industry consumes
35% of the world’s crop-produced water [5], a third of the global agricultural water [6], and
one-fifth of the international food trade [7]. This percentage is expected to rise [8]. China is
not only compelled to regulate imports to ease internal food supply and demand problems
and resource tensions due to its lack of water and arable land [9], but it must also do so in
compliance with international trade laws of comparative advantage. China should employ
“two markets, two resources” both domestically and globally in order to secure its national
food security [10]. Virtual resources can indicate the amount of resources required to create
livestock products, or in a virtual sense, it can be tied to livestock products [11,12]; hence,
agricultural trade can conserve virtual resources between trading nations [13].

Statistics show that China’s imports of livestock products climbed by 43.4% in the first half
of 2020, and the trade deficit for animal products increased by 58.1% to $21.36 billion [14,15].
China’s consumption of livestock products as a percentage of total food consumption has
increased in recent years, and the average annual growth rate of per-capita consumption
of livestock products reached 3.61% from 1982 to 2018 [2]. In addition, there is a high
concentration of the import and export market and the influence of uncertainties such as the
COVID-19, which will be negative for China’s export and import trade of animal products
and the protection of local demand for livestock products. Consequently, what elements
impact China’s livestock trading structure? How can China optimize the nation’s trading
structure to lower the trade imbalance in livestock products while maintaining domestic
demand for animal products? These subjects demand in-depth research. Consequently,
the goal of this study is to analyze China’s livestock products trade flow variations from
1992 to 2018 by calculating the implicit quantity of virtual water and land resources in
trade. The installation of an enlarged gravity model will simultaneously explore the
factors that influence the flow of virtual water and land resources in China’s livestock
trade, recommending the improvement of animal product trade structure. This study
theoretically refines the investigation of virtual water and land resources in agricultural
product exchanges, expands the use of gravity models, and analyzes the phased effects
of trade policy. In practice, the content of this study can explain the flow of virtual water
and land in China’s international trade in livestock products, provide fact-based policy
recommendations for optimizing the trade structure of animal products in China, and
offer a fresh perspective for formulating a policy to safeguard China’s water and land
resources. At the same time, this study also analyzes how to ensure the food safety of
Chinese livestock products from the perspective of virtual land and water.

The remaining section is structured as follows. The literature review in Section 2 is
brief, Section 3 describes the technique employed in this study, and Section 4 provides em-
pirical results, which is followed by the discussion section. The final section is conclusions
and policy recommendations.

2. Literature Review

In recent years, researchers have concentrated on the implicit resource flow under-
lying agricultural commerce [13,16,17]. Agricultural trade involves a variety of resource
exchanges that can effectively regulate the allocation of resources among countries [18],
while improving the welfare of resource-rich and resource-deficient countries, and it is
one of the most important means of addressing food security in countries with inadequate
arable land and water. In addition, identifying the virtual land and water of agricultural
trade is an essential component of sustainable agriculture that can reduce the resource use
per unit production [19]. Virtual water was first proposed by British researcher Allan (2003)
and then evolved into the current idea, which refers to the water resources employed in
the production of goods and services [20,21]. In reference to the notion of virtual water,
virtual land is the quantity of land required for the production of goods and services [22,23].
Due to the growth of globalization, scholars have become interested in the virtual land
and water represented by commodity trading [24,25]. Ali et al. (2017) discovered that
agricultural import trade not only significantly alleviated the pressure of Chinese land and
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water shortages but also preserved global water and land resources [13]. The development
of local industrialization facilitates product trade and virtualizes the flow of virtual water
to satisfy the needs of local residents despite Iran’s relatively limited water resources [26].
This suggests that the essence of international agricultural trade is the transfer of virtual
land and water from regions of excess to regions of deficiency.

The study of virtual water and land resources in business has yielded numerous
achievements. Hoekstra and Mekonnen (2012) estimate the nation’s virtual water flow
based on agricultural and industrial goods, and they discovered that some nations rely
largely on foreign water resources [6]. Gerbens-Leenes et al. (2013) computed the water
footprints of poultry, pork, and beef in China, Brazil, and the United States and discovered
that the water footprints of these three animal products varied based on the conversion
efficiency, ingredients, and sources of their feed [27]. Brindha (2017) determined the vol-
ume of virtual water that was implicitly present in the trade of Indian crops and animal
husbandry from 1986 and 2013, with China being the largest importer and Indonesia being
the largest exporter of Indian virtual water [28]. In 2012, China was a net importer of
virtual land, as determined by Han and Chen (2018), who evaluated the changes in China’s
overseas trade of virtual land in 2012 [29]. Mekonnen et al. (2019) estimated the amount
of virtual water required for the production of livestock products in the United States
between 1960 and 2016, and they discovered that less water was consumed per unit of
animal products in 2016 [30]. By calculating water footprints for 42 agricultural products
and three livestock products in South Korea between 2003 and 2012, Kim and Kim (2019)
discovered that the water footprint per ton of beef was approximately 4.2 times that of veg-
etables per ton [31]. Agriculture trade has helped China and the rest of the globe conserve
a significant amount of water and soil resources, according to studies by Shi et al. (2014) and
Ali et al. (2017) [13,32]. However, some scholars have also proposed a virtual water trade
mystery phenomenon similar to the “Leontief Mystery”, namely, that the virtual water
trade activities of some countries, such as Greece and India, do not entirely depend on
their relative trade endowments, as water flows from relatively scarce regions to relatively
abundant regions [32,33]. This is not conducive to the global allocation of water resources
in the long term.

In order to examine the effects of agricultural trade, academics have generated sig-
nificant study findings from the perspective of virtual resources. To explore the impact of
virtual water resources on agricultural trade, researchers typically apply enlarged grav-
itational models [13,16,34,35]. The focus of the experts’ research, from the standpoint of
the study subjects, was on the analysis of the driving forces of the agricultural trade in
foodstuffs, grains, and cotton [13,16,36]. When examining the elements that determine
virtual land or water flow, scholars generally analyze economic levels, population size,
water and land resources, trade costs, and trade policies, among other aspects [17,37–41].

Similar investigations undertaken by scholars have made substantial progress, giving
a solid foundation for this piece. Nonetheless, the following limitations remain in the
present research: First, regarding the analysis of trade impact factors in terms of virtual
resources, the study subjects are primarily grains and cotton, and research for animal
products needs to be expanded. Second, given that the production of grain requires the
consumption of land and water resources, feed grain used in the production of livestock
products will also consume a certain amount of land and water resource, so international
trade in animal products involves a significant amount of land and water resource consump-
tion [42]. Currently, China’s water and soil resources are scarce; calculating the amount of
virtual land and water in the import and export of livestock products helps to analyze the
utilization of soil and water resources in China and the structure of livestock products trade.
Third, China’s export trade receives less consideration in the study examining effect aspects
from the perspective of virtual resources. This study first analyzes the import and export
trade situation of Chinese livestock products by calculating the total amount of virtual
resources contained in the trade; second, it uses the virtual resources volume included in
the trade as dependent variables, using an expanded gravitational model to explore the
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drivers affecting the trade in China’s animal products; and third, it concludes, based on
empirical results, that how to optimize the structure of the trade in China’s animal products.

3. Methodology and Model Construction

To investigate the factors that affect the flow of virtual water and land resources in
China’s livestock products trade, it is necessary to first exchange the three animal products,
namely beef, pork, and mutton, in China’s import and export trade for the corresponding
amount of virtual water and land using the heat equivalent method. Following a thorough
review of the relevant literature, the appropriate variables and models must be chosen to
analyze the market-driving aspects. The larger gravitational model was used in this study
to analyze the factors that drive China’s trade in animal products.

3.1. Accounting Methodology for Virtual Land

The combination of available studies suggests that the primary estimation approaches
for virtual land in commodity are as follows. The heat equivalent approach utilizes the
relationship between energy to convert processed agricultural goods into primary products,
which is based on the FAO’s nutritious ingredient table and the heat balance principle [43].
Thus, to prevent duplication, by exchanging the heat contained in animal products and
grain crops, the computation of the multiplication of the units of crops cultivated with the
quantity of imports and exports yields the virtual land in the trade of animal products,
using heat as a conversion factor [44]. Frequently, the amount of virtual land included
in processed products is measured with the product tree approach, which takes a greater
quantity of data and employs the value and yield of the products [35,45]. The feed-per-
conversion rule is utilized to determine the quantity of virtual land by calculating the feed
ratio required in the production of animal products or the material ratio and the output per
unit area of grain crops. Similar to Huang et al. (2017) and Yuan et al. (2018), they turned
animal products into the feed grain necessary to compute virtual land in their study [46,47].
The majority of Chinese academics calculate feed grain as food directly in exchange for
virtual land. Nonetheless, the composition of feed grain is complex, and this method is
not particularly exact. In addition, the Food Balance Law is used to estimate national
food balances (deficits and surpluses) and future food demand in support of food security
policies and initiatives [48].

Based on the advantages and disadvantages of the above methods, this study uses
the heat equivalent method to transform animal products into cereal crops according to
Liu et al. (2017) [43]. Given that China is the world’s top producer of rice and wheat [49],
and these two food crops comprise a considerable amount of China’s farmed land area,
they have been picked for exchange in this article1. Based on relevant research and the
consumption structure of domestic livestock products [2,8], three animal products, namely
beef, pork, and mutton, were chosen as study items. With reference to the current literature
and taking into account the extent of trade [2,15], this study screened China’s key trade
items of animal products, which primarily include Canada, Denmark, France, and a total
of 31 nations [14,15]2.

First, this study converts the three animal products to rice based on heat from Yang
(2018)’s Chinese Food Composition Table 2018, and the outcome is shown in Table 1 [50].
Following that, the amount of beef, pork, and mutton imported and exported from China
is converted into the corresponding amount of rice. Then, using the data on rice seed area
and output, we compute the yearly unit area yield of rice. Finally, the amount of virtual
land represented by rice for China’s annual imports and exports of livestock products is
calculated by multiplying the quantity of rice yields by the annual unit area yield of rice.
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Table 1. Food calories and calorie conversion result.

Varieties (per 100 g) Calories (kcal) Converted to Rice (kg)

Beef 160 0.46
Pork 331 0.96

Mutton 139 0.40
Rice 346

3.2. Virtual Water Accounting

The amount of water that a crop must consume during production is known as its
virtual water content (VWC). Because crops are the main commodities in trade, only direct
water use during the crop’s growing period is considered for calculating the virtual water
content in agricultural trade. A crop’s virtual water content is calculated by subtracting its
yield from its evaporative emissions during growth. The equation is as follows:

Wnc =
Rnc

YDnc
(1)

where Wnc denotes the virtual water content per unit of area n crop c, Rnc denotes the
average evapotranspiration of crop c in area n, i.e., water demand, and Dnc denotes the
yield per unit area of crop c in area n.

Therefore, the formula for adjusting crop water requirements between 1992 and 2018
(except 1999) is as follows:

Wtnc = W1999,nc
YD1999,nc

YDtnc
(2)

where W1999,nc denotes the unit virtual water content of crop c produced in area n in 1999,
YD1999,nc denotes the unit area yield of crop c in area n in 1999, and YDtnc is the unit area
yield of crop c in area n in year t. The annual area planted and total output of rice were
gathered from the annual Chinese statistical yearbooks for this study, and the unit area
yield of rice was determined for each year.

Because China is the subject of this study, the virtual water in trade is calculated
using China’s manufacturing conditions. That is, the measurement of virtual water in
export trade indicates China as a producer, whereas it determines China as a consumer in
import trade. As a result, the total amount of imported or exported virtual water in China’s
agricultural trade for the year is the sum of virtual water in all crops imported or exported
by China this year. The calculation formula is as follows:

VWCt = ∑ c Wtc × Ttc (3)

where VWCt represents the total amount of virtual water imported or exported by China
in year t, Wtc is the amount of water required to produce c crops in China in year t, and Ttc
is the amount of c crops imported or exported by China in year t.

This article uses the heat equivalent approach to convert the number of beef, pork, and
mutton imports and exports based on calories into the amount of virtual water represented
by rice for import and export trade. To put it another way, the calorie ratio of imported and
exported livestock products and rice is exchanged for the comparable amount of rice, and
the equal virtual water is determined using Formula (3).

3.3. Model Construction

This article explores the impact variables on China’s livestock trade from the perspec-
tive of virtual land. Due to database restrictions, the study period is from 1992 to 2018.
The import and export trade data of animal products is extracted from the United Nations
Commodity Trade Statistical Database using the HS1992 classification by selecting beef,
pork, and mutton. The beef data are obtained by summing up the 0201 and 0202 encoding
data in the HS1992 classification, and the pork data are based on the 0203 encoding data,
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while the lamb data are based on the 0204 encoding data. Using the procedures outlined
above, the amount of imported and exported livestock products is converted into the equiv-
alent amount of virtual land and water. This article explores the factors that drive trade in
China’s livestock products and discusses how to optimize the structure of that trade using
an enlarged gravity model. Tinbergen (1962) introduced the gravitational model, which
is derived from Newton’s law of gravity [51]. The gravitational model permits the con-
sideration of prospective influencing variables such as income, population, geographical
distance, and political system within an economic framework. It subsequently evolved into
a significant tool for the analysis of trade flows and was increasingly applied to the study
of international trade. This study explores the impact factors on China’s livestock trade
from the perspective of import and export, and it uses the virtual land and water contained
in the imported and exported livestock products to analyze trade flows. Hence, This article
employs the gravitational model.

Based on neoclassical trade theory, the existing literature and the study aims of this
study, the gravity model incorporating trade-influencing factors is as follows.

(1) Economic distance between trading countries

In international trade, both imports and exports involve transportation costs, which
are proportional to the economic distance between trading nations. As recent trade trans-
portation costs have been cheap, trade exchanges have grown increasingly accessible [52].
The economic distance, which is the direct-line distance between the countries’ capitals
divided by the yearly average crude price index, is used to compute the transportation
expenses in this study according to Wang et al. (2018) [18].

(2) Population and economic development level

Population growth will raise the need for livestock products, and nations with a high
level of economic development will also experience an increase in demand. Wang et al.
(2018) and Hu et al. (2021) have confirmed this point [18,38]. Therefore, this study provides
demographic data and assesses economic development using GDP per capita in order to
assess the impact of population and economic growth on the trade in livestock products.

(3) Agricultural Resources

The imbalance in the distribution of agricultural resources across nations is the funda-
mental cause of the flow of virtual land and water in the livestock trade. The cultivated
land area (i.e., the scope of livestock farming) and labor force play a significant impact in
animal product output. Using the research of Zhao et al. (2019), Han et al. (2021), and
Tian et al. (2023), this study examined the agricultural resources of countries based on
total farmland area and agricultural employment rate [53–55]. In addition, the livestock
production index can be used to measure a country’s livestock and dairy production; hence,
it is also used to measure agricultural resources in this article.

(4) Conditions of commerce

The influence of trade policies on the volume of trade cannot be overstated. A favorable
trade policy environment can promote a nation’s trade activities and reduce resource
allocation distortion, whereas an unfavorable trade policy environment will readily cause
trade friction and raise trade costs [56,57]. Accession to the World Trade Organization
(WTO) improves international trade and grants advantageous tariffs to the agricultural
industry. This study contains the indication of a country’s length of WTO membership to
show its trading circumstances [10,58]. According to Cornelius and Harald’s study (2020),
the first four years of a country’s accession to the WTO are assigned a value of 1 and the
following years are assigned a value of 0 [59].

Table 2 lists the names of the variables and data sources.
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Table 2. Variables and data sources.

Name of Variable Variable Symbols Data Sources

Economic distance dis France CEPII database; EPS Database
Economic level pgdp World Bank Database

Arable land area land World Bank Database
Population pop World Bank Database

WTO phase-in effect wto1 World Trade Organization
Length of WTO accession wto2 World Trade Organization

Agricultural employment rate aer World Bank Database
Livestock production index lpi World Bank Database

The gravitational models of virtual land are developed as follows based on prior
research findings, the goal of this study, and the variables chosen:

jvltpet = c1 + α1dis + α2 pgdpeit + α3 pgdpijt + α4landeit + α5landijt + α6 popeit
+α7 popijt + αswto1t + α9wto2t + α10aereit + α11aeriijt + α12lpieit + α13lpiijt + ε1

(4)

cvltpet = c2 + λ1dis + λ2 pgdpeit + λ3 pgdpijt + λ4landeit + λ5landijt + λ6 popeit
+λ7 popijt + λswto1t + λ9wto2t + λ10aereit + λ11aeriijt + λ12lpieit + λ13lpiijt + ε2

(5)

where jvltpe and cvltpe denote the number of imported and exported virtual land rep-
resented by rice of Chinese livestock products, respectively; dis denotes the economic
distance between China and the trading countries (taking logarithms); pgdpe and pgdpi
denote the GDP per capita of exporting and importing countries (taking logarithms), re-
spectively; lande and landi represent the total arable land area of exporting and importing
countries (taking logarithms), respectively; pope and popi represent the total population
of exporting and importing countries (taking logarithms), respectively; wto1 represents
the policy phase-in effect of WTO accession, and wto2 represents the length of time that
countries have joined the WTO; aere and aeri represent the agricultural employment rate in
exporting and importing countries, respectively; lpie and lpii represent livestock production
index in exporters and importers, respectively.

The gravitational models of virtual water are constructed as follows:

vwcjpt = c3 + β1dis + β2 pgdpeit + β3 pgdpijt + β4landeit + β5landijt + β6 popeit
+β7 popijt + βswto1t + β9wto2t + β10aereit + β11aeriijt + β12lpieit + β13lpiijt + ε3

(6)

vwccpt = c4 + ω1dis + ω2 pgdpeit + ω3 pgdpijt + ω4landeit + ω5landijt + ω6 popeit
+ω7 popijt + ωswto1t + ω9wto2t + ω10aereit + ω11aeriijt + ω12lpieit + ω13lpiijt + ε4

(7)

where vwcjp and vwccp represent the volumes of imported and exported virtual water
characterized by the rice of Chinese livestock products, respectively; the other variables
have the same meanings as in Equations (4) and (5).

4. Empirical Results

4.1. Trend Analysis of Flow Changes of Virtual Land and Water Resources

This article has selected Brazil, France, Germany, and a total of 22 export trading
nations and 17 import trading nations for China’s trade in livestock products. Figure 1
shows the trend of the total quantity of virtual water and land resources involved in China’s
import and export trade of animal products from 1992 to 2018 using the methodologies
and formulas discussed in Section 3. The import and export of livestock products are
equivalent to the import and export of the corresponding water and land resources, and the
exchange of resources between the importing and exporting countries is achieved, which is
conducive to reducing the environmental burden of the importing countries in terms of its
resource consumption. Consequently, the volume of trade in Chinese livestock products
and the circulation of virtual water and land resources are consistent. From 1992 to 2018,
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the number of Chinese imports of animal products and the total volume of imported virtual
land and water resources rose. Between 2007 and 2009, the volatility of imports of livestock
products increased, which was most likely a result of the 2008 global financial crisis. During
2014–2016, the import of animal goods and virtual water surged dramatically, which may
be attributable to a combination of events resulting in a drop in the prices of worldwide
herbicide products (beef and mutton). These include cheaper production costs as a result of
better endowment of natural resources, the appreciation of the RMB, a drop in international
energy prices, which cuts transportation expenses, etc. [60]. China has no discernible export
advantage in terms of livestock, and total exports are falling. Before 2008, China sold more
virtual land and water, although exports were largely flat after 2008.

 
Figure 1. Total amount of virtual water and land resources in China’s livestock import and export
trade. Note: The unit of virtual land in Figure 1 is thousand hectares, and the unit of virtual water is
ten million cubic meters. Data source: UN Comtrade, using HS1992 classification.

Figure 1 also reveals that the virtual water content contained in livestock products
is obviously greater than the virtual land contained in livestock, confirming that the
livestock industry consumes a lot of water in agriculture [5–7]. China’s water resources
are also strained by the rapidly growing demand of industrial and residential sectors, with
per-capita water resources accounting for less than one-third of the global average [61].
Agriculture is the most water-intensive sector. Overall, China is a net importer of virtual
land and water resources, alleviating the shortage of domestic land and water resources by
importing livestock products.

Figure 2 illustrates the import share of virtual land for animal products in China in
2018 with a total import volume of 241,744 hm2 for virtual land. In 2018, Brazil, Germany,
Spain, and Canada accounted for nearly fifty percent of all imports. This suggests that
China’s import market for livestock products is relatively concentrated. China traded
animal products with Canada, the United States, New Zealand, and Australia, among other
import nations, from 1992 to 2018. These four countries are China’s key import markets for
livestock products. Moreover, the fluctuations in China’s imports of virtual land from these
four countries are moderate. This is owing to the superior animal husbandry and economic
development of these nations, both of which facilitate the export of livestock products.
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Figure 2. The share of virtual land characterized by rice for imported livestock products in 2018.
Note: Since the share of virtual water characterized by rice for imported livestock products in China
is consistent with the virtual land, no detailed analysis is performed. Data source: UN Comtrade,
using HS1992 classification.

The percentage of China’s virtual land exports in 2018 is represented in Figure 3. In
2018, the entire amount of virtual land exported was 0.369 thousand hm2, which was
much less than the volume imported. In 2018, the top exporters were Mongolia, Singapore,
Brunei, and Malaysia. In that year, the share of virtual land sent to Mongolia constituted
58.36% of the entire export volume, exceeding 50%. This indicates that the import market
for livestock products in China is relatively concentrated in Asia. Prior to 2008, China’s
principal trading partner for virtual land exports was Russia, a nation with a relatively
high export volume. From 1992 to 2018, China’s exported to Malaysia, Mongolia, the
United Arab Emirates, and Singapore, and there were more exports to Singapore than to
the other three.

Figure 3. The share of virtual land characterized by rice for exported livestock products in 2018.
Note: Since the share of virtual water characterized by rice for exported livestock products in China
is consistent with the virtual land, no detailed analysis is performed. Data source: UN Comtrade,
using HS1992 classification.
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4.2. Descriptive Statistical Analysis

Table 3 gives a descriptive statistical study of the elements that influence China’s
livestock exports. According to Table 3, the average amount of virtual land in China’s
livestock export trade is 3.661, and the coefficient of standard deviation is 0.683, indicating
that the maximum value of the variable is significantly different from the minimum value
and that the export market is highly concentrated. The exporting nations have a very
small standard deviation between cultivated land area and population, which is consistent
with China’s policy of cultivating 1.8 billion acres of land and a growing population. The
coefficient of standard deviation between cultivated land area and population in importing
nations is bigger than that of exporting countries, suggesting that cultivated land area
and population may be the most relevant elements in the trade of livestock products. The
average of wto1 is 0.164, while the average of wto2 is 9.389, indicating that the bulk of
China’s exports of livestock products entered the WTO earlier than the median. The average
agricultural employment rate of the importing and exporting countries varies significantly,
with an average of 42.554 in the exporting country, which is nearly three times the average
of the importing country, indicating that exporters greatly benefit from the high average
agricultural employment rate.

Table 3. Descriptive statistical analysis of the variables in the virtual land model in China’s exports
of livestock products.

Variable
Name

Average Maximum Minimum
Standard
Deviation

Standard Deviation
Coefficient

cvltpe 3.661 9.770 −6.652 2.502 0.683
dis 13.211 15.358 10.818 0.943 0.071

pgdpe 7.623 9.201 5.904 1.057 0.139
pgdpi 9.087 11.129 4.930 1.667 0.183
lande 18.608 18.632 18.599 0.008 0.000
landi 14.221 19.031 6.328 3.232 0.227
pope 20.980 21.055 20.876 0.051 0.002
popi 16.726 19.605 12.520 1.781 0.106
wto1 0.164 1.000 0.000 0.371 2.262
wto2 9.389 24.000 0.000 7.783 0.829
aere 42.554 58.500 26.070 9.761 0.229
aeri 14.834 69.810 0.060 18.186 1.226
lpie 78.085 101.130 38.020 19.110 0.245
lpii 83.492 307.580 7.720 25.560 0.306

Note: When cvltpe is the dependent variable, and the exporting country is China, so the variables ending with the
letter “e” represent China.

Table 4 presents the descriptive statistical analysis of the variables involved in China’s
import trade for livestock products. According to Table 4, the mean of virtual land is
5.984, the standard deviation is 0.627, and the highest and minimum values diverge greatly,
showing that China’s animal product import industry is extremely concentrated. Signif-
icant standard variations exist between the cultivated land area and population of the
importing and exporting nations. The agricultural land area and population of exporting
nations are more volatile, whereas China’s agricultural land area and population tend to
stable. The average wto1 value is 0.148, while the average wto2 value is 11.111, showing
that the majority of China’s imported livestock products entered the WTO earlier. The
agricultural employment rates of the importing and exporting countries differ greatly, and
the average agricultural employability in China is clearly higher than in the exporting
country, but China still imports, indicating that China’s livestock production efficiency
must be improved.
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Table 4. Descriptive statistical analysis of the variables in the virtual land model in China’s imports
of livestock products.

Variable
Name

Average Maximum Minimum Standard
Deviation

Standard Deviation
Coefficient

jvltpe 5.984 10.782 −6.245 3.754 0.627
dis 13.736 15.360 12.331 0.746 0.054

pgdpe 10.067 11.278 7.808 0.779 0.077
pgdpi 7.623 9.208 5.904 1.057 0.139
lande 15.729 19.031 12.897 1.676 0.107
landi 18.608 18.632 18.599 0.008 0.000
pope 16.999 19.605 14.964 1.306 0.077
popi 20.980 21.055 20.876 0.051 0.002
wto1 0.148 1.000 0.000 0.356 2.405
wto2 11.111 24.000 0.000 7.626 0.686
aere 5.472 25.130 0.060 4.880 0.892
aeri 42.554 58.500 26.070 9.763 0.229
lpie 91.697 115.040 41.120 10.778 0.118
lpii 78.084 101.130 38.020 19.115 0.245

Note: When jvltpe is the dependent variable, the importing country is China, so the variables ending with the
letter “i” represent China.

4.3. Analysis of the Influencing Factors of Virtual Water and Land Resource Flows

To establish panel data for regression, we have conducted the unit root test firstly to
test the stationarity of the data used in this study. Because the trade data used in this study
have missing values, that is, the data in this study are unbalanced panel data, so we used
Fisher Chi-square (ADF), and Fisher Chi-square (PP). Eviews10.0 was used to conduct the
unit root test, and the results are shown in Table 5. The results show that the data met the
5% significance threshold [16].

Table 5. Unit root test results.

Import Virtual Land and
Water

Export Virtual Land and
Water

Variable ADF PP Variable ADF PP

jvltpe 0.000 * 0.000 * cvltpe 0.048 * 0.011 *
(88.392) (220.045) (9.591) (53.226)

vwcjp 0.00 * 0.000 * vwccp 0.048 * 0.011 *
(88.392) (220.044) (9.591) (52.939)

dis 0.000 * 0.000 * dis 0.003 * 0.000 *
(135.984) (145.510) (74.817) (188.307)

gdpe 0.029 * 0.000 * gdpe 0.049 * 0.000 *
(51.213) (115.997) (60.654) (91.706)

gdpi 0.000 * 0.000 * gdpi 0.000 * 0.000 *
(107.639) (70.864) (96.594) (161.292)

lande 0.000 * 0.000 * lande 0.000 * 0.020 *
(89.527) (87.450) (131.874) (65.273)

landi 0.000 * 0.035 * landi 0.000 * 0.000 *
(91.562) (50.438) (98.056) (84.148)

pope 0.019 * 0.002 * pope 0.010 * 0.000 *
(53.328) (62.568) (68.643) (346.319)

popi 0.020 * 0.000 * popi 0.011 * 0.008 *
(53.043) (267.610) (68.296) (69.980)

aere 0.000 * 0.000 * aere 0.002 * 0.026 *
(147.216) (243.898) (76.026) (64.052)

aeri 0.000 * 0.042 * aeri 0.000 * 0.000 *
(77.538) (49.495) (307.517) (572.109)

lpie 0.000 * 0.000 * lpie 0.007 * 0.000 *
(73.595) (198.359) (70.229) (405.255)

lpii 0.000 * 0.000 * lpii 0.000 * 0.025 *
(260.509) (313.152) (90.765) (64.140)

Note: * represents that the test was passed at the 5% significance level. t statistics are shown in parentheses. When
jvltpe and vwcjp are the dependent variables, the importing country is China, so the variables ending with the
letter “i” represent China. When cvltpe and vwccp are the dependent variables, the exporting country is China, so
the variables ending with the letter “e” represent China.
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This work leverages the techniques of prior research and the Poisson pseudo-maximum
likelihood estimation approach (ppml) introduced by Silva and Tenreyro (2006) for the
estimation of parameters [52,62,63]. Table 6 shows empirical findings.

Table 6. Empirical results of virtual water and land resources characterized by rice for imports and exports.

Variables jvltpe cvltpe vwcjp vwccp

dis −44.396 * 3.454 −49.822 * −1.458
(26.933) (23.089) (28.157) (23.770)

pgdpe 0.392 ** −3.105 * 0.390 ** −2.871 *
(0.181) (1.764) (0.180) (1.553)

pgdpi 1.295 −0.727 *** 1.505 −0.758 ***
(1.408) (0.162) (1.417) (0.166)

lande 24.429 *** 5844.697 *** 24.876 *** 5384.731 ***
(5.561) (1769.507) (5.621) (1468.037)

landi −3509.658 * −36.022 *** −1786.586 −36.044 ***
(1896.102) (7.526) (1637.931) (7.848)

pope 0.966 286.097 0.761 −2416.128
(7.901) (2473.330) (7.955) (2082.680)

popi 699.660 28.532 *** 942.147 28.724 ***
(2410.373) (10.019) (2485.176) (9.970)

wto1 −2.343 *** 0.367 −2.797 *** 0.481
(0.830) (0.572) (0.771) (0.525)

wto2 0.180 −0.020 0.145 −0.010
(0.164) (0.045) (0.164) (0.044)

aere 2.948 −12.290 3.169 −10.176
(2.761) (12.977) (2.731) (11.976)

aeri 21.200 ** −1.142 16.833 * −1.390
(9.523) (1.135) (9.635) (1.144)

lpie 2.519 ** 13.765 * 2.545 ** 20.270 ***
(1.121) (7.343) (1.125) (7.005)

lpii 2.031 0.583 ** −0.711 0.642 **
(6.496) (0.269) (6.125) (0.275)

Intercept term 475.221 −1130.341 * 118.428 −473.747
(552.800) (673.843) (514.477) (545.106)

Number of samples 297 267 301 268
R square 0.485 0.328 0.484 0.381

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, correspondingly. When jvltpe and vwcjp are the
dependent variables, the importing country is China, so the variables ending with the letter “i” represent China.
When cvltpe and vwccp are the dependent variables, the exporting country is China, so the variables ending with
the letter “e” represent China.

