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Abstract: Sachet water (SW) is a major source of drinking in most Nigerian homes, thus making
it a possible conveyance medium for health risks due to contamination if persist rather than for
replenishment of the body. This study collected SW from three busy neighborhoods in South-
West Nigeria and investigated for the presence of indicator bacteria (Escherichia coli (E. coli), Total
Coliform (TC), Total Heterophilic Bacteria (THB), Staphylococcus (Staph)) and some physio-chemical
parameters (total dissolved solids (TDS), pH, electrical conductivity (EC), and salinity). Multi-
variable and exploratory statistical methods were applied to the results to determine correlations
between bacterial contamination levels and perceived brand reputation. Bacteriological tests with
raw SW samples appeared too numerous to count (TNC) and thus required serial dilutions. After
seven-fold serial dilutions, results obtained revealed that SW brands with good reputations had
no TC and E. coli and was statistically significant with groupings of other SW brands (χ2 = 12.28;
p < 0.05 and χ2 = 37.96; p < 0.05). Additionally, SW brands with poor reputations had mean values
of TC (19.7 × 108 cfu/mL; 14 × 108 cfu/mL 1.15 × 108 cfu/mL) and E. coli (18.2 × 108 cfu/mL;
38.7 × 108 cfu/mL, 32.4 × 108 cfu/mL) exceeding the threshold value of zero set by the World
Health Organization (WHO). Only one sample from a poor reputation brand tested positive for
Staphylococcus and was not statistically significant (χ2 = 5.2191; p = 0.074). Principal Component
Analysis (PCA)/Factor Analysis (FA) revealed that most of the SW had fecal contamination was the
major source. Therefore, this study suggests that periodic cleaning of distribution lines, location-
specific treatment, and other quality control (QC) measures should be enforced to reduce water
security risk for SW consumption in the region.

Keywords: sachet water; water quality; bacteriological quality; public health; drinking water

1. Introduction

The quality of drinking water plays a significant role in the quality of health of
a populace. Therefore, water that is meant for consumption should undergo various
treatment stages (from source to consumer) to qualify as safe for humans and animals.

Water 2023, 15, 1762. https://doi.org/10.3390/w15091762 https://www.mdpi.com/journal/water1



Water 2023, 15, 1762

With an increase in anthropogenic activities around the globe, many source-water bodies
have been exposed to one level of contaminant or another [1]. These contaminants could
be naturally occurring compounds discovered during exploratory activities for diverse
applications in our environment and introduced to source-water bodies via runoff or
groundwater infiltration [2]. In other cases, groundwater contamination may occur from
underground fabricated structures or naturally occurring elements and gases in the earth’s
core [3]. Regardless of the primary water source, it is likely that there is one form of
contamination or another that makes treatment a necessity to make water fit for human
consumption [4–6].

In West African countries like Nigeria and Ghana, water is packaged in sachets as
a low-cost option compared to bottled water [7,8]. Sachet water (SW) also serves as a
source of drinking water for on-the-go commuters and other consumers. It is widely used
in households with no access to clean drinking water sources. Producers of packaged
water obtain water from surface water bodies and groundwater wells [9,10], hence it is
important to investigate the quality of water before packaging and after sales to retailers or
direct consumers to mitigate health risks posed by the consumption of untreated or poorly
treated water. Packaged water is generally perceived to be treated water that is safe for
drinking, however, studies have shown that public perception and water quality are not
always directly related [7,11–13]. In a 2017 study conducted to determine and compare
the quality of packaged water in different regions, it was discovered that 65 percent of
the representative samples tested were contaminated. This result applied to both forms of
packaged drinking water available—sachets and bottles [7]. Other studies have attempted
to determine contamination levels of packaged drinking water in different parts of Nigeria
and Ghana and have found the presence of heavy metals, and microbial contamination
prevalent [10,14–16].

To reduce the exposure of humans to water-borne illnesses, it is essential to monitor
the source quality of drinking water. In the case of civilizations with decentralized munici-
pal water supply, regular monitoring of water bodies would be beneficial to preventing
outbreaks and health hazards [17–19]. The detection of pathogens and contaminants in
source water is not sufficient to prevent outbreaks, hence proper treatment must be en-
sured. In many regions where SW is consumed, there is a lack of regulatory enforcement of
drinking water quality. Hence, private companies producing SW are in control of deciding
the source of water used in production processes and the extent of water treatment before
packaging [9]. In many cases, pretreatment tests are not conducted to determine the nature
of pollutants in the water. Often, only chlorination is applied before water is packaged
and as such, many contaminants go untreated, and very low levels of residual chlorine
remain in the packaged water [20]. Another challenge with the quality of SW is storage
and method of sale. Once the SW has been packaged in the factory, it is often transported
in open trucks that allow exposure to sunlight, some vendors store the bags of water in
outdoor cages that allow sunlight exposure while others hawk the SW in bowls containing
ice and allowing sunlight exposure [21]. It is a known fact that residual chlorine in water
protects public health by limiting the regrowth of microbes, however when water is exposed
to sunlight, chlorine levels are likely to deplete resulting in poor water quality. Sunlight
exposure to SW has also been linked to increased contaminant concentrations and turbidity
at post-packaging stage [21,22].

These studies presented above show that the presence of bacterial contaminants in SW
can exist due to poor quality source water, inadequate treatment processes, or improper
handling after packaging. Considering the above, this study aims to investigate the physio-
chemical and microbial quality of SW sold in three busy neighborhoods in Ota, Ogun State,
and to determine if the public perception of brand quality matches the results obtained
from laboratory tests. The study also includes statistical and communality tests to predict
the possible sources of bacteriological contamination. This information will add to the
body of knowledge in Nigeria regarding sachet water production and consumption and
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will also inform and/or reiterate to the various agencies the seeming plights surrounding
SW consumption in Nigeria.

2. Materials and Methods

2.1. Study Area and Sampling Procedure

The sampling of SW took place in the Ado-Odo community (6.6117◦ N, 3.0576◦ E) of
Ota in Ogun State, Nigeria. As of the 2006 population census, the community had about
526,565 residents living in the region. While we expect this number to have increased
beyond this due to heavy rural-urban migration, this value represents an estimate as of
the time of sampling. It consists of both rural and urban communities and has a large
concentration of industries. The presence of industries in the area poses a challenge to
water quality due to illicit effluent dumping in surface water bodies and near groundwater
recharge zones [23].

The study was centered on the bacteriological quality of SW sold and consumed in
the community. SW samples were collected between November and December 2017. The
sampling took place in Ado-Odo, Ota in Ogun State because the region receives about
three million people yearly concentrating around Canaan-land for numerous Christian
activities. During this period, it is envisaged that there will be an increased need for SW.
Therefore, SW producers may decide to compromise on water treatment quality to meet up
the demand. Canaan-land and its environs constitute low to medium-income households,
however, irrespective of the household income category, almost everyone depends on SW
to meet drinking water demands. SW-producing companies source water from boreholes
due to the belief that groundwater is generally cleaner than surface water, yet studies show
that water from boreholes may be of questionable quality [5]. Previous studies investigating
groundwater quality in the region showed that the water posed no major health risk to
consumers based on physio-chemical characteristics. However, bacteriological tests were
not performed thus resulting in a partial view of the quality of groundwater as source
water for SW producers in the region [24]. Major rivers in the region have been sampled
and have shown elevated levels of impairment by pathogens and heavy metals [23,25–27].

In this study, eighty (80) SW of different brands were purchased around Canaan land,
the meeting place for most Christians during the November–December period. The areas
from which these brands were purchased were Iyana Iyesi, Elegushi, and Igbogbo area
(Figure 1). During the sampling periods, these SW samples were purchased from either a
store or a kiosk. According to [15], eliminating samples from hawkers i.e., those who move
from one point to another, was required to eliminate weather variability such as sunlight,
which can impact the water quality. In the study area, we observed two distinct sets of
SW producers. The first conforms to producers who have large orders and thus produce
more SW while the second set of producers have fewer orders or are less preferred by SW
consumers. This a priori knowledge aided our sampling design. With this information, we
ensured that we sampled a mixture of SW not exceeding 1 week old from both categories
of SW producers. We also ensured that during the sampling period, SW produced on
the day of sampling were also purchased. Similarly, we categorized SW based on the
preference of consumers, storage duration, and packing quality to gain more insight into
how significantly these categories can affect consumers. This further informed the study
of two similar SW groupings (good or poor SW brands). Furthermore, in order to gather
information about consumers’ brand perceptions, we created an informal questionnaire that
was used during a focus group discussion, one-on-one discussions, and retailer interviews
as a guide while sampling was taking place in the study area. This allowed us to gain insight
into how consumers perceive different brands and what influences their opinions when
they purchase SW. In addition, we consulted with retailers to gather data on consumer
behavior, including which brands are most frequently purchased and any patterns of
brand selectivity.
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Figure 1. Clustered location of stores for Sachet Water purchase.

Furthermore, SW collected were immediately kept in an iced cooler and transported
to the laboratory for some physio-chemical and bacteriological testing. We ensured that all
tests were conducted within the first 24 h of purchase and samples were kept in ice at a
constant temperature of 4 ◦C before bacteriological testing.

2.2. Physico-Chemical Analysis

The physio-chemical parameters measured include pH, Total Dissolved Solids (TDS),
Salinity, and Electrical Conductivity (EC). It is worth mentioning that all physico-chemical
tests were carried out using Hanna Edge Multi-parameter Dissolved Oxygen Meter (HI2040)
and was frequently calibrated based on the manufacturers’ description using appropriate
calibration solutions. The results obtained was useful in determining the suitability of
the samples collected for drinking and other forms of consumption per WHO guidelines
for drinking.

2.3. Bacteriological Analysis

Bacteriological testing was conducted for the detection of E. coli, Total Heterotrophic
bacteria, Total Coliform, and Staphylococcus Aureus. The Multiple Tube Fermentation Test
was used to evaluate the number of active bacteria specie present in all samples collected.
The total coliform count in SW samples was determined using the Most Probable Number
(MPN) assay. This test is also known as the presence or absence test since it focuses on
detecting the presence or absence of coliform bacteria in a sample. This test is based on
the premise that for every 100 mL of drinking water, there should be no coliform bacteria
present. However, if one viable cell of coliform bacteria is present in the sample being
tested, it will reproduce to give a population of lactose fermenting cells that release acid
and gas [28,29].
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Most Probable Number Assay

The MPN Assay is widely used for the estimation of viable microbes in a known
quantity of samples (food or water) by creating replicates of liquid broth growth in ten-
fold dilutions [30,31]. Based on statistical probabilities, the number of viable microbes in
the original sample is approximated using an MPN table [32,33]. The MacConkey broth
used for these tests was prepared in single and double-strength concentrations following
standard procedures and samples were added according to standard methods to determine
the presence of bacteria communities (Figure 2) [31]. The resulting solution was incubated
at 37 ◦C for 24 h. The fermentation tubes were inspected for microbial growth after 24 h
as well. Fermentation tubes with no indication of microbial growth were incubated for an
additional 48 h [34]. Once the reaction time was completed, the number of fermentation
tubes indicating microbial growth per sample was compared to the standard MPN charts
and the number of microbes present was recorded.

Figure 2. Most Probable Number Test Procedure.

Following the presumptive tests, the fermentation tubes that produced gas were
inoculated on a variety of agar mediums. The streak-plate method was used to isolate
pure cultures on eosin methylene blue agar plates, nutritional agar plates, and MacConkey
agar, which were incubated at 37 ◦C for 24 h. For the detection of thermotolerant E. coli,
high-temperature incubation at 44.5 ± 0.2 ◦C was used. The colonies that grew on each
agar were then counted and recorded. Most of the results for the first set of samples yielded
colonies that were too numerous to count (TNC). This prompted the use of serial dilution
in the second and third tests of the samples before plating and incubation in order to obtain
results for statistical analyses. After incubation was complete, the plates were physically
and microscopically examined for the formation of colonies [35].

3. Results

The 80 samples tested in this study were collected from three main sampling location
clusters—Iyana Iyesi, Igbogbo and Elegushi. In the process of sample collection, we
observed that some consumers across different income levels purchased SW that was
cheaper and packed in larger sachets despite all brands claiming to sell a uniform 50 mL of
water. Thus, we can infer that to the consumers, all SW is the same by constantly reciting the
parlance that “water is water” as “water has no enemy”. Despite this inference, responses
from focus groups, one-on-one conversations with consumers and retailer perspective
informed us that other chunk of consumers have a perception of which SW brands are
likely to be of higher quality compared to others.
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The results presented in this section are based on three levels of comparison. The first
level highlights the samples categorized as good or poor brand based on data collected
from focus groups and other consumer-retailer assessments from each location cluster
(Table 1). The second level highlights the samples originally categorized by consumers as
being good brand whose bacteriological results match public perception. All other samples
that do not meet bacteriological test standards are categorized as poor brands in level 2 as
well (Table 2). The third level of comparison highlights SW samples that are of good quality
based on bacteriological tests and regardless of consumer brand perception (Table 3).

Table 1. Sachet Water Characteristics based on the neighborhood of purchase.

Variables
Iyana Iyesi Elegushi Igbogbo

χ2 p Value
n = 23 n = 44 n = 13

Nominal measures, count (%) *
Good brand reputation 23 (100) 41 (93.18) 7 (53.85) 19.6435 <0.001

Collected before 1 day old 6 (26.09) 21 (47.73) 6 (46.15) 3.0728 0.215
Poor sachet wrapper 11 (47.83) 14 (31.82) 10 (76.92) 8.5139 0.0014

E. coli > 0 9 (39.13) 30 (68.18) 13 (100) 16.1175 <0.001
THB > 500 21 (91.3) 42 (95.45) 13 (100) 1.3647 0.505

TC > 0 13 (56.52) 15 (34.09) 1 (7.69) 8.7665 0.012
Staph > 0 0 (0) 0 (0) 1 (7.69) 5.2191 0.074

Continuous measure, mean (S.E) *
Salinity 0.1 (0.006) 0.13 (0.006) 0.12 (0.010) 0.2600

EC 48 (5.35) 51 (3.92) 51 (2.97) 0.8978
TDS 25 (1.38) 33 (8.73) 24 (2.66) 0.7030
pH 5.57 (0.16) 6.05 (0.09) 5.79 (0.08) 0.0156

Staph (CFU/mL) × 108 0 (0) 0 (0) 2.46 (2.46) 0.0745
THB (CFU/mL)) × 108 46.7 (5.14) 30.4 (5.07) 21.0 (3.78) 0.0349

TC (CFU/mL) × 108 19.7 (5.56) 14 (51.8) 1.15 (1.15) 0.0716
E. coli (CFU/mL) × 108 18.2 (5.79) 38.7 (12.9) 32.4 (7.12) 0.4872

Note: * Values in brackets represent percentages for nominal and mean for continuous measures.

Table 2. Sachet water characteristics based on classification of brand reputation matching SW quality
and collection period.

Characteristics

Samples Matching Brand
Reputation p-Value

Collection Period
p-Value

Good Poor >1 day ≤1 day
n = 11 n = 69 n = 47 n = 33

Nominal measures, count (%) *
Collected after 1 day old 6 (54.54) 41 (59.42) 0.609

THB > 500 9 (81.81) 67 (97.10) 0.465 45 (95.74) 31 (93.94) 0.715
E. coli > 0 0 (0) 51 (73.91) 0.016 34 (72.34) 17 (51.51) 0.056

TC > 0 0 (0) 29 (42.03) 0.096 12 (25.53) 17 (51.51) 0.0017
Staph > 0 0 (0) 1 (1.45) 0.720 0 (0) 1 (3.03) 0.230

Note: * Values in brackets represent percentages.

Table 3. Comparison between good and poor-quality sachet water based on bacteriological
test results.

Characteristics
Hebron and Medicx Other Brands

χ2 p-Value
n = 17 n = 63

Nominal measures, count (%)
Collected after 1 day old 8 (47.06) 39 (61.90) 1.218 0.270

THB > 500 13 (76.47) 63 (100) 15.604 0.000
TC > 0 0 (0) 29 (46.03) 12.275 0.000
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Table 3. Cont.

Characteristics
Hebron and Medicx Other Brands

χ2 p-Value
n = 17 n = 63

E. coli > 0 0 (0) 51 (80.95) 37.964 0.000
Staph > 0 0 (0) 1 (1.59) 0.2733 0/601

3.1. Contamination Dominance and Brand Reputation

From the three (3) sampling cluster locations, 23 (100%) SW samples from Iyana Iyesi,
41 SW samples (53.85%) from Elegushi, and 7 SW (53.85%) from Igbogbo were classified
as the brand of perceived good reputation based on direct responses from field studies.
Of these SW of good reputation, 6 SW were purchased from Iyana Iyesi (26.09%), 21 SW
(47.73%) from Elegushi, and 6 (46.15%) from Igbogbo were purchased on the day of produc-
tion with a statistically significant difference between sets of SW purchased (p < 0.05). Cross
tabulation was used to determine the relationship between variables and their correspond-
ing chi-square and p-values were used to establish statistical significance between sets. The
multi-variable comparison suggests that perceived brands of SW of poor reputation were
sold in Iyana Iyesi and Elegushi combined. From which, fifty-two SW samples had E. coli.
Specifically, 9 SW from Iyana Iyesi (39.13%), 30 SW (68.18%) from Elegushi, and all 13 (100%)
samples from Igbogbo with a strong statistical difference (p = 0.001). These SW samples
had mean count values of 18.2 × 108 cfu/mL, 38.7 × 108 cfu/mL and 32.4 × 108 cfu/mL
respectively for these locations with no statistically significant difference (p > 0.05). These
values recorded exceeded the world health organization’s (WHO) limits of E. coli of zero
tolerance. For THB, the values measured from SW samples from these three locations
were significantly higher than 500 cfu/mL. Specifically, 21 SW (91.38) from Iyana Iyesi,
42 SW (95.45%) from Elegushi, and all 13 (100%) samples from Igbogbo with no statistically
significant difference (χ2 = 1.365, p = 0.505). In addition, more information on mean E. coli,
TC, THB, and physicochemical values were estimated and recorded in Table 1.

The actual mean values recorded revealed that THB values from these locations
exceeded the threshold for THB with values at 46.7 × 108 cfu/mL, 30.4 × 108 cfu/mL and
21.0 × 108 cfu/mL for each location respectively and were statistically different (p = 0.034).
TC on the other hand was not different in terms of count from the three locations as
SW samples were prevalent with TC contamination. To mention, 13 SW (56.52%) from
Iyana Iyesi, 15 SW (34.09%) from Elegushi, and 1 SW (7.69%) from Igbogbo (χ2 = 8.7665,
p = 0.012) were recorded to have TC in SW in the three locations. Staphylococcus was
present in only one sample and was purchased from Igbogbo which may have been due
to chance (χ2 = 5.219, p > 0.05). In addition, physio-chemical properties measured for all
SW samples from the three locations revealed no statistical difference between them except
for pH. Electrical conductivity (EC) which can be a measure of the ionic content in water
showed no statistical difference between SW obtained at different locations (p = 0.8978)
with mean values of 48 μs/cm, 51 μs/cm, and 51 μs/cm for Iyana Iyesi, Elegushi, and
Igbogbo respectively. The pH values measured from SW suggest that they are acidic with
mean values of 5.57, 6.05, and 5.79 for Iyana Iyesi, Elegushi, and Igbogbo respectively while
TDS values were also at 25 mg/L, 33 mg/L, and 24 mg/L with no significant difference
(p = 0.7030) (Table 1).

For the second level of comparison, the 80 SW samples tested in this study were
classified into brands of good and poor reputation after being tested in the laboratory. Of
the 80 samples, sixty-nine (69) were placed in the category of SW brand with poor reputation
while eleven (11) samples were placed under good reputation SW brand. The quantity of
SW classified as good was based on samples whose quality matched public perception. All
other samples with poor bacteriological results, were categorized as poor brands (Table 2).
Additionally, the SW samples collected were classified based on the time of purchase after
production and was recorded in Table 2. 9 samples (81.81%) of SW containing THB were of
good reputation and 67 samples (97.10%) were brands of the poor reputation and the values
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of THB were above the threshold (χ2 = 0.5337; p = 0.465). None of the perceived good brands
of SW contained E. coli while 51(73.91%) of the perceived poor brands had E. coli present
and were statistically significant. (χ2 = 5.766; p = 0.016). In addition, no SW from the good
reputation brand category had TC present while 29 SW samples of poor reputation brands
recorded TC values with statistical significance (χ2 = 2.773; p = 0.096). Table 1 highlights
the values of THB, E. coli, TC, and Staph based on the above-mentioned classifications.

Only one brand from a poor reputation SW brand reported staphylococcus, which
overall was not statistically significant (χ2 = 0.1284; p = 0.720). Surprisingly, some samples
collected on the day of production reported the presence of THB, TC, and E. coli. As seen in
Table 2, THB values were present from 31 (93.94%) SW produced on the same day while
45 (95.74%) were seen from SW samples stored over time with no significant statistical
difference between them (χ2 = 0.1330; p = 0.713). This simply suggests that storing them
over time was not a reason for the presence of THB, rather these bacteria were inherent in
the distribution system of water supply. Similarly, 17 (51.51%) SW had both TC and E. coli
and were produced on the same day while more samples 34 (72.34%) SW stored over time
had a significantly high value of (χ2 = 5.664; p = 0.77) for TC.

During the bacteriological investigation of the SW samples, it was observed that two
SW brands had no E. coli and Total coliform (TC) present (Table 3). These results informed
the classification of samples in the third level of comparison. To mention, one of the brands
was already classified as a brand with a good reputation while the other was a brand
perceived to have a poor reputation by the consumers living within the vicinity where the
SW sample was sold. Therefore, for this study, we stratified these SW into two groups
which comprised of both SW brands (Hebron and Medicx) in one group and other brands
as a second group to determine whether a significant difference exist in their contamination
levels. The findings of his process have been captured in Table 3. The results showed
the SW samples yield on TC (χ2 = 12.28; p < 0.05), E. coli (χ2 = 37.96; p < 0.05), and Staph
(χ2 = 0.273; p > 0.05) over time with these values showing statistical significance.

3.2. Contamination Dominance and Explanatory Analysis of Bacteriological and
Physio-Chemical Stressors

In this study, a correlation was carried out on 80 SW samples to determine the relation-
ship between bacteriological and physio-chemical variables called stressors. Spearman’s
correlation coefficient was used in place of Pearson’s correlation coefficient based on the
normality test conducted using Shapiro-wilk’s test for normality. The test revealed a non-
normal distribution of stressors measured in SW samples (p < 0.05). Table 4 shows the
relationship and the statistical significance of the 2-tailed test conducted. Statistical signifi-
cance but negative correlations were observed between conductivity with [TC (r = −0.247;
p < 0.01); E. coli (r = −0.602; p < 0.01); THB (r = −0.453; p < 0.01)], suggesting that bacteria in
water would do well and better at lower conductivity levels and that fecal matter present is
not the source for high conductivity recorded from SW samples but occurring mutually
exclusively mainly due to presence of salts and metalloids. For TDS, a strong statistical
positive correlation was observed between TDS with [EC (r = 0.992; p < 0.01); Salinity
(r = 0.676; p < 0.01)] while strong negative statistical significance was observed with all
bacteriological stressors (p < 0.001).

Table 4. Correlation Matrix between measured parameters.

Correlation Matrix

Conductivity TDS pH Salinity TC E. coli THB

Correlation

Conductivity 1.000 0.992 ** 0.044 0.676 ** −0.247 ** −0.602 ** −0.453 **
TDS 0.992 ** 1.000 0.054 0.676 ** −0.231 * −0.582 ** −0.430 **
pH 0.044 0.054 1.000 0.502 ** −0.024 −0.081 −0.190

salinity 0.676 ** 0.676 ** 0.502 ** 1.000 −0.263 * −0.419 ** −0.454 **
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Table 4. Cont.

Correlation Matrix

Conductivity TDS pH Salinity TC E. coli THB

TC −0.247 * −0.231 * −0.024 −0.263 * 1.000 0.571 ** 0.467 **
E. coli −0.602 ** −0.582 ** −0.081 −0.419 ** 0.571 ** 1.000 0.615 **
THB −0.453 ** −0.430 ** −0.190 −0.454 ** 0.467 ** 0.615 ** 1.000

Note: * p-value < 0.05; ** p-value < 0.01.

With the latter already described with the same perception as EC i.e., TDS to EC
(r = 0.992; p < 0.01), the former suggests that Salinity to TDS relationship emanates from the
same source. Therefore, this is likely to be from either the extraction process of water used
for making SW containing rock salts or salt compounds added to reduce pH. Interestingly,
the strong statistical correlation between pH and salinity (r = 0.5025; p < 0.01) could suggest
that increased salinity was due to buffering pH as both increased directly. Additionally,
an attempt was made to identify major pollution in the SW samples by conducting an
exploratory statistical method using PCA/FA and communalities. PCA/FA is a dimension
reduction that can be useful in whittling down variables to important factors depending
on the subject at hand. It whittles this by grouping variables into factors or component
loadings. The output of these component loading in a factor shows the relationship of the
variables on each component. On the other hand, communalities show how well these
variables explain the variability in a component and it is very useful as a performance
evaluator of measured components extracted during PCA/FA procedures. However, both
techniques are sensitive to the size of the dataset and produce spurious output when the
variables used do not follow a normal curve distribution.

Before conducting the PCA/FA analysis, the variables were first tested for sampling
adequacy using the KMO and Bartlett test. These tests were conducted for two main
reasons. First, the KMO test revealed whether the data set to be used for PCA/FA statistical
operations was suitable. Literature has suggested that KMO values greater than 0.5 are
usually suitable but most will agree that higher values of KMO i.e., >0.5 are even better. Sec-
ond, Bartlett’s test hypothesizes that the data set to be extracted are typically uncorrelated
which can be determined by the p-value. For our study as seen in Table 5, KMO was 0.653
which suggests that our dataset is suitable for extraction while Bartlett’s test also showed
that the dataset is uncorrelated (p < 0.05). Thereafter, normalization or transformation was
carried out using the CLR method discussed elsewhere. The transformed dataset was then
subjected to exploratory analysis and reported in Table 6.

Table 5. Kaiser-Meyer-Olkin Measure of Sampling Adequacy of sampled SW.

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.653

Bartlett’s Test of Sphericity
Approx. Chi-Square 214.392

df 21
Sig. 0.000

Table 6. PCA and communality results of sampled SW.

Rotated Component Matrix

ComValComponent
1 2

Conductivity 0.802 −0.351 0.767
TDS 0.620 −0.073 0.389
Ph 0.662 0.064 0.442

9



Water 2023, 15, 1762

Table 6. Cont.

Rotated Component Matrix

ComValComponent
1 2

salinity 0.902 −0.251 0.876
TC −0.088 0.828 0.693

E. coli −0.021 0.795 0.633
THB −0.248 0.696 0.546

The result from the PCA/FA was determined using two main rules (Table 5). The first
rule is the Kaiser-Meyer-Olkin rule which suggests that meaningful components are usually
extracted with Eigenvalue greater than 1 (Table 6). Next was the Elbow or Point of Inflexion
shown on a Scree plot (Figure 3). From both rules, components were factored as 2. The
major advantage of FA is that it helps in the grouping, which can be used in this context for
source allocation. For example, in this study, component 1 had strong loadings on Salinity
and Conductivity. While component 2 is correlated by E. coli and Total Coliform suggesting
the presence of fecal contamination. This could only be possible as the distribution system
accumulates bacterial films and sediments that do so well in retaining organisms in the
water. Therefore, showing multiple lines of evidence that infrequent cleaning and lack of
advanced treatment mechanisms are so lacking in the SW industry and require both the
attention of consumers and relevant government agencies. The absence of these would only
increase the level of water insecurity as new and old packaged water companies would
show increased lackadaisical behavior towards producing packaged drinking water of
better quality.

Figure 3. Scree plot showing the point of inflection for the PCA/FA analysis.

Communality analysis shown in Table 5 revealed that ionic contamination was well
explained when compared to bacteriological contamination in the SW studied. Specifically,
it revealed that 87.6% of salinity and 76.7% of conductivity were explained by factor analysis
while 69.3% and 63.3% explained the variability of TC and E. coli in its Factor Component
2. An indication that shows or depicts a satisfactory performance suggests that lesser
grouping was more effective than extended groupings.
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4. Discussion

From this study, we investigated the presence of bacteriological contamination. Seem-
ingly, the presence of fecal contamination was detected in 51 (≥81%) of SW investigated
in the region. The contamination levels recorded were in amounts that require urgent
attention. This is concerning because, before seven-fold serial dilution, the results initially
recorded from the MPN test of SW samples revealed TNC observations of bacteriological
contamination. This suggests that none of the SW is fit for consumption and that is very
concerning. In the past, a study [36] investigated the presence of bacteria in 92 SW in Lagos,
Nigeria. The findings from that study showed elevated E. coli values which were signifi-
cantly higher than the threshold set by WHO. The values in this study revealed a much
higher presence of bacterial contamination than those reported in earlier studies. Amongst
all samples tested, only one sample was positive for the presence of staph. Although this
study reports the presence of staph in the SW sample as statistically insignificant, it calls
for a more proactive public health check to avoid any occurrences.

In the PCA/FA analysis, component 1 had strong loadings on Salinity and Conductiv-
ity. While component 2 is correlated by E. coli and Total Coliform suggesting the presence
of fecal contamination. This could only be possible as the distribution system accumulates
bacterial films and sediments that do so well in retaining organisms in the water. Therefore,
showing multiple lines of evidence that infrequent cleaning and lack of advanced treatment
mechanisms are so lacking in the SW industry and require both the attention of consumers
and relevant government agencies to be properly addressed. The absence of these would
only increase the level of water insecurity as new and old packaged water companies
would show increased lackadaisical behavior towards producing packaged drinking water
of better quality.

Staph infections have been reported to cause extremely serious or fatal infections in
humans including bacteremia, sepsis (when bacteria spread to the bloodstream), pneu-
monia, endocarditis (infection of the heart valves), and osteomyelitis (bone infection) [37].
Another study [38] also investigated SW consumed by university students in Kumasi
Ghana and found 50% of SW investigated contained TC & EC of similar contamination
levels as this current study. However, their finding did not agree with findings from [14]
that found no E. coli presence in SW samples investigated in Ghana. These studies suggest
that there is need for a location-based continuous monitoring scheme to create more public
awareness. Two SW brands in this study showed no presence of TC & EC. The first brand
(Hebron) is a brand every SW consumer around the studied area would prefer to purchase
but they see it beyond their reach as SW produced by this brand are bought off quickly
before it spreads to the neighborhood, thus making it expensive to purchase compared
to other brands in the region. The other brand is not well known and does not feature
attractive quality packaging. Despite the good performance of the two SW brands after
seven-fold serial dilution, it is opined that best management practices as stipulated by
National Agency for Food and Drug Administration and Control (NAFDAC) should be
unrelentingly followed. NAFDAC reported that persistent presence of pathogenic bacteria
in SW is due to the use of untreated raw water as well as SW companies non-compliance for
treatment of raw water. NAFDAC (2018) recommends that the treatment process in all SW
production factories should follow the stated order (Figure 4). Previous studies have shown
that microfiltration has the capacity to remove all bacteria from the water being treated.
Hence, it can be deduced from the results obtained that SW manufacturers do not adhere
to the recommended treatment guidelines prescribed by NAFDAC. Another reason for
bacteria presence in packaged SW could be linked to the fouling of membranes in facilities
where microfiltration systems are used [39–42]. Hence, a need for proper cleaning of the
microfiltration membranes is also essential for maintaining water quality.
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Source water 
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150 ft) 

Raw Water Tank 
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Filtration (Graded 
sand bed and 

activated carbon)

Treated Water 
Tank (PVC or 

Stainless steel)

Microfiltration UV Sterilization Packaging

Figure 4. NAFDAC recommendations for sachet water production processes.

Poor hygiene practices in SW production facilities can be linked to the presence
of staph in packaged water. Most SW factories visited during this study were in poor
environmental conditions with waste polyethylene bags and papers littered all over. It is
believed that this may lead to heightened microbial contamination due to the proximity
of SW production facilities to waste disposal facilities, including septic tanks and small
to medium dumpsters [43]. A deformation in the physical component of these facilities
can lead to the escape of substances of public health concern into SW processes. [44,45]
reported that E. coli and other microbes from fecal contamination can enter raw water
sources when open defecation is practiced close to water bodies or when a leak exists in a
septic tank. These contaminants can be transferred to packaged water in the case where
proper treatment is not ensured, thus causing a public health crisis. This study, therefore,
has revealed that there is a higher possibility of a range of non-treatment to inadequate
treatment of water used for SW purposes even though many of the SW companies claim to
involve in reverse osmosis, microfiltration process, and chlorination. This study embarked
on gives new insight to the contamination level years after a similar investigation was
conducted in a different region of West Africa. Our findings corroborate with the conditions
of [46] that in high demand there is a possibility of the high occurrence of contamination
levels because of limited or no maintenance of water supply distribution lines, as well as
a non-compliance of SW manufacturers to good sanitation and hygiene measures. It is a
great concern to note the high number of fecal indicators consistently found in SW across
the country. Even though this is consistent with our study, being that it was conducted in
a busy period where Christians from over the world gather en masse, the authors of this
study see that the results might be the same irrespective of seasonality [11]. The reason
for this conclusion was due to the environmental conditions of the SW factories during
our study.

5. Conclusions

The bacteriological quality of 80 SW samples collected from three neighborhoods
in Ota, Nigeria was investigated. The results obtained were used to conduct statistical
analysis to determine the level of significance of the contamination. Additionally, bacterial
dominance was correlated with a brand reputation to give an informed re-education of
public perception as to what brands they should be consuming for the safety of their
health. Initial bacteriological tests revealed that all SW are not fit for consumption. All the
results obtained for 69 samples fall below the WHO limits for the bacteriological quality of
drinking water. Although THB has no associated health risk, the WHO standard requires
a maximum of 500 CFU/Ml in water. Additionally, a high concentration of THB is an
indication of favorable conditions for the growth of more dangerous microbes such as E. coli,
Legionella, and S. Typhi and these can cause serious harm to human health and in some
cases, death. The results obtained in this study show THB counts over the recommended
WHO limit which is a cause for concern.
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Fecal contamination in SW has become a norm in SW at an alarming rate such that
entrusting the monitoring of the SW production process to NAFDAC, which appears to
have done less in enforcing regulations in this regard will be a grave mistake for the public.
Frequent periodic monitoring programs and collaborations between SW manufacturers
and researchers are encouraged to find a lasting solution to this crisis. It is also important to
note that the problem of bacterial dominance in packaged water is location specific, and as
such requires location-specific water treatment as opposed to a general treatment approach.
Testing of source water quality should be mandated for all SW manufacturers and specific
measures should be undertaken to remove the contaminants found in the source water. It
is also encouraged that the public pays more attention to the SW they consume as it can
impair their health negatively. Finally, properly cleaning water treatment facilities and
distribution systems to remove sediments and clogged bacterial films can to a large extent
help reduce the re-occurrence of bacteria into packaged SW after treatment. This study
compared public perception of the quality of SW across various brands with the actual
quality of SW based on bacteriological tests. Although previous studies have shown that
storage and handling conditions have a significant impact on the quality of SW, this study
did not consider these factors in our analysis. Despite the similarities in the quality of SW
across many regions, literature suggests that conducting location-specific studies is crucial
due to differences in source water quality, treatment methods, and handling techniques of
SW. Thus, we recommend conducting further studies to investigate the impact of storage
and handling conditions on SW in this study region. Additionally, as microplastics are a
growing concern in products stored in polyethylene containers, we recommend exploring
the possibility of microplastics in SW due to degradation during transportation and storage,
as this poses a potential threat to human health. Finally, despite mentioning the lack of
compliance of most if not all SW producers within the study area, this study was unable to
determine whether NAFDAC policies were effective, lacked compliance or broken at worst.
Future studies can conduct a panel data analysis on this subject across countries or regions
where SW is ubiquitous.
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Abstract: Water is the meaning of life for humans, agricultural and industrial processes; controlling
the distribution of water and wastewater between industrial processes is very vital for rationalizing
water and preserving the environment. This paper addresses a mathematical approach to optimizing
water inter-plant networks. The water network problem is formulated as a nonlinear program
(NLP) that is solved by LINGO Software, version 14.0. A generalized two-step mathematical model
is designed to be valid for solving networks containing large numbers of sources and sinks. The
introduced model is proposed to be used for both single and multiple contaminant problems with up
to six contaminants. Two mathematical models are presented to design water inter-plant networks
efficiently. Firstly, the introduced model is solved by LINGO, in which the data given are applied; the
obtained results are simultaneously sent to a second model (based on Excel Software 2019, v. 16.0),
by which the obtained water networks are automatically drawn. The proposed approach has been
applied in three case studies; the first case study contains five plants of single contaminants, the
second case study contains three plants of single contaminants, and the third case study contains
three plants of multiple contaminants. The results showed a noticeable reduction in the percentages
of freshwater consumption in the investigated three case studies, which were 38.6, 4.74 and 8.64%,
respectively, and the wastewater discharge of the three case studies were decreased by 38.1, 4.61 and
8.65%, respectively.

Keywords: inter-plant water network; nonlinear programming; freshwater consumption; mathematical
approach; multiple contaminants

1. Introduction

The management of water in the inter-plant industrial process has been posed in
the last decade since the consumption of global freshwater has increased continuously
in industry.

Several processes in fertilizers, refineries and chemical companies use water in
cooling systems, the scrubbing of gases, dilution and the adaptation of heat balance in
heat exchangers.

Various methodologies have been presented in recent years for minimizing freshwater
consumption and reducing the flowrate of wastewater discharge in the design of water
inter-plant networks. A stochastic optimization model is proposed by Al-Redhwan et al.
to minimize freshwater consumption and to produce a flexible wastewater network; they
studied the distribution of wastewater in several processes in oil refinery plants. These
processes include the atmospheric crude distillation unit, vacuum distillation unit, and the
hydrocracker and kerosene desulfurization unit [1]. A genetic algorithm was presented
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by Ami et al. to manage the distribution of water in the contaminant sensor network
to obtain the optimal system and multi-objective sensor model [2]. A pinch technique
was proposed by Chew et al. for the reduction of freshwater and wastewater flowrates:
a case study of an iron and steel mill was presented to show the effectiveness of their
presented techniques; the processes contained mold cooling, slab cooling, rinsing and
fume scrubbing [3]. The production of methanol from molasses was studied by Satyawali
et al.: the effluent wastewater which is produced from methanol production included a
high strength of pollution and the processes contained several equipment for maintaining
temperature, such as cooling towers [4]. Iancu et al. introduced a mathematical model to
design a regeneration wastewater network: they presented a case study of a petrochemical
plant that contains one water source, six operation units, four contaminants and one
regeneration unit to maximize the reuse of wastewater [5]. A case study of a steel plant
was presented by Tian et al. to optimize the allocation of water and wastewater between
several processes including the power plant, ore dressing, blast furnace, hot air furnace
and rinsing residue; the chlorine concentration was presented as the limiting concentration
in the design of water–wastewater networks [6]. A systematic methodology is presented by
Kim et al. to minimize the cost estimation in the design of wastewater and heat exchange
networks in oil refinery processes that contain multiple contaminants; in their work, a
mixed integer non-linear programming formulation based on mass and heat balance
between the processes is proposed; several processes such as hydrodesulfurization unit
and an atmospheric distillation unit were introduced to show the effect of such processes
on changing wastewater concentration [7]. An algorithm-based method is proposed by
Chew et al. to minimize the flowrate of water resources in the single contaminant system
of an inter-plant resource conservation network (IPRCN); they applied their algorithm
to three water networks [8]. A different mathematical model is presented by Chen et al.
to minimize the consumption of fresh water for the inter-plants; their work is applied to
a case study of three plants with multiple contaminant systems [9]. Three wastewater
treatment plants were studied by Julien et al. to manage the distribution of microbiological
water in the Seine River [10]. An adaptive random search (ARS), which is an optimization
approach introduced by Poplewski et al., is applied to several case studies of mixed
integer nonlinear problems: a case study of a paper mill was presented with several
processes which included pulping (dilution), a paper machine, a cylinder shower and felt
showers [11]. An organic production plant was presented by Gopal et al., using treatment
units to minimize the concentrations of contaminants and maximize the reuse of wastewater
while minimizing the cost of treatment [12]. Yang et al. have proposed mathematical
programming approaches that are based on mixed integer nonlinear programming to
optimize reuse-recycle wastewater networks using treatment units; several methods, such
as reverse osmosis, ion exchange, sedimentation, ultrafiltration and activated sludge, were
used to decrease the concentration of contaminants [13]. A simultaneous optimization
model was formulated to design a heat-integrated wastewater network based on mixed
integer nonlinear programming to minimize the cost of freshwater consumption and
the cost of wastewater treatment units [14]. A mixed integer nonlinear program was
proposed using regeneration reuse and regeneration recycle in the hollow fiber reverse
osmosis membrane to minimize the cost of freshwater and energy consumption; the
presented model was applied to a refinery case study which included amine sweeting
distillation, hydrotreating and desalting processes and considered the chemical oxygen
demand and total dissolved solids to be limiting concentrations [15]. Bozkurt et al. have
proposed a mathematical approach based on a framework to solve and optimize a multiple
contaminant retrofitting problem; they studied the design of a wastewater treatment
plant and the calculation of energy efficiency [16]. A reduction in the total annualized
cost and wastewater discharge has been presented by Sueviriyapan et al. using a mixed
integer nonlinear program; they applied their technique to a refinery plant and the results
showed a decrease in the total annualized cost as well as the wastewater discharge [17].
A two-stage stochastic programming model has been presented to design an optimum

17



Water 2023, 15, 4315

water–wastewater network [18]: Naderi et al. studied the effect of hazards on environmental
law. Hong et al. developed a strategy of multi-objective optimal control (MOOC) and multi-
objective particle swarm optimization (MOPSO) to reduce the consumption of heat and
increase the operational efficiency of the wastewater treatment plant [19]. A corn refinery
case study was introduced to show the water management techniques presented by Mostafa
et al.; several processes were presented to show the flexibility of the presented model, and
these processes include gluten separation, starch separation, starch dewatering and glucose
evaporation; chemical oxygen demands and total dissolved solids were presented as the
limiting concentrations of contaminants in the allocation of freshwater and wastewater
between processes [20]. Two techniques of centralized water header are proposed by Fadzil
et al. to improve the reuse of wastewater in networks; they presented a case study of
a single contaminant system that consists of five plants [21]. Lv et al. presented a step-
by-step optimization method in the design of inter-plant water networks; a case study
of a single contaminant in southern China was applied to show the applicability of their
method [22]. A case study of inter-plant processes between an oil refinery plant and a
petrochemical plant was presented by Reinaldo et al. to optimize the distribution of water
and wastewater between several processes such as those of the cooling towers, condensers,
coolers and boilers [23]. Robles et al. proposed model predictive control (MPC) and particle
swarm optimization (PSO) to make a quality control of river basins in the presence of
ammonium and nitrites [24]. A concentration potential concept was used by Wang et al.
to design an optimal inter-plant water network; a case study of three plants and multiple
contaminants was presented to show the effectiveness of their technique [25]. Fard et al.
presented a Lagrangian relaxation-based model to make a control of water supply and
wastewater collection; they studied the quality of the Azerbaijan province in Iran as a
case study to minimize the water supply and wastewater discharge [26]. Mohammad and
Chang studied the design of water–wastewater networks in the textile industry; according
to the high temperature of the water, up to 60 ◦C, several contaminants were found in
wastewater discharged streams such as chemical oxygen demand [27]. Kumawat et al.
proposed a robust formulation in a continuous process to calculate the consumption of
freshwater; their technique controlled the flowrates and qualities of the reused and recycled
wastewater [28]. Three optimization models are proposed by Grzegorz and Dominic to
design a flexible water network while minimizing the total length of the pipeline, the
consumption of freshwater and the total annualized costs [29]. A textile industrial cluster
was studied to manage the allocation of wastewater flowrate between sources and demands;
zero liquid discharge was targeted in the design of a wastewater network that included a
single contaminant TDS in several processes like the crystallizer, centrifuge and dilution
processes [30]. A maximization of wastewater reuse in the textile dyeing industry was
presented by Erkata et al.; several processes needed water in the dying industry such as the
singeing, de-sizing, boiling, bleaching and printing processes [31]. A Bayesian optimization
approach was proposed by Mariacrocetta et al. to manage the water quality of drainage
systems [32]. A scrap tires-into-fuel processing facility was studied by Nessren et al. to
design the wastewater network between several processes which include the condenser,
decanter, separation, seal-pot and stripping processes; a graphical technique was used to
optimize the distribution of wastewater between sinks to sources [33].

Reducing the consumption of freshwater usage and wastewater discharge in water
inter-plant networks is a challenge in many plants, such as cement plants, polyethylene
plants, oil refineries and fertilizers plants. Managing the distribution of water in inter-
plant processes and the large amount of freshwater consumption in different industrial
processes, such as those of the condensers, heat exchangers, vacuum systems, cooling
and washing processes, refers to the need to minimize the freshwater consumption and
wastewater discharge that are leading us to establish the proposed optimization program.
Good management of water distribution between plants will consequently result in a
considerable reduction in the cost of freshwater as well as wastewater treatment. To date,
no generalized model has been introduced to help in designing inter-plant networks aiming
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to minimize the required freshwater consumption and wastewater discharge including a
wide range and number of sources and sinks. In this paper, a generalized model, which is
able to deal with up to five inter-plants having up to a hundred sources and a hundred sinks,
is introduced. The introduced model could be applied to single contaminant networks as
well as multiple contaminants networks. Additionally, the results of running the proposed
model are presented simultaneously as a drawn network to facilitate the application of the
proposed network construction. The proposed mathematical model is based on equations
that are formulated as a nonlinear program with definite constraints and assumptions.
After running the mathematical model, the obtained results are shown and sent to a
designed Excel software which is able to achieve the water–wastewater inter-plant networks
automatically. Three case studies are investigated, and their results are compared with the
obtained results in the literature.

2. Methods

In this research, the minimization of freshwater consumption is presented as an
objective function in the presence of a single or multi-contaminant system to design water–
wastewater inter-plant networks. The present problem could be stated as follows:

• Given a set of sources, reaching up to one hundred sources, where each source (n)
has a flowrate (FRn) in a multi-contaminant reach up to six contaminants (A, B, C, D,
E and F), where the concentrations of contaminants in sources are XRnA, XRnB, XRnC,
XRnD, XRnE and XRnF, the flowrate of each source has the probability to send to sinks
by flowrate gn-i or send to waste by flowrate Gn_waste.

• Given a set of sinks, reaching up to one hundred sinks, where each sink (i) has a
flowrate (Gi) with a limiting concentration of contaminants XgiA, XgiB, XgiC, XgiD, XgiE
and XgiF, then:

• The freshwater flowrate (FW) has the probability to feed each sink (i) with a concentra-
tion of contaminants XA, XB, XC, XD, XE and XF.

• The total wastewater flowrate is Gwaste with a concentration of XwA, XwB, XwC, XwD,
XwE and XwF.

As shown in Figure 1, the design of the water–wastewater network is illustrated in
sequence procedures that started by applying an overall mass balance to each source (n),
which has a flowrate (FRn) that has a probability to distribute to each sink (i) by flowrate
gn-i and to waste by flowrate Gn−waste, which is shown in Equation (1).

FRn = ∑ gn−i + Gn−Waste (1)

The overall mass balance is applied to each sink (i); the flowrate of each sink (Gi) has
the probability to be fed by the freshwater flowrate (Fwi) and water flowrate from source to
sink (gn−i), as shown in Equation (2).

Gi = Fwi + ∑ gn−i (2)

As shown in Equation (3), a component mass balance is applied on each sink having
contaminant A: the product of the flowrate of each sink (Gi) by limiting the concentration
of contaminant A (XgiA) is equal to the sum of the product of the freshwater flowrate
(Fwi) and the concentration of the freshwater of contaminant A (XA), and the product of
the summation of the water flowrate from source to sink (gn−i) and the concentrations of
contaminant A in each source (XRnA).

