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1. Introduction

Atomic, molecular, and optical (AMO) physics is a vastly important sub-discipline.
It provides insights into the fundamental nature of matter, drives technological innova-
tion, and contributes to various scientific and applied fields across disciplines. Since the
early days of quantum mechanics, AMO physics has allowed for the exploration of the
fundamental processes that govern the behavior of atoms and molecules. This includes
understanding the structure of atoms, the nature of chemical bonds, and the dynamics
of AMO interactions. Many advanced processes were discovered and controlled, such
as developments in lasers, spectroscopy, and quantum optics. These have had profound
impacts on technology, ranging from medical imaging to communication systems [1]. AMO
physics plays a vital role in the emerging field of quantum information science. Research in
this field aims to harness the principles of quantum mechanics to manipulate and control
quantum states to develop powerful quantum computers and communication systems [2].
Techniques developed in AMO physics are used for highly precise measurements, such
as atomic clocks and global positioning systems [3]. AMO physics provided the ground,
knowledge, and original field of applications in creating ultrashort pulses of light that can
now measure the rapid processes in which electrons move or change energy in materials—a
technology that was the topic of the 2023 Nobel Prize in Physics [4]. Advancing into
materials science, AMO physics contributes to the development of new materials with spe-
cific properties, impacting areas, such as electronics, nanotechnology, and energy storage.
Techniques from AMO physics are vital for medical diagnostics [5] that include advances
in laser technology finding applications in medical treatments and surgeries. AMO physics
contributes to the understanding of the universe, including the behavior of matter under
extreme conditions found in stars and other astrophysical environments [6]. Coming back
to the basics, AMO physics is still a powerhouse in addressing fundamental questions
about the nature of matter and the universe. For example, studying ultracold atoms [7],
quantum gases, and interactions involving antimatters [8] allows us to explore exotic states
of matter and test the limits of our understanding of quantum mechanics and fundamental
forces. In all the above, computational AMO physics offers essential machinery. It comple-
ments experiments, transforms the hypothesis to mathematical expectations, predicts and
interprets measurements, forecasts new materials before synthesis, and contributes to the
understanding of complex physical phenomena. Thus, computational AMO physics tack-
les the challenges posed by the complex nature of quantum systems, providing valuable
insights and facilitating advancements in technological domains.

Therefore, research and development in AMO physics are vastly active and organ-
ically developing to invent many sub-fields of interest. The current Special Issue (SI),
entitled Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules, and
Clusters, is a modest but valuable effort to publish some novel research by renowned
AMO research groups and scientists. A total of thirteen articles encompasses a collection
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of research findings in the interaction of charged particles and lights with varieties of
AMO systems.

A Rundown of Articles

Proton: Two articles are published reporting measurements of the energetic proton
impact fragmentation of molecules. The one by Vinitha et al. (contribution 1). mea-
sures multi-fragmentation of highly charged azulene and naphthalene ions produced in
50–150 keV proton collisions via the multi-hit time-of-flight experimental technique. Such
spectroscopic results serve as crucial aspects in the diagnosis of hostile celestial regions,
where polycyclic aromatic hydrocarbons are abundant and under constant bombardment
by protons in the stellar wind. The other article, by Duley and Kelkar (contribution 7),
considers the dissociation dynamics of carbon dioxide molecular ions impacted by 1 keV
protons measured with a recoil-ion momentum spectrometer. Broadly speaking, such
studies are important in plasma physics, hydrocarbon chemistry, as well as in modelling
interstellar media.

Electron: Two articles report on theoretical electron-impact studies—both on funda-
mental interaction grounds. The one by Msezane and Felfli (contribution 10) studies the
low-energy electron attachment process using a quantum mechanical effect of Ramsauer–
Townsend minima based on the Regge pole analysis. This addresses the fundamental
question of the origin and character of the electron affinity for large atoms: does the
electron affinity of these systems characterize from the ground, metastable or excited
states of their negative ions? The other study by Harris (contribution 6) examines a novel
mechanism of selectively sculpted electron beams to collide with the helium atom in or-
der to explore effects of the coherence length of the projectile wave packets. This study
may lead to a new direction of measurements involving collisions with twisted beams of
charged particles.

Photon: There are several articles that investigate the interactions of electromagnetic
radiation with AMO systems. One article by Hosea et al. (contribution 2) theoretically
explores the effect of the interference between the electric dipole and quadrupole order of
coupling of the photon with a sodium atom for its valence photoionization. This is carried
out near a spectrally sensitive feature as a function of energy called the Cooper minimum.
The study paves a track to access even higher multipole effects. The other study, by Shaik
et al. (contribution 3), focuses on the single-photon dipole photoionization of three magic-
number sodium clusters in a framework of density functional theory to explore fascinating
spectral features. The ultrafast timing of the photoionization process in attoseconds has
been investigated on a fundamental theoretical track of Eisenbud–Wigner–Smith (EWS)
in two papers. The one by Grafstrom and Landman (contribution 5) uses the relativistic
random-phase approximation to calculate the time delay from outer subshells of various
isoelectronic noble gas neutrals and anions. The other paper, by Baral et al. (contribution
8), applies the same theory to examine the modification in the EWS delay for the electron
ejection from noble gas atoms within an optical dipole trap, a possible prototype for the
qubit in quantum computing. A pair of theory articles have been published on research
involving interactions with strong (multi-photon) radiation fields as well. In one of these,
a study by Simonovic et al. (contribution 11) reports Rabi oscillation dynamics driven
by intense, short, resonant laser pulses and invalidates a hypothesis about the origin
of the multiple-peak pattern in the photoelectron energy distribution. The other study
by Schimmoller et al. (contribution 9) performs simulations in the quantum trajectory
Monte Carlo method and compares with experiments for a neutral diatomic molecule to
demonstrate that the molecular ionization site in the strong-field spectra is insensitive to
the pulse’s carrier envelop phase.

Plasma: The research by Biswas et al. (contribution 4) utilizes a powerful relativistic
coupled-cluster theory to study the plasma-field-induced structures and transitions of some
high-charge cations of astrophysical relevance. It is expected that the results can be applied
for celestial or laboratory plasma diagnostics.
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Last but not at all least, we would like to mention two opinion articles published
in this SI from two experienced and versatile researchers in AMO fields. The article by
Manson (contribution 12) discusses the critical implications of an otherwise small force, the
spin–orbit force. In fact, the importance of spin–orbit forces extends across branches of
physics, from understanding the behavior of electrons in atoms to the structure of atomic
nuclei and the properties of exotic matter. The inclusion of spin–orbit effects is crucial for
accurate modeling and predicting the behavior of particles and systems in a wide range of
physical scenarios. The other opinion article, by Connerade (contribution 13), delves into
examples of contemporary physics questions to argue that atomic physics remains at the
epicenter to test fundamental principles of physics, which are still inadequately understood.
We re-quote Richard Feynman from this article. “When asked: should Armageddon occur,
is there a simple, most important idea to preserve as a testament to human knowledge?
The answer he suggested is the atomic hypothesis”.

2. Future Research Prospects

We take this opportunity to comment on some future research roadmaps in AMO
science that may emanate from the current landscape. The ongoing drive of strong pulsed-
laser field research will increasingly empower the control, imaging, and manipulation of
electron and ion-core dynamics on ultrafast timescales [9,10]. Such ultrafast spectroscopy
and imaging, even for weak laser fields where the pristine electronic phenomena can be
better captured, will have applications in studying chemical reactions, biological processes,
and material properties [11,12]. This can further generate a focus direction of accessing the
dephasing dynamics of plasmon resonances to enrich quantum plasmonic applications [13].
Future research on quantum information science may focus on the creation and manip-
ulation of more robust and scalable qubits. This can explore new quantum algorithms,
addressing challenges in quantum error correction. Likewise, AMO research on quantum
optics may involve developing methods for quantum state engineering, communication,
and sensing using techniques, like cavity quantum electrodynamics and laser cooling [14].
Continued exploration of ultracold quantum gases, such as Bose–Einstein condensates for
quantum many-body physics and phase transitions, may investigate novel applications
of ultracold atoms in precision measurements and quantum simulation [15,16]. Another
particularly interesting direction is the integration of superconducting circuits with ion
traps and AMO systems creating hybrid quantum systems [17]. This can lead to enhanced
coherence times and improved quantum gates for applications in quantum technologies.
Finally, investigating the interaction of AMO systems with emerging materials and inter-
faces [18] may explore novel phenomena and applications in areas like nanotechnology
and condensed matter physics.

3. Conclusions

The original dream for the driving objective of this SI was that submissions should
present novel effects, mechanisms, and phenomena in the energy response (spectroscopy)
and the time evolution (dynamics) of excited target systems, highlighting new experimen-
tal techniques and powerful theoretical/computational methods and instigating novel
questions to motivate future research and collaboration. On the other hand, today’s
AMO physics research dissemination is motivated by a dual commitment to featuring
fundamental discoveries and to utilizing some of that knowledge for future technological
applications. To that fantastically lofty goal, the current SI serves as a small but important
leap forward.

Author Contributions: H.S.C. and H.R.V. Guest Editors. All authors have read and agreed to the
published version of the manuscript.

Funding: This Editorial received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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* Correspondence: umeshk@iist.ac.in

Abstract: The dissociation of multiply charged C10H8 isomers produced in fast proton collisions
(velocities between 1.41 and 2.4 a.u.) is discussed in terms of their fundamental molecular dynamics,
in particular the processes that produce different carbon clusters in such a collision. This aspect
is assessed with the help of a multi-hit analysis of daughter ions detected in coincidence with the
elimination of H+ and CH +

n (n = 0 to 3). The elimination of H+/C+ is found to be significantly
different from CH +

3 loss. The loss of CH +
3 proceeds through a cascade of momentum-correlated

dissociations with the formation of heavy ions such as C9H +
5 , C9H 2+

5 and C7H +
3 . The structure

of such large fragment ions is predicted with the help of their calculated ground state electronic
energies and the multi-hit time-of-flight (ToF) correlation between the second and third hit fragments
if detected. Furthermore, we report experimentally the super-dehydrogenation of naphthalene and
azulene targets, with evidence of complete dehydrogenation in a single collision.

Keywords: PAH; proton collision; multi-fragmentation

1. Introduction

The dissociation dynamics of a variety of polycyclic aromatic hydrocarbons (PAHs)
have been investigated under irradiation with ultraviolet (UV), vacuum UV (VUV) or
energetic charged particles in several works in the past [1–12]. Such measurements provide
fundamental insight into the quantum chemistry of the organic molecules with PAHs as a
convenient model system. A considerable body of this research domain has focused on the
dissociation of monocations. The measurements of monocations are often accomplished
with high levels of computational effort, and investigating the dissociation dynamics of
highly charged ions is a challenge. The excess Coulomb energy stored in the di- or trication
can radically change the nature of the dissociation dynamics. In addition, the complexities
of the data assimilation, analysis and interpretations make the investigations on multiply
charged ions a relatively uncommon endeavour.

The dissociative multiple ionisation of PAHs can occur in hostile astronomical regions
by a number of excitation processes, such as multi-stage VUV absorption, interaction with
X-rays or the low-energy component of cosmic rays, stellar wind protons and/or ions and
other energetic particles in the interstellar medium [13–16]. The laboratory research in this
domain is mainly conducted using extreme UV or X-ray photon, while charged particle
collisions remain less explored [16–18]. In the last two decades, the study of the upper
atmosphere of the jovian planets and their moons have led to the substantial understanding
of how energetic charged particle radiation from the Sun can play a crucial role in their
atmospheric composition and evolution [19–22]. In situ measurements by the Cassini–
Huygens mission have demonstrated the importance of the 10 to 100 keV energy range of

Atoms 2023, 11, 138. https://doi.org/10.3390/atoms11110138 https://www.mdpi.com/journal/atoms
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protons in the dynamics of Titan’s ionosphere [21,22]. Such interactions are known to be
more efficient in producing highly charged ions and diverse energetic fragment ions (C+,
CH +

3 and C2H +
2 etc.), which may eventually induce a very rich and complex chemistry in

Titan’s ionosphere, atmosphere and haze.
Here, we compare the multi-fragmentation of highly charged azulene (C10H8) and

naphthalene (C10H8) ions produced in fast proton collisions. Very little difference was
observed between the multi-fragmentation mass spectrum of these two isomeric targets.
We mainly focus on the emission of light fragments H+, C+, CH +

3 . The former two channels
occur via violent multi-fragmentation, while the latter proceeds via an intermediate isomer
that is often overlooked due to its relatively low intensity. Also, complete or partial de-
hydrogenation events are observed in this work under a single collision condition.

2. Computational Details

Multiply charged ions in the keV range collision are produced with a substantial
amount of internal energy which assists in crossing various transition state barriers involved
in isomerisation or dissociation processes. When a parent ion eliminates smaller neutral
or ionic fragments like CH +

3 or C2H +
2 from a precursor isomer, the smaller fragment will

carry a substantial amount of vibrational energy per degree of freedom and the larger
fragment will be produced close to the final equilibrium configuration of precursor isomer
in the ground electronic state. Ground-state energies are therefore used here as a measure to
predict the structure of large fragment ions. Various isomers of C9H +

5 and C9H 2+
5 , the large

fragment ions formed after CH +
3 loss, were optimised by density functional theory (DFT)

calculations using the Dunning basis set cc-pVDZ to predict the total ground state electronic
energy. This basis was chosen due to its larger set of basis functions compared to the one
used for the complete C10H8 ions, since the respective fragment species are not stable or
naturally occurring equilibrium structures. The energies of the doubly and triply charged
C10H8 isomers that can emit CH +

3 are also calculated. The relatively simple and stable ions
of C10H8 were calculated using much simpler nonlocal hybrid B3LYP with 6-31G(d) basis,
incorporated in the GAUSSIAN 09 package [23]. The numerical details of the structure and
energies of all the relevant species are listed in the Supplementary Material.

3. Experimental Details and Analysis

A proton beam of energy ranging from 50 keV to 150 keV, in steps of 25 keV, was
extracted from the electron cyclotron resonance ion source at the Low energy Ion Beam
Facility (LEIBF) at the Inter-University Accelerator Centre (IUAC), New Delhi. These ions
were made to interact with the target molecules in a ToF mass spectrometry system. The
emitted electron (or electrons) as well as the possibly neutralised projectile in a given
collision event were separately detected using channeltron detectors, one at the opposite
direction of the recoil ToF tube and other at about 1.5 m distance from the interaction region.
The recoil ions were accelerated and recorded using a 40 mm active diameter position-
sensitive micro-channel plate detector (PSD) with a delay line anode. The data was recorded
in common stop multi-hit mode. The secondary electron signal and the neutralised projectile
signals were logically ORed and then delayed to be used as a common stop signal, with
a relative delay adjusted to give priority to the projectile detection. The target molecules,
naphthalene (nph) and azulene (az), were injected into the vacuum system using a long
hypodermic needle connected to an external reservoir with a valve. The target samples
were kept at room temperature and the effusion of the target vapour due to their vapour
pressure at room temperature was found to be adequate to perform the experiment with
an event rate of about 1 to 2 kHz. Entirely different target masses (not reported here) were
used in between the two experiments and totally different supply lines were used for the
two targets to avoid any cross contamination.

The recorded data were classified based on the electron emission and electron capture
process and background noise was reduced using various sum conditions on the PSD. We
report here the data sorted based on the electron emission mode. Although up to eight-hit

7



Atoms 2023, 11, 138

events could be recorded, data up to the third hit were sufficient to evaluate the necessary
fragmentation channels. The positive counts beyond the third hit were negligibly small.
Typically, 76 % and 19 % of events recorded for the 50 keV proton beam collisions were
purely single and double hits, respectively, and less than 4 % of events were triple hits.
The exact percentage depends strongly on the collection and detection efficiencies for the
ion signal. The extraction field was high enough to collect all the ions onto the detector,
However, the detection efficiency varies from ∼45 % for a single carbon ion to ∼20 % for
an intact molecular ion. The detection efficiency of the micro-channel plate detector was
calculated using an empirical model reported in the literature [24].

4. Results and Discussion

4.1. Normalisation Process

The single ionisation cross section of az and nph are known to be identical for the
studied collision energies [11]. The single hit data of two isomers are normalised to the
sum of singly charged parent ions (m/q 128 and 129), neutral H loss (m/q 127) and
C2H2 loss (m/q 102) ions from parent monocation of a given isomer. The normalisation
procedure was chosen for two reasons. Firstly, because of the neural H loss contribution,
although negligible, wait s difficult to separate from the parent peak. Secondly, it was
seen that both isomers have same single ionisation cross sections, but az+, being a high-
energy isomer, experiences higher fraction of C2H2 emission than nph, the details of
which have been published elsewhere [11]. All the one-dimensional (1D) spectra shown
henceforth are normalised by this procedure and multiplied by an arbitrary factor of
1000 (arbitrary common factor). The two-dimensional (2D) spectra are shown as counts
without normalisation.

4.2. Single Hit Analysis

The single hit mass spectrum of az and nph after normalisation are found to be similar,
as shown in Figure 1. The mass spectra includes only the data wherein a single ionic species
is detected in a given event; thus, the data shown is a mix of pure single ion events as well
as events wherein only one of the fragment ions produced is detected. The peak at m/q 45
is acetone that was used for cleaning the target lines. The sharp peaks at m/q 20 and 40 are
due to the addition of Ar to the background gas, and all the mass spectra analysed here
were calibrated using these reference peaks. One striking difference between the two mass
spectra is the 60 % excess yield at m/q 102 peak (loss of neutral C2H2 from monocation) in
the az mass spectrum. This was explained on the basis of the ground-state energy difference
between singly charged az and nph in our previous work [11]. Similarly, hydrocarbon
fragments with six or fewer carbon atoms are produced in a slightly higher yield for the
target az. This may again be due to the less stable configuration of az in higher charge states
as suggested in a recent work (Figure 1 in reference [25]). However, the fragments in the
region m/q 98 (C8H +

m where 0 < m < 10) and 88 (C7H +
m , where 0 < m < 10) have similar

yields for two isomers in the mass spectrum. Overall, there is little difference between the
fragmentation mass spectra of az and nph in high-energy collisions, which may be due to
the lower energy difference between multiply charged isomers compared to singly charged
or neutral isomers. In a recent paper, Lee et al. [26] demonstrated that even at much lower
internal energies than in the present study, an equilibrium can be established between nph+

and az+ before dissociation. In fact, the energy transfer to the molecule is expected to be
very high (typically few tens of eV) in collisional excitation with fast proton, so that the
intact molecular ion can explore all available isomers prior to dissociation, independently
from the initially chosen isomer.
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Figure 1. Normalised single hit spectrum of nph and az.

4.3. Coincidence Analysis of Double Hit Data

A 2D ToF coincidence map is plotted with first-hit ToF on the horizontal axis and
second-hit ToF on the vertical axis as shown in Figure 2. The correlation patterns found are
similar for az and nph. The coincidence map is rich in several ToF correlation patterns, most
of which are broad and lack momentum correlation, representing multi-fragmentation or
charge separation of highly charged ions with more than two fragment ions produced in
a single event. The islands in coincidence with H+ are the strongest channels in the 2D
map. Most of the islands in the 2D spectrum are poorly resolved due to high momentum
release, limiting our investigation to a few sets of channels. A few islands in the map are
binary fragmentation channels, which are momentum-correlated, and most of them have
an extended tail, indicating a fragmentation inside the extraction field of the ToF.

Figure 2. 1st hit vs. 2nd hit ToF coincidence map of az (data for all projectile energy are added). The
position of the islands with H+ or CH +

3 in the first hit is indicated. Carbon-conserving fragmentation
channels are marked and one of them is shown in the inset.

The carbon-conserving binary fragmentation islands that appear in the double-hit
coincidence map (see Figure 2) are summarised below in Equation (1). Here, n = 8, 7 and 6
are major islands. An island with n = 5 also exists, but it is difficult to separate channels
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in this island due to the effect of pulse pair resolution. The island with n = 9 is not as
intense as other channels. Some of the channels with n = 8 and n = 7 have an extended tail
representing a dissociation within the extraction timescale of ToF. Meanwhile, no strong
tail is observed for channels with n = 6, indicating fast dissociation before extraction.

C10Hx+
8 =⇒ CnHy+

m + C10−n H(x−y)+
p + (8 − m − p)H (1)

Fragments with mainly few carbon atoms accompany with dehydrogenation. For
instance, as one goes from n = 9 to n = 6, the channels shift from hydrogenated to dehydro-
genated channels. Furthermore, there is a clear evidence of loss of H in multiples of two
as observed in the previous studies [27,28]. One such example is the emission of C2H +

n ,
where the main channel follows 4H or 2 H2 loss, not even 2H/H2loss. The loss of C2H +

3 ,
on the other hand, follows no such restriction. Channels on other islands cannot be summa-
rised as Equation (1) because of the large incorporation of neutral and cationic hydrocarbon
carbon fragments. Some interesting features are observed in such channels as discussed
below in some examples.

4.4. H+ Coincidence

As shown in Figure 3, the second-hit spectrum of nph with H+ in the first hit is
compared to its single-hit spectrum. All hydrocarbon fragments correlated to the first-hit
ToF of H+ are observed with higher intensity compared to the similar fragments in the
single-hit spectrum, which can be related to the increased detection efficiency of H+. Two
quick observations can be made here: (i) none of the peaks in the second hit spectrum
are sharp. This implies that all partner fragments are produced with some kinetic energy.
Also, H+ islands have no momentum correlation in the 2D. Both of these observations
indicate that H+ originates mainly from highly charged parent ions, with charge state
greater than 2+, which is consistent with a previous theoretical results for multiply charged
naphthalene [29]. (ii) the intensities of fragments containing an odd number of carbon
atoms, especially CH +

m and C3H +
m , are substantially larger than the peaks in the single

hit. This may be due to the oscillating binding energy of carbon clusters produced. The
propensity of such cluster ions is usually decided by the energy of formation and the
ionisation potential [30].

Figure 3. Single-hit mass spectrum of nph and second-hit mass spectrum with H+.

The second-hit mass spectra of az and nph obtained in coincidence with H+ are
shown in Figure 4. For the peaks around n = 6, 7 and 8, there is no difference between
az and nph. The intensity of all other fragments are slightly higher for az, which might
be due to the inherently less-stable configuration of highly charged az compared to nph.
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Another striking observation is the presence of super-dehydrogenated az+ and nph+ (m/q
120–127) as shown in Figure 5. For the first time, we report here the evidence of losing all
hydrogen atoms from az/nph (m/z 120 in Figure 5a) in a single collision. The two isomers
of C10H8 studied here prefer to lose 2, 6, 7 or 8 hydrogens, at least one of which is lost
as H+. These super-dehydrogenations and the fact that 3, 4 and 5 H loss channels are not
favoured warrants a detailed investigation, which may be useful to understand the trend
of atomic/molecular hydrogen in the astrophysical region where PAHs are irradiated by
stellar wind protons.

Figure 4. Second hit mass spectrum of az and nph with H+ in the first hit.

Figure 5. (a) Second hit mass spectrum of az and nph in the m/q 120–128 region for H+ in the first hit,
showing single and multiple H losses in singly charged parent ions, total dehydrogenation at m/q
120 can also be noted. (b) H+ coincidence of az in m/q 120–128 region of the 2D ToF mass spectrum.

4.5. C+, CH+, CH +
2 Coincidence

The second-hit mass spectrum with C+ in the first hit of az and nph is shown in
Figure 6. The second-hit mass spectrum of C+ fragment is identical to the second-hit mass
spectrum of H+, except the fragments with 8 carbon atoms are missing. The second-hit mass
spectrum of C+ is similar to the second-hit mass spectrum of CH+ and CH +

2 , which are
mainly populated with lighter fragments. This indicates that these fragments are produced
in the multi-fragmentation of a highly charged ion. The similarity between the second-hit
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mass spectrum of H+, C+, CH+ and CH +
2 may also suggest that these ions are produced in

a single event, but H+ is not detected; instead, C+ is observed in the first hit.

Figure 6. Second-hit mass spectrum of az and nph in coincidence with C+.

4.6. CH +
3 Coincidence

The ring-opening and ring-expansion mechanisms in smaller PAHs are pivotal to the
understanding of formation of larger PAHs in ISM. To this end, the HACA (Hydrogen-
Abstraction/acetylene-Addition) process [31] has been in the discussion for a quite some
time and has been considered as a possible mechanism for the growth of larger PAHs.
But, in recent years, laboratory experimental results have conclusively demonstrated that
the HACA mechanism is not a favourable option, since it fails to account for the possible
rate of formation of PAHs in the ISM [32]. A more plausible hypothesis for ring expansion
and PAH growth has been proposed by Zhao et al. [32]. This mechanism involves the
addition of a methyl group to a pentagon ring in the PAH so as to expand the ring to a
hexagon structure and thus successively grow PAH size. In a laboratory setup, it is much
easier to study the dissociation process to understand the reverse barriers associated with
dissociative/associative reactions, than to experimentally look for the associative reaction
itself. In this context, we looked at the second hit mass spectrum of CH +

3 channel and
compared it with C+ and CH+. We believe that an investigation of the parent conformers
and associated reverse barriers will add significant value to the understanding of the
methyl addition reactions in PAHs.

The second-hit mass spectrum of two isomers with CH +
3 in the first hit are shown in

Figure 7. Once again we see the similarity between az and nph. There is a clear difference
between the second-hit mass spectrum of C+ and CH +

3 channels. C7H +
3 , C9H +

5 and C9H 2+
5

are the major fragments formed after CH +
3 loss. These channels appear with a tail in the

2D ToF mass spectrum (see Figure 2). We were able to determine the number of H atoms
in each of these fragments using ToF correlations in the 2D. The mass spectrum of az
below m/q of 46 was heavily contaminated by the acetone, which is used for cleaning the
target lines before introducing this isomer target. The second-hit mass spectrum of az is
subtracted from nph and shown in Figure 7b. The differential mass spectrum is dominated
by fragments from acetone (below m/q of 46). We further analysed the CH +

m (m/q 12
to 17) region in coincidence with H+ in the 2D ToF map (Figure 8). It is observed that
masses m/q 12, 13 and 14 (C+, CH+, CH +

2 ) are clearly visible, but only a few counts at
m/q 15 (CH +

3 ) are present due to chance coincidence with H+. This once more supports
our argument that the production of H+, C+, CH+ and CH +

2 are related, whereas CH +
3 is

produced exclusively by a different mechanism.
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Figure 7. (a) Second- hit mass spectra of az and nph in coincidence with CH+
3 ions, (b) the differential

second-hit mass spectrum between the two isomers for CH +
3 loss channel .

Figure 8. H+ coincidence of az in m/q 12-17 region of the 2D ToF mass spectrum. m/q 15 region is
filled with only chance coincidence.

The relative ground state energy of C10H 2+
8 /C10H 3+

8 isomers, which can emit CH +
3 are

shown in table1. Structure A (see Table 1) was proposed as the precursor ion for CH +
3 +C9H +

5
channel by Kingston et al. [33]. This was further investigated by Leach et al. [18] based on
the kinetic energy release (KER) of CD +

3 loss in dication of naphthalene-d8 (C10D 2+
8 ) [18].

The experimental KER reported by them was approximately 1 eV, whereas the structure
A would correspond to about 2 eV KER and therefore Leach et al. [18] suggested that a
linear geometry may be preferred over structure A. The most probable value of KER for
this channel obtained in this work is 2.9 eV for nph and az targets. This value matches with
the value measured recently by Reitsma et al. [34]. It suggests that structure A may be a
common isomer of az and nph that can emit CH +

3 , as originally suggested by Kingston
et al. [33]. But, when we performed DFT calculations for other possible structures, we
observed that the dication structure A was about 3 eV higher in the energy with respect to
nph2+. On the other hand, structure B shown in Table 1 is found to be more favourable with
2.0 eV higher energy than nph2+. Hence, we propose that the elimination of CH +

3 might
occur via a common dication conformer with structure B. Obviously, the exact transition
of nph or az to the parent isomer of the CH +

3 loss channel would occur through various
complex intermediate as well as transition states. Such calculations have been carried out
for some important dissociation channels of monocations in the past [35,36], but rarely
attempted for di- or trications of nph and az . Calculations of such complexity are presently
beyond the scope of this work. But it does not impede the present work in explaining
the CH +

3 elimination in az2+ and nph2+ via a common isomer, because the formation of a
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dication in the high energy proton collision proceeds via double plasmon excitation process,
as suggested in our previous work [11]. This process is found to deposit an internal energy
of about 13 eV in the resulting dication [11]. Thus, this internal energy will be sufficient
to cross any possible transition state barrier the species may encounter on the way to
producing CH +

3 eliminating parent structure.

Table 1. Ground state energies of C10H 2+
8 and C10H 3+

8 isomers relative to the most stable isomer
(ΔEs, eV), as calculated using DFT method with 631G(d) basis.

Structure ΔE of Dication ΔE of Trication

Nph 0 0

Az 0.41 0.29

A 3.07 2.20

B 1.96 1.14

4.7. Multihit Analysis of CH +
3 Channel

A ToF correlation between second and third hit fragments of C+ and CH +
3 channels

are shown in Figure 9. Several broad islands are observed in the 2D coincidence map of the
C+ channel. Only three binary dissociation channels of C9H 2+

5 are observed in the CH +
3

emission and are summarised below.

C9H2+
5 =⇒ Cn H+

m + C9−n H+
m−5 + (5 − m − n)H (2)

Figure 9. 2nd vs. 3rd hit ToF coincidence map of C+ (left) and CH +
3 (right) of az.

The third-hit mass spectra of the CH +
3 channel for az and nph are shown in Figure 10.

Both mass spectra are very similar, consisting of n = 2–9 fragments of moderate size. The
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formation of such neutral or ionic hydrocarbon species is of importance in the astronomical
context [37]. For instance, the structural conformations of partially hydrogenated C7 and C9
neutrals as well as ions are proposed as the possible carriers of some weak diffuse interste-
llar bands in the ISM [38,39]. Steglich et al. [38] computationally identified stable structures
of C9H5 radicals, which are found to feature visible absorption bands that coincide with a
few very weak diffuse interstellar bands. We consider here the same structures to identify
stable isomers of mono- and dications of C9H5. As mentioned earlier, the di- and trications
are produced at high internal energies in fast proton collisions. A significant fraction of this
energy can be utilised to overcome various transition state barriers to be able to produce
stable fragment geometries. The proposed isomers of C9H +

5 and C9H 2+
5 and their ground

state energies relative to the most stable isomer are given in Table 2. According to this
calculation, the most stable isomers of C9H 2+

5 are A and E. The third hit mass spectrum
of CH +

3 channel indicates that an ensemble of C9H 2+
5 isomers are formed, which can pro-

duce fragment partners, C2H +
m −C7H +

m , C3H +
m −C6H +

m and C4H +
m −C5H +

m , in equal
intensities. This observation combined with the energy of optimised structures suggests
that structure A may predominate the ensemble of C9H 2+

5 isomers. We also propose that
structure D (the lowest energy structure of C9H +

5 ) might be an important fraction of C9H +
5

isomers formed after eliminating CH +
3 from the final conformer of nph2+/az2+. The last

two conclusions require more dedicated experimental and theoretical investigations.

Figure 10. 3rd -hit ToF mass spectrum of az and nph for CH +
3 channel.

Table 2. Ground-state energies of C9H +
5 and C9H 2+

5 isomers relative to the most stable isomer (ΔEs,
eV), as calculated using DFT method with cc-pVDZ basis.

Structure ΔE of Monocation ΔE of Dication

A 0.9 0

B 1.11 0.45
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Table 2. Cont.

Structure ΔE of Monocation ΔE of Dication

C 1.33 0.52

D 0 0.49

E 0.27 0.02

F 0.22 1.17

G 1.54 0.2

5. Conclusions

Swift charged-particle-induced single and double ionisation of nph as well as az
are known to be plasmon-dominated. These multiple ionisation processes deposit a high
amount of excess energy in the resultant cations, which then can be considered to have a
high probability for high-energy isomer formation, often followed by dissociation. One
such mechanism of CH +

3 elimination is found to progress via a common isomer of nph and
az. Moreover, a cascade of dissociation is observed in multihit analysis up to a third hit of
this channel. New parent dication as well as trication isomers of nph and az are proposed
here based on the ground-state energies calculated by DFT theory, which can eliminate
CH +

3 . C9H +
5 formed after the loss of CH +

3 eliminates C2H2 to form C7H +
3 . The dication

fragment C9H 2+
5 undergoes binary fragmentations such that the precursor ion is an isomer

containing a long carbon chain. Various DFT optimised structural conformers of C9H 2+
5

were compared and the lowest-energy structure is found to have a structure of a pentagon
with a long linear chain.

In addition to the decay cascade of the CH +
3 loss channel, a few other observations are

worth noting. First, we report the super-dehydrogenation of nph and az in a single collision
condition with a detectable intensity of total dehydrogenation. Second, the production of
H+, C+, CH+ and CH +

2 are related, whereas CH +
3 is produced exclusively by a different

mechanism. These observations warrant more theoretical investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atoms11110138/s1, Table S1a: Structure A dication; Table S1b:
Structure B dication; Table S1c: Structure A trication; Table S1d: Structure B trication; Table S2a:
structure A monocation; Table S2b: structure B monocation; Table S2c: structure C monocation; Table
S2d: structure D monocation; Table S2e: structure E monocation; Table S2f: structure F monocation;
Table S2g: structure G monocation; Table S2h: structure A dication; Table S2i: structure B dication;
Table S2j: structure C dication; Table S2k: structure D dication; Table S2l: structure E dication; Table
S2m: structure F dication; Table S2n: structure G dication.
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Abstract: A procedure to obtain relativistic expressions for photoionisation angular distribution
parameters using the helicity formulation is discussed for open-shell atoms. Electric dipole and
quadrupole transition matrix elements were considered in the present work, to study the photoioni-
sation dynamics of the 3s electron of the sodium atom in the vicinity of the dipole Cooper minimum.
We studied dipole–quadrupole interference effects on the photoelectron angular distribution in the
region of the dipole Cooper minimum. Interference with quadrupole transitions was found to alter
the photoelectron angular distribution, even at rather low photon energies. The initial ground and
final ionised state discrete wavefunctions of the atom were obtained in the present work using GRASP,
and we employed RATIP with discrete wavefunctions, to construct continuum wavefunctions and to
calculate transition amplitudes, total cross-sections and angular distribution asymmetry parameters.

Keywords: non-dipole interactions; photoelectron angular distributions; open-shell atomic systems;
Cooper minimum; GRASP; RATIP

1. Introduction

In the majority of studies of light–matter interaction, the dipole approximation is used.
It is generally applicable when electromagnetic radiation has a wavelength much larger
than the size of the atomic or molecular system. In the dipole approximation (eikr ∼ 1),
where k is the wavenumber of the incident photon, one neglects the spatial variation
of the electromagnetic field over the target system. Non-dipole effects are important at
short wavelengths, and have prompted several atomic and molecular studies [1–5] in
condensed matter physics [6] and astrophysics [7]. The emergence of intense laser light
sources, such as the free-electron laser (FEL) [8–10], have further revealed the importance
of non-dipole interactions in explaining photoelectron spectra, especially in relation to
non-linear absorption and time-resolved studies.

The importance of non-dipole effects has been highlighted by several authors, in both
experimental and theoretical works [3,11–25]. These studies have revealed that dipole–
quadrupole (E1–E2) interference affects the angular distribution of photoelectrons, due to
first-order corrections to the dipole approximation, even at rather low energies. Numerous
studies are available for closed-shell systems, but those on open-shell systems, especially
using relativistic methodologies, are few [26,27]. To the best of our knowledge, relativistic
calculations, including interchannel coupling, are not available for open-shell atoms.

Higher multipole corrections to total subshell cross-sections become important for
photon energies more than a few keV above the ionisation threshold. However, a number
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of situations exist in photoionisation processes that demand going beyond the dipole ap-
proximation, even at energies as low as a few eV [28–40]. Instances where the quadrupole
transition amplitudes are comparatively larger than the electric dipole transition ampli-
tudes occur in regions of the dipole Cooper minimum, dipole/quadrupole autoionisation
resonances, etc. The present work was motivated by an earlier work by Pradhan et al. [37],
which showed the importance of non-dipole effects in the case of Mg 3s photoionisation at
rather low photon energies, due to the presence of the Cooper minimum in the 3s dipole
ionisation channel. We explored a similar situation for the case of a typical open-shell atom,
viz., sodium, by studying the photoionisation of its valence shell in the photon energy range
5.14 eV to 7 eV. The 3s dipole photoionisation goes through the Cooper minimum in this
region. The required non-dipole angular distribution parameters were obtained, following
an earlier work by Huang [41,42], which used helicity eigenstates to study the dynamics.
This formulation is applicable to both open- and closed-shell systems [41,42]. On the other
hand, the methodology described in Derevianko et al. [43] is applicable only to closed-shell
systems. Below, we briefly present an overview of the procedure to include non-dipole
effects in the photoelectron angular distribution asymmetry parameters for s-subshell
photoionisation. The required transition amplitudes were determined in the present work
by using a combination of two computational algorithms, namely, the General-Purpose
Relativistic Atomic Structure Program (GRASP) [44–46] and the Relativistic calculations of
Atomic Transition, Ionisation and recombination Properties (RATIP) [47]. The combination
of GRASP and RATIP has already been successfully applied in a number of cases studying
atomic structure and dynamics [48–51]. In the present work, a single configuration initial
state of photoionisation was considered, but a multi-configuration initial state could also
be considered.

In Section 2, details of the helicity formalism [41,42], along with the important steps
involved in the derivation of the required photoelectron angular distribution parameters
by a linearly polarised light, are discussed. The results of our calculations are discussed in
Section 3. The important findings of this work are summarised in Section 4.

2. Theory

This section is divided into three sub-sections. In Section 2.1, the salient features of
the helicity formulation of photoelectron angular distribution from references [41,42] are
summarised. References [41,42] provide the form of β, and we explicitly discuss the various
steps involved in arriving at the equations in Section 2.2. The general expression for the
differential cross-section is available in the work of Huang [41,42], but not the expressions
for non-dipole angular distribution asymmetry parameters. Explicit expressions for angular
distribution asymmetry parameters inclusive of the quadrupole terms are developed and
presented in Section 2.3 for the first time, to the best of our knowledge. Also provided is a
brief discussion of second-order non-dipole photoelectron angular distribution parameters.

2.1. Photoionisation Dynamics Based on Helicity Formalism

Conventionally, the photoionisation transition matrix element is constructed using
angular-momentum eigenstates. However, in the helicity formalism, angular-momentum
eigenstates are transformed to helicity eigenstates. This approach was first adopted by
Lee [52] for the non-relativistic formulation of photoionisation processes in the electric
dipole approximation. This was extended to the relativistic regime by Huang [41,42]. In
this work, the reduced matrix element Dα(Ej), for photoionisation in the Coulomb gauge
for an electric 2j- pole transition (Ej), is given by

D(Ej)(κα) = i−�α eiδκα

〈
α− J

∣∣∣∣∣
∣∣∣∣∣

N

∑
i=1

�α · �A(Ej)(�ri)

∣∣∣∣∣
∣∣∣∣∣J0

〉
. (1)

Here, δκα is the Coulomb phase shift of the photoelectron in the particular channel κα = (�α jα),
and �A(Ej) is the normalised electric multipole vector potential, while j and J0 are, respectively,

20



Atoms 2023, 11, 125

the total angular momenta of the photon and the initial states of the atom. J represents the total
angular momentum of the photoelectron plus the ionised atom system. A similar expression
of the reduced matrix element can be obtained for the magnetic 2j-pole transitions, and is
defined by D(Mj)(κα).

The expression for the angle-dependent differential cross-section, including all multi-
pole transitions in helicity formalism [41,42], is

dσ(θ, φ)

dΩ
=

σ

4π
F(θ, φ), (2)

where σ is the total photoionisation cross-section and F(θ, φ) is an angular distribution
function given by

F(θ, φ) = 1 + ∑
�≥1

B0�d�00 + (Sx cos(2φ) + Sy sin(2φ)) ∑
�≥2

B1�d�20, (3)

where Sx, Sy and Sz are the Stokes parameters of the incident light, d�mn denotes the ‘d’
functions of the rotation matrices and θ and φ are the polar and azimuthal angles of the
emitted photoelectron (of total angular momentum jα), with respect to the incident photon
direction k̂, as shown in Figure 1a. In the above expression,

B0� = ∑
j′ J′ j′α

∑
jJ jα

(−1)J0−Jα+1/2

σ̄
[j J jα]

[
j′ J′ j′α

]
[�]2
{

J J′ �
j′α jα Jα

}{
J J′ �
j′ j J0

}(
j′α jα �

1/2 −1/2 0

)(
j′ j �
−1 1 0

)

×
{

π�+

[
πk+(−1)k/2(E′E + M′M) + πk−(−1)(k+1)/2(E′M − M′E)

]
cos(δα′ − δα)

+ π�−
[
πk−(−1)(k+1)/2(E′E + M′M)− πk+(−1)k/2(E′M − M′E)

]
sin(δα′ − δα)

}
(4)

and,

B1� = ∑
j′ J′ j′α

∑
jJ jα

(−1)J0−Jα+1/2

σ̄
[j J jα]

[
j′ J′ j′α

]
[�]2
{

J J′ �
j′α jα Jα

}{
J J′ �
j′ j J0

}(
j′α jα �

1/2 −1/2 0

)(
j′ j �
−1 −1 2

)

×
{

π�+

[
πk+(−1)k/2(E′E − M′M)− πk−(−1)(k+1)/2(E′M + M′E)

]
cos(δα′ − δα)

+ π�−
[
πk−(−1)(k+1)/2(E′E − M′M) + πk+(−1)k/2(E′M + M′E)

]
sin(δα′ − δα)

}
. (5)
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Figure 1. Transforming from the co-ordinate system (θ, φ) to the co-ordinate system (θ̄, φ̄). The
co-ordinate (θ̄, φ̄) is obtained by rotating the co-ordinate (θ, φ) by 180◦ about the z-axis and 90◦ about
the y-axis.

The summation ∑
j′ J′ j′α

∑
jJ jα

takes into account the interference between various transi-

tion matrix elements, and δα is the phase of the reduced matrix element, D(Ej)(κα). In
the above expressions, Jα is the total angular momentum of the ionised state of the atom.
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B0l and B1l correspond to various multipole terms arising from electric–electric, electric–
magnetic and magnetic–magnetic interactions. Here, σ̄ = ∑

jJκα

[
|D(Ej)(κα)|2 + |D(Mj)(κα)|2

]
,

σ = 8π4c/ω[J0]
2σ̄, and E ≡ |D(Ej)(κα)|. Similarly, M ≡ |D(Mj)(κα)|. Note that [j] =√

2j + 1. The effects of magnetic interactions are very weak compared to electric inter-
actions, and hence are neglected in the present work. Furthermore, π�± and πk± in
Equations (4) and (5) are defined as follows:

π�+(π�−) =
{

1(0) � is even
0(1) � is odd

(6)

πk+(πk−) =
{

1(0) k is even
0(1) k is odd,

(7)

where � is the summation index in Equation (3), k = j′ − j and ‘+/−’ correspond to
even/odd.

A photon with linear momentum vector �k is not in an eigenstate of the angular
momentum j. However, being a massless particle, it has a definite value of helicity, which is
the component of the angular momentum in the direction of the photon momentum. Now,
for the electromagnetic waves (being transverse) the total angular momentum can take the
values j = 1, 2, 3, . . . [53]. The infinite series in Equation (3) can be truncated, depending
on the level of approximation considered, by making use of the Wigner 3j selection rules.
The truncation procedure at the level of dipole, quadrupole and octupole approximations
are discussed below.

2.2. Dipole Approximation

In the electric dipole approximation, j = j′ = 1. The � values in the Wigner 3j

symbols,
(

j′ j �
−1 1 0

)
and
(

j′ j �
−1 −1 2

)
, of Equations (4) and (5) range from |j′ − j| to

j′ + j, giving � = 0, 1 and 2. The summations begin from � = 1 for the second term and
� = 2 for the third term of Equation (3). Hence, under the dipole approximation, � only
takes values 1 and 2. In this particular case, the variable k in Equations (4) and (5) is an
even number (πk+), because k is given by j′ − j, which is zero. Since � is odd and k is even,
the only term that needs to be considered in Equation (4) is the one that involves the electric
and magnetic interactions. However, in the dipole approximation, magnetic interactions
do not appear and, hence, B01 = 0. Therefore, only � = 2 contributes in the dipole
approximation giving rise to B02 and B12. The Wigner 3j symbols of Equations (4) and (5),(

j′ j �
−1 1 0

)
and

(
j′ j �
−1 −1 2

)
give 1/

√
30 and 1/

√
5, respectively, for j = j′ = 1 and

� = 2. Using B01 and B02 along with Equation (3), Equation (2) reduces to

dσ

dΩ
=

σ

4π

[
1 + B02d2

00 +
(
Sx cos 2φ + Sy sin 2φ

)
B12d2

20

]
. (8)

The right-hand side of Equations (4) and (5) for � = 2 can be written in terms of
a single parameter, β1 (a dipole asymmetry parameter), as follows: B02 = −β1/2 and
B12 = −√

3/2 β1, where β1 is

β1 = −
√

30
(−1)J0−Jα+1/2

σ̄ ∑
j′ J′ j′α

∑
jJ jα

[
J jα J′ j′α

]{ J J′ 2
j′α jα Jα

}{
J J′ 2
1 1 J0

}(
j′α jα 2

1/2 −1/2 0

)
E′E cos(δα′ − δα). (9)

The term S1 cos 2φ + S2 sin 2φ in (8) is expressed as −p cos 2α cos(2(φ − γ)). Here,
the parameters p, α and γ can be understood as follows. Consider a coordinate system
XYZ, such that the Z axis is in the direction of the photon flux, as shown in Figure 2.
The X axis is chosen conveniently to determine the photon polarisation. The parameter
γ specifies the azimuthal orientation of the polarisation. When the photon polarisation
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vector coincides with the X axis, γ = 0. The angle between the electric field vectors at their
successive crests is α. In case of linearly polarised light, α = 0. The probability p (0 ≤ p ≤ 1)
of complete polarisation is referred to as the degree of polarisation of the photon. The
degree of polarisation p = 1 for pure linearly polarised incident photons. In Equation (8),
d2

00 = P2(cos θ) and d2
20 =

√
3

2
√

2
sin2 θ. Using these above relations, Equation (8) can be

further reduced to

dσ

dΩ
=

σ

4π

{
1 − 1

2
β1

[
P2(cos θ)− 3

2
p cos 2α cos(2(φ − γ)) sin2 θ

]}
. (10)

Figure 2. Types of polarisation.

It is often convenient to express the above equation in an alternate co-ordinate system,
as shown in Figure 1b, where θ̄ corresponds to the angle between the photoelectron mo-
mentum and the polarisation direction, and where φ̄ corresponds to the angle between the
propagation vector and the projection of momentum vector in the X-Y plane. Under this
new co-ordinate system, Equation (10) reduces to

dσ

dΩ
=

σ

4π

{
1 + β1P2(cos θ̄)

}
(11)

for linearly polarised light, where α = 0 and p = 1.

2.3. Beyond Dipole Approximation
Including quadrupole interactions, j and j′ can take values 1 and 2. Consequently,

� takes values 1 ≤ � ≤ 3. The variable k = j′ − j can be −1 and 1, which implies that k
is odd for the dipole and quadrupole interference terms. The even � and the odd k can
contribute only via electric–magnetic interactions. Since they are neglected in the present
work, B02 = 0. Therefore, the only terms that contribute to the quadrupole approximation
are B01, B03 and B13, which are rewritten in terms of Γ1 and Γ3 as follows:

Γ1 = −3

√
3
2
(−1)J0−Jα+1/2

σ̄ ∑
j′ J′ j′α

∑
jJ jα

[
J jα J′ j′α

]{ J J′ 1
j′α jα Jα

}{
J J′ 1
j′ j J0

}(
j′α jα 1

1/2 −1/2 0

)
(−1)(k+1)/2E′E sin(δα′ − δα), (12)

Γ3 = −
√

21
(−1)J0−Jα+1/2

σ̄ ∑
j′ J′ j′α

∑
jJ jα

[
J jα J′ j′α

]{ J J′ 3
j′α jα Jα

}{
J J′ 3
j′ j J0

}(
j′α jα 3

1/2 −1/2 0

)
(−1)(k+1)/2E′E sin(δα′ − δα), (13)

where Γ1 = B01 and Γ3 = B03 =
√

3/10B13. Using these, the differential cross-section for
the photoionisation, given in Equation (3), with the inclusion for first-order quadrupole
terms, can be expressed as

dσ

dΩ
=

σ

4π

{
1 + Γ1P1(cos θ)− 1

2
β2P2(cos θ) + Γ1P3(cos θ) +

[
3
4

β2 − 5
2

Γ3 cos θ

]
p cos 2α cos(2(φ − γ)) sin2 θ

}
. (14)
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Note that the dipole asymmetry parameter β1 is now written as β2 under the quadrupole
approximation. The expression for β2 differs from β1 only in the σ̄ term in the denominator of
Equation (9). With the inclusion of non-dipole interactions, σ̄ = ∑

Jκα

[
|D(E1)(κα)|2 + |D(E2)(κα)|2

]
.

In general, the dipole amplitude dominates the quadrupole amplitude. It can be, there-
fore, easily seen that this additional term in σ̄ only plays a major role when the dipole
amplitude goes through a minima. We again transform the representation of dσ/dΩ from
(θ, φ) → (θ̄, φ̄):

dσ

dΩ
=

σ

4π

{
1 + β2P2(cos θ̄) +

[
Γ1 + Γ3 − 5Γ3 cos2 θ̄

]
sin θ̄ cos φ̄

}
. (15)

The usual experimental scheme to measure these non-dipole parameters is to set
θ̄ = 54.7◦ and φ̄ = 0◦. The differential cross-section at these angles is

dσ

dΩ
=

σ

4π

{
1 +

√
2
3

(
Γ1 + Γ3 − 5

3
Γ3

)}
. (16)

It is convenient to write δ = Γ1 + Γ3 and γ = −5Γ3, so that

dσ

dΩ
=

σ

4π

{
1 +

√
2
27

(3δ + γ)

}
, (17)

where the combined quantity 3δ + γ can be extracted from a measurement. Equation (15)
is re-written in terms of δ and γ:

dσ

dΩ
=

σ

4π

{
1 + β2P2(cos θ̄) +

[
δ + γ cos2 θ̄

]
sin θ̄ cos φ̄

}
. (18)

This is in agreement with Derevianko et al.’s [43] expression for dσ/dΩ while considering only
the electric dipole and lowest order quadrupole interactions, which works for the closed-shell
system. The above expression can also be written as dσ/dΩ = σ

{
1 + A(θ̄, φ̄)

}
/4π, where

A(θ̄, φ̄) provides the angular distribution associated with the photoelectron ejection.
The above procedure can be further extended to higher-order terms. If we include the

second-order correction, the differential cross-section can be expressed as follows:

dσ

dΩ
=

σ

4π

{
1 +
(

BE1,E2
01

)
d1

00 +
(

BE1,E1
02 + BE1,E3

02 + BE2,E2
02

)
×d2

00 + BE1,E2
03 d3

00 +
(

BE1,E3
04 + BE2,E2

04

)
d4

00+
(
Sx cos 2φ − Sy sin 2φ

)×[(
BE1,E1

12 + BE1,E3
12 + BE2,E2

12

)
d2

20 + BE1,E2
13 d3

20 +
(

BE1,E3
14 + BE2,E2

14

)
d4

20

]}
.

In Section 3, we present the results obtained using the above-mentioned procedures; in
particular, the quadrupole effects in the photoionisation of Na 3s. The calculations consid-
ered are those of single configurations. The photon–atom interaction resulting in the emis-
sion of an electron with a residual ion, for dipole transitions, is expressed as h̄ω(j = 1) +
Na
(
1s22s22p63s1)2SJ0=1/2 → Na+

(
1s22s22p6)1SJα=0 + εpjα=1/2, εpjα=3/2. Similarly, for the

quadrupole transitions, h̄ω(j = 2) + Na
(
1s22s22p63s1)2SJ0=1/2 → Na+

(
1s22s22p6)1SJα=0 +

εdjα=3/2, εdjα=5/2. The transition amplitudes required for these calculations were calculated
using a combination of two software packages, GRASP and RATIP.

3. Results and Discussion

3.1. Cross-Section

Figure 3a shows the Na 3s cross-section, calculated at the dipole approximation level in
the length and velocity gauges, which is in reasonable agreement with the experimental data
in the energy range 5.14 to 7 eV, even at the single configuration level of calculation. This
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region is particularly interesting, because of the presence of the dipole Cooper minimum
here. Above 7 eV, there is a disagreement with the experimental data, and the agreement
between length and velocity deteriorates. This may be due to the absence of initial state
correlation in the present calculation. However, the present work was aimed at the Cooper
minimum region below 7 eV, where there is a reasonable agreement between theory and
experiment. Figure 3b shows the dipole and quadrupole cross-sections in the length gauge.
This shows that the quadrupole cross-section was larger than the dipole cross-section at
the dipole minimum over a small range of photon energies ∼0.03 eV. It is to be noted that
although the cross-section is going through the Cooper minimum, the cross-section was not
zero, even at the single configuration level. This was because of the relativistic interactions
resulting from the s → εp1/2 and s → εp3/2 transitions, which underwent their respective
minima at slightly different energies. For simplicity, these final states are denoted εp+ and
εp−, respectively [54].

0

0.05

0.1

0.15

0.2

0.25

5 6 7 8 9 10 11 12 13 14

C
ro

ss
se

ct
io

n
(M

b)

Photon energy (eV)

Length
Velocity

Expt

(a)
0

1

2

3

4

5

6.3 6.4 6.5 6.6 6.7

C
ro

ss
se

ct
io

n
(×

10
−5

M
b)

Photon energy (eV)

E1
E2

(b)

Figure 3. (a) Total cross-section of sodium 3s in length and the velocity gauges compared to the
experimental data [55], (b) dipole and quadrupole cross-sections in length gauge in the region of the
Cooper minimum.