The economic distance, economic development level of exporting countries, arable
land area and livestock production index, as well as WTO phase-in effect and agricultural
employment rate of importing countries all pass the significance test, according to the
findings. China’s imports of livestock goods were positively influenced by the exporting
countries’ economic development, cultivated land area, livestock production index, and
agricultural employment rate of importing countries. The amount of imported virtual
land and water would grow by 0.392% and 0.39%, respectively, if the exporting nation’s
economic level increased by 1%. As there are more exportable resources, the high economic
level of exporting nations helps the expansion of international trade. The findings of
this study indicate that China’s economic level has no significant effect on imports of
livestock goods. The unusually large coefficient of cultivated land area in exporting
countries significantly influenced China’s import of virtual land and water resources.
The more arable land there is in the exporting nation, the more favorable it is for the
development of livestock husbandry in that nation. The feed grain for animal products and
the quality of animal goods would be assured, making exports more possible. The livestock
production index of the exporting country is favorable for China’s imports, as a high index
implies an abundance of livestock products in the exporting country, hence facilitating
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export commerce. China is better off importing virtual land the greater the agricultural
employment rate in the importing country. This may be the outcome of China’s high labor
input in other agricultural products, such as maize, while it imports livestock products,
hence increasing the quantity of imported virtual land.

The arable land area of the importing country had a substantial negative influence only
on imported virtual land, with a coefficient of −3509.658, which is extremely significant,
while this variable had no effect on the import of virtual water resources. It may be
because China’s cultivated land area represents China’s cultivated soil resources, resulting
in a deeper relationship with virtual land. China’s imported virtual water and land
resources were adversely affected by economic distance and the phasing effect of WTO
entry. Geographic distance raises the cost of importing livestock goods, hence reducing
Chinese imports of dairy products. The WTO phase-in effect coefficient was negative,
indicating that there was a negative impact on China’s import of livestock products while
China and other trade nations had not joined the WTO. Exporting nations’ economic
position, the total cultivated land area, the livestock production index, and the agricultural
employment rate of importing nations all influenced China’s expanding imports of virtual
land. In contrast, the duration of China’s WTO membership had little impact on China’s
livestock imports, which was probably due to the fact that the WTO’s rules are formulated
as fundamental trade facilitation measures.

The economic development level of both importing and exporting countries had
a negative impact on China’s exported virtual land and water resources, with the exporting
country’s coefficient being bigger and having a greater influence. This could be explained
by the Kuznets curve idea. The importing and exporting countries’ economic development
levels have reached a U-shaped inflection point, resulting in a negative effect. It may also
be related to the increased economic standing of importing nations, which drives the rise
in animal husbandry production and decreases the need for imported animal products.
Moreover, as their levels of economic development increase, exporting nations will be more
likely to meet their domestic water and soil resource needs through imports and preserve
their domestic resource and environmental carrying capacity. A significant amount of
arable land in importing nations may result in self-sufficiency in livestock products and
a decline in demand for imports, which would be adverse to China’s export of livestock
products, as seen by the negative coefficient of the importing countries’ arable land area.
The bigger the amount of arable land in the exporting country, the more profitable it was
for China to export virtual land and water resources, and this variable’s coefficient was
relatively large. It appears that the principle of comparative advantage governs the flow of
virtual land in China’s livestock product trade. China has a substantial amount of arable
land and acreage for animal husbandry, resulting in an increase in the number of livestock
products. The feed and cereals for livestock goods are guaranteed, and the export quantity
and quality of livestock products will be improved, consequently enabling the export of
livestock products from China. This indicates that China should maintain its policy of
maintaining 18 billion acres of arable land.

Table 6 shows that a 1% rise in the average population of importing countries raised the
amount of Chinese exported virtual land and water by 28.532% and 28.724%, respectively.
This is due to the fact that the increasing population of the importing nation would boost
agricultural product consumption and the consumer structure, resulting in a rise in imports
of virtual water and land resources. However, among the influencing elements of China’s
imported virtual water and land resources, the population of the importing and exporting
countries played no substantial role, demonstrating that the demographic component
plays a dual role in international commerce. On the one hand, population expansion has
increased the domestic division of labor and decreased foreign trade, yet on the other hand,
population growth will raise demand and hence enhance international trade [64]. The
amount of the impact of population expansion on the rise in demand and intensity of the
domestic division of labor also depends on other variables, such as agricultural production
technology. This study indicated that the importing country’s livestock production index
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adds to China’s export of virtual water resources and has a stronger impact on virtual
water exports. Due to the fact that the importing country’s livestock business is mostly
focused on eggs and dairy products, rather than animal goods, it is forced to buy from
other countries, which boosts China’s animal products export trade growth. China’s strong
livestock production index implies that the country prioritizes the growth of livestock and
would boost the number and quality of animal goods, allowing it to export more animal
products. The increase in the quantity and quality of livestock products is associated with
the availability of feed grains and natural grass in the animal husbandry business, which
is intimately related to water resources and may have a stronger impact on exports of
virtual water [65]. The coefficient of the variable to join the WTO was negative, and two
of its correlated variables lacked statistical significance. After countries joined the WTO,
barriers to the free flow of commodities, services, and technologies were lifted, increasing
agricultural production and decreasing the import demand for livestock products [58], thus
discouraging China from exporting livestock products.

4.4. Robustness Tests

To validate the validity of the preceding conclusions, this article replaced the depen-
dent variable with wheat-representing virtual land and water resources. The transformation
of three kinds of animal products into wheat was comparable to the transformation of rice.
First, the quantities of imported and exported livestock, pork, and mutton from China
were changed to wheat. Wheat contains 338 kilocalories per 100 grammes, while 1 kg of
beef, pork, and mutton may be turned into 0.47, 0.98, and 0.41 kilos of wheat, respectively.
Furthermore, the quantity of wheat was multiplied by the yearly yield per unit area of
wheat in China to establish the amount of virtual land for China’s annual import and export
of livestock products. Calculate the virtual water for the import and export of Chinese
livestock products using Section 3’s formulas. The trajectory of changes in the total amount
of virtual land and water resources represented by wheat in China’s livestock product
trade was similar to that of rice. There were considerable variations between 2007 and 2009,
and the export of virtual land and water in China was stronger before 2008 than after. The
export volume remained largely consistent after 2008.

Subsequently, the equation was approximated, and Table 7 shows the estimated
findings. The principal findings align with the preceding paragraphs. According to Table 7,
the exporting countries’ economic development level, the cultivated land area and livestock
production index, and the agricultural employment rate of the importing country had
a considerable beneficial effect on China’s imported virtual land and water resources. In
addition, the results revealed that the arable land area of importing countries was not
favorable to China’s imported virtual land, and the coefficient is −4007.840, indicating
a significant effect with a substantial influence. However, it had no significant detrimental
effect on the imported virtual water resources. In the interim, the WTO phase-in effect
coefficient was negative. In contrast to imported virtual land, imported virtual water was
significantly impacted negatively by economic distance. This may be because more than
90% of China’s wheat imports come from the United States, Canada, and Australia, and the
distance does not prevent the import of China’s livestock products [18]. During the sowing
of wheat, the change in planting area fluctuates less than water use. When the planting
region is reasonably steady, water resources have a stronger impact on wheat planting, and
hence, virtual water resources are impacted more.

The export of virtual land and water resources represented by wheat in China is
affected by the same empirical findings as the export of virtual land and water resources
represented by rice. China’s export of virtual land and water was negatively affected by
the economic development level and cultivated land area of importing nations. China’s
export of virtual land and water was positively influenced by the population and livestock
production indices of importing nations as well as the total arable land area and livestock
production indices of exporting countries. The divergence lies in the fact that the economic
development level of exporting countries had a considerable negative influence on exported
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virtual water but had no effect on exported virtual land. China has limited water and land
resources; thus, as its economic development level rises, it will tend to import virtual water
rather than export. Due to the fact that arable land can be maintained by returning grass
to farmland or forests to farmland, and because it is more difficult and requires a higher
technological level to obtain freshwater resources, China’s level of economic development
has a significant negative impact on the export of virtual water.

Table 7. Empirical results of virtual water and land resources characterized by wheat for imports
and exports.

Variables jvltwe cvltwe vwcjw vwccw

dis −41.865 4.258 −48.044 * −0.067
(26.581) (22.049) (27.767) (22.828)

gdpe 0.416 ** −2.861 0.416 ** −2.647 *
(0.181) (1.745) (0.180) (1.556)

gdpi 1.560 −0.703 *** 1.789 −0.730 ***
(1.376) (0.156) (1.387) (0.159)

lande 24.570 *** 5510.618 *** 25.019 *** 5095.437 ***
(5.519) (1730.382) (5.588) (1449.214)

landi −4007.840 ** −37.218 *** −2220.257 −37.240 ***
(1872.182) (7.204) (1611.204) (7.498)

pope 1.001 435.042 0.878 −2208.892
(7.859) (2472.452) (7.928) (2062.348)

popi 872.342 30.502 *** 1200.386 30.626 ***
(2376.912) (10.069) (2457.817) (10.024)

wto1 −2.289 *** 0.324 −2.779 *** 0.431
(0.813) (0.545) (0.762) (0.503)

wto2 0.193 −0.024 0.157 −0.015
(0.163) (0.043) (0.164) (0.042)

aere 2.842 −10.111 3.141 −8.059
(2.746) (12.788) (2.717) (11.876)

aeri 24.811 *** −1.058 20.509 ** −1.283
(9.325) (1.095) (9.478) (1.106)

lpie 2.513 ** 12.596 * 2.550 ** 19.012 ***
(1.079) (7.160) (1.082) (6.824)

lpii 0.738 0.550 ** −2.268 0.604 **
(6.368) (0.261) (6.060) (0.269)

Intercept term 528.806 −1101.314 * 141.623 −465.638
(543.751) (662.721) (507.787) (536.836)

Number of samples 297 267 301 268
R square 0.467 0.332 0.465 0.375

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, correspondingly; jvltwe and cvltwe denote the
quantity of imported and exported virtual land characterized by wheat of Chinese livestock products, respectively;
vwcjw and vwccw denote the quantity of imported and exported virtual water characterized by wheat of Chinese
livestock products, respectively; other variables have the same meanings as in Equations (4) and (5). When jvltwe
and vwcjw are the dependent variables, the importing country is China, so the variables with the letter “i” are all
Chinese. When cvltwe and vwccw are the dependent variables, the exporting country is China, so the variables
with the letter “e” are all Chinese.

5. Discussion

By calculating the amount of virtual water and land resources contained in the import
and export trade of Chinese livestock products during 1992 and 2018, the volume of
imported animal products shows a general upward trend, the total exports are roughly
declining, and the trade deficit is gradually growing [14,15]. China’s livestock export trade
has no advantages, and China relies more on imports of virtual water and land resources
to alleviate domestic water–soil tensions and to meet domestic livestock demand [13,32].
However, there are significant issues with market concentration in the import and export of
Chinese livestock products. China’s primary exporter of animal products is concentrated
in southeast Asia, while the United States, Canada, New Zealand, Australia, and Denmark
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are the leading importers. This is not conducive to the sustainable development of China’s
livestock trade and supply, and the structure of animal product trade needs to be optimized.

The results of this study are consistent with Duarte et al. (2019) and Tian et al. (2023),
who found that the higher the economic level of the exporters, the more favorable to China’s
import of livestock products [37,55]. A study by Xia et al. (2022) revealed that the GDP of
importers has a positive effect on virtual water flow [16], whereas China’s own level of
economic development has no discernible impact on its imported virtual water and land
resources represented by rice in this study. This may be related to the Kuznets curve theory,
where the impact is negligible because China’s economic development has reached the top
of the inverted U-shaped curve. Among the influence factors of China’s imported livestock
products, the cultivated land area of the importers has a significant negative impact on the
amount of imported virtual land, confirming the research findings of Qiang et al. (2020)
that when China’s cultivation land area is larger, the country will be largely self-sufficient
in livestock products, and import demand will be drastically reduced [66].

The economic distance and WTO phase-in effect variables have a negative impact
on the virtual water resources of imported Chinese livestock products. This provides
additional support for Wang’s (2018) findings that geographical distance increases the cost
of importing livestock products [18], thereby limiting Chinese animal product imports. The
WTO phase-in effect factor is negative, indicating that China and other trading countries
had a negative impact on Chinese imports of livestock products when they were not mem-
bers of the WTO. This provides a new basis for Wang’s (2018) study that it is a significant
factor affecting import trade [18]. But this is in contrast to the findings of Cornelius and Har-
ald (2020), who concluded that the coefficient of the WTO was not statistically significant
in their study [59]. This may be due to differences in the selection of other control variables
or differences resulting from the intensity of the WTO policies on livestock products trade.

Among the influence factors of China’s export of livestock products, the cultivated
land area of the exporters plays its active role, which means that the larger cultivated soil
area of China itself is conducive to the export of Chinese livestock products. In addition
this variable coefficient is relatively large and the degree of influence is high, which is
consistent with the comparative advantage theory. However, the findings of Liu et al. (2010)
demonstrate that China’s agricultural land resources are negatively correlated with the net
exports of international trade in agricultural virtual water, indicating that there may be an
over-development of agricultural lands in China resulting in inefficient land use [67].

6. Conclusions and Policy Recommendations

This article used the heat equivalent method to calculate the amount of virtual land
and water represented by rice and wheat in livestock products traded between China and
major trading countries between 1992 and 2018, in light of China’s increasing consumption
of livestock products and its persistent trade deficit. It investigated in depth the changes
in the flow of virtual water and land resources between China and the major trading
nations as well as employed the gravitational model to examine the factors that affect
trade. Among the 22 export trading nations, Singapore, Malaysia, Mongolia, and Brunei
were the leading exporters of China’s livestock products, while the United States, Canada,
New Zealand, Australia, and Denmark were the leading importers among the 17 import
trading nations. From 1992 to 2018, both the overall volume of virtual land and water
resources represented by rice and wheat, and the quantity of imported livestock products,
demonstrated a general upward trend. The volume of animal products imported during
2007–2009 was very variable; however, the increase during 2014–2016 was massively larger.
China did not have a substantial advantage in exporting animal products, and total exports
tended to drop, with the total amount of exported virtual land and water represented by
rice and wheat varying on a regular basis.

The economic development level, cultivated land area, and livestock production index
of exporting nations, as well as the agricultural employment rate of importing countries,
all had a consistent encouraging influence on the import of virtual land and water. Most
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influential were the exporting country’s cultivated land area and the importing country’s
agricultural employment rate. Statistically, the WTO phase-in effect, the economic distance,
and China’s total arable land area were detrimental to the growth of China’s livestock
product import trade. In addition, the effect was enhanced because the coefficient of the
variable of arable land area in importing nations was large. China’s export of livestock
goods benefited from the population of importing nations, the cultivated land area of
exporting countries, and the livestock production index of both importing and exporting
countries. The level of economic growth of importing and exporting countries, as well as
the cultivated land area of importing countries, had a detrimental effect on China’s export
of livestock products.

On the basis of the previous conclusion, it is conceivable to conclude that China’s
import and export trade plans for livestock products can be optimized with greater precision
and economic, social, and demographic factors do indeed affect the quantity of virtual
land and water imports and exports. The import volume of Chinese livestock products is
obviously greater than the export volume, indicating that China mainly relies on imports to
meet the demand for livestock products of residents and alleviate the shortage of domestic
water and land resources. This indicates that for China, importing livestock products is
one of the ways to ensure the consumption of livestock products. The Chinese government
should incorporate virtual land and water elements into livestock product safety strategy.
China needs to balance the import and export quantity of livestock products as well. It
is possible for the trade authorities to carefully select import and export trade partners
according to each country’s economic development, arable land, transportation costs and
animal husbandry production indices so that China can utilize its competitive advantages
more effectively. Additionally, the Chinese government encourages residents to modify
their food consumption structure or demand, and the livestock production sector should
improve the production quality of livestock products to assist the growth of China’s export
livestock product trade. In particular, the agricultural sector advocate maximizing farmland
utilization, and the results show that the land area has a significant impact on the quantity
of virtual land and water imports and exports. China can minimize the concentration
ratio of imports and exports of livestock products by opening up new import and export
markets while retaining great working ties with its current trade partners. China, for
example, should expand the interconnection and interaction of agricultural product trade
with nations along “the Belt and Road” to ensure food security.

This study’s limitation is that virtual land and water are not computed for all livestock
products; however, pork, beef, and mutton are chosen as representative of the everyday
intake of locals. Future research could study the virtual land and water of all livestock
products in order to acquire more precise results. In addition, the net imports and net
exports of livestock products are not considered in this study. Only the influence of natural
variables, especially arable land, is regarded among the influencing factors. However,
climatic circumstances and natural disasters (such as drought) have a significant impact on
the livestock industry sector, which consequently impacts the trade of livestock products
in importing and exporting countries. Therefore, future study objectives will include the
effect of natural disasters on the trade of livestock products.
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Notes

1 According to the National Bureau of Statistics in 2018, the sown area of rice and wheat in China reached 307.47 × 105,
245.07 × 105 hm2, respectively.

2 Importing countries: Brazil, Germany, France, Netherlands, Uruguay, Australia, New Zealand, Canada, Denmark, Spain, Belgium,
Poland, Austria, USA, UK, Argentina, Ireland. Exporting countries: Brazil, Germany, France, USA, Netherlands, Singapore,
Vietnam, Malaysia, Mongolia, Italy, Tajikistan, Japan, Russia, Brunei, UAE, Jordan, Pakistan, Kuwait, Uruguay, Australia,
Kyrgyzstan, New Zealand.
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Abstract: Contracts play a crucial role in the reform of land markets and the process of farmland
transfer. This study examines how spatial distance and clan networks impact the choice of farmland
transfer contracts based on micro-level survey data from farmer households in China. Our research
findings offer valuable insights into the role of contracts as a governance tool in land market reform
and provide important implications for policymakers and stakeholders. In this study, we reveal that
spatial distance significantly influences the selection of farmland transfer contracts. When farmers
face long spatial distances, they tend to prefer written contracts to regulate the transfer relationship.
This preference helps to mitigate information asymmetry and cooperation risks, ensuring a more
secure and efficient transfer process. Additionally, our findings show that clan networks also play a
significant role in the choice of farmland transfer contracts. Strong clan networks in high-density areas
often have well-defined social norms and codes of conduct. As a result, farmers in these areas are more
likely to opt for written contracts, which provide a formalized framework for governing farmland
transfers. Furthermore, the density of the clan network acts as a moderator in the relationship
between spatial distance and contract choice. A dense clan network intensifies the influence of spatial
distance on contract choice, especially when dealing with long spatial distances. This suggests that
social networks and community dynamics play a crucial role in shaping farmers’ contract preferences
in farmland transfer. In conclusion, this study highlights the importance of contracts as a governance
tool in land market reform and provides insights into the influence of spatial distance and clan
networks on the choice of farmland transfer contracts. Policymakers and stakeholders involved
in land market reforms should consider the findings of this study when designing policies and
interventions. By understanding the dynamics surrounding farmland transfer, policymakers can
develop more effective strategies to promote secure and efficient land transactions in the context of
market-oriented reforms.

Keywords: close spatial distance; long spatial distance; clan network strength; clan network density;
written contract; oral contract

1. Introduction

The continuous development of the market economy has highlighted the importance of
the market in resource allocation. A crucial aspect of this development is the establishment
of a robust land market system [1]. Creating a land market that facilitates the mobility and
flexibility of land resources is essential for optimizing resource allocation and improving
production efficiency [2]. In this process of land marketization, farmland transfer plays a
vital role in promoting optimal resource allocation and efficiency [3]. The choice of contract
by farmers within the land transfer process is of great significance as it ensures smooth
transactions and balances the interests of all parties involved. Contracts serve as the economic
and legal foundation for agricultural land transfers, stipulating the rights and obligations of
both parties and regulating transfer behavior [4]. Therefore, it is crucial to study the factors
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and mechanisms that influence the selection of farmland transfer contracts in order to optimize
the functioning of the farmland transfer market and enhance transfer efficiency.

In the context of farmland transfer, two influential factors are the clan network and
spatial distance. The clan network, as a social network, represents a form of social cap-
ital formed through connections and cooperation among relatives, friends, and fellow
villagers [5]. It plays a vital role in information transmission, trust establishment, and
risk sharing in farmland transfer contracts [6]. The presence of a strong and dense clan
network facilitates the flow of information among its members, which is essential for mak-
ing informed decisions during the farmland transfer process. Additionally, the network
fosters trust among its members, making them more willing to engage in farmland transfer
transactions with each other. The risk-sharing aspect of the clan network ensures that if a
transfer does not go as planned, the network members collectively bear the consequences,
reducing the overall risk for individual farmers.

On the other hand, spatial distance, as a geographic factor, affects various aspects of farm-
land transfer transactions [7]. Longer spatial distances between farmers and potential transfer
objects can lead to higher transaction costs, as more resources are required for transportation,
communication, and coordination. These higher costs can influence the choice of contract,
with farmers preferring written contracts to ensure a clear and formalized agreement, given
the potential uncertainties associated with long-distance transactions. Additionally, spatial
distance affects resource utilization efficiency, as closer proximity allows for easier access to
and management of farmland, leading to more efficient production processes.

This study aims to explore how the clan network and spatial distance influence the
choice of farmland transfer contracts and analyze their effects to deepen our understanding
of the operational principles of the farmland transfer market and farmers’ decision-making
behavior. By examining the impact of the clan network and spatial distance on contract choice,
policymakers can gain valuable insights to optimize the farmland transfer market, promote
efficient resource allocation, and foster sustainable development in rural economies.

To conduct the study, field survey data collected from March to April 2023 were
utilized to investigate the relationship between clan networks, spatial distance, and the
selection of farmland transfer contracts in rural areas. Several innovations were introduced
in this research. Firstly, an analysis framework was introduced that incorporated spatial
distance, clan networks, and the choice of farmland transfer contracts, enriching the theo-
retical understanding of contract choice behavior by examining these factors from multiple
dimensions. This comprehensive approach allowed for a more nuanced understanding
of the factors influencing contract choices among farmers. Secondly, the research took a
unique perspective by analyzing the selection of farmland transfer contracts through the
lens of clan networks and spatial distance, expanding our knowledge and comprehension
of contract choices in the context of farmland transfers. This multi-dimensional analysis
provided valuable insights into the interplay between social networks and geographic
factors in contract decision-making. Lastly, the use of up-to-date data collected in 2023
ensured timeliness and empirical value, contributing to the study of farmland transfer
contract selection. The use of recent data enhanced the reliability and accuracy of the
research results, enabling comprehensive theoretical investigations and empirical analyses
of the current land market and contract choice behavior.

In conclusion, these innovations contribute to a deeper understanding of the dynamics
between clan networks, spatial distance, and the choice of farmland transfer contracts. By
shedding light on the interplay between social networks and geographic factors, this study
provides valuable information for policymakers aiming to optimize the farmland transfer
market, promote efficient resource allocation, and foster sustainable development in rural
economies. This study also lays the foundation for more robust theoretical investigations and
empirical analyses of the land market and contract choice behavior in the present period.
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2. Literature Review and Theoretical Analysis

2.1. Literature Review

Farmland transfer contracts have become a significant subject of study in institutional
economics research. Different scholars have emphasized various aspects of contract choices.
Marx focused on the consideration of long-term lease contracts versus tenancies at will,
highlighting the importance of contract duration [8]. Zhang Wuchang highlighted the role
of risk diversification benefits and transaction costs in contract choices, with transaction
costs influencing decisions to pursue higher income [9]. Contracts are regarded as a means
of addressing shared concerns and solving problems through voluntary and equal commu-
nication between parties [10,11]. They help reduce fraud and ensure market operations,
but their incompleteness may require adjustments based on real-world conditions [12].
Considering various influencing factors is crucial to ensure the effectiveness and practicality
of contracts, especially in the context of farmland transfer.

In the realm of farmland transfer contracts, clan networks and spatial distance emerge
as significant influencing factors. Clan networks facilitate communication and cooperation
among farmers, enhancing willingness and cooperation in farmland transfer contracts [13].
Empirical research has shown that clan networks impact innovation and entrepreneur-
ship, influencing the competitiveness of farmers’ entrepreneurial enterprises and resource
acquisition limitations [14,15]. However, clan networks can also have adverse effects on
village-level collective economies by promoting labor outflows and reducing the supply of
public goods [16]. Their impact on resource allocation efficiency in land transfers varies
depending on the local market conditions [17].

Spatial distance, as a geographic factor, also plays a significant role in the choice of
farmland transfer contracts. Studies have shown that spatial distance affects consumer
demand, industrial upgrading, and collective decision-making processes [18]. Longer
spatial distances may lead to reduced consumer psychological ownership and willingness
to share, impacting decision-making [19]. Additionally, spatial distance between parties
involved in transfers affects contract choices and participation in public affairs, which can
be influenced through various communication channels and social networks [20].

In conclusion, understanding the factors influencing the choice of farmland trans-
fer contracts, such as clan networks and spatial distance, is vital for policymakers and
researchers. By considering these factors, policymakers can design more effective land
market policies, while researchers can deepen their understanding of the dynamics of
farmland transfer and contract choices in rural economies.

2.2. Analytical Framework

Harvey’s perspective emphasizes that the concept of space is derived from human
experience, and geographers focus on studying selected phenomena within space rather
than studying everything encompassed by it [21]. Loesch highlights the importance of
spatial factors in economic research, particularly in the context of farmland transfer [22].

When there is a long spatial distance between parties involved in farmland transfer
and asymmetric information exists, identifying the relevant attributes of the other party
becomes challenging, leading to higher transaction costs. These attributes directly influence
the choice of transfer contracts. The objective and accurate identification of attributes, such
as the relationship network of the other party, often depends on the degree of intimacy in
transactions or communication, which is closely related to spatial distance. Differences
in spatial distance between the residences of the parties result in variations in transaction
frequencies or exchanges [23]. Therefore, spatial distance becomes an important explanatory
variable in farmers’ contract choices.

From the perspective of spatial distance, a greater spatial distance between the parties
in a transfer implies higher transaction costs and more effort needed to address incomplete
and asymmetric information [24]. Firstly, communication becomes limited. Longer spatial
distances reduce opportunities for face-to-face interaction and communication between
farmers and transferees. Language environment, cultural differences, and time–space
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disparities may further hinder communication, affecting the understanding and negotiation
of transfer matters. Secondly, there is an increased risk of default. When significant interests
and risks are involved, monitoring and controlling contract performance become necessary.
A written contract can provide a clear binding and monitoring mechanism, allowing for
tracking and recording contract performance, facilitating the resolution of potential disputes
in the future. Conversely, when the spatial distance between the parties is relatively close,
transaction costs and the effort required to address incomplete and asymmetric information
are reduced [25].

In rural “acquaintance societies”, where interpersonal relationships are typically close
and neighbors often share long-standing kinship and trust foundations, farmers may be
more inclined to choose verbal contracts for land transfers because they believe the other
party will honor their commitments. Moreover, oral contracts are simpler and more flexible
than written contracts. Farmers can directly communicate and negotiate face-to-face with
nearby transfer objects, avoiding the cumbersome preparation and signing of contract
documents and the associated costs [26].

As shown in Figure 1, from the perspective of “social spatial distance”, the clan network,
as a close social network, facilitates information transmission and sharing. In the process of
farmland transfer, farmers can acquire information about the land being transferred through
the clan network, including details about land quality, the reliability of transfer objects, and
fair prices [27]. This information helps farmers make more informed decisions [28].

 
Figure 1. Analysis framework.

Additionally, the clan network serves as a channel for information transmission and
communication Illustrated in Figure 1, enabling farmers to gather information about land
transfers and assess the credibility and reliability of transfer objects. Moreover, the clan
network provides a mechanism for risk sharing in agricultural land transfers. Through
the clan network, farmers receive support and assistance from relatives, sharing risks
throughout the transfer process. In addition to tangible human, financial, and institutional
resources, the clan network represents an influential cultural force [29].

Cultural values not only directly influence individual actions but also shape actors’
skills, styles, habits, and abilities. Thus, clan network variables play a significant role in
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the choice of farmland transfer contracts. This paper distinguishes between clan network
strength and clan network density variables. High density in the clan network indicates
closer and more efficient connections among members, leading to faster and more effective
information transmission. During the process of farmland transfers, farmers can obtain
valuable information about potential transfer objects through the clan network, including
details about transaction history [30] and reputation [31]. This information exchange within
the clan network plays a crucial role in facilitating the decision-making process for farmers,
enabling them to make informed choices regarding their land transfer activities [30,31]. This
information sharing and transmission deepen their understanding of the transfer objects,
instilling greater confidence and dependence. High clan network strength implies closer
and more stable relationships among members. Within farmland transfers, clan members
have established long-term mutual trust and cooperative relations. The presence of such
relationships enhances the willingness of both parties to cooperate and the reliability of
contract execution [32].

3. Materials and Methods

3.1. Sample Selection

The data in this article were collected through a field survey conducted by the research
team in four counties of Guizhou Province during March and April 2023. To ensure
the representation of the research areas, we carefully selected counties based on criteria
such as the level of economic development, geographical distribution characteristics, and
endowment characteristics of agricultural land resources.

The selected research areas include Meitan County, which is one of the first batches of
experimental areas for the reform of the agricultural property rights system determined by
the state after the reform and opening up. Guanling County, with Dingyun Community,
known as “the first village of China’s rural land reform”, is also among the selected areas.
Sansui County was chosen for its contract documents collected from Miao Village and
Dong Village in the river basin, which hold significant research value for re-establishing
contract awareness and promoting the spirit of contract. Additionally, Pan County, the first
in Guizhou Province to carry out the “three changes” reform in rural areas, was included
in the study.

A total of 1250 questionnaires were distributed to the targeted participants, and after
excluding farmers who had not experienced land transfer, 1101 valid questionnaires re-
mained, resulting in an effective response rate of 88.80%. The high response rate indicates a
good level of participation and engagement from the respondents, enhancing the reliability
and representativeness of the data collected for the research. With a large sample size, the
research findings can provide valuable insights into the factors influencing the choice of
farmland transfer contracts in rural areas.

