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Teofil Gălăt, anu, et al.
Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat Transfer Curves
Reprinted from: Mathematics 2023, 11, 741, doi:10.3390/math11030741 . . . . . . . . . . . . . . . . 150

v



Omar El Moutea, Lahcen El Ouadefli, Abdeslam El Akkad, Nadia Nakbi, Ahmed Elkhalfi,
Maria Luminita Scutaru and Sorin Vlase
A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General
Boundary Condition
Reprinted from: Mathematics 2023, 11, 1943, doi:10.3390/math11081943 . . . . . . . . . . . . . . . 183

Jianing Cao and Hua Chen
Mathematical Model for Fault Handling of Singular Nonlinear Time-Varying Delay Systems
Based on T-S Fuzzy Model
Reprinted from: Mathematics 2023, 11, 2547, doi:10.3390/math11112547 . . . . . . . . . . . . . . . 203

vi



Citation: Scutaru, M.L.; Pruncu, C.-I.

Mathematical Modeling and

Simulation in Mechanics and

Dynamic Systems, 2nd Edition.

Mathematics 2024, 12, 341. https://

doi.org/10.3390/math12020341

Received: 9 January 2024

Revised: 15 January 2024

Accepted: 16 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Mathematical Modeling and Simulation in Mechanics and
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Maria Luminita Scutaru 1,* and Catalin-Iulian Pruncu 2,*
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500036 Bras, ov, Romania

2 Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
* Correspondence: lscutaru@unitbv.ro (M.L.S.); catalin.pruncu@gmail.com (C.-I.P.)

1. Introduction

Although it has been considered difficult to make further contributions in the field of
mechanics, the spectacular evolution of technology and numerical calculation techniques
has made these opinions shift, and increasingly sophisticated models have been developed,
which should predict, as accurately as possible, the phenomena that take place in dynamic
systems. Therefore, researchers have come to study mechanical systems with complicated
behavior using experiments and computer models [1–3]. The key requirement is that the
system is nonlinear in its form. The impetus in mechanics and dynamical systems has
come from many sources: computer simulation, experimental science, mathematics, and
modeling [4–7]. There is a wide range of influences. Computer experiments change the
way in which we analyze these systems. Topics of interest include, but are not limited to,
modeling mechanical systems, new methods in dynamic systems, the behavior simulation
of a mechanical system, nonlinear systems, multibody systems with elastic elements, multi-
degrees of freedom, mechanical systems, experimental modal analysis, and mechanics
of materials.

2. Statistics of the Special Issue

There were 28 total submissions to this Special Issue, of which 13 were published
(46.4%) and 15 rejected (63.6%). The authors’ geographical distribution is shown in Table 1,
and it can be seen that the 67 authors are from 13 different countries. Note that it is usual for
a paper to be written by more than one author and for authors to collaborate with authors
with different affiliations or multiple affiliations.

Table 1. Geographic distribution of authors by country.

Country Number of Authors

Romania 13
China 9
Spania 1
India 2

Pakistan 5
Egypt 1

Morocco 6
South Africa 3

Chile 2
Poland 3
Mexico 4

Hungary 1

The following papers were published in this Special Issue:

Mathematics 2024, 12, 341. https://doi.org/10.3390/math12020341 https://www.mdpi.com/journal/mathematics
1



Mathematics 2024, 12, 341

(1) Vlase, S.; Marin, M.; Negrean, I.N. Finite Element Method-Based Elastic Analysis of
Multibody Systems: A Review. Mathematics 2022, 10, 257. https://doi.org/10.3390/
math10020257.

(2) Xia, S.; Xia, Y.; Xiang, J. Modelling and Fault Detection for Specific Cavitation Damage
Based on the Discharge Pressure of Axial Piston Pumps. Mathematics 2022, 10, 2461.
https://doi.org/10.3390/math10142461.

(3) Faizan, M.; Ali, F.; Loganathan, K.; Zaib, A.; Reddy, C.A.; Abdelsalam, S.I. En-
tropy Analysis of Sutterby Nanofluid Flow over a Riga Sheet with Gyrotactic Mi-
croorganisms and Cattaneo–Christov Double Diffusion. Mathematics 2022, 10, 3157.
https://doi.org/10.3390/math10173157.

(4) Paliathanasis, A.; Leon, G.; Leach, P.G.L. Lie Symmetry Classification and Qualitative
Analysis for the Fourth-Order Schrödinger Equation. Mathematics 2022, 10, 3204.
https://doi.org/10.3390/math10173204.

(5) El Ouadefli, L.; El Akkad, A.; El Moutea, O.; Moustabchir, H.; Elkhalfi, A.; Scutaru,
L.M.; Muntean, R. Numerical Simulation for Brinkman System with Varied Perme-
ability Tensor. Mathematics 2022, 10, 3242. https://doi.org/10.3390/math10183242.

(6) Teng, Y.; Wen, Q.; Xie, L.; Wen, B. Study on Vibration Friction Reducing Mechanism of
Materials. Mathematics 2022, 10, 3529. https://doi.org/10.3390/math10193529.

(7) Tutak, M.; Brodny, J.; John, A.; Száva, J.; Vlase, S.; Scutaru, M.L. CFD Model Studies of
Dust Dispersion in Driven Dog Headings. Mathematics 2022, 10, 3798. https://doi.org/
10.3390/math10203798.

(8) Scutaru, M.L.; Marin, M.; Vlase, S. Dynamic Absorption of Vibration in a Multi Degree
of Freedom Elastic System. Mathematics 2022, 10, 4045. https://doi.org/10.3390/
math10214045.

(9) Fetecau, C.; Rauf, A.; Qureshi, T.M.; Vieru, D. Steady-State Solutions for MHD Motions
of Burgers’ Fluids through Porous Media with Differential Expressions of Shear on
Boundary and Applications. Mathematics 2022, 10, 4228. https://doi.org/10.3390/
math10224228.

(10) Medrano-Hermosillo, J.A.; Lozoya-Ponce, R.; Rodriguez-Mata, A.E.; Baray-Arana, R.
Phase-Space Modeling and Control of Robots in the Screw Theory Framework Using
Geometric Algebra. Mathematics 2023, 11, 572. https://doi.org/10.3390/math11030572.

(11) Száva, I.; Vlase, S.; Száva, I.-R.; Turzó, G.; Munteanu, V.M.; Gălăt,anu, T.; Asztalos, Z.;
Gálfi, B.-P. Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat
Transfer Curves. Mathematics 2023, 11, 741. https://doi.org/10.3390/math11030741.

(12) El Moutea, O.; El Ouadefli, L.; El Akkad, A.; Nakbi, N.; Elkhalfi, A.; Scutaru, M.L.;
Vlase, S. A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with
a General Boundary Condition. Mathematics 2023, 11, 1943. https://doi.org/10.3390/
math11081943.

(13) Cao, J.; Chen, H. Mathematical Model for Fault Handling of Singular Nonlinear
Time-Varying Delay Systems Based on T-S Fuzzy Model. Mathematics 2023, 11, 2547.
https://doi.org/10.3390/math11112547.

3. Authors of the Special Issue

For the publications in this Special Issue, there was an average of four authors
per manuscript.

A list of papers published in this Special Issue can be found in Section 2. It can be seen
that most of the articles adhere very well to the theme of the Special Issue. The research was
carried out by well-constituted teams of researchers in appropriately equipped laboratories
from universities in several countries. Authors from different universities collaborated
to achieve common objectives. Each paper includes original results developed by groups
of researchers. We note the high number of researchers who have been involved in this
project, and we thank them for participating in this Special Issue.
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4. Brief Overview of the Contributions to the Special Issue

In this Special Issue, three topics were dominant, namely modeling of the multibody
system using the Finite Element Method, applied mathematics in dynamic systems, and
analytical methods in multibody systems.

Author Contributions: Conceptualization, M.L.S. and C.-I.P.; methodology, M.L.S. and C.-I.P.; soft-
ware, M.L.S. and C.-I.P.; validation, M.L.S. and C.-I.P.; formal analysis, M.L.S. and C.-I.P.; investigation,
M.L.S. and C.-I.P.; resources, M.L.S. and C.-I.P.; data curation, M.L.S. and C.-I.P.; writing—original
draft preparation, M.L.S. and C.-I.P.; writing—review and editing, M.L.S. and C.-I.P.; visualization,
M.L.S. and C.-I.P.; supervision, M.L.S. and C.-I.P.; project administration, M.L.S. and C.-I.P. All authors
have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: This paper presents the main analytical methods, in the context of current developments
in the study of complex multibody systems, to obtain evolution equations for a multibody system
with deformable elements. The method used for analysis is the finite element method. To write the
equations of motion, the most used methods are presented, namely the Lagrange equations method,
the Gibbs–Appell equations, Maggi’s formalism and Hamilton’s equations. While the method of
Lagrange’s equations is well documented, other methods have only begun to show their potential in
recent times, when complex technical applications have revealed some of their advantages. This paper
aims to present, in parallel, all these methods, which are more often used together with some of their
engineering applications. The main advantages and disadvantages are comparatively presented. For
a mechanical system that has certain peculiarities, it is possible that the alternative methods offered
by analytical mechanics such as Lagrange’s equations have some advantages. These advantages
can lead to computer time savings for concrete engineering applications. All these methods are
alternative ways to obtain the equations of motion and response time of the studied systems. The
difference between them consists only in the way of describing the systems and the application of the
fundamental theorems of mechanics. However, this difference can be used to save time in modeling
and analyzing systems, which is important in designing current engineering complex systems. The
specifics of the analyzed mechanical system can guide us to use one of the methods presented in
order to benefit from the advantages offered.

Keywords: Maggi’s equations; Lagrange method; Gibbs–Appell equations; Hamilton formalism;
analytical mechanics

1. Introduction

In recent years, research, led by practical applications in engineering, and which uses
increasingly complex equipment, operates at higher speeds in difficult environmental
conditions, and which is subjected to intense loads, has driven the development of methods
for analyzing large deformable mechanical systems. Studies determined by these devel-
opments in technology have led to the analysis of multibody systems with deformable
elements. In order to perform this analysis, the researchers developed and reinvented the
existing methods to apply them to the new situations that has arisen. The development
of this field is based on the numerical techniques related to the finite element method
(FEM) as well as on the application of classical methods used in analytical mechanics (the
latter representing the best way to approach such systems). Analytical mechanics has the
advantage of general methods in which the procedures that apply follow a certain order,
the same in which all cases may occur. These methods can be easily algorithmized. The

Mathematics 2022, 10, 257. https://doi.org/10.3390/math10020257 https://www.mdpi.com/journal/mathematics
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methods of analytical mechanics fit well with such an analysis because of the problems of
complexity and the possibility to study a mechanical system with a large number of degrees
of freedom (DOF). Such an analysis avoids the study of each element and the assembly of
the obtained systems of equations, and it allows for the obtainment of the evolution equa-
tions, starting from the fundamental notions written for the whole system (kinetic energy,
potential energy, work, acceleration energy, momentum, Hamiltonian, etc.). This is possible
due to the tools used by analytical mechanics, which generalize the way of presentation of
motion. The constraints that occur in engineering systems (due to the connections between
the elements and the connection to the fixed space) that reduce the DOF number of the
system are best described in the analytical mechanics, regardless of the method applied.
Analytical mechanics has proven to be a powerful tool for analyzing complex systems,
providing a set of equivalent formulations from which the most appropriate formulation
can be selected.

The basic notions from the analytical descriptions stated above allow for a complete
description of the mechanical system and can easily obtain the solution.

The main advantage of using Lagrange’s equations in engineering is that it allows for
a unitary solution of the problems of the dynamics of mechanical systems, according to
a well-established itinerary and by moving through the same stages each time. Thus, the
method is well suited for algorithms. Another advantage is that only scalar quantities are
used instead of the vector quantities used in Newton’s equations. Lagrange’s equations can
also highlight the existence of motion constants, which in some cases, can simplify solving
the problem [1].

However, analytical mechanics offers other alternatives for writing the equations of
motion of a dynamic system that, in some situations, may have advantages over Lagrange’s
classical approach. For this reason, during the development of the elastic MBS study,
different methods were applied, identifying the advantages and disadvantages. The
engineering requirements for the study of high speed and high load systems have driven
the development of research for the application of MEF in the case of multibody systems
(MBS), and there are many papers that address such a problem in order to obtain immediate
practical results [2–9].

The practical applications for solving concrete problems, immediate in the industry,
were supported by theoretical works that developed the mathematical bases of the numeri-
cal modeling of such problems. The aim of these works is to develop wide possibilities of
computer simulations for the analysis of more accurate models, which will capture signifi-
cant details in the operation of mechanical systems. The development of such appropriate
algorithms allows for the modeling and analysis of systems that cannot be solved with
existing computer codes. The main problem is that the procedures used in MEF differ from
the procedures used in flexible multibody system codes.

Three ways of approaching such problems are used. The first of these approaches
uses algorithms that involve successful simulations by establishing an interface between
existing codes. The second way is to implement algorithms aimed at studying MBS in
existing finite element algorithms. The third way used is the finite element formulation of
the behavior of MBS with elastic elements, which requires a great effort for implementation
in computer algorithms. A number of papers presents these methods [10–12].

Works dealing with the effective integration of equations of motion show results
obtained to facilitate this step in [13]. Precise modeling of such systems is an important
contribution to the development of engineering, but the potential is low due to the nu-
merical calculation involved. The integration of the equations of motion of a complex
multibody system is a time consuming computation. For example, simulating the behavior
of a crankshaft that interacts with the surrounding elements requires a processing time
for the CPU of several hours and determines the total time required for such a calculation.
Methods for improving this step are presented in [13].

5
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In addition, the use of symbolic calculus allows for a faster simulation code. A general
integration procedure using the symbolic calculation was presented in [14]. A comparison
with other models used in the literature highlighted the advantages of this approach.

In this theoretical development, multibody codes proved to be powerful tools for
studying the nonlinear response of MBS with elastic elements. These systems might have
had rigid movements over which small elastic deformations overlapped. For example,
Refs. [15,16] presented a unitary approach and an overview of how to prepare the necessary
data for dynamic models. The determination and writing of the matrix coefficients that
intervened in the equations of motion were performed outside the code of the finite element.
These data were then stored in a standardized object-oriented structure, and thus the dataset
became independent of the wording of the MBS code.

Interesting methods of analysis and calculation simplification and some engineering
applications are presented in the literature. A computational system framework was
introduced in [17] using the finite element absolute nodal coordinate formulation. In that
paper, they created the geometry of the system that made the analysis of the system possible.
These two methods of analysis, MBS and FEM, were used to analyze a rocket sled, and the
main problem was to establish the boundary conditions [18]. Using, in conjunction, these
two methods, the simulation became more effective than those previously made using
classical analyses.

Some issues regarding the harmonization of the two MBS and FEM analysis methods
are presented in [19,20]. After developing a formalism that allows for the simultaneous
analysis of systems using the two methods, the authors present engineering applications
confirming the validity of the analysis and the models used. A successful application
for a complex mechanical system is made in [21], where railway vehicles were analyzed
using flexible tracks models. The study proposed a model that has flexible railway tracks.
Classical theory of Timoshenko curved beam was used for modeling. The paper presented
new aspects concerning the computation procedures applied in this analysis. Applications
for the study of composites were developed in [22,23], and mathematical methods of
solving with practical applications justifying the applicability and advantages were studied
in [24–26].

Modeling a flexible multibody system used in parallel with MEF requires significant
computing resources. One strategy used by researchers is the use of reduced-order models
(ROMs). For plane systems, an approach using classical Lagrange equations is presented
in [27]. The method can be extended to three-dimensional systems. This method helps to
significantly reduce the effort and computation time required.

Topological representations and models have been used to simplify the symbolic
writing of equations of motion within these systems in order to reduce the time required
for modeling. An example showing this mode of analysis is presented in [28].

Mathematical methods for solving MBS problems with elastic elements have been
continuously developed in order to find the best way to deal with this type of problem,
which involves considerable modeling and calculation effort. In this sense, the reduced
transfer matrix method for a multibody system (MSRTMM) was developed. An application
of this method, along with the Riccati transformation, is presented in [29]. Three case
studies were analyzed: a thin rectangular plane plate, a parallelogram thin plane plate and
a multibody system with two-dimensional elements. MSRTMM has the advantage of high
computing speed, ease of writing algorithms and numerical stability.

Specific methods have been developed for systems with certain features. An exact
calculation method using dynamic stiffness was used to analyze vibrations of multibody
systems with flexible beams connecting rigid bodies [30]. Rigid bodies can have any geom-
etry and can have connections between them by means of elastic beams. The results were
compared with other published results. This method is a powerful tool for optimizing such
systems or for identifying modal parameters. A mathematical framework for calculating
the mass matrix of a rigid–flexible multibody system with parameters is presented in [31].
The proposed method of analysis was applied to the calculation of a parallel Delta robot. In

6
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the field of mathematics involved in solving these complex problems, different models and
ways of approaching systems have been proposed. For example, in [32], the well-known
Ritz method was applied, which is especially known for its computational efficiency and is
used extensively by engineers. It was proposed to use a generalized version of the MBS
study method with a general topology. The numerical examples developed illustrate the
advantages of the method.

The evaluation of inertial forces is a central and complicated task for the dynamic anal-
ysis of flexible multibody systems (FMS). A high-precision formulation for a 3D problem of
flexible multibody systems is presented in [33]. The novelty is that the equations of motion
were obtained with the principles of virtual power, without having to use the differenti-
ation of the rotation matrix. Some numerical examples support the method proposed in
that paper.

A practical method for numerically solving problems related to eigenvalues is pre-
sented in [34].

This paper presents, critically, the main methods of analytical mechanics used for the
analysis of MBS with linear elastic components. To achieve this, a brief review of the use of
MEF in this type of analysis is made.

2. FEA of Elastic MBS

To analyze an MBS having elastic components and to use FEM to consider the elastic
behavior, the most used method thus far is the method of Lagrange equations, which
will be highlighted in the future presentation. The purpose of an analysis of this type
is to obtain, in a first step, the evolution equations for a single finite element from the
studied system, if shape functions are known (thus, the type of finite element). These shape
functions will determine the matrix coefficients of differential equations obtained. The
equations are expressed in a local reference frame related to the finite element analyzed
in rigid motion, together with the whole body that it discretizes. They must be reported,
as a whole, to a global reference system against which the movement of the whole system
will be analyzed. After this transition is made, it is necessary to assemble the obtained
systems of equations. In this way, we finally obtain the system of evolution equations.
All these presented procedures are performed according to the classical and well-known
methods applied in FEM. By introducing boundary conditions and loads, one can then
proceed to solve the system of equations and determine the answer to the system. In this
analysis, the deformations are considered small enough such that the general movement
of the system (rigid movement) is not influenced in any way by these deformations. The
main problem remains regarding the harmonization of the two methods, which both use
different procedures.

The analyzed works present the evolution in the study of these problems, starting
from simple, one-dimensional elements and gradually moving to more and more complex
finite elements. In the first studies of such problems, one-dimensional finite elements were
studied, and the movement of the system was considered plane [35–37]. Complex, bi-
and three-dimensional finite elements have been studied and applied in [38]. Recently,
methods of analysis have been developed, and more sophisticated models have been
studied. For example, the damping issues in such systems are presented in [39–41]. The
contributions in these papers refer to the development of different types of finite elements
that serve the purpose. Iterative methods and the Newton–Raphson algorithm can be used
to solve the equations of motion. The analysis of the effects of temperature in the study
of MBS with flexible elements is presented in [42]. The paper proposes a sandwich beam
element that is convenient for describing large displacements and rotations. As in the cases
mentioned above, an incremental–iterative method is used to solve the evolution equations
together with the Grünwald approximation and the Newton–Raphson algorithm. The use
of composite materials in flexible multibody systems is presented in [43], and a systematic
presentation of the results obtained in FEM applied to the study of elastic MBS is made
in [44].
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Lagrange’s equations are the main tools to obtain motion equations for a finite element
that discretizes an MBS system, regardless of whether one-, two-, or three-dimensional
finite elements or the type of motion of the elements of the MBS system are used. This
method has proven to be, over time, useful and has been relatively convenient in the
application and verification of the countless applications studied within it. The major
advantage of this method is the use of notions with which researchers are familiar. At this
time, in the studies, Lagrange’s equations are the most widely used method for studying
such problems.

However, analytical mechanics offers alternative methods of analysis equivalent to the
method of Lagrange’s equations. These methods use less commonly used concepts, which
distances researchers from using these alternative methods. At the moment, the diversity
of the approached problems and the needs for analysis imposed by the development
of technology make it necessary to re-evaluate these methods, as they can show their
advantages in certain situations. This paper will show an analysis of the main methods of
analysis in analytical mechanics and will try to point out the advantages and disadvantages
involved. The methods presented and analyzed in the paper are Lagrange’s equations,
Gibbs–Appell equations, Maggi’s formalism and Hamilton’s equations. These methods are
the most used methods in application. There are, of course, other equivalent or alternative
methods, but they are much less used and we do not present them here, especially since
there are only a few papers that use them, and they do not seem to have obvious advantages.

We observe here that the Lagrangian has, in its component, physical quantities with
which we are well acquainted (kinetic energy, potential energy, work)—a strong reason is
that it is frequently used. Another reason can be represented by the fact that the generalized
coordinates allow for the unitary treatment of such a system and the representations used
allow for an easy application of numerical methods. Another advantage is represented by
the fact that the liaison forces (or Lagrange’s multipliers) are eliminated in writing these
equations such that the number of unknowns is reduced and limited to the generalized
coordinates in the first instance. FEM, where the number of DOFs used is high, can lead to
a significant decrease in working time, and it is a major advantage for the user.

The energy of accelerations is a notion little used by researchers. A disadvantage is that
the expression for velocity contains four matrix terms, while the acceleration contains five
such terms [45,46]. For this reason, the number of operations for determining the energy
of accelerations is slightly higher than for obtaining kinetic energy. This disadvantage is
offset by the significantly lower number of differentiation operations required compared
to Lagrange’s equations. The method is little used, although in recent years, the need for
calculations has led to reconsideration of the method [47–51]. The main advantage is the
lower number of differentiation operations required to obtain the final equations of motion.

Hamilton’s equations were less frequently used in the dynamic analysis of mechanical
systems. There is little literature to present the advantages or disadvantages of this method.
However, if we take into account that the system of second-order equations is replaced
by a system of first-order equations, the use of this method may show its advantages for
suitable applications [52–55].

Recent contributions to the development of this field are presented in [56–59].

3. Kinematics

A brief recapitulation of basic notions in analytical mechanics is necessary [60]. In the
following, the element will relate to a local (mobile) reference frame. The mobile reference
system participates in the general movement of the MBS system. This element is known via
the angular velocity ω, angular acceleration ε, velocity vo and acceleration ao of the origin
of the local reference system. We use two indices L (from local) and G (from global) to
denote the sizes corresponding to the local and global coordinate systems. The orthonormal
operator [ROT] makes the transformation of the components from the local system to the
global one, {a}G = [ROT]{a}L.
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By differentiating the transformation operator [ROT], it is now possible to obtain the
angular velocity and acceleration operator [61].

An arbitrary point M becomes, after deformation, M’. In this case, the deformation
process is expressed by:

{rM′}G = {rO}G + [ROT]({r}L + {u}L). (1)

The linear dependence between nodal displacement and vector displacement of the
current point of the element is expressed in FEA through a linear relation:

{u}L = [N]{δ}L. (2)

Here, {δ}L is denoted by the vector of the independent coordinates. With this assump-
tion, the velocity vector of M’ becomes:

{vM′ }G =
{ .

rM′
}

G =
{ .

rO
}

G +
[

R
.

OT
]
{r}L +

[
R

.
OT

]
[N]{δ}L + [ROT][N]

{ .
δ
}

L
. (3)

and the acceleration vector:

{aM′ }G =
{..

rO
}

G +
[

R
..
OT

]
{r}L +

[
R

..
OT

]
[N]{δ}L + 2

[
R

.
OT

]
[N]

{ .
δ
}

L
+ [ROT][N]

{ ..
δ
}

L
. (4)

We can observe that some of these sizes are expressed in the local system coordinate
and others in a global system coordinate. Passing to the local frame, we have:

{vM′ }L = [ROT]T{vM′ }G =
{ .

rO
}

L + [ROT]T
[

R
.

OT
]
{r}L + [ROT]T

[
R

.
OT

]
[N]{δ}L + [N]

{ .
δ
}

L

=
[
[E] [ROT]T

[
R

.
OT

]
[ROT]T

[
R

.
OT

]
[N] [N]

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ .
rO

}
L

{r}L

{δ}L{ .
δ
}

L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(5)

{aM′ }L = [ROT]T{aM′ }G=
{..

rO
}

L + [ROT]T
[

R
..
OT

]
{r}L + [ROT]T

[
R

..
OT

]
[N]{δ}L + 2[ROT]T

[
R

.
OT

]
[N]

{ .
δ
}

L
+ [N]

{ ..
δ
}

L

=
[

[E] [ROT]T
[

R
..
OT

]
[ROT]T

[
R

..
OT

]
[N] 2[ROT]T

[
R

.
OT

]
[N] [N]

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{..
rO

}
L

{r}L

{δ}L{ .
δ
}

L{ ..
δ
}

L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(6)

4. Fundamental Notions in Dynamics of FEA of MBS

4.1. Kinetic Energy

The kinetic energy plays an important role in an analytical description. Its expression
is given by the equation:

Ec =
1
2

∫
V

ρ{vM′}T
G{vM′}GdV. (7)
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Considering Equation (5), it obtains, for kinetic energy, the complete expression:

Ec =
[ { .

rO
}

L {r}L {δ}L

{ .
δ
}

L

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[E] [ROT]T
[

R
.

OT
]

[ROT]T
[

R
.

OT
]
[N] [N][

R
.

OT
]T

[ROT]
[

R
.

OT
]T[

R
.

OT
] [

R
.

OT
]T[

R
.

OT
] [

R
.

OT
]T

[ROT][N]

[N]T
[

R
.

OT
]T

[ROT] [N]T
[

R
.

OT
]T[

R
.

OT
]

[N]T
[

R
.

OT
]T[

R
.

OT
]

[N]T
[

R
.

OT
]T

[ROT][N]

[N]T [N]T [ROT]T
[

R
.

OT
]

[N]T [ROT]T
[

R
.

OT
]
[N] [N]T [N]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ .
rO

}
L

{r}L

{δ}L{ .
δ
}

L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

We denote:
[m] =

∫
V

ρ[N]T [N] dV; (9)[
mi

O

]
=

∫
V

ρ[N]TdV;
{

qi(ε)
}

L
=

∫
V

ρ[N]T [ε]L{r}LdV; (10){
qi(ω)

}
L
=

∫
V

ρ[N]T [ω]L[ω]L{r}LdV; (11)

[k(ε)] =
∫

V
ρ[N]T [ε][N]dV; (12)

[k(ω)] =
∫

V
ρ[N]T [ω]L[ω]L[N]dV; (13)

[c] =
∫

V
ρ[N]T [ω]L[N]dV; (14)

{mix} =
∫

V
ρ
[
S(i)

]T
xdV ;

{
miy

}
=

∫
V

ρ
[

N(i)

]T
ydV ; {miz} =

∫
V

ρ
[

N(i)

]T
zdV. (15)

4.2. Potential Energy

The classic expression for the internal work (potential energy) is:

Ep =
1
2

∫
V
{σ}T{ε}dV, (16)

where {ε} is the strain vector and {σ} is the stress vector;
The generalized Hooke law has the well-known form:

{σ} = [H]{ε}. (17)

The strains can be expressed as [6]:

{ε} = [b]{u} = [b][N]{δ}L. (18)

Using Equations (17) and (18), we obtain:

Ep =
1
2
{δ}T

L

(∫
V

[N]T [b]T [H]T [b][N]dV
)
{δ}L. (19)

Matrix [k] is the stiffness matrix:

[k] =
∫
V

[N]T [b]T [H]T [b][N]dV. (20)

10
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Equation (19) has the traditional form:

Ep =
1
2

∫
V

{δ}T
L [k]{δ}LdV. (21)

4.3. Work

The concentrated forces {q}L and volume forces {p} = {p(x, y, z)} produce mechani-
cal work:

Wc = {q}T
L{δ}L, (22)

and:

W =
∫
V

{p}T
L{ f }LdV =

⎛⎝∫
V

{p}T
L [N]dV

⎞⎠{δ}L = {q∗}T
L{δ}L, (23)

4.4. Lagrangian

The expression of the Lagrangian is [60]:

L = Ec − Ep + W + Wc, (24)

Using Equations (21)–(23), the Lagrangian takes the form:

L = Ec − 1
2

∫
V

{δ}T
L [k]{δ}LdV + {q∗}T

L{δ}L + {q}T
L{δ}L. (25)

4.5. Momentum

The momentum for a finite element is:

{p}G =
∫

V ρ{vM′}GdV

=
∫

V ρ
({ .

rO
}

G +
[

R
.

OT
]
{r}L +

[
R

.
OT

]
[N]{δ}L + [ROT][N]

{ .
δ
}

L

)
dV

= m
{ .

rO
}

G +
[

R
.

OT
]{

S
}

L +
[

R
.

OT
](∫

V ρ[N]dV
){δ}L + [ROT]

(∫
V ρ[N]dV

){ .
δ
}

L

= m
{ .

rO
}

G + m
[

R
.

OT
]
{rC}L +

[
R

.
OT

][
mi

O
]{δ}L + [ROT]

[
mi

O
]{ .

δ
}

L

(26)

The notation m =
∫

V ρdV represents the total mass of the finite element,
{

S
}

L is
the static moment and

[
mi

O
]
=

∫
V ρ[N]dV is the matrix of the inertia of the element (see

Equation (11)).
In the local system, there is the relation:

{p}L = [ROT]T{p}G =

= m
{ .

rO
}

L + m[ROT]T
[

R
.

OT
]
{rC}L + [ROT]T

[
R

.
OT

][
mi

O
]{δ}L +

[
mi

O
]{ .

δ
}

L
.

(27)

In an alternative way, the momentum can be calculated with the relation:

{p}L =

⎧⎨⎩ ∂L

∂
{ .

d
}

L

⎫⎬⎭. (28)

From (27), the vector of velocities
{ .

δ
}

L
can be obtained:{ .

δ
}

L
=

[
mi

O

]−1({p}L − m
{ .

rO
}

L − m[ROT]T
[

R
.

OT
]
{rC}L − [ROT]T

[
R

.
OT

][
mi

O

]
{δ}L

)
. (29)

11



Mathematics 2022, 10, 257

4.6. Hamiltonian

Using the previous notations, the Hamiltonian becomes:

H =

⎧⎨⎩ ∂L

∂
{ .

δ
}

L

⎫⎬⎭
T{ .

δ
}

L
− L = {p}T

[
mi

O

]−1({p}L − m
{ .

rO
}

L − m[ROT]T
[

R
.

OT
]
{rC}L − [ROT]T

[
R

.
OT

][
mi

O

]
{δ}L

)
− L. (30)

where, for the Lagrangian, Equation (25) is used.

4.7. Energy of Accelerations

We introduce the notion of energy of acceleration. The expression of this is, for N
material points, [61]:

Ea =
1
2

N

∑
i=1

mia2
i . (31)

For a solid body, the expression becomes:

Ea =
1
2

∫
V

ρa2dV. (32)

Using Equation (4) for acceleration, Equation (32) becomes:

Ea =
1
2

∫
V ρa2

M′dV = 1
2

∫
V ρ{aM′ }T{aM′ }dV

= 1
2

∫
V ρ

({..
rO

}T
G + {r}T

L

[
R

..
OT

]T
+ {δ}T

L [N]T
[

R
..
OT

]T
+ 2

{ .
δ
}T

L
[N]T

[
R

.
OT

]T
+

{ ..
δ
}T

L
[N]T [ROT]T

)
x

x
({..

rO
}

G +
[

R
..
OT

]
{r}L +

[
R

..
OT

]
[N]{δ}L + 2

[
R

.
OT

]
[N]

{ .
δ
}

L
+ [ROT][N]

{ ..
δ
}

L

)
dV

(33)

More comments concerning this notion are presented in [62].

5. Analytical Method in FEA of MBS

5.1. Lagrange’s Equations

The classic Lagrange’s equations are:

d
dt

{
∂L

∂
.
δ

}
L
−

{
∂L
∂δ

}
L
= 0. (34)

By
{

∂E
∂X

}
, it is denoted as:

{
∂E
∂X

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E
∂x1

∂E
∂x2

...

∂E
∂xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and: {X} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (35)

Using the Lagrangian previously obtained in Equation (25) results in:

[m]
{ ..

δ
}

L
+ [c]

{ .
δ
}

L
+ ([k] + [k(ε)] + [k(ω)]){δ}L = {q}L + {q∗}L −

{
qi(ε)

}
L
−

{
qi(ω)

}
L
−

[
mi

O

]{..
rO

}
L. (36)
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We mention here the difference between the application of Lagrange’s equations (three
differentiations

{
∂L
∂

.
d

}
, d

dt

{
∂L
∂

.
d

}
,
{

∂L
∂d

}
) and the application of the Gibbs–Appell equations

(when it is necessary to make only a single differentiation
{

∂Ea

∂
..
d

}
) [61].

5.2. Gibbs–Appell Formalism

The Gibbs–Appell equation represents an alternative to Lagrange’s equations. To use
these, it is necessary to know the energy of acceleration, obtained in Equation (33). The
Gibbs–Appell equations are [62]:

∂Ea

∂
..
qj

= Qj j = 1, n. (37)

Equation (33) has, in its component, the following terms [22]:

• Ea2 containing the quadratic terms in accelerations:

Ea2 =
1
2

∫
V

ρ

({ ..
δ
}T

L
[N]T [N]

{ ..
δ
}

L

)
dV; (38)

• Ea1 containing the linear terms in accelerations:

Ea1 =
∫

V
ρ

({ ..
δ
}T

L
[N]T [ROT]T

{..
rO

}
+

{ ..
δ
}T

L
[N]T [ROT]T

[
R

..
OT

]
{r}L +

{ ..
δ
}T

L
[N]T [ROT]T

[
R

..
OT

]
[N]{d}L + 2

{ ..
δ
}T

L
[N]T [ROT]T

[
R

.
OT

]
[N]

{ .
δ
}

L

)
dV (39)

• The terms Ea0 without any term with accelerations that play no role in obtaining the
equations.

Equation (37) can be written if we take into account our notations as:{
∂Ea

∂
..
d

}
L
− {Q}L = 0; (40)

The term Ea is:
Ea = Eao(

.
q) + Ea1(

.
q,

..
q) + Ea2(

..
q); (41)

and:
{Q}L = [k]{δ}L + {q}L + {q∗}L; (42)

If we differentiate it, we obtain:

∂Ea2

∂
{ ..

d
}

L

=

(∫
V

ρ[N]T [S] dV
){ ..

d
}

L
= [m]

{ ..
d
}

L
; (43)

∂Ea1

∂
{ ..

d
}

L

= −
[
mi

O

]{..
rO

}
L −

{
qi(ω)

}
−

{
qi(ε)

}
+ ([k(ω)] + [k(ε)]){d}L + [c]

{ .
d
}

L
; (44)

∂Ea0

∂
{ ..

d
}

L

= 0. (45)

Performing the calculations in the end, we obtain Equation (36).
Compared to Lagrange’s method, this method requires a smaller number of differenti-

ations. In this way, the number of calculations decreases and thus the time required to solve
such problems. If we take into account that finite element models involve a large number of
DOFs and thus a large number of calculations, reducing the number of operations offered
by this method can lead to significant savings in computer time.
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5.3. Hamilton’s Method

The use of the Lagrange formalism (or Gibbs-Appell) leads to the obtaining of a system
of second-order differential equations. Technically, solving this system of second-order
equations is achieved by transforming it into a system of first-order differential equations of
double dimension. Hamiltonian mechanics use unknown 2n, and the system of differential
equations obtained is from the beginning a system of differential equations of the first order
of size 2n. The unknowns are the generalized coordinates {δ}L and canonically conjugated
moment:

{p}L = −
{

∂L
∂{δ}L

}
. (46)

Thus, the main difference between Lagrange’s and Hamilton’s method is the use of the
canonical conjugated moment instead of the generalized velocities. The major advantage
of applying this method could precisely be the direct obtainment of a system of first-order
equations, which can be solved directly using the usual commercial software.

Hamilton’s equations are a first-order system of differential equations [62]. They are:{ .
δ
}

L
=

{
∂H

∂{p}L

}
;
{ .

p
}

L = −
{

∂H
∂{δ}L

}
. (47)

From Equations (27)–(29), we obtain:{ .
δ
}

L
=

[
mi

O
]−1

(
{p}L − m

{ .
rO

}
L − m[ROT]T

[
R

.
OT

]
{rC}L − [ROT]T

[
R

.
OT

][
mi

O
]{δ}L

)
;

{ .
p
}

L = {p}T[mi
O
]−1

[ROT]T
[

R
.

OT
][

mi
O
]
+

∫
V ρ

({ .
rO

}T
L [ROT]T

[
R

.
OT

]
[N]

)
d V

+
∫

V ρ

(
{ r}T

L

[
R

.
OT

]T[
R

.
OT

]
[S]

)
dV +

∫
V ρ

(
[N]T

[
R

.
OT

]T[
R

.
OT

]
[N]{δ}L + [N]T

[
R

.
OT

]T
[ROT][N]{δ}L

)
dV

−∫
V [k]{d}LdV + {q∗}T

L + {q}T
L

(48)

These represent the equations of motion sought.
The main advantage of Hamilton’s method is that it provides us with a system of first-

order differential equations. However, the number of unknowns to be found is doubled. In
the case of using other methods, the differential equations obtained are of the second order.
Solving techniques require for their transformation into first-order differential systems
by introducing new variables. In the case of Hamilton’s method, these new variables are
obtained directly and have physical significance.

5.4. Maggi’s Equations

The form of these equations are [63]:

n

∑
k=1

akj

[(
d
dt

(
∂Ec

∂
.
qk

)
− ∂Ec

∂qk

)
− Qk

]
= 0 ; j = 1, n − m, (49)

representing a number of n − m independent equations called Maggi’s equations.
Using these equations makes it simpler to analyze such a system from the point of

view of a formal description. In this case, only the kinetic energy is necessary to compute.
The liaisons between elements offer us the possibility to eliminate the liaison forces and
thus to simplify the calculus.