Direct experimental measurements provide information only about the sum of the
dipole (E1) and quadrupole (E2) cross-sections. Information about the relative magnitudes
of E1 and E2 individually is not available from experiment. However, this information
can be extracted from angular distribution studies. Previous studies have shown that, at
low energies, the effect of non-dipole interactions is more significant on the angular distri-
bution parameters than the cross-section [28–40]. To understand the effect of quadrupole
transitions on photoelectron angular distributions, we examine the asymmetry parameters.

3.2. Dipole Parameter, β

The equation for the asymmetry parameter for a half-filled ns subshell at the dipole
approximation level can be deduced from Equation (9), by making appropriate substitutions
of angular momentum values. We denote the transition matrix elements by Dα ≡ D(E1)(κα)
for dipole, and Qα ≡ D(E2)(κα) for quadrupole terms. This turns out to be

β1 =
|Dεp+|2 − 2

√
2|Dεp−||Dεp+| cos(δp− − δp+)

|Dεp−|2 + |Dεp+|2 . (19)

Subscript 1 is used in β, to indicate that this determines the angular distribution
parameter in the dipole approximation. In the absence of relativistic effects, β1 = 2. This can
be seen by re-writing Equation (19) in terms of radial matrix elements. The reduced matrix
elements and the radial matrix elements are related as follows: Dεp− = −√

2/3Rεp− =√
2/3|Rεp−|ei(δ′εp−+π) and Dεp+ = +

√
4/3Rεp+ =

√
4/3|Rεp+|eiδ′εp+ . Here, δ′εp± represents

the phase of the radial matrix elements, Rεp±. The term π is included, along with δ′εp−,
to account for the negative sign accompanying the radial matrix element Rεp−. Note
that δεp− ≡ δ′εp− + π and δεp+ ≡ δ′εp+. In the non-relativistic limit, |Rεp−| = |Rεp+| and
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δ′εp− = δ′εp+, resulting in cos(δεp− − δεp+) = cos(π), which reduces Equation (19) to its
non-relativistic value, 2.

Figure 4 shows rapid variation of the asymmetry parameter β1 in the region of the
Cooper minimum. Under the dipole approximation, the value of β1 is ≈2 over most of the
energy range, except in the region of the Cooper minimum, where it undergoes a dip and
takes a value close to −1, as expected [56]. However, when the quadrupole interactions are
taken into account, the above formula is modified, as discussed in Section 2. The expression
for the asymmetry parameter is modified, with an additional term in the denominator,
which is denoted as β2. It is easy to show that these two parameters are related via the
following equation:

β2 = β1 × ∑
κα

|Dκα |2
|Dκα |2 + |Qκα |2

. (20)
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Figure 4. Asymmetry parameter β1 and the effect of quadrupole transitions on β is represented as β2.

From the above equation, it can be deduced that the factor multiplied by β1 can take
values unity or less. Thus, the deviation in the region of the Cooper minimum becomes
shallower when non-dipole interactions are present, as shown in Figure 4. In the absence
of non-dipole interactions, β1 goes all the way to −1 in the Cooper minimum region. This
amounts to a stronger yield in the direction perpendicular to the polarisation of the photon.
The inclusion of non-dipole terms causes the dip in the Cooper minimum region to be
close to zero (β2 ≈ 0), which corresponds to the photoelectron angular distribution being
roughly isotropic in comparison to β1. The present work, therefore, shows the importance
of non-dipole interactions in determining the photoelectron yield in different directions,
even at low energies.

3.3. Quadrupole Parameters Γ1 and Γ3

By making suitable substitutions in Equations (12) and (13), we arrive at the expres-
sions for Γ1 and Γ3 for the photoionisation of a half-filled ns subshell:

Γ1 =
−2
σ̄

(√
3
2
|Q3/2||D1/2| sin(δ3/2 − δ1/2)−

√
3

10
|Q3/2||D3/2| sin(δ3/2 − δ3/2) +

9
5
√

2
|Q5/2||D3/2| sin(δ5/2 − δ3/2)

)
, (21)

Γ3 =
2
σ̄

(
−|Q5/2||D1/2| sin(δ5/2 − δ1/2)− 3

√
3

5
|Q3/2||D3/2| sin(δ3/2 − δ3/2) +

4
5
√

2
|Q5/2||D3/2| sin(δ5/2 − δ3/2)

)
. (22)

These parameters, Γ1 and Γ3, are plotted in Figure 5. They are nearly zero in the
region away from the Cooper minimum, and they show rapid variation near the Cooper
minimum. Recall from Section 2 that Γ1 + Γ3 = δ (also shown in Figure 5) and γ = −5Γ3.
The features of Γ1 and Γ3 can be better understood in their non-relativistic limits. The
relations between the quadrupole reduced matrix elements and radial matrix elements are
Qεd− =

√
4/5Rεd− =

√
4/5|Rεd−|eiδ′d− and Qεd+ = −√

6/5Rεd+ =
√

6/5|Rεd+|ei(δ′d++π).
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The corresponding relations for the dipole matrix elements are discussed in Section 3.2.
Using these relations, Equations (21) and (22) can be reduced to their non-relativistic limits:

Γ1 =
6
√

6
6|D|2 + 5|Q2| |Q||D| sin(δQ − δD), (23)

Γ3 = − 6
√

6
6|D|2 + 5|Q2| |Q||D| sin(δQ − δD). (24)
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Figure 5. Quadrupole parameters Γ1 and Γ3 in the vicinity of the Cooper minimum.

It is easily seen that the non-relativistic δ vanishes, since Γ1 = −Γ3 for the ns subshell.
In the regions away from the CM, Q � D. Hence, it becomes evident from the above
expressions that Γ1 and Γ3 are directly proportional to Q/D, resulting in their values being
nearly zero. In the region where the dipole amplitude, D, undergoes the Cooper minimum,
the ratio becomes larger. At the dipole CM, there is a phase jump of π, leading to the
sign flip of Γ1 and Γ3. All these features are preserved, even in the relativistic Γ1 and Γ3,
except for the fact that δ = Γ1 + Γ3 has non-zero values in the region of the CM. This can
be attributed to the fact that relativistic dipole channels are undergoing the CM at slightly
different energies, which deviates the δ from its non-relativistic value.

As discussed in Section 2.3, one of the experimentally relevant parameters is γ = −5Γ3.
The significant values of γ and its strong dependence on photon energy show that the
photoelectron angular distribution (PAD) is very sensitive to photon energy in the region of
the Cooper minimum. To illustrate this, the shape of the photoelectron angular distribution,
1 + A(θ̄, φ̄), is plotted for a few selected energies, and is shown in Figure 6 in 2D (the xz
plane) and 3D. In order to bring out the role of the quadrupole effects, the PAD obtained
with and without the inclusion of the quadrupole interactions (denoted as 1 + A(θ̄, φ̄)E1E2
and 1 + A(θ̄, φ̄)E1, respectively) are shown. In the absence of relativistic and/or non-dipole
effects, the angular distribution is essentially cos2 θ̄. Here, the preferential direction (or
direction of maximum yield) of photoelectron ejection is along the polarisation direction ε̂.
This is seen at a photon energy of 5.25 eV. Both 1 + A(θ̄, φ̄)E1 and 1 + A(θ̄, φ̄)E1E2 show
a dipolar distribution, since this is well below the Cooper minimum, where non-dipole
interactions do not play any significant role in the dynamics. The values of β1 ≈ β2 = 1.93
(close to the non-relativistic value 2), Γ1 = 0.05 and Γ3 = −0.05 are smaller, because Q is
significantly less than D, as seen in Figure 3.

Figure 6b,d show the PAD at photon energies 6.48 eV and 6.54 eV, where both Γ1
and Γ3 take extremum values, due to the presence of the Cooper minimum. At 6.48 eV,
Γ1 = 0.97, Γ3 = −1.07 , β1 = 1.14 and β2 = 0.65, whereas at 6.54 eV the values are
Γ1 = −0.92, Γ3 = 0.82, β1 = 0.80 and β2 = 0.58. As a result, 1 + A(θ̄, φ̄)E1E2 at these ener-
gies significantly differs from 1 + A(θ̄, φ̄)E1. The direction of the maximum photoelectron
yield moves away from ε̂ at these energies for 1 + A(θ̄, φ̄)E1E2, i.e., with the inclusion of
quadrupole effects.
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Figure 6. Shape of the PAD in 2D and 3D, showing (1 + A(θ̄, φ̄))E1, including only the dipole–dipole
interactions (blue) and (1 + A(θ̄, φ̄))E1E2, including both the dipole–dipole and dipole–quadrupole
interactions (orange) at photon energies (a) PE = 5.25 eV (b), PE = 6.48 eV (c) PE = 6.51 eV and
(d) PE = 6.54 eV.

Also shown, in Figure 6c, is the PAD at a photon energy of 6.51 eV, where Γ1 + Γ3
is at its minimum. The shape of PAD 1 + A(θ̄, φ̄)E1E2 significantly deviates from PAD
1 + A(θ̄, φ̄)E1. For 1 + A(θ̄, φ̄)E1, the yield is zero along the ε̂; however, it is non-zero when
the quadrupole effects are considered, although the preferential direction remains the same
in both cases. It is important to note that the above determination of the PAD employs only
the first-order non-dipole parameters in the present work, which is valid, as long as D  Q.
However, as seen from Figure 3b, the quadrupole cross-section (and, thus, the matrix
element Q) is larger than the dipole matrix element D between 6.48 eV and 6.52 eV. In this
region, the second-order E2–E2 interference terms will not only be important but dominant.
Thus, Figure 6b–d should only be considered representative of the effects of first-order
non-dipole corrections, but do not represent physical reality, since the E2–E2 terms are
not included in the description of the PAD. For example, the small petal-like structures in
Figure 6b,d are artefacts of the first-order approximations. They will no longer appear if
the second corrections are included. The methodology developed here can be extended, to
incorporate the E2–E2 interference effect, and work in this direction is in progress.
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4. Conclusions

Following the earlier work on photoionisation dynamics based on helicity formal-
ism [41,42], explicit relativistic formulae for angular distribution parameters, including the
dipole and quadrupole interference effects, were derived for the ns subshells for cases of
open-shell atomic systems. Using the formulae obtained, the photoionisation dynamics of
Na 3s were studied in the region of the dipole Cooper minimum, which demonstrated the
importance of quadrupole transitions in determining the angular distribution at low photon
energies (≈7 eV). Although the calculations were done at the level of single-particle approx-
imation, they could be extended, to include multi-electron effects, by replacing the matrix
elements obtained by single configuration calculation with that of multi-configuration
calculation, using GRASP and RATIP. The methodology developed here could also be ex-
tended to higher-order multi-pole interactions and to other subshells. We hope the current
work will stimulate photoionisation dynamics studies of open-shell systems, studies that
would highlight both relativistic and multi-electron effects.

Author Contributions: Conceptualization, N.M.H. and H.R.V.; Methodology, N.M.H. and H.R.V.;
Software, N.M.H. and J.J.; Formal analysis, N.M.H., J.J., H.R.V., P.C.D. and S.T.M.; Investigation,
N.M.H., J.J., H.R.V., P.C.D. and S.T.M.; Writing—original draft, N.M.H.; Writing—review & editing,
J.J., H.R.V., P.C.D. and S.T.M.; Supervision, H.R.V. All authors have read and agreed to the published
version of the manuscript.

Funding: Two of the authors, Nishita M. Hosea and Hari R. Varma, extend their gratitude to the
Science and Engineering Research Board, Department of Science and Technology, Government of
India, for funding this work, Grant Number CRG/2022/002309. The work of Steven T. Manson was
supported by the US Department of Energy, Office of Basic Sciences, Division of Chemical Science,
Geosciences and Biosciences, under Grant No. DE-FG02-03ER15428.

Data Availability Statement: The data generated and/or analysed during the current study are
available from the corresponding author on a reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hemmers, O.; Guillemin, R.; Lindle, D.W. Nondipole effects in soft X-ray photoemission. Radiat. Phys. Chem. 2004, 70, 123–147.
[CrossRef]

2. Guillemin, R.; Hemmers, O.; Lindle, D.W.; Manson, S.T. Experimental investigation of nondipole effects in photoemission at the
advanced light source. Radiat. Phys. Chem. 2006, 75, 2258–2274. [CrossRef]

3. Hemmers, O.; Guillemin, R.; Rolles, D.; Wolska, A.; Lindle, D.W.; Kanter, E.P.; Krässig, B.; Southworth, S.H.; Wehlitz, R.;
Zimmermann, B.; et al. Low-energy nondipole effects in molecular nitrogen valence-shell photoionization. Phys. Rev. Lett. 2006,
97, 103006. [CrossRef] [PubMed]

4. Cherepkov, N.A.; Semenov, S.K. Non-dipole effects in spin polarization of photoelectrons from Xe 4p and 5p shells. J. Phys. B At.
Mol. Opt. Phys. 2001, 34, L211. [CrossRef]

5. Khalil, T.; Schmidtke, B.; Drescher, M.; Müller, N.; Heinzmann, U. Experimental verification of quadrupole-dipole interference in
spin-resolved photoionization. Phys. Rev. Lett. 2002, 89, 053001. [CrossRef]

6. Jensen, S.V.B.; Madsen, L.B. Propagation time and nondipole contributions to intraband high-order harmonic generation. Phys.
Rev. A 2022, 105, L021101. [CrossRef]

7. Tyndall, N.B.; Ramsbottom, C.A.; Ballance, C.P.; Hibbert, A. Photoionization of Co+ and electron-impact excitation of Co2+ using
the Dirac R-matrix method. Mon. Not. R. Astron. Soc. 2016, 462, 3350–3360.

8. Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.J.; et al. First
lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641–647. [CrossRef]

9. McNeil, B.W.; Thompson, N.R. X-ray free-electron lasers. Nat. Photonics 2010, 4, 814–821. [CrossRef]
10. Ishikawa, T.; Aoyagi, H.; Asaka, T.; Asano, Y.; Azumi, N.; Bizen, T.; Ego, H.; Fukami, K.; Fukui, T.; Furukawa, Y.; et al. A compact

X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 2012, 6, 540–544. [CrossRef]
11. Lindle, D.W.; Hemmers, O. Breakdown of the dipole approximation in soft-X-ray photoemission. J. Electron Spectrosc. Relat.

Phenom. 1999, 100, 297–311. [CrossRef]
12. Bechler, A.; Pratt, R. Higher retardation and multipole corrections to the dipole angular distribution of 1s photoelectrons at low

energies. Phys. Rev. A 1989, 39, 1774. [CrossRef]
13. Bechler, A.; Pratt, R. Higher multipole and retardation corrections to the dipole angular distributions of L-shell photoelectrons

ejected by polarized photons. Phys. Rev. A 1990, 42, 6400. [CrossRef] [PubMed]

29



Atoms 2023, 11, 125

14. Cooper, J.W. Multipole corrections to the angular distribution of photoelectrons at low energies. Phys. Rev. A 1990, 42, 6942.
[CrossRef] [PubMed]

15. Cooper, J.W. Erratum: Multipole corrections to the angular distribution of photoelectrons at low energies [Phys. Rev. A 42, 6942
(1990)]. Phys. Rev. A 1992, 45, 3362. [CrossRef] [PubMed]

16. Cooper, J. Photoelectron-angular-distribution parameters for rare-gas subshells. Phys. Rev. A 1993, 47, 1841. [CrossRef]
17. Krässig, B.; Jung, M.; Gemmell, D.; Kanter, E.; LeBrun, T.; Southworth, S.; Young, L. Nondipolar asymmetries of photoelectron

angular distributions. Phys. Rev. Lett. 1995, 75, 4736. [CrossRef]
18. Hemmers, O.; Fisher, G.; Glans, P.; Hansen, D.; Wang, H.; Whitfield, S.; Wehlitz, R.; Levin, J.; Sellin, I.; Perera, R.C.; et al. Beyond

the dipole approximation: Angular-distribution effects in valence photoemission. J. Phys. B At. Mol. Opt. Phys. 1997, 30, L727.
[CrossRef]

19. Dolmatov, V.K.; Manson, S.T. Enhanced nondipole effects in low energy photoionization. Phys. Rev. Lett. 1999, 83, 939. [CrossRef]
20. Amusia, M.Y.; Baltenkov, A.; Felfli, Z.; Msezane, A. Large nondipole correlation effects near atomic photoionization thresholds.

Phys. Rev. A 1999, 59, R2544. [CrossRef]
21. Derevianko, A.; Hemmers, O.; Oblad, S.; Glans, P.; Wang, H.; Whitfield, S.B.; Wehlitz, R.; Sellin, I.A.; Johnson, W.; Lindle, D.W.

Electric-octupole and pure-electric-quadrupole effects in soft-X-ray photoemission. Phys. Rev. Lett. 2000, 84, 2116. [CrossRef]
[PubMed]

22. Amusia, M.Y.; Baltenkov, A.; Chernysheva, L.; Felfli, Z.; Msezane, A. Nondipole parameters in angular distributions of electrons
in photoionization of noble-gas atoms. Phys. Rev. A 2001, 63, 052506. [CrossRef]

23. Johnson, W.R.; Cheng, K. Strong nondipole effects in low-energy photoionization of the 5 s and 5 p subshells of xenon. Phys.
Rev. A 2001, 63, 022504. [CrossRef]

24. Cherepkov, N.A.; Semenov, S.K. On quadrupole resonances in atomic photoionization. J. Phys. B At. Mol. Opt. Phys. 2001,
34, L495. [CrossRef]

25. Hemmers, O.; Guillemin, R.; Kanter, E.; Krässig, B.; Lindle, D.W.; Southworth, S.; Wehlitz, R.; Baker, J.; Hudson, A.; Lotrakul, M.;
et al. Dramatic Nondipole Effects in Low-Energy Photoionization: Experimental and Theoretical Study of Xe 5 s. Phys. Rev. Lett.
2003, 91, 053002. [CrossRef]

26. Trzhaskovskaya, M.; Nikulin, V.; Nefedov, V.; Yarzhemsky, V. Non-dipole second order parameters of the photoelectron angular
distribution for elements Z = 1–100 in the photoelectron energy range 1–10 keV. At. Data Nucl. Data Tables 2006, 92, 245–304.
[CrossRef]

27. Trzhaskovskaya, M.; Nefedov, V.; Yarzhemsky, V. Photoelectron angular distribution parameters for elements Z = 1 to Z = 54 in
the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables 2001, 77, 97–159. [CrossRef]

28. Leuchs, G.; Smith, S.; Dixit, S.; Lambropoulos, P. Observation of interference between quadrupole and dipole transitions in
low-energy (2-eV) photoionization from a sodium Rydberg state. Phys. Rev. Lett. 1986, 56, 708. [CrossRef]

29. Martin, N.; Thompson, D.; Bauman, R.; Caldwell, C.; Krause, M.; Frigo, S.; Wilson, M. Electric-dipole–quadrupole interference of
overlapping autoionizing levels in photoelectron energy spectra. Phys. Rev. Lett. 1998, 81, 1199. [CrossRef]

30. Grum-Grzhimailo, A. Non-dipole effects in magnetic dichroism in atomic photoionization. J. Phys. B At. Mol. Opt. Phys. 2001,
34, L359. [CrossRef]

31. Krässig, B.; Kanter, E.; Southworth, S.; Guillemin, R.; Hemmers, O.; Lindle, D.W.; Wehlitz, R.; Martin, N. Photoexcitation of a
dipole-forbidden resonance in helium. Phys. Rev. Lett. 2002, 88, 203002. [CrossRef] [PubMed]

32. Kanter, E.; Krässig, B.; Southworth, S.; Guillemin, R.; Hemmers, O.; Lindle, D.W.; Wehlitz, R.; Amusia, M.Y.; Chernysheva, L.;
Martin, N. E 1-E 2 interference in the vuv photoionization of He. Phys. Rev. A 2003, 68, 012714. [CrossRef]

33. Lépine, F.; Zamith, S.; de Snaijer, A.; Bordas, C.; Vrakking, M. Observation of large quadrupolar effects in a slow photoelectron
imaging experiment. Phys. Rev. Lett. 2004, 93, 233003. [CrossRef] [PubMed]

34. Dolmatov, V.; Bailey, D.; Manson, S. Gigantic enhancement of atomic nondipole effects: The 3 s→ 3 d resonance in Ca. Phys.
Rev. A 2005, 72, 022718. [CrossRef]

35. Deshmukh, P.; Banerjee, T.; Varma, H.R.; Hemmers, O.; Guillemin, R.; Rolles, D.; Wolska, A.; Yu, S.; Lindle, D.W.; Johnson, W.;
et al. Theoretical and experimental demonstrations of the existence of quadrupole Cooper minima. J. Phys. B At. Mol. Opt. Phys.
2008, 41, 021002. [CrossRef]

36. Argenti, L.; Moccia, R. Nondipole effects in helium photoionization. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 235006. [CrossRef]
37. Pradhan, G.; Jose, J.; Deshmukh, P.; LaJohn, L.; Pratt, R.; Manson, S. Cooper minima: A window on nondipole photoionization at

low energy. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 201001. [CrossRef]
38. Gryzlova, E.; Grum-Grzhimailo, A.; Strakhova, S.; Meyer, M. Non-dipole effects in the angular distribution of photoelectrons in

sequential two-photon double ionization: Argon and neon. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 164014. [CrossRef]
39. Gryzlova, E.; Grum-Grzhimailo, A.; Kuzmina, E.; Strakhova, S. Sequential two-photon double ionization of noble gases by

circularly polarized XUV radiation. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 195601. [CrossRef]
40. Ilchen, M.; Hartmann, G.; Gryzlova, E.; Achner, A.; Allaria, E.; Beckmann, A.; Braune, M.; Buck, J.; Callegari, C.; Coffee, R.;

et al. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat. Commun. 2018, 9, 4659.
[CrossRef]

41. Huang, K.N. Theory of angular distribution and spin polarization of photoelectrons. Phys. Rev. A 1980, 22, 223. [CrossRef]

30



Atoms 2023, 11, 125

42. Huang, K.N. Addendum to “Theory of angular distribution and spin polarization of photoelectrons”. Phys. Rev. A 1982, 26, 3676.
[CrossRef]

43. Derevianko, A.; Johnson, W.; Cheng, K. Non-dipole effects in photoelectron angular distributions for rare gas atoms. At. Data
Nucl. Data Tables 1999, 73, 153–211. [CrossRef]

44. Dyall, K.; Grant, I.; Johnson, C.; Parpia, F.; Plummer, E. GRASP: A general-purpose relativistic atomic structure program. Comput.
Phys. Commun. 1989, 55, 425–456. [CrossRef]

45. Parpia, F.A.; Fischer, C.F.; Grant, I.P. GRASP92: A package for large-scale relativistic atomic structure calculations. Comput. Phys.
Commun. 1996, 94, 249–271. [CrossRef]
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Abstract: The ground state and photoionization properties of Nax (x = 20, 40, and 92) clusters are
investigated using a method based on density functional theory (DFT) in a spherical jellium frame.
Two different exchange–correlation treatments with the Gunnarsson–Lundqvist parametrization are
used: (i) the electron self-interaction correction (SIC) scheme and (ii) the van Leeuwen–Baerends
(LB94) scheme based on the gradient of the electron density. The shapes of the mean-field potentials
and bound state properties, obtained in the two schemes, qualitatively agree, but differ in the
details. The effect of the schemes on the photoionization dynamics, calculated in linear response
time-dependent DFT is compared, in which the broader features are found to be universal. The
general similarity of the results in SIC and LB94 demonstrates the reliability of DFT treatments. The
study further elucidates the evolution of the ground state and ionization description as a function of
the cluster size.

Keywords: collective effects in photoionization; sodium clusters; plasmon resonances; correlation
minimum; effects of exchange–correlation functionals in photoionization

1. Introduction

Atomic and molecular cluster physics has emerged as a distinct area of research over
the last decades. The area has evolved into an important field by bridging the gap between
the atomic/molecular and the bulk domain. This opened new pathways to characterize and
control parts of the nano-world. The research that emerged has intertwined physics, chem-
istry, astronomy, and biology, thus making cluster studies an interdisciplinary topic [1–3].
Theoretical models for the description of atomic clusters based on ab initio principles along
with the experimental studies have unravelled intriguing features, especially resulting from
the interaction of a cluster with light [4,5]. Such photo-induced processes include, for in-
stance, the plasmon resonances [6–9], Auger-type Fano resonances [10,11], inter-Coulombic
decay (ICD) resonances [12–15], and modulations in the photoelectron intensity due to the
diffraction from cluster edges [16–18]. In addition to their role as “spectral laboratories” to
probe many-electron effects, cluster studies provide impetus for a wide variety of applica-
tions, such as, in nano-optical devices [19], in solar energy harvesting [20], and in chemical
and biological sensors [21–23]. Therefore, testing the efficacy of theoretical models, taking
into account the many-body and quantum phenomena, is particularly valuable.

Experiments suggest that the details of the ionic core configuration of metal clusters,
such as sodium clusters, play a less significant role in extracting structural and dynam-
ical information [24,25]. In addition, the loosely bound valence electrons in the clusters
can be approximated as delocalized and confined within a broad potential well. The jel-
lium model, which makes use of these facts, replaces the metallic ion core by a uniform
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charge distribution, which provides an electrostatic attraction to the valence electron cloud.
The electronic structure may then be determined by applying a mean-field approximation
to the interacting electrons that includes static exchange and correlation (XC) effects in
addition to the direct electron–electron Coulomb repulsion.

An accurate description of the XC potential is crucial in the above model. The Kohn–
Sham (KS) density functional theory (DFT) method is known to have some limitations in
handling the electron exchange, which is intrinsically a fully non-local attribute, by treating
it in a local frame [26]. As a result, the exchange functional cannot perfectly cancel the
self-interaction present in the direct (Hartree) term. This causes the XC potential for a finite
system to approach zero exponentially as r → ∞ rather than to residual −1/r, which is
the correct long-distance behavior for a neutral system. Certain structural and dynamical
properties are affected due to this inaccurate description of the asymptotic behavior. It
leads to errors in the determination of properties, such as the ionization potential and cross-
section. In order to overcome this limitation, for instance, one of the following approximate
methods can be used: (i) the self-interaction correction (SIC) or (ii) the generalized gradient
approximation (GGA).

In method (i), introduced by Perdew and Zunger [27], the self-interactions are sub-
tracted from the potential in the KS equations and iterated until a self-consistent solution is
obtained. It improves the asymptotic behavior of the DFT potential, although the resulting
KS Hamiltonian becomes state-dependent. This approach was found to be useful for a
wide range of compact atomic or molecular systems [28], and especially so for explaining
the absorption spectra of alkali metal clusters [29].

Method (ii), which is more intrinsic to the formalism, is within the GGA class and was
developed by van Leeuwen and Baerends [30]. In this approach, known as LB94, the issue
with self-interaction is addressed by introducing a term that is dependent on the gradient
of electron density by using the Becke GGA construction for the modeling of the XC
potential. LB94 produces a state-independent potential, thus offering a relatively easy and
inexpensive implementation in the computer code. The study of fullerene molecules using
LB94 is found to show a somewhat better agreement with the experimental results [31].
However, in a recent ICD study of fullerene plasmon resonance in Na20@C240, the SIC
ground state structure complied better with quantum chemical results [15].

The photoresponse of alkali metal clusters energetically below the ionization threshold
is dominated by the giant surface plasmon resonance excitation. The photospectra of
clusters are more robust than their bulk counterpart due to the existence of a higher-energy
volume plasmon [6]. Our previous theoretical study on Na-clusters [32] predicted the
spillover of a smaller remnant of the giant surface plasmon and most of the volume plasmon
out to the ionization region and showed a reasonable agreement with measurements. It
further predicted a feature called the correlation minimum in the ionization spectra of
Na clusters. However, in [32], the LB94 scheme was employed while modeling the XC
interaction and a linear response time-dependent DFT (LR-TDDFT) formalism was used
to calculate the response properties. Since the photoionization spectra are expected to
be somewhat sensitive to the XC model, in this study, we compare the effect of the two
schemes, i.e., SIC and LB94, on the details of the photoresponse behavior using LR-TDDFT.
Furthermore, in order to explicate the evolution trend of the results on the cluster size,
three cluster systems are selected for the study.

2. Theoretical Methodology

2.1. DFT Exchange–Correlation Functionals

The details of the method are in line with the framework discussed in Ref. [33]. We
adopted a jellium-based DFT approach to explore the ground state electronic structure
of Nax (x = 20, 40, and 92) clusters in a spherical model. The jellium potential, Vjel,
replaces the ionic core of N (N = 20, 40, and 92) Na+ ions with a potential created by
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homogeneously smearing their total charges over a sphere. The radial component of the
spherically symmetric potential generated by this distribution is the following:

Vjel(r) =

{
− N

2Rc
(3 − ( r

Rc
)2), r ≤ Rc

−N
r , r > Rc

The radius of each cluster is determined by Rc = rsN1/3, where rs = 3.93 a.u. is the
Wigner–Seitz radius of the Na atom. The KS equations for N number of delocalized valence
electrons, i.e., the 3s1 electron from each Na atom, are solved to obtain the electronic
structure. It is to be noted that a constant pseudo-potential is added to match the first
ionization threshold with the experimentally known values [34].

The ground state self-consistent field DFT potential can be written in terms of the
single-particle density ρ(r) as,

VDFT(r) = Vjel(r) +
∫

dr′ ρ(r′)
|r − r′| + VXC[ρ(r)], (1)

where the second and third terms on the RHS are known as the direct and the XC compo-
nents, respectively. We consider the following formula to initially parameterize VXC by
using ρ(r) [35]:

VXC[ρ(r)] = −
(

3ρ(r)

π

)1/3

− 0.0333 log

[
1 + 11.4

(
4πρ(r)

3

)1/3
]

. (2)

Equation (2) qualifies the method as a local density approximation (LDA) approach.
By the standard variational technique, it is possible to exactly derive the first term on the
right hand side of Equation (2) from the Hartree–Fock (HF) exchange energy of a homo-
geneous electron system that has a uniform positively charged background. The second
term is the so-called correlation potential, which is not accounted for in the HF formalism.
As mentioned earlier, the localization of the potential leads to the non-cancellation of
self-interactions. A corrective scheme is therefore adopted from the outset to artificially
eliminate unphysical self-interactions for each ith occupied subshell. This leaves the LDA
potential orbital-specific, but it approximately captures the asymptotic properties of the
electron. We describe this model, referred to as DFT-SIC, in the equation below:

Vi
DFT-SIC(r) = Vjel(r) +

∫
dr′ ρ(r

′)− ρi(r
′)

|r − r′| + VXC[ρ(r)]− VXC[ρi(r)]. (3)

DFT-SIC thus mimics two desirable XC functional features: it cancels out the self-
interaction part of the Hartree energy and it vanishes for a one-electron system.

An alternative method to correct the XC functional makes use of Equation (2) but
refines it further by the addition of a parameterized potential defined in terms of the
reduced density and its gradient ∇ρ, as follows:

VLB = −β[ρ(r)]1/3 (ξX)2

1 + 3βξX sinh−1(ξX)
. (4)

In Equation (4), β = 0.01 and is empirical, while X = [∇ρ]/ρ4/3. The parameter ξ is a
factor that arises in transition from the spin-polarized to spin-unpolarized form [36]. Such a
gradient correction approach to the XC functional is built more into the theory and, hence,
is less artificial than SIC. We refer to this model of non-local correction as DFT-LB94. It
improves the asymptotic behavior of the electron when compared to the exact KS potentials
computed from correlated densities. This model potential holds the unitary transformation
of all occupied and unoccupied orbitals that are eigenstates of the KS equation with one
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DFT-LB94 potential. In contrast, the description of DFT-SIC unoccupied orbitals is a bit
ambiguous due to the ad hoc nature of the potential in Equation (3).

However, accurate excitation and ionization energies for atoms, molecules, and small
clusters [37] are produced using asymptotically correct functionals. Thus, it was anticipated
that both DFT-SIC and DFT-LB94 would compete to significantly improve the quality of
ground, excited, and continuum spectra in the current study.

2.2. LR-TDDFT Dynamical Response

A time-dependent DFT (TDDFT) approach is used to compute the dynamical response
of the clusters to the electromagnetic radiation [38]. The system’s behavior is studied in
response to a time-dependent weak external perturbation. The external perturbation z,
which represents dipole interaction with linearly polarized light, induces a frequency-
dependent complex change in the electron density, δρ(r; ω). Thus, the linear response of
the system can be determined using the density–density response function χ by

δρ(r; ω) =
∫

χ(r, r′; ω)z′dr′, (5)

where the full susceptibility χ includes the electrons’ dynamical correlations. In the auxiliary
KS system the same induced density can be equivalently calculated using

δρ(r; ω) =
∫

χ0(r, r′; ω)δVe f f (r
′; ω)dr′, (6)

where δVe f f includes the external field, plus the induced Hartree and induced XC potentials
as follows

δVe f f (r
′; ω) = z′ + Vind(r

′; ω) (7)

with

Vind(r
′; ω) =

∫
δρ(r; ω)

|r − r′| dr +
[∂VXC

∂ρ

]
ρ=ρ0

δρ(r′; ω). (8)

The response of non-interacting electrons, that is the independent particle (IP) suscep-
tibility, is described by the KS response function χ0, which can be expressed in terms of the
ground state KS eigenvalues εi and eigenfunctions φi as

χ0(r, r′; ω) = ∑
i

φ∗
i (r)φi(r

′)G(r, r′; εi + ω) + ∑
i

φi(r)φ
∗
i (r

′)G∗(r, r′; εi − ω). (9)

Here the index i runs over the occupied states only. For a spherically symmetric atomic
cluster, the Green’s function for a parameter E can be expanded in the spherical basis
as G(r, r′; E) = ∑lm Glm(r, r′; E)Y∗

lm(Ω)Ylm(Ω′), where the radial component Glm(r, r′; E)
satisfies the radial equation

(
1
r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2 − VDFT + E

)
Glm(r, r′; E) =

δ(r − r′)
r2 (10)

with Glm(r, r′; E) = jl(r< ;E)hl(r> ;E)
W[jl ,hl ]r=c

, where jl and hl are homogenous solutions of Equation (10)
satisfying boundary conditions at r = 0 and r = ∞, respectively, and W is the Wronskian,
which is independent of an arbitrary constant c.

A Dyson-like equation for the interacting response function, χ, can be easily derived
from Equations (5) and (6) as

χ(r, r′; ω) = χ0(r, r′; ω) +
∫

dr′′dr′′′χ0(r, r′′; ω)
( 1
|r′′ − r′′′| + fXC(r

′′, r′′′; ω)
)

χ(r′′′, r′; ω), (11)
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where fXC is the so-called time-dependent XC kernel evaluated with approximate XC
functional at ground state density ρ0 and expressed as,

fXC[ρ](r, r′; ω) =
δVXC[ρ](r; ω)

δρ(r′; ω)

∣∣∣∣∣
ρ=ρ0

. (12)

Equation (11) can be solved self-consistently for χ at any desired photon energy. The χ
in Equation (11) can be computed using matrix notation as

χ =
(

1 − ∂V
∂ρ

χ0

)−1
χ0. (13)

where V refers to the ground state potential. Equation (13) can then be solved for χ
using the matrix inversion method [39]. δρ and, hence, δVe f f can be directly obtained via
Equations (5) and (7), respectively.

In LR-TDDFT formalism, the photoionization (PI) cross-section associated with a
bound-to-continuum dipole transition is then computed as the sum of independent subshell
cross-sections, σnl→kl′ , and is given by:

σPI(ω) = ∑
nl

σnl→kl′ ∼ ∑
nl

2(2l + 1)|〈ψkl′ |δVe f f |ψnl〉|2. (14)

The radial component Rkl′ of the final continuum wavefunction ψkl′ has the appropri-
ate asymptotic behavior:

lim
r→∞

Rkl′ ∼ lim
r→∞

[cos(δl′) fl′(kr) + sin(δl′)gl′(kr))] = sin(kr − l′π
2

+
z
k

ln(2kr) + ζl′ + δl′), (15)

where fl and gl represent the regular and irregular spherical Coulomb functions, respec-
tively, and δl and ζl = argΓ(l + 1 − iz/k) are, respectively, the short-range and Coulomb
phase shifts seen by the ejected electron.

In addition to the external perturbation z, Equation (14) also includes the complex
induced field Vind produced by the many-electron interactions. Evidently, the IP level
DFT cross-section that disregards correlations is obtained by setting δVe f f = z. This ap-
proach makes it simple to compare DFT and TDDFT in order to investigate the role of the
many-electron effects during the photoionization process. In this work, we employ the
two XC kernels to calculate the PI cross-sections: one by a global averaging procedure,
f SIC
XC = N−1

N VLDA
XC with VXC given in Equation (2). We refer to the PI cross-section calcu-

lated in this regime as LR-TDDFT-SIC. The other XC kernel with VXC in Equation (2),
augmented by Equation (4), yields f LB94

XC , which in turn is used to evaluate PI cross-sections
in LR-TDDFT-LB94.

3. Results and Discussion

3.1. Ground State Structure

In Figure 1, we show the ground state radial potentials of Na20, Na40, and Na92
calculated using DFT-SIC and DFT-LB94. The DFT-SIC curves are obtained by taking an
occupancy-weighted average over all the subshells. As the cluster size grows, the potential
depth remains roughly unchanged, predominantly since the average density ρ(r) remains
nearly the same. As a consequence, the electron energy levels should become denser with
increasing size [40]. This is seen in both SIC and LB94. The shapes of the radial orbitals
of the two outer levels (HOMO and HOMO-1), shown in the inset, are almost the same in
LB94 and SIC. For a metal cluster, the potential is expected to remain flat in the interior
region of delocalized quasi-free electrons while exhibiting strong screening at the edge
around Rc (cluster radius). These characteristics are exhibited by DFT-LB94, while DFT-SIC
shows some spatial variations in the interior region. In SIC, these variations are due to
the electrons in each orbital experiencing a distinct potential. Additionally, in DFT-SIC,
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there appear unphysical cusp-like structures below Rc caused from the radial nodes of
occupied subshells [41]. These structures are absent in DFT-LB94, as it is more of an ab
initio approach compared to the artificial vacancy-elimination technique in SIC.

The result presented in Figure 1 clearly indicates that in the region outside the radius,
the DFT-LB94 potential is somewhat deeper (attractive) and better approximates the −1/r
behavior toward the asymptotic region compared to DFT-SIC. In other words, the DFT-LB94
potential has a more accurate asymptotic representation resulting in a slower decay beyond
Rc. Such a deeper potential shape allows DFT-LB94 to generate an extended number of
virtual unoccupied KS orbitals compared to SIC. On the other hand, it may be noted that
the occupied levels in SIC in Na20 are slightly more bound compared to LB94 . However,
as the cluster size increases, this difference tends to diminish as an indication of a gradual
irrelevance of a particular choice of XC with increasing size. Recall that appropriate pseudo-
potentials are added to match the ionization thresholds with the experimental values, which
is evident from the identical binding energies of HOMO levels obtained in SIC and LB94 in
each cluster.
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Figure 1. Ground state radial potential and wavefunctions (inset) for HOMO and HOMO−1 levels
calculated for Na20 (a), Na40 (b), and Na92 (c) using DFT-SIC and DFT-LB94. The horizontal
lines indicate occupied levels (red for DFT-LB94 and blue for DFT-SIC), the nodeless orbitals are
represented with thick lines and orbitals with nodes are with dotted lines).

3.2. Total Photoionization Cross-Section

Figure 2 presents the LR-TDDFT photoionization cross-sections for three clusters, Na20,
Na40, and Na92, along with the IP results obtained in LR-DFT. TDDFT and DFT calculations
are performed using the two XC schemes. The graphs are displayed on a logarithmic scale
to emphasize the characteristics at the low-energy region near the ionization threshold.
For energies exceeding 20 eV, there are agreements between the TDDFT and DFT results
for all three clusters. Furthermore, collective effects disappear leading to discernible
oscillations caused by the photoelectron with momentum k being diffracted from the
cluster edges [41]. Since this characteristic is related to the geometry of the cluster, which
is an IP attribute, they are also observed in the DFT results. Equivalently, the vanishing
electron correlations at higher energies is evident from the convergence of oscillations in
TDDFT and DFT. The specific choice of an XC functional that is insensitive to diffraction
also has no significance at these energies. As the cluster size increases, the frequency of
oscillations is also found to increase—a fact that can be explained using a Woods–Saxon
model potential. Using this model, the dipole partial photoionization cross-section can be
obtained as in [42]

σnl→kl′(k) ∝
e−ak

ω5/2 (1 + cos(2kRc − l′π)).

The decay that follows an exponential pattern is a consequence of the steepness
(represented by the parameter “a”) around the edge (refer to Figure 1). Note that potentials
being “soft” at the cluster edge is intrinsic in DFT calculations. Based on the equation
above, therefore, the state-selected cross-sections σnl→kl′ will exhibit oscillations in k (or,
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equivalently, in photon energy) with a frequency of 2Rc. Hence, this suggests an increase in
oscillations when the cluster size (Rc) increases as seen in the total cross-sections in Figure 2.

When photon energies are in proximity to the ionization threshold and below 10 eV,
notable differences emerge between the TDDFT and DFT cross-section profiles as a function
of photon energy. These disparities encompass significant enhancements right above the
threshold, a host of narrow autoionization resonances, and the occurrence of a correlation
minimum around 6–7 eV, all in LR-TDDFT for the three clusters. The tiny and discrete
jumps seen in DFT total cross-sections in Figure 2 are due to the opening of new subshell
ionization channels.
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Figure 2. LR-TDDFT and LR-DFT photoionization cross-sections of Na20 (a), Na40 (b), and Na92 (c)
using LB94 and SIC.

As noted, the LR-TDDFT cross-sections, regardless of the XC potential chosen, exhibit
a strong enhancement in the vicinity of the threshold region for the three clusters compared
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to LR-DFT. This enhancement can be attributed to the spillover effect of plasmon resonances,
which arise from correlated collective electronic motion. Our previous work already
characterized this enhancement as the sum of an extension of the surface plasmon resonance
from the absorption spectrum and a bulk portion of the volume plasmon resonance [32].
Overall, both the LB94 and SIC approaches exhibit qualitatively similar enhancements.
This spillover from discrete to continuum spectra is accompanied by several narrow spikes
known as the autoionization resonances, which arise due to the degeneracy between the
ionization channels and inner-level single-electron excitation channels.

The phenomenon of plasmon resonance is the result of an in-phase coherence mecha-
nism arising from the coupling of various degenerate ionization channels that are present.
In Fano’s framework based on first-order perturbation theory [43], the correlation-modified
(LR-TDDFT) matrix element, Mnl→ελ(E), of a dipole ionization channel nl → ελ can be
written as

Mn�→ελ(E) = Dn�→ελ(E) + ∑
n′�′ �=n�

∫
dE′ 〈ψn′�′→ε′λ′(E′)| 1

|rn�−rn′�′ | |ψn�→ελ(E)〉
E − E′ × Dn′�′→ ε′λ′(E′), (16)

where Dn�→ελ refers to the unperturbed (DFT) matrix element. The wavefunctions of the
interacting continuum channels are represented by |ψ〉, and the summation is carried over to
all degenerate continuum channels with the exception of the n� channel. The significance of
electron correlations in enhancing the plasmon resonance spillover in the n� → ελ channel
can be seen in the second term of Equation (16), which is referred as the interchannel
coupling matrix element. rn� and rn′�′ are the spatial co-ordinates of photoelectrons in the
interacting continuum channels from initially occupied sub-shells n� and n′�′, respectively.
The summation over all subshells exhibits a coherent mixing primarily due to the bound
wavefunctions occupying similar spatial regions. This results in a significant increase in the
LR-TDDFT cross-section, as shown in Figure 2. However, as illustrated in Figure 2, the DFT
predictions that disregard electron correlations do not exhibit such enhancement.

The interpretation of narrow resonances within the Fano framework requires coupling
between the bound (excited) and continuum channels, resulting in a modification of the
coupling matrix element in Equation (16) as

〈ψn′�′→η′λ′(E′)| 1
|rn� − rn′�′ |

|ψn�→ελ(E)〉

where n′�′ → η′λ′ denote discrete excitation channels. The detailed profiles of these
resonant structures are seen in Figure 2 to be sensitive to the scheme of XC functional
employed. Resonance positions and shapes differ between SIC and LB94. This happens as
a result of the levels of Na20 and Na40 in SIC being energetically slightly deeper compared
to their LB94 counterparts, as seen in Figure 1. Additionally, the descriptions of the
unoccupied excited states, which depend on the potential’s long-range behavior, differ as
well. Since the LB94 potential shows a slightly better long-range behavior, the resonances
in this scheme are expected to be somewhat more accurate. The density of the unoccupied
levels of both LB94 and SIC being increased as the cluster grows larger (noted in Figure 2)
results in a higher number of resonances with a growing size.

3.3. Comparison with Experiments

It is useful, in particular, to assess the effect of the XC schemes on PI below 8 eV, where
the collective effect dominates. However, as seen, this region has a complicated spectra
because of the presence of autoionization resonances mentioned above. These narrow reso-
nances are usually not present in experimental spectra due to the finite temperature effect
experienced by the metal clusters under experimental conditions. In fact, the measured
spectrum displays an incoherent mixture of spectra from various satellite configurations
driven by the temperature, acquiring, effectively, a specific width [44,45]. This width can
camouflage the narrow spikes by smearing them. To simulate this thermal effect, our
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theoretical data are convoluted with a Gaussian of width 0.4 eV. These are shown for the
two clusters in Figure 3, and compared with available measurements. Note, however, that
for Na40, experimental data are not available. It can clearly be seen from Figure 3a,b that
the smoothed LR-TDDFT cross-sections calculated both in LB94 and SIC show a reasonable
agreement with the experimental observations that describe the spillover contribution of
the plasmon resonances. Interestingly, SIC produces a slightly better overall agreement,
even though its ground state long-range behavior is found to be somewhat less accurate.
This suggests a lesser sensitivity of asymptotic properties to the collective behavior.

As can be seen from Figure 3a,b, the peaks of the smoothed LR-TDDFT curve, which
must be predominantly induced by the collective volume resonance, are slowly red-shifting
as the cluster size increases irrespective of the XC choice. However, the peak position is
consistently more red-shifted in LB94 in comparison to SIC for each cluster.
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Figure 3. LR-TDDFT cross-sections for Na20 (a) and Na92 (b) compared with the available experi-
mental data from [6]. The cross-sections from experiments are fitted using a Lorentzian.

It should be further noticed that the correlation minimum determined in SIC occurs at
somewhat higher energies as compared to that in LB94 for all the three systems. As the
cluster size increases, this energy separation between the minima from SIC versus LB94
diminishes, while their shapes become narrower. The discontinuities seen around 6 eV
in the cross-section results are numerical artifacts, since the convolution is applied until
around 6 eV, and therefore, are innocuous. Extending the region of convolution will modify
the shape of the correlation minimum that we preferred to avoid.

The present work primarily focuses on the cross-section calculations. It may be
interesting to see the effect of XC potentials on the angular distribution parameter since this
quantity involves the phase of transition matrix elements. The present work does not make
an attempt to study angular distribution because there are no related experimental data
on neutral Na clusters. However the angular distribution and the photoelectron spectra
measurements on anionic Na−n clusters were reported in the past [46,47], and subsequent
theoretical studies using RPAE with the jellium model have shown a good agreement with
the experiment [48,49].
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3.4. Self-Consistent Induced Potential

Important electron correlations are embodied in the dipole matrix element in
Equation (14) through the complex induced field, Vind, computed using Equation (8).
These correlations play a crucial role for the plasmonic enhancement in the cross-section.
The behavior of Vind delineates the detailed dynamics by visualizing a plasmon as a driven
collective-electron oscillator with damping [15,50]. In this model, the real part of Vind,
Re(Vind), represents the effective driving field, whereas the imaginary part, Im(Vind), de-
notes the collective response of the system. Generally, at energies below the resonance
peak, Re(Vind) < 0 screens the external field so the electrons can build the collective motion
and, simultaneously, the deepening of Im(Vind) favors resonant binding. At the resonance
peak, the Re(Vind) becomes zero, making the field irrelevant, where Im(Vind) offers the
maximum binding so the collective response perfectly dominates. Above the peak energy,
the plasmon decays with increasing Im(Vind) since the field switches to the damping mode
(anti-screening) as Re(Vind) > 0. We expect this behavior in our current results but they are
dominantly governed by the volume plasmon as the surface plasmon rules only below the
ionization threshold.

Figure 4 shows the 3D plots of the real and imaginary components of the radial part
of Vind for all three clusters. Over the plasmon spillover region just above the threshold,
Im(Vind) shows a broad well-type shape from the collective dynamics, resulting in a tran-
sient attractive force that an emerging photoelectron will feel. In addition, the Re(Vind)
switches sign over this range for all three clusters as expected, although the negative
Re(Vind) range is shorter, as expected. The details of these results are seen to be sensitive
to the form of the XC functional used. Within the graph scale, the magnitudes of the Vind
are slightly higher in LB94 than SIC. This may explain a slightly higher value of the LB94
cross-sections in Figure 3. Moreover, it is observed that the Im(Vind) for SIC are a bit broader.
This subsequently sustains the dynamics for a wider energy range to push the correlation
minimum to higher energies in SIC, as also seen in Figure 3.
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Figure 4. The real (a) and imaginary (b) components of the radial self-consistent field potential, Vind,
using LB94 and SIC within the LR-TDDFT frame are shown for Na20, Na40, and Na92. For visual aid,
some smoothing techniques have been applied.

4. Summary and Conclusions

The ground state structures and the photoionization properties of three sodium cluster
systems, Nax (x = 20, 40, and 92), were studied in a jellium-based LR-TDDFT methodology.
Two previously successful schemes, SIC and LB94, of the XC functional implementation
were employed. The energy levels obtained from the two schemes differ to some degree,
while this difference is found to be at the maximum for Na20. However, the difference
reduces as the cluster size increases. The occupied level distributions remain roughly the
same in the two schemes for each cluster. Both of the XC schemes show features such as
the above-threshold enhancement from the plasmon resonant spillover, the narrow single-
electron autoionizing resonances, the appearance of the correlation minimum, and the
diffractive oscillations at higher energies. However, the XC functionals compete in produc-
ing the detailed characteristics of these features. The plasmon-enhanced spillover spectra
in both XC formalisms show reasonable agreement with the available experiments. The
results further indicate that the cluster size alters the ground state and ionization properties
fairly monotonically, but the incongruence between SIC and LB94 tends to close as the
size grows.

Even though the quantitative details are found to be sensitive to the particular XC
scheme chosen, the significant qualitative similarities provide confidence on the accuracy
of a DFT-level description of a metal cluster’s static and dynamical properties. We hope
the present work will motivate new experiments in the cluster science, particularly using
the photoelectron spectroscopic techniques, which can provide further information in
optimizing computational methods. This will help in extending calculations to address,
for instance, the noble metal clusters and even to technologically relevant complexes with
metal clusters as seed components. The current study may also motivate molecular-level
calculations, going beyond the jellium model, to test the outcomes specifically and to
increase the accuracy in general, although describing the continuum in such a frame will
be a steep challenge to overcome.
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Highlights:

What are the main findings?

• Atomic spectroscopy for Ar7+, Kr7+, Xe7+, and Rn7+ ions with high accuracy.
• Plasma screened ionization potential, atomic transition amplitudes and rates.
• Ionisation potential depression parameters.
What is the implication of the main finding?

• Properties of the astrophysical medium.
• Properties of laboratory plasma.

Abstract: The growing interest in atomic structures of moderately stripped alkali-like ions in the
diagnostic study and modeling of astrophysical and laboratory plasma makes an accurate many-body
study of atomic properties inevitable. This work presents transition line parameters in the absence
or presence of plasma atmosphere for astrophysically important candidates Ar7+, Kr7+, Xe7+, and
Rn7+. We employ relativistic coupled-cluster (RCC) theory, a well-known correlation exhaustive
method. In the case of a plasma environment, we use the Debye Model. Our calculations agree with
experiments available in the literature for ionization potentials, transition strengths of allowed and
forbidden selections, and lifetimes of several low-lying states. The unit ratios of length and velocity
forms of transition matrix elements are the critical estimation of the accuracy of the transition data
presented here, especially for a few presented for the first time in the literature. We do compare
our findings with the available recent theoretical results. Our reported data can be helpful to the
astronomer in estimating the density of the plasma environment around the astronomical objects or in
the discovery of observational spectra corrected by that environment. The present results should be
advantageous in the modeling and diagnostics laboratory plasma, whereas the calculated ionization
potential depression parameters reveal important characteristics of atomic structure.

Keywords: atomic data; transition probability; oscillator strength; lifetime; plasma density

1. Introduction

Barlow et al. [1] first observed noble gas molecules in the interstellar medium. The
other detections of noble gas elements, either in diatomic [2–5] or ionic forms [6] in space at
UV and IR spectra, motivate further observations of these species in the universe. It is well
known that the atomic and spectroscopic processes are valuable diagnostics for plasma
atmosphere in the laboratory or Astronomy. Noble gas atoms are known to be chemically
inactive and require high energy to ionize. However, once ionized, their reaction rates
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are rather fast. Over the years, spectroscopic properties of ionized noble gas atoms have
become popular, and observers have started to detect them in space [7]. On the other
hand, alkali-like ions have emerged as the standard test beds for detailed investigation of
current relativistic atomic calculations due to their adequately simple but highly correlated
electronic structures [8–12]. Accurate theoretical and experimental determinations of the
transition line parameters and excited-state lifetimes of highly stripped ions are collabora-
tive with the astronomer to investigate dynamics, chemical compositions, opacity, density,
and temperature distributions of the distant galaxy [13], planetary nebulae, and even the
entire interstellar medium [14–24]. Furthermore, one requires the accurate atomic data of
different isotopes of noble gas elements to understand the production of heavy elements in
the stellar medium by radiative r- and s-processes [25,26]. The data of energy spectra of
moderate to high-stripped ions are required for precise astrophysical and laboratory plasma
modeling. All these physical facts and figures motivate us to investigate the transition line
parameters and lifetimes of septuple ionized astrophysically pertinent inert gases, such as
Ar7+, Kr7+, Xe7+, and Rn7+.