3.2. Model Selection

The basic model of this paper is set as follows:

Contract = α0 + α1Distance + α2X + εi (1)

Contract = β0 + β1Clan + β2X + εi (2)

Contract = λ0 + λ1Distance + λ2Clan + λ2X + εi (3)

Among them, Contract represents the choice of contract for farmland transfer, Distance
represents the spatial distance, Clan represents the clan network, and X represents the control
variables, namely individual characteristics of farmers, family endowment characteristics,
land cognitive characteristics and village environment characteristics. Model (1) examines the
influence of spatial distance on the choice of farmland transfer contract, model (2) examines
the influence of clan network on the choice of farmland transfer contract, and model (3)
examines the relationship between clan network and the choice of farmland transfer contract
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in spatial distance and the regulating effect. α0 ∼ α2, β0 ∼ β2, γ0 ∼ γ2, λ0 ∼ λ2 represent
the sample regression coefficient, εi is a random perturbation term.

3.3. Variable Selection

The incorporation of spatial distance and clan networks as key factors in analyzing
the choice of farmland transfer contracts is a significant contribution of this research. By
examining the impact of different spatial distances on contract selection, this study aims
to shed light on the influence of geographic factors on farmers’ decision-making behavior.
Additionally, by investigating the role of clan networks, the research seeks to explore the
social capital aspect of contract choices and its implications for efficient resource allocation
in farmland transfers.

To ensure a comprehensive analysis, this study considers various other factors that
may affect contract choice. Individual farmers’ characteristics, family endowment, land
cognition, and village environment are considered in the analytical model. By including
these variables, the research aims to capture the multifaceted nature of contract choices and
provide a more holistic understanding of the factors influencing farmers’ decision-making
in the context of farmland transfer.

The integration of these different factors into the analytical model allows for a more
robust examination of the determinants of contract selection. Further, it provides a com-
prehensive framework that considers both individual and contextual factors, enabling a
deeper understanding of the complex dynamics involved in farmland transfer decisions.
Through this approach, our research contributes valuable insights to the existing literature
on farmland transfer contract choices and provides a solid foundation for policymakers
and researchers to optimize the functioning of the farmland transfer market and promote
sustainable development in rural economies.

3.3.1. The Variable to Be Explained

The choice of farmland transfer contract serves as the dependent variable in this
research. It is assessed based on whether a written contract or an oral contract was signed
between the transfer parties. The categorization follows the approach taken by previous
studies, such as [18,31,33], and other scholars in the field. In this study, a value of “0”
represents an oral contract, while a value of “1” represents a written contract.

The average value of the contract choice variable is 0.530, indicating that, on average,
a slightly higher proportion of farmers have opted for written contracts in the context of
farmland transfers. This finding suggests that there has been an increase in the prevalence
of written contracts over time, likely driven by the government’s regulation of the land
transfer market and the implementation of land transfer policies. These policies may
have prompted farmers to adopt written contracts as a means to ensure legal protection
and clarity in their transfer agreements. The prevalence of written contracts may also
reflect a growing recognition among farmers of the importance of formalizing their transfer
agreements to reduce transaction risks and enhance the security of their land transactions.

3.3.2. Main Explanatory Variables

The main independent variables in this paper are the clan network and spatial distance.
Drawing on the research of Jiang, X., Ma, X., et al. (2022) and Wang, A., He, K. et al. (2022),
the clan network is divided into two components: clan network intensity and clan network
density [16,17].

To measure clan network intensity, the presence of ancestral halls in the village is used
as an indicator [34]. Ancestral halls serve as gathering places and centers of activities for
clan members, reflecting the strength and cohesion of the clan network. The existence of
ancestral halls suggests a higher intensity of the clan network.

Clan network density is measured using the proportion of the population with the
largest surname in the village [35]. A higher proportion indicates stronger blood relations
and connections among clan members, representing a denser clan network.
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As for spatial distance, it is primarily determined by the distance between the farmer
and the residence of the transfer object, with reference to the literature of Hong Mingyong
(2017) and Hong Mingyong (2018) and the research of various scholars [36,37]. The assess-
ment of spatial distance is based on the responses to questions such as “Where is the home
of your land transfer object?” with multiple options provided, including original natural
village group, new natural village group, groups outside the village, villages outside the
township (town), townships (towns) outside the county (city), and counties (cities) outside.
Additionally, the question “What is the distance between your home and the target’s home
(in kilometers)?” is used to gather information on the spatial distance.

In this study, the distinction between “groups outside the village” serves as the
cutoff point for spatial distance. The distance between farmers and transfer objects is
categorized into “0” for near spatial distance and “1” for far spatial distance, representing
the level of proximity between the two parties [38]. This categorization allows for a clearer
understanding of how spatial distance influences contract choices.

3.3.3. Control Variable

To ensure the accuracy and reliability of the regression results, this study incorporates
several control variables that may influence the choice of farmland transfer contracts [39].
The inclusion of these control variables is based on the findings of Hong Mingyong (2017)
and Hong Mingyong (2018). The control variables encompass various aspects, including
the individual characteristics of farmers, family attribute characteristics, land cognitive
characteristics, and environmental characteristics of villages.

The individual characteristics of rural households are considered, and variables such as
the head of household’s level of education (Education), health status (Health), and age (Age)
are included. These variables capture the individual attributes that may impact contract
choices. For instance, higher levels of education may influence farmers’ comprehension of
contract terms and their ability to negotiate written contracts.

Family attribute characteristics comprise variables such as whether there are village
cadres in the family (Village cadres), the number of migrant workers in the family (Number
of migrant workers), and the number of women in the family (Number of women). These
variables reflect the family composition and dynamics that could influence contract choices.
The presence of village cadres in the family may provide access to information and resources
that could influence contract decisions.

Environmental characteristics of the village are represented by variables such as the
distance from the village to the nearest expressway entrance (Expressway), the distance
from the village committee (Village committee), and the presence of tractor tracks (Tractor
track). These variables capture the environmental factors that may affect contract choices. For
example, proximity to transportation infrastructure and village administrative centers may
influence farmers’ access to information and resources relevant to contract negotiations.

Land cognitive characteristics include variables related to farmers’ perceptions, such
as their understanding of land ownership (Land belongs), their perception of land security
(Land security), and their awareness of the certificate of title confirmation (Certificate).
These variables capture farmers’ cognitive factors that may influence their contract choices.
Farmers with a stronger sense of land ownership and perceived land security may be more
inclined to choose written contracts for greater protection of their rights.

By incorporating these control variables in the analysis, this study aims to provide a
comprehensive examination of the factors influencing the choice of farmland transfer contracts,
considering a wide range of individual, family, cognitive, and environmental factors that may
shape farmers’ decision-making behavior in the context of farmland transfers.

Table 1 presents the processed results, assignments, and descriptive statistics of each
variable, providing further details and information for analysis.
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Table 1. Descriptive statistics of the whole sample.

Variable Name Variable Definitions Average Std. Min Max

Explanatory variable

Contract Selection Divided into written contracts (=1)
and oral contracts (=0) 0.5304 0.0150 0.000 1.000

Clan network
strength Refer to whether there is an ancestral hall in the village 0.1035 0.0092 0.000 1.000

Clan network
density Proportion of the largest surname in the village 63.5328 0.5231 7 91.000

Spatial distance
The distance between the places of residence of both

parties in circulation
(Far space distance = 1, near space distance = 0)

0.9272 0.6282 0.000 1.000

Individual characteristics of farmers

Health Judge the health status of the head of household
(1 is very unhealthy, 3 is average, 5 is very healthy) 3.7639 0.0249 1.000 5.000

Age Age of head of household 58.0073 0.3709 12.000 93.000
Education Years of education of the head of household 5.5786 0.1135 0.000 17.000

Family attribute characteristics
Village cadres Describe the village cadre family 0.1490 0.0107 0.000 1.000

Migrant workers Number of migrant workers (person) 1.0845 0.0359 0.000 5.000
Number of women Number of women (person) 2.0173 0.0340 0.000 8.000

Land cognitive characteristics
Land belongs Judging farmers’ cognition of land ownership 2.2807 0.0257 1.000 3.000
Land security Judging farmers’ cognition of the social security function of land 0.7920 0.0122 0.000 1.000

Certificate Determine whether the farmer has the title
confirmation certificate 0.5740 0.0149 0.000 1.000

Environmental characteristics of villages
Expressway Distance from highway intersection 4.8787 0.1363 0.1000 53.000

Village committee Distance from the village committee 1.3910 0.0322 0.1000 10.000
Tractor track Judging whether organic farming 0.6312 0.0145 0.000 1.000

4. Results

4.1. Benchmark Model

To begin, Model I was constructed, incorporating variables representing clan network
strength and clan network density, aiming to examine their influence on the selection of
farmland transfer contracts. Following this, Model II was developed to investigate the
impact of spatial distance on farmland transfer contract choices. Subsequently, Model III
simultaneously integrated clan network strength, clan network density, and spatial distance
to explore their combined effects on farmland transfer contract choices. Additionally,
Models IV, V, VI, and VII successively introduced control variables related to household
head characteristics, family endowments, land attributes, and village environmental factors
to study the collective impact of clan networks and spatial distance on farmland transfer
contract choices as these control variables were introduced.

Based on the findings presented in Table 2 of Model I, Model II, and Model III, several
conclusions can be drawn.

In Model I, the variables representing clan network strength and density show a
significant positive relationship with the choice of written contracts. This suggests that
the clan network, as an informal governing system, operates independently from formal
institutions and plays a crucial role in contract selection. The strength and density of the
clan network provide social support, trust, and information flow among clan members,
which fosters cooperation and trade. Opting for a written contract enhances transparency,
predictability, trust, and stability in cooperation. Additionally, the clan network facilitates
the assessment of risks and selection of partners through credit and background information
obtained within the network. The presence of the clan network ensures social oversight
and constraints, promoting transactional responsibility and commitment.
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Table 2. Benchmark regression results.

Variable Name I II III IV V VI VII

Clan network strength 0.7213 *** 0.8299 *** 0.9064 *** 0.8756 *** 0.9090 *** 0.9660 ***
(0.2194) (0.2480) (0.2512) (0.2556) (0.2600) (0.2644)

Clan network density 0.3714 *** 0.5896 *** 0.5863 *** 0.6027 *** 0.6517 *** 0.6664 ***
(0.0907) (0.1070) (0.1081) (0.1097) (0.1187) (0.1235)

Spatial distance 0.6978 *** 0.7374 *** 0.7377 *** 0.7443 *** 0.7290 *** 0.7443 ***
(0.0549) (0.0561) (0.0564) (0.0567) (0.0571) (0.0585)

Health −0.1785 ** −0.1504 * −0.1565 * −0.1872 **
(0.0889) (0.0901) (0.0908) (0.0925)

Age −0.0157 ** −0.0162 ** −0.0159 ** −0.0151 **
(0.0064) (0.0065) (0.0066) (0.0066)

Education −0.0436 ** −0.0373 * −0.0369 * −0.0245
(0.0206) (0.0209) (0.0210) (0.0216)

Village cadres −0.4124 ** −0.4216 ** −0.4363 **
(0.2057) (0.2067) (0.2079)

Migrant workers −0.1719 *** −0.1564 *** −0.1660 ***
(0.0591) (0.0593) (0.0600)

Number of women −0.0738 −0.0793 −0.0804
(0.0625) (0.0630) (0.0632)

Land belongs −0.0154 −0.0299
(0.0918) (0.0933)

Land security −0.2658 −0.2667
(0.1742) (0.1770)

Certificate 0.3867 *** 0.3595**
(0.1493) (0.1507)

Expressway −0.0119
(0.0170)

Village committee −0.0617
(0.0679)

Tractor track 0.4964 ***
(0.1551)

Constant −1.2582 *** −0.4228 *** −2.6183 *** −0.7866 −0.5662 −0.7111 −0.8841
(0.3233) (0.0760) (0.3924) (0.6893) (0.7099) (0.8247) (0.8519)

N 1101 1101 1101 1101 1101 1101 1101
LR chi2 (2) 34.21 254.03 305.31 316.40 330.29 339.44 351.31
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2 0.0225 0.1669 0.2006 0.2079 0.2170 0.2230 0.2308

Note: ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively; the robust standard errors are in brackets.

In Model II, the spatial distance variable is found to be significant. Longer spatial
distances increase transaction uncertainty, information asymmetry, and lack of trust, which
lead to a higher likelihood of choosing written contracts. Written contracts help to clearly
define rights and responsibilities, reducing transaction risks in long-distance transactions.
On the other hand, shorter spatial distances facilitate direct interaction, communication,
and the establishment of trust-based relationships. In familiar village environments, face-
to-face communication helps reduce information asymmetry and enhances cooperation,
making oral contracts more likely.

In Model III, when clan network strength, clan network density, and spatial distance are
simultaneously included, all variables pass the significance test. This indicates that greater clan
network strength and density increase the likelihood of farmers choosing written contracts.
The presence of a strong and dense clan network positively influences the choice of farmland
transfer contracts, emphasizing the role of clan networks in village governance. Furthermore,
even with the inclusion of control variables, the impact of clan network and spatial distance
on contract choices remains significant, indicating their robust influence.

Overall, the inclusion of clan network and spatial distance variables, along with the
control variables, improves the explanatory power of the model. These findings suggest
that both clan networks and spatial distance are important factors in determining the
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choice of farmland transfer contracts, highlighting the significance of social networks and
transactional risks in contract decision-making.

The control variables included in the analysis provide additional insights into the
factors influencing the choice of farmland transfer contracts. A summary of the control
variables and their potential impact is given as follows:

Health status: Farmers in good health may have higher self-confidence and communi-
cation skills, making them more likely to engage in verbal communication and negotiations.
This could increase the likelihood of choosing oral contracts.

Age: Older individuals tend to have more experience and wisdom, which can con-
tribute to stronger verbal expression and negotiation skills. Therefore, older farmers may
be more inclined to choose oral contracts.

Education level: Farmers with lower levels of education may have limited understand-
ing and application of written texts, making them rely more on written contracts to clarify
rights and obligations.

Village cadres: Non-village cadres, such as peasant households, may have limited
knowledge and experience in law and contracts. This lack of expertise could lead them to
prefer written contracts for greater clarity and legal protection.

Number of migrant workers: Farm households with a larger number of migrant workers
may find it easier to communicate and confirm agreements through modern means such as
phone calls or text messages. This convenience may reduce their reliance on written contracts.

Certificate of title confirmation: Farmers with a certificate of title confirmation have legal
protection and recognition of their land rights and interests. This legal security may enhance
their negotiation and transaction capabilities, potentially influencing their contract choice.

Environmental characteristics: The presence of a mechanical farm road in the village
signifies established norms and requirements for agricultural production and land manage-
ment. Farmers in such villages may be more likely to choose written contracts to comply
with these standards and requirements.

By including these control variables, the analysis accounts for additional factors that
could influence contract choice, providing a more comprehensive understanding of the
dynamics involved in farmland transfer decisions.

4.2. Endogeneity Test

Spatial distance is typically considered an exogenous variable, meaning its value is
not influenced by other intrinsic factors. The spatial distance between farm households
and farmland exists objectively and is unrelated to other factors, eliminating the need for
selecting instrumental variables in the analysis.

However, the clan network, as an endogenous variable, may suffer from endogeneity
problems. To address this issue and ensure the accuracy and consistency of the estimated
results, instrumental variables are used to replace the clan network.

In this study, the “ancestral hall” and “proportion of the largest surname” are em-
ployed to measure the clan network density and clan network strength, respectively. These
variables effectively avoid endogeneity problems arising from self-selection and simultane-
ity. Nevertheless, there may still be endogeneity concerns due to measurement errors and
omitted variables.

To correct for estimation bias caused by potential endogeneity, we adopt instrumental
variables referenced from previous research [40]. Specifically, the “proportion of villages
with ancestral temples at the township level to all township villages (VI1)” and “the
proportion of villages with the first surname at the township level to all township villages
(VI2)” are used as instrumental variables for clan network strength and clan network size.
These variables are not directly related to the choice of farmland transfer contracts, but
they have a certain association with the clan network. By employing these instrumental
variables, this study replaces the impact of clan networks on the choice of farmland transfer
contracts and addresses potential estimation bias arising from endogeneity concerns.
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By incorporating instrumental variables, we aim to strengthen the validity and robust-
ness of our findings, ensuring that the results accurately reflect the relationships between
the variables of interest.

The results presented in Table 3 demonstrate that the selection of instrumental vari-
ables has successfully passed the validity test. Firstly, the p-values of the underidentification
test statistics are all below 0.01, leading to the rejection of the null hypothesis at the 1%
significance level. This finding indicates that there is no underidentification problem in the
instrumental variables chosen. Secondly, the statistics of the weak instrumental variable test
are all greater than the critical value of 10%, resulting in the rejection of the null hypothesis
of “there is a weak instrumental variable” at the 5% significance level. These results signify
that the instrumental variables used in the analysis are sufficiently strong and robust to
address the endogeneity issue.

Table 3. Endogeneity test.

Variables
The First Stage The Second Stage The First Stage The Second Stage

Clan Network Strength Clan Network Density

Clan network strength 0.260 **
(0.123)

Clan network density 0.002 **
(0.001)

IV1 1.003 ***
(0.070)

IV2 0.002 **
(0.001)

Control variables Control Control Control Control

Cragg–Donald Wald F 205.755 153.362
Adj R-squared (0.157) (0.122)

Constant 0.401 * 0.505 *** 0.440 *** 0.439 ***
(0.011) (0.020) (0.042) (0.042)

N 1101 1101 1101 1101

Note: ***, **, * indicate significance at the 1%, 5% and 10% levels, respectively; the robust standard errors are in
brackets; the control variables are the same as those in Table 2.

The estimation results reveal that after appropriately controlling for the endogeneity
problem, the coefficients of clan network size and clan network strength remain significantly
positive. This outcome suggests that the presence of a clan network significantly influences
farmers’ choices in farmland transfer contracts, which is consistent with the findings of the
baseline regression results.

By employing instrumental variables and passing the validity tests, the research
findings strengthen the credibility and reliability of our conclusions regarding the impact of
clan networks on farmers’ decision-making behavior in farmland transfer contract choices.
The incorporation of instrumental variables provides a more accurate understanding of the
relationships between clan networks and contract choices, contributing to the robustness of
our findings.

4.3. Further Analysis

The clan network may play a regulatory role in the relationship between spatial
distance and farmland transfer contract choice, and the following equation is constructed:

Y = aX + bY + cXM + ε (4)

In the analysis, the dependent variable (Y) represents the choice of farmland transfer
contract, specifically distinguishing between written contracts and oral contracts. The
independent variable (X) is spatial distance, categorized into long spatial distance and short
spatial distance. The moderator variable (M) is the clan network, which plays a moderating
role in the relationship between spatial distance and farmland transfer contract choice. To
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explore the potential interactions, the cross term (XM) of spatial distance and clan network
is introduced into the model.

The model development process is as follows: Firstly, the control variables are included
in the model to account for other factors that may influence the contract choice. Secondly,
the independent variable (spatial distance) and the moderator variable (clan network) are
introduced into the model to assess their individual effects. Lastly, the interaction term
(spatial distance × clan network) is added to investigate the combined effects of spatial
distance and the clan network on farmland transfer contract choices. The results of this
analysis are presented in Table 4.

Table 4. Further analysis results.

Variable VI VII

Spatial distance 0.9660 *** 1.3945 ***
(0.2644) (0.3142)

Clan network strength 0.6664 *** 0.7674 ***
(0.1235) (0.2664)

Clan network density 0.7443 *** 0.7168 ***
(0.0585) (0.1241)

Spatial distance × Clan network density −0.1912 **
(0.0866)

Spatial distance × Clan network strength 0.2070
(0.2389)

Control variable Control Control
Constant −0.8841 −3.0828 ***

(0.8519) (0.4602)
N 1101 1101

LR chi2 (2) (351.31) (310.85)
Prob > chi2 0.000 0.0000
Pseudo R2 0.2308 0.2042

Note: ***, ** indicate significance at the 1%, 5% levels, respectively; the robust standard errors are in brackets;
the control variables are the same as those in Table 2.

The regression results provide valuable insights into the factors influencing the choice
of farmland transfer contracts. The key findings are summarized as follows:

Spatial distance: The coefficient for spatial distance is positive and statistically signif-
icant, indicating that greater spatial distance between farmers and transfer objects leads
to a higher likelihood of choosing written contracts. This suggests that as the distance
between parties involved in the transfer increases, farmers tend to opt for written contracts
to mitigate uncertainties and clarify their rights and obligations.

Clan network strength: The interaction term “Spatial distance × Clan network strength”
does not show a significant effect on contract choice. This suggests that the strength of
the clan network does not significantly influence the relationship between spatial distance
and contract choice. Other factors related to clan network density seem to have a more
significant impact.

Clan network density: The interaction term “Spatial distance × Clan network density”
has a significant effect on contract choice. Clan network density acts as a moderating
variable, influencing the relationship between spatial distance and contract choice. When
the clan network density is high, farmers are more likely to choose oral contracts, and the
impact of spatial distance on contract choice is reduced. A dense clan network facilitates
faster and more reliable information transmission, increases trust among members, and
provides access to reliable information about transfer objects. As a result, the influence of
spatial distance on contract choice is mitigated.

Low clan network density: When clan network density is low, the effect of spatial distance
on contract choice may be more pronounced. Greater spatial distances can lead to increased
information asymmetry and communication costs, making oral contracts more challenging.
In such situations, farmers are more likely to select written contracts to compensate for the
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lack of information and reduce communication barriers. Therefore, a decrease in clan network
density may intensify the impact of spatial distance on contract choice.

In conclusion, both spatial distance and clan network density significantly affect the
choice of farmland transfer contracts. The moderating role of clan network density in
the relationship between spatial distance and contract choice highlights the importance
of social networks in shaping farmers’ decisions. These findings contribute to a deeper
understanding of the complexities involved in contract choices and the influence of social
networks in farmland transfers.

4.4. Robustness Test
4.4.1. Replacement of Explanatory Variables

In this study, the explanatory variables are replaced with the distance variable (DLOR)
between the transfer land and the residence of the transfer object, the genealogy variable
(Genealogy), and the proportion of the own surname (Own surname), and the estimations
are conducted. This method adjusts the selection of explanatory variables and tests the
robustness of the research conclusions. The results presented in Table 4 are consistent with
the expectations based on the previous baseline regression results.

4.4.2. Replacement of the Estimation Model

To verify the generalizability of the benchmark regressions, robustness testing using
probit models is employed, which estimates the probability of binary categories such as
written and oral contracts. The results, as shown in Table 5, indicate that as the spatial
distance increases and the strength of the clan network increases, farmers are more inclined
to choose written contracts. This finding can be attributed to the greater need for written
contracts to ensure the reliability and stability of the cooperative relationship and the effec-
tive role of the clan network in informal governance. This further confirms the conclusions
drawn from the previous baseline regression analysis.

Table 5. Robustness check.

Variable (1) Replace Variables (2) Replace the Metering Model

DLOR 0.6325 **
(0.3383)

Genealogy 0.1722 ***
(0.1379)

Own surname 0.1413 ***
(0.0450)

Spatial distance 0.5871 ***
(0.1558)

Clan network strength 0.3795 ***
(0.0719)

Clan network density 0.4221 ***
(0.0308)

Control variable Y Y
Constant −0.8231 *** −0.3985

(0.1298) (0.5017)
N 1101 1101

LR chi2 (2) 203.13 345.90
Prob > chi2 0.0000 0.0000
Pseudo R2 0.1334 0.2272

Note: ***, ** indicate significance at the 1%, 5% levels, respectively; the robust standard errors are in brackets;
the control variables are the same as those in Table 2.

5. Discussion

5.1. Key Findings

Clan networks, essential social structures formed through connections and cooper-
ation among relatives, friends, and fellow villagers, play a crucial role in information
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transmission, trust establishment, and risk sharing in farmland transfer contracts [40–43].
Our research findings underscore the positive influence of clan networks on the choice of
farmland transfer contracts. In traditional rural societies, clan networks serve as pivotal
channels for transmitting vital information about transfer objects, such as land quality,
transaction history, and reputation, enabling farmers to make well-informed decisions.
These results align with the works of Hong Mingyong, Yang Xuejiao (2021), and Niu
Kunzai, Xu Hengzhou et al. (2022), emphasizing the significant role of clan networks in
farmland transfer.

Furthermore, this study reveals that spatial distance significantly impacts the choice
of farmland transfer contracts. As a geographic factor, spatial distance affects transaction
costs, resource utilization efficiency, and information flow [44]. When facing long spa-
tial distances, farmers tend to opt for written contracts, seeking to mitigate information
asymmetry and cooperation risks inherent in such transactions. Written contracts offer
clearer protection and regulation of rights and interests, enhancing transaction reliability
and stability. These findings are consistent with research conducted by Hong Mingyong
(2017) and Hong Mingyong (2018). It is important to note that the context of farmland
circulation varies, leading to differences in transaction frequency, information flow for
evaluating performance, and consequently, contract choices [35,37].

Additionally, this study identifies the moderating role of clan network density between
spatial distance and farmland transfer contract choices. Higher clan network density can
mitigate the impact of spatial distance on contract choices. Greater network density facili-
tates faster and more reliable information exchange, fostering higher levels of trust among
members. As a result, farmers find it easier to access reliable information about transfer ob-
jects and establish strong trust-based relationships. Thus, increasing clan network density
can alleviate the influence of spatial distance on contract choices. These findings align with
research conducted by Hong Mingyong and Yang Xuejiao et al. (2021), indicating that clan
networks play a regulatory role in the allocation of land transfer resources [39].

5.2. Limitations and Future Prospects

Although this study has conducted an in-depth discussion on the relationship between
clan networks, spatial distance, and farmland transfer contract choices, there are still some
research deficiencies and directions worthy of further exploration.

On the one hand, this study solely considered the influence of clan networks and
spatial distance on the choice of farmland transfer contracts, without incorporating other
factors that may also impact farmland transfer, such as policy, economic, and cultural
factors. Future research should incorporate these additional factors into the analysis and
establish a more comprehensive analytical framework to gain a deeper understanding of
the operating mechanisms in the farmland transfer market.

On the other hand, this study utilized cross-sectional data for analysis, which limited its
ability to capture changes over time. To address this limitation, future research could employ
panel data to compare information at different time points, thereby exploring the dynamic
relationships among clan networks, spatial distance, and farmland transfer contract choices.
This temporal perspective would provide valuable insights into the evolving nature of these
relationships and their implications for the farmland transfer process.

6. Conclusions

The conclusions of this study emphasize the significant impact of spatial distance and
clan network characteristics on the choice of farmland transfer contracts, providing crucial
insights for policymakers and stakeholders in the farmland transfer market.

Firstly, this study emphasizes the importance of establishing standardized and legally
sound practices for farmland transfers. Considering the impact of spatial distance on
contract choice, it becomes imperative for governments to formulate regulations and
policies that ensure the legality and protection of rights and interests in these transactions.
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By creating a transparent and secure environment, such measures will foster confidence
and trust among participants, thereby promoting the healthy development of the market.

Secondly, this study highlights the crucial role of strengthening clan networks and
information transmission mechanisms. Recognizing the significance of clan network den-
sity and strength in contract selection, efforts should be directed towards supporting and
enhancing the cohesion and connectivity of these networks. This can be accomplished by
providing information resources and assistance, encouraging connections and collaboration
among farmers, and reducing information asymmetry and cooperation risks. Strengthen-
ing clan networks will facilitate more reliable information exchange and foster smoother
transactions within the farmland transfer market.

Lastly, this study proposes the promotion of diversified forms of farmland transfer
contracts. Recognizing the varying needs and circumstances of participants, policymakers
can facilitate the flexibility of both oral and written contracts. Through the provision of
legal support and tailored guidance to different regions and individuals, participants can
opt for the contract format that best aligns with their specific preferences and situations.
This approach fosters adaptability and customization in contract selection, ultimately
enhancing the effectiveness and efficiency of farmland transfers. By offering a range of
contract options, the farmland transfer market can better accommodate the diverse needs
of stakeholders and contribute to a more dynamic and inclusive agricultural sector.

In conclusion, implementing the suggested measures can enhance the efficiency, fair-
ness, and overall performance of farmland transfer transactions. This will contribute to the
development of a robust and sustainable farmland transfer market, benefiting all involved
parties and fostering long-term agricultural growth and stability.
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Abstract: Land transfer is an important means to achieve agricultural scale production and improve
land use efficiency, as well as an effective way to solve food security issues. Discussing the mechanism
of how the multilevel urban centers affect rural farmland transfer can help understand the spatial
heterogeneity characteristics of farmland transfer. It is helpful to provide more policy suggestions
from the perspective of urban-rural spatial relations and achieve the goal of agricultural and rural
modernization. Taking Tai’an prefecture as an example, this study examines the impact of multilevel
urban centers on farmland transfer by mediating effect model. The results show that: (1) Distances to
urban centers are negatively associated with rural farmland transfer rates, with lower rates farther
from urban centers. There are two mechanisms about how the distances to urban centers influence
farmland transfer: the first is that the farther a village is from urban centers, the lower the value
of its farmland, which leads to lower benefits to those who transferring farmland; the second is
that lower opportunity costs of agricultural labor in the villages which farther from cities increase
household reliance on farmland, reducing the rates of transferring farmland out. (2) Multilevel centers
differentially influence transfers. The higher-level prefectural centers affect farmland transfer through
planting structure, while the lower-level county centers affect farmland transfer through off-farm
employment. Additionally, the influence of county centers is less stable due to road accessibility. (3) It
is critical to additional policy support to both towns and remote villages. Particular focus should
be placed on increasing the non-agricultural industries and expanding the agricultural markets of
towns. It is also important to enhance infrastructure development to encourage farmland transfer in
remote villages.

Keywords: farmland transfer; distance to urban centers; off-farm employment; planting structure;
village-level data

1. Introduction

How to efficiently utilize farmland resources for agricultural production and solve
the food security problem has always been a hot topic in rural land research globally [1–3].
Large-scale farming is an effective way to efficiently utilize farmland resources, which is
conducive to advancing new technologies [4], improving mechanization levels [5], reducing
farmland abandonment [6], and enhancing agricultural production efficiency [7]. Therefore,
increasing the level of large-scale farming through farmland transfer has always been an
important topic discussed by scholars from various countries [7–9].