6. Conclusions and Discussion

The most important step in the dynamic analysis of an elastic MBS is to write the
equations of evolution. The next steps that follow, namely, the assembly of the equations of
motion and their solution, will be performed according to the classical methods used in
the commercial software of FEM. To obtain the equations is the most difficult problem to
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solve, given the multitude of terms that appear in such a description. As a result, finding
a formalism that would make it possible to write these equations as easily as possible is
an important step in this analysis. The method used almost exclusively in this type of
analysis, until now, was the Lagrange’s equations. This is primarily due to the fact that
researchers are familiar with this method, and they use fundamental notions currently
used by researchers (kinetic energy, potential, work, ...). However, analytical mechanics
offer several formulations that are equivalent to each other and to Lagrange’s equations.
Gibbs–Appell equations, Hamilton equations, Maggi equations, Jacobs equations and other
equivalent forms can be used in this way. With such a multitude of methods that can be
used that are equivalent to each other, the question arises as to which of these methods
can be applied more easily than the method of Lagrange’s equations. The paper analyzes
several analytical forms used to determine the equations of motion of MBS systems with
elastic elements to identify and analyze the advantages and disadvantages of these methods,
which could allow for a more economical result. Lagrange’s equations have the advantage
of being a method widely used by researchers due to a familiarity of researchers with it.
The Gibbs–Appell equations prove to be easy to write by skipping some steps related to
the derivation of the equations. This turns out to be a more economical method in terms
of the time required to write the equations. In this method, the number of differentiations
of terms decreases, and as a result, the total number of calculations required decreases.
However, we mention that Lagrange’s method has the advantage of using kinetic energy,
a well-known notion with which we operate easily. The Gibbs–Appell equations use the
energy of accelerations, a notion that most engineers are less familiar with. Not many
papers contain applications of the Gibbs–Appell equations. Generally, the papers present
the Gibbs–Appell formalism as a secondary method to solve a problem (useful but not
necessary) [62].

These equations are formally more elegant and simpler, and the necessary number of
differentiations is smaller. Using this method, a system with a holonomic constraint can be
handled in an economical manner, as with Lagrange’s equations.

Maggi’s method also has the advantages of simplicity in approaching problems, being
essentially equivalent to the Gibbs–Appell method [64]. It is proven that this formulation is
a simple and stable method for determining the dynamic response of constrained multibody
systems [65].

Hamilton’s method of equations proves to be the least profitable for the type of prob-
lems studied; in general, the time required to obtain the equations is not economical, and
the complexity of the intermediate calculations is high. However, we do not deny that
this approach could prove useful in certain applications because the system of differen-
tial equations obtained is first order and thus avoids a computational step, used in the
classical solution of these systems, where systems of equations obtained are second-order
differentials.

If we take into account all these considerations, we can reasonably assume that the
alternative and equivalent methods developed in analytical mechanics (and which, for the
moment, do not seem to have practical applicability) will be reevaluated and developed
due to more faithful modeling requirements imposed by technology.
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Notations

{rM′ }G position vector of point M’;
{rM}G position vectors of point M;
{u}L displacement vector;
{rO}G position vector of origin O (of the mobile reference frame)
index G vector with components express in the global reference frame;
index L vector with components express in the local reference frame;
[ROT] rotation matrix;
[N] shape functions matrix;
{vM′ } velocity of point M’;
{aM′ } acceleration of point M’;
{δ} nodal displacement vector;
Ec kinetic energy;
Ep potential energy;
L Lagrangian;
H Hamiltonian;
{σ} stress vector;
{ε} strain vector;
{v}T{w} dot product between the vectors {v} and {w};
{p} conjugated moment;
Ea energy of acceleration;
Wc work of the concentrated forces;
W work of the volume forces.
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Abstract: Cavitation will increase the leakage and discharge pressure fluctuation of axial piston
pumps. In particular, specific cavitation damage may aggravate the pressure impact and performance
degradation. The influence of the specific cavitation damage on the discharge pressure is unclear,
and the need for fault detection of this damage is urgent. In this paper, we propose a discharge
pressure-based model and fault detection methodology for the specific cavitation damage of axial
piston pumps. The discharge pressure model with specific damage is constructed using a slender
hole. The simulation model is solved through numerical integration. Experimental investigation
of cavitation damage detection is carried out. Discharge pressure features in the time domain and
frequency domain are compared. The results show that waveform distortions, spectrum energy
relocation, generation of new frequencies and sidebands can be used as features for fault detection
regarding the specific cavitation damage of axial piston pumps.

Keywords: modelling; fault detection; cavitation damage; discharge pressure; axial piston pump

MSC: 76A02

1. Introduction

Axial piston pumps are key power components of hydraulic systems applied in the
industrial equipment and construction machinery [1,2]. They can convert mechanical
energy into fluid power energy with a high efficiency and compact structure. The fluid
with high pressure and a high flow rate can accomplish the power transmission and energy
output in these applications.

Structures of an axial piston pump consist of three main interfaces: the interface
between the slipper and a swash plate, the interface between the piston and a cylinder
block, and the interface between the cylinder block and a valve plate [3,4]. These interfaces
with the oil film work as bearings and sealings in the pump [5]. The output flow and
pressure of piston pumps are discontinuous and fluctuate. The transformation from low
pressure to high pressure is achieved through the valve plate. The cylinder block is subject
to unbalanced forces from the low-pressure area and high-pressure area. Therefore, the
interface between the cylinder block and valve plate plays an important role in improving
the pump’s efficiency and lifetime [6].

The pressure transformation in the valve plate will result in a huge variation gradient.
In addition, flow passages in the cylinder block are irregular and complex. They exacerbate
oil cavitation [7–9]. The pressure of some places in the interface between the cylinder block
and valve plate is less than the gas separation pressure. The separated bubbles will be
crushed when they arrive at the high-pressure area of the valve plate. Energies released by
the bubbles can damage this interface and decrease the volumetric efficiency [10,11].
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Numerous studies on the cavitation of axial piston pumps have been carried out.
In terms of the analysis of the cavitation mechanism, the centrifugal effect of fluid in
the cylinder block can result in pressure differences between the outside wall and inside
wall, and the cavitation is more likely to appear in the inside wall [12]. The effect of the
fluid temperature on the cavitation is analyzed. The high viscosity caused by the low
temperature will aggravate the cavitation [13]. Throttling structures of the valve plate
have an important influence on the pressure transformation. An unreasonable structure
design causes the pressure variation gradient to increase [14]. Triangular grooves of the
spherical valve plate cause special cavitation [15]. Low suction pressure of the inlet will
induce insufficient inlet flow [16]. In addition, the effect of a long pipeline for the inlet on
wave propagation is investigated [17].

The above-mentioned factors can exacerbate the cavitation problems of axial piston
pumps. In order to reduce the intensity of cavitation, methods for improving these factors
are proposed. Anti-cavitation throttling structures of the valve plate [18,19], a higher back
pressure of the inlet [20,21], an optimized suction duct [22], and an improved unloading
outlet [23] are utilized for cavitation suppression. During the analysis of the cavitation
mechanism and cavitation suppression, computational fluid dynamics (CFD) models are
built. Four CFD models, based on the cavitation [3] and a CFD model based on the
full cavitation [22] are proposed for the modelling of pumps’ cavitation. A full CFD
model is developed from the fluid compressibility, gaseous dynamics, and cavitation
damage [24]. The vapor cavitation [25] based CFD model is presented to identify the critical
inlet pressure [26]. Apart from the CFD model, an analytical cavitation model is used to
determine the pump’s speed limitations [27].

For the detection of cavitation for axial piston pumps, the vibration signal is widely
used as an indicator for the machine learning model. The denoised time frequency im-
ages [28] and multi-channel signals [29] are put into the convolutional neural networks
model. Time domain analysis and frequency spectral analysis of the vibration signal are
carried out to detect the pumps’ cavitation on line [30].

Pumps’ cavitation will increase the flow leakage and pressure impact. Therefore, the
discharge pressure has a strong correlation with the cavitation, in contrast to the vibration
signal [31,32]. In particular, specific cavitation can damage the surface of the cylinder block
and valve plate. The specific cavitation damage is shown in Figure 1. This damage is
located between the two adjacent piston holes of the cylinder block. It should be pointed
out that there is little research on the modelling and fault diagnosis of cavitation damage
based on the pressure signal. In addition, the effects of the specific cavitation damage on
the discharge pressure are unclear.

 

Figure 1. Specific cavitation damage to axial piston pumps.

In this paper, a model of the discharge pressure is built, which takes into account
effects of the specific cavitation damage. Fault detection, based on the discharge pressure
model, is accomplished. The remainder of this paper is structured as follows. Section 2
describes the simulation model of the pump’s discharge pressure. Section 3 presents the
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experimental investigation on the cavitation damage. Section 4 shows the results and
discussions of the simulation model and experimental investigation. Conclusions are
summarized in Section 5.

2. Simulation Model

2.1. Discharge Pressure

The typical structure of an axial piston pump is shown in Figure 2. The pump rotor
system mainly includes the shaft, cylinder block, piston, slipper, and retainer. The shaft is
supported by the large and small bearings at both ends. The cylinder block is in splined
connection with the shaft. Pistons are at equal distance around the cylinder block center.
Slippers and pistons are linked by spherical hinges. When the rotor system rotates, pistons
reciprocate along the cylinder block hole under the action of the retainer and inclined swash
plate. Oil suction and extrusion are accomplished by the pistons’ reciprocating motions
and valve plate with the high-pressure area and low-pressure area.

Figure 2. Typical structure of an axial piston pump.

The discharge pressure of an axial piston pump is a key parameter during the oil
extrusion process. It depends on the pump’s kinematics. The kinematic diagram of the
piston pump is shown in Figure 3. The coordinate systems O-xyz and O′-x′y′z′ represent
the positions when the inclined angles of the swash plate are 0 and β, respectively. The
angle γ is the inclined angle of pistons in the cylinder block hole. The point M′ represents
the piston’s position when the shaft rotates clockwise by an angle ϕ. Assuming OO′′ = x0,
OM = R, O′′Mx = x, MM′ = h, MM′′ = r, MMz = n, one can obtain the following equations:

h = (x − x0)/ cos γ, x = n tan β = (R + r) tan β cos ϕ, r = (x − x0) tan γ. (1)

 

Figure 3. Kinematic diagram of an axial piston pump.
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By substituting parameters r and x in the parameter h, one can obtain the follow-
ing equation:

h =
R tan β cos ϕ − x0

cos γ(1 − cos ϕ tan β tan γ)
(2)

The piston displacement of the reciprocating motions along the cylinder block hole is
calculated as:

xp(1) =
(R − x0 tan γ) tan β(1 − cos ϕ)

cos γ(1 − tan β tan γ)(1 − cos ϕtanβtanγ)
, (3)

where xp(1) refers to the piston displacement of the first piston when the shaft rotates
clockwise by an angle ϕ. The piston displacement of the kth piston is xp(k):

xp(k) =
(R − x0 tan γ) tan β[1 − cos(ϕ + 2πk/Z)]

cos γ(1 − tan β tan γ)[1 − cos(ϕ + 2πk/Z)tanβtanγ]
, (4)

where Z is the number of pistons distributed in the cylinder block. The axial piston pump
presented in this paper has an odd number of pistons.

The piston velocity of the reciprocating motions along the cylinder block hole is
calculated as:

vp(1) =
dxp(1)

dt = ωs sin ϕ tan β(R−x0 tan γ)

cos γ(1−cos ϕ tan β tan γ)2

...

vp(k) =
dxp(k)

dt = ωs sin(ϕ+2πk/Z) tan β(R−x0 tan γ)

cos γ[(1−cos(ϕ+2πk/Z) tan β tan γ)]2

...

vp(Z) = dxp(Z)
dt = ωs sin(ϕ+2π) tan β(R−x0 tan γ)

cos γ[(1−cos(ϕ+2π) tan β tan γ)]2
,

(5)

where ωs is the rotating speed of the cylinder block.
The output flow rate of an axial piston pump depends on the flow of a single piston

located in the high-pressure area. The flow of the kth piston is calculated as:

Qp(k) = πr2
pvp(k)− Qc1(k)− Qc2(k)− Qc3(k), (6)

where rp refers to the radius of the piston. Qc1(k), Qc2(k), and Qc3(k) are leakage flows of
the slipper pair, the piston pair, and the valve plate pair, respectively.

Qc1(k) =
πh3

c1λ
[
Pp(k)− Ple

]
6μ(ln rs − ln Rs)

, (7)

where hc1 is the clearance between the slipper and a base plate. λ refers to the pressure ratio
coefficient. Pp(k) represents the pressure of the kth piston. Ple is the pressure of the leakage
port. μ refers to the dynamic viscosity. rs and Rs are radius of the sealing belt for slippers.

Qc2(k) =
2πrph3

c2+3ε2πrph3
c2

12μlp

[
Pp(k)− Ple

]
, (8)

where hc2 and lp represent the clearance and contact length between the piston and cylinder
block, respectively. ε refers to the eccentricity.

Qc3(k) =
πλh3

c3
6μ

(
ϕ2 − ϕ1

ln R2 − ln R1
+

ϕ2 − ϕ1

ln R4 − ln R3

)[
Pp(k)− Ple

]
, (9)

where hc3 is the clearance between the cylinder block and a valve plate. R1, R2, R3, and R4
represent the radius of the sealing belt for the valve plate. ϕ1 and ϕ2 are the distribution
angles of the damping grooves.
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The output flow rate Qout is the sum of instantaneous flows of pistons distributed in
the high-pressure area:

Qout = Qp(1) + Qp(2) + · · ·+ Qp(K)

= πr2
p

K
∑
1

vp(k) +
K
∑
1

Qc1(k)−
K
∑
1

Qc2(k)−
K
∑
1

Qc3(k),
(10)

where the number K of pistons distributed in the high-pressure area is calculated as:

K =

{ Z+1
2 0 < ϕ ≤ π

Z
Z−1

2
π
Z < ϕ ≤ 2π

Z .
(11)

The time derivative of the discharge pressure Pout is given by:

dPout
dt = QoutBf

Vout

=
πr2

pBf
Vout

K
∑
1

vp(k) +
Bf

Vout

K
∑
1

Qc1(k)− Bf
Vout

K
∑
1

Qc2(k)− Bf
Vout

K
∑
1

Qc3(k),
(12)

where Bf is the fluid bulk modulus. Vout refers to the volume of the output port.
The time derivative of the pressure Pp(k) for the kth piston is calculated as:

dPp(k)
dt =

Qp(k)Bf
V(k)

=
πr2

pBf
V(k) vp(k)− Bf

V(k)Qc1(k)− Bf
V(k)Qc2(k)− Bf

V(k)Qc3(k),
(13)

where V(k) refers to the volume of the kth piston.

2.2. Input of the Specific Cavitation Damage

As shown in Figure 1, the specific cavitation damage will lead to internal leakage
flows between the adjacent pistons [33]. The size of the cavitation damage is approximately
a slender hole. Therefore, the flow model of the slender hole is utilized as an input of the
specific cavitation damage in the discharge pressure model. It is assumed that a specific
cavitation damage is located between the kth piston and k + 1th piston. The leakage flow of
the specific cavitation damage Qscd is given by the flow model of the slender hole:

Qscd =
πd3

scd

[
Pp-scd(k)− Pp-scd(k + 1)

]
128μlscd

, (14)

where dscd and lscd are the diameter and length of the slender hole, respectively. Pp-scd(k)
and Pp-scd(k + 1) represent the pressures of the kth piston and k + 1th piston with the input of
the specific cavitation damage. The flows of the adjacent pistons are given by the following
equations:

Qp-scd(k) = πr2
pvp(k)− Qc1(k)− Qc2(k)− Qc3(k)− Qscd (15)

Qp-scd(k + 1) = πr2
pvp(k + 1)− Qc1(k + 1)− Qc2(k + 1)− Qc3(k + 1) + Qscd. (16)

The output flow rate Qout-scd with the input of the specific cavitation damage is the
difference between the output flow rate Qout and the internal leakage flow Qscd:

Qout-scd = Qp(1) + Qp(2) + · · ·+ Qp(K)− Qscd

= πr2
p

K
∑
1

vp(k) +
K
∑
1

Qc1(k)−
K
∑
1

Qc2(k)−
K
∑
1

Qc3(k)− Qscd.
(17)

The time derivative of the discharge pressure Pout-scd with the input of the specific
cavitation damage is given by:
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dPout-scd
dt = Qout-scdBf

Vout

=
πr2

pBf
Vout

K
∑
1

vp(k)+
Bf

Vout

K
∑
1

Qc1(k)− Bf
Vout

K
∑
1

Qc2(k)−

Bf
Vout

K
∑
1

Qc3(k)− BfQscd
Vout

.

(18)

The time derivative of the pressures Pp-scd(k) and Pp-scd(k + 1) for the kth piston and
mboxemphk + 1th piston is calculated as:

dPp-scd(k)
dt =

Qp-scd(k)Bf
V(k)

=
πr2

pBfvp(k)
V(k) − BfQc1(k)

V(k) − BfQc2(k)
V(k) −

BfQc3(k)
V(k) − BfQscd

V(k)

(19)

dPp-scd(k+1)
dt =

Qp-scd(k+1)Bf
V(k+1)

=
πr2

pBfvp(k+1)
V(k+1) − BfQc1(k+1)

V(k+1) − BfQc2(k+1)
V(k+1) −

BfQc3(k+1)
V(k+1) + BfQscd

V(k+1) .

(20)

2.3. Model Properties

Simulation models with the specific cavitation damage are constructed based on the
flow continuity and pressure derivative equation. The main parameters of the pump
simulation models are listed in Table 1.

Table 1. Simulation model properties.

Parameters Values Parameters Values

γ 5◦ β 14◦
R 36.75 mm Z 9
ωs 1500 r/min rp 8.50 mm
hc1 0.01 mm x0 8.89 mm
Ple 0.10 MPa λ 0.9
rs 7.70 mm μ 46 cP

hc2 0.02 mm Rs 9.10 mm
hc3 0.01 mm ε 0.01 mm
R2 23.50 mm R1 20.00 mm
R4 34.75 mm R3 31.50 mm
ϕ2 154◦ ϕ1 26◦

Vout 48.60 mm3 Bf 1.7 × 10−2 MPa
dscd 0.5 mm/0.8 mm lscd 6.0 mm

The normal pump model and simulation models with specific cavitation damage input
(case 1: dscd = 0.5 mm, case 2: dscd = 0.8 mm) are constructed. The rotating speed of the
cylinder block is 1500 r/min. The initial pressure of the discharge pressure is 21.0 MPa. The
simulation models are solved through the Runge–Kutta numerical integration algorithm.
The fixed time step valve is 1 × 10−4 s. The order of the integration algorithm is 4. The
total simulation time is 0.2 s.

3. Experimental Investigation

3.1. Layout of the Test Rig

Experimental investigation on the axial piston pump was carried out. The test rig
of the pump is shown in Figure 4a. The system schematic diagram of this test rig is
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presented in Figure 4b. The power of the electric motor as supplied to the pump through
the torque-speed sensor. The pump converted mechanical energy into fluid power. The
discharge pressure of the pump was measured through the pressure gauge and pressure
sensor. A relief valve was used as the regulator of the discharge pressure. A flow sensor
was placed between the pump and relief valve. Detailed descriptions of the test rig are
shown in Table 2.

 
Figure 4. Layout and schematic diagram of the test rig.

Table 2. Detailed descriptions of the test rig.

No. Components Descriptions

1 Electric motor ABB-IEL-280M75
2 Torque-speed sensor ZJ-5000/3000-120-02
3 Discharge pressure sensor HM90-0~35MPa-H3V2F1
4 Flow sensor LXB-1
5 Relief valve DBW30B-1-50B/350

3.2. Testing Pump with Cavitation Damage

The valve plate pair of the testing pump is shown in Figure 5. Specific cavitation
damage was applied between the adjacent piston holes of the cylinder block. The size of
the specific damage was 6.0 mm × 2.0 mm × 1.0 mm. An axial piston pump with specific
cavitation damage and a normal pump was tested on the test rig. The motor speed was
1500 r/min. The discharge pressure was regulated at around 21.0 MPa. All the pumps had
full displacements. The discharge pressures of the tested pumps were measured for 10 s
with a sampling frequency of 48,000 Hz.

 

Figure 5. Valve plate pair with specific cavitation damage.
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4. Results and Discussion

4.1. Simulations

The discharge pressure of the simulation model with no specific cavitation damage
is shown in Figure 6. It can be seen that the pressure oscillation is due to the iterative
calculation during the initial stage. The discharge pressure becomes convergent after
6.5 × 10−4 s. The pressure cure fluctuates around 21.0 MPa. The fluctuation range
is ±0.2 MPa. This means that the simulation model is effectively solved through the
numerical integration.

 
Figure 6. Simulated discharge pressure during the iterative process (normal pump model, rotational
speed: 1500 r/min, discharge pressure: 21 MPa).

Discharge pressures of the normal pump model and pump models with specific
cavitation damage (case 1: 0.5 mm, case 2: 0.8 mm) are shown in Figure 7. Considering that
the discharge pressure fluctuates periodically, pressures under different model cases are
compared during two cycles (0.08 s). It can be seen that the pressure curve of case 1 has
nearly uniform spikes. There are a lot of signal burrs in case 1 and case 2. The burrs occur
at 0 s, 0.2 s, 0.4 s, 0.6 s, and 0.8 s. In addition, the amplitudes of burrs in case 2 are higher
than those in case 1. The results show that specific cavitation damages in the valve plate
pair cause the discharge pressure to become distorted. On average, there are two signal
distortions in a cycle. The greater the damage, the greater the signal distortion.

 
Figure 7. Comparisons of the simulated discharge pressures under different model cases.

Spectra of the discharge pressures under three cases are shown in Figure 8. The
spectral energy of the pressure is mainly concentrated in the 1st, 2nd, 3rd, and 4th pumping
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frequencies. The amplitudes of these frequencies for case 1 and case 2 are lower than
those in the normal pump model. In addition, the amplitudes in case 2 are less than
the amplitudes in case 1. This shows that specific cavitation damage will decrease the
amplitudes of the pumping frequencies in the spectra. As the damage increases, the
amplitudes become smaller. The spectral energies of the pumping frequencies in case 1 and
case 2 are allocated to other sidebands around themselves. It can be seen that the spectrum
of the normal pump model has almost no 25 Hz sideband, while the amplitudes of this
sideband for case 1 and case 2 increase gradually. In addition, amplitudes of the sideband
around the 4th pumping frequency are larger than those around the 2nd and 3rd pumping
frequency. No sideband can be found around the 1st pumping frequency. Moreover, the
spectra of case 1 and case 2 have frequencies (50 Hz, 100 Hz, 150 Hz, and 200 Hz) below
the 1st pump frequency. The amplitudes of these frequencies increase as damage increases.

 
Figure 8. Spectra of the discharge pressures under different model cases.

Comparisons of the simulated discharge pressures and their spectra show that the
specific cavitation damage will lead to waveform distortions, spectrum energy relocation,
and the generation of new frequencies and sidebands. In order to study the effects of these
influence mechanisms on the discharge pressure, internal leakage flow rates of the slender
hole are shown in Figure 9. We define the flow rates as positive flows and negative flows.
Positive flow occurs when the pressure of the k + 1th piston is larger than the pressure
of the kth piston. In the opposite case, it is called negative flow. It can be seen that flow
rates alternately appear at 0 s, 0.2 s, 0.4 s, 0.6 s, and 0.8 s. The absolute values of flow rates
for case 1 and case 2 are 1.83 L/min and 4.69 L/min, respectively. This means that high
specific damage will lead to more leakage flows between the adjacent pistons. In addition,
backflows occur at the start and end of the positive flows and negative flows. The specific
cavitation damage in the valve plate pair exacerbates the backflows in axial piston pumps.
Backflows in case 2 are higher than those in case 1. The maximum backflows of case 1 and
case 2 are −0.91 L/min and −0.40 L/min, respectively.

The internal pressures of the kth piston and k + 1th piston are shown in Figure 10. The
initial pressures in the kth piston and k + 1th piston are the inlet pressures (0.1 MPa) due to
the fact that two pistons are located in the low-pressure area. The pressure of the kth piston
and the k + 1th piston becomes the discharge pressure (21.0 MPa) when the shaft rotates by
an angle of 2π(k − 1)/Z and 2πk/Z, respectively. At this time, backflows appear, and the
pressure difference results in the negative flow rate. Then, the two adjacent pistons are both
located in the high-pressure area and no flow is found with no pressure difference. Positive
flow rates appear when the pressure of the kth piston becomes the inlet pressure. It is also
found that the amplitudes of the pressure spikes decrease when the pump has specific
cavitation. The maximum pressure spikes for the normal pump model, case 1 and case
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2 are 23.0 MPa, 22.6 MPa and 22.1 MPa, respectively. The results show that the pressure
difference between the two adjacent pistons leads to leakage flow and discharge pressure
distortions of axial piston pumps.

 

Figure 9. Internal leakage flows of the slender hole.

 
Figure 10. Internal pressures of the kth piston and the k + 1th piston.

4.2. Cavitation Damage Detection

The experimental results of discharge pressures for the normal pump and the testing
pump with cavitation damage are shown in Figure 11. Measured discharge pressures
during the two cycles are shown in Figure 11a. The tested pressure of the normal pump
fluctuates around 21.0 MPa. It ranges from 20.8 MPa to 21.2 MPa. The variations of the
tested pressures are consistent with the simulation results shown in Figure 7. Some signal
distortions of the tested pressure for the testing pump with cavitation damage are found
at 0.2 s and 0.4 s during one cycle. This is because internal leakage flows appear in the
corresponding time due to the specific cavitation damages, as shown in Figure 9.
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Figure 11. Comparisons of the tested discharge pressures and their spectra.

Frequency spectra of the tested discharge pressures for the normal pump and the
testing pump with cavitation damage are shown in Figure 11b. Spectral energies are
mostly located in the first four pumping frequencies. The 3rd pumping frequency has
the maximum amplitudes. It can be seen that the specific cavitation damage results in
amplitude decreases for these pumping frequencies. Sidebands with a frequency of 25 Hz
appear in the spectra. In particular, the amplitudes of the sideband around the 4th pumping
frequency are larger than the sidebands around the 2nd and 3rd pumping frequency.
In addition, the 50 Hz frequency and its harmonics also occur below the 1st pumping
frequency. The experimental results show that the waveform distortions, spectrum energy
relocation, and the generation of new frequencies and sidebands can be used as features
for the fault detection of the specific cavitation damage of axial piston pumps.

5. Conclusions

This paper proposes a discharge pressure-based model and a fault detection methodol-
ogy for the specific cavitation damage of axial piston pumps. A slender hole is used as the
input of the simulated discharge pressure model with specific damage. An experimental
investigation on the fault detection of cavitation damage is carried out. The following
conclusions are drawn. First, the modelling methodology based on the pressure and slender
hole is applicable for the cavitation damage detection. Second, the internal leakage flow
leads to waveform distortions of the adjacent piston pressure and discharge pressure. Third,
specific cavitation damage gives rise to new frequency of 50 Hz and its harmonics, 25 Hz
sidebands around the 4th pumping frequency. These frequencies and sidebands in the
spectra can be used as fault features for the specific cavitation damage detection of axial
piston pumps.
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Abstract: In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of
permanent magnets and electrodes assembled alternatively. This exhibition produces electromagnetic
hydrodynamic phenomena over a fluid flow. A new study model is formed with the Sutterby
nanofluid flow through the Riga plate, which is crucial to the structure of several industrial and
entering advancements, including thermal nuclear reactors, flow metres and nuclear reactor design.
This article addresses the entropy analysis of Sutterby nanofluid flow over the Riga plate. The
Cattaneo–Christov heat and mass flux were used to examine the behaviour of heat and mass relaxation
time. The bioconvective motile microorganisms and nanoparticles are taken into consideration. The
system of equations for the current flow problems is converted from a highly non-linear partial system
to an ordinary system through an appropriate transformation. The effect of the obtained variables on
velocity, temperature, concentration and motile microorganism distributions are elaborated through
the plots in detail. Further, the velocity distribution is enhanced for a greater Deborah number value
and it is reduced for a higher Reynolds number for the two cases of pseudoplastic and dilatant flows.
Microorganism distribution decreases with the increased magnitude of Peclet number, Bioconvection
Lewis number and microorganism concentration difference number. Two types of graphical outputs
are presented for the Sutterby fluid parameter (β = −2.5, β = 2.5). Finally, the validation of the present
model is achieved with the previously available literature.

Keywords: Sutterby nanofluid; Riga plate; entropy analysis; bioconvection; microorganisms; HAM
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1. Introduction

The rate of heat transport characteristics has received increasing attention from var-
ious scientists owing to its tremendous industrial features, for example, in mechanical,
optical, electrical and cooling instruments. The rate of heat transport increment is very
crucial in depositing energy. Therefore, researchers have focused on the investigation of
a new type of fluid that is a mixture of nanoparticles with a size of 100 nm and larger
thermophysical properties than ordinary fluids, known as nanoliquids. A nanoliquid is a
colloidal suspension of the nanoparticle’s thermal behaviour in the ordinary fluid. The first
attempt was conducted by Choi et al. [1] in 1995. They showed the thermal conductivity of
nanoliquids by adding nanosized particles. Later, Buongiorno [2] used this understanding
of nanofluid to achieve a mathematical form by adding Brownian and Thermophoretic
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terms. A mixed convection nanofluid flow with different geometries was presented by
Hussain et al. [3,4]. Haq et al. [5] studied the second law analysis on a cross nanofluid. The
MHD mixed convective flow of CNTs/Al2O3 nanofluid in water past a heated flexible plate
with injection/suction and radiation was studied by Prabakaran et al. [6]. Mankiw et al. [7]
analysed the MHD time-dependent flow of nanofluid with variable properties due to
an inclined stretching sheet under thermal radiation. Shahid [8] studied the effect of
an upper convective Maxwell fluid over a permeable surface near the stagnation point.
Rafique et al. [9] addressed the stratified micropolar nanofluid flow past the Riga surface.
The unsteady viscous flow of the nanofluid flow over the Riga plate using a rotating system
was investigated by Parvine et al. [10]. Abbas et al. [11] studied entropy production over the
Riga plate with the suction case. Mohamed et al. [12] using a non-homogeneous dynamic
model, which is physically more accurate in describing nanofluids than homogeneous
ones. They numerically examined the free convective flow in a cubical cavity filled with a
copper–water nanofluid. Aziz et al. [13] discussed the characteristics of nanoparticles with
Lorentz and Coriolis forces. More developments of nanofluids are in [14–17].

Different fluid forms, such as polymer melts, colloidal suspensions and organic chain
mixes, are used in a wide range of industrial and production processes. The rheolog-
ical behaviour of these fluids cannot be described well by the Naiver–Stokes equation.
Therefore, several nonlinear fluid models have been proposed to represent the rheological
characteristics of complicated fluids. One of the non-Newtonian fluid models is used to
examine the key characteristics of pseudoplastic and dilatant fluids, which is known as
Sutterby fluid model. Numerous experts have studied the flow of the Sutterby liquid
extensively. Waqas et al. [18] inspected the Sutterby nanofluid flow using two rotating
disks. Yahya et al. [19] investigated Williamson Sutterby nanoparticles under the Cattaneo–
Christov heat flux. The effect of MHD on Sutterby nanoparticles due to porous movable
sheets was discovered by Fayydh et al. [20]. Gowda et al. [21] examined the Cattaneo–
Christof theory of heat diffusion in a Sutterby nanofluid. The thermal aspect of Sutterby
nanofluid containing the microorganisms due the stretched cylinder was examined by
Aldabesh et al. [22]. Hayat et al. [23] investigated the Sutterby fluid with thermal radiation
due to a rotating disk. Fujii et al. [24] addressed a Sutterby fluid with natural convection
flow due to a vertical plate. Darcy surface with MHD flow of Sutterby fluid was reported by
Bilal et al. [25]. The bioconvection flow of a Sutterby nanofluid due to a rotating disk is de-
scribed by Khan et al. [26]. Sohail et al. [27] designed the free convection flow of a Sutterby
fluid with Cattaneo–Christov theory. The heat generation/absorption in the thermally strat-
ified flow of a Sutterby fluid through a linearly stretched plate is analysed by Saif et al. [28].
Usman et al. [29] investigated the two-dimensional stagnant flow of a Sutterby nanofluid
across a stretching wedge with porous media. Ali et al. [30] discussed the heat and mass
transportation of a Sutterby nanofluid due to a horizontally stretching surface with bio-
convection of microorganisms. The influence of homogeneous–heterogeneous reaction
on Sutterby fluid flow through a disk with Cattaneo–Christov heat flux was studied by
Khan et al. [31].

In the modern period, research on bioconvection exists due to the upwards motion
of microorganisms, whose microorganisms are denser than water. The upward surface of
the fluid develops thickness due to the collection of the microorganisms. Because of this,
the upper surface becomes disturbed and microorganisms are fall down, which develops
the bioconvection. Bioconvection phenomena have been continuously researched due
to their applications in the clinical area, manufacturing process and biofuel production.
Bioconvection can be organised in the motion of direction with enormous microorgan-
ism species. In this way, gyrotactic microorganisms are among those whose swimming
directional is based on viscous and gravitational force. Kuznetsov et al. [32,33] reported
the investigation of bioconvection in a mixed suspension of nanoparticles with gyrotactic
microorganisms. Kotha et al. [34] examined the MHD flow of nanofluids with motile gyro-
tactic microorganisms over a vertical plate. Siddiq et al. [35] analysed numerically, through
the bvp4c method, the bioconvection of micropolar nanofluid flow through a stretchable
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disk. Ali et al. [36] studied the effect of bioconvection and Cattaneo–Christov heat flux
effects of a micropolar-type nanofluid past a vertical stretching sheet. Azam et al. [37]
investigated the effect of bioconvection flow for a Sutterby nanoliquid with nonlinear
radiation. Khashi’ie et al. [38] studied a hybrid nanofluid having bioconvection with gy-
rotactic microorganisms. Azam [39] explored the time-dependent flow of the chemically
reactive Sutterby nanofluid and the influence of gyrotactic microorganisms. Hayat et al. [40]
operated the bioconvection flow of nanomaterial subject to the melting effect. They ad-
dressed thermal nonlinear radiation and Joule heating for heat distribution characteristics.
Reddy et al. [41] analysed the time-dependent flow of a cross nanofluid comprising the gy-
rostatic microorganisms due to slip velocity. Sarkar et al. [42] defined a Sutterby nanofluid
flow having motile gyrotactic microorganisms over the Riga plate. Syed et al. [43] described
the biocovective phenomena of a Prandtl hybrid nanofluid over a stretched surface.

The current investigation aims to express the Sutterby nanofluid flow over a Riga
plate with Cattaneo–Christov double diffusion and gyrotactic microorganisms. Chemical
reactions and heat source-sink are considered. The main intention of this work is the
inclusive analysis of this flow problem. The governing systems are designed as a coupled
partial system. The flow problems are altered into the nonlinear ordinary system by
applying suitable transformations. Further, the solution of ordinary differential equations
is computed via the homotopy analysis method (HAM). The novel outcomes of the current
work are obtained through different parameters and explained in detail with graphs
and tables.

2. Description of the Physical Model

Consider the incompressible and steady flow of a Sutterby nanofluid over the Riga
plate containing gyrotactic microorganisms. Cattaneo–Christov with heat and mass flux
were also incorporated into the temperature and concentration equation. The x-axis is
considered along with the sheet and the y-axis is taken perpendicular to the sheet. More-
over, the velocity of the sheet is taken as Uw = ax. The temperature of the surface, the
concentration of the surface and the microorganism of the surface are represented by Tw,
Cw and χw, respectively. Furthermore, it was assumed that the fluid contains gyrotactic
bacteria. The fluids’ microorganisms gravitate towards the light. Gyrotactic phenomena, or
movement against gravity, are made possible by the “bottom heavy” bulk microorganism,
which orients their bodies. The existence of microorganisms is advantageous for the sus-
pension of the nanoparticles. The motion of microorganisms is taken, irrespective of that
of the nanoparticles, to ensure the stability of convection. The flow of a double-diffusive
fluid across a Riga plate containing gyrotactic microorganisms has not been investigated,
and this study aims to fill that gap with the simplification of unsteady boundary layer
approximation expressions provided in [22]. Figure 1 describes the physical model of the
present problem.
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Figure 1. Physical configuration of the flow problem.

Fluid Model

The Cauchy stress tensor τ for the Sutterby fluid [44] is defined as

τ = μ
( .
γ
)

A1 − pI, (1)

where the Sutterby viscosity model is represented as

μ = μ◦

⎡⎣⎛⎝ sinh−1
( .

β
.
γ
)

( .
β

.
γ
)

⎞⎠⎤⎦n

, (2)

where n, μ◦ and
.
β are the power law index, zero share rate viscosity and time material constant.

Introducing Equation (2) into Equation (1), then we have

τ = μ◦

⎡⎣⎛⎝ sinh−1
( .

β
.
γ
)

( .
β

.
γ
)

⎞⎠⎤⎦n

A1 − p. (3)

The governing equations are illustrated in the following form [21]:

∂u
∂x

+
∂v
∂y

= 0 (4)
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u
∂u
∂x

+ v
∂u
∂y

=
μ0

ρ

[
∂2u
∂y2 +

βB2

2

(
∂u
∂y

)2 ∂2u
∂y2

]
+

π j0M0

8ρ
exp

(
−π

d
y
)

(5)

u
∂T
∂x

+ v
∂T
∂y

+ ΦEΩE =
k

ρCp

(
∂2T
∂y2

)
+ τ

(
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
)
− 1

ρCp

∂qr

∂y
+

Q0

ρCp
(T − T∞), (6)

u
∂C
∂x

+ v
∂C
∂y

+ ΦCΩC = DB
∂2c
∂y2 +

DT
T∞

(
∂2T
∂y2

)
− K0(C − C∞), (7)

u
∂χ

∂x
+ v

∂χ

∂y
+

bχc

(Cw − C∞)

∂

∂y

(
χ

∂C
∂y

)
= Dm

∂2χ

∂y2 , (8)

where u and v are velocity components in the x and y directions. υ represents the kinematic
viscosity of the fluid, ρ represents the density of the fluid, α represents the thermal diffusiv-
ity, C is the concentration, DB and Dt represent Brownian diffusion and thermophoretic
diffusion (respectively), Cp denotes volumetric expansion, Dm represents microorganism
coefficient, and ΩE and ΩC are the fluid relaxation time.

In the above equations, the terms ΩE and ΩC are stated as

ΩE = u
∂u
∂x

∂T
∂x

+ v
∂u
∂y

∂T
∂x

+ u
∂v
∂x

∂T
∂y

+ v
∂v
∂y

∂T
∂y

+ u2 ∂2T
∂x2 + 2uv

∂2T
∂x∂y

+ v2 ∂2T
∂y2 (9)

ΩC = u
∂u
∂x

∂C
∂x

+ v
∂u
∂y

∂C
∂x

+ u
∂v
∂x

∂C
∂y

+ v
∂v
∂y

∂C
∂y

+ u2 ∂2C
∂x2 + 2uv

∂2C
∂x∂y

+ v2 ∂2C
∂y2 (10)

The relevant boundary conditions are assumed to be:

u = uw(x), v = 0,−k ∂T
∂y = h(Tw − T∞), C = Cw, χ = χw as y = 0,

u → 0, T → T∞, C → C∞, χ → χ∞ at y → ∞.