In the series, Ar7+ is well studied in the literature. Berry et al. [27] observed
74 lines of Ar7+ using the beam-foil technique. In 1982, Striganov and Odintsova [28]
published the observed lines of Ar+ through Ar8+. The authors of [29–31] applied the
multi-configuration Dirac–Fock (MCDF) method to calculate the autoionization spectrum,
energy levels, transition rates, oscillator strengths, and lifetimes of Ar7+. Saloman [32]
identified the energy spectra of Ar+ to Ar17+, which he studied from the year 2006 to
2009, employing beam foil Spectroscopy (BFS), an electron beam ion trap (EBIT), laser-
excited plasmas, fusion devices, astronomical observations, and ab initio calculations with
quantum electrodynamic corrections.

Similarly, krypton ion spectra were detected in the interstellar medium [33,34], the
galactic disc [35], and the planetary nebulae [36]. Fine structure intervals, fine struc-
ture inversions, and core-polarization study of the Kr7+ ion were performed by different
groups [37–39] including third-order many-body perturbation theory and Møller–Pleset
perturbation theory [40,41] for the energy levels.

It is found that Cu I isoelectronic sequence ions are prominent impurities at high-
temperature magnetically confined plasmas [42], and their emission spectra are observed
under the spark sources [43–46] of the laser-produced plasma [47,48] and in the beam-foil
excitations [49–51]. The abundance of photospheric lines of trans-iron group elements
in the emission spectra of the white dwarfs opens a new way of studying their radiative
transfer mechanism [52]. The presence of the spectral lines of Cu-like ions motivates
more accurate determination of atomic data of the radiative properties of these ions for
modeling the chemical abundances. These studies are essential for deducing the stellar
parameters necessary to investigate the environmental condition of the white dwarfs. There
are studies of electronic properties for Xe7+ using various many-body methods [53–57].
Dimitrijevc et al. [24] identified the importance of Stark broadening at the spectral lines
observed in extremely metal-poor halo PNH4-1 in primordial supernova [58]. However,
we study Ar+7, Kr7+, and Xe7+ here again to mitigate the lack of all-order many-body
calculations or precise experiments and to estimate their spectroscopic properties under a
plasma environment. Recently, one of the present authors [59] studied Xe7+ exclusively as
a single valance system without the plasma screening effect.

Unlike other noble gas ions, studies of radon ions are rare. However, there are a few
many-body calculations on Rn+ [60] and Rn2+ [61]. The observation of several forbidden
lines of Kr and Xe ions in the planetary nebula NGC 7027 was reported recently [62]. For
Rn7+, only Migdalek [63] computed a few energy levels and oscillator strengths of allowed
transitions using the Dirac–Fock method corrected by the core-polarisation effect.

The aim of this paper is to estimate (a) energies of the ground and low-lying excited
states, (b) the oscillator strengths of electromagnetically allowed transitions, (c) transition
probabilities of the forbidden transitions, and (d) lifetimes for a few excited states of Ar7+,
Kr7+, Xe7+, and Rn7+ using the relativistic coupled-cluster (RCC) method [64–66]. The
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accuracies of the RCC calculations are well established by our group for different appli-
cations [67–76]. The all-order structure of electron correlation in the RCC theory has been
elaborated in our earlier paper [77] and the review article by Bartlett [78]. Our special effort
here is to study the plasma screening effect on the radiative transition parameters. It is
obvious that the nuclear attraction to the bound electrons of atoms or ions immersed in
plasma is screened by the neighboring ions and the free electrons. The essential feature to
note is that the electron correlation of atomic systems in this environment is remarkably
different from their corresponding isolated candidate. Therefore, the screening estimations
on the transition parameters play a crucial role in the precise diagnostics of plasma tem-
perature and density in the emitting region. In the plasma environment, the ionization
potentials decrease gradually with the increasing strength of plasma screening [79] until
they become zero at some critical parameter of plasma. Beyond these critical values of
plasma, the states become a continuum state. The corresponding ionization potential be-
yond which instability occurs is known as ionization potential depression (IPD) according
to the Stewart–Pyatt (SP) model [80]. Accurate determination of the IPD can infer much
useful information about the plasma atmosphere, such as providing the proper equation
of the state, estimating the radiate opacity of stellar plasma, internal confinement fusion
plasma, etc. We have investigated the change in spectroscopic properties of Ar7+, Kr7+,
Xe7+, and Rn7+ in the plasma environment.

2. Theory

Precise generation of wave functions is important for accurately estimating the atomic
properties of few-electron monovalent ions presented in this paper. Here, we employ a
non-linear version of the well-known RCC theory, a many-body approach which exhaus-
tively pools together correlations. Initially, we solve the Dirac–Coulomb Hamiltonian H,
satisfying the eigenvalue equation H|Φ〉 = E0|Φ〉 to generate closed-shell atomic wave
function under the potential of (N − 1) electrons where

H = ∑
i

(
cαi · pi + (βi − 1)c2 + Vnuc(ri) + ∑

j<i

(
1
rij

))
.

Here, αi and β are the usual Dirac matrices and Vnuc(ri) is the potential at the site of the i-th
electron due to the atomic nucleus.The rest mass energy of the electron is subtracted from
the energy eigenvalues. The last term corresponds to the Coulomb interaction between the
i-th electron and j-th electron. A single valence reference state for the RCC calculation is
generated by adding a single electron in the v-th orbital following Koopman’s theorem [81].
In RCC formalism, the single valence correlated state |Ψv〉 is connected with the single
valence reference state |Φv〉 as

|Ψv〉 = eT{1 + Sv}|Φv〉, where |Φv〉 = a†
v|Φ〉. (1)

The operator T deals with the excitations from core orbitals and can generate core-
excited configurations from closed-shell Dirac–Fock state |Φ〉. Whereas, Sv excites at least
one electron from the valence orbital, giving rise to valence and core-valence excited config-
urations [64]. The operator Sv can yield the valence and core-valence excited configurations
with respect to the open-shell Dirac–Fock state |Φv〉 [69]. Here, we generate single- and
double-excited correlated configurations from Equation (1). The amplitudes of these excita-
tions are solved from the energy eigenvalue equations of the closed-shell and open-shell
systems, which are HeT |Φ〉 = EeT |Φ〉 and HveT |Φv〉 = EveT |Φv〉, respectively [82]. In
the present method, these amplitudes are solved following the Jacobi iteration scheme,
which is considered all-ordered. The initial guesses of the single- and double-excitation
amplitudes are made consistent with the first order of the perturbation theory [83]. In the
present version of RCC theory, we also consider some important triple excitations and
hence the abbreviation is used RCCSD(T).
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The matrix elements of an arbitrary operator can be written as

Oki =
〈Ψk|Ô|Ψi〉√〈Ψk|Ψk〉〈Ψi|Ψi〉

=
〈Φk|{1 + S†

k}eT†
ÔeT{1 + Si}|Φi〉√

〈Φk|{1 + S†
k}eT† eT{1 + Sk}|Φk〉〈Φi|{1 + S†

i }eT† eT{1 + Si}|Φi〉
. (2)

The detailed derivations and explanations of the matrix elements associated with
electric dipole (E1), electric quadrupole (E2), and magnetic dipole (M1) transitions can be
found in the literature [84]. Emission transition probabilities (s−1) for the E1, E2, and M1
from |Ψk〉 to |Ψi〉 state are [85]

AE1
k→i =

2.0261 × 10−6

λ3(2Jk + 1)
SE1 , (3)

AE2
k→i =

1.12 × 10−22

λ5(2Jk + 1)
SE2 , (4)

and AM1
k→i =

2.6971 × 10−11

λ3(2Jk + 1)
SM1 . (5)

where, λ is in cm and S is the square of the transition matrix elements of O (corresponding
transition operator) in atomic unit of e2a2

0 (e is the charge of an electron and a0 is the
Bohr radius). The oscillator strength for the E1 transition is related to the corresponding
transition probability (s−1) with the following equation [86]

f osci
k→i = 1.4992 × 10−16 Ak→i

gk
gi

λ2, (6)

where gk and gi are the degeneracies of the final and initial states, respectively. The lifetime
of the k-th state is calculated by considering all transition probabilities to the lower energy
states (i-th) and is given by

τk =
1

∑i Ak→i
. (7)

In order to incorporate the plasma screening effect on the atomic spectroscopic proper-
ties, the Dirac–Coulomb potential takes the form as

HD
eff = H + VD

eff(ri). (8)

Here, VD
eff(ri) is the effective potential of the nucleus on the i-th electron due to the presence

of the plasma environment. The Debye–Hückle potential is considered to examine the
effect of the screening of the nuclear coulomb potential due to the presence of ions and
free electrons in plasma [87,88]. In the case of a weekly interacting plasma medium, the
effective potential experienced by the i-th electron is given as

VD
eff(ri) =

Ze−μri

ri
. (9)

The nuclear charge Z and the Debye screening parameter μ are related to the ion density
nion and plasma temperature T through the following relation

μ =

[
4π(1 + Z)nion

KBT

]2

, (10)

where, kB is the Boltzmann constant. Therefore, a given value of μ represents a range of
plasma conditions with different ion densities and temperatures.
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3. Results and Discussions

The single-particle Dirac–Fock (DF) wavefunctions are the building blocks of the RCC
calculations yielding the many-electron correlation energies and correlated wavefunctions.
We calculate the bound Dirac–Hartree–Fock orbitals as accurately as possible using a so-
phisticated numerical approach, GRASP92 [89]. Further, we apply the basis-set expansion
technique [90] in the self-consistent field approach to obtain the Gaussian-type DF orbital
(GTO) used in the RCC calculations. The radial part of each basis function has two parame-
ters, α0, and β, as exponents [91] to be optimized. The parameters are required to optimize
due to the finite size of the basis set. The exponent parameters are optimized compared to
the DF bound orbitals obtained from GRASP92, discussed in detail in our old papers [12,66].
In the basis optimization method, we consider 33, 30, 28, 25, 21, and 20 basis functions
for s, p, d, f , g, and h symmetries, respectively. This basis set is considered for all the ions.
However, the choice of the active orbitals in the RCC calculation relies on the convergence
of the correlation contribution to the closed-shell energy with the increasing number of the
orbitals [66,92]. Therefore, the active orbitals for the converged correlation contribution to
the closed-shell energy are found to be distinct for different ions investigated in this work.

In this article, we calculate the ionization potential of Ar7+, Kr7+, Xe7+, and Rn7+

using the RCC method and compare them in Table 1 with the results published in the
National Institute of Standards and Technology (NIST) [93] wherever available. The NIST
estimations are considered to have the best accuracy. We find that our calculated ground
state energies of Ar7+, Kr7+, and Xe7+ are in excellent agreement with NIST results, and
deviations are estimated to be −0.01%, 0.45%, and −0.03%, respectively. Table 1 presents
the ionization potential of the low-lying excited states of these ions with average deviations
around −0.08%, 0.42%, and 0.30%, respectively. In these cases, the maximum difference is
−0.23% and occurred for the 5p3/2 state of Ar7+, 0.60% for 5g7/2,9/2 of Kr7+, and 1.2% for
6d3/2,5/2 of Xe7+.

Table 1. Comparison of our RCC ionization potential (in cm−1) with NIST data and our estimations of
plasma screening effect on them. Estimations for 5g states of Rn7+ were not available in the literature
(a) [63]. Plasma screening strength (μ) is in a.u. unit. Energy levels are indicated as nL(2J + 1). The
bold values indicate that beyond which the system becomes unbound.

State NIST μ = 0 μ = 0.025 μ = 0.05 μ = 0.075 μ = 0.1

Ar7+

3s2 1,157,056 1,157,201 1,059,866 965,330 873,513 784,345
3p2 1,016,961 1,016,995 919,704 825,299 733,697 644,828
3p4 1,014,248 1,014,184 916,898 822,505 730,924 642,084
3d4 824,447 824,210 726,923 632,529 540,956 452,148
3d6 824,302 824,027 726,741 632,349 540,779 451,974
4s2 581,098 581,069 485,070 394,397 308,793 228,054
4p2 528,815 528,528 432,658 342,356 257,356 177,460
4p4 527,813 527,428 431,565 341,287 256,323 176,473
4d4 459,524 459,475 363,709 273,714 189,240 110,134
4d6 459,435 459,386 363,620 273,627 189,156 110,055
4f6 440,204 440,190 344,137 253,339 167,618 86,891
4f8 440,181 440,159 344,107 253,309 167,590 86,865
5s2 349,750 349,752 255,504 169,770 91,961 21,742
5p2 324,795 323,193 229,236 144,332 67,862 557
5p4 324,307 322,543 228,611 143,769 67,376
5d4 291,782 291,699 197,867 113,352 37,637
5d6 291,778 291,652 197,818 113,302 37,591
5f6 281,727 281,736 187,657 102,487 25,846
5f8 281,707 281,720 187,642 102,473 25,833
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Table 1. Cont.

State NIST μ = 0 μ = 0.025 μ = 0.05 μ = 0.075 μ = 0.1

5g8 281,051 281,015 186,389 99,684 20,685
5g10 281,037 281,015 186,380 99,676 20,678
Kr7+

4s2 1,014,665 1,010,099 815,902 628,237 446,944 271,892
4p2 870,969 867,027 673,080 486,149 306,059 132,689
4p4 861,189 857,253 663,348 476,541 296,652 123,557
4d4 640,619 636,965 443,698 258,762 81,891 86,678
4d6 639,288 635,514 442,257 257,352 80,623
5s2 524,578 523,198 331,842 152,413 15,482
5p2 467,984 465,448 274,592 96,629
5p4 464,221 461,406 270,630 92,891
4f6 451,900 450,180 257,831 75,655
4f8 451,934 450,186 257,837 75,660
5d4 373,589 371,922 182,111 7230
5d6 373,048 371,273 181,476 6635
6s2 322,147 321,635 133,957 34,847
5f6 289,666 288,637 100,173
5f8 289,661 288,634 100,170
5g8 281,574 281,387 92,121
5g10 281,572 281,379 92,114
Xe7+

5s2 854,769 854,995 564,858 286,731 20,272
5p2 738,302 737,059 447,391 170,643 93,515
5p4 719,717 718,263 428,759 152,487
4f6 589,608 588,730 297,599 16,588
4f8 589,058 588,088 296,970 16,085
5d4 544,881 543,506 255,203 17,518
5d6 541,953 540,549 252,295
6s2 459,272 455,364 170,155
6p2 411,391 406,318 121,973
6p4 403,996 398,801 114,717
5f6 357,190 356,376 70,683
5f8 356,751 355,922 70,245
6d4 327,344 323,450 41,320
6d6 325,975 322,176 40,102
7s2 289,473 276,902 451
5g8 284,501 283,609
5g10 284,501 283,617
Rn7+ (a)
6s2 834,624 839,362 377,923 63,552
6p2 712,821 718,015 257,667
6p4 661,071 665,627 205,616
5f6 536,092 531,079 69,545
5f8 534,720 529,291 68,106
6d4 498,636 501,235 43,424
6d6 491,240 493,699 36,116
7s2 446,847 445,577 8041
7p2 397,883 398,535
7p4 377,435 377,332
5g8 287,997
5g10 288,252

Our calculated energies agree well with estimations by Fischer et al. [31], who com-
puted energy levels of Ar7+ using the core polarization effect on the Dirac–Hartree–Fock
(CP-DHF) theory. Cheng and Kim [37] tabulated the energy levels of Kr7+ from the rel-
ativistic Hartree–Fock (RHF) calculations. As expected, our RCC calculated results are
found to be in better agreement with the NIST values. For Rn7+, we have not found any
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experimental measurement in the literature nor NIST compiled values. Only one theoretical
calculation based on the CP-DHF method by [63] is available with the average deviation of
IP being 0.66% from our calculations.

The percentage of electron correlation correction, i.e., (RCC-DF)×100%
DF in IP of the ground

state monotonically increases from Ar7+ to Rn7+ with the values 0.39%, 0.52%, 1.81%, and
1.87%, respectively.

Now, we investigate the impact of the plasma screening potential on the energy levels
of the considered ions. Table 1 shows that IP monotonically decreases with the increase in
the μ value. The bold values for each ion in the table represent the limiting case beyond
which the system becomes unbound. Figure 1 presents the plasma screening contribution in
IP for a few low-lying states, such as ground state S1/2, excited P1/2,3/2, and D3/2,5/2 states
of Ar7+, Kr7+, Xe7+, and Ra7+ ions. The panels of the figure show the plasma screening
contribution increases from the ground to higher excited states, as the latter states are less
bound by the Coulomb attraction. For Xe7+ and Rn7+, we could plot the effect up to a
certain value of μ as most of the states become continuum states beyond that. We observe
that the plasma screening effect is practically strong for fine structure levels for Ar7+ and
Kr7+ ions and weak for Xe7+, and Ra7+ ions.

Figure 1. The plasma contribution in IP of low-lying septuple ionized atoms: % variation of IP with
plasma screening strength. Energy levels are indicated as nL(2J + 1). Results are calculated from
IPμ=0−IPμ>0

IPμ=0
× 100.

We present the electric dipole matrix elements for the ions in the plasma medium in
Table 2. The table also displays our computed DF values of the matrix elements to reveal the
correlation contributions. The separate presentation of the DF and RCC values over the span
of the plasma screening parameter, μ, in the table is an intentional move. Here, we want to
highlight that the plasma screening impacts the DF and the RCC correlation parts differently.
In the case of Ar7+, the average changes in the matrix element due to the increasing values of
the plasma screening parameter are less than 1%. However, Figure 2 shows significant changes
for 3s1/2 → 4p1/2,3/2 and 3s1/2 → 5p1/2,3/2 for finite values of μ, especially for μ = 0.05. This
is true for any n 2S1/2 → n′ 2P1/2,3/2 of this ionic series. However, apart from such a few
transitions, the plasma effects lie between 1% and 2% for most of the other transitions in the
series. Table 2 shows that the average correlations (for the non-plasma environment) in the
transition amplitudes for Ar7+, Kr7+, Xe7+, and Rn7+ are 0.3858%, 4.0831%, 7.6074%, and
11.6379% apart from the 4d3/2→ 5 f5/2 transition where the correlation is 67.11%.
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Table 2. Our DF and RCC matrix element (a.u.), in length gauge, of electric dipole (E1) transitions in
plasma medium. Energy levels are indicated as nL(2J + 1).

μ = 0 μ = 0.025 μ = 0.05 μ = 0.075 μ = 0.1

Ar7+

Transitions DF RCC DF RCC DF RCC DF RCC DF RCC

3s2→3p2 0.9617 0.9341 0.9623 0.9346 0.9638 0.9390 0.9663 0.9405 0.9697 0.9436
3s2→3p4 1.3619 1.3228 1.3626 1.3236 1.3648 1.3299 1.3683 1.3317 1.3732 1.3355
3s2→4p2 0.2002 0.2093 0.1999 0.2089 0.1989 0.2210 0.1973 0.2181 0.1950 0.2164
3s2→4p4 0.2770 0.2898 0.2765 0.2893 0.2751 0.3059 0.2728 0.3028 0.2698 0.3012
3s2→5p2 0.1011 0.1062 0.1006 0.1057 0.0992 0.0995 0.0972 0.1105 0.0944 0.1007
3s2→5p4 0.1397 0.1470 0.1390 0.1463 0.1372 0.1215 0.1345 0.1541 0.1307 0.1528
4s2→4p2 1.8958 1.8813 1.8996 1.8851 1.9105 1.9059 1.9284 1.8987 1.9537 1.9012
4s2→4p4 2.6827 2.6622 2.6879 2.6675 2.7033 2.7006 2.7286 2.6857 2.7644 2.6844
3p2→4s2 0.3604 0.3646 0.3608 0.3649 0.3619 0.3419 0.3637 0.3437 0.3661 0.3432
3p4→4s2 0.5172 0.5231 0.5178 0.5236 0.5193 0.4898 0.5219 0.4943 0.5253 0.4952
3p2→5s2 0.1237 0.1269 0.1240 0.1271 0.1246 0.1275 0.1252 0.1144 0.1253 0.1274
3p4→5s2 0.1771 0.1816 0.1775 0.1819 0.1783 0.2021 0.1792 0.1653 0.1793 0.1659
3p2→3d4 1.3534 1.3174 1.3547 1.3186 1.3583 1.3207 1.3642 1.3218 1.3725 1.3305
3p4→3d4 0.6060 0.5899 0.6066 0.5905 0.6082 0.5916 0.6109 0.5918 0.6146 0.5956
3p4→3d6 1.8184 1.7700 1.8201 1.7720 1.8250 1.7736 1.8330 1.7750 1.8442 1.7795
3p2→4d4 0.3857 0.3957 0.3842 0.3942 0.3800 0.3925 0.3730 0.3926 0.3629 0.3551
3p4→4d4 0.1756 0.1801 0.1750 0.1794 0.1731 0.1770 0.1699 0.1791 0.1654 0.1645
3p4→4d6 0.5262 0.5394 0.5242 0.5375 0.5185 0.5321 0.5091 0.5372 0.4956 0.5357
4p2→4d4 2.7891 2.7687 2.7966 2.7761 2.8181 2.7737 2.8536 2.7737 2.9038 2.8032
4p4→4d4 1.2496 1.2405 1.2529 1.2438 1.2626 1.2470 1.2785 1.2420 1.3010 1.2498
4p4→4d6 3.7490 3.7217 3.7590 3.7316 3.7880 3.7880 3.8357 3.7255 3.9033 3.7279
3d4→4p2 0.5411 0.5434 0.5426 0.5449 0.5470 0.5616 0.5542 0.5407 0.5644 0.5701
3d4→4p4 0.2395 0.2406 0.2402 0.2412 0.2487 0.2450 0.2454 0.2395 0.2499 0.2530
3d6→4p4 0.7193 0.7225 0.7213 0.7244 0.7271 0.7193 0.7368 0.7201 0.7504 0.7184
3d4→4f6 1.7707 1.7378 1.7705 1.7377 1.7702 1.7384 1.7691 1.7401 1.7663 1.7778
3d6→4f6 0.4734 0.4671 0.4734 0.4646 0.4733 0.4649 0.4730 0.4653 0.4722 0.4658
3d6→4f8 2.1172 2.078 2.1171 2.0779 2.1166 2.0793 2.1154 2.0768 2.1121 2.0799
4d4→4f6 3.1546 3.1495 3.1686 3.1634 3.2100 3.1508 3.2796 3.1504 3.3822 3.1414
4d6→4f6 0.8430 0.8416 0.8468 0.8454 0.8578 0.8420 0.8764 0.8419 0.9087 0.8423
4d6→4f8 3.7706 3.7644 3.7874 3.7812 3.7652 3.7644 3.9201 3.7778 4.0427 3.7790

Kr7+

DF RCC DF RCC DF RCC DF RCC DF RCC

4s2→4p2 1.1348 1.0794 1.1363 1.1017 1.1405 1.1223 1.1475 1.1088 1.1575 1.1245
4s2→4p4 1.6095 1.5314 1.6115 1.5632 1.6175 1.5900 1.6275 1.5724 1.6416 1.6085
4s2→5p2 0.1488 0.1655 0.1479 0.1584 0.1451 0.1537
4s2→5p4 0.1812 0.2057 0.1799 0.1944 0.1761 0.1839
4p2→4d4 1.7539 1.6812 1.7569 1.7412 1.7657 1.7506 1.7804 1.7422
4p4→4d4 0.7940 0.7616 0.7954 0.7734 0.7995 0.7836 0.8064 0.7771
4p4→4d6 2.3818 2.2847 2.3860 2.3218 2.3984 2.3511 2.4190 2.3301
4p2→5s2 0.4884 0.4934 0.4894 0.4892 0.4925 0.4838
4p4→5s2 0.7316 0.7379 0.7331 0.7325 0.7377 0.7272
4p2→6s2 0.1655 0.1686 0.1654 0.1664 0.1646 0.1624
4p4→6s2 0.2447 0.2486 0.2445 0.2460 0.2427 0.2424
4d4→4f6 2.8243 2.7466 2.8340 2.7759 2.8623 2.7985
4d6→4f6 0.7565 0.7358 0.7591 0.7436 0.7668 0.7499
4d4→5p2 1.1740 1.1630 1.1809 1.1776 1.2015 1.1742
4d4→5p4 0.5090 0.5124 0.5120 0.5107 0.5212 0.5168
4d6→5p4 1.5415 1.5522 1.5507 1.5464 1.5786 1.5435
4d6→4f8 3.3836 3.2916 3.3953 3.3257 3.4297 3.3529
4d4→5f6 0.0596 0.0427 0.0582 0.0445
4d6→5f6 0.0133 0.0091 0.0175 0.0089
4d6→5f8 0.0592 0.0418 0.0779 0.0394
4f6→5g8 3.8576 3.7993 3.8688 3.8112
4f8→5g8 0.7422 0.7311 0.7444 0.7340

4f8→5g10 4.3914 4.3256 4.4042 4.3380
4f6→5d4 2.0421 2.0387 2.0728 2.0318 2.1683 2.0704
4f6→5d6 0.5430 0.5420 0.5512 0.5401 0.5766 0.5498
4f8→5d6 2.4274 2.4232 2.4641 2.4137 2.5780 2.4567
5p2→5d4 3.1683 3.1275 3.1867 3.1373 3.2401 3.1494
5p4→5d4 1.4407 1.4226 1.4489 1.4271 1.4728 1.4325
5p4→5d6 4.3172 4.2629 4.3417 4.2781 4.4131 4.2912
5p2→6s2 1.0220 1.0239 1.0277 1.0215
5p4→6s2 1.5278 1.5310 1.5347 1.5276
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Table 2. Cont.

μ = 0 μ = 0.025 μ = 0.05 μ = 0.075 μ = 0.1

Xe7+ DF RCC DF RCC DF RCC DF RCC DF RCC

5s2→5p2 1.3758 1.1736 1.3791 1.1769 1.3889 1.1866
5s2→5p4 1.9516 1.6705 1.9562 1.6752 1.9700 1.6890
5p2→5d4 2.1135 1.8629 2.1197 1.8697
5p4→5d4 0.9768 0.8646 0.9799 0.8679
5p4→5d6 2.9252 2.5911 2.9344 2.6011
5p2→6s2 0.5866 0.6026 0.5893 0.6046
5p4→6s2 0.9449 0.9582 0.9494 0.9619
4f6→5d4 1.7952 1.5958 1.8177 1.6155
4f6→5d6 0.4761 0.4237 0.4822 0.4291
4f8→5d6 2.1392 1.9075 2.1663 1.9313
4f6→5g8 1.8079 1.5869 1.7885 1.5731
4f8→5g8 0.3495 0.3073 0.3457 0.3046
4f8→5g10 2.0684 1.819 2.0462 1.8032
5d4→5f6 2.9732 2.8328 2.9687 2.8347
5d6→5f6 0.8050 0.7670 0.8040 0.7676
5d6→5f8 3.5922 3.4233 3.5876 3.4252
6s2→6p2 2.7436 2.5326 2.5640 2.5931
6s2→6p4 3.3346 3.5052 3.6133 3.6569
6p2→6d4 3.7253 3.5930 3.7520 3.6089
6p4→6d4 1.7277 1.6725 1.7399 1.6762
6p4→6d6 5.1635 4.9966 5.1994 5.0147
5f6→5g8 5.5926 5.3626
5f6→5g8 1.0772 1.0330

5f8→5g10 6.3725 6.1114

Rn7+ DF RCC DF RCC DF RCC DF RCC DF RCC

6s2→6p2 1.4159 1.1344 1.4210 1.1414
6s2→6p4 1.9902 1.6147 1.9969 1.6264
6p2→7s2 0.6184 0.6284 0.6189 0.6678
6p4→7s2 1.2512 1.2162 1.2657 1.2024
6p2→6d4 2.0887 1.7562 2.0978 1.7629
6p4→6d4 1.0493 0.8953 1.0556 0.9008
6p4→6d6 3.1200 2.6596 3.1380 2.6691
5f6→6d4 2.3362 2.0900 2.3794 2.0911
5f6→6d6 0.6118 0.5500 0.6236 0.5478
5f8→6d6 2.7709 2.4962 2.8234 2.4931
5f6→5g8 2.7042 2.3829
5f8→5g8 0.5263 0.4650
5f8→5g10 3.1174 2.7455
7s2→7p2 2.5750 2.4195
7s2→7p4 3.5648 3.3636
6d4→7p2 2.0098 1.9415
6d4→7p4 0.7525 0.7381
6d6→7p4 2.4112 2.3331

Figure 2. The contribution of plasma screening in E1 matrix elements of Ar7+ of transitions
2S1/2 → 3P1/2,3/2. The figures display % variation of the E1 matrix elements vs. plasma screening
strength.
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For observational astronomy and laboratory spectroscopy, we present a tabulation of a
list of our computed oscillator strengths ( fR CC) of E1 transitions along with their previously
reported theoretical and experimental values in Table 3. Most of the transitions fall in the
far and mid-UV regions of the electromagnetic spectrum. fRCC is calculated using the RCC
transition amplitudes in length gauge [94] form presented in Table 2 and the NIST [93]
wavelengths, wherever available (in the case of Rn7+, our computed RCC wavelengths
are used). The ratios between the length and velocity gauge amplitudes of our calculated
E1 transitions are also displayed in table to show the accuracy of our RCC wavefunctions,
which is close to unity for all the cases, confirming the accuracy of our correlated atomic
wavefunctions. However, we find that the ratio is almost two for 2F→ 2D transitions of
Xe7+ and Rn7+. A point to note is that this disagreement is also available in the ratio at the
DF level, where we also employed the numerically accurate GRASP92 Code [89]. One of
the reasons for this outcome is due to the strong correlation effect from the d- and f-states,
as so in similar alkali systems [95]. In addition, the consistency of the accuracy of our
calculations can be drawn from the approximate consistency of the ratios 3:2:1 among the
transition matrix estimations of 2P3/2 → 2D5/2: 2P1/2 → 2D3/2: 2P3/2 → 2D3/2 [96].

The E1 Oscillator strengths for Ar7+ are well studied in the literature [31,97–105], and
they are in good agreement with our estimations based on the correlation exhaustive RCC
method. Table 3 shows that the same is true for Kr7+. For Ar7+, our calculations for fRCC
are almost as accurate as those found from other sophisticated theoretical approaches, such
as the relativistic many-body perturbation theory [102], and for the most latest theoretical
results employing the multiconfigurational Dirac–Hartree–Fock approximation [31]. To the
best of our knowledge, in the case of Kr7+, we could not find any correlation-exhaustive
many-body result of E1 transition. There have been experiments, mostly using beam-
foil experiments, on the E1 transition from the ground state to the first excited states of
Ar7+ [97], and Kr7+ [49–51,106,107]. Our estimations are well within the uncertainty limit
of the latest experiments. We also see that some of the old calculations either underestimate
or overestimate the oscillator strength values due to non-appropriate considerations of
correlations and relativistic effects.

Table 3. Our RCC oscillator strengths of electric dipole transitions. We compare our results with
other estimations available in the recent literature (experimental endeavors are highlighted with “exp”
subscript). Our results (“RCC”) are obtained using the RCC calculations, except NIST wavelengths
are used for μ = 0 wherever available. Transition states are designated with the outermost orbital
followed by (2J + 1) of the state. Values at the parenthesis in the second column are ratios between
length- and velocity-gauged dipole matrix elements.

μ = 0 μ = 0.025 μ = 0.050 μ = 0.075 μ = 0.1

Transition RCC Other

Ar7+

3s2 → 3p2 0.1857 (0.99) 0.183 (4)a1
exp, 0.188 b1 , 0.1859 0.1875 0.1878 0.1887

0.193 c1 , 0.186 d1 , 0.1864 e1 ,
0.185 f1,i1 , 0.187 g1 , 0.196 h1

3s2 → 3p4 0.3795 (0.99) 0.398(10) a1
exp, 0.385 b1 , 0.394 c1 , 0.3804 0.3837 0.3840 0.3854

0.381 d1,g1 , 0.3811 e1 , 0.379 f1 ,
0.401 h1 , 0.378 i1

3s2 → 4p2 0.0418 (1.00) 0.0414 b1 , 0.0401 c1 , 0.0376 d1 0.0416 0.0462 0.0445 0.0432
0.0415 e1 , 0.0385 h1 , 0.0432 i1

3s2 → 4p4 0.0803 (1.00) 0.0829 b1 , 0.0766 c1 , 0.0751 d1 , 0.0793 0.0877 0.0859 0.0838
0.0798 e1 , 0.0739 h1 , 0.0836 i1

3s2 → 5p2 0.0143 (0.98) 0.0146 b1,e1 0.0141 0.0123 0.0149 0.0121
3s2 → 5p4 0.0271 (1.00) 0.0292 b1 , 0.0284 e1 0.0270 0.0184 0.0291 0.0278
4s2 → 4p2 0.2810 (1.01) 0.2821 e1 , 0.2824 i1 0.2829 0.2871 0.2816 0.2777
4s2 → 4p4 0.5736 (1.01) 0.5755 e1 , 0.5759 i1 0.5782 0.5883 0.5748 0.5645
3p2 → 4s2 0.0880 (1.00) 0.0876 e1 , 0.0884 i1 0.0879 0.0765 0.0763 0.0760
3p4 → 4s2 0.0900 (1.01) 0.0896 e1 , 0.08947 i1 0.0899 0.0780 0.0783 0.0783
3p2 → 5s2 0.0163 (1.01) 0.0161 e1 0.0163 0.0162 0.0128 0.0154
3p4 → 5s2 0.0166 (1.01) 0.0164 e1 0.0166 0.0202 0.0133 0.0130
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Table 3. Cont.

μ = 0 μ = 0.025 μ = 0.050 μ = 0.075 μ = 0.1

Transition RCC Other

3p2 → 3d4 0.5074 (0.96) 0.532 c1 , 0.5097 e1 , 0.5074 g1 0.5091 0.5107 0.5115 0.5180
0.508 i1 , 0.47 j1

3p4 → 3d4 0.0502 (0.96) 0.0527 c1 , 0.0504 e1 , 0.0501 g1 0.0503 0.0505 0.0505 0.0512
0.0502 i1 , 0.046 j1

3p4 → 3d6 0.4556 (0.96) 0.475 c1 , 0.4539 e1 , 0.4517 g1 0.4534 0.4542 0.4549 0.4571
0.452 i1 , 0.42 j1

3p2 → 4d4 0.1326 (1.05) 0.1310 e1 , 0.1344 i1 0.1312 0.1291 0.1275 0.1024
3p4 → 4d4 0.0137 (1.03) 0.0135 e1 , 0.0136 i1 0.0135 0.0131 0.0132 0.0109
3p4 → 4d6 0.1226 (1.03) 0.1212 e1 , 0.1228 i1 0.1214 0.1180 0.1187 0.1159
4p2 → 4d4 0.8067 (0.95) 0.8085 i1 0.8070 0.8020 0.7930 0.8035
4p4 → 4d4 0.0798 (0.98) 0.0796 i1 0.0797 0.0798 0.0786 0.0787
4p4 → 4d6 0.7192 (0.98) 0.7177 i1 0.7185 0.7215 0.7079 0.7009
3d4 → 4p2 0.0663 (0.98) 0.0657 e1 , 0.0663 i1 0.0663 0.0695 0.0630 0.0678
3d4 → 4p4 0.0130 (1.00) 0.0129 e1 , 0.0131 i1 0.0130 0.0133 0.0124 0.0134
3d6 → 4p4 0.0784 (0.97) 0.0778 e1 , 0.0786 i1 0.0784 0.0762 0.0747 0.0720
3d4 → 4f6 0.8812 (1.00) 0.8776 i1 0.8777 0.8702 0.8584 0.8762
3d6 → 4f6 0.0424 (1.00) 0.0418 i1 0.0418 0.0415 0.0409 0.0401
3d6 → 4f8 0.8397 (1.00) 0.8360 i1 0.8364 0.8297 0.8149 0.7796

Kr7+

4s2 −→ 4p2 0.2543 (1.00) 0.25(1) a2, f2
exp , 0.24(2) b2

exp, 0.246 c2 , 0.2633 0.2718 0.2705 0.2673
0.2781 d2 , 0.278 e2 , 0.28 g2 ,
0.2578 h2 , 0.220 i2 , 0.2448 j2

4s2 −→ 4p4 0.5466 (0.97) 0.53(2) a2
exp, 0.47(4) b2

exp, 0.526 c2 , 0.5661 0.5825 0.5833 0.5829
0.5965 d2 , 0.60 e2 , 0.59 (9) f2

exp,
0.59 g2 , 0.554 h2 , 0.473 i2

0.5265 j2

4s2 −→ 5p2 0.0227 (1.01) 0.0176 d2 0.0206 0.0191
4s2 −→ 5p4 0.0354 (1.00) 0.0265 d2 0.0313 0.0275
4p2 → 5s2 0.1281 (1.02) 0.1212 d2 0.1261 0.1187
4p4 → 5s2 0.1392 (1.02) 0.1321 d2 0.1351 0.1302
4p2 → 4d4 0.9888 (1.00) 1.057 d2 1.0562 1.0583 1.1068
4p4 → 4d4 0.0972 (1.00) 0.1038 d2 0.0998 0.1015 0.1045
4p4 → 4d6 0.8796 (1.00) 0.9395 d2 0.9051 0.9200 0.9480
4p2 → 6s2 0.0237 (1.06) 0.0208 d2 0.0227 0.0181
4p4 → 6s2 0.0253 (1.07) 0.0220 d2 0.0243 0.0197
4d4 → 4f6 1.0811 (0.98) 1.126 d2 1.0876 1.0890
4d6 → 4f6 0.0514 (0.98) 0.0535 d2 0.0508 0.0509
4d6 → 4f8 1.0277 (0.98) 1.0700 d2 1.0326 1.0340
4d4 → 5p2 0.1828 (1.00) 0.1784 d2 0.1781 0.1697
4d4 → 5p4 0.0352 (1.03) 0.0344 d2 0.0345 0.0329
4d6 → 5p4 0.2135 (1.00) 0.2088 d2 0.2078 0.1984
4d4 → 5f6 0.0001 (1.09) 0.0001 d2 0.0005
4f6 → 5d4 0.1647 (0.98) 0.1638 d2 0.1582 0.1485
4f6 → 5d6 0.0117 (0.98) 0.0117 d2 0.0113 0.0106
4f8 → 5d6 0.1759 (0.98) 0.1750 d2 0.1689 0.1582
4f6 → 5g8 1.2447 (1.00) 1.261 d2 1.2185
4f8 → 5g8 0.0346 (1.00) 0.0350 d2 0.0339
4f8 → 5g10 1.2103 (1.00) 1.226 d2 1.1841
5p2 → 5d4 1.4023 (1.00) 1.401 d2 1.3825 1.3467
5p4 → 5d4 0.1393 (1.01) 0.1383 d2 0.1369 0.1335
5p4 → 5d6 1.2582 (1.01) 1.249 d2 1.2391 1.2062
4d6 → 5f6 0.00002 (0.28) 0.00003 d2 0.00001
4d6 → 5f8 0.0003 (0.29) 0.0007 d2 0.0003
5p2 → 6s2 0.2322 (1.07) 0.2023 d2 0.2229
5p4 → 6s2 0.2529 (1.08) 0.2179 d2 0.2422

Xe7+

5s2 → 5p2 0.2436 (1.01) 0.294 a3 , 0.234 b3 , 0.242 c3 0.2471 0.2482
0.253 d3 , 0.237 e3 , 0.237 f3

0.232 g3 , 0.223 h3 , 0.232 i3
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Table 3. Cont.

μ = 0 μ = 0.025 μ = 0.050 μ = 0.075 μ = 0.1

Transition RCC Other

5s2 → 5p4 0.5724 (1.01) 0.697 a3 , 0.550 b3 , 0.569 c3 0.5801 0.5816
0.596 d3 , 0.560 e3 , 0.563 f3 ,
0.543 g3 , 0.522 h3 , 0.537 i3

5p2 →5d4 1.0195 (1.02) 1.189 a3 , 0.977 b3 , 1.020 c3 1.0204
1.025 d3 , 1.003 e3 , 1.000 f3

1.057 i

5p4 →5d4 0.0992 (1.02) 0.095 b3 , 0.089 c3 , 0.099 d3 0.0993
0.097 e3 , 0.097 f3 , 0.095 i3

5p4 →5d6 0.9064 (1.02) 0.523 a3 , 0.868 b3 , 0.904 c3 0.9066
0.907 d3 , 0.889 e3 , 0.886 f3

0.875 i3

5p2 → 6s2 0.1539 (1.05) 0.160 c3 , 0.156 d3 , 0.155 e3 0.1539
0.153 f3 , 0.199 i3

5p4 → 6s2 0.1816 (1.05) 0.188 c3 , 0.186 d3 , 0.184 e3 0.1817
0.182 f3 , 0.186 i3

4f6 → 5d4 0.0577 (2.35) 0.130 a3 , 0.058 b3 , 0.060 i3 0.0560
4f6 → 5d6 0.0043 (2.12) 0.0044 b3 0.0042
4f8 → 5d6 0.0651 (2.19) 0.075 a3 , 0.065 b3 , 0.068 i3 0.0633
4f6 → 5g8 0.3890 (1.02) 0.3646 b3 , 0.354 i3

4f8 → 5g8 0.0109 (1.02) 0.0102 b3

4f8 → 5g10 0.3826 (1.02) 0.3595 b3 , 0.343 i3

5d4 → 5f6 1.1437 (1.04) 1.099 i3 1.1259
5d6 → 5f6 0.0550 (1.04) 0.052 i3 0.0813
5d6 → 5f8 1.0981 (1.04) 1.032 i3 1.0812
5f6 → 5g8 1.0583 (0.99) 1.071 i3

5f8 → 5g8 0.0293 (0.99) 0.030 i3

5f8 → 5g10 1.0246 (0.99) 1.035 i3

6s2 → 6p2 0.4778 (1.13) 0.4921
6s2 → 6p4 1.0555 (1.13) 1.1260
6p2 → 6d4 1.6248 (1.11) 1.5953
6p4 → 6d6 1.4527 (1.11) 1.4249
6p4 → 6d4 0.1601 (1.11) 0.1566

Rn7+

6s2 → 6p2 0.2372 (1.00) 0.234 a4 0.2379
6s2 → 6p4 0.6880 (1.02) 0.689 a4 0.6922
6p2 → 7s2 0.1634 (1.06) 0.173 a4

6p4 → 7s2 0.2472 (1.07) 0.259 a4

6p2 →6d4 1.0154 (1.01) 1.059 a4 1.0113
6p4 →6d4 0.1001 (1.01) 0.103 a4 0.0999
6p4 →6d6 0.9234 (1.01) 0.956 a4 0.9170
5f6 → 6d4 0.0660 (2.13) 0.0753 a4 0.0578
5f8 → 6d6 0.0842 (1.83) 0.0981 a4 0.0755
5f6 → 6d6 0.0057 (1.73) 0.0069 a4 0.0051
5f6 → 5g8 0.6982 (1.00)
7s2 → 7p2 0.4182 (1.11) 0.414 a4

7s2 → 7p4 1.1727 (1.12) 1.126 a4

6d4 → 7p2 0.2940 (1.05) 0.292 a4

6d4 → 7p4 0.0513 (1.04) 0.052 a4

6d6 → 7p4 0.3207 (1.05) 0.33 a4

a1 =⇒ Beam-foil technique [97]; b1 =⇒ calculations are based on high level methods such as the R-
matrix method and asymptotic techniques developed by Seaton [98]; c1 =⇒ Single Configuration Interaction
Hartree–Fock method using a pseudopotential [99]; d1 =⇒ non-relativistic WKB approaches (Klein–Gordon
dipole matrix) [100]; e1 =⇒ single configuration Dirac–Fock method [101]; f1 =⇒ relativistic many-body per-
turbation theory [102]; g1 =⇒ realistic model potential [103]; h1 =⇒ relativistic Hartree–Fock method [104];
i1 =⇒ multiconfiguration Dirac–Hartee-Fock approximation [31]; j1 =⇒ relativistic effective orbital quan-
tum number [105]; a2 =⇒ jointly analyzed decay curves: beam-foil [106]; b2 =⇒ multiexponential fits:
beam-foil [106]; c2 =⇒ Non-Relativistic Multi Configuration Hartree–Fock approximation [108]; d2 =⇒ rela-
tivistic Hartree–Fock [37]; e2 =⇒ Hartree-Fock oscillator strength using the Dirac correction factor [109]; f2 =⇒
Arbitrarily Normalized Decay curve method for cascade-correction in beam-foil [107]; g2 =⇒ Hartree–Fock with
relativistic correction [110]; h2 =⇒ semi-empirical Coulomb approximation [111]; i2 =⇒ model potential [112];
j2 =⇒ Hartree-Slater method [23]; a3 =⇒ RPTMP [57]; b3 =⇒ RMBPT(3) [55]; c3 =⇒ DF+CP [54]; d3

=⇒ DX+CP method with SCE model potential [54]; e3 =⇒ DX+CP method with CAFEGE model potential [54]; f3

=⇒ DX+CP method with HFEGE model potential [54]; g3 =⇒ CIDF method with integer occupation number [56];
h3 =⇒ CIDF(q) method with non-occupation number [56]; i3 =⇒ HFR+CP method [53]; a4 =⇒ relativistic
core-polarization corrected Dirac–Fock method (DF+CP) [63].
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Over the last two decades, a few of the low-lying E1 transitions of Xe7+ are estimated
using core-polarization or model potential as an effective means of correlation calculations,
apart from third-order perturbation calculations [55]. It is known that our RCC method
is an all-order extension of many-body perturbation theory [83]. Further, it includes most
of the correlation features, including core correlation, pair correlation, and higher order
correlation effects [69] for a given level of excitation. For Rn7+, we find only one theoretical
endeavor [63] using the model potential. The presence of d- and f -orbitals for Xe7+ and
Rn7+ ions in the core makes these two ions highly correlated. Because of the large atomic
number and highly stripped configurations, we expect a strong relativistic effect in their
spectroscopy. Therefore, it is necessary to do relativistic ab initio correlation exhaustive
calculations for them and our computations exactly mitigate that requirement. In Table 3, we
also present the effect of the plasma atmosphere on the oscillator strengths for observational
and laboratory spectroscopy. The oscillator strengths for μ > 0 are calculated using the
E1 matrix elements presented in Table 2 and the corresponding transition wavelengths
computed from RCC theory. The table exhibits the significant effects of plasma screening
parameters on the oscillator strengths.

Tables 4 and 5 present transition probabilities for the relatively strong forbidden tran-
sitions governed by the electric quadruple (E2) and the magnetic dipole (M1) moments.
Similar to oscillator strength in Table 3, here we use NIST wavelengths for the transition
probability wherever available. For Rn7+, we use the RCC calculated transition wave-
lengths. We do not find any estimation of the forbidden transitions in the literature of
this ionic series which fall either in the ultraviolet or in the near infra-red regions of the
electromagnetic spectrum. Transitions falling in the ultraviolet region are significant in
astronomical observation and plasma research [113–116]. In comparison, the infra-red
transitions have applications in astronomy using space-based telescopes ([117]). Moreover,
infrared spectroscopy provides major information about cool astronomical regions in space,
such as interstellar medium [118] and planetary nebulae [119]. It is found that 5p1/2 →
4 f5/2 of Kr7+ and 5p1/2 → 5p3/2 of Xe7+ emit orange and green lights, respectively, which
can be used in laser spectroscopy [120–124].

It is found from Table 5 that the M1 transition probability is stronger among fine-
structure levels than the E2 transition. Table 4 reveals that the maximum M1 transition
probability, AM1

RCC, occurs for the transition 3p1/2 → 3p3/2 of Ar7+, 4p1/2 → 4p3/2 of Kr7+,
4 f7/2 → 5 f7/2 of Xe7+ and 6p1/2 → 6p3/2 of Rn7+, and they have values of 0.17949, 8.4000,
158.33 and 1137.7, respectively. Moreover, our estimations of M1 transition probability for
the 4 f5/2 → 4 f7/2 transition of Xe7+ has excellent agreement with the calculations using
the multi-configuration Dirac–Hartree–Fock method [125,126]. Table 6 presents the lifetime
of the low-lying states of this series. We compare our results with other experimental
and theoretical estimations wherever available and find good agreement with the recent
endeavors. We provide lifetimes of many excited states calculated for the first time in the
literature to our knowledge.

The comparisons of our computed results with the other estimations obtained from
correlation exhaustive ab initio theoretical computations or precise experiments are one of
the measures of accuracy of our calculations. Further, the differences between the calculated
matrix elements in the length and velocity gauge forms are characteristic of the preciseness
of our calculations. A recent piece of literature [95] also claims that the difference in length
gauge and velocity gauge is a measure of accuracy. Another factor of accuracy in ab initio
calculations arises from the DF wavefunctions used for correlation calculations. In addition,
we should consider the uncertainty that arises from the other correlation terms (which we
did not consider in this article) and the quantum electrodynamics effect, which is at most
2% in total. Taking all these into account, the maximum calculated uncertainties for Ar7+,
Kr7+, Xe7+, and Rn7+ are about 5.6%, 5.37%, 5% and 5.01%, respectively.

To understand the critical effect of the plasma atmosphere on the ionization potential
of the ions, we highlight the IPD values in bold fonts in Table 1 for different values
of screening length, μ. These IPD values reflect critical electron or plasma density at
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a particular temperature for the ionic system when a few of the bound ionic states are
elevated to continuum states.

Table 1 also reveals that the fine structure splittings (FSS) are suppressed as the
screening strength increases from μ = 0 to 1.0. For example, the energy differences between
4p3/2 and 4p1/2 of Kr7+ are evaluated as 9774 a.u, 9732 a.u, 9608 a.u., and 9407 a.u. for
μ = 0, 0.025, 0.05, and 0.075 a.u., respectively. This phenomenon is consistent with earlier
calculations for sodium D line [127] and hydrogen-like atoms [128]. The suppression of the
transition rate among the fine-structure levels is mainly arising from the energy quench.

From Figure 3, we pictorially estimate the critical values of plasma screening strength
(μc) where the ionization potential becomes zero for a particular atomic state. We also
tabulate these values in Table 7. The critical screening strength is essential in photo-
ionization cross-section, which increases with increasing μ until μ = μc. This increment is
obvious due to the decrease in bound state energy leading to the increase in radial expansion
of the bound state wavefunction [128]. This phase shift of bound state to continuum
state is induced by the plasma atmosphere, and the ionization threshold decreases with
the Debye screening length (μ−1). In terms of the photo-ionization cross-section [129],
the plasma decreases the threshold cross-section, and the discrete bound wavefunctions
become diffused. Therefore, critical screening strength plays an important role in atomic
structure. However, we have not found any spectroscopic data in the literature for these
ions in plasma medium to compare with our results.

Figure 3. Determination of the value of critical plasma screening strength.
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Table 4. Transition rate (in s−1) of E2 (AE2
RCC) in plasma screened and unscreened medium. Here, we

have used our RCC matrix element (in a.u) and RCC wavelength (in Å). Note that the notation P(Q)

in the case of transition rates means P × 10Q.

Transitions μ = 0 μ = 0.025 μ = 0.050 μ = 0.075 μ = 0.1

Ar7+

3p4 → 4f6 1.4501 (+06) 1.4349 (+06) 1.3927 (+06) 1.3250 (+06) 1.2333 (+06)
3p4 → 4f8 6.5288 (+06) 6.4605 (+06) 6.2705 (+06) 5.9658 (+06) 5.5526 (+06)
3s2→ 3d4 2.1840 (+05) 2.2032 (+05) 2.2179 (+05) 2.2417 (+05) 2.2742 (+05)
3s2−→ 3d6 2.1919 (+05) 2.2126 (+05) 2.2256 (+05) 2.2494 (+05) 2.2819 (+05)
3d4 → 5g8 2.7225 (+06) 2.6258 (+06) 2.3685 (+06) 1.9874 (+06)
3d6 → 5g8 3.0252 (+05) 2.9179 (+05) 2.6352 (+05) 2.2077 (+05)
3d6 → 5g10 3.0267 (+06) 2.9190 (+06) 2.6362 (+06) 2.2085 (+06)
Kr7+

4s2−→ 4d4 8.9514 (+05) 8.7868 (+05) 8.6208 (+05) 8.3473 (+05)
4s2−→ 4d6 9.1180 (+05) 8.9640 (+05) 8.7912 (+05) 8.5066 (+05)
5p2 → 4f6 7.0537 (−01) 8.9779 (−01) 3.0592 (00)
5p4 → 4f8 2.3536 (−01) 2.9840 (−01) 1.4702 (00)
5d6 → 5g8 2.7840 (+03) 2.6100 (+03)
5d6 → 5g10 2.9352 (+04) 2.6114 (+04)
Xe7+

5s2→ 5d4 6.6714 (+05) 6.7116 (+05)
5s2→ 5d6 6.9674 (+05) 7.0069 (+05)
5p2 → 5p4 6.0045 (−01) 6.1555 (−01) 5.6058 (−01)
5p2 → 4f6 8.5467 (+03) 2.7288 (+04) 3.3098 (+04)
5p4 → 4f6 1.2882 (+03) 2.0657 (+03) 2.6049 (+03)
5p4 → 4f8 5.9866 (+03) 1.2836 (+04) 1.6523 (+04)
5p2→ 5f6 1.6471 (+06) 1.5379 (+06)
5p4→ 5f6 4.3300 (+05) 4.0395 (+05)
5p4→ 5f8 1.9479 (+06) 1.8169 (+06)
4f6 → 5f6 5.9296 (+04) 5.4103 (+04)
4f6 → 5f8 7.4168 (+03) 6.7680 (+03)
4f8 → 5f6 9.9224 (+03) 9.0350 (+03)
4f8 → 5f8 6.2129 (+04) 5.6576 (+04)
5d4→ 6s2 5.3813 (+03)
5d4 → 5g8 1.1670 (+06)
5d6 → 5g8 1.2597 (+05)
5d6→ 5g10 1.2601 (+06)
5d6→ 6s2 7.0259 (+03)
Rn7+

6s2 → 6d4 1.0243 (+06) 9.8377 (+05)
6s2 → 6d6 1.0371 (+06) 9.9749 (+05)
6p2 → 5f6 5.0885 (+04) 5.4520 (+04)
6p4 → 5f6 3.2019 (+03) 3.5290 (+03)
6p4 → 5f8 1.5773 (+04) 1.7127 (+04)
6d4 → 5g8 6.3782 (+05)
6d6 → 5g8 6.2707 (+04)
6d6 → 5g10 6.2238 (+05)
6p2 → 6p4 1.2855 (+02) 1.2763 (+02)
7p2 → 7p4 1.5299 (+01)
6p4 → 7p4 2.3245 (+05)
5f6 → 7p2 1.4611 (+04)
5f6 → 7p4 3.0317 (+03)
5f8 → 7p4 1.7756 (+04)

Table 5. Magnetic dipole transition rate (in s−1) in plasma screened and unscreened medium. Note: the
notation P(Q) in the case of transition rates means P × 10Q. For 4 f5/2 → 4 f7/2 (Xe7+), transition rates
1.9227 (−03) and 1.9277 (−03) are available in the literature (a) using the multiconfiguration Dirac–Fock
method without and with Breit interaction plus the quantum electrodynamics effect, respectively.