China has a large population but limited farmland resources, so it is a critical issue to
use limited farmland resources to ensure food security, which has also attracted attention
from all over the world for a long time [10,11]. China has adopted the collective ownership
system of rural farmland. After the implementation of the Household Responsibility
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System in 1978, the farmland was divided and allocated to corresponding farmers in
China, which led to the fragmentation of land ownership [12]. In recent years, the rural
revitalization policy has proposed “modernization of agriculture and rural area”. There
has been a concerted effort to enhance the level of mechanized agricultural production via
farmland transfer. This not only fosters large-scale farming but also addresses the quandary
of fragmented land contract rights, consequently elevating agricultural productivity [13].
In China, farmland transfer refers to the transfer of farmland management rights from
farmers to other farmers or economic organizations. It is an important means of large-scale
farming, which is conducive to improving mechanization levels, improving farmland use
efficiency, and ensuring food security [14]. Studying land transfer issues has important
practical and policy significance.

The distance between urban centers and villages is an important factor in the study
of farmland transfer, which is an inherent locational characteristic of villages. How to
overcome the negative impact of unfavorable locations on villages is a topic of both the-
oretical and practical significance. Most studies argue that farmland transfer is more
difficult to occur in remote villages because farmers in peri-urban areas can receive more
information and opportunities for off-farm employment. Consequently, driven by the
differential in benefits between non-agricultural and agricultural endeavors, these farmers
choose off-farm employment, relinquish their contracted lands, and participate in farmland
transfer [15,16]. On the contrary, the farmers in remote villages are more dependent on
agricultural production, and their enthusiasm for participating in farmland transfer is less.
However, some studies have also found that with the urban sprawl development, the con-
flict between construction land and agricultural land intensifies, and the value of farmland
decreases, resulting in a lower farmland transfer rate in peri-urban villages [17]. Discussing
the mechanism of how the distance to urban centers affects rural farmland transfer can
help resolve the above research contradictions, and provide more policy suggestions for
raising the farmland transfer rate in remote villages and achieving large-scale farming.

Despite the considerable attention devoted to the dynamics of farmland transfer in
the extant literature, and the exploration of the influence and mechanisms of distance
to urban centers on these dynamics, several issues remain unresolved. Firstly, there is a
lack of consensus regarding the impact of distance to urban centers on farmland transfer.
The studies anchored in the theory of location argue that the closer to the city, the lower
the transportation cost, which is conducive to cultivating crops with high prices but not
resistant to transportation and storage. Consequently, the agricultural economic returns
from such lands are heightened, increasing farmland transfer [18]. On the other hand,
studies based on decision-making mechanisms found that theoretically, the closer to the
city, the more transaction information farmers can obtain, reducing the transaction cost of
farmland transfer and increasing the farmland transfer rate. However, empirical evidence
does not robustly present a significant influence of distance to urban centers on farmers’
farmland transfer decisions [19]. These different conclusions indicate that more evidence is
needed for the impact of distance to urban centers on farmland transfer.

Secondly, there is little information provided about the differences in the impact
of multilevel urban centers on farmland transfer. There is heterogeneity in the off-farm
employment and agricultural markets of cities at different levels. This heterogeneity
inherently influences the radiative effect that urban centers have on farmland transfer. Yet,
there is a paucity of research exploring the different impacts of multilevel urban centers
on rural farmland transfer. Exploring the heterogeneity is helpful in understanding the
influence of different levels of accessibility on rural farmland transfer.

Lastly, the mechanism of how distance to urban centers affects farmland transfer needs
more empirical analysis. Although recent studies related to farmland transfer have noticed
that distance to urban centers will affect rural farmland transfer and proposed theoretical
explanations, they lack empirical testing. This question needs to be solved.

Furthermore, the village level has been conspicuously overlooked in studies of farm-
land transfer [20]. While a multitude of studies has delved into the determinant factors and
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mechanisms of farmland transfer decisions at the household or individual level [21–23],
and many have elucidated the macroscopic features of farmland transfer at the regional
level in China [24], there is also a subset of research focusing on parcel-level factors [25].
However, the study of village-level farmland transfer characteristics and mechanisms
is meaningful. Firstly, farmlands within the same village tend to share similar natural
features [20]. Secondly, according to the research on farmers’ behavior based on the herd
effect theory, it is similar in the way agricultural production and employment choices
among farmers within the same village [26]. Thirdly, the variation in farmland values
within one village is minimal within the same period, resulting in relatively stable prices of
farmland [27].

This study aims to examine the impact and mechanisms of distance to urban centers
on village-level farmland transfer. The results of this study can help discern the relationship
between the evolution of farmland transfer and urban development within the context
of urban-rural integration in China. Such insights would subsequently provide more
policy recommendations to promote rural revitalization and foster the modernization of
agricultural production.

2. Framework and Hypotheses

A voluminous literature has offered valuable insights into the mechanisms of farmland
transfer from a cost-benefit perspective and arrived at a fairly consistent conclusion: the
rates of farmland transfer increase when the costs of farmland transfer for both transferring
in and out decrease and the benefits of farmland transfer increase [28–31]. The costs and
benefits of farmland transfer for both sides are influenced by the distance to urban centers.
For instance, the classic locational theory suggests that the closer to the city, the lower
the transportation costs of agricultural production, the more the economic benefits of
agricultural land, and thus the more transferees to transfer in [32]; while the classic dual
sector model and the Todaro model suggest that the closer to the city, the more off-farm
employment opportunities rural households can obtain, the higher the opportunity costs
of agricultural labors, rural households will reduce or abandon agricultural production,
and obtain more economic benefits from transferring land out [33]. Figure 1 illustrates
these two possible mechanisms of distance to urban centers affecting village land transfer:
(a) Agricultural Production Hypothesis; and (b) Off-farm Employment Hypothesis.

Figure 1. Analysis framework.

While there exists heterogeneity in the impact mechanisms of distance to urban centers
on both transferring in and out, their interrelated interests remain consistent. As the
distance to urban centers increases, the costs associated with transferring farmland out
increase [34], and the benefits of transferring farmland decrease [35]. Consequently, the
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distance to urban centers has a negative impact on both decisions of farmland transferring
in and out, resulting in a lower rate of rural farmland transfer as the distance increases.

Therefore, this study proposes the first hypothesis: The rate of farmland transfer in
the village decreases as the distance to urban centers increases, with the village located
farther from urban centers exhibiting a lower farmland transfer rate.

Location is the basic geographic characteristic of land, which affects farmland transfer by
influencing the benefits of agricultural production of those who transfer farmland [36–38]. The
classic agricultural location theory and rent theory argue that the city is the market for
agricultural products. The closer to the urban centers, the stronger the market accessibility,
which means the lower the transportation costs of agricultural products to the markets.
Therefore, crops that are not resistant to transportation and storage but have more economic
value tend to gravitate toward the villages near markets [17,18,36]. Under the influence
of the homogenization of planting structures and high farmland rents, the degree of
intensification of farmland use increases, and the negative impact of high land rents is
offset by reducing the marginal cost of agricultural production input [39]. As a result, in
the villages surrounding urban centers, the agglomeration of agricultural production of
crops with high economic value is facilitated through farmland transfer.

Based on this, this study proposes the second hypothesis: The economic value of
farmland decreases with distance to urban centers increasing. As villages are located
farther from urban centers, the economic benefits from transferring in are less, leading to a
reduced rate of farmland transfer.

In recent years, the studies of rural farmland transfer have also begun to pay more
attention to the impact of cities on rural households’ decision of farmland transfer [40,41].
The off-farm employment opportunities in the city have a spatial spillover effect [41], and
rural households in the villages closer to urban centers can obtain more off-farm employ-
ment information and opportunities. Due to the higher benefits of off-farm employment,
the opportunity costs of agricultural labor increase, leading rural households to reduce
the agricultural input, thereby resulting in farmland abandonment. Abandoning farmland
will not bring more benefits to rural households and even increase the risk of being pun-
ished [42]. With land rents being comparatively higher near urban areas, the economic
incentives drive the households to positively transfer their lands out to these villages. In
contrast, households in villages located farther from urban centers have limited access to
information about off-farm employment opportunities. The commuting costs of off-farm
jobs escalate, reducing the opportunity costs associated with agricultural production [43].
As a result, these households rely more on the agricultural output of their lands and are
less likely to transfer farmland out.

Drawing upon the analysis, this study proposes the third hypothesis: As the village is
closer to urban centers, the opportunity costs of agricultural labor are higher, leading to an
increased rate of farmland transfer. Conversely, as the distance to urban centers increases,
rural households rely more on agricultural production, resulting in a decreased rate of
farmland transfer.

The urban markets, both for agricultural products and off-farm employment, exert
influences on farmland transfer. There exists heterogeneity in the scale of off-farm em-
ployment and agricultural markets across different levels of cities [44]. For example, in
low-level cities, the proportion of the non-agricultural industry is lower, so it is difficult to
promote off-farm employment in these villages and has little influence on rural farmland
transfer; while in higher-level cities, the proportion of industrial and service industries is
higher and the scale of agricultural market is larger, which not only has a positive effect on
rural households’ off-farm employment, but also affects the planting structure of suburban
villages. Therefore, the influence of the distances to different levels of cities on farmland
transfer may be different.

In light of the preceding analysis, this study proposes the fourth hypothesis: There
exists a heterogeneous influence of distances to multilevel cities. Specifically, the impact
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of distance to high-level cities on farmland transfer is stronger compared to that of low-
level cities.

Beyond distance to urban centers, other determinant factors such as topography,
resource endowment, economic development, population structures, and policy also have
impacts that cannot be ignored and should be considered in the empirical analysis. Existing
literature has discussed the impact of topography, land quality, and cultivated land area
on farmland transfer [31,45,46]. It has been proved that when natural conditions are more
favorable and farmland resources are abundant, the rate of farmland transfer increases.
Such conditions can diminish the costs of large-scale agricultural production, yielding
greater outputs for the same inputs [47]. Some studies have also discussed the impact of
economic development on land transfer and found that regional economics or household
income has a positive effect on farmland transfer [37,48]. As the income of a rural household
increases, the possibility of off-farm employment increases, leading to a greater inclination
towards farmland transfer [7], and it is the same in region-level studies [49]. When there
is more male and labor population, the comprehensive labor capacity of a household is
enhanced, increasing their dependency on land and consequently lowering the rate of
farmland transfer [50]. China’s land system is different from Western countries. In Western
countries, farmland is privately owned and ownership can be determined by individuals.
While in China, farmland is collectively owned [51]. It means that the policy may have a
stronger impact on land use in China. When villages benefit from more favorable policies,
incentives are generated for the agricultural producers, propelling them to expand the scale
of agricultural production and thereby amplifying the rate of farmland transfer [52,53]. As
such, when examining the mechanisms through which distance to urban centers impacts
farmland transfer, these factors also need to be reflected in empirical analysis.

3. Data and Methods

3.1. Study Area

This study takes Tai’an Prefecture as the case (Figure 2). Tai’an is located in the middle
of Shandong Province. The terrain is mainly plains and hills, with a few mountains in
the north and east. Tai’an is surrounded by Jinan Prefecture, Jining Prefecture, Laiwu
Prefecture, and Liaocheng Prefecture. It encompasses over 3000 villages spread across six
county-level regions: Taishan District, Daiyue District, Xintai City, Feicheng City, Ningyang
County, and Dongping County. In 2020, the urbanization rate of Tai’an’s population is
approximately 64%, representing a 14-percentage point increase over the past decade.
This denotes a significant transformation in the urban-rural relationship. Nonetheless, the
agricultural industry plays an important role in the economic system. According to the
statistical data of Tai’an in 2020, the total agricultural output value of Tai’an increased by
2.5% compared with last year, the grain yield per unit area is 0.69 tons/hectare, ranking
second in the province.

The suitable natural geographic conditions and diversified topographic features indi-
cate that Tai’an has the potential for large-scale agricultural production and may have more
cases for farmland transfer on the one hand, and on the other hand, Tai’an is a place with
high-speed urbanization and a significant transformation in the urban-rural relationship
but still keeps a high-level agricultural production, which may be relative to farmland
transfer. These characteristics make Tai’an a proper case for exploring the impact of distance
to urban centers on farmland transfer.
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Figure 2. Physical geography and location of Tai’an.

3.2. Data and Model Specification

This study uses several sets of data, including farmland transfer data, geographical
data, geophysical characteristics of farmland, economic data, demographic data, and policy.
Considering that the period of the farmland transfer data is 2015, most of the datasets are
representative of this year. However, due to constraints in data sources, some datasets are
representative of 2019. The land transfer data, economic data, and population structure
data come from the 2015 village report of Tai’an Prefecture, the geophysical characteristics
of farmland are derived from the third national land survey in China, the geographical
data are obtained from the Digital Elevation Model (DEM) on the official website of the
Geospatial Data Cloud, which shows the land use in 2015, and the policy refers to the
historical and cultural towns and villages of Shandong Province and the first batch of rural
revitalization demonstration villages announced by Shandong Province before 2019.

In this study, the direct effect of distance to urban centers on farmland transfer and the
mediating effect of planting structure and off-farm employment are tested by the Causal
Steps Approach [54–56]:

Y = α0 + α1X + δZ + ε (1)

M1 = β0 + β1X + δZ + ω (2)

M2 = β′
0 + β′

1X + δ′Z + ω′ (3)

Y = γ0 + γ1X + γ2M1 + γ3M2 + δZ + σ (4)

In Formulas (1)–(4), Y represents the farmland transfer rate, X represents the distance
to urban centers, which initially took into account the Euclidean distance, but after modify-
ing the model, the road distance was taken into account, M1 and M2, respectively represent
the planting structure and off-farm employment, Z represents a series of control variables,
α, β, β

′
, γ and δ are the estimated coefficients, ε, ω, ω′ and σ are the random error terms.

The first step is to judge whether the total effect (α1) is significant. The second and
third step is to test whether the direct effect and mediating effect (γ1, β1γ2 and β′

1γ3)
are significant. Because there are two mediators in this study, it is necessary to repeat
Formula (1) twice using different control variables. For more accurate estimates, the
percentile and bias-corrected Bootstrap test is used to test the robustness of the mediating
effects [56].
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3.3. Variables

Table 1 lists the datasets and summary statistics of variables. The dependent variable in
this study is the farmland transfer rate. This rate is derived by dividing the number of rural
households participating in farmland transfer by the total number of rural households in the
village. It can better reflect the level of activity of farmers’ participation in farmland transfer.
A higher farmland transfer rate indicates more active participation of rural households
in farmland transfer, meaning a higher level of farmland transfer within the village. The
farmland transfer rate of some villages is 1, which means all the farmland of this village is
transferred out.

Table 1. Summary statistics of variables.

Type Variable Description Min Max Mean
Standard
Deviation

Dependent
variable

Farmland
transfer rate

The rate of households who participate
in farmland transfer to the total

households
0 1 0.236 0.269

Independent
variables

Distance_P Distance to the nearest prefecture-level
center (km) 2.15 64.35 36.97 13.79

Distance_C Distance to the nearest county-level
center (km) 0.52 44.01 18.173 9.177

Distance_T Distance to the nearest town-level
center (km) 0.01 11.70 4.054 1.982

Mediating
Variables

Off-farm
employment

The proportion of off-farm employment
to the total workers 0 1 0.699 0.190

Planting
structure

The proportion of vegetable planting
area to the total planting area 0 1 0.189 0.195

Control
variables:

Natural
condition

Terrain index The index according to the terrain index
formula [57] 0.29 1.36 0.574 0.169

Quality
The proportion of the area of

high-quality farmland to the total
farmland area

0 1 0.725 0.370

Integrity Average area of farmland plot (acre) 0.90 495.10 40.213 29.802

Farmland The proportion of farmland area to the
total area 0.01 0.99 0.777 0.128

Transportation
location Distance_H Distance to the nearest county-level and

above highways (km) 0 16.64 2.826 2.778

Economic factor Electricity Per capita electricity consumption
(10,000 kWh/person) 0.02 0.05 0.023 0.039

Population
structure

Male The proportion of males to the
total population 0.33 0.74 0.515 0.033

Labor The proportion of the labor to the
total population 0.15 1 0.619 0.106

Policy Policy support
Whether it is a historical and cultural
village or a demonstration village for

rural revitalization
0 1 - -

The distances from villages to the nearest prefectural center, county center, and town
center are three independent variables in this study. This study categorizes urban levels
based on China’s administrative division levels. Within the Chinese administrative hier-
archy, prefectures, counties, and townships are classified as the second, third, and fourth
levels. The level of the administrative division correlates with its socio-economic status.
Typically, a higher-level urban center implies a more advanced economic level, a larger
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consumer market, and a more expansive non-agricultural employment market [41]. Given
that in China, the location of governments largely coincides with market centers [20], thus
the urban centers are represented by the governments of prefectures, counties, and towns
in this study. This serves as an indicator of the spatial barriers that cities influence the rural
farmland transfer. The higher the level of the urban centers, the larger the scale of off-farm
employment and agricultural markets. Consequently, there is more negative impact of the
distance to the high-level urban centers on rural farmland transfer. Some villages are in the
towns but have farmland, and the distances to the town centers are very short.

The mediating variables in this study are the off-farm employment rate and the
vegetable planting rate. As the distance to the urban centers decreases, the opportunity costs
of agricultural labor rise, leading to a higher off-farm employment rate [58,59]. A higher
off-farm employment rate leads to an increased farmland transfer rate. The proportion of off-
farm employment in some villages is 1, which means that all the workers have an off-farm
job, and the other family members, such as the old people, may do the agricultural work.
If there is no family member to do the agricultural work, the probability of households
transferring out their farmland will increase. Vegetables are characterized by high economic
prices and are not resilient to transport and storage, thus it is suitable for making the
vegetable planting rate the variable of planting structure [60]. As the distance to the urban
centers decreases, the vegetable planting rate escalates, indicating a higher economic value
of the farmland and an increased farmland transfer rate.

The control variables include the following types: natural conditions, transportation
locations, economic factors, population structure, and policy. Natural conditions have a
direct impact on agricultural production, determining the cost and benefit of agricultural
production, thus influencing farmland transfer decisions. The terrain index, the average
area of farmland plots, and the proportion of high-quality farmland are used to measure
the natural conditions of farmland. In addition, the proportion of farmland area to the
total area is used to characterize the abundance of farmland resources. Transportation
means the external traffic conditions of the village. The better the transportation, the more
convenient the village is to the urban centers, leading to a higher farmland transfer rate [44].
However, some studies have found that roads will cause farmland fragmentation, and the
associated facilities will affect the agricultural production conditions of nearby villages,
thus having a negative impact on the farmland transfer rate [61]. The distance to the
nearest county-level and above highways is used to reflect the traffic situation according to
the previous studies [20,62,63]. Economic characterizes the economic level of the village.
According to previous studies and the data source, this study uses per capita electricity
consumption to reflect the economic level of the village [64]. Population structure affects
the agricultural production activities of the village, thus having an impact on the farmland
transfer. This paper uses the male rate and labor force rate to characterize gender [44]
and age structure [65]. It is expected that the higher the male rate and labor force rate,
the stronger the production capacity of farmers with multiple occupations, and the less
inclined to participate in land transfer. Policy type is whether the village is a historical and
cultural famous village or a rural revitalization demonstration village before 2019. These
villages will receive better policy support and more economic subsidies from the local
governments [20], which promotes the development of large-scale farming and positively
influences households’ participation in farmland transfer. This is a binary variable that 1
means the village is a historical and cultural village or a demonstration village for rural
revitalization and 0 means it is not.

4. Results

4.1. The Farmland Transfer and Distance to the Urban Centers

In Tai’an Prefecture, farmland transfer is relatively active. After excluding the villages
with missing data and anomalies (where the number of households participating in the
land circulation exceeds the total number of households), there are 3322 valid samples. Out
of these, farmland transfer occurred in 2390 villages, representing approximately 71.94%
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of the samples. The average farmland transfer rate is about 23.15%, with the highest rate
reaching 100%. The spatial distribution is shown in Figure 3. Notably, villages in the central
and southern plains exhibit higher rates of land circulation participation. Most county
centers are located in areas with a high concentration of farmer participation. Conversely, a
greater number of villages in the western and eastern regions have a 0% participation rate,
and these villages tend to be far from the county centers.

Figure 3. The spatial distribution of farmland transfer rates.

Owing to the limitations of traditional scatterplots in highlighting the relationship
between dependent and independent variables when there are large numbers of samples,
this study employs binscatter to delineate the relationship between farmland transfer rates
and the distance to multilevel centers [66]. Through showing the correlation between
the distance to the nearest prefectural center, county center, and town center and the
farmland transfer rate by binscatter, it is found that as the distance from a village to the
nearest prefectural and county center increases, there is a significant decline in the farmland
transfer rate (Figure 4a,b). However, as the distance from a village to the nearest town
center increases, the farmland transfer rate does not evidently (Figure 4c).

  
(a) (b) (c) 

Figure 4. The correlation between the distance to the nearest urban center and farmland transfer rate:
(a) Prefectural center; (b) County center; (c) Town center.

This is consistent with the existing research results, which indicate that the farther
away the village is from the city, especially the prefectural center and county center, the
lower the probability of farmland transfer [15]. Moreover, the absolute value of the slope
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of the fitted line representing the relationship between the distance to the nearest town
center and the farmland transfer rate is markedly smaller than that for the distance to the
nearest prefectural and county center. This indicates that lower-level urban centers do
not exhibit as pronounced an influence as higher-level urban centers. Such a result can
explain why extant studies suggest that the distance to town centers has no significant
effect on farmers’ willingness and decision-making concerning farmland transfer [67]. The
presence of high-level prefectures and counties seems to diminish the influence of low-level
towns, leading to a nearly horizontal line of the correlation between the distance to the
nearest town center and the farmland transfer rate. Nevertheless, it is necessary to examine
the effects of three urban centers on farmland transfer together because the fitted line
canot refuse the hypothesis that there are mediating effects between town centers and
rural farmland transfer. Thus, it is necessary to prove the hypotheses by the mediating
effect model.

4.2. Mechanism Analysis

In Section 4.1, through spatial distribution analysis and linear regression, it is discerned
that the distance from a village to an urban center, especially the prefectural and county
center, might influence the farmland transfer rate. However, this preliminary conclusion
needs further rigorous model testing. Consequently, Section 4.2 empirically tests whether the
fitting results are valid and calculates the proportion of the mediating effect to the total effect.

Based on the results from Models 1, 2, and 5, it is observed that compared to prefec-
tural and town centers, county centers exert a more pronounced impact on the off-farm
employment in villages, subsequently influencing the rural farmland transfer rates. In
Model 1, town centers do not exhibit a significant total effect on rural farmland transfer
rates at a 90% confidence level. While prefectural centers demonstrate a significant total
effect in Model 1, the relationship between prefectural centers and off-farm employment
does not pass the significant test at a 90% confidence level in Model 2. Only county centers
display the anticipated impact consistently across Models 1, 2, and 5, highlighting the
unique role of county centers as urban centers.

This suggests that the higher urban hierarchy does not necessarily translate into
a stronger capacity to stimulate the rural population in suburbs to engage in off-farm
employment. This finding confirms previous studies suggesting that prefectural centers do
not always play a role in promoting off-farm employment in suburbs [68]. Compared to
prefectural centers, living in county centers needs a lower level of living costs, and there is
a greater emphasis on off-farm employment opportunities that do not necessitate advanced
skills, such as those found in the mining and manufacturing sectors in counties [15,20].
Additionally, land rents in villages around counties are lower than those around prefectural
centers [15], further facilitating the transition to localized off-farm development.

Models 3, 4, and 5, which explore the mediating path of planting structure, reveal that
both county and prefectural centers influence rural farmland transfer through planting
structure. However, based on both statistical significance and correlation coefficients, the
impact of the prefectural centers is found to be more potent and stable. This indicates two
points: firstly, the classic agricultural location theory remains applicable to contemporary
rural agricultural studies, and secondly, with the advancements in transportation infras-
tructure, urban centers still have a spatial influence on rural agriculture. This spatial impact
is even more pronounced for urban centers of a higher level. Thus, Prefectural centers
possess a larger agricultural product consumption market. Moreover, compared to county
centers, these prefectural centers have a higher population density, superior transportation
facilities, and an ample consumer base [14]. Such factors favor the development of sight-
seeing agriculture and leisure agriculture in the surrounding villages, and these types of
agriculture require more farmland to create agricultural landscapes and offer ample spaces
for visitors, which is highly correlated with farmland transfer.

The total effects of the distance to the nearest town center do not show statistical
significance at a 90% confidence level. Moreover, some related studies argue that town
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centers do not have a significant impact on farmers’ decisions of farmland transfer [68].
While villages near towns exhibit a lower proportion of off-farm employment, they possess
a higher percentage of vegetable planting area, suggesting there remains a large room for
improvement in the off-farm employment markets in the towns. In China, small towns
often face problems such as underdeveloped non-agricultural industries and limited growth
potential [69]. They fail to absorb the surplus labor force from villages, making it difficult
to influence the urbanization of the rural population and the transformation of land use in
surrounding villages [20,70]. When compared to prefectures and counties, towns exert a
weaker influence on the farmland transfer to villages. This finding holds significant policy
implications. Within the hierarchical system of county-township-village, it is necessary to
harness the developmental potential of towns, propel the transformation and upgrading of
their industrial structures, and enhance their radiation and driving ability in villages.

The control variables nearly show the expected effects. The villages with more suitable
natural conditions for agricultural production have higher farmland transfer rates. These
villages are endowed with abundant and higher-quality land resources, suitable for large-
scale and mechanized farming. As a result, the farmland transfer rates are higher in
these villages. However, when the fragmentation of arable land is minimal, the farmland
transfer rate decreases. This is because villages with less fragmented farmland do not
necessarily require transfer to consolidate land resources, leading to a reduced transfer
rate [44]. The higher the economic level of a village, complemented by better infrastructure,
the more conducive it is for large-scale agricultural production, and correspondingly, the
higher the rate of farmland transfer. The labor force proportion does not pass statistical
significance tests at a 90% confidence level, and a higher male proportion negatively affects
farmland transfer. Influenced by the traditional model of “men plowing and women
weaving” [63], males tend to place a higher value on land assets and are less likely to
abandon agricultural production. Policy support received by villages elevates the rate
of farmland transfer, indicating that policy backing and economic subsidies positively
influence the development of farmland transfer in the villages.

Table 2 proves the first three hypotheses, while the fourth hypothesis is partially
validated. To measure the percentage of the mediating effect of the distance to the nearest
county center more accurately, this study calculates the proportion of the mediating effect
of each variable (Table 3). The results show that about Distance_P, the mediating paths of
off-farm employment and planting structure account for 2.33% and 33.45% partly, but only
planting structure is statistically significant at a 99% confidence level. About Distance_C,
the mediating paths of off-farm employment and planting structure account for 9.28% and
22.27% partly, and the total mediating effect is 31.55%. Numerically, the mediating effect of
planting structure has a higher proportion.

The Causal Steps Approach for testing the mediating effect has been criticized for
its insufficient test power. To enhance the robustness, this study adopts the percentile
and bias-corrected Bootstrap method with stronger test power to test the two mediating
paths of the urban distance and sets the resampling times to 5000 according to previous
studies [71]. Table 4 shows that the planting structure of county centers cannot pass the test
because the 95% confidence intervals include 0, and the other paths pass the test.

This indicates that the mediating effect of county centers on rural farmland transfer
rates through planting structure is not robust. Compared to county centers, prefectural
centers represent a higher-level market center, possessing a larger agricultural product
consumption market. Under the influence of prefectural centers, the path of which county
centers affect rural farmland transfer rates through planting structures becomes unstable.
Existing studies have also identified that in prefectural centers, there are more consumers
for new types of agriculture, such as sightseeing agriculture and leisure agriculture [14,53].
Lower-level urban centers, such as county centers, are unable to provide a sufficiently large
consumer base for these new types of agriculture and thus have less capacity to influence
rural farmland transfer. This further indicates the intensified role of higher-level urban
centers in driving the transformation of village agriculture.
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Table 2. The results of mediating effects.

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Distance_P
−0.001 ** −0.000 −0.002 *** −0.003 *** −0.001 **
(−2.18) (−0.91) (−4.05) (−12.10) (−2.13)

Distance_C
−0.001 *** −0.002 *** −0.001 ** −0.001 * −0.001 **

(−2.60) (−4.33) (−2.56) (−1.69) (−2.32)

Distance_T
0.000 0.004 ** −0.000 −0.001 0.000
(0.17) (2.03) (−0.08) (−0.76) (0.04)

Off-farm employment 0.094 *** 0.007 0.093 ***
(3.62) (0.40) (3.60)

Planting structure 0.223 *** 0.007 0.223 ***
(9.15) (0.40) (9.14)

Terrain index
−0.246 *** 0.282 *** −0.272 *** 0.002 −0.272 ***

(−7.29) (12.38) (−7.79) (0.08) (−7.90)

Integrity −0.000 *** −0.000 *** −0.000 0.001 *** −0.000 **
(−2.68) (−3.69) (−0.95) (9.56) (−2.45)

Quality 0.016 −0.083 *** 0.013 −0.051 *** 0.024 *
(1.26) (−9.53) (0.96) (−5.53) (1.84)

Farmland
0.209 *** −0.212 *** 0.209 *** −0.084 *** 0.228 ***

(5.28) (−7.96) (5.20) (−2.97) (5.73)

Ditance_H
0.013 *** 0.003 * 0.015 *** 0.012 *** 0.012 ***

(4.40) (1.76) (5.17) (5.82) (4.29)

Electricity 0.441 *** 0.187 ** 0.426 *** 0.012 0.423 ***
(3.70) (2.32) (3.54) (0.15) (3.56)

Male
−0.415 *** 0.620 *** −0.443 *** 0.131 −0.473 ***

(−2.95) (6.54) (−3.10) (1.31) (−3.35)

Labor
0.008 0.195 *** −0.007 0.015 −0.011
(0.18) (6.76) (−0.16) (0.50) (−0.25)

Policy 0.142 *** 0.017 0.145 *** 0.023 0.140 ***
(3.90) (0.68) (3.95) (0.87) (3.86)

Constant
0.409 *** 0.351 *** 0.438 *** 0.278 *** 0.376 ***

(4.95) (6.29) (5.23) (4.71) (4.53)

N 3322 3322 3322 3322 3322
R2 0.065 0.151 0.046 0.085 0.069

Note: *, **, and *** indicate significance at 0.1, 0.05, and 0.01 levels, respectively. The dependable variables of
Models 1–5 are farmland transfer rate, off-farm employment rate, farmland transfer rate, vegetable planting rate,
and farmland transfer rate, respectively.