Gi ∗ XgiA = Fwi ∗ XA + ∑ gn−i ∗ XRnA (3)

A component mass balance of contaminant B is applied to each sink as shown in
Equation (4): the product of (Gi) by the limiting concentration of contaminant B (XgiB)
is equal to the sum of the product of Fwi and the concentration of the freshwater of
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contaminant B (XB), and the product of gn−i and the concentrations of contaminant B
in each source (XRnB).

Gi ∗ XgiB = Fwi ∗ XB + ∑ gn−i ∗ XRnB (4)

By applying a component mass balance of component C to each sink as shown in
Equation (5), the result of the product of (Gi) and XgiC (the limiting concentration of
contaminant C) is equal to the sum of the product of Fwi and XC (the concentration of
the freshwater of contaminant C) and the product of gn−i and XRnC (the concentrations of
contaminant C in each source).

Gi ∗ XgiC = Fwi ∗ XC + ∑ gn−i ∗ XRnC (5)

As shown in Equations (6)–(8), a component mass balance is applied to each sink hav-
ing contaminants (D, E and F), where XD, XE and XF are the concentrations of contaminants
D, E and F of the freshwater flowrate, respectively, and the concentrations of contaminants
D, E and F are XRnD, XRnE and XRnF, respectively.

Gi ∗ XgiD = Fwi ∗ XD + ∑ gn−i ∗ XRnD (6)

Gi ∗ XgiE = Fwi ∗ XE + ∑ gn−i ∗ XRnE (7)

Gi ∗ XgiF = Fwi ∗ XF + ∑ gn−i ∗ XRnF (8)

In Equation (9), the overall mass balance is applied to the waste discharge stream;
each source has the probability of sending wastewater to waste by a flowrate Gn_waste, and
the collected wastewater flowrate is Gwaste.

GWaste = ∑ Gn−Waste (9)

Furthermore, a component mass balance is applied to the wastewater discharge of six
contaminants (A, B, C, D, E and F), as shown in Equations (10)–(15).

GWaste ∗ XwA = ∑ Gn_waste ∗ XRnA (10)

GWaste ∗ XwB = ∑ Gn_waste ∗ XRnB (11)

GWaste ∗ XwC = ∑ Gn_waste ∗ XRnC (12)

GWaste ∗ XwD = ∑ Gn_waste ∗ XRnD (13)

GWaste ∗ XwE = ∑ Gn_waste ∗ XRnE (14)

GWaste ∗ XwF = ∑ Gn_waste ∗ XRnF (15)

Each sink (i) has the probability of being fed by freshwater flowrate (FWi); the overall
mass balance of the freshwater streams is shown in Equation (16).

Fw = ∑ Fwi (16)

LINGO Software, v. 14.0 is used in this work to get the optimum solution. LINGO
Software is used to solve linear and nonlinear equations with definite constraints and
assumptions; the mathematical approach is based on a nonlinear program (NLP) and the
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constraints and variables refer to the positive real number or zero values. After running the
proposed mathematical model in LINGO Software, the obtained results are sent directly
to the Excel software which has the ability to draw the water–wastewater inter-plant
network automatically.

 

Figure 1. Procedure of optimum design for water–wastewater inter-plant network.

3. Case Studies

The proposed mathematical model was examined by applying it to three case studies
that contain single and multi-contaminants to show its effectiveness in designing water–
wastewater networks. The presented case studies include a different number of plants
in each case study with different contaminants, including total suspended solids (TSS),
chemical oxygen demand (COD), hydrocarbon, hydrogen sulfide (H2S) and total dissolved
solids (TDS); these contaminants should be controlled via a mathematical approach to
avoid the fouling, cooling efficiency, hardness and corrosion problems in the plants. These
case studies are described in the following subsections.

3.1. Case Study 1

Case study 1 contains a single contaminant, which is the total suspended solids (TSS);
it was presented by Fadzil et al. [21]. This case study includes five plants; plant A has four
sources and four sinks, plant B consists of four sources and four sinks, plant C contains five
sources and five sinks, plant D has three sources and two sinks, and plant E contains five
sources and five sinks, as shown in Table 1.
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Table 1. Limiting flowrates and concentrations of sources and sinks in case study 1.

Plant
Sources

and Sinks
Stream

Number
Flow Rate

(m3/h)
TSS (ppm) Plant

Sources
and Sinks

Stream
Number

Flow Rate
(m3/h)

TSS (ppm)

Plant A

Sources

S1 50 50

Plant B

Sources

S1 20 100

S2 100 100 S2 100 100

S3 70 150 S3 40 800

S4 60 250 S4 10 800

Sinks

K1 50 20

Sinks

K1 20 0

K2 100 50 K2 100 50

K3 80 100 K3 40 50

K4 70 200 K4 10 400

Plant C

Sources

S1 105 17

Plant E

Sources

S1 40 200

S2 182.35 44 S2 50 200

S3 138.7 49 S3 30 400

S4 92.55 83 S4 60 400

S5 45.55 115 S5 40 600

Sinks

K1 182.35 0

Sinks

K1 40 0

K2 45.55 10 K2 50 100

K3 138.7 10 K3 30 100

K4 92.55 10 K4 60 300

K5 105 87 K5 40 400

Plant D Sources

S1 150 10

Plant D Sinks
K1 200 20

S2 60 50

S3 100 85 K2 80 75

3.2. Case Study 2

Case study 2, provided by Lv et al. [22], presents three plants (molasses treatment
system (X), yeast production system (Y), and circulating cooling system (Z)) with a single
contaminant, which is chemical oxygen demand (COD). Plant X contains five sources and
five sinks, plant Y contains five sources and five sinks, while plant Z includes five sources
and five sinks. The limiting flowrates and concentrations of contaminants of the sources
and sinks are shown in Table 2.

Table 2. The limiting data of sources and sinks in plants X, Y and Z for case study 2.

Plant Process
Stream

Number
Flow Rate

(m3/h)
Limiting Concentration of
Contaminant COD (ppm)

Molasses treatment system
(X)

Sources

S1 20 100

S2 66.67 80

S3 100 100

S4 41.67 800

S5 10 800

Sinks

K1 20 0

K2 66.67 50

K3 100 50

K4 41.67 80

K5 10 400
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Table 2. Cont.

Plant Process
Stream

Number
Flow Rate

(m3/h)
Limiting Concentration of
Contaminant COD (ppm)

Yeast production system
(Y)

Sources

S1 20 100

S2 66.67 80

S3 15.63 400

S4 42.86 800

S5 6.67 1000

Sinks

K1 20 0

K2 66.67 50

K3 15.63 80

K4 42.86 100

K5 6.67 400

Circulating cooling system
(Z)

Sources

S1 20 100

S2 80 50

S3 50 125

S4 40 800

S5 300 150

Sinks

K1 20 0

K2 80 25

K3 50 25

K4 40 50

K5 300 100

3.3. Case Study 3

The third case study of the current work was presented by Wang et al. [25]. This case
study includes three plants with multiple contaminant systems including the contaminants
hydrocarbon, hydrogen sulfide (H2S) and total dissolved solids (TDS); plant 1 consists of
eight sources and eight sinks, plant 2 contains seven sources and seven sinks, while plant 3
consists of three sources and three sinks as shown in Table 3.

Table 3. The limiting flowrates and concentrations of sources and sinks for case study 3.

Plant
Sources and

Sinks
Flowrate

(m3/h)

Contaminant A
(Hydrocarbon)

(ppm)

Contaminant B
(H2S)
(ppm)

Contaminant C
(TDS)
(ppm)

Plant 1

Source 1 30 100 90 50

Source 2 16 50 70 70

Source 3 75 150 80 70

Source 4 21 160 100 90

Source 5 29 210 200 120

Source 6 65 80 70 80

Source 7 61 300 290 170

Source 8 57 210 170 100
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Table 3. Cont.

Plant
Sources and

Sinks
Flowrate

(m3/h)

Contaminant A
(Hydrocarbon)

(ppm)

Contaminant B
(H2S)
(ppm)

Contaminant C
(TDS)
(ppm)

Plant 1

Sink 1 30 0 0 0

Sink 2 16 0 0 0

Sink 3 75 40 60 20

Sink 4 21 30 40 70

Sink 5 29 110 135 60

Sink 6 65 0 0 0

Sink 7 61 100 75 20

Sink 8 57 90 50 34

Plant 2

Source 1 35 110 120 100

Source 2 40 350 400 210

Source 3 40 150 180 210

Source 4 30 210 150 220

Source 5 30 350 320 310

Source 6 64 800 1100 1000

Source 7 50 1500 2100 1800

Sink 1 35 0 0 0

Sink 2 40 200 170 150

Sink 3 40 90 130 100

Sink 4 30 110 80 150

Sink 5 30 260 200 180

Sink 6 64 340 350 400

Sink 7 50 950 850 900

Plant 3

Source 1 30 900 4500 3000

Source 2 34 120 12,500 180

Source 3 56 220 45 9500

Sink 1 30 150 700 800

Sink 2 34 20 300 45

Sink 3 56 120 20 200

4. Results and Discussions

The proposed approach for optimizing water–wastewater inter-plant networks in
industrial inter-plants was applied to three case studies (with single and multiple contami-
nants) and the results are discussed in the following subsections.

4.1. Results and Discussions of Case Study 1

Controlling the limiting concentration of total suspended solids (TSS) in the industrial
processes prevented them from causing plugging in the pipelines, cavitation in the pumps,
erosion in the unit operation and accumulation which decreases the heat exchange, as
shown in Julien et al. [10].

After introducing the data given for case study 1 into the LINGO program, the obtained
results of the freshwater consumption flowrate, the flowrates from sources to demands and
the flowrates from sources to waste are listed in Table 4 and shown in Figure 2.
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Table 4. Freshwater flowrates to sinks, sources flowrates to sinks and to waste for case study 1.

Stream
Flowrate

(t/h)
Stream

Flowrate
(t/h)

Stream
Flowrate

(t/h)
Stream

Flowrate
(t/h)

Fw 412.3 G4-waste 53 G10-13 8.5 G14-1 35.3
Fw5 20 G5-3 1.9 G10-14 55.8 G14-11 39.1
Fw9 182.4 G5-4 0.4 G10-15 12.4 G14-14 75.6
Fw10 35.2 G5-6 0.8 G10-17 3.5 G15-2 4
Fw11 41 G5-13 3 G10-18 1.8 G15-6 56
Fw12 71.5 G5-15 6.7 G10-19 0.7 G16-4 4.2
Fw14 22.2 G5-17 1.8 G10-waste 7 G16-6 1.2
Fw16 40 G5-18 0.6 G11-2 47.8 G16-7 3.3
G1-2 45 G5-19 0.3 G11-3 29.9 G16-13 8.5
G1-3 0.9 G5-waste 4.5 G11-4 1.5 G16-15 50
G1-6 1.5 G6-4 5.8 G11-6 22.7 G16-17 6.5
G1-7 2 G6-7 1 G11-7 7.1 G16-18 5.9
G1-17 0.4 G6-18 3.3 G11-13 12.3 G16-19 17.8

G1-waste 0.2 G6-19 4.1 G11-15 10.9 G16-20 2.5
G2-2 1.2 G6-20 3 G11-17 3.8 G17-8 0.8
G2-4 7.3 G6-waste 82.8 G11-18 1.9 G17-19 1.1
G2-13 63.6 G7-8 1.9 G11-19 0.9 G17-waste 38.1
G2-17 18 G7-20 7 G12-4 42.3 G18-4 2.3
G2-18 3.6 G7-waste 31.1 G12-6 1.3 G18-8 1.6

G2-waste 6.4 G8-waste 10 G12-8 2 G18-18 2.5
G3-3 5.3 G9-11 58.6 G12-13 8.4 G18-20 14.1
G3-4 4.8 G9-14 46.4 G12-17 6 G18-waste 29.5
G3-17 6.3 G10-1 14.7 G12-18 6.7 G19-waste 30
G3-18 2.7 G10-2 2 G12-20 2.3 G20-8 2.2
G3-19 5.3 G10-4 1.4 G12-waste 23.4 G20-19 27

G3-waste 45.6 G10-6 16.6 G13-3 42 G20-20 8.7
G4-17 1.7 G10-7 26.5 G13-13 0.7 G20-waste 22.1
G4-19 2.7 G10-10 10.4 G13-17 2 G21-8 1.4
G4-20 2.5 G10-12 21 G13-18 0.9 G21-waste 38.6

According to the mass load of sources and sinks, the distribution of water and wastew-
ater flowrates between sources and sinks is achieved. Regarding the obtained results,
source 10 feeds thirteen sinks (K1, K2, K4, K6, K7, K10, K12, K13, K14, K15, K17, K18, K19)
and waste by flowrates of 14.7, 2, 1.4, 16.6, 26.5, 10.4, 21, 8.5, 55.8, 12.4, 3.5, 1.8, 0.7 and 7 t/h,
respectively. However, source 5 feeds seven sinks (K3, K4, K6, K13, K17, K18, K19) and
waste by flowrates of 1.9, 0.4, 0.8, 3, 6.7, 1.8, 0.6, 0.3 and 4.5 t/h, respectively.

According to the low mass load of source 11, it does not supply any water to waste
and its wastewater feeds ten sinks (K2, K3, K4, K6, K7, K13, K15, K17, K18 and K19) by
flowrates of 47.8, 29.9, 1.5, 22.7, 7.1, 12.3, 10.9, 3.8, 1.9 and 0.9 t/h, respectively.

The obtained results show that the total freshwater consumption is 412.3 t/h, which is
distributed to sinks K5, K9, K10, K11, K12, K14 and K16 by flowrates of 20, 182.4, 35.2, 41,
71.5, 22.2 and 40 t/h, respectively. However, source 1 supplies K2, K3, K6, K7, K17 and the
waste by 45, 0.9, 1.5, 2, 0.4 and 0.2 t/h, respectively.

Regarding source 2, it feeds sinks K2, K4, K13, K17, K18 and waste by 1.2, 7.3, 63.6, 18,
3.6 and 6.4 t/h, respectively. Source 3 feeds five sinks (K3, K4, K17, K18, K19) and waste by
flowrates of 5.3, 4.8, 6.3, 2.7, 5.3 and 45.6 t/h, respectively. Source 4 supplies its water to
sinks K17, K19, K20 and waste by 1.7, 2.7, 2.5 and 53 t/h flowrates, respectively. Source 6
supplies the waste by 82.8 t/h and it supplies sinks K4, K7, K18, K19 and K20 by 5.8, 1, 3.3,
4.1 and 3 t/h, respectively. Source 7 is supplied to K8, K20 and waste by 1.9, 7 and 31.1 t/h,
respectively. Source 8 sends all its water to waste with a flowrate of 10 t/h while source 9
feeds two sinks only (K11 and K14) with flowrates of 58.6 and 46.4 t/h. In addition, source
12 feeds waste by 23.4 t/h and it feeds sinks K4, K6, K8, K13, K17, K18 and K20 by flowrates
of 42.3, 1.3, 2, 8.4, 6, 6.7 and 2.3 t/h, respectively.
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Figure 2. Design of water–wastewater inter-plant network of case study 1.

Source 13 is supplied to sinks K3, K13, K17 and K18 by 42, 0.7, 2 and 0.9 t/h, re-
spectively. At the same time, source 14 feeds sinks K1, K11 and K14 by 35.3, 39.1 and
75.6 t/h flowrates, respectively. Source 15 supplies k2 and k6 by 4 and 56 t/h, respectively.
Regarding source 16, it supplies sinks K4, K6, K7, K13, K15, K17, K18, K19 and K20 by
4.2, 1.2, 3.3, 8.5, 50, 6.5, 5.9, 17.8 and 2.5 t/h, respectively. Source 17 feeds sinks K8, K19
and waste by 0.8, 1.1 and 38.1 t/h, respectively. Also, source 18 feeds K4, K8, K18, K20
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and waste by 2.3, 1.6, 2.5 and 14.1 t/h, respectively. All discharge water from source 19
is sent to waste by 30 t/h, while source 20 feeds K8, K19, K20 and waste by 2.2, 27, 8.7
and 22.1 t/h. In addition, source 21 feeds only sink 8 by 1.4 t/h and the remainder of its
flowrate is supplied to waste by a flowrate of 38.6 t/h. Therefore, the total wastewater
flowrate is equal to 422 t/h.

The LINGO results were applied to the introduced Excel program and the drawing of
the water–wastewater inter-plant network was achieved automatically.

By comparing the results obtained by the proposed mathematical model with the
results of the header design method of the original plants, it is clear that the freshwa-
ter consumption decreased from 671.7 to 412.3 t/h by a reduction percentage of 38.6%.
Furthermore, the wastewater generated is reduced from 681.7 to 422 t/h by a reduction
percentage of 38.1%. These results show the effectiveness of the introduced technique in
designing water–wastewater networks by reducing the freshwater consumption as well as
by decreasing the wastewater flowrate.

4.2. Results and Discussions of Case Study 2

Increasing the concentration of chemical oxygen demand (COD) leads to an increase
in the fouling rate in the heat exchanger, a decrease in the cooling efficiency and blocking
in the inner side of the pipelines, as shown in Mariacrocetta et al. [32].

After introducing the flowrates, concentrations of sources and sinks of the two plants
to the proposed model, the results are obtained and shown in Table 5 and Figure 3. These
results are sent to the prepared Excel software to show the final drawing of the water–
wastewater inter-plant network.

Table 5. Freshwater flowrates to sinks, sources flowrates to sinks and to waste for case study 2.

Sinks
Fw

(t/h)

Sources Flowrates (t/h)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

K1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K2 44.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22.2
K3 47 20 0 0 0 0 0 25 0 0 0 0 0 8 0 0
K4 11.7 0 0 16.6 0 0 0 0 0 0 0 0 0 13.4 0 0
K5 0 0 0 0 0 2.8 0 0 2.7 0 0 0 0 0 0 4.5
K6 20 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0
K7 25 0 0 0 0 0 0 41.7 0 0 0 0 0 0 0 0
K8 0 0 0 0 0 0 0 0 0 0 0 0 10.9 0 0 4.7
K9 0 0 0 0 0 0 0 0 0 0 0 0 14.3 28.6 0 0
K10 0 0 0 0 0 1.1 0 0 1.8 0 0 0 0 0 0.7 3
K11 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K12 66.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.3
K13 31.8 0 0 0 0 0 0 0 0 0 0 0 14.8 0 0 3.4
K14 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0
K15 27.7 0 66.7 83.4 0 0 20 0 0 0 0 20 0 0 0 82.1

waste 0 0 0 0 41.7 6.1 0 0 11.1 42.9 6.7 0 0 0 39.3 166.8

The obtained results from the LINGO Software showed that all wastewater of sources
S4, S9 and S10 are sent to waste only by flowrates of 41.7, 42.9 and 6.7 t/h, respectively,
which referred to the high mass load of sources rather than sinks.

The total consumption of freshwater flowrate is 314.36 t/h and is distributed to sinks
K1, K2, K3, K4, K6, K7, K11, K12, K13 and K15 by 20, 44.4, 47, 11.7, 20, 25, 20, 66.7, 31.8 and
27.7 t/h, respectively.

The wastewater flowrate of source 1 is distributed to K3 by 20 t/h, while source
2 feeds K15 by a flowrate of 66.7 t/h. Source 3 distributed its water to K4 and K15 by
flowrates of 16.6 and 83.4 t/h, respectively. Source 5 feeds two sinks (K5 and K10) and
waste by flowrates 2.8, 1.1 and 6.1 t/h, respectively. Sources S6 and S11 feed only sink 15
by the same flowrates of 20 t/h, while source S7 feeds two sinks, K3 and K7, by 25 and
41.7 t/h, respectively.

27



Water 2023, 15, 4315

 

Figure 3. Design of water–wastewater inter-plant network of case study 2.

Source S8 supplied its wastewater to sinks K5, K10 and waste by flowrates of 2.7,
1.8, 11.1 t/h, while source S12 feeds four sinks, K8, K9, K13 and K14, by 10.9, 14.3,
14.8 and 40 t/h, respectively. Source S13 supplied sinks K3, K4 and K9 by 8, 13.4 and
28.6 t/h, respectively.
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Source 14 feeds sink 10 and waste by 0.7 and 39.3 t/h, respectively, while source S15
feeds K2, K5, K8, K10, K12, K13, K15 and waste by 22.2, 4.5, 4.7, 3, 13.3, 3.4, 82.1 and
166.8 t/h, respectively.

As shown in Table 6, in the comparison between our technique, which is formulated as
a nonlinear program (NLP), and the step-by-step optimization method (Lv et al. [22]), which
is formulated as a linear programming model, the consumption of freshwater flowrate
decreased from 330 to 314.36 t/h by a reduction percentage of 4.74%, and the wastewater
discharge decreased from 329.54 to 314.36 t/h by a reduction percentage of 4.61%. In
comparison with the optimization method (Chew et al. [3]) which is formulated by MINLP,
the freshwater consumption decreased from 314.96 to 314.36 t/h by a reduction percentage
of 0.19% and the wastewater discharge decreased from 538 to 314.6 t/h by a reduction
percentage of 41.52%.

Table 6. Comparison between the introduced method and techniques of Chew et al. [3] and
Lv et al. [22].

Integration Scheme The Introduced Method
Optimization Method

(Chew et al. [3])

Step-by-Step Optimization
Method

(Lv et al. [22])

Used Technique Nonlinear Programming
(NLP)

Mixed integer nonlinear
programming

(MINLP)

Linear Programming
(LP)

Freshwater consumption (t/h) 314.36 314.96 330

Wastewater discharge (t/h) 314.36 538 329.54

4.3. Results and Discussions of Case Study 3

The data given in the third case study consist of three plants with multiple contami-
nants (hydrocarbon, hydrogen sulfide (H2S) and total dissolved solids (TDS)). The effect of
hydrocarbon appears in the increasing of organic matter in the water which increases the
fouling rate in the pipelines of the heat exchanger, while the increase in hydrogen sulfide
increases the acidity of the water, and consequently the rate of corrosion increases. On the
other hand, the higher level of total dissolved solids results in an increase in the formation
rate of scales as well as the hardness in the pipelines of plants, as shown in Buabeng
et al. [15]. The obtained results of source flow rates to sinks and freshwater flowrates
to sinks are shown in Table 7 after introducing these plants’ data into the LINGO pro-
gram. With passing these results to the Excel software, the design of the water–wastewater
inter-plant network is achieved automatically, as shown in Figure 4.

Table 7. Freshwater flowrates to sinks, sources flowrates to sinks and to waste for case study 3.

S
o

u
rc

e
s

an
d

F
re

sh
W

a
te

r Sinks

W
a
st

e

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18

Fw 30 16 45 12.2 5 65 43.6 29.3 35 0 0 0 0 0 0 0 20.4 40.4 0
S1 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 2.4 0 0 0 0 0 0 0 0 0 0 0 0 13.6 0 0
S3 0 0 0 0 18.1 0 17.4 27.7 0 0 0 6.5 0 0 0 0 0 5.2 0
S4 0 0 0 0 0 0 0 0 0 0 0 4.3 8.8 1.9 6 0 0 0 0
S5 0 0 0 0 00 0 0 0 0 1.3 0 0 0.2 1.9 1.9 0.2 0 0 0
S6 0 0 0 6.4 5.9 0 0 0 0 0 26.7 16.7 0 0 0 0 0 9.4 0
S7 0 0 0 0 0 0 0 0 0 0 0 0 0 42.7 18.3 0 0 0 0
S8 0 0 0 0 0 0 0 0 0 19 0 0 0.2 1.9 8.2 0.2 0 0 27.5
S9 0 0 0 0 0 0 0 0 0 19.4 13.3 2.2 0 0 0 0 0 0 0
S10 0 0 0 0 0 0 0 0 0 0 0 0 0.2 1.9 1.9 0 0 0 36
S11 0 0 0 0 0 0 0 0 0 0 0 0 0.2 1.9 1.9 28.1 0 0 7.8
S12 0 0 0 0 0 0 0 0 0 0 0 0 20.2 7.8 1.9 0 0 0 0
S13 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 1.9 0 0 0 26.2
S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 0 0 0 62
S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
S16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30
S17 0 0 0 0 0 0 0 0 0 0.8 0 0 0.2 0.5 2.5 1.3 0 0 30
S18 0 0 0 0 0 0 0 0 0 0.2 0 0.2 0 1.5 3.8 0.2 0 1.1 49

29



Water 2023, 15, 4315

 

Figure 4. Design of water–wastewater inter-plant network of case study 3.

Regarding the obtained results, there was a decrease in the total consumption of
freshwater flowrate from 374.3 t/h to 342 t/h by a reduction percentage 8.64% and the
wastewater discharge decreased from 374.3 to 342 t/h by a reduction percentage 8.6%.
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The waters of sources S15 and S16 are sent to waste directly because their mass loads
are higher than the limiting mass loads of the sinks, but source 1 has a low mass load, so it
feeds sink 3 only by 30 t/h.

Source 2 feeds sinks K4 and K17 by 2.4 and 13.6 t/h, respectively, while source S3
feeds K5, K7, K8, K12, and K18 by 18.1, 17.4, 27.7, 6.5 and 5.2 t/h, respectively. Source 4
supplies its wastewater to four sinks, K12, K13, K14 and K15, by flowrates of 4.3, 8.8, 1.9
and 6 t/h, respectively.

Source 5 supplies its wastewater to five sinks, K10, K13, K14, K15, K16, and waste by
1.3, 0.2, 1.9, 1.9 and 0.2 t/h, respectively, while source 6 feeds K4, K5, K11, K12 and K18 by
6.4, 5.9, 26.7, 16.7 and 9.4 t/h, respectively. Source 7 feeds two sinks, K14 and K15, by 42.7
and 18.3 t/h, while source 8 supplies its wastewater to K10, K13, K14, K15, K16 and waste
by 19, 0.2, 1.9, 8.2, 0.2 and 27.5 t/h, respectively.

Source 9 feeds K10, K11 and K12 by flowrates of 19.4, 13.3 and 2.2 t/h, respectively,
while source 10 supplies its wastewater to K13, K14, K15 and waste by flowrates of 0.2, 1.9,
1.9 and 36 t/h, respectively. Source 11 feeds four sinks K13, K14, K15, K16 and waste by 0.2,
1.9, 1.9, 28.1 and 7.8 t/h, respectively. Source 12 supplies its wastewater to K13, K14 and
K15 by 20.2, 7.8 and 1.9 t/h, respectively.

The water of source 13 is sent to K14, K15 and waste at flowrates of 1.9, 1.9 and 26.2 t/h,
respectively, while source 14 feeds K15 and waste by 1.7 and 62 t/h, respectively. Source
17 supplies sinks K10, K13, K14, K15, K16 and waste by 0.8, 0.2, 0.5, 2.5, 1.3 and 30 t/h,
respectively while source 18 feeds K10, K12, K14, K15, K16, K18 and waste by flowrates of
0.2, 0.2, 1.5, 3.8, 0.2, 1.1 and 49 t/h, respectively.

5. Conclusions

This work is proposed to design water–wastewater inter-plant networks while min-
imizing the consumption of freshwater used in the plants’ processes. A mathematical
model is introduced to solve the equations that are formulated as a nonlinear program.
Data given of sources and sinks (flowrates and limiting concentration) are introduced to
the model and solved by the LINGO software. The obtained results are sent to the Excel
software which is responsible for designing and drawing the water–wastewater inter-plant
networks automatically. This mathematical approach has the ability to solve for a water
system that contains single contaminant or multiple contaminants, with a reach of up to six
contaminants. The proposed mathematical approach was applied to three case studies that
contain single and multiple contaminants between several plants. The obtained results of
the three case studies showed a reduction in the freshwater consumption by percentages of
38.6, 4.74 and 8.64% while the wastewater discharge decreased by percentages of 38.1, 4.61
and 8.6% for case study 1, 2 and 3, respectively. The introduced mathematical model is easy
to use and understand because it is required only to enter the flowrates and concentrations
of the sources and sinks into the LINGO software and the obtained results will be sent
directly to the Excel software which is able to generate and draw the water–wastewater
inter-plant network design automatically. This advantage makes this proposed technique
beneficial for several industrial plants in the designing of their optimum water inter-plant
networks with single and/or multiple contaminants.
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Abstract: Land Use and Land Cover (LULC) properties give vital information about pollution signa-
tures in rivers, and they help develop best management practices (BMPs) for effective water resource
management. This work employs multivariate statistical methods, receptor modeling, connectivity
analysis, and univariate trend analysis to investigate pollution sources across spatiotemporal scales
in the Manawatu River, New Zealand. A positive matrix factorization (PMF) method was applied
to interpret possible contamination sources. A 25-year dataset (1989–2014) comprising 12 water
quality variables from three sites was used. Runoff connectivity analyses identified high-producing
grassland (HG) as the most dominant pollution class in all sub-catchments. Univariate analyses
revealed that nutrients and sediments were higher than in the initial monitoring years. The PMF
analysis found possible pollutants causing impairment, which required attention from waste man-
agers. PMF also showed that point, natural, and agricultural sources significantly contributed to
pollution downstream of the river. In the midstream, the erosion, point, and agricultural sources were
significant contributing factors. Agricultural pollution and soil erosion were the main contributors to
the upstream sub-catchment area. This study suggests that BMPs with a high retention capacity are
needed in specific locations in the catchment area to filter high concentrations of pollutants generated.
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1. Introduction

Clean water is vital for many daily activities and good health [1,2]. However, with
advances in agricultural, industrial, and urban development, maintaining water quality at
preferred standards has been difficult in recent times [3–6]. The quality of water sources,
particularly surface water, is the sum of the components of the surrounding watershed, with
land-use activities identified as being responsible for the impairment of water quality [7,8].
One of the main reasons is that land use decisions are made without considering the
watershed’s assimilatory capacity [9,10]. The authors in a recent publication [11] found
that an excess influx of nutrients beyond the river’s assimilation capacity results in poor
water quality.

When water quality is adversely affected, ecosystem function is disrupted. The
consequences are eutrophication or sedimentation [12]. For example, phosphorus and
nitrogen from fertilizer in agricultural areas have been major causes of pollution, leading to
algal blooms in rivers and lakes. These impairments can reduce the aesthetic quality of the
river due to a reduction in clarity [13], and they can reduce oxygen levels when dead zones
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are created. Changes in the levels of other variables, such as dissolved oxygen, temperature,
pH, and total suspended solids, can affect ecosystem performance, especially when they
fall out of the recommended ranges. Thus, it is crucial to monitor water quality, reduce
soil erosion, and prevent runoff entering water bodies to ensure they are maintained at an
acceptable standard. The implementation of a wide range of watershed best management
practices (BMPs) has been suggested in the literature. These include waste stabilization
ponds, wetlands, animal fencing, and riparian restoration [14]. Riparian restoration has
proven to be the preferred method of policy makers, as it can be a cost-effective option
when installed in an appropriate location within a river catchment.

In the absence of riparian restoration, a consistent water quality assessment is required
to determine the state of the water bodies. This assessment will assist watershed managers
in developing optimal policies, decisions, and management practices. Water quality assess-
ments can be performed using routinely monitored stations. These stations enable relevant
authorities to gather data that can be analyzed using univariate and multivariate statistical
methods. These methods have been applied collectively to detect potential sources of
pollution and the relationships between variables in clusters. However, performing these
analyses in isolation may lead to incorrect conclusions. Several studies in the literature have
utilized these techniques to propose cause-and-effect relationships between environmental
pollution associated with groundwater [15–18] and surface water [19].

New Zealand (NZ) has been identified as a nation that experiences surface water
quality problems that are associated with intensive land use [20–22]. Certainly, New
Zealand stands as a significant global exporter of sheep products, powdered milk, and
butter. This surface water quality issue can be linked to the nation’s heightened level
of agricultural productivity [23]. This dominance in agriculture is likely to stress river
water quality, as more fertilizers are required to increase agricultural production. NZ began
consistently collecting and monitoring water quality data on a national scale in 1989 [24]. As
reported in Davies-Colley et al. [25], their National River Water Quality Network (NRWQN)
has been in operation for three decades, and it has consistently monitored water quality
variables. This robust dataset encompasses the spatial and temporal variability of water
quality. Seventy-seven sites were monitored throughout thirty-five rivers across NZ, with
each site close to a hydrometric station. Although several studies have used this dataset to
reveal water quality issues on a national scale [21,26–30], very few have used it to identify
sources of pollution on regional and catchment scales.

As water quality issues are location-dependent, they are influenced by natural pro-
cesses and anthropogenic activities in the watershed. This study applied multivariate statis-
tical analyses to determine the seasonal and spatial patterns of water quality impairments in
the Manawatu River. Additionally, this study assessed the overall state of the watershed in
terms of pollutant concentrations by apportioning sources using a receptor modeling tech-
nique. Finally, we compared our water quality findings with runoff connectivity and land
use/land cover (LULC) data to identify specific landscape connections and contributions.
This multi-dimensional analysis can be used to inform water-management strategies.

2. Materials and Methods

2.1. Study Area Physical Geography

The 5879 km2 Manawatu catchment is situated on the southern tip of the North Island
of NZ (Figure 1). Within this watershed, three NRWQN monitoring stations have been used
to collect water quality variables since 1989. The first station in the upstream section was
mainly surrounded by grassland and pasture, whereas the midstream station was adjacent
to large built-up areas. The last station was situated near the catchment outlet. Larned
et al. [27] and Abott et al. [31] reported that the Manawatu River is affected by sediment
primarily because of intensive land use on moderate to steep slopes comprising erodible
soils. The southern and eastern regions of the Manawatu catchment are mountainous
and hilly, respectively, and they are covered by natural forests and shrublands, some of
which have been converted to pastures for beef cattle, dairy, and sheep farming [14]. It is
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situated on soft sedimentary rocks that are characterized by mudstone and sandstones. The
mountains contain hard, dark grey-brown soils that produce fine deposits when eroded,
whereas the hills are characterized by tertiary-aged mudstone or sandstone [14]. Substantial
amounts of sediment from this catchment (proliferated by land clearing) are generated in
the ocean at a rate of Ca 3.74 Mt yr−1 [32].

Figure 1. Manawatu River catchment showing major river networks and sampling sites.

In accordance with Land Air Water Aotearoa [33], the Manawatu River is 235 km long.
It has several large tributaries, such as the Mangahoo, Mangatain oka, Oroua, Pohangina,
and Tiraumea rivers, which are 86, 71, 131, 71, and 69 km, respectively. The river starts in
the eastern part of NZ and gradually moves into the Tasman Sea. Land use in the Manawatu
catchment predominantly consists of agricultural activities (70%). Half of the agricultural
land is used for sheep and beef farming [33]. Within the catchment, Palmerston North,
where the WA8 sampling site is situated, had the largest urban settlement. In addition,
there are numerous other small communities within the catchment. The settlers in these
communities practice intensive agriculture and have done so for years, which suggests that
the primary consumptive use of the river within the catchment is for irrigation purposes.

2.2. Water Quality

The Manawatu catchment is located within the Manawatu–Wanganui region, which
has some distinctive topography, including the Ruahine, Tararua, and Puketoi Ranges.
These ranges exceed 1000 m in terms of elevation, but they drop to form a ridge as they
approach the Manawatu gorge. Water quality data were collected monthly by the National
Institute for Water and Atmospheric Research (NIWA) from three monitoring sites within
the Manawatu catchment for 25 consecutive years (1989–2014). These three stations com-
prised a longitudinal study, cutting across the upland river with an altitude of >150 m,
and they were assumed to be less polluted (WA7) than the lowland (lower elevation) river
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with an altitude of <150 m. These lowland rivers will likely witness higher background
concentrations as the accumulated diffuse pollution flows downstream (WA8 and WA9). A
summary of different site characteristics is presented in Table 1. More specifically, WA7
(Manawatu at Weber Road) is in the upstream section of the Manawatu catchment, with
a median temperature of 13 ◦C and a catchment area of 705 km2. WA8 (Manawatu at
Teachers College) was located at an intermediate point.

Table 1. Characteristics and location of monitoring sites in the Manawatu Catchment.

Site Code Catchment Area (km2) Site Description

WA7 705.28 Located upstream
WA8 3897.37 Major river mid-stream located in the center of Palmerston North
WA9 4222.22 Located downstream

The catchment area of WA8 encompasses 3897 km2, and it is located in the center
of Palmerston North. It has experienced significant soil erosion, which has affected the
river’s water quality owing to its low elevation, as compared with WA7. It consists of major
rivers with significant pastoral development, and it has a median temperature of 13.8 ◦C.
WA9 (Manawatu at Opiki Bridge) is located in the downstream section of the river. This
catchment has a median temperature of 14.4 ◦C, and it receives treatment for industrial and
sewage discharges.

The dataset used for this study included data collected from the inception of the water
quality monitoring program, which was established by the NRWQN between Jan 1989 and
Dec 2014, considering 12 variables (Table 2). Of the 12 parameters measured, five were mea-
sured in situ, and seven others were measured in the laboratory. The water quality variables
measured in the field were Discharge (Q), Dissolved Oxygen (DO), Water Clarity (CLAR),
turbidity (TURB), and Water Temperature (Tw). Moreover, pH, Total Phosphorus (TP),
Total Nitrogen (TN), Dissolved Reactive Phosphorus (DRP), Oxidized Nitrogen (NOx−),
Colored Dissolved Organic Matter (CDOM), and Conductivity (COND) were measured in
the laboratory [24]. Smith and McBride [24] and Davies-Colley et al. [34] provided detailed
accounts of how the water samples were collected. At the beginning of the sampling years,
and up until 2004, samples taken for laboratory testing were simultaneously collected in
2 L High-Density polyethylene (HDPE) bottles at each site. In 2005, sampling with 2 L
HDPB was replaced with a single 500 mL HDPB of the same quality, and it was produced
by the same manufacturer. Water samples were stored in an insulated bin filled with slush
ice, and they were immediately transported to a water quality center in Hamilton, New
Zealand. These samples were transported immediately to ensure that both chemical and
biological tests were conducted within 24 h, in accordance with laboratory standards.

2.3. Statistical Analysis

To determine the quality of the monitored river over time, and to measure average
changes in water quality, we grouped the dataset into 5 year periods from 1989 to 2014,
except for 1994, which was exempted for all variables due to contamination with ammo-
niacal nitrogen (NH4

+) [34]. This study used median values, rather than mean values, to
compare and monitor water quality changes; this is because the latter is sensitive to spread
and to extreme values. Median values for each 5 year period were calculated and com-
pared in order to trigger values prepared by Australia and New Zealand for water quality
assessments; these values varied between the lowlands and uplands (distinguished in
accordance with the 150 m elevation threshold) (Table 2) depending on where the sampling
stations were situated (Australian and New Zealand Environment and Conservation Coun-
cil; ANZECC [35]). These triggered values do not necessarily suggest an immediate threat,
but they are a warning sign for future risk if not curtailed. Statistical testing procedures
were performed using the SPSS package (V.23) and an R package (R Core Team, 2020),
whereas receptor modeling was performed using EPA PMF 5.0 [36]. Before statistical testing
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and modeling were conducted, missing data were excluded from the analyses. After that, a
normality test was performed using the Kolmogorov–Smirnov (K–S) test to determine the
distribution of the dataset. This normality test was crucial for identifying the appropriate
statistical test to implement the forward movement. For example, a normality test showing
a non-normal distribution is usually analyzed using non-parametric statistical methods.
In this study, the normality test showed that the dataset was not normally distributed
(p < 0.05), except for one or two parameters at some sites. Seasonal pollution patterns
were investigated for each site by stratifying the datasets into seasons to determine which
season might be an apparent contributor to river water quality compared with the overall
pollution status, especially the trigger values.

Table 2. Description of Water Quality Data Used for Analysis of the Manawatu River in NZ from
1989–2014.

Unit Abbreviation Missing Data (%)
Trigger Values

(Lowland/Upland †)

Flow rate m3/s Flow 1.4
Water Temperature ◦C Tw 0.3

Electrical conductivity μScm−1 EC -
Dissolved Oxygen g/m3 DO 1.3 6

Dissolved Oxygen (%) % DO% 1.3 98/99

pH - pH 0.2 7.2/7.3
Turbidity NTU Turb - 5.6/4.1

Total Phosphorus g/m3 TP 0.3 33/26
Total Nitrogen g/m3 TN 0.6 614/295
Visual clarity m−1 Clar - 0.8/0.6

Dissolved Reactive Phosphorus g/m3 DRP - 10/9
Ammoniacal nitrogen g/m3 NH4-N - 21/10

Nitrate g/m3 NO3-N - 444/167

Note: DO % and pH: lower limits were considered. † Lowland and Upland are distinguished by the 150-m
elevation threshold.

According to Abott et al. [31], the Manawatu Catchment has two different seasons
(summer—November to May; and winter—June to October). Summer, winter, overall,
and trigger comparison observations were conducted for both seasons to identify the
contribution of seasonality to the water quality variables measured at different sites. A two-
tailed, non-parametric Spearman’s correlation test was applied to determine the relationship
between the variables (α = 0.05 and 0.01). Spearman correlation coefficient values were
reported using the raw data because there was no change in statistical significance central
to this study. This study focused on direction and statistically, and the significant difference
developed by the variable rather than the coefficient, which was consistent when the
transformed Pearson’s correlation coefficient was used [37–40]. In addition, there were
several significant relationships at the 95% and 99% confidence intervals, although many
seemed weak. To reduce the number of relationships observed, only Spearman correlation
values of (r) > 0.75 were reported.

The positive matrix factorization (PMF) method is used on environmental datasets to
identify potential sources and to apportion possible weights in percentages of pollution pa-
rameters. This outcome was achieved by decomposing a large temporal dataset into single
quantified weights in the form of factor contributions, factor profiles, or factor fingerprints.
These factor profiles were sub-divided into concentrations of species (pollutants and their
respective percentages). The percentages of these factor profiles were then interpreted as
the pollutant prevalence at the sites under investigation. The PMF model can be expressed
in the following general form:

X = GF + E (1)
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The X matrix was decomposed into G and F matrices, where G represents the factor
contribution, and F represents the factor profiles. Matrix E is the residual error, which
should be minimized. Minimizing these errors in each variable, such that they tend toward
zero, would almost guarantee that the dataset or variable was from a normal distribution.
The PMF model generates covariance and correlation matrices to be decomposed, with
one of its strengths being the generation of non-negative factors [41]. For this study, the
dataset was cleaned to ensure no missing data. In the event of missing data, it was replaced
with the median value of a specific variable. The file that is subjected to PMF modeling is
called the concentration file. After that, an uncertainty concentration file is created. This
refers to the minimum values that a measuring device can record; below this value, no
readings can be obtained. The use of an uncertainty dataset in modeling is essential in
pollution studies and risk assessment because of the presence of unknown processes or
activities, such as experimental precision, instrumental errors, environmental instability
effects (climate nonstationarity), and seasonal variability. This phenomenon may affect the
output, as well as the corresponding decisions made when neglected, as the model results
might have been significantly underestimated. The process of mathematically handling
uncertain data files using the PMF approach has been well documented elsewhere [36].

The Uncertainty concentration is obtained, as follows:

=
√

((Error fraction × concentration)2 + (0.5 × MDL)2) (2)

where MDL is the minimum detection limit.
When performing the PMF analysis for this study, all datasets entered showed a strong

S/N ratio. This was attributed to the consistency of the data recorded, fewer missing values,
and the large dataset or sample size used for the analysis (Table 2). Despite this, some
variables were excluded from the analysis because the study focused on variables directly
involved in pollution, without including strongly correlated variables that could replace
one another. Therefore, temperature, DO, CLAR, and pH were classified as “bad weight”,
and the program neglected those variables during computation. However, a “normal”,
“bad”, “weak”, or “strong” weight was given to datasets with large, average, and minimum
missing values to alert the software program. In this study, all the variables were allocated
or described as strong by default. Regression plots showing the corresponding R-squared
values for each water quality variable were obtained.

2.4. Land Use Land Cover (LULC) Mapping

A map depicting the existing LULC in the Manawatu catchment was developed to
determine the contribution of LULC activity to water quality. Land cover specifies the
identifiable features of the land, including the presence of crops, forest plantations, or
scrub-grassland covers [11]. Identifying various LULCs is essential as it helps to provide
some insight into the sources of diffused pollution within a catchment. LULC data obtained
from the land cover database (LCDB v4.1, 2015) were used for this purpose. Thirty-five land
use classes were obtained. Moreover, they showed identical and conflicting classifications
with the land use and carbon analysis system (LUCAS) data operated by the NZ Ministry
for the Environment. Julian et al. [21] detailed these differences and reclassified the LULC
to be suitable for effectively establishing a water quality impairment relationship. This
study followed the same procedure as [21] to ensure consistency in terms of reporting in
accordance with the authors’ detailed output2.5. Landscape Connectivity Analysis

This study used an existing watershed connectivity model, developed by [42], to
connect the river to pollution source areas. This map showed that the LULC was directly
related to the river via surface runoff. This model was carefully developed following
the detailed procedure reported in [43]. The stream channels headed for the Manawatu
catchment were identified using 0.5 m rural aerial photos obtained from Land Information,
New Zealand, using two-year period data (2010–2012) as the reference point. The watershed
was then delineated from the headwaters of the catchment to establish the flow direction,
from upstream to downstream. Each 15 m pixel on the digital elevation model, with a
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greater than 5◦ slope, along the flow direction, as well as pixels adjacent to the river, were
categorized as “connected”. With the landscape connectivity map (Figure 2) developed, it
was clipped, combined, and reclassified to select catchments connected to floodplains in
the Manawatu catchment area.

 
Figure 2. Landscape connectivity map for the Manawatu River Catchment.

3. Results

3.1. Land Use Map and Analysis

From LULC mapping (Figure 3), different LULC categories were observed at the three
sites within the Manawatu catchment. Eight classes were present in the upstream area, as
follows (WA7): shrub/grassland (SG), urban (UR), non-plantation forest (NF), plantation
forest (PF), vegetated wetland (VW), high-producing grassland (HG), open water (OW),
and barren/other (BO). These categories revealed that perennial and annual croplands did
not exist upstream. The catchment of WA7 is dominated by HG (88.5%), NF (3.4%), and
PF (3%). For the intermediate site (WA8), all ten LULC categories were obtained. This
catchment is dominated by HG (74.1%), SG (14.2%), and NF (8%). The entire Manawatu
catchment (WA9; most downstream station) was dominated by HG (74.5%), SG (10.8%),
and NF (7.8%).

40



Water 2023, 15, 2939

 
Figure 3. Land Use Land Cover (LULC) map for Manawatu River Catchment.

3.2. Landscape Connectivity

Landscape connectivity analyses (Table 3) revealed that 83.6 km2 of the WA7 catchment
(or 11.9%) was directly connected to streams via surface runoff and floodplains. Another
196 km2 (27.8%) was related to streams via surface runoff, but not floodplains. That is, these
were steep hillslopes that directly contributed to the surface runoff to streams. In total, For
WA7′s catchment, 39.7% of the area was directly connected to streams via surface runoff.
Approximately 426 km2, more than half of the catchment area, is not directly connected,
and it contributes surface runoff to the Manawatu River. HG (88%) was mainly related
to a floodplain, which suggests a significant pollution source from the upstream section
of the Manawatu River. For the intermediate site (WA8), landscape connectivity results
suggest that ~2191 km2 of a total of 3897 km2 of the WA8 catchment (or 56.2%) was not
directly connected to the river (Table 3). However, 11.3% of the total area in the WA8
catchment (or 440.9 km2) was directly related to the stream via surface runoff and located in
floodplains. Moreover, 32.5% of WA8′s catchment (or 1265.3 km2) was directly connected to
a stream via surface runoff and not located in a floodplain. Of note, HG (75.3%) dominated
a substantial portion of the area connected to the floodplain, and ~64% of HG (HG area
connected and HG not connected to floodplains but connected to catchment) contributed
to the Manawatu River. Therefore, for WA8, 43.8% of the catchment area was connected to
streams via surface runoff. Regarding the downstream sub-catchment (WA9), 483.9 km2

of the catchment (or 11.5%) was directly connected to the stream via surface runoff and
were in floodplains. Another 1343.6 km2 of WA9′s catchment area (or 31.8%) was directly
connected to the stream via surface runoff, but not located in floodplains, and 2395.29 km2
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(or 56.7%) was not directly connected to either floodplains or the stream via surface runoff
(Table 3). Similarly, HG (66%) was the dominant LC in all three sub-catchments.