Transitions μ = 0 μ = 0.025 μ = 0.050 μ = 0.075 μ = 0.1

Ar7+

3p2 → 3p4 1.7951 (−01) 1.9857 (−01) 1.9603 (−01) 1.9165 (−01) 1.8570 (−01)
3p4 → 4f6 3.7845 (−02) 3.7248 (−02) 3.5575 (−02) 3.2958 (−02) 2.9561 (−02)
3d6 → 5g8 1.0634 (−02) 1.0124 (−02) 8.8719 (−03) 7.0637 (−03)
Kr7+

4s2→ 4d4 9.0675 (−03) 7.2173 (−03) 8.2040 (−03) 6.7390 (−03)
4p2 → 4p4 8.4015 (00) 8.2789 (00) 7.9664 (00) 7.4776 (00) 6.8397 (00)
4d4 → 4d6 2.5436 (−02) 3.2234 (−02) 3.0177 (−02) 2.7000 (−02)
5p2 → 5p4 4.7841 (−01) 5.3517 (−01) 4.6911 (−01)
5d4 → 5d6 1.7080 (−03) 1.0904 (−03) 2.2682 (−03)
Xe7+

5p2 → 5p4 5.7437 (+01) 5.7875 (+01) 5.3500 (+01)
5p4 → 5f6 6.3588 (−03) 5.7557 (−03)
4f6 → 5f6 5.0459 (+01) 4.9605 (+01)
4f6 → 5f8 4.9212 (−01) 5.3389 (−01)
4f8 → 5f6 1.1142 (+01) 1.0620 (+01)
4f8 → 5f8 1.5833 (+02) 1.5517 (+02)
5d4 → 5d6 2.7070 (−01) 2.6538 (−01) 2.2900 (−01)
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Table 5. Cont.

Transitions μ = 0 μ = 0.025 μ = 0.050 μ = 0.075 μ = 0.1

Rn7+

6p2 → 6p4 1.2442 (+03) 1.2212 (+03)
6d4 → 6d6 4.5873 (00) 4.1847 (00)
5f6 → 5f8 6.6129 (−02) 3.4422 (−02)
6s2 → 7s2 1.0113 (00)
7p2 → 7p4 8.1938 (+01)
6p2 → 7p2 7.2065 (−02)
6p4 → 7p4 2.4557 (00)
5f6 → 7p4 2.4281 (−03)

[125,126].

Table 6. Lifetimes in ns of few low-lying states.

Level Present Work Other Work (Experiment) Other Work (Theory)

Ar7+

3p2 0.411 0.417 ± 0.010 a , 0.423 ± 0.040 b , 0.413 c , 0.407 d , 0.397 e , 0.409 f

0.48 ± 0.05 g , 0.49 ± 0.05 h 0.389 i , 0.408 j , 0.4121 k

0.55 ± 0.03 l , 0.53 ± 0.11 m

3p4 0.387 0.389 ± 0.010 a , 0.421 ± 0.030 b , 0.389 c , 0.382 d , 0.373 e , 0.386 f

0.428 ± 0.027 g , 0.48 ± 0.06 h 0.366 i , 0.388 j , 0.3872 k

0.54 ± 0.02 l , 0.527 ± 0.018 m

3d4 0.132 0.170 ± 0.010 a , 0.130 ± 0.005 b , 0.127 e , 0.134 f , 0.133 j , 0.1318 k

0.158 ± 0.008 g ,
3d6 0.137 0.166 ± 0.008 a , 0.131 ± 0.005 b , 0.131 e , 0.138 f ,j , 0.1361 k

0.160 ± 0.008 g

4f6 0.003
4f8 0.002

Kr7+

4p2 0.293 0.41 ± 0.04 n , 0.291 ± 0.012 o 0.282 p , 0.29653 q

0.290 ± 0.015 g , 0.401 ± 0.018 l

4p4 0.235 0.33 ± 0.03 n , 0.243 ± 0.01 o 0.230 p , 0.24176 q

0.218 ± 0.033 g , 0.331 ± 0.011 l

4d4 0.048 0.05019 q

4d6 0.052 0.048 ± 0.004 o 0.05388 q

4f6 0.055
4f8 0.055

Xe7+

5p2 0.45 0.52 (3) r , 0.50 ± 0.05 s , 0.37 t , 0.47 u , 0.48 v , 0.53 w

0.380 ± 0.040 g

5p4 0.29 0.35 (2) r , 0.33 ± 0.03 s , 0.23 t , 0.30 u , 0.31 v , 0.33 w

0.272 ± 0.037 g

5d4 0.08 0.10 (2) r 0.07 t , 0.07 v , 0.06 w

5d6 0.08 0.14 (2) r 0.14 t , 0.08 v , 0.07 w

Rn7+

6p2 0.429
6p4 0.144
6d4 0.056
6d6 0.082

a =⇒ Beam-foil technique [97]; b =⇒ [130]; c =⇒ third-order many-body perturbation theory [131]; d =⇒
R-matrix theory [98]; e =⇒ single Configuration interaction Hartree–Fock method using a pseudo potential [99];
f =⇒ relastic model potential [103]; g =⇒ Arbitrarily Normalized Decay curve method for cascade-correction
in beam-foil [107]; h =⇒ beam-foil technique in the vacuum u.v [132]; i =⇒ Multiconfiguration Dirac–Fock
method [104]; j =⇒ charge expansion technique [133]; k =⇒ multiconfiguration Dirac–Hartree–Fock theory
including core polarization [31]; l =⇒ beam-foil [50]; m =⇒ beam-foil [134]; n =⇒ beam-foil [49]; o =⇒ foil
excitation [106]; p =⇒ Coulomb approximation [111]; q =⇒ Hartree–Slater method [23]; r =⇒ beam-foil
spectroscopy [53]; s =⇒ relativistic Hartree–Fock method [135]; t =⇒ relativistic perturbation theory with a
zero approximation model potential [57]; u =⇒ relativistic many-dody perturbation theory(RMBPT(3)) [55];
v =⇒ relativistic HFR+CP [53]; w =⇒ relativistic MCDF [53].

Table 7. Critical values of plasma screening strength (μc) in a.u. for the following ions.

Kr7+ Xe7+ Rn7+

State μc State μc State μc

4d4 0.087152 5s2 0.076987 5s2 0.046401
4d6 0.086956 5p2 0.066149 6p2 0.039652

5p4 0.064474 6p4 0.036763
4f6 0.051526 6d4 0.027521
4f8 0.051486 6d6 0.027100
5d4 0.048395
5d6 0.048139
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4. Conclusions

The continuous progress in astrophysical and astronomical observations demands
accurate theoretical transition data in a realistic environment. In many cases, the experi-
ment is difficult to extract the data used to estimate the abundance of the ions in the stellar
chemical composition. Here, the highly correlated relativistic coupled-cluster theory is
applied to precisely determine the excitation energies of a few low-lying states of astrophys-
ically relevance such as Ar7+, Kr7+ and Xe7+, and Rn7+. Furthermore, we calculate various
properties of allowed and forbidden transitions, such as transition probabilities, oscillator
strengths, and lifetimes, and compare them with previously reported data in the literature.
We found an overall good agreement between our results with the other theoretical and
experimental results. Moreover, the concurrence between the length and velocity gauge
allowed transition amplitudes signifies the exact calculations of our correlated wavefunc-
tions. We found that most of the transitions shown here fall in the ultraviolet region of the
electromagnetic spectrum, useful for astrophysical plasma research and telescope-based
astronomy. A few transitions, such as 4d3/2 − 4 f5/2, 4d5/2 − 4 f5/2 and 4d5/2 − 4 f7/2 of
Ar7+, 5p1/2 − 4 f5/2 of Kr7+ and 5p1/2 − 5p3/2 of Xe7+ emit the visible light, which can
have application in laser spectroscopy. Our presented transition line parameters of Rn7+

may help the astronomer identify the ion’s unknown lines. To the best of our knowledge,
some of the oscillator strengths of allowed transitions and most of the transition rates of
the forbidden transitions are reported here for the first time in the literature.

The main focus of this paper is to evaluate the above spectroscopic properties under a
realistic astronomical atmosphere. We showed that the variation of our results for different
values of Debye screening lengths and ionization potential depression values for each
atomic state are useful for atomic structure characterization.
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Abstract: The analysis and measurement of Wigner time delays can provide detailed information
about the electronic environment within and around atomic and molecular systems, with one the key
differences being the lack of a long-range potential after a halogen ion undergoes photoionization. In
this work, we use relativistic random-phase approximation to calculate the average Wigner delay
from the highest occupied subshells of the atomic pairings (2p, 2s in Fluorine, Neon), (3p, 3s in
Chlorine, Argon), (4p, 4s, 3d, in Bromine, Krypton), and (5p, 5s, 4d in Iodine, Xenon). The qualitative
behaviors of the Wigner delays between the isoelectronic pairings were found to be similar in nature,
with the only large differences occurring at photoelectron energies less than 20 eV and around Cooper
minima. Interestingly, the relative shift in Wigner time delays between negatively charged halogens
and noble gases decreases as atomic mass increases. All atomic pairings show large differences at
low energies, with noble gas atoms showing large positive Wigner delays, while negatively charged
halogen ions show negative delays. The implications for photoionization studies in halide-containing
molecules is also discussed.

Keywords: attosecond time delay; noble gas; halogen atoms; relativistic random-phase
approximation

1. Introduction

The recent advancement of attosecond extreme ultraviolet infrared (XUV-IR) laser
metrology over the past decade [1–6] has enabled access for observing ultrafast phenom-
ena across a variety of atomic and molecular systems at the natural time scale of their
electronic motion. One common experimental technique utilizes an XUV-IR pump–probe
process [7,8], where an electron is first ionized through the absorption of an XUV photon
and subsequently streaked by the few-cycle IR laser field, which imprints itself on the
photoelectron’s final energy and momentum. By varying the time delay between the XUV
and IR pulses, it is possible to measure the photoionization time delay relative to a refer-
ence. Another common technique is reconstruction of attosecond beating by interference
of two-photon transitions (RABBITT) [9,10], where the target is first ionized by an XUV
attosecond pulse train of high-order harmonics, and the photoelectron can then either
absorb or emit a secondary IR photon in the continuum. By adjusting the delay between
the IR laser field and the high-order harmonics, it is possible to extract the time delay for a
particular transition.

These techniques have been used to measure photoionization delays in atoms [11–15],
molecules [16–20], and solid-state systems [21–23], thereby providing new information
about their electronic structure. The total time delay τ, also known as the streaking
delay, given by a pump-probe experiment is frequently separated into two components,
τ = τw + τCLC. This convention of separating the total delay into two separate terms is
also followed in traditional RABBITT experiments, with the only difference being that
τCLC is replaced by the continuum–continuum delay τCC [10].The first contribution is the
Wigner time delay [24,25] τw, which describes the group delay of the ionized photoelectron
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due to the absorption of an XUV photon and depends on the nature of the target. The
second component is the Coulomb-laser coupling time delay [26] τCLC, as it describes the
delay caused by the coupling between the IR field in the continuum and the long-range
potential of the remaining ion. Unlike the Wigner time delay, which requires an accurate
description of the target potential, the Coulomb-laser coupling delay can be computed with
an analytical formula [26–28] and does not rely on the precise nature of the target species.
It does, however, depend on the photoelectron’s kinetic energy, the energy of the photons
from the laser, and the charge of the residual ion. For example, the photoionization of a
neutral atom will create a positively charged ion of +1 and, therefore, τCLC will be finite,
but if a negatively charged halogen undergoes photoionization, the remaining ion will have
a neutral charge and τCLC will vanish. This implies that it is possible to directly measure
the Wigner delay of negatively charged halogen ions.

The process of removing an electron from a neutral atom is called photoionization,
while the removal of an electron from a negatively charged ion is called photodetachment.
Many theoretical and experimental studies have been conducted to accurately describe and
predict various aspects of the photoionization process in noble gas atoms (with some of the
key features being photoemission angle dependence [29–32], autoionization resonances [33],
the 4d giant dipole resonance in Xenon [34], photorecombination [35], and relativistic
effects [36–38]) but only recently has work been conducted on Wigner time delays in
negatively charged species [39–45].

This understanding of the time delays of negatively charged halogens is important
for two key reasons. First, the halides F−, Cl−, Br−, and I− are isoelectronic to the
well-studied systems of Ne, Ar, Kr, and Xe, respectively, and, hence, they allow for
an interesting comparison of two systems where the initial electronic configurations are
identical and yet the binding energies significantly differ. Second, it has been shown that
in the case of iodine-containing molecules, such as methyl iodide [46], the 4d orbitals of
iodide are non-bonding and reasonably agree with the predicted cross-section data of an
isolated iodine atom [47,48]. Therefore, comparisons between the Wigner delays in halogen
ions and noble gases should help to inform future molecular photoionization studies while
also helping to confirm the driving mechanisms behind Wigner time delay phenomena.

In this paper, we utilize the relativistic random-phase approximation (RRPA) formal-
ism of Johnson and Lin [49] to calculate the average phases and average Wigner time delays
of the highest occupied s, p, and d shells of the noble gas series and their halide counter-
parts. The theoretical details of RRPA are given in Section 2, along with a description of the
methodology used to calculate the average Wigner time delays, the results of which are
illustrated in Section 3, with the time delays of each halide–noble gas pairing being plotted
with respect to photoelectron kinetic energy. Section 3 also includes a discussion regarding
the similar qualitative behavior in the known regions of the Cooper minimum, while also
acknowledging the sharp contrast in time delays at photoelectron energies below ∼ 20 eV
for the highest occupied p and s orbitals. The first part of Section 3 briefly describes the
methodology used to calculate the Dirac–Hartree–Fock orbitals and their associated bind-
ing energies, along with specific details regarding the number of photoionization channels
used for the RRPA calculations of each atom. Section 4 provides a summary of the results
and a brief discussion regarding applications for future molecular ionization studies.

2. Theoretical Overview of the Relativistic Random-Phase Approximation (RRPA)

The same theoretical formalism was applied to negative halogen ions and neutral noble
gas atoms in order to calculate the photoionization dipole transition matrix amplitudes
and phases for an initial bound state. This overview follows the same outline as the
previous RRPA photoionization studies of Kheifets and Deshmukh [50] and the original
multi-channel paper of Johnson and Lin [49]. Atomic units (� = e = me = 1) are used
throughout, unless stated otherwise.
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For a time-dependent perturbation of the form v+e−iωt + v−eiωt, the probability am-
plitude for a transition from the ground state ui to an excited state wi±, stimulated by said
perturbation, is given by

T =
N

∑
i=1

∫
d3r
(

w†
i+v+ui + w†

i−v−ui

)
(1)

For an electromagnetic interaction described in the Coulomb gauge, it is possible

to rewrite the transition amplitude T as a function of the vector potential
⇀
A, where the

perturbations v±\ are described by, v+ =
⇀
α ·

⇀
A, v− = v†

+ with
⇀
α =

(
0

⇀
σ

⇀
σ 0

)
.

T =
N

∑
i=1

∫
d3r
(

w†
i+

⇀
α ·

⇀
Aui + u†

i
⇀
α ·

⇀
Awi−

)
(2)

Therefore, a photon of frequency ω (or equivalently of wavevector
⇀
k ) and polarization

ε̂ can be described by the vector potential in the Coulomb gauge as
⇀
A = ε̂e−i

⇀
k ·⇀r , which

can then be expanded in terms of its multipole components,
⇀
a
(λ)

JM . Note that an upper index
of λ = 1, 0 corresponds to the electric and magnetic multipoles, respectively. In the single
active electron approximation, the transition amplitude describe by Equation (2) can be
reduced even further to

T(λ)
JM =

∫
d3rw†

i+
⇀
α ·⇀a (λ)

JM ui (3)

where J and M are the angular momentum quantum numbers describing the incoming
photon. It is common to label the initial bound state (ui) of the electron by the quantum

numbers l jm and the final continuum state (wi) by the numbers
−
l
−
j
−
m. The spin of the elec-

tron is given by the spinor χν, where ν = ±1/2. Any final state can be uniquely described

by the index
−
κ = ∓

(−
j + 1/2

)
, where

−
j =

−
l ± 1/2 is the total angular momentum of the

outgoing electron in the continuum. The final state can also be written as a partial wave
expansion, which is given explicitly in Equation (40) of [49]. Inserting this expansion into
Equation (3) results in

T(λ)
JM = i

√
2π2

Ep

√
(2J + 1)(J + 1)

J
ω J

(2J + 1)!!∑−
κ
−
m

[
χ†

νΩ−
κ
−
m
( p̂)
]
(−1)

−
j−−

m

⎛
⎝ −

j J j

−−
m M m

⎞
⎠D

lj→
−
l
−
j
(−1)

−
j+j+J (4)

The ionized photoelectron’s energy and momentum are represented by E and p, re-
spectively, while Ω−

κ
−
m
( p̂) is described in terms of Clebsch–Gordan coefficients and spherical

harmonics.

Ω−
κ
−
m
( p̂) = ∑

v
C

−
j ,
−
m

−
l ,
−
m−ν,1/2ν

Y−
l ,
−
m−ν

( p̂)χν (5)

The six-term bracket to the right of the Ω−
κ
−
m
( p̂) in Equation (4) corresponds to the

Wigner 3-j symbol, and D
lj→

−
l
−
j

represents the reduced matrix element describing the

transition from the initial state a = nκ to the final state
−
a =
(

E,
−
κ
)

multiplied by the phase
shift of the continuum photoelectron wave δ−

κ
.

D
lj→

−
l
−
j
= i1−

−
l e

iδ−
κ

〈−
a
∣∣∣∣∣∣Q(λ)

J

∣∣∣∣∣∣a〉 (6)
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One should note that the electric (or magnetic) multipole operator Q(λ)
J in the reduced

matrix element is the only component that changes in Equation (4) for different values of λ,
as the entire matrix element can be deconstructed as

〈−a ||Q(λ)
J ||a〉 = (−1)j+1/2[

−
j ][j]

(
j

−
j J

−1/2 1/2 0

)
π

(−
l , l, J − λ + 1

)
R(λ)

J

(−
a , a
)

(7)

where R(λ)
J

(−
a , a
)

is a radial integral listed in [49] and π

(−
l , l, J − λ + 1

)
is simply the

parity factor responsible for imposing the necessary selection rules for a given transition.

π

(−
l , l, J − λ + 1

)
=

⎧⎨
⎩1,

−
l + l + J − λ + 1 = even

0,
−
l + l + J − λ + 1 = odd

(8)

Despite its use for describing single-electron transitions, Equation (4) is also valid for
any closed-shell atomic species, as the only change required in Equations (4) and (6) is that
the single-electron reduced matrix element is modified slightly to include multi-electron
RRPA effects in both the initial and final states. An explanation of this modification is given
in Appendix A.

〈−a ||Q(λ)
J ||a〉 → 〈−a ||Q(λ)

J ||a〉
RRPA

(9)

In this work, we restrict ourselves to electric dipole transitions (λ = 1 and J = 1)
with linearly polarized light oriented along the ẑ axis (M = 0). From these restrictions,
Equation (4) simplifies to

T1±
10 ≡

[
T(1ν)

10

]m

nlj
= ∑

−
κ
−
m

C
−
j
−
m

−
l ,
−
m−ν,1/2ν

Y
l,
−
m−ν

( p̂)(−1)2
−
j+j+1−−

m

⎛
⎝ −

j 1 j

−−
m 0 m

⎞
⎠D

lj→
−
l
−
j

(10)

Here, we have followed the convention of ref. [51] by defining separate transition
amplitudes for the spin-up and spin-down cases and by omitting the scaling factor of

2πi√
3Ep

ω. By choosing the linear polarization of the incoming photon to be purely along ẑ,

it is possible to take advantage of the axial symmetry of the system. Therefore, we will
introduce the shorthand Ylm ≡ Ylm( p̂) = Ylm(θ, φ = 0), where θ = 0 corresponds to a
photoelectron emission parallel to the direction of the initial photon.

It useful to observe how Equation (10) directly reduces in the simple case of electric
dipole transitions for the np1/2 and np3/2 states. The expressions for the nd3/2 and nd5/2
transition amplitudes can be found in ref. [50].

[
T(1+)

10

]m=1/2

np1/2
=

1√
6

Dnp1/2→εs1/2Y00 +
1√
15

Dnp1/2→εd3/2
Y20 (11a)

[
T(1−)

10

]m=1/2

np1/2
= − 1√

10
Dnp1/2→εd3/2

Y21 (11b)

[
T(1+)

10

]m=1/2

np3/2
=

1√
6

Dnp3/2→εs1/2Y00 − 1
5

(
1√
6

Dnp3/2→εd3/2
+

√
3
2

Dnp3/2→εd5/2

)
Y20 (12a)

[
T(1−)

10

]m=1/2

np3/2
=

1
10

(
Dnp3/2→εd3/2

− 2Dnp3/2→εd5/2

)
Y21 (12b)

[
T(1+)

10

]m=3/2

np3/2
= −
(

3√
10

Dnp3/2→εd3/2
+

2
√

3
15

Dnp3/2→εd5/2

)
Y21 (12c)
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[
T(1−)

10

]m=3/2

np3/2
=

√
3

5

(
Dnp3/2→εd3/2

− 1
3

Dnp3/2→εd5/2

)
Y22 (12d)

The reduced matrix elements D
lj→

−
l
−
j

can be evaluated numerically for both its real

and imaginary components, as doing so allows for the phase η and Wigner time delay to
be calculated using the standard formulation of

τw =
dη

dE
, η = arctan

⎡
⎣ Im

{
T1±

10

}
Re
{

T1±
10

}
⎤
⎦ (13)

For a given subshell nlj, the angle-dependent time delay can be calculated as a
weighted average over all possible transition amplitudes and spin states.

τnlj(θ) =

∑
m,v

τnlj ,m,ν(θ)

∣∣∣∣[T(1v)
10

]m

nlj

∣∣∣∣
2

∑
m,ν

∣∣∣∣[T(1v)
10

]m

nlj

∣∣∣∣
2 (14)

For the purposes of this work, we will only consider the case of θ = 0, as it is
commonly the most dominant direction of photoelectron emission. As with Equation (10),
it is informative to see how Equation (14) simplifies into the simple weighted average of
the spin-up and spin-down Wigner delays for the case of an np1/2 state.

τnp1/2 =
τ+

np1/2

∣∣∣T1+
10

∣∣∣2 + τ−
np1/2

∣∣∣T1−
10

∣∣∣2∣∣∣T1+
10

∣∣∣2 + ∣∣∣T1−
10

∣∣∣2 (15)

This process of averaging Wigner delays was performed for every subshell listed in
Table 1 below. By taking the average Wigner delays τnp1/2 and τnp3/2 and weighting them
by their respective differential cross-sections, the total average time delay τnp was also
calculated. An analogous process was also used to compute τns and τnd for every halogen
and noble gas.

It should be noted that the accuracy of this averaging process depends not only on the
values of the Wigner delays, but also with regard to the accuracy of the transition amplitudes
themselves. Because the photoionization cross-section can be computed from the transition

amplitudes
[

T(1ν)
10

]m

nlj
, it is possible to estimate the accuracy of the RRPA calculations by

simply comparing the predicted cross-sections with those of experimental measurements.
Reference [38] lists the predicted RRPA cross-sections for all of the noble gases being studied
in this work, and found there to be a good agreement with experimental values. This result
implies that the calculated RRPA transition amplitudes given by Equation (10) should also
be quite accurate.

3. Results and Discussion

In this section, we present the calculated binding energies and average Wigner delays
for each of the highest subshells of the halide ions and noble gas atoms. It should be noted
that RRPA often produces autoionization resonances in the time delay spectra for any
given noble gas. However, they are not the focus of this paper and, therefore, have been
filtered out to prevent the obfuscation of more general time delay features. The locations
of autoionization resonances in noble gases are well documented [38], but they generally
occur at photon energies close to the binding energies of orbital subshells. In Argon, for
example, the autoionization resonances produced by RRPA occur around photon energies
of 35 eV, which corresponds to the ionization threshold of the 3s1/2 subshell.
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3.1. Dirac–Hartree–Fock (DHF) Orbital Subshell Ionization Calculations

RRPA requires the use of Dirac–Hartree–Fock orbitals in order to account for ab ini-
tio relativistic effects and to obtain accurate subshell ionization potential energies. It is
important to note that DHF calculations are typically the most accurate for the highest
occupied shells regardless of the atom being studied; however, they can reasonably predict
the binding energy of lower-lying subshells as atomic mass increases. Table 1 confirms
this trend, as the predicted value of the 4d orbitals in xenon are within ~4 eV of experi-
mental measurements. The binding energies of halide ions are not well known, yet it is
possible to approximate their highest experimental binding energies with electron affinity
measurements. The electron affinity values were found to closely match the calculated
DHF energies, with the approximation being increasingly valid for the higher-mass ions of
bromide and iodide. These trends and absolute energies were also found to agree with the
calculated values of Saha et al. [38,41] and Lindroth and Dahlstrom [39]. The congruence
between our calculated DHF binding energy for F− and the 2p3/2 energy reported in [39],
which utilized a non-relativistic HF theory with exchange, is of particular interest as it
implies that despite not being necessary, relativistic effects do not negatively impact Wigner
time delay calculations for lighter-mass atomic systems.

Table 1. Calculated and experimental binding energies in eV.

DHF Exp. [52,53]

F−
(9 Channels)

2p3/2 = 4.889 3.401 *
2p1/2 = 4.968
2s1/2 = 29.334

Ne
(9 Channels)

2p3/2 = 23.083 21.565
2p1/2 = 23.207 21.627
2s1/2 = 52.677 48.365

Cl−
(14 Channels)

3p3/2 = 4.027 3.613 *
3p1/2 = 4.169
3s1/2 = 20.132

Ar
(14 Channels)

3p3/2 = 15.995 15.760
3p1/2 = 16.201 15.946
3s1/2 = 35.010 29.307

Br−
(20 Channels)

4p3/2 = 3.565 3.364 *
4p1/2 = 4.122
4s1/2 = 19.393
3d5/2 = 76.152
3d3/2 = 77.317

Kr
(20 Channels)

4p3/2 = 13.996 13.999
4p1/2 = 14.735 14.627
4s1/2 = 32.320 27.464
3d5/2 = 101.411 93.788 a

3d3/2 = 102.795 95.038 a

I−
(33 Channels)

5p3/2 = 3.089 3.059 *
5p1/2 = 4.207
5s1/2 = 16.555
4d5/2 = 53.897
4d3/2 = 55.734

Xe
(33 Channels)

5p3/2 = 11.968 12.130
5p1/2 = 13.404 13.436
5s1/2 = 27.487 23.361
4d5/2 = 71.668 67.548 a

4d3/2 = 73.779 69.537 a

* Electron affinity NIST data [54], a Krypton and Xenon d-shell data [55].
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Table 1 also lists the number of coupled photoionization channels used for the subse-
quent calculations of the reduced matrix elements. For Neon and Fluorine, all nine possible
channels (2p, 2s, 1s) were coupled. Argon and Chlorine used 14 channels (3p, 3s, 2p, 2s)
and omitted the 1s channels. Krypton and Bromine used 20 channels (4p, 4s, 3d, 3p, 3s)
and omitted the 2p, 2s, and 1s channels. Finally, Xenon and Iodine used 33 channels
(5p, 5s, 4d, 4p, 4s, 3d, 3s) and omitted the core 2p, 2s, and 1s channels. The omitted channels
could be ignored due to the fact that they are significantly farther away in energy from the
other channels and do not have substantial impact at the photon energies of this study.

3.2. Individual Photoionization Channel Phases and Wigner Time Delays of Neon and F−

While a previous study compared the Wigner delays of individual ionization channels
in Argon and Chlorine [41], to the best of our knowledge, no similar study has been
performed for the lighter pair of Neon and Fluorine. The phase η of each channel was
calculated directly by computing the argument of the reduced matrix element associated
with each channel (i.e., via Equations (6) and (13)). By simply taking the energy derivative of
the phase, the Wigner time delays could also be determined, as seen in Figure 1. Due to their
low atomic mass and relatively small number of electrons, relativistic effects do not play a
crucial role in time delays in Neon and Fluorine. This is reflected in the behavior of both the

phase and Wigner time delays for any given channel, since the j and
−
j values of a particular

l → l + 1 or l → l − 1 transition have a negligible impact (e.g., the 2p1/2 → εs1/2 and
2p3/2 → εs1/2 both produce the same η and Wigner delay). This fact also holds true for the
3p1/2 and 3p3/2 channels in both Chlorine and Argon [41], but begins to break down for
the lower-lying 3s1/2 → εp1/2 and 3s1/2 → εp3/2 channels. While not the primary focus
of this work, the study of time delays in individual channels is often useful for analyzing
the results of the average orbital delays, since it is possible to determine where a given
channel dominates in a particular energy region and instructive to see how the average
delay results from Wigner delays of individual transitions. For the sake of brevity, the
individual channel phases and time delays for Cl−, Ar, Br−, Kr, I−, and Xe are omitted.

 
(a) (b) 

Figure 1. Individual 2s and 2p channel phases (a) and Wigner time delays (b) for Neon and Fluo-
rine. The individual labels are a descriptive shorthand to describe the identical behavior of mul-
tiple ionization channels. For instance, the label 2p → εs relates to the two ionization channels
(2p1/2 → εs1/2 and 2p3/2 → εs1/2), while the label 2p → εd corresponds to the following three
channels: (2p1/2 → εd3/2, 2p3/2 → εd3/2, and 2p3/2 → εd5/2). The behavior of 2s → εp is equiva-
lent to the behavior of the (2s1/2 → εp1/2 and 2s1/2 → εp3/2) channels. In the case of Ne, a small
autoionization resonance was removed near 48 eV for the 2p → εd and 2p → εs channels.

By comparing Figures 1b and 2b, it is apparent that the average 2p delay in Ne is domi-
nated by the 2p → εd channels across all photon energies, whereas the average 2p delay in
F− primarily corresponds to 2p → εd transitions at higher energies and 2p → εs channels
below photon energies near 10 eV. This agrees with the fact that for typical photoionization
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in noble gases, the l → l + 1 photoionization channels are known to dominate regardless
of energy, with the only exception being Cooper minima. However, in photodetachment,
the l → l − 1 channels dominate near the threshold and the l → l + 1 channels only begin
to dominate once photon energy increases [41,45]. A cursory comparison of the time delays
between Neon and Fluorine shows a strong agreement for photon energies greater than
50 eV for any given 2p transition. The same can also be said of 2s → εp transitions at
photon energies above 75 eV. There is, however, a sharp contrast between the time delays
at lower energies.

 

(a) (b) 

  
(c) (d) 

Figure 2. All four subfigures plot the average Wigner time delay with respect to the kinetic energy of
the ionized electron. The first row compares the average Wigner time delays of Neon and Fluoride
for the 2s (a) and the 2p (b) orbitals. The bottom row compares the average Wigner delays for Argon
and Chloride with regard to their 3s (c) and 3p (d) orbitals. The resonant peaks in the Argon 3p
delay spectra between 15 and 20 eV correspond to autoionization resonances that were not entirely
removed. The average 3p Wigner delay for Cl− displays a deep minimum of −900 as near 6 eV. This
minimum matches that of [41] although it is not shown due to the scale of the figure. The average 2s
and 3s Wigner delays of F− and Cl−, respectively, originally displayed oscillations at photoelectron
energies below 15 eV. These oscillations were determined to be caused by small variations in the
average phase data and were subsequently removed by taking a best fit of the phase data and then
computing the energy derivative of that best fit.

3.3. Comparison of Average Wigner Delays for Halogen Ions and Noble Gases

We observe in Figure 2a,b that Neon exhibits the familiar time delay behavior of having
a large positive delay near the threshold energies of the 2s and 2p subshells, which slowly
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vanishes as photon energy increases. Fluorine, by contrast, exhibits a strong negative
delay on the order of −100 as near the 2p threshold. This difference can be explained by
comparing the differences in the calculated phases for both Fluorine and Neon illustrated
in Figure 1a, as each of Neon’s ionization channels displays a dramatic increase near their
respective threshold energies, while Fluorine’s 2s → εp and 2p → εs channels tend to
decrease more gradually over a longer energy range. For noble gas atoms, the Wigner time
delay of any given orbital will trend towards positive infinity at energies near the threshold
due to the drastic increase in the Coulomb phase, which is known to dominate [40,41],
and the individual channels of Ne confirm this trend. The Coulomb phase for negatively
charged atoms is essentially nonexistent due to the lack of a long-range Coulomb potential
and, therefore, the Wigner delays corresponding to photodetachment do not possess the
same behavior of trending towards infinity at low energies. In the case of photodetachment,
however, it is still possible for a short-range potential to play a role at energies extremely
close to the threshold. For example, in Figure 1a, the phase of the 2p → εd ionization
channels in Fluorine rapidly decreases in an energy region of ∼ 1 eV near threshold and
then slowly increases with photon energy. This also explains the sharp increase in the
average 2p Wigner delays in Fluorine at low photoelectron energies below ∼ 10 eV and
small positive delay times in the higher photoelectron energy region.

Just as with the individual channel analysis in Fluorine and Neon, we find that
the average 2s and 2p Wigner delays also diverge at lower photoelectron energies and
converge towards zero in the large photoelectron kinetic energy limit. The physical picture
underlying this vanishing time delay is quite clear, as a photoelectron with high kinetic
energy will spend less time near the perturbative effects of the remaining ion and instead
behave more similarly to a free electron wave. Conversely, at low kinetic energies, the
photoelectron will spend more time near the remaining ion and be more susceptible to
collective electron effects. We also observe the same general feature of diverging Wigner
delays between the 3s and 3p states in Chlorine and Argon at low energy (see Figure 2c,d),
with the only difference being the introduction of Cooper minima. A Cooper minimum
occurs when the transition matrix element changes sign and undergoes a phase shift of
π. Typically, this happens when the initial state radial wavefunction contains at least one
node and overlaps with the continuum wavefunctions. This is the process responsible
for the well-known 3p Cooper minima illustrated for Argon and Chlorine in Figure 2d.
However, a different mechanism is responsible for the observed minimum in the average
3s Wigner delay of Argon and Chlorine. Instead of being the result of a radial node in the
initial wavefunction, the behavior of the Cooper minimum in the 3s channel is caused by a
π shift in the phases of the 3s → εp channels, which occurs due to the result of significant
interchannel coupling with the 3p ionization channels [38,56,57]. Without the effect of
interchannel coupling, this minimum does not appear in the 3s ionization channels, which
is why the 3s minimum can be deemed an “induced Cooper minimum” as it is still the
result of a π shift but its origin differs from that of the 3p Cooper minimum. However,
the location of this induced Cooper minimum in Chlorine appears to be shifted ∼ 10 eV
higher than the induced Cooper minimum in Argon. A similar shift occurs for the Cooper
minimum [58] in the 3p spectra, with Chlorine again displaying a higher shift of ∼ 6 eV.
Because Figure 2 plots both time delays with respect to the kinetic energy of the ionized
electron, any difference in the location of the two Cooper minima must be the result of
properties not related to the threshold energies of the atomic systems. If the shift was solely
caused by a difference in binding energies, the two Wigner delay spectra would overlap.

For the higher-mass systems of Bromine, Krypton, Iodine, and Xenon illustrated in
Figure 3, the average Wigner time delays for each orbital were also found to diverge at
low photoelectron energies, as Br− and I− both display large negative time delays (again
on the order of −100 as) in the low energy region. This appears to indicate a universal
time delay trend between negative charged halogens and noble gas atoms at photoelectron
energies below 20 eV. While it is possible to explain the negative delay times as the result
of a negative energy derivative of the phase, a physical explanation is less obvious. If one
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interprets a positive delay time as the retardation of the photoelectron wave with respect
to a free electron wave of the same kinetic energy, then a negative Wigner delay can be
interpreted as an acceleration in the outgoing electron wave packet. In the case of the
induced Cooper minimum in the average 3s state for Argon at low energy, the “dip” in the
delay time can be thought to be the result of induced oscillations in the outer 3p subshells
that screen the 3s electrons [57]. This only can occur for systems where the ns and np states
are strongly coupled, which explains the absence of a similar feature in the 2s time delay
spectra of Neon due to its 2s and 2p interchannel coupling being much weaker.

   

(a) (b) (c) 

  
(d) (e) (f) 

Figure 3. Average Wigner time delays with respect to the kinetic energy of the ionized electron for
Krypton and Bromide (a–c). Average Wigner time delays for the 5s, 5p, and 4d states of Xenon and
Iodide (d–f). The autoionization resonances in Br− and Kr were removed at the approximate photon
energies of 10 eV, 76 eV, 194 eV, and 201 eV. For I− and Xe, autoionization resonances were removed
near 16 eV, 65 − 70 eV, 80 − 90 eV, 159 eV, 176 eV, and 229 eV.

The Cooper minima in the average 5s Wigner delay for Xenon have also been explained
to be the result of interchannel couplings, with the first Cooper minimum near 35 eV being
the result of couplings with the 5p1/2 and 5p3/2 states and the second minimum at ∼ 120 eV
being the result of couplings with the 4d3/2 and 4d5/2 states [59,60]. In the case of I−, we
also find the same 5s Cooper minima at energies approximately equal to those of Xenon.
A similar equivalence was observed between the average 5p Wigner delays of Iodine and
Xenon, as well as for the 4s, 4p, and 3d delays in Br− and Kr. However, the minimum in
the 4d time delay spectra for I− was found to lie ∼ 11 eV higher than for Xenon.

Comparing the relative shifts between Cooper minima for the average Wigner delays
of each halogen and noble gas pairing, we find a qualitative trend where the difference de-
creases as atomic mass increases. The origin of this trend is still not entirely clear, although
it could be related to the relative difference in the electronegativities and polarizabilities of
the halogen and noble gas atoms, as relative shifts have been observed in the photodetach-
ment cross-sections for different isotopes of Chlorine [61]. A previous theoretical study [62]
also reported shifts in the respective 3s and 3p cross-sections for Ar and Cl− and other
high-Z isoelectronic species that were positively charged (i.e., Sc3+, Mn7+) and concluded
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that interchannel coupling and initial-state correlation effects can impact the location of
Cooper minima, although they do not directly account for the difference in binding energies
between Ar and Cl−. Despite not focusing on the relative shift in photoionization cross-
sections, our work regarding the 3s Wigner delays between Ar and Cl− seems to agree with
the conclusions of [62], since the location and appearance of an “induced Cooper minimum”
in Figure 2c was found to be the result of significant coupling to the 3p ionization channels
in Argon. However, more work must be carried out to determine the origin for the relative
shift in the Cooper minima between isoelectronic systems.

4. Conclusions

In this work, we performed RRPA Wigner time delay calculations for the halogen ion
and noble gas pairings of

(
F−, Ne

)
,
(
Cl−, Ar

)
, (Br−, Kr), and

(
I−, Xe

)
. The individual pho-

toionization channels were then averaged to obtain the average delay times for the highest
occupied s, p, and d states. The Wigner delays were plotted with respect to photoelectron
energy in order to account for energy shifts due to differences in binding energies. For
photoelectron energies below 20 eV, negatively charged halogen ions exhibit large negative
Wigner delays that sharply increase. This qualitative difference is due to the absence of a
large Coulomb phase, which is known to dominate the Wigner delay behavior of noble
gases at low energies. Overall, the qualitative time delay behaviors of halogens and noble
gases were found to be similar, with each pairing displaying the same general features
and Cooper minima. The location of the 3p Cooper minimum in Cl− was found to be
shifted ∼6 eV higher than Ar. A similar shift of ∼10 eV was noticed in the 3s Wigner delays
between Ar and Cl−. As atomic mass increased, this relative shift between Cooper minima
was found to decrease, except in the case of the 4d Cooper minima of I−, which displayed
an ∼11 eV shift above that of Xe. The physical process underlying this relative shift is
still not clear, indicating the need for more detailed analysis of negatively charged ions
and noble gas atoms in the regions of Cooper minima. Molecular photoionization studies
are becoming of greater interest to the attosecond community, with Iodine-containing
molecules having already been favored due to iodine’s 4d orbitals. Our findings indicate
that the average p and s Wigner delays of Br− and I− are the most similar to the average d
orbital Wigner delays of their noble gas counterparts Kr and Xe. This implies that Bromine
and Iodine are the best halogens for studying time delay phenomena in molecular systems.
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Appendix A Determining 〈−a||Q(λ)
J ||a〉

RRPA
From Equation (3) in Section 2, it was possible to write the transition amplitude in

terms of a single-electron reduced matrix element, 〈−a ||Q(λ)
J ||a〉, describing the transition

between an initial state,a = nκ, and final state,
−
a =

(
E,

−
κ
)

. In order to generalize this
to the multi-electron case, one must start with Equation (2) and essentially repeat the
same process that was carried out with the single-electron case (i.e., perform a multipole
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expansion of
⇀
A for both the positive frequency perturbations and negative frequency

perturbation terms wi±).

T =
N

∑
i=1

∫
d3r
(

w†
i+

⇀
α ·

⇀
Aui + u†

i
⇀
α ·

⇀
Awi−

)
→ T =

N

∑
i=1

∫
d3r
(

w†
i+

⇀
α ·⇀a (λ)

JM ui + u†
i
⇀
α ·⇀a (λ)

JM wi−
)

(A1)

It was the partial wave expansion given by Equation (40) in Johnson and Lin’s original
paper [49] that, when substituted into Equation (3), resulted in the single-electron transition
amplitude described by Equation (4). By following the same process of describing the
final continuum state as a partial wave expansion, Equation (A1) leads to a generalized
formula for the multi-electronic transition amplitude, which is identical to Equation (4) in
Section 2, with the only necessary modification occurring to D

lj→
−
l
−
j

so that it now includes

the multi-electron reduced matrix element.

D
lj→

−
l
−
j
= i1−

−
l e

iδ−
κ 〈−a ||Q(λ)

J ||a〉 → D
lj→

−
l
−
j
= i1−

−
l e

iδ−
κ 〈−a ||Q(λ)

J ||a〉
RRPA

(A2)

where the reduced matrix element is now described by

〈−a ||Q(λ)
J ||a〉

RRPA
= ∑

=
b

(
〈
−
b+||Q(λ)

J ||b〉+ 〈
−
b−||Q(λ)

J ||b〉
)

(A3)

Therefore, instead of considering only the transition between one set of waves a and
−
a

as was the case before with Equations (4) and (6), we are now summing all of the possible

transitions between the remaining waves b and
−
b under the condition that the waves

b →
−
b vanish in the asymptotic limit r → ∞ . The reduced matrix elements are identical

to the single-electron matrix elements in every way except in terms of the radial integral

R(λ)
J

(−
b±, b

)
, which is given as Equation (46) in [49].

〈
−
b±||Q(λ)

J ||b〉 = (−1)j+1/2[
−
j ][j]

(
j

−
j J

−1/2 1/2 0

)
π

(−
l , l, J − λ + 1

)
R(λ)

J

(−
b±, b

)
(A4)
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Abstract: Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s trans-
verse coherence length must be considered in theoretical models. While traditional scattering theory
often assumes that the projectile has an infinite coherence length, many studies have demonstrated
that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction
is within the perturbative regime. This has led to a surge in studies that examine the effects of the
projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the
projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron
projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored.
However, the recent demonstration of sculpted electron wave packets opens the door to studying
projectile coherence effects in electron-impact collisions. We report here theoretical triple differential
cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss
projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude
of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role
in the probability of ionization. We also demonstrate that projectiles with large coherence lengths
result in cross-sections that more closely resemble their fully coherent counterparts.

Keywords: ionization; coherence; twisted electrons; Laguerre-Gauss beam

1. Introduction

In traditional charged particle scattering theory, the incident projectile is typically
considered to be delocalized with an infinitely large coherence. However, in the last decade,
it has been shown for heavy ion projectiles that a finite projectile coherence length can
significantly alter the collision cross-sections and must be considered when comparing
theoretical results with experimental data [1–10]. In these cases, the width of the impinging
particle wave packet can be similar in size or smaller than the target width.

For heavy-ion collisions, the effect of the projectile’s finite coherence length went
unnoticed for many decades. During this time, experimental measurements were only
possible for total or single differential cross-sections, and theoretical models were limited to
collisions with small perturbation parameters (ratio of projectile charge to speed). In many
cases, the agreement between experiment and theory for less differential cross-sections
under small perturbation parameters was quite satisfactory (e.g., [11,12]).

In more recent years, it became possible to perform fully differential cross-section
measurements, which opened the door to more rigorous theory tests [11,13–19]. In
some of the initial studies of fully differential cross-sections for the ionization of he-
lium by heavy-ion impact, significant discrepancies were observed between experiment
and theory, even at small perturbation parameters where theory was expected to per-
form well [13,14,20–23]. Many possible explanations were suggested [16,20,23–31], but it
was not until the projectile’s coherence properties were considered that a satisfactory expla-
nation was found [1,2,6,7,10]. These experiments demonstrated that projectile coherence
cannot be ignored in heavy-ion collisions. Since that time, numerous theoretical and experi-
mental studies have demonstrated the effects of coherence length on collision cross-sections,
as well as the ability to control the projectile coherence length [1–7,10,32–39].
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A projectile’s transverse coherence length is proportional to its deBroglie wavelength,
which is inversely proportional to projectile momentum [40,41]. Thus, one technique for
controlling projectile coherence is through the alteration of the projectile’s momentum. This
control can be readily achieved with heavy ion projectiles by changing either the projectile’s
energy or ion type (i.e., mass) [1–4,32].

For electron projectiles, the control of coherence length through momentum is more
challenging due to their small mass. Even at high energies, the electron’s wavelength
is large, leading to a coherence length that is generally larger than the target width. It
is, however, still possible to control an electron projectile’s coherence length through
wave packet sculpting. In particular, electron vortex projectiles have been experimentally
demonstrated [42–45], and these sculpted wave packets offer a method to control projectile
coherence in electrons. To date, electron vortex projectiles have been demonstrated in
the form of Bessel and Airy electrons. These sculpted (or twisted) electron wave packets
differ from their traditional plane wave counterparts in several ways. They can have
quantized non-zero orbital angular momentum, which, during a collision, can be trans-
ferred to the target or ionized electrons [46–49]. This leads to possible applications for the
orientation and rotation control of individual atoms and molecules through electron vor-
tex collisions [50–53]. Twisted electrons also have non-zero transverse linear momentum,
which has been shown to alter the distribution of electrons in ionization collisions [54,55].

Several studies on electron-atom and electron-molecule collision cross-sections have
been performed for Bessel projectiles, and they have shown that the use of an electron
vortex projectile alters the collision cross-section [9,46–48,54–64]. For elastic scattering [58],
it was shown that the projectile maintains its vortex properties throughout the collision
process. For excitation collisions [47], orbital angular momentum was transferred from the
projectile to the target atom, resulting in the alteration of the selection rules. For ionization
collisions [46,54,64], it was shown that the orbital angular momentum of the projectile can
be transferred to the ionized electron and that the projectile’s momentum uncertainty alters
the angular distribution of ejected electrons. For the ionization of helium by electron vortex
projectile, it was also shown that the projectile’s transverse momentum could result in the
out-of-plane emission of the ejected electron, an outcome that is not possible with plane
wave electrons [55]. For the ionization of H2, the angular distribution of ionized electrons
was shown to depend on the orbital angular momentum of the projectile [56].

Here, we present theoretical triple differential cross-sections (TDCSs) for the electron-
impact ionization of helium using Laguerre-Gauss and Bessel projectiles. We show that
the localized nature of the LG projectile causes the binary peak to shift to larger ejected
electron angles and enhances the recoil peak. As the projectile becomes less localized, the
cross-sections more closely resemble their delocalized counterparts. We also show that the
atomic target’s transverse position within the projectile beam can significantly alter the
magnitude of the cross-section. Our results demonstrate that LG projectiles can be used to
control the coherence length for electron projectiles and that changing the coherence length
has observable effects on the collision cross-section.

The remainder of the paper is organized as follows. Section 2 contains details of
the theoretical treatment. Section 3 presents the results for the LG and Bessel projectiles.
Section 4 contains a summary of the work.

2. Theory

To calculate the TDCSs, we used the perturbative first Born approximation (FBA) [46,54].
For the projectile energies and scattering geometries used here, this level of approximation
contains the relevant physics and captures the qualitative features of the TDCS. Within the
FBA, the TDCS is proportional to the square of the transition matrix TV

f i

d3σ

dΩ1dΩ2dE2
= μ2

paμie
k f ke

ki

∣∣∣TV
f i

∣∣∣2 (1)
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with
TV

f i = −(2π)3/2< Ψ f |Vi|ΨV
i > (2)

Here, μie is the reduced mass of the He+ ion and the ionized electron, μpa is the reduced

mass of the projectile and target atom,
→
k i is the momentum of the incident projectile,

→
k f is

the momentum of the scattered projectile, and
→
k e is the momentum of the ionized electron.

Equation (2) can be written as an integral over all of position space for each of the particles in
the collision by inserting complete sets of position states. Cylindrical coordinates (ρ1, ϕ1, z1)
are used to represent the projectile wave functions, and spherical coordinates (r2, θ2, ϕ2)
are used for the atomic electron. With this geometry, the projectile momenta can be written

in terms of their respective longitudinal and transverse components as
→
k i = ki⊥ρ̂1i + kizẑ1

and
→
k f = k f⊥ρ̂1 f + k f zẑ1. We consider here the coplanar scattering geometry, in which the

incident projectile, final projectile, and ionized electron momentum lie in the same plane.
The incident projectile propagates along the Z-axis, and the scattered projectile lies in the
x–z plane with its transverse momentum along the positive X-axis.

The initial state wave function is expressed as a product of the incident vortex wave
function χV→

k i

(→
r 1

)
and the target atom wave function Φ

(→
r 2

)

ΨV
i = χV→

k i

(→
r 1

)
Φ
(→

r 2

)
(3)

The incident projectile vortex beam may be either a delocalized Bessel beam or a
localized Laguerre-Gauss beam. One unique feature of both Bessel and LG vortex beams is
that they are non-uniform in the transverse direction with a well-defined center of symmetry.
Therefore, their transverse alignment relative to the atomic target must be considered. To

account for this alignment, an offset vector
→
b (i.e., impact parameter) is introduced such

that
→
b points transversely from the atomic scattering center to the symmetry center of the

impinging vortex projectile (Figure 1).

 

Figure 1. Schematic of incident Bessel projectile impinging on a target atom. Because the Bessel wave
function is not uniform in the transverse direction and has a well-defined center of symmetry, an

offset vector (or impact parameter)
→
b must be defined. Projectiles with two possible values of

→
b 1,

→
b 2

are shown (
→
b 1,

→
b 2). The shaded blue region is the transverse profile of an incident Bessel projectile.

The red arrows indicate the propagation direction of the incident projectile.

The wave function for the Bessel projectile with
→
b = 0 is given by

χV→
k i

(
→
r 1,

→
b = 0

)
= χB→

k i ,l

(
→
r 1,

→
b = 0

)
=

eilϕ1

2π
Jl(ki⊥ρ1)eikizz1 (4)
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where Jl(ki⊥ρ1) is the Bessel function with orbital angular momentum l. This expression
can conveniently be rewritten as a superposition of tilted plane waves [58], such that

χB→
k i ,l

(
→
r 1,

→
b = 0

)
=

(−i)l

(2π)2

2π∫
0

dφkieilφki ei
→
k i ·→r 1 (5)

For an off-center projectile with
→
b �= 0, the Bessel addition theorem [65] can be used

to express the Bessel wave function as

χB→
k i ,l

(
→
r 1,

→
b
)
=

∞

∑
−∞

e−imϕb Jm(ki⊥b)
eikizz
√

2π
Jl+m(ki⊥r1)

eilϕ1√
2π

(6)

This can, in turn, be expressed in terms of a superposition of plane waves using
Equation (5):

χB→
k i ,l

(
→
r 1,

→
b
)
=

∞

∑
−∞

e−imϕb Jm(ki⊥b)
(−i)l+m

(2π)2

2π∫
0

dφkiei(l+m)φki ei
→
k i ·→r 1 (7)

The LG beam for
→
b = 0 is given by [58]:

χV→
k i

(
→
r 1,

→
b = 0

)
= χLG→

k i ,l

(
→
r 1,

→
b = 0

)
=

N
w0

eilϕ1

(
ρ1
√

2
w0

)|l|
L|l|

n

(
2ρ2

1
w2

0

)
e−2ρ2

1/w2
0

eikizz1√
2π

(8)

where N is a normalization constant1, w0 is the beam waist, and L|l|
n

(
2ρ2

1
w2

0

)
is an associated

Laguerre polynomial with orbital angular momentum l and index n that are related to the
number of nodes for a given l. The LG wave function can be written as a convolution of
Bessel functions over transverse momentum [58]:

χLG→
k i ,l

(
→
r 1,

→
b = 0

)
=

N√
2

eilϕ1

n!