Table 3. The proportion of mediating effects.

Variable The Coefficient and Proportion of Effects

Distance_P −0.002 ***

Wherein:
Off-farm employment (%) 2.33
Planting structure (%) 33.45 ***

Total mediating effects (%) 35.78
(Only planting structure is significant)

Distance_C −0.001 ***

Wherein:
Off-farm employment (%) 9.28 ***
Planting structure (%) 22.27 ***
Total mediating effects (%) 31.55 ***

Distance_T No significance

Wherein:
Off-farm employment (%) -
Planting structure (%) -
Total mediating effects (%) No significance

Note: *** indicate significance at 0.01 levels, respectively.

Based on Tables 2–4, a mediation effect diagram is illustrated in Figure 5, revealing
differences in coefficients across the two mediating paths which pass the tests of the Causal
Steps Approach and Bootstrap Method. The first path is that prefectural centers affect
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the rural farmland transfer through planting structure, and the second path is that county
centers affect the rural farmland transfer through off-farm employment.

Table 4. Bootstrap test.

Mediating
Variable

Result
Type

Acting Path Point
Bootstrap
Std. Err.

Z P > z
BC-Bootstrap
Normal-Based

[95% Conf. Interval]

Off-farm
employ-

ment

direct Distance_C → Farmland
transfer rate −0.0012 0.00005 −2.41 0.002 −0.00221 −0.00023

indirect
Distance_C → Off-farm

employment →
Farmland transfer rate

−0.0001 0.00005 −2.86 0.004 −0.00024 −0.00004

Planting
structure direct Distance_C → Farmland

transfer rate −0.0012 0.00051 −2.39 0.017 −0.00222 −0.00022

indirect
Distance_C → planting
structure → Farmland

transfer rate
−0.0001 0.00008 −1.75 0.080 −0.00030 0.00002

Planting
structure

direct Distance_P → Farmland
transfer rate −0.0008 0.00039 −2.05 0.040 −0.00159 −0.00004

indirect
Distance_P → planting
structure → Farmland

transfer rate
−0.0007 0.00010 −7.13 0.000 −0.00919 −0.00052

 
Figure 5. The path coefficients (*** indicate significance at 0.01 levels, respectively).

From the perspective of the coefficients of the total effects, the coefficient of prefectural
centers on farmland transfer has a higher absolute value than that of county centers. This
discrepancy indicates that, despite different influence paths, higher-level urban centers do
indeed exert a more pronounced impact. Considering the coefficients of mediating factors,
the coefficient of planting structure on farmland transfer has a higher absolute value than
that of off-farm employment. Such differences suggest that in the current context in China,
where the disparity in profits between non-agricultural income and agricultural income
increases farmers’ willingness to transfer out, maximizing the agricultural economic value
of farmland and increasing the willingness of transferees to transfer farmland in become
even more crucial in improving the farmland transfer rates in villages.

4.3. Robustness Test

The distances from the village to the prefectural, county, and town centers are Eu-
clidean distances, which may not reflect the actual accessibility of the village to the urban
centers. Therefore, this paper used the shortest traffic distances from the village to the
urban centers to replace the independent variables [20]. The shortest traffic distances from
the village to the urban centers are calculated using ArcGIS 10.5 software based on the data
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of the road network, and then the mediating effect model is run. Table 5 shows the results
of the robustness test. The results show that the influence of prefectural centers does not
change much, indicating the robustness of the mediating effect. However, the total effect of
county centers changes to be not significant at a 90% confidence level. This indicates that
when considering the road distance to the urban centers, the interference from higher-level
prefectural centers intensifies.

Table 5. The results of mediating effects after changing the independent variable.

Variable

Model 6 Model 7 Model 8 Model 9 Model 10

Farmland
Transfer

Rate

Off-Farm
Employment

Rate

Farmland
Transfer

Rate

Vegetable
Planting

Rate

Farmland
Transfer

Rate

Distance_P
−0.001 ** 0.000 −0.002 *** −0.003 *** −0.001 ***
(−2.53) (1.16) (−4.80) (−14.06) (−2.60)

Distance_C
−0.001 −0.001 *** −0.001 0.000 −0.001
(−1.65) (−4.14) (−1.25) (0.75) (−1.39)

Distance_T
−0.001 0.003 *** −0.002 −0.004 *** −0.001
(−0.51) (2.75) (−1.11) (−2.87) (−0.68)

Off-farm
employment Control Control

0.098 ***
(3.76)

Planting structure Control Control
0.240 ***

(9.83)
Control variables Yes Yes Yes Yes Yes

Constant
0.447 *** 0.353 *** 0.479 *** 0.295 *** 0.414 ***

(5.25) (6.18) (5.56) (4.95) (4.84)

N 3322 3322 3322 3322 3322
R2 0.064 0.148 0.046 0.101 0.068

Note: **, and *** indicate significance at 0.05, and 0.01 levels, respectively.

After replacing the independent variables, the same Bootstrap test is conducted for the
mediating effect, and the results in Table 6 show that the mediating effect still passes the test.
This suggests that even when transitioning from Euclidean to traffic distance, accessibility
to prefectural centers still impacts farmland transfer rates by raising the proportion of
vegetable planting area.

Table 6. The Bootstrap test after changing the independent variable.

Mediating
Variable

Result
Type

Acting Path Point
Bootstrap
Std. Err.

Z P > z
BC-Bootstrap
Normal-Based

[95% Conf. Interval]

Planting
structure

direct Distance_P → Farmland
transfer rate −0.00081 0.00040 −2.05 0.040 −0.00159 −0.00004

indirect
Distance_P → Planting
structure → Farmland

transfer rate
−0.00072 0.00010 −7.13 0.000 −0.00092 −0.00052

The results that the total effect of county centers does not pass the robustness test does
not negate the meaning of prior research regarding the mediating path of county centers, as
the impact of county centers on off-farm employment in the suburban villages still passes
the test at a 99% confidence level. It means that the transportation of the higher-level urban
centers strengthens its positive influence on rural farmland transfer, and suggests that more
attention should be paid to the development of transportation infrastructure in county
centers to reflect the positive role of county centers in rural farmland transfer.
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5. Discussion

This study finds that urban centers have an impact on farmland transfer in villages,
but this impact is more prominent in high-level urban centers. Proximity to the urban
centers correlates with a higher eagerness among farmers to participate in farmland transfer,
leading to a heightened level of farmland transfer. However, this does not mean that the
studies concluding that the distance to urban centers has no impact on farmland transfer
are meaningless. This study just offers a perspective to discuss the possibility that different
paths take place in different places. This study discusses the related issues from the village-
level perspective in Tai’an and discusses the different mediating paths of the impact of the
distance to urban centers on farmland transfer in villages under varying contexts.

First, the classical agricultural location theory can explain the mechanism of urban
centers on the rural farmland transfer through the planting structure. The villages in the
suburbs benefit from reduced transportation costs but have high rents. To overcome the
negative impact of land rents, crops that are not resistant to transportation and storage
but have high economic value are homogenized and scaled up. Thus, the intensity of
agricultural production is enhanced, which increases the farmland transfer rates in the
villages. Conversely, the villages farther away from urban centers have more dispersed
socio-economic activities, leading to diminished farming intensity and lower economic
value from agriculture. Besides, there will also be new types of agriculture such as sight-
seeing agriculture and leisure agriculture near the cities. These new types of agriculture
that are combined with the secondary and tertiary industries have more economic benefits
but also need stronger urban accessibility to attract more consumers. These new types
of agriculture also require capital investment and land resource agglomeration, which
increases the farmland transfer rates.

Second, recent studies have also found that the city affects rural land resource real-
location by influencing the sectoral shift of village population employment. This study
proves the existence of this mediating path, which can also explain how the distance to
urban centers acts as a spatial barrier to affect the development of the farmland transfer,
but the results are not robust when we consider the road distance to the urban centers. The
city gathers more capital, population, and information, and has stronger mobility of market
factors [72]. The flow of factors from urban areas to rural areas has significant spatial
heterogeneity [20], and the villages in the suburbs can obtain more off-farm employment
information and opportunities than the remote villages, leading to the higher opportunity
costs of agricultural labor in the surrounding villages. However, this path is affected by
both urban level and transportation facilities. In the higher-level urban centers, such as
prefectural centers, there are higher levels of living costs and more jobs that need advanced
skills and in the lower-level urban centers, such as town centers, there are less off-farm
employment. Transportation strengthens the positive influence of prefectural centers, so
only county centers in this study affect the rural farmland transfer through this mediating
path and are not robust when using road distance to the nearest city centers.

Finally, the cost-benefit framework is applicable to explain how urban centers in-
fluence rural farmland transfer. The farmers in the villages close to the urban centers
have more off-farm employment opportunities and have a stronger willingness to ob-
tain more economic benefits from transferring out. Besides, these villages have strong
accessibility to the city and low transportation costs [73], which help transferees obtain
higher agricultural income through land. This makes them more appealing, attracting
more transferees interested in transferring in for agricultural production, which in turn
elevates the farmland transfer rates in these villages. The policy also plays a positive role
in regulation. The rural revitalization policy proposes “industrial revitalization”, which
encourages the development of large-scale agricultural production, trains new professional
farmers, and offers economic subsidies. These measures have a positive impact on rural
farmland transfer. Recent research has also begun to focus on the impact of land property
rights on farmland transfer. Findings suggest that land ownership confirmation, guided by
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policy, has a positive influence on rural farmland transfer [74,75]. The urban influence of
this factor should be paid more attention to.

6. Conclusions and Policy Implication

Using Tai’an as a case, this study discusses the mechanisms of the impact of different
levels of urban centers on rural farmland transfer rates. The results show that: (1) The
closer to the high-level urban centers, the higher the rates of farmland transfer in the village.
The county centers attract farmers to off-farm employment and the prefectural centers
affect the planting structure of surrounding villages. This increases the opportunity costs of
agricultural labor and increases the economic value of agricultural production. As a result,
the farmland transfer rate in the village increases. (2) Different levels of urban centers
have different impacts. Compared with town centers, county centers have larger off-farm
employment market size and higher wage levels, and compared with prefectural centers,
county centers have a lower level of living costs and more jobs that need less advanced
skills can attract more surplus agricultural labor, and have a more positive impact on rural
farmland transfer. (3) Town centers cannot promote off-farm employment and planting
structures in the surrounding villages, which means that towns need to further explore
their potential for non-agriculture industry and agricultural markets.

Based on the results, this study proposes the following suggestions: First, according to
the result that there is no significant impact of the distance to town centers on rural farmland
transfer, it is necessary to strengthen the economic function of towns, and fully exert the
driving role of off-farm industries and agricultural markets in towns. The impact of towns
on the land resource reallocation process in villages is weak, and the radiating potential of
towns needs to be paid more attention to. Second, more policy support and preferential
subsidies should be given to the remote villages. This involves improving the level of
basic infrastructure and advocating for the scaled and intensive development of agriculture.
Third, the role of village collectives and agricultural production cooperatives in land
integration should be actively played. Existing studies have found that land-scale utilization
promoted by village collectives and agricultural production cooperatives in remote villages
can achieve greater results and improve agricultural production efficiency [76].

There are three main limitations in this study: (1) Due to the constraints of cross-
sectional data, it is difficult to discuss how the urban centers affect the planting structure
and off-farm employment of villages in different urbanization stages, and how this change
affects the development of the farmland transfer in villages. (2) This study has found that
urban centers affect farmland transfer through off-farm employment and planting structure.
However, data limitations make it difficult to further discuss other mediating paths, such
as new types of agriculture that include sightseeing agriculture and leisure agriculture,
which need less distance to the urban centers. This is also a direction for future research.
(3) In China, policies affecting land ownership can potentially influence farmland transfer
rates. However, due to data limitations, this study can only discuss the impact of policies
on farmland transfer from the perspective of policy incentives and economic subsidies. The
influence of land ownership confirmation needs further exploration.
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Abstract: Fiscal and land policies are important tools in developing agriculture in China. Under-
standing how agricultural subsidies and land fragmentation jointly affect agricultural Total Factor
Productivity (TFP) is crucial for building a strong agricultural nation. This paper utilizes microdata
from fixed observation points in rural China from 2003 to 2017 and employs panel bidirectional
fixed-effect models and moderation-effect models to empirically analyze the impact of agricultural
subsidies and land fragmentation on agricultural TFP. The research finds: (1) Agricultural subsidies
positively affect agricultural TFP, while land fragmentation leads to decreased agricultural TFP.
(2) Land fragmentation hinders the positive effects of agricultural subsidies on agricultural TFP. A
1% increase in land fragmentation could lead to approximately a 3% decrease in the enhancement
effect of agricultural subsidies, with significant impacts on households in major grain-producing
areas and those primarily engaged in agriculture. (3) There is no evidence that reforms in the “three
agricultural subsidies” would alter the combined effect of agricultural subsidies and land fragmenta-
tion on agricultural TFP. The obstructive role of land fragmentation cannot be mitigated through the
“three agricultural subsidies” reform. The study indicates that the incentivizing role of agricultural
subsidies has not been fully realized, and land fragmentation remains a key bottleneck in agricultural
development. Fiscal support for agriculture should be coupled with effective land reform policies for
synergistic efforts.

Keywords: agricultural development; financial support for agriculture; agricultural subsidies; land
fragmentation; agricultural total factor productivity

1. Introduction

For the first time, the report delivered at the 20th Communist Party of China (CPC)
National Congress included the goal of “building a strong agricultural country”. It pro-
posed to comprehensively promote rural vitalization, adhere to the priority of agriculture
and rural development, consolidate and expand the achievements of poverty alleviation,
and accelerate the building of an agricultural power. The important position of agriculture
in China has led to the continuous introduction and implementation of various policies to
promote high-quality development of agriculture and rural areas. According to the “China
Statistical Yearbook” data, since 2003, the scale of national fiscal expenditure on agriculture
has grown from CNY 1754.45 billion in 2003 to CNY 22,034.50 billion in 2021. The propor-
tion of agricultural expenditure in the national fiscal expenditure has increased from 7.12%
to 8.97%. Notably, from 2018 to 2020, the proportion of agricultural expenditure in the
total fiscal expenditure consistently exceeded 9.50%, reaching 9.75% in 2020. From 2004 to
2023, the CPC Central Committee has focused on agriculture, rural areas, and farmers for
two decades, issuing the No. 1 central document on agriculture, rural areas, and farmers.
Throughout this period, rural residents experienced an average annual real income growth
of 6 percent, 1.24 percentage points higher than urban residents. The income ratio between
urban and rural residents narrowed from 2.99:1 in 2010 to 2.56:1 in 2020. Grain production
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has achieved breakthrough growth, and the backward appearance of rural areas has been
improved. By the end of 2020, 832 poverty-stricken counties in China were lifted out of
poverty, and all 128,000 impoverished villages were removed from the list, achieving a
miraculous reduction in poverty by eliminating absolute poverty.

However, while the effectiveness of fiscal support for agriculture policies is becoming
evident, China’s various agricultural support policies still face issues regarding system,
scale, structure, and other aspects. These problems have led to negative phenomena in
agricultural development, such as rural marginalization, land idleness, and the last gener-
ation of farmers [1,2]. Among these issues, land fragmentation is a key factor hindering
agricultural development. Fragmented land can directly lead to a waste of from 3% to 10%
of arable land resources, significantly increasing agricultural production costs and severely
reducing agricultural production efficiency [3–5]. The intensification of agricultural sub-
sidies and the rise in agricultural production costs are two distinctly opposing factors in
improving and increasing agriculture’s efficiency. The existence of land fragmentation
inevitably negates the positive effects of fiscal support for agriculture. As a country with
a long history of agriculture, China’s typical characteristics include a large agricultural
population and relatively little arable land per capita. The rapid development of modern
agriculture, the shift of rural labor to non-agricultural sectors, and an underdeveloped
mechanism for urbanites to relinquish their land rights have all exacerbated the issue of
land fragmentation. The Central No.1 Document of 2023 emphasizes the need to draw
on local experiences of consolidating small plots into larger ones to enhance agricultural
operations and combine farmland construction and land consolidation to address the frag-
mentation issue gradually. So, in the context of China’s national conditions with ‘small
farmers in a large country,’ what exactly is the role of agricultural subsidies in agricultural
development? Can mere agricultural subsidies be effective? Does land fragmentation lead
to efficiency losses in agricultural subsidies? How should land policies and fiscal support
for agriculture be coordinated? The answers to these questions are key to clarifying the
relationship between fiscal support for agriculture and land reform and are also crucial
for China to accelerate its transformation from a large agricultural country to a strong
agricultural nation.

Accordingly, we must reassess the impact of agricultural subsidies and land fragmen-
tation on agricultural development. This involves systematically addressing, theoretically
and empirically, how agricultural subsidies and land fragmentation affect agricultural devel-
opment, especially at the household level. Further analysis is conducted on the interactive
effects of agricultural subsidies and land fragmentation and their heterogeneous impacts
across household characteristics. This helps clarify effective collaborative pathways for land
policies and agricultural fiscal support during the rural revitalization phase. Based on this, the
paper constructs an input–output model for the agricultural sector that includes the impact of
land fragmentation. It attempts to theoretically elucidate the mechanisms through which agri-
cultural subsidies and land fragmentation affect agricultural development. Using microdata
from national rural fixed observation points from 2003 to 2017, this study recalculates the Total
Factor Productivity (TFP) at the household level and analyzes the individual, interactive, and
heterogeneous effects of agricultural subsidies and land fragmentation on agricultural devel-
opment through panel bidirectional fixed-effect models and moderation effect models. This
provides theoretical and empirical support for achieving rural revitalization and accelerating
the construction of a strong agricultural nation.

The marginal contribution of this paper is mainly reflected in three aspects: Firstly,
this paper develops an input–output model of the agricultural sector, which includes the
impact of land fragmentation. The goal is to theoretically explain how agricultural subsi-
dies and land fragmentation affect agricultural total factor productivity. Secondly, land
fragmentation is incorporated into the evaluation framework for the effect of agricultural
subsidies, focusing on the impact of the economic characteristics of China’s smallholder
farmers on policy implementation. This is done to provide necessary empirical evidence for
subsequent policy formulation and reform. Thirdly, various heterogeneity analyses were
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conducted to comprehensively depict the interactive effects of agricultural subsidies and
land fragmentation on agricultural total factor productivity, considering the characteristics
of different regions and households in China. In summary, this paper enhances our theoreti-
cal understanding of the mechanisms behind agricultural subsidies and land fragmentation
and provides valuable insights into the practical implications for policy development and
reform. The heterogeneity analyses contribute to a nuanced understanding of how these
factors interact in China’s diverse regional and household contexts.

2. Materials and Methods

2.1. Literature Review

From the perspective of international experience and industrial development, the
agricultural industry is usually deprived and squeezed in the early stage of a country’s
economic development and gradually transformed into a sector emphasizing protection in
the middle and late stages of economic development [6]. China went through a period of
negative agricultural protection (from the 1950s to the 1990s) and a period of agricultural
granting balance (from the 1990s to the early 21st century). After 2004, China’s agricultural
policy underwent a comprehensive transformation [7], and the agricultural tax was com-
pletely abolished in 2006. Various agricultural subsidy policies explored and practiced since
then, such as subsidies for good crop varieties, direct subsidies for grain farmers, subsidies
for farm machinery and tools, and comprehensive subsidies for agricultural supplies, have
provided an important driving force for the development of agriculture, farmers and rural
areas. Agricultural subsidies play a significant role in promoting agricultural added value
and agricultural return on investment, and their role in increasing rural residents’ income
and driving consumption has been tested many times [8–10].

Furthermore, compared with direct administrative intervention, market-based means
such as agricultural subsidies have a more obvious effect on farmers’ planting structure
adjustment [11]. However, the specific implementation of agricultural subsidy policies has
also caused many controversies. It is a common problem that agricultural subsidies cannot
improve farmers’ willingness to grow grain, and the incentive effect on large-scale and
high-income farmers is not obvious [12–14]. The policy evaluation results of Huang et al.,
2019 [15] on direct grain subsidies indicate that the small scale of operation mainly caused
the lack of enthusiasm of Chinese farmers to grow grain. Although direct grain subsidies
would increase farmers’ grain planting area in the short term, the increase was limited,
and the effect gradually disappeared over time. Even though China’s agricultural subsidy
standards and total amount have greatly exceeded those of developed countries, there is still
a situation of weak agriculture and poor farmers co-existing [16]. Therefore, agricultural
development must explore how to make agricultural subsidies play an effective role in
avoiding financial and resource waste. In 2016, China merged subsidies for good crop
varieties, direct subsidies for grain farmers, and comprehensive subsidies for agricultural
supplies into agricultural support and protection subsidies and adjusted the subsidies
to actual grain farmers with land management rights (rather than contract rights) to
support the protection of cultivated land capacity and appropriate scale grain management.
However, concerning the specific policy adjustment of agricultural subsidy reform, Xu
et al., 2020 [17] and Yang et al., 2022 [18] both made a comparative analysis of the data
before and after the reform and found that the agricultural support and protection subsidy
did not have a significant impact on farmers’ land transfer behavior on the whole, but only
large-scale farmers expanded their land transfer scale. In addition, the planting structure of
farmers did not change significantly, and the land rent transformed by subsidies increased
the cost pressure of small farmers’ land transfer. From an economic perspective, due to
the distribution effect between land contractors and operators, the benefits are equally
distributed between them no matter to whom the subsidies are given [19]. In addition
to this phenomenon in China’s agriculture, the agricultural policies of the United States,
the European Union, and other countries or regions have had similar effects [20,21]. It
can be seen that the effect of agricultural subsidies on agricultural development does not
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seem to be directly reflected in the promotion of land circulation and increase in land scale,
and the reform of a fiscal agricultural support policy aimed only at the subsidy object
has not produced the desired effect, so from what dimension to evaluate the policy effect
of agricultural subsidies has become a key issue in the implementation process of fiscal
agricultural support policy.

In the chapter promoting high-quality development, the 20th CPC National Congress
emphasized the importance of “improving the total factor productivity.” Considering that
China has completed the development status of the initial stage of the agricultural support
industry, it is necessary to pay attention to the direct contribution of agriculture to food
security and the long-term contribution of economic and social stability in the development
process in the next period [22]. Therefore, the study of the effect of agricultural subsidy
policies and the efficiency or level of agricultural development should not be limited to
the standard of crop yield and the equivalent number of employees but should turn to
the qualitative measurement of agricultural production mode, organization mode, and
management mode, that is, agricultural total factor productivity. From 1978 to 2016, the
annual growth rate of agricultural scientific and technological progress in China was about
3%, much higher than the international average of 1%. Agricultural TFP contributed more
than 56% to the total agricultural output value, surpassing the contribution rate of various
input factors and becoming an important engine for agricultural development [23]. In the
study on agricultural subsidies and agricultural TFP, Li et al., 2021 [24] used provincial
panel data from 2003 to 2018 to test the promoting effect of agricultural subsidies on grain
TFP and tried to explain it through structural effects and technical effects, and found that
the policy effect was better in non-grain-producing areas than in major grain-producing
areas. Xu et al., 2023 [25] conducted an empirical study on the impact of the subsidies
for farm machinery and tools on agricultural total factor productivity by using the data
of fixed observation points in rural areas throughout China from 2007 to 2017 and found
that a positive and significant impact does exist, and it is more obvious in plains areas and
large-scale farms. Nevertheless, only examining the single effect of agricultural subsidies
on agricultural TFP is still a glimpse. Regarding the mechanism of agricultural subsidies,
land is an important factor of production closely related to its effect. Whether it is the good
seeds, agricultural machinery, and equipment supported by agricultural subsidies or the
labor and capital owned by rural residents, they must be combined with land as a factor
of production. For farmers engaged in farming, forestry, animal husbandry, fishery, and
other agricultural activities, in addition to owning the necessary land (including arable
land, forest land, pasture, pond, etc.), the land fragmentation degree directly affects the
use of agricultural machinery and tools, the application of agricultural technology and the
production efficiency of various labor factors.

Looking back at the history of China’s agricultural development, the household con-
tract responsibility system (HRS) divided the scale operation of the production team into
small-scale family operations. Under the historical background and development needs
at that time, this measure stimulated farmers’ enthusiasm for production and greatly
improved the efficiency of agricultural production. However, over time, the segmental
mode of production and operation undoubtedly hindered the wide use of agricultural
machinery, increased agricultural production costs and transaction costs, and reduced the
scale economies of agricultural production [26,27]. Drawing on the experience of global
agricultural modernization, Germany, the Netherlands, and Japan, as the typical represen-
tatives of agricultural powers facing the contradiction between humans and land, have
all experienced the development stage of serious land fragmentation and low agricultural
production efficiency. Breaking the restriction of land fragmentation has become an im-
portant link in their agricultural take-off. Germany’s per capita arable land area is only
0.14 hectares (about 2.16 mu). Under the comprehensive management of a series of laws
and regulations, from 1949 to 1994, the number of agricultural organizations of less than
10 hectares in Germany was reduced from 1.4 million to 280,000, and the average farm
size reached 29.8 hectares, with a cumulative expansion of 3.73 times. It has improved the
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efficiency of agricultural production while effectively guaranteeing post-war food security
1
.

Before the 1950s, the Netherlands could still not meet its demand for agricultural products
and needed to import a large amount of food and other agricultural products. But by 2020,
after large-scale land management, the number of agricultural operating entities in the
Netherlands has dropped from more than 300,000 at the beginning of the 20th century to
more than 4000, and the average size of family farms has reached the highest-level set in
the European Union. It has promoted the Netherlands’ agriculture to a leading position
globally [28]. The smallholder peasant economy dominates agricultural operations in Japan,
which is close to China regarding resource endowment. In 1960, the average farmland op-
eration scale per household was only 0.88 hectares. However, after implementing effective
measures such as farmland construction and land transfer, the average farmland operation
area per household reached 2.22 hectares in 2015, nearly three times larger than in 1960.
The concentration of agricultural land made the average income of rural residents exceed
the national average [29]. It can be found that, as the inevitable result of industrialization
and urbanization, the moderate concentration of agricultural land management scale is
an important exogenous variable for the development of agricultural industry and an
irresistible trend [30,31]. Therefore, the degree of land fragmentation is undoubtedly the
key factor affecting agricultural development. The cases of Germany, the Netherlands, and
Japan have to some extent given us thoughts on land governance and scale management,
but any policy or reform will inevitably have two sides. The national conditions and
characteristics of each country determine that the costs and benefits of a certain reform
coexist, and opportunities and challenges coexist. Limited by the purpose of this study,
the problems and challenges encountered in the land reform process in these countries are
also worth discussing in future research. Focusing on the actual situation in China, in 2003,
China’s average household land management scale was 7.5 mu, the average number of
land blocks was 5.7, and the average area of each land block was only 1.3 mu. As of 2018,
the average land operation scale of Chinese households has been less than 7.5 mu, and the
average number of land blocks per household has still reached 5.5, and even the average
number of land blocks per household has reached 9 in mountainous and hilly areas such as
Chongqing and Sichuan [32]. China’s biggest agricultural feature and national condition is
the small-scale peasant economy, which will last a long time [33]. The main contradiction
in China’s agriculture is the agricultural production mode and production efficiency, and
the key is to solve the problem of land fragmentation, achieve scale management, and build
a modern production mode to curb the phenomenon of diminishing returns on capital and
declining return on investment [27]. Therefore, when exploring the impact of agricultural
subsidies on agricultural total factor productivity, it is necessary to measure the degree of
land fragmentation to judge how precise measures should be taken to maximize the effect
of agricultural subsidies in accelerating the construction of agricultural power.

In summary, existing research has primarily focused on analyzing the impact of agri-
cultural subsidies on single dimensions, such as grain yield, farmer income, land transfer,
and land scale, without delving into how agricultural subsidies affect the Total Factor
Productivity (TFP), which is critical for long-term agricultural development. Meanwhile,
although current studies have identified the influence of both agricultural subsidies and
land factors on agricultural development, few have examined the extent of land fragmenta-
tion within the context of the impact of agricultural subsidies on agricultural development.
In an era where fiscal subsidies are increasing, and land reforms are vigorously underway,
exploring the collaborative effect of agricultural subsidies and land fragmentation in agri-
cultural development has clear, practical significance and theoretical value. Based on this,
this paper constructs an agricultural sector input–output model that includes the impact of
land fragmentation. It attempts to theoretically clarify the mechanisms by which agricul-
tural subsidies and land fragmentation affect agricultural development. Using microdata
from fixed observation points in rural China from 2003 to 2017, this study recalculates
the TFP at the household level in agriculture. Employing panel bidirectional fixed- and
moderation-effect models, it analyzes the individual, interactive, and heterogeneous effects
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of agricultural subsidies and land fragmentation on agricultural development. This pro-
vides theoretical and empirical support for achieving rural revitalization and accelerating
the construction of a strong agricultural nation.

2.2. Theoretical Analysis and Research Hypotheses

Suppose that the input–output of the agricultural sector conforms to the Cobb–Douglas
form:

Yt = At[(Nα
t Lβ

t K1−α−β
t )

1−θ
Mθ

t ]
γ

I1−γ
t (1)

where, Yt is the total agricultural output in period t, Nt is the actual total input of labor
in period t, Lt is the actual total input of land in period t, Kt is the actual total input of
capital in period t, Mt is the actual total input of intermediate goods in period t, and It is
the number of peasant households in period t. Accordingly, the total factor productivity
At is obtained by subtracting the contribution of input factors from the total agricultural
output in period t.

If the number of farmers producing a certain crop is fixed in period t, then there is:

yit = s1−γ
it [(nα

itl
β
itk

1−α−β
it )

1−θ
mθ

it]
γ

(2)

Yt = ∑It
i=1 yit (3)

In this case, yit, nit, lit, kit, mit represents agricultural output, labor input, land input,
capital input and intermediate product input at the peasant household level, respectively; sit

represents the productive capacity of farmer households and s1−γ
it describes the total factor

productivity level at farmer household level; the parameter γ ∈ (0, 1) describes the actual
control degree by farmers on factors, indicating that farmers with higher productivity can
have a higher factor control ability under ideal conditions; the parameters α, β, 1 − α − β, θ
represent the output elasticity of labor, land, capital and intermediate products in agricultural
production, respectively.