}
(11)

qr =
4σ1

3k∗
∂T4

∂y
= −16σ∗

3k∗ T3 ∂T4

∂y
, (12)

where T4 can be expanded as follows:

T4 ∼= 4T3
∞T − 3T4

∞. (13)

Replacing Equation (12) into Equation (13),

qr =
16σ ∗ T3

∞

3k∗
∂T
∂y

. (14)

Introducing the variables [14]

u = ax f ′(η), v = −√
av f (η), η = y

√
a
v ,

θ = T−T∞
Tw−T∞

, φ = C−C∞
Cw−C∞

, W = χ−χ∞
χw−χ∞

,

}
(15)

Using Equation (15), Equations (4)–(6) become

f ′′′ + f f ′′ − f ′2 + 1
2

βδReγ f ′′ 2 f ′′′ + Ze−Aη = 0, (16)

θ′′
(

1 +
4
3

Rd
)
+ PrNt θ′2 + PrNb θ′φ′ − Prλ1

(
f f ′θ′ + f 2θ′′

)
+ PrΥθ = 0 (17)

φ′′ + Sc f φ′ +
(

Nt
Nb

)
θ′′ − PrScλ2

(
f f ′φ′ + f 2φ′′

)
− ScCrφ = 0, (18)

W ′′ − Pe
[
φ′′ (W + �) + φ′W ′]− Lb f W ′ = 0, (19)
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The corresponding boundary conditions are

f (0) = 0, f ′(0) = 1, θ′(0) = Bi(θ(0))− Bi, φ(0) = 1
f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0, W(∞) = 0.

}
(20)

where Z = π J◦M◦h
8ρU2◦

is the modified Hartmann number; Reγ = ax2

v is the Reynolds number;

δ = B2a2

v is the Deborah number; Rd = 4σ∗T3
∞

kk∗ is the radiation parameter; Pr = v
a is the

Prandtl number; Nb = τDB(Cw−C∞)
v is the Brownian motion parameter; Nt = τDt(Tw−T∞)

T∞v

is the thermophoresis parameter; Sc = v
DB

is the Schmidt number; Bi =
h f
k

√
v
a is the Biot

number; Pe = bWc
Dm

is the Peclet number; Lb = v
Dm is the bioconvection Lewis number; and

Cr = K◦
c is the chemical reaction.

The thermofluidic quantities of engineering interest in this study are skin friction, C fx,
heat transfer rate, Nux, mass transfer rate, Shx, and motile density, Whx.

Cf x =
τw

pu2
w

, Nux =
xqw

k(Tw − T∞)
, Shx =

xqm

Db(Cw − C∞)
and Whx =

xqn

Dm(Xw − X∞)

}
(21)

where τw is the surface shear stress, qw is the surface heat flux, qm is the surface mass flux
and qn is the motile density, which are presented by the following expressions:

τw = −μ0

[
∂u
∂y + 1

6 βδReγ

(
∂u
∂y

)3
]

y=0
, qw = −k

(
∂T
∂y

)∣∣∣
y=0

,

qm = −k
(

∂C
∂y

)∣∣∣
y=0

and qn = −Dm

(
∂χ
∂y

)∣∣∣
y=0

.

⎫⎪⎪⎬⎪⎪⎭ (22)

The dimensionless form of the above parameters is expressed as

Cf xRe0.5
x =

[
f ′′ (0) + 1

6 βδReγ( f ′′ (0))3
]
, Nux

Re1/2
x

= −
[
1 + 4

3 Rd
]
θ′(0),

Shx
Re1/2

x
= −φ′(0) and Whx

Re1/2
x

= −W ′(0).

⎫⎬⎭ (23)

where Rex = xUw
v is the local Reynolds number.

3. Entropy Generation Analysis

The entropy generation with a Sutterby nanofluid is communicated as [37]:

S′′′
gen = k

T◦

([
∂T
∂x

]2
+

[
∂T
∂y

]2
+ 16σ∗T3

∞
3kk∗

(
∂T
∂y

)2
)
+ μ

T∞

(
∂u
∂y

)2
[

1 + βδReγ

6

(
∂u
∂y

)2
]

+ RDm
C∞

(
∂C
∂y

)2
+ RDm

T∞

(
∂T
∂y

)(
∂C
∂y

)
+ RDm

χ∞

(
∂χ
∂y

)2
+ RDm

T∞

(
∂χ
∂y

)(
∂T
∂y

)
.

(24)

The significance of the entropy production can be written as

S′′′◦ =
κ(ΔT)2

L2T2
∞

(25)

Using Equation (15), the rate of entropy Equation (24) can be converted as:

NG =
S′′′

gen

S′′′
◦

= Reγ(1 + Rd)θ′2 + Reγ
Br
Π

[
1 + βδReγ

3 ( f ′′ )2
]
+ Reγ

(
Γ
Π

)2
φ′2

+Reγ

(
Γ
Π

)
φ′θ′ + Reγ

(
ξ
Π

)2
W ′2 + Reγ

(
ξ
Π

)
W ′θ′.

(26)
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The Bejan number Be is defined as the ratio over the entropy generation with heat
transport, ST , and the total entropy production, NG, and it can be written as:

Be = ST
NG

Be =
Reγ(1+Rd)θ′2+Reγ( Γ

Π )
2
φ′2+Reγ( Γ

Π )φ′θ′+Reγ

(
ξ
Π

)2
W ′2+Reγ

(
ξ
Π

)
W ′θ′

Reγ(1 + Rd)θ′2 + Reγ
Br
Π

[
1 + βδReγ

3 ( f ′′ )2
]
+ Reγ

(
Γ
Π

)2
φ′2

+Reγ

(
Γ
Π

)
φ′θ′ + Reγ

(
ξ
Π

)2
W ′2 + Reγ

(
ξ
Π

)
W ′θ′

(27)

4. Homotopy Expression

Nonlinearity issues are solved using a variety of numerical approaches. The HAM [45–52]
technique, which is the most successful semi-analytically approach and applied to utilize
these greatly nonlinear equations. These variables are used to calculate the approximation
rate of this solution. The flow map of HAM process is given in Chart 1. Furthermore, the
user can select the starting assumptions for the solutions. The higher order non-linear ODE
Equations (16)–(20) are solved through this HAM technique.

f◦(η) =
(
1 − e−η

)
, θ◦(η) =

[
Bi

1 + Bi

]
e−η , φ◦(η) = e−η , W◦(η) = e−η , (28)

L̂ f = f ′′′ − f ′, L̂θ = θ′′ − θ, L̂φ = φ′′ − φ, L̂W = W ′′ − W, (29)

with the property
L̂ f (R1 + R2e−η + R3e−η) = 0,
L̂θ(R4 + R5e−η) = 0,
L̂φ(R6 + R7e−η) = 0,
L̂W(R8 + R9e−η) = 0,

⎫⎪⎪⎬⎪⎪⎭ (30)

in which Bi(i = 1–9) are the constants.

Zeroth order formulation

(1 − s)L̂ f [ f (η; s)− f◦(η)] = sh̄ f N
f
[ f (η; s), θ(η, s), φ(η, s), W(η, s)],

(1 − s)L̂θ [θ(η; s)− θ◦(η)] = sh̄θ N
θ
[ f (η; s), θ(η, s), φ(η, s)],

(1 − s)L̂φ[φ(η; s)− φ◦(η)] = sh̄φN
φ
[ f (η; s), θ(η, s), φ(η, s)],

(1 − s)L̂W [W(η; s)− W◦(η)] = sh̄W N
W
[ f (η; s), θ(η, s), φ(η, s)], W(η, s)].

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(31)

f (0, s) = 0, f ′(0, s) = 1, f ′(∞, s) = 0,
θ′(0, s) = Bi[θ(0, s)− 1], θ(∞, s) = 0,
φ(0, s) = 1, φ(∞, s) = 0,
W(0, s) = 0, W(∞, s) = 0,

⎫⎪⎪⎬⎪⎪⎭ (32)

where N
f
, N

θ
, N

φ
and N

W
are defined below:

N
f
[ f (η, s)] = ∂3 f (η,s)

∂η3 + f (η, s) ∂2 f (η,s)
∂η2 −

[
∂ f (η,s)

∂η

]2

+ 1
2 βδReγ

[
∂ f (η,s)

∂η

]2[ ∂3 f (η,s)
∂η3

]
+ Ze−Aη ,

(33)
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N
θ
[ f (η, s), θ(η, s)] = ∂2θ(η,s)

∂η2

(
1 + 4

3 Rd
)
+ PrNt

[
∂θ(η,s)

∂η

]2

+PrNb
[

∂θ(η,s)
∂η

][
∂φ(η,s)

∂η

]
− Prλ1

⎛⎝ f (η, s)
[

∂ f (η,s)
∂η

][
∂θ(η,s)

∂η

]
+[ f (η, s)]2 ∂2θ(η,s)

∂η2

⎞⎠
+PrΥθ(η, s),

(34)

N
φ
[ f (η, s), θ(η, s), φ(η, s)] = ∂2φ(η,s)

∂η2 + Sc f (η, s)
[

∂φ(η,s)
∂η

]
+
(

Nt
Nb

)[
∂2θ(η,s)

∂η2

]
− PrScλ2

⎛⎝ f (η, s) ∂ f (η,s)
∂η

∂φ(η,s)
∂η

+ f 2(η, s) ∂2φ(η,s)
∂η2

⎞⎠− ScCrφ(η, s),
(35)

N
W
[ f (η, s), φ(η, s), W(η, s),] =

∂2W(η, s)
∂η2 − Pe

⎡⎣ ∂2φ(η,s)
∂η2 (W + �)

+ ∂φ(η,s)
∂η

∂W(η,s)
∂η

⎤⎦− Lb f (η, s)
∂W(η, s)

∂η
. (36)

For s = 0 and s = 1, the results are achieved:

f (η; 0) = f0(η), θ(η; 0) = θ0(η), φ(η; 0) = φ0(η), W(η; 0) = W0(η)
f (η; 1) = f (η), θ(η; 1) = θ(η), φ(η; 1) = φ(η), W(η; 1) = W(η)

}
(37)

mth order formulation

The mth order deformation can be presented in the following forms:

L̂ f [ fm(η, s)− χm fm−1(η)] = � f R f ,m(η),
L̂θ [θm(η, s)− χmθm−1(η)] = �θ Rθ,m(η),
L̂φ[φm(η, s)− χmφm−1(η)] = �φRφ,m(η),
L̂W [θm(η, s)− χmWm−1(η)] = �W RW,m(η).

⎫⎪⎪⎬⎪⎪⎭ (38)

Boundary conditions are:

f ′m(0) = fm(0) = f ′m(∞) = θ′m(0)− Biθm(0) = θm(∞) = 0,
φm(0) = φm(∞) = W(0) = W(∞) = 0.

}
(39)

where

R f ,m(η) = f ′′′m−1(η) + ∑m−1
k=0 fm−1−k f ′′k − ∑m−1

k=0 f ′m−1−k f ′k +
1
2

βδReγ ∑m−1
k=0 f ′′m−1−k f ′′k f ′′′k + Ze−Aη (40)

Rθ,m(η) = θ
′′
m−1(η)

(
1 +

4
3

Rd
)
+ PrNt ∑m−1

k=0 θ′m−1−kθ′k + PrNb ∑m−1
k=0 φ′

m−1−kθ′k

−Prλ1

(
∑m−1

k=0

(
∑k

r=0 fm−1−k f ′k−r

)
θ′k + ∑m−1

k=0 f ′m−1−k f ′kθ
′′
k

)
+ PrΥθm−1

(41)

Rφ,m(η) = φ
′′
m−1(η) + Sc ∑m−1

k=0 f ′m−1−kφk +

(
Nt
Nb

)
θ
′′
m−1

−PrScλ2

(
∑m−1

k=0

(
∑k

r=0 fm−1−k f ′k−r

)
φ′

k + ∑m−1
k=0 f ′m−1−k f ′kφ

′′
k

)
− ScCrφm−1

(42)

RW,m(η) = W ′′
m−1(η)− Pe

(
∑m−1

k=0 φ
′′
m−1−kWk + φ

′′
m−1� + ∑m−1

k=0 φ′
m−1−kW ′

k

)
−

Lb ∑m−1
k=0 W ′

m−1−k fk

(43)

ηm =

{
0, m ≤ 1
1, m > 1

}
. (44)
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The general solutions are

fm = f ∗m + R1 + R2eη + R3e−η

θm = θ∗m + R4eη + R5e−η

φm = φ∗
m + R6eη + R7e−η

Wm = W∗
m + R8eη + R9e−η

⎫⎪⎪⎬⎪⎪⎭ (45)

where f ∗m, θ∗m, φ∗
m, W∗

m are the special solutions.

Chart 1. Flow chart of HAM expression.

Convergence of Homotopy Solutions

The parameters � f ,�θ ,�φ and �W are the converging control of the desired series solution.
For the function f”(0), θ′(0), φ′(0), W′(0) seek the permissible values to obtain the 25th and 30th
order. Figures 1–4 specify that the range of � f ,�θ ,�φ and �W as − 2.0 < � f < −0.1,−2.0 <
�θ < −1.0,−1.7 < �φ < −1.0 and − 2.0 < �W < −1.0. The series converges in the
entire region of η when � f = −0.65, �θ = �φ = −0.55 and �W = −0.7. The order of
approximation for HAM is denoted in Table 1.
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(a) (b)

(c) (d)

Figure 2. Plots of (a) � f —curve of f ′′ (0), (b) �θ —curve of θ′(0), (c) �φ —curve of φ′(0) and (d) �w

—curve of W ′(0).

(a) (b)

(c) (d)

Figure 3. (a–d). The impact of the numerous variables of f ′(η): (a) δ, (b) Reγ, (c) β and (d) Z.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. (a–f). The impact of the numerous variables of θ(η) : (a) λ1, (b) Rd, (c) Nt, (d) Nb, (e) Bi
and (f) Pr.

Table 1. Convergence solution of HAM.

Order of HAM

Approximation −f”(0) −θ′(0) −φ′(0) −W ′(0)

1 0.874702 0.166821 1.21667 0.955833
5 0.768677 0.167973 1.41759 1.038657
10 0.765186 0.168223 1.42596 1.07814
15 0.765357 0.168144 1.42606 1.08236
20 0.765347 0.168158 1.42609 1.08264
25 0.765341 0.168158 1.42608 1.08261
30 0.765341 0.168157 1.42608 1.08258
35 0.765341 0.168157 1.42608 1.08258
40 0.765341 0.168157 1.42608 1.08258
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5. Results and Discussion

The system of Equations (16)–(19) subject to the boundary condition (20) was ad-
dressed through the homotopy analysis method (HAM). To discuss the performance of
the physical significance against the velocity field f ′(η), temperature distribution θ(η),
concentration field φ(η), motile microorganism profile W(η), entropy production NG, Bejan
number Be, as well as skin friction, Nusselt number, Sherwood number and motile density
microorganism were delineated, as seen in Figures 3–9. Table 2 verifies −θ(0) in accordance
with Wang [52], Gorla and Sidawi [53], and Khan and Pop [54], with the limiting case
Nt = Nb = Rd = λ1 = Υ = 0 and found a good agreement.

(a) (b)

(c) (d)

Figure 5. (a–d) The impact of the numerous variables of φ(η) : (a), (b) Nt, (c) Cr and (d) Sc.

Table 2. Comparison of the obtained values of the Nusselt number −θ(0) with those of Wang [52],
Gorla and Sidawi [53], and Khan and Pop 45 [54], when Nt = Nb = Rd = λ1 = Υ = 0.

Pr Wang [52]
Gorla and

Sidawi [53]
Khan and Pop

[54]
Present

0.07 0.0663 0.0663 0.0663 0.0663

0.20 0.1691 0.1691 0.1691 0.1691

0.70 0.4539 0.4539 0.4539 0.4539

2.00 0.9113 0.9113 0.9113 0.9113
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(a) (b)

(c)

Figure 6. (a–c) The impact of the numerous variables of φ(η): (a) Nb, (b) Nb and (c) Cr.

(a) (b)

(c)

Figure 7. (a–c) The impact of the numerous variables of NG: (a) δ, (b) Reγ and (c) Br.
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(a) (b)

(c)

Figure 8. (a–c) The impact of the numerous variables of Be : (a) δ, (b) Reγ and (c) Br.

(a) (b)

(c) (d)

Figure 9. (a–d) Variation in the numerous variables of Re1/2
x C f , Re−1/2

x Nu, Re−1/2
x Sh, Re−1/2

x Whx :
(a) Z, δ, (b) Nb,Υ, (c) Nb, Nt and (d) Lb, Pe.
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5.1. Velocity Profile

The effects of different numerous parameters over the velocity distribution f ′(η) are
discussed in Figure 3a–d. Figure 3a shows that the velocity of the fluid diminishes with
the superior values of Deborah number δ, for the case of β < 0, and the velocity field is
enhanced for the rising value of Deborah number δ, for the case of β > 0. Figure 3b shows
that the velocity field f ′(η) is reduced for higher Reynolds number Reγ values, in the case
of β < 0; a higher Reγ tends to diminish the viscous force and the fluidity decreases for the
pseudoplastic fluid. For shear thicking fluid, the velocity field enhances as Reγ increases,
for the β < 0 case. Figure 3c shows that the effect of the augmentation in the power law
index parameter β causes that the velocity profile rises for shear thickening fluid. Figure 3d
demonstrates the significance of the Hartmann number Z on the velocity field, for the
two cases of β < 0 and β > 0. It was revealed that the strength of Z changes and the
velocity of the fluid escalates in both cases. Physically, an increment in Z corresponds
to enhancing the external electric field that constructs the wall-parallel Lorentz force.
Therefore, f ′(η) increases.

5.2. Temperature Profile

Figure 4a–f plot the consequences of temperature θ(η) against different values of the
involved parameters over the temperature field. The thermal relaxation time parameter
impacts on θ(η) are demonstrated in Figure 4a. It can be noted that the thermal relaxation
parameter tends to decrease the temperature profile for both the dilatants and pseudoplastic
cases. Figure 4b reveals the inclination of θ(η) for specific values of the thermal radiation
parameter, for β > 0 and β < 0. The temperature of the fluid increases due to the
enlargement in the radiation parameter Rd in both cases. Figure 4c reports the variation of
thermophoresis Nt over temperature. This is due to the nanoparticles move from the hotter
surface to the colder surface. Figure 4d demonstrates the influence of the Brownian motion
parameter Nb on the temperature profile. This is due to Brownian motion, which is the
erratic movement of the particles suspended in the fluid. The random collision of particles
suspended in the fluid increases the temperature of the fluid, which further contributes to
the anticipated improvement in the temperature profile θ(η). Figure 4e depicts the impact
of the Biot number θ(η). From the figure, it can be seen that the temperature field is boosted
by enhancing the value of Bi. Actually, the Biot number Bi means the ratio of convection
proportion of conducting the inner side of the boundary at the surface. Figure 4f displays
variations of the Prandtl number against θ(η). The temperature is maintained in light of a
higher Pr.

5.3. Nanoparticle Concentration Profile

The outcomes of the different leading parameters φ(η) are presented in Figure 5a–d.
Figure 5a shows the characteristics of Nb on φ(η). The concentration distribution depletes
with a rising Nb. Brownian motion’s relationship with the Brownian diffusion coefficient,
which causes the concentration field to decrease, is the cause of this phenomenon. The
influence of the thermophoresis variable on φ(η) is rendered in Figure 5b. An augmentation
in Nt leads to a reduction in concentration. One can notice, from that graph, the upsurge in
Nt improves the mass transfer. The chemical reaction influences the profile of concentration,
as seen in Figure 5c. The enhanced values Cr result in a fluid particle break near the
surface, which reduces the concentration and the corresponding boundary layer thickness.
The Schmidt number effect against the concentration profile is displayed in Figure 5d.
Clearly, a depreciation in concentration is noted for the greater Sc, due to the reduction in
mass diffusion.

5.4. Microorganism Profile

The effect of different influential variables on the microorganism’s field is shown in
Figure 6a–c. Variations in motile microorganisms against the biocovection Lewis number
Lb for various values are seen in Figure 6a. Therefore, the greater values of Lb reduces
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the microorganism field. Actually, Lb has an opposite trend with thermal diffusivity as
an escalation in Lb decreases the thermal diffusivity in regards to a decline in motile
density. From Figure 6b, it can be seen that the higher Peclet number in the microorganism
field produces a reduction in W(η). It has a direct relation with cell swimming speed;
therefore, the climbing Pe improves the cell speed of micro-best stumbling microorganism
diffusivity. As a result, W(η) declines with the rising values of Pe. Figure 6c examines the
characteristics of W(η), the opposite �. It can be seen that the motile density shrinks for the
larger �. In fact, improving the values of � escalates the concentration of microorganisms
in ambient concentration. Finally, W(η) declines.

5.5. Entropy Generation Profile

Figure 7a–c examine the performance of numerous variable parameters δ, Reγ and
Br entropy production NG. Figure 7a sketched the effect of Deborah number δ over NG.
This shows the enhancement in entropy production close to the wall for dilatant β > 0 and
deduction close to the wall for pseudoplastic fluid β < 0. Increasing the influence in the
Reynolds number Reγ entropy generation is studied for dilatant and pseudoplastic fluid
fluids plots in Figure 7b. The disparity in NG against Br is plotted in Figure 7c. Entropy
generation increases with increasing value Br in both cases. Subsequently, Br attributes the
proportion of free heat through viscous heating with the molecular condition. Therefore,
heat is created in the system for increased values of Br as well as disorder increasing in the
system, which explains the upsurges in the entropy of the system.

5.6. Bejan Number Profile

The performance Be is opposite to the variations in the variables δ, Reγ and Br; the plots
Be are shown in Figure 8a–c. Figure 8a,b show the behaviour of the physical parameters
of the Deborah and Reynolds numbers on the Bejan number. It examined that the Bejan
number declines with the larger values of Deborah and Reynolds numbers for shear
thickening and increases for both numbers for the shear-thinning fluid. Furthermore,
Figure 8c shows that the influence of the Bejan number Be reduces (β > 0, β < 0) with the
growing values of Br.

5.7. Physical Entitles

Figure 9a reports that the skin friction coefficient Re1/2
x C fx is deformed in both cases

for the larger values of the parameters Z and δ for β< 0 and β >0. The influence of the
non-Newtonian nanofluid parameter on the Nusselt number Re−1/2

x Nu against the thermal
radiation Rd is highlighted in Figure 9b. The heat transport gradient increases when
rising the Rd and Υ. The significance of Nt and Nb on the Sherwood number is shown in
Figure 9c. It is determined that there is amplification in the Sherwood number Re−1/2

x Sh
for raised values of fluid parameters. Figure 9d elucidates the substantial rescaled density
number of motile microorganisms. The rescaled density number of motile microorganisms
is voluminous for higher variations of Pe and Lb. Figure 10a–d shows the 3D representation
of skin friction, Nusselt number, Sherwood number and motile density, respectively.
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(a) (b)

(c) (d)

Figure 10. (a–d) Three-dimensional graphs; (a) Skin friction for β and Z; (b) Nusselt number for Rd
and Υ; (c) Sherwood number for Nt and Nb; and (d) motile density for Pe and Lb.

5.8. Stream Line and Isotherm Line

Figure 11b shows the behaviour of the stream function for the current flow. The
patterns depict that the streamlines are more obscured and split into two sections, pseudo-
plastic β < 0 and dilatant β > 0; the shape is modest and fills the flow field. Figure 12a,b
show the behaviour of the isotherm line for the present flow for both the cases.

(a)

Figure 11. Cont.
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(b)

Figure 11. (a,b) Streamline for (a) β = −2.5 and (b) β = 2.5.

(a)

(b)

Figure 12. (a,b) Isotherm lines (a) β = −2.5 and (b) β = −2.5.

6. Major Outcomes

This investigation examined a Sutterby nanofluid with Cattaneo–Christov double
diffusion theory over a Riga plate. Additionally, the bioconvection of the motile microor-
ganisms and the chemical reaction was included. To obtain a non-linear system of ordinary
differential problems, appropriate transformations were used. The non-linear systems were
computed through the HAM technique. The main findings of the present study were as
follows:

• The Deborah and Reynolds numbers produce the opposite behaviour in the flow field
for the different cases of β = −2.5 and β = 2.5.

• The velocity shows the continuous improvement with increasing the Hartman number
in both dilatant and pseudoplastic fluid cases.
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• A larger chemical reaction reveals a decrement in the concentration, while the ther-
mophoresis parameter Nt lead to the expansion in concentration.

• The microorganism field deteriorated for the higher values of Pe and microorganism
difference parameter.

• The entropy generation number presented an increasing magnitude for large valuesof
the Reynolds and Brinkman numbers, for the cases of pseudoplastic and dilatants
fluid. Large values of entropy generation number appear in the area of the sheet due
to the high viscous effects.

• Enhancing the value of the Deborah and Reynolds numbers results in the decrease in
the Bejan profile in the case of the dilatant fluid, while the opposite effect is observed
in the case of shear thinning.
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Nomenclature

a Stretching rate
f Similarity function for velocity
T∞ Ambient temperature
T Fluid temperature
χ Microorganism concentration
θ Dimensionless temperature
C∞ Ambient concentration
β Power index number
δ Deborah number
Reγ Local Reynolds number
Z Modified Hartmann number
Rd Thermal radiation
Υ Heat source/sink parameter
Cr Chemical reaction
λ1 Thermal relaxation parameter
λ2 Concentration relaxation parameter
Nt Thermophoresis parameter
Nb Brownian motion parameter
Bi Biot number
Pr Prandtl number
Sc Schmidt number
Pe Peclet number
Lb Lewis number
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� Microorganism concentration difference parameter
ρ Fluid density
μ Dynamic viscosity
∞ Ambient condition
Cf Skin friction coefficient
Nux Nusselt number
Shx Sherwood number
Whx Microorganism density number
τ Ratio of the effective heat capacity
Br Brinkman number
SG Local volumetric entropy generation rate
NG Entropy number
Be Bejan number
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Abstract: The Lie symmetry analysis for the study of a 1 + n fourth-order Schrödinger equation
inspired by the modification of the deformation algebra in the presence of a minimum length is
applied. Specifically, we perform a detailed classification for the scalar field potential function where
non-trivial Lie symmetries exist and simplify the Schrödinger equation. Then, a qualitative analysis
allows for the reduced ordinary differential equation to be analysed to understand the asymptotic
dynamics.
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1. Introduction

The Lie symmetry analysis is a systematic approach to the study of nonlinear differen-
tial equations [1,2]. The existence of a symmetry vector for a given differential equation
indicates the existence of invariant functions, which are then used to simplify the dif-
ferential equation and, when it is possible, determine exact or analytic solutions [3–13].
Moreover, symmetries can be used for the determination of conservation laws and also
identify equivalent dynamical systems [14–17]. Finally, the Lie symmetry analysis covers
a wide range of applications in all areas of applied mathematics. In this work, we are
interested in the symmetry classification of a higher-order differential equation.

Consider the fourth-order partial differential equations, known as the Schrödinger
equation

i
∂Ψ
∂t

+ αΔΨ + γΔ2Ψ + V(Ψ) = 0, (1)

with γ 	= 0, Δ the Laplace operator Δ = 1√
|g|

∂
∂xμ

(√|g|gμν
)

∂
∂xν , gμν is the metric tensor,

which describes the physical space. The fourth-order Schrödinger equation was introduced
in [18,19] in order to investigate the effects of the presence of small fourth-order disper-
sion terms in the propagation of laser beams in a bulk medium with Kerr nonlinearity.
For V(Ψ) = |Ψ|2pΨ, the stability of solitons was investigated by Karpman in [18]. It was
found that when gμν is the Euclidian manifold, then for p dim(g) < 4, the soliton solutions
are stable. Since then, the fourth-order Schrödinger equation has been the subject of study
in various articles in the literature (see, for instance, [20–27]). Indeed, the soliton instabilities
of the equation for V(Ψ) = |Ψ|2pΨ are related to nonlinear fibre optics and optical solutions
in gyrotropic media [28]. Moreover, optical and other soliton solitons have been constructed
with the use of Equation (1) to describe localised electromagnetic waves that spread in
nonlinear dispersive media [29]. In [29], the Ricatti–Bernoulli sub-ODE method and the
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modified Tanh-Coth method are applied for the derivation of solitons for Equation (1) and
V(Ψ) = V0

(
|Ψ|2p + ε|Ψ|4p

)
Ψ. For more physical applications and the relation of the free

parameters α, γ and p to physical phenomena, see reference [29]. Equation (1) has also
been used for the description of bright and grey/dark soliton-like solutions in the context
of Madelung’s fluid [30]. The orbital stability of standing wave solution in the context of
Hamiltonian systems was investigated in [31] by constructing a Lyapunov function. Finally,
the Cauchy problem for an inhomogeneous equation constructed by (1) was studied in [32].

Last but not least, we recall that for γ → 0, the usual Schrödinger equation of quantum
mechanics is recovered.

However, Equation (1) also describes the modified Schrödinger equation for a particle
in the context of the Generalised Uncertainty Principle (GUP). Indeed, GUP can be used for
the construction and derivation of Equation (1).

GUP has its origin in the existence of a minimal length of the order of the Planck
length (lPL). The latter is a standard prediction of different quantum physics and gravity
approaches, that is, from string theory, noncommutative geometry, and others [33–36].
Specifically, the minimal length in Heisenberg’s Uncertainty Principle [37] is introduced.
For a review on GUP, we refer the reader to [38].

In the simplest case of quadratic GUP, the modified Heisenberg’s Uncertainty Principle
reads

ΔXμΔPν � h̄
2
[δij(1 + βP2) + 2βPμPν]. (2)

Consequently, the deformed algebra follows [39,40],

[Xμ, Pν] = ih̄[δij(1 − βP2)− 2βPμPν], (3)

where β is the parameter of deformation defined by β = β0/M2
Plc

2 = β0�
2
Pl/2h̄2, where

MPl is the Planck mass, �Pl (≈ 10−35 m) is the Planck length and MPlc2 (≈1.2 × 1019 GeV)
the Planck energy, such that β2 → 0. Thus, we can consider the coordinate representation
of the modified momentum operator Pμ = pμ(1 − βp2) [40], while keeping Xμ = xμ

undeformed. Thus, the time-independent Schrödinger equation reads(
gμνPμPν − (mc)2

)
Ψ = 0. (4)

That is,

− 2βh̄2Δ2Ψ + ΔΨ +
(mc

h̄

)2
Ψ = 0, (5)

assuming terms with β2 → 0. The fourth-order Equation (5) is the static version of (1) for
V(Ψ), which is a linear function. For some recent applications of GUP in physical theories,
see [41–45] and references therein.

In the following, we perform a complete classification of function V(Ψ) according
to the admitted Lie point symmetries of Equation (1). Such a classification scheme was
proposed in the previous century by Ovsiannikov, where the Lie point symmetries for the
nonlinear equation ut = ( f (u)ux)x were classified [46], leading to new interesting problems
in applied mathematics and physics [47–52]. Apart from the analysis of symmetries,
the concept of asymptotic solutions and boundary layers is essential in this context [53].

The plan of the paper is as follows. In Section 2, we present the basic properties and
definitions for the theory of Lie symmetries of differential equations, and we introduce the
concept of the boundary layer. In Section 3, we present our classification scheme for the Lie
point symmetries of the fourth-order Schrödinger equation. We present some applications
of the Lie point symmetries for the construction of similarity solutions in Section 4. Finally,
in Section 5, we summarise our results.
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2. Preliminaries

A differential equation may be considered as a function H = H(xi, uA, uA
,i , uA

,ij, . . . ) in

the space B = B(xi, uA, uA
,i , uA

,ij, . . . ), where xi are the independent variables, and uA are the

dependent variables. In our consideration for Equation (1) xi = (t, xμ) and uA(
xi) = Φ

(
xi).

2.1. Lie Symmetry Vector

Consider now the infinitesimal transformation

x̄i = xi + εξ i(xk, uB) , (6)

ūA = ūA + εηA(xk, uB) , (7)

with the generator of the vector field

X = ξ i(xk, uB)∂xi + ηA(xk, uB)∂uA . (8)

The generator X of the infinitesimal transformation (6), (7) is a Lie point symmetry for
the function H if there exists a function λ such that the following condition holds [1,2]

X[N](H) = λH , mod H = 0, (9)

where
X[N] = X + ηA

[i]∂uA
i
+ ηA

[ij]∂uA
ij
+ · · ·+ ηA

[ij...jN ]∂uA
ij...jN

(10)

is the nth prolongation vector

ηA
[i] = ηA

,i + uB
,i ηA

,B − ξ
j
,iu

A
,j − uA

,i uB
,j ξ

j
,B (11)

with

ηA
[ij] = ηA

,ij + 2ηA
,B(iu

B
,j) − ξk

,iju
A
,k + ηA

,BCuB
,i uC

,j − 2ξk
,(i|B|u

B
j)u

A
,k

− ξk
,BCuB

,i uC
,j uA

,k + ηA
,BuB

,ij − 2ξk
,(ju

A
,i)k − ξk

,B

(
uA

,k uB
,ij + 2uB

(,ju
A
,i)k

)
, (12)

and in general
ηA
[ij...jN ] = Djn

(
ηA

ij...jn−1

)
− uA

ij...kDjN ξk. (13)

The existence of a Lie point symmetry in a given differential equation is essential for
simplifying the differential equation through the similarity transformations. Indeed, from
a specific Lie symmetry vector, one may define the following Lagrange system

dxi

ξ i =
duA

ηA =
duA

i
ηA
[i]

=
duA

ij

ηA
[ij]

= . . . (14)

whose solution provides the characteristic functions W [0]
(

xk, uA
)

, W [1]
(

xk, uA, uA
i

)
, etc.

These functions can be used to define the corresponding similarity transformation.

2.2. The Concept of a Boundary Layer

In the following, we briefly discuss the concept of boundary layers to investigate the
asymptotic behaviour of nonlinear differential equations, following the notation presented
in [53].

Assume the function ψε(τ) is defined on a domain D ⊂ Rn where ε is a small parameter.
Consider now that there exists a connected subset S ⊂ D with dimensions less or equal to
n, such that ψε(τ) has no regular expansion in each subset E ⊂ D with E ∩ S 	= ∅. Then,
a neighbourhood of S in D, with a size to be determined, is a boundary layer of the function
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ψε(τ) [53]. Suppose n = 1 and let τ0 ∈ S, and suppose that near τ0 the boundary layer is
characterised in size by the order function δ(ε). For the analysis of the behaviour of ψε near
the boundary layer, we consider the map ψε(τ) = ψε(τ0 + δ(ε)ξ) = φ∗

ε (ξ), where ξ = τ−τ0
δ(ε)

.
When δ(ε) = O(1), parameter ξ is called a local variable. Hence, the concept is based on
the construction of the approximation of function φ∗

ε (ξ) as φ∗
ε (ξ) = ∑n δ∗n(ε)ψn(ξ) with

δ∗n(ε), n = 0, 1, 2, . . . an asymptotic sequence.
For more details on the method and various applications, we refer the reader to [53].

3. Symmetry Classification for the Fourth-Order Schrödinger Equation

Before we proceed with the symmetry classification, we set without loss of generality
γ = 1, and by a change in transformation on the variable t, we can remove the coefficient i.
Hence, Equation (1) can be written in the equivalent form

∂Ψ
∂t

+ αΔΨ + Δ2Ψ + V(Ψ) = 0. (15)

Moreover, with the use of the new variable Φ = ΔΨ, the fourth-order differential
Equation (15) is written as the following Schrödinger–Poisson system

∂Ψ
∂t

+ ΔΦ + αΦ + V(Ψ) = 0, (16)

Φ − ΔΨ = 0. (17)

Assume now the generic vector field

X = ξt(t, xμ.Ψ, Φ)∂t + ξμ(t, xμ, Ψ, Φ)∂μ + ηΨ(t, xμ, Ψ, Φ)∂Ψ + ηΦ(t, xμ, Ψ, Φ)∂Φ, (18)

where in order to be the generator of a one-parameter point transformation in the space of
variables {xμ, Ψ}, it should be ξt

,Φ = 0, ξ
μ
,Φ = 0 and ηΨ

,Φ = 0.
The 2nd prolongation vector reads

X[2] = X + ηΨ
[t]∂Ψt + ηΨ

[μ]∂Ψμ + ηΦ
[t]∂Φt + ηΦ

[μ]∂Φμ + ηΨ
[μν]∂Ψμν + ηΦ

[μν]∂Φμν . (19)

Consequently, we apply the symmetry condition (9), and by using the geometric ap-
proach described in [54], we summarise the classification scheme in the following theorem.

Theorem 1. The generic Lie point symmetry vector for the Schrödinger–Poisson system (16), (17)
in an arbitrary background space gμν, and for arbitrary function V(Ψ) is

XG = a1∂t + aσK(xκ)∂μ, (20)

where K(xμ) is an isometry for the metric tensor gμν, that is
[
K(xκ), gμν(xκ)

]
= 0.

However, for specific functional forms of the potential V(Ψ), the classification scheme
is described as follows.

Theorem 2. Let the metric tensor gμν(xκ) and K(xκ) describe the isometries of gμν(xκ), and H(xκ)
is a proper Homothetic vector of gμν(xκ), i.e.,

[
H(xκ), gμν(xκ)

]
= 2gμν(xκ). Then, for special

functional forms of V(Ψ), the generic symmetry vector for the Schrödinger–Poisson system (16),
(17) is:

For α 	= 0,
I: For V(Ψ) = V0Ψ, the symmetry vector is XI

G = a1∂t + aσK(xκ)∂μ +
a2(Ψ∂Ψ + Φ∂Φ) + a3

(
F(t, xκ)∂U + F,μν(t, xκ)∂Φ

)
, where F(t, xκ) is a solution of the original

system. The new coefficients in the vector field indicate the linearisation of the system.
For α = 0,
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II: For V(Ψ) = 0, the generic symmetry vector is XII
G = a1∂t + aσK(xκ)∂μ +

a2(Ψ∂Ψ + Φ∂Φ) + a3
(

F(t, xκ)∂U + F,μν(t, xκ)∂Φ
)
+ a4

(
4t∂t + H(xκ)∂μ − 2Φ∂Φ

)
.

III: For V(Ψ) = V0Ψ, the generic symmetry vector is XII I
G = a1∂t + aσK(xκ)∂μ +

a2(Ψ∂Ψ + Φ∂Φ) + a3
(

F(t, xκ)∂U + F,μν(t, xκ)∂Φ
)

+
a4
(
4t∂t + H(xκ)∂μ − 2Φ∂Φ − 4V0t(Ψ∂Ψ + Φ∂Φ)

)
.

IV: For V(Ψ) = V0ΨP+1, P 	= −1, 0, the generic symmetry vector is XIV
G = a1∂t +

aσK(xκ)∂μ + a4

(
4t∂t + H(xκ)∂μ − 2Φ∂Φ − 4

P (Ψ∂Ψ + Φ∂Φ)
)

.

V: For V(Ψ) = V0 exp(PΨ), P 	= 0, the generic symmetry vector is XIV
G = a1∂t +

aσK(xκ)∂μ + a4

(
4t∂t + H(xκ)∂μ − 2Φ∂Φ − 4

P (∂Ψ)
)

.