Table 3. (a) Reclassified watershed properties for WA7. (b) Reclassified Watershed Properties for Site
WA8. (c) Reclassified Watershed Properties for Site WA9.

Land Use/
Land Cover Category

Connected Area in
Floodplain (km2)

Connected Area Not
in Floodplain (km2)

Area Not Connected
(km2)

Total (km2)

(a)

Shrub/grassland 3.39 14.20 15.67 33.26
Urban 0.12 0.12 0.36 0.60

Non-plantation forest 2.69 10.92 10.99 24.60
Plantation forest 3.36 6.77 11.11 21.24

Vegetated wetland 0.00 0.01 0.03 0.04
High-producing grassland 73.47 163.76 386.83 624.06

Open water 0.49 0.28 0.49 1.26
Barren/other 0.05 0.08 0.09 0.22

Perennial cropland - - - -
Annual cropland - - - -

Total (km2) 83.57 196.14 425.57 705.28

(b)

Shrub/grassland 47.51 294.89 207.40 549.80
Urban 1.93 2.45 17.53 21.91

Non-plantation forest 35.27 174.98 100.38 310.63
Plantation forest 11.78 28.27 50.55 90.60

Vegetated wetland 0.1 0.18 0.58 0.86
High-producing grassland 332.21 756.14 1799.32 2887.67

Open water 6.86 3.34 4.26 14.28
Barren/other 3.75 3.77 3.19 10.71

Perennial cropland 0.07 0.07 0.31 0.45
Annual cropland 1.43 1.19 7.66 10.28

Total (km2) 440.91 1265.28 2191.18 3897.37

(c)

Shrub/grassland 52.08 319.23 225.73 597.04
Urban 5.30 5.73 39.29 50.32

Non-plantation forest 37.51 181.05 105.76 324.32
Plantation forest 14.09 35.27 60.82 110.18

Vegetated wetland 0.10 0.18 0.58 0.86
High-producing grassland 360.67 792.61 1944.12 3097.40

Open water 8.01 3.82 5.05 16.88
Barren/other 4.22 3.92 3.45 11.59

Perennial cropland 0.08 0.09 0.41 0.58
Annual cropland 1.85 1.70 10.08 13.63

Total (km2) 483.91 1343.60 2395.29 4222.22

A comparison was made with their corresponding trigger values to determine the
extent to which the water quality parameters were affected by watershed activities, as
stipulated by ANZECC [35].

3.3. Seasonality and Trends in Water Quality in the Manawatu Catchment

The TP values (Figure 4a) for WA7 recorded an increasing trend for the first 15 years
of sampling and a reduction for the last ten years during the monitoring period. However,
the values recorded during this period exceeded the trigger values of 33 g/m3, except for
the first and last five years. The lowest median value measured in the first five years of
sampling was initially lower than the trigger value, but it later increased between 2000 and
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2004. For WA8 (Figure 4a), a similar trend was observed, with a minor difference observed
in the first and last five years. The first five years had slightly higher median values than
the trigger values, whereas the values during the previous five-year period were lower
than the trigger values. This difference may be due to non-point source pollution at WA7
(upland river), which flowed into lowland rivers (WA8 and WA9), as well as the increase
in connected pasture areas connected to the floodplain in WA9, compared with WA7.
However, this was not the case for WA9. Until 2014, the TP values recorded were higher
than the trigger values (Figure 4a). The higher TP values recorded may result from the
accumulation of pollutants as they flow downstream. The seasonality comparison for all
sites revealed similar trends for WA7 and WA8 (Figure 5a). The TP values in WA7 and
WA8 were higher in winter than in summer, whereas the overall median values for both
sites were higher than those of the stipulated trigger values. For WA9, which was not the
case in summer and winter, the overall median values were higher than the trigger values
(Figure 5a).

 

Figure 4. (a–j): Water Quality patterns for 25 years, at 5-year intervals, at the three stations. The red
lines represent the ANZECC trigger values for the respective WQ variables.
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Figure 5. (a–j): Water Quality patterns for 25 years, at the three stations, in different seasons. The red
lines represent the ANZECC trigger values for the respective WQ variables.

Throughout the monitoring period, the DRP values were higher than the trigger
values for WA9, measuring 9 g/m3 (Figure 4b). Between 1989 and 1993, and 2005 and 2009,
there was a reduction in DRP; their levels were lower than the trigger values in WA7 and
WA8. These values increased in 2014 and were higher than trigger values. Seasonality
comparisons for all sites showed that seasonal values were higher than trigger values for
WA9 (Figure 5b). At the same time, the same was only observed for winter and overall
median values in WA7 and WA8. As for TN, all three sites (WA7, WA8, and WA9) (Figure 4c)
showed similar distribution patterns to the patterns mentioned above from the beginning.
The TN values recorded were above the trigger value of 295 g/m3 until 2014. Interestingly,
these values were significantly higher between 2000 and 2004. Seasonality across sites
revealed that the summer, winter, and overall TN values exceeded the trigger values for
all sites (Figure 5c). For NO3

−, the values recorded throughout all periods were higher
than the trigger values for all three sites (Figure 4d). High values above the trigger value of
167 g/m3 were measured during the winter and summer periods (Figure 5d). For NH4

+,
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all the site concentration values monitored over the 25 year period showed that the trigger
values of 10 g/m3 were exceeded to different extents (Figure 4e). More specifically, the
NH4

+ values recorded in WA9 were much higher than those at the other sites. Seasonality
values also showed similar observations, with winter, summer, and overall median values
exceeding the stipulated trigger values (Figure 5e). All sites (WA7, WA8, and WA9) had
DO values below the threshold. Throughout all seasons, the data revealed that despite
the number of pollutants entering the river, or that were already present in the river, the
DO values were significantly above the trigger values of 6 g/m3 (Figure 4f). The seasonal
comparison also corroborates this finding. The functional reaeration capacity of the river
allows for more oxygen to be re-introduced when used up, owing to the bathymetry of the
river (Figure 5f). Additionally, observation of DO% revealed that all measured values were
above the trigger values of 99% for the different sites during all study periods (Figure 4g).
The same was observed for the median values, as seasonality was also observed (Figure 5g).
The PH values were expected to be above the stipulated trigger value of 7.3. The values
recorded during the monitoring periods for the three sites revealed that the median pH
values were below the trigger values (Figure 4h). The same was observed during seasonality
comparisons, thus corroborating a significant concern regarding high pH values (Figure 5h).
For turbidity, WA8 and WA9 (Figure 4i) exhibited similar trends. Initially, the recorded
values were below the trigger values, but these values increased over time to be above the
trigger value. Nevertheless, in WA7 (Figure 4i), a slightly different pattern was observed.
Slightly elevated values were recently recorded, whereas elevated values were measured
between 1994 and 1999, and 2000 and 2004, with the highest value recorded between 2000
and 2004. Seasonality analysis revealed that the overall median and winter turbidity values
exceeded the trigger values (Figure 5i). WA7 had good overall water clarity compared
with WA8 and WA9 (Figure 4j). The water clarity values measured in WA7 exceeded the
expectations of trigger values, whereas WA8 and WA9 had poor water clarity and did not
meet expectations, except for the values measured in WA8 between 2010 and 2014. The
seasonality comparison showed that most of the exceeded values were measured during
the summer (Figure 5j), whereas the winter period had poor water quality for all three sites.

3.4. Correlation Matrix for the Different Sites

WA7, situated upstream of the Manawatu River, revealed that the flow had a strong,
positive, and significant association with nutrient pollutants (NO3

−, TN, and TP at the
1% level) (Figure 6). Turbidity had a strong but negative correlation with other physical
parameters, such as clarity and EC, at the 1% level. This relationship suggests that nutrients
are introduced into the river from the surrounding land via runoff or mass weathering,
and they are likely to remain undisturbed. Clarity showed an inverse relationship with TN,
TP, and turbidity; however, the opposite was true for EC. These relationships suggest that
a prolonged influx of pollutants into the river can obstruct river water clarity. Turbidity
showed a strong positive correlation with TP and TN.

Soil matter has been reported as a receptor for pollutants on land, and it enters the
stream network through sediments. Therefore, this study agrees with other findings that
suggest a significantly high affinity between phosphorus and sediments. In addition,
a strong positive relationship was observed between DRP and TP, as well as TN and
NO3

−, suggesting that the pairs emanate from the same non-point sources. At the same
time, with increasing temperature, DO% decreased at a rate that reflected the relationship
observed between the two. For site WA8 (Figure 7), DO% showed a positive and robust
correlation with pH and a negative correlation with turbidity and TP at the 1% significance
level. Flow showed a consistent relationship with TP, TN, EC, turbidity, and clarity, as
reported in the WA7 site. Again, clarity was inversely correlated with turbidity and TP,
but proportional to EC. DO% showed strong negative relationships with turbidity and TP
but was positively correlated with pH. The downstream site (WA9) showed several strong
statistical relationships based on the research cut-off points. Turbidity increased with flow,
whereas EC and clarity decreased under high-flow conditions (Figure 8). Similarly, the
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turbidity increase was associated with a decrease in clarity and EC, suggesting that the
elevated EC measurements are likely to be from metallic salts instead of organic pollutants.
This revealed that NH4

+and TN possibly entered the river from the same source, showing
strong positive statistically significant relationships at the 1% level.

Figure 6. Spearman’s correlation matrix for Site WA7.

3.5. Potential Pollution Sources Using the Positive Matrix Factorization Method

The PMF method was applied to interpret potential pollution sources using the EPA-
PMF 5.0 software package. The receptor modeling technique was performed in accordance
with the expected output from a combination of base model displacement, base model
bootstrapping, and base model BS-DISP methods [36]. These techniques were applied
using trial and error, usually by selecting several factors in sequence, and ensuring that
all modeling conditions were met with minimum errors occurring; the optimal R2 was set
manually. Figures 9–11 show the result from the extraction and modeling process, called
the factor profile, and it is measured as a percentage (small red boxes). Four factors were
generated for site WA7 (Figure 9), as follows: DRP (100%), NH4

+ (79.1%), and CDOM
(45.3%) in Factor 1; TN (59.3%) and NO3

− (84%) in Factor 2; turbidity (83.9%) and TP
(58.9%) in Factor 3; and DO (59.2%) and EC (73.1%) in Factor 4. For WA8 (Figure 10), Factor
1 was dominated by NH4

+ (85.6%); factor 2 selected DRP (78.8%) and CDOM (36.1%);
Factor 3 selected EC (72.7%) and DO (62.1%); Factor 4 selected NO3

− (73.5%) and TN
(48.9%); and Factor 5 selected turbidity (84.2%). Finally, six factors were extracted for WA9
(Figure 11). Factor 1 selected NH4

+ (86.6%); Factor 2 selected DO (61.4%) and CDOM
(42.4%); Factor 3 selected DRP (80.4%); Factor 4 selected turbidity (85.5%) and TP (39.4%);
Factor 5 selected NO3

− (75.4%) and TN (46.4%); and Factor 6 selected TP (32.2%).

46



Water 2023, 15, 2939

Figure 7. Spearman’s correlation matrix for Site WA8.

Figure 8. Spearman’s correlation matrix for Site WA9.
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3.6. Model Performance of PMF for Manawatu Catchment

The PMF model output showed outstanding performance in terms of modeling the
trends and explaining the variability of each variable. The R2 produced showed that except
for DO, NH4

+, and CDOM, other variables were well predicted for WA7 in the following
order: DO (0.15) < CDOM (0.45) < NH4

+ (0.62) < EC (0.76) < DRP (0.84) < turbidity
(0.96) < TP (0.98) < TN (0.98) < NO3

− (0.99). For WA8, R2 values for each variable were
as follows: DO (0.23) < aCDOM (0.54) < EC (0.84) < TP (0.94) < DRP (0.99) < NO3-N
(0.99) < NH4-N (0.99) < TN (0.98) < turbidity (0.93). For the WA9 site, the R2 values were in
the following order: CDOM (0.05) < DO (0.78) < EC (0.80) < TN (0.97) < TP (0.98) < turbidity
(0.98) < DRP (0.99) < NO3-N (0.99) < NH4-N (0.99).

Figure 9. Profile concentrations for WA7 using PMF.
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Figure 10. Profile concentrations for WA8 using PMF.
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Figure 11. Profile concentrations for WA9 using PMF.

4. Discussion

4.1. Land Connectivity and Effects on Water Quality

The rivers within the Manawatu catchment have poor water quality, with median
nutrient values above the ANZECC trigger values. For TP, all three stations had 5 year
median values above the ANZECC threshold, with the highest TP values measured at
WA9. Thus, the baseline phosphorus concentrations reveal a legacy of catchment sources
that go beyond the inputs from storm events. The rainfall plots show that periods of high
rainfall did not correspond with high TP values. Although high TP values were observed
at the three stations in 2004, the overall rainfall pattern suggests that in-channel erosion
was more likely to be the source of TP pollution. From the land-use analyses (Figure 3),
it was apparent that high-producing grasslands (66%) were the dominant land-use class.
However, connectivity analyses showed that a large amount of TP was introduced through
the watershed from upstream (WA7).

Connectivity analyses revealed a large area of high-producing grassland connected to
the floodplain. Several studies have shown that high-producing grasslands are a significant
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source of TP, among other nutrients [11,21,44]. The seasonality effect showed that TP values
were higher than the standard in both summer and winter for all three stations, except
WA9 in the summer. This also underscores that there is no direct relationship between
rainfall patterns and recorded TP. The TP values may have been continuously and gradually
introduced from sources other than those directly from the watershed. The gradual release
of TP may have been influenced by in-channel erosion or the presence of riparian buffers.
The presence of riparian buffers can limit the runoff rate and reduce the concentration of
pollutants in rivers. A similar pattern was observed for DRP, NH4

+, turbidity, TN, and
NO3

−. The observed trends suggest that these pollutants were released after a storm event.
In the rainfall graphs, spikes were observed in 1995, 2004, and 2011.

The storm events in 2004 and 2011 were similar in magnitude, but they did not release
the same number of pollutants. This pattern may be attributed to the presence of riparian
buffers, as well as scaled-back fertilizer application over time. This finding corroborates
the findings in the study by Abbott et al. [31]. They found that despite landslides occurring
in the Manawatu catchment, minimal suspended solids (SS) are transported into the river
because only a small fraction of upland LU/LC is connected. Similar increasing trends in
NH4

+, NO3
−, and TN were observed for all three sites; however, a different pattern was

observed for NH4
+. The similarity between WA7 and WA8 for NO3

− and TN suggests that
both sites received considerable NO3

− and TN pollution. However, a disproportionate
amount of NH4

+ was observed at different sites. Higher values of NH4
+ were observed in

WA9 than in the other two sites (WA7 or WA8). The reason for this is likely the presence of
urban settlements that produce substantial amounts of waste rich in NH4

+.

4.2. Water Quality Assessment

Analyses of 25 years of consistent river water quality data provided remarkable
insights into the pollution status of the Manawatu catchment. The results for all sites clearly
show that pollution varied over time and were mostly above ANZECC trigger values. High
pollution (sediment and nutrients) was observed between 2000 and 2004 at all three sites.
This was a response to a major storm and increased rainfall compared with other years.

These findings were revealed by post hoc tests of medians, which showed a statistical
difference in nutrient concentrations. The increase in nutrients has been attributed to
extreme rainfall events in the catchment between 2000 and 2004 (Figure 12). In accordance
with Dymond et al. [14], rainfall was significantly elevated in February 2004. It was
responsible for flushing a large amount of sediment and nutrients into the river, particularly
in 2004 and 2011. Records show that the lower North Island experienced a large storm,
with over 20 h of rainfall during that period. Abott et al. [31] reported that a significant
storm produced an exceptional amount of sediment, especially in the loose and hilly terrain
of the Manawatu watershed. The substantial increase in nutrients and sediments during
the 2000–2004 period proves that a large amount of the eroded soil transporting these
pollutants was deposited at that time. Consequently, these findings are corroborated with
the findings in the studies of Larned et al. [27] and Kamarinas et al. [43], as they revealed
that water quality in NZ is poor and will continue to degrade due to a cyclic influx of
nutrients that have accumulated in the soil for up to 50 years.

Turbidity, electrical conductivity, total phosphorus, and absorbance are significant
pollutants. Previous studies have shown that turbidity results from soil erosion and runoff
processes [45–48]. However, it is more likely that these pollutants originated from in-
channel sources. In the Manawatu River catchment, in-channel sources emanate from
floodplains that trap sediments and nutrients over time and release them during rainfall.
Electrical conductivity can also be a marker for the influence of mass weathering effects
on water quality [49], whereas high loadings of TP stem from fertilizer application in
intensive agricultural areas [46,50]. Finally, high loadings of CDOM represent the presence
of dissolved organic matter comprising humic substances [51]. Cruz et al. [50] reported
that TP and NO3-N entered the Siriri River in Brazil, but the sources of this pollution
were different. The correlation matrix in our study showed that TP was correlated with
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turbidity and TN, suggesting that they emanate from the same source. As established
earlier, turbidity likely originated from soil erosion. Therefore, NO3

− and TN are nutrients
deposited around the river’s soil.

 

Figure 12. Mean annual rainfall for Palmerston North in the Manawatu Catchment.

Woldeab et al. [12] reported that TN, DRP, and NO3
− were prevalent and significantly

higher in vegetated and agricultural areas. NH3-N (NH4
+) can be attributed to dissolved

livestock manure within the watershed. Therefore, because DRP is correlated with TP,
with DRP as a constituent of TP, it can serve as a possible indicator of a natural pollution
source from soil erosion. Dymond et al. [14] reported that the soil material in Manawatu is
rich in phosphorus. Table 3a shows that in WA7, large areas of high-producing grassland
(73.5 km2) are connected to the river. This makes it highly likely that agricultural pollution
enters the floodplain quickly and significantly. Similarly, Kamarinas et al. [43] revealed that
high-producing grasslands and plantation forests produce substantial sediments.

A significant increase in pollution was observed in WA8, as the proportion of plan-
tation forests and high-producing grasslands connected to WA8 increased. This finding
is supported by the study by Julian et al. [21]. They reported that the amount of NOx
leaking into most rivers in NZ has increased since 1989, despite the reduction in fertilizer
application since the early eighties, and that it is consistent with an increase in turbidity and
nutrients observed in lowland rivers [47]. The NO3

− and TN at site WA9 may be due to the
runoff of domestic sewage from nearby wastewater treatment plants and urban areas. One
of the attributes of this site is that it has a wastewater treatment plant installed to treat waste
from both industrial and domestic sources. This finding is supported by Alves et al. [52],
who reported that the presence of organic matter in water could be attributed in no small
amount to domestic sewage and industrial wastewater that could have been treated using
traditional methods. Nutrient pollution seems likely because the downstream site had a
wastewater treatment plant installed. Therefore, based on the large variability in NO3

−
and TN within this site, it is safe to suggest that NH4

+originated from aerobic pollution
caused by domestic or livestock waste. Moreover, NH4

+, DRP, and TP are attributed to the
effects of agricultural land use, specifically fertilizer application and animal waste [53].

Factor 2 showed high loadings of NO3
−, TN, and DO (Figure 9). This can be attributed

to the presence of sufficient oxygen, which can play a significant role in the oxidation of
nutrients entering the river from fertilizer application, causing degradation. Therefore,
it is not surprising to find NH4

+ in Factor 1, which could be an oxidation byproduct
of NO3

−and TN. Factor 3 selected turbidity and TP, and this factor can be related to
soil erosion. Factor 4 has been described as a physiochemical source. For WA8, high
loadings of TP and turbidity may likely be attributed to soil erosion or mass weathering,
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as represented in Factor 1 (Figure 10). Factor 3 may be classified as agricultural pollution.
Shrestha and Kazama [48] reported that nitrogen compounds were found in the Fuji River
because of the application of nitrogenous fertilizers on agricultural lands around the river.
Kazama and Yoneyama [54] reported similar findings. Factor 2 was likely a physiochemical
source because of the presence of EC and DO. Factor 4 can be described as pollution from
livestock and agricultural waste. In WA9, NH4

+ was dominant, and it was likely released
from domestic sewage (Figure 11). As reported in the literature, studies have shown that
NH4

+ can be released from several sources. These sources depend on typical land use or
anthropogenic activities associated with pollution sites. However, a high percentage of
NH4

+ can be attributed to runoff from industrial wastewater treatment plants or domestic
sewage. These findings align with the findings of Haji et al. [55], which proved that large
loadings of ammoniacal-N emanated from an industrial or domestic source.

The high presence of DRP in Factor 2 in WA9 indicates the likely presence of nutrients
from agricultural catchments. It is important to note that WA9 is a larger watershed
encompassing WA8 and WA7. WA8 and WA7 empty into WA9, with higher agricultural
practices occurring in WA7 and WA8, which could be the likely reason for the high DRP.
The high presence of TP and turbidity in Factor 3 can be attributed to mass weathering
pollution, one of the characteristics of lowland catchments. EC and DO in Factor 4 represent
physicochemical source pollution. In contrast, factors 5 and 6 represent organic and
agricultural pollution sources based on the presence of CDOM and nutrients. The results of
the watershed connectivity model supported these findings. Table 3 reveals less coverage of
plantation forests and high-producing grasslands within this watershed, which is a conduit
for transporting pollutants into the river. Julian et al. [21] reported that high-producing
grasslands increased nutrients significantly in NZ rivers, and it will likely continue to
increase from legacy nutrient stores throughout the catchment.

The observations from this study are likely to be skewed in this regard, as elevated
concentrations of nutrients (TN, NH4 -N, TP, and DRP) and sediment loads were recorded
across New Zealand. This resulted from the presence of cattle, deer, and dairy cat-
tle [25,28,56]. The findings of Julian et al. [21] further support these findings, as it has
been reported that the number of sheep stocks in the uplands, where steep slopes are
present, is higher than in the lowlands in New Zealand. As more livestock gather, inten-
sive grazing and the movement of livestock can expose the soil to erosion. Additionally,
between the early 1990s and 2012, the number of dairy cattle in NZ increased by a factor of
two, which resulted in a significant increase in the application of P and N fertilizers to meet
feed demands. When lactating dairy cows graze on pastures treated with P- and N-based
fertilizers, approximately 0.8 and 0.6 of the total amounts of P and N fertilizer used, respec-
tively, is deposited on the soil as animal waste [57]. In accordance with Ledgard [58], these
values remain underestimated because different dairy pastures are likely to incorporate
extra atmospheric N through pasture grazing, strip grazing, and cropping harvest. Pasture
grazing is predominant in NZ and has been identified as the root cause of soil catchment
exposure to erosion [21]. These findings support the findings from our study as more
nutrients, and higher sediment loads, were characteristic of sites within the Manawatu
Catchment, wherein large areas of plantation forest (PF) and high-producing grassland
(HG) were connected to the floodplain.

The broader impacts of our study will be relevant for receiving waters such as lakes
and bays. A study by Abell et al. [59] concerning 101 national lakes showed that high-
producing grasslands increased mean TP and TN concentrations. A similar study was
carried out by Özkundakci et al. [60], which revealed that high-producing grasslands
also increased nutrients in 25 national lakes. The Manawatu River drains into an open
estuary, and farther out to the South Taranaki Bight, neither of which is monitored as
comprehensively as the river. However, we do know that there are frequent warnings
following rainfall in the catchment that discourage contact recreation in the estuary due to
the water quality issues we have outlined in this article.
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5. Conclusions

This study aimed to identify pollutants and their potential sources within the Man-
awatu River catchment using multivariate statistical methods to assess the relationships
between LULC, watershed connectivity, and water quality. High-producing grassland
was interpreted to be the dominant pollution source at all sites. At the same time, greater
urban coverage in the western part of the catchment increased pollution in the downstream
section (WA9), especially for NH4

+. Connectivity analyses revealed that 73.4% of the entire
catchment was dominated by high-producing grassland, and 43.3% was directly connected
to streams via runoff. Domestic pollution sources were mostly found in the downstream
section of the Manawatu catchment. Connectivity studies also revealed the role of LULC
in water quality, as high-producing grassland areas contributed to increased pollution
at a higher rate than the other LULCs combined. Furthermore, this study revealed that
nutrients such as TP and TN showed declining trends in concentration at all three sites;
however, all median values remained above the ANZECC trigger values. NH4

+ also de-
creased significantly in WA8, but it remained elevated in WA7 and WA9. NO3

− declined to
numbers below the trigger values in lowland rivers over time, and it remained of inferior
quality in the upland sub-catchment.

The extremely low or insignificant rates at which pollutant concentrations decline
could be a cause of concern. The introduction or improvement of retention capacities in
the wetlands and riparian buffers, in location-specific areas, would be a viable solution
for the Manawatu catchment area. In general, the PMF revealed that point, natural, and
agricultural sources were responsible for the pollution in the downstream section of the
river. In the intermediate sub-catchment, soil/bank erosion and agricultural sources were
the major contributors. Agricultural pollution and soil erosion were likely responsible for
the pollution in the upstream section of the catchment. Future work within the Manawatu
River catchment should include the development of reaeration models to provide insight
into its assimilatory capacity. Risk analyses are necessary to determine the health risks
associated with using the Manawatu River in agricultural and pastoral farming. Lastly, this
study showed the need for continuous and consistent water quality monitoring to evaluate
water quality variables and the effectiveness of current wetlands or riparian buffers already
in place. Finally, effectively tracking pollution sources, to determine which portion of a
watershed should have a riparian buffer installed, remains a major challenge that water
resource managers face worldwide.

Author Contributions: All authors contributed to the study conception and design. Material prepa-
ration, data collection, spatial and statistical analysis were performed by J.P.J., P.C.E., N.D.-B., O.M.,
S.E.S., E.O.B. and D.D.A. The first draft of the manuscript was written by I.T.T. and all authors com-
mented on previous versions of the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors declare that no funds, grants, or other support were received during the
preparation of this manuscript.

Data Availability Statement: The authors have no affiliations with or involvement in any orga-
nization or entity with any financial interest or non-financial interest in the subject matter or
material discussed in this manuscript. The dataset referenced in this manuscript is available at:
https://hydrowebportal.niwa.co.nz/ accessed on 22 April 2021.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Jéquier, E.; Constant, F. Water as an Essential Nutrient: The Physiological Basis of Hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123.
[CrossRef]

2. Mandal, P.; Upadhyay, R.; Hasan, A. Seasonal and Spatial Variation of Yamuna River Water Quality in Delhi, India. Environ.
Monit. Assess. 2010, 170, 661–670. [CrossRef]

54



Water 2023, 15, 2939

3. Almeida, C.A.; Quintar, S.; González, P.; Mallea, M.A. Influence of Urbanization and Tourist Activities on the Water Quality of the
Potrero de Los Funes River (San Luis–Argentina). Environ. Monit. Assess. 2007, 133, 459–465. [CrossRef]

4. Chelsea Nagy, R.; Graeme Lockaby, B.; Kalin, L.; Anderson, C. Effects of Urbanization on Stream Hydrology and Water Quality:
The Florida Gulf Coast. Hydrol. Process. 2012, 26, 2019–2030. [CrossRef]

5. Peters, N.E. Effects of Urbanization on Stream Water Quality in the City of Atlanta, Georgia, USA. Hydrol. Process. 2009, 23,
2860–2878. [CrossRef]

6. Tenebe, I.T.; Emenike, C.P.; Daniel Chukwuka, C. Prevalence of Heavy Metals and Computation of Its Associated Risk in Surface
Water Consumed in Ado-Odo Ota, South-West Nigeria. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 882–904. [CrossRef]

7. ul Hassan, Z.; Shah, J.A.; Kanth, T.A.; Pandit, A.K. Influence of Land Use/Land Cover on the Water Chemistry of Wular Lake in
Kashmir Himalaya (India). Ecol. Process. 2015, 4, 9. [CrossRef]

8. Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the Impacts of Land Use on Water Quality: A Case Study in The
Chaohu Lake Basin. Sci. World J. 2013, 2013, e329187. [CrossRef]

9. Tenebe, I.T.; Ogbiye, A.S.; Omole, D.O.; Emenike, P.C. Estimation of Longitudinal Dispersion Co-Efficient: A Review. Cogent Eng.
2016, 3, 1216244. [CrossRef]

10. Tenebe, I.T.; Ogbiye, A.S.; Omole, D.O.; Emenike, P.C. Parametric Evaluation of the Euler-Lagrangian Approach for Tracer Studies.
Desalin. Water Treat. 2018, 109, 344–349. [CrossRef]

11. Larned, S.T.; Moores, J.; Gadd, J.; Baillie, B.; Schallenberg, M. Evidence for the Effects of Land Use on Freshwater Ecosystems in
New Zealand. N. Z. J. Mar. Freshw. Res. 2020, 54, 551–591. [CrossRef]

12. Woldeab, B.; Ambelu, A.; Mereta, S.T.; Beyene, A. Effect of Watershed Land Use on Tributaries’ Water Quality in the East African
Highland. Environ. Monit. Assess. 2018, 191, 36. [CrossRef] [PubMed]

13. Julian, J.P.; Gardner, R.H. Land Cover Effects on Runoff Patterns in Eastern Piedmont (USA) Watersheds. Hydrol. Process. 2014, 28,
1525–1538. [CrossRef]

14. Dymond, J.R.; Serezat, D.; Ausseil, A.-G.E.; Muirhead, R.W. Mapping of Escherichia Coli Sources Connected to Waterways in the
Ruamahanga Catchment, New Zealand. Environ. Sci. Technol. 2016, 50, 1897–1905. [CrossRef]

15. Taiwo, A.M. Source Identification and Apportionment of Pollution Sources to Groundwater Quality in Major Cities in Southwest,
Nigeria/Identifikacija Izvora Oneciscenja Podzemnih Voda u Vecim Gradovima Jugozapadne Nigerije. Geofizika 2012, 29, 157–175.

16. Emenike, C.P.; Tenebe, I.T.; Omole, D.O.; Ngene, B.U.; Oniemayin, B.I.; Maxwell, O.; Onoka, B.I. Accessing Safe Drinking Water in
Sub-Saharan Africa: Issues and Challenges in South–West Nigeria. Sustain. Cities Soc. 2017, 30, 263–272. [CrossRef]

17. Emenike, C.P.; Tenebe, I.T.; Jarvis, P. Fluoride Contamination in Groundwater Sources in Southwestern Nigeria: Assessment
Using Multivariate Statistical Approach and Human Health Risk. Ecotoxicol. Environ. Saf. 2018, 156, 391–402. [CrossRef]

18. Gulgundi, M.S.; Shetty, A. Identification and Apportionment of Pollution Sources to Groundwater Quality. Environ. Process. 2016,
3, 451–461. [CrossRef]

19. Chounlamany, V.; Tanchuling, M.A.; Inoue, T. Spatial and Temporal Variation of Water Quality of a Segment of Marikina River
Using Multivariate Statistical Methods. Water Sci. Technol. 2017, 76, 1510–1522. [CrossRef]

20. Bruesewitz, D.A.; Hamilton, D.P.; Schipper, L.A. Denitrification Potential in Lake Sediment Increases Across a Gradient of
Catchment Agriculture. Ecosystems 2011, 14, 341–352. [CrossRef]

21. Julian, J.P.; de Beurs, K.M.; Owsley, B.; Davies-Colley, R.J.; Ausseil, A.-G.E. River Water Quality Changes in New Zealand over 26
Years: Response to Land Use Intensity. Hydrol. Earth Syst. Sci. 2017, 21, 1149–1171. [CrossRef]

22. Schallenberg, M. Determining Reference Conditions for New Zealand Lakes. Sci. Conserv. 2019, 334, 1.
23. OECD/FAO. Aglink-Cosimo Model Documentation—A Partial Equilibrium Model of World Agricultural Markets; FAO: Rome, Italy,

2022; ISBN 978-92-5-136969-2.
24. Smith, D.G.; McBride, G.B. New Zealand’s National Water Quality Monitoring Network—Design and First Year’s Operation1.

JAWRA J. Am. Water Resour. Assoc. 1990, 26, 767–775. [CrossRef]
25. Davies-Colley, R.J.; Nagels, J.W.; Smith, R.A.; Young, R.G.; Phillips, C.J. Water Quality Impact of a Dairy Cow Herd Crossing a

Stream. N. Z. J. Mar. Freshw. Res. 2004, 38, 569–576. [CrossRef]
26. Ballantine, D.J.; Davies-Colley, R.J. Water Quality Trends in New Zealand Rivers: 1989-2009. Environ. Monit. Assess. 2014, 186,

1939–1950. [CrossRef]
27. Larned, S.; Snelder, T.; Unwin, M.; McBride, G. Water Quality in New Zealand Rivers: Current State and Trends. N. Z. J. Mar.

Freshw. Res. 2016, 50, 389–417. [CrossRef]
28. Mcdowell, R.W.; Larned, S.T.; Houlbrooke, D.J. Nitrogen and Phosphorus in New Zealand Streams and Rivers: Control and

Impact of Eutrophication and the Influence of Land Management. N. Z. J. Mar. Freshw. Res. 2009, 43, 985–995. [CrossRef]
29. Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization:

Review of Existing Methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [CrossRef]
30. Smith, D.G.; McBride, G.B.; Bryers, G.G.; Wisse, J.; Mink, D.F.J. Trends in New Zealand’s National River Water Quality Network.

N. Z. J. Mar. Freshw. Res. 1996, 30, 485–500. [CrossRef]
31. Abbott, S.; Julian, J.P.; Kamarinas, I.; Meitzen, K.M.; Fuller, I.C.; McColl, S.T.; Dymond, J.R. State-Shifting at the Edge of Resilience:

River Suspended Sediment Responses to Land Use Change and Extreme Storms. Geomorphology 2018, 305, 49–60. [CrossRef]
32. Hicks, D.M.; Shankar, U.; McKerchar, A.I.; Basher, L.; Lynn, I.; Page, M.; Jessen, M. Suspended Sediment Yields from New Zealand

Rivers. J. Hydrol. 2011, 50, 81–142.

55



Water 2023, 15, 2939

33. Land Air Water Aotearoa. Available online: https://www.lawa.org.nz/download-data/ (accessed on 14 June 2023).
34. Davies-Colley, R.J.; Smith, D.G.; Ward, R.C.; Bryers, G.G.; McBride, G.B.; Quinn, J.M.; Scarsbrook, M.R. Twenty Years of New

Zealand’s National Rivers Water Quality Network: Benefits of Careful Design and Consistent Operation1. JAWRA J. Am. Water
Resour. Assoc. 2011, 47, 750–771. [CrossRef]

35. ANZECC & ARMCANZ (2000) Guidelines. Available online: https://www.waterquality.gov.au/anz-guidelines/resources/
previous-guidelines/anzecc-armcanz-2000 (accessed on 8 June 2023).

36. US EPA. Positive Matrix Factorization 5.0 Fundamentals and User Guide. Available online: https://www.epa.gov/air-research/
epa-positive-matrix-factorization-50-fundamentals-and-user-guide (accessed on 14 June 2023).

37. Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [CrossRef]
38. Aitchison, J. Measures of Location of Compositional Data Sets. Math. Geol. 1989, 21, 787–790. [CrossRef]
39. Blake, S.; Henry, T.; Murray, J.; Flood, R.; Muller, M.R.; Jones, A.G.; Rath, V. Compositional Multivariate Statistical Analysis of

Thermal Groundwater Provenance: A Hydrogeochemical Case Study from Ireland. Appl. Geochem. 2016, 75, 171–188. [CrossRef]
40. Emenike, P.C.; Tenebe, I.; Ogarekpe, N.; Omole, D.; Nnaji, C. Probabilistic Risk Assessment and Spatial Distribution of Potentially

Toxic Elements in Groundwater Sources in Southwestern Nigeria. Sci. Rep. 2019, 9, 15920. [CrossRef]
41. Manousakas, M.; Papaefthymiou, H.; Diapouli, E.; Migliori, A.; Karydas, A.G.; Bogdanovic-Radovic, I.; Eleftheriadis, K.

Assessment of PM2.5 Sources and Their Corresponding Level of Uncertainty in a Coastal Urban Area Using EPA PMF 5.0
Enhanced Diagnostics. Sci. Total. Environ. 2017, 574, 155–164. [CrossRef] [PubMed]

42. Kamarinas, I. Geospatial Analyses of Terrestrial-Aquatic Connections Across New Zealand and Their Influence on River Water
Quality. Ph.D. Thesis, Texas State University, San Marcos, TX, USA, August 2018.

43. Kamarinas, I.; Julian, J.P.; Hughes, A.O.; Owsley, B.C.; De Beurs, K.M. Nonlinear Changes in Land Cover and Sediment Runoff in
a New Zealand Catchment Dominated by Plantation Forestry and Livestock Grazing. Water 2016, 8, 436. [CrossRef]

44. Snelder, T.H.; McDowell, R.W.; Fraser, C.E. Estimation of Catchment Nutrient Loads in New Zealand Using Monthly Water
Quality Monitoring Data. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 158–178. [CrossRef]

45. Kemker, C. Turbidity, Total Suspended Solids & Water Clarity. Available online: https://www.fondriest.com/environmental-
measurements/parameters/water-quality/turbidity-total-suspended-solids-water-clarity/ (accessed on 14 June 2023).

46. Salim, I.; Sajjad, R.U.; Paule-Mercado, M.C.; Memon, S.A.; Lee, B.-Y.; Sukhbaatar, C.; Lee, C.-H. Comparison of Two Receptor
Models PCA-MLR and PMF for Source Identification and Apportionment of Pollution Carried by Runoff from Catchment and
Sub-Watershed Areas with Mixed Land Cover in South Korea. Sci. Total Environ. 2019, 663, 764–775. [CrossRef]

47. Memon, S.; Paule, M.C.; Lee, B.-Y.; Umer, R.; Sukhbaatar, C.; Lee, C.-H. Investigation of Turbidity and Suspended Solids Behavior
in Storm Water Run-off from Different Land-Use Sites in South Korea. Desalin. Water Treat. 2015, 53, 3088–3095. [CrossRef]

48. Shrestha, S.; Kazama, F. Assessment of Surface Water Quality Using Multivariate Statistical Techniques: A Case Study of the Fuji
River Basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [CrossRef]

49. Ogwueleka, T.C. Use of Multivariate Statistical Techniques for the Evaluation of Temporal and Spatial Variations in Water Quality
of the Kaduna River, Nigeria. Environ. Monit. Assess. 2015, 187, 137. [CrossRef] [PubMed]

50. Cruz, M.A.S.; Gonçalves, A.d.A.; de Aragão, R.; de Amorim, J.R.A.; da Mota, P.V.M.; Srinivasan, V.S.; Garcia, C.A.B.; de Figueiredo,
E.E. Spatial and Seasonal Variability of the Water Quality Characteristics of a River in Northeast Brazil. Environ. Earth Sci. 2019,
78, 68. [CrossRef]

51. Reynolds, D.M. The Differentiation of Biodegradable and Non-Biodegradable Dissolved Organic Matter in Wastewaters Using
Fluorescence Spectroscopy. J. Chem. Technol. Biotechnol. 2002, 77, 965–972. [CrossRef]

52. Alves, D.D.; Riegel, R.P.; de Quevedo, D.M.; Osório, D.M.M.; da Costa, G.M.; do Nascimento, C.A.; Telöken, F. Seasonal
Assessment and Apportionment of Surface Water Pollution Using Multivariate Statistical Methods: Sinos River, Southern Brazil.
Environ. Monit. Assess. 2018, 190, 384. [CrossRef]

53. Dils, R.M.; Heathwaite, A.L. The Controversial Role of Tile Drainage in Phosphorus Export from Agricultural Land. Water Sci.
Technol. 1999, 39, 55–61. [CrossRef]

54. Kazama, F.; Yoneyama, M. Nitrogen Generation in the Yamanashi Prefecture and Its Effects on the Groundwater Pollution.
Environ. Sci. 2002, 15, 293–298. [CrossRef]

55. Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water Quality Assessment and Apportionment of Pollution Sources Using
APCS-MLR and PMF Receptor Modeling Techniques in Three Major Rivers of South Florida. Sci. Total Environ. 2016, 566–567,
1552–1567. [CrossRef]

56. Buck, O.; Niyogi, D.K.; Townsend, C.R. Scale-Dependence of Land Use Effects on Water Quality of Streams in Agricultural
Catchments. Environ. Pollut. 2004, 130, 287–299. [CrossRef]

57. Monaghan, R.M.; Hedley, M.J.; Di, H.J.; McDowell, R.W.; Cameron, K.C.; Ledgard, S.F. Nutrient Management in New Zealand
Pastures—Recent Developments and Future Issues. N. Z. J. Agric. Res. 2007, 50, 181–201. [CrossRef]

58. Ledgard, S.F. Nitrogen Cycling in Low Input Legume-Based Agriculture, with Emphasis on Legume/Grass Pastures. Plant Soil
2001, 228, 43–59. [CrossRef]

56



Water 2023, 15, 2939

59. Abell, J.M.; Özkundakci, D.; Hamilton, D.P. Nitrogen and Phosphorus Limitation of Phytoplankton Growth in New Zealand
Lakes: Implications for Eutrophication Control. Ecosystems 2010, 13, 966–977. [CrossRef]

60. Özkundakci, D.; Hamilton, D.P.; Kelly, D.; Schallenberg, M.; de Winton, M.; Verburg, P.; Trolle, D. Ecological Integrity of Deep
Lakes in New Zealand across Anthropogenic Pressure Gradients. Ecol. Indic. 2014, 37, 45–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

57



Citation: Zhang, M.; Sun, Y.; Xun, B.;

Liu, B. Analysis of the Spatial

Distribution Characteristics of

Emerging Pollutants in China. Water

2023, 15, 3782. https://doi.org/

10.3390/w15213782

Academic Editor: Imokhai

Theophilus Tenebe

Received: 25 September 2023

Revised: 20 October 2023

Accepted: 24 October 2023

Published: 29 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Analysis of the Spatial Distribution Characteristics of Emerging
Pollutants in China

Man Zhang 1,2, Yong Sun 3, Bin Xun 1,2,* and Baoyin Liu 4,*

1 College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China;
202121533@stumail.nwu.edu.cn

2 Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China
3 School of Public Administration, Guangzhou University, Guangzhou 510006, China; sunyong@gzhu.edu.cn
4 Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: xunbin@nwu.edu.cn (B.X.); liubaoyin@casisd.cn (B.L.)

Abstract: Pollutant types are increasing along with the rapid development of society and econ-
omy. Some emerging pollutants from chemicals have begun to appear and endanger public and
ecosystem health. However, the research and development of emerging pollutant monitoring tech-
nology is still in its infancy, with no complete monitoring system in place. This makes it impossible
to access and identify the spatial pattern of emerging pollutants. Therefore, this paper reviews
the existing quantitative research results on four common emerging pollutants in China’s water
environment—namely, endocrine disruptors, brominated flame retardants, perfluorinated com-
pounds, and microplastics—extracts the quantitative monitoring results of emerging pollutants in
the case studies, and outlines the spatial distribution characteristics of emerging pollutants in the
water environment. The results show that the emerging pollutants have a large distribution area
that has covered most of China. The level of pollution from emerging pollutants correlates with the
level of economic development and the pollution level in economically developed regions such as the
Yangtze River Delta, the Pearl River Delta, and the Beijing–Tianjin–Hebei region is significantly higher
than in other regions. This study provides a reference for the prevention and control of emerging
pollutants in China.

Keywords: emerging pollutants; spatial distribution; endocrine disruptors; brominated flame
retardants; perfluorinated compounds; microplastics

1. Introduction

In recent years, with the improvement of living standards, people have paid increasing
attention to the quality of the ecological environment. Currently, a relatively compre-
hensive water quality monitoring system has been established for traditional pollutants
such as nutrients [1] (nitrogen, phosphorus, etc.), organics [2] (xylene, PCBs, etc.), and
heavy metals [3] (mercury, nickel, etc.). However, some emerging pollutants have surfaced
and made certain impacts on the ecological environment and human health [4–8]. Some
research found that emerging pollutants such as endocrine disruptors (EDCs), perfluori-
nated compounds (PFCs), brominated flame retardants (BFRs), and microplastics (MPs) are
widely distributed in water bodies and have significant impacts on ecosystems and human
health [9–13]. For example, the frequently detected EDCs in the environment and human
samples, such as organophosphates (OPEs), can disrupt thyroid hormone levels and liver
receptors in the human body, causing thyroid disruption and DNA damage, and affecting
liver metabolism [14,15]. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid
(PFOA), which are widely present in tap water and surface water, can induce oxidative
stress and acute toxicity in human macrophages and zebrafish embryos [16,17]. BFRs are
present in almost all chemical products, and tetrabromobisphenol A (TBBPA) is one of the
most common types. It can cause hemolysis in human red blood cells and mitochondrial
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oxidative phosphorylation in rats. It also reduces the survival rate of young fish [18,19].
Microplastics are distributed throughout the entire aquatic ecosystem and can be ingested
by various animals and plants. They can be toxic to human lung cells, liver cells, and brain
cells, as well as cause damage to plant root systems, affecting their ability to absorb water
and nutrients [20,21]. Studies have shown that these emerging pollutants may disrupt the
normal functioning of the human endocrine system, leading to reproductive issues, neuro-
logical problems, immune system disorders, metabolic issues, and cancers [22–24]. They
also have the potential to cause damage to the environmental ecosystem and can negatively
impact the stability and diversity of aquatic and terrestrial organisms, as well as disrupt
food chains, ecological balance, and biodiversity [25,26]. Additionally, emerging pollutants
are characterized by their persistence and bioaccumulation. They are difficult to degrade
in the environment and can accumulate within living organisms, and this accumulation
can lead to a gradual increase in concentration within the food chain and ultimately enter
the human body [27–29]. Therefore, it is crucial to conduct comprehensive monitoring for
emerging pollutants.

Research has been conducted on the monitoring remediation of emerging pollutants in
small-scale areas due to their impact on the ecological environment and human health. For
instance, the bioaccumulation of specific emerging pollutants has been monitored through
the collection of samples from animals, plants, and human tissues using biomonitoring
techniques [30]. Biological indicators such as mussels and fish have also been used for
monitoring the concentration of emerging pollutants in field and laboratory settings [31].
In addition to monitoring, there have been initial studies on the remediation of emerging
pollutants in water bodies. Nanobiochar [32,33] and bioelectrochemical systems [34] are
among the methods used for the removal of emerging pollutants from water. However,
there are concerns regarding the accumulation of pollutants within the biochar and the
potential re-release of these pollutants into the water [35]. Additionally, bioelectrochemical
systems have complex operation requirements. As a result, the methods and technologies
for the remediation of emerging pollutants are not yet perfect. The existing monitoring
and remediation measures have been implemented only in small-scale areas, providing
valuable data for these specific regions [36–39]. However, the lack of quantitative moni-
toring techniques hinders the large-scale implementation of these methods [25,26]. The
incomplete development of technology for establishing a comprehensive water quality
monitoring system for emerging pollutants has also limited the availability of widespread
monitoring data [40–43]. The complexity of geographical environments further hampers
the extrapolation of small-scale data to larger areas, preventing the comprehensive map-
ping of emerging pollutant distribution. Therefore, this study aims to extract and analyze
China’s regional concentration monitoring data based on the literature to obtain spatial
distribution patterns of emerging pollutants in the area.

China is currently facing a serious pollution problem of emerging contaminants in
its water environment. These pollutants mainly come from industrial emissions [28],
agricultural activities [29], atmospheric deposition, and other sources, posing a significant
threat to the environment and human health [44,45]. In 2021, Fan et al. [46] conducted
quantitative monitoring of several highly concerned EDCs in water bodies in Jiangsu
Province and found that the average concentration of these endocrine disruptors was
higher than 300 ng/L. In 2013, Wang et al. [47] quantitatively monitored the concentration
of PFCs in the surface water of the Han River in Wuhan, and the study showed that the
maximum concentration of total PFCs was 568 ng/L. In 2021, Xia et al. [48] conducted
quantitative monitoring of MPs in the surface water of Sangou Bay, China and found
that the average concentration of MPs was 20.06 item/L. Although there has been some
progress in quantitative monitoring of emerging contaminants at a small scale, there is
a lack of monitoring data at a large scale. This makes it difficult to accurately assess
the distribution characteristics and the extent of the impact of emerging contaminants in
China, thereby causing a challenge in formulating effective pollution control strategies. It is
essential to obtain large-scale information on emerging pollutants in China. Therefore, this
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paper chooses the Chinese region as the research area, systematically reviews the relevant
literature on emerging pollutants in China in the past decade, extracts the quantitative
monitoring results of pollutants in the case study area, and constructs a spatial distribution
map of emerging pollutants in Chinese water bodies. This spatial distribution map can
help decision makers understand the distribution of emerging pollutants and provide a
scientific basis for formulating pollution control measures.