From this, it can be obtained that the agricultural total factor productivity at the farmer
household level is:

s1−γ
it =

yit

[(nα
itl

β
itk

1−α−β
it )

1−θ
mθ

it]
γ (4)

The premise of the Cobb–Douglas production function is the assumption that the
return to scale of production is constant when the technical level and factor price are
unchanged, that is, aY = AF(aN, aL, aK, aM). At this time, it is assumed that the financial
input implemented to the agricultural subsidies at the farmer’s level can achieve a multiple
of the input growth of various factors. The total agricultural output level under the
condition of agricultural subsidies should achieve τ times growth based on yit:

τyit = s1−γ
it τ[(nα

itl
β
itk

1−α−β
it )

1−θ
mθ

it]
γ

(5)

However, from the traditional small-scale peasant economy to the agricultural di-
vision of labor stage, there is the possibility of increasing returns to scale in agricultural
production [34]. In agricultural production practice, agricultural subsidies will change
the production level of farmers by affecting the use of agricultural machinery and equip-
ment and the application of agricultural technology, leading to changes in the total factor
productivity of farmers, namely:

Sit = ωs1−γ
it (6)

At this time, the relationship between agricultural subsidies and the total factor
productivity of farmers may be ω > 0, or ω < 0, that is, agricultural subsidies will increase
or decrease the total factor productivity of farmers. Because of the research conducted
by many scholars using provincial panel data or single subsidy policies, it is proven that
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agricultural subsidies have a significant positive effect on TFP [25,26]. This paper proposes
hypothesis 1 for agricultural TFP at the farm household level:

Hypothesis 1 (H1). Agricultural subsidies can effectively improve agricultural TFP at the farmer
level, that is, ω > 0.

It can be seen that under the exogenous effect of agricultural subsidies, agricultural
output is not only affected by the increase in factor input but also changes with the change
in technical level, and the total agricultural output y f

it will increase by ωτ times compared
with yit that of agricultural subsidies:

y f
it = ωτyit = Sitτ[(nα

itl
β
itk

1−α−β
it )

1−θ
mθ

it]
γ

(7)

However, due to the existence of land fragmentation, farmers’ land input lit in most
cases is not in the form of a complete piece of land but in the form of η

Large
it larger areas of

land lLarge
it and ηSmall

it smaller areas of land lSmall
it co-input agricultural production activities,

namely:
lit = η

Large
it lLarge

it + ηSmall
it lSmall

it (8)

where, lLarge
it > lSmall

it ; total number of land blocks is ηit = η
Large
it + ηSmall

it . If μit =
ηSmall

it
ηit

expressed as the degree of land fragmentation, μit ∈ [0, 1], that is, the proportion of small
land area. The closer it is to 1, the more small-land-area farmers invest in land factors, and
the land fragmentation problem is serious. The closer it is to 0, the larger the land area in
farmers’ land factor input, and the land scale is stronger.

By substituting the degree of land fragmentation μit into Equation (5), land input can
be expressed as:

lit = ηit[(1 − μit)l
Large
it + μitlSmall

it ] (9)

By substituting Equation (9) into Equation (7), the total agricultural output, including
the degree of land fragmentation, is:

y f
it = Sitτρ[(1 − μit)l

Large
it + μitlSmall

it ]
βγ(1−θ)

(10)

where, ρ = [(nα
itη

β
itk

1−α−β
it )

1−θ
mθ

it]
γ

, ρ ≥ 0.

So, dy f
it

dμit
< 0 can be obtained based on Equation (10), that is, the higher the degree

of land fragmentation, the lower the total agricultural output under the condition of
agricultural subsidies, and the two are negatively correlated. According to the assumption
that the return to scale of the production function is unchanged, the decline in the total
agricultural output caused by the degree of land fragmentation comes from its negative

effect on the total factor productivity, namely dS f
it

dμit
< 0. At this time, due to the input

of land fragmentation, the application of large-scale machinery and agricultural science
and technology is affected to some extent, which destroys the original large-scale and
agglomeration development and makes the total factor productivity at the farmer’s level
fail to increase to the due degree, which may lead to the gap between the actual output

and the theoretical output, that is, S f
it

s1−γ
it

< ω. Accordingly, hypothesis 2 is proposed in

this paper:

Hypothesis 2 (H2). Land fragmentation will hinder the positive effect of agricultural subsidies on

farmer-level agricultural TFP, i.e., S f
it

s1−γ
it

< ω.

The specific mechanism is as follows Figure 1:
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Figure 1. Theoretical Analysis and Research Hypotheses.

2.3. Research Design
2.3.1. Data Source

The national rural fixed observation point data service used in this article is an annual
farmer-level tracking survey database led by the Ministry of Agriculture and Rural Affairs
of the People’s Republic of China. It has national representativeness and authority and is
currently China’s largest sample size of farmer-level data.

To ensure the availability and continuity of data, this paper selects the data from fixed
observation points in rural areas throughout China from 2003 to 2017 for empirical research.
After cleaning, sorting, and matching the data of villages and farmers, only the farmers
who participate in agricultural production are included in the analysis framework; that is,
the agricultural output, labor input, land input, capital input, and intermediate product
input all exist and are positive, and the samples with extreme values and abnormal values
are reduced by 1%. Finally, 113,507 valid farmer samples are retained.

2.3.2. Model Setting

(1) Model Setting for Measuring Agricultural Total Factor Productivity

The Solow residual accounting method of total factor productivity has experienced
many developments. Olley and Pakes, 1996, [35] first proposed the two-step consistent
estimation method of total factor productivity. Levinsohn and Petrin, 2003, [36] improved
the OP method, enabling researchers to choose proxy variables more flexibly. Wooldridge,
2009, [37] improved the estimation methods of OP and LP, and proposed a one-step esti-
mation method based on GMM, which also considered heteroscedasticity and sequence
correlation and could obtain the total factor productivity under robust standard error. There-
fore, the Wooldridge method was chosen in this paper to estimate agricultural TFP. Based
on the Cobb–Douglas production function, the specific calculation model of agricultural
total factor productivity is set as follows:

ln TFP = yit − α log Wit − β log Xit − γ log Mit (11)

where, yit is the agricultural output of farmers i in the year t; W is the free variable, usually
the variable that can change such as labor input; X is the state variable, usually land, capital,
and other variables that are not easy to change; M is a proxy variable, which is used to
represent the unobservable impact of production.

To further reduce the bias of estimating agricultural total factor productivity effectively,
we make a series of adjustments based on the Wooldridge method. Firstly, we draw
on the study of Wang et al., 2020 [38] to relax the potential assumption that the total
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agricultural output value is consistent with the intermediate input coefficient and regards
the intermediate input as an important factor input. Secondly, to avoid the short-term
changes in agricultural total factor productivity caused by technological shocks, the Solow
residual method is used to measure agricultural TFP over a long period to weaken the
impact of macroeconomic shocks effectively. To sum up, we take the total crop output as
the output index, the day of labor entry, the productive fixed assets of farmers and the
expenditure of productive services of households as free variables, the actual cultivated
land managed by farmers at the end of the year as the state variable, and the total input
cost of intermediate goods as the proxy variable. The logarithm of each index is taken to
calculate the agricultural total factor productivity at the peasant household level from 2003
to 2017.

(2) Model Setting to Measure the Impact of Agricultural Subsidies and Land Fragmenta-
tion on Agricultural TFP

After estimating agricultural total factor productivity, we investigate the impacts of
agricultural subsidies and land fragmentation on agricultural total factor productivity by
constructing a two-way fixed effect model and a moderating effect model.

First, the two-way fixed effect model can solve the endogeneity problem caused by
missing variables as much as possible by controlling some household characteristics that
do not change with time but change with individuals and some random characteristics that
do not change with individuals but are related to time. The two-way fixed effect model is
specified as follows:

TFPit = β0 + β1 ln subsidyit + θXit + βi + γt + εit (12)

TFPit = β0 + β1 f ragmentit + θXit + βi + γt + εit (13)

where, TFPit is the agricultural output of farmer i in the year t; subsidyit is the agricultural
subsidies received by farmer i in the year t, fragmentit is the degree of fragmentation of
land owned by farmer i in the year t; β0 is a constant term, and β1 represents the effects
of agricultural subsidies and land fragmentation on agricultural total factor productivity,
respectively, in two formulas; X represents a series of control variables, and θ is the
corresponding coefficient of each control variable; βi, γt, respectively, represents individual
fixed effect and time fixed effect; εit represents random interference items.

On this basis, to investigate the interaction between agricultural subsidies and land
fragmentation, we introduce the interaction term between agricultural subsidies and land
fragmentation based on the two-way fixed effect model and investigate the impact of their
interaction on agricultural total factor productivity. The moderating effect model is set
as follows:

TFPit = β0 + β1 ln subsidyit + β2 f ragmentit + β3Dit + θXit + βi + γt + εit (14)

where, Dit denotes the interaction item between agricultural subsidies and land fragmenta-
tion, namely ln subsidyit ∗ f ragmentit. β1, β2 represents the effect of agricultural subsidies
and land fragmentation on agricultural total factor productivity, and β3 is the interac-
tion effect coefficient of the two. The meanings of other symbols are consistent with the
previous ones.

As for possible endogeneity problems, we analyze and deal with them as follows: first,
there may be some unobservable characteristics at the level of farmers receiving agricultural
subsidies, which may lead to endogeneity problems caused by sample self-selection; second,
the acquisition of agricultural subsidies will affect the change in total factor productivity
of farmers, but the increase in total factor productivity of farmers may also make it easier
to obtain agricultural subsidies, so there may be endogenous problems caused by reverse
causality. Based on this, to deal with the endogenous problem as much as possible, we
construct the average subsidy amount at the provincial level as an instrumental variable and
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use two-stage least-squares estimation (2SLS). The specific approach is to divide the amount
of financial subsidies for agriculture at the provincial level by the effective agricultural
irrigation area of the whole province to calculate the amount of average subsidies for the
whole province and multiply the actual cultivated land area of households at the end
of the year at the farmer’s level to obtain the new amount of agricultural subsidies at
the farmer’s level, and use this as the instrumental variable (IV) to perform two-stage
least-squares estimation. Since provincial financial agricultural subsidies are coordinated
with the agricultural development status of each province, the implementation situation
in previous years, and the needs of rural residents, and the fact that the comprehensive
situation in the same region will not change significantly, the number of agricultural
subsidies over the years has a certain correlation [25], so the instrumental variable meets
the correlation requirements. The acquisition of agricultural subsidies at the farmer’s
level may be related to farmers’ production capacity and factor input. However, there is
a large gap between the average amount of subsidies at the provincial level and the level
of farmers’ production capacity, and there is no significant correlation between the two,
so this instrumental variable meets the exogenous requirements. In addition, we replace
the estimation method of agricultural total factor productivity in the robustness test to
avoid the endogenous problems caused by measurement errors. At the same time, by
adding the time dummy variable to characterize the policy impact, we examine whether
the exogenous impact of the reform of the three subsidies for agriculture changes the effect
of land fragmentation on agricultural subsidies on agricultural total factor productivity.

2.4. Variable Description
2.4.1. Variables Related to Agricultural Total Factor Productivity

Regarding the studies of Ayerst et al., 2020 [39] and Adamopoulos et al., 2022 [40], to
obtain the agricultural total factor productivity that represents agricultural development,
the following variables are selected for measurement in this paper: (1) Agricultural output.
The output index is the total output of crops, mainly wheat, rice, corn, soybean, potato,
cotton, oil, sugar, hemp, tobacco, vegetables, fruits, and other planting crops; (2) Land
input. Compared with the area contracted by farmers, the area of cultivated land under
management at the end of the year decreased the amount of cultivated land transferred
and leased to others and increased the amount of cultivated land leased by others, which
can more accurately reflect the actual land input of rural households. (3) Labor input. The
labor input is measured by labor input day, including the labor days of domestic labor
engaged in production activities and labor input by external labor. (4) Capital input. It is
composed of the expenditure of farmers’ productive fixed assets (such as livestock, large
and medium-sized iron and wood farm tools, power machinery for agriculture, forestry,
animal husbandry, and fishery, large and medium-sized tractors for transportation, etc.)
and household productive services (such as animal power costs, small farm tools purchase
and repair costs, machinery operation costs and fixed assets depreciation and repair costs),
using the perpetual inventory method to process the original value to get each year’s capital
input value and taking 2003 as the base period, using the price index of agricultural means
of production to carry out the capital input reduction treatment; (5) Input of intermediate
goods. It mainly includes the expenditure of intermediate goods related to agricultural
activities, such as seeds, seedlings, farm manure, fertilizer, agricultural film, pesticides,
water, electricity irrigation, etc. After adding up all kinds of expenses, the CPI index is
adjusted to 2003 as the base period.

The descriptive statistics of the variables used to calculate agricultural total factor
productivity are shown in Table 1.
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Table 1. Describes the descriptive statistics of variables used to measure agricultural total factor
productivity.

Sample Size Mean Standard Deviation Minimum Maximum

Agricultural output 113,507 4916.24 6270.07 200.16 45,800.14
Land input 113,507 9.07 8.85 0.30 90.00
Labor input 113,507 163.85 140.12 0.34 730.28

Capital input 113,507 10,1876.31 187,323.80 0.19 1,451,132.30
Intermediate inputs 113,507 2049.92 2581.20 51.95 20,469.19

Note: Author’s collation.

2.4.2. Core Explanatory and Control Variables

(1) Agricultural subsidies. The annual income received by farmers from state finance
includes various kinds of relief, disaster relief, pensions, subsidies related to agri-
cultural activities, as well as subsidies for household appliances to the countryside,
subsidies for cars and motorcycles to the countryside, survey subsidies, and other
living subsidies. Based on the research needs of this paper, we sum up the agricul-
tural subsidies received by farmers at the level of returning farmland to forest (grass)
subsidies, direct grain subsidies, subsidies for good seeds, comprehensive subsidies
for the purchase of means of production, subsidies for the purchase and renewal of
large agricultural machinery and tools, to obtain agricultural subsidy indicators at the
farmer level.

(2) Land fragmentation. There are many indicators in the literature to characterize land
fragmentation [41,42]. The single index includes the number of plots, the average
area of plots, the average distance between plots, etc. Simpson’s index represents
the composite index. Since the database does not provide relevant indicators of the
specific area of each plot and the distance between different plots, Simpson’s index at
the farmer’s level cannot be calculated. Therefore, combined with the existing research
and data characteristics, we integrate the number of plots owned by farmers with the
average plot size and measure the degree of land fragmentation at the farmer level
with the proportion of land plots less than one mu in the total land plots of farmers.

(3) Control variables. The control variables selected in this paper mainly include family
characteristics and village characteristic variables. The family characteristic variables
include household grain consumption

2
, annual net income, and income from going

out to work. Village characteristic variables include total village population and
village land scale.

In addition, all income variables (such as agricultural subsidies, annual household net
income, and household income from migrant workers) are treated logarithmically, and the
CPI index is deflated based on 2003.

The descriptive statistics of variables are shown in Table 2.

Table 2. Descriptive statistics of variables.

Sample Size Mean Standard Deviation Minimum Maximum

Total factor productivity
in agriculture 113,507 6.214 0.677 1.645 9.974

Farm subsidies 113,507 355.126 563.812 0.050 4116.039
Land fragmentation 113,507 0.655 0.290 0 1

Household grain consumption 113,507 6.619 0.540 5.170 8.087
Annual household net income 113,507 9.795 0.849 7.509 11.702

Household income from
migrant workers 113,507 6.429 4.450 0.030 11.628

Total village population 113,507 7.371 0.662 5.595 8.966
Village land scale 113,507 8.574 1.114 5.814 11.358

Note: Author’s collation.
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2.4.3. Trends of Agricultural Subsidies, Land Fragmentation, and Agriculture Total Factor
Productivity

The change trends of three major indicators from 2003 to 2017 are plotted in Figure 2.
It can be seen that agricultural subsidies from 2003 to 2017 did not show significant changes
from 2003 to 2004. Since the No. 1 central document in 2003 paid attention to the issues
of agriculture, rural areas, and farmers, and the official agricultural policy transformation
began in 2004, agricultural subsidies have had an obvious upward trend. The overall trend
of land fragmentation decreased significantly, but the decrease was small, only from about
0.67 to about 0.62; that is, more than 60% of the land in rural households was less than one
mu; China’s agriculture total factor productivity at the peasant household level shows a
fluctuating upward trend, and its growth rate has slowed down in recent years. Although
there are some differences in the values due to the selection of measurement methods and
indicators, this changing trend is consistent with the changing trend measured by Wang
et al., 2020 [38] using the data of fixed observation points in rural areas across China.

Figure 2. Descriptive Statistics on the Trend of Changes in Main Indicators.

3. Results

3.1. Benchmark Model Regression Results

To clarify the relationship between agricultural subsidies, land fragmentation, and
agricultural TFP, we use the two-way fixed effect model and the moderating effect model to
identify the single and interactive effects of agricultural subsidies and land fragmentation
by controlling the provinces where the households reside and the year of the data survey.

First, Columns 1 and 2 of Table 3 use agricultural subsidies and land fragmentation
as single explanatory variables, and the two-way fixed effect model is used to identify
the effects of agricultural subsidies and land fragmentation on agricultural TFP. Column 1
reports the effects of agricultural subsidies as an explanatory variable alone. According to
the regression results, agricultural subsidies significantly positively affect agricultural TFP,
and a 1% increase in agricultural subsidies will increase agricultural TFP by 0.4%. Column 2
presents the separate effect of land fragmentation. Land fragmentation leads to a significant
decrease in agricultural TFP, with each 1% increase in land fragmentation leading to a 33.3%
decrease in agricultural TFP. This benchmark result indicates that acquiring agricultural
subsidies can promote agricultural development and increase the TFP at the farmer level.
Hypothesis 1 is supported, but the typical fact is that land fragmentation plays a negative
role in agricultural development. On this basis, column 3 is constructed to incorporate both
agricultural subsidies and the degree of land fragmentation into the analytical framework.
The regression results of column 3 show that adding land fragmentation reduces the
influence coefficient of agricultural subsidies on agricultural total factor productivity, and
the significance of agricultural subsidies is only marginal, which provides preliminary
evidence for the negative effect of land fragmentation on agricultural subsidies.
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Table 3. Agricultural subsidies, land fragmentation, and agricultural total factor productivity.

Variables
Explained Variables: Agricultural TFP

(1) (2) (3) (4)

Agricultural Subsidies 0.004 *** 0.002 * 0.023 ***
(0.001) (0.001) (0.002)

Land fragmentation 0.333 *** 0.332 *** 0.201 ***
(0.014) (0.014) (0.017)

Agricultural subsidies × Land fragmentation 0.033 ***
(0.002)

Household grain consumption 0.094 *** 0.086 *** 0.086 *** 0.088 ***
(0.005) (0.005) (0.005) (0.005)

Annual household net income
0.137 *** 0.134 *** 0.134 *** 0.134 ***
(0.004) (0.004) (0.004) (0.004)

Household income from migrant work 0.008 *** 0.008 *** 0.008 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Total village population 0.017 ** 0.015 ** 0.016 ** 0.018 ***
(0.007) (0.007) (0.007) (0.007)

Village land scale 0.005 0.004 0.004 0.004
(0.003) (0.003) (0.003) (0.003)

Constant term
4.036 *** 4.361 *** 4.363 *** 4.244 ***
(0.081) (0.080) (0.080) (0.081)

Province fixed effect YES YES YES YES
Year fixed effect YES YES YES YES
Observed values 18,828 18,828 18,828 18,828

Sample size 113,507 113,507 113,507 113,507

Note: *, **, and *** indicate significant differences at the 10%, 5%, and 1% levels, respectively, with robust standard
error in brackets.

Considering that agricultural subsidies and land fragmentation have opposite effects on
agricultural TFP, to analyze the impact of land fragmentation on agricultural subsidies, we
construct the interaction term of agricultural subsidies and land fragmentation and identify the
impact of the interaction between the two on agricultural TFP. As can be seen from the results
of column 4, the direction of the main effect of agricultural subsidies and land fragmentation is
the same as that of the single effect, and there is no significant change in the direction of the
influence due to adding another core explanatory variable. At the same time, the interaction
term of the two is significantly negative, indicating that at a certain level of financial support
for agriculture, the higher the degree of land fragmentation, the more significant the negative
reduction effect on agricultural total factor productivity. Specifically, when the degree of land
fragmentation increases by 1%, the promoting effect of agricultural subsidies on agricultural
TFP decreases by about 3%. Based on the results of the above analysis, hypothesis 2 is supported
by sufficient evidence that the degree of land fragmentation will significantly affect the positive
role of agricultural subsidies in promoting agricultural development.

Based on the above results, agricultural subsidies significantly positively affect agri-
cultural total factor productivity. However, when land fragmentation is included in the
analysis framework, agricultural total factor productivity will decrease significantly. In
addition, the interaction between agricultural subsidies and land fragmentation is negative;
that is, land fragmentation hinders the positive effect of agricultural subsidies on agricul-
tural TFP. It can be seen that land fragmentation is an important obstacle to agricultural
development and the improvement of agricultural total factor productivity. To increase
fiscal input for agriculture, it is necessary to combine powerful land reform policies with
concerted efforts to give full play to the positive role of fiscal policy in the agricultural field
and avoid the low-level utilization of financial resources and land factors.

3.2. Endogeneity Problem Handling and Robustness Test

In the existing literature, few empirical studies combine agricultural subsidies and
land fragmentation degrees to examine their impact on agricultural total factor productivity.
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Therefore, the robustness of the results needs to be further tested to ensure their authenticity
and reliability. Because of data structure and index selection and possible endogeneity
problems, we adopt three methods: the instrumental variable method, changing the estima-
tion method of explained variables, and adding the time dummy variable to characterize
the policy impact to conduct a robustness test.

(1) Instrumental variable method. Since agricultural subsidies at the farmer’s level may
be affected by unobservable individual characteristics of farmers, as well as possible
reverse-causality problems, we use provincial-level equalization subsidies to replace the
farmer-level subsidies and adopt the two-stage least-squares method to eliminate the
influence of such endogenous problems as far as possible. The specific approach is as
follows: the amount of provincial financial subsidies for agriculture is divided by the
effective agricultural irrigation area of the whole province to calculate the amount of
provincial average subsidies, and the amount of farmer-level agricultural subsidies is
multiplied by the actual cultivated land area of the family at the end of the year, to obtain
the new amount of farmer-level agricultural subsidies, replacing the original farmer-level
subsidies data. The instrumental variables selected in this paper have passed the necessary
tests, and the specific regression results are shown in column 5 of Table 4.

Table 4. Endogeneity Problem Handling and Robustness Test.

Variables

(5) (6) (7) (8)

Instrumental
Variable Method
(Provincial Local

Equalization Subsidy)

Replace ATFP with
LPACF Method

Calculation Result

Replace the
ATFP with the

OPACF Method

A Year Dummy
Variable That
Characterizes
Policy Shocks

Agricultural subsidies 0.324 *** 0.016 *** 0.018 *** 0.022 ***
(0.012) (0.002) (0.002) (0.002)

Land fragmentation 0.031 0.003 0.080 *** 0.199 ***
(0.028) (0.017) (0.016) (0.017)

Agricultural subsidies × Land
fragmentation

0.022 *** 0.029 *** 0.029 *** 0.031 ***
(0.006) (0.003) (0.002) (0.002)

Time dummy variable 0.038
(0.092)

Time dummy variable × Agricultural
subsidies

0.022 *
(0.013)

Time virtual variable × Land
fragmentation

0.054
(0.112)

Time dummy variable × Agricultural
subsidies × land fragmentation

0.033 *
(0.018)

Household grain consumption 0.064 *** 0.056 *** 0.067 *** 0.088 ***
(0.006) (0.005) (0.005) (0.005)

Annual household net income
0.087 *** 0.106 *** 0.122 *** 0.134 ***
(0.005) (0.004) (0.004) (0.004)

Household income from migrant work 0.006 *** 0.008 *** 0.008 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Village population size 0.083 *** 0.059 *** 0.037 *** 0.019 ***
(0.015) (0.007) (0.007) (0.007)

Village land size 0.007 0.007 ** 0.007 ** 0.005 *
(0.005) (0.003) (0.003) (0.003)

Constant term
3.583 *** 3.992 *** 4.233 ***
(0.086) (0.076) (0.081)

Province fixed effect YES YES YES YES
Year fixed effect YES YES YES YES
Observed values 15,159 18,828 18,828 18,828

Sample size 107,490 113,507 113,507 113,507

Note: Column 5 is the estimation result of 2SLS, the F-value of the instrumental variable in the one-stage regression
is greater than 10, and the weak instrumental variable test value (Cragg–Donald Wald F statistic) is greater than
the critical value of 10%, so there is no weak instrumental variable problem; in addition, the p-value of the
unidentifiable test (Kleibergen–Paap rk LM statistic) is 0, so there is no unidentifiable problem of the instrumental
variables. *, **, and *** indicate significant differences at the 10%, 5%, and 1% levels, respectively, with robust
standard error in parentheses.
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(2) Replace the explained variables. In the procedures of the LP and OP estimation
methods mentioned above, labor may not be able to vary independently of changes
in the nonparametric function. To avoid such function dependence problems, Acker-
berg et al., 2015 [43] proposed an estimation method that allows for exogenous, series-
dependent, unobservable shocks to labor or adjustment costs to labor inputs and
more general dynamic effects of labor. The ACF method relies on the same moment
conditions compared to the LP and OP methods. However, it controls unobservable
productivity through the inverse function of the “conditional” input demand function,
which results in the coefficients of variable inputs (e.g., labor) not being identified
in the first stage and all input factor coefficients being estimated in the second stage.
Accordingly, we use the ACF method to re-estimate farm-level TFP, replacing the
explained variables originally estimated by the Wooldridge method. Specific results
are shown in column 6 and column 7 in Table 4.

(3) Add the time dummy variable to represent the policy impact. In 2016, the reform
of the three subsidies for agriculture was comprehensively extended to the whole
country after the pilot implementation. This reform changed the basis of agricultural
subsidy payment from the original land contract right to the actual management right,
aiming to increase the operating income of farmers who transferred to the land and
encourage land transfer behavior among farmers. To further determine whether the
adjustment and implementation of national policies will have a substantial impact
on the above-estimated results and basic conclusions, we introduce a time dummy
variable representing the policy impact, assigning a value of 0 from 2003 to 2015 and
1 from 2016 to 2017, construct a triple interaction term and examine the impact of the
policy impact. The specific results are shown in column 8 of Table 4.

To sum up, after adopting the instrumental variable method, changing the estimation
method of explained variables, and adding the time dummy variable representing policy
impact for the robustness test, the influence direction and magnitude of the interaction
terms of agricultural subsidies and land fragmentation did not change. When the degree
of land fragmentation increased by 1%, the promoting effect of agricultural subsidies on
agricultural total factor productivity would decrease by about 3%. The analysis results
and basic conclusions of all kinds of robustness tests are consistent with the previous
ones. It is worth noting that after adding the time dummy variable to represent the policy
impact, the main effect term or interaction term related to the time dummy variable was
only marginally significant or insignificant, indicating that there is no evidence to support
that agricultural subsidy reform will affect the joint effect of agricultural subsidy and
land fragmentation on agricultural total factor productivity. The obstructive effect of land
fragmentation cannot be effectively resolved through the reform of the three subsidies for
agriculture, and the effective connection between fiscal policy and land reform still needs
to be further explored.

4. Discussion

In the previous analysis, we conducted an analysis based on the data from fixed obser-
vation points in rural China from 2003 to 2017 and utilized the two-way fixed effects model
and the moderating effect model to examine the impacts of agricultural subsidies and land
fragmentation on the total factor productivity of agriculture. In the resulting analysis, it can
be found that both Hypothesis 1 and Hypothesis 2 have been confirmed, and the robust-
ness and credibility of the results have been demonstrated using an instrumental variable
method and various robustness analyses. We have conducted a comprehensive examination
of the fiscal support for agriculture policy, with a focus on observing the overall effect of the
policy on farmers. However, our research differs from the studies of Li et al., 2021 [24] and
Xu et al., 2023 [25] from the research perspective. Li’s research focuses on grain production,
while Xu’s research focuses on agricultural machinery purchase subsidies. However, we
still examine the positive effects of fiscal support policies on agricultural development from
an overall perspective. The different research perspectives lead to differences in estimated
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coefficients, but there is a certain degree of similarity in the basic conclusions. At the same
time, our research incorporated land fragmentation into the analysis framework at the
farmer level and constructed a moderating effect model. Such research is still rare, and in
this paper, our research has obtained further meaningful conclusions.

In further discussion, we will divide it into two parts: mechanism testing and hetero-
geneity analysis.

4.1. Mechanism Testing

In our research, we incorporated land fragmentation as a factor into the analysis of
the effectiveness of fiscal agricultural subsidies, and thus obtained some new conclusions:
land fragmentation will become an important factor hindering the effectiveness of fiscal
agricultural subsidies. In order to explain the mechanism by which land fragmentation
hinders fiscal subsidies for agriculture, we attempt to include the analysis of the mechanism
by incorporating the land transfer area at the farmer level. We calculate the difference
between the land area obtained by farmers through land transfer and the land area lost
through transfer, in order to obtain the net value of land transfer for farmers, which is the
actual land transfer area for farmers.

In theory, due to the fact that moderate scale management in agriculture is a common
law of agricultural development in various countries around the world [30,31], positive
land transfer can promote the scale and agglomeration development of agriculture. Scale
effects can reduce agricultural production costs, improve agricultural production efficiency,
and thus improve total factor productivity in agriculture. Based on our research, fiscal
subsidies for agriculture may increase the willingness of farmers to transfer land, and
having more funds will make them more willing to obtain more land through transfer,
thereby engaging in larger-scale agricultural production activities and improving agricul-
tural total factor productivity. However, land fragmentation will increase the production
and operation costs and land transfer costs of farmers, reduce their willingness to engage
in agricultural production, and hinder the further expansion of production paths, thereby
reducing agricultural production efficiency and total factor productivity.

In Table 5, we first examined the impact of land transfer on agricultural total factor
productivity (column 9), and then examined the effects of fiscal subsidies for agriculture
and land fragmentation on land transfer (column 10 and 11). Through the results, it can
be found that an increase in land transfer area will significantly enhance the total factor
productivity of agriculture at the farmer level. For every 1 acre increase in land transfer
area, the total factor productivity of agriculture will increase by 1.5%. Focusing on the
fiscal agricultural subsidies and land fragmentation that this paper focuses on, it can be
found that fiscal agricultural subsidies have a significant positive effect on the area of land
transfer, while land fragmentation will have a significant hindering effect on land transfer.
This result is consistent with the findings of Xu et al., 2023 [25] and Wu et al., 2016 [3],
who also believe that fiscal subsidies for agriculture will promote land transfer, while land
fragmentation is an important factor hindering land transfer.