∞∫
0

dki⊥ e−w2
0k2

i⊥/8
(

w0ki⊥√
8

)2n+l+1
Jl(ki⊥ρ1)

eikizz1√
2π

(9)

Using Equation (4), the LG wave function can now be expressed as a convolution of
Bessel projectile wave functions over transverse momentum:

χLG→
k i ,l

(
→
r 1,

→
b = 0

)
=

N
√

π

n!

∞∫
0

dki⊥e−
k2
i⊥w2

0
8

(
ki⊥w0√

8

)2n+l+1
χB→

k i ,l

(
→
r 1,

→
b = 0

)
(10)

For an off-center LG projectile, Equation (10) becomes

χLG→
k i ,l

(
→
r 1,

→
b
)
=

N
√

π

n!

∞∫
0

dki⊥e−
k2
i⊥w2

0
8

(
ki⊥w0√

8

)2n+l+1
χB→

k i ,l

(
→
r 1,

→
b
)

(11)

The transverse coherence Δρ of the incident projectile can be defined using quantum
mechanical uncertainty:

Δρ =
[〈

ρ2
〉
−
〈

ρ2
〉]1/2

(12)

For Bessel projectiles and plane waves, the transverse uncertainty is infinite, but for
LG projectiles, when using Equation (8), it can be shown that the uncertainty is linear with
respect to the beam waist:

Δ ρ ∼ w0 (13)
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Some example values of the uncertainty for LG projectiles used here are listed in
Table 1. For comparison, the transverse coherence length for atomic helium is Δρ = 0.84 a.u.

Table 1. Transverse coherence length of LG projectiles in atomic units with n = 0. Values were
calculated using Equation (12).

l = 0 l = 1 l = 2

w0 = 0.5 a.u. 0.093 0.13 0.16

w0 = 2 a.u. 0.37 0.52 0.64

w0 = 4 a.u. 0.75 1.05 1.28

w0 = 8 a.u. 1.49 2.09 2.55

As is standard for single ionization collisions with fast projectiles [66–74], the initial
state target helium atom is represented with a single active electron wave function:

Φ
(→

r 2

)
=

Z3/2
e f f√
π

e−Ze f f r2 (14)

where Ze f f = 1.3443 [75,76] is the effective nuclear charge of the 1-electron helium atom
and is chosen to give the correct ionization potential of helium.

The final state wave function is a product of the scattered projectile wave function
χ→

k f

(→
r 1

)
, the ionized electron wave function χ→

k e

(→
r 2

)
, and the post-collision Coulomb

interaction (PCI) Mee:
Ψ f = χ→

k f

(→
r 1

)
χ→

k e

(→
r 2

)
Mee (15)

We assume that the scattered projectile leaves the collision as a plane wave given by

χ→
k f

(→
r 1

)
=

ei
→
k f ·

→
r 1

(2π)3/2 (16)

The perturbation Vi is the Coulomb interaction between the projectile and target atom,
which is given by

Vi =
−Ze f f

r1
+

1
r12

(17)

The ionized electron is modeled as a Coulomb wave:

χ→
k e

(→
r 2

)
= Γ(1 − iη)e−

πη
2

ei
→
k e ·→r 2

(2π)
3
2

1F1

(
iη, 1,−iker2 − i

→
k e·→r 2

)
(18)

where Γ(1 − iη) is the gamma function and η = Ze f f Ze/ke is the Sommerfeld parameter.

We note that the use of Ze f f = 1.3443 in Vi and χ→
k e

(→
r 2

)
maintains consistency with

the treatment of the initial state wave function but does not satisfy asymptotic boundary
conditions. This treatment has been used successfully previously for neutral atoms, such
as carbon. To be sure that the choice of Ze f f does not significantly alter the TDCSs, we
performed a few calculations with Ze f f = 1 for the perturbation and the Coulomb wave
and found nearly identical TDCSs to those with Ze f f = 1.3443.

The post-collision Coulomb repulsion between the two outgoing final state electrons
is included through the use of the Ward-Macek factor [77]:

Mee = Nee

∣∣∣∣∣1F1

(
i

2k f e
, 1,−2ik f erave

)∣∣∣∣∣ (19)
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where

Nee =

√√√√√ π

k f e

(
e

π
k f e − 1

) (20)

The relative momentum is k f e = 1
2

∣∣∣∣→k f −
→
k e

∣∣∣∣ and the average coordinate rave =

π2

16ε

(
1 + 0.627

π

√
ε ln ε

)2
, where ε =

(
k2

f + k2
e

)
/2 is the total energy of the two outgoing electrons.

We present the TDCSs for both a fixed impact parameter and an integration of the
TDCSs over the impact parameter. The use of a fixed impact parameter allows for the
study of projectile-target alignment effects but is not currently experimentally feasible. In a
realistic experiment, the projectile’s impact parameter cannot be determined or controlled,
and theory must integrate over the impact parameter for an accurate comparison with the
experiment. For a Bessel projectile, the TDCS integrated over the impact parameter is given
by [46,59]:

d3σB
dΩ1dΩ2dE2

∣∣∣∣∣
int b

= μ2
paμie

k f ke

kiz(2π)

∫ ∣∣∣TPW
f i

∣∣∣2dφki
(21)

where TPW
f i is the transition matrix for an incident plane wave.

For an LG projectile, the TDCS integrated over the impact parameter is given by

d3σLG
dΩ1dΩ2dE2

∣∣∣∣∣
int b

= μ2
paμie

k f ke

ki

∫ e−
k2
i⊥w2

0
4

k2
i⊥

(
k2

i⊥w2
0

8

)2n+l+1 ∣∣∣TPW
f i

∣∣∣2ki⊥dki⊥dφki
(22)

3. Results

For plane wave projectiles, the shape of the TDCS can largely be explained by classical
momentum conservation. There is a large, dominant forward binary peak that results from
a single collision between the projectile and the atomic electron. This binary peak is located

along the direction of the momentum transfer vector
→
q =

→
k i −

→
k f . Directly opposite the

binary peak is a smaller recoil peak that results from the atomic electron first undergoing a
binary collision with the projectile and then a second deflection by the nucleus that results
in backward emission. The top plot in Figure 2 shows the coplanar TDCS as a function of
ejected electron angle for a 1 keV plane wave electron colliding with helium. The ionized
electron energy was 100 eV, and the scattering angle was 100 mrad (5.7◦). These energies
and scattering angles ensure that the kinematics are within the applicable range of the
FBA. The binary and recoil peaks are clearly visible along and opposite to the momentum
transfer vector direction (θq = 54◦).

The transverse profiles of the projectile beam and target atomic electron density are
shown in Figure 3 for different projectile orbital angular momenta l and beam waists w0.
Note that the l = 1 projectile profiles are similar to the l = 2 profiles and, therefore, are

not shown in Figure 3. As the impact parameter
→
b increases, the relative distance between

the center of the projectile beam and the atomic center increases. An increasing impact
parameter is depicted in Figure 3 as the projectile beam shifting to the right relative to the
atomic center (blue arrow in Figure 3a). Figure 3 shows that the helium target electron
density (red) decays exponentially with a maximum density at the nucleus (origin). Figure 3
also shows the normalized overlap between the transverse beam profile and the atomic
electron density as a function of impact parameter calculated using

∫
|χV→

k i
|2|Φ|2dρ (23)

with ϕb = 180◦.
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Figure 2. TDCSs for plane wave projectiles (top row) and LG projectiles (rows 2–7). For LG projectiles,
the TDCSs are plotted as a function of beam waist w0 and ejected electron angle θe for different impact
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parameters and orbital angular momenta (labeled in figure). Row 2 shows the TDCSs integrated over
the impact parameter, and rows 3–7 show the TDCSs for fixed values of the impact parameter with
ϕb = 180◦. The TDCS is shown in color, with the warmer colors representing larger TDCSs.

 

Figure 3. (a,e,i,c,g,k) Transverse profiles of the He(1s) electron density (red) and the LG beam (blue)
with n = 0 , orbital angular momentum l, and beam waist w0 (in a.u.) as a function of transverse
distance ρ (in a.u.). All profiles are normalized to 1 to provide a qualitative comparison. The target

atomic electron density is the same for all cases. As the impact parameter
→
b changes, the projectile

beam shifts right, as denoted by the blue arrow in (a). (b,f,j,d,h,l) Normalized overlap between the
transverse LG beam profile and the target atom electron density as a function of the impact parameter
b (in a.u.) calculated using Equation (23).

For l = 0, the beam profile is Gaussian, and at small values of the beam waist, the
overlap between the target electron density and projectile beam is sharply peaked in b.
As the beam waist increases, the overlap broadens in b (Figure 3b,f,j). In the case of large
w0, it is expected that the TDCSs will change more slowly with b. It is also expected that
for large w0, the TDCS for an LG projectile will be similar to that of a plane wave since
the projectile has become delocalized enough to completely overlap the target out to large
radial distances. As the impact parameter increases, the beam profile shifts to the side, and
the amount of overlap changes. For a small beam waist, the maximum overlap occurs for
an impact parameter of approximately b = 0.5 a.u. (Figure 3b). For larger beam waists,
the maximum overlap occurs at increasing values of b (Figure 3f,j). Note that for l = 0,
the maxima of the projectile and target electron densities align for b = 0; however, the
overlap is maximum at b �= 0. This is due to the contribution to the overlap of the tail of
the projectile density (only visible on logscale), causing a maximum in the overlap for a
finite value of b.

For l = 2, the beam profile has a node at the origin, and the width of this node
increases with increasing beam waist. Additionally, the width of the beam peak increases
with increasing beam waist (Figure 3c,g,k). For on-center collisions, the largest overlap of
the beam and the atomic electron density occurs for a small beam waist (Figure 3c). As
the beam waist increases, the central node becomes wider, and the overlap with the target
electron density decreases. For off-center collisions, as the impact parameter increases, the
overlap increases to a maximum value before decreasing at large b (Figure 3h,l). The value
of b for which the overlap is maximum depends on the specific value of the beam waist but
occurs near the radial distance where the LG beam density is maximum.
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3.1. LG Projectiles with Zero Orbital Angular Momentum

In rows two through seven in Figure 2, we present the TDCSs for n = 0 LG projectiles
with different beam waists, impact parameters, and orbital angular momenta. We note that
the results for n �= 0 are qualitatively similar to those with n = 0 and are not shown here.
In Figure 2, the TDCS magnitude is presented in color, with the warmer colors representing
larger TDCS values. The vertical axis in each panel shows the beam waist, while the
horizontal axis depicts the ejected electron angle. The second row shows TDCSs integrated
over the impact parameter, while rows three–seven show the TDCSs for a fixed impact
parameter (labeled in the left column). For the TDCSs with a fixed impact parameter, we
assume that the projectile center is shifted by a distance of b along the negative x-axis (i.e.,
ϕb = 180◦), and note that the TDCSs calculated for ϕb = 0◦ were identical to those for

ϕb = 180◦. For the TDCSs integrated over
→
b , all radial values and azimuthal angles were

included in the integration. Each column shows the TDCSs for a different orbital angular
momentum (labeled above row two).

Consider first the on-center b = 0 and zero orbital angular momentum l = 0 TDCSs
(third row, first column in Figure 2). In this case, the beam has a Gaussian transverse profile
with no nodes. The largest cross-section occurs with a beam waist of w0 = 1, with the
binary peak located at an ejected electron angle of 85◦. As the beam waist increases, the
binary peak location shifts to smaller angles until it is located at the plane wave momentum
transfer direction of 54◦. This indicates that for a large beam waist, the TDCS more closely
resembles that of the plane wave TDCS, as predicted from the complete overlap between
the beam and target electron density. The shift of the binary peak from the momentum
transfer direction for small beam waists could be caused by two factors—the PCI between
the outgoing electrons or the projectile’s non-zero transverse momentum. Given the large
relative momentum between the two outgoing electrons, it is unlikely that the shift in binary
peak location is due to the PCI, and a calculation that does not include PCI (not shown)
confirmed this expectation. Therefore, we conclude that the shift in binary peak location
is due to the transverse momentum of the projectile. Additional details are provided in
Section 3.5.

For off-center collisions and zero angular momentum (rows four–seven, column one in
Figure 2), the maximum TDCS occurs with increasing beam waist as the impact parameter
increases. For b ≥ 1, the TDCS only becomes observable in the colormap plots for w0 ≥ b
when the overlap between the beam profile and target electron density is non-negligible.
Because the TDCS with a large impact parameter is observable only when the beam waist
is large, the coherence length of the projectile is also necessarily large. This leads to a
more plane wave-like TDCS shape, with the binary peak located at the momentum transfer
direction. As the impact parameter increases, the overall magnitude of the TDCS decreases
(see changing color scale for different rows), indicating that ionization becomes less likely
for larger impact parameters. This correlates with the amount of overlap between the
projectile and target electron density. Regardless of beam waist, the overlap decreases with
increasing impact parameters (see Figure 3b,f,j).

For most values of w0 and b, there is almost no recoil peak observable, indicating that
rescattering by the nucleus is unlikely. This is primarily due to the energy of the ejected
electron, which is fast enough to not experience much Coulomb pull from the nucleus. The
notable exception is for b = 1 and small beam waists, in which case the recoil peak is larger
than the binary peak. This corresponds to a narrow projectile beam impinging on the target.
For a small beam waist, there is a maximum in the overlap near b = 1 to 1.5 a.u., which
corresponds with the kinematical conditions that yield an enhanced recoil peak.

For the TDCSs integrated over
→
b , a strong binary peak is observed for nearly all

w0. At the smallest beam waist values (w0 � 0.5 a.u.), the binary peak is very small and
virtually invisible on the scale used in Figure 2. As the beam waist increases, a narrow
binary peak is visible near θe = 90◦. This binary peak broadens and shifts to approximately
the plane wave binary peak location for w0 ≥ 4 a.u. For a beam waist greater than 4 a.u.,
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the transverse coherence length of the projectile is equal to or larger than that of the target
atom. Therefore, the incident projectile wave packet fully overlaps the target, and coherent
emission of the ionized electron occurs, as in the case of a plane wave or Bessel wave. This
leads to the TDCSs for LG projectiles with large transverse coherence resembling the TDCSs
of the plane wave and Bessel projectiles.

3.2. LG Projectiles with Non-Zero Orbital Angular Momentum

For on-center collisions with non-zero orbital angular momentum (row three, columns
two and three in Figure 2), the binary and recoil peaks are more similar in magnitude, and
both peaks are more localized to small beam waists. This is consistent with conditions for
maximum overlap between the projectile density and the atomic electron density. For a
large beam waist, the node in the center of the projectile density results in very little overlap
between the projectile and the target electron density, resulting in very small TDCSs.

For small beam waists, the binary and recoil peaks are located at approximately
90◦ and 270◦, which is shifted from the classical momentum transfer directions. We
have previously shown that for delocalized Bessel beam projectiles, the influence of the
transverse momentum of the projectile alters the angular distribution of the TDCS [46,54].
Because the TDCS for a Bessel beam was represented as a superposition over tilted plane
waves, the TDCS resulting from the smallest momentum transfer dominated the sum. This
determined the location of the binary and recoil peaks, which were shifted to approximately
90◦ and 270◦. For LG beams, the transition matrix is a convolution over Bessel transition
matrices, and therefore the same effect is present here, but with some averaging of location,
as discussed in Section 3.5.

As the beam waist increases, the recoil peak decreases in magnitude more rapidly than
the binary peak. This is due to the projectile probing the outer part of the target electron
wave function, where the influence of the nucleus is reduced. For l = 2, the binary and
recoil peak magnitudes are more similar than for l = 1, indicating that larger projectile
orbital angular momentum results in more secondary scattering from the nucleus and, thus,
a larger recoil peak. As was the case for collisions with zero orbital angular momentum,
for off-center collisions with non-zero orbital angular momentum, the magnitude of the
cross-sections decreases with increasing impact parameter.

The TDCSs averaged over the impact parameter for non-zero orbital angular mo-
mentum show similar qualitative features to those with zero orbital angular momentum.
The width of the binary peak remains narrow for larger beam waists as orbital angular
momentum increases, despite the fact that the transverse coherence length is larger for
larger values of orbital angular momentum. This indicates that while transverse coherence
length alters the magnitude and binary peak locations of TDCSs, it is not the only factor.
Orbital angular momentum also plays a role in the ejected electron distribution.

3.3. Bessel Projectiles with Zero Orbital Angular Momentum

LG projectiles differ from their plane wave counterparts not just in their localization
but in their ability to carry quantized orbital angular momentum. For l �= 0, a comparison
of TDCSs for LG projectiles with Bessel projectiles can more reasonably isolate localization
effects because the LG and Bessel projectiles can carry the same orbital angular momentum.
Unlike the localized LG projectiles, Bessel projectiles have infinite transverse extent, and
the beam waist parameter does not exist. Comparison of TDCSs for LG and Bessel pro-
jectiles allows for the study of coherence effects between projectiles with the same orbital
angular momentum.

Bessel projectiles are characterized by their orbital angular momentum l and their
opening angle α, which is related to the incident transverse momentum by

k⊥i = ki sin α. (24)

90



Atoms 2023, 11, 79

As the opening angle increases, the transverse momentum increases and the peaks
in the density become narrower. For α = 0 and l = 0, the Bessel projectile is identical to a
plane wave.

In Figure 4, we plot the normalized transverse projectile density for Bessel projectiles
(blue) and the target electron (red). Also shown is the normalized overlap between the
projectile and target electron density as a function of impact parameter. As with LG
projectiles, the overlap between the Bessel projectile and the target atom varies significantly
as orbital angular momentum and opening angle change. In general, the transverse profile
of the Bessel projectile has a series of decreasing peaks as the transverse distance increases.
For l = 0, there is a single peak at the center of the beam, but for l �= 0, there is a node.
Unlike the localized LG projectile, the overlap between the Bessel projectile and the target
electron density can be significantly non-zero for large values of the impact parameter. This
is most notable for small opening angles, where the overlap is appreciable beyond b = 100
(Figure 4b,d).

 
Figure 4. (a,e,i,c,g,k) Transverse profiles of the He(1s) electron density (red) and the Bessel beam
(blue) with orbital angular momentum l and opening angle α (in rad) as a function of transverse
distance ρ (in a.u.). All profiles are normalized to 1 to provide a qualitative comparison. The target

atomic electron density is the same for all cases. As the impact parameter
→
b changes, the projectile

beam shifts right, as denoted by the blue arrow in (a). (b,f,j,d,h,l) Normalized overlap between the
transverse Bessel beam profile and the target atom electron density as a function of impact parameter
b (in a.u.) calculated using Equation (23).

For zero orbital angular momentum, Figure 4 shows that for small opening angles, the
central peak is quite broad and the overlap between the beam and the target is large. In this
case, the TDCSs are expected to resemble those of the plane wave and the LG projectile with
large beam waist. As the impact parameter increases, the overlap between the target and
the beam decreases until one of the nodes of the Bessel beam overlaps significantly with
the target electron density, creating a minimum in the overlap. The overlap then increases
again as the next lobe in the Bessel wave function overlaps the target density, creating a
peak in the overlap. For each side lobe of the Bessel wave function that overlaps the target
density, an additional peak structure is present in the overlap (Figure 4b).

As the opening angle increases, the central peak of the Bessel beam narrows and the
overlap with the target electron density decreases. For larger values of α, as the impact
parameter increases, the peak structures observed in the overlap are less pronounced
(Figure 4j). The overlap function for α = 0.4 most closely resembles that of the LG projectile
with w0 = 1, and thus the TDCSs for these parameters are expected to be similar.

For non-zero orbital angular momentum, the node at the center of the projectile
density is largest for small opening angles (Figure 4c). This results in nearly zero overlap
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between the target electron density and the projectile for on-center collisions with small
opening angles. As the impact parameter increases for small α, a series of peak structures
are observed in the overlap, each corresponding to a side lobe of the Bessel projectile
overlapping the target (Figure 4d).

As opening angle increases, the width of the central node decreases and the overlap
between projectile and target electron density increases for on-center collisions. At the
largest opening angle shown in Figure 4k,l, the largest overlap is observed for collisions
with a small impact parameter, contrary to what is present for small opening angles.
For large opening angles, as the impact parameter increases, the overlap decreases more
rapidly than for small opening angles (Figure 4l). In general, for l �= 0, the overlap for
Bessel projectiles with large opening angles most closely resembles that of LG projectiles
with small beam waists and the TDCSs for these parameters are expected to be similar.
As was the case with LG projectiles, the overlap is crucial to interpreting the structures
observed in the TDCSs for Bessel projectiles.

Figure 5 shows the TDCSs for the ionization of helium by Bessel projectiles as a
function of the opening angle and ejected electron angle. Similar to Figure 2, row one
shows the TDCS integrated over impact parameter. For Bessel projectiles, the integration
over impact parameter washes out any dependence on orbital angular momentum, and
the TDCS is independent of l. Rows two–six show the TDCSs for a fixed impact parameter
(labeled in the left column), and each column shows results for a different orbital angular
momentum (labeled above row two).

Consider first the on-center b = 0 and zero orbital angular momentum l = 0 TDCSs
(first row, first column in Figure 5). In this case, there is a central lobe in the projectile
density (Figure 4a,e,i). The TDCSs are largest for small opening angles and closely resemble
those of the plane wave (Figure 2). There is a dominant peak located at the momentum
transfer direction and no noticeable recoil peak. As the opening angle increases, the cross-
sections drop in magnitude due to the reduced overlap between the projectile and target
electron density. For off-center collisions (rows three–six, column one in Figure 5), as the
impact parameter increases, there is not much change in the TDCS shape or magnitude.
For α = 0 and l = 0, the Bessel wave function is identical to a plane wave, and, therefore,
the TDCSs at a small opening angle with l = 0 closely mirror the TDCSs for a plane wave
projectile, regardless of impact parameter. This results in the binary peak at the momentum
transfer direction that is observed in the TDCSs at small α for fixed impact parameters
in Figure 5. As the impact parameter increases, the TDCS drops off more quickly with
increasing opening angle, which is again consistent with the decreased overlap between
the projectile and target atom densities.

3.4. Bessel Projectiles with Non-Zero Orbital Angular Momentum

For the on-center projectiles with non-zero orbital angular momentum (row two,
columns two and three in Figure 5), the peaks in the TDCS occur at larger values of α, and,
in some cases, a small recoil peak is present. This is directly related to the overlap between
the projectile and target electron density. For the Bessel projectiles with l �= 0, there is a
node at the center of the projectile density. For small α values, this node is quite large, and
there is almost no overlap between the projectile and target electron density. It is only for
α > 0.1 rad that some overlap occurs. For even larger values of α, the TDCS again decreases
in magnitude as the nodes become narrower and the overlap decreases. For both l = 1 and
l = 2, there is a small binary peak present for α > 0.1 rad. This binary peak shifts to larger
ejected electron angles and increases in magnitude as the opening angle increases. This
effect was observed in some of our previous calculations for the ionization of hydrogen by
Bessel projectile and was traced to the transverse momentum component of the incident
projectile [54]. At a large opening angle, a recoil peak is present, and its location moves
to smaller ejected electron angles as the opening angle increases. The shift in recoil peak
location with increasing opening angle can also be traced to the transverse momentum of
the incident projectile. In fact, as we showed in [54], at very large values of α, the dominant
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momentum transfer direction occurs at θe > 180◦, and what appears to be the recoil peak
is, in reality, the binary peak. Thus, the observed TDCS peak at θe ≈ 270◦ for a large α is, in
fact, the binary peak.

Figure 5. TDCSs for Bessel projectiles plotted as a function of opening angle α and ejected electron
angle θe for different impact parameters and orbital angular momenta (labeled in figure). The first
row contains the TDCSs integrated over the impact parameter. Rows two–six show the TDCSs for
fixed impact parameter (ϕb = 180◦) as labeled in the figure. The TDCS is shown in color, with the
warmer colors representing larger TDCSs.
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As the impact parameter increases, the magnitude of the TDCS decreases, and very
few features are observable in the color plots for b = 0.5 or 1 a.u. As the impact parameter
increases beyond 1 a.u., the side lobes of the Bessel projectile, again, overlap with the
target electron density, resulting in clearly observable binary peak structures. At the largest
impact parameter of b = 4 a.u., oscillations are observed in the binary peak magnitude
as the opening angle increases. These are a direct result of the side lobes of the Bessel
projectile overlapping the target electron. Each peak in the TDCS corresponds to one
of the Bessel lobes overlapping the target. As the opening angle increases, the location
of the binary peak shifts to larger ejected electron angles. This can, again, be traced
to the projectile’s transverse momentum, which increases with the opening angle. As
the projectile’s transverse momentum increases, the location of the classically predicted
momentum transfer direction changes, which shifts the location of the binary peak. Recoil
peak structures are observed again at large opening angles for non-zero impact parameters,
and at b = 4 a.u., oscillations are observed in the recoil peak magnitude as the opening
angle increases. As was the case with the binary peak magnitude oscillations, the recoil
peak oscillations are due to the Bessel wave function side lobes. Additionally, as was the
case for b = 0, the recoil peak observed for b = 4 a.u. is, in reality, the binary peak.

The TDCSs integrated over the impact parameter show a forward binary peak at the
plane wave momentum transfer direction, which then shifts to larger ejected electron angles
as the opening angle increases. Because the TDCSs integrated over the impact parameter
include contributions from all impact parameters and orbital angular momentum values,
some of the features can be traced to TDCS contributions from specific impact parameters
or orbital angular momentum values. For example, the binary peak at small α at the plane
wave momentum transfer direction is predominantly caused by the l = 0 TDCSs, while the
binary peak at larger α values is a result of the TDCSs for projectiles with non-zero l. The
enhanced recoil peak at the largest opening angles also results from TDCSs of projectiles
with non-zero orbital angular momentum.

3.5. Relation of LG to Bessel Projectiles

As Equation (11) shows, the LG projectile can be written as a convolution over the
transverse momentum, with each Bessel wave function weighted by the factor

e−
k2
i⊥w2

0
8

(
ki⊥w0√

8

)2n+l+1
(25)

For large values of the beam waist, this weighting factor becomes more localized in
ki⊥ at smaller values of the transverse momentum. This results in the convolution favoring
a few Bessel wave functions with small transverse momenta (i.e., small α). Because these
are the Bessel wave functions that most resemble the plane wave function, the resulting
LG projectile is delocalized in space with a large coherence length. In other words, the
highly localized weighting factor of Equation (25) in transverse momentum space results
in a delocalized wave function in position space. This weighting results in the TDCSs for
LG projectiles with large beam waists being a sort of average over the Bessel TDCSs for
small α. Therefore, the LG TDCSs at large w0 resemble those of the Bessel projectile at small
opening angles with a strong binary peak and negligible recoil peak.

For small values of the beam waist, the weighting factor in Equation (25) is a broader
function of ki⊥ and centered at larger values of transverse momentum. This results in many
Bessel wave functions with large transverse momenta contributing to the convolution. In
this case, the broad weighting factor of Equation (25) in transverse momentum space results
in a localized wave function in position space. Thus, the LG TDCSs at small w0 are similar
to an average over the Bessel TDCSs at large α with approximately equal magnitude binary
and recoil peaks.
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4. Summary

We have presented TDCSs for the ionization of helium by LG and Bessel electron
projectiles. A comparison of the localized LG TDCSs and the fully coherent, delocalized
Bessel TDCSs provides insight into the role of projectile coherence. This allowed for the
direct study of coherence effects independent of orbital angular momentum, which is not
possible if plane wave projectiles are used. For LG projectiles, we examined the effects of
transverse coherence length, orbital angular momentum, and the impact parameter on the
TDCSs. The transverse coherence length was altered by changing the projectile beam waist.
For localized projectiles with a small coherence length, the location of the binary peak was
shifted to larger ejected electron angles from the classical momentum transfer direction.
Additionally, a small recoil peak was observed. As the coherence length increased, the
recoil peak magnitude decreased, and the location of the binary peak shifted to the classical
momentum transfer direction. At a large coherence length, the TDCSs resembled that of the
plane wave and Bessel TDCSs for a completely delocalized projectile. A comparison of the
TDCSs for the LG and Bessel projectiles with non-zero orbital angular momentum showed
that a localized projectile resulted in an enhanced recoil peak, which was most pronounced
for larger orbital angular momentum values. These features were traced to the projectile’s
transverse momentum and the different contributions of the Bessel wave functions that
result from writing the LG wave function as a convolution over transverse momentum.

The overlap between the projectile’s transverse density and the target electron’s density
correlated with the magnitude of the TDCSs. For a large overlap, a large TDCS was
observed. The impact parameter, beam waist, and orbital angular momentum all affected
the overlap and, correspondingly, the conditions that resulted in large cross-sections. In
general, a large cross-section was observed when the projectile’s maximum density aligned
with the target electron’s maximum density.

For Bessel projectiles, the location and magnitude of the binary and recoil peaks were
dependent upon the opening angle of the incident projectile momentum. As the opening
angle increased, the binary peak shifted to larger ejected electron angles, while the recoil
peak shifted to smaller angles. This was expected from previous studies on ionization by
Bessel projectiles and had been shown to result from the projectile’s transverse momentum.
By writing the LG wave function as a convolution of the Bessel wave functions over the
transverse momentum, we showed that the features of the Bessel TDCSs contributed to
the shape of the LG TDCSs. In particular, at a small coherence length, many Bessel wave
functions with large transverse momentum contribute, resulting in an enhanced recoil
peak for LG projectiles. In contrast, for a large coherence length, only a few Bessel wave
functions with small transverse momentum contribute, and the LG TDCSs resembled the
plane wave TDCS.

Overall, our results demonstrate that coherence length can be controlled for electron
projectiles through the use of sculpted wave packets and that the shape and magnitude of
the TDCSs depend on the projectile coherence length. A comparison of TDCSs for Bessel
and LG projectiles isolated the effects of coherence from orbital angular momentum and
demonstrated that coherence effects persist regardless of l. We anticipate that these results
may open the door to future studies on projectile coherence effects using sculpted electrons,
in particular for molecular targets where the interference effects are strongly dependent
upon projectile coherence.
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Abstract: The fragmentation dynamics of the COq+
2 (q = 2, 3) molecular ions formed under the impact

of 1 MeV protons is studied using a recoil ion momentum spectrometer equipped with a multi-hit
time- and position-sensitive detector. Both two-body and three-body fragmentation channels arising
from the doubly and triply ionized molecular ions of CO2 are identified and analyzed. Kinetic
energy release (KER) distributions have been obtained for various channels. With the help of Dalitz
plots and Newton diagrams concerted and sequential processes have been assigned to observed
fragmentation channels. In addition, angular correlations are used to determine the molecular
geometry of the precursor molecular ion. It is found that the symmetric breakup into C+ + O+ + O+

involves asymmetric stretching of the molecular bonds in CO3+
2 prior to dissociation via concerted

decay implying the fact that collisions with 1 MeV proton induces an asynchronous decay in CO2.

Keywords: recoil ion momentum spectroscopy; coulomb fragmentation; coincidence imaging

1. Introduction

Over the past few decades, the fragmentation dynamics of multiply charged molecular
ions have been studied extensively. These studies are of fundamental interest as they help
identify and understand the electronic states of molecular ions. Knowledge of these electronic
states works as a verification tool for state-of-the-art theoretical models. These studies are also
crucial in plasma and fusion research [1], atmospheric and space physics [2], and radiation
therapy [3,4]. When one or more electrons are stripped off from a diatomic or polyatomic
molecule, a molecular ion is produced, which might be in a metastable or unstable state de-
pending upon the excitation energy available to the system. A multiply charged (charge state
more than 2) molecular ion usually goes to an unstable state and eventually fragments into
atomic ions and neutrals due to the Coulomb repulsion between the ionic cores. Investigating
the fragmentation dynamics of these molecular ions are important to identify the various
electronic states that these molecular ions access after ionization/excitation or both. The
fragmentation dynamics of these molecular ions can be studied by detecting the fragments
in coincidence and measuring their momenta and KER distributions. The KER distributions
of the individual fragments and their angular correlations are crucial to determine the ge-
ometry of the molecular ions as well as to detect nuclear motions prior to fragmentation.
The dissociation dynamics of a multiply charged polyatomic molecular ion is much more
complicated compared to diatomic ions due to the presence of multiple bonds. The carbon
dioxide molecule is a prototype system for understanding few-body dissociation dynamics
under the impact of particles or photons owing to simple linear geometry of the molecule.
Fragmentation dynamics of CO2 has been studied experimentally using highly charged ions at
slow [5], intermediate [6], and swift velocity [7–10], synchrotron radiation [11,12], femtosecond
laser pulse [13–15], as well as slow protons [16] and low energy electrons [17–19]. In addition,
extensive theoretical studies [17,20–22] complement the experimental results. The CO2+

2 and
CO3+

2 molecular ions are isoelectronic to the isomeric pair NCN and CNN radicals, which
also have a linear geometry in the ground state. In photofragmentation studies, it has been
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shown that N2 production from both CNN and NCN radicals is a dominant photodissoci-
ation channel [23–25]. This channel is attributed to the bent intermediate states of the free
radicals. The NCN and CNN radicals are important in combustion chemistry [24]. Recently,
a similar fragmentation channel for CO2+

2 molecular ions producing O+
2 ionic fragments has

also been observed in laser-induced ionization and subsequent dissociation study [26]. The
C-

3 radical is also part of the same isoelectronic family. It is relevant for plasma physics and
hydrocarbon chemistry and is even found in the interstellar space [27,28]. Thus, the study of
dissociation dynamics of COq+

2 (q = 2, 3) molecular ions can provide important information
about different electronic states of these radicals.

The simplest fragmentation mechanism for a triatomic molecule is the one where
the two molecular bonds break in a single step and the charged fragments move away
due to mutual Coulomb repulsion. This type of fragmentation is termed as concerted
fragmentation [5]. Additionally, the two bonds can break one after another. This decay
is termed as sequential fragmentation. In the first step, the parent molecular ion under-
goes a two-body breakup. Subsequently, the daughter molecular ions further decay into
ionic or neutral fragments. During the dissociation, the unstable molecular ion can also
rotate as well as vibrate about its equilibrium geometry. The typical time period for the
rotational and vibrational motion of molecular ions is ≈10−12 s and 10−14 s, respectively.
The fragmentation can happen within or beyond these typical time scales. Hence, we can
distinguish between the two extremes of a three body fragmentation, namely concerted and
sequential decay, by comparing the two time scales. One is the time difference (Δt) between
the cleavage of the two molecular bonds and the other is the mean rotational period τrot
of the primary daughter molecular ion [29]. If (Δt) >> τrot then the three body decay is
called sequential. On the other hand, for a concerted decay, we have (Δt) << τrot. As Δt
approaches zero we reach the asymptotic limit of a concerted decay and with Δt = 0 a
three body decay is called a synchronous concerted decay. A situation may also arise where
0 << Δt << τrot. This is termed as asynchronous concerted decay. The two concerted
decay mechanisms can be illustrated using the symmetric and antisymmetric stretching
modes of a linear triatomic molecule [30]. The symmetric stretching causes both the bonds
to elongate in phase and eventually break exactly at the same time. This results in Δt being
zero, which is the characteristic of a synchronous concerted decay. In the antisymmetric
stretching mode, the elongation of one bond happens together with the contraction of the
other. If τvib is the characteristic vibrational period of the parent molecular ion, then during
a complete fragmentation process, the second bond will break half a vibrational period
later than the first one. As a result Δt would be τvib/2, characteristic of an asynchronous
decay. Hence, in this type of decay, the bonds break in a time span such that the molecular
vibration precedes the fragmentation process.

Sequential decay can be further classified into two processes. (a) Initial charge sep-
aration s(i) , where an atomic ion and a diatomic cation are released in the first step by
the break-up of one of the bonds and (b) deferred charge separation s(d), where a neutral
atom is released in the first step. The complete kinematics of a concerted decay can only
be inferred when all three fragment ions are detected in coincidence. However, if there
is a neutral fragment, such as in s(d) process, the 3d momenta of this neutral can only
be deduced indirectly provided the other two ions are detected in coincidence and their
momenta are known completely.

In their pioneering study, Neumann et al. [5] have shown that the amount of energy
deposited into a system is the key parameter to determine which pathway will dominate
during a molecular fragmentation. In the present experiment, we have used 1 MeV protons
(vp ≈ 6 a.u.). This projectile charge and energy combination translates into a perturbation
strength k (qp/vp) of ≈0.16 a.u., which falls in the weak perturbative regime. The projectile
velocity corresponds to an interaction time (tint) of 37 as which is much shorter than the typical
time scale of molecular fragmentation (10 fs) as well as rotational (10−12 s) and vibrational
(10−14 s) time scales. Previous experiments with highly charged ions fall under different
values of k as well as tint. For instance, the works by Adoui et al. (8 MeV u−1 Ni24+) [7],
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Siegmann et al. (5.9 MeV u−1 Xe18+ and Xe43+) [8], Neumann et al. (3.2 keV u−1 Ar8+) [5],
Jana et al. (5 MeV u−1 Si12+) [9], and Khan et al. (1 MeV Ar8+) [6] correspond to values of 1.34
(13 as), 1.17 (15 as), 2.80 (15 as), 22.3 (657 as), 0.85 (17 as), and 7.94 (233 as), respectively, of k
(tint). Recently, Srivastav and Bapat [16] studied the fragmentation of CO3+

2 into C+ + O+ + O+

under the impact of protons having velocities of 0.5 a.u. (k = 2.04, tint = 480 as) and 0.83 a.u.
(k = 1.21, tint = 285 as).

In the present work, we have studied the fragmentation dynamics of COq+
2 (q = 2, 3)

molecular ions produced under the impact of 1 MeV protons using the multiple-hit co-
incidence imaging technique. The slopes and shapes of the different islands observed in
the ion–ion correlation diagram were used to identify different fragmentation channels.
The time-of-flight and position information were used to reconstruct the momenta of each
detected fragment ion. The reconstructed momenta were further used to calculate the KER
for each fragmentation channel. The momentum distributions, angular correlations and the
KER distributions were utilized to identify different fragmentation processes.

2. Experimental Setup

The present experiment has been carried out at the 1.7 MV Tandetron Accelerator
Facility at the Indian Institute of Technology Kanpur, India. A newly built recoil ion
momentum spectrometer (RIMS) [31,32] equipped with a time and position-sensitive
multihit detector was used to obtain the three dimensional momenta of ionic fragments. The
details of the experimental setup have been described in detail earlier [33]. Briefly, a beam
of 1 MeV proton obtained from the 358 Duoplasmatron source is made to collide with an
effusive jet of neutral CO2 gas in a crossed beam geometry. The RIMS is mounted orthogonal
to the ion beam and gas jet direction. Acceleration field of 145 V cm−1 is used to extract the
electrons and recoil ions produced in the interaction zone. The electrons produced in this
collision are detected by a channel electron multiplier (CEM). The ions are extracted using
an extraction field of 145 V cm−1 followed by an accelerating field of 260 V cm−1 towards
a microchannel plate of 40 mm diameter equipped with a delay line anode. The present
spectrometer conditions result in a KER resolution of ≈1.2 eV for three-body fragmentation
and a 4Π collection efficiency of particles having energy <8 eV/q. The output from the
CEM works as the start for the data acquisition system. The background vacuum was better
than 5 × 10−8 mBar and the working pressure was kept below 1 × 10−6 mBar. The beam
current used in our present experiment was ≈200 pA. The time and position data was
recorded on an event-by-event basis using a time-to-digital converter. The time-of-flight
and the position information of each ion are stored in a list mode file using the CoboldPC
software (CoboldPC 2011 R5-2-x64 version 10.1.1412.2, Roentdek Handels GmbH, Frankfurt,
Germany) The initial momentum vectors of the fragment ions were reconstructed from the
timing and position information.

3. Results and Discussions

In collisions with 1 MeV protons, the CO2 molecule can be ionized to several de-
grees producing a multiply charged molecular ion, which further dissociates into charged
fragments. The correlation diagram or the coincidence plot between the time-of-flights
of fragment ions helps to identify different fragmentation channels. Unlike diatomic
molecules, the coincidence plot is more complex for triatomic molecules.

3.1. Two-Body Break-Up

In Figure 1, we have shown the coincidence time-of-flight plots between first ion
(fragment ion with smallest time-of-flight) vs. second ion (Figure 1a) and second ion vs.
third ion (Figure 1b). From the coincidence spectra, one can identify a sharp trace of
O+ + CO+ channel arising due to the two body fragmentation of CO2+

2 . This is the only
complete two body break-up channel observed in our present experiment. The slope of the
trace is −1.0 ± 0.03, as expected from the momentum conservation for a two-body Coulomb
fragmentation. The KER distribution for this channel is shown in Figure 2. This spectrum
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shows a narrow structure around a peak value of 6 ± 0.3 eV and extends only up to 16 eV.
This signifies that this channel arises from a prompt dissociation of the precursor CO2+

2
molecular ion and that it only evolves through a few number of PECs. Zhang et al. [22] have
obtained the PECs of the 14 low-lying states of CO2+

2 using multistate multiconfiguration
second-order perturbation theory (MS-CASPT2) and complete active space self-consistent
field (CASSCF) methods. A few of the theoretical KER values for the O+ + CO+ channel
are shown as vertical lines on the top axis of the KER spectrum. The most probable KER
can be accounted for by considering the decay of CO2+

2 from four electronic states: c1Σ−
u ,

b1Σ+
g , A3Δu, and A3Δu as shown in Table 1. The decay from a1Δg can contribute to the KER

spectra in the region below the most probable value. Whereas, the range beyond the most
probable value can be explained based on the dissociation from the following six electronic
states: a1Δg, E3Πg, b1Σ+

g , D3Πu, E3Πg, and 23Πg.

Figure 1. Ion-ion coincidence spectra for the fragmentation of CO2 under the impact of 1 MeV proton
for (a) the TOF of the second ion versus the TOF of the first ion and (b) the TOF of the third ion versus
the TOF of the second ion. The plot for the TOF of third ion versus the sum TOF of the first and the
second ion is also shown in the inset.

Figure 2. KER distribution for the fragmentation of CO2+
2 into O+ + CO+. The vertical lines on the

top axis are the calculated KER values as reported in ref [22].

The KER spectrum can also be compared with previous studies. In their photoion–
photoion coincidence (PIPICO) experiment, Dujardin and Winkoun [34] measured three
distinct KER values around 4.5 eV, 6.5 eV, and 9.4 eV for this channel. Whereas, under
the impact of 5 keV electron, Wang et al. [35] obtained a KER around 6.8 eV. In their
experiment with 1.3 keV electron, Sharma et al. [17] obtained a KER around 5.9 eV and
from their ab initio calculations assigned this peak to the 3Σ−

g state of the CO2+
2 molecular

ion dissociating into O+ (4S) + CO+ (X2Σ+)channel. Another measurement with 12 keV
electron by Bhatt et al. [18] showed a KER value around 4.7 eV. The Coulomb explosion
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model predicts two possible values (6.2 eV and 12.4 eV) (at an equilibrium distance of
1.16 Å [36] between C and O atoms) as the point charge on the CO+ molecular ion can be
assumed to be either near the C atom or the O atom [18].

Table 1. The possible molecular states of CO2+
2 dissociating into O+ + CO+ along with the theoretically

calculated values of KER by Zhang et al. [22] using multistate multiconfiguration second-order
perturbation theory (MS-CASPT2) and complete active space self-consistent field (CASSCF) methods.

Molecular Dissociation KER
States Limit (eV) [22]

c1Σ−
u O+(4Su) + CO+(A2Π) 6.01

b1Σ+
g O+(2Du) + CO+(X2Σ+) 6.11

A3Δu O+(4Su) + CO+(A2Π) 6.24
A3Δu O+(2Du) + CO+(X2Σ+) 6.51
a1Δg O+(4Su) + CO+(A2Π) 5.37
a1Δg O+(4Su) + CO+(X2Σ+) 7.93
E3Πg O+(4Su) + CO+(A2Π) 8.15
b1Σ+

g O+(4Su)CO+(X2Σ+) 8.98
D3Πu O+(4Su)CO+(X2Σ+) 9.50
E3Πg O+(4Su)CO+(X2Σ+) 10.05
23Πg O+(4Su) + CO+(A2Π) 10.68

In the ion–ion coincidence plot (Figure 1) we observe a ‘tail’ followed by a ‘V’ shape
structure which starts at the end of the sharp trace of O+ + CO+ channel and extends up
to the forward diagonal (the TOF1 = TOF2 line). This particular structure is characteristic
of a metastable molecular ion [37]. The time-of-flights of these metastable molecular ions
would lie between that of a stable CO2+

2 and the fragment ions (CO+ and O+). As we go
closer to the O+ + CO+ coincidence along the tail, the time period between the formation
and dissociation of the precursor molecular ion gets shorter. In contrast, coincidences closer
to the ‘V’ region signify a longer time period prior to dissociation [38]. Thus, the ‘tail’ part
arises due to the fragmentation of (CO2+)* in the extraction region. Whereas, the ’V’ arises
when it fragments in the drift tube. This ‘V’ has two arms, extending from the point on the
forward diagonal corresponding to the time-of-flight (≈3972 ns) of a stable CO2+

2 molecular
ion. The origin of these arms can be explained on the basis of the momentum gained by the
O+ and CO+ fragment ions. Therefore, in the upper arm the CO+ was detected first due to
its momentum gained towards the detector. On the other hand, in the lower arm, the O+

gained momentum toward the detector. Lifetime measurements for the metastable (CO2+)*
molecular ion have been carried out extensively by various groups [17,37,39–41] and values
in the range of 0.9–21 μs have been reported. Field and Eland [37] obtained a lifetime of
0.9 ± 0.2 μs using a set of equations utilizing the charge separation mass spectrometry
technique. These set of equations can be modified [6] for our double field system and
the intensity in the ‘V’ and ‘tail’ region can be used to estimate the lifetime of the (CO2+)*
molecular ion. We obtained a metastable lifetime of 1.6 ± 0.2 μs in our experiment.

3.2. Three-Body Break-Up

3.2.1. Fragmentationof CO2+
2

In the last section, we discussed the two-body prompt dissociation of the CO2+
2 molec-

ular ion. Here, we will describe its three-body fragmentation. As prescribed by Eland [42],
the shape and slope of the coincidence traces can be used to determine the fragmentation
dynamics. Thus, for a two-body Coulomb fragmentation, the slope of the island in the
coincidence map is −q1/q2 due to the conservation of momentum. Here, q1 and q2 are the
charges of the first and the second ion, respectively. Three-body dissociation is much more
complex. As already discussed, the dissociation of CO2+

2 can happen via either concerted
or sequential fragmentation.
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1. In the concerted decay, the two C=O bonds break simultaneously:

CO2+
2 → C+ + O+ + O (1a)

→ C + O+ + O+ (1b)

As already discussed, the concerted decay can be classified into a synchronous and an
asynchronous way depending upon the time period of fragmentation compared to that of
molecular vibrational and rotational motion. However, since the CO2 molecule has a linear
geometry, it is expected, in the first case (Equation (1a)), that a C+ ion would carry much
less momentum compared to the O atom and O+ ion. This implies that the coincidence
trace would be predominantly vertical. In the second case (Equation (1b)), the presence of
a neutral C atom implies that the two O+ ions are anticorrelated. Hence, the slope of the
coincidence island would be −1.

2. For a sequential or two-step decay, there can be two different situations:

(a) In the initial charge separation (s(i)) process a charged fragment is released due to
the break-up of the C=O bonds. Depending on which ion (C+ or O+) is released
first, s(i) is further categorized [19] as follows:

(I) If the lighter ion C+ is released in the first step:

CO2+
2 → C+ + O+

2 → C+ + O+ + O : s(i)1 (2)

In this case, the slope of the coincidence trace should be:

−(q1/q2)
m2

m2 + m3
(3)

where m1, m2, and m3 are the masses of the lighter ion, the heavier ion,
and the neutral atom, respectively.

(II) Whereas, in the following case

CO2+
2 → CO+ + O+ → C+ + O + O+ : s(i)2 (4)

the C+ ion is released in the second step and the heavier O+ ion is released
in the first step, hence the slope of this coincidence trace should be:

−(q1/q2)
m1 + m3

m1
(5)

(b) For a deferred charge separation (s(d)) process, a neutral fragment is released
due to the break-up of the C=O bonds.

CO2+
2 → CO2+ + O → C+ + O+ + O (6a)

→ O2+
2 + C → O+ + O+ + C (6b)

In both of these cases, the motion of the two fragment ions produced in the second
step, are governed by the mutual Coulomb repulsion and are not affected by the neutral
fragment. Thus, similar to a two-body Coulomb fragmentation, the slope of the coincidence
trace for a deferred charge separation would be simply −(q1/q2). However, the second case
(Equation (6)) is special because it demands the isomerization of CO2+

2 molecular ion to
form an O2+

2 intermediate and ejection of a neutral C atom and to the best of our knowledge,
this particular channel has never been observed experimentally.
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The slopes of the different fragmentation channels from CO2+
2 were extracted from

the correlation diagram and fitted with the method of least squares. Table 2 shows the
comparison between the theoretical predictions and experimental observations.

Table 2. Comparison of the slopes of the best-fit line to the various islands in ion pair coincidence
map obtained from CO2 in collision with 1 MeV proton with theoretical predictions [42,43] and
previous experimental results [18,19,44]. Here, s(i)1 (s(i)2) represents the C+ ion released in the first
(second) step of the initial charge separation process, whereas s(d) represents the deferred charge
separation process. R is the regression coefficient of the best-fit line.

Fragmentation
Channel

Experimental Results

Theoretical Predictions [42,43] Present Experiment Electron Impact

s(i)1 s(i2) s(d) Concerted Slope (Fitted) R 0.2 keV [19] 0.6 keV [44] 12 keV [18]

O+ + CO+ - - - −1 −1.09 ± 0.03 0.99 −1.01 ± 0.01 −1.00 ± 0.02 −1.00 ± 0.02
C+ + O+ + O −0.5 −2.33 −1.0 ∞ −2.21 ± 0.01 0.99 −1.75 ± 0.04 −2.75 ± 0.04 −2.75 ± 0.04
O+ + O+ + C −0.57 - −1.0 −1 −1.16 ± 0.02 0.97 −1.03 ± 0.03 −1.00 ± 0.02 −1.00 ± 0.02

C+ + O+ + O Channel

For the C+ + O+ + O channel, we have obtained a slope of −2.21 ± 0.01. This matches
well with the theoretical predictions and earlier measurements. Bhatt et al. [18], in their
experiment with 12 keV electron impact, obtained a slope of −2.75 ± 0.04 for the same
channel. They attributed the slight departure of the experimental slope from the theoretical
value, to the contribution from the concerted decay (Equation (1a)). Wang et al. [19] mea-
sured a slope of −1.75 ± 0.04 in their experiment with 200 eV electron. They explained this
fragmentation channel to have contribution from both s(i)2 and deferred charge separation.

To better understand the fragmentation process, we take help of the Dalitz plot [45].
The coordinates in a Dalitz plot are defined as XDaliz = (ε1 − ε2)/

√
3 and XDaliz = (ε3 − 1/3),

with εi = |Pi|2/ ∑i |Pi|2. Here, Pi is the momentum of the ith fragment in the center-of-
mass frame. However, to obtain these two diagrams, we need all three momenta. Hence,
first ultilizing the coincidence technique the momenta of the fragment ions in all three
dimensions are obtained. Furthermore, momentum conservation is imposed to deduce the
neutral atom momentum. Figure 3a shows the Dalitz plot for the C+ + O+ + O channel. It is
similar to the result obtained by Laksman et al. [46] with 270 eV photon. We can observe
two distinct structures in this diagram.

Figure 3. Experimentally observed Dalitz plots of the three-body fragmentation of CO2+
2 , (a) for

CO2+
2 → C+ + O+ + O, (b) CO2+

2 → C + O+ + O+, and of CO3+
2 , (c) for CO3+

2 → C+ + O+ + O+. The
corresponding Newton Diagrams are shown in (d–f), respectively.
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(i) An intense symmetric structure around the C+ axis. This symmetry is because of
the equal momentum sharing between the O+ ion and the neutral O atom. The distribution
around the minimum C+ momentum is a clear signature of the linear structure of the CO2
molecule. The C+ ion is released with a smaller momentum, while the other two fragments
(O+ and O) are emitted back to back. Thus, this structure corresponds to the concerted
process, where the two C=O bonds break simultaneously. (ii) A second structure can also
be distinguished in this diagram, distributed in the perpendicular direction to the O+ axis.
This indicates a weak correlation between the O+ ion and all other fragments [46]. This
is a typical signature of a two step s(i)2 process, where the O+ ion is released in the first
step. The CO+ cation further fragments into C+ and O after the primary fragments (O+

and CO+) have left the Coulomb field region. As a result, the C+ and O are anticorrelated.
The same data is displayed in a Newton diagram in Figure 3d. The most probable

momentum of the O+ ion is shown by an arrow along the x-coordinate. The relative
momentum of the C+ and O are mapped in the upper and lower half of the diagram,
respectively. Although, we could not distinguish between the concerted and the sequential
s(i)2 process in this diagram, the anticorrelation between C+ and O is clearly visible.

To further understand the dynamics we take help of the distributions of the momentum
correlation angles (MCAs) α, β, and γ. These angles are shown schematically in Figure 4a
and can be obtained from the momentum vectors of the associated ith and jth fragment

ions as: MCA = cos−1
(

�Pi .�Pj

|�Pi ||�Pj |

)
). Figure 4d–f show these angular distributions for the

C+ + O+ + O channel. Both the O+ ion and O atom show a double peak structure in the
angular distribution with respect to the C+ ion. The O+ (neutral O) ion has two peaks
around 110◦ (45◦) and 160◦ (100◦). These values are in good agreement with measurements
reported earlier [18]. The double structure obtained in our present experiment is explained
by considering both sequential and concerted decays. In the sequential process, the O
atom is released toward C+ at 45◦, whereas the O+ ion at 160◦ to balance the C+ + O center
of mass momentum. On the other hand, in the concerted process, both the O+ and O
fragments are released at 110◦ and 100◦ with respect to the C+ ion. The angle β was found
to be around 170◦.