2. Definition and Characterization of Emerging Pollutants

2.1. Definition of Emerging Pollutants

The definition of emerging pollutants is not yet clear. Different scholars have elabo-
rated on the definition of emerging pollutants from different perspectives (Table 1). The
initial definition of emerging pollutants only applied to newly emerging substances that
cause environmental problems [49–51]. Later, it gradually extended from substances caus-
ing environmental problems to substances with potential environmental risks [49–52]. As
more is known about emerging pollutants, people are realizing that not only emerging
substances, but also substances that have previously existed but have recently posed envi-
ronmental risks, and substances that have not yet been regulated by laws and standards
can also be considered as emerging pollutants [49–55].

Table 1. Definition of emerging pollutants.

Year Author The Definition of Emerging Pollutants

2006 Field [51]

Emerging pollutants refer to those caused by human activities which are currently known to
exist but are not yet regulated or inadequately regulated by laws and standards, and pose a
threat to living and ecological environments. These pollutants are produced in all aspects of
production, construction, or other activities.

2008 Farre [49]
Newly emerged pollutants are defined as compounds currently not covered by existing water
quality regulations, previously unstudied, and considered to be potential threats to
environmental ecosystems as well as human health and safety.

2010 Houtman [50]

The first category consists of compounds newly introduced into the environment, such as
industrial compounds that have only recently been developed; the second category of
compounds may have been present for a long time but have only recently been detected in
the environment; the third category of emerging pollutants consists of compounds that may
have been known for a long time but have only recently been considered potentially harmful
to ecosystems or humans.

2011 Bell [56]
The term “emerging pollutants” mainly refers to pollutants for which there are currently no
regulations requiring monitoring or public reporting of their presence in our country’s water
supply or wastewater discharge.

2011 Deblonde [52] Emerging pollutants refer to new products or chemicals without regulatory status, of which
the impact on the environment and human health is unknown.

2012 Thomaidis [57] The term “emerging pollutants” refers to substances released into the environment for which
there are currently no regulations in place for their environmental monitoring.

2014 Sauve [54]
Naturally occurring, manufactured, or artificially created chemicals or materials that are now
found or suspected to be present in various environmental compartments, the toxicity or
persistence of which is likely to significantly alter the metabolism of organisms.

2015 Geissen [55]
Emerging pollutants (EPs) are defined as synthetic or naturally occurring chemicals that are
not commonly monitored in the environment but have the potential to enter the environment
and cause known or suspected adverse ecological and/or human health effects.

2021 Li [53]
Newly discovered or focused pollutants that pose a threat to the ecological environment or
human health which have not yet been included in management or the existing management
measures are insufficient to effectively prevent and control their risks.

Based on the above understanding of emerging pollutants, we can summarize the
definition of emerging pollutants as pollutants produced in production, construction, or
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other activities that are caused by human activities which clearly exist but have not been
regulated or are poorly regulated by laws and regulations and are harmful or potentially
harmful to the living environment or the ecological environment.

2.2. Characteristics of Emerging Pollutants

Compared to traditional pollutants such as sulfur dioxide and nitrogen oxides, most
of the emerging pollutants are more persistent, accumulative, and migratory. They can
persist in the environment and are far more difficult to manage than traditional pollutants.
The characteristics are specifically manifested as follows: (1) The chemical properties
are very stable and not easy to degrade. For example, perfluorinated compounds refer
to hydrocarbon compounds and their derivatives which are formed after all hydrogen
atoms are replaced by fluorine atoms. Since fluorine is the most electronegative element, it
makes the carbon–fluorine bond highly polar; therefore, perfluorinated compounds have
chemical stability, surface activity, excellent temperature resistance, and so on [58–60], and
are not easily decomposed in the environment. (2) The sources of emerging pollutants are
widespread, as their superior chemical properties are used in all aspects of life. For example,
brominated flame retardants, with their low cost, low addition amount, and good flame
retardant performance, are widely used in products such as electrical appliances, textiles,
automobiles, and building materials [61–63]. (3) Emerging pollutants are widely distributed.
First, they are versatile. Due to the large demand in life, various new pollutants are used
in various industries and products. For example, endocrine disruptors are widely used in
the production of personal care products, detergents, thermal paper, and plastics [64,65].
Second, the distribution area is wide. Due to their strong migratory nature, they are found
all over the world. For example, González-Pleiter [66] detected the presence of microplastics
in freshwater in the Antarctic protected area. Third, they have a wide presence in various
carriers. Emerging pollutants have been detected in various carriers such as air, water, and
soil [67–69]. (4) Emerging pollutants possess various types of biological toxicity, including
organ toxicity, neurotoxicity, and reproductive and developmental toxicity. They also have
a certain degree of accumulation in organisms, posing certain harm or potential harm
to the ecological environment or human health [70–73]. (5) Emerging pollutants have a
certain incubation period, with pollution being lagging and remediation being long-term.
Since pollutants need to accumulate to a certain concentration to cause environmental
changes [74,75], the detection of pollution takes a certain amount of time. Moreover, the
current imperfection of monitoring technology for new pollutants is more likely to cause
lagging pollution.

Based on the definition and pollution characteristics of emerging pollutants, we se-
lect microplastics (MPs), brominated flame retardants (BFRs), perfluorinated compounds
(PFCs), and endocrine disrupting chemicals (EDCs) as the most common emerging pollu-
tants. On the basis of the literature review, the spatial distribution characteristics of these
four emerging pollutants in China were studied.

3. Methodology

3.1. Literature Situation

We searched for keywords such as “emerging pollutants”, “endocrine disruptors”,
“perfluorinated compounds”, “brominated flame retardants”, “microplastics”, “MPs”,
“EDCs”, “PFCs”, “BFRs”, etc., and retrieved a total of 3158 related articles. As can be seen
from Figure 1, from 2000 to 2022, the total number of articles on the study of emerging
pollutants shows an upward trend; in particular, after 2010, the number of articles has risen
sharply. This is mainly because around 2010, the harm of emerging pollutants to the public
and the environment became increasingly obvious, and the academic community has paid
more attention to the research of emerging pollutants since [52,53]. Although the number of
quantitative literature is also increasing, there are less than 300 articles on the quantitative
analysis of pollution. This reflects the underdeveloped monitoring technology of emerging
pollutants in the world, which still needs to be improved.
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Figure 1. Annual number of articles on emerging pollutants.

3.2. Method of Extracting Pollutant Concentration Data

Due to the numerous carriers of emerging pollutants, e.g., plants, water bodies, at-
mosphere, sediments, etc., and the different measurement units used for different carriers
(e.g., the concentration of EDCs in water bodies is usually expressed in ng/L, while in
sediments, it is ng/Kg), it is difficult to convert the concentration values of pollutants
between different carriers. Therefore, this study focuses on selecting the literature which
studies water bodies and extracts the concentration values of pollutants between different
water bodies. There are four methods for sampling and extracting the concentration of
emerging pollutants from monitored water bodies, namely, surface water sampling [76,77],
solid-phase extraction (SPE) sampling [78–80], vertical profiling sampling [81], and au-
tomatic water quality monitoring systems [82]. Although these different methods can
monitor the concentration of emerging pollutants in water, the operational differences
among these methods theoretically result in minimal variations in the obtained results.
Therefore, in this study, we will not provide specific evaluations of these methods and only
extract the final measured concentration values as the research results. Additionally, due
to the existence of different pollution concentration values derived from the same water
body in different literature, this study adheres to the following principles when extracting
pollution concentration values. (1) Emerging pollutants are divided into four categories for
extraction: EDCs, BFRs, PFCs, and MPs. These four categories all contain subcategories. If
there are inconsistent values in the subcategories, the value with the greatest concentration
in the subcategories is selected as the extraction result of this category. For example, Gong
et al. [83] detected in 2011 that the concentration ranges of five types of EDCs in the Pearl
River Delta rivers, namely OP (Octylphenol), NP (Nonylphenol), BPA (Bisphenol A), E1
(Estrone), and E2 (17a-ethynylestradiol), were 1.6–577 ng/L, 0.28–14.9 ng/L, 87–639 ng/L,
1.5–11.5 ng/L, and 1.1–1.7 ng/L, respectively. The maximum pollution concentration value
of BPA (Bisphenol A) (87–639 ng/L) was selected as the pollution concentration of EDCs
in the Pearl River Delta rivers. (2) If there are multiple quantitative monitoring results for
the same body of water, the most recent monitoring result is extracted. For example, both
Gang et al. [84] in 2016 and Guo et al. [85] in 2011 monitored the pollution concentration of
PFCs in Tai Lake. This study chose the more recent pollution concentration data in 2016 as
the extraction result. (3) If the years are also the same, then the larger concentration value
is selected as the extraction result.

4. Result

4.1. The Characteristics of EDCs Distribution

From the distribution map of EDCs pollution concentration in the water body, it can be
found that the concentration of EDCs pollution decreases from southeast to northwest. The
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distribution of quantitative monitoring results is most intensive in the southeast coastal area,
while there are no quantitative monitoring results in the western region (Figure 2). However,
on the whole, EDCs are widely distributed in China, such as Inner Mongolia, which is vast
and sparsely populated, but a certain concentration of EDCs was also detected [86]. The
Yangtze River is the longest river in China with a vast drainage area, which may lead to
the accumulation of EDCs in the water, resulting in the highest detected concentration of
EDCs is found in the Yangtze River region, reaching 144,000 ng/L [87]. There is a certain
correlation between the level of economic development and the concentration of emerging
pollutants. To some extent, the higher the level of economic development, the higher
the concentration of pollutants detected. The Yangtze River Delta and the Pearl River
Delta are economically developed regions in China, with abundant water resources and
dense river networks. In terms of industrial level, these areas have large-scale industrial
enterprises, petrochemical plants, and manufacturing clusters, involving sectors such as
electronics, chemicals, textiles, machinery, etc., which produce a large amount of chemical
products, petroleum products, and electricity. The high industrial level also brings about
serious water pollution issues. Therefore, in China’s eastern coastal areas such as the
Yangtze River Delta and southern coastal areas such as the Pearl River Delta, the economy
is developed, monitoring points are densely distributed, and the concentration values are
at a higher level.

Figure 2. Distribution of Endocrine Disruptors in China based on Literature Research.

4.2. The Characteristics of BFRs Distribution

At present, there are few quantitative monitoring studies on the distribution of BFRs
in waterbodies. The sites in Figure 3 are sparse and dispersed. These sites are mainly
distributed in the eastern region, especially in the Bohai Bay area, and the pollution con-
centration is high. In the western, northern, and central regions of China, quantitative
monitoring of BFRs has been limited. The Bohai Bay region is an important economic area
in Northeast China, with a high level of industrial development. It is home to numerous
industrial parks, ports, and cities, covering industries such as petrochemicals, steel, energy,
and equipment manufacturing. Located between the Bohai Sea and the Yellow Sea, the
region is a convergence of ocean and rivers, with major rivers like the Yellow River and the
Liao River running through it. The developed water system is conducive to transportation
industries such as water transport and shipping, as well as the manufacturing of automo-
biles and vessels. However, the dense water network also contributes to the accumulation
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of pollutants, resulting in relatively high concentrations of BFRs detected in this region.
The difference between the maximum and minimum concentration values of BFRs is large.
The highest pollution concentration point is located in the Taihu Basin, with a concentration
value of 2934.2 ng/L [88]. The point with the lowest pollution concentration is located in
Dalian city, with a concentration value of 1.08 ng/L [89].

Figure 3. Distribution of Brominated Flame Retardants in China based on Literature Research.

4.3. The Characteristics of PFCs Distribution

The monitoring and research on PFCs are primarily focused on China’s eastern,
northeastern, southeastern, and southern coastal regions, while quantitative monitoring
research on PFCs in the overall western regions is relatively limited. In comparison to the
western regions, the eastern regions of China generally have a higher level of industrial
development, with numerous industrial parks, important industrial cities, and a developed
manufacturing industry. The eastern regions are also economically developed areas, with
abundant water resources, larger water flow, and denser water networks. As a result, the
distribution density of monitoring sites gradually decreases from the eastern coastal areas
to the western inland areas (Figure 4). PFCs are widely distributed, and even in Tibet, PFCs
have been found at the level of 0.322 ng/L [90]. In addition, PFCs have also been found
in the Ulansuhai Nur [91] and Hohhot City [92] in Inner Mongolia, with concentrations
of 263.45 ng/L and 1.8 ng/L, respectively. The pollution levels of PFCs are mostly at
the intermediate level, with fewer areas at the maximum level. The areas with dense
quantitative monitoring of PFCs are mainly concentrated in the Pearl River Delta, Yangtze
River Delta, Dalian Bay, and Bohai Bay in China. These areas are located in the coastal and
inland interchange zone, where the industry is developed, and emerging pollutants such
as PFCs are easily generated.
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Figure 4. Distribution of Perfluorinated Compounds in China based on Literature Research.

4.4. The Characteristics of MPs Distribution

Of the four emerging pollutants, MPs are the most monitored. MPs are widely dis-
tributed in China, and quantitative monitoring studies of MPs have been conducted in
remote areas such as Qinghai–Tibet Plateau [93] and Xinjiang [94] regions. The areas with
the most intensive quantitative monitoring of MPs are located in the eastern, southern, and
central parts of China, which are also the areas with the highest monitoring concentration
levels (Figure 5). The eastern, central, and southern regions of China have numerous rivers,
lakes, and reservoirs forming a complex water network system. They also have large water
bodies such as the East China Sea, South China Sea, and Taihu Lake, which are of great sig-
nificance for regional economic development and water resource utilization. These regions
are economically developed areas with a high level of industrialization. They are major
manufacturing clusters, with many industrial parks and important industrial cities involved
in various industries including manufacturing, petrochemicals, electronics, and automotive
manufacturing. These areas have a large number of manufacturing enterprises and supply
chains, playing a vital role in China’s economic development. Due to intense industrial
activities and urbanization, high concentrations of microplastics (MPs) in water bodies
have led to water quality deterioration. This is mainly caused by industrial wastewater,
agricultural non-point source pollution, and urban domestic sewage. There is little quanti-
tative monitoring research on MPs in the northeastern region of China. The dense areas of
MPs distribution include the Pearl River Delta, Yangtze River Delta, Beijing–Tianjin–Hebei
region, and other areas with dense populations and advanced industries. These areas are
also located in the downstream areas, where MPs gradually accumulate during river flow
and accumulate to the maximum concentration at the estuary. This shows that the concen-
tration of emerging pollutants is closely related to the level of local economic development,
natural geographical conditions, and geographical location. The abundance of MPs in the
Yellow River in China is the highest, with 930,000 items/m3 [95], while that in Qinghai
Lake is the smallest, with 0.031 items/m3 [96].
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Figure 5. Distribution of Microplastics in China based on Literature Research.

4.5. Overall Characteristics

In this study, 225 points with quantitative monitoring results were extracted by refer-
ring to the relevant literature (Supplementary Materials Tables S1–S4) [47,84,86,87,89–295].
The points of the four types of emerging pollutants are mainly concentrated in economically
developed areas such as the Yangtze River Delta, the Pearl River Delta, and Beijing–Tianjin–
Hebei region. These regions are highly developed in industrialization and urbanization,
serving as important manufacturing centers in China, with strong industrial agglomeration
effects. They have a large-scale economy and a complete industrial chain. In terms of
geographical location, they are all located in river basins or estuarine areas, with abundant
water resources. However, with the acceleration of industrial and urbanization processes,
these regions are also facing challenges of water resources supply–demand imbalance and
water pollution issues. Therefore, these areas have a variety of emerging pollutants with
high pollution concentrations. From a national perspective, the quantity and concentration
of various emerging pollutants are increasing from west to east, and there are more types
of emerging pollutants in coastal areas and their concentration is higher than that in central
and western regions. In recent decades, China has vigorously built urban agglomera-
tions and accelerated industrial clusters. In particular, the economic scale of coastal cities
continues to expand, and the emission of emerging pollutants is also rising. In addition,
emerging pollutants are prone to accumulate in the process of river flow. The eastern
region is located at the mouth of the river, so the concentration of emerging pollutants
accumulates to the highest value here. The presence of emerging pollutants has also been
detected in the relatively economically backward regions of Xinjiang and Tibet. Although
the current pollutants in the two regions are single and the pollution concentration is low,
it also reflects, to a certain extent, the widespread problem of the distribution of emerging
pollutants in China.

5. Conclusions and Discussion

5.1. Emerging Pollutants Are Widely Distributed in China

The distribution of emerging pollutants basically covers most areas of China. Relevant
research results show that emerging pollutants exist in all regions of China, except parts
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of the northwest. Compared to traditional pollutants such as sulfur dioxide and nitrogen
oxides, most emerging pollutants are more persistent, accumulative, and migratory. They
can be adsorbed on suspended particles in the air or water and migrate long distances
to reach remote polar regions. The detection of EDCs in Xinjiang and Tibet proves this
point. Therefore, it can be inferred that emerging pollutants are distributed in most areas
of China. The lack of research in the northwest is more due to the sparse distribution of
rivers, relatively small population, and thus fewer researchers choosing this area as their
research area.

5.2. The Distribution of Emerging Pollutants Has a Certain Correlation with the Level of
Economic Development

The analyzed results indicate that the key pollution areas of emerging pollutants are
mainly concentrated in economically developed regions such as the Yangtze River Delta,
Pearl River Delta, and Beijing–Tianjin–Hebei region. Due to the production and use of
various chemicals, a large amount of emerging pollutants is generated. The quantity and
types of chemicals produced and used in economically developed areas are significantly
higher than in other areas. In the absence of a comprehensive chemical management system
and classification registration system, the extensive use of chemicals by enterprises and the
public has led to relatively high levels of emerging pollutants.

5.3. The Concentration of Emerging Pollutants in China Is Relatively High

The average values of emerging pollutants extracted from the 225 points studied
are as follows: EDCs 5044.16 ng/L, BFRs 828.43 ng/L, PFCs 669.69 ng/L, and MPs
44,145.57 item/m3. These values are significantly higher than the pollution levels in other
countries. As researchers tend to choose areas with severe pollution as case studies, these
average values are significantly higher than the current average levels of emerging pol-
lutants in China. However, these data are sufficient to prove that the pollution levels in
China’s key pollution areas are relatively high. Although there is little qualitative mon-
itoring research on emerging pollutants in some areas of China, such as Xinjiang, the
monitoring concentration of new pollutants in Xinjiang is also at a high level. In the eastern
regions of China, the quantitative monitoring concentrations of emerging pollutants such
as MPs, PFCs, and EDCs are all at high levels. In addition, the quantitative monitoring
concentration of MPs in the eastern regions of China is at the highest level in the world
among existing studies. Therefore, the concentration of emerging pollutants in China is
relatively high.

5.4. The Geographical Distribution of Emerging Pollutants Is Quite Distinct

The density and concentration of emerging pollutants in China decrease from the
southeast coastal areas to the northwest inland areas of China. Since the level of economic
development in China also decreases from the southeast coast to the northwest inland, and
the economic level is related to the scale of industrial development, there is a correlation
between the distribution of new pollutants and the level of economic development in China.
As a result, the higher the level of economic development in the region, the more dense the
distribution of new pollutants and the greater the concentration.

5.5. Discussion

First, we inferred the basic spatial distribution pattern of emerging pollutants in
China based on the literature data. After understanding the spatial distribution pattern
of emerging pollutants in China, government departments can develop region-specific
measures. For high-pollution areas, the government can implement measures such as
restricting industrial emissions, strengthening law enforcement, and promoting clean
production in high-polluting enterprises. For low-pollution areas, efforts can be focused on
enhancing environmental monitoring and protection and encouraging the development of
green industries. As the spread of emerging pollutants often transcends the boundaries
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of a single region, cross-regional cooperation is needed. The government can work with
neighboring regions, relevant departments, and international organizations to formulate
cross-regional measures to deal with pollution, and share data, technology, and experience
so as to comprehensively solve the problem of pollution by emerging pollutants. The
government should also establish relevant laws, regulations, and policies to support the
implementation of targeted measures, while strengthening law enforcement efforts to crack
down on illegal activities.

Second, we proved that China exhibits higher levels of emerging pollutant concentra-
tions compared to other parts of the world. As one of the largest manufacturing countries
in the world, China has high industrial and energy consumption. Some industrial produc-
tion processes produce more emissions of emerging pollutants, resulting in high levels of
pollutant concentrations. Under such circumstances, the public should ensure their own
drinking water and food safety, such as prioritizing treated drinking water and choosing
to buy food that meets food safety standards, in order to reduce the risk of ingesting
pollutants. The public should also actively participate in environmental protection actions
and support the government in implementing targeted measures to reduce the generation
of emerging pollutants. Enterprises should carry out technological upgrading and im-
provement measures, promote the recycling of resources and the economical use of energy,
strengthen their internal environmental management and supervision, and set up sound
internal auditing and monitoring mechanisms. Enterprises should also actively participate
in environmental protection actions, support environmental organizations and projects,
promote the development of green industries, and reduce the pollution of water bodies by
emerging pollutants.

Third, we demonstrated the pollution caused by emerging pollutants has a wide range
of transmission. In the future, water body models and hydrological data should be utilized
to analyze the transmission pathways and diffusion characteristics of emerging pollutants,
revealing the conduction laws and behaviors of emerging pollutants in different water
bodies. It is important to investigate the influences of water flow, water body characteristics,
and human activities on their transmission and strengthen the research on the conductivity
of emerging pollutants. The core objective of this study is to extract historical concentration
values of emerging pollutants in order to obtain the spatial distribution patterns and
concentration distributions of emerging pollutants in China. By doing so, it aims to
increase the attention of the Chinese government towards emerging pollutants and provide
references for the formulation of policies and regulations regarding emerging pollutants in
China.

Hence, it is suggested that on one hand, key regions such as the Yangtze River Delta,
Pearl River Delta, and Beijing–Tianjin–Hebei region should be selected to carry out pilot
surveys of new types of pollutants. The focus should be on understanding the production
and usage of products containing typical emerging pollutants in industries, agriculture, and
daily life, compiling a list of typical pollutant emissions, and strengthening the prevention
and control of emerging pollutants. On the other hand, research on the mechanisms
of emerging pollutant generation and migration and the development of monitoring
technologies should be strengthened. A comprehensive monitoring system should be
gradually established to fully grasp the data on the pollution levels of emerging pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15213782/s1, Table S1: Distribution Area and Concentration
of Microplastics; Table S2: Distribution Area and Concentration of Endocrine Disruptors; Table S3:
Distribution Area and Concentration of Perfluorinated Compounds; Table S4: Distribution Area and
Concentration of Brominated Flame Retardants. References [97–295] are citied in the Supplemen-
tary Materials.
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Abstract: The aim of this study was to evaluate the water quality in two streams of the Valles
region of Jalisco, Mexico and fully determine if they are being used as tequila vinasse disposal sites.
Three sampling campaigns were carried out at eight different points of the two streams that run
near tequila factories (TFs). Different physicochemical parameters of water quality were measured:
chemical oxygen demand (COD); biochemical oxygen demand (BOD5); total suspended solids (TSSs);
total phosphates; fats, oils, and grease (FOG); Kjeldal nitrogen; nitrite; nitrate; pH; conductivity;
temperature; dissolved oxygen (DO); and turbidity. Also, the analysis of samples of tequila vinasses
(TVs) diluted with tap water were carried out to have a reference for the level of pollution in the
streams. Furthermore, due to the fact that COD could be considered the main indicator of pollution
with TVs, a linear regression was performed between COD concentrations and the percentage of
dilution of TVs (with tap water). A positive correlation was found between these two variables,
and based on this analysis, the vinasse content was estimated at each sampling point of the streams.
It was found that on average, a volume of 8.5 ± 6.3% and 11.5 ± 4.9% of TVs were present in
each sampling point of the Atizcoa and Jarritos Streams, respectively. Additionally, it was found
that, in general, the concentration of pollutants increased as the streams passed through the TFs,
particularly the Atizcoa Stream. According to the Water National Commission criteria, most of the
points would be classified as highly polluted, since they reach concentrations of COD and BOD5 up to
6590 mg/L and 3775 mg/L, respectively, temperature values up to 37 ◦C, and DO values of 0.5 mg/L.
Therefore, it was confirmed that the streams are being used as tequila vinasse disposal sites. Due
to the above, there is an urgent need for tequila companies to implement treatment systems for the
vinasse generated, since under current conditions, the monitored streams are practically devoid of
aquatic life.

Keywords: turbidity; surface water pollution; tequila industry; Atizcoa stream; Jarritos Stream

1. Introduction

Tequila production is an iconic activity of great social and economic importance for the
producing regions of Mexico, particularly for the state of Jalisco [1,2]. However, throughout
the tequila production process, a liquid residue is generated at the bottom of the stills
during the distillation process of the fermented must known as tequila vinasse [3,4]. In
general, the number of tequila factories (TFs) that treat their vinasses prior to discharge is
low, since it is mainly large companies that do so [5]. The rest of the companies do not treat
their effluents, mainly justifying this decision with the economic limitations (especially
micro- and small companies) of paying for the construction, operation, maintenance, and
personnel of a conventional wastewater treatment plant [4]. Therefore, the untreated
vinasse ends up being discharged into the soils or surface water bodies (rivers, streams, and
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lakes) located in the tequila production regions, without complying with the requirements
established by current Mexican regulations [2,6,7].

Tequila vinasses are characterized by their typical dark reddish-brown color and an
alcohol-caramel smell, with high temperatures of up to 90 ◦C, an acidic pH of approximately
3.4 to 4.5, and high electrical conductivity (2.4 to 5.8 mS/cm) [3,8]. In addition, vinasses
contain fats, oils, and grease (FOG) in concentrations of 10 to 100 mg/L, total chemical
oxygen demand (COD) from 60,000 to 100,000 mg/L, total biochemical oxygen demand
(BOD5) from 35,000 to 60,000 mg/L, total solids from 25,000 to 50,000 mg/L, phosphates
from 100 to 700 mg/L, and total nitrogen from 20 to 50 mg/L, among others [9–11].

These characteristics of tequila vinasses make them a highly dangerous waste for
surface aquatic ecosystems if they are discharged without any treatment or with inadequate
treatment. Different studies have shown evidence for the negative consequences for the
environment of vinasses from other types of industries but with similar characteristics to
tequila vinasses [12]. Among them, the evaluation of the toxicity of sugarcane vinasse
from the production of refined sugar and ethanol stands out [4]. It was found that vinasse
has toxic and cytotoxic potential in fish liver and that this depends on the concentration
of vinasse in bodies of water [13,14]. Gunkel et al. [15] evaluated the Ipojuca river in
northeastern Brazil, which receives runoff from vinasse irrigation from sugarcane crops,
and revealed that vinasse was the main source of contamination in the river, because it
causes an increase in the temperature and acidification of the water and increases the
turbidity and depletion of dissolved oxygen [13,15].

On the other hand, the Valles region of the State of Jalisco, located in the region with
Denomination of Origin to produce Tequila in Mexico [16], stands out as the region with
the highest number of tequila factories (44), with the municipality of Tequila having 22 TFs
in 2021 [2]. In this way, the main economic activity in both the region and the municipality
is the production of tequila [17]. This municipality is part of the Tequila Route in the
Agave Landscape that attracts hundreds of both national and international tourists per
year [18]. Furthermore, due to the increase in tequila consumption around the world in
recent years [16], the number of tequila factories is increasing, which implies a greater
generation of tequila vinasses. Due to the physicochemical characteristics of the vinasses
and their possibly inadequate disposal, the Valles region is considered an environmental
risk area since there are no effective vinasse disposal plans [5].

In addition, in general, given the inappropriate management of wastewater in Mexico,
the surface water exhibits different degrees of deterioration. An example of this is the
Santiago River, which is considered one of the most polluted and deteriorated rivers in
Mexico since it receives constant discharges of domestic and industrial wastewater, with
contributions of up to 4.22 ton/day of COD, 1.87 ton/day of BOD5, and 4.44 tons/day of
total suspended solids (TSSs) [19,20]. The Santiago River has a length of 562 km, originates
in Lake Chapala, and flows into the Pacific Ocean in the state of Nayarit [21]; part of its
route takes place in the Valles region of the state of Jalisco. Tequila vinasses are among the
industrial wastewaters that the Santiago River receives, since these are discharged without
treatment or with incomplete treatment in different streams that end up flowing into this
river [5]. In Mexico, despite the increasing production of tequila [16] and the consequent
generation of vinasse, as well as the common perception that it is discharged without
treatment, there are no studies that fully demonstrate such discharges and their impacts.

Therefore, the aim of this research was to evaluate and analyze the quality of water
in two streams in the municipality of Tequila in the Valles region of the state of Jalisco,
Mexico and to comprehensively demonstrate whether or not they are being used as sites
of final disposal of tequila vinasses. In this way, we expect to make visible the negative
impacts of managing tequila vinasse in a very important tequila-producing region. This
study was carried out by measuring water quality parameters at different points in the
streams during the dry season and in different samples of tequila vinasse diluted with tap
water (as a frame of reference) to analyze the level of contamination in the streams.
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2. Materials and Methods

2.1. Study Area

The surface waters monitored were the Atizcoa and Jarritos Streams located in the
municipality of Tequila, belonging to the Valles region of the state of Jalisco in Mexico. The
Atizcoa Stream originates in the Tequila volcano and runs approximately 16.5 km until it
empties into the Santiago River [22] as part of the Lerma Santiago basin (Figure 1). These
streams are the most important in the town of Tequila, Jalisco. The Jarritos Stream is smaller
than the Atizcoa Stream and there is no information available on where it originates or
its source; apparently, it originates within the same town of Tequila, near some tequila
factories where the first monitoring point was located.

Figure 1. Geographical location of the study area in the municipality of Tequila.

2.2. Monitoring of Atizcoa and Jarritos Stream

The monitoring was carried out in the dry season to avoid the dilution of probable
contaminants. Three sampling campaigns were carried out every 15 days (2 February,
16 February and 1 March 2021) at 8 different points in the water bodies identified as the
Atizcoa and Jarritos Streams. Figure 2 shows the location of the streams, the sampling
points and evidence of the location of tequila factories near the streams. The 8 sampling
points were located along the two streams; 4 of them in the Atizcoa Stream, 3 points in
the Jarritos and 1 point after the union of both streams. The points were chosen for their
proximity to tequila companies and the ease and accessibility of taking water samples.
These points were numbered in ascending order in each of the streams as they moved
downstream. In the Atizcoa Stream, the 4 points were identified as A1 (located before the
stream passed through the tequila factories), A2, A3 (located very close to several tequila
factories), and A4 (located after the stream passed through the tequila factories). In the
Jarritos Stream, the 3 points were identified as J1, J2 (located near some tequila factories),
and J3 (after the stream passed through the factories). Finally, the point after the union of
both streams was named AJ.
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Figure 2. Sampling points in the Atizcoa and Jarritos Streams and evidence of the presence of tequila
factories around them in the town of Tequila.

With regard to the monitored parameters, some of them were measured directly in the
monitored streams, that is, the measurements were made on-site. These parameters were
pH, conductivity, dissolved oxygen, and temperature. For this, a HACH model HQ40d
portable meter was used with specific INTELLICAL probes for each of the parameters. The
other parameters, that is, turbidity, FOG, total suspended solids (TSSs), total phosphates,
nitrite, nitrate, ammonia, organic nitrogen, COD, and BOD5 were determined at the En-
vironmental Quality Research Center of the University of Guadalajara Campus Ciénega,
located in the municipality of Ocotlán, Jalisco. The samples were preserved at 4 ◦C until
processing and the techniques used were based on the Mexican standards, which in turn are
based on the standard methods for the analysis of water and wastewater [23]. It is worth
mentioning that the parameters were selected from those contaminants usually found in
tequila vinasses. Furthermore, to have a reference to compare the concentration of each
of the contaminants in the monitored streams, most of these parameters were evaluated
in vinasse samples diluted with tap water (TW). Furthermore, the flow rate along the
streams was estimated approximately using the well-known velocity/area method, which
consists of measuring the mean velocity of the flow and the cross-sectional area of the
stream (Flow rate (Q) = A (area of the cross-section transverse) × V (velocity of the water
at the surface)) [24].

2.3. Statistical Analysis

Because COD is the parameter that best reflects contamination by tequila vinasse, a
linear regression was carried out from control samples (tequila vinasse diluted with tap
water) to determine the relationship between vinasse concentration (independent variable)
and COD, and then, according to the model, estimate the presence of vinasse in the water
courses. Additionally, a randomized block experimental design was used to analyze
changes in water quality parameters at each stream sampling point. For the analyses,
the response variables were the on-site measurements as well as the laboratory measured
quality parameters mentioned in the last section. The treatments were all sampling points
along each stream, specifically, A1, A2, A3, A4, and AJ for Atizcoa que Stream and J1, J2,
J3, and AJ for Jarritos Stream. The date of the sampling campaign was used as a blocking
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factor. The linear regression and analysis of variance (ANOVA) were performed using
STATGRAPHICS CENTURION XV.II with a significant level of p = 0.05. Specifically, when
the ANOVA revealed significant differences, multiple comparisons were made using the
least significant difference (LSD) test in order to determine the difference between means.

3. Results and Discussion

3.1. Measurements of Pollutants in Diluted Vinasse Samples as a Frame of Reference

Table 1 shows the concentrations of the different contaminants measured in diluted
vinasse samples (with tap water). It is evident that contaminant concentrations were very
low or absent in tap water and increased dramatically when the percentage of TV increased.
In the case of pH, the value in tap water was 8.58 and was reduced to a value close to
4 when the samples contained between 25% and 100% vinasse. Due to the fact that, to the
best of our knowledge, this is the first study in which TV discharges to surface waters are
evaluated, there is no reference study to compare our results, so we consider these results
with diluted vinasses to be suitable as a reference.

Table 1. Pollutant concentrations in samples of diluted tequila vinasses with tap water a.

Dilutions of Tequila Vinasses with Tap Water

Parameter 0% (TW) 25% 50% 75% 100%(TV)

Chemical oxygen demand (mg/L) 13.5 ± 2.1 8850 ± 1131 15,225 ± 176.8 25,250 ± 1484.9 35,150 ± 1202.1
Total Kjeldahl nitrogen (mg/L) 0.22 ± 0.02 125.1 ± 4.8 236.5 ± 8.9 284.0 ± 21.7 426.1 ± 2.8

Nitrate (mg/L) 0.65 ± 0.07 450 ±70.7 655 ± 49.5 880.0 ± 28.3 220 ± 169.7
Nitrite (mg/L) 0.004 ± 0.00 2.1 ± 0.00 2.9 ± 0.40 4.55 ± 0.21 6.05 ± 0.49

Total phosphates (mg/L) 1.65 ± 0.78 100 ± 14.1 190 ± 70.7 335 ± 7.1 385 ± 49.5
Total suspended solids (mg/L) 0.0 ± 0.0 3833 ± 235.7 8917 ± 117.9 12,417 ± 1532 17,833 ± 2121

Turbidity (NTU) 0.0 ± 0.0 1300 ± 118 2363 ± 40.3 4031 ± 298.4 6497 ± 1565.3
pH 8.58± 0.00 3.96 ± 0.00 3.8 ±0.00 3.76 ±0.01 3.74 ± 0.01

Electrical conductivity (μs/cm) 72.03 ± 0.10 905.2 ± 0.57 1403.5 ± 0.71 1928.5 ± 2.12 2372 ± 1.41

On the other hand, COD could be considered the main indicator of the presence
of vinasse in water bodies, since its value can increase significantly in water bodies that
receive vinasse discharges, as a result of its high values in the raw tequila vinasses, from
60,000 to 100,000 mg/L [2]. Additionally, linear regression models are widely used in
environmental study cases in order to determine relationships between specific variables
and specific industrial/anthropogenic activities or pollutants [25,26]. Figure 3 shows a
positive correlation between vinasse concentration (%) and COD with a r2 of 0.9955. In
addition, the variance analysis shows a p value < 0.05, which means that the variables
have a significant statistical relationship. The adjusted regression model resulted in the
following equation:

COD = −439.6 + 346.692 (% Vinasse)

Based on this equation, the vinasse content was estimated in each of the sampling
points of the streams, which were also graphed in Figure 3. In this way, the calculated
values show the presence of vinasses in the two streams. For Atizcoa, it was estimated that
there is an average vinasse content of 8.46 ± 6.3% in each of the sampling points, while in
the Jarritos Stream the vinasse content is slightly higher, that is, 11.86 ± 4.9%.

3.2. Parameters Measured on Site

Figure 3 shows the average results of the parameters measured on site. These were
temperature, conductivity, pH, and dissolved oxygen. The temperature (Figure 4a) results
showed, in the Atizcoa Stream, a considerable increase at point A2 (37 ◦C) with respect to
A1, with a significant difference (p < 0.05); this value was reduced as the stream advanced
in its course, but even so, it remained above the value found in A1. In the Jarritos Stream,
at point J3 there was also a considerable increase in the temperature value compared to
J1 and J2 (from 22 to 28 ◦C), also with significant differences (p < 0.05). These increases in
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temperature demonstrate the discharges of vinasse, since vinasse is generated at 90 ◦C [10].
As is known, high temperatures have an impact on the physical and chemical properties
of water, especially density, viscosity, solubility of dissolved oxygen, and the speed of
chemical and biochemical reactions that could occur in the body of water [27].

 

Figure 3. Scatter plot with regression line that shows the relationship between COD and
vinasse percentage.

Regarding the pH (Figure 4b), in the Atizcoa Stream, at point A1, the values were
in the optimal range for aquatic life (7–7.5) [28]. However, as the stream ran through
the other points near the TFs, these values decreased considerably until reaching acidic
values (4–5) statistically different in comparison to A1 (p < 0.05). Meanwhile, in the Jarritos
Stream, slightly acidic pH values (5–6.5) were found at all points, because from the first
sampling point there were several TFs that, it seems, discharge their vinasses into the
stream. No significant difference (p > 0.05) was found between the different sampling
points. Consequently, point AJ, which is the union of the two streams, presented acidic
pH values (4–5.5), which reflects the presence of vinasse discharges since such values are
close to those measured in samples with 25 to 100% vinasse (Table 1). These pH values
definitely preclude the existence of aquatic fauna in the two streams, since in general, acute
or chronic exposure to acidic values negatively affects their physiological functions; most
aquatic animals, including fish, live in a narrow pH range close to neutrality [28].

With respect to the conductivity results (Figure 4c), low values were found in the
Atizcoa Stream at point A1, but as the stream ran through the area where the TFs are
located (points A2, A3, and A4), these values increased significantly from one point to
another (p < 0.05), reaching a final average value of 1384.77 ± 63.5 μS/cm at A4; this value
is very similar to that found in the dilution of 50% of vinasse with tap water. Regarding
the Jarritos Stream, high conductivity values were found at all points (between 750 and
1400 μS/cm) without significant differences (p < 0.05). As a result, at the AJ junction point,
high values were also found (between 800 and 1400 μS/cm). Such values can only be due
to discharges of tequila vinasse, since increases of such magnitude would not be reached if
the discharges were domestic wastewater [27]. As the results in Table 1 suggest, tequila
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vinasses with high electrical conductivity values have the potential to modify the electrical
conductivity of uncontaminated waters, such as streams.

Figure 4. Parameters measured on-site in the Atizcoa and Jarritos Streams (mean ± confidence
interval, p < 0.05, n = 3). (a) Temperature; (b) pH; (c) electrical conductivity; (d) dissolved oxygen.

Regarding DO concentrations (Figure 4d), in the Atizcoa Stream, the values were
optimal at point A1, but as the stream flowed through the TFs, these values decreased
significantly (p < 0.05) from 6 to 0.5 mg/L. In contrast, in the Jarritos Stream, at all points
the DO concentrations were low, between 1.27 to 0.5 mg/L, without significant difference
between them (p < 0.05) and, as expected, at point AJ, where both streams join, the DO
concentration values were very low (0.5 mg/L). This was to be expected when physically
seeing the state of the streams. The noticeable turbidity of the water prevents the sun’s
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rays from penetrating properly, making it impossible for photosynthetic organisms that
produce oxygen to be present. The decrease in DO is also due to excess organic matter
and high temperatures. The high concentrations of organic matter cause the aerobic
microorganisms responsible for its degradation to demand more DO than usual, which
leads to its reduction [2,13,20]. In this way, streams develop a toxic environment for aerobic
aquatic life, enabling the life of only a small group of anaerobic microorganisms [27].

3.3. Parameters Measured in the Laboratory

The parameters measured in the laboratory are reported in Figure 5 for Atizcoa Stream
and Figure 6 for Jarritos Stream.

Regarding the results for COD and BOD5, which are indicators of the content of or-
ganic matter in the bodies of water, it was found that at point A1 of the Atizcoa Stream, the
average values were low, that is, 9.7 ± 1.5 mg/L and 7.7 ± 1.9 mg/L, respectively. Accord-
ing to the water quality indices of the Water National Commission (CONAGUA) [1], such
values allow the stream to be classified as “acceptable quality” for BOD5 and “good quality”
for COD. However, as the stream flowed through the TFs (points A2, A3, and A4), these
values increased significantly (p < 0.05) until reaching average values of 4778.5 ± 565.25
mg/L and 2792.5 ± 314.35 for COD and f BOD5, respectively, at A4. In contrast, in the
Jarritos Stream, the concentrations of these pollutants were high in the three sampling
points along the sampling campaigns (from 1005 to 6590 mg/L for COD and from 930 to
3346 mg/L for BOD5) without significant difference between the sampling points (p < 0.05).
As a result, when the two streams joined, at point AJ, the concentrations were also high
(between 3162.5 to 5395 mg/L for COD and between 1919.2 to 3775 mg/L for BOD5). Such
values are unusually high, much higher than the values even for municipal wastewater
considered to be of high concentration (400 mg/L for BOD5 and 1000 mg/L for COD) [29].
According to the estimation using the linear regression model between COD and % vinasse,
the two streams had vinasse in different percentages. In general, the polluting potential of
vinasses could be up to 100 times higher than that of domestic sewage due mainly due to
the low pH, high corrosivity, and BOD5 concentrations [14]. Evidently, according to the
CONAGUA quality indices, the two streams are classified as heavily polluted [1].

With respect to the concentration of FOG, in Atizcoa Stream the average concentrations
did not show a significant difference between the sampling points (p > 0.05), although
the average concentrations were 5.0 ± 3.6 and 56.2 ± 61.0 at A1 and A4, respectively. It
is likely that the ANOVA was affected by the small number of samples. In the Jarritos
Stream, the three points presented average high concentrations (28.5 ± 12.6 mg/L to
105.8 ± 91.7 mg/L), without significant differences (p > 0.05). Point AJ also presented a
high concentration of FOG that was in the range of 12.62 to 125.94 mg/L. These values
show again that the streams are receiving wastewater discharges, presumably tequila
vinasse. According to [2], an average concentration of 119 ± 109 mg/L of FOG was found
in the vinasse of 24 tequila factories. It is important to highlight that the presence of FOG
in tequila vinasse is due to its content in the agave plant. In agave bagasse (the solid
residue after extraction of the cooked juice during the production of tequila) the content
of extractives, which includes fats, phenolics, resin acids, waxes, and inorganics, varies
between 19 and 57% [30]. FOG are considered a basic contaminant, according to the Official
Mexican Standard NOM-001-SEMARNAT 2021, which must be removed or stabilized by
conventional processes; in this case, the values found in the two streams were mostly higher
than the maximum limits allowed for discharges, which is 15 mg/L [31].
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Figure 5. Parameters measured in the laboratory from sampling points of the Atizcoa Stream
(mean ± confidence interval, p < 0.05, n = 3). (a) Chemical oxygen demand; (b) biochemical oxygen
demand; (c) fats, oils, and grease; (d) Kjeldahl nitrogen; (e) nitrate; (f) phosphates; (g) total suspended
solids; (h) turbidity.
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Figure 6. Parameters measured in the laboratory from sampling points of the Jarritos Stream
(mean ± confidence interval, p < 0.05, n = 3). (a) Chemical oxygen demand; (b) biochemical oxygen
demand; (c) fats, oils, and grease; (d) Kjeldahl nitrogen; (e) nitrate; (f) phosphates; (g) total suspended
solids; (h) turbidity.

With regard to the results of nitrogen compounds, very high concentrations were
found in some monitored points of the streams. Specifically, for Kjeldahl nitrogen, which
is the sum of organic nitrogen and ammonia, the concentrations increased significantly
from A1 to A4 (p < 0.5), reaching an average value of 70.6 mg/L after the stream flowed
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through the TFs. In the Jarritos Stream, at all points as well as at the AJ junction point, high
concentrations were observed (between 28.9 and 131.4 mg/L) in the different sampling
campaigns with no significant difference between the sampling points (p > 0.05). In this
case, some values were similar to those in Table 1 for samples with 25% vinasse. In the
case of nitrate, it can be seen in Figure 5 that at point A1 of the Atizcoa Stream, the average
concentration was low (2.7 mg/L), but it increased significantly (p < 0.05)) as the stream
flowed through the TFs. In contrast, in the Jarritos Stream, nitrate concentrations were high
at all sampling points without difference (p > 0.05). Regarding nitrite, it can be highlighted
that, in the eight points, the concentrations were low (between 0.01 and 0.6 mg/L); this
was expected, since nitrite is an intermediate compound in the nitrogen transformation
reactions [32]. In general, nitrogen is one of the main pollutants that cause eutrophication of
surface waters when untreated or poorly treated wastewater is discharged into them [33].

Regarding phosphate concentrations, again, low concentrations were found in A1 of
the Atizcoa Stream and increasing concentrations along the course of the stream (p < 0.05),
as well as permanently high concentrations along the Jarritos Stream (p > 0.05). High
concentrations of phosphates and nitrate in surface water bodies can cause eutrophication,
resulting in the presence of algae and aquatic weeds in water bodies [34]. That being said,
in the case of these streams, the high turbidity makes it impossible for sunlight to penetrate,
so the presence of algae is not possible. However, when the streams finally flow into the
Santiago River, there they can contribute to the eutrophication that is observed in some
parts of the river, where it is covered with Eichornia crassipes [35].

Turbidity and TSS had the same trend as the aforementioned parameters. In the
Atizcoa Stream, it can be seen in Figure 5 that the values of these parameters increased as
the stream ran through the TFs. It has been reported that TSS reaches up to 24.7 g/L in
tequila vinasses [4], so vinasse discharges significantly impact the concentration of these
two parameters. The turbidity in the Atizcoa Stream ranged from 16 to 785 NTU and
the TSS ranged from 36 to 829 mg/L. The variation between the sampling points was
significant for both parameters (p < 0.05). In the Jarritos Stream, high turbidity and TSS
values were also observed, mainly on February 16, where point J1 stood out with values of
4490 NTU of turbidity and 6185 mg/L of TSS; at point AJ, turbidity and SST also presented
high values, between 227 and 844 NTU for turbidity and between 657.1 and 941.7 mg/L
for TSS. In general, the values of both parameters were exceptionally high, indicating that
the streams transported mainly vinasses. Some specific values were similar to those of
samples with 75% vinasse (Table 1). In this case, there was no significant difference between
the sampling points of the stream (p > 0.05). By comparison, [27] found mean values of
55.66 ± 4.18 NTU and 31.71 ± 1.41 mg/L for turbidity and TSS, respectively, at a domestic
wastewater discharge point in a stream in Mali. Moreover, [36] reported a concentration
49.46 ± 21.59 mg/L of TSS and 76.23 ± 51.27 NTU of turbidity in the Cau River in Vietnam
during the dry season. On the other hand, based on the concentration of TSS, the two
streams are classified as highly polluted bodies of water (TSS concentration > 400 mg/L),
according to the water quality indices of the Water National Commission (CONAGUA) [1].