Based on this, we can explain that the mechanism by which land fragmentation
hinders fiscal agricultural subsidies may be due to the fact that fiscal agricultural subsidies
could have improved the total factor productivity of farmers by promoting land circulation.
However, the existence of land fragmentation can hinder the realization of land circulation
among farmers, thereby reducing the original policy effect of fiscal agricultural subsidies; as
a result, the promotion effect of fiscal subsidies on agricultural development has decreased.

4.2. Heterogeneity Analysis

In the No.1 central document released in 2022, the government clearly stated that it
must firmly uphold the two bottom lines of ensuring national food security and preventing
large-scale poverty. Through the formulation and implementation of various policies and
regulations, China has invested a lot of human resources, material, and financial resources
to strictly adhere to the two bottom lines, among which the issuance of fiscal subsidies for
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agricultural production is of great significance to food production and the prevention of
poverty. However, based on previous research, it can be found that land fragmentation
does hinder the policy effect of agricultural subsidies. To determine whether this negative
effect harms safeguarding the two bottom lines, we will continue to examine farmers’
regional heterogeneity and main activity heterogeneity to provide useful references for
policy formulation and adjustment.

Table 5. Mechanism Testing.

Variables
(9) (10) (11)

Agricultural TFP Transfer Transfer

Transfer
0.015 ***
(0.001)

Agricultural Subsidies 1.408 ***
(0.034)

Land fragmentation −1.074 ***
(0.053)

Household grain consumption 0.094 *** −0.162 *** 0.007
(0.005) (0.015) (0.015)

Annual household net income
0.136 *** −0.008 0.069 ***
(0.004) (0.014) (0.014)

Household income from migrant work −0.008 *** −0.010 *** −0.013 ***
(0.001) (0.002) (0.002)

Total village population 0.017 ** 0.236 *** −0.012
(0.007) (0.018) (0.016)

Village land scale −0.004 −0.054 *** 0.009
(0.003) (0.009) (0.009)

Constant term
4.051 *** −3.151 *** −0.290
(0.082) (0.267) (0.270)

Province fixed effect YES YES YES
Year fixed effect YES YES YES
Observed values 18,828 18,013 18,828

Sample size 113,507 110,344 113,507
Note: ** and *** indicate significant differences at the 5%, and 1% levels, respectively, with robust standard error
in brackets.

4.2.1. Grouping by Regions

Based on the overall characteristics of grain planting, production, and consumption in
different provinces and taking into account the differences in grain farming traditions and
resource endowments in different regions, the Opinions of The State Council on Further
Deepening the Reform of the Grain Circulation System in 2001 divided 31 provinces
(autonomous regions and municipalities) into main grain producing areas, main marketing
areas, and balanced production and marketing areas

3
. At the same time, differences in

topography, climate, temperature, and ecological environment between China’s northern
and southern regions have also led to different characteristics of regional agricultural
development. To investigate the heterogeneity of agricultural subsidies, land fragmentation,
and agricultural total factor productivity in different characteristic regions, we divided
the main grain-producing areas and non-major grain-producing areas (including the main
grain-selling areas and the production–marketing balance areas), the northern regions and
the southern regions. Fisher’s Permutation test was used to test the differences in the
coefficient of interaction terms of the groups.

As can be seen from column 12 and column 13 in Table 6, although the interaction
between agricultural subsidies and land fragmentation was significant in both types of
regions, the obstruction of land fragmentation to agricultural subsidies was more obvious
in major grain-producing regions than in non-major grain-producing regions, where a 1%
increase in land fragmentation in major grain-producing areas can reduce the effect of
agricultural subsidies on agricultural total factor productivity to 4.1%, which is 2.2% higher
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than that in non-major grain-producing areas. Columns 14 and 15 in Table 6 compare the
effects between the southern and northern regions. In the southern region, the degree
of land fragmentation has a more significant inhibitory effect on agricultural subsidies.
A 1% increase in land fragmentation will reduce the impact of agricultural subsidies on
agricultural TFP by 3.2%, which is higher than the 2.6% in the northern region. However, the
difference in the interaction term coefficients between the two is not statistically significant.
It can be seen that in different regions, the degree of land fragmentation still shows the
inhibitory effect of agricultural subsidies on the improvement of agricultural total factor
productivity, especially in the main grain-producing areas, which to a certain extent affects
the effective realization of firmly safeguarding the bottom line of national food security.

Table 6. Effects of regional heterogeneity of different rural households.

Variables
(Explained Variables Are All ATFP)

The Type of Area in Which the Household Was Located

(12) (13) (14) (15)

Major
Grain-Producing

Regions

Non-Major
Grain-Producing

Regions

Northern
Regions

Southern
Regions

Agricultural subsidy 0.024 *** 0.018 *** 0.005 * 0.033 ***
(0.002) (0.003) (0.003) (0.003)

Land fragmentation 0.146 *** 0.291 *** 0.271 *** 0.168 ***
(0.019) (0.028) (0.025) (0.023)

Agricultural subsidies × Land
fragmentation

0.041 *** 0.019 *** 0.026 *** 0.032 ***
(0.003) (0.004) (0.004) (0.004)

Household grain consumption 0.092 *** 0.085 *** 0.052 *** 0.125 ***
(0.006) (0.008) (0.007) (0.007)

Annual household net income
0.134 *** 0.133 *** 0.166 *** 0.106 ***
(0.005) (0.007) (0.006) (0.006)

Household income from migrant work 0.006 *** 0.011 *** 0.009 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Village population size 0.012 0.012 0.005 0.045 ***
(0.009) (0.010) (0.010) (0.009)

Village land size 0.008 ** 0.006 0.011 *** 0.000
(0.003) (0.005) (0.004) (0.004)

Constant term
0.000 4.461 *** 4.313 *** 4.914 ***

(0.000) (0.113) (0.115) (0.340)
Province fixed effect YES YES YES YES

Year fixed effect YES YES YES YES
Observed values 64,352 49,155 49,445 64,062

Sample size 10,207 8621 7989 10,839
Coefficient difference p-value 0.010 0.180

Note: Fisher’s Permutation test obtained the different p-values of the group interaction coefficients, and the results
of subsequent group regressions were the same. *, **, and *** indicate significant differences at the 10%, 5%, and
1% levels, respectively, with robust standard error in parentheses.

4.2.2. Grouping by Main Occupations

Under the background of new-type urbanization and all-around deepening of rural
reform, the production activities that rural residents participate in are no longer limited to
agriculture. In the data of fixed observation points in rural areas across China, the industry
in which operating income (or the amount of labor invested) accounts for the proportion
of household operating income (or the amount of labor invested in household operation)
is identified as the main occupation of household operation. It is especially emphasized
that since the sample selection above ensured that all samples were effectively involved in
agricultural activities, only agricultural activities accounted for a relatively low proportion
of non-agricultural farmers. The typical difference from agricultural-based farmers was
whether they depended more on agricultural production or land factors. Data show that
there are still 13% of China’s rural households mainly based on agricultural production
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and operation, including many large-scale farmers and vulnerable farmers who are unable
to engage in other production and operation activities; this part of vulnerable farmers is
also the focus of attention to firmly prevent the large-scale return to poverty.

Comparing column 16 and 17 reveal that compared to households primarily engaged
in non-agricultural activities (Table 7), land fragmentation has a more severe obstructive
effect on agricultural subsidies in households primarily engaged in agriculture, with a
statistically significant difference between the two. Further exploration into different
agricultural sectors, distinguishing between households primarily engaged in crop farming
and those in forestry, fishery, or animal husbandry (i.e., non-crop farming), reveals that
column 18 and 19 show no significant differences in the coefficients of the interaction terms.
This indicates that agriculture as a whole is universally affected by land fragmentation. This
type of impact does not vary with different agricultural sub-sectors. It can be inferred that
land fragmentation severely hampers the effectiveness of agricultural subsidies, affecting
the livelihoods of households primarily engaged in agriculture, and is prevalent in various
agricultural sub-sectors, including crop farming, forestry, fishery, and animal husbandry.
This phenomenon adversely impacts the goal of achieving moderate-scale operation in
agriculture and firmly preventing large-scale relapse into poverty.

Table 7. Heterogeneous effects of different farmers’ main occupations.

Variables
(Explained Variables Are All ATFP)

Type of Household’s Main Occupation

(16) (17) (18) (19)

Agricultural-
Based

Non-Agricultural
Based

Planting
Based

Non-Planting
Based

Agricultural subsidies 0.023 *** 0.021 *** 0.022 *** 0.040 ***
(0.002) (0.005) (0.002) (0.009)

Land fragmentation 0.164 *** 0.358 *** 0.152 *** 0.236 ***
(0.018) (0.037) (0.018) (0.061)

Agricultural subsidies × Land fragmentation 0.033 *** 0.018 *** 0.034 *** 0.041 ***
(0.003) (0.006) (0.003) (0.011)

Household grain consumption 0.081 *** 0.118 *** 0.080 *** 0.084 ***
(0.005) (0.011) (0.005) (0.018)

Annual household net income
0.160 *** 0.052 *** 0.166 *** 0.151 ***
(0.005) (0.010) (0.005) (0.014)

Household income from migrant workers 0.011 *** 0.001 0.012 *** 0.010 ***
(0.001) (0.001) (0.001) (0.002)

Village population size 0.026 *** 0.037 *** 0.020 *** 0.007
(0.007) (0.013) (0.007) (0.018)

Village land size 0.010 *** 0.014 ** 0.006 ** 0.044 ***
(0.003) (0.007) (0.003) (0.009)

Constant term
3.960 *** 4.937 *** 3.987 *** 4.464 ***
(0.096) (0.158) (0.097) (0.266)

Province fixed effect YES YES YES YES
Year fixed effect YES YES YES YES
Observed values 99,104 14,403 90,802 8302

Sample size 17,444 5226 16,664 3445
Coefficient difference p-value 0.000 0.190

Note: ** and *** indicate significant differences at the 5% and 1% levels, respectively, with robust standard error
in brackets.

5. Conclusions

In China’s new journey towards comprehensively building a socialist modernized
nation, the 20th CPC National Congress explicitly put forward the core requirement of
enhancing Total Factor Productivity (TFP). Given agriculture’s foundational and compre-
hensive significance in China, improving agricultural TFP is imperative. As an important
fiscal policy tool supporting agricultural development, whether it is the complete aboli-
tion of agricultural tax, the provision of various agricultural subsidies such as subsidies
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for high-quality crop seeds, direct subsidies to grain farmers, subsidies for agricultural
machinery purchases, comprehensive input subsidies, or the implementation of the “three
agricultural subsidies” reform, all reflect the significant role of fiscal support for agriculture
in the process of agricultural modernization. However, due to the widespread issue of
land fragmentation in China, the full potential of seeds, fertilizers, large machinery, and
other scientific technologies is not realized on many fragmented lands, and the scale of
farmers’ landholdings limits the effectiveness of agricultural subsidies. Thus, in the context
of China’s national conditions with “small farmers in a large country,” what exactly is the
role of agricultural subsidies in agricultural development? Can mere agricultural subsidies
be effective? Does land fragmentation lead to efficiency losses in agricultural subsidies?
How should land policies and fiscal support for agriculture be coordinated? The answers to
these questions are key to clarifying the relationship between fiscal support for agriculture
and land reform and are also crucial for China to accelerate its transformation from a large
agricultural country to a strong agricultural nation.

This paper is based on the data from fixed observation points in rural China from 2003
to 2017 and utilizes the two-way fixed-effects model and the moderating-effect model to
examine the impacts of agricultural subsidies and land fragmentation on the total factor
productivity of agriculture. The results show: first, agricultural subsidies have a positive
effect on the total factor productivity of agriculture, while land fragmentation leads to
a decline in agricultural total factor productivity; second, land fragmentation impedes
the effect of agricultural subsidies in improving agricultural total factor productivity. A
1% increase in land fragmentation leads to about a 3% decrease in the enhancement ef-
fect of agricultural subsidies, particularly affecting households in major grain-producing
areas and those primarily engaged in agriculture; third, there is no evidence to support
that the reform of the “three agricultural subsidies” will change the combined effect of
agricultural subsidies and land fragmentation on agricultural total factor productivity.
The hindering effect of land fragmentation cannot be resolved by reforming the “three
agricultural subsidies”.

The above basic conclusions are of significant theoretical and practical significance for
addressing major issues in the coordinated implementation of agricultural subsidies and
land reform in China. They also provide useful references for improving the agricultural
support policy system and transitioning from a largely agricultural country to a strong
agricultural nation. In this study, there are still some shortcomings that will be improved in
subsequent research. For example, due to limitations in data availability, this article uses
data from 2003 to 2017. If it is possible to obtain the latest data in subsequent research, we
will further enrich the research results and conclusions of this article. At the same time, the
model selection in this paper only examined the moderating effect of land fragmentation on
the fiscal support for agriculture policy, and only used instrumental variables to examine
causal identification to a certain extent. In future research, we will optimize identification
strategies and use more convincing models to test causal effects.

Based on the research findings, this paper summarizes the following important pol-
icy implications:

Firstly, the incentivizing role of agricultural subsidies remains to be fully unleashed.
While the scale of China’s fiscal support for agriculture continues to expand, the current
reform measures have yet to address fundamental issues, often resulting in inefficient
outcomes. Agricultural subsidies play a crucial role in pursuing the policy objectives of
building a strong agricultural nation and firmly holding the bottom lines. However, there
is still room for enhancing their effectiveness. On top of increasing fiscal expenditure, fiscal
policies supporting agriculture should focus on integrating and distributing basic elements.
It is essential to leverage the multiplier effect of policy implementation effectively. Active
use of fund allocation should guide traditional elements like labor and land, as well as
higher-order elements like management and data. This approach aims to break through
various institutional mechanisms and resource distribution flaws, focusing on enhancing
the Total Factor Productivity of agricultural households. Such measures would ensure that
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agricultural subsidies fully exert their intended role and continue to play an increasingly
significant part.

Secondly, land fragmentation is a key bottleneck in agricultural development. Compared
to systemic and institutional issues such as corruption and elite capture, the widespread
presence of land fragmentation requires more attention due to its obstructive role. Land
fragmentation prevents agricultural production from effectively leveraging economies of scale
and agglomeration advantages, significantly impeding the transformation of agricultural
subsidies into agricultural productivity. This presents a considerable challenge to achieving
various urgent targets in China. The solution to the problem of land fragmentation lies
in land consolidation and land transfer. Strengthening land consolidation and promoting
land transfer not only can fully realize the positive effects of agricultural subsidies, enhance
farmers’ operational scale, and improve Total Factor Productivity in agriculture, but also can
aid in advancing agricultural modernization and accelerating the development of a strong
agricultural nation. This contributes to steadfastly maintaining the fundamental goals of
ensuring national food security and preventing a large-scale relapse into poverty.

Thirdly, increasing fiscal support for agriculture must be combined with powerful
land reform policies to achieve synergistic efforts. Efficiency losses, caused by inherent
mechanisms that have not been precisely identified, make relying solely on fiscal policy
akin to a tree without roots or a stream without a source. While it may seem effective,
the potential for efficiency improvement remains vast. To address these inherent systemic
issues, such as land fragmentation, it is necessary for agricultural policies beyond fiscal in-
vestment to enhance institutional innovation and reform efforts, thereby clearing obstacles
to the effective allocation and functioning of fiscal funds. In agricultural production, land
reform not only unleashes the productivity of idle or fragmented land but also sharpens
the focus and objectives of agricultural subsidies. This approach helps fully realize fiscal
policy’s positive impact on the agricultural sector and avoids the inefficient consumption
of fiscal resources and land elements.
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Notes

1 The data is sourced from an article on the Chinese land rule of law research website titled “Rural Land Systems in the UK and
Germany” (30 October 2010). Available online: https://illss.gdufs.edu.cn/info/1024/8140.htm (accessed on 30 October 2010).

2 Due to the lack of continuity and completeness in the statistics of the “number of household labor force” indicator in the database
since 2009, we use household grain consumption as a proxy variable for household labor force size.

3 There are a total of 13 major grain production areas, 7 major grain sales areas, and 11 balanced production and sales areas in
China. Among them, the natural conditions such as geography, soil, and climate in the main grain producing areas are suitable for
planting grain crops, ensuring self-sufficiency while also transferring a large amount of commercial grain, including Heilongjiang,
Jilin, Liaoning, Inner Mongolia, Hebei, Henan, Shandong, Jiangsu, Anhui, Jiangxi, Hubei, Hunan, and Sichuan. The main grain
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sales areas have relatively developed economies, but with a large population and limited land, there is a significant gap in grain
production and demand, including Beijing, Tianjin, Shanghai, Zhejiang, Fujian, Guangdong, and Hainan. The production and
marketing balance area has made limited contribution to the national grain output, but it can basically maintain self-sufficiency,
including Shanxi, Ningxia, Qinghai, Gansu, Xizang, Yunnan, Guizhou, Chongqing, Guangxi, Shaanxi and Xinjiang.
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Abstract: Upscaling sustainable intensification (SI) technologies is crucial to enhancing the resilience
of fragile farming systems and vulnerable livelihoods of smallholder farmers. It is also critical to
shape the future land-use and land-cover changes in a region. Zero-tillage potato cultivation (ZTPC),
introduced as an SI intervention in parts of the Indian Sundarbans, has demonstrated promises
of rapid upscaling, and thus, changes in the seasonal land-use pattern in the region. This study
aims to understand the socioecological complexity of farming systems to comprehend how the
nascent stage of ZTPC thrives at the farm level and what preconditions are necessary to upscale them.
The objectives are to analyse the farm resource recycling pattern in ZTPC, and map and simulate
its system’s complexity to strategize ZTPC upscaling in the region. The analysis of farm resource
recycling data reveals that ZTPC stability hinges on managing trade-offs in resource allocations,
specifically involving straw, organic manure, sweet water, and family labour. The decision to
manage such trade-offs depends on farm type characterizations by their landholdings, distance from
the homestead, pond, and cattle ownership, competing crops, and family composition. Using a
semiquantitative systems model developed through fuzzy cognitive mapping, the study underscores
the significance of effective training, input support, enterprise diversification by introducing livestock,
timely tuber supply, access to critical irrigation, and capacity building of local institutions as the
essential preconditions to sustain and upscale ZTPC. This research contributes a systems perspective
to predict agricultural land use within technology transfer initiatives, providing insights into how
farm- and extra-farm factors influence resource allocations for ZTPC. Public extension offices must
understand the trade-offs associated with straw, organic matter, and harvested water and design
differentiated supports for different farm types. The most compelling interventions to upscale ZTPC
includes farm diversification by introducing livestock through institutional convergence, pragmatic
agroforestry initiatives to enhance on-farm biomass and fuel production, building awareness and
integrating alternative energy use to save straw and cow dung, building social capital to ensure
access to sweet irrigation water, and developing and/or strengthening farmer collectives to ensure
the supply of quality tuber and marketing of farm produce.

Keywords: farm typology; fuzzy cognitive mapping; network analysis; resource trade-off; technology
upscaling; Sundarbans; zero-tillage potato
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1. Introduction

Smallholder farmers form the backbone of agriculture in many developing nations,
playing a vital role in ensuring food security, livelihoods, and overall economic stability,
particularly in climatically challenged regions [1–4]. Moreover, the decisions and actions of
these smallholders in utilizing natural resources significantly influence the natural resource
use in a given region [5]. Despite their importance, smallholder farmers face numerous
challenges, including limited arable land and its tenurial status, resource constraints, and
environmental vulnerabilities that impact their productivity and sustainability [6]. How-
ever, within these challenges lay opportunities to transform smallholder systems into
engines of sustainable intensification (SI) [7,8]. Sustainable intensification is a process or
system aimed at increasing agricultural yields without causing adverse environmental
impacts and converting additional nonagricultural land [9]. Such intensification is en-
visioned as a pathway to enhance agricultural productivity while minimizing negative
environmental impacts, typically by maximizing the yields from limited land, water, and
other inputs [10,11]. The integration of SI in smallholder systems is often dependent on the
provisions of internal inputs and their efficient utilization [12,13]. There is evidence of the
efficient use of endogenous farm resources [14], emphasizing the importance of precisely
understanding the on-farm mechanisms of resource use to redesign, sustain, and upscale
SI interventions in a given region.

Kharif rice, grown during the monsoon season in the Ganges coastal zone in India, is
vital for the food security and livelihoods of small and marginal farmers in the Sundarbans
region. However, soil salinity, caused by factors like seawater intrusion and inadequate
drainage, affects the rice yield and quality. This postmonsoon salt accumulation in the
soil disrupts the availability of water and nutrients to plants and results in large-scale rice
monocropping. This situation severely impacts farm cash income and causes a large-scale
male out-migration and feminization of agriculture in the region [15,16].

The introduction of additional crops in synergy with rice-based systems provides an
opportunity to alter the seasonal land-use pattern, leading to enhanced farm outputs [17].
Zero-tillage potato cultivation (ZTPC) emerged as a promising option for SI in rice-based
cropping systems, exhibiting considerable potential in the saline tracts of coastal agroe-
cosystems [18,19]. ZTPC optimises the residual moisture in the paddy field without soil
tillage and incorporating straw mulch. This technique enables the growing of additional
crop on lands typically left fallow during the winter months, characterised by water scarcity
and high soil salinity [20]. Crucially, ZTPC relies on existing farm resources, emphasizing
the necessity to comprehend the utilization of endogenous farm resources to sustain ZTPC
with minimal or no additional costs. This understanding is important for anticipating the
possibilities and constraints associated with upscaling this practice in the region. From
the perspective of land-use planning and policy, such endogeneity related to a cropping
system’s transformation influences the long-term land-use pattern in a given region.

There is a clear disconnect between the scholarly discourse on resource utilization
in agricultural sciences and the domains of land-use patterns and land-use policies. This
discrepancy is particularly evident in the agrarian societies of developing nations, where
agriculture holds a deep-rooted, ancestral significance and serves as a pillar to sustain food
security and livelihoods [21]. Consequently, the analytical lenses of ‘transaction cost and
political economy’ and ‘ecosystem services’ from natural resources may fall short in explain-
ing the future agricultural land use in marginal ecosystems. While these frameworks are
applicable in understanding future land-use patterns in extensively cultivated smallholder
systems, the current research prefers examining the endogenous mechanism operating
within small-scale farms. This approach can explain farm-level land-use patterns, contribut-
ing to shape the upscaling of agricultural innovations in a given region. To complement
this perspective, the study employs system-level analytical tools, such as semiquantitative
modelling, to explain the preconditions for upscaling agricultural innovations, thereby
influencing the regional land-use pattern.
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The study posits that the incorporation of ZTPC into rice-based cropping systems is
primarily shaped by on-farm resource recycling dynamics, which are crucial for sustaining
the input requirements of ZTPC across various farm types. This endogenous mechanism,
in conjunction with extra-farm factors such as climate stresses and local institutions, deter-
mines the feasibility of upscaling ZTPC, thus shaping the future land and natural resource
use in the region. Furthermore, our semiquantitative modelling approach establishes a
link between the systems management of ZTPC and its potential to impact the livelihoods
of smallholders. In doing so, this research fills in a possible void in the existing literature
by connecting farm-level decision-making processes and extra-farm interventions with
the promotion of sustainable land-use practices and improved rural livelihoods. The In-
dian Sundarbans, characterised by its saline soils and fragile ecosystem, offers a unique
opportunity to explore the implications of on-farm resource recycling and the upscaling of
sustainable intensification technologies.

In this article, farm resource recycling is conceptualised as a network of interconnected
farm resources [14], and we studied the structural properties of this network to discern
the critical importance of specific elements and structures in sustaining the flow of inputs
for ZTPC. Then, using a fuzzy cognitive mapping approach, the analysis examined the
relationship between on-farm and extra-farm factors that play a role in sustaining and
upscaling ZTPC in the region [22]. This combination of on-farm and extra-farm approaches
helps us overcome the micro- and macro-level disconnect in the existing literature, enabling
the understanding of the relationships between farm-level actions, technology upscaling,
and land-use patterns within an agrarian setting.

Addressing these knowledge gaps would significantly enhance our comprehension of
how resource recycling can be leveraged to facilitate the upscaling of sustainable intensifi-
cation technologies such as ZTPC in smallholder systems, especially in salinity-affected
areas like the Sundarbans. This study aims to (a) examine how ZTPC is sustained on farms
and (b) identify the preconditions for its upscaling in smallholder systems. The outcome
of the study might help the extension agencies and self-governing bodies to identify local
adaptations and understand the barriers, incentives, and possible policy measures to trigger
the widespread adoption of ZTPC across diverse farm types.

2. Research Methodology

2.1. Selection of Case Study Island

The current study purposively selected Satjelia Island, situated in the coastal region of
the Indian Sundarbans (Figure 1), where two projects have been implemented from 2022
to 2024 by the Commonwealth Scientific and Industrial Research Organization (CSIRO)
in collaboration with Indian collaborators. The project demonstrated a climate-resilient
cropping system featuring salinity-resistant, medium-duration paddy varieties in the
rainy season, followed by zero-tillage potato cultivation under straw mulch conditions in
the winter season for the examination of the impact of sustainable intensification on the
performance of cropping systems and farmer incomes. Satjelia is an island under the Gosaba
community development block of the South 24 Parganas district, India. The total population
of the island is 8757, of which 857 are cultivators, and 1629 are agricultural labourers. The
total geographical area of the island is 10.42 km2, aquaculture/pisciculture is 0.02 km2,
crop land is 6.43 km2, lakes/ponds are 0.06 km2, mangrove/swamp area is 0.56 km2, and
rivers/streams/drains are 0.81 km2. Rice is the predominant crop grown in the rainy season,
followed by potatoes and vegetables on small patches of land (Bhuvan Panchayat 3.0; https:
//villageinfo.in/west-bengal/south-twenty-four-parganas/gosaba/satjalia.html, accessed
on 13 December 2023).
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Figure 1. Location map of the study area: Satjelia Island of South 24 Parganas district, India.
Clockwise from upper-left: the map of India, map of West Bengal state, map of South 24 Parganas
district, and map of Satjelia Island.

2.2. Selection of Respondents

Personal interviews were conducted with 30 purposively selected households that
adopted ZTPC on the island and participated in the project actively. Using the primary data
and a decision-support tool, the households were categorised into nine distinct farm types
(details in Section 3.1 and Table 1). To ensure representation and cooperation, one farm
was selected from each farm type in consultation with the community mobiliser. Addi-
tionally, for eliciting fuzzy cognitive maps, at least one project beneficiary was deliberately
selected from each farm type, considering their alignment with the specific farm type and
willingness to participate actively in the mapping exercise.

Table 1. Qualitative description of the farm types (FTs) categorised in the study.

Farm Type (Frequency) Characteristics

FT-1A (5)
Farms with their own land and at least one cattle and/or many small livestock; cultivate more

than 33% of their field in dry seasons, and heavily depend on off-farm income sources as
compared to farm income.

FT-1B (7) Farms with their own land but with no cattle and/or a few small livestock; cultivate more
than one crop in dry seasons, covering a substantial area.

FT-2A (2)
Farms with their own land and at least one cattle and/or many small livestock; cultivate less

than 33% of their field in dry seasons, and heavily depend on off-farm income sources as
compared to farm sources.

FT-2B (2) Farms with their own land and one cattle or several small livestock; cultivate less than 33% of
their field in dry seasons; earn a nearly equal share of off-farm and farm income.

FT-3 (most resourceful) (2)
Farms with their own sizeable land and at least one cattle and/or many small livestock;

cultivate more than 33% of their field in dry seasons; earn a nearly equal share of off-farm and
farm income.
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Table 1. Cont.

Farm Type (Frequency) Characteristics

FT-4 (least resourceful) (5) Farms with their own land but with no cattle and/or a small number of small livestock;
cultivate only one crop in their field in dry seasons in a minimal area only.

FT-5 (2) Landless farms that do not have any land in their name (new generation farmers).

FT-6A (3)
Farms with their own land and small livestock ownership, that cultivate more than 33% of

their field in dry seasons, and heavily depend on farm income sources as compared to
off-farm sources.

FT-6B (4)
Farms with their own land and at least one cattle and/or many small livestock, but they only

cultivate less than 33% of their field in dry seasons, and heavily depend on farm income
sources as compared to off-farm sources.

2.3. Data Collection
2.3.1. Personal Interviews and Drawing Farm Resource Recycling Maps

The personal interviews with sampled farmers followed a structured interview sched-
ule covering various topics, including household background information, assets and
livestock, irrigation access, cropping patterns, income–expenditure details, and farm and
off-farm incomes. This information facilitated the allocation of farms to specific farm types
using a decision tree developed as part of the project. After the interviews, enumerators
visited the farms and drew on-farm resource recycling maps regarding the ZTPC plots on
the interview schedule and verified the drawn representations with the farm owners. The
redrawn farm resource recycling plans are documented in Figure 2a–i.

 
(a  

Figure 2. Cont.
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Figure 2. Resource flow diagram centred on the ZTPC: (a) farm type 1A, (b) farm type 1B, (c) farm
type 2A, (d) farm type 2B, (e) farm type 3, (f) farm type 4, (g) farm type 5, (h) farm type 6A, and
(i) farm type 6B. Solid black lines show the distances among farm components. The dotted lines show
the direction and magnitude of resource flow among the farm components.

2.3.2. Eliciting the Cognitive Maps from Farmers

Cognitive maps were elicited from a group of representative farmers from each farm
type. After gathering the farmers in an open space, facilitators explained the objectives
and procedures of the exercise. They started with a focus group discussion on ZTPC,
with a checklist to identify possible system elements in the cognitive map. The focus
was on understanding the factors driving ZTPC on the island and how both on-farm and
extra-farm factors influenced crop yield and associated farm income. Once a consensus
on the system elements was reached, facilitators wrote the names of the elements onto
rectangular cards. They spread the cards on the open yard and asked the participants to link
them with locally available materials. Then, the participants were prompted to assess each
dyadic element relationship at two levels: (a) what is the type of relationship between two
elements, positive or negative; and (b) what is the strength of the relationship on a scale of
0–10? We deliberately avoided the complexity of requesting ratings on a scale from −1 to +1
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(the original method of FCM). Upon completion of the exercise, the participants examined
and validated the map. The facilitators ensured that all the participants contribute and
validate the final map. A photograph of the map was captured, and a paper copy of
the same was prepared. The facilitator also recorded the discussion among the farmers
throughout the exercise.