It is easy to observe that the collineations of the underlying geometry generate the
symmetries for the dynamical system of our study. Indeed, the isometries and the homo-
thetic vectors construct the Lie symmetries. If a background geometry has no isometries
and homothetic vector, then the admitted Lie symmetries for the dynamical system are
the trivial symmetries. That connection of the Lie symmetries with the elements of the
background geometry has been observed before for various differential equations [55,56].
Indeed, for the second-order Schrödinger equation, the Lie symmetries are constructed
by the elements of the homothetic algebra of the geometry [56]. Thus, a similar physical
interpretation can be given. The Lie symmetries generated by the isometries are related to
the construction of differential operators generated by the conservation law of momentum
for the classical particle. In contrast, the Lie symmetry constructed by the homothetic vector
field is related to the derivation of scaling solutions. For more details, we refer the reader
to [56].

We proceed with our analysis by considering specific metric tensor gμν.

4. Application

Consider now that the metric tensor gμν is maximally symmetric and admit a ho-
mothetic vector field. Hence, gμν is necessary for the flat space. For simplicity of our
calculations, assume further that dim gμν = 1. The one-dimensional flat space with line
element ds2 = dx2 admits the isometry ∂x and the proper Homothetic field x∂x.

Therefore the Schrödinger–Poisson system reads

∂Ψ
∂t

+
∂2Φ
∂x2 + αΦ + V(Ψ) = 0, (21)

Φ − ∂2Ψ
∂x2 = 0. (22)

In the case where α 	= 0, the generic vector field is XI = a1∂t + a2∂x, for arbitrary
potential function V(Ψ). From the elements of XI , we can reduce the dynamical system
into the static and the stationary cases. However, from the vector field ∂t + c∂x we reduce
the dynamical system as follows

−c
∂Ψ
∂ξ

+
∂2Φ
∂ξ2 + αΦ + V(Ψ) = 0, (23)

Φ − ∂2Ψ
∂ξ2 = 0, (24)

where ξ = x− ct is the new independent variable, and c describes the speed of the travelling
wave. For a linear function V(Ψ), the closed-form solution of the system (23), (24) can be
expressed in terms of exponential functions.
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However, for V(Ψ) = V0Ψ, there exist the additional possible reduction ∂t + c∂x +
β(Ψ∂Ψ + Φ∂Φ), which provides the similarity transformation Ψ = eβtψ(ξ), Φ = eβtφ(ξ),
ξ = x − ct with a reduced system

−c
∂ψ

∂ξ
+

∂2φ

∂ξ2 + αφ + βψ + V0ψ = 0, (25)

φ − ∂2ψ

∂ξ2 = 0. (26)

Let us focus now on the case where α = 0 and assume V(Ψ) = V0ΨP+1 and V(Ψ) =
V0 exp(PΨ).

4.1. Power-Law Function V(Ψ) = V0ΨP+1, P 	= 0

For the power-law potential function, from the vector field(
4t∂t + x∂x − 2Φ∂Φ − 4

P (Ψ∂Ψ + Φ∂Φ)
)

, we define the similarity transformation

Ψ(t, x) = ψ(σ)t−
1
P , Φ(t, x) = φ(σ)t−

2+P
2P , σ(t, x) =

x

t
1
4

,

and if P 	= 0, with reduced system

∂2φ

∂σ2 + V0ψP+1 − 1
4

σ
∂ψ

∂σ
− 1

P
ψ = 0, (27)

φ − ∂2ψ

∂σ2 = 0. (28)

If φ = 0, we have
ψ = ψ1σ + ψ0. (29)

Then, from compatibility conditions, the only possible solution is the constant solution
ψ = ψ0, such that

V0ψP+1
0 − ψ0

P
= 0 =⇒ ψ0 = (PV0)

−1/P. (30)

Therefore, we assume the non-trivial case φ 	= 0. Then, we have the fourth-order
equation

∂4ψ

∂σ4 + V0ψP+1 − 1
4

σ
∂ψ

∂σ
− 1

P
ψ = 0. (31)

We introduce the logarithmic independent variable

τ = ln(σ), (32)

and redefine

ψ(σ) = ψ̄(ln(σ)). (33)

That is, for any function f (σ), define

f̄ (τ) = f (eτ). (34)
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Then, using the chain rule and the relation σ = eτ , we obtain

∂ f
∂σ

= e−τ f̄ ′(τ), (35)

∂2 f
∂σ2 = e−2τ

(
f̄ ′′(τ)− f̄ ′(τ)

)
, (36)

∂3ψ

∂σ3 = e−3τ
(

f̄ (3)(τ)− 3 f̄ ′′(τ) + 2 f̄ ′(τ)
)

, (37)

∂4ψ

∂σ4 = e−4τ
(

u(4)(τ)− 6u(3)(τ) + 11u′′(τ)− 6u′(τ)
)

. (38)

Then, (31) becomes

ψ̄(τ)
(

PV0ψ̄(τ)P − 1
)

P
+

(
−6e−4τ − 1

4

)
ψ̄′(τ) + 11e−4τψ̄′′(τ)− 6e−4τψ̄(3)(τ) + e−4τψ̄(4)(τ) = 0. (39)

Assuming that ψ̄ is bounded with bounded derivatives as τ → +∞, we obtain the
asymptotic equation

ψ̄+(τ)
(

PV0ψ̄+(τ)P − 1
)

P
− 1

4
ψ̄′
+(τ) = 0, (40)

which admits the first integral

c1
ψ̄+(τ)P

(1 − PV0ψ̄+(τ)P)
= e−4τ =⇒ ψ̄+(τ) =

(
PV0 + c1e4τ

)
−1/P. (41)

Defining

z+(τ) :=
ψ̄+(τ)P

(1 − PV0ψ̄+(τ)P)
, (42)

z+(τ) is monotone decreasing as τ → +∞ for P > 0 and monotone increasing as τ → +∞
for P < 0. In other words, the asymptotic states of ψ̄+(τ) are

lim
τ→+∞

ψ̄+(τ) = 0 if P > 0, V0 > 0, (43)

lim
τ→−∞

ψ̄+(τ) = ψ0 := (PV0)
−1/P if P > 0, V0 > 0, (44)

and

lim
τ→+∞

ψ̄+(τ) = ψ0 := (PV0)
−1/P if P < 0, V0 < 0, (45)

lim
τ→−∞

ψ̄+(τ) = 0 if P > 0, V0 > 0. (46)

The cases of interest are as τ → +∞. That is, the monotonic function z+ unveils the
asymptotic behaviour as τ → +∞.

Now, assuming that ψ̄ is bounded with bounded derivatives as τ → −∞, we obtain
the asymptotic equation

− 6ψ̄′−(τ) + 11ψ̄′′−(τ)− 6ψ̄
(3)
− (τ) + ψ̄

(4)
− (τ) = 0, (47)

with solution

ψ̄−(τ) = c2eτ +
1
2

c3e2τ +
1
3

c4e3τ + c5, (48)
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such that
lim

τ→−∞
ψ̄−(τ) = c5. (49)

Substituting ψ(τ) = ψ̄−(τ) in (39) and taking limit τ → −∞, we obtain the compati-
bility condition

c5

(
−1 + PV0c5

P
)
= 0. (50)

That is, c5 ∈
{

0, (PV0)
−1/P

}
. The choice c5 = (PV0)

−1/P gives the proper matching
condition

lim
τ→−∞

ψ̄+(τ) = lim
τ→−∞

ψ̄−(τ) = (PV0)
−1/P. (51)

In summary, integrating from τ → −∞ to τ > 0, we obtain that ψ(τ) ≈ ψ̄−(τ) for
large τ close the boundary layer, whereas, integrating backwards from τ → +∞ to τ < 0,
we obtain that ψ(τ) ≈ ψ̄+(τ) as τ → −∞. These results are illustrated in Figure 1.

Let us define the new time variable s = (1 + tanh(τ))/2 that brings the interval
(−∞, ∞) to (0, 1). Then, the original layer problem becomes a two-point problem, with end-
points 0 and 1. The asymptotic solutions can be found as

Φ−(s) = ψ̄−(−arctanh(1 − 2s)), (52)

that is,

Φ−(s) = (PV0)
−1/P +

c3s
2 − 2s

+

(
c2

(
1
s
− 1

)
+

c4

3

)
e−3arctanh(1−2s). (53)

As s → 0+, we have the asymptotic behaviour Φ− → (PV0)
−1/P.

Moreover,
Φ+(s) = ψ̄+(−arctanh(1 − 2s)), (54)

becomes

Φ+(s) =
(

PV0 +
c1s2

(1 − s)2

)−1/P

, (55)

such that

lim
s→1−

Φ+(s) = 0 if P > 0, V0 > 0. (56)

We have the matching condition

lim
s→0+

Φ−(s) = lim
s→0+

Φ+(s) = (PV0)
−1/P. (57)

The next step is to introduce the stretched variables κ = s/ε and λ = (1 − s)/ε,
and write a solution

Φ(s, ε) = ζ(κ, ε) + η(λ, ε) (58)

where
ζ → (PV0)

−1/P as κ = s/ε → ∞ (59)

and
η → 0 as λ = (1 − s)/ε → ∞. (60)

Near s = 0, η and its derivatives will be asymptotically negligible, so djΦ(s, ε)/dsj ∼
(1/εj)

[
djζ(κ, ε)/dκ j]. Take, for example,

ζ0(κ, ε) = (PV0)
−1/P +

c3κε

2 − 2κε
+

(
c2

(
1
κε

− 1
)
+

c4

3

)
e−3arctanh(1−2κε). (61)
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Using the notation

ψ̄(τ, ε) = Φ(κ, ε), κ =
tanh(τ) + 1

2ε
(62)

the approximated Equation (47) becomes

6ε(4κε(4κε − 3) + 1)Φ′(κ, ε)

+ (κε − 1)
[
3(24κε(2κε − 1) + 1)Φ′′(κ, ε)

+ 4κ(κε − 1)
(

κΦ(4)(κ, ε)(κε − 1) + 3Φ(3)(κ, ε)(4κε − 1)
)]

= 0, (63)

where primes mean derivatives with respect to κ, which admits the exact solution (61).
Since we are taking ε as a small parameter, we see that the initial layer problem is of type(

−3Φ′′(κ)− 4κ
(

κΦ(4)(κ) + 3Φ(3)(κ)
))

+ ε
(

6Φ′(κ) + 3κ
(

25Φ′′(κ) + 4κ
(

κΦ(4)(κ) + 6Φ(3)(κ)
)))

+ O
(

ε2
)
= 0. (64)

Taking the expansion

Φ(κ) = Φ0(κ) + εΦ1(κ) + . . . (65)

we obtain at first-order

−3Φ′′
0 (κ)− 4κ

(
κΦ(4)

0 (κ) + 3Φ(3)
0 (κ)

)
= 0. (66)

Hence,

Φ0(κ) =
4
3
√

κ(d2κ − 3d1) + d4κ + d3. (67)

At second-order, we have

60d2
√

κ + 6d4 − 4κ2Φ(4)
1 (κ)− 12κΦ(3)

1 (κ)− 3Φ′′
1 (κ) = 0. (68)

Hence,

Φ1(κ) = 2d2κ5/2 +
4
3

d6κ3/2 + d4κ2 + d8κ − 4d5
√

κ + d7, (69)

and so on. Finally, we replace the leading order and second-order terms (67) and (69),
respectively, in (65) with the replacement (62).

Near s = 1, ζ and its derivatives will be asymptotically negligible, so djΦ(s, ε)/dsj ∼
(1/εj)

[
djη(λ, ε)/dλj]. Take, for example,

η0(λ, ε) =
(

PV0 + c1e4arctanh(1−2λε)
)−1/P

. (70)

Using the notation

ψ̄(τ, ε) = Φ(λ), λ =
1 − tanh(τ)

2ε
, (71)

the approximated Equation (40), becomes

2V0Φ(λ)P+1 + λ(1 − λε)Φ′(λ) = 2Φ(λ)

P
, (72)

which admits the solution (70).

62



Mathematics 2022, 10, 3204

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-4
-3
-2
-1
0

V0 = 6, P = 1, [0]=0, '[0]=0, ''[0]=0, '''[0]=-1

-
+

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0

V0 = 18, P = 2, [0]=0, '[0]=0, ''[0]=0, '''[0]=-1

-
+

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-600
-500
-400
-300
-200
-100

0
V0 = 72, P = 3, [0]=0, '[0]=0, ''[0]=0, '''[0]=-1

-
+

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-20
-15
-10
-5
0

5
V0 = 324, P = 4, [0]=0, '[0]=0, ''[0]=0, '''[0]=-1

-
+

Figure 1. Comparison of exact solution ψ̄ of (39) with initial conditions ψ̄(0) = 0, ψ̄′(0) = 0, ψ̄′′(0) =
0, ψ̄(3)(0) = −1 and the asymptotic solutions ψ̄± for V0 = 6P/P, P > 0.

Figure 1 shows the exact solution ψ̄ of (39) with initial conditions ψ̄(0) = 0, ψ̄′(0) =
0, ψ̄′′(0) = 0, ψ̄(3)(0) = −1 and the asymptotic solutions ψ̄− = 1

6 − eτ

2 + e2τ

2 − e3τ

6 and

ψ̄+ =
(
6P + e4τ

)−1/P for V0 = 6P/P, P > 0. This plot illustrates the accuracy of our
analysis by selecting ψ̄− as the inner solution for τ < τ0, closing the boundary layer.

4.2. Exponential Function V(Ψ) = V0 exp(PΨ), P 	= 0

On the other hand, for the exponential potential V(Ψ) = V0 exp(PΨ), P 	= 0, the simi-
larity transformation, which corresponds to the vector field

(
4t∂t + x∂x − 2Φ∂Φ − 4

P (∂Ψ)
)

,
is

Ψ(t, x) =
ln t
P

+ ψ(σ) , Φ = t−
1
2 φ(σ) , σ(t, x) =

x

t
1
4

,

where the reduced system is

∂2φ

∂σ2 + V0ePψ − 1
P
− 1

4
σ

∂ψ

∂σ
= 0, (73)

φ − ∂2ψ

∂σ2 = 0. (74)

We introduce the logarithmic independent variable (32) and define ψ(σ) by (33). Then,
using the chain rule and the relation σ = eτ , we obtain

V0ePψ̄(τ) +

(
−6e−4τ − 1

4

)
ψ̄′(τ) + 11e−4τψ̄′′(τ)− 6e−4τψ̄(3)(τ) + e−4τψ̄(4)(τ)− 1

P
= 0. (75)

Assuming that ψ̄ is bounded with bounded derivatives as τ → +∞, we obtain the
asymptotic equation

V0ePψ̄+(τ) − 1
P
− 1

4
ψ̄′
+(τ) = 0, (76)
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with solution
ψ̄+(τ) = ln

((
PV0 + e4τ+c1P

)
−1/P

)
. (77)

Assuming that ψ̄ and V0ePψ̄(τ) are bounded with bounded derivatives as τ → −∞,
we obtain, as in Section 4.1, the asymptotic Equation (47), with solution (48). Substituting
ψ(τ) = ψ̄−(τ) in (75), and taking limit τ → −∞, we obtain

− 1
P
+ V0ec5P = 0 =⇒ c5 = ln

[
(PV0)

−1/P
]
. (78)

That is, we have the matching condition

lim
τ→−∞

ψ̄+(τ) = lim
τ→−∞

ψ̄−(τ) = ln
[
(PV0)

−1/P
]
. (79)

As in Section 4.1, integrating from τ → −∞ to τ > 0, we obtain that ψ(τ) ≈ ψ̄−(τ)
for large τ, whereas, integrating backwards from τ → +∞ to τ < 0, we obtain that
ψ(τ) ≈ ψ̄+(τ) as τ → −∞. These results are illustrated in Figures 2 and 3. Nevertheless,
when the term V0ePψ̄(τ) in (75) is not negligible, the approximation of ψ̄ by the solution of the
asymptotic Equation (47) is not accurate as τ → +∞. Then, the asymptotic Equation (47) is
replaced by

V0ePψ(τ)+4τ + ψ(4)(τ)− 6ψ(3)(τ) + 11ψ′′(τ)− 6ψ′(τ) = 0, (80)

which cannot be solved analytically.
Using the same method, we define the new time variable s = (1 + tanh(τ))/2 that

brings the interval (−∞, ∞) to (0, 1). Then, the original layer problem becomes a two-point
problem, with endpoints 0 and 1. The asymptotic solutions can be found as

Φ−(s) = ln
[
(PV0)

−1/P
]
+

c3s
2 − 2s

+

(
c2

(
1
s
− 1

)
+

c4

3

)
e−3arctanh(1−2s). (81)

As s → 0+, we have the asymptotic behaviour eΦ− → (PV0)
−1/P.

Similarly, we have

eΦ+(s) =

(
PV0 +

c1s2

(1 − s)2

)−1/P

, (82)

such that

lim
s→1−

eΦ+(s) = 0 if P > 0, V0 > 0. (83)

Finally, by introducing the stretched variables κ = s/ε and λ = (1 − s)/ε, we write a
solution

Φ(s, ε) = ζ(κ, ε) + η(λ, ε), (84)

where
ζ → ln

[
(PV0)

−1/P
]

as κ = s/ε → ∞, (85)

and
η → 0 as λ = (1 − s)/ε → ∞. (86)

Then, the layer problem becomes a two-point problem, with endpoints 0 and 1, and we
obtain the asymptotic solutions following similar approaches as in Section 4.1.

Figure 2 shows the exact solution ψ̄ of (75) with initial conditions ψ̄(0) = 0,
ψ̄′(0) = 0, ψ̄′′(0) = 0, ψ̄(3)(0) = 1 and the asymptotic solutions ψ̄− = eτ

2 − e2τ

2 + e3τ

6 − 1
6
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and ψ̄+ = − ln(eP+4τ+eP/6)
P for V0 = eP/6

P , P < 0. In this example, the approximations are
accurate.
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Figure 2. Comparison of exact solution ψ̄ of (75) with initial conditions ψ̄(0) = 0, ψ̄′(0) = 0,
ψ̄′′(0) = 0, ψ̄(3)(0) = 1 and the asymptotic solutions ψ̄± for V0 = eP/6

P , P < 0.
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Figure 3. Comparison of exact solution ψ̄ of (39) with initial conditions ψ̄(0) = 0, ψ̄′(0) = 0,
ψ̄′′(0) = 0, ψ̄(3)(0) = 1 and the asymptotic solutions ψ̄± for V0 = eP/6

P , P > 0.

65



Mathematics 2022, 10, 3204

Figure 3 shows the exact solution ψ̄ of (75) with the same initial conditions, and the
asymptotic solutions ψ̄± for V0 = eP/6

P , P > 0. The approximation of ψ̄ by the solution of the
asymptotic Equation (47) is not accurate as τ → +∞. Then, the asymptotic Equation (47) is
replaced by (80). The numerical solution ψ̄approx of (80) is represented by a dot-dashed line
in Figures 2 and 3.

5. Conclusions

Lie symmetry analysis is a powerful method for analysing nonlinear differential equa-
tions. In this study, the Lie symmetry analysis was applied to solve the group classification
problem for a 1 + n-dimensional nonlinear higher-order Schrödinger equation inspired
by GUP. The partial differential equation of our analysis admits an arbitrary potential
function, which was a constraint according to the admitted Lie point symmetries. For an
arbitrary potential function, we found that the admitted Lie symmetries are the Killing
vectors of the n-dimensional space in addition to the vector field ∂t. However, a new
symmetry vector presented in Theorems 1 and 2 can be found for specific function forms
of the potential function. To demonstrate the application of the Lie symmetry vectors,
we used the corresponding Lie invariants to define similarity transformations and reduce
the partial-differential equation into an ordinary differential equation. Because of the
nonlinearity of the reduced equation, we studied the asymptotic dynamics and evolution.

Concerning asymptotic analysis, we have obtained asymptotic solutions

ψ̄−(τ) = c2eτ +
1
2

c3e2τ +
1
3

c4e3τ +

{
(PV0)

−1/P power-law function
ln
[
(PV0)

−1/P
]

exponential function
,

ψ̄+(τ) =

{ (
PV0 + c1e4τ

)−1/P power-law function
ln
((

PV0 + e4τ+c1P)−1/P
)

exponential function
,

with the proper matching condition

lim
τ→−∞

ψ̄+(τ) = lim
τ→−∞

ψ̄−(τ) =
{

(PV0)
−1/P power-law function

ln
[
(PV0)

−1/P
]

exponential function
.

For the power-law potential, it is confirmed numerically that as τ → −∞, ψ(τ) ≈
ψ̄+(τ), whereas, for large τ, ψ(τ) ≈ ψ̄−(τ). However, in the exponential case, when the
term V0ePψ̄(τ) is not negligible, the approximation by ψ̄−(τ) is not accurate as the boundary
layer is approached and has to be replaced by ψ̄approx(τ).

Finally, the layer problem becomes a two-point problem, with endpoints 0 and 1
by introducing the stretched variables κ = s/ε and λ = (1 − s)/ε, and writing a formal
solution

Φ(s, ε) = ζ(κ, ε) + η(λ, ε), (87)

where

ζ →
{

(PV0)
−1/P power-law function

ln
[
(PV0)

−1/P
]

exponential function
, as κ = s/ε → ∞, (88)

and
η → 0 as λ = (1 − s)/ε → ∞. (89)

Then, it is interesting to analyse possible asymptotic solutions for different initial/
boundary conditions, but this numerical treatment is out of the scope of the present research.
In general, when solving the problem of approximating a function ψε(τ) depending on a
small parameter ε in a domain D, the algorithm presented in [53] can be applied.

This work contributes to the subject of the application of Lie point symmetries on
nonlinear differential equations. In this study, we considered a Schrödinger equation
constructed by the deformation algebra of the quadratic GUP. However, that is not the
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unique proposed GUP, and other deformations algebras exist. Therefore, in future work,
we plan to perform a detailed classification of the higher-order Schrödinger equations for
different models of GUP. Finally, we will present formal expansions, representing valid
asymptotic approximations of the function ψε(τ) for other initial conditions that we set out
to study by singular perturbation methods, boundary layers, and multiple time scales.
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Abstract: The aim of this paper is to study a stationary Brinkman problem in an anisotropic porous
medium by using a mini-element method with a general boundary condition. One of the important
aspects of the P1 − Bubble/P1 method is satisfying the inf-sup condition, which allows us the
existence and the uniqueness of the weak solution to our problem. To go further in this theoretical
study, an a priori error estimate is established. To see the importance of this method in reality, we
applied this method to a real problem. The numerical simulation studies support our results and
demonstrate the effectiveness of this method.

Keywords: anisotropic porous media; ADINA system; a priori estimate error; Brinkman equation;
mini-element; stability
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1. Introduction

The purpose of this paper is to approach the Brinkman system using a finite-element
method. The Brinkman system involves modifying the usual Darcy law by the addition of
a standard viscosity term; this system was first defined by H.C. Brinkman [1]. In reality,
many applications use this equation; for example, in a porous media it used to model
fluid flow in a complex domain [2–4] and in a fictitious domain [5]. Shahnazari and al.
worked on the nonlinear cases and products of the nonlinear Brinkman equation where
the viscosity is nonlinear [6–8]. The Brinkman equations have very important practical
applications in the field of anisotropic porous media [9–11], as well as in several other real
domains such as nanofluids [12–20].

One important method for the resolution of differential equations is the mixed finite-
element method (MFEM) [21–23]. This method has been used by several researchers to solve
incompressible fluid flow problems [24–27]. Many research papers [24,28] are interested
in solving the Brinkman equation using the mixed finite-element method, therefore the a
priori and a posteriori error estimates for the Brinkman system are studied [28].
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In this paper, we study the discretization, and we will establish the stability and a
priori error estimate of the Brinkman problem with the permeability as a matrix by the
finite-element method (mini-element); this method was introduced by Arnold, Brezzi and
Fortin [29]. The method P1/P1 is not stable, so to overcome this obstacle we propose to
use the P1 − Bubble/P1. The basic idea for P1 − Bubble/P1 is that the construction of
the mini-element starts with standard finite-element spaces for velocity and pressure and
then enriches the velocity space such that the discrete inf-sup condition is satisfied. This
method leads to a relatively low number of degrees of freedom with a good approximate
solution [29–31].

The numerical study of this linear problem is obtained in the matrix form of large
size; indeed, we propose an efficient (preconditioned) Uzawa conjugate gradient method to
accelerate the convergence of the numerical solution derived from the one used with P2/P1
(or P1 − iso − P2/P1) [32,33]. To simulate the Brinkman equation in a heterogeneous reser-
voir, we modified the code suggested by J. Koko for the generalized Stokes problem [34],
such that our model is based on the permeability as a matrix.

This paper is organized as follows: The governing equations and assumptions to
conserve the existence and uniqueness of the solution are described in Section 2; Then a
presentation of the mini-element method and the notations used in the approximation of
our problem is performed in Section 3; The important theoretical results—the stability and
a priori estimation—are proved in Section 4; Finally, to see the importance of this method,
we propose several numerical experiments in Section 5 to prove that the convergence of
our method is validated for an exact solution example.

2. Governing Equations

Let Ω ⊂ Rd, (d = 2, 3) be a bounded open set with a Lipschitz boundary Γ. The
Brinkman system is represented by the following equations{ −∇·(μ̃∇u) +∇p + μK−1u = f in Ω,

∇·u = 0 in Ω.
(1)

The system in Equation (1) is completed by the boundary conditions on Γ given by

A−1u + B(μ̃∇u − pI)·n = g on Γ. (2)

where u and p represent, respectively, the velocity field and the pressure, with the pressure
equation belonging in the space L2(Ω) and satisfying

∫
p dx = 0 there by enforcing a null

mean value of the pressure field over the entire domain Ω, restoring uniqueness. Moreover,
f is the external volumetric force acting on the fluid ( f ∈ [

L2(Ω)
]d), and in the boundary

condition we assume that g ∈ [
L2(Γ)

]d and the functions μ̃, μ are continuous bounded
functions that represent, respectively, the Newtonian viscosity and dynamic viscosity of
a fluid. The matrix K defines the permeability of the reservoir such that two constants
k1, k2 � 0 exist:

k1ψtψ ≤ ψtK−1ψ ≤ k2ψtψ, ∀ψ ∈ R
d. (3)

The matrix B is invertible and is a bounded matrix function belonging to L∞(Γ), i.e.,
there exist two constants b1, b2 � 0 such that

b1ψtψ ≤ ψtB−1ψ ≤ b2ψtψ, ∀ψ ∈ R
d. (4)

The matrix A is invertible and is a bounded matrix function belonging to L∞(Γ), i.e.,
there exist two constants a1, a2 > 0 such that

a1ψtψ ≤ ψt A−1ψ ≤ a2ψtψ, ∀ψ ∈ R
d. (5)

Remark: Under the notation
∣∣∣∣∣∣A∣∣∣∣∣∣= max

∣∣ai,j
∣∣, (i, j = 1, 2, 3), we can observe that
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• If
∣∣∣∣∣∣B∣∣∣∣∣∣�∣∣∣∣∣∣A−1

∣∣∣∣∣∣ then the boundary conditions are the Dirichlet condition.
• If

∣∣∣∣∣∣A−1
∣∣∣∣∣∣�∣∣∣∣∣∣B∣∣∣∣∣∣ then the boundary conditions are the Neumann condition.

We denote by H1(Ω) the standard Sobolev space of order 1, and by H1
0(Ω) its subspace

made of all functions equal to 0 on the boundary Γ. We introduce the spaces

V = [H1(Ω)]
d
, (6)

for the velocity field and

Q =

{
q ∈ L2(Ω),

∫
Ω

qdx = 0
}

, (7)

for the pressure.
The Brinkman problem (1) and (2) has a unique solution (u, p) ∈ V × Q [5]. In

order to analyze the numerical solution of this problem using the finite-element method
P1 − Bubble/P1, we must first describe the weak formulation of the Brinkman system.

The weak formulation of the system (1) and (2) is to find (u, p) ∈ V × Q such that{
a(u, v) + b(v, p) = F(v) ∀v ∈ V,
b(q, u) = 0 ∀q ∈ Q,

(8)

where a : V × V → R is a bilinear form defined by

a(u, v) =
∫

Ω
μ̃∇u·∇vdx +

∫
Ω

K−1μu·vdx +
∫

Γ
B−1 A−1u·vdσ, (9)

b : V × Q → R is a bilinear form given by

b(v, p) = −
∫

Ω
p∇·v dx, (10)

and F : V → R is a linear continuous function given by

F(v) =
∫

Ω
f ·vdx +

∫
Γ

B−1g·vdσ. (11)

We define the norms for the spaces Q, H1(Ω), V and V × Q by

‖ v ‖0,Ω:=‖ v ‖Q=‖ v ‖L2(Ω)=

(∫
Ω
|v|2dx

) 1
2 ∀v ∈ L2(Ω), (12)

‖ v ‖2
1=‖ ∇v ‖2

0,Ω + ‖ v ‖2
0,Ω, (13)

‖ v ‖V= a(v, v)
1
2 , (14)

and
‖ (v, q) ‖V×Q=‖ v ‖V + ‖ q ‖Q . (15)

In what follows, we will show the existence and uniqueness of the weak solution of
the system (1) and (2), for which we use these theorems.

Theorem 1. There exist two strictly positive constants c1 and c2 such that

c1 ‖ u ‖1≤‖ u ‖V≤ c2 ‖ u ‖1, ∀u ∈ H1(Ω). (16)

Proof of Theorem 1. The mapping

γ : H1 → L2(Γ) u �→ γ(u) = uΓ
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is continuous, so a strictly positive constant c3 exists such that

‖ u ‖0,Γ≤ c3 ‖ u ‖1 (17)

from (4) and (5), we obtain

‖ u ‖V≤ c2 ‖ u ‖1, ∀u ∈ H1(Ω). (18)

On the other hand, there exists a strictly positive constant α such that

‖ u ‖2
0,Ω≤ α(‖ u ‖2

0,Γ + ‖ ∇u ‖2
0,Ω), (19)

by using the assumptions (3)–(5), a constant c1 exists such that

c1 ‖ u ‖1≤‖ u ‖V , ∀u ∈ H1(Ω). (20)

Finally, based on the inequalities (18)–(20), the norms ‖ . ‖1 and ‖ . ‖V are equivalents.
�

Corollary 1. The space V that includes the norm ‖ . ‖V is a Helbert space.

Theorem 2. The bilinear continuous form b(·, ·) satisfies the inf-sup condition defined by the fact
that there exists a constant β � 0 such that

inf
q∈Q

sup
v∈V

b(q,v)
‖v‖V‖q‖Q

≥ β, (21)

Proof of Theorem 2. See Section 2 in [29]. �

It is well known that, under these Assumptions (3) − (5), the bilinear form a(·, ·)
is a continuous coercive function. The bilinear form b(·, ·) is a continuous function that
satisfies the in f − sup condition defined by (21). Under the Assumption (4), F(·) is a
linear continuous function. Therefore, the Problem (8) is well-posed and has only one
solution [24].

3. Mini-Element Method Approximation

Our goal here is to approximate the stationary Brinkman equations with general
boundary conditions in a d-dimensional domain (d = 2, 3) by using the mini-element
method P1 − Bubble/P1.

The mini-element method was first created by Arnold, Brezzi and Fortin [29]. The
basic idea of the mini-element method is to add local functions called bubbles to correctly
enrich the discrete velocity space in order to stabilize the unstable method P1/P1. Figures 1
and 2 present the reference element of the mini-element P1− Bubble/P1 in two dimensions
below and in three dimensions above.

Figure 1. Mini-element P1 − Bubble/P1 in 2D.
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Figure 2. Mini-element P1 − Bubble/P1 in 3D.

Let Th be a triangulation of Ω; we consider the function b ∈ H1(T), which takes the
value 1 at the barycenter and zero at the boundary ∂T of the reference triangle T and verifies
0 ≤ b ≤ 1. Such a function is known as a bubble function. The space associated with the
bubble is defined by

Bh =
{

vh ∈ C(Ω); vT
h = xbT , ∀T ∈ Th

}
, (22)

where x is a real number.
We define the discrete function spaces

Vih =
{

vh ∈ C(Ω) : vT
h ∈ P1(T); , ∀T ∈ Th

}
, i = 1, . . . , d. (23)

Qh = {qh ∈ C(Ω) : qT
h ∈ P1(T); , ∀T ∈ Th,

∫
Ω

qhdx = 0}, (24)

where P1(T) is the set of all 1 -order polynomials on triangle T.
And we set

Xih = Vih ⊕ Bh, (25)

Xh = X1h × X2h × . . . × Xdh. (26)

As a result, Xh ⊂ V, the P1 − Bubble/P1 finite-element approximation of problem (8),
will find (uh, ph) ∈ Xh × Qh such that{

a(uh, vh) + b(vh, ph) = F(vh) ∀vh ∈ Xh,
b(qh, uh) = 0 ∀qh ∈ Qh.

(27)

The velocity field uh and the pressure ph for a given triangle T are approximated by
linear combinations of the basis functions (φi)i=1,...,d+1 in the form

uT
h =

d+1

∑
i=1

uiφi(x) + ubφb(x), pT
h =

d+1

∑
i=1

piφi(x), d = 2, 3 (28)

where ui and pi are nodal values of uh and ph, while ub is the bubble value. The basis
functions are defined by

φ1(x, y) = 1 − x − y, φ2(x, y) = x, φ3(x, y) = y, φb(x, y) = 27φ1(x, y)φ2(x, y)φ3(x, y)

if d = 2 and

φ1(x, y) = 1 − x − y − z, φ2(x, y) = x, φ3(x, y) = y, φ4(x, y) = z,
φb(x, y) = 256φ1(x, y)φ2(x, y)φ3(x, y)φ4(x, y)

if d = 3.
We can rephrase system (27) as a (large) square matrix problem with the vectors U

and P as the unknowns. By consequence, we obtain the following algebraic form:[
A Bt

B 0

][
U
P

]
=

[
F
0

]
, (29)
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where the matrices A, B, and the vector F are defined by

A = (Aij),Aij =
∫

Ω μ̃∇φi∇φjdx +
∫

Ω K−1μφiφj, dx +
∫

∂Ω B−1 A−1φiφjdσ,

i, j = 1, . . . , nu.

B = (Bkj),Bkj = − ∫
Ω ∂1φkφj, dx − ∫

Ω ∂2φkφj, dx,k = 1, . . . , np and

j = 1, . . . , nu.

F = (Fi),Fi =
∫

Ω f φi, dx +
∫

∂Ω B−1gφi, dσ,i = 1, . . . , nu.

To solve the large system we can be use the Uzawa conjugate gradient algorithm [32–34].

4. Stability and a Priori Error Estimates

In this section, we will establish the stability and a priori estimate for the pressure and
the velocity of our problem.

Lemma 1. There is a constant c4 � 0 independent from the mesh parameter h such that

sup
vh∈Xh

b(vh, qh)

‖ vh ‖V
≥ C4 ‖ qh ‖0,Ω, ∀qh ∈ Qh. (30)

Proof of Lemma 1. This Lemma can be established by the same proof of Lemma 2 in [35].
�

Theorem 3. For any (wh, sh) ∈ Xh × Qh there is a constant c5 � 0 independent from the mesh
parameter h such that

sup
(vh ,qh)∈Xh×Qh

a(wh, vh) + d(sh, qh)

‖ vh ‖V + ‖ qh ‖0,Ω
≥ C5(‖ wh ‖V + ‖ sh ‖0,Ω), (31)

where d(sh, qh) =
∫

Ω shqh, dx, ∀(qh, sh) ∈ Q2
h.

Proof of Theorem 3. For any (wh, sh) in Xh × Qh we have:
Firstly,

sup
(vh ,qh)∈Xh×Qh

a(wh, vh) + d(sh, qh)

‖ vh ‖V + ‖ qh ‖0,Ω
≥ a(wh, wh) + d(sh, 0)

‖ wh ‖V + ‖ 0 ‖0,Ω
≥‖ wh ‖V, (32)

On the other hand,

sup
(vh ,qh)∈Xh×Qh

a(wh, vh) + d(sh, qh)

‖ vh ‖V + ‖ qh ‖0,Ω
≥ a(wh, 0) + d(sh, sh)

‖ 0 ‖V + ‖ sh ‖0,Ω
≥‖ sh ‖0,Ω, (33)

by combining these inequalities in Equations (32)–(33), we obtain the result Equation (31),
of which the constant is C5 = 1

2 . �

Now, we will introduce and demonstrate the a priori estimate error.

Theorem 4. Let (u, p) be the solution of (1)–(2), and (uh, ph) be the solution of (27). Then the
following error estimate holds

‖ u − uh ‖V + ‖ p − ph ‖0,Ω≤ C

{
in f
v∈Xh

‖ u − v ‖V + in f
q∈Qh

‖ p − q ‖0,Ω

}
, (34)

where C is a constant independent of the mesh size h.
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Proof of Theorem 4. Using the triangle inequality, we have

‖ u − uh ‖V + ‖ p − ph ‖0,Ω≤‖ u − v ‖V + ‖ p − q ‖0,Ω + ‖ uh − v ‖V + ‖ ph − q ‖0,Ω, (35)

from Equation (31) there exists (w, q) ∈ Xh × Qh with

‖ w ‖Xh + ‖ q ‖0,Ω≤ γ1, (36)

such that
‖ uh − v ‖V + ‖ ph − q ‖0,Ω≤ a(uh − v, w) + b(w, ph − q). (37)

Since
a(u − v, w) + b(w, p − q) = a(uh − v, w) + b(w, ph − q), (38)

and by using the Schwartz inequality we obtain ·

a(u − v, w) + b(w, p − q) =
∫

Ω μ̃∇(u − v)∇w, dx +
∫

Ω K−1μ(u − v).w, dx
+

∫
Γ B−1 A−1(u − v)·w, dσ +

∫
Ω(p − q)∇·w, dx

≤ μ̃0 ‖ ∇(u − v) ‖0,Ω‖ ∇w ‖0,Ω +k2μ0 ‖ u − v ‖0,Ω‖ w ‖0,Ω
+b2a2 ‖ u − v ‖0,Γ‖ w ‖0,Γ + ‖ p − q ‖0,Ω‖ ∇w ‖0,Ω
≤ C6 ‖ u − v ‖V‖ w ‖V +C7 ‖ p − q ‖0,Ω‖ w ‖V

≤ C(‖ u − v ‖V + ‖ p − q ‖0,Ω)

by the consistency, we have the result Equation (34). �

5. Numerical Simulation

In this section, some numerical results were obtained by programming the mini-
element method in MATLAB and we compare these obtained results with those constructed
from the ADINA system. Using our solver, we ran two test problems regarding the flow
around a cylinder; our tests were focused on the change in the value of the diagonal
coefficients of the permeability matrix. For both of the tests, the domain considered in the
simulation experiment is the one studied by Schäfer et al. in [36] for two dimensions.

Example 1. In this test, we performed simulations for the flow around a cylinder (Figure 3) by the

change in the values of the coefficients α1 and α2 of the matrix K−1 defined as K−1 =

(
α1 0
0 α2

)
,

where α1 and α2 are two positive real numbers.

Figure 3. The simulated geometry of the cylinder and notations for the boundary conditions of the
2D test case.

The Figure 3 presents the domain geometry of the cylinder. The channel height is H = 0.41 m
and the diameter is D = 0.1 m.