Regarding the flow rate, it was found that in the Atizcoa Stream, it varied from 23 L/s
at the point prior to its passage through the tequila plants (A1) to 53 L/s at point A2 and
finally to 107 L/s before joining the Jarritos Stream (A4). Meanwhile, in the Jarritos Stream,
the flow rate was lower, varying from 18 L/s to 84 L/s at the last sampling point. This
increase in stream flow probably also reflects the incorporation of tequila vinasses.

Finally, the results of the physicochemical analyses of the water samples from the two
streams show that their contamination is evident. Therefore, it is suggested that tequila
companies in the Valles region implement best practices to mitigate this impact in the short
term. It is recommended that tequila vinasses be treated using conventional wastewater
treatment processes such as pretreatment, primary treatment, secondary treatment (physic-
ochemical and/or biological), and advanced treatment processes. In cases of companies
that cannot afford a conventional wastewater treatment plant, such as micro- and small
factories, low-cost alternative technologies are recommended such as constructed wet-
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lands [4] or advanced oxidation processes [37]. In addition, vinasses could be used and
valorized for other applications such as the generation of biogas [38], the production of
microbiological culture media in bioprocesses and bioremediation [39], or as raw material
for the production of animal foods [40] due to the high content of organic matter, water,
and nutrients such as potassium, calcium, magnesium, sulfur, and nitrogen.

4. Conclusions

By taking as reference the concentrations of contaminants in samples with different
percentages of tequila vinasse as well as the estimation of the vinasse content in each of
the monitored points (through a linear regression model developed between COD and %
vinasse), we confirmed that the two monitored streams are being used as final disposal
sites for tequila vinasse.

The state of total deterioration in which they are found is physically evident, as it is
impossible for aquatic life to exist in such conditions. The increase in the concentration and
values of parameters that reflect contamination from the discharge of vinasse (tempera-
ture, conductivity, turbidity, FOG, TSS, COD, BOD, total phosphate, nitrate, and Kjeldahl
nitrogen), as well as the decrease in the concentration and values of important parameters
for the development of aquatic life such as pH and DO, were found to be overwhelming
once the streams flowed through the tequila factories. Due to the information above, there
is an urgent need for tequila companies to implement treatment systems for the vinasse
generated. It is recommended that alternative treatment systems be evaluated alongside the
conventional and economically accessible ones so that through their implementation the
contamination of these bodies of water can be reduced for the benefit of the locality itself.
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Abstract: In this study, the use of linear alkylbenzenes (LABs) was employed to pinpoint the sources
of human activity that cause detrimental impacts on the coastal environment and river ecosystems.
LABs were detected using GC–MS in sediment samples assembled from Kim Kim River (KKR)
and the Port Dickson coast (PDC). To assess the significance of variations in the distribution and
concentrations of LABs across the sampling sites, this study utilized several statistical techniques
such as post hoc tests, LSD techniques, analysis of variance (ANOVA), and the Pearson correlation
coefficient using a significance level of p < 0.05. The degradation levels of LABs and wastewater
treatment were assessed in the study using internal congeners (I/E), homologs of C13 and C12, and
long-to-short-chain (L/S) ratios. The results revealed that the LAB concentrations varied between 88.3
and 112 ng/g dw in KKR and 119 to 256 ng/g dw in the PDC. Most of the surveyed areas exhibited a
substantial count of C13–LABs homologs that displayed a significant difference (p < 0.05). The I/E
ratios ranged from 1.7 to 2.0 in KKR and from 2.0 to 4.1 in the PDC, suggesting that the effluents
originated from sources associated with the physical phase and biological phase in wastewater
treatment systems (WWTSs). The results revealed that the degradation of LABs varied between 34%
and 38% in KKR and between 40% and 64% in the PDC. This study underscores the importance of
ongoing improvements to WWTSs and emphasizes the potential of LABs as indicators for monitoring
wastewater contamination.

Keywords: linear alkylbenzenes; sediment; internally over exterior; pollutants contained in wastewater;
degradation; molecular marker
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1. Introduction

Anthropogenic pollution stemming from metropolitan areas is a significant contribu-
tor to the degradation of riverine and coastal ecosystems [1–4]. The release of substantial
amounts of industrial and household wastewater in these regions significantly affects the
biodiversity of the ecosystems [5–8]. Therefore, regular monitoring of aquatic ecosystems
and water sources is crucial for maintaining the health and integrity of these environ-
ments [9–14]. It provides valuable data for decision making, pollution control, and the
preservation of biodiversity, ensuring sustainable management and protection of our
precious water resources [15–18]. Obtaining such data is crucial for achieving efficient
environmental security and economic management. With this information, strategies
and implemented measures can be developed that mitigate the harmful impacts of an-
thropogenic pollution on these delicate ecosystems, helping to preserve them for future
generations [8,19–22].

Linear alkylbenzenes (LABs) can serve as indicators of industrial and domestic pol-
lution. Linear alkylbenzene sulfonates (LASs), which constitute the primary ingredients
of detergents, are composed of alkyl chains ranging from C10 to C14 and are referred
to as LABs [23]. In the 1960s, the utilization of branched alkylbenzene constituents was
replaced by LABs, which were preferred for their cost-effectiveness and biodegradability.
However, ref. [24] noted that improper sulfonation has led to the extensive and prevalent
discharge of LABs into the aquatic ecosystem through untreated wastewater effluent. In
contrast, ref. [25] indicated that LABs exhibit a significant attraction toward industrial efflu-
ents, which renders them valuable as indicators of pollution from human-made sources,
including both residential and industrial, in aquatic settings.

LAB isomers, which have varied phenyl substitutions and internal/external isomers
alongside the straight alkyl chain, serve a purpose in gauging degradation in sediment and
suspended particulate matter, as described by [26]. Typically, wastewater treatment systems
(WWTSs) contain a series of physical (primary treatment) and biological (secondary treat-
ment) processes designed to remove contaminants from wastewater before it is discharged
back into the environment or reused for other purposes [27]. The specific components of a
wastewater treatment system can vary depending on the type of contaminants present in
the wastewater and the desired level of treatment. According to [28], the identification of
industrial and domestic wastewater types discharged into marine ecosystems, including
physical (primary) and biological (secondary) systems, as well as the estimation of pollutant
residence time, can be accomplished through the utilization of LAB isomers.

Due to the high population in coastal areas of Malaysia, there has been a significant
increase in industrial and domestic wastewater contamination. Studies in Asian countries
demonstrated a positive correlation between sewage contamination and illnesses [29].
Therefore, it is necessary to investigate the impact of marine sediments and their fate on
the possible pollution caused by wastewater to improve water quality and reduce the risk
of illness [30,31]. Based on three local media that were recently published, there is water
contamination in Simpang Renggam in Sungai Benut, which mostly affects 75,000 residents
in Johor state [32]. Thus, the aquatic environment around West and South Malaysia should
be frequently monitored to identify the sources of contamination, whether industrial or
home wastewater, in order to protect environmental and human health.

Regular monitoring of wastewater sources in West and South Malaysia is crucial for
protecting the environment and human health. Although the anthropogenic impacts in
KKR and the PDC were investigated, it is essential to extend the research to other regions.
This study employed LABs as anthropogenic pollution to evaluate the effects of wastewater
sources in the selected areas. This study measured the concentration, distribution, and
degradation levels of LABs in the study regions, and investigated the distribution of LAB
isomers to enhance the effectiveness of existing wastewater treatment systems (WWTSs).
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2. Methods and Materials

2.1. Experimental Design

The research sites that were studied were situated in the southwest region of Malaysia,
specifically in the states of Johor and Sembilan, as shown in Figure S1 in the Supplementary
Information (SI). Seven sediment samples were taken from sites chosen for their proximity
to agricultural and industrial activity, such as Kim Kim River in Johor Bahru State, as well
as urban and tourism activity, such as Port Dickson Beach in Sembilan State. Details and a
visual representation of the sampling locations used in the study are provided in Table S1
in the SI file. To examine the presence of LABs in these areas and to assess the level of
anthropogenic contamination, surface sediments were collected from the top 4 cm of KKR
and the PDC using an Ekman dredge sampler. The collected sediment was then put into
a stainless steel container that had been cleaned, and the top 4 cm of the sediment cake
was sliced, immediately kept in a double-clean Ziploc bag, labeled, and then put on ice at
4 ◦C in a cooler box for transport to the lab, where it was stored at −20 ◦C upon arrival.
The samples were then put through a freeze-drying procedure to remove any remaining
moisture and get them ready for more analysis.

2.2. Chemical Analysis

Two columns were used to extract LABs. The initial one was used for purification to
remove polar compounds, and the second was used for fractionation to obtain the desired
organic extracts, following the established validation protocols described elsewhere by [33].
To recover dried sediments, 10 g of sediments were mixed with 250 mL dichloromethane
(DCM) in a cellulose thimble. This mixture was left for 8–10 h, as per the protocol in [34].
The surrogate standards (SSs), which are similar to the target analytical compounds used
in the analytical method for the purpose of identification and could be recovered from the
sample matrix with reasonable efficiency, were preloaded in each sample to ensure the
precise recovery of the target LABs. The SSs contain 50 μL of 1-Cn LABs, where 1- denotes
each LAB homolog’s initial isomer and n denotes its carbon number (8–14). Activated cop-
per was added to remove any sulfur that could interfere with the GC chromatograms. The
extract was concentrated using a rotary evaporator and then placed on a chromatography
column of 5% H2O-deactivated silica gel (60–200 mesh size, Sigma Chemical, St. Louis, MO,
USA), with a diameter of 0.9 cm and height of 9 cm. Hydrocarbons were eluted from the
column with a pure hexane/DCM mixture (3:1, v/v) in 20 mL aliquots and then reduced
to 1–2 mL. LAB fractions were collected from a fully activated silica gel column with a
diameter of 0.47 cm and height of 18 cm using 4 mL of hexane in the second stage. The
reduced LAB fractions were transferred to a 2 mL amber vial and dried using a moderate
stream of nitrogen. Before performing the GC–MS analysis on the LABs fraction, an internal
standard (IS) of biphenyl–d10 with a mass-to-charge ratio (m/z) of 164 was injected.

To detect compounds of LABs, a gas chromatograph from the Agilent Technologies
(Santa Clara, CA, USA) 7890A series was utilized, along with a C5975 MSD split/splitless
injector. The experiment utilized a 30-meter-long fused silica capillary column with an
inner diameter of 0.25 millimeters and a DB–5MS capillary column coated with a 0.25 μm
film thickness. Helium was chosen as the carrier gas and was kept at a steady pressure of
60 kg cm−2 throughout the experiment.

Further, to obtain the mass spectrum data, the LABs chromatographs were monitored
at m/z = 91, 92, and 105 using a selective ion monitoring (SIM) mode. The method utilized
for this data operated with specified parameters, such the signal-to-noise ratio (S/N), peak
detection limits, and a 5-point calibration curve. LAB peaks in the samples were obtained
by comparing the retention times of each target compound to the retention times of the
LAB standards run on the same day, which were then confirmed using the m/z value (91,
92, and 105). An external source was employed to carry out the ionization process at a
temperature of 200 ◦C. The GC–MS operating conditions were configured with an electron
energy of 70 eV and an electron multiplier voltage of approximately 1250 eV. After injecting
the sample using the splitless mode, the injection port temperature was maintained at
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300 ◦C, and a one-minute purge ensued. The temperature T of the column was maintained
at 70 ◦C for two minutes. It was then raised to 150 ◦C at a rate of 30 ◦C per minute and
subsequently increased at a rate of 4 ◦C per minute until it reached 310 ◦C. This final
temperature was maintained for 50 min.

2.3. Quality Control and Assurance

LABs are used to determine the degree of degradation due to the properties of external
and internal isomers. External isomers degrade faster than internal isomers due to the
substitution position of the phenyl group on the straight alkyl chain. Furthermore, LABs
are persistent in aquatic environments for extended periods. The I/E ratio can be used
to identify the types of wastewater treatment. For instance, raw sewage has a lower I/E
ratio, ranging from 0.7 to 0.8. Primary treatment I/E ratios vary between 0.5 and 0.9, while
secondary treatment has an I/E ratio greater than 2 [35]. The LABs surrogates (1–Cn) were
successfully recovered in the 60–120% range with minimal loss of the target chemicals
during the analytical procedures. The recovery rates for all sediment samples tested were
between 87 and 98%.

To ensure that there was no contamination, a blank sample was included in every
batch of four samples, which contained all the substances and standards found in typical
samples. Each day, the sediment samples were spiked with freshly made surrogate, internal,
and native standards at predetermined amounts. The target LAB congeners were located
using GC–MS in selected ion monitoring mode at m/z = 91, 92, and 105. The quantification
of the LAB chemicals was done using a 5-point calibration curve with a LABs standard
mixture, with concentrations ranging from 0.25 to 5.0 ppm spiked into the target samples.
The limits of quantitation (LOQ) and detection (LOD) were determined based on the
lowest concentration levels of each calibration curve divided by the mean sample weight,
which were found to be 0.02–0.1 ng/g and 0.1–2 ng/g, respectively, following the method
described by [36].

2.4. Statistical Analysis

The statistical analysis process was undertaken using the IBM®–SPSS 25 program.
Various techniques, including analysis of variance (ANOVA), post hoc tests, and LSD, were
utilized to showcase the significance of fluctuations in the LABs concentrations and distri-
butions across sample sites at a significance level of p < 0.05. To evaluate the relationship
between sampling stations, the Pearson correlation coefficient was utilized. Additionally,
principal component analysis (PCA) was conducted to decrease the number of initial vari-
ables, such as the concentration of LABs, and identify a smaller set of underlying factors.
The extraction process retained only those elements that had eigenvalues greater than one,
which were then subjected to varimax rotation. Standardized regression coefficients were
utilized to assess the potential contribution of various sources of LABs.

2.5. Evaluation of Total Organic Carbon (TOC)

The TOC in sediment samples was detected using LECO CR–412 analysis. The samples
were dried at 60 ◦C overnight and then pulverized using a mortar and pestle. In order to
remove any inorganic carbon, sediment samples weighing 1–2 g were fully moistened with
2 mL of 1 M HCl, which eliminates carbonates. The sediment samples were then dried once
again at 100 ◦C for 10 h to remove the HCl. Finally, the TOC % was determined using a
LECO CR–412 Carbon Analyzer, which had a furnace temperature of 1350 ◦C and an O2
boost period of 1 min. The procedure described in [36] was followed.

3. Results and Discussion

3.1. Differences in the Distribution of LABs Concentrations

The LABs formula, depicted in Figure S2, is denoted as “n–Cm”, with “n” indicating
the position of the benzene ring on the linear alkyl chain and “m” indicating the number of
alkyl carbons. The sediment samples that were analyzed consisted of LABs with carbon
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chain lengths between C10 and C14. Concentrations of LABs in KKR and the PDC were
found to be between 88.3 and 112 and between 119 and 256 ng/g dw, respectively. The huge
variation, especially among the samples from the PDC, was attributed to anthropogenic
activities near the sampling stations, such as urbanization growth, small industries, tourism,
and shipping.

According to the study’s findings, the significant Pearson correlation between the
LAB concentrations in the investigated areas (r = 0.88, p < 0.05) was most likely caused
by the fact that LAB concentrations were higher in areas with a high population density,
industrial, agricultural, and tourism activities, as these areas are more likely to have a high
volume of wastewater and detergent discharge. Overall, the strong correlation between
LAB concentrations and pollution indicates that LABs could serve as a useful measure of
both residential and industrial contamination. Table S2 in the SI file shows the details of this
correlation. The range of LAB levels was between 88.3 and 256 ng/g dw, with significantly
higher concentrations observed at the PDC line, as illustrated in Figure 1. Additionally, the
statistical analysis at p < 0.05 revealed a significant difference in the LABs concentrations
between the various study locations (refer to Table 1).

Figure 1. Concentrations of LABs in the Kim Kim River and Port Dickson samples. Standard error
bars are shown. (*) indicates the highly significant differences (p < 0.05).

The distribution of LABs in riverine environments may be linked to treated effluent
runoff and the dilution of organic matter, as indicated by their content. This can affect the
distribution of riverine ecosystems, as observed by [37,38]. On the other hand, according
to studies by [39,40], the occurrence of LABs in coastal areas is thought to result from
high levels of industrialization and urbanization, as well as the lack of piped sewers. In
contrast with previous studies by [41,42], which found lower concentrations of LABs at
their research sites compared with Port Klang, the Penang Estuary, Malacca, and the Anzali
Wetland, refs. [43,44] reported similar lower levels at the respective locations. Nonetheless,
the present study identified relatively high quantities of LABs, comparable with those
found in Southern Brazil and the Pearl River. The higher levels of LABs detected in this
study compared with some other regions worldwide and Malaysia could be attributed to a
combination of specific local factors and differences in pollution sources, such as significant
industrial, tourism, and urban activities that release LABs into the environment. Port
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Dickson is known to be one of Malaysia’s famous recreational beaches, with numerous
hotels and resorts that offer a wide range of accommodations, as well as the growth in
urbanization, small industries, tourism, and shipping [45]. The distribution of LAB isomers
and homologs among this trend suggested that their presence was uniformly distributed
at the KKR and PDC sites, which implies that the geographic location of the sampling
locations may have influenced the distribution of LABs. Additionally, the LABs detected in
this study were found to be moderate to low compared with other regions worldwide and
Malaysia, suggesting that they may serve as an indicator of wastewater pollution.

Table 1. LABs concentrations (ng/g dw) and relative compound ratios in Kim Kim River and the
Port Dickson coast.

Compound SKK1 b SKK2 SKK3 SPD1 SPD2 SPD3 SPD4

C10-LABs (ng·g−1 dw) a 9.4 7.7 6.8 17.2 15.0 4.2 6.2
C11-LABs (ng·g−1 dw) 16.3 13.0 12.0 66.7 57.0 19.0 30.7
C12-LABs (ng·g−1 dw) 25.6 20.7 18.6 68.6 61.0 24.0 38.0
C13-LABs (ng·g−1 dw) 41.0 32.6 29.5 86.0 78.4 51.2 63.6
C14-LABs (ng·g−1 dw) 26.8 21.1 21.3 17.4 15.6 13.2 14.8

LABs (ng·g−1 dw) 119 95.2 88.3 256 227 112 153
LC-LABs (ng·g−1 dw) c 67.8 53.8 51.0 103 94.0 64.5 78.4
SC-LABs (ng·g−1 dw) d 25.8 20.7 19.0 84.0 71.8 23.2 37.0

I/E e 2.0 1.8 1.7 4.1 3.7 2.0 2.6
L/S g 2.4 2.5 2.6 1.6 1.6 1.7 1.6

C13/C12
h 5.1 5.2 5.2 9.7 9.5 13.7 14.3

LAB degradation (%) f 38 35 34 64 61 40 48
TOC (%) i 1.2 1.0 8.1 2.0 2.3 1.5 1.9

TOC (mg/g) 11.5 9.0 81 19.7 22.7 14.7 18.9

Notes: a C10-LAB: sum of the 26LAB congeners ranging from 5-C10 to 2-C10. b SKK1–3 and SPD1–4: the first
letter indicates the station; the second and third letters represent the first letters of location name; and the numbers
1, 2, 3, and 4 indicate the first, second, third, and fourth station for each respective location. c LC-LABs: sum of
LABs ranging from 6-C13 to 2-C14. d SC-LABs: sum of LABs ranging from 5-C10 to 2-C11. e I/E (C12–LABs): ratio
of (6-C12LAB + 5-C12LAB) relative to (4-C12LAB + 3-C12LAB + 2-C12LAB). g L/S: ratio of (5-C13LAB + 5-C12LAB)
relative to (5-C11LAB + 5-C10LAB). h C13/C12: ratio of (6-, 5-, 4-, 3-, and 2-C13/(6-, 5-, 4-, 3-, and 2-C12LAB). f LAB
degradation (%): LAB deg = 81 × log (I/E ratio) +15 (r2 = 0.96). i TOC (%): total organic carbon.

Table 2 indicates that there is a notable disparity in the allocation of LAB homologs
among the different sampling locations, with a statistical significance level of p < 0.05. The
geographical features of different sampling locations, such as proximity to coastlines, rivers,
or urban centers, as well as industrial discharges, urban runoff, or agricultural activities
and inadequate treatment, could influence the input sources of LAB homologs and their
subsequent distribution [46]. The LABs in KKR contained a higher proportion of homologs
and isomers with C13, followed by C12 and C14 (Figure 2), indicating a substantial difference
in composition compared with other locations. Conversely, the LABs containing C10 and
C11 were present at low levels, suggesting selective degradation of these compounds
during industrial effluent discharge. LC–LABs (long-chain linear alkylbenzenes), such as
C13 and C14, were found to be the primary component of LABs concentration vs. SC–LABs
(short-chain linear alkylbenzenes), like C10 and C11, in the river. The chemical test indicated
that the concentrations of isomers, such as 6-, 5-C13, and 6-C12 were higher than those of
other isomers, suggesting that LC–LABs had been transported over a long distance. At the
SKK1 station, refs. [47,48] observed that a high concentration of C13 homologs was found,
suggesting anaerobic degradation of these compounds. Surprisingly, this study revealed
a higher concentration of LABs than reported by [49], with numerous LABs found in the
mixture of molecules that are isomeric and homologous, particularly LC–LABs, such as
C13–LABs.
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Table 2. Total LABs concentration in sediments among different locations of Kim Kim River and Port
Dickson, Southern Malaysia: (a) ANOVA and (b) post hoc tests.

(a) ANOVA

Sum of
Squares

df
Mean

Square
F Sig. *

Between groups 8410 4 210 7.3 0.000
Within groups 8680 30 289

Total 17,100 34

(b) Post Hoc Tests

Dependent Variable: LAB Concentration

LSD

(I)
Location

(J)
Location

Mean
Difference

(I-J)

Std. Error Sig.

95% Confidence Interval

Lower
Bound

Upper
Bound

1.00 2.00 −21.2 * 9.1 0.03 −39.7 −2.6

3.00 −27.2 * 9.1 0.01 −45.7 −8.6

4.00 −45.1 * 9.1 0.00 −63.7 −26.6

5.00 −9.1 9.1 0.32 −27.7 9.5

2.00 1.00 21.2 * 9.1 0.03 2.6 39.7

3.00 −6.0 9.1 0.52 −24.6 12.6

4.00 −24.0 * 9.1 0.01 −42.5 −5.3

5.00 12.1 9.1 0.20 −6.5 30.6

3.00 1.00 27.2 * 9.1 0.01 8.6 45.7

2.00 6.0 9.1 0.52 −12.6 24.6

4.00 −18.0 9.1 0.06 −36.5 0.6

5.00 18.0 9.1 0.06 −0.53 36.6

4.00 1.00 45.1 * 9.1 0.00 26.6 63.7

2.00 24.0 * 9.1 0.01 5.4 42.5

3.00 18.0 9.1 0.06 −0.6 36.5

5.00 36.0 * 9.1 0.00 17.4 54.6

5.00 1.00 9.1 9.1 0.32 −9.5 27.7

2.00 −12.1 9.1 0.20 −30.6 6.5

3.00 −18.0 9.1 0.06 −36.6 0.53

4.00 −36.0 * 9.1 0.00 −54.6 −17.4
Notes: * The mean difference was significant at the 0.05 level.

The PDC sediments contained the highest concentration of C13–LABs homologs while
having the lowest levels of C10 homologs when compared with all other sites in the region.
The distribution of LABs was dominated by LC–LABs, like C13 and C14, with higher
concentrations than SC–LABs, like C10 and C11. The order of homologs by concentration
was C13, C12, C14, C10, and C11. According to [50], the variation in composition within this
range is probably caused by the growing hydrophobic nature of LABs with longer chains.
In contrast with the detergents analyzed by [41], the sediments in this region had a reduced
amount of C10 homologs in their distribution. Figure 3 illustrates the contrast between the
LC–LABs and SC–LABs in terms of the areas studied, allowing for a comparison between
them. Therefore, LC homologs were discovered to be more plentiful than SC homologs
in the first and second sites. This contrast may be attributed to the greater decline in SC
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homologs, particularly C10 and C11, in the sediments, as documented by [51,52]. LC–LABs,
being longer-chain compounds, are generally less volatile and more hydrophobic compared
with SC–LABs, and this can result in differences in their environmental fate and transport.
LC–LABs may have a greater tendency to adsorb onto particles and sediments due to their
higher molecular weight and hydrophobicity. This enhances their sorption and partitioning
into sediment matrices, making them more likely to be retained in the sediments over time.
LC–LABs also might undergo slower degradation or transformation processes due to their
larger size and more complex structure [53,54].

Figure 2. Compositional profiles of LABs in the Kim Kim River and Port Dickson coast sediments.
(*) indicates the highly significant differences (p < 0.05).

Figure 3. Concentrations of short-chain (SC-LABs), long-chain (LC-LABs), and total linear alkylben-
zenes (LABs) in sediments from the Kim Kim River and Port Dickson samples. (*) indicates the highly
significant differences (p < 0.05).
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3.2. Assessing the Efficiency of LABs Removal from Wastewaters

According to [24], the LABs in KKR mainly originated from physical and biological
treatment effluents due to the high levels of WWTSs present in the study areas. Figure 4 in
their study provides evidence to support this claim. The I/E ratios in KKR varied between
SKK2 and SKK1, with an average of 1.8, indicating that primarily treated effluents were
released into the river water. This finding is consistent with the study conducted by [55].
On average, the L/S ratio fell between 2.4 and 2.6, with detergents showing a ratio higher
than 1.8, indicating that LABs were effectively biodegraded [56]. Furthermore, KKR and
the PDC had an average C13/C12 ratio ranging from 5.1 to 5.2, with an average of 5.1,
surpassing the ratio of 1.7 recorded in coastal sediments.

Figure 4. Values of the I/E, L/S, and C13/C12 ratios in the samples of Kim Kim River and Port Dickson.

On the other hand, the PDC had an I/E ratio ranging from 2.0 to 4.1, which indicated
the discharge of biological treatment effluents in the region. These ratios were considerably
higher than those reported by [34] in Selangor’s river (0.2–1.0), indicating a substantial
discharge of pre-treated effluents in the PDC. Additionally, the degradation of LABs was
observed to occur under aerobic conditions. In order to assess the biodegradation of
LABs in the studied areas, L/S and C13/C12 ratios were used. The presence of LABs
supports the idea that untreated effluents were discharged into the PDC, as previously
mentioned. According to [57,58], over 80 sewage pipelines were identified as sources of
untreated wastewater and effluent discharge from residential areas and hotels, resulting in
a deterioration of coastal quality and protection.

The degradation rates of LABs showed variation across different locations, with lower
rates found in KKR (SKK3, 34%) and higher rates in the PDC (SPD1, 64%). The results
suggest that LABs degrade faster along the PDC shore than in KKR. Over the past few
years, waste discharge from ferries and boats, which are used for recreational and fishing
purposes, directly into KKR has led to an increase in LABs in the river sediments due to the
disposal of detergent waste and washing of boats. These activities have also significantly
impacted molecular indices. Untreated wastewater discharge from physical and biological
treatments in WWTSs is a significant cause of LAB substances in Malaysia. The results
of studies by [59,60] indicate that the KKR region has higher concentrations of industrial
effluents, and it discharges LABs from both domestic and industrial wastewater sources.
These findings suggest that there could be increased transportation of LABs from their
sources to subsequent stages.

3.3. Investigation of TOC

Due to LABs being hydrophobic compounds, they tend to strongly adhere to organic
materials in aquatic environments. Consequently, the concentration of LABs found in
sediments is closely correlated with the quantity of the TOC available [61]. Thus, a weak
correlation (R2 = 0.42) was discovered between the LABs and TOC in sediment samples from
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KKR. However, linear regression analysis showed that the TOC did not have a significant
impact on the distribution of LABs. The primary factor determining the distribution of
LABs in the area was found to be the intensity of their release from various wastewater
sources. Previous studies conducted by [34] in Selangor, Peninsular Malaysia, and by [62]
in Perak Rivers reported modest correlations between LABs and the TOC, with different
R2 values (0.008 and 0.17, respectively). Nevertheless, the PDC revealed a correlation
(R2 = 0.64) between the concentration of LABs and the TOC, indicating that the TOC could
be a significant factor in determining the spatial distribution of LABs from urban and
industrial sources. This discovery aligns with findings from Dongjiang River (R2 = 0.82),
which suggests that industrial and domestic WWTSs are essential sources of organic matter.

3.4. Source Apportionment

During the investigation, significant fluctuations were observed in the I/E ratio, with
readings below 1 at many sites, suggesting the discharge of untreated wastewater into
the aquatic environment. In order to identify potential sources of LABs in KKR and the
PDC shoreline, according to the Kaiser criterion, the data variability at the measurement
points can be described by two components. The performed calculations showed that
PC1 explains 74.40% and PC2 explains 18.27% of the variability. C10–C14-LABs, LC-LABs,
SC-LABs, I/E, L/S, and latitude had the greatest influence on the PC1 component, with
the factor loadings ranging from −0.74 to 0.99. However, these variables resulted in a
decrease in the PC1 value (Figure 5 and Table S3 in the SI file). On the other hand, the
PC2 component was mainly influenced by C13/C12 (−0.815), with a smaller influence
from C10-LABs and C14-LABs (0.671–0.711), which led to an increase in the component.
The strong correlation between C12–C11–SC-Labs-LC-Labs_Degr was confirmed by the
closeness between the variables in Figure 5. Additionally, an increase in longitude and
LS led to a decrease in C13/C12. Finally, it was established that there was no correlation
between C10 and longitude or latitude.

Figure 5. Relationships between factor 1 and factor 2 for loading variables in the sediment samples
of Kim Kim River and Port Dickson coast.
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Figure 6. Projection of measurement points on the plane of factors 1 and 2 for loading variables in
the sediment samples of Kim Kim River and the Port Dickson coast.

4. Conclusions

The concentration of sedimentary LABs varied greatly among the locations studied,
ranging from 88 to 256 ng/g dw. Compared with KKR, the PDC had higher LABs concentra-
tions with more LC homologs than SC homologs. Physical treatment effluents were found
to be the essential source of LABs in KKR, while biological treatment effluents dominated
the PDC, as indicated by the I/E ratios. The high LABs concentrations in the sediment
indicate that the current WWTSs may not be capable of handling the rising population in
the area. This research highlights the ongoing problem of untreated wastewater sources,
i.e., domestic sewage and industrial influent, which could pose increasing risks as the
population expands. According to future projections, the discharge of industrial and urban
effluents into rivers and beaches in Peninsular Malaysia is expected to keep rising. This
underscores the urgency of enhancing the WWTSs. The findings of this study shed light
on the level of pollution in the studied regions, as well as its distribution and sources
of organic pollutants (LABs). Public knowledge of the pollution issues in the studied
regions can be improved, support for pollution control measures, and environmentally
responsible behavior can be encouraged by sharing the findings of environmental moni-
toring studies. This information can be used to inform decisions made by the authorities
about the implementation or modification of pollution control regulations. To decrease
sewage contamination in the near future, more effective STPs are required in neighboring
areas, together with ongoing monitoring of the marine environment to prevent potential
contamination from sewage pollution.
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Abstract: One of the most critical stages for developing groundwater resources for drinking water
use is assessing the water quality. The use of a Water Quality Index (WQI) is considered an effective
method of evaluating water quality. The objective of this research was to evaluate the performance
of six multiple artificial intelligence techniques, i.e., linear regression (stepwise), support vector
regression SVM (linear and polynomial kernels), Gaussian process regression (GPR), Fit binary tree,
and artificial neural network ANN (Bayesian) to predict the WQI in Jizan, Southern Saudi Arabia. A
total of 145 groundwater samples were collected from shallow dug wells and boreholes tapping the
phreatic aquifer. The WQI was calculated from 11 physicochemical parameters (pH, TDS, Ca2+, Mg2+,
Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH). The spatial distribution results showed that higher
values of Cl− and SO4

2− were recorded in the places close to the coastline, indicating the occurrence
of seawater intrusion and salinisation. Seven wells had a WQI of greater than 300, indicating that
the water was unfit for consumption. The results showed that the GPR, linear regression (stepwise),
and ANN models performed best during the training and testing stages, with a high correlation of
1.00 and low errors. The stepwise fitting model indicated that pH, K+, and NO3

− were the most
significant variables, while HCO3

− was a non-significant variable for the WQI. The GPR, stepwise
regression, and ANN models performed best during the training and testing stages, with a high
correlation and low errors. In contrast, the SVM and Fit binary tree models performed the worst in the
training and testing phases. Based on subset regression analysis, the optimum input combination for
WQI model prediction was determined as these eight input combinations with high R2 (0.975–1.00)
and high Adj-R2 (0.974–1.00). The resultant WQI model significantly contributes to sustainable
groundwater resource management in arid areas and generates improved prediction precision with
fewer input parameters.

Keywords: water quality index; artificial intelligence; support vector machine; Gaussian process
regression; stepwise regression

1. Introduction

Groundwater plays an essential role in the overall use and management of water
resources. The demand for groundwater for municipal, agricultural, and industrial use
has grown gradually during the past decades, especially in arid regions like Saudi Arabia,
where groundwater is the primary source of water. In Saudi Arabia, groundwater con-
tributes to nearly 79% of the total water supply, and around 90% is consumed in agricultural
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activity. Many cities, towns, and villages rely exclusively on wells and natural springs for
their municipal water [1,2].

Groundwater quality is determined by the natural and physical state of the water-rock
interactions and by the changes induced by human activities [3]. Groundwater contamina-
tion is generally due to urbanisation, industrialisation, and agriculture that has gradually
developed over the years without considering environmental consequences [4]. Water
quality assessments aim to characterise the chemical, physical, and biological conditions
of groundwater and identify the source of any possible contamination that causes water
quality degradation [5]. Generally, groundwater quality parameters are compared with
permissible levels for a particular use to help indicate contamination sources [6–8]. The
assessment of groundwater quality depends mainly on laboratory investigations carried
out through the measurement of water quality variables, followed by a comparison of the
obtained concentrations with the standards and guidelines [9]. Applied methodologies
for water quality assessment often combine all the variables and present a final value as a
quality index providing meaningful summaries of water quality data useful to technical
and policy individuals and the public interested in water quality [10].

Geographical information systems (GIS) can be a great complementary tool for creating
and developing spatial representations of water quality assessments [8,11]. Gunduz and
Simsek [12] and Usali and Ismail [13] applied a GIS-integrated technique to assess irrigation
water quality in respectively, Turkey and Malaysia. They concluded that water quality
parameters could be produced in the form of a map using model-based GIS techniques and
considered this product as the most suitable method for groundwater potential prediction
zoning.

The application of a Water Quality Index (WQI) is considered an effective method
for evaluating water quality [14]. A WQI is a premium method for understanding and
summarising large numbers of water quality data by integrating complex information
and expressions to represent a combined effect of the variables influencing water quality.
Thus, a WQI enables effective monitoring and evaluation of groundwater quality. Over
the last few decades, WQIs have been widely used for surface water and groundwater
quality assessments worldwide [15,16]. There are many water quality indices, such as the
Weighted Arithmetic Water Quality Index (WAWQI), National Sanitation Foundation Water
Quality Index (NSFWQI), Canadian Council of Ministers of the Environment Water Quality
Index (CCMEWQI), and Oregon Water Quality Index (OWQI). National and international
organisations have formulated these indices dependent on a number of water quality
parameters relative to the specific requirements of a given area [17,18]. Water quality
indices have been shown to demonstrate temporal and spatial differences in water quality,
even at small concentrations, in an accurate and timely manner [19].

There is a current rise in the use of artificial intelligence (AI) techniques to estimate
WQIs [20–24]. Groundwater quality can be understood and monitored using artificial
neural networks (ANNs) and used to predict water quality with great success [25–27]. Also,
other computational intelligence techniques, such as genetic algorithms (GA), support
vector machine (SVM), Fit binary Tree, and Gaussian process regression (GPR), have
attracted growing interest in WQI prediction studies [28,29]. The non-linear structure of
computational intelligence techniques and their ability to anticipate complex occurrences,
handle massive datasets of varying sizes, and accommodate missing data are all advantages.
Additionally, artificial intelligence approaches have been shown to be extremely capable of
forecasting water quality [26,27,30–36].

Gazzaz et al. [30] applied a neural network model for calculating a WQI for the Kinta
River, Malaysia. The model’s WQI predictions were highly correlated with measured
WQI values (r = 0.977). El Bilali and Taleb [31] used eight machine learning (ML) models:
artificial neural network (ANN), multiple linear regression (MLR), decision tree, Random
Forest (RF), support vector machine (SVM), k-nearest neighbour (kNN), stochastic gradient
descent (SGD), and adaptive boosting (AdaBoost) to forecast ten irrigation water quality
(IWQ) parameters in the Bouregreg watershed, Morocco. The findings of the machine

110



Water 2023, 15, 2448

learning models showed that they are cost-effective tools for predicting irrigation water
quality. Kulisz et al. [33] developed an ANN model using five parameters (EC, pH, Ca, Mg,
and K) to forecast a groundwater WQI in Syczyn, Poland. It was concluded that the ANN
tools predicted the WQI at a desirable level of accuracy (r = 0.9992). Kouadri et al. (2021)
used eight artificial intelligence algorithms: MLR, RF, M5P model tree, random subspace
(RSS), additive regression (AR), ANN, SVR, and locally weighted linear regression (LWLR)
to predict a WQI in Illizi region, southeast Algeria. The MLR model had a higher level of
accuracy when compared to other models. Gupta et al. [32] employed machine learning
algorithms to evaluate a WQI in India’s Mid Gangetic Region. They concluded that machine
learning models are a suitable alternative for groundwater water quality evaluation and
may be applied swiftly utilising a data-driven approach. Setshedi et al. [26] employed an
ANN to build the best model for forecasting water quality metrics using data from three
district municipalities in the Eastern Cape Province, South Africa. The findings revealed
that the ANN model is a valuable and reliable tool for optimising the observational network
by identifying key monitoring sites and accurately forecasting the quality of river water
variables. Mokhtar et al. [27] applied three artificial intelligence (AI) and four multiple
regression models to forecast six irrigation water quality criteria. The findings indicated
that these models could be used to make quick decisions about irrigation water quality.

To the best of our knowledge, no research has been published that evaluates the
performance of artificial intelligence approaches to predict WQIs in the area of Jazan and
Tihama plains in the southwestern part of the Red Sea coast of Saudi Arabia. The choice
of the study area takes into consideration its importance to national development in the
Kingdom. The study area and its surroundings are considered one of the most promising
areas in agricultural and industrial development. Thus, the evaluation of the Water Quality
Index in the study area could be useful to help planners and decision-makers to protect
groundwater resources from deterioration.

Hence, the goal of this research is to (i) test a number of advanced artificial intelligence
techniques in their capacity to estimate a WQI using 11 physicochemical parameters
(pH, TDS, Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH) collected from
145 groundwater wells in Jizan, Saudi Arabia, and (ii) to select the statistically optimal
artificial intelligence model in predicting a WQI. The following steps were taken to achieve
this goal. Firstly, the statistical analysis and correlation coefficients for the physicochemical
parameters were determined. Secondly, ArcGIS was used to create maps of the spatial
distribution of groundwater quality metrics. Thirdly, the Weighted Arithmetic Water
Quality Index (proposed by Horton [37]) was used to calculate the WQI. Fourthly, to predict
the WQI, multiple artificial intelligence techniques were used (linear regression (stepwise),
SVM (linear and polynomial kernels), Gaussian process regression (GPR), Fit binary tree,
and ANN (Bayesian)). Finally, the best subset regression analysis was performed to
determine the best input combinations for the WQI model. This study presents two
essential findings, which are as follows: (1) Creating a single-line linear equation that can
be easily applied by water users and decision makers when all parameters are available
(11 inputs); (2) when data are limited, we used the best subset regression model to extract
the optimal input parameters to the ML model for WQ prediction. As a result of this
research, two future plans/strategies for water quality simulations will be developed.

2. Materials and Methods

2.1. Study Area Description

The Jizan study area is located in the southwest corner of Saudi Arabia, directly north
of the border with Yemen. It is located between longitude 41◦56′18′′ E and 43◦15′58′′ E and
latitude 16◦23′8′′ N and 17◦53′56′′ N (Figure 1). The study area covers about 10,753 km2.
Jazan City is located on the Red Sea coast and serves a large agricultural heartland with
a population of 319,119 as of 2021. Based on climate data for Jazan from 1985 to 2010
(Figure 2), Jazan has a hot desert climate with an average annual temperature of more
than 30 ◦C. The weather is extremely hot all year, with daily lows averaging over 25 ◦C
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and highs averaging over 35 ◦C even in the coldest month. The average evaporation
rate is 2000 mm/year (Source: Jeddah Regional Climate Center [38]. The southwestern
region of Saudi Arabia is rich in rainfall compared to other areas of the Kingdom of Saudi
Arabia, with average annual precipitation in the range of 400–700 mm/year [39]. The
watersheds collect these precipitations that exclusively occur during the winter season from
the adjoining hills and channel the collected runoff toward the Red Sea as surface runoff
and/or infiltration into the near-surface aquifers [40,41]. The importance of the study area
for national and economic development was a driving goal for this research.

Figure 1. Location of the study area and wells.

The study area spans the western margin of the Proterozoic Arabian Shield and the
eastern margin of the Cenozoic Red Sea basin. The Cenozoic rocks are represented by
the clastic sedimentary succession underlying the black basaltic sheet of lava flows. The
Quaternary deposits cover about half of the Jazan area in the wadi beds and the coastal
plain. They consist of interbedded clay and sands, silts, cobbles, and gravels of wadi beds
with variable thicknesses from one place to another. The thickness of the alluvial sediments
ranges from 10 m towards the foothills to more than 100 m distant from the highlands in
the southwest parts [2,42].
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Figure 2. Average temperatures, precipitation, and relative humidity in the study area (Station Jizan,
2021).

2.2. Dataset Collection

A total of 145 groundwater samples were collected and chemically analysed from
both shallow dug wells and boreholes tapping the phreatic aquifer (Figure 1). Collected
water samples were analysed for major cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3

−,
SO4

2, Cl−, CO3
2−) by following standard methods suggested by APHA American Public

Health Association (APHA) [43]. Table 1 displays descriptive statistics for physicochemical
variables of the groundwater samples and the maximum permissible limits for various
parameters, according to the WHO [44]. The inverse distance weighted (IDW) interpolation
in GIS was used to map the spatial distribution of the chemical water parameters.

Table 1. Descriptive statistics for physicochemical variables and WHO standards for drinking water.

Element Min. Max. Average
Standard
Deviation

WHO
Guidelines [44]

pH 6.3 8.7 7.7 0.3 7
TDS (mg/L) 128.0 8320.0 1709.6 1293.0 1000
TH (mg/L) 90.6 3676.6 640.8 526.7 500

Ca2+ (mg/L) 23.5 831.7 157.7 131.6 200
Mg2+ (mg/L) 4.4 388.8 60.0 55.9 30
Na+ (mg/L) 1.6 1291.4 307.6 276.3 200
K+ (mg/L) 1.2 188.5 12.4 27.6 12
Cl− (mg/L) 12.8 3669.1 571.6 602.3 250

HCO3
− (mg/L) 9.2 518.1 217.5 89.4 350

SO4
2− (mg/L) 7.2 1098.5 319.8 221.9 350

NO3
− (mg/L) 0.00 34.1 1.8 4.4 50

2.3. Water Quality Index (WQI)

This study uses eleven water quality parameters to calculate a WQI based on the
World Health Organization’s recommended drinking water quality standards (WHO) [44].
The WQI was analysed using the physicochemical parameters of pH, TDS, Ca2+, Mg2+,
Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH. The weighted arithmetic WQI (WAWQI),
proposed by Horton [37], was used to assess the water quality.

WAWQI = ∑n
i=1 WiQi (1)
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where Wi is the relative weight of each parameter (Equation (2)), and Qi (Equation (3)) is
the quality rate scale assigned to each parameter by dividing the parameter concentration
of the water sample by its respective standard as per the WHO guidelines [44] (Table 1).

Wi =
wi

∑n
i=1 wi

(2)

Qi =
Ci
Si

(3)

where wi is the weight of each parameter on a scale of one to five, indicating their relative
relevance for drinking water quality, n is the number of parameters, Ci and Si are respec-
tively the concentration of parameter i, and the standard value of parameter i. Table 2
shows the weights for the various water parameters [33]. Table 3 shows the classification of
water quality according to the WAWQI type and range.

Table 2. Physicochemical parameters’ weights and relative weights [33].

Parameters Weight (wi) Relative Weight (Wi)

pH 4 0.100
TDS 5 0.125
TH 3 0.075

Ca2+ 3 0.075
Mg2+ 3 0.075
Na+ 4 0.100
K+ 2 0.050
Cl− 5 0.125

HCO3
− 1 0.025

SO4
2− 5 0.125

NO3
− 5 0.125

Table 3. Classification of water quality according to the WQI type and range [45].

WAWQI Water Type

<50 Excellent
50–100 Good

100.1–200 Poor
200.1–300 Very poor

>300.1 Unsuitable

2.4. Machine Learning Methods
2.4.1. Multiple Regression

The input parameters of the ANN model were determined using the multiple linear
regression model [46]. The purpose of multiple linear regression analysis is to use known
independent variables to predict the value of a single dependent variable. The weights
of each predictor value indicate how big of an impact it has on the total projection. The
independent variables are water quality measures (X1, X2,..., Xn) for the dependent WAWQI
in this study (Y).

Y = a0 + a1X1 + a2X2 + a3X3 + · · ·+ aiXi + · · ·+ anXn (4)

where Xi: is the dependent variable i; n is the number of the dependent variables, ai is the
ith coefficient of the dependent variable Xi, a0 is the constant term of the model.

2.4.2. Artificial Neural Network (ANN)

ANNs were used to predict the WAWQI using MATLAB’s Neural Network library
(MathWorks, Natick, MA, USA). The ANN model’s input, hidden, and output layers are all
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separate layers, and each layer contains different types of neurons. The input parameters
are entered into the network and stored in input neurons, while the calculated outcomes
are attributed in the output layer by output neurons. The hidden layer acts as a mediator
to connect the input and output layers [47]. There are many different types of ANNs;
one of the most common is the Bayesian regularisation back propagation (BRBP), which
is the type applied in this research. The BRBP is a network training function that uses
Levenberg Marquardt optimisation to update weight and bias variables. It finds the best
mix of squared errors and weights to construct a network that generalises well [48,49].

The input parameters of the ANN model in this work were 11 input neurons, which
included physicochemical parameters such as pH, TDS, Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−,
HCO3

−, NO3
−, and TH, while the output neurons were the WAWQI (Figure 3). In the

hidden layer, nine neurons were used. Moreover, 75% of the dataset was allocated for
training the models, and the remaining were considered for testing and validating the
models.

 
Figure 3. The description of the ANN model for modelling the WAWQI.

2.4.3. Support Vector Machines (SVM)

SVM analysis is a common machine-learning tool for regression analysis and classifica-
tion [50]. Because it uses kernel functions, SVM regression is classified as a non-parametric
approach. The SVM model is used to improve accuracy on low to medium-dimensional
data sets. SVM regression is used to find the linear function for training data x of N
observations with observed response values y.

f (x) = y =

[
w
b

]T[x
1

]
= wTx + b x, b ∈ R

N+1 (5)

where the parameters w and b are the gradient and the intercept, respectively, and ε
represents the tolerance margin, as shown in Figure 4.
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Figure 4. The typical architecture of SVM (one-dimensional linear). ε is the tolerance margin, ξ and
ξ* are the control or slack variables of the error from the regression function, points on margins are
called support vectors (figure adapted after Cantillo-Luna et al. [51]).