Figure 4. (a) Schematic diagram of a COq+
2 (q = 2, 3) molecular ion fragmenting into C+ + O+ + O+

along with definitions of different angles (α, β, γ, θ, and χ) in the momentum space (discussed in the
text). (b) The distribution of the momentum space molecular bond angle (θ) and (c) the angle χ for
the C+ + O+ + O+ channel. The distribution of (d) α, (e) β, and (f) γ for all the three-body breakup
channels ((1,1,0), (0,1,1), and (1,1,1)). The scaling is performed for visual clarity.
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In contrast to the above discussion, the presence of the first structure together with
the second one in the Dalitz plot has been attributed to missed three-ion coincidences by
Laksman et al. [46]. One factor contributing to this case is the finite dead time (∼35 ns [33])
of the spectrometer, which causes the third one to be missed if the TOFs of the second
and the third ion are the same. As a result, a triple coincidence is recorded as a double
coincidence. The other contributing factor is the finite detection efficiency of the detector,
due to which there is a probability that the third ion could be missed even if the TOFs are
very different for all the ions. The contribution from these missed triple coincidences could
also be the reason for the deviation of the slopes in the 2D coincidence plots from those
reported in the earlier studies.

The KER distribution for the fragmentation of CO2+
2 into C+ + O+ + O is shown in

Figure 5a. The kinetic energies (KEs) of the individual fragments are also shown in the same
plot. The KER spectra has a broad distribution around the most probable value 10.8 ± 1 eV,
with a small structure around 1.2 ± 0.13 eV, and it extends form 0 eV to around 50 eV. The
most probable value of KE are 1.5 ± 0.05 eV, 7.5 ± 0.5 eV, and 1.5 ± 0.12 eV for C+, O+, and
O, respectively. Additionally, the KE of O+ ion shows an additional contribution at zero.

Figure 5. The KER distributions for the three-body fragmentation of COq+
2 (q = 2, 3) into (a) (1,1,0)

and (b) (0,1,1) channels along with the kinetic energies (KEs) of the individual fragments. (c) KEs of
individual fragments in the (1,1,1) channel. The arrows show the position of the most probable KE of
each fragments. The scaling is performed for visual clarity.
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O+ + O+ + C Channel

For the O+ + O+ + C channel, we have obtained a slope of −1.16 ± 0.02. This is in good
agreement with the theoretical prediction of −1.0 for a concerted as well as s(d) process.
However, as discussed above, the deferred charge separation for this channel demands
isomerization of the CO2 molecule to form an O2+

2 cation. In our experiments with 1 MeV
proton we have not seen any trace of O2+

2 in the TOF spectrum. Therefore, a concerted
process (Equation (1b)) seems to be predominantly contributing to this channel [18,19].

Figure 3b shows the Dalitz plot for the O+ + O+ + C channel. We can observe two
distinct structures in this diagram. (a) An almost symmetric intense structure around the
C axis. The distribution close to the minimum C momentum is again a clear signature of
the linear structure of the CO2 molecule. The C ion is released with a smaller momentum,
while most of the momentum is shared between the other two fragments (O+ and O+).
Hence, this structure corresponds to the concerted process, where the two C=O bonds
break simultaneously. This structure is almost identical to that obtained by Wang et el. [19]
with 200 eV electron. (b) Two separate structures can also be observed at the two opposite
O+ edges, which are symmetric around each O+ axis. These correspond to events where
one of the O+ has low momentum, while the C and the other O+ ion are released one after
the other. This momentum sharing is a clear signature of a two step s(i)1 process, where the
O+ ion is released in the first step. While the CO+ cation further fragments into O+ and C
after the primary fragments (O+ and CO+) have left the Coulomb region. As a result, the
O+ and C are anticorrelated.

Figure 3b shows the Newton diagram for this channel where the most probable mo-
mentum of the first O+ ion is plotted along the x-axis. Although, we could not distinguish
between the concerted and the sequential s(i)1 process in this diagram, but the anticorre-
lation between O+ and C is clearly visible. The low momentum of the C atom can also
be seen.

The angular distributions of α, β, and γ for the O+ + O+ + C channel is shown in
Figure 4d–f. The two O+ ions show peak structure around 160◦ (α) and 125◦ (γ), with a
small contribution around 160◦ in the distribution of the angle γ, whereas the angle β has a
broad distribution around 110◦.

The KER distribution for the O+ + O+ + C channel is shown in Figure 5b along with the
kinetic energies (KEs) of the individual fragments. The KER spectra has a broad distribution
around the most probable value of 8.4 ± 0.8 eV. And, it extends form 0 eV to around 30 eV.
The most probable values of KE are 4.0 ± 0.1 eV, 3.5 ± 0.2 eV, and 0.5 ± 0.04 eV for O+, O+,
and C, respectively. The KE of the O+ ions show an additional contribution at 0.5 eV. The
most probable value of KER of the O+ + O+ + C channel is smaller than that of C+ + O+ + O
channel. This difference can be explained by the CE model by noting that due to the linear
configuration of the CO2 molecule the distance between the two oxygen atom (2.32 Å) is
larger that that between the carbon and oxygen atoms (1.16 Å).

3.2.2. Fragmentationof CO3+
2

Similar to CO2+
2 , we can also observe several sequential and concerted fragmentation

channels for the decay of CO3+
2 as follows:

(I.) Concerted fragmentation

CO3+
2 → C+ + O+ + O+ (7a)

→ C2+ + O+ + O (7b)

→ C + O+ + O2+ (7c)
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(II.) Two-step s(i)1

CO3+
2 → C+ + O2+

2 → C+ + O+ + O+ (8a)

CO3+
2 → C2+ + O+

2 → C2+ + O+ + O (8b)

(III.) Two-step s(i)2

CO3+
2 → CO2+ + O+ → C+ + O+ + O+ (9a)

→ C2+ + O + O+ (9b)

→ C + O2+ + O+ (9c)

CO3+
2 → CO+ + O2+ → C + O+ + O2+ (9d)

→ C+ + O + O2+ (9e)

(IV.) Two-step s(d)
CO3+

2 → CO3+ + O → C2+ + O+ + O (10a)

→ C+ + O2+ + O (10b)

CO3+
2 → O3+

2 + C → C + O2+ + O+ (10c)

Among the above fragmentation channels, we could only observe three in Figure 1:
(a) C+ + O+ + O+, (b) C2+ + O+ + O, and (c) O2+ + O+ + C. Among these, only the
first channel has significant statistics.

C+ + O+ + O+ Channel

Figure 3c shows the Dalitz plot for the C+ + O+ + O+ channel. The dominant structure
is the almost symmetric distribution around the right edge of the circle where the O+ ion
has maximum momentum. As discussed above, it is a signature of two-step s(i)2 process,
where an O+ is released in the first step leaving a metastable CO2+, which decays in the
second step producing O+ and C+ ions. In addition, there are traces of counts on the left
side of the C+ axis. A sequential process in a three-body break up can be easily identified
in a Newton diagram. During the first step, the intermediate CO2+ ion acquires some
angular momentum. If the lifetime of this CO2+ ion is of the order of it’s half-rotational time
period, then it can rotate while dissociating in the next step [5,15], which shows up as semi-
circular structures in the Newton diagram [5,47]. Figure 3f shows the Newton diagram
for this channel where the most probable momentum of the first O+ ion is plotted along
the x-axis. It shows two lobes on the upper and the lower half of the diagram, the C+ ion
and the second O+ (y < 0 plane) are anti-correlated, and there is no prominent semicircular
structure. This hints towards the fact that either the lifetime of the CO2+ ion is less than the
half-rotational time period or the vibrational motion precedes the fragmentation process
(the asynchronous concerted decay).
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To further shed light upon the underlying process, we discuss the MCA distributions.
The distributions of α, β, and γ for the C+ + O+ + O+ channel is shown in Figure 4d–f.
The two O+ ions show peak structure around 140◦ (α) and 130◦ (γ). While γ has a small
contribution around 60◦. The results from Jana et al. using 5 MeV u−1 Si12+ shows that the
angle between the momentum vectors of the two O+ ions (β) is about 165◦. By comparing
with earlier reported studies, they concluded the C+ + O+ + O+ fragmentation to be a
concerted decay from linear as well as bent structures of CO3+

2 . In our data the angle β is
around 150◦, which is less compared to the other two fragmentation channels. Therefore,
our present data also indicates contribution from bent states. The presence of several
bent geometries of CO3+

2 molecular ion are also confirmed from the distribution of the
momentum-space molecular bond angle θ as shown in Figure 4b, which has a broad
distribution around 120◦. Similar results have been also reported by other groups [7,8,18].

In an extreme example of concerted (synchronous) breakup, the molecule dissociates
via symmetric stretching around the central C atom. Thus, the C+ ion would obtain zero
momentum and the two O+ ions are ejected simultaneously with same energy. If the
central C+ ion is released with a finite energy, then the break must have happened from
a bent geometry of the precursor molecular ion, whereas in a concerted process, if there
is any deviation from the equal sharing of energy between the two terminal ions, then it
would correspond to an antisymmetric stretching of the molecule [30]. The kinetic energies
(KEs) of the individual fragments for the C+ + O+ + O+ channel is shown in Figure 5c. In
Figure 6a–c, we have plotted the complete KER distribution for the above channel in three
regions: (a) 0–9.6 eV, (b) 9.6–16.8 eV, and (c) 16.8–35.0 eV. The KER spectrum has a most
probable value of 7.2± 0.4 eV (Figure 6a) with a broad structure around 20 eV (Figure 6c). It
extends from 0 eV to about 35 eV. The most probable values of KE (the position of which are
depicted as arrows in Figure 5c) are 1.5 ± 0.05 eV, 1.5± 0.1eV, and 0.5 ± 0.04 eV for C+, O+,
and O+, respectively. The most probable value of KER for this charge symmetric channel is
smaller than that of the asymmetric channels. The non-zero kinetic energy of the C+ ion
implies that bent geometries are contributing to the fragmentation. In addition, the unequal
energy of the two O+ ions signifies that vibrational motions precede the fragmentation
process, and hence it is an asynchronous concerted decay. To confirm this vibrational
stretching we take help of the distribution of the angle χ (Figure 4a). A uniform distribution
in χ represents a stepwise sequential process [30], whereas a sharp distribution indicates
the involvement of a concerted process. Figure 4c shows the distribution of χ for the
C+ + O+ + O+ fragmentation channel showing a broad structure around 50◦, which could
imply the presence of bending as well as stretching modes during the fragmentation of
CO3+

2 . These three regions are also shown in the KER spectrum of Figure 5c shaded in
yellow, orange, and blue. The corresponding Dalitz plots, Newton diagrams, and the
distribution of the angle χ are also shown in Figure 6. For KER range of 0–9.6 eV, most of
the counts in the Dalitz plot (Figure 6a) are situated near the bottom of the triangle and
right of the C+ axis indicating the presence of asynchronous decay [48]. As the KER range
increases the counts get dispersed away from the central region towards the left and right.
In the KER range between 16.8 eV and 35 eV, there are almost no counts around the C+ axis,
while dominant structures are around the two O+ axes. The unequal energy sharing due to
stretching of one of the C=O bonds can easily be identified in both the Dalitz plot and the
Newton diagram (Figure 6f). The stretching of the bond is also reflected in the distribution
of the angle χ (Figure 6f–h). With increase in the available energy, as the stretching becomes
more dominant, an asymmetry takes over the initial isotropic distribution.
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Figure 6. (a–c) The KER distributions, (d–f) Dalitz plots, (g–i) Newton diagrams, and (j–l) the
distributions of the angle χ for the three-body fragmentation of CO3+

2 into (1,1,1) channel. The KER
ranges of the three columns are; Left column: 0–9.6 eV, Middle column: 9.6–16.8 eV, Right column:
16.8–35 eV.

4. Conclusions

We have studied the dissociation dynamics of a simple, linear triatomic molecule CO2
under the impact of 1 MeV protons. We have measured the two- and three-body dissociation
of doubly and triply charged molecular ions of CO2. For the O++CO+ fragmentation
channel from the CO2+

2 molecular ion, we see a prompt dissociation resulting in narrow KER
distribution. This KER distribution can be well explained based on the different electronic
states reported by earlier theoretical and experimental studies. The CO2+

2 molecular ion also
shows a metastable character in the ion–ion correlation diagram as a tail and ’V’ structure.
Using the intensity of these structures, we have estimated the life time of the metastable
(CO2+)* molecular ions. We have also discussed the three-body dissociation of CO2+

2 , which
produces two ions and a neutral. All three-body dissociation are discussed using Dalitz
plots, Newton Diagrams, and angular distributions. For both the C+ + O+ + O and
O+ + O+ + C channels, we have observed contribution from both concerted decay. In
addition, for the C+ + O+ + O channel, we see signature of an s(i)2 process, whereas
in the O+ + O+ + C channel contains signature of an s(i)1 process. The contributions
from all these processes are also be verified from the angular distributions. We have
further discussed the charge symmetric fragmentation of CO3+

2 molecular ions producing
C+ + O+ + O+. The angular distributions for this channel hint toward the fact that the
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three-body fragmentation is happening from bent molecular geometries of the precursor
molecular ions. The Dalitz plots and Newton diagrams further suggest that molecular bond
stretching precedes the fragmentation process in this charge symmetric dissociation. The
linear triatomic CO2 molecule has three vibrational modes, namely symmetric stretching,
asymmetric stretching, and bending vibration. The typical time scales of these three
stretching modes are 25 fs, 14 fs, and 50 fs [49], respectively, which are much larger than
the interaction time (tint) of 37 as for the present collision system consisting of 1 MeV
protons and CO2 molecules. The population of these different vibrational modes depends
on the available energy of the molecular system. The KER distribution works as a tool
to investigate different energy regimes in the fragmentation process. In the lowest KER
range, we have observed that the fragmentation is happening due to concerted decay from
a linear geometry of the precursor molecular ion (synchronous decay). With the increase in
KER values, we observe more contributions from the bending and asymmetric stretching
(asynchronous decay) modes.
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Abstract: An atom confined in an optical dipole trap is a promising candidate for a qubit. Analyzing
the temporal response of such trapped atoms enables us to estimate the speed at which quantum
computers operate. The present work models an atom in an optical dipole trap formed using crossed
laser beams and further examines the photoionization time delay from such confined atoms. We study
noble gas atoms, such as Ne (Z = 10), Ar (Z = 18), Kr (Z = 36), and Xe (Z = 54). The atoms are considered
to be confined in an optical dipole trap using X-ray Free Electron Lasers (XFEL). The present work
shows that the photoionization time delay of the trapped atoms is different compared with that of
the free atoms. This analysis alerts us that while talking about the speed of quantum computing, the
temporal response of the atoms in the trapped environment must also be accounted for.

Keywords: optical dipole trap; RRPA; photoionization; time delay

1. Introduction

With the advent of quantum computing, the second quantum revolution has been
ushered in [1]. Quantum memory [2], quantum information processing [3], etc., are rapidly
becoming modernized to improvise the performance of computing in this era. The funda-
mental building block of such quantum tools is isolated atoms or molecules; the isolation is
achieved through quantum confinement. Entrapment of atoms in fullerene molecule is one
such successful confinement mechanism [4], and the Paul trap is another mechanism by
which a cluster of molecules can be isolated [5]. Crossed laser beams create a dipole field,
and atoms can also be isolated in such traps [6]. Atoms encapsulated in fullerenes, dipole
traps, Paul traps, etc., are potential candidates for qubits, which can be used in quantum
computers [7–9]. Experiments to realize quantum computers using isolated atoms are
rapidly being developed [10].

Benioff pointed out in an early work that triggering a quantum computer’s register
involves a physical process; it is, of course, not just mathematical manipulation by matrices
that represents the quantum gates [11,12]. A physical process here refers to the interaction
of a qubit with any probe, such as a photon, electron, etc. A study of the temporal response
of the quantum system under external perturbation, therefore, is in dire need of deciphering
the speed of quantum information processing. This is highlighted in Benioff’s second design
of a quantum computer [11,12]. The present work attempts to study the temporal response
of an atom trapped in a crossed laser beam, which can be considered a qubit.

During the last three decades, the developments in the field of laser cooling and
trapping have been steadfast [13–19]. In 1962, Askar’yan envisaged that the optical dipole
force can trap neutral atoms [20]. The probability of trapping atoms with the dipole force
was considered by Letokhov [21], who recommended that atoms might be confined one-
dimensionally at the nodes or antinodes of standing waves far detuned with the atomic
transition frequency. Further, a neutral atom trapped by dipole force was demonstrated
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by Bjorkholm employing a focused laser beam [22]. In an outstanding breakthrough in
1986, Chu et al. utilized this force to realize the first optical trap for neutral atoms [23].
A very small optical dipole trap of microscopic size has been designed to store, analyse,
and manipulate individual atoms [24–26]. For instance, the axial oscillation frequency of
the atom and the atomic energy distribution in the dipole trap have been measured by
isolating a single cesium atom in a standing wave optical dipole trap [27]. There have
been investigations into the applicability of a single atom trapped in laser for quantum
memories [28–30].

As mentioned above, a trapped atom in an optical dipole trap is identified to be a
potential candidate for qubits in quantum computers [31]. To retrieve information from
such a system, one needs to consider the interaction of a qubit or a trapped atom with
external stimuli. One can intuitively see that the time scale of such an interaction defines the
quantum information processing time. The atom–field interaction due to the optical dipole
trap modifies the intrinsic nuclear field, leading to changes in the electron transition time.
This effect is particularly interesting for quantum memory applications [32], as the storage
time of quantum information depends on the electronic transition time [33]. In other words,
the speed of quantum computers using a qubit would depend on its interaction time with
a stimulus, say a photon. The present work pivots to investigating the interaction time of a
trapped atom in a crossed laser beam keeping electromagnetic radiation as the probe. Most
of the studies on coherent light–atom interaction consider a natural atomic system that has
a set of intrinsic energy levels. Finding a suitable transition for a particular application
in an experimental setting is very difficult. Engineering the atomic level energy and its
transition and de-coherence rates [34] can be accomplished using an optical dipole trap.

In the present work, noble gas atoms are modeled to be trapped in the field of X-ray
free electron lasers (XFEL), and the temporal response of such trapped atoms to an external
stimulus (Photon) is investigated. Hereafter, the quantum system of interest in the present
study is denoted as A@XFEL, where A is the trapped atom. The external electromagnetic
field would photoionize the trapped atom in the XFEL field, and the photoionization time
delay is studied in the present work. Due to the short wavelength range, XFEL [35] can be
focused to a few nano-meters, or even below, employing various experimental techniques
by which atoms can be trapped and isolated. In one of the earlier studies, an X-ray beam of
photon energy 8.2 keV having a wavelength of approximately 0.151 nm has been focused to
50 nm [36]. In another study, an X-ray beam having photon energy 9.1 keV (λ = 0.136 nm)
has been focused to 10 nm [37]. The present work employs the XFEL having wavelength
0.785 nm (E = 1.58 keV), which is focused to 1 nm, to trap atoms. This laser is far detuned
with the atomic transition frequency of all atoms considered here so that the trapping
field does not ionize the atoms. Further, the power of the laser field is also chosen low so
that strong field ionization does not occur. We study photoionization parameters, such
as cross section, angular distribution asymmetry parameter, and photoionization time
delay, employing the relativistic random phase approximation (RRPA) [38]. Although
alkali metal atoms, such as Rb, Na, etc., are commonly used in the dipole trap experiments,
the open shell nature of the alkali atoms makes them unsuitable for the application of
RRPA. Therefore, as a pilot study, the noble gas atoms, such as Ne (Z = 10), Ar (Z = 18),
Kr (Z = 36), and Xe (Z = 54), are considered in the present work. Furthermore, a study of the
bound-to-bound transition’s temporal response is desirable to indicate the lifetime of the
qubit. However, the response time of the bound-to-continuum transition (photoionization)
investigated in this preliminary work is also an indicator of the bound-to-bound transitions.

Section 2 contains the theoretical details regarding modeling the dipole trap; Section 3
discusses the results; and Section 4 summarizes the results.

2. Theory

The mechanism of optical dipole trapping of neutral atoms using a laser field is
well described using a semi-classical picture where the atom is treated as a simple dipole
oscillator [39]. Atoms do not have a permanent electric dipole moment in the ground state.
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However, a dipole moment can be induced in the atom when it is subjected to an external
electric field. In the classical picture of an atom in a laser field, the oscillating electric field

of the laser having frequency ω induces an oscillating dipole moment,
→
d , at the driving

frequency, ω, itself. The oscillating electric field of the laser can be written as

→
E(

→
r , t) = êE(

→
r )e−iωt + c.c., (1)

where ê gives the direction of polarization.
The induced oscillating dipole moment of the atom can be written as

→
d (

→
r , t) = êd(

→
r )e−iωt + c.c. (2)

The relation between the amplitude of the induced oscillating dipole moment of the
atom and the driving electric field is given by

→
d = α(ω)

→
E , (3)

where α(ω) is the (driving) frequency-dependent complex polarizability of the neutral atom.

The interaction between the induced dipole moment,
→
d , of the atom and the oscillating

electric field,
→
E , gives rise to an interaction potential given by the relation [39]

Udip = −1
2

〈→
d .

→
E
〉

(4)

The intensity profile of the focused XFEL laser beam in one direction (say in the
z-direction) is expressed in cylindrical polar coordinates as [39]

I(ρ, z) =
2P

πw2(z)
e
−2 ρ2

w2(z) , (5)

where P is the power of the laser beam, ρ denotes the radial coordinate, and

w(z) = w0

√
1 +
(

z
z0

)2
is the beam waist radius. The z0 is popularly known as Rayleigh

length: z0 = πw2
0/λ, where w0 is the waist radius of the trapping beam at the focal point.

For dipole trapping, crossed laser beams from all six directions are used, and they are
focused in a narrow trapping region [40]. To a good approximation, the intensity profile of
the crossed laser beam is considered spherically symmetric within the trap and, therefore,
has a spherical Gaussian profile indicated as

I(r) =
2P′

πw2(r)
e
−2 r2

w2(r) (6)

In Equation (6), w(r) controls the intensity profile, which is given as

w(r) = w0

√
1 +
(

r
r0

)2
, (7)

where r0 = πw2
0/λ. In Equation (6), P′ indicates the cumulative power due to all the

focused laser beams.
Note that, because of the symmetry considerations, the intensity profile of the crossed

laser beam (Equation (6)) is presented in spherical polar coordinates. The graph of I(r) vary-
ing with radial distance r is shown in Figure 1, where a crossed laser beam of wavelength
λ = 0.785 nm and power P′ = 3 Watt is focused to 1 nm radius to form a dipole trap. At
r = 0, the intensity is a maximum, and with increasing r, the intensity is reduced.
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Figure 1. Intensity I(r) of the crossed beam varying with radial distance within the dipole trap.

Concerning the trapping of an alkali atom using a far-detuned laser beam having
wavelength λ = 0.785 nm, the following points have to be taken into account. As mentioned
in the ref. [39], if we prepare the atoms in the excited state, for instance, F = 2 in Rb, a blue
detuned laser beam will create a trappable potential. However, the intensity has to be tuned
in such a way that the trap depth is appreciable to hold the atom. Hence, selectively one
has to choose the atoms and laser intensity appropriately and prepare them in a specific
excited state to achieve optical dipole trapping.

Note that Equation (4) depicts the dipole trap the atom experiences. However, the
potential felt by an atomic electron is calculated as

U(r) =
r∫

∞

−qEr2dr, (8)

where q depicts the charge of the electron. Since the local intensity of the optical field is
I = 2ε0c|E|2 [39], the average electric field used in Equation (8) is expressed as

E =

√
P

πε0c
1

w(r)
exp(− r2/w2(r)) (9)

As a model case, the potential experienced by the 1s electron of the hydrogen atom
trapped in the crossed XFEL field (H@XFEL) having wavelength λ = 0.785 nm (E = 1.58 keV)
is computed when it is focused to w0 = 1 nm. Figure 2 shows the effective potential (in a.u.):
Ve f f = − 1

r + U(r), where U(r) is the potential felt by the atomic electron due to the laser
trapping given in Equation (8). Here, the power of the laser beam is taken to be 3 Watts.
The plot also compares the pure Coulombic potential of a free H atom: Ucoulomb = −1

r . One
can see that the laser field does alter the depth of the potential. The modification due to the
crossed laser beam tends to change the binding energy of the trapped atom.
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Figure 2. The effective potential of H (black) and H@XFEL (red) atom.

For a multi-electron system, the potential given in Equation (6) is added to the original
Dirac–Hartree–Fock (DHF) equation [41] and then solved by the equations using the self-
consistent method. The modified Dirac–Hartree–Fock (DHF) orbital’s wavefunction ui(

→
r )

of an N-electron atomic system in the dipole trap satisfies [41](
c
→
α .

→
p + βmc2 − Z

r
+ V + U(r)

)
ui(

→
r ) = εiui(

→
r ), i = 1, 2, . . . , N, (10)

where εi is the DHF energy eigenvalue of the i-th orbital, and V represents the inter-electron
interaction term composed of direct and exchange terms defined as

Vui(
→
r ) =

N

∑
j=1

∫ d3r′∣∣∣∣→r −
→
r′
∣∣∣∣
[(

u†
j uj

)′
ui −

(
u†

j ui

)′
uj

]
. (11)

Thus, the confined atom in the laser field is simulated, and the structural properties can
be evaluated. For the present work, the noble gas atoms, such as Ne (Z = 10), Ar (Z = 18), Kr
(Z = 36), and Xe (Z = 54), are considered. The corresponding ionization potentials of valence
orbitals of Ne, Ar, Kr, and Xe for both free and confined cases are given in Table 1. One
can notice that the laser confinement increases the threshold by roughly a constant amount
~0.39 a. u. This shift in the energy of the ionization threshold is due to the alterations in the
depth of the potential.
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Table 1. Binding energy of valence subshells of neutral atom and A@XFEL.

Atom Subshell
Binding Energy (a. u.)

Neutral Atom A@XFEL

Ne
2s 1.935 2.328

2p1/2 0.852 1.245
2p3/2 0.848 1.240

Ar
3s 1.286 1.678

3p1/2 0.595 0.987
3p3/2 0.587 0.980

Kr
4s 1.187 1.579

4p1/2 0.541 0.933
4p3/2 0.514 0.906

Xe
5s 1.010 1.401

5p1/2 0.492 0.884
5p3/2 0.439 0.831

The DHF wavefunction is considered as the initial state of the target atom, which is
photoionized. The dipole-trapped atom is subjected to an external time-dependent external
field: υ+e−iωt + υ−eiωt. The modified RRPA equations with the inclusion of laser potential,
U(r), can be obtained from the time-dependent DHF method given as [38,42,43](

c
→
α .

→
p + βmc2 − Z

r + V + U(r)− εi ∓ ω
)

wi±
(→

r
)
=(

υ± − V(1)
±
)

ui

(→
r
)
+ ∑

j
λij±uj

(→
r
)

, i = 1, 2, . . . , N,
(12)

where the Lagrangian multipliers λij± are incorporated to guarantee that the perturbed
orbitals wij± are orthogonal to the occupied orbitals ui. The RRPA includes many-electron

correlation effects in both the initial and the final states through the terms V(1)
± in the

above equation; all possible two-electron two-hole excitations in the initial state and the
interchannel coupling of the final-state channels are accounted for. In the present work,
relevant interchannel coupling effects are included in the RRPA for the photoionization of
the laser-cooled noble gas atoms. The number of dipole channels coupled in the RRPA is 7
for Ne (channels from the 2p and 2s subshell), 14 for Ar (3p, 3s, 2p, and 2s subshell), 20 for
Kr (4p, 4s, 3d, 3p, and 3s subshell), and 20 for Xe (5p, 5s, 4d, 4p, and 4s subshell).

In photoionization, for a particular transition from an initial state |n, κ〉 to a final state
|ε, κ〉, the radial dipole matrix element is given by [44]

〈ε, κ|d̂|n, κ〉 = i1−l eiδκ 〈ε, κ|Q(1)
1 |n, κ〉 (13)

Here, 〈ε, κ|Q(1)
1 |n, κ〉 is the reduced dipole matrix element, and δκ is the phase shift of

the final continuum wavefunction. Since matrix element is generally complex in nature,
the phase shift of the photoelectron is defined by

δκ(ε) = tan−1

{
Im〈ε, κ|d̂|n, κ〉
Re〈ε, κ|d̂|n, κ〉

}
. (14)

For a dipole transition, indicated by κ → κ , the total subshell cross section σnκ is given
as [40,44]

σnκ =
4π2α

3
ω
(
|Dκ→κ−1 |2 + |Dκ→κ |2 + |Dκ→κ+1 |2

)
, (15)

where Dκ→κ is the dipole transition matrix element present in Equation (13).
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The dipole angular distribution asymmetry parameter βnκ(ω) is given by [38,42]

βnκ(ω) =

{
1
2
(2κ−3)

2κ |Dκ→κ−1|2 − 2
2κ

√(
2κ−1

2(2κ+2)

)[
Dκ→κ−1D∗

κ→κ+1 + c.c.
]−

(2κ−1)(2κ+3)
2κ(2κ+2) |Dκ→κ |2 − 3

2

√(
(2κ−1)(2κ+3)

2κ(2κ+2)

)[
Dκ→κ−1D∗

κ→κ+1 + c.c.
]
+

1
2
(2κ+5)
(2κ+2) |Dκ→κ+1|2 + 3

2κ+2

√(
2κ+3
2(2κ)

)[
Dκ→κ D∗

κ→κ+1 + c.c.
]} ∗

{
|Dκ→κ−1|2+

|Dκ→κ |2 + |Dκ→κ+1|2
}−1

(16)

The photoionization time delay of a particular transition is obtained as the energy
derivative of the phase of the photoionization complex transition matrix element [45,46].
This quantity represents the temporal response of the atomic electron while photoionizing.
The average time delay in photoionization of a particular subshell is presented in the
current work. It is defined as the sum of the individual channel time delays weighted
by the ratio of the respective individual channel cross sections to the total of the cross
sections. Hence, the present study computes and analyses the photoionization cross section,
angular distribution asymmetry parameters, and the photoionization time delay for both
the laser-trapped atom as well as for the free atom. This work focuses on the valance ns
and np subshells of the noble gas atoms considered.

3. Results and Discussion

In this section, the results for the photoionization cross section, angular distribution
asymmetry parameter, and time delay of the valence shells, ns and np, of noble gas atoms
(Ne, Ar, Kr, and Xe) trapped by XFEL dipole trap are presented. A comparison of the results
for the neutral and that of the A@XFEL is facilitated. As the speed of qubit used in quantum
techniques application depends on its interaction time with photon, the photoionization
time delay provides a benchmark estimate of the temporal response.

3.1. Neon

Figure 3 shows the photoionization cross section of the 2p and the 2s subshells of
the free Ne (solid black) and Ne@XFEL (solid red). For the RRPA, seven dipole channels
from the 2s and 2p subshells are coupled. The photoionization cross section of 2s and 2p
subshells of Ne exhibit a shape resonance. Since the Ne atom is less relativistic, results for
the spin–orbit split 2p1/2 and the 2p3/2 subshells are similar, except for their magnitudes; the
ratio of both cross sections indicates the ratio of the number of electrons in the subshells,
known as the branching ratio [44]. For Ne@XFEL, the photoionization thresholds are
offset by 0.39 a.u., and, therefore, the onset of photoionization occurs at higher energy.
Nevertheless, the Ne@XFEL cross section also exhibits the delayed maximum.

 

Figure 3. Photoionization cross section (σ) of 2p3/2 (Left), 2p1/2 (Middle), and 2s (Right) subshells
of Ne (black) and Ne@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for
2p3/2, 2p1/2, and 2s thresholds of free (black) and confined atom (red), respectively.
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Figure 4 shows the comparison of angular distribution asymmetry parameter β of the
2p3/2, 2p1/2, and 2s subshells of the free (solid black) and confined Ne (solid red). The figure
indicates that apart from the delayed onset of the β parameter, there is no change induced
by the optical dipole trap. This is understandable from the analysis of the cross section.
Nevertheless, one may also note that the angular distribution asymmetry parameter has an
additional dependence on the relative phase shift of different pair channels (δk − δk), as is
evident from Equation (16). Figure 4 indicates that the relative phase shift difference is also
unaffected by the laser trapping. One may ask at this juncture whether the relative phase
shift of two dipole channels is unaffected by the optical trapping, i.e., will the individual
time delay of the dipole channels be altered? A naive answer is ‘possibly not’, as the relative
phases are not affected. However, a detailed scrutiny of the individual channel’s time delay
requires an affirmative answer. Figure 5 shows the average photoionization time delay
from the 2p3/2, 2p1/2, and 2s subshells of Ne. The time delay for the free and confined Ne
are quantitatively as well as qualitatively different; the former is larger compared with the
latter. For instance, while the time delay in 2s photoionization is negative and attains a
minimum at ~2.5 a.u., the same in Ne@XFEL shows a higher positive value and it does
not showcase any symptom of a minimum. A similar quantitative difference is seen in the
case of time delay in the 2p3/2 and 2p1/2 cases. The additional time delay due to the laser
coupling varies from tens of attoseconds to hundreds. Note here that although the relative
phase difference is unaltered due to the laser trapping, the phases of the complex transition
matrix elements are affected, and it leads to a significantly altered time delay of individual
subshell photoionization time delay.

 

Figure 4. Angular distribution asymmetry parameter (β) of 2p3/2 (Left), 2p1/2 (Middle), and 2s
(Right) subshells of Ne (black) and Ne@XFEL (red). Solid, dashed, and dotted vertical lines represent
the threshold for 2p3/2, 2p1/2, and 2s thresholds of free (black) and confined atom (red), respectively.

Figure 5. Time delay (τ) of 2p3/2 (Left), 2p1/2 (Middle), and 2s (Right) subshells of Ne (black) and
Ne@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for 2p3/2, 2p1/2, and
2s thresholds of free (black) and confined atom (red), respectively. Blue scattered points in left and
right panel of the figure show the experimental results [47].
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The present results are enriching in two ways. Firstly, the electrons in the atoms in
the optical dipole trap suffer more time delay while responding to the external impulse.
This observation will have consequences on the performance of such atoms when used in
the quantum techniques application. Secondly, the phase shift difference appearing in the
angular distribution parameter is unaffected due to the laser coupling, but the individual
phase shift on the other hand is altered. This observation asserts that individual channel
time delay is more sensitive to the external perturbation compared with the other dynamical
variables. A similar remark is made in earlier work on photoionization from Xe [48].

From an experimental perspective, individual subshell time delay and the relative time
delay between 2p and 2s photoionization of Ne is measured by several groups [47,49]. In the
latest experimental attempt, the relative time delay (τ(2s)-τ(2p)) is directly measured [47].
In addition, the earlier work obtained Wigner time delay for 2p subshell to obtain more
details about the relative delay difference measurements. Furthermore, the earlier work
has obtained 2s Wigner time delay data by subtracting the τ(2p) from τ(2s)-τ(2p). The left
panel of Figure 5 shows the comparison of time delay for 2p from the experiment with
the present calculation of average time delay for 2p3/2. Since the Ne is less relativistic, the
comparison of the average time delay of the 2p subshell with that of 2p3/2 is justified. The
comparison shows good agreement between theory and experiment. Similarly, the 2s time
delay from the earlier experiment and the present work is also compared, which is shown in
the right panel of Figure 5. The comparison of the 2s time delay also renders an encouraging
comparison, especially in the region of minimum in the time delay. Comparison of theory
and experiment encourages us to anticipate that the time delay would be enhanced when
probing an atom isolated in a dipole trap.

Figure 6 compares the relative time delay difference (τ(2s)-τ(2p)) of the Ne and
Ne@XFEL obtained in the RRPA. The theoretical result is also compared with the avail-
able experimental result [47]. Although the RRPA overestimates the relative time delay
compared with the experiment at the minimum, an overall qualitative agreement is found.
Of course, the Ne@XFEL has enhanced delay difference, as is evident from the figure. As
photon energy increases, the time delay difference between free and confined Ne vanishes.
This is true even in the case of individual channel time delays. This is understandable, as
the highly energetic photoelectron does not see the details of the confinement potential,
and, therefore, the Ne and @Ne time delay is more or less the same.

 
Figure 6. The time delay difference of 2s and 2p subshell (τ(2s)-τ(2p)) of Ne (black) and Ne@XFEL
(red) in the RRPA calculation is compared with that from the experiment (blue) [47]. Vertical lines
show the 2s subshell threshold for Ne (black) and Ne@XFEl (red).
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3.2. Argon

Figures 7 and 8 show the photoioinization cross section and angular distribution
asymmetry parameters of spin–orbit split valence subshells of Ar and Ar@XFEL. Since Ar
is less relativistic, the 3p3/2 and the 3p1/2 subshells exhibit similar photoionization features.
The 3p cross section drops from a high value, as there is a shape resonance. At ~1.85 a.u.,
the 3p → εd dipole channels undergo a Cooper minimum. Likewise, the 3s subshell cross
section also exhibits a Cooper minimum at 1.55 a.u. Note that the Cooper minimum in the
3s photoionization channel in the 1.5 a.u. region arises solely due to interchannel coupling
with the 3p photoionization channels [50]. The angular distribution asymmetry parameter
has additional dependence on the relative phase shift of different photoionizing channels.
The β3p rises to a maximum value at 1.35 a.u. and displays a minimum at 1.85 a.u. Note
that the minimum in the β3p occurs at the location of the Cooper minimum. In the 3s case,
because of the Cooper minimum, there is a dip in the β; the deviation of β from 2.00 in the
ns case shows the impact of the relativistic effect on the CM in the spin–orbit split subshell
channels. The reliability of the RRPA results are well established through a comparison
with experimental results.

Figure 7. Photoionization cross section (σ) of 3p3/2 (Left), 3p1/2 (Middle), and 3s (Right) subshells
of Ar (black) and Ar@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for
3p3/2, 3p1/2, and 3s thresholds of free (black) and confined atom (red), respectively.

 
Figure 8. Angular distribution asymmetry parameter (β) of p3/2 (Left), 3p1/2 (Middle), and 3s
(Right) subshells of Ar (black) and Ar@XFEL (red). Solid, dashed, and dotted vertical lines represent
the threshold for 3p3/2, 3p1/2, and 3s thresholds of free (black) and confined atom (red), respectively.

In the case of Ar@XFEL, as already discussed, the subshell thresholds are offset by
0.39 a.u. One can see from Figures 7 and 8 that the photoionization cross section and
angular distribution asymmetry parameters follow the same profile of the free Ar atom
case, except for the shift in the threshold. The 3p cross section has the Cooper minimum at
the same location as in the free Ar case. However, in the case of the 3s subshell, the Cooper
minimum is in the discrete region below the threshold. Therefore, the Cooper minimum is
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not present in the 3s cross section. Accordingly, the dip in the β is also not present in the 3s
angular distribution asymmetry parameter.

The average time delay (τ) of 3p3/2, 3p1/2, and 3s subshell photoionization of Ar and
Ar@XFEL is shown in Figure 9. Cooper minima in the p → εd transition matrix element are
exhibited as a −π jump in the phase shift, which results in a sharp and deeper negative
time delay at approximately 1.805 a.u. in the individual spin–orbit split p → εd channels of
free Ar. The p → εs channels do not have the Cooper minimum; therefore, the time delay of
these channels decreases from a positive value smoothly for neutral Ar. The trend of the
average time delay of 3p subshells of the free Ar follows that of the 3p → εd channels as its
matrix element is dominant except in the CM region; at the CM, the 3p → εs channel time
delay dominates. As a result, the average time delay of 3p1/2 and 3p3/2 subshells exhibit
a competition between that of the p → εd and p → εs channels. Hence, the average 3p3/2
and 3p1/2 time delay shown, respectively, in Figure 9 left and middle panel is wider and
less deep compared with the individual time delays in the region of Cooper minima due
to the contribution from the 3p → εs channels. The average time delay of 3p1/2 and 3p3/2
subshell exhibit, respectively, a minimum at 1.805 a.u. and 1.82 a.u. of photon energies,
which corresponds to the Cooper minimum. The Cooper minimum in the 3s → εp channels
induces a +π jump in the phase shift, which is translated as a positive peak in the individual
channel time delay of the free Ar atom. Upon averaging, the peak widens and results in
a maximum at 1.51 a.u. The results for free Ar atoms have been discussed in great detail
using RRPA and other theories earlier [51,52].

Figure 9. Time delay (τ) of 3p3/2 (Left), 3p1/2 (Middle), and 3s (Right) subshells of Ar (black) and
Ar@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for 3p3/2, 3p1/2, and
3s thresholds of free (black) and confined atom (red), respectively.

In quite a contrast to the free Ar case, the photoionization time delay in the Ar@XFEL
is widely different. Firstly, the Ar atom in the optical dipole trap experiences a larger
time delay compared with the free case. Although the Cooper minimum is present in the
3p cross section of Ar@XFEL, the features of the Cooper minimum are overshadowed by
the confinement effects. As discussed in the free Ar case, the average time delay of 3p1/2
and 3p3/2 also follows the competition between individual p → εd and p → εs channels
in the Ar@XFEL case. However, the p → εs channel time delay is considerably larger in
the Ar@XFEL case at the CM compared with the free Ar case. Therefore, the CM features
are visible in the 3p time delay as a kink near CM. For instance, the time delay of 3p3/2
(left panel of Figure 9) and 3p1/2 (middle panel of Figure 9) subshell of Ar@XFEL shows a
bump at 1.7 a.u.. The variation of the time delay in 3p1/2 and 3p3/2 subshell photoionization
illustrates the importance of relativistic effects.

Concerning the 3s case, as the CM in the 3s → εp channels is moved to the discrete
and, therefore, is absent in the continuum energy range in the Ar@XFEL case, the peak in
the time delay is missing. Rather, it decreases to a negative minimum and then becomes
positive. Further, the 3s time delay decreases from a high positive time delay. Note that the
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time delay in photoionization from the Ar@XFEL is, in general, large compared with that
of free Argon.

It is to be asserted that the cross section and angular distribution are unaltered due
to the dipole trapping, except for the shifting of the threshold. However, the individual
phase shift and the time delay are modified due to the laser confinement. At this point,
it is important to check and verify whether the time delay differences are altered due to
trapping the atom. Because the time delay differences can be measured [52], Figure 10
presents the time delay difference between 3s and 3p photoelectrons in free and confined Ar.
Experimental results of relative time delay (τ(3s)-τ(3p)) are included for comparison [53].
From the experimental work, the time delay for the single-photon ionization channel is
plotted. There is a good qualitative agreement between RRPA and experimental data;
the minimum in the relative time delay is in good agreement, although the magnitude is
different. While the 3p electron time delay dominates over 3s electrons at higher energy
value, near the 3s threshold, the 3s electrons escape more slowly compared with the 3p
electrons in the case of free Ar case. In the Ar@XFEL case, the time delay difference is
modified due to the laser trapping. The peak in the time delay difference is missing due to
the absence of the Cooper minimum in the 3s subshell channels.

Figure 10. The time delay difference of 3s and 3p subshell (τ(3s)-τ(3p)) of Ar (black) and Ar@XFEL
(red) in the RRPA calculation is compared with that from the experiment (blue) [53]. Vertical lines
show the 3s subshell threshold for Ar (black) and Ar@XFEl (red).

3.3. Krypton

We display the partial photoionization cross section of the 4p3/2, 4p1/2, and 4s subshells
of Kr calculated in RRPA in Figure 11. A comparison between free Kr and Kr@XFEL is
also rendered in Figure 11. A similar comparison for the angular distribution asymmetry
parameter β of the 4p3/2, 4p1/2, and 4s subshells is given in Figure 12. The 4p subshell
cross section of the free Kr displays a shape resonance at the threshold, and the σ drops
from the threshold. The 4s subshell cross section exhibits a Cooper minimum at 1.65 a.u.,
which is due to the correlation effects [54]. The inclusion of correlation effects using RRPA
has demonstrated excellent agreement with experimental results [52]. Considering the
Kr@XFEL case, since the thresholds for the 4p and 4s are shifted in the confined case, the
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cross section has a different onset in the RRPA case, as shown in Figure 11. Because of this,
the Cooper minimum in the 4s cross section is absent in the Kr@XFEL case, rather the cross
section appears to recover from the CM at the threshold. This will have implications in the
angular distribution asymmetry parameter as well. From Figure 12, one can see that the
4p3/2 and 4p1/2 angular distribution asymmetry parameter of Kr@XFEL agrees with that of
free Kr, except for the shift in the threshold. In the 4s case, the free Kr exhibits a dip in the β
at the CM location. However, in the Kr@XFEL case, the β4s increases from the threshold
and reaches the non-relativistic value of 2. Since the CM in the 4s subshell is below the
threshold in the confined case, the dip in the angular distribution parameter is missing.

 

Figure 11. Photoionization cross section (σ) of 4p3/2 (Left), 4p1/2 (Middle), and 4s (Right) subshells
of Kr (black) and Kr@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for
4p3/2, 4p1/2, and 4s thresholds of free (black) and confined atom (red), respectively.

 

Figure 12. Angular distribution asymmetry parameter (β) of 4p3/2 (Left), 4p1/2 (Middle), and 4s
(Right) subshells of Kr (black) and Kr@XFEL (red). Solid, dashed, and dotted vertical lines represent
the threshold for 4p3/2, 4p1/2, and 4s thresholds of free (black) and confined atom (red), respectively.

The average time delay of the 4p3/2, 4p1/2, and the 4s subshells of the Kr and Kr@XFEL
are shown in Figure 13. The individual channel time delays are qualitatively and quantita-
tively different in the two cases; the Kr@XFEL shows a larger time delay consistently in all
cases. At the CM, the 4p subshells exhibit a minimum time delay in the free Kr case. The
CM features are shadowed in the Kr@XFEL case; the atom in the dipole trapping shows
enhanced time delay in the entire region. The alterations in the time delay due to the laser
trapping follow a trend similar to that of the Ar case.

The induced Cooper minimum in the 4s subshell cross section manifests as a peak in
the corresponding subshell’s time delay. As in the 4p cases, the confinement vanishes the
features of the Cooper minimum in the time delay, as the CM is absent in the Kr@XFEL case.
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Figure 13. Time delay (τ) of 4p3/2 (Left), 4p1/2 (Middle), and 4s (Right) subshells of Kr (black) and
Kr@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for 4p3/2, 4p1/2, and
4s thresholds of free (black) and confined atom (red) respectively.

Figure 14 shows the difference between 4s and 4p subshells’ time delay in the free and
confined cases. Although experimental data on photoionization time delay in Kr are not
available for comparison, we provide theoretical results for completion and as a reference
for experimentalists. Figure 14 shows that the 4s electron takes a longer time than 4p
electrons near the 4s threshold of the free Kr. Due to the effect of 4s CM, the relative time
delay is a maximum. The confinement modifies the time delay difference; the relative time
delay attains a maximum near the 4s threshold, and it decreases monotonically.

 
Figure 14. The time delay difference of 4s and 4p subshell (τ(4s)-τ(4p)) of Kr (black) and Kr@XFEL
(red) in the RRPA calculation. Vertical lines show the 4s subshell threshold for Kr (black) and
Kr@XFEl (red).

Similar to the other noble gas atoms, Kr also exhibits differences in the time delay
due to the dipole trapping. At the same time, the dipole cross section and angular dis-
tribution asymmetry parameters are more or less the same except for the shift in the
threshold. The current observations reassert the observation in the ref. [55] that time delay
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is more susceptible to external perturbations compared with the angular distribution of
the photoelectrons.

3.4. Xenon

Figures 15 and 16 show, respectively, the photoionization cross section and angular
distribution asymmetry parameter of the 5p3/2, 5p1/2, and the 5s subshells of Xenon. The
5p3/2 and the 5p1/2 cross section of the free Xe exhibit a Cooper minimum at approximately
2.3 a.u. Further, there is a second Cooper minimum, which is at relatively higher energies,
at 5.7 a.u. In the 5s case of free Xe also, two Cooper minima are, respectively, observed at
photon energy 1.3 a.u. and 5.65 a.u. It has been observed that the effects of coupling with
the 4d photoionization channels are quite important in the region of both Cooper minima.
It is also established that the second Cooper minima in Xe valance subshells are due to the
interchannel coupling correlation effects. Considering the Xe@XFEL case, the 5p subshell
exhibits delayed onset of cross section due to the shifting of the threshold. Likewise, in the
5s case, the first Cooper minimum is absent in the confined Xe case. Apart from the shift in
the threshold, the cross section profiles of the Xe@XFEL are qualitatively and quantitatively
the same as that of the free one.

 

Figure 15. Photoionization cross section (σ) of 5p3/2 (Left), 5p1/2 (Middle), and 5s (Right) subshells
of Xe (black) and Xe@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for
5p3/2, 5p1/2, and 5s thresholds of free (black) and confined atom (red), respectively.

 

Figure 16. Angular distribution asymmetry parameter (β) of 5p3/2 (Left), 5p1/2 (Middle), and 5s
(Right) subshells of Xe (black) and Xe@XFEL (red). Solid, dashed, and dotted vertical lines represent
the threshold for 5p3/2, 5p1/2, and 5s thresholds of free (black) and confined atom (red), respectively.

The 5p and 5s angular distribution asymmetry parameters for free and confined Xe
are shown in Figure 16. The β is dependent on the ratio of the magnitudes of the matrix
elements of the relativistic dipole channels along with their relative phases. From Figure 16
left and middle panel, the comparison of 5p β of free Xe and Xe@XFEL suggests no dramatic
modification due to laser trapping, except for the shift in the threshold. Corresponding to
the Cooper minima in the cross section, a dip in the β is obtained. Since the CM is present
in both cases in 5p, the features of the angular distribution are alike. However, the 5s case is
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remarkably different. Since the first Cooper minimum is missing in the Xe@XFEL case, the
β5s appears to rise from the minimum at the threshold. The additional dip at 5.65 a.u. is
due to the CM at that location.

A set of corresponding figures of the time delay (τ) is shown in Figure 17. Two dips in
the 5p photoionization time delay of free Xe correspond to a -π jump in the phase shift at
the Cooper minimum. Note that the inclusion of the dipole trap reserves the qualitative
nature of the 5p time delay, although a quantitative shift has occurred. In the 5s case also,
there is a qualitative similarity between the time delay of the photoionization from the free
and confined Xe. Since the CM occurs below the threshold for the 5s subshell of Xe @XFEL,
the first dip in the time delay is present only as a kink. Apart from the shift in the threshold,
there is a dramatic change in the individual channel phase shift and, therefore, in the time
delay also.

 

Figure 17. Time delay (τ) of 5p3/2 (Left), 5p1/2 (Middle), and 5s (Right) subshells of Xe (black) and
Xe@XFEL (red). Solid, dashed, and dotted vertical lines represent the threshold for 5p3/2, 5p1/2, and
5s thresholds of free (black) and confined atom (red), respectively.

Figure 18 shows the time delay difference between the 5s and 5p subshell photoioniza-
tion. The relative time delay difference is enhanced upon crossed laser beam confinement,
which is evident from Figure 18. Due to the presence of CM, there is a dip in the time delay
difference at the location of the second Cooper minimum of the 5s and 5p subshells. As
the photon energy increases, the difference between both the free and confined time delay
difference is reduced.

 

Figure 18. The time delay difference of 5s and 5p subshell (τ(5s)-τ(5p)) of Xe (black) and Xe@XFEL
(red) in the RRPA calculation. Vertical lines show the 5s subshell threshold for Xe (black) and
Xe@XFEl (red).
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The current set of results on the noble gas atoms hints that the interaction time of
the dipole-trapped atom is noticeably modified compared with that of the free atoms.
For applications in the quantum information side, a pump laser is made to interact
with a trapped atom. In the context of a two-level system, Rabi frequency is defined as

Ω =
→
d .

→
E

h , where
→
d is the atomic dipole moment, and

→
E is the electric field of the pump

laser. The speed of such a quantum device (quantum readout time) depends on the Rabi
frequency of the pump laser. In other words, Rabi frequency gives the electronic transition
rate between the two levels considered. Since we interpret the interaction time scale of the
atom (qubit) as the readout time, the speed of the quantum device depends on the Rabi
frequency. Hence, the present investigation serves as a primer roadmap to assess the speed
of quantum devices.

4. Conclusions

The current work concludes that, except for the shift in the threshold, the photoion-
ization parameters (cross section and angular distribution asymmetry) are very similar
in the case of free atoms and those trapped in cross laser beams. However, due to the
shift in the ionization threshold, a few signature features of the Cooper minimum and the
shape resonances are missing in σ and β. It is already believed that photoionization time
delay is very sensitive to external perturbations [56]. The present work shows that the time
delay in photoionization is quantitatively and qualitatively different in the case of free and
laser-trapped atoms. In a generic sense, the time delay in photoelectron ejection is increased
due to laser trapping. This observation is consistent in all the cases we have studied. In
addition, qualitative features are also altered; Cooper minimum features are mostly masked
by the changes due to the confinement. Further, the difference between the ns and np
subshells’ time delay (τ(ns)-τ(np)) is also obtained, which is a measurable quantity. Our
results show that the (τ(ns)-τ(np)) is also modified due to the spatial confinement. The
present work underscores the importance of also considering interaction delays when
estimating the speed of quantum information processing.

The present study is a seminal analysis of the speed of quantum devices in the presence
of external perturbations. The work is limited in two ways. Firstly, in mimicking the
quantum devices and their responses, investigating a bound-to-bound hyperfine split
transition would be ideal. Secondly, the alkali metal atoms are the ideal test bed for such
applications, and, hence, dealing with such atoms would be desirable. Nevertheless, the
present bound-to-continuum studies on the noble gas atoms are indicators of the fact that
the trap environment is capable of altering the temporal response. The results from this
work allow us to anticipate changes in the response of the atoms in dipole traps. We are
not aware of any other work of this kind that addresses the speed of a quantum computing
device using the temporal response of a prospective quantum register to probes. The
speed of quantum computing is determined by considerations such as those investigated
in the present work; we hope that the results will be of consequence in the general field of
quantum information science.
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Abstract: A recent work shows how to extract the ionization site of a neutral diatomic molecule by
comparing Quantum Trajectory Monte Carlo (QTMC) simulations with experimental measurements
of the final electron momenta distribution. This method was applied to an experiment using a
40-femtosecond infrared pulse, finding that a downfield atom is roughly twice as likely to be ionized
as an upfield atom in a neutral nitrogen molecule. However, an open question remains as to whether
an assumption of the zero carrier envelope phase (CEP) used in the above work is still valid for
short, few-cycle pulses where the CEP can play a large role. Given experimentalists’ limited control
over the CEP and its dramatic effect on electron momenta after ionization, it is desirable to see what
influence the CEP may have in determining the ionization site. In this paper, we employ QTMC
techniques to simulate strong-field ionization and electron propagation from neutral N2 using an
intense 6-cycle laser pulse with various CEP values. Comparing simulated electron momenta to
experimental data indicates that the ratio of down-to-upfield ions remains roughly 2:1 regardless of
the CEP. This confirms that the ionization site of a neutral molecule is determined predominantly by
the laser frequency and intensity, as well as the ground-state molecular wavefunction, and is largely
independent of the CEP.