Next, we present the simulation made with the MATLAB software with the validation tests per-
formed by the ADINA system. We used the Newtonian viscosity and dynamic viscosity, μ = μ̃ = 1.
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For the boundary conditions, we considered the boundary defined in [36], for which we considered
the matrix A−1 and B defined by

A−1 =

(
1 0
0 1

)
, B =

(
10−6 0

0 10−6

)
. (39)

The Figure 4 shows the ADINA created domain mesh upon which the various tests are based.

Figure 4. Mesh sample of domain created by the ADINA system.

Firstly, we present in Figures 5 and 6 the velocity field of our problem (1) and (2) in the
following different cases α1 = α2 = 10−6 and α1 = 10−4, α2 = 1.

Figure 5. Velocity vector solution by P1 − Bubble/P1 (above) and velocity vector solution computed
by the ADINA system (below) with α1 = α2 = 10−6.

Figure 6. Velocity vector solution by P1 − Bubble/P1 (above) and velocity vector solution computed
by the ADINA system (below) with α1 = 10−4, α2 = 1.
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The streamlines were derived from the velocity solution by numerically solving the Poisson
equation with a zero Dirichlet boundary condition. Figures 7 and 8 present the streamlines in the
following different cases: α1 = α2 = 10−6 andα1 = 10−4, α2 = 1.

Figure 7. Solution computed with MATLAB (above) and with the ADINA system (below). The plots
show the streamlines associated with a α1 = α2 = 10−6.

Figure 8. Solution computed with MATLAB (above) and with the ADINA system (below). The plots
show the streamlines associated with a α1 = 10−4, α2 = 1.

Isobar lines: Figures 9 and 10 present the isobar lines in the following different cases
α1 = α2 = 10−6 and α1 = 10−4, α2 = 1.

Figure 9. Isobar lines, α1 = α2 = 10−6.
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Figure 10. Isobar lines, α1 = 10−4, α2 = 1.

In the previous example, the two-dimensional flow past a circular cylinder was simulated
for varied permeability tensor K−1. The objective of the present simulation was to investigate
the solution of Brinkman’s equations by using the mini-elements method P1 − Bubble/P1. Our
simulation focused on two tests with deferent values for K−1 such that the first was α1 = α2 = 10−6

and the second was α1 = 10−4, α2 = 1. The computations with MATLAB and the ADINA system
led to very similar results.

Example 2. We consider the stationary Brinkman problem (1) in Ω = [0; 1]× [0; 1], with μ = 1
and μ̃ = 1, the function f on the right-hand side in (1) is adjusted so that the exact solution is

u1(x, y) = x2(
x
3
− 1

2
),u2(x, y) = xy(1 − x), (40)

for the velocity, and we take the pressure to be

p(x, y) = x2 − 1
3

, (41)

with the boundary conditions
[

1 0
0 1

][
u1
u2

]
+

[
10−6 0

0 10−6

]
(∇u − pI).n = 0onΓ.

The domain Ω is first discretized by a uniform mesh of size h = 1/16 (289 nodes and
512 triangles in the fine mesh). This initial mesh is successively refined to produce meshes with sizes
2−5, 2−6, 2−7, 2−8, 2−9 and 2−10. We report in Table 1 the convergence rates and the distances
‖ u− uh ‖H1 and ‖ u− uh ‖L2 between the exact solution (40) and (41) and approximate solution.
For this test, we took two values of K−1, and we noticed that these norms were converging to zero.

Table 1. Numerical error and convergence rates for example 2.

Permeability Mesh Size ‖u−uh‖L2 Rate ‖u−uh‖H1 Rate

K−1 =

(
1 0
0 1

) 2−5 2.58490367 × 10−3 7.30459072 × 10−2

2−6 7.29374932 × 10−4 1.23 3.65242949 × 10−2 1.26
2−7 2.00944198 × 10−4 1.12 1.82662182 × 10−2 1.20
2−8 5.45035935 × 10−5 1.20 9.13565045 × 10−3 1.17
2−9 1.46182239 × 10−5 1.13 4.56876194 × 10−3 1.14
2−10 6.34523145 × 10−6 1.07 8.5232210 × 10−4 1.31

K−1 =(
104 0
0 104

)
2−5 9.79901277 × 10−2 1.71655622 ×100

2−6 5.71231633 × 10−2 1.23 1.13006936 × 100 1.30
2−7 2.10804196 × 10−2 1.34 4.88759130 × 10−1 1.29
2−8 5.96212978 × 10−3 1.32 1.82645760 × 10−1 1.30
2−9 1.54001284 × 10−3 1.26 6.50585157 × 10−2 1.27
2−10 3.88183415 × 10−4 1.21 2.29466805 × 10−2 1.31

Since the assembly process is essentially based on the number of elements, we expect that the
time to assemble the matrices will increase by approximately the same factor. We can see that Table 2
shows an almost linear optimal time-scaling for our implementation.
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Table 2. CPU time in seconds for example 2 with K−1 =

(
1 0
0 1

)
.

Mesh Size 2−5 2−6 2−7 2−8 2−9 2−10

CPU Time (s) 0.4521 0.1894 0.5811 2.4645 14.1669 26.20

6. Conclusions

We were interested in this work on the numeric solution of this equation in a heteroge-
neous porous media with a permeability tensor. In this study, we used the discretization
of the mini-element method P1 − Bubble/P1. We established the stability and a priori
error estimate for this approximation. The numerical and bidimensional simulations are
presented and show the accuracy and efficiency of the proposed finite-element method.
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Abstract: Friction has a vital role in studying materials’ and systems’ behavior. The friction between
two objects and the inner friction of materials under the condition of vibration usually can present
different characteristics. These characteristics are different from the conventional conditions. It is
shown in practice that vibration can reduce the friction coefficient and friction force between two
objects. Vibration can lighten abrasion of objects and reduce energy consumption. All of these
can give great efficiency, but, until now, the vibration friction-reducing mechanism has not been
fully revealed. In this manuscript, the friction-reducing mechanism of materials under arbitrary
vibration forces is investigated. The results show that the effective friction coefficient of materials
under arbitrary vibration forces is always the minimum. The relationship between the effective
friction coefficient and the negative gradient is investigated in this research. When the vibration force
direction projects are in the first and the third quadrants, the negative gradient of the effective friction
coefficient gets larger slowly, and then it becomes stable. When the vibration force direction projects
are in the second and the fourth quadrants, the negative gradient of the effective friction coefficient
decays to zero at the initial stage and then increases rapidly.

Keywords: vibration; friction; effective friction coefficient; negative gradient

MSC: 74H45

1. Introduction

Vibration is common in engineering practice and daily life, and it is the main content
in the study of vibration friction mechanics. We are always in a vibration environment,
such as the vibration of houses and bridges, the vibration of machine tools, the vibration of
engines, and the vibration of road rollers and sinking and pulling machines. In the progress
of science and engineering, a lot of mechanical equipment are moving towards high speed,
high precision, and miniaturization [1,2]. Research on vibration is becoming more and more
important. It is necessary to master vibration law and the transmission path of the interface
so as to reasonably use or suppress vibration. One of the most important problems with
vibration is the friction between interfaces. It is the key to improving the reliability and
life of machinery and equipment, and its economic significance is very clear. In industry,
generally in this case, the main reason leading to the failure of machines is not damage of the
components of the machine itself but the wear of the contact interface of various parts under
the action of fretting or sliding friction [3–8]. As one of the most fundamental physical
phenomena, friction is the most common phenomenon, and vibration friction usually
happens in mechanical systems [9–12]. Many researchers have focused on the relationships
between vibration and friction. On the basis of oil film dynamic pressure lubrication
and an elastic contact model of the asperities, Bao et al. set up a kinematic coupling
model of the rotation-axial engagement process according to friction elements and gave the
engagement characteristics of the multi-disc wet friction clutch [13]. Marques et al. studied
several friction force models dealing with different friction phenomena in the research
of multibody system dynamics [14]. To study the random stick-slip vibration of duffing
systems of dry friction, a numerical approximate solution was performed by Jin et al. [15].
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Some researchers performed experimental validation and investigations of vibration friction
systems [16–18]. Sun et al. analyzed the friction coefficient based on the recurrence plots and
proposed a new method to identify the running-in state of the friction pair [19,20]. Many
nonlinear phenomena were presented in engineering of the discontinuities introduced
by friction in the governing equations [21–23]. In engineering practice, friction between
the contact bodies can cause lots of undesirable effects on the system, such as frictional
chatter [24], wear in friction-induced vibrations [25,26], and reduction characteristics of
silicon [27]. The natural frequencies and damped forced vibrations were investigated by
Safaei for an improved and lightweight sandwich plate of a periodic load in a limited
time [28]. Doan et al. analyzed the free vibration and static bucking of flexoelectric
variable thickness nanoplates. To emphasize the affection of flexoelectricity in free vibration
and static buckling of the nanoplates, a variety of parameter studies was conducted [29].
A nonlinear static bending study of microplates resting on imperfect Pasternak elastic
foundations was carried out by Thai Dung et al. By the improved couple stress theory and
finite element methods, the nonlinear finite element formulations were performed [30]. For
illustration as a stationary process with white noise, the vibration response of beams in
the condition of random load was studied by Nguyen et al. To predict the fundamental
frequencies of the structures, the artificial neural network (ANN) model was presented [31].
The dynamic problem for the moment theory of elasticity related to the finite length crack
in normal stress conditions on the banks was demoted to a series of displacement and
rotation integral equations in [32], which were performed mathematically. Moreover,
in [33], the dynamic problems related to micro-polar elastic bodies were carried out by
an eigenvalues technique. Lai Thanh Tuan et al. devised and performed numerical and
analytical solutions for problems in two dimensions, including the spreading of unsteady
axisymmetric boundary disturbances of a “non-classical” elastic medium of spherical
boundaries [34]. Recently, based on a serious of methodologies, many researchers have
performed numerous studies on the computation of plate and shell structures. Many
beneficial discoveries were made [35–39].

However, several problems for vibration friction in the case of arbitrary vibration
working environments have not yet been sufficiently studied, including the effective
coefficient of dynamic friction and the friction mechanism in arbitrary vibration of materials
and the negative gradient of friction.

The purpose of this paper is to present the friction-reducing mechanism of materials
under arbitrary vibration forces. Due to limitations associated with the negative gradient
of the effective friction coefficient and the effective friction coefficient in arbitrary vibration
working environments, the vibration friction characteristics of materials have not been
thoroughly explained. Based on the effective coefficient of dynamic friction and the friction
mechanism in arbitrary vibration of materials, the effective friction coefficient was deduced
in this research, and the negative gradient of friction was also discussed.

The main body of this paper is split into four sections. The material model is presented
in Section 2. The effective coefficient of friction is studied in Section 3. The negative gradient
of the effective friction coefficient is given in Section 4. In Section 5, important conclusions
are summarized.

2. Model of Material

It is a very common phenomenon that materials always vibrate under the vibration
condition in engineering. In the last century, some researchers proposed the concept of
effective friction coefficient from the perspective of breaking static conditions by using pure
mechanical methods [14,17]. In this paper, the concept of effective friction coefficient is used
to study the friction reduction effect of vibration under three conditions: that the vibration
direction is parallel to the force, the vibration direction is parallel to the normal pressure,
and the vibration direction is perpendicular to the force and the normal pressure. Then, on
the basis of these three conditions, the effective friction coefficient formula of vibration in
an arbitrary direction is further derived. It is proved that vibration can reduce friction. The
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influence and control of vibration parameters on friction reduction are explained by the
change in effective friction coefficient reduction rate in this paper.

Firstly, the model is established in a Cartesian coordinate system. This is shown in
Figure 1. The effective friction coefficient is f ∗; f1 is the coefficient of the maximum static
friction between the material and the surface; N is the normal compression force (opposite
paralleled axis Z); Q is the tension force (paralleled axis X); F0 is the amplitude of the
force F(t); F(t) = F0 sin(ωt + φ); Qmin is the minimum force to move the material. P is the
gravity force, P = mg.

Qmin = (N + mg) f1 − F0 = f1(N + mg)
(

1 − F0

f1(N + mg)

)
, (1)

f ∗ = Qmin
N + mg

= f1

(
1 − F0

f1(N + mg)

)
. (2)

Figure 1. The vibration model of parallel force.

This is the effective friction coefficient formula under the condition that the vibration
and the force direction are parallel. Since F0

f1(N+mg) > 0, the effective friction coefficient
under vibration is less than the coefficient of the max static friction f1; thus, the effective
friction under vibration is reduced.

When the vibration direction is parallel to the normal pressure, the material model is
shown in Figure 2.

Qmin = (N + mg − F0) f1 = f1(N + mg)
(

1 − F0

N + mg

)
, (3)

f ∗ = Qmin
N + mg

= f1

(
1 − F0

N + mg

)
. (4)

Figure 2. The vibration model of vertical force.
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When the vibration direction is perpendicular to the force and the normal pressure,
the material model is shown in Figure 3.

Qmin =

√
( f1(N + mg))2 − F02 = f1(N + mg)

√
1 −

(
F0

f1(N + mg)

)2
, (5)

f ∗ = Qmin
N + mg

= f1

√
1 −

(
F0

f1 A

)2
. (6)

where A = N + mg, and P is the gravity force; P = mg.

Figure 3. The model of vibration vertical to the friction and the normal pressure.

Similarly, the effective friction under vibration is reduced in these conditions. Then,
on the basis of these three conditions, the effective friction coefficient formula of vibration
in an arbitrary direction is further derived. Arbitrary vibration force can be seen as three
components, and the effective friction coefficient under the arbitrary time-varying external
forces is one of the critical characters to show the nonlinear dynamic characteristics of the
system. Herein, it is studied in different conditions, respectively.

Firstly, the model is established in a Cartesian coordinate system, as shown in Figure 4.
Next, m is the mass; f1 is the coefficient of the maximum static friction between the material
and the surface; N is the normal compression force (opposite paralleled axis Z); Q is the
tension force (paralleled axis X); F0 is the amplitude of the force F(t); F(t) = F0 sin(ωt + φ)
is the arbitrary time-varying external forces, and its vectors are α, β, γ. P is the gravity
force, P = mg. Then, the arbitrary time-varying external forces in different conditions are
discussed separately.

Figure 4. Model of the vibratory material under arbitrary vibration.

3. Effective Coefficient of Friction f*

When the arbitrary time-varying external force projects are in the first and the third
quadrants of the xz plane (including the limit boundary: projection in the axis z), the
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maximum synthetic tension and the minimum compression are obtained, as shown in
Figure 5. Herein, the force Q comes to Qmin and yields

(Qmin + F0 cos α)2 + (F0 cos β)2 = ( f1(N + mg − F0 cos γ))2, (7)

where Qmin is the minimum force to move the material.

Figure 5. Vibration force projects in the first and the third quadrants.

Then, there is

f ∗ = f1

⎛⎝√(
1 − F0 cos γ

N + mg

)2
−

(
F0 cos β

f1(N + mg)

)2
− F0 cos α

f1(N + mg)

⎞⎠, (8)

where f ∗ is the effective coefficient of friction.
Here, supposing f ∗ ≥ f1, there is√(

1 − F0 cos γ

N + mg

)2
−

(
F0 cos β

f1(N + mg)

)2
− F0 cos α

f1N + mg
≥ 1. (9)

A = N + mg, then there is(
1 − F0 cos γ

A

)2
−

(
F0 cos β

f1 A

)2
≥

(
1 +

F0 cos α

f1 A

)2
, (10)

there is
(

1 − F0 cos γ
A

)2 −
(

F0 cos β
f1 A

)2 ≥
(

1 + F0 cos α
f1 A

)2 ≥ 1.
For the above equation, when cos β = 0, cos γ = 0, and cos α = 0 at the same time,

then the left could be equal to the right. However, cos α2 + cos β2 + cos γ2 = 1, and so cos α,
cos β, and cos γ cannot be all zero simultaneously. Hence, the supposition is not tenable.
Therefore, there is f ∗ < f1.

When the vibration force projects are in the second and the fourth quadrants of the xz
plane, the model is shown in Figure 6.

Figure 6. Vibration force projects in the second and the fourth quadrants.
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Assume |cos α| = i, |cos β| = j, |cos γ| = k and i > 0, j ≥ 0, k > 0, there is,

(Qmin − F0i)2 + (F0 j)2 = ( f1(N + mg − F0k))2. (11)

Substituting N + mg = A into the above equation, there is

f ∗1 = f1

⎛⎝√(
1 − F0k

A

)2
−

(
F0 j
f1 A

)2
+

F0i
f1 A

⎞⎠, (12)

where f1
∗ is the effective coefficient of the friction when the vibration force project is in the

second quadrant. Meanwhile, when the vibration force project is in the fourth quadrant,
there is

(Qmin + F0i)2 + (F0 j)2 = ( f1(N + mg + F0k))2, (13)

where Qmin is the minimum force to move the material.
Simplifying the above expression yields

f ∗2 = f1

⎛⎝√(
1 +

F0k
A

)2
−

(
F0 j
f1 A

)2
− F0i

f1 A

⎞⎠, (14)

where f2
∗ is the effective coefficient of friction when the vibration force project is in the

fourth quadrant.
Hence, the effective friction coefficient f ∗ should be the minimum of the above, that is,

f ∗ = min( f ∗1 , f ∗2 ).

Suppose i
k < f1, F0i

f1 A < F0k
A ,

(
1 − F0i

f1 A

)2
>

(
1 − F0k

A

)2 ≥
(

1 − F0k
A

)2 −
(

F0 j
f1 A

)2
, there is

f1
∗ = f1

⎛⎝√(
1 − F0k

A

)2
−

(
F0 j
f1 A

)2
+

F0i
f1 A

⎞⎠ < f1. (15)

Suppose i
k > f1, F0i

f1 A > F0k
A ,

(
1 + F0i

f1 A

)2
>

(
1 + F0k

A

)2 ≥
(

1 + F0k
A

)2 −
(

F0 j
f1 A

)2
, there is

f1
∗ = f1

⎛⎝√(
1 +

F0k
A

)2
−

(
F0 j
f1 A

)2
− F0i

f1 A

⎞⎠ < f1. (16)

When i
k = f1 and j 	= 0, there is f1

∗ < f1, f2
∗ < f1; when i

k = f1 and j = 0, there is
f1
∗ = f2

∗ = f1.
To sum up, the results show that when i

k = f1 and j = 0, there is f ∗ = min( f1
∗, f2

∗) = f1.
Otherwise, there is f ∗ < f1 always.

4. Negative Gradient of the Effective Friction Coefficient

In addition, the negative gradient η of the effective friction coefficient is discussed in
this paper. The negative gradient has a critical effect on the ratio of the effective friction
coefficient to the friction coefficient. Suppose |cos α| = i, |cos β| = j, |cos γ| = k, ρ = F0

A .
When i ≥ 0, j > 0, k > 0 (in the first coordination), there is 1 − ρk > 0.

η = 1 − f ∗

f1
= 1 − (|1 − ρk| − ρi

f1
) = ρ

√
1 − i2 +

ρi
f1

(17)

and i = 1√
1+ f 2

1
, η′|i = 0 ; η obtains the max value.

86



Mathematics 2022, 10, 3529

By deriving Equation (17), there is

η′|i = −ρ(
i√

1 − i2
− 1

f1
) (18)

According to the values shown in Figure 7, there is no negative gradient at the f1 = 0
stage. The curve is absolutely smooth, and the negative gradient η is always zero in this
stage. When f1 = 0.1, η is increased with ρ immediately, and the curve is much steeper.
With the increase in f1, η will be stable gradually. When f1 = 1, η will be flat.

Figure 7. The negative gradient of the effective friction coefficient η.

According to

⎧⎨⎩
i2 + k2 = 1
i/k = f1

j = 0
, there is

⎧⎪⎪⎨⎪⎪⎩
i = f1√

1+ f 2
1

k = 1√
1+ f 2

1
j = 0

. (19)

Then, there is

η = 1 − f ∗

f1
=

⎧⎨⎩1 −
(
|1 − ρk|+ ρi

f1

)
, i/k < f1

1 −
(
|1 + ρk| − ρi

f1

)
, i/k ≥ f1

=

∣∣∣∣ρ√1 − i2 − ρi
f1

∣∣∣∣. (20)
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η′∣∣
i =

⎧⎪⎨⎪⎩
−ρ

(
i√

1−i2
+ 1

f1

)
, 0 ≤ i < f1√

1+ f 2
1

ρ
(

i√
1−i2

+ 1
f1

)
, i = f1√

1+ f 2
1

. (21)

To sum up, according to the values shown in Figure 8, there is no negative gradient
in the stage of f1 = 0. Obviously, there is no friction in this stage; η is always zero with
increasing ρ. When f1 = 0.1, η increases with ρ obviously, and then the curve will be
steeper. When f1 = 0.5, η decreases with ρ and decays to zero first, but then η increases
with ρ gradually. In conclusion, the negative gradient of effective friction has a critical
effect on friction. It was shown that the changes in the negative gradient of the effective
friction coefficient changed the effective friction coefficient under the arbitrary time-varying
external forces, which consequently reduced the friction. From a tribological perspective,
the negative gradient of the effective friction coefficient plays a great role in the course
of vibration affection on the friction. The rules concerning the negative gradient of the
effective friction coefficient resulted in an effective friction coefficient, especially under the
arbitrary time-varying external forces.

Figure 8. The negative gradient of effective friction coefficient η.

5. Conclusions

In conclusion, this paper investigated the effective coefficient of friction under arbitrary
time-varying external forces. The results show the relationship of the effective friction
coefficient and the negative gradient of friction.

(1) When the vibration force direction projects are in the first and the third quadrants,
the negative gradient η increases first, and then η will be stable gradually. When the
vibration force direction projects are in the second and the fourth quadrants, η decreases
but then increases gradually.
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(2) From a tribological perspective, the negative gradient of the effective friction
coefficient plays a great role in the course of vibration affection on the friction. The changes
in the negative gradient of the effective friction coefficient resulted in an effective friction
coefficient, especially under the arbitrary time-varying external forces. The effective friction
coefficient was closely related to vibration properties and the influence and control on
vibration systems with friction.

(3) It is shown that the numerical and analytical results of the rules concerning the
negative gradient of the effective friction coefficient change the effective friction coefficient
under the arbitrary time-varying external forces, which consequently reduce the friction
in vibration.
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Abstract: Dust is one of the most burdensome hazards found in the environment. It is composed of
crushed solids that pose a threat to the health and life of people, machines and machine components.
At high concentration levels, it can reduce visibility. All of these negative phenomena occur during the
process of underground mining, where dust hazards are common. The negative impact of dust on the
efficacy of the mining process prompts research in this area. The following study presents a method
developed for model studies of dust dispersion in driven dog headings. This issue is immensely
important due to the fact that these dog headings belong to a group of unidirectional excavations
(including tunnelling). This paper presents the results of model studies on dust dispersion in driven
dog headings. The main focus is on the analysis of the distribution of dust concentration along a
dog heading during the mining process. In order to achieve this goal, a model test method based
on the finite volume method, which is included in the group of CFD methods, was developed.
Analyses were carried out for two different values of dust emission from the face of the excavation
for the transient state. The results made it possible to determine areas with the highest potential
for dust concentration. The size and location of these areas are mainly dependent on the amount of
dust emissions during the mining process. The results can support the process of managing dust
prevention and protection of workers during the mining excavation process.

Keywords: dust dispersion; driven dog heading; CFD model; underground mining

MSC: 76B15

1. Introduction

One of the most commonly reported threats associated with the extraction of solid
minerals in underground mines, including hard coal, is dust. In hard coal mines, this
hazard results from the common occurrence of coal and hard dust in mining excavations
(including a mixture of silica, aluminosilicates and other components, such as trace metals).
The dust is produced in the process of mining and transporting the mine output [1–3]. The
main reason for the formation of large amounts of dust in this process is current machining-
based technology used for mining the rock mass. During this process, the rock is crushed
and ground, which causes the formation of large amounts of rock and coal dust. In the
case of mining operations, quantities of dust are directly proportional to the amount of the
mine output.
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In addition, large amounts of dust are generated during horizontal and vertical trans-
port and repeated pouring of the mine output. The dust generated in the mining process is
very dangerous for both employees and machines [4]. It floats in the mine atmosphere and
can reach most mining excavation sites through a ventilation system, even those far from
its place of origin. This causes the dust hazard to occur in virtually all mining excavations.
However, the largest amount of dust can be found in excavations with unmined coal (coal
body), including driven dog headings.

Dog headings (tunnels) driven in coal and rock belong to a group of the so-called
“blind” or unidirectional excavations (Figure 1). This means that they only have one
connection to the central (general) ventilation system. This, in turn, means that both fresh
and exhaust air is transported through the same excavation. As a result, fresh air must be
delivered to the face zone, where the rock mass is mined, in such a way that it does not
impede the outflow of exhaust air and gases that are emitted into this dog heading from
the rock mass.

 

Figure 1. Ventilation diagram for a driven dog heading.

The face of such excavations is also characterized as having the greatest amount of
dustiness [5]. In addition to profound harmfulness to employees’ health, this dustiness also
reduces visibility, leading to total darkness. This significantly hinders operations. Dust is
also considered to have an immensely negative effect on the operation of machines and their
individual elements. According to statistics, dust generated in the mining process accounts
for 60–80% of the dust generated in the entire mine [5]. The presence of dust in mine
workings poses a great threat to the health of workers, both physical and psychological, as
well as to the environment. Additionally, high concentrations of dust are the cause of very
dangerous dust explosions [5–8]. Thus, it can be assumed that dustiness, which cannot be
eliminated in the mining production process, is a very unfavorable phenomenon both to
the health and life of the crew and the efficiency of the mining process.

Due to the very unfavorable effects of dust in mine workings, this topic has been
addressed by many researchers. For example, probability experiments, direct field mea-
surements and numerical simulations have been used to study dust in mine workings.
Experimental studies have been conducted on scaled simulation models, among other
aspects. Tan et al. designed an experimental model for a fully mechanized face at the
Tongxin coal mine. They conducted a study of the distribution of dust concentrations of
different moisture contents generated during coal mining, casing shifting, collapse and coal
transport [9]. In turn, Shi et al. developed an experimental model to analyze the variation
of dust concentrations during coal mining at different ventilation air velocities [10]. The
simplifications they introduced to the structure and environmental conditions resulted in
large deviations from the actual measurement results.

In terms of direct measurements, it is worth mentioning a study [11] that measured the
distribution of PM2.5 dust concentrations in a coal face. Liu et al. carried out measurements
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of changes in dust concentrations along a driven dog heading during coal mining in a fully
mechanized coal face [12]. It should be noted that field studies also show a number of
shortcomings, including issues related to measurement uncertainty and the influence of
very harsh environmental conditions on the quality of these measurements. Oftentimes,
however, the results of these measurements are used to validate the accuracy of analytical
experiments and the numerical simulations carried out.

In the case of model studies (numerical simulations), measurements in real conditions
are crucial for mapping the studied region and the air flow field and diffusion behavior
of dust emitted from various sources. Therefore, it is clear that model studies using
structural models are now becoming an alternative to studies under real conditions. They
also provide extensive opportunities for multivariate analysis of different states of the
phenomenon under study. Therefore, their application in underground mining is becoming
increasingly widespread.

Due to these aspects, it is crucial to conduct research in the field in order to expand
knowledge of dust dispersion in mining processes. In this regard, both on-site and real-life
studies are conducted. Model studies are increasingly used to analyse phenomena that
would be hard to examine in real conditions.

Nevertheless, the use of model studies to examine the phenomenon of dustiness
requires analysing two media, namely a gas medium (Euler) and a solid medium (Lagrange).
Therefore, the analysis of dust dispersion in mining excavations requires a combination of
gas and solid media.

The main objective was to determine a method of dust dispersion in driven dog
headings and its concentration levels along these dog headings during the mining process.
In order to achieve this goal, a model study method based on the finite volume method
was developed. The study was performed for the actual driven dog heading, and the
ventilation parameters adopted as boundary conditions were obtained based on direct
studies. The analyses covered two different values of dust emissions from the face of the
driven dog heading and were carried out for the transient state. In addition to the emission
of dust into driven dog headings, the study also looked at the release of methane from the
excavated coal seam, which makes it possible to reflect the actual ventilation processes in
underground mine workings.

An important problem when modeling dust issues, including those in mine workings,
is the issue of particle size distribution. This problem is extremely complex and depends
on the type of seam being excavated and its geological properties, as well as the condition
of the knives of the excavating machine organ and the process of sprinkling the seam.
The analysis presented here adopts the distribution of dust particles according to the
Rosin–Ramler model, often used in studies of dusting processes. This distribution is used
to describe the diameter distribution of dust particles (materials) from processes such as
grinding, milling, mincing and crushing, as well as for the diameter distribution of particles
formed in other processes [13–17].

Adopting this model for the distribution of dust particles, taking into account the
release of methane and analyzing the pumping system represent a new approach to the
problem under study.

The ANSYS Fluent software was utilized for the analysis, which enabled the authors
to determine the parameters of the mine gas and dust mixture at individual points of the
studied dog heading (in a spatial arrangement).

2. Materials and Methods

The analysis of the impact of dust mass expenditure (quantity) on the dustiness of
the driven dog heading was conducted using the computational fluid mechanics (CFD)
in the Ansys Fluent software. In order to model a biphasic system, i.e., gas and solid, the
Eulerian–Lagrangian approach was used. This approach assumes that the gas phase is
regarded as a continuum by solving the Navier–Stokes equation, while the dispersed (dust)
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phase is solved by tracking the movement of a large number of particles in the calculated
continuous phase field.

In accordance with the principles of fluid mechanics, the flow of air stream (gas)
through the studied driven dog heading was adopted as a continuous phase, and dust was
adopted as a discrete phase.

2.1. Mathematical Model of the Gas Flow through a Dog Heading

The mathematical model of airflow consists of conservation equations of turbulent
mass, momentum, species and energy, as well as the scalar transport equations for the
turbulence model [18,19]:

∇·ρU = 0 (1)

∇·ρUU = ∇·σ + ρg (2)

where:
σ = −pI +

[
(μ + μt)

(
∇U + (∇U)T

)]
− 2

3
(((μ + μ)(∇·U)I)ρkI) (3)

∇·(ρcpUT
)
= ∇·

(
ke f f +

cpμt

Prt

)
∇T (4)

∇·(ρωiU) = ∇·
(

ρDi,e f f +
μt

Sci

)
∇ωi (5)

where: ρ is gas density (kg/m3); U is air velocity (m/s); p is pressure (Pa); g is gravity
acceleration (m·s−2); ωi is mass fraction of species i; μ/μt are dynamic viscosity, Pa·s−1;
T is temperature, K; Sci is the Schmidt number; Prt is Prandtl number; ke f f is effective
thermal conductivity, W·m−1·K−1; and Di,e f f is effective diffusivity of species i, m·s−2.

The stream of the air flowing through driven dog headings is turbulent in nature. In
order to model the turbulent flow, the k-ε model was used. This model is based on solving
Navier–Stokes equations averaged over time (the so-called RANS equation—Reynolds-
Averaged Navier–Stokes). These equations are incomplete; hence, it is necessary to solve
the variables k—the so-called kinetic turbulence energy and ε—energy dissipation, which
were introduced to close the equations. The equation of kinetic turbulent energy and the
equation of kinetic turbulent energy dissipation can be expressed as follows [20]:

∂
∂k
∂t

+
∂

∂xi
(ρkui) =

∂

∂xj
[(μ +

μt

σk
)

∂k
∂xj

] + Gk + Gb − ρε − YM + Sk (6)

∂
∂ε

∂t
+

∂

∂xi
(ρεui) =

∂

∂xj
[(μ +

μt

σε
)

∂ε

∂xj
] + C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (7)

where: C1ε, C2ε, C3ε are constants; σk, σε are turbulent Prandtl numbers for k and ε; Gb
is the generation of turbulence kinetic energy due to buoyancy; Gk is the generation of
turbulence kinetic energy due to the mean velocity gradients; YM is a contribution of the
fluctuating dilatation in compressible turbulence to the overall dissipation rate; and Sk, Sε

are user-defined source terms.

2.2. Mathematical Model of the Coal Dust Flow through a Dog Heading

The Lagrange method is used to track the trajectory of DPM particles. In this method,
the motion of particles takes place according to Newton’s second law. The movement
of dust particles is influenced by many forces, which makes their interactions extremely
complex. These forces mainly include gravity, adhesive force, drag force, buoyancy force,
Magnus force, Saffman force, Basset force and False mass force [21]. However, since many
of these interactions are small, most of them are ignored, with resistance force, gravity and
pressure gradient force predominantly taken into account. According to Newton’s second
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law, the force acting on a single dust particle can be determined based on the following
relationship [22–26]:

mp
dvp

dt
= Fdrag + Fg (8)

where: mp is the mass of dust particles (kg); vp is the velocity of dust particles (m/s); Fdrag
is the drag force on the particles, (N); and Fg is gravity (N).

Therefore, Fdrag is expressed as:

Fdrag =
1
8 Cdρπd2

p
∣∣v − uvp

∣∣
v − vp

(9)

where: dp is the particle diameter (m); u is the air velocity (m/s); vp is the particle velocity
(m/s); and Cd is the drag coefficient.

Therefore, Cd is given as:

Cd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
24

Re·Cc
for Re ≤ 1

24(1+0.15Re0.687)
Re for 1 < Re ≤ 1000,

0.44 for Re > 1000

(10)

where: Cc is the Cunningham slip correction factor, which is expressed by:

Cc = 1 +
λ

dp

(
2.514 + 0.8e

−0.55dp
λ

)
, (11)

where: λ is the mean free path of gas molecules.
Velocity of dust particles with different sizes can be calculated by the following equation:

vp =

√
4(ρp − ρg)gdp

3ρgCd
, (12)

3. Problem Statement and Boundary Conditions

The basis for the numerical analysis was the dog heading model with its real geometry,
ventilation parameters (measured in real conditions) and equipment. The geometrical
parameters along with the location of the auxiliary air duct line are shown in Figure 2. The
diameter of the air duct line was 0.6 m. The air outlet of the air duct line was located 5.0 m
from the mined coal body. The air duct line was built at a height of 2.5 m, and 0.65 m from
the side wall of the dog heading (Figure 2). The source of dust was located on the surface
of the mined coal body (as in reality).

The study was conducted for a forced (air-duct) ventilation system through pressing.
This system is characterized by more intensive removal of noxious gases from the face than
in the case of suction or combined ventilation, lower air losses and more favorable climatic
conditions in the excavation. The disadvantage of this system is that used air flows through
the entire length of the excavation, which causes difficulties in removing methane gas
emitted from the excavated face, which tends to accumulate under the roof. With suction
ventilation, the dilution of gases is faster, and the conditions in the entire excavation are
more favorable because the gases do not flow out through the excavation, but through the
air-duct ventilation. Combined ventilation, on the other hand, combines the advantages of
suction and press ventilation. It is implemented by changing the direction of rotation of the
axial fans’ impeller, using a reversible device or two fans and bolts.

As previously mentioned, a pumping (pressing) system was used in this study. After
developing a geometric model and defining boundary conditions (Figure 2), discretization
of the developed model was carried out. This consisted of generating a polyhedral mesh
consisting of a finite number of control volumes (Figure 3).
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Figure 2. Geometric model of the studied dog heading with marked air flow directions.

 

Figure 3. Fragment of the discrete model of the studied dog heading.

The boundary conditions were then adopted, including the physical model, which
was used for numerical calculations. The basic parameters of the calculation model are
shown in Table 1.
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Table 1. The major parameter setting.

Name Parametr Setting

Solver Type Pressure-Based

Viscous Model k-epsilon

Diameter Distribution Rosin-Rammler

Total Flow Rate, kg/s 0.00125/0.00075

Material Coal-hv

Max Diameter, m 0.001

Min Diameter, m 0.000001

Mean Diameter, m 0.0005

Density of dust, kg/m3 1200

Calculations were made for the transient state. The analysis time was 180 s. Two
variants of the emission volume of dust produced during the driving of the dog heading
were analysed: 0.00125 and 0.00075 kg/s.

For each of the studied variants, the air flow delivered to the driven dog heading by
means of the air duct line was the same and amounted to 376.8 m3/min.

The research focused on the analysis of dust dispersion in the face zone from the
commencement of mining the coal body. It was assumed that dust was released into
the dog heading from the fragment of mined forehead. The dust grain composition was
described according to the Rosin–Rammler distribution.

Numerical studies were conducted using Ansys Fluent 19.2 software (Canonsburg,
PA, USA).

4. Results and Discussions

Research on the impact of the mass expenditure (quantity) of dust released into the
dog heading during mining was carried out for the model, in which the biphasic medium
created from the continuous air phase and the discrete phase in the form of dust particles
was taken into account. The analysis involved the interaction between these phases.

A number of interesting results were obtained regarding both the ventilation parame-
ters of the air stream and the distribution of dust particles itself.

In the first stage, ventilation parameters were determined for the system without
dust. The air flow trajectories (without dust) through the driven dog heading are shown in
Figure 4.

 

Figure 4. Trajectories of air flowing through the driven dog heading (without dust).
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Based on the results, the highest air velocity was reported to occur in the face zone of
the driven dog heading, in the area of the air stream outlet from the air duct line. It was
also found that there was an area of significant air recirculation in this zone, where the
air flow was most turbulent. This is due to the fact that in this area, the air flowing out of
the air duct line hits the mined coal body and is bounced off, thereby changing its return
flow. At the same time, having bounced off the air duct line, the air stream encounters an
obstacle in the form of a road header.

In the second stage, the study looked at the impact of mass expenditure (quantity) of
dust released into the dog heading during mining on the level of dustiness.

Here, the focus was placed on the increase of dustiness in the face zone during mining.
During the analysis, dust dispersion in the studied dog heading was determined, with its
emission intensity being 0.00125 and 0.00075 kg/s, respectively. Dustiness in subsequent
phases of the analysis with consideration of the size of dust particles is presented in
Figures 5 and 6.

The results of the calculations help to trace changes in the level of dustiness in the
studied dog heading with the passage of time for both studied emissions. It is also possible
to trace how the dust spreads along with the moving air stream. The results also allow for
the determination of the location of individual dust grains for the selected timeframe. It is
clear that the greater the distance from the face of the dog heading, the smaller the dust
particles that move with the air stream will be. In turn, the larger dust particles fall on the
footwall of the dog heading, which is caused by the force of inertia. This phenomenon is
dangerous to the health of the workers, because these pathogenic particles of the smallest
diameter are transferred over considerable distances and are inhaled.

Dust concentration levels in vertical cross-sections of the dog heading for both emis-
sions are presented in Figures 7 and 8. They are shown in cross-sections of the dog heading
located every 5.0 m from the exposed surface of the mining area (for 10 cross-sections).