The kernel function determines the non-linear transformation applied to the data
before the SVM is trained. In this paper, linear and polynomial kernel functions are used.
The memory usage for cubic SVM is higher than linear SVM [52]. The Machine Learning
Toolbox in MATLAB provides the following linear and polynomial kernel functions:

Linear : G
(

xi, xj
)
= x′i xj (6)

Polynomial : G
(

xi, xj
)
= (1 + x ′

ixj

)q
, where q is in the set {2, 3, 4, . . .} (7)

The Gram matrix is an n-by-n matrix with entries gi,j = G(xi,xj). Each element gi,j
represents the inner product of the predictors as transformed by ϕ. However, no need to
know ϕ; the Gram matrix can be directly constructed using the kernel function. Non-linear
SVM uses this method to determine the best function f(x) in the altered predictor space.
In this paper, x represents the input vector (11 physicochemical parameters), f(x) refers to
WAWQI, and in the polynomial kernel function, q was set as 3 (cubic).

2.4.4. Fit Binary Tree

A binary search tree (BST), also known as an ordered or sorted binary tree, is a rooted
binary tree data structure in which each internal node stores a value that is higher than all
keys in the node’s left subtree but less than those in the node’s right subtree. The temporal
complexity of operations on the binary search tree is related to the tree’s height. Binary
search trees provide a binary search for quick data lookup, addition, and removal and
may be used to construct dynamic sets and lookup tables. Because the nodes in a BST
are arranged so that each comparison skips around half of the remaining tree, the lookup
performance is proportional to that of the binary logarithm. In BST, the left sub-tree has
elements less than the nodes element, and the right sub-tree has elements greater than the
nodes element. A data structure called a BST makes it easy to keep track of a sorted list of
numbers. Because each tree node can only have two children, it is known as a binary tree.
Because it may be used to search for the presence of a number in O(log(n)) time, it is known
as a search tree. BST is a node-based binary tree data structure that has the following
properties: The left sub-tree of a node contains only nodes with keys lesser than the node’s
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key; The right sub-tree of a node contains only nodes with keys greater than the node’s key;
The left and right sub-tree each must also be a binary search tree; there must be no duplicate
nodes. Data representation is carried out in the ordered format, and BST does not allow
duplicate values. The performance of a binary search tree is determined by the sequence in
which the nodes are inserted into the tree; various binary search tree versions may be made
with assured worst-case performance. The fundamental operations are search, traverse,
insert, and delete. BSTs with assured worst-case complexity outperform an unsorted array,
which would need a linear search time. The following pseudocode recursively implements
the BST search method (Algorithm 1).

Algorithm 1. Pseudocode recursively for the BST search method.

Tree-Search(x, key)
if x = NIL or key = x.key then

return x
if key < x.key then

return Tree-Search(x.left, key)
else

return Tree-Search(x.right, key)
end if

The recursive procedure continues until a NIL is reached or the observed and simu-
lated values are in good agreement.

2.4.5. Gaussian Process Regression (GPR)

The GPR mathematical model is a non-parametric kernel-based probabilistic model [53].
It is important in the field of machine learning programming. The essential understanding
of GPR is that the learning sample tracks the past probabilities of the Gaussian process
regression. It is based on calculating the consistent subsequent probability and is built
using the Bayesian linear regression model. GPR uses the kernel to define the covariance of
a prior distribution across the target functions, and the observed training information is
used to explain a likelihood function. Based on the Bayes theorem, a (Gaussian) posterior
circulation across goal functions is explained, and its mean is used for data prediction. GPR
was originally proposed as a ‘principled, practically, and probabilistically based approach
to kernel-making’ [53]. The benefit of GPR over many other methods is that it smoothly
integrates hyper-parameter estimates, model training, and risk evaluations; the results are
less subjectively impacted and more understandable as a consequence. Gaussian processes
(GP) are based on the assumption that the combined dispersion of model output probability
is Gaussian [54].

Polynomial kernel (poly kernel) is a kernel feature that is commonly employed with
the GPR in the initial variables of a function space to develop non-linear models. The
polynomial kernel emerges automatically at the defined characteristics of the input samples
to acquire their likeness, as well as combinations of them. In the context of regression
analysis, such groups are referred to as interactive features. The enclosed polynomial kernel
feature space is similar to a polynomial regression, but it is an educated sum of parameters
that do not have a combinative blow-up. When the features’ input data is binary (boolean),
the features are linked to logical input function conjunctions [55].

The polynomial kernel is well-defined as follows:

K(x, Y) =
(

xT , y + C
)d

(8)

where x and y are vectors in the input space, i.e., vectors of features estimated from workout
or trial samples, and C ≥ 0 is an unlimited parameter balancing the approach of higher-
order vs. lower-order polynomial formulations. When C equals zero, the kernel is said to
be homogenous.
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2.5. Evaluation Indicators

Five statistical indicators were used to assess the performance of the linear regression,
ANN, and SVM models: mean error (ME), mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), coefficient of correlation (R), and
R-squared. The following equations were used to determine these indicators:

ME =
1
N

N

∑
i=1

(Yi − Y∗
i ) (9)

MAE =
1
N

N

∑
i=1

|Yi − Y∗
i | (10)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Yi − Y∗

i
)2 (11)

MAPE =
1
N

N

∑
i=1

∣∣Yi − Y∗
i

∣∣
Y∗

i
× 100 (12)

R =
∑N

I=i
(
Yi − Y

)(
Y∗

i − Y∗)√
∑N

i=1
(
Yi − Y

)2
∑N

i=1
(
Y∗

i − Y∗)2
(13)

where N is the number of measurements, Yi is the measured value for each parameter, Y*

is the estimated value for each parameter, Y is the mean of the measured values of the Y
variables, and Y∗ is the mean of the estimated values of Y* variables.

3. Results and Discussion

3.1. Hydrogeological Aspects

The hydrogeological conditions have been studied in the Jazan area, where the ground-
water is stored in both the alluvial deposits of the wadi systems and the clastic coarse
members of the Cretaceous–Tertiary sedimentary succession [56]. The alluvial aquifer is
composed of the Quaternary wadi deposits that enhance seawater intrusion in the coastal
aquifer [2,57]. The aquifer’s transmissivity ranges from 540 to 5400 m2/day, with an
average of 2190 m2/day, and specific yield ranges between 0.001 and 0.006, increasing
towards west directions, indicating good productivity. The storativity coefficient ranges
between 0.01 and 0.25, with an average of 0.13 increasing toward the west direction [58].
Uncontrolled pumping in many locations has caused a cone of depression with the inland
movement of the seawater fronts. The main recharge components of the aquifer are local
rainfall infiltration that exclusively occurs during floods in the winter season. The shallow
unconfined aquifer is subject to over-exploitation from many scattered wells in the area.
Discharge of the aquifer includes groundwater pumping from wells to provide an adequate
water supply for agricultural and residential areas and evapotranspiration losses in places
where the water table is close to the ground surface [2].

Figure 5 shows the hydrogeological conditions ascertained from the fieldwork, includ-
ing groundwater level compared with the mean sea level (m.asl) and depth of groundwater
in the study area. Groundwater occurs at shallow depths, where groundwater levels vary
from 10 to 33 m below the ground surface (Figure 5b). The piezometric gradient is inclined
towards the west and southwest direction; it varies from 0.005 in the upper parts of the
wadi to 0.001 at the beginning of the coastal plain [2]. Generally, the groundwater flow
is from the east and northeast to the west and southwest toward the sea (Figure 5a); this
might be due to the positive hydraulic gradient set up by the balance between recharge
inland and discharge toward the sea. However, excessive fresh groundwater pumping
in many areas causes a modification of the natural flow systems (reversing the hydraulic
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gradients) and, thus, induces seawater intrusion. However, few areas showed characteristic
cones of depression.

  

(a) (b) 

Figure 5. (a) Groundwater level (m.asl), (b) depth to groundwater in the study area.

3.2. Statistical Analysis

Table 4 presents the descriptive statistics for the 145 water quality samples. Moreover,
the correlation matrix is useful since it independently illustrates each parameter’s impor-
tance and its effect on the hydrochemical relationships. If (r) values in Pearson’s correlation
matrix (Table 5) are +1 or −1, they represent a complete correlation between two variables,
i.e., functional dependence. If the values are near zero, there is no significant interaction
between the two variables at the p < 0.05 level.

Table 4. Descriptive statistics for all input and output variables.

Variable Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

pH 7.66 0.03 0.31 6.33 7.48 7.67 7.82 8.68
TDS 1710 108 1298 128 803 1408 2128 8320
TH 640.8 43.9 528.5 90.6 303.4 473.2 864.0 3676.6

Ca2+ 157.7 11.0 132.0 23.4 73.5 116.6 193.0 831.7
Mg2+ 60.02 4.66 56.08 4.37 27.03 39.00 83.11 388.80
Na+ 307.6 23.0 277.3 1.6 116.4 242.1 365.1 1291.3
K+ 12.44 2.30 27.68 1.17 3.52 5.47 7.62 188.46
Cl− 571.6 50.2 604.4 12.8 173.4 427.9 691.6 3669.1

HCO3
− 217.45 7.45 89.69 9.15 151.94 206.25 266.05 518.06

SO4
2– 319.8 18.5 222.7 7.2 141.2 287.2 427.5 1098.4

NO3
− 1.837 0.363 4.374 0.000 0.330 0.800 1.465 34.140

WAWQI 125.41 7.26 87.40 20.30 64.61 99.46 161.33 592.31

SE Mean: standard error of mean, St Dev: standard deviation, Q1: first quartile, Median: middle number, Q3:
third quartile.
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Table 5. The Pearson correlation coefficient of the variables, values of R > 0.5, are shown in bold.

pH TDS TH Ca2+ Mg2+ Na+ K+ Cl− HCO3
− SO4

2– NO3
−

pH 1
TDS −0.098 1
TH −0.203 0.873 1

Ca2+ −0.198 0.837 0.961 1
Mg2+ −0.182 0.803 0.918 0.771 1
Na+ 0.014 0.906 0.586 0.567 0.533 1
K+ −0.004 −0.045 0.003 −0.004 0.012 −0.108 1
Cl− −0.053 0.977 0.847 0.818 0.770 0.891 −0.056 1

HCO3
− −0.220 0.007 0.021 0.011 0.033 −0.004 0.045 −0.102 1

SO4
2– −0.140 0.753 0.675 0.629 0.648 0.668 0.008 0.610 0.091 1

NO3
− −0.273 0.152 0.261 0.289 0.185 0.030 0.009 0.091 0.235 0.253 1

3.3. Chemical Analysis, Spatial Distribution, and Correlation Coefficients

The results of the chemical analysis indicated that the dominant cations are Na+,
followed by Ca2+ and Mg2+, while the dominant anions are Cl− followed by SO4

2− and
HCO3

−, with a minor contribution of NO3
−. Cations and anions reflect sodium chloride

water type (Table 1). The pH of the groundwater ranges between 6.33 and 8.68, with an
average of 7.66 indicating more or less neutral groundwater that is generally suitable for
drinking. TDS is an important parameter for assessing salinity hazards and suitability
for drinking and irrigation. The TDS ranges from 128 mg/L in the boreholes located
further inland to 8320 mg/L close to the coastline, with an average of 1709 mg/L; thus, a
wide range of variation was detected (Figure 6). The higher TDS values are recorded in
groundwater wells near the Red Sea coast, indicating significant groundwater salinisation
due to seawater intrusion. This seawater intrusion in the coastal aquifer of Jazan was
confirmed by Abdalla [42], Abdalla et al. [2], Al-Bassam and Hussein [57].

 

Figure 6. Total dissolved solids (TDS) zonation map for the study area.
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The increase of Ca2+ and Mg2+ concentrations with the increasing salinity could
indicate reverse ion exchange in the aquifer. High Cl− and SO4

2− concentrations were
recorded in places close to the coastline and indicate seawater intrusion.

The spatial distribution of the major cations (K+, Na+, Mg2+, Ca2+) and major anions
(SO4

2–, Cl−, HCO3
−, NO3

−) is shown in Figures 7 and 8, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 7. K+ (a) Na+ (b) Ca2+ (c) Mg2+ (d) distribution (zonation map) for the study area.
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(a) (b) 

  

(c) (d) 

Figure 8. SO4
2– (a) Cl− (b) HCO3

− (c) NO3
− (d) distribution (zonation map) for the study area.

3.4. Water Quality Index Distribution and Classification

The calculated WAWQI shows that 15 wells have a score of less than 50, indicating
excellent water quality, according to Kumar et al. [45] (Table 3). The WAWQI of 58 wells
ranges from 50.1 to 100, indicating good quality water. Figure 9 depicts the WQI classifica-
tion: 52 wells have a WQI of 100.1–200, indicating water of poor quality, and 13 wells have
a WQI of 200.1–300, indicating water of extremely poor quality. Finally, seven wells have
a WQI of greater than 300, indicating that the water is unfit for consumption. The spatial
distribution of the WQI over the region is depicted using inverse distance weighted (IDW)
interpolation in Figure 10.
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Figure 9. Classification of water quality according to the WAWQI.

 

Figure 10. WAWQIs spatial distribution in the study area.
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3.5. Evaluation of Data-Driven Models in WQ Prediction

The data were fitted using stepwise regression for the linear regression model, which
produced a model that closely matched the observed and predicted WAWQI values. The
input data were first structured as a dataset array, and the response data (WAWQI) were
then arranged as a column vector. Each row of input data represents one observation. The
regression model is then developed. The stepwise fit model begins with a single model,
such as a constant, and then adds or subtracts terms one by one. Then, in a greedy manner,
it selects an ideal parameter each time until it can no longer improve. The data should then
be checked for outliers. The model coefficients obtained from the linear regression model
are presented in Table 6. The model findings for this case study show that pH, K+, and
NO3

− are the most significant variables and HCO3
− is considered an insignificant variable.

The model appears as in Equation (14). R2 = 1 indicates that the data fit the model well.
The MSE is 0.003, and the RMSE is 0.0023. Figure 11 shows the comparison of predicted
and measured WAWQI.

WAWQI = −0.0057308 + 1.4292 pH + 0.069523 TH − 0.098639 Ca2+ + 0.025649 Mg2++

0.050002 Na+ + 0.41667 K+ + 0.050032 Cl− + 0.0071646 HCO3
− + 0.03574 SO4

2− + 0.24998 NO3
− (14)

Table 6. Model coefficients from multiple regressions.

Estimate SE p Value

Intercept −0.005731 0.0070781 0.41958
pH 1.4292 0.0008888 <0.00000
TDS 0.012481 1.18 × 10−5 <0.00000
TH 0.069523 0.018668 0.0002884

Ca2+ −0.098639 0.046613 0.036195
Mg2+ 0.025649 0.076817 0.73898
Na+ 0.050002 1.91 × 10−5 <0.00000
K+ 0.41667 1.09 × 10−5 0
Cl− 0.050032 1.73 × 10−5 <0.00000

HCO3
− 0.007165 1.02 × 10−5 <0.00000

SO4
2– 0.03574 1.30 × 10−5 <0.00000

NO3
− 0.24998 6.28 × 10−5 0

 

Figure 11. Observed and predicted WAWQI values.

The best result for the ANN modelling was obtained for the network with nine neurons
after 19 iterations, while the best validation result was displayed for the network after 13
iterations (Figure 12).
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Figure 12. ANN modelling validation with a best performance MSE of 0.048016 at iteration 13.

The ME, MAE, RMSE, MAPE, regression factor R, and R2 were used to validate the
applied models’ performance (Table 7). The scatterplots of the predicted and calculated
WAWQI for the applied models in the training stage (right) and testing stage (left) are
shown in Figure 13.

  

  

  

Figure 13. Cont.
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Figure 13. Predicted vs. calculated WAWQI for the applied models in the training stage (right) and
testing stage (left).

Table 7. The performance indices of the developed models for the WAWQI during the training and
testing stages.

Model/Indices ME MAE RMSE MAPE % R R2

Fit binary tree Training 0.00 6.066 10.085 4.920 0.9884 0.9942
Testing 0.00 7.723 10.222 8.772 0.9701 0.9849

SVM (linear)
Training 1.920 3.388 3.825 3.380 0.9988 0.9994
Testing 3.185 4.469 4.688 5.642 0.9976 0.9988

SVM (polynomial kernel) Training −0.234 6.424 8.144 5.453 0.9953 0.9976
Testing −1.078 8.302 10.040 9.343 0.9753 0.9876

Gaussian process
regression (GPR)

Training 0.00 0.1935 0.2552 0.234 1.00 1.00
Testing 0.00 0.2529 0.326 0.391 1.00 1.00

Linear regression
(stepwise)

Training 0.00 0.0023 0.0028 0.0025 1.00 1.00
Testing 0.00 0.0024 0.0029 0.0014 1.00 1.00

ANN
Training 0.088 0.088 0.0884 0.0969 1.00 1.00
Testing 0.074 0.074 0.075 0.0982 1.00 1.00

The GPR, linear regression (stepwise), and ANN models all worked perfectly in the
training and testing phases, as shown in Table 7. In both phases, these models had a high
correlation, nearly to one, and small statistical errors. The linear regression (stepwise)
model produced the best results, with MAE = 0.0023, RMSE = 0.0028, MAPE = 0.0025%,
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R = 1.0, and R2 = 1.0. The ANN model came in second with MAE = 0.088, RMSE = 0.0884,
MAPE = 0.0969%, R = 1.0, and R2 = 1.0. At the same time, the GPR model came in third
with MAE = 0.194, RMSE = 0.255, MAPE = 0.234%, R = 1.0, and R2 = 1.0. This was followed
by the SVM (Linear) model with MAE = 3.39, RMSE = 3.83, MAPE = 3.38%, R = 0.9988, and
R2 = 0.9994. The SVM (Gaussian kernel) and Fit binary tree models performed the worst
in the training and testing phases of the prediction procedure. For the SVM (polynomial
kernel) model, the MAE, RMSE, MAPE, R, and R2 were 6.42, 8.14, 5.45%, 0.9953, and 0.9976,
respectively. For the Fit binary tree, the MAE, RMSE, MAPE, R, and R2 were 6.07, 10.09,
4.92%, 0.9884, and 0.9942, respectively (Table 7).

Overall results showed that the proposed methods generated satisfactory outputs for
estimating WAWQI close to observed data. The results obtained are highly satisfactory com-
pared with the findings from Sakaa et al. [59], who showed that a combination of all input
parameters attained a best predictive performance of R2 testing = 0.82, RMSE testing = 5.17,
while a couple of five input parameters, such as pH, EC, TDS, T, and saturation, achieved
the second-best predictive precision (R2 testing = 0.81, RMSE testing = 5.55). In addition,
the current findings are in agreement with the results of Mokhtar et al. [27], who used SVM,
extreme gradient boosting, Random Forest and stepwise regression, principal components
regression, partial least squares regression, and ordinary least squares regression for WQI
modelling and stated that all models used with values less than 0.1 show good prediction
ability for all indices. These findings were extremely acceptable and agreed with those sug-
gested by Elbeltagi et al. [60], who applied additive regression (AR), M5P tree model (M5P),
random subspace (RSS), and SVM in WQI modelling and found that AR outperformed the
other data-driven models (R2 = 0.9993, MAE = 0.5243, RMSE = 0.06356, RAE% = 3.8449,
and RRSE% = 3.9925). The AR was offered as an optimal model with good outcomes due to
improved prediction precision with the fewest input parameters. Moreover, eight artificial
intelligence algorithms, e.g., multi-linear regression (MLR), random forest (RF), M5P tree
(M5P), random subspace (RSS), additive regression (AR), artificial neural network (ANN),
support vector regression (SVR), and locally weighted linear regression (LWLR) have been
applied by Kouadri et al. [35]. Their results stated that the MLR model performed better
than the other models, whereas the RF model performed better. Also, the model results
coincide with Kouadri et al. [36], who implemented long short-term memory (LSTM),
multi-linear regression (MLR), and ANN and stated that the results are highly accurately
predicted using ANN and MLR models compared to LSTM model. These models also
generated more favourable outcomes than those achieved by Iqbal et al. [61], who used
the WASP8 for water quality simulations. Their results clarified that Pearson correlation
coefficient values are around 0.66, 0.68, and 0.58, respectively.

3.6. Best Subset Regression for Selecting the Most Important Parameters

Feature selection is one of the most important stages in a soft computing model to
forecast and predict phenomena with many input variables. There are several approaches to
specify the best combinations among all possible, including best subset regression, mutual
information, and forward stepwise selection. The best subset regression analysis was
performed in the current study to determine the best input combinations for the WAWQI
model. For this purpose, six statistical criteria, including MSE, determination coefficients
(R2), adjusted R2, Mallows’ Cp, Akaike’s AIC, and Amemiya’s prediction criterion (PC),
were computed, and the results are shown in Table 8. As can be seen, the eight bold input
combinations have the lowest values of Amemiya’s PC (from 0.00 to 0.027) among all input
combinations. These eight input combinations have a high R2 (from 0.975 to 1.00) and
high Adj-R2 (from 0.974 to 1.00) and were identified as the best input combination for the
prediction of the WAWQI model. It is noteworthy that a total of 145 datasets were randomly
split into two training and testing subsets. Moreover, 75% of the datasets were allocated
for training the models, and the remaining were considered for testing and validating the
models.
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Table 8. The best subset regression analysis for determining the best input combinations to
model WQI.

No. of
Variables

Variables MSE R2 Adjusted
R2

Akaike’s
AIC

Schwarz’s
SBC

Amemiya’s
PC

1 NO3 7467.34 0.02 0.023 1295.139 1301.092 0.984
2 SO4/NO3 3356.68 0.56 0.561 1180.181 1189.112 0.445
3 HCO3/SO4/NO3 3342.15 0.57 0.563 1180.527 1192.434 0.446
4 Cl/HCO3/SO4/NO3 197.359 0.975 0.974 771.240 786.124 0.027
5 K/Cl/HCO3/SO4/NO3 60.957 0.992 0.992 601.848 619.708 0.008
6 Na/K/Cl/HCO3/SO4/NO3 17.220 0.998 0.998 419.503 440.340 0.002
7 Mg/Na/K/Cl/HCO3/SO4/NO3 1.773 1.000 1.000 90.825 114.639 0.000
8 Ca/Mg/Na/K/Cl/HCO3/SO4/NO3 0.184 1.000 1.000 −236.474 −209.684 0.000
9 TH/Ca/Na/K/Cl/HCO3/SO4/NO3 0.184 1.000 1.000 −236.474 −209.684 0.000
10 TDS/TH/Ca/Na/K/Cl/HCO3/SO4/NO3 0.161 1.000 1.000 −255.097 −225.330 0.000
11 pH/TDS/TH/Ca/Na/K/Cl/HCO3/SO4/NO3 0.000 1.000 1.000 0.000 0.000 0.000

The best models for the selection criteria are displayed in bold.

4. Conclusions and Outlook

This study analysed the ability of six different AI techniques and regressions, such
as linear regression (stepwise), support vector regression SVM (linear and polynomial
kernels), Gaussian process regression (GPR), Fit binary tree, and artificial neural network
ANN (Bayesian) for forecasting a WQI based on 11 physicochemical parameters (pH, TDS,
Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH) collected from 145 groundwater
wells in Jizan, Saudi Arabia.

The outcome of the resultant WQI model clearly identified (forecasted and predicted)
the best input combination for the prediction of the WAWQI model. This might contribute
significantly to the knowledge and understanding of the groundwater quality within the
study area and its impact on any agricultural investments and sustainable development,
as the study area has high importance to national and regional economic development
especially agricultural and industrial activities.

In addition, ArcGIS was used to create maps of the spatial distribution of groundwater
quality parameters. The best subset regression analysis was used to find the optimum input
combinations for the WQI model.

The following findings have been obtained:

- Higher levels of Cl− and SO4
2− were found near the coast, which is indicative of

seawater intrusion and serves as a proxy for salinisation. Furthermore, seven wells
had a WAWQI of more than 300, suggesting that the water is unsafe for human
consumption.

- The results of the stepwise fit model revealed that pH, K+, and NO3
− are the most

important variables, while HCO3
− is a non-significant variable. The best results

were obtained from the simulated ANN modeling for the nine-neuron network after
19 iterations, whereas the best validation performance was 0.048016 at iteration 13.

- The GPR, linear regression (Stepwise), and ANN models worked flawlessly during
the training and testing stages, with a high correlation of 1 and low statistical errors.

- The linear regression (stepwise) model generated the best results, with MAE = 0.0023,
RMSE = 0.0028, and R = 1.0. This good performance is due to its special mechanism
with repeated regressions, each time deleting the weakest associated variable until the
observed and measured values fully match. The ANN model came in second with
MAE = 0.088, RMSE = 0.0884, and R = 1.0. The GPR model finished in third with
MAE = 0.194, RMSE = 0.255, and R = 1.0. The SVM (Linear) model was next, with
MAE = 3.39, RMSE = 3.83, R = 0.9988.

- The SVM (polynomial kernel) and Fit binary tree models performed the worst during
the training and testing phases of the prediction procedure.

- The optimum input combination for WAWQI model prediction was the eight input
combinations with high R2 (from 0.975 to 1.00) and high Adj-R2 (from 0.974 to 1.00).
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These findings are of importance to water planners in terms of WQI for enhancing
sustainable groundwater resource management policies.

In conclusion, the best subset regression analysis is useful, and when only a portion of
the relevant data are available, we can use the best subset regression model to determine
which input parameters will best match the ML model for WQ prediction.

This study recommends not using SVM (polynomial kernel) and Fit binary tree models
because of performing the worst during the training and testing phases of the prediction
procedure. It can be recommended, in future works, standalone and hybrid artificial
intelligence models for predicting WQIs in several regions under different conditions
should be developed to recommend which model is most suitable for all these regions
based on limited input variables. Future research can also incorporate depth to groundwater
variation data into AI/ML methods to investigate its effects on groundwater quality. It is
also recommended that seawater intrusion be controlled in the study area by implementing
one of the following techniques: decreasing pumping rates, hydraulic barriers, artificial
recharge using treated wastewater [62–64], using a freshwater surface recharge canal [65],
cutoff walls [66,67], and brackish water pumping [68].
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Abstract: It is a well-known fact that water bodies are crucial for human life, ecosystems and
biodiversity. Therefore, they are subject to regulatory monitoring in terms of water quality. However,
land-use intensification, such as open-cast mining activities, can have a direct impact on water quality.
Unfortunately, in situ measurements of water quality parameters are spatially limited, costly and
time-consuming, which is why we proposed a combination of hyperspectral data, in situ data and
simple regression models in this study to estimate and thus monitor various water quality parameters.
We focused on the variables of total iron, ferrous iron, ferric iron, sulphate and chlorophyll-a. Unlike
other studies, we used a combination of airborne hyperspectral and RGB data to ensure a very
high spatial resolution of the data. To investigate the potential of our approach, we conducted
simultaneous in situ measurements and airborne hyperspectral/RGB aircraft campaigns at different
sites of the Spree River in Germany to monitor the impact of pyrite weathering on water bodies
after open-cast mining activities. Appropriate regression models were developed to estimate the five
variables mentioned above. The model with the best performance for each variable gave a coefficient
of determination R2 of 64% to 79%. This clearly shows the potential of airborne hyperspectral/RGB
data for water quality monitoring. In further investigations, we focused on the use of machine
learning techniques, as well as transferability to other water bodies. The approach presented here
has great potential for the development of a monitoring method for the continuous monitoring of
still waters and large watercourses, especially given the freely available space-based hyperspectral
missions via EnMAP.

Keywords: remote sensing; hyperspectral data; RGB; in situ; ochre-coloured rivers; pyrite weathering;
water constituents; water quality

1. Introduction

The abundance, distribution and use of water are becoming ever more critical on
a global scale [1]. Nevertheless, water is a decisive factor in the evolution, distribu-
tion and maintenance of ecosystems and biodiversity. Severe anthropogenic influences
(e.g., eutrophication, extraction, contamination, sewage, toxins, coal mines and climate
change) have already led to a partially irreversible deterioration and disturbance of fresh-
water ecosystems, their associated biodiversity and their loss of ecosystem services.
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Lignite and coal are important energy sources in many countries. However, mining
directly and indirectly affects surrounding ecosystems and nearby water bodies [2]. Before
contaminated water is discharged into local surface waters, it is often collected in sedimen-
tation ponds and treated with lime [3]. The liming process generates copious amounts of
chemically stable sludge, which contains heavy metals. Furthermore, the groundwater
level is also lowered during open-cast mining activities. In areas with soils containing iron
disulphide minerals, e.g., marcasite or pyrite, low groundwater levels enable the reaction
between these minerals, atmospheric oxygen and precipitation water, which leads to the
decomposition of the minerals into sulphate, ferrous iron (Fe(II)) ions and hydrogen [4,5].
The low groundwater level also has a negative impact on the surrounding flora and fauna,
as well as stream biodiversity [6–9]. When the open-cast mining activities are over, renatu-
ration occurs and the groundwater rises naturally. Through this process, the products of
pyrite weathering reach the local surface waters through aquifers [6]. In the oxygen-rich
surface waters, the Fe(II) ions oxidise to ferrous iron (Fe(III)) ions and flocculate, leading to
an ochre-like colouring of the water, which is consequently called ochre-coloured water.
The ochre causes high turbidity in the water, and the deposition of iron precipitates, thus
attenuating the living conditions for sediment dwellers. As a result, biodiversity in the
affected areas decreases [10].

Monitoring of the effects of open-cast mining and subsequent renaturation using in
situ measurement methods has been carried out for some time now. However, extensive
temporal and spatial studies are time- and cost-intensive [11]. Airborne and spaceborne
multispectral [12] and hyperspectral remote sensing (RS) [13] provide an alternative ap-
proach for monitoring various water quality indicators [14,15]. RS approaches provide
continuous spatial and temporal maps of specific water quality parameters. Furthermore,
they enable efficient, repeatable and standardised monitoring of a specific area and the
identification and quantification of water constituents [12,16].

Owing to technical and methodological developments, hyperspectral RS is being increas-
ingly used to derive water quality parameters, such as chlorophyll a (Chl-a) content [17],
turbidity and visibility [18], depth [19] or coloured dissolved organic matter (CDOM) [17].
The quality of RS approaches and algorithms was greatly improved by the use of in situ
monitoring data for calibration and validation. The use of hyperspectral RS approaches to
detect water characteristics will play a crucial role in the regional and global monitoring of
water quality indicators in the context of existing and future hyperspectral satellite missions,
such as the DLR Earth Sensing Imaging Spectrometer (DESIS) [20], the Environmental
Mapping and Analysis Program (EnMAP) [21], the PRecursore IperSpettrale della Missione
Applicativa (PRISMA) [22] or the Hyperspectral Imager Suite (HISUI [23]).

Knowledge of the traits of water and its dissolved and particulate components forms
the basis for numerous RS algorithms [24,25]. Consequently, all optically active water
constituents determine the reflectance (RRS) of the water through the specific absorption
and backscattering behaviour per wavelength [26]. On the other hand, the RS of water con-
stituents often relies on empirical models [16,25,27]. These models try to establish statistical
relationships between remote sensing signals and in situ data from locally collected water
samples. In empirical models, mechanistic explanations based on the radiative transfer
equation are considered from statistical correlations. For waterbodies with similar optical
properties, empirical models based on a limited amount of local field data may provide fast
and accurate results with a high spatial resolution for a specific aquatic environment [28].

The relevant spectral range to derive optically active water constituents, i.e., CDOM,
phytoplankton and total suspended matter (TSM) [25,29], ranges between 400 and 1000 nm.
Water absorbs a large amount of sunlight and exhibits low backscattering behaviour, which
only increases within the wavelength range of 400 to 500 nm [30]. CDOM mainly absorbs
light within the wavelength range of 400 and 500 nm [31,32]. Therefore, most CDOM-
derivation models are based on this wavelength range [33]. Humic substances and other
dissolved organic carbon (DOC) are often assigned to this group. Phytoplankton is one of
the living and particulate components of waters measured using RS and Chl-a, which is
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a key molecule of photosynthetically active organisms that is often used as an indicator
of biomass production. The spectral characteristics of Chl-a include the low reflectance
between 400 and 500 nm [32] and maximum reflectance at 580 nm [27,30]. The non-
living particulate matter can be assigned to TSM. This group includes particulate organic
deceased matter or small sand particles [30]. Water bodies with a high TSM concentration
exhibit increased backscattering behaviour. In addition to the abovementioned active water
constituents, TFe, Fe(II), Fe(III) and sulphate also affect the water colouring.

Repic et al. [34] already used multispectral video data with three spectral channels
in the wavelength range from 400 to 1500 nm to detect the iron ions of two abandoned
open pit lakes. Furthermore, Anderson and Robbins [35] developed a method to spectrally
discriminate acid mine drainage (AMD) and natural streams using water samples, in situ
spectral data and multispectral RS data. They found that a pH < 4 may have prevented the
oxidation of Fe(II) to Fe(III). As a result, iron could not precipitate in the form of Fe(III). On
this basis, Anderson and Robbins [35] found wavelengths at 650 nm and 750 nm to be very
sensitive to iron oxides. Williams et al. [36] used the same airborne multispectral video
system to identify and map AMDs. At a pH of 3.2 and 6.9, they were able to show that the
650 and 750 nm wavelengths were sensitive enough to visualize the ochre precipitates of
the mine water.

Following the initial studies on AMDs, in subsequent years, research focused on
open-cast mining residual lakes [30,37,38].

In recent decades, significant progress was achieved in monitoring and assessing
the quality of inland waters using RS [12,15,25]. Through improved computer-based
interpretation techniques and spectrally (up to 3.25 nm per channel) plus spatially (up to
50 cm ground sampling distance) high-resolution satellites, coastal zones and lakes were
increasingly monitored [39–41]. Owing to their small spatial extent and complex chemical
composition, small watercourses have received relatively little attention [42] and the focus
of previous analyses was on very wide rivers, such as the Mississippi, the Gironde or the
Rhein, and river estuaries [13,43–46].

By using the institute’s own gyrocopter with extensive sensor technology (hyperspec-
tral/RGB/TIR), Fe(II) and Fe(III) were thus recorded, modelled and derived separately for
the first time with low spatial RS data resolution (50 cm), even with lower concentrations
of iron for smaller flowing watercourses with a neutral pH.

The objectives of this study were as follows:

• To show that airborne hyperspectral/RGB RS technologies are suitable for monitoring
water quality parameters for small streams.

• To propose simple linear modelling approaches for modelling and predicting TFe,
Fe (II), Fe(III), sulphates and Chl-a in ochre streams.

• To develop and test a robust procedure to derive TFe, Fe(II), Fe(III), sulphates and
Chl-a based on airborne hyperspectral RS data and simultaneous field sampling in a
river section influenced by mining activities.

• To transfer the point results from the in situ field sampling to the area.
• To discuss the framework conditions as well as the limitations of the presented approach.

2. Materials and Methods

2.1. Study Area

The study area was located southeast of Berlin in Lusatia along the River Spree and
extended from the village Ruhlmühle to the end of the Spremberg reservoir (Figure 1). The
flow direction of the Spree was from south to north.
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Figure 1. Study site in the south-east of Berlin in Lusatia along the Spree River from the Ruhlmühle
village to the Spremberg reservoir. The flow direction of the Spree from south to north. (a–c) shows
the sites for more in-depth studies.

Open-cast lignite mining in Lusatia has the greatest impact on this section of the
river [47]. Increased loads from the products of pyrite weathering into the Spree River
caused (1) an increased concentration of sulphate, (2) an increased concentration of Fe(II)
and Fe(III), and (3) increased turbidity of the water body owing to sludge formation.

In the mid-20th century, the groundwater level in the study area was lowered signifi-
cantly due to open-cast mining. Consequently, the pyrite in the soil reacted with oxygen
in the air and precipitation water (Figure 1) and subsequently disintegrated into Fe(II),
sulphate and hydrogen ions. Following the implementation of recovery measures in 1990,
many open-cast mines were closed and flooded via the natural process. Thus, the ground-
water level rose in many parts of the mining area [48]. The products of pyrite weathering
in the hydrosphere reached surrounding surface waters via aquifers. The Fe(II) ions were
oxidized in the oxygen-rich water to Fe(III) ions [5].
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In pH-neutral water bodies, Fe(III) ions were hydrolyzed to ferrous-oxyhydroxide
(Fe(III)-oxyhydroxide) and flocculated [5,49]. A Fe(III)-hydroxide concentration of 2 mg/L
causes the water to appear yellow-to-reddish-brown in colour [50,51]. The process of iron
clogging is schematically summarized in Figure 2.

 
Figure 2. Schematic diagram of the weathering of pyrite from the source material (pyrite) to the
clogging in the flowing water (Spree), Fe(III)-oxyhydroxide is represented by Schwertmannite.

The municipalities of Ruhlmühle and Spreewitz, the mouth of the industrial canal of
Schwarze Pumpe industrial park, the pre-dam Bühlow and the Spremberg reservoir were
significant spots in the study area (Figure 1). Analyses conducted by Bilek and Koch [6]
showed the discharge of Fe(II) loads from anoxic groundwater into the oxygen-rich river
water. Uhlmann et al. [52] observed the input of large amounts of Fe(II) into the river at
the village Ruhlmühle (SP 1 in (Figure 1). In the oxygen-rich water and under natural pH
conditions, the Fe(II)-oxide flocculated out as Fe(III)-oxyhydroxide, causing an ochre colour
in the river water.

At Spreewitz (SP 7 in Figure 1), the Kleine Spree River flows into the Spree River and
is enriched with iron. In the south of Trattendorf town (SP 8 in Figure 1), the canal from the
Schwarze Pumpe industrial park increases the sulphate concentration in the Spree River.
The treatment of the water in a pre-dam of the Spremberg reservoir (Bühlow) is intended
to increase iron retention [53] (SP 18 in Figure 1). In the Spremberg reservoir, the reduced
flow velocity leads to the deposition of Fe(III)-oxyhydroxide, as well as reduced turbidity
(between SP 18 and 19 in Figure 1). This process significantly reduces the brown colouring
of the Spree below the Spremberg reservoir.

2.2. In Situ Data

On 22 September 2019, a field campaign was conducted to simultaneously collect
RS data and field samples to develop empirical derivation models. Water samples were
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taken between 10 a.m. and 2 p.m. at the same time that a gyrocopter flew over (see
Section 2.3) using a scoop down to a depth of 30 cm. Thus, every sample represented a
composite sample of the top water column. The in situ data served as reference data for the
development of additional empirical models in order to derive the distribution of water
constituents over an extensive area from airborne hyperspectral data.

The total iron (TFe) was measured following digestion with 2 mL of H2O2 (5%) and
2 mL of H2SO4 (5 M) according to DIN 38406 using flame-atomic absorbance spectroscopy
(AAS PinAAcle 900T, PerkinElmer, Waltham, MA, USA). The dissolved Fe(II) analysis
was prepared on site according to DIN 38406 by stabilizing 15 mL of the filtrated water
sample with 0.15 mL of 5 M sulphuric acid and storing it free of air bubbles. On the same
day, the concentration of Fe(II) was determined photometrically after complexation with
1.10 phenanthroline (Spekol 1500, Analytik Jena, Jena, Germany). The total Fe(III) concen-
tration was calculated using the difference between the TFe concentration and the Fe(II)
concentration. Sulphate was determined according to DIN EN ISO 10304-1 by filtering the
water sample on site. The sulphate concentration was quantified using ion chromatography
(Compact IC Flex 930, Metrohm, Switzerland). To determine the dissolved substances, the
sample was filtered using a syringe with a 0.45 μm filter (cellulose acetate; Whatman GmbH,
Dassel, Germany). The unfiltered water samples for determining the Chl-a concentration
were stored on site in 1 L vessels in a dark and cool place and processed further within
24 h. In the laboratory, the analysis was performed via HPLC (Waters Alliance, Milford,
MA, USA) according to the procedure reported by Mehnert et al. [54]. The uncertainty of
the analytical replicates in these analyses was typically <3%.

2.3. Remote Sensing Data

The gyrocopter at the Institute for Geoinformation and Surveying of the Anhalt Univer-
sity (see Figure 3) was used to record the hyperspectral RS data (HySpex VNIR, VSWIR) in
the research area within the wavelength range of 400–2500 nm. The flight altitude was 600 m.
Usually, hyperspectral data within the wavelength range of 400–1000 nm are used to derive
water constituents. Because of the high turbidity and high TFe concentration throughout
the study area, the wavelength range of 1000–2500 nm will be investigated further.

 

Figure 3. (a) Image of the gyrocopter from the Institute for Geoinformation and Surveying of HSA
and (b) the measurement technology on the co-pilot’s seat. Integrated sensor technology: (c) Nikon
D800e modified by ATS, (d) HySpex VNIR, (e) HySpex SWIR from Neo, (f) GNSS receiver from PPM
and (g) IMU from iMAR.
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For the monitoring, the digital camera NIKON D800e (see Figure 3c) and the hyper-
spectral sensors HySpex VNIR 1600 (400–1000 nm) and HySpex SWIR 384 (1000–2500 nm)
from Norsk Elektro Optikk AS (Neo) were used as optical sensors (see Figure 3d,e). An
inertial navigation system (INS) was used for the high-precision acquisition of position and
orientation data. The INS consisted of a GNSS receiver from PPM and an inertial measure-
ment unit (IMU) from iMAR (see Figure 3f,g). The sensors are triggered automatically by
the flight management software Aviatrix.

To detect small but significant spectral differences, the spectral sampling rate of the
HySpex VNIR was set to a bandwidth of 7.4 nm. This resulted in 80 channels within the
spectral wavelength range of 400–1000 nm. At an altitude of 600 m, the ground-sampling
distance (GSD) was 20 cm. The data from the HySpex SWIR had a spectral sampling rate of
5.45 nm with 288 channels within the wavelength range of 1000–2500 nm. The GSD of the
HySpex SWIR was 60 cm at a flight altitude of 600 m.

As a basis for processing the hyperspectral data, a near-true orthophoto with a GSD
of 6 cm was calculated from the RGB images using the structure from motion (SfM) algo-
rithm [55]. This served as the basis for determining the boresight angle for processing the
hyperspectral data. These data were rectified, georeferenced and atmospherically corrected
using PARGE Version 3.3 [56] and ATCOR-4 Version 7.2 [57] software. Owing to the flight
altitude of 600 m and a field of view of the hyperspectral sensors of 34◦ and 32◦, respectively,
adjacent and atmospheric effects significantly influenced the hyperspectral images.

The atmospheric correction was carried out with the ATCOR software using an urban
model based on the presence of open-cast mines, industry and urban areas. Specific
absorptions and reflectances of the atmosphere influence a large part of the measurable
radiance, which requires correction for reliable derivation [58]. For this reason, according
to Ray [59], the determined pixel values represent an apparent reflectance (aRRS), which is
comparable with the RRS in most cases.

Although aRRS is comparable to RRS, adjacent effects cannot be compensated for
using an atmospheric correction because the information on the simultaneous illumination
conditions is not available. To exclude these influences for subsequent calculations, the
hyperspectral image data of the surrounding river environment were masked out, meaning
that only the relevant spectral information of the river forms the basis of all subsequent
model calculations. Adjacent effects can impair the measurable radiance through reflections
and lead to saturation of the sensor [60]. The adjacent effects can be assigned, for example,
to reflections of solar panels or waves from the water body or even shadows from vegetation
on the water’s surface. If these influences could also be seen on the water’s surface, they
were also masked.

2.4. Model Development for the Area-Wide Derivation

The empirical approach links the in situ sampling points (SPs) and airborne hyper-
spectral RS data via regression to determine the coefficient of determination (R2) between
them [26,61]. For the area coverage derivation of the water constituents, the workflow
can be divided into six tasks: (1) image pre-processing, (2) data linking in two steps,
(3) development of spectral indices, (4) data filtering using the standard deviation (SD),
(5) regression determination and (6) derivation. Due to the two separate steps for linking
the SP data with the RS data, an identification number (ID) was assigned to each SP (SP-ID)
(see Figure 4).

Initially (task 1), the hyperspectral data was processed as described in Section 2.3. This
was followed (task 2) by linking the in situ data with the hyperspectral data in two steps.
First, the link was made through the GNSS position. This allowed for the extraction of
specific spectral information for each sampling point and the assignment of the particular
information to the sampling point identification number (SP-ID). Second, we linked the
spectral indices based on specific wavelength bands with the in situ data. As described by
Ulrich et al. [62] the spectral indices are based on previous studies on the determination
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of water quality [27,30,32,45,63–66], spectral simulations and analyses. Based on this, the
following spectral indices were developed as a template (Equations (1)–(5); task 3):

Type 1 single Wavelength: SI 1 = RRS(b1) (1)

Type 2 Ratio : SI 2 =
RRS(b1)− RRS(b2)
RRS(b1) + RRS(b2)

(2)

Type 3 Ratio : SI 3 =
RRS(b1)− RRS(b3)
RRS(b2)− RRS(b3)

t (3)

Type 4 Ratio : SI 4 =
RRS(b1)− RRS(b3)
RRS(b2) + RRS(b3)

(4)

Type 5 Slope : SI 5 =
RRS(b2)− RRS(b1)

b2 − b1
(5)

where RRS: reflectance and b: band of the hyperspectral image.

 

Figure 4. Flowchart of the methodical approach used to derive specific constituents of an ochre-
coloured watercourse based on sampling points (SP) and airborne hyperspectral remote sensing
data. Image pre-processing, development of spectral indices, data linking in two steps, data filtering
using the standard deviation (SD), regression determination and derivation. Due to the two separate
steps for linking the SP data with the RS data, an identification number (ID) was assigned to each SP
(SP-ID).

To improve the derivation accuracy, the water samples were filtered using 2.5 times
the SD to eliminate incorrect samples or analyses (task 4).

Next (task 5), suitable regression models were determined for each water constituent:
TFe, Fe(II), Fe(III) and sulphate. For this purpose, each chemical parameter was related to
100 spectral indices and tested for linear, logarithmic, exponential and potential regressions
(Equations (6)–(9)) following the general regression model presented by the International
Ocean-Colour Coordinating Group [67].
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Linear regression : p̂ = α × (SI) + β (6)

Logarithmic regression : p̂ = α × log(SI) + β (7)

Exponential regression : p̂ = β × eα∗(SI) (8)

Potential regression : p̂ = β × (SI)α (9)

where p̂: parameter to be estimated in the quantitative unit; SI: spectral index; Ri: spectral
band; and α and β: regression parameters between the spectral and in situ data.

The most suitable type was determined using the coefficient of determination (R2)
value and stored with the corresponding regression parameters. Consequently, this proce-
dure resulted in a specific regression model for each water constituent per spectral index
for the area coverage derivation.

Finally, for the accuracy analysis, the RMSE and relative RMSE (rRMSE) values were
calculated for 10 derivation models with the highest R2 (task 6). For this purpose, the
derived concentrations at the sampling site were linked to the filtered limnic data. The
rRMSE was calculated according to the procedure reported by Gao et al. [68] and Wang
and Lu [69] (Equation (10)). This allowed for the most appropriate spectral index to be
selected for each water body constituent.

rRMSE [%] =
RMSE

Obs
× 100% (10)

where Obs: mean value of the observations.

3. Results and Discussion

The limnological characteristics of watercourses influenced by mining differ from
those of natural watercourses [37]. This is because of the geological conditions, the geohy-
drological processes of the mining areas and a rise in the groundwater level [38]. In this
study, a framework consisting of simultaneous monitoring of in situ data and airborne
hyperspectral/RGB data was presented, enabling the modelling of water quality indicators
(TFe, Fe(II), Fe(III), sulphate and Chl-A).

3.1. In Situ Measurements of Water Quality

In situ data from 19 sampling locations were analysed for TFe, Fe(II), Fe(III), sulphate and
Chl-A (see Table 1). Only 15 of the sampling locations were covered by the gyrocopter survey
and used to calibrate the remote sensing data. Table 1 gives an overview of the monitored
limnic parameters and their mean values, standard deviations, minima and maxima.

Table 1. List of the in situ monitored chemical parameters. The SP-IDs 3-14 and 16-18 were used for
the derivation models. Thus, the total quantity (N) ranged between 13 and 15 values. This was due
to suitable spatial overlaying with the RS data.