2.4. Data Analysis
2.4.1. Farm Resource Recycling

All the hand-drawn farm resource recycling maps covering all nine farm types were
converted into nine weighted adjacency matrices based on their resource flow pattern.
These matrices were then combined into a single matrix. Using UCINET 6 network analysis
software Version 6.759 [23], the network-level (e.g., density) and node-level (e.g., centrality)
properties for all nine resource recycling networks were generated. NetDraw software
Version 2.179 [24] generated a combined resource flow network that highlighted its central
elements and the magnitude of resource flow among them. Detailed network property
definitions can be found in Table S2 (Supplementary Information).

2.4.2. Analysis of the Cognitive Maps

The cognitive map was analysed following the works of Ozesmi and Ozesmi [25]
and Gray et al. [26]. However, minor adjustments and adaptations were made to suit the
purpose and context of this study. First, we coded the cognitive map developed by the
group of farmers into an adjacency matrix, meaning that the elements in the cognitive
maps are placed into rows as well into columns. Then, we entered the value of each pair
of elements (−1 to +1), as specified by the farmer group, in the corresponding cell of the
matrix. This matrix was used to analyse the structure of the cognitive map using UCINET
software Version 6.759. On the other hand, we recreated the cognitive map using Mental
Modeler software [25] to run the scenario analysis. We analysed the cognitive map to
study its structure at the (a) map or network level (e.g., density) and (b) element level
(e.g., centrality). The definitions related to the structural analysis of the cognitive map are
given in Table S2 (Supplementary Information). The variables having the highest centrality
values are the ripple points of the system.

Finally, ‘what-if’-type questions were posed about how the system might react to
different contexts (scenarios). First, the elements with high centrality values (>mean + one
standard deviation) were selected, whose initial values were ‘clamped/activated’ (‘0’ means
‘not activated’ and ‘1’ means ‘activated’). The elements and their combinations were
identified in consultation with the local experts to specify the scenarios for running the
scenario analysis [27]. The activation of elements under a scenario spread through the
matrix following the weighted relationships. The resulting values of concepts help in
understanding the outcome of a scenario (steady state).

3. Results

3.1. Farm Typology

A predesigned decision-support tool was employed to allocate new farms to specific
farm types. We followed the standard technique of farm-type identification in the local
context [28] and developed a modified decision-support tool following Hammond et al. [29].
These farm types varied in nature, characterised by various criteria including landhold-
ings, tenurial status, cropping patterns, access to irrigation sources, farm vs. nonfarm
income, and migration (Table 1). These distinctive characteristics significantly influence
how ZTPC is practised on the farms and impacts farm incomes. While examining the
resource recycling patterns centred on ZTPC plots, farms from each of the nine farm types
were deliberately selected.
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3.2. Farm Resource Recycling
3.2.1. The Nature of the Recycling Network

Across different farm types of subtle variations in resource recycling, patterns exist
due to contextual factors including landholding and fragmentation, distance from the
homestead, pond, and cattle ownership, competing crop demand for manure and irrigation
water, and family labour availability. For instance, in FT-1A (Figure 2a), manure application
is relatively higher but straw usage is relatively lower than other farm types due to its
primary use as cattle feed and fuel (Figure 3b). Biomass for compost preparation is collected
from diverse sources such as cattle shed, poultry litter, and household waste. The field’s
proximity to the homestead and pond also improves the management of ZTPC.

FT-1B (Figure 2b) splits the manure between ZTPC and other vegetable plots (Figure 3b),
with straw being used for fuel and animal feed (Figure 3a). FT-2A (Figure 2c) allocates a
minimal proportion of straw, but a larger share of compost, to the ZTPC field (Figure 3a,b).
FT-2B (Figure 2d) does not own any cattle and allocates a negligible amount of straw or
compost to ZTPC (Figures 2d and 3a,b). FT-3 is resource rich and allocates substantial straw
for cattle feed (Figure 2e) and limited organic manure to ZTPC (Figure 3a,b). FT-4 (Figure 2f)
owns no cattle and allocates a higher proportion but lower volume of organic manure to
ZTPC (Figure 3b). FT-5 (Figure 2g) is landless and grows paddy rice in leased plots, selling
most straw and using unsold amounts for fuel and mulching in ZTPC (Figure 3a). FT-6A
owns no cattle, using limited straw for mulching and the rest as fuel (Figures 2h and 3b).
FT-6B (Figure 2i) depends heavily on farm income, and produces sufficient straw for fuel,
animal feed, and mulching in ZTPC. Manure is utilised in both ZTPC and for other crops
(Figure 3a). FT-1A produces the highest volume of organic manure, allocating a higher
proportion to the ZTPC field, unlike other farm types (Figure 3a). FT-5 produces the most
paddy straw, which is mainly used for animal feed and fuel. Only a small portion is used in
ZTPC, potentially posing a challenge to its upscaling. The proximity of the fields to ponds
and homesteads further influences ZTPC management. These observations highlight the
importance of manure and straw allocation for the sustainable integration of ZTPC into
smallholder systems.

The study analysed the network properties of the nine resource interaction networks
and observed the following pattern (Table 2): (a) FT-1A and FT-6A had the highest numbers
of elements or components (14 each) directly or indirectly linked to sustaining ZTPC; (b) FT-
1B and FT-6B utilised most of their farm components by establishing linkages with other
components, resulting in higher-density scores (0.026 and 0.029, respectively); (c) FT-1A
and FT-2A relied on off-farm income sources and demonstrated lesser recycling practices;
(d) FT-4 lacked resources due to no cattle ownership, limiting manure-based and feed-
based linkages; and (e) FT-5 exhibited relationships (indegree and outdegree) reflected in
its density score (0.024), despite being landless.

Table 2. Network properties of farm resource recycling patterns across farm types.

FT-1A FT-1B FT-2A FT-2B FT-3 FT-4 FT-5 FT-6A FT-6B

No. of elements 14 10 11 8 12 10 13 14 13
No. of linkages 8 11 4 10 10 8 10 9 12

Density 0.019 0.026 0.010 0.024 0.024 0.019 0.024 0.021 0.029
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(a  

 
(b  

Figure 3. Differential allocation of farm resources by different farm types: (a) manure; (b) paddy straw.

Figure 4 depicts the indegree, outdegree, and betweenness centralities of farm compo-
nents in the resource recycling networks, with each type of centrality score normalised for
a meaningful comparison. The original data are given in the Supplementary Information
(Tables S3–S11). Deeper red colours indicate a higher score, while lighter yellow denotes
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lower scores. For instance, in Figure 4a, the deep red colour in the ‘Compost Pit-1’ cell
against FT-6B implies a high accumulation of biomass sources in the preparation of on-farm
composting. The analysis of individual network properties of farm components across
farm types revealed that both the compost pit and ZTPC field properties had the highest
indegree centrality, receiving biomass and inputs from diverse sources (Figure 4a). FT-1A
and FT-6B, in particular, demonstrated high indegree scores. However, the outdegree scores
were more evenly distributed across farm components and farm types (Figure 4b). Paddy
fields, haystacks, ponds, and cattle sheds (for those with cattle) were more central, with
more resources flowing among the components continuously. FT-1A, FT-6B, and FT-3 had
more components with a higher resource outflow potential. The compost pit and haystack
properties showed the highest betweenness centrality, directly linking the resource flow
to ZTPC (Figure 4c). The house (e.g., kitchen) also plays an important linking function
through fuel consumption and household waste production.

 
(a) (b)  (c) 

Figure 4. Network properties of all farm types: (a) indegree, (b) outdegree, and (c) betweenness. All
weighted values are max–min normalised. Yellow and red colours denote lowest (0) and highest
values (100), respectively. See Supplementary Table S1a–c for corresponding cell values.

3.2.2. Resource Recycling Network for All Farms

A network with combined resource interactions for all nine farm types (individual
networks given as Figure S1a–i) was developed by augmenting components and adding
matrices (Figure 5a). The nodes in the diagram are farm components and the linkages (lines)
represent the dyadic resource flow between them. The thickness of the lines represents the
magnitude of resource flow among farm components. A high magnitude of 2-eigenvector
centrality can be observed, which accounts for linkages with more central nodes, for the
cattle (CATL), compost (CMP1), home (HOME), paddy field (PAD1), haystack (HAY1),
and ZTPC field (ZTP) (Figure 5b). Among these, compost (CMP1) and haystacks (HAY1)
showed a higher betweenness centrality (Figure 5c), suggesting that sustaining and upscal-
ing ZTPC is contingent upon the amount of straw and compost sourced from within the
farm and applied in the ZTPC field. There is also significant interdependence among the
paddy field/s, pond/s, and small livestock, providing necessary biomass and sources of
critical irrigation. Furthermore, the thickness of linkages represents the multiplex relationship
(linkages between components occurring in more than one farm type), suggesting the critical
importance of the following multiplexes: (a) paddy > haystack (straw) > ZTPC > compost;
(b) haystack (straw) >home > compost; and (c) cattle > compost > ZTPC.

3.3. The Semiquantitative Model for Sustaining and Upscaling ZTPC
3.3.1. The Structural Analysis of the Cognitive Map

The cognitive map was developed using Mental Modeler software (Figure 6). The
map represents a network of linked components associated with ZTPC—both causal and
consequential—leading to positive impacts on farmers’ livelihoods. In the local context,
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the map conceptualises the ‘climatic hazards’, project intervention (‘CSI4CZ’), ‘local institu-
tions’ including ‘Panchayat’ (grassroot-level, self-governing body), ‘peer support network’,
‘land ownership’, and more ‘acreage’ of ZTPC as short-term ‘drivers’ for the model. The
model was extended from increased ‘potato production’ and ‘income’ to broader livelihood
impacts such as the ‘family expenditure’, ‘investment in next cultivation’, ‘health expen-
diture’, and ‘children’s education’, which constitute the suite of ‘receiver’ components in
the model.

 
(a  

(b  

Figure 5. Cont.
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(c  

Figure 5. Combined network diagram of all nine farms: (a) nonweighted, (b) nodes scaled by
2-eigenvector centrality, and (c) nodes scaled by betweenness centrality. Line thickness repre-
sents the magnitude of resource flow. Black lines have negligible flow of resources between el-
ements. PAD—paddy; HAY—haystack; PND—pond; GOAT—goat; DUCK—duck; POUL—poultry;
CMP—compost; CATL—cattle; ZTP—zero-tillage potato; VEG—vegetable; HOME—home.

Figure 6. Semiquantitative model developed using fuzzy cognitive mapping for Satjelia Island. Blue
and red lines indicate positive and negative relationships between model components, respectively.

In terms of the indegree (i.e., receiving impacts from other components), the ‘ZTPC
practice’ was central (emboldened), with the other components being ‘income’ and ‘savings’,
‘soil’ health, and ‘irrigation to potato’ at critical stages of growth (Table 3). Regarding the
outdegree, the most central components (emboldened) were ‘climatic hazards’, ‘income’,
‘CSI4CZ’ intervention, ‘livestock ownership’, ‘agrochemical’ use, and ‘training’ of farmers.

246



Land 2024, 13, 108

In terms of (eigenvector) ‘centrality’, the components that emerged as central were ‘ZTPC
practice’, ‘irrigation to potato’, ‘livestock ownership’, ‘income’, ‘climatic hazards’, ‘soil’
health, ‘potato production’, and ‘compost’ availability. The high centrality of these elements
signifies their critical role in stabilizing the system to impact farmers’ livelihoods. These
nodes are often used to develop scenarios during the scenario analyses.

Table 3. Component and network properties of the semiquantitative model for integrating and
upscaling ZTPC for creating livelihood impact.

Component Indegree Outdegree Centrality Type

Investment in next cultivation 0.663 0.000 0.663 receiver
Health expenditure 0.730 0.000 0.730 receiver
Family expenditure 0.875 0.000 0.875 receiver

Children’s education 0.550 0.000 0.550 receiver
Income 3.438 * 3.438 6.875 ordinary

Potato production 1.943 1.711 3.654 ordinary
ZTPC practice 6.172 0.894 7.067 ordinary

Soil 2.589 0.867 3.456 ordinary
Saline water intrusion 1.741 0.956 2.697 ordinary

Climatic hazards 0.000 3.961 3.961 driver
Water stagnation 0.800 0.593 1.393 ordinary

Training 0.917 2.046 2.962 ordinary
Agrochemicals 0.290 2.217 2.507 ordinary

Scientific knowledge 0.894 0.850 1.744 ordinary
Potato tuber supply 1.661 0.889 2.550 ordinary

CSI4CZ project 0.000 2.839 2.839 driver
Self-consumption 0.889 0.867 1.756 ordinary

Savings 2.281 0.000 2.281 receiver
Sluice gate 0.839 0.830 1.669 ordinary

Local panchayat 0.000 0.839 0.839 driver
Input supply 0.961 0.928 1.889 ordinary

Pest (rat) 0.600 0.456 1.056 ordinary
Irrigation to potato 3.173 0.839 4.012 ordinary

Access to pond water 1.000 0.811 1.811 ordinary
Access to pump 0.500 0.822 1.322 ordinary

Water availability 0.800 0.900 1.700 ordinary
Peer support network 0.000 1.000 1.000 driver

Compost 1.661 1.381 3.042 ordinary
Livestock ownership 0.600 2.766 3.366 ordinary
Women participation 1.000 1.000 2.000 ordinary

Migration 0.850 1.000 1.850 ordinary
Market access 0.800 0.560 1.360 ordinary

Cost of cultivation 1.770 0.600 2.370 ordinary
Land ownership 0.000 1.300 1.300 driver
Paddy acreage 0.800 1.440 2.240 ordinary

Straw availability 1.400 1.400 2.800 ordinary
More acreage 0.000 0.600 0.600 driver

Local institution 0.000 1.500 1.500 driver
Enterprise diversification 0.680 0.770 1.450 ordinary

Whole Network Properties

Total components 39
Total connections 58

Density 0.039
Connections per component 1.49

Number of driver components 7
Number of receiver components 5
Number of ordinary components 27

Complexity score 0.714
* Emboldened values of network components are relatively more central to the model.
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The network representing the semiquantitative model is complex, with 39 components
and 58 connections. This indicates the multiple pathways in the model’s functioning. The
complexity score, representing the ratio of ‘driver’ and ‘receiver’ components, is close to
one, suggesting numerous opportunities for systems interventions.

3.3.2. Scenario Analysis of the Semiquantitative Model

The study conducted a scenario analysis based on the cognitive map (semiquanti-
tative model) generated by FGD participants. Using the centrality scores of the model’s
components, four distinct scenarios were formulated in consultation with the stakeholders:
(1) providing effective training on ZTPC, (2) introducing livestock to diversify the farming
systems, along with access to critical irrigation, (3) investing in peer support networks
and ensuring the supply of quality potato tuber through local institutions, (4) discontin-
uing input support with project withdrawals. These scenarios were established using
the Mental Modeler’s “Scenario” module by triggering the relevant system elements [26]
independently and incrementally.

The simulation outputs were combined and synthesised to generate Figure 7. Pro-
viding effective training (scenario 1) would lead to the perfection of ZTPC practices and
a reduction in the cost of cultivation. Diversifying the system by means of livestock and
critical irrigation (scenario 2) would enhance the compost volume, potato production, and
farm income. The establishment and/or strengthening of local institutions to ensure the
timely supply of quality tuber (scenario 3) would increase potato production and farm in-
come. However, withdrawing project facilities such as the input support (scenario 4) could
raise concerns about reduced acreage and tuber production. The red arrows in Figure 7
suggest the fear of immediate reduction in a timely seed supply, precision in practice, and
tuber production. Scenarios 1, 2, and 3 may mitigate the immediate fear of a reduction in
ZTPC acreage.

Figure 7. Scenario analysis showing the predicted impact on the system elements under four different
scenarios. The x-axis represents the system elements, and the y-axis represents the estimated change
in given system components under different scenarios. Values above and below zero are positive and
negative changes, respectively.

4. Discussion

4.1. Prologue

Farmers of the Sundarbans often modify their land-use practices in pockets of the
regions to efficiently utilise the available natural resources in lean agricultural months.
For example, harvested rainwater in small waterbodies is often used for providing critical
irrigation to additional crops. Other modifications include farm and enterprise diversifica-
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tions, engaging in nonfarm activities during lean months, and most importantly, recursive
migration to near and distant locations. Thus, there is a hidden nexus of climate, seasonal-
ity, natural resource use, farm management, and labour availability. Planned agricultural
development often fails to manage the dynamics of natural resource use and human deci-
sion making. There are not many examples of upscaling sustainable intensification in the
region except for the modified land-use models [30,31]. Donor-supported systems research
identified sustainable intensification in the region, coupled with technology integration
and upscaling through community-managed, on-farm demonstrations and policy advo-
cacy. In these initial years, the demonstration is at the nascent stage of on-farm practice
standardization, and one needs to wait to see the upscaling in the next few years.

4.2. The Trade-Off in Allocating Farm Resources

System-level analytical tools, such as semiquantitative modelling, were used to un-
derstand the preconditions for upscaling an innovation like zero-tillage potato cultivation
and its impact on regional land use. ZTPC has emerged as an alternative to fallowing (in
the wet season) and existing potato cultivation practices in the dry season in the study
region. Farmers with access to harvested fresh water traditionally grow an extra crop on
small plots after the paddy harvest. Paira cropping (sowing pulses (e.g., lathyrus) before
a paddy rice harvest) utilises residual soil moisture for an extra crop [32]. ZTPC offers a
more remunerative short-duration crop, especially when critical irrigation opportunities
are limited. It aligns with local food habits and acts as a buffer against market volatility.
Notably, potatoes are a central component in traditional Bengali cuisine.

The practice of ZTPC largely relies on available resources such as straw (for mulching),
organic manure (as a nutrient source), harvested fresh water (for critical irrigation), and
family labour (for management). However, there is a trade-off between using these re-
sources for ZTPC and their alternative uses. For example, organic manure, water, and
labour can be allocated to competing crops (if there is one). The straw can serve as fuel
and cattle feed. Furthermore, decision-making depends on the farm type. Farms with
larger plots and paddy acreage may not face critical trade-offs (FT-3). Farms with many
cattle and limited alternative energy sources have a higher straw demand (FT-2A and FT-3).
Some farmers sell straw and work off farm for cash income. The organic manure allocation
varies among competing crops, especially in farms with land and irrigation provisions.
For example, FT-1A allocated a sizeable proportion of manure to ZTPC, where FT-2A,
FT-5, and FT-6B allocated organic manure to competing crops. Also, cow dung is often
used as an energy source (for cooking). Similarly, harvested fresh water has multiple uses,
including to irrigate other crops, fishponds, and domestic use. Labour availability depends
on the family composition and migration patterns. Such a trade-off in resource allocations
is widely reported in studies on integrated systems approaches, such as Value-Ag [33],
and understanding such bioeconomic trade-offs may help us design suitable options for
intensification [34]. Overlooking such a trade-off might overestimate the outcomes of
ZTPC [35].

In summary, the allocation of resources is specific to each farm. Factors such as paddy
acreage, pond size, livestock ownership, family labour availability, and ZTPC acreage play
a crucial role. The study locations are not yet in that critical stage (except for marginal
holdings) where ZTPC acreage emerges as competitive to alternative uses of farm resources.

4.3. The Resource Recycling Plan and Sustaining ZTPC

The sustainability of smallholder farming systems is dependent on the judicious
use of scarce resources, especially in underserved regions [36]. Farming systems often
undergo endogenous intensification due to resource constraints [37], providing the context
of sustainable intensification. In the case of ZTPC, study results found that some farms
used their resources more extensively than others by establishing more dyadic linkages,
such as FT-1B, 2B, FT-3, FT-5, and 6B. However, the utilisation of linkages accounts for both
the inflow (indegree) and outflow (outdegree) of resources, where the outflow is directly
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related to inputs going into ZTPC. Components like the paddy field, straw (haystack), pond,
and cattle shed (manure/compost) exhibited a higher centrality (outdegree) in the resource
interaction networks, as more frequent and substantial amounts of resources flowed from
these components to others. Among these, straw and manure had the highest betweenness,
signifying their crucial role in linking the resource flow from multiple directions and
channelling the effects towards ZTPC. The resource interaction network encompassing all
the farms also supports these observations (Figure 5b,c).

However, the ‘home’ (household waste recycling unit) is included in the network en-
compassing all farm types. This is important since ‘home’ serves as a significant producer of
biomass (household waste) and consumer of straw as fuel. While the research work did not
undertake any detailed structural analysis of the networks, from the multiplex relationship
(same dyadic linkage existing in several resource recycling networks) represented by link-
age thickness, one can anticipate the fundamental importance of the (a) paddy → haystack
(straw) → ZTPC ← compost; (b) haystack (straw) → home → compost; and (c) cattle →
compost → ZTPC. Managing these relationships should be a focal point for the upscaling
effort of ZTPC in the region. While identifying such motifs for complex systems manage-
ment is reported in the study of human decision making in sustainable agriculture [38],
and very recently in farming system’s analysis [14], these are as of now underreported, if
not unreported, in the literature on technology transfer and upscaling.

However, recent research in the regional context observes the limitation of the Boseru-
pean imperative of endogenous intensification in farming systems [37] to manage resource
constraints, particularly in densely populated areas [39]. Farms in such regions require
external support to sustain ZTPC, which can significantly impact the livelihoods of farming
families. The study outcomes present this argument, in the form of a desirable systems
model that integrates farm-level and extra-farm-level preconditions to upscale ZTPC in and
around the demonstrated locations. This necessitated the application of a semiquantitative
systems model to identify the preconditions for the successful upscaling of ZTPC.

4.4. The Preconditions for Upscaling ZTPC

Fuzzy cognitive mapping (FCM) is used to develop semiquantitative models of com-
plex systems based on stakeholder knowledge [40]. The cognitive map, representing the
model, is then used to simulate the system’s behaviour under realistic scenarios to antici-
pate future outcomes (ex ante assessment). The model, elicited from the FGDs of farmers
using FCM, showed the centrality of training, project support (CSIRO Project), timely
supply of potato tuber (potato tuber supply), and provision of critical irrigation (irrigation
to potato) to crops. These preconditions contribute to the improved precision of the ZTPC
practice (ZTPC practice), resulting in a higher potato production and income, ultimately
leading to improved livelihoods outcomes. However, to ensure these causal transitions
from actions to outcomes, the management of sluice gates to control saline water intrusion
and adequate compost application needs to be maintained for soil health. On the other
hand, reducing agrochemical application alongside compost application lowers the cost of
cultivation and increases savings. A precise ZTPC practice also requires straw availability,
which is a function of paddy acreage and livestock ownership. All these central causal
components of the model are further driven by climatic hazards, land ownership, local
panchayats, and external project support (drivers). The higher centrality of these elements,
coupled with field observations and stakeholder consultations, helped us in identifying the
four future scenarios (Section 3.3.2). The simulation results suggest that a combination of
effective training, system diversification with livestock, provisioning of critical irrigation,
and strengthening local institutions to ensure a quality tuber supply on time can sustain
and upscale ZTPC for creating a long-term livelihood impact.

Technology integration and upscaling pose complex managerial challenges requiring
systems modelling and designs [41] and necessitate suitable governance to manage sus-
tainable transitions in agriculture [42]. Often, managers of natural resource management
projects find it difficult to anticipate project outcomes despite having an explicit change
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theory. They may also fail to identify the most appropriate bundles of intervention to
improve complex socioecological systems by introducing promising technologies. This
research underscores the necessity of understanding complex systems in proposing future
change theories in technology upscaling projects in food and agricultural development [43]
in the context of climate change [44], and advocates for the leveraging of novel system
analysis tools to explore and simulate uncertain outcomes of systems interventions.

4.5. Linking Resource Recycling with Future Land-Use Pattern and Rural Livelihoods

The paper closes its arguments by linking farm-level resource recycling and systems-
level preconditions with land-use patterns in the region under concern. The intensification
of agricultural land is one of the most significant forms of modifying land cover. The
models for predicting land-use and land-cover (LULC) changes may be dynamic or static,
nonspatial or spatial, deductive or inductive, pattern based or agent based [45,46]. However,
limited attention has gone into the research on rural LULC changes that examine the land-
cover modification process, particularly on the complex relationships between people and
their management of land resources [47] in technology-transfer initiatives. This study has
particularly addressed this underreported issue and examined farm-level and extra-farm
factors influencing future LULC changes on an island of the Indian Sundarbans. For
example, a satellite-based approach may capture the cropping intensity dynamics [48] but
may not precisely account for how microlevel factors shape the resource allocation for
ZTPC. Furthermore, it is difficult to capture how factors in a complex socioecological system
interact (captured in the cognitive map) to affect the future upscaling of ZTPC on Satjelia
Island. While this study is not a replacement for the predominant methods employed in an
LULC study, it may inform and supplement the standard models by providing a systems
perspective in predicting agricultural land use.

The current research has shown that paddy acreage, livestock and pond ownership,
and family composition form the central nexus in resource allocations for ZTPC. It is known
that a combination of effective training, system diversification with livestock, provisioning
of critical irrigation, and strengthening local institutions to ensure a quality tuber supply
on time can sustain and upscale ZTPC, potentially changing the LULC change in the
region. The adoption of ZTPC by approximately 450 farmers in the last two seasons has
been recorded.

This change in LULC is also linked to the livelihoods of cash-starved farmers in the
region. The expanded acreage makes ZTPC more attractive to the farmers. The net return
from one Katha (0.0067 ha) on average is ~INR 400–700, which needs to be enhanced to INR
10,000, which is 15–20% of the average annual cash income in the area (found in a baseline
surveys). The study team anticipates that the INR 10,000 target may be achieved by a 200%
enhancement in the tuber yield (at least in locations with a higher yield gap), which needs
a 3–4 times area enhancement and the selling of potatoes at a 50% enhanced market price.
From the application of the smallholder ADOPT model for zero-tillage potato cultivation
(not reported here), the project team anticipates that 98% of the farmers are likely to accept
ZTPC in the area in the next 7 years. Even if half of the estimated farmers in the immediate
vicinity of the project locations adopt the innovation, the number of adopters might stand
at 2500–3000. Given the upscaling potential is achieved in terms of acreage, cost reduction,
labour engagement, and market price, this might result in an immediate increase of INR
25–30 million (~AUD 0.45–0.55 million) in the hands of local farmers, apart from creating
its multiplier effect in the local economy.

However, it may be argued that the extreme vulnerability of the region to climatic
variations and perturbations may fundamentally change the findings of the study. First,
an untimely rainfall or cyclone may lead to abandonment, crop loss, or even crop failure.
Under such crises, livestock often are affected and male members migrate outside the island
to earn cash. On the other hand, dry spells and the resultant soil and water salinity might
impact the provisioning of critical irrigation. Thus, climatic vagaries might fundamentally
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change the functioning of the socioecological systems, and thus impact the crop yield, farm
economics, straw and organic manure use, and labour and input management.

The studies of complex systems are bound to have methodological limitations, and
their external validity is always subject to scrutiny. In the current research, ZTPC receives
differential preferences across farm types, posing a challenge to the estimation of its up-
scaling potential. Farm types are dynamic and may undergo significant changes following
perturbations in socioecological systems. Furthermore, populist public service initiatives
and market fluctuations can profoundly affect farmer’s resource allocation plans related to
ZTPC. These effects are difficult to nullify through methodological adjustments. On the
other hand, elicited cognitive maps may not account for all potential factors of complex
systems, especially those that differ geographically from the study’s context. This may be
exacerbated if the full participation of participants in the mapping exercise is not ensured.
Also, the scenarios employed in the study are ad hoc and not the outcome of socially
constructed options in a workshop setting. It is essential to note that this research primarily
aimed to establish the rationale of a system design in technology upscaling and does not
fall within the framework of action research. The insights derived from the study, however,
can be readily adopted and adapted by academics and practitioners in future endeavours.

5. Conclusions

Upscaling sustainable intensification (SI) is crucial to enhance the resilience of fragile
farming systems and vulnerable livelihoods in the coastal Sundarbans. Zero-tillage potato
cultivation (ZTPC) has been tried as an option for SI as part of CSIRO-supported projects in
the Indian Sundarbans. The study explores the socioecological complexity to understand
how the nascent stage of ZTPC thrives at the farm level, and what preconditions are neces-
sary to upscale it. The current research concludes that the stabilization of ZTPC depends on
the management of resource allocation trade-offs involving straw, organic manure, sweet
water, and family labour. However, the decision to manage trade-offs depends on the farm
types characterised by their landholdings, distance from the homestead, pond and cattle
ownership, competing crops, and family composition.

However, the endogenous intensification style of farm resources has limitations, ne-
cessitating external support for ZTPC’s sustainability. The semiquantitative systems model,
developed using fuzzy cognitive mapping, emphasises the importance of effective training,
input support, enterprise diversification by introducing livestock, timely tuber supply,
access to critical irrigation, and capacity building of local institutions as essential precon-
ditions to sustain and upscale ZTPC. This research contributes a systems perspective to
predicting agricultural land use in the context of technology-transfer initiatives, providing
insights into how farm- and extra-farm factors shape resource allocation for ZTPC.

Public extension offices must understand the trade-offs associated with straw, organic
matter, and harvested water and design differentiated supports for different farm types. The
most compelling interventions seem to be (a) farm diversification by introducing livestock
through institutional convergence, (b) pragmatic agroforestry initiative to enhance biomass
and fuel production, (c) building awareness and integrating alternative energy use to save
straw and cow dung, (d) building social capital to ensure access to sweet irrigation water,
and (e) developing and/or strengthening farmer collectives to ensure the supply of quality
tuber and the marketing of farm produce.

An increasing adoption of ZTPC in the last two seasons indicates potential LULC
change and positively impact the livelihoods of cash-starved farmers in the region. The
projected adoption by a significant number of farmers could lead to substantial economic
gains and multiplier effects in the local economy, highlighting the transformative potential
of ZTPC in the Sundarbans.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/land13010108/s1, Figure S1: (a–i) resource interaction network surrounding
the zero-tillage potato cultivation fields across farm types; Table S1: Values of different centralities of
network elements for different farm types; Table S2: Description of key terms and measurements used
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in the analysis of resource recycling network and cognitive map; Tables S3–S11: Node properties of
different farm elements linked to ZTPC. References [24,49,50] are cited in the supplementary materials.
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