Based on the results, the authors were able to determine changes in dust concentration
levels along the measurement line located in the central plane of the dog heading at a
height of 1.75 m (average height of the human mouth and nose) from its base. Distributions
were determined after the total analysis time (180 s) for both studied emissions at 10 points
located on this line (Figure 9).

t = 10 s 

 
t = 60 s 

 
t = 120 s 

 
t = 180 s 

 

Figure 5. Distribution of different-sized dust particles in the dog heading at various time points for
total dust rate = 0.00125 kg/s.
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t = 10 s 

 
t = 60 s 

 
t = 120 s 

 
t = 180 s 

 

Figure 6. Distribution of different-sized dust particles in the dog heading at various times for total
dust rate = 0.00075 kg/s.

 

Figure 7. Mass dust concentration in the dog heading for time analysis t = 180 s for total dust rate =
0.00125 kg/s.

The presented methodology of the research procedure and the results obtained com-
plement the previous level of knowledge in the field of modeling the flow of air with dust
through driven dog headings. Previous research in this area has focused on modeling the
air flow and determining the trajectories of the overflow for various ventilation systems and
the release of methane into them from the mined coal seam. These studies were carried out
for steady-state flow. On the other hand, the analyses presented in this paper represent the
first stage of research on dust dispersion in mine workings for conditions in underground
coal mines. The undoubted advantage is the inclusion of transients in the analysis, which
has not been used for this type of condition. Thus, there are no methods analyzing the
presented condition. By contrast, similar analyses have been carried out for the combustion
process and for turbulent flows with a dispersive phase [27–31].
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Figure 8. Mass dust concentration in the dog heading for time analysis t = 180 s for total dust rate =
0.00075 kg/s.

 

Figure 9. Distribution of dust concentration along the adopted measurement lines for studied variants.

5. Conclusions

Dust emissions from both mining and tunnel excavations constitute a major technical,
organizational and health problem. Unfortunately, this dust has immensely harmful effects
on the mining process. In order to reduce these effects, it is necessary to take measures to
reduce dust emissions and movement in excavations. For this reason, it is important to
know how dust disperses and distributes over time for various ventilation parameters. The
method developed and presented in this paper allowed the authors to conduct such studies.
However, it required an analysis of a biphasic medium with interaction. This approach
makes it possible to trace the movement of dust particles in a gaseous medium for various
ventilation parameters and the intensity of such emissions.

The method presented in this paper enables the determination of many interesting pa-
rameters of the gas–dust mixture. Undoubtedly, it creates opportunities for a much broader
analysis of the phenomenon of dustiness in various areas and during various processes.
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The results clearly indicate that the main reason for dust dispersion in mining ex-
cavations is an active ventilation system that transports dust particles over considerable
distances from the place of their formation. The analysis of the distribution of this dust
and trajectories of individual grains shows that its concentration is very uneven. This
distribution largely depends on dust grain composition, the volume of emissions and
ventilation parameters.

Based on the findings, it can be concluded that:

(1) The highest concentrations of dust during the mining of the coal seam were reported
at the face of the driven dog heading. Due to the ventilation system used for such a
heading (press–air-duct ventilation), the diffusion of dust with high concentrations
along the length of this excavation was significant.

(2) The lowest dust concentrations, regardless of the size of dust emissions during the
mining process, was reported on the side of the heading without a built-in air-duct
ventilation system. This is because this side is where the air flows through the entire
heading.

(3) A significant decrease in dust concentrations was reported at a distance of about 40 m
from the seam being mined in the heading.

These conclusions should be widely used by the services responsible for mine safety.
The presented methodology, based on numerical simulations, makes it possible to

conduct a multivariate analysis of the state of dustiness, taking into account various
parameters of the studied phenomenon. The universality of this methodology also allows
its application for the analysis of dustiness, including dust reduction agents.
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Abstract: The paper aims to identify the situations in which a complex elastic system, which is subject
to mechanical vibrations, can act as a dynamic absorber of vibrations for certain frequencies. The
conditions that the system must fulfill in order to achieve this goal are determined and then a calcula-
tion example is presented. The method is interesting because it allows to avoid attaching an absorber
specially built for this, a situation that complicates the project and increases manufacturing costs.
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1. Introduction

Dynamic absorbers represent an ingenious and relatively cheap solution to reduce
vibrations, with numerous applications in engineering, from civil engineering, mechanical
engineering, vehicles, aeronautics, naval engineering and the examples can go on. The
first dynamic absorber was patented by Frahm [1] in 1909. The theoretical foundations
are laid by the work of Ormondroyd and Den Hartog [2] in 1928. Taking into account the
performance of this vibration reduction system and the low manufacturing price, numerous
studies followed in this field. The aim was to increase the effectiveness of the designed
absorbers and to optimize the various constructive parameters. Numerous improvements
have also been proposed and numerous types of unconventional absorbers, active or
passive, have been created. At the moment, the dynamic absorber is still finding new
applications, in new fields, requiring a continuous study of the subject.

For example, a dynamic absorber that attenuates the vibrations of three resonance
frequencies simultaneously is studied and proposed in [3]. It is known to suppress a
disturbing frequency it is sufficient to install a single damper whose natural frequency is ad-
justed to the excitation frequency. Obviously, to suppress more frequencies, more absorbers
can be mounted, but this approach leads to additional costs and a more complicated device.
The paper presents a system that allows, by adjusting the geometric dimensions, the precise
adjustment of the natural frequency of the absorber according to the value of the frequency
to be absorbed. Numerical examples prove the validity of the proposed solution. In [4],
a nonlinear dynamic vibration absorber (DVA) with variable frequency and damping is
analyzed. Numerical simulation for this vibration absorber for a coupled system with two
degrees of freedom shows that the proposed absorber can adapt to different conditions
that may occur in operation. For the seismic impact protection of a building, in [5] a DVA
with several frequencies is proposed in the form of an elastic continuum. This material has
several natural frequencies in the frequency range of seismic effects. When the absorber
has several natural frequencies close to the resonant frequency of the protected building,
part of the building’s oscillation energy is transferred to the absorber’s oscillations and the
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peak level of the frequency response function is reduced. A specific problem is presented
in [6] where a DVA is designed to help prevent the overturning of a rigid block. For
this, a pendulum shock absorber is used. Variable parameters are considered geometric
characteristics. The results prove that the existence of DVA leads to a general improvement
of the dynamic response of the system. The experimental results confirm the validity of the
analytical model and validate the effectiveness of the pendulum mass damper.

DVA are mainly used for the damping of forced vibrations with harmonic excitation.
One or more harmful frequencies are usually eliminated. Interesting research that uses
magnetic force to achieve dynamic absorption is presented in [7]. Vibration control in
rotating systems is studied. Two Jeffcott rotor vibration absorption systems are proposed.
For the first version, the shock absorber is located between the absorber mass and the disc,
and in the second, it is located between the absorber mass and the ground. The optimal
parameters of the absorption system are obtained analytically using the classical theory. To
evaluate and validate the obtained results, the experimental data of the proposed dynamic
absorbers were compared with the simulation results. The effectiveness of the proposed
solution was thus verified.

Devices operating at supercritical speeds need to go through all speeds, including
the critical ones, during start-up. Passing through the resonance zone can lead to machine
failures, if the amplitude level when passing through the resonance is too high. This raises
the problem of designing some DVA that will act during the passage of the car through
the critical speeds. For this, in [8] a rotating dynamic absorber with a viscoelastic element
is proposed. A finite element modeling is used in the dimensioning step. A significant
reduction of the amplitudes and requests that occur when passing through the critical zone
is obtained. Thus, the rotating system can reach a super-critical speed through a smooth
run-up.

New methods as use of the magneto-rheological elastomer (a smart materials with
elastic property variable in the external magnetic field) were developed in the last period to
absorb the vibration energy [9,10]. In the paper [11], two versions of a possible semi-active
suspension of a work machine seat are presented. The first version uses a magneto-
rheological damper and the second a combination of magneto-rheological damper and
passive dynamic absorber. The optimum of the passive parameters of the seat suspension
and the dynamic absorber was obtained using genetic algorithms according to the defined
minimization function. In [12,13] various aspects of the design of DVA were studied. More
results are presented in [14–20].

Although most works deal with the introduction of special elements to achieve dy-
namic absorption, the calculation methods involved can be very useful in the development
of our work. We present some such works that helped us in the development of the
proposed ideas below.

In the case of boring processes, it is necessary to reduce the excessive vibrations caused
by the low rigidity of the material of the tools used [21]. Vibration reduction is achieved
using a DVA, located on the edge of the boring bar. The dynamic absorber is represented
by a thin steel tube inside which there is natural rubber. Tuning the DVA to the vibration
that is desired to be absorbed is achieved by varying the number of inserted rubber sleeves.
Thus a customized design of the drill rod with DVA can remain stable at higher forces.

In [22], a new e-DVA module is proposed that signals the synergy that exists between
vehicle driving and vibration attenuation. This allows the design of a mechanism that
ensures the tuning of the absorber in relation to the excitation of the road. An analysis of the
vertical dynamics in the frequency and time domain demonstrates the increase in comfort
while driving and the stability of handling. This synergy represented a suggestion regarding
the use of a judicious design in order to use the mechanical system as a mechanical absorber.
In the paper [23], a new method is proposed to allow the optimal configuration of the DVA
attached to a non-damped/damped primary structure. Based on the Lyapunov equation,
the performance indices are expressed by quadratic matrix forms. Using this method,
the classical solutions can be obtained in the case of an external force or an excitation by
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acceleration of the base. More interesting method to calculate the vibration absorbtion of a
mechanical system are presented in [24–27].

In the current work, it is studied to what extent a judicious dimensioning of a system
allows it to function as a dynamic absorber, for one or more exciting frequencies. In
this way, a reduction of vibrations on certain frequency ranges can be ensured, without
mounting an additional absorber. In this way, the design of the elastic system is simplified
and, obviously, the manufacturing costs decrease. The complexity of the system and the
large number of parameters involved allow that by changing some of these parameters,
a dynamic absorption can be obtained for the mass that is of interest to the user, without
adding a dedicated absorber.

2. Model and Method

For simplicity, let’s consider a vibrating system, without damping, with degrees
of freedom. It is also assume that the system is subject to a harmonic excitation with
pulsation ω. The equations of motion for this system are given by the system of differential
equations [28–31]:

[M]
{ ..

X
}
+ [K]{X} = {F} cos ωt, (1)

where [M] represents the mass matrix, [K] represents the stifness matyrix and {F} the
excitation forces vector. Let’s also assume that the excitation acts on a single element of the
system, let’s say on the element n. It is desired that the system as a whole act as a dynamic
shock absorber, that is, p masses not to move if the excitation acts. Let’s assume that these
are the last p masses in the system (this can be achieved, regardless of the masses we focus
on, by renumbering the masses). We propose to determine the condition that the masses
and rigidities of the system must fulfill for this to happen. Let’s partition the system of
equations as follows:

[
[M11] [M12]
{M21} [M22]

]⎧⎨⎩
{ ..

X1

}{ ..
X2

}⎫⎬⎭+

[
[K11] [K12]
[K21] [K22]

]{{X1}
{X2}

}
=

{{F1}
{F2}

}
cos ωt, (2)

where the vector {X1} =
[
x1 x2 . . . xn−p

]
contains the first n-p masses of the sys-

tem (has dimension (n − p) × 1 and {X2} =
[
xn−p+1 . . . xn

]
the next p masses (has

dimension (p × 1). The matrices [M11], [K11] have dimension ((n − p) × (n − p), matrices
matricele [M12], [K12] have dimension (n − p) × p, the matrices [M21], [K21] have the di-
mension p × (n − p), and also [M22], [K22] the dimension p × p. The solution is chosen in
the form: {{X1}

{X2}
}

=

{{Φ}1
{Φ2}

}
cos ωt, (3)

One obtain: ⎧⎨⎩
{ ..

X1

}{ ..
X2

}⎫⎬⎭ = −ω2
{{Φ1}
{Φ2}

}
cos ωt, (4)

Putting the condition that the solution (3) verifies Equation (2), it obtains:[
[K11]− ω2[M11] [K12]− ω2[M12]
[K21]− ω2[M21] [K22]− ω2[M22]

]{{X1}
{X2}

}
=

{{F1}
{F2}

}
, (5)

or: (
[K11]− ω2[M11]

){X1}+
(
[K12]− ω2[M12]

){X2} = {F1}(
[K21]− ω2[M21]

){X1}+
(
[K22]− ω2[M22]

){X2} = {F2} (6)
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In the conditions in which {F1} = 0 (there is no excitation on the first part of the
system) it is impose that {X2} = 0. Let’s look for the conditions for this to happen. By
entering the conditions in Equation (6), we get:(

[K11]− ω2[M11]
)
{X1} = {0}, (7)(

[K21]− ω2[M21]
)
{X1} = {F2}, (8)

It is denoted:
[C11] = [K11]− ω2[M11] (9)

In order for the first system to admit a non-zero solution, it must have the condition:

P(ω) = det
(
[K11]− ω2[M11]

)
= {0}, (10)

which represents a first condition.
Suppose that we have determined a normalized solution of system (7), denote it by

{Y} Then any vector {X} = λ{Y} is a solution of system (7) and system (8) can be written:(
[K21]− ω2[M21]

)
λ{Y1} = {F2}, (11)

Equation (11) represents a system of p conditions that must be respected in order to
have rest of the p bodies. λ can be eliminated if is multiplied Equation (11) by {Y1}T .

λ{Y1}T
(
[K21]− ω2[M21]

)
{Y1} = {Y1}T{F2}, (12)

It results λ:

λ =
{Y1}T{F2}

{Y1}T([K21]− ω2[M21]){Y1}
, (13)

Introducing into Equation (12) it obtains:

(
[K21]− ω2[M21]

) {Y1}T{F2}
{Y1}T([K21]− ω2[M21]){Y1}

{Y1} = {F2}. (14)

From this set (Equation (14)) of p conditions only p − 1 are now independent. Now
there are 1 + p − 1 = p conditions that must be respected by the parameters of the system,
so p masses (in our case the last p numebered) remain in rest.

Let’s now deal with the most common case in practice, namely the one where we have
a work machine that, powered by a motor (usually electric) that rotates at a speed ω, and
it desired it to work without vibrating. So we want to dynamically isolate a single mass
mn and then p = 1. The matrix [K11] has size (n − 1)x(n − 1), the vector {F2} has only one
element F, the condition that the geometric, mass and elastic quantities must fulfill are
given by det

(
[K11]− ω2[M11]

)
= {0} (to have zero displacement of mass n at frequency

ω). So: {X2} = xn,[
[K11]− ω2[M11] [K12]− ω2[M12]
[K21]− ω2[M21] kn − ω2mn

]{{X1}
xn

}
=

{
0

Fn

}
, (15)

(
[K11]− ω2[M11]

)
{X1} = {0}, (16)(

[K21]− ω2[M21]
)
{X1} = Fn, (17)

In order for the first system to admit a non-zero solution, it must to have condition
(10), which in this case is the only condition that must be fulfilled.
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It is assumed that it was determined a normalized solution of system (16), denote it by
{Y1}. Then any vector {X1} = λ{Y1} is a solution of system (16) and system (17) can be
written: (

[K21]− ω2[M21]
)

λ{Y1} = Fn, (18)

which provides λ, therefore also provides the amplitudes of the forced oscillations of the
other n − 1 flywheels.

The cases in which there is not damping do not exist in practice. In any engineer-
ing system there are frictions and processes through which the energy of the system is
dissipated. Let’s then analyze a system in which it is considered that there is a viscous
damping. From the point of view of the obtained results, all the previous considerations
remain valid from a qualitative point of view. The difference lies in the fact that the phases
of the oscillations of the different masses are different. Also, the number of parameters
involved is higher, additional damping properties appear, but from the point of view of
the proposed purpose, this represents an advantage, the number of parameters that can be
varied increases, so the possibilities of tuning the system to reduce unwanted frequencies
increase.

System (1) becomes in this case:

[M]
{ ..

X
}
+ [C]

{ .
X
}
+ [K]{X} = {F} cos ωt, (19)

There are different forms for the matrix [C], but in what follows this is not important.
The harmonic solution that must check the system (19) is:{{X1}

{X2}
}

=

{{A1}
{A2}

}
cos ωt +

{{B1}
{B2}

}
sin ωt. (20)

It obtains, successively:⎧⎨⎩
{ .

X1

}{ .
X2

}⎫⎬⎭ = −ω

{{A1}
{A2}

}
sin ωt + ω

{{B1}
{B2}

}
cos ωt. (21)

{ ..
X1..
X2

}
= −ω2

{
A1
A2

}
cos ωt − ω2

{
B1
B2

}
sin ωt. (22)

By partitioning the matrices, in accordance with the previous considerations, it obtains:

[
[M11] [M12]
{M21} [M22]

]⎧⎨⎩
{ ..

X1

}{ ..
X2

}⎫⎬⎭+

[
[C11] [C12]
{C21} [C22]

]⎧⎨⎩
{ .

X1

}{ .
X2

}⎫⎬⎭+

[
[K11] [K12]
[K21] [K22]

]{{X1}
{X2}

}
=

{{F1}
{F2}

}
cos ωt. (23)

By introducing this solution into system (19), it obtains:[
[M11] [M12]
{M21} [M22]

](
−ω2

{ {A1}
{A2}

}
cos ωt − ω2

{ {B1}
{B2}

}
sin ωt

)
+[

[C11] [C12]
{C21} [C22]

](
−ω

{ {A1}
{A2}

}
sin ωt + ω

{ {B1}
{B2}

}
cos ωt

)
+[

[K11] [K12]
[K21] [K22]

]({ {A1}
{A2}

}
cos ωt +

{ {B1}
{B2}

}
sin ωt

)
=

{ {F1}
{F2}

}
cos ωt

(24)

or:
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(
−ω2

[
[M11] [M12]
[M21] [M22]

]{{A1}
{A2}

}
+ ω

[
[C11] [C12]
{C21} [C22]

]{{B1}
{B2}

}
+

[
[K11] [K12]
[K21] [K22]

]{{A1}
{A2}

}
−

{{F1}
{F2}

})
cos ωt+

+

(
−ω2

[
[M11] [M12]
[M21] [M22]

]{{B1}
{B2}

}
−

[
[C11] [C12]
{C21} [C22]

]{{A1}
{A2}

}
+

[
[K11] [K12]
[K21] [K22]

]{{B1}
{B2}

})
sin ωt = 0

(25)

Since Equation (24) must be valid at any time, this equation is equivalent to the
following two systems:([

[K11] [K12]
[K21] [K22]

]
− ω2

[
[M11] [M12]
[M21] [M22]

]){{A1}
{A2}

}
+ ω

[
[C11] [C12]
{C21} [C22]

]{{B1}
{B2}

}
=

{{F1}
{F2}

}
. (26)

−
[
[C11] [C12]
{C21} [C22]

]{
A1
A2

}
+

([
[K11] [K12]
[K21] [K22]

]
− ω2

[
[M11] [M12]
[M21] [M22]

]){
B1
B2

}
= 0. (27)

or:⎡⎢⎢⎣
[
[K11] [K12]
[K21] [K22]

]
− ω2

[
[M11] [M12]
[M21] [M22]

]
ω

[
[C11] [C12]
{C21} [C22]

]
−ω

[
[C11] [C12]
{C21} [C22]

] [
[K11] [K12]
[K21] [K22]

]
− ω2

[
[M11] [M12]
[M21] [M22]

]
⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
{A1}
{A2}
{B1}
{B2}

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
〈0〉
〈0〉
{F1}
〈F2〉

⎫⎪⎪⎬⎪⎪⎭ (28)

It can obtain {A1}, {B1}, {A2}, {B2} and the harmonic solution:

{{X1}
{X2}

}
=

{{A1}
{A2}

}
cos ωt +

{{B1}
{B2}

}
sin ωt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 cos(ωt + ϕ1)
a2 cos(ωt + ϕ2)

...
an−p cos(ωt + ϕn−p)

an−p+1 cos(ωt + ϕn−p+1)
an−p+2 cos(ωt + ϕn−p+2)

...
an cos(ωt + ϕn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (29)

The notation:

{{A1}
{A2}

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1
A2
...

An−p
An−p+1
An−p+2

...
An

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
;
{{B1}
{B2}

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1
B2
...

Bn−p
Bn−p+1
Bn−p+2

...
Bn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (30)

is made. Solution (29) can also be written:{{X1}
{X2}

}
= [\d\]{a}. (31)

{a} =
⌊

a1 a2 . . . an−p an−p+1 an−p+2 . . . an
⌋
. (32)

where:

ϕj = atan

(
Bj

Aj

)
; aj =

√
A2

j + B2
j ; i = 1, 2 ; j = 1, n. where : (33)
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[\d\] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(ωt + ϕ1)
cos(ωt + ϕ2) 0

. . .

0
. . .

cos(ωt + ϕn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

Imposing the conditions {F1} = 0 (there is no excitation on the first part of the system)
and the solution {X2} = 0. it obtain:(

[K11]− ω2[M11]
){A1}+ ω[C11]{B1} = {0}(

[K21]− ω2[M21]
){A1}+ ω[C21]{B1} = {0}

−ω[C11]{A1}+
(
[K11]− ω2[M11]

){B1} = {0}
−ω[C21]{A1}+

(
[K21]− ω2[M21]

){B1} = {F2}
(35)

which represent the conditions that must be met to obtain a maximum absorption of
vibrations for the masses n − p + 1, n − p + 2, . . . , n.

3. Results and Discussion

Through a careful dimensioning of the system, it can also play the role of a dynamic
shock absorber, without the need to add an additional element.

A simple example will illustrate this. Consider an elastic system presented in Figure 1
made up of 6 flywheels, linked together with elastic elements having known stiffness.
Flywheels can have rotational movement. An exciting moment acts on the last flywheel.
It results the problem of determining the conditions for which, under the action of this
excitation, flywheel 4 stays in place, without vibrating. The number of DOF for this system
is six.

Figure 1. Elastic system with wheels.

The equations of motion for this system are:

⎡⎢⎢⎢⎢⎢⎢⎣

J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J1

′ 0 0 0
0 0 0 J2

′ 0 0
0 0 0 0 J3 0
0 0 0 0 0 J4

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

..
ϕ1..
ϕ2..
ϕ1

′
..
ϕ2

′
..
ϕ3..
ϕ4

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎣

k1 −k1 0 0 0 0
−k1 k1 + k2 0 0 −k2 0

0 0 k1
′ −k1

′ 0 0
0 0 −k1

′ k1
′ + k2

′ −k2
′ 0

0 −k2 0 −k2
′ k2 + k2

′ + k3 −k3
0 0 0 0 −k3 k3 + k4

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ1
ϕ2
ϕ1

′
ϕ2

′
ϕ3
ϕ4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0

Mo cos ωt

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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It is noted:

[J] =

⎡⎢⎢⎢⎢⎢⎢⎣

J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J1

′ 0 0 0
0 0 0 J2

′ 0 0
0 0 0 0 J3 0
0 0 0 0 0 J4

⎤⎥⎥⎥⎥⎥⎥⎦;

[K] =

⎡⎢⎢⎢⎢⎢⎢⎣

k1 −k1 0 0 0 0
−k1 k1 + k2 0 0 −k2 0

0 0 k1
′ −k1

′ 0 0
0 0 −k1

′ k1
′ + k2

′ −k2
′ 0

0 −k2 0 −k2
′ k2 + k2

′ + k3 −k3
0 0 0 0 −k3 k3 + k4

⎤⎥⎥⎥⎥⎥⎥⎦; {M} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0

Mo cos ωt

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

If it is considered a harmonic solution and put the condition that this solution verifies
the system of differential equations, it obtains:⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣

k1 −k1 0 0 0 0
−k1 k1 + k2 0 0 −k2 0

0 0 k1
′ −k1

′ 0 0
0 0 −k1

′ k1
′ + k2

′ −k2
′ 0

0 −k2 0 −k2
′ k2 + k2

′ + k3 −k3
0 0 0 0 −k3 k3 + k4

⎤⎥⎥⎥⎥⎥⎥⎦−ω2

⎡⎢⎢⎢⎢⎢⎢⎣

J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J1

′ 0 0 0
0 0 0 J2

′ 0 0
0 0 0 0 J3 0
0 0 0 0 0 J4

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e1
e2
e1

′
e2

′
e3
e4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0

Mo

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
where the amplitude of the harmonic oscillations is found in the vector:
{X} =

[
e1 e2 e1

′ e2
′ e3 e4

]T . It must to find the condition for which: e4 = 0. The
determinant of the system is:

[C] =

⎡⎢⎢⎢⎢⎢⎢⎣

k1 − ω2 J1 −k1 0 0 0 0
−k1 k1 + k2 − ω2 J2 0 0 −k2 0

0 0 k1
′ − ω2 J1

′ −k1
′ 0 0

0 0 −k1 k1
′ + k2

′ − ω2 J2
′ −k2

′ 0
0 −k2 0 −k2 k2 + k2

′ + k3 − ω2 J3 −k3
0 0 0 0 −k3 k3 + k4 − ω2 J4

⎤⎥⎥⎥⎥⎥⎥⎦

[C11] =

⎡⎢⎢⎢⎢⎣
k1 − ω2 J1 −k1 0 0 0

−k1 k1 + k2 − ω2 J2 0 −k2 0
0 0 k1

′ − ω2 J1
′ −k1

′ 0
0 0 −k1

′ k1
′ + k2

′ − ω2 J2
′ −k2

0 0 0 −k2
′ k2 + k2

′ + k3 − ω2 J3

⎤⎥⎥⎥⎥⎦
The values considered in the applications are:
J1 = 1.0 kgm2; J2 = 3.0 kgm2; J1

′ = 1.0 kgm2; J2
′ = 6.0 kgm2; J3 = 2.0 kgm2;

J4 = 6.0 kgm2; k1 = k1
′ = 1, 000, 000 N·m/rad; k2 = k2

′ = 3, 000, 000 N·m/rad;
k3 = 2, 000, 000 N·m/rad; k4 = 1, 000, 000 N·m/rad and the excitation moment

M = 10, 1000 N·m.
The condition P(ω) = det

(
K11 − ω2M11

)
= {0} leads to the pulsation:

A graph of the function from condition (9) where it can follow the ω values where this
condition is fulfilled is represented in Figure 2. The values obtained in Table 1 can be seen.

The five values obtained for the considered data represent frequencies for which, upon
excitation with a harmonic moment with an amplitude of 100 Nm acting on flywheel 6, a
total vibration absorption is obtained at this flywheel (in the case of zero damping). If there
is damping, the absorption is very high around these determined values. So we note that for
a complex system, there are several eigenpulsations at which vibration absorption can be
done. If the system has many components, then the number of excitation frequencies that
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can be absorbed increase. In Figure 3 it can be seen the amplitude of the forced vibrations
at different excitation frequencies.

Figure 2. The representation of the function P(ω).

Table 1. The frequencies at which absorption occurs to flywheel 6.

Frequency ω1 ω2 ω3 ω4 ω5

[Hz] 344 702 1089 1243 2157

Figure 3. The absorbtion of the flywheel 6.

If one refer to flywheel 5, then the condition that it absorbs vibrations gives us the five
frequencies that will be absorbed, presented in the Table 2.

Table 2. The frequencies at which absorption occurs to flywheel 5.

Frequency ω1 ω2 ω3 ω4 ω5

[Hz] 626 707 752 1128 1329

In Figure 4 it can be seen the amplitude of the forced vibrations at different pulsa-
tions/excitation frequencies of the flywheel 5.
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Figure 4. The absorbtion of the flywheel 5.

In a similar way the Figures 5–8 presents us the absorbtion of the flywheel 4, 3, 2 and 1.

Figure 5. The absorbtion of the flywheel 4.

Figure 6. The absorbtion of the flywheel 3.
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Figure 7. The absorbtion of the flywheel 2.

Figure 8. The absorbtion of the flywheel 1.

The eigenpulsations of the system are presented in the Table 3.
In Figure 9 are presented the amplitude of the all six flywheel overlapped.

Figure 9. The amplitudes of the flywheels overlapped. With black is the graph for the flywheel 6.
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Table 3. The eigenpulsations of the system.

Frequency p1 p2 p3 p4 p5 p6

[Hz] 198.5 671.2 729.7 1094 1248 2172

Figure 10 shows the interval of pulsations that ensure the rest of the flywheel six. For
each value of the moment of inertia for flywheel two, five pulsations are obtained for which
the total vibration absorption of this flywheel takes place.

Figure 10. The intervals of pulsations that ensure the rest of the flywheel 6 for different moment of
inertia of the flywheel 2.

A comparison with a system with a simplified system having four flywheels (Figure 11)
is presented in Figure 12. In Figure 13 are presented the behavior of all flywheels. The
number of the DOF in this case is four.

Figure 11. Elastic system with four wheels.
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Figure 12. The absorbtion of the flywheel 4 for the simplified system.

Figure 13. The amplitudes of the flywheels for the simplified system overlapped.

Consider now a damping introduce in the system in the form: [C] = α[K]. In Figure 14
are presented the amplitude of forced vibration considering different damping coefficient.

Figure 14. Effect of damping on the amplitude of the flywheel 6.
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4. Conclusions

Dynamic absorbers represent one of the most spectacular methods of reducing vi-
brations. The main advantage is its simplicity and the low price with which vibration
absorption can be ensured. In the work, the authors wanted to show that, in the case of
complex elastic systems, with several vibrating masses, dynamic absorption can be ensured
without introducing additional systems, by properly designing the system, so that certain
parts of it are dynamic absorbers for other parties. The more complex the system, the more
possibilities for dynamic absorption there are. Moreover, for complex systems, the number
of exciting frequencies for which dynamic absorption can be achieved is more numerous.
So for a judiciously dimensioned system, dynamic absorption can be achieved, so without
major expenses, for frequency intervals, useful in practice.

In other words, a judicious design of an elastic system allows managing the problem
of resonance frequencies without using special devices, such as DVA, an operation that
requires a redesign and the attachment of an expensive device. In this way, the price
of realizing a dynamic absorption drops a lot. Also, the installation of an absorber in
the system leads to the modification, which in certain cases can become important, of
the vibration response of the entire system. By the method described in the paper, the
modification of the system’s behavior is avoided due to the addition of some DVA.

An example shows these properties that complex dynamic systems can provide. A
possibility of development of the subject is the construction of algorithms that offer the
optimal solution for different practical applications.
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Abstract: Steady-state solutions for two mixed initial-boundary value problems are provided. They
describe isothermal MHD steady-state motions of incompressible Burgers’ fluids over an infinite
flat plate embedded in a porous medium when differential expressions of shear stress are given
on a part of the boundary. The fluid is electrically conductive under the influence of a uniform
transverse magnetic field. For the validation of the results, the expressions of the obtained solutions
are presented in different forms and their equivalence is graphically proved. All of the obtained results
could easily be particularized to give exact solutions for the incompressible Oldroyd-B, Maxwell,
second-grade, and Newtonian fluids that were performing similar motions. For illustration, the
solutions corresponding to Newtonian fluids are provided. In addition, as an application, the velocity
fields were used to determine the time required to reach the steady or permanent state for distinct
values of magnetic and porous parameters. We found that this time declined with increasing values
of the magnetic or porous parameters. Consequently, the steady state for such motions of Burgers’
fluids was earlier reached in the presence of a magnetic field or porous medium.

Keywords: Burgers’ fluids; isothermal MHD motions; porous medium; steady-state solutions; steady
or permanent state

MSC: 76A05

1. Introduction

The isothermal motions of incompressible Newtonian or non-Newtonian fluids over
an infinite plate have been extensively studied in the past. They are some of the most
important motion problems near moving bodies and have multiple industrial applications
including the processing of polymers, food products, pharmaceuticals, clay suspensions,
and many others. Generally, in practice, an infinite plate cannot be used. However, its
dimensions can be large enough so that the solutions corresponding to motions over such
a plate can be sufficiently approximated by solutions for motions over an infinite plate.
In the existing literature, there are many studies on the motion problems of fluids over
an infinite plate or between two infinite parallel plates. The most recent results regarding
oscillatory motions of incompressible Burgers’ fluids over an infinite plate seem to be those
of Akram et al. [1]. The MHD motions of these fluids also have different applications
in hydrology, horticulture, and engineering structures. The exact solutions for the MHD
second Stokes flow of the same fluids can be obtained from the work of Khan et al. [2].
In addition, the study of different motions through porous media has a distinguished
importance in different fields, including those in the natural sciences and technology.
Hydrodynamic studies of the Maxwell fluid flow through a porous medium were recently

Mathematics 2022, 10, 4228. https://doi.org/10.3390/math10224228 https://www.mdpi.com/journal/mathematics
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provided by Ullah et al. [3] and Fetecau et al. [4]. Exact solutions for MHD unsteady
motions of incompressible non-Newtonian fluids over an infinite flat plate embedded in a
porous medium were previously established; for instance, by Hayat et al. [5] and Ali et al. [6]
for second-grade fluids, Khan et al. [7] for Oldroyd-B fluids, and Algahtani and Khan [8]
and Hussain et al. [9] for Burgers’ fluids. General solutions for isothermal MHD motions of
incompressible Newtonian fluids over an infinite plate embedded in a porous medium were
obtained by Fetecau et al. [10]. The combined effects of free convection MHD flow past a vertical
plate embedded in a porous medium were recently investigated by Vijayalakshmi et al. [11].

Many exact solutions for MHD unsteady motions of the incompressible non-Newtonian
fluids over an infinite plate embedded in a porous medium were determined previously by
different authors. However, Khan et al. [2] seemed to be the first authors who established
exact solutions for such motions of incompressible Burgers’ fluids. The one-dimensional form
of the constitutive equation of incompressible Burgers’ fluids was proposed by Burgers [12];
his model is often used to describe the behavior of different viscoelastic materials such
as polymeric liquids, cheese, soil, and asphalt [13,14]. A good agreement between the
prediction of this model and the behavior of asphalt and sand-asphalt was found by Lee
and Markwick [15]. The extension of the one-dimensional Burgers’ model to a frame-
indifferent three-dimensional form was provided by Krishnan and Rajagopal [16], while
the first exact steady solutions for motions of such fluids seem to be those of Ravindran
et al. [17] for a fluid flow in an orthogonal rheometer. Other interesting solutions for
oscillatory motions of incompressible Burgers’ fluids were established by Hayat et al. [18],
Khan et al. [19,20], and recently Safdar et al. [21]. Exact steady-state solutions for isothermal
motions of same fluids when a differential expression of shear stress was given on a part of
the boundary were recently obtained by Fetecau et al. [22]. In order to study similar flows
of the same fluids in bounded domains, which are useful in industrial applications, readers
can use the recent works by Çolak et al. [23] and Abderrahmane et al. [24].

Earlier, Renardy [25,26] showed that boundary conditions containing differential
expressions of stresses must be imposed in order to formulate well-posed boundary value
problems for motions of rate-type fluids. The main purpose of this work was to provide
the first exact steady-state solutions for motions of incompressible Burgers’ fluids, which
are rate-type fluids, when differential expressions of the shear stress were given on a part
of the boundary and the magnetic and porous effects were taken into consideration. These
solutions, which are presented in simple forms, could easily be particularized to give exact
solutions for incompressible Oldroyd-B, Maxwell, second-grade and Newtonian fluids
that were performing similar motions. For illustration, the adequate solutions for the
Newtonian fluids are brought to light. In addition, for the validation of the results, all of
the solutions are presented in different forms and their equivalence is graphically proved.
Finally, as an application, the required time to reach the steady or permanent state was
graphically determined for distinct values of the magnetic and porous parameters.

2. Statement of the Problem

Consider an incompressible, electrically conducting Burgers’ fluid (IECBF) at rest over
an infinite horizontal flat plate embedded in a porous medium. Its constitutive equations,
as presented by Ravindran et al. [15], are given by the relations:

T = −pI + S, S + α
DS
Dt

+ β
D2S
Dt2 = μ

(
A + γ

DA
Dt

)
, (1)

where T is the Cauchy stress tensor; S is the extra-stress tensor; I is the unit tensor;
A = L + LT is the first Rivlin–Ericksen tensor (L being the gradient of the velocity
vector υ); p is the hydrostatic pressure; μ is the fluid viscosity; α, β, and γ (≤ α) are mate-
rial constants; and D/Dt denotes the well-known upper-convected derivative. Since the
incompressible fluids undergo isochoric motions only, the following continuity equation
must be satisfied:

divυ = 0 or equivalent tr A = 0. (2)

119



Mathematics 2022, 10, 4228

We also most consider the fact that the fluids characterized by the constitutive Equation (1)
contain the incompressible Oldroyd-B, Maxwell, and Newtonian fluids as special cases if
β = 0, β = γ = 0, or α = β = γ = 0, respectively. For the motions to be considered here,
the governing equations corresponding to the incompressible second-grade fluids can also
be obtained as particular cases of the present equations.

In the following, and based on Khan et al. [2], we shall consider isothermal MHD
unsteady motions of an IECBF over an infinite flat plate embedded in a porous medium
for which

υ = υ(y, t) = u(y, t)ex, S = S(y, t), (3)

where ex is the unit vector along the x-direction of a convenient Cartesian coordinate system
of x, y, and z with the y-axis perpendicular to the plate. For such motions, the continuity
equation is identically satisfied. Substituting υ(y, t) and S(y, t) from Equation (3) in the
second equality from the relations in (1) and bearing in mind the fact that the fluid has been
at rest up to the initial moment t = 0, one can prove that the components Syy, Syz, Szz and
Szx of S are zero. On the other hand, the non-trivial shear stress τ(y, t) = Sxy(y, t) must
satisfy the next partial differential equation [18].(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(y, t) = μ

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y
; y > 0, t > 0. (4)

The balance of linear momentum in the presence of conservative body forces and of a
transverse magnetic field of the magnitude B but in the absence of a pressure gradient in
the flow direction reduces to the following partial differential equation [2]:

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

− σB2u(y, t) + R(y, t); y > 0, t > 0, (5)

where ρ is the constant density of the fluid, σ is its electrical conductivity, and the Darcy’s
resistance R(y, t) satisfies the relation [2].(

1 + α
∂

∂t
+ β

∂2

∂t2

)
R(y, t) = −μϕ

k

(
1 + γ

∂

∂t

)
u(y, t); y > 0, t > 0. (6)

In the above relation, ϕ and k are the porosity and the permeability, respectively, of
the porous medium.

The appropriate initial conditions of:

u(y, 0) =
∂u(y, t)

∂t

∣∣∣∣
t=0

=
∂2u(y, t)

∂t2

∣∣∣∣
t=0

= 0; τ(y, 0) =
∂τ(y, t)

∂t

∣∣∣∣
t=0

= 0; y ≥ 0, (7)

have been already used to show that some of the components of the extra-stress S are zero.
The boundary conditions to be here used are given by the following relations:(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(0, t) = μ

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= S cos(ω t), lim
y→∞

u(y, t) = 0; t > 0, (8)

or(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(0, t) = μ

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= S sin(ω t), lim
y→∞

u(y, t) = 0; t > 0. (9)

In the above relations, S is a constant shear stress and ω is the frequency of the oscillations.
The second condition from the relations (8) and (9) assures us that the fluid is quies-

cently far away from the plate. We also assume that there is no shear in the free stream; i.e.,:

lim
y→∞

τ(y, t) = 0. (10)
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For convenience, we also assume that the fluid is finitely conducting so that the
Joule heating due to the presence of external magnetic field is negligible. In addition, the
magnetic Reynolds number is small enough so that the induced magnetic field can be
neglected and the electromagnetic energy does not penetrate the boundary for computing
the Umov–Poynting vector [27]. Moreover, there is no surplus electric charge distribution
present in the fluid and the Hall effects can be ignored due to moderate values of the
Hartman number.