Keywords: strong field ionization; molecular ionization; Quantum Trajectory Monte Carlo

1. Introduction

Tunneling occurs when a laser’s strong electric field distorts the Coulombic barrier of
an atom enough to allow for the electron to escape [1]. For the case of a diatomic molecule,
this picture is complicated by the presence of a double-well potential. This leads to two
possible ionization sites, as shown in Figure 1: the upfield (higher energy) atom and the
downfield (lower energy) atom [2]. Commonly used theories of molecular ionization, such
as molecular ADK [3], molecular SFA, and the partial Fourier transform approach [4],
assume implicitly that all ionization is downfield, corresponding to the bound electron
wavepacket adiabatically responding to the relatively low-frequency laser field. However,
it is known that ionization in charged molecules can occur from either atom depending on
the internuclear separation, alignment, and other conditions [2].

When a positively charged diatomic molecule begins to dissociate, the resulting bond
softening traps the electron in the upper well and leads to upfield ionization. This process is
known as ionization enhancement [5–10] and has been repeatedly confirmed in experiments
that examine molecular fragments following a Coulomb explosion [7,8,11,12]. However,
until recently, there was no technique for determining the ionization site in neutral atoms.
A recent work suggests that the longitudinal photoelectron momentum distributions for
charged ions could be looked at to identify the ionization location [13]. The principle behind
this technique is that the electron experiences different forces due to the Coulomb potential
depending on which atom it is ionized from. If it is ionized from the downfield atom, it
will propagate directly into the continuum, but if it is from the upfield atom, it will first
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have to pass the downfield atom, distorting its trajectory compared to the case of ionization
from an atom with the same binding potential. Additionally, if the electron tunnels from
the upfield atom to the downfield atom, there will be a delay in ionization, causing a shift
in the photoelectron momentum distribution (PMD) for circularly or elliptically polarized
light. However, the approach presented in [13] views the ionization process as either all
upfield or all downfield, and therefore does not provide a method for quantifying upfield
to downfield ionization when both contributions are significant. A more recent work by
Ortmann and colleagues [14] presents a method for quantifying the ratio of upfield to
downfield ionization events, finding a significant contribution from both under typical
experimental conditions that employ infrared light for strong field ionization.

In this work, we focus on the approach presented in [14], which establishes a quantita-
tive procedure for finding the ionization site in a neutral diatomic molecule. This procedure
relies on simulating a variety of upfield:downfield ionization site ratios and determining
which ratio matches the experimental momentum distribution. We expand upon this
technique by examining the effect that the carrier envelope phase (CEP) has upon the
results to see if the approach requires stabalizing the CEP or if it can work over a random
CEP distribution.

It is important to check the robustness of this model with respect to changing the
carrier envelope phase for two reasons. First, it expands the range of applicability of the
approach in [14] to few-cycle pulses without requiring CEP averaging or pulse stabilization,
which would introduce additional sources of uncertainty. Changing the CEP can change the
final PMD, which may affect the technique as it depends on comparing the final transverse
momenta of the electrons in order to determine the ionization site. This is not an issue
for longer pulses where PMDs are independent of CEP, but it can play an important role
for few-cycle pulses where the CEP is not stabilized. Stabilizing the CEP is a non-trivial
task experimentally, let alone setting it to a specific value [15]. Second, the robustness of
the ionization site calculation to CEP changes supports the view that upfield ionization
is a non-adiabatic effect determined by the Keldysh parameter, γ = ω

√
2Ip/E0, which is

independent of the CEP. Here, ω, E0, and Ip are the laser frequency, peak field strength,
and ionization potential, respectively (atomic units are assumed throughout this text).

The remainder of our work is organized as follows. Section 2 describes the techniques
and simulation used to calculate the PMDs. Section 3 analyzes the results, finding that
CEP does not have a significant impact on the relative contribution of upfield to downfield
ionization. Section 4 concludes and summarizes.

Upfield

Downfield

Figure 1. Schematic of the electric potential created by a diatomic molecule with and without a strong
laser field present. Turning on the laser electric field allows electrons originating from both atomic
sites to tunnel into the continuum. Upfield and downfield electrons experience different potentials
due to the molecule’s asymmetric Coulomb forces, altering their trajectories.
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2. Simulating N2 Strong Field Ionization

To highlight the role that the carrier envelope phase can play in the final momen-
tum distribution, consider a laser pulse linearly polarized along the x-axis with electric
field profile

E(t) = E0 cos(ωt + φ)env(t)x̂, (1)

where ω = 2πc/λ is the angular frequency of the wave, env(t) = cos2( ωt
2N ) is an envelope

centered at t = 0 containing N laser cycles, and φ is the carrier envelope phase. According
to the strong field approximation [16], ionization is most likely near the absolute maxima
of the laser pulse and the electron’s final momentum is largely determined by the vector
potential at the time of ionization A(t0) = − ∫ t0 E(t′)dt′. Therefore, the CEP influences both
the ionization time and final electron momenta. When ionizing diatomic molecules [14],
it also controls when parent atoms are considered either upfield or downfield. For long
pulses, this poses no problem since the field and vector potential can be approximated
as plane waves and ionization takes place over many optical cycles. However, for short
pulses when N is on the order of a few optical cycles and the envelope function env(t)
decays quickly away from t = 0, only the centermost field peaks contribute to ionization,
amplifying the CEP’s influence on the photoelectron distribution.

The setup for the simulation closely follows that of reference [14]: a six-cycle, linearly
polarized laser pulse of the form (1) with wavelength λ = 800 nm and peak intensity
I0 = 1.3 · 1014 W/cm2 is incident upon a neutral N2 molecule with ionization potential
Ip = 15.6 eV. Focal averaging is applied to the intensity profile by assigning to each
intensity I a relative weight ∼ 2I+I0

I5/2

√
I0 − I [17–19]. In the simulation, intensities are

sampled according to these weights and used to determine the peak electric field E0 =
√

I
for subsets of the simulated electrons. The molecule is tilted θ = 45 degrees against the
polarization direction with nitrogen atoms located at positions rA = R0

2
√

2
(−1, 0,−1) and

rB = R0
2
√

2
(1, 0, 1) a.u., respectively, where R0 = 2 a.u. is the internuclear distance. This

tilt creates an asymmetric Coulomb force acting on electrons originating from each of the
parent nuclei. When the laser pulse is incident upon the molecule, electrons may be ionized
from either the up- or downfield atom (this designation alternates depending on whether
the electric field is positive or negative). They then propagate semiclassically until the
end of the laser pulse, when their positions and momenta are recorded and asymptotic
momenta are calculated.

Initial conditions for ionized electrons are achieved via Monte Carlo reject sampling [20,21].
With the choice of the up- or downfield parent atom fixed, ionization times t0 and initial
transverse velocities v⊥ =

√
v2

0,y + v2
0,z are fed into a reject-sampling algorithm that compares

the (normalized) ionization rate to randomly generated values. This ionization rate accounts
for the molecular orbital by importing the electronic wavefunction in N2 from GAMESS [22]
and performing a partial Fourier transform to obtain the electron’s initial transverse velocity
distribution. Electrons tunnel nonadiabatically to the continuum according to the ionization
theory presented in reference [23], though with the more general field profile (1) containing both
the enveloping function and carrier envelope phase. The atomic ionization rate W(t0, v⊥) for
an electron ionized at time t0 and with transverse velocity v⊥ is

W(t0, v⊥) =
ω2(2Ip)5/2

2[E0env(t0)]4γ2(t0,v⊥)[γ2(t0,v⊥)+cos2(ωt0+φ)] cos2(ωt0+φ)

× exp
(
− [E0env(t0)]

2

ω3

{[
sin2(ωt0 + φ) + γ2(t0, v⊥) + 1

2

]
× sinh−1 γ(t0, v⊥)

− 1
2 γ(t0, v⊥)

√
1 + γ2(t0, v⊥)

(
1 + 2 sin2(ωt0 + φ)

)})
,

(2)
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where

γ(t0, v⊥) = ω

√
2Ip + v2

⊥
|E(t0)| (3)

is the effective Keldysh parameter [23]. Electrons with ionization times t0 and transverse
velocities v⊥ that pass reject sampling are then assigned tunnel exit positions
r0 = rA/B + Re(x0, 0, 0) and longitudinal velocities v0,x where

Re{x0(t0, v⊥)} =
E0env(t0)

ω2 cos(ωt0 + φ)

[
1 −
√

1 + γ2(t0, v⊥)
]

, (4)

v0,x =
E0env(t0) sin(ωt0 + φ)

ω

[√
1 + γ2(t0, v⊥)− 1

]
, (5)

rA/B is the up-/downfield atomic site (depending on the field sign) and Re{x0(t0, v⊥)}
corresponds to the real part of the tunnel exit along the x-axis.

After ionization, electrons propagate semiclassically. Their dynamical positions and
momenta are calculated numerically by solving Newton’s equation of motion for an electron
interacting with the driving laser electric field (1) and two softcore Coulomb forces from
the N2 ion, each with 1/2 fundamental charge at their respective centers:

r̈(t) = −E(t)−∇V(r), (6)

where the potential V(r) is given by

V(r) = ∑
j=A,B

− (1/2)√
[r(t)− rj]2 + SC

. (7)

In the simulation, SC = 0.01 to avoid numerical problems created by the singularities at
the atomic centers. Electrons are propagated until the end of the laser pulse t1. During
propagation, each electron accumulates a complex phase Φ derivable from its classical
action S [20,24]:

Φ =
∫ t1

t0

(
v2

2
+ V(r)− r · ∇V(r)

)
dt − Ipt0 + v0 · (r0 − rA/B) + Φ0, (8)

where the initial phase Φ0 accounts for the molecular tilt and is given by [17]

tan Φ0 = tan
(

vz,0R0 sin θ

2

)
tanh

(
sign[Ex(t0)]

R0 cos θ

2

√
2Ip + v2

z,0

)
. (9)

Once the trajectory calculation is complete, Rydberg electrons are filtered out and final
momenta and phases are recorded.

Electron momenta at the detector are determined from the continuum electrons’ po-
sitions r1 and momenta v1 at the end of the laser pulse [25]. Assuming that the electron–
molecule interaction can now be approximated as a two-body problem, the asymptotic
momentum v = (vx, vy, vz) is given by

v = v
v(L ×A)−A

1 + v2L2 , (10)

where L = r1 × v1 is the angular momentum and A = v1 × L − r1/r1 is the Runge–Lenz
vector, both of which are conserved quantities. The asymptotic momentum magnitude
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v =
√

v2
x + v2

y + v2
z comes from solving for the electron’s kinetic energy far away from the

charged molecule:

v2

2
=

v2
1

2
− 1

r1
. (11)

Sample results of the simulation are shown in Figure 2, which plots the 2D asymptotic
momentum distribution in the vx-vz plane. Note that quantum interference is included
by attaching a phase to each trajectory, resulting in a complex factor eiΦ multiplying each
trajectory, and accounting for interference between different trajectories that end up with
the same final momentum. Additional details about the QTMC simualtions can be found
in [14].

Figure 2. Simulated 2D photoelectron momentum distribution (PMD) when the ionization ratio
q = 0.6 (Equation (12)) and carrier envelope phase φ = 0. In this simulation, a six-cycle, 800-nm
laser pulse with peak intensity I = 1.3 · 1014 W/cm2 is incident upon a neutral N2 molecule tilted
45 degrees with respect to the polarization direction. When q = 0.6, electrons are ionized at the
upfield atom four times more often than the downfield atom. The color bar is on a logarithmic scale
with arbitrary units.

3. Analyzing Momentum Data

To determine the relative number of electrons ionized at either the upfield or down-
field locations, we again closely follow the analysis used in reference [14]. First, electron
trajectories originating from both atomic sites are calculated. The relative number of up-
and downfield electrons used in the analysis is determined by the ionization ratio

q =
# up − # down
# up + # down

, (12)

which is sampled within the range −1 (all downfield) to +1 (all upfield). For each set
of trajectories, a 2D photoelectron momentum distribution w(i, j) is generated, where
i and j index over bins of vx and vz, respectively. These momentum distributions are
compared to that of experiment [26] by calculating the average offset momentum a for each
distribution, where

a =
∑m

i=1 sign[vx(i)]vz,mean[vx(i)]
m

, (13)
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and

vz,mean[vx(i)] =
∑n

j=1 w(i, j)vz(j)

∑n
j=1 w(i, j)

. (14)

In Figure 3, offset momentum a is plotted versus ionization ratio q for various CEP
values and compared to the offset momentum calculated from the experimental data.
It appears that changing the CEP creates a slight variation in the offset momentum for
different q values. However, these ionization ratios for the different CEP all correspond
physically to ionizing roughly two downfield electrons for every one upfield.

Figure 3. Ionization ratio q (Equation (12)) vs. average offset momentum a (Equation (13)) for various
values of carrier envelope phase. The experimental offset momentum determined in reference [14] is
indicated by the dashed line. It appears that regardless of the CEP, the ratio of downfield to upfield
ionization remains roughly 2:1.

4. Conclusions

We have simulated the ionization of N2 in a strong electric field through the use of
QTMC techniques. By comparing experimental results [26] to simulated electron momen-
tum distributions with various upfield and downfield contributions, we confirm the 2:1
downfield-to-upfield ionization ratio found in [14] regardless of the laser field’s carrier
envelope phase. Thus, determining the ionization site through this technique does not
require experimental CEP stabilization or simulated averaging over CEP values, limiting
possible sources of uncertainty.

Importantly, our results support the paradigm of non-adiabatic strong field molecular
ionization depending mostly on the Keldysh parameter, γ, which itself depends only on
the laser intensity, frequency, and ionization potential. This view is supported by prior
analytical calculations in a static electric field, corresponding to γ � 1, which find that all
tunneling is downfield in this fully adiabatic limit [27]. Experimental studies of the strong
field ionization of neutral diatomic molecules using longer-wavelength mid-IR pulses,
combined with the ionization site extraction procedure proposed in [14], could further test
the robustness of this paradigm.
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Abstract: Dramatically sharp resonances manifesting stable negative ion formation characterize
Regge pole-calculated low-energy electron elastic total cross sections (TCSs) of heavy multi-electron
systems. The novelty of the Regge pole analysis is in the extraction of rigorous and unambiguous
negative ion binding energies (BEs), corresponding to the measured electron affinities (EAs) of the
investigated multi-electron systems. The measured EAs have engendered the crucial question: is the
EA of multi-electron atoms and fullerene molecules identified with the BE of the attached electron in
the ground, metastable or excited state of the formed negative ion during a collision? Inconsistencies
in the meaning of the measured EAs are elucidated and new EA values for Bk, Cf, Fm, and Lr
are presented.

Keywords: Regge poles; generalized bound states; multi-electron atoms; elastic cross sections; anionic
binding energies; electron affinities; electron correlation; core–polarization interaction

1. Introduction

In the electron impact energy range 0.0 ≤ E ≤ 10.0 eV, dramatically sharp resonances
manifesting stable ground, metastable and excited negative ion formation, shape resonances
(SRs), and Ramsauer–Townsend (R-T) minima characterize the Regge pole calculated
low-energy electron elastic total cross sections (TCSs) of heavy multi-electron atoms and
fullerene molecules [1]. The energy positions of the sharp resonances correspond to the
measured electron affinities (EAs) of the considered multi-electron atoms and fullerene
molecules. Indeed, the extraction from the TCSs of rigorous and unambiguous negative ion
binding energies (BEs), the SRs, and the R-T minima, without any experimental or other
theoretical assistance demonstrates the novelty and strength of the Regge pole analysis and
its vital importance in the understanding of low-energy electron collisions with complex
multi-electron systems through negative ion formation.

The recent theoretical investigation of low-energy electron elastic collisions with heavy
multi-electron atoms and fullerene molecules, using Regge pole analysis, also discussed
the meaning of the measured EA within two prevailing contexts [1]. The first viewpoint
considers the EA to correspond to the electron binding energy when it is attached to the
ground state of the formed negative ion during the collision. The second view interprets
the EA as corresponding to the BE of the attached electron in an excited state of the formed
negative ion. Examples of the first case are the measured EAs of the Au, Pt, and the
highly radioactive At atoms [2–7] as well as of the C60 and C70 fullerene molecules [8–12].
The measured EAs of Nb [13,14], Hf [15], the lanthanide atoms Eu [16,17] and Tm [18],
and the actinide atoms Th [19] and U [20,21] as well as the theoretical EAs of Bk, Cf, Fm,
and Lr [22–26] represent the second interpretation of the EA. Clearly, whether the mea-
sured/calculated EA of heavy multi-electron atoms and fullerene molecules is interpreted
as corresponding to the binding energy (BE) of the attached electron in the ground state,
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the metastable state, or the excited state of the formed negative ion during the collision, the
Regge pole-calculated binding energies provide rigorous and unambiguous energy values.

We demonstrate the second viewpoint of the meaning of the EA by using the Nb atom
as an example. The EA of atomic Nb is both interesting and revealing because there are
two measured EA values, namely 0.917 eV [13] and 0.894 eV [14] as well as two theoretical
EAs 0.82 eV [27] and 0.99 eV [28]. Their interpretation notwithstanding, the agreement
among these values is quite good and with the Regge pole-metastable BE value of 0.902 eV.
Experimental studies of the lanthanide atoms are challenging due to the difficulty of
producing sufficient negative ions for use in photodetachment experiments [16]. Problems
concerning the interpretation of what is meant by the measured EAs of the lanthanide atoms
have already been discussed [29,30]. For the actinide atoms, the experimental breakthrough
using a nanogram of Bk and Cf [31] and the recent first ever EA measurements of the highly
radioactive elements At [7], Th [19], and U [20,21] represent significant advances in the
measurements of the challenging to handle atoms. In addition, more such measurements
in other radioactive atoms can be expected in the near future. Of great concern and puzzle,
however, is that the measured [7] and the calculated [32–35] EAs of At correspond to the
ground state BE of the formed At− anion during the collision, while the measured EAs
of Th and U are identified with the BEs of the attached electron in the excited states of
the formed anions during a collision. Consequently, reliable theoretical predictions and
guidance are essential for a fundamental understanding and interpretation of what is
actually being measured.

The Regge pole method has been benchmarked on the measured EAs of atomic Au,
At, and Eu as well as the C60 fullerene molecule through the negative ion BEs extracted
from the Regge pole-calculated electron elastic TCSs. For clarity, Table 1 compares the
Regge pole-calculated negative ion BEs with measured and calculated EAs of various atoms
and fullerene molecules to assess the reliability of the existing measured/calculated EAs.
Indeed, from the Eu atom through the end of Table 1, the meaning of the EA is ambiguous
and riddled with uncertainty. This is particularly the case with the actinide atoms Bk,
Cf, Fm, and Lr, the focus of this paper, and, for these atoms there are no measured EAs
available. This explains our focus on them. We determine their ground, metastable, and
excited state negative ion BEs from the Regge pole-calculated electron elastic scattering
TCSs to understand the existing calculated EAs and assess their reliability. We then present
unambiguous and reliable BEs to guide the measurements of their EAs.

Table 1. Negative ion binding energies (BEs) and ground state Ramsauer–Townsend (R-T) minima, all
in eV extracted from TCSs of the atoms and the fullerene molecules C60 and C70. They are compared
with the measured electron affinities (EAs) in eV. GRS, MS-n, and EXT-n (n = 1, 2) refer, respectively,
to ground, metastable, and excited states. Experimental EAs, EXPT, and theoretical EAs, theory is
also included. The numbers in the square brackets are the references.

System
Z

BEs
GRS

BEs
MS-1

BEs
MS-2

EAs
EXPT

BEs
EXT-1

BEs
EXT-2

R-T
GRS

BEs/EAs
Theory

EAs
RCI [23]

EAs
GW [24]

Au 79 2.26 0.832 -
2.309 [2]
2.301 [3]
2.306 [4]

0.326 - 2.24

2.50 [27]
2.19 [36]
2.313 [37]
2.263 [38]

- -

Pt 78 2.16 1.197 -
2.128 [2]
2.125 [5]
2.123 [6]

0.136 - 2.15 2.163 [38] - -

At 85 2.42 0.918 0.412 2.416 [7] 0.115 0.292 2.43

2.38 [32]
2.42 [33]
2.412 [34]
2.45 [35]

- -

C60 2.66 1.86 1.23
2.684 [8]
2.666 [9]

2.689 [10]
0.203 0.378 2.67

2.57 [39]
2.63 [40]
2.663 [41]

- -
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Table 1. Cont.

System
Z

BEs
GRS

BEs
MS-1

BEs
MS-2

EAs
EXPT

BEs
EXT-1

BEs
EXT-2

R-T
GRS

BEs/EAs
Theory

EAs
RCI [23]

EAs
GW [24]

C70 2.70 1.77 1.27
2.676 [9]
2.72 [11]
2.74 [12]

0.230 0.384 2.72 3.35 [42]
2.83 [42] - -

Nb 41 2.48 0.902 - 0.917 [13]
0.894 [14] 0.356 - 2.47 0.82 [27]

0.99 [28] - -

Eu 63 2.63 1.08 - 0.116 [16]
1.053 [17] 0.116 - 2.62 0.117 [22]

0.116 [43] - -

Tm 69 3.36 1.02 - 1.029 [18] 0.016 0.274 3.35 - - -

Hf 72 1.68 0.525 - 0.178 [15] 0.017 0.113 1.67 0.114 [44]
0.113 [45] - -

Th 90 3.09 1.36 0.905 0.608 [19] 0.149 0.549 3.08 0.599 [19]
0.549 [46] 0.368 1.17

U 92 3.03 1.44 - 0.315 [20]
0.309 [21] 0.220 0.507 3.04 0.175 [47]

0.232 [21] 0.373 0.53

Bk 97 3.55 1.73 0.997 N/A 0.267 0.505 3.56 - 0.031 −0.276
−0.503

Cf 98 3.32 1.70 0.955 N/A 0.272 0.577 3.34 - 0.010
0.018

−0.777
−1.013

Fm 100 3.47 1.79 1.02 N/A 0.268 0.623 3.49 - - 0.354
0.597

Lr 103 3.88 1.92 1.10 N/A 0.321 0.649 3.90
0.160 [25]
0.310 [25]
0.476 [26]

0.295
0.465

−0.212
−0.313

2. Method of Calculation

Understanding the structure and dynamics of low-energy electron elastic collisions
with multi-electron atoms and fullerene molecules, resulting in the formation of stable
negative ions, is quite challenging for conventional quantum mechanical methods. Most
of the sophisticated methods developed in atomic physics were tasked with reproducing
experimental results with high accuracies but did very little to unravel and elucidate the
intricate details and the precise description of the nature of the different physical effects
important to a particular process; they also lacked the predictive power. Expressing the
desired solutions to scattering problems, as a partial wave (PW) series where the summation
is over the orbital (or total) angular momentum quantum number, presents a major problem
to the conventional quantum mechanical approaches. The PW series is notoriously very
slowly convergent, particularly when the wavelength of the incoming particle is much
smaller than the range of the scattering potential. The PW expansion may contain hundreds,
if not thousands, of terms, with the result that the calculated EAs are generally riddled
with uncertainties and therefore difficult to interpret.

However, if the angular momentum is allowed to become complex-valued, this slowly
convergent PW series is replaced with a more rapidly converging series. This leads us to
the concept of Regge poles. Simply put, Regge poles are generalized bound states, i.e., the
solution of the Schrödinger equation where the energy E is real, positive and the angular
momentum λ is complex. Here, the rigorous Regge pole method has been used to calculate
the electron elastic TCSs. Regge poles, singularities of the S-matrix, rigorously define
resonances [48,49] and in the physical sheets of the complex plane, they correspond to
bound states [50]. The Regge poles formed during low-energy electron elastic scattering
become stable bound states [51]. The near-threshold electron–atom/fullerene collision
TCS resulting in negative ion formation as resonances are calculated independently of
measurements using the Mulholland formula [52]. This formula converts the infinite
discrete sum into a background integral plus the contribution from a few poles to the
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process under consideration. Indeed, the method requires no a priori knowledge of the
experimental or any other theoretical data as inputs; hence, its predictive nature.

Electron–electron correlations and core–polarization interactions are both crucial for
the existence and stability of most negative ions. The former effects are embedded in
the Mulholland formula [53,54] for the TCS, while the latter interactions are incorporated
through the well-investigated Thomas–Fermi type model potential. Within the CAM, λ
description of scattering, Im λ is used to differentiate between the shape resonances (short-
lived resonances) and the stable bound states of the negative ions (long-lived resonances)
formed as Regge resonances in the electron–atom (molecule) collision. For the latter, the
Im λ is several orders of magnitude smaller than that for the former. The Mulholland
formula [52] used here is of the form [53,54] (atomic units are used throughout):

σtot(E)
= 4πk−2

∫ ∞
0 Re[1 − S(λ)]λdλ

−8π2k−2∑
n

Im λnρn
1+exp(−2πiλn)

+ I(E)
(1)

In Equation (1) S(λ) is the S-matrix, k =
√

2mE, with m = 1 being the mass and E
the impact energy, ρn is the residue of the S-matrix at the nth pole, λn and I(E) contains
the contributions from the integrals along the imaginary λ-axis (λ is the complex angular
momentum); its contribution has been demonstrated to be negligible [55]. In the Regge
pole, also known as the complex angular momentum (CAM), method the important and
revealing energy-dependent Regge trajectories are also calculated. Their effective use in
low-energy electron scattering has been demonstrated in [55,56], for example.

As in [57], we consider the incident electron to interact with the complex heavy system
without consideration of the complicated details of the electronic structure of the system
itself. Thus, the robust Avdonina–Belov–Felfli potential [58], which embeds the vital
core–polarization interaction is used:

U(r) = − Z
r(1 + αZ1/3r)(1 + βZ2/3r2)

(2)

In Equation (2) Z is the nuclear charge, α and β are variation parameters. For small
r, the potential describes Coulomb attraction between an electron and a nucleus, U(r) ~
−Z/r, while at large distances it has the appropriate asymptotic behavior, viz. ~ −1/(αβr4)
and accounts properly for the polarization interaction at low energies. Notably, for an
electron, the source of the bound states giving rise to Regge trajectories is the attractive
Coulomb well it experiences near the nucleus. The addition of the centrifugal term to the
well “squeezes” these states into the continuum [54,59]. For larger CAM, λ the effective
potential develops a barrier. Consequently, a bound state crossing the threshold energy
E = 0 in this region may become an excited state or a long-lived metastable state. As a result,
the highest “bound state” formed during the collision is identified with the highest excited
state, here labeled as EXT-1, see Table 1. As E increases from zero, the second excited state
may form with the anionic BE labeled, EXT-2. For the metastable states, similar labeling
is used as MS-1, MS-2, etc. However, it should be noted here that the metastable states
are labeled relative to the anionic ground state. The CAM methods have the advantage
that the calculations are based on a rigorous definition of resonances, viz. as singularities
of the S-matrix [49,50]. It is noted here that 1/(Im λ) also determines the angular life of a
resonance [50,60].

The strength of this extensively studied potential, Equation (2) [61,62] lies in that
it has five turning points and four poles connected by four cuts in the complex plane.
The presence of the powers of Z as coefficients of r and r2 in Equation (2) ensures that
spherical and non-spherical atoms and fullerenes are correctly treated. Small and large
systems are also appropriately treated. The effective potential V(r) = U(r) + λ(λ + 1)/2r2

is considered here as a continuous function of the variables r and complex λ. The numerical
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calculations of the TCSs, limited to the near-threshold energy region, namely below any
excitation thresholds to avoid their effects, are obtained by solving the Schrödinger equation
as described in [54], see also [63]. The parameters “α” and “β” of the potential in Equation
(2) are varied, and with the optimal value of α = 0.2, the β-parameter is further varied
carefully until the dramatically sharp resonance appears in the TCS. This is indicative of
stable negative ion formation during the collision and the energy position matches with
the measured EA of the atom/fullerene molecule; see for example the Au and C60 fullerene
TCSs in [1]. This has been found to be the case in all the atoms and fullerenes investigated
thus far.

Here, we consider the presence of a sufficiently narrow resonance, which allows the
collision partners to form a long-lived intermediate complex that rotates as it decays at
zero scattering angle to preserve the total angular momentum. If the complex has a large
angular life, namely Im λ << 1, it will return to forward scattering many times. For the
resonance to contribute to the TCS two resonance conditions must be satisfied: (1) Regge
trajectory, namely Im λ versus Re λ stays close to the real axis and (2) the real part of the
Regge pole is close to an integer.

3. Results

To better understand and appreciate the problem we are discussing here, we first
consider the TCSs of the standard atomic Au and C60 fullerene molecule, given in Figure 1
of Ref. [1]. Clearly seen from the figure is that in the Au TCSs (left panel of Figure 1)
there are three dramatically sharp resonances representing stable negative ion formation
in the ground (2.26 eV), metastable (0.832 eV), and excited (0.326 eV) states of the formed
negative ions during the collision. In the C60 fullerene TCSs (right panel of Figure 1)
there are five dramatically sharp resonances, corresponding to the ground state BE (2.66
eV), two metastable BEs (1.86 eV and 1.23 eV), and two excited state BEs (0.378 eV and
0.203 eV). In both cases, the measured EAs of the Au atom and the C60 fullerene molecule
correspond to the anionic BEs of the attached electron in the ground states of the formed
anions during the collision, see also Table 1. Importantly, the delineation of the dramatically
sharp resonances in the TCSs of both Au and C60 ensures the correct interpretation of what
is being measured. It is noted here that both the Au and C60 TCSs also abound in SRs and
R-T minima. Similarly, for Pt, At, and C70 the measured EAs correspond to the BEs of the
electron when it is attached to the ground states of the formed negative ions (see Table 1
here). Indeed, this excellent agreement gives great credence to the Regge pole analysis to
produce rigorous and unambiguous BEs without any assistance from either experiment or
any other theory, as well as to our interpretation of the EAs of these complex systems, viz.
as corresponding to the ground state BEs of the formed negative ions during the collisions.

Recall that the primary objective of this paper is to subject the measured and/or
calculated EAs of the investigated atoms and fullerene molecules in this paper to the Regge
pole-calculated ground, metastable, and excited state negative ion BEs of the formed anions
during the collisions for unambiguous interpretation of the EAs. Here, the presented
Figures 1 and 2 of the TCSs demonstrate the clear delineation of the dramatically sharp
resonances leading to the unambiguous determination of the ground, metastable, and
excited state BEs of the formed negative ions during the collisions. Table 1 summarizes the
BEs of the various atoms and fullerenes, extracted from the TCSs of the atoms of interest
here and compares them with the measured/calculated EAs.
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Figure 1. Total cross sections (a.u.) for electron elastic scattering from atomic Bk (left panel) and Cf
(right panel) are contrasted. For both Bk and Cf the red, blue, and orange curves represent TCSs
for the ground and the two metastable states, respectively, while the brown and the green curves
correspond to excited state TCSs. The dramatically sharp resonances in the TCSs of both figures
correspond to the Bk− and Cf− negative ions formed during the collisions. Importantly, the flip over
of the near-threshold R-T minimum from the Bk TCSs to an SR very close to threshold in the Cf TCSs
occurs here.

Figure 2. Cont.
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Figure 2. Total cross sections (a.u.) for the actinide atoms Fm (top panel) and Lr (bottom panel).
In both panels the red curves represent the ground states. In Fm the blue and the orange curves
and in Lr the blue and the brown curves are the metastable TCSs while the brown and the green
curves in Fm and the orange and the green curves in Lr represent the excited state TCSs. The
energy positions of the dramatically sharp lines correspond to electron BEs of the formed negative
ions during collisions. The orange curve in the TCSs for Fm and the brown curve in those for Lr
correspond to the polarization-induced TCSs with the deep R-T minima flipped over to SRs close to
threshold (see also Figure 1 above).

The ambiguous and confusing EAs of the actinide atoms in particular, from Th through
Lr have necessitated the careful evaluation/assessment of the measured and/or calculated
EAs in order to determine their meaning. As seen from Table 1, it is particularly difficult to
make sense of the existing theoretical EAs of the Bk, Cf, Fm, and Lr actinide atoms. There-
fore, here, we demonstrate the importance and effective use of the Regge pole-calculated
BEs by comparing them with the EAs of the listed atoms in Table 1, particularly the four
actinide atoms above. To this end, we have grouped our discussions for convenience as
follows: 3.1 Bk and Cf atoms: the interest in them is that a recent experiment probed their
structure and dynamics using a nanogram matter; 3.2 Fm and Lr atoms: being at the end of
the actinide series, have several calculated EAs available to compare with; 3.3 Relativistic
effects in electron affinity calculations.

As seen from Table 1, for atomic Nb the measured and the calculated EAs agree very
well, and with the Regge pole metastable BE of 0.902 eV, the ground and the excited state
BEs are 2.48 eV and 0.356 eV, respectively. The latest measured EA (0.116 eV) [16] of Eu is in
outstanding agreement with the Regge pole BE of 0.116 eV and with the MCDF-RCI EA of
0.117 eV [22]. Yet, the Regge pole value corresponds to an excited state BE of Eu. Notably,
the previously measured EA of 1.053 eV [17] and the Regge pole-metastable BE of 1.08 eV
for Eu agree excellently. Furthermore, the 1.029 eV measured EA of Tm [18] and the Regge
pole BE of 1.02 eV also agree excellently. From Table 1, since the measured EA of Hf [15] is
close to the RCI EA [44] and the Regge pole BE of an excited state [45], the measured EA of
Hf is identified with the BE of an excited state of Hf contrary to the cases of the Au, Pt, and
At atoms as well as of the fullerenes. Consequently, from the measured EAs of Nb, Eu, Tm,
and Hf the simple question follows: Does the measured EA of these atoms correspond to
the BE of the attached electron in an excited state of the formed anion during the collision?

For Th, the measured and the calculated EAs [19] 0.608 eV and 0.599 eV, respectively,
are close to the Regge pole SR at 0.61 eV and the second excited state BE of 0.549 eV [46]. The
measured EAs of U 0.315 eV [20] and 0.309 eV [21] with the calculated EA of 0.232 eV [21]
are close to each other and to the Regge pole BE of the first excited state of the formed U−
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anion, the MCDF-RCI EA value of 0.175 eV [47] and the 0.373 eV GW EA [24]. However,
the Regge pole BE value of the second excited state, 0.507 eV agrees very well with the EA
calculated by the GW method 0.53 eV [24]. Here, we are confronted with the inconsistency
in the identification of what is actually being measured.

3.1. Bk and Cf Atoms

The selection of the Bk and Cf TCSs presented in Figure 1 is motivated by the rigorous
probing of their electronic structure and dynamics through the Regge pole-calculated R-
T minima and SRs, revealing their sensitivity [1]. Importantly, the flipping over of the
deep R-T minimum in the Bk TCSs to an SR very close to the threshold occurs in the
metastable TCS of the Cf atom: see the orange curves in Figure 1. The results of probing
their electronic structure and dynamics by the experiment [31] as well as our validation of
the observation [1] should help in the measurements of the EAs of Bk and Cf. In Table 1 we
have presented our Regge pole anionic BEs for both Bk and Cf and compared them with
the existing theoretical EAs: these are riddled with uncertainty and lack reliability. The
same conclusion applies to the data of the remaining atoms.

3.2. Fm and Lr Atoms

There are no measured EAs for these atoms; therefore, reliable predictions of their
EAs are essential. As the size of the actinide atoms approaches that of the Lr atom, their
electronic structure becomes less complicated and the theoretical EAs are expected to
become less uncertain. Figure 2 compares the TCSs of the Fm and Lr atoms, selected
because of the availability of several theoretical EAs to compare with the Regge pole-
calculated BEs. The TCSs of both atoms are characterized by well-delineated dramatically
sharp resonances, representing in each atom a ground, two metastable, and two excited
state BEs, see also Table 1. Worth remarking here is that in both the TCSs of Fm and Lr the
sharp resonances of interest here, although well-delineated from each other, appear close
to SRs; this can create problems in the identification of the BEs as seen in Figure 2.

For Fm, it is seen that the Regge pole BEs of the highest excited anionic state (0.268 eV)
and the second excited anionic state (0.623 eV) agree rather well with the existing theoretical
EA values of 0.354 eV [24] and 0.597 eV [24], respectively. Importantly, the reason why these
theoretical EAs differ from each other is that they correspond to different anionic states:
this demonstrates the need for rigorous values of the EAs for Fm and the other actinide
atoms in general to guide measurements and/or calculations. We note here that the Fm
TCSs still exhibit fullerene behavior [64], while in Lr the fullerene behavior has completely
disappeared (see green curves in both figures of Figure 2). This almost atomic behavior of
the Lr TCSs makes the Lr much easier to handle theoretically as evidenced below.

The importance of the Lr TCSs is two-fold: 1) The electronic structure of Lr is relatively
simple and various sophisticated theoretical methods have calculated its EA, see Table 1.
On comparing the TCSs of the Fm and Lr atoms, we see that the characteristic SRs appear
very near threshold in both TCSs. Since the Lr atom is the last of the actinide series,
sophisticated theoretical methods can be expected to obtain better values for the EA of
Lr. Indeed, as seen in Figure 2, the TCSs are characterized by well-delineated ground
(3.88 eV), two metastable (1.92 eV; 1.10 eV), and two excited (0.321 eV; 0.649 eV) state
anionic BEs. Once the determination has been made regarding what anionic state BE was
measured/calculated, then by comparison with the above values, an unambiguous EA
determination can be obtained as was performed with the Au, Pt, At, and the fullerene
molecules in Table 1. However, several calculated EAs are available; we will attempt
to make sense of their meaning. Firstly, the 0.310 eV [25], 0.295 eV [23], and the Abs
(−0.313 eV) [24] EAs can safely be identified with the Regge pole’s highest excited state BE
(0.321 eV) and secondly, the EA values of 0.465 eV [23] and 0.476 eV [26] could probably
be identified with the Regge pole BE of the second excited state 0.649 eV; they could also
correspond to the nearby shape resonance at 0.451 eV, see Figure 2.
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Indeed, from Table 1 it is clear that for the actinide atoms, the various sophisticated
theoretical methods calculate only the BEs of the formed negative ions in excited states
and equate them with the EAs. There is nothing wrong with this viewpoint, except that a
rigorous definition of the EA is required for consistency throughout the tabulated atoms
and fullerenes in Table 1. This would then mean using the BEs in column BEs, EXT-1 for
the corresponding EAs of all the atoms and fullerene molecules in Table 1. Unfortunately,
this would contradict the established meaning of the EAs as found for the Au, Pt, and
At atoms as well as for the C60 and C70 fullerenes. It is further noted here that for the
carefully measured and calculated EA of At, various sophisticated theoretical EAs [32–35]
agree excellently among themselves and with the measured EA as well as with the Regge
pole ground state anionic BE and not with the metastable or the excited state anionic BEs.
Unfortunately, it is a formidable task for most theoretical methods to calculate the BEs of
metastable states, let alone the ground state BEs of the tabulated systems in Table 1.

These results are also important in guiding sophisticated theoretical methods on the
importance of polarization interaction. This has been demonstrated unequivocally in the
TCSs calculation of the Bk and Cf atoms, particularly in the At atom. When the β-parameter
of Equation (2) was 0.042 we obtained the ground state anionic BE value of 2.51 eV [65],
which was close to the then known theoretical EA value of 2.80 eV [66]. However, careful
refinement of the β-parameter to 0.04195 yielded the ground state BE value of 2.42 eV, in
excellent agreement with the measured EA of 2.416 eV [7] and the theoretical values [32–35].
Here, it is noted that the small Im (λ) decreased from 1.07 × 10−5 to 8.9 × 10−6, indicative
that the BE value of 2.42 eV corresponds to the longest-lived resonance as expected (see the
importance of the use of Im (λ) in the Regge pole analysis in Ref. [55]). Indeed, a scientific
will is needed to respond critically to the question: why are the EAs of Au, Pt, and At as
well as those of the C60 and C70 fullerene molecules identified with the BEs of the formed
negative ions in the ground states while for Th and U as well as for the other actinide atoms
the EAs correspond to the Regge pole-calculated BEs of excited states? Notably, the Regge
pole BEs are available to guide the EA measurements, regardless of their interpretation,
namely whether they are viewed as corresponding to the BEs of electron attachment in the
ground or excited states.

3.3. Relativistic Effects in Electron Affinity Calculations

The EA provides a stringent test of theoretical calculations when the calculated EAs
are compared with those from reliable measurements. Unfortunately, low-energy electron
interactions with heavy multi-electron atoms and fullerene molecules are characterized
generally by the presence of many intricate and diverse electron configurations. These
lead to computational complexity that, for a long time, made it virtually impossible for
sophisticated theoretical methods to reliably predict the electron binding energies of the
formed negative ions during collisions. Thus, the electron affinities calculated using many
structure-based theoretical methods tend to be riddled with uncertainties making them
difficult to interpret, particularly for the actinide atoms, see Table 1.

One of the most important and revealing investigations of the importance of Regge
trajectories in low-energy electron collisions using the ABF potential, Equation (2), was
carried out by Thylwe [56]. For the Xe atom, Regge trajectories calculated using the
Dirac relativistic and non-relativistic methods were contrasted near the threshold and
found to yield essentially the same Re λ(E) when the Im λ(E) was still very small, see
Figure 2 of [56]. This implies the insignificant difference between the relativistic and non-
relativistic calculations at low-energy electron scattering, which is the condition of our
calculations here.

Most of the sophisticated theoretical calculations of the EAs include relativistic effects
at various levels of approximations, see for example their comparisons in the calculation
of the EA of At in Ref. [34]. Since many of these methods are tailored to reproduce the
measurements very well, it is difficult to determine what essential physics is incorporated
in the calculation of the EAs. For instance, Wesendrup et al. [36] carried out large-scale
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fully relativistic Dirac–Hartree–Fock and MP2 as well as nonrelativistic pseudo-potential
calculations and obtained the EAs of Au as 2.19 eV and 1.17 eV, respectively. In addition,
Cole and Perdew [27] employed relativistic and nonrelativistic calculations obtaining the
EA of atomic Au as 2.5 eV and 1.5 eV, respectively. These EAs should be compared with
the nonrelativistic Regge pole-calculated BE value of 2.263 eV [1,38] and the measured
EAs presented in Table 1. Accordingly, it can be safely concluded that in the energy
regime, 0.0 ≤ E ≤ 10.0 eV the essential physics embedded in the Regge pole method such
as electron–electron correlations and core–polarization interaction is adequate for the
reliable prediction of the EAs of multi-electron atoms and fullerene molecules. Importantly,
an impressive agreement with the measured EAs of Au [2–4] has been obtained by the
relativistic coupled cluster calculations with variational quantum electrodynamics [37]; it
also supports the Regge pole-calculated BE value.

The calculation of the EA of Nb (Z = 41) in [27] used a gradient-corrected exchange-
correlation functional and a Nb scalar relativistic core, obtaining an EA value of 0.82 eV,
which compares very well with the Regge pole metastable BE value of 0.902 eV and the
measured EA values of 0.917 eV [13] and 0.894 eV [14]. These results for Nb further demon-
strate the great need to ascertain precisely the state from whence the photodetachment
process originates. The Eu atom, with a relatively high Z of 63, but a small, measured EA
of 0.116 eV [16], provides a stringent test of the nonrelativistic Regge pole method when
its BE value of 0.116 eV [43,55] is contrasted with the MCDF-RCI calculated EA value of
0.117 eV [22]. The theoretical results were calculated around 2009 while the experimental
EA was measured in 2015. For the highly radioactive At atom the recently measured EA [7],
which employed the coupled cluster method, agreed excellently with the Regge pole BE
and the EAs from various sophisticated theoretical calculations, including the multicon-
figuration Dirac–Hartree–Fock values [32–35], see Table 1 for comparisons. Furthermore,
in [32,34] extensive comparisons among various sophisticated theoretical EAs have been
carried out as well.

4. Summary and Conclusions

For the multi-electron atoms and the fullerene molecules considered in this paper, we
presented rigorous and unambiguous ground, metastable, and excited state negative ion
BEs extracted from the Regge pole-calculated TCSs. We then compared our BEs with the
existing measured and/or calculated EAs as shown in Table 1. We found that for the Au,
Pt, and At atoms as well as the C60 and C70 fullerene molecules, our ground state anionic
BEs matched excellently with the measured EAs, implying that the measured EAs of these
systems correspond to the BEs of the electron when it is attached in the ground states
of the formed negative ions during the collision. However, for the lanthanide atom Eu,
our excited state BE is in outstanding agreement with both the recently measured and the
MCDF-RCI calculated EA values. For both the Eu and Tm atoms, good agreement between
the Regge pole-metastable BEs and the previously measured EAs [17,18] has been realized.
Overall, our excited state BEs are closer to the measured and/or calculated EAs of the Hf
and the actinide atoms. This implies that for these atoms the measured and/or calculated
EAs correspond to the BEs of the electron when it is attached in the excited states of the
formed negative ions, contrary to the cases of the Au, Pt, and At atoms as well as the C60
and C70 fullerene molecules.

In conclusion, for the actinide atoms Bk, Cf, Fm, and Lr, we presented the Regge
pole-calculated electron elastic TCSs demonstrating their richness in very sharp resonances
representing negative ion formation in the ground, metastable, and excited states. From
the positions of the dramatically sharp resonances in the TCSs, we extracted the BEs of the
formed negative ions during the collisions. These BEs have been compared with the existing
theoretical EAs to understand and make sense of these data since they are generally riddled
with uncertainties, particularly those of the Bk and Cf atoms. There are no measured EAs
for these atoms to compare with our BEs. It is hoped that the results of this paper will
inspire and assist both measurements and theory in the determination of the long-overdue
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unambiguous and reliable EAs of the actinide atoms. It is noted that the TCSs of these
actinide atoms also abound in SRs and R-T minima, making it challenging to extract the EAs.
It is hoped that the actinide atoms will be subjected to similar investigations as in [32,34]
for unambiguous and reliable EAs. The great strength of the Regge pole analysis is in its
use of Im λ(E) to differentiate among the ground, metastable, and excited negative ionic
states, with the ground state having the smallest Im λ(E), indicative of the longest-lived
negative ionic state.
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Abstract: We study the Rabi flopping of the population between the ground and excited 2p states of
the hydrogen atom, induced by intense short laser pulses of different shapes and of carrier frequency
ω = 0.375 a.u. which resonantly couples the two states, and manifestations of this dynamics in
the energy spectra of photoelectrons produced in the subsequent ionization of the atom from the
excited state. It is found that, for Gaussian, half-Gaussian and rectangular pulses, characterized by
the same pulse area, the final populations take the same values and the spectra consist of similar
patterns having the same number of peaks and approximately the same separation between the
prominent edge (Autler–Townes) peaks. The additional analysis in terms of dressed states showed
that the mechanism of formation of multiple-peak structures during the photoionization process
is the same regardless of the pulse shape. These facts disprove the hypothesis proposed in earlier
studies with Gaussian pulse, that the multiple-peak pattern appears due to dynamic interference of
the photoelectrons emitted with a time delay at the rising and falling sides of the pulse, since the
hypothesis is not applicable to either a half-Gaussian pulse that has no rising part or a rectangular
pulse whose intensity is constant.

Keywords: Rabi dynamics; laser pulse; photoionization; photoelectron energy spectrum; Autler–
Townes splitting; multiple-peak pattern; dressed states; dynamic interference

1. Introduction

If an atom, initially being in its ground state, interacts with an alternating field that res-
onantly couples this state to an excited state, the population will be periodically transferred
from one state to another. This effect was first described theoretically by Rabi, who applied
it for fermions in rotating magnetic fields [1]. In general, the flopping of the population can
be explained by the fact that the eigenstates of the Hamiltonian describing the bare atom
are no longer stationary states if the atom interacts with the field. Another consequence
of this fact is the splitting of the coupled atomic states into doublets of “dressed states”,
whose quasi-energies are separated by the value corresponding to the frequency of Rabi
flopping (see, e.g., Ref. [2]). This splitting can be observed in the photoabsorption and
photoionization spectra of atoms and molecules. Before the availability of coherent light
sources, it was first detected using radiation from the radio frequency domain. In the origi-
nal observation by Autler and Townes [3], a radio frequency source tuned to the separation
between two doublet microwave absorption lines of the OCS molecule was used.

Despite theoretical predictions to observe Rabi dynamics at short wavelengths [4,5]
and the availability of intense XUV light sources for more than a decade, direct observation
of Rabi dynamics at such short wavelengths has been reported only recently [6]. In the
actual experiment, applying intense XUV laser pulses from a free-electron laser with high
temporal and spatial coherence, one-photon Rabi oscillations are induced between the
ground state and an excited state in helium atoms (pump). Then, a second (probe) photon
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from the same pulse ionizes the atom from the excited state (resonant two-photon ioniza-
tion) or, at higher intensities, two photons can do it from the ground state (nonresonant
two-photon ionization). In both cases, the emitted photoelectrons coherently probe the
underlying dynamics and the measured signal reveals an Autler–Townes (AT) doublet.

In the above experiment, the AT doublets were built at the resonant two-photon
ionization for 1.5 completed Rabi cycles. However, theoretical analysis of the resonant mul-
tiphoton ionization for more than two completed Rabi cycles during the pulse predicts the
appearance of a multiple-peak pattern in the photoelectron energy spectrum (PES) [7–10].
The number of peaks appearing in the pattern is essentially determined by the pulse area [7].
The area theorem (see Ref. [11] and references therein) actually, relates this quantity to
the number of Rabi cycles during the pulse, but numerical calculations have shown that
this number, the number of peaks in the radial density of photoelectrons and the number
of peaks in the pattern coincide [9]. The coincidence between the first two numbers is
easily explained by the propagation of the emitted bunches of photoelectrons, which are
separated in time and, thus, separated in space, too. On the other hand, the explanation for
the multiple-peak pattern in the spectrum is still under consideration. There is a general
agreement that this pattern is a result of the superposition of the contributions of photoelec-
trons ejected via two dressed states during the pulse action. The situation is simplest in the
case of photoionization by a rectangular pulse, where the two contributions have the forms
of cardinal sine (sinc) functions of energy, shifted by the value of the corresponding Rabi
frequency, and the multiple-peak pattern is a result of their overlap [7] (see also Section 3.3).
Conversely, in the case of smooth pulses such as the Gaussian, it is not clear exactly what is
happening. The analysis performed within the stationary phase approximation suggested
that dynamic interference of the photoelectrons emitted with the same energy, but with a
time delay at the rising and falling sides of the pulse, essentially determines the multiple-
peak structure (modulations) in the PES [8,12,13]. However, this assumption has been
questioned by analyzing the conditions for dynamic interference [14,15], where it was
found that they are not always fulfilled, particularly in the case of photoionization from the
hydrogen ground state.

To shed more light on the above issue, in this paper we investigate manifestations
of Rabi dynamics in the photoelectron energy spectra calculated for resonant two-photon
ionization of the hydrogen atom by intense short laser pulses of three different forms—
Gaussian, half-Gaussian and rectangular ones. By choosing the carrier frequency of
0.375 a.u. that resonantly couples the hydrogen ground (1s) and excited 2p states, the pulse
induces one-photon Rabi oscillations between these states, and a second photon from
the same pulse subsequently ionizes the atom from the 2p state. The problem was pre-
viously studied by other authors, who also used different forms of the laser pulse (see
Refs. [4,5,7–9]), but conditions for the dynamic interference were not considered. The paper
is organized in the following way. In the next section, we briefly describe the computational
method for calculating the populations of atomic states and the photoelectron energy spec-
tra, based on the three-level model, and present results for resonant two-photon ionization
of hydrogen by intense short laser pulses. In Section 3 we analyze the Rabi dynamics and
the AT patterns in the spectra in terms of dressed states. A summary and conclusions are
given in Section 4.

2. Calculation of Populations of Atomic States and Photoelectron Energy Spectra

The populations of atomic states during the interaction of the atom with the laser
pulse, including their final values when the pulse has expired, and the photoelectron
energy spectra were obtained by solving the time-dependent Schrödinger equation (in
atomic units)

i
d
dt

|ψ(t)〉 = (H0 + zE(t))|ψ(t)〉. (1)

Here |ψ(t)〉 is the non-stationary atomic state at time t, H0 is the Hamiltonian of the
field-free (bare) atom, E(t) is the electric field component of the laser pulse and z is the
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projection of the electron–nucleus distance in the field direction. The term zE(t) describes
the atom-field interaction in the dipole approximation using the length gauge. We consider
a linearly polarized laser pulse, whose electric field component reads

E(t) = E0 g(t) cos ωt, (2)

where E0 is the peak value of the field strength, ω is the laser carrier frequency, and the
function g(t) determines the shape of the pulse envelope.

Below, we solve Equation (1), assuming that the atom is initially in its ground state,
i.e., |ψ(t0)〉 = |1s〉, where t0 is a time before the beginning of the interaction. Since the
atom interacting with the field (2) has axial symmetry, the z-projection of the electron
angular momentum lz is a constant of motion and the magnetic quantum number m is
a good quantum number for any field strength. Thus, the state |ψ(t)〉 is at any time t
characterized by the value m = 0, which characterizes the ground state of the bare atom.
Unless otherwise stated, atomic units (a.u.) are used throughout the paper.