SP ID TFe [mg/L] (1) Fe(II) [mg/L]
Fe(III)
[mg/L]

Sulphate
[mg/L] (2) Chl-a [μg/L]

1 0.7 0.04 0.66 356 11.9
2 2.8 2.19 0.61 362 12.31
3 3.8 2.45 1.35 364 9.76
4 5.7 4.53 1.17 369 10.64
5 6.3 4.47 1.83 367 9.96
6 6.3 5.17 1.13 366 11.04
7 7.0 5.28 1.72 336 10.20
8 4.9 3.1 1.8 436 7.41
9 4.7 2.74 1.96 434 7.06
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Table 1. Cont.

SP ID TFe [mg/L] (1) Fe(II) [mg/L]
Fe(III)
[mg/L]

Sulphate
[mg/L] (2) Chl-a [μg/L]

10 3.9 2.00 1.9 422 6.92
11 3.9 1.89 2.01 420 7.18
12 4.00 1.52 2.48 421 7.03
13 3.2 0.94 2.26 421 6.63
14 2.3 0.58 1.72 426 6.15
15 3.1 0.64 2.46 419 6.32
16 3.2 0.31 2.89 398 8.66
17 1.8 <0.05 - 399 6.43
18 2.9 <0.05 - 399 6.35
19 0.6 <0.05 - 430 10.39

Mean 3.74 2.37 1.75 3.74 2.37
Standard
deviation

1.74 1.68 0.62 31 2.05

Maximum 7.00 5.28 2.89 436 12.32
Minimum 0.60 0.04 0.61 336 6.15

Note: The regulatory limits according to German law are (https://www.gesetze-im-internet.de/trinkwv_2001
/BJNR095910001.html, accessed on 4 December 2023): (1) 0.2 mg/L for (total) iron and (2) 250 mg/L for sulphate.

Figure 5 shows the plot of the distribution of the recorded in situ water parameter
measurements for Chl-a, TFe, Fe(II), Fe(III) (Figure 5a) and sulphate (Figure 5b) based on a
probability function. The value range of the sulphate concentration deviated strongly from
the concentrations of the other water constituents.

Figure 5. Plot of the distribution of the recorded in situ water parameter measurements: (a) Chl-a,
TFe, Fe(II), Fe(III) and (b) sulphate based on a probability function in a concentration range from 0 to
475 mg/L. The value range of the sulphate concentration deviated strongly from the concentrations
of the other water constituents.

Likewise, the correlation matrix (Table 2) shows that the in situ water parameters Chl-a,
TFe, Fe(II), Fe(III) and sulphate were correlated with each other, making modelling and a
clear delineation of the individual water parameters using hyperspectral data difficult. TFe
and Fe(II) showed the highest correlations with r = 0.97. This indicates a high proportion
of dissolved Fe(II) in the measured water depth of 30 cm. Furthermore, the water body
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might not have been completely saturated with oxygen on the day of the measurement.
The correlation between Fe(III) and TFe was r = −0.50 and between Fe(III) and Fe(II) was
r = −0.70. Both values indicated that the Fe(III) concentration increased or decreased
inversely to the concentrations of TFe and Fe(II) (see Table 2).

Table 2. Correlations matrix with the recorded in situ water parameters: TFe, Fe(II), Fe(III), sulphate
and Chl-a.

TFe [mg/L] Fe(II) [mg/L] Fe(III) [mg/L] Sulphate [mg/L] Chl-a [μg/L]

TFe [mg/L] 1.00 0.97 −0.50 −0.58 0.79
Fe(II) [mg/L] 0.97 1.00 −0.70 −0.70 0.79

Fe(III) [mg/L] −0.50 −0.70 1.00 0.48 −0.56
Sulphate [mg/L] −0.58 −0.70 0.48 1.00 −0.84

Chl-a [μg/L] 0.79 0.79 −0.56 −0.84 1.00

Similarly, sulphate also showed a correlation of r = −0.58 with TFe and r =−0.70 with
Fe(II). This was due to additional inputs of sulphate from the Schwarze Pumpe industrial
park at sample point 8 (see Figure 1). Chl-a indicated a correlation of r = 0.79 with TFe
and Fe(II). This indicated a uniform decrease of the Chl-a concentration in relation to the
TFe and Fe(II) concentrations, resulting from the increasing ocherous colour due to the
flocculation of the Fe(III) ions. Accordingly, the correlation between Chl-a and Fe(III) was
r = −0.56. Moreover, Chl-a also showed a correlation of r = −0.84 with sulphate.

Figure 6 shows five spectra within the wavelength range of 415 to 1615 nm. The
corresponding chemical parameters are listed in Table 1. These spectra were extracted from
the hyperspectral images at sampling points 4, 7, 11, 16 and 19.

Figure 6. Representation of five airborne hyperspectral spectra in the wavelength range of 420 to
1500 nm with different TFe concentrations at the sampling points. The jump at 1000 nm resulted
from the inaccuracies of the internal calibration of the two hyperspectral data sets of HySpex VNIR
and HySpex SWIR to the one final hyperspectral data set (400–2500 nm). These overlapped in the
wavelength range of approximately 1000 nm and could occur with differences of up to 4%. The table
contains the in situ measurements of the five measuring points (see also Table 1).

3.2. Airborne Hyperspectral RS and Modelling

Thanks to the institute’s own gyrocopter with the hyperspectral sensor technology
HySpex, it was possible to record airborne hyperspectral images in the wavelength range
from 420 to 1500 nm at the same time as the in situ measurements. Figure 6 shows the
results of the refluxes in the wavelength range from 440 to 1400 nm at five in situ measuring
points for which airborne hyperspectral RS was conducted.
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Figure 6 clearly shows that the reflectance in the wavelength range from 560 to 700 nm
increased with increasing iron(III) concentration. This can also be seen from the correlation
of R2 = 0.78 with the wavelength at 675 nm (see Table 3). Within the wavelength range of
400–560 nm, the aRRS was low owing to absorption by CDOM and Chl-a [32]. In addition,
Weyhenmeyer et al. [70] observed that Fe(II), like DOC, correlates with absorption at
420 nm. Moreover, according to Asmala et al. [31], the influence of Fe(II) on the absorption
behaviour of the water body is visible beyond 520 nm. However, based on the acquired
data, the spectral influence of Fe(II) and sulphate was not visible within this wavelength
range. This was particularly due to the rapid oxidation of Fe(II) to Fe(III). In addition, in
the spectral range of 560–700 nm, most maxima exceeding 6% could be determined at the
measuring points with a TFe concentration exceeding 3 mg/L. The highest maximum at
580 nm shows the spectrum of SP 16 with the highest Fe(III) concentration of 2.89 mg/L
(see Figure 6a). Owing to the high concentration of Fe(III) and the resulting flocculation, the
water became very turbid, which, according to Frauendorf [30], makes Fe(III) classifiable
as TSM.

Table 3. List of the area coverage derivation results showing the number of samples used (N), the ID
to link to the regression models in Figure 1, the spectral index, the regression equation, the coefficient
of determination (R2), the RMSE and the rRMSE. The models displayed in bold font were used in
Figure 6 for the specific concentration derivation.

Parameter N ID Spectral Index Equation R2 RMSE rRMSE

(a) (RRS(580)-
RRS(455))/(RRS(580)+RRS(455)) p̂ = 51.04 ×

(
R1
R2

)
+ 27.69 0.70 0.95 22.19%TFe

[mg/L] 15
(b)

(RRS(455)-
RRS(580))/(RRS(480)+RRS(580)) p̂ = 55.86 ×

(
R1
R2

)
+ 30.14 0.64 0.93 21.91%

Fe(II)
[mg/L]

13 (c)
(RRS(580)-

RRS(455))/(RRS(580)+RRS(455)) p̂ = 59.43 ×
(

R1
R2

)
+ 29.78 0.78 0.95 35.33%

13
(d) (RRS(580)-RRS(1250))/(RRS(650)-

RRS(1250)) p̂ = 2.17 × (SI)−2.8 0.84 0.27 14.53%Fe(III)
[mg/L]

(e) RRS(701)/RRS(563) p̂ = 0.24 e2.81(SI) 0.79 0.22 11.86%

Sulphate
[mg/L]

15 (f)
(RRS(580)-

RRS(480))/(RRS(580)+RRS(480))
p̂ = 1.03 × (SI)1.07 0.53 21 5.31%

(g) (RRS(580)-
RRS(455))/(RRS(580)+RRS(455)) p̂ = 201.69 e−7.05(SI) 0.72 1.09 13.48%Chl-a

[μg/L] 15
(h)

(RRS(580)-
RRS(480))/(RRS(580)+RRS(480))

p̂ = 26.3 × ln(SI)− 15.48 0.67 0.98 12.09%

By means of the multi-spectrometer Ocean and Land Colour Instrument (OLCI) on
board the Sentinel 3, Knaeps et al. [71] established that with increasing TSM concentration
up to 402 mg/L, additional information on the short-wave infrared (SWIR) range con-
tributes to more accurate modelling. Furthermore, iron compounds in the soil show specific
spectral characteristics, especially in the SWIR range [72]. The spectra with a TFe concentra-
tion under 3 mg/L are similar to the aRRS of natural rivers (SP 19 in Figure 6). Absorption
by water is clearly visible between 700–1000 nm. The aRRS between 1000–1615 nm do not
show additional information.

The most suitable regression models to link particular spectral indices to water con-
stituents are shown in Figure 7. They are also displayed in Table 3, which additionally
shows the number of samples used, the spectral index, the ID to link to the regression
models, the regression equation, R2, the RMSE and the rRMSE. The number of samples
for modelling was lower than indicated because not every sampling location was within
the coverage area of the RS data. The empirical models achieved a derivation accuracy of
0.93 mg/L for the total iron concentration, 0.95 mg/L for ferrous iron, 0.22 mg/L for ferric
iron and 21 mg/L for sulphate.
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Figure 7. Representation of the regression models (in Table 3) showing the regression equivalence
and the coefficient of determination. (a–h) The most suitable regression models to link particular
spectral indices to water constituents.
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Both indices for the derivation of TFe were based on the wavelengths of 455 and
580 nm and can be explained based on spectral analysis. The wavelength range between
450–500 nm was characterized by a broad absorption band of iron oxides. This was also
confirmed by Rowan and Goetz [72]. As shown in Figure 7, there was a maximum in the
reflectance at 580 nm, which was caused by an increased scattering by TSM and a low
absorption by Chl-a [32,73]. Since TFe and Chl-a are correlated, it is difficult to distinguish
between these constituents based on regression models. A linear regression of the single
wavelength at 580 nm and TFe and Chl-a (Equations (1) and (6)) shows that the reflection
decreased with increasing TFe (r2 = 0.5) and Chl-a (r2 = 0.3) concentrations, indicating that
iron was mainly responsible for the optical properties within this wavelength range.

As a result, there was a steep slope from 450–580 nm in the spectral curve. The most
suitable model for deriving the TFe content obtained an rRMSE of 21.91% and an R2 of 0.64.
The regression model for determining the Fe(II) concentration with the highest correlation
of 0.78 was based on the same spectral analysis as TFe but the validation showed a higher
rRMSE of 35.33%. The use of the same spectral index as the basis for the derivation model
can be explained by the high correlation r = 0.97 between TFe and Fe(II). The first model
for the derivation of Fe(III) was based on the study conducted by Knaeps et al. [46] and is
suitable for inland waters with a TSM concentration of 30 to 1400 mg/L. The index showed
an R2 of 0.80 and an rRMSE of 14.53%. The second model used to derive Fe(III) was based
on the spectral index RRS(701)/RRS(563) and yielded an accuracy of 11.86% and an R2 of
0.76. According to Gitelson [32], this index is suitable for deriving Chl-a. However, spectral
analyses with the software package WASI [74] showed that the reflectance increases around
580 nm with increasing TSM concentration. Furthermore, the absorption by water increased
steadily from 700 nm, resulting in a strong reduction in reflectance. As a result, there was a
strong gradient between 580 and 700 nm.

The model used to derive sulphate yielded an R2 = 0.53 and an rRMSE of 5.31%.
The derivation algorithm used a potential regression model based on the spectral index
(RRS(580)-RRS(480))/(RRS(580)+RRS(480)). This spectral index was based on the analyses
carried out. As described, there was an increased scattering at 580 nm owing to the TSM
concentration [32]. Furthermore, the aforementioned absorption of iron oxides at the
480 nm range contributed to a strong gradient in the 480–580 nm range.

The spectral indices obtained for the derivation of Chl-a were similar to those of
the derivation of TFe. This was probably related to the high correlation of r = 0.79 be-
tween Chl-a and TFe, as well as Fe(II). Nevertheless, the best fitting regression model was
(RRS(580) − RRS(480))/(RRS(580) + RRS(480)) based on a logarithmic approach and a
derivative accuracy of RMSE = 0.98 μg/L.

To summarize, it was concluded that the derivative models, with the exception of
Fe(III), mainly referred to the spectral range from 450 to 580 nm. Based on the day of the
investigation, this spectral range had the highest derivation accuracy. Wavelengths beyond
560 nm were only considered for the derivation of Fe(III).

Figure 8 shows the derivation results of TFe, Fe(II), Fe(III), sulphate and Chl-a using
three different locations as examples (see Figure 1). The background of the derivation
results consisted of channels 580, 680 and 780 nm of the hyperspectral image. Therefore,
the River Spree and the Spremberg Dam appeared blue. Masked areas are shown in black.
Areas outside of the water body are displayed in grey. Data-free areas are presented in
white. For the derivation of the water constituents TFe, Fe(II), Fe(III), sulphate and Chl-a,
the models displayed in bold in Table 3 were used.
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Figure 8. Three different regions with the corresponding derivation results of (II) TFe [mg/L], (III)
Fe(II) [mg/L], (IV) Fe(III) [mg/L], (V) sulphate [mg/L] and (VI) Chl-a [μg/L] are shown in columns:
(a) the estuary of the Kleine Spree River, (b) an industrial canal, and (c) the estuary of the Spree River

147



Water 2023, 15, 1532

into the Spremberg Dam. (I) represents the study area based on the high-resolution true orthophoto.
The models shown in bold in Table 3 were used for the area coverage derivation. The background of
the derivation results consisted of channels 580, 680 and 780 nm of the hyperspectral image, whereby
the water body appeared blue. Masked areas, e.g., due to shadows or adjacent effects, are shown in
black, and areas outside the water body are shown in grey. Data-free areas are shown in white. The
locations of the in-depth studies are shown in Figure 1a–c.

Figure 8 shows the mouth of the Kleine Spree into the River Spree. Based on the
derivation results of TFe (see Figure 8(a-II)), a difference was observed between the con-
centration in the Kleine Spree and that in the River Spree. In the case of Fe(II) derivation
(see Figure 8(a-III)), the influence of the Kleine Spree was comparatively low. The influ-
ence of the Kleine Spree River can only be observed directly at the river mouth based on
Chl-a derivatives (see Figure 8(a-VI)). The derived Fe(III) (see Figure 8(a-IV)) and sulphate
(see Figure 8(a-V)) concentrations showed no visible change. In the case of Fe(III), this
could be attributed to the low oxygen saturation in the Kleine Spree River, as observed by
Uhlmann et al. [52], whereby only a small amount of Fe(II) was oxidised.

Figure 8 column b shows the mouth area of the industrial canal from the Schwarze
Pumpe industrial park. A clear increase in the sulphate concentration can be seen there
(see Figure 8(b-V)). Based on the derived TFe (see Figure 8(b-II)), Fe(II) (see Figure 8(b-III))
and Chl-a (see Figure 8(b-VI)) concentrations, a decrease in the mouth area of the industrial
canal was first identified. After that, the concentration rose. From the Fe(III) concentration
shown (see Figure 8(b-IV)), no change was detected.

Figure 8 column c displays the mouth of the Spree into the Spremberg reservoir. Owing
to chemical and spectral differences between the River Spree and the southern part of the
Spremberg reservoir, no suitable concentrations could be derived. Nevertheless, clear
differences between the River Spree and the Spremberg reservoir were observed, except
for the derivation result of Fe(III) (see Figure 8(c-IV)). Thus, the derived TFe concentration
clearly showed that the River Spree only had a low TFe concentration after the upstream pre-
dam Bühlow (see Figure 8(c-II)). This concentration increased in the Spremberg reservoir.
Similar observations were made with respect to the Fe(II) (see Figure 8(c-III)) and Chl-a
(see Figure 8(c-IV)) concentrations. However, the derived sulphate concentration was
different (see Figure 8(c-V)). In the resulting image, the River Spree shows a very high
concentration and the reservoir initially exhibited a low concentration. This raises the
possibility that another source of iron input was located south of the Spremberg reservoir,
such as swamps that were drained during open-cast mining activities.

4. Conclusions and Outlook

In this study, a combination of airborne imaging hyperspectral/RGB-RS was used
to monitor water quality parameters of smaller rivers that were altered by open-cast
mining processes with subsequent renaturation and groundwater recharge. The focus
of monitoring, modelling and prediction was on the water quality variables TFe, Fe(II),
Fe(III), sulphate and Chl-a. Due to the availability of a university-owned gyrocopter with
corresponding RS sensors (HySpex, RGB, TIR), simultaneous imaging airborne RS data
and in situ measurement data could be collected on site in the Spree.

The acquisition of simultaneous RGB data guaranteed the creation of a highly accurate
terrain model, which was urgently needed for processing (geometric correction of) airborne
hyperspectral data. With this approach, airborne hyperspectral RS and in situ data could
be used for the first time to separately derive the water quality indicators Fe(II) and Fe(III)
for smaller streams with neutral pH by means of regression. They were then modelled
and the point measurements were transferred into space. The determination of the total
iron concentration in open-cast mining lakes was already carried out by numerous studies,
but the differentiation between the types Fe(II) and Fe(III) had not yet been made in any
study available so far. This was partly due to the very low concentration of Fe(III) in the
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open-cast mining lakes. In addition, the examples on AMDs showed that iron could be
identified, but no concentrations have been derived directly; therefore, the results should
only be understood as an index. Furthermore, the advantage of our study was that in
situ measurements could be conducted at the same time as hyperspectral measurements
(400–2500 nm). Especially in rapidly changing aquatic systems, this method was found
to be useful. The empirical models achieved a derivation accuracy of 0.93 mg/L for the
total iron concentration, 0.95 mg/L (R2 = 64%) for iron, 0.22 mg/L (R2 = 79%) for ferric
iron and 21 mg/L (R2 = 64%) for sulphate (R2 = 53%). An empirical approach was chosen
for the study because it was robust; could be implemented quickly; and, with the focus on
sulphate, was particularly target-oriented.

The obvious disadvantages, such as its low transferability and high statistical depen-
dence, were taken into account by investigating a large number of spectral indices and
using a valid statistical evaluation from the coefficient of determination and RMSE value.
This also avoided an overspecialisation of the algorithm. The derivation results shown
in Figure 8 demonstrate how inflowing river water could be clearly distinguished from
reservoir water and how local phenomena, such as inflowing channels or rivers, could
be reliably detected. This underlines the applicability of airborne RS for smaller flowing
waters for continuous water quality monitoring.

The general conditions and requirements were as follows:

• The present results were only achieved by combining airborne hyperspectral RS data
with simultaneous in situ measurements.

• Airborne hyperspectral sensors acquire very high-resolution and continuous spectra
that allow detailed analyses to be carried out. The high spatial resolution offers
significant advantages over satellite data (multispectral and hyperspectral) with a low
spatial resolution for the derivation of water constituents from inland waters.

• Machine learning methods must be applied rather than simple regression models
for modelling and prediction to achieve a better generalisation and transferability of
the results.

• Spectral databases need to be in place for the quantification of water quality indicators.
• Scale dependencies have to be undertaken to transfer from high-resolution airborne

hyperspectral RS data to the now freely available spaceborne hyperspectral data
(EnMAP, DESIS, Prisma).

The method has tremendous potential to be practically established and transferred
into official monitoring procedures in order to combine official in situ measurements with
airborne and spaceborne RS information and to achieve added value for the monitoring of
water quality indicators.
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Abstract: Groundwater is an important source of drinking water, particularly in arid regions. In this
study, a total of 66 groundwater samples were collected from the phreatic aquifer in the Shizuishan
area, a traditional irrigation region of Ningxia. The results showed that the TDS values were above
the drinking water standards for nearly 50% of the groundwater samples. The ions followed the
order of Na+ > Ca2+ > Mg2+ > K+ and SO4

2− > Cl− > HCO3
− in the groundwater. There were four

dominant factors in controlling groundwater chemistry based on principal component analysis: the
salinity factor, alkalinity factor, carbonate factor, and pollution factor. The high concentration of
NH4-N in groundwater was attributed to agricultural activities, but the high NO3-N levels were
mainly due to sewage or wastewater. F and As were derived from geogenic sources. Based on the
result of the WQI assessment, about 40% of the samples in the central part of the study region showed
unacceptable water quality for drinking, which was mainly associated with high NH4-N, TDS, and
As concentrations. The total non-carcinogenic risks of drinking the groundwater were 0.05–10.62 for
adults and 0.09–20.65 for children, respectively. The order of pollutants in the groundwater in terms
of their hazard to residents was: As > F− > NO3-N > NH4-N. The carcinogenic risk values of As
through oral ingestion for children and adults were 0–7.37 × 10−4 and 0–1.89 × 10−4, respectively.
Chronic exposure by oral ingestion presented as the main source of susceptibility to exposure to
groundwater contaminants for children.

Keywords: groundwater; hydrochemistry; quality; health risk; China

1. Introduction

Groundwater plays an important role in supporting agricultural, domestic, and indus-
trial water use because of its widespread distribution and relatively stable quality [1].

In many semi-arid and arid regions, groundwater is a major source of drinking wa-
ter [2,3]. The impacts of human and geogenic activities on groundwater quality are of
increasing concern. Geogenic sources, rapid urbanization, excessive withdrawals, improper
disposal of waste, the overuse of fertilizer, etc., have caused major changes in the physical
properties and chemical composition of groundwater to a great extent [4–6]. However, pro-
longed exposure to contaminants can have adverse effects on human health. Groundwater
remediation is also a long and slow process.

Understanding the hydrochemistry of groundwater is vital for maintaining ground-
water quality [7–9]. The chemistry of groundwater has evolved through the effects of
precipitation, evaporation, weathering, sorption, and exchange reactions [10–12]. Many
scholars have found by various methods that the chemical composition of groundwater
is closely related to the geological environment and hydrogeological conditions [13]. For

Water 2023, 15, 1082. https://doi.org/10.3390/w15061082 https://www.mdpi.com/journal/water154



Water 2023, 15, 1082

instance, Schot et al. [14] found that the hydrochemical composition of groundwater in the
Gooi and Vechtstreek areas in the Netherlands was influenced by human activities, with
urbanization and agricultural activities causing increased concentrations of nitrate, sulfate,
and K+ in the groundwater. Adams et al. [15] indicated that the chemical composition of
the groundwater in the study area is dominated by salinization, mineral dissolution and
precipitation, cation exchange, and human activities. Zhang et al. [16] showed that the high
concentrations of Fe and Mn in the Songnen Plain were associated with the unique geomor-
phology and reducing environment. Güler et al. [17] showed that the main factors causing
water chemistry changes in the Tarsus coastal plain were water-rock interaction and nitrate
pollution, seawater intrusion and salinization, geological factors, and anthropogenic zinc
pollution. In this context, the exposure through drinking water to high levels of nitrogen,
fluoride, and arsenic is of increasing concern to humans. Nitrogen is one of the essential
elements for plant growth [18,19]. Although nitrogen fertilizer provides certain nutrients
for plant growth and improves crop yields, the use of large amounts of nitrogen fertilizer
accelerates the leaching of nitrogen into groundwater, which will pose a serious threat to
the environment and human health [20,21].

Groundwater contaminated with high levels of arsenic and fluoride is a serious threat
to the safety of drinking water. It has become a global problem [22–24]. The chronic
ingestion of high-fluoride (>1.0–1.5 mg/L) groundwater has been shown to contribute to
fluorosis and various diseases, such as cardiovascular disease, osteosclerosis, endocrine
disorders, and multi-organ lesions [10]. Chronic exposure to arsenic through contaminated
food and drinking water can lead to arsenic poisoning, with symptoms including peripheral
neuropathy, skin lesions, diabetes, cancer, and cardiovascular disease [25–27]. The Water
Quality Index (WQI) is a practical approach to assessing the quality of groundwater by
distilling a large amount of water quality data to an index representative of regional ground-
water quality [28–31]. The United States Environmental Protection Agency’s (USEPA)
Human Health Risk Assessment (HHRA) (USEPA, 2004) is widely used to assess the risks
of groundwater quality to human health. Integrating the HHRA and WQI can facilitate
improved monitoring and groundwater quality conservation for sustainable groundwater
management [32–35].

In northwestern China, water obtained from alluvial aquifers is used for drinking
purposes, especially in most remote areas [36,37]. The Shizuishan area, located in northern
Ningxia, is a typical arid and semi-arid region. As a traditionally agricultural region, a large
amount of irrigation water infiltrated into the aquifer becomes the dominant groundwater
inflow. Private hand-pumped wells are widely used in the rural part to support drinking
due to their low cost and high efficiency. However, the phreatic aquifer is sensitive to
human activities because of the shallow water table coupled with the high population
densities. It is still a potential risk to human health to use groundwater as a source of
drinking water in the study region. Therefore, the present study aims to interpret the
complex groundwater hydrochemistry of the shallow aquifer in the Shizuishan area. In
the present study, Principal Component Analysis (PCA) was applied to identify natural
and anthropogenic factors with significant influence on groundwater hydrochemistry.
The quality of groundwater and associated health risks were evaluated to provide more
information for groundwater management.

2. Study Area

The Shizuishan area covers about 2241 km2 and is located in the northern Yinchuan
Plain, Ningxia (38◦39′17′′–39◦23′16′′ N, 106◦8′14′′–106◦52′11′′ E. Figure 1). The Yinchuan
Plain has a traditional irrigation history dating back to more than 2000 years. According
to the Ningxia Statistical Yearbook (2022) [38], Shizuishan has a population of about
800,000, and the main crops are rice, corn, and wheat. In the arid environment, the mean
annual precipitation and potential evaporation are 179 mm and 1800 mm, respectively.
Precipitation is mainly concentrated in May and October. The area has sufficient sunshine,
a large temperature difference between day and night, and the annual average climate is

155



Water 2023, 15, 1082

about 10.6 ◦C [38,39]. Irrigation water in the area is mainly supplied by water transfer from
the Yellow River, and there are many water diversion channels in the plain to transfer water
through to ensure the needs of crops are met. Groundwater depth is impacted by irrigation
and ranges from 1 to 3 m. Soil salinization has many major adverse effects on crop yield
due to intense evaporation.

Figure 1. Groundwater sampling location of the Shizuishan area.

Groundwater serves as crucial support for drinking, irrigation, and industrial pur-
poses. In general, the groundwater flow in the study area is from the southwest to the
northeast. The aquifer in Shizuishan is mainly composed of Quaternary fine alluvial la-
custrine deposits. From west to east, the landforms of the study area are leaning towards
pluvial plain, pluvial alluvial plain, and alluvial lacustrine plain [40]. The lithology of
aquifers in the pluvial plain becomes thinner from west to east. The lithology of the alluvial
lacustrine plain is mainly medium fine sand [39]. From top to bottom, the aquifer system
is composed of phreatic, upper confined, and lower confined aquifers with thicknesses of
20–30 m, 50–60 m, and 60–80 m, respectively. The aquitards consist mainly of clay between
the adjacent aquifers. In this study, we focused primarily on the phreatic aquifer. The
aquifer is recharged primarily by irrigation channels, irrigation infiltration, precipitation,
and lateral inflow. Groundwater withdrawals include evaporation, discharge to drains,
and artificial extraction. Many residents rely on groundwater for their drinking water.

3. Materials and Methods

3.1. Collection and Analyses of Samples

The present study collected 66 groundwater samples from private wells in April 2021
(Figure 1). The collection and processing of groundwater samples in the present study
followed technical specifications for environmental monitoring. Sampling locations were
recorded by using a handled GPS device. Before collecting groundwater samples, the
well was flushed for 5 to 10 min to remove standing water. Water samples were stored
in previously sterilized polyethylene bottles, and pH, total dissolved solids (TDS), and
temperature were measured in the field using portable meters (DDBJ-350F, INESA Scientific
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Instrument Co., Ltd., Shanghai, China). The samples were stored at 4 ◦C before analysis for
physicochemical parameters.

The groundwater samples were analyzed according to the methods recommended by
the Ministry of Health of the People’s Republic of China (PRC) and the Standardization
Administration of the PRC [41]. The laboratory of the Ningxia Geological Survey Institute
analyzed all the samples. The samples were used for quality assurance/quality control
(QA/QC) analysis. The sample analysis followed the Technical Guidelines for Groundwater
Environmental Monitoring developed by the State Environmental Protection Adminis-
tration (2004) [42].To ensure the accuracy and reliability of the results, the groundwater
sample analysis was repeated three times. Flame atomic absorption spectrophotometry
was used to measure the contents of K+ and Na+, while titration was used to measure
those of Cl−, Ca2+, SO4

2−, Mg2+, and HCO3
−. Ion chromatography was used to measure

the content of F-. Spectrophotometry was used to measure the contents of NH4–N and
NO3–N. Arsenic content was determined through hydride generation atomic fluorescence
spectrometry (HG-AFS).

In this study, SPSS 20.0 was used for the principal component analysis of the ground-
water samples to analyze the main controlling factors in groundwater. Piper (1944) and
Gibbs (1970) diagrams and ion ratios were drawn from to study the hydrochemical types
and main control factors of the groundwater by using MATLAB (version 2016b) and the Ori-
gin (version 2020) software. An IDW-to-raster interpolation was applied to spatially map
the groundwater quality and health risks from oral intake based on ArcGIS (version 10.7).

3.2. Groundwater Quality Assessment

The WQI provides a comprehensive assessment of drinking water quality. Weights
(wi; between 2 and 5) have been assigned to the different individual parameters making
up the WQI according to their relative concentrations and importance for drinking water
quality [43,44]. The WQI is calculated through:

Wi =
wi

n
∑
i

wi

(1)

Qi =
Ci − Cip

Si − Cip
× 100 (2)

SIi = Wi × Qi (3)

WQI =
n

∑
i=1

SIi (4)

where Wi represents the weight of each parameter, wi represents the weight assigned to
each parameter, n represents the number of parameters, Ci denotes the concentration of
a single parameter, Cip represents the ideal distilled parameter value (a pH of 7 and zero
concentration for the remaining parameters), Qi represents the quality rating, Si represents
the WHO standard for a single parameter, and SIi represents the sub-index of the “ith”
parameter. The quality of groundwater in the study area could be classified into five classes
according to the WQI: (1) excellent; (2) good; (3) medium; (4) poor; and (5) extremely poor.

3.3. Assessment of Hazards to Human Health

The present study applied the HHRA to estimate the adverse impacts of the ingestion
and assimilation of toxicants on adults and children. The non-carcinogenic hazard posed
by contaminants was determined by [45]:

Di =
Ci × IR × EF × ED

BW × AT
(5)

HQi = Di/R f Di (6)
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where Di represents exposure dose by ingestion for the ith contaminant (mg/kg per day);
Ci denotes contaminant concentration (mg/L); IR is the rate of ingestion (L/day); EF
represents the frequency of exposure (days/year); ED represents the duration of exposure
(years); BW means body mass (kg); AT is mean exposure duration (days); HQi represents
the non-carcinogenic impact of an individual parameter; and RfD represents the non-
carcinogenic reference dosage of a parameter (mg kg−1 day−1). The RfD for NO3-N,
NH4-N, F−, and AS were 1.6, 0.9, 0.06, and 0.0003 mg/(kg·day), respectively [37,46,47].

The total hazard index (HI) represents the integrated hazard posed by contaminants in
water used for drinking. A HI of > 1.0 and a HI of < 1.0 represent potential adverse human
health impacts and acceptable levels of non-carcinogenic risk, respectively.

HI = ∑ HQ (7)

In this study, the potential health risks of ingesting NO3
−, NH4

+, F−, and As in
groundwater were considered. Because all residents in the study area rely on groundwater
as a source of drinking water, EF was assigned a value of 365 days for both children and
adults. ED was assigned to children and adults at ages 6 and 30. AT is equal to 365 days.
Statistical data [48] indicated the BW of adults and children in Ningxia to be 62.5 kg and
15 kg, respectively. All parameters are listed in Table 1.

Table 1. Parameters of daily dose calculation models.

Parameters Unit Item Children Adults

IR L/d Oral 0.7 1.50
BW kg Oral 15 62.5
EF d/a Oral 365 365
ED a Oral 6 30

AT d
Carcinogenic 74.68 × 365 74.68 × 365

Non-carcinogenic 6 × 365 30 × 365

The carcinogenic risk of arsenic (RAs) can be estimated as:

RAs = qAsDAs (8)

where qAs represents the carcinogenic coefficient of arsenic ingested through drinking water
(1.5 kg day mg−1). The USEPA usually applies a range of target reference risks of 10−4–10−6

in the assimilation of carcinogenic toxins in drinking water, with 10−6 being generally
recognized as an appropriate standard for drinking water [49]. RAs of > 10−4 represents the
possibility of adverse impacts on human health posed by arsenic in groundwater.

4. Results and Discussion

4.1. Groundwater Chemistry

Table 2 provides a statistical summary of groundwater quality according to the analysis
of groundwater samples (Table 2). The ranges of WHO and the Chinese standards for
different chemicals [50,51] are considered in the assessment of the groundwater for use as
drinking water.

The mean pH of the water samples was 7.59, indicating it was slightly alkaline. The
TDS values ranged from 232 to 18,448 mg/L (mean of 1990 mg/L). The TDS value was
above the drinking water standard (1000 mg/L) for nearly 50% of the groundwater sam-
ples [51]. The highest TDS concentrations in groundwater were found in Chengguan and
Gaozhuang villages. The elevated TDS concentrations could be attributed to ion exchange,
solubilization, and the extended groundwater residence time in the aquifer [52,53].
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Table 2. Entropy weights for the parameters.

Parameters Weight (Wi) Relative Weight Wi

pH 3 0.063
TDS 5 0.104
K+ 2 0.042

Na+ 2 0.042
Ca2+ 3 0.063
Mg2+ 3 0.063
SO4

2− 3 0.063
Cl− 4 0.083

HCO3
− 3 0.063

NO3–N 5 0.104
NH4–N 5 0.104

F− 5 0.104
As 5 0.104

The cations in the groundwater could be ranked by mean content in the order
Na+ > Ca2+ > Mg2+ > K+, with concentrations of 427, 135, 92, and 8.13 mg/L, respectively
(Figure 2). The high concentration of sodium in groundwater may be associated with the
dissolution of halite, Na-feldspar, and ion exchange [54]. Na+ was the dominant groundwa-
ter cation with a concentration ranging from 30 to 5540 mg/L, and one-third of the samples
had Na+ concentrations higher than the WHO [51] standard of 200 mg/L. Groundwater
Ca2+ and Mg2+ concentrations ranged from 24.02 to 1027 mg/L and 6.07 to 584 mg/L,
respectively. The concentrations of Ca2+ and Mg2+ exceeded the WHO [51] limits (75 mg/L
and 30 mg/L in three-quarters of the groundwater samples. Groundwater K+ concentration
was relatively low, with 16% of the samples exceeding the WHO [51] limit of 10 mg/L. The
major ions in the groundwater followed the trend SO4

2− > Cl− > HCO3
− with mean con-

centrations of 663 mg/L, 487 mg/L, and 330 mg/L, respectively (Figure 2). The high concen-
trations may be due to the dissolution of sulfate minerals (such as mirabilite, gypsum, etc.)
and human activities (such as domestic sewage discharge, industrial pollution, etc.) [55].

Figure 2. Box diagram of major chemical parameters in groundwater.
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About 55% of the samples contained SO4
2−, which exceeded the WHO [51] and

Chinese permissible limit [50] (250 mg/L). The concentrations of Cl− and HCO3− in 26%
and 43% of the groundwater samples, respectively, exceeded the respective WHO [51] and
Chinese permissible limits [50] (250 g/L and 300 mg/L). Most of the study region had
high HCO3

− concentrations in the groundwater, and only some villages (including Yuanyi,
western parts of Chonggang, Xinghai, and Yanzidun; Figure 3i) along the western border
had low HCO3

− concentrations.

Figure 3. Geographic visualization of the hydrogeochemical variables: (a) pH; (b) TDS; (c) K+;
(d) Na+;(e) Ca2+; (f) Mg2+; (g) Cl−; (h) SO4

2−; (i) HCO3
−; (j) NO3-N; (k) NH4-N; (l) F−; (m) As. The

red line represents the WHO limit value.

In the traditional irrigated area, the nitrogen concentration in groundwater can better
indicate the anthropogenic effects [56–58]. The concentrations of NO3-N in the groundwater
ranged from BDL (below the detection limit) to 62.15 mg/L (Figure 2). About 20% and
5% of the samples had NO3-N concentrations higher than the WHO [51] and Chinese [50]
drinking water standards of 10 mg/L and 20 mg/L, respectively. NH4-N concentrations
ranged between 0–4.7 mg/L (Figure 2). Nearly 23% of the samples had high NH4-N
levels, exceeding the threshold of the WHO [51] and Chinese standard [50] (0.5 mg/L).
Nevertheless, NH4-N was the dominant nitrogen pollutant in the study region due to its
wide spatial distribution.

Fluoride is a dominant trace element in groundwater [59,60]. High concentrations
of groundwater fluoride can result in fluorosis of the teeth and skeleton, including teeth
discoloration and ligament deformation [61–63]. Groundwater fluoride concentrations
ranged from 0.06 to 1.56 mg/L (mean of 0.58 mg/L). Among the 14 groundwater samples,
2 samples in the Lihe, Chonggang, and Xinghai villages (Figure 3l) contained higher
fluoride levels than recommended by the WHO [51] and Chinese standards [50] of 1.5
and 1.0 mg/L, respectively. The high fluoride content may be due to the dissolution of
fluorine-containing minerals, such as fluorite [48].

According to the WHO [51] and the Chinese standard [50], a concentration of As
above 0.01 mg/L may hurt human health [62–64]. In the study region, the concentration
of As was in the range of 0 to 0.131 mg/L. While the water quality parameters of most of
the groundwater samples were within the drinking water standards, 10 samples from the
central region contained levels of As that were higher than the permissible limit.

4.2. Hydrogeochemical Facies

The present study used a Piper [65] trilinear diagram (Figure 4) to illustrate the ion
composition and chemical evolution of the groundwater. Groundwater cations were concen-
trated in the center and right corners of the cation triangle diagram. Groundwater cations
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indicated the groundwater types, namely a non-dominant type and a Na-dominant type.
Groundwater anions showed a relatively dispersed distribution, with partial concentration
in the SO4

2− and HCO3
− terminals. The facies of groundwater hydrochemistry in the

study area were predominantly SO4·Cl-Ca·Mg, and SO4·Cl-Na. Some samples distributed
along the Helan Mountains belonged to the HCO3

− Ca·Mg type.

Figure 4. Piper diagram of groundwater chemical composition in the Shizuishan area.

4.3. Processes Regulating Groundwater Hydrochemistry

Principal Component Analysis (PCA) is a linear dimensionality reduction technique
that reduces the number of variables and retains much more information [53]. The present
study performed a PCA to identify the dominant factors regulating groundwater hydro-
chemistry in the study area. For the groundwater samples in this study, PC1 (43.40%), PC2
(13.63%), PC3 (13.18%), and PC4 (11.13%) could explain 81.34% of these 13 variables, which
means that the principal component analysis was reliable (Figure 5).

Figure 5. Load factor score of submersible principal component analysis. (a) salinity factor;
(b) alkalinity factor; (c) carbonate factor; (d) pollution factor.

PC1 had a high contribution of TDS, K+, Na+, Mg2+, Cl−, and SO4
2− (r = 0.97, 0.92,

0.96, 0.82, 0.94, and 0.96, respectively). These ions were the major constituents of the TDS.
According to the correlation analysis, there were significant (p < 0.05) positive correlations
between the TDS and K+, Na+, Mg2+, Cl−, and SO4

2− (r2 = 0.88, 0.97, 0.90, 0.98, and 0.98,
respectively Figure 6). This indicates that the source of these ions may be derived from
the dissolution of gypsum, halite, and dolomite [23,66]. The strong positive correlation
demonstrated the dominant role of water-rock interaction in controlling groundwater
hydrochemistry. Therefore, this component is referred to as the salinity factor.
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Figure 6. Correlation coefficient diagram of the groundwater hydrochemical indicators.

In PC2, there were strong positive loadings values of groundwater with pH and As
(r = 0.83 and 0.55, respectively), and negative loadings of NO3-N (r = −0.72). The level
of the pH is an important factor for As accumulation in groundwater. Groundwater is
weakly alkaline, which is helpful for As adsorption [67]. It has been shown that elevated
groundwater pH affects the dissolution of As minerals due to chemical interactions between
the underlying aquifer layer and the overlying water. This is due to the negative charge on
the surface of sediment particles with increased pH, which forms electrostatic repulsion
with arsenic-containing anions. As a result, arsenic in the adsorbed state can be desorbed
and released into the groundwater [68]. Combined with the scattered distribution of high-
NO3-N groundwater and the negative relationship between pH and NO3-N (r2 = −0.42,
p < 0.05, Figure 6), it is reasonable to assume that the possible source of NO3-N may be
derived from domestic and industrial wastewater infiltration. Therefore, this component is
referred to as the alkalinity factor.

PC3 showed significant loadings for Ca2+, Mg2+, and HCO3
− (r = 0.61, 0.50, and 0.75,

respectively). These components were attributed to carbonate dissolution/precipitation.
Positive significant (p < 0.05) correlations were found between Ca2+ and HCO3

− and
between Mg2+ and HCO3

− (r2 = 0.40 and 0.56, respectively, Figure 6), indicating that calcite
and dolomite may be the major sources of those ions (Reaction 1 and Reaction 2). Therefore,
this component is termed a carbonate factor.

CaCO3+CO2+H2O → 2HCO3
−+Ca2+ (R1)

CaMg(CO 3
)

2+2CO2+2H2O → 4HCO3
−+Ca2++Mg2+ (R2)

The PC4 had high positive loadings of NH4-N (r = 0.71) and As (r = 0.51), and had
negative loadings of F (r = −0.70). According to research [68–70], the occurrence of NH4-N
and As in groundwater is mostly detected in anaerobic environments in the northern part
of the Yinchuan Plain. Positive relationships between NH4-N and As (r2 = 0.3, p < 0.05,
Figure 6) in groundwater can demonstrate the controlling factor of redox conditions in
hydrochemistry. Wu et al. [39] found that fluorite tends to dissolve in groundwater. Flu-
orite is the main source of fluoride in groundwater. PC4 contained the predominant
groundwater contaminants in the study region. Therefore, this component is considered a
pollution factor.

4.3.1. Water-Rock Interaction

Gibbs [71] proposed a model to better understand the mechanisms that regulate
groundwater chemistry. This diagram reflects the influences of water-rock interactions,
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evaporation, and precipitation on groundwater hydrochemistry. The Gibbs curve shows
that evaporation and rock weathering are the main driving forces, which are related to the
complex geochemical mechanism of the study area. Other studies have made similar analy-
ses [72]. The Gibbs diagram has been widely used in hydrogeochemical research [54,73].
Due to the hydrogeochemical facies shown in Figure 7, the majority of samples were
positioned in the evaporation- and rock-dominant regions. The shallow depth of the
groundwater facilitated the infiltration of irrigation water into the groundwater, resulting
in evaporation, which is also the primary factor influencing groundwater chemistry. Since
the study area is arid/semi-arid, groundwater sampling points in the present study were
positioned along long distances from areas in which atmospheric precipitation regulates
groundwater quality.

Figure 7. Gibbs diagram of groundwater chemical composition in the Shizuishan Area.

The Na+: Cl− (meq/L) ratio is widely used to identify the main sources of Na+ [74].
Na+: Cl− = 1 when groundwater Na+ is derived from halite dissolution. However, if the
ratio is greater than 1.0, the Na+ may have another source, such as the dissolution of silicate
rocks or cation exchange [75]. As shown in Figure 8a, most of the sampling points were near
or to the left of the 1:1 ratio line. Therefore, the groundwater Na+ was mainly influenced by
the dissolution of halite and also influenced by other sources (Reaction 3 and Reaction 4).

NaCl → Na++Cl− (R3)

2NaAlSi3O8+2CO2+11H2O → Al2Si2O5(OH)4+2Na + 4H4SiO4+2HCO−
3 (R4)

Ca2+/SO4
2− is expected to be 1:1 when Ca2+ and SO4

2− are derived from gypsum
dissolution [76,77]. As shown in Figure 8b, most of the sampling points were positioned
above the 1:1 line, indicating excess SO4

2− and/or insufficient Ca2+ in groundwater. Cation
exchange may reduce the Ca2+ concentration in the study region. Under those conditions,
a moderate positive correlation was observed between concentrations of Ca2+ and SO4

2−
(r2 = 0.51, p < 0.05).

In addition, the ratio (Ca2+ + Mg2+): (HCO3
− + SO4

2−) can be helpful for determining
groundwater sources of Ca2+ and Mg2+. If the ratio is approximately 1.0, carbonate and
sulfate rock dissolution is the main source of groundwater Ca2+ and Mg2+ [78]. In Figure 8c,
most of the samples fell below the line. This demonstrates that the concentrations of HCO3

−
and SO4

2− have obvious advantages for concentrations of Ca2+ + Mg2+. The groundwater
content of these ions may be regulated by the dissolution of both carbonate and gypsum.
In addition, the cation exchange process involving the release of Na+ and the uptake of
Ca2+ or Mg2+ can cause a deficit in groundwater Ca2+ + Mg2+.
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Figure 8. Ions correlation analysis picture of the Shizuishan Area.

Schoeller [79] proposed the chlor-alkali index (CAI-I and CAI-II) to measure the ion
exchange reaction between groundwater and aquifers. If the chlor-alkali index is negative,
it means that the amounts of Ca2+ and Mg2+ in the groundwater is decreasing, while those
of Na+ and K+ are increasing. Conversely, Ca2+ and Mg2+ increased, and Na+ and K+

decreased [53,72]. The above observations of the cation exchange process were further
confirmed by the results of the chlor-alkali indices. As shown in Figure 8d, groundwater
CAI-I and CAI-II were negative in most of the samples, ranging from − 4.76 to 0.61 and
−0.65 to 0.70, respectively. This result indicated the occurrence of positive cation exchange
reactions in all the sampling areas. In the study region, groundwater Ca2+ displaces
Na+ from the host rock during positive cation exchange, increasing concentrations of
groundwater Na+ (Reaction 5).

CAI − I =
[
Cl− − (Na+ + K+)

]
/Cl− (9)

CAI − II =
[
Cl− − (Na+ + K+)

]
/(SO2−

4 + HCO−
3 + CO2−

3 + NO−
3 ) (10)

2NaX + Ca2+ → CaX2+2Na+ (R5)

4.3.2. Anthropogenic Activities

NO3 and NH4 are the main forms of nitrogen in groundwater. However, the spatial
distributions of NO3-N and NH4-N (Figure 3j,k) indicate point and non-point contami-
nation. The positive relationship between NH4-N and K+(r2 = 0.42, p < 0.05) in Figure 6
can better explain the effect of fertilizer application. As a traditional irrigated region,
nitrogen pollution in groundwater is caused by the overuse of fertilizer and flood irrigation.
The average fertilizer application amount per hectare of arable land in Ningxia reached
821.81 kg, and the average fertilizer application rate was much higher than the national
average (339 kg/ha) [38]. Rahman et al. [56] verified the positive correlation between
NH4-N and K+ in groundwater due to intensive agricultural activities. However, when
the groundwater is in a reducing environment, nitrate is reduced to nitrite nitrogen and
then to ammonia nitrogen under the action of parthenogenic anaerobic bacteria [69]. The
anaerobic conditions determined the predominance of NH4-N in the groundwater. This
observation is supported by the results of Chen et al. [40] in which high groundwater Fe
and As concentrations were observed, which was further verified by the redox condition.
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4.3.3. Geogenic Sources

Minerals containing arsenic and fluoride, such as fluorite, apatite, biotite, muscovite,
hornblende, etc., are widely considered to be the sources of groundwater arsenic and
fluoride [80]. The Shizuishan area contains a large amount of minerals including silica,
coal, and pyrite. Scorodite (FeAsO4·2H2O) is the main component of pyrite, and thus, it
is considered a potential source of arsenic in groundwater [81]. Based on the chemical
equilibrium in Reaction 6, scorodite may be a possible source of arsenic in groundwa-
ter [82]. The dissolution of CaF2 (fluorite) is believed to be the main process leading to
groundwater fluoride levels in Shizuishan (Reaction 7). This is consistent with previous
research in Yinchuan Plain [36,39,76]. The high concentration of HCO3

− in groundwater
can control the solubility of fluoride, thereby releasing the concentration of fluoride into
groundwater [83,84]. The arsenic and pH in the study region displayed an excellent posi-
tive correlation (r2 = 0.42, p < 0.05). It made the alkaline environment the major controlling
mechanism for the leaching of arsenic into groundwater. In the arid region, evaporation is
beneficial to enhancing the concentration of arsenic in groundwater.