In order to provide exact solutions that are independent of the flow geometry, let us
introduce the next dimensionless functions, variables and parameters:

u∗ = u
√

ρ
S , τ∗ = τ

S , R∗ = ν
√

ρ

S
√

S
R, y∗ = y

√
S

μν , t∗ = S
μ t,

α∗ = S
μ α, β∗ = S2

μ2 β, γ∗ = S
μ γ, ω∗ = μ

S ω .
(11)

Using the non-dimensional entities from the relations in (11) in the equalities (4)–(6)
and abandoning the star notation for writing simplicity, one obtains the non-dimensional
forms of these equations:(

1 + α
∂

∂t
+ β

∂2

∂t2

)
τ(y, t) =

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y
; y > 0, t > 0, (12)

∂u(y, t)
∂t

=
∂τ(y, t)

∂y
− Mu(y, t) + R(y, t); y > 0, t > 0, (13)(

1 + α
∂

∂t
+ β

∂2

∂t2

)
R(y, t) = −K

(
1 + γ

∂

∂t

)
u(y, t); y > 0, t > 0, (14)

where the constants M and K are the magnetic and porous parameters, respectively, which
are defined by the following relations:

M =
σB2

ρ

μ

S
=

ν

S
σB2, K =

μνϕ

kS
=

μϕ

k
ν

S
. (15)

When eliminating τ(y, t) between Equations (12) and (13) and bearing in mind
Equation (14), one obtains for the dimensionless velocity field u(y, t) the following partial
differential equation:(

1 + α ∂
∂t + β ∂2

∂t2

)
∂u(y,t)

∂t =
(

1 + γ ∂
∂t

)
∂2u(y,t)

∂y2

−M
(

1 + α ∂
∂t + β ∂2

∂t2

)
u(y, t)− K

(
1 + γ ∂

∂t

)
u(y, t); y > 0, t > 0.

(16)

The corresponding boundary conditions are given by the next equalities:(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(0, t) =

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= cos(ω t), lim
y→∞

u(y, t) = 0; t > 0, (17)

or

(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(0, t) =

(
1 + γ

∂

∂t

)
∂u(y, t)

∂y

∣∣∣∣
y=0

= sin(ω t), lim
y→∞

u(y, t) = 0; t > 0. (18)

The adequate initial conditions have the same forms as in Equation (7) but they
will not be used in the following because only steady-state (permanent or long-term)
solutions will be provided. The non-dimensional shear stress τ(y, t) also must satisfy the
following condition:

lim
y→∞

τ(y, t) = 0. (19)
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The form of the boundary conditions in (17) and (18), as well as the fact that the fluid
was at rest at the moment t = 0, suggests that the two motions become steady in time.
For such motions, a very important problem for experimental researchers is to know the
time needed to reach the steady or permanent state. This is the time after which the fluid
moves according to the steady-state solutions. In the following, in order to avoid a possible
confusion, we denote by uc(y, t), τc(y, t), Rc(y, t) and us(y, t), τs(y, t), Rs(y, t) the starting
solutions corresponding to the two fluid motions whose boundary conditions are given
by the relations in (17) and (18), respectively. These solutions, which characterize the fluid
motion some time after its initiation, can be written as sum of their respective steady-state
and transient components; i.e.,:

uc(y, t) = ucp(y, t) + uct(y, t), τc(y, t) = τcp(y, t) + τct(y, t), Rc(y, t) = Rcp(y, t) + Rct(y, t), (20)

and

us(y, t) = usp(y, t) + ust(y, t), τs(y, t) = τsp(y, t) + τst(y, t), Rs(y, t) = Rsp(y, t) + Rst(y, t). (21)

After this time, when the transients disappear or can be negligible, the fluid behavior
is described by the steady-state or permanent solutions ucp(y, t), τcp(y, t), Rcp(y, t) or
usp(y, t), τsp(y, t), Rsp(y, t). In order to determine this time for a given motion, at least the
steady-state or transient solutions have to be known. Since, for the transient solutions
of the motions, we do not know a modality to verify their correctness, in the following
we shall provide closed-form expressions for the steady-state solutions of the two above-
mentioned motion problems. These steady-state solutions, which are independent of the
initial conditions, satisfy the boundary conditions and governing equations.

3. Dimensionless Steady-State Solutions

In this section, we provide closed-form expressions for the dimensionless steady-state
velocity and shear stress fields ucp(y, t), usp(y, t) and τcp(y, t), τsp(y, t), respectively, and
the corresponding Darcy’s resistances Rcp(y, t), Rsp(y, t). For a check of the obtained results,
these expressions are presented in different forms and their equivalence is graphically proved.

3.1. Calculation of the Steady-State Velocities ucp(y, t) and usp(y, t)

To determine the dimensionless velocity fields ucp(y, t) and usp(y, t) that satisfy the
governing Equation (16) and the respective boundary conditions (17) and (18), we follow
two different methods. Firstly, while bearing in mind the linearity of the governing
Equation (16) and the form of the boundary conditions (17) and (18), we define the steady-
state complex velocity:

up(y, t) = ucp(y, t) + iusp(y, t); y > 0, t ∈ R, (22)

where i is the imaginary unit and is searching for a solution of the form:

up(y, t) = U(y)eiωt; y > 0, t ∈ R, (23)

where U(·) is a complex function. Of course, the dimensionless complex velocity up(y, t)
must satisfy the governing Equation (16) and the boundary conditions.(

1 + γ
∂

∂t

)
∂up(y, t)

∂y

∣∣∣∣
y=0

= eiωt, lim
y→∞

up(y, t) = 0; t ∈ R. (24)

Direct computations show that up(y, t) can be presented in the following form:

up(y, t) = − 1
(1 + iωγ)δ

e−δy+iωt; y > 0, t ∈ R, (25)
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while the dimensionless steady-state velocity fields ucp(y, t) and usp(y, t) are given by the
following relations:

ucp(y, t) = −Re
{

1
(1 + iωγ)δ

e−δ y+iωt
}

, usp(y, t) = −Im
{

1
(1 + iωγ)δ

e−δ y+iωt
}

, (26)

where Re and Im denote the real and imaginary parts, respectively, of that which fol-
lows, and:

δ =

√
(1 − βω2 + iωα)(M + iω) + K(1 + iωγ)

1 + iωγ
. (27)

Secondly, in order to determine the equivalent forms for the dimensionless steady-state
solutions given by Equation (26), we use the dimensionless steady-state solutions:

uScp(y, t) = e−my cos(ω t − ny), uSsp(y, t) = e−my sin(ω t − ny), (28)

of the second problem of Stokes for incompressible Burgers’ fluids. It is the fluid motion
over an infinite flat plate that oscillates in its plane with the dimensionless velocity cos(ωt)
or sin(ωt). In these solutions, which were determined by direct computations, the constants
m and n are given by the following relations:

m =

√
ω

2

√
aω +

√
(aω)2 + b2

1 + (γω)2 , n =

√
ω

2

√
−aω +

√
(aω)2 + b2

1 + (γω)2 , (29)

which satisfy the algebraic system of equations:

m2 − n2 =
aω2

1 + (γω)2 , mn =
bω

2[1 + (γω)2]
, (30)

where a and b are defined by following equalities:

a = γ(1 − βω2)− α, b = 1 − βω2 + αγω2. (31)

More precisely, we are looking for the present dimensionless steady-state velocity
fields ucp(y, t) and usp(y, t) under the following forms:

ucp(y, t) = p1uScp(y, t) + q1uSsp(y, t), usp(y, t) = p2uScp(y, t) + q2uSsp(y, t). (32)

They must satisfy the respective boundary conditions in (17) and (18). Lengthy but
straightforward computations show that ucp(y, t) and usp(y, t) can be presented in the
following simple forms:

ucp(y, t) = −√
p2 + q2 e−m̃y cos(ω t − ñy + ϕ),

usp(y, t) = −√
p2 + q2 e−m̃y sin(ω t − ñy + ϕ).

(33)

In the last two relations, the angle ϕ = arctg(q/p) while the constants m̃, ñ, p, and q
have the following expressions:

m̃ =

√
ω

2

√√√√ cω +
√

(c ω)2 + d2

1 + (γω)2 , ñ =

√
ω

2

√
−cω +

√
(cω)2 + d2

1 + (γω)2 , (34)

p =
ñωγ − m̃

(m̃ωγ + ñ)2 + (ñωγ − m̃)2 , q =
m̃ωγ + ñ

(m̃ωγ + ñ)2 + (ñωγ − m̃)2 , (35)
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in which c and d are given by the following relations:

c = γ(1 − βω2)− α + (1−βω2+αγω2)M+[1+(γω)2]K
ω2 ,

d = 1 − βω2 + αγω2 + [α − γ(1 − βω2)]M.
(36)

The equivalence of the dimensionless steady-state solutions given by the equalities in
(26) and (33) is graphically proved in Figure 1a,b.

(a) (b)

Figure 1. Equivalence of velocity fields ucp(y, t) and usp(y, t) given by Equations (26) and (33) for
α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, K = 0.4, Ke f f = 1, and t = 10.

The dimensionless steady-state velocity fields ucp(y, t) and usp(y, t) corresponding
to isothermal motions of the same fluids in the absence of magnetic or porous effects can
immediately be obtained by taking M = 0, respectively K = 0 in Equations (26) and
(33), respectively. In the absence of both effects, when M = K = 0, the present solutions
reduce to those obtained by Fetecau et al. [22] (Equations (19) and (20)). Moreover, the
dimensionless steady-state solutions corresponding to incompressible Oldroyd-B, Maxwell,
and Newtonian fluids that are performing similar motions are immediately obtained by
taking β = 0, β = γ = 0 or α = β = γ = 0, respectively, in the previous relations. The
dimensionless steady-state velocity fields corresponding to motions of the incompressible
Newtonian fluids over an infinite flat plate that apply an oscillatory shear stress S cos(ωt)
or S sin(ωt) to the fluid, for instance, have the following simple forms:

uNcp(y, t) = −Re
{

1√
Ke f f +iω

e−y
√

Ke f f +iω+iωt
}

,

uNsp(y, t) = −Im
{

1√
Ke f f +iω

e−y
√

Ke f f +iω+iωt
}

,
(37)

or the equivalent

uNcp(y, t) = − 1
4
√

K2
e f f +ω2

e− f y cos(ω t − gy + ψ),

uNsp(y, t) = − 1
4
√

K2
e f f +ω2

e− f y sin(ω t − gy + ψ),
(38)

where

f =

√√√√Ke f f +
√

K2
e f f + ω2

2
, g =

√√√√−Ke f f +
√

K2
e f f + ω2

2
, ψ = arctg

⎛⎝Ke f f −
√

K2
e f f + ω2

ω

⎞⎠ (39)
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and Ke f f = M + K is the effective permeability [10]. The equivalence of the solutions in
(37) and (38) is graphically proved in Figure 2a,b.

(a) (b)

Figure 2. Equivalence of velocity fields uNcp(y, t) and uNsp(y, t) given by Equations (37) and (38) for
ω = π/12, Ke f f = 1, and t = 10.

3.2. Exact Expressions for τcp(y, t),τsp(y, t) and Rcp(y, t), Rsp(y, t)

In order to determine the dimensionless steady-state shear stresses τcp(y, t),τsp(y, t)
and the Darcy’s resistances Rcp(y, t), Rsp(y, t) corresponding to the two unsteady motions
of the IECBF when magnetic and porous effects are taken into account, we firstly use the
complex shear stress and Darcy’s resistance:

τp(y, t) = τcp(y, t) + iτsp(y, t), Rp(y, t) = Rcp(y, t) + iRsp(y, t) (40)

and follow the same method as for the steady-state velocities. The obtained results when
using for ucp(y, t) and usp(y, t) the expressions from the equalities in (26) are given by the
following respective relations:

τcp(y, t) = Re
{

1
1 − βω2 + iωα

e−δ y+iωt
}

, τsp(y, t) = Im
{

1
1 − βω2 + iωα

e−δ y+iωt
}

, (41)

and
Rcp(y, t) = KRe

{
1

(1−βω2+iωα)δ
e−δ y+iωt

}
,

Rsp(y, t) = KIm
{

1
(1−βω2+iωα)δ

e−δ y+iωt
}

.
(42)

Direct computations clearly show that the dimensionless steady-state velocity, shear
stress, and Darcy’s resistance fields ucp(y, t), τcp(y, t), Rcp(y, t) and usp(y, t), τsp(y, t),
Rsp(y, t) given by the relations in (26), (41), and (42) satisfy the governing Equations
(12)–(14) and the respective boundary conditions in (17) and (18).

Equivalent expressions for τcp(y, t), τsp(y, t) and Rcp(y, t), Rsp(y, t), namely:

τcp(y, t) =
√

p2
1 + q2

1 e−m̃y cos(ω t − ñy + ϕ − χ),

τsp(y, t) =
√

p2
1 + q2

1 e−m̃y sin(ω t − ñy + ϕ − χ),
(43)

and
Rcp(y, t) =

√
p2

2 + q2
2 e−m̃y cos(ω t − ñy + ϕ − θ),

Rsp(y, t) =
√

p2
2 + q2

2 e−m̃y sin(ω t − ñy + ϕ − θ),
(44)

125



Mathematics 2022, 10, 4228

were obtained by using the corresponding velocity fields ucp(y, t) and usp(y, t) from the
equalities in (33). In these relations:

p1 = (1−βω2)(m̃−ñωγ)+αω(ñ+m̃ωγ)

(1−βω2)
2
+(αω)2

√
p2 + q2,

q1 = αω(m̃−ñωγ)−(1−βω2)(ñ+m̃ωγ)

(1−βω2)
2
+(αω)2

√
p2 + q2,

(45)

p2 = K
1 − βω2 + αγω2

(1 − βω2)2 + (αω)2

√
p2 + q2, q2 = ωK

α − γ(1 − βω2)

(1 − βω2)2 + (αω)2

√
p2 + q2, (46)

where χ = arctg(q1/p1) and θ = arctg(q2/p2). The equivalence of the dimensionless
shear stresses τcp(y, t), τsp(y, t) and of the Darcy’s resistances Rcp(y, t), Rsp(y, t) given by
Equation (41) and (42), respectively, to those from the relations in (43) and (44) is proved in
Figures 3 and 4.

(a) (b)

Figure 3. Equivalence of shear stresses τcp(y, t) and τsp(y, t) given by Equations (41) and (43) for
α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, K = 0.4, Ke f f = 1, and t = 10.

(a) (b)

Figure 4. Equivalence of Darcy’s resistances Rcp(y, t) and Rsp(y, t) given by Equations (42) and (44),
for α = 0.8, ω = π/12, M = 0.6, K = 0.4, and t = 10.
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The dimensionless steady-state shear stresses and Darcy’s resistances corresponding
to the velocity fields uNcp(y, t) and uNsp(y, t) of incompressible Newtonian fluids given by
the relations in (37) and (38) have the following simple forms:

τNcp(y, t) = Re
{

e− y
√

Ke f f +iω+iωt
}

, τNsp(y, t) = Im
{

e− y
√

Ke f f +iω+iωt
}

, (47)

RNcp(y, t) = KRe
{

1√
Ke f f +iω

e− y
√

Ke f f +iω+iωt
}

,

RNsp(y, t) = KIm
{

1√
Ke f f +iω

e− y
√

Ke f f +iω+iωt
}

,
(48)

or the equivalent:

τNcp(y, t) = e− f y cos(ωt − gy), τNsp(y, t) = e− f y sin(ωt − gy), (49)

RNcp(y, t) = K
4
√

K2
e f f +ω2

e− f y cos(ωt − gy + ψ),

RNsp(y, t) = K
4
√

K2
e f f +ω2

e− f y sin(ωt − gy + ψ).
(50)

4. Some Numerical Results and Applications

Closed-form expressions for the dimensionless steady-state solutions ucp(y, t), τcp(y, t),
Rcp(y, t) and usp(y, t), τsp(y, t), Rsp(y, t) corresponding to two isothermal MHD motions
of an IECBF over an infinite flat plate embedded in a porous medium were presented in
simple forms in the previous section. They are the first exact solutions for MHD motions of
an IECBF with differential expressions of shear stress on the boundary. For validation, all so-
lutions are presented in double forms and their equivalence was graphically proved. These
solutions can easily be particularized to give corresponding solutions for incompressible
Oldroyd-B, Maxwell, and Newtonian fluids that are performing similar motions.

As an application, some of the obtained results were used to determine the required
time to reach the steady or permanent state. From a mathematical point of view, this was
the time after which the diagrams of the starting velocities uc(y, t) and us(y, t) (numerical
solutions) were almost identical to those of their steady-state components ucp(y, t) and
usp(y, t), respectively. The convergence of the two starting velocities to their steady-state
components was proved in Figures 5–8 for increasing values of the time t at distinct values
of M and K and fixed values of the other parameters. Based on these figures, it was clear
that the required time to reach the steady state diminished with increasing values of the
magnetic or porous parameters (M and K, respectively). Consequently, the steady state for
isothermal motions of the IECBF was earlier reached in the presence of a magnetic field or
porous medium. In addition, as expected, in all cases the fluid velocity tended to zero with
increasing values of the spatial variable y.

For comparison, as well as to bring to light some characteristic features of the two
motions, the spatial distributions of the dimensionless starting velocity fields uc(y, t) and
us(y, t) (numerical solutions) are presented together in Figure 9a,b, respectively, for the
same values of the physical parameters. The oscillatory behavior of the two motions, as well
as the phase difference between them, can be easily observed. In addition, the initial and
boundary conditions were clearly satisfied. Blue and yellow colors were used in the current
figure to designate the minimum and maximum values of the two solutions, respectively.
The intermediate values between the maximum and minimum are denoted by the gradient
of the colors between yellow and blue.
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(a) 4.0M (b) 9.0M

Figure 5. Convergence of starting velocity uc(y, t) (numerical solution) to its steady-state component
ucp(y, t) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, K = 0.4, and two values of M.

(a) 4.0M (b) 9.0M

Figure 6. Convergence of starting velocity us(y, t) (numerical solution) to its steady-state component
usp(y, t) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, K = 0.4, and two values of M.

(a) 1.0K (b) 9.0K

Figure 7. Convergence of starting velocity uc(y, t) (numerical solution) to its steady-state component
ucp(y, t) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and two values of K.
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(a) 1.0K (b) 9.0K

Figure 8. Convergence of starting velocity us(y, t) (numerical solution) to its steady-state component
usp(y, t) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and two values of K.

(a) (b)

Figure 9. Spatial distributions of the dimensionless starting solutions uc(y, t) (numerical solutions)
for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and K = 0.4.

The three-dimensional distributions of the same non-dimensional starting velocities
uc(y, t) and us(y, t) are also visualized by means of the two-dimensional contour graphs
(see, for example, the paper of Fullard and Wake [28]) in Figure 10a,b, respectively, for
α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and K = 0.4.

(a) (b)

Figure 10. Contours profiles of the dimensionless starting solutions uc(y, t) and.us(y, t) (numerical
solutions) for α = 0.8, β = 0.7, γ = 0.6, ω = π/12, M = 0.6, and K = 0.4. The trajectory paths with
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the minimum value are denoted in blue colors while those with the maximum value are marked in
yellow colors. The trajectory paths with intermediate values are represented by the gradient of blue
and yellow colors. The oscillatory behavior of the fluid motions is represented by an alternation of
two distinct sets of almost-closed trajectories along the time t with blue and yellow colors.

5. Conclusions

Some unsteady motions of incompressible fluids become steady or permanent in time
if the fluid is at rest at the initial moment. Of course, this also depends on the boundary
conditions. For such motions, in practice, a very important problem is to know the time
required to reach the steady or permanent state. This is the time after which the fluid
moves according to the steady-state solutions. In order to determine this time for a given
motion, it is sufficient to know the corresponding steady-state solutions. This is the reason
why we established closed-form expressions for the dimensionless steady-state solutions
corresponding to two isothermal MHD unidirectional motions of an IECBF over an infinite
flat plate embedded in a porous medium. The boundary conditions that were used, contrary
to what is usually found in the existing literature, contained differential expressions of
the non-trivial shear stress on a part of the boundary. For a check of results that were
obtained here, all solutions have been presented in different forms and their equivalence
was graphically proved.

It is worth pointing out the fact that all of the obtained solutions could easily be
particularized to give dimensionless steady-state solutions for the incompressible Oldroyd-
B, Maxwell, second-grade and Newtonian fluids that were performing similar motions. By
taking α = β = γ = 0, for instance, dimensionless steady-state solutions corresponding
to motions of an incompressible Newtonian fluid induced by the flat plate that applied
a shear stress S cos(ωt) or S sin(ωt) to the fluid were brought to light. In addition, the
solutions for motions of Burgers’ fluids were used to determine the required time to reach
the steady state. This time, which in practice is very important for experimental researchers,
was graphically determined by showing the convergence of the starting solutions to the
corresponding steady-state solutions. The oscillatory behavior of the two motions, as well
as the phase difference between them, was graphically underlined. The main outcomes
that were here obtained are:

- The first exact solutions for MHD motions of Burgers’ fluids through a porous
medium were determined when differential expressions of shear stress were given on
the boundary.

- The solutions corresponding to Oldroyd-B, Maxwell, and Newtonian fluids that
were performing similar motions were immediately obtained as limiting cases of the
present results.

- The convergence of the dimensionless starting velocities uc(y, t) and us(y, t) to their
respective steady-state components ucp(y, t) and usp(y, t) was graphically proved. In
addition, all of the obtained solutions were presented in different forms and their
equivalence was proved.

- The steady state for isothermal motions of incompressible Burgers fluids’ was earlier
reached in the presence of a magnetic field or porous medium.

Author Contributions: Conceptualization, C.F., D.V. and A.R.; Methodology, C.F., D.V. and A.R.;
Software, T.M.Q. and A.R.; Validation, C.F., D.V., A.R. and T.M.Q.; Writing—review and editing, C.F.,
D.V., A.R. and T.M.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their gratitude to the Editor and reviewers for
their careful assessments, kind appreciations, and fruitful suggestions regarding the first version of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

130



Mathematics 2022, 10, 4228

Nomenclature

T Cauchy stress tensor S Extra-stress tensor
A First Rivlin–Ericksen tensor L Velocity gradient
u Fluid velocity S Constant shear stress
p Hydrostatic pressure x, y, Z Cartesian coordinates

R(y, t) Darcy’s resistance k
Permeability of porous
medium

M Magnetic parameter K Porous parameter
B Magnitude of magnetic field Syy, Syz, Szz, Szx Components of S
Greek Symbols

τ Non-trivial shear stress ρ Fluid density
μ Dynamic viscosity ν Kinematic viscosity
υ Velocity vector σ Electrical conductivity
α, β, γ Material constants ϕ Porosity
ω Frequency of oscillations

References

1. Akram, S.; Anjum, A.; Khan, M.; Hussain, A. On Stokes’ second problem for Burgers’ fluid over a plane wall. J. Appl. Comput.
Mech. 2021, 7, 1514–1526.

2. Khan, M.; Malik, R.; Anjum, A. Exact solutions of MHD second Stokes flow of generalized Burgers fluid. Appl. Math. Mech.–Engl.
2015, 36, 211–224. [CrossRef]

3. Ullah, H.; Lu, D.; Siddiqui, A.M.; Haroon, T.; Maqbool, K. Hydrodynamical study of creeping Maxwell fluid flow through a
porous slit with uniform reabsorption and wall slip. Mathematics 2020, 8, 1852. [CrossRef]

4. Fetecau, C.; Ellahi, R.; Sait, S.M. Mathematical analysis of Maxwell fluid flow through a porous plate channel induced by a
constantly accelerating or oscillating wall. Mathematics 2021, 9, 90. [CrossRef]

5. Hayat, T.; Khan, I.; Ellahi, R.; Fetecau, C. Some MHD flows of a second grade fluid through the porous medium. J. Porous Media
2008, 11, 389–400. [CrossRef]

6. Ali, F.; Norzieha, M.; Sharidan, S.; Khan, I.; Hayat, T. New exact solutions of Stokes’ second problem for an MHD second grade
fluid in a porous space. Int. J. Non-Linear Mech. 2012, 47, 521–525. [CrossRef]

7. Khan, M.; Khan, S.B.; Hayat, T. Exact solution for the magnetohydrodynamic flows of an Oldroyd-B fluid through porous
medium. J. Porous Media 2007, 10, 391–399. [CrossRef]

8. Alqahtami, A.M.; Khan, I. Time-dependent MHD flow of non-Newtonian generalized Burgers’ fluid over a suddenly moved
plate with generalized Darcy’ law. Front. Phys. 2020, 7, 214. [CrossRef]

9. Hussain, M.; Qayyum, M.; Afzal, S. Modeling and analysis of MHD oscillatory flows of generalized Burgers’ fluid in a porous
medium using Fourier transform. J. Math. 2022, 2373084. [CrossRef]

10. Fetecau, C.; Ellahi, R.; Khan, M.; Shah, N.A. Combined porous and magnetic effects on some fundamental motions of Newtonian
fluids over an infinite plate. J. Porous Media 2018, 21, 589–605. [CrossRef]

11. Vijayalakshmi, E.A.; Santra, S.S.; Botmart, T.; Alotaibi, H.; Loganathan, G.B.; Kannan, M.; Visuvasam, J.; Govindan, V. Analysis of
the magnetohydrodynamic flow in a porous medium. AIMS Math. 2022, 7, 15182–15194. [CrossRef]

12. Burgers, J.M. Mechanical considerations-model system-phenomenological theories of relaxation and of viscosity. First Report on Viscosity
and Plasticity; Burgers, J.M., Ed.; Nordemann Publishing Company: New York, NY, USA, 1939.

13. Tovar, C.A.; Cerdeirina, C.A.; Romani, L.; Prieto, B.; Carballo, J. Viscoelastic behavior of Arzua-Ulloa cheese. J. Texture Stud. 2003,
34, 115–129. [CrossRef]

14. Krishnan, J.M.; Rajagopal, K.R. Review of the uses and modeling of bitumen from ancient to modern times. Appl. Mech. Rev. 2003,
56, 149–214. [CrossRef]

15. Lee, A.R.; Markwick, A.H.D. The mechanical properties of bituminous surfacing materials under constant stress. J. Soc. Chem. Ind.
1937, 56, 146–156.

16. Krishnan, J.M.; Rajagopal, K.R. Thermodynamic frame work for the constitutive modeling of asphalt concrete: Theory and
applications. J. Mater. Civil Eng. 2004, 16, 155–166. [CrossRef]

17. Ravindran, P.; Krishnan, J.M.; Rajagopal, K.R. A note on the flow of a Burgers’ fluid in an orthogonal rheometer. Int. J. Eng. Sci.
2004, 42, 1973–1985. [CrossRef]

18. Hayat, T.; Fetecau, C.; Asghar, S. Some simple flows of a Burgers’ fluid. Int. J. Eng. Sci. 2006, 44, 1423–1431. [CrossRef]
19. Khan, M.; Anjum, A.; Fetecau, C. On exact solutions of Stokes second problem for a Burgers’fluid. I. The case γ < λ2/4. Z. Angew.

Math. Phys. 2010, 61, 697–720. [CrossRef]
20. Khan, M.; Anjum, A.; Fetecau, C. On exact solutions of Stokes second problem for a Burgers’ fluid. II. The cases γ < λ2/4 and γ < λ2/4.

Z. Angew. Math. Phys. 2011, 62, 749–759. [CrossRef]
21. Safdar, R.; Imran, M.; Tahir, M.; Sadiq, N.; Imran, M.A. MHD flow of Burgers’ fluid under the effect of pressure gradient through

a porous material pipe. Punjab Univ. J. Math. 2018, 50, 73–90.

131



Mathematics 2022, 10, 4228

22. Fetecau, C.; Ahammad, N.A.; Shah, N.A.; Vieru, D. Steady-state solutions for two mixed initial-boundary value problems which
describe motions of Burgers fluids. Application. Mathematics 2022, 10, 3681. [CrossRef]

23. Çolak, E.; Öztop, H.F.; Ekici, Ö. MHD mixed convection in a chamfered lid-driven cavity with partial heating. Int. J. Heat Mass
Transf. 2020, 156, 119901. [CrossRef]

24. Abderrahmane, A.; Younis, O.; Al-Khaleel, M.; Laidoudi, H.; Akkurt, N.; Guedri, K.; Marzouki, R. 2D MHD Mixed Convection in
a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM. Nanomaterials 2022, 12, 3270. [CrossRef] [PubMed]

25. Renardy, M. Inflow boundary conditions for steady flow of viscoelastic fluids with differential constitutive laws. Rocky Mt. J.
Math. 1988, 18, 445–453. [CrossRef]

26. Renardy, M. An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions. J. Non-
Newtonian Fluid Mech. 1990, 36, 419–425. [CrossRef]

27. Scofield, D.F.; Huq, P. Fluid dynamical Lorentz force law and Poynting theorem-derivation and implications. Fluid Dyn. Res.
2014, 46, 055514. [CrossRef]

28. Fullard, L.A.; Wake, G.C. An analytical series solution to the steady laminar flow of a Newtonian fluid in a partially filled pipe,
including the velocity distribution and the dip phenomenon. IMA J. Appl. Math. 2015, 80, 1890–1901. [CrossRef]

132



Citation: Medrano-Hermosillo, J.A.;

Lozoya-Ponce, R.; Rodriguez-Mata,

A.E.; Baray-Arana, R. Phase-Space

Modeling and Control of Robots in

the Screw Theory Framework Using

Geometric Algebra. Mathematics 2023,

11, 572. https://doi.org/10.3390/

math11030572

Academic Editors: Maria Luminit,a

Scutaru and Catalin I. Pruncu

Received: 15 December 2022

Revised: 13 January 2023

Accepted: 18 January 2023

Published: 21 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Phase-Space Modeling and Control of Robots in the Screw
Theory Framework Using Geometric Algebra

Jesús Alfonso Medrano-Hermosillo †, Ricardo Lozoya-Ponce *,†, Abraham Efraím Rodriguez-Mata †

and Rogelio Baray-Arana †

Instituto Tecnológico de Chihuahua (ITCH), Chihuahua 31310, Mexico
* Correspondence: ricardo.lp@chihuahua.tecnm.mx
† This author contributed equally to this work.

Abstract: The following paper talks about the dynamic modeling and control of robot manipulators
using Hamilton’s equations in the screw theory framework. The difference between the proposed
work with diverse methods in the literature is the ease of obtaining the laws of control directly
with screws and co-screws, which is considered modern robotics by diverse authors. In addition,
geometric algebra (GA) is introduced as a simple and iterative tool to obtain screws and co-screws.
On the other hand, such as the controllers, the Hamiltonian equations of motion (in the phase space)
are developed using co-screws and screws, which is a novel approach to compute the dynamic
equations for robots. Regarding the controllers, two laws of control are designed to ensure the error’s
convergence to zero. The controllers are computed using the traditional feedback linearization and
the sliding mode control theory. The first one is easy to program and the second theory provides
robustness for matched disturbances. On the other hand, to prove the stability of the closed loop
system, different Lyapunov functions are computed with co-screws and screws to guarantee its
convergence to zero. Finally, diverse simulations are illustrated to show a comparison of the designed
controllers with the most famous approaches.

Keywords: screw theory; geometric algebra; Hamilton’s equations; sliding mode control; Lyapunov
theory

MSC: 70e60; 70b15

1. Introduction

In the Lagrangian approach, the two fundamental variables, written as position (θ)
and velocity (θ̇), are mutually dependent. However, in the Hamiltonian formalism, the
fundamental variables, computed as position (θ) and momentum (p), provide more abstract
and profound formulations mechanics [1]. For example, Hamiltonian formalism is very
important in the study of the energy changes that are possible in molecules and atoms. In
addition, it is crucial if it is interested in quantizing a dynamical system or in quantum
theory. Thus, this field should be taken into account [1,2].

The Lagrangian formalism (traditionally used in robots) is based on the kinetic and
potential energies of the robot. This function is used to construct the body dynamics and
then the control of the system [3]. Therefore, the resulting dynamic model and its controller
will be represented by positions and velocities. However, in robotics, it is possible to
compute controllers using Hamiltonian formalism, because the momenta, in theory, change
very quickly (in rate 1/10) [4]. In addition, in practice, it is easier to measure these forces
with sensors. Hence, there are motivations to implement controllers using the Hamiltonian
approach. Some relevant works about Hamiltonian controllers are mentioned below.

In [5], the authors present a proportional-derivative control with gravity compensation
(PD+G) using Hamilton’s equations for robot manipulators with multiple degrees of
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freedom, demonstrating and proving the analysis using a simulation for a planar robot.
In [6], the authors propose a hybrid controller for a SCARA robot. The work is based on
a port-controlled Hamiltonian system to reduce the position tracking error. In [7], using
Hamilton’s equations, the work describes a formalism to control electromechanical systems.
On the other hand, there are other advanced works formulating Hamiltonian mechanics
using a geometric framework. In [8], the work proposes Hamiltonian mechanics in terms
of Geometric Calculus, where the author mentioned that their Hamiltonian formalism
would be highly important for application with robots. On the other hand, other works are
using GA to reduce the computational cost, as mentioned in [9]. In [10], geometric algebra
is utilized to compute Hamiltonian mechanics and the Poisson bracket, where this work
could be used in robotics. The authors in [11] illustrate the importance of Hamiltonians
in robotics. The technique computes the dynamic equations using Newton–Euler and
describes the local Hamiltonians in each joint to implement its law of control. Based on
the above, the Hamiltonian equations can be used to control electromechanical systems.
However, the previous works have been developed using the traditional Euler–Lagrange
or Newton–Euler equations, where in some robots, the computational cost is high due
to the considerable multiplications between the diverse components. In addition, the
development is tedious for some robots. Hence, the new proposed method expands the
Hamiltonian control approach using screw theory, where this powerful mathematical tool
has been used in recent years for the analysis of spatial mechanisms and some works have
expressed it as “the forgotten tool in multibody dynamics” [12,13].

Screw theory is a mathematical tool for the analysis of spatial mechanics, the main
element of this theory is the screw [14]. The screw is constructed by two three-dimensional
vectors, where these vectors are angular velocity and linear velocity [15,16]. Therefore, it is
possible to study rigid bodies using this technique. The screw theory has gained importance
because it is an elegant mathematical tool and can reduce the number of multiplications
between the Lie group SE(3) (as is common in traditional techniques) [17]. Moreover,
some authors describe the analysis of the kinematics and dynamics of rigid bodies using
screw theory as modern robotics [18]. In robotics, several works using screw theory have
gained prominence in recent years. For example, diverse authors propose the screw theory
approach in the process of inverse and/or forward kinematics [19–22]. Other relevant
techniques are described below. In [23], the paper describes an analysis of error sources
of industrial robots, where they proposed a pose error model of industrial robots with
screw theory. In [24], the authors propose a mathematical model using Kane’s dynamic
equations in the framework of screw theory. In [25], they study the rigid-body dynamics of
serial robots subject to time-invariant holonomic constraints on their end-effectors. The
paper proposes a technique to compute the dynamic model of robots in the framework of
screw theory. On the other hand, other interesting approaches for the dynamic models are
mentioned in [26,27]. Alternatively, in [28], the method suggests a motion control approach
with a focus on robotic manipulators based on screw theory and dual quaternions, where
they add a stability analysis to propose a law of control for a desired trajectory. However, the
drawback is that, while previous works consider kinematics and dynamics in rigid bodies,
controllers are not directly proposed using screw theory. Therefore, it is an interesting
motivation to compute controllers using the screw theory and the Hamiltonian approach.
In addition, GA is proposed to compute the screws of the controllers and dynamics of
the system; this novel approach reduces the number of operations and is intuitive for
new researchers in the robotics field (due to previous knowledge of vector calculus not
being required).

Taking into account the previous literature, it is possible to see that the Hamilton’s
equations can be used as a methodology to compute controllers for robots, where our
work extends these equations for robots in the screw theory framework and iteratively. In
addition, GA is proposed for computing the diverse screws and co-screws, which is an
advantage for new users interested in robotics. Regarding the controllers, the equations of
the robot are designed with co-screws and screws using the approach in [17]. Later, to prove
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convergence, functions with screws and co-screws are computed to satisfy the Lyapunov
theory and thus obtain the law of control. The main advantages of our approach are:

- Due to the use of GA, vector calculus knowledge is not required [29,30].
- Using the screw theory, the Denavit–rtenberg (D–H) representation and the homoge-

neous matrices are avoided. It is well known that with the traditional method, it is possible
to have multiple results (this is due to the D–H technique). The above could be a risk of
confusion by different designers [20].

- As the proposed technique is iterative, it is possible to be implemented in serial
robots with any degrees of freedom. In addition, the Euler–Lagrange and Newton–Euler
methods are avoided. Therefore, robot dynamics and control can be computed easily.

- Due to the laws of control being computed directly using screw theory, they are
intuitive and can be programmed easily.

- Using sliding mode control, the robustness of the system under matched perturba-
tions is obtained [31].

The document is organized as follows: In Section 2, we illustrate the theoretical bases
of geometric algebra. In Section 3, the mathematical development necessary to construct
the controllers is presented. In Section 4, we show the laws of control and their stability. In
Section 5, we present a numerical example with a simulation to prove the designed located
controllers. Finally, in Section 6, we illustrate the conclusions.

2. Geometric Algebra

In mathematics, geometric algebra is a term applied to Clifford’s theory of alge-
bras [29,32]. The GA of an n-dimensional space is denoted by Gp,q,r, where p, q and r
represent the orthonormal basis vectors that square to 1,−1 and 0, respectively. On the
other hand, in additional to scalar multiplication and vector addition, GA is endowed with
a noncommutative product, this product is the Clifford product (or geometric product). For
example, the Clifford product for two vectors a, b are:

ab = a · b + a ∧ b (1)

In Equation (1), the right side illustrates two elements: the first one is the inner product
or dot product (symmetric part); the second one is the wedge product or exterior product
(antisymmetric part), where the wedge product is a distributive, associative, and anti-
commutative operator. The elements computed by the exterior product of k independent
vectors span the k-th exterior power. In this space, each element is called a k − vector.
The diverse multi-vectors are entities computed by the sum of elements of the set of Gn,
written as:

A = 〈A〉1 + 〈A〉2 + · · ·+ 〈A〉n (2)

In addition to Equation (2), contemplate two homogeneous multi-vectors A and B of
grade r and s, respectively. The Clifford product can be shown as:

AB = 〈AB〉r+s + 〈AB〉r+s−2 + · · ·+ 〈AB〉|r−s| (3)

where 〈AB〉t, indicate the t-grade part of the multi-vector AB. Suppose a n-dimensional
space with diverse orthonormal basis vectors {ei}, i = 1, . . . , n, such that ei · ej = δi,j, where
δi,j = 1 | i = j and δi,j = 0 | i 	= j. The basis vectors for the entire GA are:

{1; ei; ei ∧ ej; ei ∧ ej ∧ ek; · · · ; I = e1 ∧ · · · ∧ en} (4)

where I is called the pseudoscalar. Below, we include some important definitions that are
useful in geometric algebra, for details consult [8,29,32,33].
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Definition 1. Let a multi-vector A of grade r. After, the reverse of A, written as Ã, is defined by:

Ã =
r

∑
i=0

(−1)
i(i−1)

2 〈A〉i (5)

Definition 2. Let a multi-vector A of grade r. After, the Clifford conjugate of A, written as Ā, is
defined by:

Ā =
r

∑
i=0

(−1)
i(i+1)

2 〈A〉i (6)

Definition 3. Let a ∈ G3. The rotation of a, written as a′, is defined by the following versor
product:

a′ = RθaR̃θ = e−
θ
2 Lae

θ
2 L (7)

where Rθ is the rotor operator, θ is the rotation angle, and L is the Lie algebra generator. The 2-vector
L is the operator of rotation used in quaternions; in a different way, just consider e2e3 → i, e3e1 → j
and e1e2 → k.