2.1. The Three-Level Model

In the case of photoionization which goes via resonant or near-resonant excitation
of an intermediate state, which here is 2p, the other excited states are nonessential and at
weak fields the process can be adequately described within the three-level model. A com-
putational method for solving Equation (1) within this model is presented in our recent
paper [16], and in more detail in Ref. [8]. Here, we give only the basic expressions and the
final set of relevant equations.

The atomic state at time t within the three-level model reads

|ψ(t)〉 = C1s(t)|1s〉+ C2p(t)e−iωt|2p〉+ e−2iωt
∫
[Cεs(t)|εs〉+ Cεd(t)|εd〉]dε, (3)

where C1s(t), C2p(t) and Cεl(t) are the time-dependent amplitudes for the population
of the ground state |1s〉, intermediate state |2p〉 and continuum states |εl〉 (l = 0, 2),
respectively. The variables ε and l label the kinetic energy and orbital momentum of
produced photoelectrons. The states |2p〉 and |εl〉 have been multiplied with the phase
factors e−iωt and e−2iωt in order to simplify the set of equations for the amplitudes.

If we set the ground state energy E1 to zero, by inserting Equation (3) in the Schrödinger
Equation (1) and applying the rotating wave approximation [2] and the local approxima-
tion [8,17], we obtain the set of equations for the amplitudes

iĊ1s =
1
2

Ω∗
0 g(t)C2p(t),

iĊ2p =
1
2

Ω0 g(t)C1s(t) +
[

E2 − i
2

Γg2(t)− ω

]
C2p(t), (4)

i ˙̃Cε =
1
2
E0 g(t)C2p(t) + (ε − ε0)C̃ε(t),

where Ω0 = DE0 is the frequency of Rabi flopping between the populations of states 1s
and 2p at the peak value of laser intensity, Γ = 2π|dε0E0/2|2 is the ionization rate of the
intermediate (near-)resonant state 2p and C̃ε(t) = Cεs(t)/dεs ≡ Cεd(t)/dεd is the scaled
amplitude for the population of continuum states. Here, D = 〈2p|z|1s〉 and dεl = 〈εl|z|2p〉
are the dipole transition matrix elements for the excitation of the 2p state and for its
subsequent ionization, respectively, and |dε|2 = |dεs|2 + |dεd|2. For a given carrier fre-
quency of the laser pulse ω, the expected energy of photoelectrons is ε0 = 2ω − Ip, where
Ip = 0.5 a.u. = 13.606 eV is the ionization potential of the hydrogen atom. Note that, by tak-
ing E1 = 0, the energies of the 2p and final continuum states are E2 = 0.375 a.u. =
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10.204 eV and Ip + ε, respectively. Finally, let us state that the formal solution of the third of
Equation (4) is

C̃ε(t) = − i
2
E0

∫ t

−∞
e−i(ε−ε0)(t−t′)g(t′)C2p(t′)dt′. (5)

The quantities |C1s(t)|2 and |C2p(t)|2 can be interpreted, respectively, as the popula-
tions of atomic states |1s〉 and |2p〉 after the interaction of the atom with the laser field
until time t. Thus, the populations of these states, after time tex when we assume that
the laser pulse has expired, are |C1s(tex)|2 and |C2p(tex)|2. Analogously, the quantities
|Cεl(t)|2 and |Cεl(tex)|2 represent the probability densities of finding the atomic electron
in the continuum state |εl〉 (here l = 0, 2) after the interaction of the atom with the laser
field until time t and after the pulse has expired, respectively. Since the photoelectron yield
at a given energy ε is proportional to the total probability density of finding the electron
in continuum states corresponding to this energy, the PES is adequately represented by
the distribution

w(ε) = |Cεs(tex)|2 + |Cεd(tex)|2 = |dε|2|C̃ε(tex)|2. (6)

The values of the dipole matrix elements for transitions from the 1s to the 2p state
and from the 2p state to continuum states are determined applying expressions given in
Appendix A in Ref. [16]. The matrix element for the transition 1s → 2p is D = 0.7449 a.u.,
while the values of |dε|2 are shown in Figure 2 in the same reference. The resonant excita-
tion of the 2p state and the subsequent ionization occurs if the laser carrier frequency is
ω = 0.375 a.u., which coincides with the transition frequency between the 1s and 2p states
(in the weak field limit). The photon energy corresponding to this frequency is 10.204 eV,
and the expected kinetic energy of the ejected electrons is ε0 = 0.25 a.u. = 6.803 eV. In this
case, one has |dε0 |2 = 0.1663 a.u. [16]. We will see later that the approximate results ob-
tained using the three-level model, in which the exact values for |dε|2 are replaced by the
value of |dε0 |2, as used in previous studies [8], are sufficient for a qualitative analysis
of spectra.

2.2. Results

The populations of atomic states and the photoelectron energy spectra of the hydrogen
atom exposed to the laser pulse of carrier frequency ω = 0.375 a.u. have been calculated
using the described method for three pulse shapes: (a) the Gaussian shape

g(t) = e−t2/τ2
(7)

with τ = 30 fs, (b) the half-Gaussian shape

g(t) =

{
0 for t < 0,

e−t2/τ′2 for t > 0,
(8)

with τ′ = 2τ = 60 fs, and (c) the rectangular shape

g(t) =
{

1 for |t| < τ′′,
0 for |t| > τ′′, (9)

with τ′′ = τ
√

π/2 = 26.5868 fs. The parameters τ, τ′ and τ′′ are chosen so that for a given
value of E0 all three pulses have the same value of the pulse area [7]

θ = Ω0

∫ +∞

−∞
g(t)dt, (10)

which here is θ =
√

π Ω0τ =
√

π Ω0τ′/2 = 2 Ω0τ′′. For times when the pulses (7)–(9)
expire, we take tex = 3τ, t′ex = 3τ′ and t′′ex = τ′′, respectively. Let us state at this point that,
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referring to the area theorem [7,11], the number of Rabi cycles completed during the pulse
is N = θ/(2π).

Figure 1 shows the evolution of the populations of states 1s and 2p, calculated for
pulses of the above three shapes and peak intensity I0 = 1 TW/cm2 (I0 = E2

0 /(8πα),
α = 1/137) for which the pulse area is θ = 8.741 and N ≈ 1.4. One can see that, although
the evolution is different, in accordance with the area theorem [11] the final populations for
all three pulses (after they have expired) take the same values.

Figure 1. (Color online) The evolution of populations of the ground state (1s) and the excited 2p
state during the process of resonant two-photon ionization of hydrogen by: (a) Gaussian laser
pulse (7) with τ = 30 fs, (b) half-Gaussian pulse (8) with τ′ = 60 fs and (c) rectangular pulse (9) with
τ′′ = 26.5868 fs, all of carrier frequency ω = 0.375 a.u. = 10.203 eV, which is resonant for transition
1s→ 2p and peak intensity of 1 TW/cm2. The dashed lines represent the envelopes of the laser pulses.
The parameters τ, τ′ and τ′′ are chosen so that all three pulses have the same value of the pulse area
θ = 8.741, for which the populations perform approximately 1.4 Rabi cycles.

Figure 2 shows the final populations of the states 1s and 2p as functions of I0 in the
domain of 109–1013 W/cm2. Again, in agreement with the area theorem, for each peak
intensity the final populations of atomic states for the considered three pulses have the same
values. Due to this fact, the blue and red lines in Figure 2 represent the populations of the
ground and excited states, respectively, obtained for all three pulse shapes. The vertical dashed
lines indicate the peak intensities at which an integer number of Rabi cycles during the pulse is
completed: I0(N) = 0.517, 2.067, 4.650, 8.267, 12.917 TW/cm2 for N = 1, 2, 3, 4, 5, respectively.
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Figure 2. (Color online) Final populations of the ground state (1s) and the excited 2p state of hydrogen
at the end of the process of its resonant two-photon ionization, as functions of the laser peak intensity.
The results obtained using the Gaussian, half-Gaussian and rectangular pulses (Equations (7)–(9)) of
carrier frequency ω = 0.375 a.u. with τ = 30 fs, τ′ = 60 fs and τ′′ = 26.5868 fs practically coincide
and they are represented by common lines. The vertical dashed lines indicate the peak intensities at
which an integer number of Rabi cycles during the pulse is completed.

Figure 3 shows the photoelectron energy spectra determined by solving the set of
Equation (4) and applying Equation (6) with exact |dε|2 values (solid red lines) and with
|dε|2 ≈ |dε0 |2 (dashed lines) for: (a) Gaussian pulse (7), (b) half-Gaussian pulse (8) and
(c) rectangular pulse (9), with the peak intensities I0(N), N = 1, . . . , 5. Note that the spectra
obtained using the approximate value |dε0 |2 are symmetric, but this is not the case when
the exact values for |dε|2 are used. The observed asymmetry, which is more pronounced
at higher laser field intensities, has recently been studied in several publications [9,16,18].
For each value of I0, the PES consist of a pattern exhibiting the AT splitting. The separation
between the most prominent edge peaks (AT doublet) increases with the square root of I0,
i.e., linearly with the peak value of electric field strength. In addition, for the laser peak
intensities when more than two Rabi cycles during the pulse are completed, our results
confirm the previously reported appearance of a multiple-peak pattern in the calculated
PES [7–10].

Figure 3. (Color online) Photoelectron energy spectra calculated using the three-level model
(Equations (4)–(6)) with exact values of |dε |2 (solid orange lines) and with the approximation
|dε |2 ≈ |dε0 |2 (dashed lines) for: (a) Gaussian pulse (7), (b) half-Gaussian pulse (8) and (c) rectan-
gular pulse (9), all of carrier frequency ω = 0.375 a.u. and the peak intensities marked in Figure 2
by vertical dashed lines. Black dots mark the real parts of E±(0) + ε0, whose separation (≈Ω0)
estimates the splitting of the resonant peak.

Demekhin and Cederbaum [8] analyzed the multiple-peak patterns in the PES ob-
tained for the photoionization with the Gaussian pulse. They attributed the appearance
of modulations inside the AT doublets to the dynamic interference of two photoelectron
waves with the same kinetic energy emitted at two different times during the pulse—at
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the time when the pulse is growing and at the time when it decreases. Our calculations,
however, show that similar modulations also exist in the case of photoionization with the
half-Gaussian pulse, that has no growing part, as well as at the photoionization with the
rectangular pulse, whose intensity is constant. Thus, we conclude that the dynamic inter-
ference cannot be the principal reason for the modulations in the calculated spectra. This
conclusion is supported by the analysis of the conditions for dynamic interference [14,15],
where it was found that they are not fulfilled in the case of resonant photoionization via
the 2p state (see Figure 3c in Ref. [14]).

3. Analysis of the AT Patterns in Terms of Dressed States

3.1. Dynamics of the Ground and Intermediate States

As the amplitude C̃ε(t) does not appear in the first two of Equation (4), the dynamics of
the 1s and 2p states within the three-level model is formally decoupled from the dynamics
of continuum states. The equations for these two states can be written in the matrix form

i
d
dt

(
C1s(t)

C2p(t)

)
=

(
0 1

2 Ω∗
0 g(t)

1
2 Ω0 g(t) − i

2 Γg2(t)

)(
C1s(t)

C2p(t)

)
. (11)

This matrix equation represents the time-dependent Schrödinger equation that describes
the resonantly coupled dynamics of the 1s and 2p states in the basis of the same states in
the interaction picture [19]. Using Dirac’s formalism, this equation reads

i
d
dt

|ψb(t)〉 = H|ψb(t)〉, (12)

where |ψb(t)〉 = eiH0t [C1s(t)|1s〉+ C2p(t)e−iωt|2p〉] = C1s(t)|1s〉+ C2p(t)|2p〉 is the bound
part of the state (3) in the interaction picture and H is the interaction Hamiltonian, whose
representations in the actual basis are

|ψb(t)〉 →
(

C1s(t)

C2p(t)

)
, (13)

H →
(

0 1
2 Ω∗

0 g(t)
1
2 Ω0 g(t) − i

2 Γg2(t)

)
. (14)

Since the interaction picture hides the time dependence related to the unperturbed
Hamiltonian H0, the amplitudes C1s(t), C2p(t) and the Hamiltonian H are slowly varying
quantities. By diagonalizing this Hamiltonian, one obtains two slowly varying complex
eigenenergies (quasi-energies)

E±(t) = ±1
2

√
Ω2

0 g2(t)− Γ2g4(t)/4 − i
4

Γg2(t) ≈ ±1
2

Ω0 g(t)− i
4

Γg2(t), (15)

which correspond to dressed states

|±〉 ≈ 1√
2
(|1s〉 ± |2p〉). (16)

The approximate expressions are applicable if Ω0  Γg(t), which is fulfilled if the pulses
are not of excessive intensity. Using inverse relations |1s〉 = (|+〉 + |−〉)/√2, |2p〉 =
(|+〉 − |−〉)/√2, the state |ψb(t)〉 can be written in the form

|ψb(t)〉 = C+(t)|+〉+ C−(t)|−〉, (17)

where
C±(t) =

1√
2
[C1s(t)± C2p(t)]. (18)
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Note that, due to the presence of an imaginary part in E±, the dressed states |±〉 are
decaying, i.e., they are two decoupled resonances. The real parts of the quasi-energies move
adiabatically apart as the pulse arrives, and towards each other as the pulse expires. More
precisely, according to Equation (15), their distance evolves as E+(t)− E−(t) ≈ Ω0 g(t).

3.2. Dynamics of Continuum States

By inserting Equation (17) into Equation (12) and applying the eigenvalue problem
H|±〉 = E±|±〉, one obtains equation iĊ± = E±(t)C±(t), which can be solved analytically.
Employing the initial conditions C±(−∞) = 1/

√
2, we find

C±(t) =
1√
2

e−i
∫ t
−∞ E±(t′)dt′ =

1√
2

e∓i Ω0J1(t)/2e−ΓJ2(t)/4, (19)

where Jn(t) =
∫ t
−∞ gn(t′)dt′.

From Equation (18), it follows that C2p(t) = [C+(t)− C−(t)]/
√

2, which by substitu-
tion in Equation (5) gives

C̃ε(t) = − i
2
√

2
E0

∫ t

−∞
e−i(ε−ε0)(t−t′)g(t′) [C+(t′)− C−(t′)]dt′. (20)

Finally, using Equation (6), we obtain

w(ε) =
|dε|2E2

0
8

∣∣∣∣
∫ +∞

−∞
ei(ε−ε0)tg(t) [C+(t)− C−(t)]dt

∣∣∣∣
2

(21)

=

∣∣∣∣dεE0

4

∫ +∞

−∞
g(t) e−ΓJ2(t)/4

[
eiφ+(t) − eiφ−(t)

]
dt
∣∣∣∣
2

,

where φ±(t) = (ε − ε0)t ∓ Ω0J1(t)/2 are the phases of two oscillatory functions in the
integrand. This formula gives exactly the same results as Equations (4)–(6), some of them
shown in Figure 3, but it provides a deeper insight into the multiple peak structure of
the PES.

The AT splitting of the resonant peak in the PES can be roughly estimated from the
maximum distance between quasi-energies (15)

ΔAT ≡ ε+ − ε− ∼ E+(0)− E−(0) ≈ Ω0 g0, (22)

where ε± are the positions of the AT doublet peaks in the PES and g0 ≡ g(0) is the
maximum value of the envelope g(t) (usually g0 = 1).

Figure 4 shows the time evolution of the photoelectron energy distribution, represented
by |C̃ε(t)|2 using Equation (20), during the photoionization process of the hydrogen atom
by: (a) Gaussian pulse (7), (b) half-Gaussian pulse (8) and (c) rectangular pulse (9), all of
them having the carrier frequency of 0.375 a.u. and the peak intensity of 12.917 TW/cm2,
which leads to five Rabi cycles completed at the end of the pulse (N = 5). In all three
cases, the number of Rabi cycles performed up to a given instant of time coincides with
the number of peaks in the energy distribution at that instant. Thus, the mechanism of
formation of a structure with multiple peaks is the same regardless of the shape of the
pulse and, therefore, it cannot be dynamic interference of two photoelectron waves emitted
during the rising and falling part of the pulse. The appearance of a multiple-peak pattern
in the case of rectangular pulse, where an analytical solution is possible, is analyzed in the
next subsection.
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Figure 4. (Color online) Time evolution of the photoelectron energy distribution (in arbitrary units)
during the photoionization process of the hydrogen atom by: (a) Gaussian pulse (7), (b) half-Gaussian
pulse (8) and (c) rectangular pulse (9) of carrier frequency ω = 0.375 a.u. and peak intensity of
12.917 TW/cm2 at which the atom completes five Rabi cycles during the pulse.

3.3. Analytical Solution for Rectangular Pulse

The limits of the integral in Equation (21) for the rectangular pulse (9) are reduced
to interval [−τ′′,+τ′′], in which Jn(t) = τ′′ + t and φ±(t) = (ε − ε0 ∓ Ω0/2) t ∓ Ω0τ′′/2,
so that this integral can be solved analytically. Furthermore, since the ionization rate for
the laser peak intensities considered here (up to 13 TW/cm2) is small (Γ < 10−4 a.u.), it
can be neglected and the expression for energy distribution of photoelectrons to a good
approximation becomes

w(ε) =

∣∣∣∣dε0E0

2

(
e−iΩ0τ′′/2 sin δ+τ′′

δ+
− eiΩ0τ′′/2 sin δ−τ′′

δ−

)∣∣∣∣
2

, (23)

where δ±= ε−ε0 ∓ Ω0/2. The positions of the two main peaks of this distribution are very
close to the positions of the main peaks of partial distributions

w±(ε) =
∣∣∣∣dε0E0

2

∣∣∣∣
2( sin δ±τ′′

δ±

)2

, (24)

whose values are ε± = ε0 ±Ω0/2. Since the zeros of functions sin(δ±τ′′)/δ± are δ± = kπ/τ′′,
where k are integers, and in agreement with the area theorem τ′′ = Nπ/Ω0, where N
is the number of Rabi cycles during the pulse, the separation of two adjacent zeros is
Δε = π/τ′′ = Ω0/N. Thus, in the interval (ε−, ε+), whose length here is ΔAT = Ω0,
there are exactly N − 1 zeros and N peaks (see Figure 5 for N = 5). The latter explains
the coincidence between the number of Rabi cycles during the pulse and the number of
peaks in the AT pattern in PES. Obviously, local peaks in distribution (23) also exist in partial
distributions (24), i.e., they are not a product of dynamic interference.

Figure 5. (Color online) (a) Partial distributions w±(ε) and (b) total distribution w(ε) given by
Equations (23) and (24), respectively, for the rectangular laser pulse with N = θ/(2π) = 5.
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4. Summary and Conclusions

In this paper, we studied the Rabi flopping of the population between the ground (1s)
and excited 2p states of the hydrogen atom, induced by intense short laser pulses of different
shapes and of carrier frequency ω = 0.375 a.u., which resonantly couples these states,
and manifestations of these dynamics in the energy spectra of photoelectrons produced
in the subsequent ionization of the atom from its periodically populated/depopulated
2p state. Manifestations of the Rabi dynamics in the spectra are the AT splitting and
multiple-peak structure of the AT pattern. The populations of states and spectra were
calculated for three different pulse shapes—Gaussian, half-Gaussian and rectangular ones,
whose pulse durations were tuned so that, for a given laser peak intensity, their pulse
areas have the same value. It was found that, for these pulses, in accordance with the
area theorem, the final populations (once the pulses have expired) are the same, and the
spectra have similar forms in that they consist of AT patterns with the same number of
peaks and with approximately the same separation between the prominent edge (AT) peaks.
These facts essentially disprove the assumption that the multiple-peak pattern appears
due to dynamic interference of the photoelectrons emitted with the same energy, but with
a time delay at the rising and falling sides of the pulse [8,12,13], for the simple reason
that a half-Gaussian pulse has no rising part, while the intensity of a rectangular pulse is
constant. This conclusion is in agreement with the analysis of the conditions for dynamic
interference [14,15], where it was found that they are not fulfilled in the case of resonant
photoionization via the 2p state.

The additional analysis in terms of dressed states provided deeper insight into the
structure of obtained spectra. This approach implies that the ionization occurs via dressed
states, which directly explains the appearance of AT doublets in the PES. Here, the formula
for the energy distribution of photoelectrons has the form of the time integral of the sum of
two terms with different phase factors corresponding to two dressed states. In the case of
rectangular pulse, this integral is analytically solvable and is reduced to the sum of two
contributions that have the forms of sinc functions of energy, shifted by the value of the
corresponding Rabi frequency. Then, the multiple-peak pattern is simply the result of their
overlapping, which explains the matching of the number of completed Rabi oscillations
with the number of peaks in the AT pattern. Analysis of the time evolution of the photoelec-
tron energy distribution during the photoionization process showed that the mechanism
of formation of multiple-peak structures is the same regardless of the pulse shape and is,
therefore, not related to dynamic interference.
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The Spin-Orbit Interaction: A Small Force with Large Implications
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Abstract: The spin-orbit interaction is quite small compared to electrostatic forces in atoms. Never-
theless, this small interaction can have large consequences. Several examples of the importance of the
spin-orbit force in atomic photoionization are presented and explained.

Keywords: spin-orbit interaction; atomic photoionization

1. Introduction

More than a half-century ago, Ugo Fano pointed out that the small spin-orbit interac-
tion had significant implications for atomic physics [1]. Photoelectron spin polarization and
the splitting of inner and outer atomic energy levels were considered in his comment. Over
the intervening half-century, there have been a number of new aspects of the importance of
the spin-orbit interaction that have been investigated, both experimentally and theoretically,
that exemplify and amplify the earlier observations. In this short review, we shall discuss
several more recent examples of the large influence of the spin-orbit interaction in various
aspects of atomic photoionization.

2. Spin-Orbit Splitting of Cooper Minima

Cooper minima [2], zeros or near-zeros in dipole photoionization matrix elements
are ubiquitous features in valence and near-valence shell photoionization cross sections
of atoms over the entire periodic table [3]. These Cooper minima occur in ground state
photoionization only in the l → l + 1 dipole channels. Typically, the Cooper minima have
significant influence on the energy dependence of the photoionization cross section and the
spectral distribution of oscillator strength over a broad energy region around the location of
the minimum [4]. From a simple single-particle point of view, a Cooper minimum occurs at
an energy where the overlap between the initial and final state wave functions in the dipole
matrix element is such that the positive and negative contributions just cancel each other
out, resulting in a zero in the matrix element, as a function of energy. For photoionization
from an nl atomic subshell with l �= 0, the cross section never can go to zero because of
the existence of the l → l − 1 channel that does not have a Cooper minimum. However,
for ns subshell photoionization, there is the possibility of a zero-cross section since no
l → l − 1 photoionization channel exists. However, owing to the spin-orbit interaction, a
single ns → εp transition splits into two.

This splitting of Cooper minima by the spin-orbit interaction was first found by
Seaton [5], where the ns → εp1/2 and ns → εp3/2 dipole matrix elements in the alkali atoms
exhibit their Cooper minima at slightly different energies so that the sum of the cross sections
of the two channels never vanished, thereby leading to the non-zero photoionization cross
section Cooper minimum observed experimentally in the alkali atoms.

For non-s states, the Cooper minima split into three owing to the spin-orbit splitting of
the bound states in addition to the splitting of the continuum states [6–9]. These splittings
of the Cooper minima are very much larger than the initial state spin-orbit splittings. For
high-Z atoms, the splittings become quite significant indeed. For example, for the uranium
atom, the calculated 6p spin-orbit splitting is 9.5 eV, but the Cooper minima are split by
more than 200 eV [6]. From a physical standpoint, these effects result from the spin-orbit
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force being attractive for (both discrete and continuum) j = l − 1/2 states and repulsive for
j = l + 1/2 states.

For superheavy elements, the splittings are magnified even further [10], as seen in
Table 1 where the splittings of the 6s Cooper minima, calculated using the relativistic-
random-phase approximation (RRPA), including coupling among all relevant channels,
increase from 0.47 a.u. for Hg (Z = 80) to 167.50 a.u (more than 4 keV) for Og (Z = 118), the
heaviest known atom. Now, for initial ns states, there is no spin-orbit splitting, so this effect
is entirely the result of the spin-orbit interaction in the final continuum states. Thus, while
the vast majority of studies of the spin-orbit interaction are for discrete (bound) states, it
must be emphasized that there are important effects on continuum (unbound) state wave
functions as well.

Table 1. Positions of Cooper minima in 6s subshells in photoelectron energy (a.u.).

Atom 6s → p3/2 6s → p1/2 Splitting

Hg (Z = 80) 4.14 3.67 0.47
Rn (Z = 86) 5.93 4.43 1.5
Ra (Z = 88) 6.38 3.88 2.5

No (Z = 102) 11.7 6.7 5
Cn (Z = 112) 24.82 4.82 20
Og (Z = 118) 171.02 3.52 167.5

In any case, all this is as a result of the spin-orbit interaction.

3. Photoelectron Angular Distributions from s-States

Within the framework of the dipole approximation, generally valid for low photon
energy, the photoemission angular distribution of atomic subshell i for incident linearly
polarized light is given by [11] the following:

dσi
dΩ

=
σi
4π

[1 + βiP2(cos θ)],

where σi is the subshell cross section, θ is the angle between the photon polarization and the
photoelectron momentum. Non-relativistically, for ns subshells of closed-shell, 1S0 atoms,
βns = 2 and is energy-independent. This is because there is only one possible final state
for the ns → εp process, leading to a 1P1 final state of the residual ion-plus-photoelectron
system. Using a relativistic formulation, however, the possible transitions are ns → εp1/2
and ns → εp3/2, which can interfere, leading to an energy-dependent βns [11]. Looked at
another way, the final states of the system are the possible J = 1 states 1P1 and 3P1, which are
the eigenchannels of the final states. Clearly, the transition to the triplet final state involves
a spin flip and can only be effected by the spin-orbit interaction.

An extremely useful way to look at photoelectron angular distributions involves
the use of the angular momentum transfer analysis of Dill and Fano [12]. The angular
momentum transfer is defined generally as jt = Jc + s + J0, where Jc and J0 are the angular
momenta of the ion core and initial state, respectively, and s is the photoelectron spin. The
utility of this analysis is that there is a β for each allowed value of jt and these add up
incoherently to calculate the observed β. Now, it turns out that the transition to the 1P1
corresponds to jt = 0 and leads to βns = 2, but the transition to 3P1 corresponds to jt = 1,
which is what is known as a parity-unfavored transition, leading to βns = −1 [11,12]. Then,
βns is a linear combination of these values, 2 and −1, weighted by their cross sections, i.e.,

βns = [2σ(1P1) − σ(3P1)]/[σ(1P1) + σ(3P1)].

These effects are particularly enhanced near Cooper minima, where the singlet cross
section becomes quite small. As an example, in Figure 1, the situation for Xe 5s, calculated
using the fully relativistic RRPA, is shown [13]. It is seen that the cross section exhibits
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a Cooper minimum and, in that energy region, βns is seen to deviate from the value of 2
and to be strongly energy-dependent. Parenthetically, note that this behavior has also been
validated in the laboratory [13].

Figure 1. Xe 5s photoionization cross section (upper curve) and β parameter (lower curve) vs. photon
energy, ω, calculated using relativistic-random-phase approximation (RRPA) [13].

It is thus evident that the small spin-orbit force changes the ns photoelectron angular
distribution markedly.
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4. Branching Ratios at High Energy

Atomic nl subshells with l �= 0 are split into doublets with j = l ± 1/2 owing to the spin-
orbit interaction; these splittings are quite small compared to the binding energies of the nl
subshells. Thus, in a photoionization process at a given photon energy, the photoelectrons
from the split subshells have slightly different energies and this gives the branching ratios of
the j = l ± 1/2 cross sections an energy dependence, even if the dynamics of the two are the
same; this is known as the kinetic energy effect. At high energies, where the cross sections vary
slowly with energy, this small energy difference is no longer of any consequence, and it was
expected earlier that the branching ratios for the j = l + 1/2/j = l − 1/2 cross should approach
the non-relativistic value of (l + 1)/l, which simply reflects the occupation numbers of the
spin-orbit-split nl subshell [14]. However, it was later shown that relativistic interactions,
particularly spin-orbit, affect not only the energies, causing a splitting, but the initial state
wave functions too, and this causes the ratio to drop below the statistical value at high
energies [15,16]. In addition, this prediction has recently been verified experimentally [17].
In fact, the nlj wave functions for j = l ± 1/2 are essentially the same for intermediate and
large r, but differ considerably for small r. The Dirac equation shows that the ratios of the
nll−1/2:nll+1/2 probability densities diverge as Z2/r2 as r → 0 [18].

Now, the relevant region for the dipole matrix element moves to smaller and smaller r
with increasing energy, and this can be understood both mathematically and physically [19].
From a mathematical standpoint, with increasing photoelectron energy, the continuum
wave function (the final state of the photoelectron after photoabsorption) becomes increas-
ingly oscillatory, resulting in a net cancellation of the matrix element beyond the first node
of the continuum wave function. This node moves towards the nucleus with increasing
energy, thereby causing the matrix element to be generated in a region increasingly close
to the nucleus as the energy increases. From a physical point of view, both energy and
linear momentum must be conserved in the photoionization process. High-energy photoab-
sorption entails a lot of linear momentum which must be transferred to the residual atom,
where most of the mass is at the nucleus. Thus, to take up this momentum, the absorption
is most likely to take place near the nucleus, i.e., at small r. From these arguments, it is
evident that the branching ratios do not reach a limit but continually decrease as a function
of photon energy.

As an example, the theoretical results for Kr 2p, 3p, 4p and 3d branching ratios are
shown in Figure 2 [19], where it is seen that all of the branching ratios decrease with energy.
These calculations were performed using RRPA which was modified to be able to deal with
high energies. This required modifying the integration mesh by increasing both the number
and density of the mesh points to be able to deal accurately with the extremely oscillatory
high-energy continuum wave functions. At the highest energies, the np ratios are between
1.7 and 1.8, well below the statistical value of 2.0 for np-states. The 3d branching ratio is
also decreasing below the statistical value of 1.5 but much more slowly. This occurs because
in nd-states, where the main transition is nd → εf ; the f -wave centrifugal barrier keeps
the continuum wave function away from the small-r region where the initial state wave
functions differ.

Parenthetically, also seen in Figure 2 is the fact that in the vicinity of inner-shell
thresholds, the branching ratios experience excursions from smooth behavior. This is due to
interchannel coupling between the inner-shell photoionization channels and the channels
involved in the branching ratio; this is evident by noting that this structure completely
disappears when the interchannel coupling interactions are omitted, as shown in Figure 2.
In any case, this is another example of the small spin-orbit force having a significant effect.
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Figure 2. Photoionization cross section branching ratios for Kr np3/2/np1/2 and 3d5/2/3d3/2 calcu-
lated using RRPA with full coupling (red dots) and with only intrashell coupling as indicated (blue
squares). The vertical dashed lines indicate the thresholds.

5. Final Remarks

The above examples are in no way exhaustive; they are illustrative of a few of the
consequences of the small spin-orbit force on the atomic photoionization process. These
suggest that the spin-flip channels, engendered by the spin-orbit force, will also be impor-
tant in attosecond photoemission time delay, which has been the focus of quite a number of
investigations over the past decade or so (see, for example, [20–22] and references therein),
particularly in the neighborhood of Cooper minima where, the non-spinflip channel ampli-
tudes become quite small. In addition, as pointed out by Fano [1], there are also implications
in other aspects of atomic physics. Furthermore, there is nothing special about atoms; the
same implications are also true for atomic ions (both positive and negative), molecules and
condensed matter, i.e., over a broad range of AMO physics and chemistry. This note is to
remind us that as calculations and experiments become more detailed and dig deeper into
AMO structure and processes, in many cases, it can be crucial to include the spin-orbit
interaction into the mix to properly calculate and understand what might be going on.
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Abstract: A number of reasons are advanced for which atoms stand at the heart of research in the
physical sciences. There are issues in physics which are both fundamental and only partly resolved or,
at least, imperfectly understood. Rather than chase them towards higher and higher energies, which
mainly results in greater complexity, it makes sense to restrict oneself to the simplest systems known,
held together by the best understood force in nature, viz. those governed by the inverse square law.
Our line of argument complements the adage of Richard Feynman, who asked: should Armageddon
occur, is there a simple, most important idea to preserve as a testament to human knowledge? The
answer he suggested is: the atomic hypothesis.
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1. Introduction

Scientists, although it may not always be apparent, do follow trends, and scientific
fashions, like others, come and go. We see the birth of new journals, covering areas nobody
had named before and there is always a temptation to consider that a subject must appear
strikingly new to be of interest. However, novelty is more elusive than it seems. Some areas
use new words, but the key point is whether they involve new principles. In reverse, when
considering the importance of a field of research, it is just as relevant to enquire how long it
has been pursued fruitfully rather than always insisting on evident novelty. Thus, Richard
Feynman [1], in his celebrated series of lectures, once asked a fundamental question. In the
event of Armageddon, were all human knowledge to be threatened with extinction, is there
one single idea which should be preserved for future inhabitants of our planet? The answer
he suggested is The atomic hypothesis, namely that all matter is made of atoms. When one
considers how ancient this idea is, stretching back at least as far as Democritos, issues of
fashion may well appear secondary. There is, however, another aspect to consider. Once
a problem is fully resolved, a subject previously regarded as very relevant may suddenly
cease to be attractive. So, a periodic re-appraisal of central themes is a necessity in scientific
research to make sure they remain relevant.

2. Concerning Unsolved Problems

Unanswered questions and unsolved problems are the true stimulus of scientific
investigation. The discussion presented here is an attempt to consider why atomic physics
is useful from the standpoint: how does it help us deal with so far incompletely resolved
issues in science?

This form of discussion is more difficult than presenting results. Conventionally,
through the corpus of research papers, scientists must present solutions, i.e., answers which
advance our understanding. Discussing unsolved problems means approaching research
from the opposite point of view. The importance of an area of work then stems from the
difficulty of discovering answers or, to put it another way, ‘so far unsolved’ problems are
regarded as very significant. If an area of investigation does not call for new methods or
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principles, it then implements nothing fundamentally ‘new’. As a simple example, bio-
chemistry is an important subject, because, despite great strides in contemporary research,
nobody can claim to understand how a particular molecular structure comes to life while
another, little different and of equivalent complexity, remains inert. (e.g., Salam [2]).

Model problems which can be solved exactly in physics are all very interesting, but
turn out to have limited scope. Inevitably, they involve some kind of compromise with
reality. Thus, an allegedly simple situation, such as the two-body problem (hydrogen) in
quantum mechanics is closely related to Newton’s exact solution of the two-body problem
in celestial mechanics, but neither of them really exists in nature. Taking hydrogen first [3],
there are different degrees of approximation. The Schrödinger equation possesses many
wonderful properties, but there are also difficulties associated with its use. Its leading term
is the nonrelativistic kinetic energy, which obeys the Galilean transformation law. The next
term is a scalar electric potential, i.e., an incomplete electromagnetic term. One can insert
the vector potential of electromagnetism into the first term, but the result is no substitute
for a proper covariant equation.

In addition, there is the difficulty that time, in quantum mechanics, possesses no
associated operator and is not ‘quantised’. It appears in the Schrödinger equation as a
classical parameter (see, e.g., [4] for discussion) and is therefore different from space in
this respect. The next improvement is to replace the Schrödinger equation by the Dirac
equation [5] which, at least formally, satisfies the Lorentz transformation, but this does
not dispel the qualitative difference between space and time just noted. Furthermore,
this is still not enough, because neither of these equations allow for the quantisation of
radiation. Further progress takes us into quantum electrodynamics and quantum field
theory, for which we must accept that no exact solution is known. One usually resorts to
the so called Furry picture [6], which introduces radiation via a perturbative scheme, with a
complexity increasing order by order as the calculations are improved and further extended.
At present, this is seemingly the best one can do to compute the two-body problem in
quantum mechanics.

3. Is There a ‘Pure’ Two-Body Problem?

One might at first suspect that the problem just described occurs only due to the
radiation field. However, even in celestial mechanics, it turns out, first, that there is no such
thing as an isolated two-body system in nature and, second, that the gravitational field
is not the only force between two particles. The first of these problems was addressed by
Poincaré in 1891 [7]. He considered the three-body problem and proved that the orbits do
not close. They give rise to chaos (non-integrable solutions of the equations of motion),
even allowing only for a pure gravitational field. The best one can do is to obtain very local
solutions, such as the one discovered by Lagrange [8] in connection with the system known
as ‘the Greeks and the Trojans’ in astronomy.

The second issue (i.e., the existence of further fields of force) emerges in high energy
physics. Accelerators of ever greater sophistication allow all of the forces between a pair
of particles to be explored by increasing their relative energies to extremely high values.
Entirely novel systems of particles then appear. This has opened up a magnificent and
inspiring intellectual adventure in modern physics, culminating in the unification of all the
fundamental forces (with the sole exception of gravitation [9]. Its crowning achievement
is the Weinberg–Salam theory. The next unification point (to include gravitation) would
require an energy of 1017 GeV, way beyond what can be reached experimentally, except
perhaps through astronomical observation of early (remote) stages of the universe. These
are all wonderfully impressive developments, but they do not bring us closer to resolving
the issue raised at the outset of the present comment.

Chasing the two-body problem towards higher and higher energies does not preserve
the simplicity of the original two-body system. In fact, one of the main consequences is
the production of many new particles, which of course can be classified through a novel
form of spectroscopy. However, their presence complexifies the system. I will argue that, in
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quantum mechanics, even at low energies, the pure two-body problem is something of an
illusion, despite the impression that ‘exact solutions’ exist. In reality, the closest we can get
to it, and to extending it to a few bodies, occurs in atomic physics.

4. The Challenge of the ‘Few-Body’ Problem

So far, the problem uncovered by Poincaré in classical mechanics remains unsolved,
even at low energies, and this transposes into quantum mechanics when the latter is set
up following the path of Landau and Lifshitz [10,11]. One can well argue that, in addition
to discovering new particles or unifying the fundamental forces, one should continue to
study an energy range within which interactions remain limited to the best-documented
interactions in physics (i.e., those governed by the inverse square law) and to investigate
the effect of slowly increasing the number of interacting particles (essentially electrons,
protons and neutrons) within a system. This brings us straight back to atomic physics and
to the periodic table of elements as the set of basic situations to study. Atoms thus appear
as the ideal testing ground for the many-body problem.

Although one refers to ‘many-body’ effects in atomic and molecular physics, this
terminology is not really the most accurate. The word ‘many’ creates the impression that
the difficulties involved necessarily increase with number. In fact this is not the case. For
example, an infinite ‘sea’ of occupied states (as considered originally by Dirac to handle
the negative energy states in his equation) minus only one particle behaves as just a single
‘antiparticle’, viz: the positron. Likewise, the fundamental antisymmetry of many-electron
states lead to the discovery of ‘closed electronic shells’ and a single ‘hole’ in a closed shell
is, again, similar in behaviour to a single ‘antiparticle’. Thus, in some situations, quantum
mechanics allows a more promising description of the many-body problem than classical
mechanics. In a sense, this is a surprising consequence of a more sophisticated theory.
‘Few-body problem’ might be a better description.

Perhaps one should even restrict the definition of the most suitable energy range by
excluding excitation energies high enough to produce electron–positron pairs. This would
avoid not only single excitations of very high energy, but also multiphoton excitation by
very intense laser fields and would stay more closely within the first order of the Furry
picture [6].

5. The Awkward Connection between Classical and Quantum Mechanics

Even if we do restrict ourselves carefully, as just described, there are deeper issues to
consider. As already noted, the three-body problem in classical mechanics cannot be solved
exactly. This may seem semantic, since pretty accurate perturbative methods, well known
to astronomers, can handle most practical problems when computing orbits. However, the
issue looms again in the formulation of elementary quantum mechanics.

For this purpose, we need to specify the correct Hermitian operator to associate with
each and every observable while avoiding an extensive and clumsy table as a separate
postulate. A first approach, suggested by Bohr and Sommerfeld and refined by Landau
and Lifshitz [10,11], was to study the so-called ‘semiclassical limit’ of quantum theory
via the ‘correspondence principle’ through which the quantum and classical theories are
supposed to merge. To be useful, the process would need to be applied ‘backwards’ i.e.,
from classical to quantum physics, since the classical problem is the one regarded as ‘well-
understood’. The procedure, however, involves integration around closed orbits of the
underlying classical systems.

The difficulty, as Einstein famously objected, is: what should one do if the orbit never
closes? Unfortunately, this is precisely the case for the few-body problem, as Poincaré [7]
had discovered. So, the Bohr–Sommerfeld ‘principle’ actually fails in most situations except
for a few ideal, integrable problems, such as the harmonic oscillator, Newton’s two-body
problem, etc. There are some complicated orbits (the Landau orbits) which resemble
Lissajoux figures in phase space because they ‘eventually’ close, but these are not sufficient
in number to account for all possible orbits of a non-integrable system.
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Thus, ‘difficult’ situations, such as three-body problem, a pendulum with a magnet,
etc., cannot strictly be handled in this way. In classical physics, a pen attached to a
pendulum with a magnet underneath will write all over a piece of paper within the
constraint imposed by its total energy and will never follow the same path twice, i.e., the
orbit will never close. This leaves us with the complication that, despite the intuitively
rather obvious correspondence principle, classical mechanics contains information which
simply cannot be transferred to quantum mechanics. Why this happens remains a matter
of opinion.

We end up with two physical theories connected by an imperfect correspondence.
On the one hand, classical mechanics contains systems with both integrable and non-
integrable solutions, while, on the other, quantum mechanics seemingly allows only one
kind of solution. A legitimate question becomes: does the semi-classical limit of quantum
mechanics recover all or can it recover only a part of classical mechanics?

To this one can add, starting out from the Dirac equation, that no semi-classical limit
is known for this case, since the solutions involve spinors, and spin does not exist in
classical physics. Hence, in the relativistic theory, the whole concept of the correspondence
principle as the basis of a systematic method to set up quantum mechanics breaks down,
which is why, in response to the question ‘why is there no book by Landau and Lifshitz on
relativistic quantum mechanics?’, Lev Landau is said to have replied; “Because there is no
such theory!”

6. The Structure of Empty Space

Another way of looking at the question is to ask what one would mean by orbits
which do or do not ‘close’ in quantum mechanics. Would asking this very question imply
a violation of the uncertainty principle? In quantum mechanics, should one consider
phase-space itself as exhibiting a granular structure, with dimensions of individual grains
determined by the magnitude of Planck’s constant? Would it then suffice for the electron
to return to within one such grain for an orbit to be regarded as ‘closed’? This of course
suggests a different definition of dynamical ‘chaos’ for classical and for quantum systems.
There has been much discussion of the issue since the earliest experiments, by Garton and
Tomkins [12], revealed the problem.

The refinement would be all well and good were it not that the theory of relativity
requires space-time to be continuous and freely differentiable in the sense of classical
mechanics. Hence, no doubt, Einstein’s insistence that the Bohr–Sommerfeld quantisation
was unsatisfactory. The nature of space (continuous or granular) becomes an awkward
issue. It is even more so when we consider the difference between space (a true observable)
and time (a classical parameter) in quantum mechanics, already noted above. There is
perhaps no other situation in which the incompatibility of the two conceptions of empty
space is so apparent as in atomic physics.

The problem of infinite divisibility, first raised by Pascal [13] in connection with
the structure of atoms and of matter itself, re-emerges when one attempts to extend the
equipartition theorem to microscopic systems. As commented by Dirac [5], it would
ultimately imply infinite specific heats. Granularity is therefore also an essential ingredient
in thermodynamics and this remark provided one of the earliest ‘proofs’ of the necessity of
quantum mechanics.

7. Compressed Atoms

In the kinetic theory of gases, atoms and molecules also play an essential role without
which the concept of pressure would remain undefined. It is assumed that they behave
as point-like masses, bombarding one side of the walls of the container. The average
force they exert is given as the origin of pressure, which becomes a macroscopic thermo-
dynamic variable. Unfortunately, this picture, as so often happens in physics, becomes
less straightforward as corrections to the ideal gas law are introduced. The first, due to
van der Waals, involves attributing intrinsic volume to the atoms or molecules, but this
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volume is considered as ‘fixed’. The reason for imposing this restriction is to preserve the
consistency of the formalism, but it is obvious that a physical volume cannot remain fixed
as the pressure increases. The real situation must of necessity be more complex.

Within the Thomas–Fermi model of the atom [14,15], the effect of externally applied
pressure is readily understood as the compression of an electron ‘gas’. One can simulate
it by changing the external boundary condition and studying how the total energy and
occupied volume are related. Within the Schrödinger picture also, the electron cloud is
a kind of ‘fluid’ with the Schrödinger equation as an equation of state. Changes in the
external boundary conditions then act like the external piston. The model just described
was developed by Hellman [16], Feynman [17] and Feynman et al. [18]. Within it, there are
difficult issues relating to the different definitions of probability in thermodynamics and in
quantum physics which have to be reconciled.

This takes us to the area of microscopic thermodynamics and confined atomic sys-
tems ([19] and refs. therein). The natural starting point is still the Thomas–Fermi model
of the atom because it provides the atom with a well-defined volume to start with. How-
ever, there is nothing to prevent extending the idea to the Hartree–Fock and Dirac–Fock
equations (see [20] and earlier refs. therein). One readily establishes that the periodic table
for atoms under compression is not the same as for free atoms because the order of filling
is modified and actually approaches the ideal and complete aufbau principle (see [21] )
more and more closely as the pressure is increased. A whole new chemistry opens up for
study, for underlying reasons which stem from atomic physics, but it remains necessary to
perform extensive ab initio calculations to account for them in detail (see e.g., [22]). One can
think of many experimental applications (bubbles in solids, clusters, polaronic insertion of
ions, atoms under extreme pressure, etc.).

8. Endohedral Confinement

Closely related to the atom under pressure is another novel area of research, namely
the atom endohedrally confined within a hollow molecule, the most typical example being
the metallofullerene. There are basically two conceptual approaches for such systems.
The first is to attempt full molecular calculations, from which geometrical structures and
symmetries can in principle be deduced (e.g., [23]). The second is to approximate the
confining molecule semi-empirically as a hollow, spherical potential shell whose properties
can be deduced experimentally from electron scattering experiments [24]. Apart from
greater simplicity, the latter approach allows one to include some important quantum
effects, such as the occurrence of confinement resonances [25].

9. Many-Body Theories of the Atom

Returning to the (unsolved) many-body problem, three general remarks can be made.
The first, as noted above, is that many-electron states in quantum mechanics obey the
Pauli principle. There is no such principle in classical physics, so we have good reason to
hope for a better understanding of the many-body problem. The periodic table informs
us about the properties of closed shells. They imply that atoms return regularly to nearly
spherical shapes at each period as the number of electrons is increased, which is the crucial
simplifying feature.

A first step towards the many-body theory of the atom is of course to solve the coupled
system of ‘independent electron’ Schrödinger equations by the Hartree–Fock method [26],
refined by the introduction of mixing between configurations. This method has been
successfully extended to the Dirac equation [27] despite a complication originally pointed
out by Brown and Ravenhall [28] for the multiconfigurational Dirac–Fock method: namely
that configuration mixing, in this case, might involve negative energy states which cannot
all be ‘filled’ simultaneously, in which case the variational principle upon which the Hartree–
Fock method rests for convergence would collapse. This is somewhat controversial because
properly converged multiconfigurational Dirac–Fock solutions have been obtained [27]
and correspond very well with experimental data. It would be desirable for practitioners of
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the method to dispel any residual uncertainty surrounding this alleged ‘dissolution into
the negative energy continuum’ if it is indeed a real effect.

Plasmon excitations (i.e., oscillations of closed shells) in free atoms can be computed
either by the many-body perturbation theory (MBPT Kelly [29]) or by the random phase
approximation with exchange (RPAE Amus’ya et al. [30]). These two theories are not
equivalent, even when the perturbative expansions are performed on the same independent
electron atomic basis. In the MBPT, all of the terms identified by their Feynman graphs
are summed up to a given order, but the summation cannot be extended to the high order,
as the computations become progressively more and more extensive. In the RPAE, only
two classes of diagrams are treated (the forward bubble diagrams and their exchange
equivalents) but they are summed to the infinite order. Obviously, the two approaches
cannot be equivalent. These are the two theories we have at our disposal, neither of which
is ‘complete’. Both are useful, generally in different situations, the MBPT being more
appropriate for open-shell systems and the RPAE for closed shell or half-closed shell atoms.

This ambivalence, again, can be taken to express the fact that we have no general
solution of the many-body problem in quantum mechanics. The study of plasmon effects
(giant resonances) in free atoms and in atoms trapped in different environments is one
of the more promising areas for developing and improving theoretical tools to handle
many-body systems.

The formation of negative ions by addition of an electron to a neutral atom also goes
beyond the convergence capabilities of the Hartree–Fock basis. The polarisation of atomic
shells by the extra electron is the mechanism involved. In this situation, a new model has
been developed based on the many-body Dyson equation [31] which holds great promise
for systematic computations of different negative ion species.

10. Wigner Scattering Theory and the Wigner Time delay

Atoms, of course, involve no new forces as compared to other physical systems
and, in line with the economy of principles which should ultimately underpin a general
understanding of nature, would be best described within the same, single, conceptual
framework as all the other physical systems. The theory which best accomplishes this is
the Wigner scattering theory [32,33], because it is extremely general in its formulation. It
applies to all branches of physics where quantum scattering occurs and does not even
require an explicit solution of the Schrödinger equation, but only postulates the existence
of a differential equation of the Schrödinger type, together with the boundary conditions
usual in quantum mechanics.

Even in this general context, however, atoms still have a very special role to play, by
virtue of the asymptotic inverse square law of force, which allows the external K-matrix to
be inverted analytically [21,34,35]. This situation is unique, on a par with Kepler’s laws of
planetary motion in a central inverse square field of force.

Scattering is, of course, not an instantaneous process because it involves the propaga-
tion of a scattered wave. This implies a time delay which, as shown originally by Wigner,
is given by the derivative of the phase shift of the scattered wave with respect to energy.
In the context of condensed matter or of large molecules or clusters, Wigner time delays
are readily measurable by short pulse laser techniques. For individual atoms, this can
also be true. A pioneering example is the work of Bourgain et al. [36] on the resonance
line of a single trapped Rb atom, for which a time resolution of 256 ps proves adequate.
The really interesting situation, however, is for interacting autoionizing resonances [35],
where the time scales generally become much shorter (in the attosecond range) so that
experimentation has only become feasible recently by ultrashort pulse technology.

11. Atomic Clusters

Traditionally, the transition from the free atom to the solid state has always been
imagined by ‘piling up’ atoms or attempting to model infinite sequences similar to crystals.
More recently, it has been shown [37] that this description gives an incomplete picture of
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the transition from the free atom to the solid. In reality, when atoms are piled together one
by one, they first form clusters and several different transition points occur, depending
on which physical variable is under study. Thus, the emergence of solid state properties
occurs in different ranges as the size of a cluster is increased (e.g., [37–41]) etc.

Again, via the physics of clusters, the properties of atoms are central to a good un-
derstanding of condensed matter, achieved by adding them together one by one. Experi-
mentally, the evolution of clusters as a function of size is now accessible by the study of
mass-selected clusters. This is particularly interesting in the context of the present article for
metallic clusters, because they possess delocalised electrons (precursors of the conduction
bands in solids) and form closed electronic shells similar in principle to those of noble
gas atoms.

12. Mie and Shape Resonances—Wigner Time Delays

The dynamics of such shells turn into the Mie resonances of classical electrodynam-
ics [42]. In quantum systems with closed shells, they become shape or giant resonances. As
such, they involve the collective pulsation of several electrons, i.e., an intrinsic ‘many-body’
effect which, however, is very short-lived as it is strongly damped. It can be calculated by
the many-body perturbation theory (RPAE or MBPT) in non-relativistic or in relativistic
versions and can also be modelled by using an effective atomic potential, which must
include the influence of the centrifugal barrier, i.e., the angular momentum term in the
radial Schrödinger equation. They are due to the shape of this effective potential, hence
the name.

The physics of atoms with d and f subshells and the study of metallic clusters with
delocalised electrons forming closed shells have revealed for both atoms and metallic clus-
ters, the importance of the collective many-body phenomena or plasmon excitations [43].
By analogy with nuclear physics and in connection with the sum rule for a given atomic
shell, they are termed ‘giant resonances’ when they exhaust most of the available oscillator
strength available within a single feature. A peculiar property of these excitations for
atoms is that they occur deep inside the system and are able to survive in different phases,
from the free atom to clusters, molecules and solids [44], in contrast with other atomic
states which are destroyed. This opens up new possibilities for extending and adapting
many-body theories within different environments.

Giant resonances, or rather their Fourier transforms, yielding observable Wigner time
delays, are also relevant in attosecond spectroscopy. As noted above, this new range of
time intervals has recently become accessible to ultrafast laser experiments. A fine example
is by Biswas et al. [45]. The observation of photoionization and the corresponding time-
resolved atomic spectra provide complementary information which may eventually help
to discriminate between the predictions of different models, such as the RPAE, RRPAE and
MBPT theories and pseudopotential models.

13. Cooling, etc.

Last but by no means least, an area not covered in the present Comment, because
it is a huge subject in its own right and would require a good deal more space, is the
theme of atomic cooling and trapping, the Bose–Einstein condensation and all of the effects
described by the Gross–Pitaevsky theory of ground-state bosonic fluids [46,47]. A Bose–
Einstein condensate is a gas of bosons which are all in the same quantum state, described
by a single wavefunction. The Gross–Pitaevsky equation is essentially a transposition of the
Hartree–Fock theory to the ground state of a quantum system of identical bosons using a
pseudopotential interaction. Both in terms of the general principles involved and the fluids
to which they are applied, atomic physics is central also to this extensive area of study.

14. Conclusions

In summary, atomic physics remains a privileged testing ground for the fundamental
problems of physics which are so far incompletely resolved, extending from the many-
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body theory to relativistic mechanics, the nature of ‘empty’ space and the principles of
quantum field theory, as well as the full connection between quantum mechanics and
classical physics, also including thermodynamics. Thus, the atom, as a system, remains
very much at the heart of contemporary research in physics and chemistry.
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