FeAsO4 • 2H2O → Fe3++AsO3−
4 +2H2O (R6)

CaF2+2HCO−
3 → CaCO3+2F−+H2O + CO2 (R7)

4.4. Groundwater Quality Assessment

Based on the weight given for each parameter, the relative weights were calculated
(Table 2). The relative weights of TDS, Cl−, NO3-N, NH4-N, F−, and As were greater
than other parameters, indicating that these were parameters with dominant effects on
groundwater quality.

WQI is used to assess groundwater quality [43,44]. A WQI of < 50, 50 < WQI < 100,
100 < WQI < 200, 200 < WQI < 300, and > 300 indicate excellent, good, medium, poor,
and extremely poor groundwater quality, respectively. Table 3 shows the distribution of
groundwater sampling points in the Shizuishan area among these five categories. There
are 15 groundwater samples of excellent quality, which are mainly distributed along
the Helan Mountains. This may be related to the good quality of lateral inflow in the
groundwater system.

Table 3. Quality classification of phreatic water and confined water.

Categories Ranges NO. of Sample

WQI

Excellent <50 15
Good 50–100 24

Medium 100–200 18
Poor 200–300 3

Extremely poor >300 6

The aquifer along the Helan Mountains consists mainly of gravels, with much higher
hydraulic gradients and faster groundwater flow rates. Considering the groundwater
recharge sources, these samples may be associated with the good quality of lateral inflow
in the groundwater system [39]. In total, 24 and 18 samples were classified as good and
medium, respectively. This implies that among the sampling points, 60% of them contain
groundwater that is suitable for drinking. In addition, there were three samples of poor
quality. Six samples (Q1, Q5, Q8, Q11, Q19, and Q41) were of extremely poor quality.
These samples were not suitable for direct drinking. For example, the maximum WQI
value in Q8 was 965. The concentrations of TDS, NH4-N, and As in Q8 were 18448, 3.52,
and 0.0253 mg/L, respectively, which far exceeded the WHO’s [51] acceptable limits for
drinking. The western and southern parts of the Shizuishan region had good groundwater
quality, including Chengguan, Touzha, the northern part of Hongguozi, and the eastern
part of Chonggang (Figure 9).
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Figure 9. Groundwater EWQI zoning map of the Shizuishan area.

4.5. Assessment of the Hazard to Human Health

The non-carcinogenic health risk levels of groundwater oral intake were calculated.
The health risks of NH4-N, NO3

−N, F−, and As intake for children and adults are shown
in Figure 10. The hazard quotients of NH4-N were in the range of 0–0.22 for children
and 0–0.11 for adults. The non-carcinogenic risks posed by NO3-N and F- were 0–1.81
and 0.05–1.81 for children, respectively. However, the corresponding risks in adults were
acceptable in the range of 0–0.93 for NO3-N and 0.02–0.62 for F−. The non-carcinogenic
risks associated with As in groundwater were predominant in the study region. The HQ
values of As were between 0 and 20.38 for children, and between 0 and 10.48 for adults.
Thus, for children, the cumulative hazard index (HI) through drinking water ranged from
0.09 to 20.65 (mean of 1.53), whereas the maximum was recorded at Q10 (20.65). The HI
for adults ranged from 0.05 to 10.62, with a mean of 0.79, which is within the permissible
risk level of 1.0. The level of non-carcinogenic hazards posed to children were 1.94 times
higher than those posed to adults. In this regard, pollutants in groundwater posed higher
non-carcinogenic risks to children. Similar results have been observed by other scholars.
Adimalla et al. [43] identified the great potential risks in the agricultural area of Nanganur
in southern India due to high concentrations of nitrate in groundwater. Qaiser et al. [47] also
found that the non-carcinogenic index was higher for children than for adults in Pakistan.

As shown in Table 4, the contribution of HI was 57.07% for As, 29.91% for F−,
11.42% for NO3-N, and 1.61% for NH4-N for both children and adults. The ranking
of groundwater parameters according to their non-carcinogenic risks to human health was
As > F- > NO3-N > NH4-N. This also implies that concentrations of As and F have a great
influence on the non-carcinogenic risks of groundwater. The spatial distribution of HI
had similar characteristics to the spatial distribution of As and F−. Groundwater is the
only source of drinking water in the study region, and most of the residents, especially
children, are exposed to adverse health risks due to the consumption of contaminated
groundwater. In particular, the metabolic capacity of children is far lower than that of
adults, and the harm from drinking contaminated water is much greater than that posed to
adults. The long-term drinking of high-arsenic water can lead to chronic arsenic poisoning,
including skin lesions, diabetes, cardiovascular diseases, and cancer [85,86]. Drinking
high-fluoride groundwater will cause dental fluorosis and skeletal fluorosis [87]. Although
the hydrochemical groundwater data showed that nitrogen contamination was more severe
in the study region, the As concentration and the associated risks to residents should be
given more attention by decision makers.
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Figure 10. Non-carcinogenic risk zoning map in Shizuishan area. (a) NH4-N for children; (b) NO3-N
for children; (c) F− for children; (d) As for children; (e) NH4-N for adults; (f) NO3-N for adults; (g) F−

for adults; (h) As for adults; (i) all for children; (j) all for adults. The blue line represents the critical
HI value.

Table 4. Non-carcinogenic and carcinogenic risk results of Shizuishan area through drinking
water intake.

HI RAs

NO. of
Samples

Percentage
of HQ > 1

Contribution
rate of HI

NO. of
Samples

Percentage
of

RAs > 1 × 10−4

Children

NH4-N 0 0% 1.61% / /
NO3-N 1 1.52% 11.42% / /

F− 13 19.70% 29.91% / /
As 12 18.18% 57.07% 6 9.09%
All 29 43.94% / / /

Adults

NH4-N 0 0% 1.61% / /
NO3-N 0 0% 11.42% / /

F− 0 0% 29.91% / /
As 9 13.64% 57.07% 12 18.18%
All 12 18.18% / / /

For children (Figure 11a), the carcinogenic risk index of As by oral intake was
0–7.37 × 10−4, with a mean value of 3.02 × 10−5. For adults (Figure 11b), the carcinogenic
risk index of As ranged between 0–1.89 × 10−4 with a mean level of 7.76 × 10−5. There
were 6 and 12 samples in the Middle East region that exceeded the acceptable level for
children and adults, respectively. It may have adverse effects on human health.
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Figure 11. Carcinogenic risk zoning map of the Shizuishan area. The red line represents the risk
threshold for RAS.

4.6. Recommendation for Groundwater Management

Based on the above discussion, serious potential health risks exist in drinking ground-
water from the study region. It is consistent with the previous findings [44,64] that the
nitrogen pollution of groundwater contamination has become a serious challenge in the
Yinchuan Plain [46,66]. The Jing Hui canal irrigation area is another old agricultural region
with more than 2000 years of irrigation history. Similarly, nitrate pollution and the related
health risks caused by intensive agricultural activities are very serious in the irrigation
area [88]. In general, NO3-N is a common component of nitrogen. When groundwater is in
a reducing environment, nitrate will be reduced to nitrite nitrogen and then to ammonia
nitrogen under the action of anaerobic bacteria [89]. In other words, NH4-N in groundwa-
ter should also be paid more attention. However, there is an inconsistency between the
dominant pollutants and the health-risk-induced pollutants in groundwater. In the study
area, the exceedance rate of arsenic in groundwater was 15%, but it accounted for 57.7% of
the total non-carcinogenic risk and was the main carcinogenic contaminant causing health
risks. Therefore, arsenic contamination in groundwater should be of concern. These high-
arsenic groundwaters in China are mainly located in the fluvial/alluvial-lacustrine plains
and basins located in arid/semi-arid regions and alluvial plains/basins and river deltas
in humid/semi-humid regions [87]. Most areas of the world are at risk from excessive
arsenic levels, for example, 59 endemic arsenic villages with approximately 215,600 people
at high risk have been identified among the inhabitants of the Datong Basin [24]; approxi-
mately 1.56 to 19.8 million people in Bangladesh are thought to be at risk from drinking
arsenic-contaminated water [90]. Arsenic contamination is more severe in the Ganges Basin,
where several people have developed skin and nerve cancer and most children have been
diagnosed with arsenic poisoning [91].

In arid and semi-arid areas, groundwater is an important source of drinking water
for domestic use. In the study region, almost every household relies on private wells
for drinking water because of the low cost. This means that there is an urgent need to
improve public awareness and to understand the relationship between oral ingestion and
adverse health effects. The timely disclosure of this information is an effective management
approach. Maintaining the safety of drinking water should be the highest priority for the
decision makers. Due to the potential adverse health effects, groundwater abstracted from
private wells is not recommended for drinking purposes in the study region. Compared
with phreatic water, confined water is of a relatively good quality for the multi-layered
aquifer system in Yinchuan Plain [92]. However, due to intensive pumping activities,
the aquifer leakage between the phreatic aquifer and the confined aquifer caused the
downward migration of pollutants. As reported by Chen, high NH4-N concentrations
were detected in confined water for pumping wells, while the corresponding contaminant
concentration was below the detection limit for water in monitoring wells [40]. Therefore,
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a well-developed groundwater monitoring network is of great importance to identify
the variation of chemical constituents in groundwater and to elucidate the migration of
contaminants. It will be helpful to optimize groundwater abstraction and provide more
insight for further management.

5. Conclusions

This study assessed the groundwater quality and hydrochemistry and the associated
risks to human health in the Shizuishan area. The results showed that the groundwa-
ter was slightly alkaline. TDS values ranged from 232 to 18448 mg/L, with half of the
samples exceeding the permissible limit for drinking water. The ranking of groundwater
cations according to mean content was Na+ > Ca2+ > Mg2+ > K+, while that of anions was
SO4

2− > Cl− > HCO3
−. Approximately 20% and 5% of the samples had NO3-N concentra-

tions above the WHO and Chinese drinking water standards, respectively. Nearly 25% of
samples had high NH4-N concentrations above the drinking water threshold and showed a
wide spatial distribution. Among the groundwater samples, the fluoride concentrations of
2 samples and 16 samples were higher than the WHO and Chinese standards for drinking
water, respectively. While the measured water quality parameters of most groundwater
samples were within the permissible limits for drinking water, 10 samples from the central
region had levels of As concentrations above the permissible limit. The groundwater
hydrochemical facies were mainly SO4·Cl-Ca·Mg and SO4·Cl-Na. Based on the principal
component analysis, four principal components in groundwater were the salinity factor,
carbonate factor, alkaline factor, and pollution factor in controlling groundwater chemistry
in the study region.

The value of the WQI was in the range of 28–968. The WQI of about 60% of the
groundwater samples indicated the suitability of their use as drinking water. The water
samples of excellent quality are distributed along the Helan Mountains. This may be related
to the good quality of lateral recharge in the groundwater system. There were three samples
of poor quality. Six samples (Q1, Q5, Q8, Q11, Q19, and Q41) were of extremely poor quality.
These samples were not suitable for direct drinking. The HI values in the study were in the
range 0.05–10.62 for adults and 0.09–20.65 for children, respectively. Children showed a
high risk of exposure to groundwater contaminants upon the long-term consumption of
contaminated drinking water. The impact of the pollutants in the groundwater for residents
decreased in the order As > F− > NO3-N > NH4-N. Meanwhile, the carcinogenic risk value
of the oral intake of As was 0–7.37 × 10−4 for children and 0–1.89 × 10−4 for adults. There
were 6 and 12 samples located in the middle east area with levels beyond the permissible
acceptable levels. This study can further support groundwater management in the study
area. More effective approaches should be considered in the future.
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Abstract: The rapid expansion of economic activities in Egypt’s Central Eastern Desert has resulted in
poorly coordinated groundwater development, having a negative impact on the resource. This study
was conducted to assess the hydrochemical characteristics of the different aquifers in the Central
Eastern Desert, with an emphasis on the impact of seawater intrusion and groundwater quality for
different purposes. A total of 21 groundwater samples were collected representing the three main
aquifers (Eocene Carbonate, Nubian Sandstone, and Fractured Basement) in the Central Eastern
Desert, and analyzed for major ions and trace elements. The majority of the samples had electrical
conductivity values that exceeded the salinity limit for natural water. Groundwater saline load is
primarily influenced by sodium, calcium, chloride, and sulfate concentrations. The groundwater
in the Central Eastern Desert mainly consists of Na-Cl, Ca-Cl, and Na-SO4 water-types. Saltwater
intrusion and water-rock interactions via cation exchange and minerals weathering are the primary
controlling factors of groundwater hydrochemistry. The high salinity of this groundwater renders
it unsuitable for irrigation or consumption. Additionally, it is unfit for domestic use based on
total hardness values. Furthermore, the Al, Cd, Fe, Mn, and Ni concentrations in the investigated
groundwater exceed the allowable limits for human consumption. Proper mitigation measures and
adaptation strategies are required for groundwater sustainability in the Central Eastern Desert.

Keywords: groundwater; hydrogeochemistry; hydrochemical facies; seawater intrusion; water
quality; Eastern Desert

1. Introduction

In semiarid, arid climate, and coastal regions, communities rely mostly on ground-
water as their source of drinking water [1,2]. Generally, groundwater is a finite natural
resource of fresh water on Earth. The daily drinking and domestic water need of about
33% of the world’s population are satisfied by groundwater [1,3,4]. Almost 2.1 billion
people worldwide don’t have access to safe drinking water [5]. Groundwater quality has
received more attention in recent decades as a result of growing urbanization, intense
agricultural activities, reclamation of new agricultural lands, and industrialization, which,
in addition to an increasing population, pose an increased risk of groundwater and soil
pollution [1,6–8]. Groundwater quality is affected by rainfall rates, the nature of recharge
water, and surface-water resources, in addition to hydrogeochemical processes occurring
in an aquifer [2,9]. Groundwater hydrogeochemistry is affected by geochemical natures for
oxidation-reduction, ionic exchange, mineral weathering, authigenic mineral dissolution,
and precipitation, in addition to groundwater abodes of time [1,9,10].

Intrusion processes are considered a major factor in influencing groundwater chem-
istry [11–14]. Salinization presents an outstanding problem threatening groundwater
resources in coastal basins of arid and semi−arid climates [15]. Salinization process is
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directly related to the effects of many factors (e.g., marine intrusion, climatic conditions,
aquifers characteristics, and anthropogenic activities) that can exacerbate or decrease these
problems [14,16–18]. The origin of the salinization of groundwater in coastal areas has
been investigated by implementing many approaches [19,20]. The balance of groundwater
discharge and recharge clarify how far saline water infiltrates, the aquifer−piezometric
level, and the distance between the groundwater aquifer and the saline water sources, in ad-
dition to its geological structure [21]. Accordingly, it is indispensable to grasp the chemical
processes leading to the salinity of coastal groundwater aquifers to create a valuable plan
for the sustainable management of all vulnerable groundwater resources [20]. In addition,
continuous groundwater extraction leads to a lowering in the groundwater table leading
to increases in domestic water seepage and seawater intrusion, especially in the coastal
areas [22,23].

A porous medium and permeable matrix are two terms that are frequently used
to describe sandstone aquifers. Such aquifers, however, may be heavily fractured if the
characteristics of the rock and the time of the deformation encourage brittle failure and crack
opening [24–27]. Fractured carbonate aquifers are a common source of water supply [28,29].
In most sedimentary rocks, rapid solute transport of contaminants occurs within bedding
plane fractures and joints rather than through intergranular porosity [24,28]. Groundwater
availability in igneous and metamorphic rock is extremely rare and is directly controlled
by geological processes (weathering and fracturing) [1]. The current consciousness is
focused on preserving existing constrained drinking water resources in the context of
rising demand [13,30]. So, continuous monitoring and assessment of both quantity and
quality of existing limited water sources are extremely vital [30,31]. Effective continuous
monitoring surveys are needed for discovering the mechanisms which control groundwater
quality in coastal provinces. Considering the factors that contribute to groundwater quality
deterioration will be critical for future management plans [32]. Many health and agriculture
organizations establish standards used extensively comparing various components (major
ions concentrations) and pollutants (e.g., potentially toxic elements and radionuclides)
for irrigation and drinking water [5,33,34]. In addition, a lot of water quality indices and
statistical analyses equally be utilized to reduce reliable data for assessing water-quality
appropriateness within single and multiple−digit tools [32,35].

Nowadays, Egypt faces serious water shortage challenges coinciding with high popu-
lation growth and climate change. Many focuses have recently been placed on agricultural
developments and sustainable growth in the Egyptian deserts, and how they must meet
most crucial objectives of the Governmental Strategy for Sustainable Agricultural Devel-
opment 2030 [36,37]. Therefore, the resources of groundwater in Egypt play critical roles
in satisfying part of water requirements for different uses, especially in coastal and arid
provinces [8,37,38]. This study’s main objectives are (i) to recognize the mechanisms gov-
erning groundwater chemistry in Egypt’s Central Eastern Desert (CED), (ii) to evaluate the
adequacy of groundwater quality for various uses.

2. Materials and Methods

2.1. The Study Area

The study area lies between 25◦50′–27◦00′ N and 32◦30′–34◦25′ E in the CED, Egypt
(Figure 1). The geologic setting of the CED is represented mainly by the Precambrian
basement rocks (igneous and metamorphic), which form the Red Sea Hills, and it is
bordered on the eastern side along the coast by a narrow strip of sedimentary succession,
and on the western side, it is also bounded by sedimentary rocks that extend up to Nile
Valley. Basement rocks includes gneisses, serpentinites, metagabbros, and metabasalts that
have been intruded by volcanic and younger granitic rocks and are overlain by molasse
sediments (metasediments) [39,40]. After a long period of tectonic activity, the sedimentary
rocks were deposited inside the subsidence blocks (basins) of the basement rocks near the
coastal plain and on the western side until the Nile Valley [41]. The Nubian Sandstone
Formation of Lower Cretaceous age, the oldest rock unit in the sedimentary succession, is
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distinguished by fine- to coarse-grained sandstone with some shale and clay beds [42]. It is
overlain by Late Cretaceous to Eocene shale and carbonate marine deposits [43]. The post-
rift sediments are comprised of alluvial and alluvial fans deposits. The groundwater in the
Central Eastern Desert is available at different depths and lithology. Based on the lithology,
three main regional aquifer systems are distinguished; they are the Eocene Carbonate,
the Nubian Sandstone (Upper Cretaceous sandstone, shale, and marl layers), and the
underlying Fractured Basement aquifer (Precambrian igneous and metamorphic rocks).

 

Figure 1. The study area and sampling site’s locations.

2.2. Sampling and Analyses

Twenty-one groundwater samples in all were collected in 2019–2020 from the wells
located throughout the Golden Triangle region of the CED (Figure 1). Samples were
taken from the three mean aquifers in the studied area Eocene Carbonate (EOC), Nubian
Sandstone (NS), and Fractured Basement (FB) aquifers. To avoid the effects of static water,
water was flushed for about 10 min before collecting samples. 1 Litre of water was collected
in new and rinsed two polyethylene bottles for each sample. One bottle was filled with
only fresh well water, while the other was acidified with HNO3 to a pH < 2 in order to
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reduce trace elements adsorption to bottle walls and biological activity. Titration with
H2SO4 (0.01 N) was used to determine the concentrations of carbonate and bicarbonate.
An ion chromatography system (Dionex, ICS-1100, Thermo Fisher Scientific Inc., Waltham,
MA, USA) was used to measure Ca2+, Mg2+, Na+, K+, SO4

2−, and Cl−. The accuracy
and reliability of the chemical analysis were examined by the Electrical Balance (EB%)
between the cations and anions [44]. Trace elements (Al, Cd, Cr, Cu, Co, Fe, Mn, Mo, Ni,
Pb, V, and Zn) were measured using inductively coupled plasma mass spectrometry (ICP,
POEMSIII, thermo Jarrell elemental company, Waltham, MA, USA) with standard solutions
containing 1000 mg/L (Merck). The major ions and trace elements were analyzed in the
Desert Research Centre’s hydro-geochemistry laboratories in Cairo, Egypt.

2.3. Groundwater Quality

The geochemical characteristic of water is an essential component in the process of
evaluation of water quality. The current study attempted to determine the suitability
of existing groundwater for various purposes. Chloride content, Electrical Conductivity
(EC) [45], Soluble Sodium Percentage (SSP) [46], Sodium Adsorption Ratio (SAR) [47],
Residual Sodium Carbonate (RSC) [47], Magnesium Adsorption Ratio (MAR) [47], TDS [48],
Total Hardness (TH) [49], and Corrosivity Ratio (CR) [50], and toxic metal content are used
to assess its suitability for irrigation, domestic uses, and drinking. Table S1 summarizes the
formulae used to calculate the various indicators (in Supplementary Materials).

2.4. Data Treatment

The map of sampling locations in the study area was created using Google Earth and
Arc-Map software (Arc-Map 10.3). Descriptive statistics and box and whisker plot charts
(boxplots) have been presented by OriginLab (version OriginPro 2021). Bivariate X–Y plots
(bivariate diagrams) between major ion have been presented by Excel (Microsoft Office 365)
to precisely determine the origin of each element and separate different mechanisms that
contribute to groundwater evolution. OriginLab, also, was used to calculate and present
multivariate statistical analyses in the form of Pearson Correlation Coefficient (PCC) and R
mode Hierarchical Cluster Analysis (HCA), to elucidate the interrelation between major
ions and their effect in groundwater chemistry. Piper diagram is presented using OriginLab
and HFE-Diagram is created using the spreadsheet software package, Microsoft Excel
(Excel Macro) provided by Giménez-Forcada and Sánchez San Román [51].

3. Results and Discussion

3.1. General Hydrogeochemistry

The physicochemical parameters (pH, EC, and TDS) and the major ion concentrations
of investigated groundwater samples within the CED representing different aquifer types
(EOC, NS, and FB) are presented in Table 1 and Figure 2. The EB% in this study was within
5%, indicating that the chemical analysis was accurate [4,6,13]. From Figure 2 it is evident
that the groundwater in the investigated wells samples is characterized by a narrow range
of pH values from slightly acidic to neutral (varied between 6 to 7.2). EC ranged from
4270.0–7980.0, 2730.0–12,550.0, and 690.0–5460.0 in the EOC, NS, and FB aquifers, respec-
tively. These values exceeded the recommended EC limit for natural water (1300 uS/cm
at 25 ◦C; WHO [5]), except for FB aquifer (samples 16, 17, and 20). TDS, like EC, varied
greatly, with the higher the value recorded in the NS aquifer and the least values recorded
in the FB aquifer. The marked differences in the EC and TDS values reflect significant
variation in the hydrochemical features in the EOC, NS, and FB aquifers. The concentration
of the major ions in the groundwater samples varies significantly; Ca2+ (20.0–888.0), Mg2+

9.11–214.8), Na+ (105.0–1400.0), K+ (2.0–17.0), HCO3
− (108.6–791.8), SO4

2− (50.0–1900.0),
and Cl− (55.0–2900.0 mg/L). Data suggested that the chemistry of groundwater was het-
erogeneous and governed by a variety of mechanisms, such as evaporation, water-rock
interaction mixing processes, and saltwater intrusions [19,38,52]. In a recent study by Sherif
et al. [53], groundwater mixing between different aquifers in Egypt’s Eastern Desert was
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proven utilizing 36Cl abundances and 37Cl/35Cl, 2H/1H, and 18O/16O isotope ratios. In
most cases, the three aquifers are dominated by Na+, followed by Ca2+, Mg2+, K+, and Cl−,
followed by SO4

2− and HCO3
−. Some fluctuations are observed between Ca2+ and Na+ in

NS and FB aquifers. The anionic distribution in the FB aquifer shows complex fluctuation
between HCO3

−, SO4
2−, and Cl−.

Table 1. Physicochemical parameters and major ions concentrations (mg/L) in EOC, NS, and FB aquifers.

NO. Aquifer pH
EC

uS/cm
TDS
mg/L

Ca2+

mg/L
Mg2+

mg/L
Na+

mg/L
K+

mg/L
HCO3

−
mg/L

SO4
2−

mg/L
Cl−

mg/L
EB
%

1

EOC

6.4 7980.0 4734.0 557.4 141.5 860.0 14.0 207.2 1251.9 1800.0 −1.88
2 6.4 7330.0 4317.0 530.0 214.8 640.0 15.0 134.2 900.0 1950.0 −2.40
3 6.1 5340.0 3188.0 299.5 121.3 600.0 9.0 109.8 1028.1 1075.0 −2.16
4 6.1 4320.0 2523.0 310.8 116.3 380.0 7.0 195.2 736.8 875.0 −1.68
5 6.3 4270.0 2496.0 267.1 176.5 300.0 17.0 268.4 926.3 675.0 −1.68

Min. EOC
(N = 5)

6.1 4270.0 2496.0 267.1 116.3 300.0 7.0 109.8 736.8 675.0 −2.4
Max. 6.4 7980.0 4734.0 557.4 214.8 860.0 17.0 268.4 1251.9 1950.0 −1.7

6

NS

6.8 3770.0 2219.0 208.0 65.7 480.0 8.0 316.4 475.5 800.0 −1.03
7 6.9 12,550.0 7424.0 888.0 202.2 1400.0 13.0 194.4 1900.0 2900.0 −0.93
8 7.2 3810.0 2229.0 91.5 35.4 680.0 7.0 316.4 407.7 825.0 0.41
9 6.8 4730.0 2893.0 75.5 17.7 920.0 7.0 292.8 826.8 900.0 −2.13

10 6.0 9640.0 5699.0 609.9 165.8 1100.0 6.0 122.0 1556.6 2200.0 −2.30
11 6.2 4270.0 2521.0 358.1 85.9 360.0 5.0 134.2 794.7 850.0 −2.36
12 6.4 3010.0 1768.0 114.9 100.5 340.0 3.0 146.4 586.1 550.0 −2.14
13 6.2 3710.0 2209.0 279.0 75.9 360.0 9.0 134.2 688.1 730.0 −1.43
14 6.6 2730.0 1609.0 95.9 35.2 420.0 4.0 183.0 382.7 580.0 −2.38
15 6.8 3340.0 2078.0 45.6 30.3 640.0 5.0 292.4 698.8 500.0 −1.08

Min. NS
(N = 10)

6.0 2730.0 1609.0 45.6 17.7 340.0 3.0 122.0 382.7 500.0 −2.4
Max. 7.2 12,550.0 7424.0 888.0 202.2 1400.0 13.0 316.4 1900.0 2900.0 0.4

16

FB

7.1 1057.0 642.0 95.7 17.7 105.0 2.0 268.4 175.3 112.5 −1.67
17 7.0 690.0 405.0 20.0 9.1 120.0 2.0 243.6 65.0 55.0 0.84
18 6.8 3650.0 2255.0 235.0 20.0 500.0 5.0 280.7 804.2 550.0 −2.21
19 6.3 5460.0 3041.0 700.0 96.0 240.0 5.0 108.6 259.8 1650.0 −0.22
20 6.9 1128.0 638.0 28.0 13.0 200.0 2.0 390.0 50.0 137.5 −0.43
21 7.0 2595.0 1600.0 125.4 25.3 390.0 13.0 791.8 90.6 380.0 0.12

Min. FB
(N = 6)

6.3 690.0 405.0 20.0 9.1 105.0 2.0 108.6 50.0 55.0 −2.2
Max. 7.1 5460.0 3041.0 700.0 96.0 500.0 13.0 791.8 804.2 1650.0 0.8

Min.
All Samples

(N = 21)

6.0 690.0 405.0 20.0 9.1 105.0 2.0 108.6 50.0 55.0 −2.4
Max. 7.2 12,550.0 7424.0 888.0 214.8 1400.0 17.0 791.8 1900.0 2900.0 0.8
Mean 6.6 4541.9 2689.9 282.6 84.1 525.5 7.5 244.3 695.5 956.9 −1.4

Table 2 displays R values of the PCC between physicochemical parameters and major
ions of the investigated groundwater samples. The correlation matrix shows a significant
positive correlation of TDS with Cl− (R = 0.937), SO4

2− (R = 0.915), Na+ (R = 0.880), Ca2+

(R = 0.879), Mg2+ (R = 0.794), and K+ (R = 0.556). Moreover, it was observed strong
positive correlation of Cl− with Ca2+ (R = 0.930), SO4

2− (R = 0.817), Mg2+ (R = 0.804), Na+

(R = 0.797), and K+ (R = 0.507). likewise, SO4
2− with Na+ (R = 0.848), Mg2+ (R = 0.755), Ca2+

(R = 0.716), and K+ (R = 0.504). Ca2+ exhibits a positive correlation with Mg2+ (R = 0.798),
which is most likely owing to the dissolution of dolomite and calcite. HCO3

− exhibits
a negative and weak correlation with the other ions as well as TDS. This means that the
majority of cations are strongly associated with Cl− and SO4

2−. It may indicate the impact
of seawater intrusion on groundwater because the major anions in seawater are Cl− and
SO4

2−. The R-Mode (variables) dendrogram created using HCA (Figure 3), supports the
inferred relationship between TDS and the major ions.
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Figure 2. Boxplots of physicochemical parameters and major ions in EOC, NS, and FB aquifers.

Table 2. PCC for pH, TDS (mg/L), and major ions (mg/L) in EOC, NS, FB aquifers (n = 21).

TDS Ca2+ Mg2+ Na+ K+ HCO3
− SO4

2− Cl−

pH −0.354 −0.455 −0.603 −0.065 −0.217 0.614 −0.439 −0.367
TDS 0.879 0.794 0.880 0.556 −0.355 0.915 0.973
Ca2+ 0.798 0.572 0.473 −0.437 0.716 0.930
Mg2+ 0.493 0.678 −0.473 0.755 0.804
Na+ 0.413 −0.151 0.848 0.797
K+ 0.137 0.504 0.507

HCO3
− −0.441 −0.416

SO4
2− 0.817
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Figure 3. CA dendrogram in R-mode (Variables) for TDS, and major ions in EOC, NS, FB aquifers (n = 21).

3.2. Hydrochemical Facies

Many hydrogeochemical arithmetical diagrams may be used for distinguishing be-
tween differences and similarities in the composition of groundwater as well as for clas-
sifying them into specific chemical categories [54,55]. The hydrochemical components of
studied aquifers groundwater were applied on a Piper Diagram (Figure 4) to highlight and
clarify the main hydrochemical facies, and characteristics and for illustrating the different
processes that control groundwater [52]. The excess of Cl− type is clear in the anionic
triangle for both EOC and NS aquifers while in FB aquifer bicarbonate type was dominant
in most samples. Some samples exhibit sodium dominance in the cation’s triangle, while
others exhibit pole mixed calcium, except in FB (Sample 19) aquifers the calcium was
dominant (Figure 4). In the anion’s triangle, samples show a chloride predominance with
a slight propensity sulfate pole (FB aquifer). The dominant water types in EOC and NS
aquifers are Na-Cl type. The FB aquifer recorded many water types; Na-Cl (sample 18),
Na-Ca-HCO3 (samples 17 and 20), Ca-Mg-Cl (sample 16), and Ca-Cl (sample 19). The
dominance of Na-Cl water type is confirmed by the HFE-Diagram [56] (Figure 5), indicating
that this groundwater may be affected by seawater intrusion and leaching out of residual
evaporative salts (i.e., gypsum/anhydrite and halite) during movement [53]. Generally,
high values of Cl−, Na+, and SO4

2− corresponding with seawater intrusion, and Ca2+,
Mg2+, and K+ are not useful when distinguishing between different types of saline water.

The hydrogeochemical processes and hydrogeochemistry of groundwater vary de-
pending on the mineralogy and geochemistry of the aquifer. The chemistry of groundwater
is heavily influenced by the mineralogical composition of the aquifer through which it
flows [38,57]. Groundwater major ion chemistry and interrelations are effective in deter-
mining solute sources and describing groundwater evolution [58,59]. The Na+ vs. Cl−
relationship has frequently been serves to identify the processes that cause water salinity
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in arid and semi-arid regions [38,60]. The relationship between these two ions (Figure 6a)
shows that most of the samples are near the 1:1 Line (halite dissolution line). Equal amounts
of Na+ and Cl− are released into the solution when halite dissolves in water [61]. The
recorded high Cl− relative to Na+ ion indicates the effect of saltwater intrusion [62], espe-
cially in EOC aquifer samples (Figures 5 and 6a). The decreasing trend in the concentration
of Cl− relative to the concentration of Na+ in some NS aquifer samples likely reflects the
cation exchange processes and weathering of the silicate minerals [62]. The additional Na+

originates from the cation exchange in the clay minerals that present as shale intercala-
tion of the NS aquifer leading to the adsorption of Ca2+ and the simultaneous releasing
of Na+ ions [38]; these expected cation exchange confirmed by plotting Na+ vs. Ca2+

(Figure 6b), since the sampling points lie far below the uniline of Na+-Ca2+. Regarding FB
aquifer samples, the excess sodium may be ascribed to the dissolution of Na-Ca-Al-Silicates
(albite-plagioclase).

Figure 4. Piper plot of groundwater samples in EOC, NS, and FB aquifers.

The dissolution of carbonate minerals like calcite (CaCO3) and dolomite (CaMg(CO3)2)
which are responsible for enriching of Ca2+ and Mg2+ was explored by (Ca2+ + Mg2+) vs.
(HCO3

− + SO4
2−) scatter diagram. Most of the NS and FB sample points lie below the

equiline with few along it and above (Figure 6c), which indicates the predominance of
silicate weathering. On the other hand, EOC sampling points lie above that line that
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indicates the predominance of carbonate weathering. Given the abundance of carbonate
and dolomite rocks in the EOC aquifer, it is likely that the groundwater will become much
more Ca2+ and Mg2+ enriched as a result of the dissolution of these minerals. The effects
of silicate weathering and carbonate mineral dissolution on groundwater hydrochemistry
are well documented [27,37,38]. The relation between (Ca2+ + Mg2+)-(HCO3

− + SO4
2−) vs.

Na+ + K+-Cl− [61] referred to the effect of reverse ion exchange. Enrichment of Na+ and K+

when compared to the Ca2+ and Mg2+ in the FB aquifer and some samples of the NS aquifer
is noted in Figure 6d (second quadrant negative ordinate and positive abscissa) [37]. As a
result, the cation exchange sites preferentially absorb Ca2+ and Mg2+ while releasing Na+

and K+ (direct cationic exchange). In EOC aquifer samples, the relative depletion of Na+

and K+ regarding Ca2+ and Mg2+ is noted, which suggests reverse ion exchange (fourth
quadrant positive ordinate and negative abscissa).

 

Figure 5. HFE-Diagram of the studied groundwater samples.
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Figure 6. Plots of the EOC, NS, and FB groundwater samples on scatter diagrams: (a) Na+ vs. Cl−;
(b) Na+ vs. Ca2+; (c) (Ca2+ + Mg2+) vs. (HCO3

− + SO4
2−); (d) (Ca2+ + Mg2+)-(HCO3

− + SO4
2−) vs.

Na+ + K+-Cl−.

3.3. Trace Elements

Trace element concentrations clarify highly significant differences between the studied
aquifers (Table 3). Overall, variations in the distribution of trace and heavy metals in
groundwater are caused by a variety of factors such as cation exchange, evaporation, the
leaching and disintegration of marine water seepage, climate, bedrock type, pH, redox
potential, and mixing capacity [37,44]. Mostly, the monitoring results of the studied aquifers
indicate that the rock type has a considerable impact on trace element distributions. EOC
aquifer samples show the recorded maximum concentrations of Cd, Fe, Mn, Ni, V, and Zn.
Particularly these may be owing to the anthropogenic impact of industrial and tourism
activities near the coastline, reflecting the effects of water flows on trace elements allocation
in these aquifers [63]. Both Fe and Mn are the most distributed metallic elements in Earth
crust. Fe concentrations in groundwater is mostly regulated by many factors including flow
rate, redox agents, dissolved organic matter, pH, leaching and disintegration of marine
water seepage, and bedrock type [16,52]. The dissolution of Fe-bearing minerals commonly
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found in aquifer sediments is one of its main sources in groundwater. As a result of
industrialization progresses, the Ni presence in water systems increased, and many Ni
compounds were introduced for industrial products [64].

Table 3. Trace element concentrations (mg/L) in EOC, NS, and FB aquifers.

NO. Aquifer Al Cd Co Cr Cu Fe Mn Mo Ni Pb V Zn

1

EOC

0.546 <0.0006 0.018 <0.01 <0.006 7.074 0.793 <0.001 0.070 <0.008 0.074 0.063
2 0.052 <0.0006 0.019 <0.01 <0.006 0.608 0.140 0.009 0.039 <0.008 <0.01 0.015
3 0.032 0.004 <0.001 <0.01 <0.006 <0.02 0.010 0.014 0.082 <0.008 <0.01 0.094
4 0.181 0.026 0.009 <0.01 <0.006 <0.02 <0.004 <0.001 <0.002 <0.008 <0.01 0.114
5 <0.01 <0.0006 <0.001 <0.01 <0.006 1.929 0.884 0.113 0.057 <0.008 <0.01 0.100

6

NS

<0.01 <0.0006 0.025 <0.01 <0.006 1.781 0.110 <0.001 0.073 <0.008 <0.01 0.017
8 <0.01 <0.0006 0.024 0.010 <0.006 <0.02 0.136 0.078 0.026 <0.008 <0.01 0.049
9 0.136 <0.0006 <0.001 <0.01 <0.006 0.696 0.168 0.028 0.011 <0.008 <0.01 <0.0005

10 0.354 0.013 0.073 <0.01 <0.006 0.065 0.007 <0.001 0.002 <0.008 <0.01 0.037
11 1.376 <0.0006 <0.001 <0.01 <0.006 4.384 0.091 <0.001 0.018 <0.008 <0.01 0.089
14 0.087 <0.0006 <0.001 <0.01 <0.006 <0.02 0.121 <0.001 0.022 <0.008 <0.01 <0.0005
15 1.078 <0.0006 0.032 <0.01 <0.006 0.454 0.093 <0.001 <0.002 <0.008 <0.01 0.099

17

FB

1.267 <0.006 <0.001 <0.01 <0.006 1.162 0.090 0.089 <0.002 <0.008 0.032 0.029
18 0.155 <0.006 <0.001 <0.01 0.006 <0.02 <0.004 0.126 0.060 <0.008 0.024 0.011
19 0.487 <0.006 <0.001 <0.01 <0.006 0.857 0.091 0.186 0.020 <0.008 <0.01 0.050
20 <0.01 0.009 0.010 <0.01 <0.006 0.281 0.046 0.203 0.028 <0.008 0.020 0.023
21 0.628 0.001 <0.001 <0.01 <0.006 0.637 0.197 0.015 <0.002 <0.008 <0.01 0.012

Min.
All Samples

(N = 17)

0.032 0.001 0.009 0.010 0.006 0.065 0.007 0.009 0.002 - 0.020 0.011
Max. 1.376 0.026 0.073 0.010 0.006 7.074 0.884 0.203 0.082 - 0.074 0.114
Mean 0.491 0.010 0.026 - - 1.661 0.198 0.086 0.039 - 0.038 0.053

WHO [5] 0.9 0.003 - 0.05 2 - 0.4 - 0.07 0.01 - 3
ESDW [34] - 0.003 - 0.05 2 0.3 0.4 - 0.02 0.01 - 3
USEPA [65] - 0.003 - 0.05 - 0.3 - - - - 0.07 3

FAO [33] 5 0.01 - 0.1 0.2 5 0.2 - 0.2 - 0.1 2
CCME [66] 5 0.01 - - - 5 0.2 - 0.2 0.2 0.1 -

3.4. Assessmnet of Groundwater Quality for Different Purposes
3.4.1. Assessment for Irrigation Use

Irrigation water quality refers to its suitability for use in the irrigation of different
crops. Under good soil and water management practices, good quality water has the
potential to result in maximum yield [67]. The concentration and composition of dissolved
constituents in water determine their quality and viability for irrigation. The results of the
calculated indicators used for assessing the quality of groundwater samples for irrigation
use are presented in Table 4. The studied groundwater samples have pH values within
the permissible limit (6.5–8.8; FAO [33]). The measured values of EC indicate that the
groundwater of EOC and NS and 50% of FB aquifers samples are unsuitable for irrigation.
The main effect of high EC water on crop productivity is an increase in the osmotic pressure
of the nutrient solution in the soil, which can result in reduced water uptake and nutrient
deficiencies [33,68]. The combined SSP, SAR, RSC, and MAR computed results showed
that there is no hazard with sodium and magnesium for irrigation use, except for a few
samples which record high values for these indicators. The sodium hazards of irrigation
water are significantly related to the degree to which the sodium is adsorbed by the
soil. If the irrigation water contains an excessive concentration of Na+ but little Ca2+,
the cation-exchange intricate could become saturated with sodium and destroy the soil
structure [33,62]. Water infiltration is also influenced by SAR. Although Cl− is crucial to
crops at low levels, it can cause toxicity (leaf burns or leaf tissue deaths) in sensitive crops
at elevated concentrations [69,70]. Only 50% of FB aquifer groundwater samples fall below
the recommended chloride limit (140 mg/L; FAO [33]; Bouselsal and Saibi [70]) (Table 1),
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and the rest of the samples fall above this limit and can cause Cl− toxicity to corps if used
in irrigation.

Table 4. Groundwater quality indicators for irrigation and domestic uses.

NO. Aquifer SSP SAR RSC MAR TH CR

1

EOC

48.9 Safe 8.4 Excellent −36.07 Excellent 29.4 Suitable 1973.7 V. Hard 15.4 Unsafe
2 39.0 Safe 5.9 Excellent −41.91 Excellent 39.9 Suitable 2205.7 V. Hard 24.0 Unsafe
3 51.4 Safe 7.4 Excellent −23.12 Excellent 39.9 Suitable 1246.2 V. Hard 18.7 Unsafe
4 40.0 Safe 4.7 Excellent −21.87 Excellent 38.0 Suitable 1253.6 V. Hard 8.3 Unsafe
5 32.6 Safe 3.5 Excellent −23.42 Excellent 52.0 Unsuit. 1391.5 V. Hard 5.3 Unsafe

6

NS

57.2 Safe 7.4 Excellent −10.60 Excellent 34.1 Suitable 789.4 V. Hard 4.3 Unsafe
7 50.1 Safe 11.0 Good −57.79 Excellent 27.2 Suitable 3049.0 V. Hard 26.1 Unsafe
8 79.9 Unsafe 15.3 Good −2.29 Excellent 38.8 Suitable 373.9 V. Hard 4.3 Unsafe
9 88.5 Unsafe 24.7 Doubtful −0.43 Excellent 27.8 Suitable 261.3 Hard 5.8 Unsafe

10 52.1 Safe 10.2 Good −42.08 Excellent 30.8 Suitable 2204.4 V. Hard 32.0 Unsafe
11 38.7 Safe 4.4 Excellent −22.75 Excellent 28.2 Suitable 1247.5 V. Hard 12.0 Unsafe
12 51.5 Safe 5.6 Excellent −11.58 Excellent 58.9 Unsuit. 699.4 V. Hard 7.4 Unsafe
13 44.1 Safe 4.9 Excellent −17.97 Excellent 30.8 Suitable 1008.5 V. Hard 10.3 Unsafe
14 70.5 Unsafe 9.3 Excellent −4.68 Excellent 37.5 Suitable 383.9 V. Hard 5.6 Unsafe
15 85.4 Unsafe 18.0 Good 0.03 Excellent 52.2 Unsuit. 238.4 Hard 3.7 Unsafe

16

FB

42.5 Safe 2.6 Excellent −1.84 Excellent 23.3 Suitable 311.8 V. Hard 0.9 Safe
17 75.1 Unsafe 5.6 Excellent 2.25 Doubtful 42.7 Suitable 87.3 Moderately 0.5 Safe
18 62.0 Unsafe 8.4 Excellent −8.79 Excellent 12.2 Suitable 669.5 V. Hard 4.3 Unsafe
19 19.8 Safe 2.3 Excellent −41.09 Excellent 18.4 Suitable 2143.6 V. Hard 22.6 Unsafe
20 78.0 Unsafe 7.8 Excellent 3.93 Unsuitable 43.2 Suitable 123.3 Moderately 0.6 Safe
21 67.4 Unsafe 8.3 Excellent 4.64 Unsuitable 24.9 Suitable 417.2 V. Hard 0.7 Safe

When evaluating an irrigation water supply, the hazardous metal concentrations
of the irrigation waters should be carefully examined [69]. A comparison with several
international standards and guidelines for irrigation water [33,66] has been done to evaluate
trace elements content in the investigated groundwater (Table 3). The results show that there
is no problem with trace elements concentration for using this groundwater for irrigation
except for some samples which contain elevated concentrations of Cd, Fe, and Mn.

3.4.2. Assessment for Domestic Use

High TDS values may be associated with excessive corrosion and scaling in pipes,
fittings, and household appliances. Comparison between the TDS values of the inves-
tigated groundwater with the classification proposed by Bruvold and Daniels [48], dis-
closed that the majority of the samples can be classified as unacceptable for domestic use
(Tables 1 and S1). According to Total Hardness (TH) values, this water is very hard and
hard (Table 4). The presence of Ca2+ and Mg2+ in the aquifer rocks contributes significantly
to the TH of groundwater. Hard water is not a health risk, but it can be infuriating in
the home. Hard water is unfit for domestic use, and its industrial applications have been
limited due to the degree of hardness of the water, which causes the scaling of pots, boilers,
and irrigation pipelines [5]. Groundwater in the CED is unfit for domestic use on the basis
of TH values.

3.4.3. Assessment for Drinking Use

Although the pH values of this groundwater are neutral to slightly acidic, and it is well
within the acceptable WHO [5] range, the high TDS values render it invalid for drinking.
Some of the major ions, including Na+, Ca2+, Mg2+, SO4

2−, and Cl−, have concentrations
that are higher than that that are recommended for taste and aesthetics [5]. Furthermore,
some samples recorded Al, Cd, Fe, Mn, and Ni concentrations exceeding the permissible
limits in drinking water [5,34,65] (Table 3).
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4. Conclusions

Findings of this study indicated that there were significant differences in the chemical
composition between the studied three aquifers. The highest salinity values were recorded
in the NS aquifer and the lowest values were recorded in the FB aquifer. Sodium, calcium,
sulfate, and chloride concentrations are the main contributors to the elevated salinity of
the groundwater in these aquifers. The cation contents are strongly associated with Cl−
and SO4

2− through Na-Cl, Ca-Cl, and Na-SO4 water types. The salinity of groundwater
from the EOC, NS, and FB aquifers of the CED of Egypt is being regulated by two main
factors. Seawater intrusion is the most important factor. The second factor is the water-
rock interactions through direct and reverse cationic exchange and carbonate and silicate
weathering. The groundwater of these aquifers is not safe and unsuitable for all purposes.
It’s very high salinity values prevent its use for irrigation, domestic, and drinking, with an
exception for some FB samples. Groundwater resources in the CED are predicted to become
more salinized as a consequence of increasing climate change effects, hence it is critical
to prevent saltwater intrusion. These necessitate mitigation measures and adaptation
strategies, which include actions such as regulating groundwater exploitation, monitoring
groundwater quality, and better capacity to buffer heavy rainfall to diminish the effects of
climate change and protect ecosystems from potential negative consequences.
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