Definition 4. Let I ∈ Gn. After, the inverse of I, written as I−1, is defined by:

I−1 =
Ĩ
I Ĩ

(8)

Definition 5. Let a multi-vector A of grade r. After, the dual of A, written as A∗, is defined by:

A∗ =
r

∑
i=0

〈A〉i I−1 (9)

Definition 6. Consider two homogeneous multi-vectors A and B. After, the commutator product
between A and B is defined by:

A×B =
1
2
(AB − BA) (10)

Definition 7. Consider two homogeneous multi-vectors A and B. After, the anti-commutator
product between A and B is defined by:

A×B =
1
2
(AB + BA) (11)

3. Mathematical Development

3.1. Screws

Suppose the following Lie group:

SE(3) :=
{(

R x
0 1

)
: R ∈ SO(3), x ∈ R

3
}

(12)

The Lie algebra of SE(3) is:

se(3) :=
{(

w vs.
0 0

)
: w ∈ so(3), vs. ∈ R

3
}

(13)
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where se(3), w and v represent the Lie algebra of the Lie group SE(3), the angular velocity,
and the linear velocity, respectively [18]. On the other hand, the Lie algebra elements are
often illustrated as follows:

s =
(

w
vs.

)
(14)

where s is constructed by two three-dimensional vectors called screws.

Lie Algebra Elements

Consider a path through the identity (e) in a group (G):

γ : R → G (15)

where γ(0) = e. The Lie algebra element is calculated by following a path γ(t) starting
at the identity element of SE(3) and evaluating d

dt |t=0γ(t) [14,17]. Therefore, suppose the
following path:

t = x − Rθ x R̃θ (16)

where t is the translation vector. After, computing the Lie algebra element:

v = −
(

d
dt
(Rθ) x R̃θ + Rθ x

d
dt

(
R̃θ

))
(17)

Considering d
dt (Rθ) = − θ̇

2 LRθ and d
dt

(
R̃θ

)
= θ̇

2 LR̃θ :

v = −
((

− θ̇

2
LRθ

)
x R̃θ + Rθ x

(
θ̇

2
LR̃θ

))
(18)

Now, evaluating around the entity, where Rθ(0) = R̃θ(0) = 1:

v(0) = −1
2
(xL − Lx)θ̇ (19)

Finally, using Definition 6:

v(0) = (L×x)θ̇ (20)

Therefore, the linear velocity is the commutator between the Lie algebra generator of the
rotor and the point x. On the other hand, the angular velocity is solved using the same
methodology. The path through the identity is γ(t) = Rθ , where Rθ(0) = 1 and Rθ R̃θ = 1.
Differentiating the last relation:

d
dt
(Rθ)R̃θ + Rθ

d
dt

(
R̃θ

)
= 0 (21)

Now, evaluating around the entity:

Lθ̇ − Lθ̇ = 0 (22)

Hence, the Lie algebra element consists of a 2 − vector L. In consequence, the angular
velocity is expressed by the Lie algebra generator of the rotor. However, traditionally, the
angular velocity is written as a unit vector [34–36]. Thus, this notation can be used by
Definition 5. Therefore, the angular velocity is:

w(0) = L∗ θ̇ (23)

Finally, with our approach, the screw described above can be written as:

s(0) =
(

L∗
L×x

)
θ̇ (24)
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It is possible to see that each screw can be computed easily with the previous equation. In
each DoF, it is only necessary to record the Lie algebra element and its Cartesian position.

3.2. Velocity Kinematics

In robotics, the screws express the velocities of the diverse joints, where the velocity
for a robot with n degrees of freedom (DoF) can be illustrated by:

Vn(0) =
n

∑
j=1

sj(0)θ̇j (25)

where the previous velocity is only valid in the identity or in the home position. To find the
velocity in the current position of the robot, it is necessary to compute the current screw (s).
To write the current screw, it is indispensable to use the following notation:

sj = eθi ad(si)sj(0)θ̇ (26)

Here, we use the adjoint representation and the exponential mapping to compute the
current screw [37]. Therefore, the velocity of a serial robot with n DoF, in any position, is:

Vn =
n

∑
j=1

sj θ̇j (27)

From Equation (27), you can see that the different screws are the columns of the Jacobian
matrix in robotics.

3.3. Co-Screws

Properly speaking, co-screws are linear functional on the velocities, satisfying the
following:

F : se(3) → R where F (as1 + bs2) = aF (s1) + bF (s2) (28)

Here, a, b ∈ R, and F (s) are often called the evaluation map. The co-screws are constructed
using two three-dimensional vectors, but, contrary to screws, these elements are computed
by the dual Lie algebra se∗(3). Thus, in robotics, the momentum co-screw (P) can be
written as follows:

P =

(
j
p

)
(29)

where j and p represent the angular and linear momentum, respectively, [17]. Furthermore,
the evaluation map is illustrated as:

P(V) = PTV (30)

Another choice to construct the momentum co-screw is using the inertia operator,
where the inertia provides an isomorphism as:

N : se(3) → se∗(3) (31)

and it is computed by:

N = e−θi adT(si)N(0)e−θi ad(si) and N(0) =
( I mC

mCT mI3

)
(32)

Here I represents the inertia tensor, m the mass of the link, C the adjoint representation of
the center of mass and I3 the identity matrix in R3. Hence, the momentum co-screw can be
written as [17]:

P = NV (33)
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3.4. Lagrangian Formulation of Dynamics Using Screw Theory

The kinetic energy can be described, in the context of the screw theory, as a combination
of the momentum co-screw and the screw:

Ek
(
θ, θ̇

)
=

n

∑
j=1

1
2
(

jj · wj + pj · vj
)
=

n

∑
j=1

1
2
Pj(Vj) =

n

∑
j=1

1
2

NjVj(Vj) (34)

Using the evaluation map, Equation (34) changes to:

Ek
(
θ, θ̇

)
=

n

∑
j=1

1
2

VT
j NjVj (35)

On the other hand, the potential energy is written by:

Ep(θ) =
n

∑
j=1

g̃T c̃j (36)

where:

g̃ =

( −ge2
0

)
c̃j =

(
mjcj
mj

)
(37)

Here, g is the gravitational force, mj is the mass of each link and cj is the position of the
center of mass. Then, using the Euler–Lagrange equation, it is computed the dynamic
equations of the robotic system (for details see the Appendix A). Therefore:

τi =
d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
− ∂L(

θ, θ̇, t
)

∂θi
(38)

where:
d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
=

n

∑
j=i

sT
i NjV̇j + VT

j Nj
[
si, Vj

]
+ VT

j Nj[Vi, si] (39)

∂L(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

GT
j si − VT

j Nj[si, Vi] (40)

Therefore, the robot dynamics are described by:

τi =
n

∑
j=i

V̇T
j Njsi + VT

j Nj
[
si, Vj

]− GT
j si (41)

where G is the co-screw of the gravitational forces and
[
si, Vj

]
is the Lie bracket [17,25].

3.5. Hamilton’s Equations

Hamilton’s equations can be computed using the Legendre transformation [1]:

H(θ, p, t) =
n

∑
i=1

pi θ̇i −L(
θ, θ̇, t

)
(42)

where the partial derivation with respect to pi provides:

∂H(θ, p, t)
∂pi

= θ̇i (43)
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The previous equation is one of Hamilton’s equations. To compute the second equation
is necessary to use the partial derivation of Equation (42) with respect to θi:

∂H(θ, p, t)
∂θi

= −∂L(
θ, θ̇, t

)
∂θi

(44)

Finally, the third Hamilton’s equation is computed using Equation (38) with Equa-

tion (44) and pi =
∂L(θ,θ̇,t)

∂θ̇i
:

ṗi = τi − ∂H(θ, p, t)
∂θi

(45)

4. Hamilton Control Using Screw Theory

With our approach using screw theory, Hamilton’s equations can be written as (for
details see Appendix A):

∂H(θ, p, t)
∂pi

= θ̇i (46)

∂H(θ, p, t)
∂θi

=
n

∑
j=i

PT
j

[
si, N−1

i Pi

]
− GT

j si (47)

ṗi = τi +
n

∑
j=i

GT
j si −PT

j

[
si, N−1

i Pi

]
(48)

The previous equations could be used to compute the dynamic equations of robots
in the phase space. After, to ensure that the robot reaches the desired position using the
Hamiltonian approach, it is necessary to consult the following theorems.

Theorem 1. A serial robot system reaches a desired position using the following control law:

τi = Kisign(Si) + KS iSi − ∂H(θ, p, t)
∂pi

−
n

∑
j=i

PT
j

[
N−1

i Pi, si

]
− GT

j si (49)

where Si = p̃i + θ̃i is the sliding surface, p̃i = pdi − pi is the error between the desired and
measured momentum, θ̃i = θdi − θi is the error between the desired and the measured joint position,
and Ki, KS i ∈ R+.

Proof. In sliding mode control, the convergence of the surface needs to be satisfied [38].
Hence, the following Lyapunov function is proposed:

V(Si) =
1
2
Si×Si (50)

Now, use Definition 7 and differentiate the Lyapunov function in terms of time:

˙V(Si) = Si×Ṡi = Si× d
dt

(
p̃i + θ̃i

)
(51)

Using ˙̃θi = −θ̇i, Equations (46) and (48):

˙V(Si) = Si×
(
−τi −

n

∑
j=i

PT
j

[
N−1

i Pi, si

]
− GT

j si − ∂H(θ, p, t)
∂pi

)
(52)

Applying the controller in Equation (49):

˙V(Si) = −Ki|Si| − KS iSi×Si (53)

140



Mathematics 2023, 11, 572

Thus, as the derivative of the Lyapunov function is negative definite, the convergence of
the sliding surface is satisfied. Then, Si = 0 → θ̃i = 0. Hence, the serial robot with the
proposed controller will reach the desired position [38]. On the other hand, the closed-loop
system can be computed applying Equation (49) into Equation (48):

˙̃pi =
∂H(θ, p, t)

∂pi
− Kisign(Si)− KS iSi (54)

Theorem 2. A serial robotic arm will track a desired smooth function by applying the following
law of control:

τi = Kpi θ̃i + Kvi p̃i + ṗdi −
n

∑
j=i

PT
j

[
N−1

i Pi, si

]
− GT

j si (55)

where Si = p̃i + θ̃i is the sliding surface, p̃i = pdi − pi is the error between the desired and
measured momentum, θ̃i = θdi − θi is the error between the desired and the measured joint position,
and Kpi, Kvi ∈ R+.

Proof. The proof of this theorem is easily solved. If one converts the law of control in
Equation (55) into Equation (48), it provides:

Kpi θ̃i + Kvi p̃i + ˙̃pi = 0 (56)

The previous equation is linear and the closed-loop system is globally asymptotically
stable, if and only if, Kpi, Kvi ∈ R+[39]. This law of control is similar to the traditional
PD-CTC (computed-torque control with a proportional-derivative action), but the proposed
controller is in the phase space [35]. On the other hand, the closed-loop system can be
represented as follows:

˙̃pi = −Kpi θ̃i − Kvi p̃i (57)

5. Examples

5.1. Single Degree-of-Freedom Robot

Consider the manipulator in Figure 1. After, using Equation (48), the dynamic equation
of the robot in the phase space is:

ṗ1 = τ1 + GT
1 s1 −PT

1

[
s1, N−1

1 P1

]
= τ1 + GT

1 s1 (58)

The screw can be computed as s1(0) =

(
L∗

L×x

)
=

(
e1e2∗

e1e2×0

)
=

(
e3
0

)
and the

wrench of gravitational forces as G1 =

( −mgc(0) × e2
−mg e2

)
. Therefore:

ṗ1 = τ1 +

( −mgc(0) × e2
−mg e2

)T( e3
0

)
(59)

ṗ1 = τ1 − mg e1 · c(0) (60)

The previous equation is in the initial position, to transform to the actual position is
necessary to change the initial position of the center of mass to the actual. Hence, as the
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center of mass is concentrated at the end of the link, the dynamic equations of the system
are:

ṗ1 = τ1 − mg e1 · l(cos(θ1) e1 + sin(θ1) e2) = τ1 − mglcos(θ1) (61)

The above result is the dynamic equation of the robot in the phase space, demonstrating
the ease of computing the motion equation. Remember that if we use another approach, it
is necessary to develop the Euler–Lagrange equation and then use the Legendre transform,
the traditional process is tedious instead of the proposed technique. Now, to illustrate the
behavior of the previous system with Theorem 1, it is necessary to apply Equation (49) in
Equation (61). Therefore, the system can be written as:

ṗ1 = K1sign(S1) + KS 1S1 − ∂H(θ, p, t)
∂p1

= K1sign(S1) + KS 1S1 − p
ml2 (62)

where:
S1 = θ̃1 + p̃1 (63)

Based on the above, it is possible to conclude that the behavior of the system will
be determined by the constant values. However, it is easy to check that the previous
second-order differential equation is stable if and only if the constant values are positive
and then the desired position will be reached. On the other hand, the behavior of Equation
(61) with Theorem 2 can be written as:

ṗ1 = Kp1θ̃1 + Kv1 p̃1 + ṗd1 (64)

Similar as Equation (62), the previous second-order differential equation is stable if and
only if the constant values are positive.

Figure 1. Single degree-of-freedom robot.

Comparison with Other Techniques

In the above section, the dynamic equations of the example were computed. It was seen
the advantages of the proposed work instead of the traditional method. However, in this
section, the diverse proposed laws of control are compared with other traditional techniques.
To simulate the results of the example, it is necessary to implement the parameters in Table 1,
where these elements are the proposed components for the robot. The laws of control to be
compared are shown in Table 2, where it is possible to see the most famous controllers in
the industry (PD and PID). The diverse gains for the controllers were calculated according
to [40].
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Table 1. Parameters of the robot.

Parameter Value Unit

m 0.25 kg
l 0.5 m
g 9.81 m

s2

Table 2. Feedback controllers for the single degree-of-freedom robot.

Law of Control Law of Control Gains

Theorem 1 See Equation (49) K1 = 1, KS 1 = 10
Theorem 2 See Equation (55) Kp1 = 25, Kv1 = 25
PD τ = Kp e(t) + Kv

de(t)
dt Kp = 25, Kv = 25

PID τ = Kp e(t) + KI
∫

e(t)dt + Kv
de(t)

dt Kp = 25, KI = 15, Kv = 25

The simulations were conducted using the Euler integration method, with a step size
of 0.001 s. The initial conditions were selected as θ1(0) = p1(0) = 0 and the desired value as
θd1 = 45◦. Thus, the behavior of the error, with diverse controllers, can be seen in Figure 2.

Figure 2. Error signals with diverse controllers in θ1 for a single degree of freedom robot arm.

In Figure 2, the performances of the robot with different controllers are shown, where
the two proposed laws of control reach convergence to zero. In addition, our approaches
are faster than traditional techniques. Thus, the methodology proposed can be used to
compute the dynamic equations of the robot in a simple manner and the controllers are
efficient to be implemented physically.

5.2. Two Degrees-of-Freedom Robot

Suppose the two-link manipulator with pivot joints of Figure 3. The link lengths
of the manipulator are l1 and l2 and the link masses are m1 and m2, with these masses
concentrated at the end of each link.
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Figure 3. Two-link manipulator.

The Hamilton equations of the proposed robot are calculated using Equation (48).
Therefore, these equations are written as follows:

ṗ1 = τ1 + GT
1 s1 + GT

2 s1 −PT
1

[
s1, N−1

1 P1

]
−PT

2

[
s1, N−1

1 P1

]
(65)

ṗ2 = τ2 + GT
2 s2 −PT

2

[
s2, N−1

2 P2

]
(66)

Now, to illustrate the behavior of the previous system with the Theorem 1 is necessary
to apply Equation (49). Therefore, the system can be written as:

ṗ1 = K1sign(S1) + KS 1S1 − ∂H(θ, p, t)
∂p1

(67)

ṗ2 = K2sign(S2) + KS 2S2 − ∂H(θ, p, t)
∂p2

(68)

where:
S1 = θ̃1 + p̃1
S2 = θ̃2 + p̃2

(69)

On the other hand, the behavior of the robot with the Theorem 2 can be written as:

ṗ1 = Kp1θ̃1 + Kv1 p̃1 + ṗd1 (70)

ṗ2 = Kp2θ̃2 + Kv2 p̃2 + ṗd2 (71)

Comparison

In the same way as the previous example, to simulate the results of the example, it
is necessary to implement the parameters in Table 3. However, in this example, the robot
has two DoFs. Therefore, the system has two laws of control, where the constant values
and equations are chosen as Table 4 (the gains were calculated using [40]). The simulations
were performed using Euler’s integration method, with a step size of 0.01 s. The initial
conditions were selected as θ1(0) = θ2(0) = 0◦, p1(0) = p2(0) = 0 kg

m
s and the desired

values as θd1 = 175◦, θd2 = 45◦. Hence, Figures 4 and 5 illustrate the results.
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Table 3. Parameters of the robot.

Parameter Value Unit

m1, m2 0.25 kg
l1, l2 2 m
g 9.81 m

s2

Table 4. Feedback controllers.

Law of Control Law of Control Gains

Theorem 1 See Equation (49) K1 = K2 = 1; KS 1 = KS 2 = 10
Theorem 2 See Equation (55) Kp1 = Kp2 = 25; Kv1 = Kv2 = 25

PD τ = Kp e(t) + Kv
de(t)

dt Kp = Kv =

[
25 0
0 25

]

PID τ = Kp e(t) + KI
∫

e(t)dt + Kv
de(t)

dt Kp = Kv =

[
25 0
0 25

]
, KI =

[
15 0
0 15

]

Figure 4. Error signals with diverse controllers in θ1 for a two degrees-of-freedom robot.

In this example, the efficiency of the algorithm is proved instead of the traditional
techniques. The dynamic equations are computed in an iterative form and are easy to
develop, which is an advantage for new researchers in the robotic field. On the other hand,
in accordance with the simulations, the controllers are faster than the typical laws of control
in the industry and they are easy to program in hardware.
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Figure 5. Error signals with diverse controllers in θ2 for a two degrees-of-freedom robot.

6. Conclusions and Future Work

In the present article, the capacity of the proposed method for the modeling and
control of robots in phase space is demonstrated. The dynamic equations, in phase space,
of an articulated robot can be developed easily and iteratively (which cause it to be easy
to program) using the suggested technique. In the examples, it is clearly seen that, with a
few simple steps, the equations of motion of the system can be computed; otherwise, when
using the traditional method, it is necessary to develop the Euler–Lagrange or Newton–
Euler Equations (in addition, the kinematic model should be contemplated before) to
later use the Legendre transform; this causes it to be a long and tedious process for new
researchers in the field. Talking about the controllers, it is observed how easy it is to build
controllers using the screw theory, such as the dynamic equations, where the control laws
are obtained iteratively with a few steps. In the simulation, it was shown that the proposed
controllers have a better performance than traditional techniques in phase space. Thus, it
is illustrated that this technique can be used for the dynamic model and its control in the
phase space.

On the other hand, this paper only contemplates the dynamic equations of the robot
and its controller. However, the perturbations, unknown parameters, or other external
elements are not added to the algorithm. Thus, the previous analysis and the dynamic
equations of more complex robots will be taken into account for future work.
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Appendix A

Appendix A.1. Robot Dynamics Using Screw Theory

The Lagrangian is written as:

L(
θ, θ̇, t

)
=

n

∑
j=1

1
2

VT
j NjVj − g̃T c̃j (A1)

Using the Euler–Lagrange equation
(

τi =
d
dt

(
∂L(θ,θ̇,t)

∂θ̇i

)
− ∂L(θ,θ̇,t)

∂θi

)
. Hence:

∂L(
θ, θ̇, t

)
∂θ̇i

=
∂
(

∑n
j=1

1
2 VT

j NjVj − g̃T c̃j

)
∂θ̇i

(A2)

Here, Vj = sj θ̇j:

∂L(
θ, θ̇, t

)
∂θ̇i

=
∂
(

∑n
j=1

1
2

((
sj θ̇j

)T Njsj θ̇j

)
− g̃T c̃j

)
∂θ̇i

(A3)

Therefore:
∂L(

θ, θ̇, t
)

∂θ̇i
=

n

∑
j=i

sT
i NjVj (A4)

Now, differentiating with respect to time:

d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
=

n

∑
j=i

d
dt

(
sT

i NjVj

)
(A5)

d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
=

n

∑
j=i

d
dt

(
sT

i

)
NjVj + sT

i
d
dt

(
Nj

)
Vj + sT

i Nj
d
dt

(
Vj

)
(A6)

d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
=

n

∑
j=i

VT
j Njad(Vi)si − sT

i adT(Vj)NjVj − sT
i Njad(Vj)Vj + sT

i NjV̇j (A7)

d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
=

n

∑
j=i

VT
j Nj[Vi, si] + sT

i
{

Vj, NjVj
}− sT

i Nj
[
Vj, Vj

]
+ sT

i NjV̇j (A8)

where
{

Vj, NjVj
}

represent the co-bracket. Considering {V2, N2V2}Ts1 = VT
2 N2[s1, V2]:

d
dt

(
∂L(

θ, θ̇, t
)

∂θ̇i

)
=

n

∑
j=i

V̇T
j Njsi + VT

j Nj
[
si, Vj

]
+ VT

j Nj[Vi, si] (A9)

On the other hand:

∂L(
θ, θ̇, t

)
∂θi

=
∂
(

∑n
j=1

1
2 VT

j NjVj − g̃T c̃j

)
∂θi

(A10)

∂L(
θ, θ̇, t

)
∂θi

=
n

∑
j=1

1
2

∂VT
j

∂θi
NjVj + VT

j
∂Nj

∂θi
Vj + VT

j Nj
∂Vj

∂θi
− ∂g̃T c̃j

∂θi
(A11)

∂L(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

VT
j Njad(si)

(
Vj − Vi

)
+ sT

i Gj − 1
2

(
VT

j adT(si)NjVj + VjNjad(si)Vj

)
(A12)

∂L(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

VT
j Nj

[
si, Vj − Vi

]
+ sT

i Gj − 1
2

(
VjNj

[
si, Vj

]− VT
j
{

si, NjVj
})

(A13)
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∂L(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

VT
j Nj

[
si, Vj − Vi

]
+ sT

i Gj + VT
j Nj

[
Vj, si

]
(A14)

∂L(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

GT
j si − VT

j Nj[si, Vi] (A15)

Finally, applying Equations (A9) and (A15) into the Euler–Lagrange equation:

τi =
n

∑
j=i

V̇T
j Njsi + VT

j Nj
[
si, Vj

]− GT
j si (A16)

Appendix A.2. Hamilton’s Equations Using Screw Theory

Hamilton’s equation in Equation (44) can be easily computed using Equation (A15).
Thus, it can be illustrated by:

∂H(θ, p, t)
∂θi

=
n

∑
j=i

PT
j

[
si, N−1

i Pi

]
− GT

j si (A17)

In addition to the foregoing, Hamilton’s equation in Equation (45) can be computed
using Equation (A17):

ṗi = τi +
n

∑
j=i

GT
j si −PT

j

[
si, N−1

i Pi

]
(A18)
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Abstract: In this contribution, the authors continued their initial study on the efficiency of the analysis
of experimentally obtained temperature curves, in order to determine some basic parameters that are
as simple and reliable as possible, such as “m”, the heat transfer coefficient. After the brief review of
the previous results, on which the present article is based, the authors offered a brief argumentation
of the importance of dimensional methods, especially the one called modern dimensional analysis,
in these theoretical-experimental investigations regarding the propagation of the thermal field of
structural elements with solid sections, and especially with tubular-rectangular sections. It could be
concluded that modern experimental investigations mostly follow the behavior of models attached to
the initial structures, i.e., prototypes, because there are clear advantages in this process of forecasting
the behavior of the prototype based on the measurement results obtained on the attached model.

Keywords: experimentally obtained temperature distribution law; relative temperature curves; m
parameter’s variation laws; 2D steel structural elements; testing bench; reduced-scale models

MSC: 74S05

1. Introduction

It is well known that the structural elements of civil and industrial buildings must be
protected against the unwanted action of fires. Thus, with the occurrence of fires, goods
and human beings must be provided with sufficiently large time intervals for evacuation,
which directly depends on the fire resistance of the structural elements. This, in turn, is
decisively influenced by the way in which they were protected (for example with layers
of thermoprotective paints, also called intumescent, etc.), and by the way in which the
thermal flow introduced by the fire propagates along the respective structural element.

The previous results of the authors’ investigations [1–3], as well as those presented
below, facilitate the mastery of this heat flow propagation process along the structural
elements.

In a previous paper [3], the authors performed, on an original electric stand [1], a series
of experimental investigations of great finesse. The elements subjected to the tests were
bars made of steel S275JO, EN 10025:2005, having a full circular section, with a diameter of
d = 0.02 m and made in different lengths l = (0.050; 0.100; 0.150; 0.200) m.

The bars were electrically heated at one end to achieve nominal temperatures of
tO,n = (100; 400)

◦
C. The stand also allowed the positioning of the bars with an angle

αg = 0
◦

or 90
◦

from the vertical direction during the experiments.
The bars were equipped with a sufficient number of thermo-couples (FPA15P-type,

Ahlborn GmbH, Holzkirchen, Germany), fixed in specially made bores of 0.002 m diameter,
which ensured the monitoring of the propagation of the thermal field along them.
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In fact, this was the focus of the authors’ thorough analysis, i.e., the correlation between
αn(z), m, λ(z), as well as its accurate validation. Finally, the authors obtained for each
analyzed case one single particular value of “m” along the entire bar.

It should also be emphasized that, based on the curves obtained experimentally under
strictly metrological conditions, in [1–3], the magnitudes of the constants (c1, c2, m) could
be determined, which are essential elements in the analytical description of the propagation
law (1).

Also, the authors proposed an easier, and at the same time, more efficient approach
to establishing these constants (c1, c2, m) using the curve-fitting method, where approxi-
mation curves of at most order III of the real temperature distribution ensured the same
precision as the classical approach based on the laborious (and quite difficult) analysis of the
theoretical exponential law. It was also possible to highlight the fact that, with the increase
in temperature, this precision of the curve-fitting method increases, even surpassing the
classic, exponential one.

Another research direction of the work [3] consisted in the desire of the authors to
verify if the hypothesis also remains valid in the case of tubular section bars. In this
case, they were made of rectangular tubular bars of steel S355J2, EN 10025:2005. More
precisely, they were square pipes, of different lengths, provided with sets of FPA15P-type
thermo-couples and subjected to thermal regimes similar to those previously mentioned.
According to the authors’ knowledge, such investigations, with the aim of verifying the
condition of bars having a tubular section, have not been carried out before; at least, we
had no knowledge from the specialized literature.

In this way, the authors offered the comparative, effectively measured, thermal distri-
bution laws, with respect to the massive circular (0.016 m in diameter by 0.240 m in length,
and 0.020 m in diameter by 0.200 m length), as well as square tubular (0.040 × 0.040 ×
0.005 m by 0.400 m in length) cross-sectional straight bars, having αg = 0

◦
and αg = 90

◦
,

respectively, in angular positioning with respect to the vertical direction, heated at their
lower end to nominal temperatures of tO,n = 100

◦
C and tO,n = 400

◦
C.

These comparative diagrams point out for the engineers involved in fire-protection
analysis the importance of the length in the thermal calculi and, based on this, the fire-
protecting coating thickness value, too.

The authors proposed a generalized curve, by plotting the relative tψ [%] thermal
curve, i.e., monitoring the remaining percentage of the nominal tO,n temperature (consid-
ered to represent 100%). These relative tψ [%] thermal curves were plotted for the same
initial conditions, and based on the obtained results, several useful conclusions were drawn.
One can mention that, based on these relative tψ [%] curves, precisely the same temperature
fields were restored in every analyzed case.

The authors also found the very important fact, that in the case of the tubular cross-
sectional bars, the m = const. hypothesis for the whole length of the bar is not valid. The
hypothesis is valid (can be applied) only for the smallest, constitutive intervals of these
tubular bars. In conclusion, the experimentally obtained greater gradients of the thermal
distribution law for these tubular cross-sectional bars can be described or drawn up using
these “m”-values corresponding to the smallest constitutive intervals.

One other proposed parameter was the so-called compared Δtψ = 100 − tψ [%]
temperature loss (the percentages of the lost temperatures), which offers a clearer image on
the temperature-loss phenomenon.

Based on their graphical images, the increase in the lost Δtψ [%] for the same reference
length of � [m] was stated, together with the increase in the bar’s total length; this phe-
nomenon was much greater for the horizontally placed bars (αg = 90

◦
), than the vertically

positioned one (αg = 0
◦
).

This new parameter assures the most accurate evaluation of the bar’s behaviour,
having different effective lengths, with respect to the temperature: i.e., its reduction, as
well as its propagation along the bars.
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Based on the aforementioned strategy, the authors performed thorough analytical
calculi of the “m” parameter along these square tubular cross-sectional straight bars for
several nominal temperatures: tO,n = 50; 100; 200; 300; 400; and 500

◦
C.

Using these results, the authors established that an adequate description of the ob-
tained “m”-curves can be obtained by dividing the whole length of the bar into a min-
imum of three intervals, i.e.: �I ∈ [(0 . . . 0.05) · �]; �II ∈ [(0.05 . . . 0.10) · �], and �III ∈
[(0.10 . . . 1.00) · �]. These intervals give different gradients and cannot be analyzed together.

The authors, similarly with the tψ [%] curve, proposed a new parameter, i.e., the relative
mψ [%] curve, which monitors the remaining percentage of the initial value (for z = 0) of
“m” along the bars’ length, considered to represent 100%.

In the same manner, the authors offered a polynomial approach, using a curve-fitting
method, both for the global mψ [%] curves, as well as for their segmental parts, correspond-
ing to those three separate (detached) intervals.

From this previous contribution [3], as conclusions on mψ [%], one can mention the
following:

• The greatest gradient for the mψ [%] is on the first interval �I, where the obtained
gradient is 100 %, that will decrease to 62.3 %; on the second interval �II, there will be
a decrease from 62.3 % to 57 %, as well as on the third interval �III, which will decrease
from 57 % to 36.8 %;

• Taking into consideration that �III represents, in fact, 90 % of the whole bar length �,
the corresponding gradient correlated with its real length is very small;

• For other tO,n nominal temperatures, the mentioned calculi of mψ [%] can be per-
formed in a similar manner, which can assure, without difficult analytical calculi, that
predictable values for the “m” parameter are obtained;

• In the authors’ opinion, these new practical approaches to the temperature distribution
law can be applied successfully in the thermal analysis of 2D and 3D structures, in the
first stage on reduced scale models, involving the results of the modern dimensional
analysis (MDA) (analyzed briefly in the following), as well as in real-scale structures;

• The performed analytical calculi offer a useful tool for fire safety engineers to predict
both the heat transfer along the steel structural elements and their load bearing
capacity.

The study of structural elements subjected to fire took a new direction with the
implementation of dimensional methods in these analyses [4–41].

Starting from the geometric analogy (GA), continuing with the theory of similitude
(TS), along with classical dimensional analysis (CDA), the researchers, specialized in
problems of preventing the effects of fire, replaced the experimental study carried out
directly on the real elements (called prototypes) [39,40,42–65], with that performed on
models (usually reduced to scale) [1,2,66–69].

The experimental results obtained on these models could later be transferred to real
structural elements based on the relationships provided by the above-mentioned dimen-
sional methods. Thus, the specialists were able to predict the behavior of the prototype
based on the measurements made on the model, which obviously represented experiments
carried out in much more advantageous conditions in terms of price, cost, working time,
specialized personnel, and the equipment involved.

On the advantages and limits of these methods, the authors of this paper made a
detailed synthesis of the works [70–74], of which the most significant can be mentioned:

• GA works only with a limited number of laws, based on the identification of points,
angles and homologous surfaces of the prototype, in accordance with the related
model;

• TS provides an extension of these laws, but can also only be applied to a number of
particular cases;

• CDA, although theoretically it would be the ideal method of approach, presents several
other shortcomings, such as:
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o The deduction of the model law (ML) is based on the processing of a limited
number of differential equations related to the phenomenon;

o This processing is unfortunately quite arbitrary, non-unitary, and its efficiency
depends to a large extent on the user’s experience, usually consisting of group-
ing some terms of the equations involved, or identifying adimensional groups
from the same constitutive equations, in order to obtain dimensionless expres-
sions;

o It requires deep knowledge of higher mathematics, but also of the field of the
respective phenomenon;

o Only in particular cases can it provide the complete set of dimensionless vari-
ables, based on which the ML is later defined;

o The method, not being unitary in approach, is not easily applicable to ordinary
researchers, remaining accessible only to a narrow segment of established
specialists.

As is well known, both TS and CDA operate with a set of dimensionless variables
πj, j = 1, 2, . . . , n, from which the ML will ultimately result.

Also, the number of dimensionless expressions, which can thus be obtained from a
limited number of differential equations related to the phenomenon, will also be limited.
This is why CDA cannot provide, except in very particular cases, the full set of the ML
through these dimensionless variables.

In order to eliminate these shortcomings, as well as to make dimensional analysis
an accessible and effective method for ordinary researchers, Th. Szirtes developed a new
approach, which gave rise to the so-called modern dimensional analysis (MDA) [75,76].

Among the indisputable advantages of MDA, the following can be highlighted:

• The method is unitary, simple and accessible to any researcher;
• It does not require thorough knowledge in the field, but only that all the parameters

are taken into account, which can in a certain way have an influence on the respective
phenomenon;

• The parameters, which have no influence on the phenomenon, are automatically
removed from the protocol;

• The complete set of dimensionless variables is always provided, and consequently
also the complete ML;

• The developed method is very flexible, allowing, based on the ML deduced for the
general case, customizations to be made in order to simplify and optimize the model,
as well as the related experiments;

• MDA allows choosing at will the set of variables that define the protocol of experiments
on the model, but also the model itself.

MDA was also successfully applied by the authors of this paper, among others, in
the analysis of the stressed-strained states of the reticular structures in constructions [77],
but also in the detailed study of the thermal field propagation phenomenon [70–73,78],
for those tracking the simulated effect of fires on original stands designed and made by
them [2,47,72,78,79].

One might ask, why did the authors use the MDA in these investigations?
The reason was that only the further application of such research to firm and reliable

laws such as those provided by MDA can ensure a firm correlation between the behavior
of a prototype and its associated model.

Thus, if much simpler, safe and repeatable investigations are desired to be carried
out on the associated model and to form a solid basis in predicting the behavior of the
prototype, then this safe method, i.e., MDA, must be involved.

Consequently, the authors, in their previous works [70,72,78,79], proposed and per-
formed the validation of the model law deduced not only for the case of the solid circular
section bar, but also for the one with tubular-rectangular section, with the implicit and
obvious particular case of the tubular-square section.
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Based on the ML deduced for the rectangular-tubular section, the authors performed
a thorough validation study regarding the thermal regimes of a prototype, which was the
column segment of a real pillar in an industrial hall, using models reduced to scales of 1:2;
1:4 and 1:10.

In the following, the major aspects of these experimental investigations, which were the
basis for establishing the thermal propagation curves along the tested structural elements,
are briefly presented.

As will be seen below, the analysis of these thermal curves through a new lens allowed
a much more efficient approach, which is in fact the main purpose of this work.

2. Materials and Methods

In order to carry out these theoretical-experimental investigations, for the first time
the authors designed an original electrical stand [2,71,72,79]. This stand, with a high-
performance electronic control, ensures precise monitoring and control of the heating of
structural elements, made either on a natural scale or on a reduced scale.

The ML, deduced for the case of structural elements with tubular-rectangular sec-
tions [73], was validated based on a significant number of experimental measurements,
both on the analyzed prototype and on the associated models, made at 1:2, 1:4, and 1:10
scales [2,71,72,80].

According to the works [2,71,72,78], the scheme of these structural elements, as well
as the location of the temperature sensors, which were PT100-420 thermoresistors with
150 mm long terminals, having a working temperature between −70 and +500 ◦C, are
shown in Figures 1–3, and Table 1. The thermoresistors were fixed to the structural elements
with the help of M3 screws in precisely positioned threaded holes.

Figure 1. Dimensions of the column segment [2,71,72,78].

The geometric similarity is respected in all of them, accepting the same scales of all
dimensions of 1:1, 1:2, and 1:4.

The upper closing plate, with the dimensions (La × Lb), substitutes the rest of the
column, and the lower one, with the dimensions (Lm × Ln), assures a perfect and unitary
placement of all the elements tested on the test stand.
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Table 1. Principal dimensions of the column segment presented in Figure 1 [2,71,72,78].

Prototype, at Scale 1:1 Model I, at Scale 1:2 Model II, at Scale 1:4

Dimensions, in m

La 0.370 0.185 0.0925

Lb 0.370 0.185 0.0925

Lc 0.006 0.003 0.0015

Ld 0.350 0.175 0.0875

Le 0.350 0.175 0.0875

Lf 0.016 0.008 0.004

Lg 0.016 0.008 0.004

Lh 0.400 0.200 0.100

Lk 0.010 0.005 0.0025

Lm 0.450 0.450 0.450

Ln 0.450 0.450 0.450

The structural element (1) from Figure 2, is placed by translation on the upper area of
the truncated pyramid-shaped dome (2); this dome rests on the rigid frame (3) and on the
supporting legs (4).

Figure 2. The assembled stand [2,71,72,78].

During experimental investigations, the free surface of the laying board with dimen-
sions (Lm × Ln), shown in Figure 1, is covered with a thermal insulation blanket. As an
illustration of the degree of thermal insulation, it can be mentioned that at the nominal heat-
ing temperature of to,nom = 600

◦
C for the tested structural elements, around the support

frame (3) and the truncated pyramid (2), the temperature did not exceed (45 . . . 50)
◦
C. In

section A–A the heating elements (6) are shown, consisting of twelve silite rods, each four
connected in series for the three phases of the industrial power supply at 380 V. These silite
rods, placed on chamotte bricks (7), rest on a thermal insulation layer (8) of ceramic fiber
0.0254 m thick. A similar insulation (5), provided for the lateral sidewalls of the truncated
pyramid (2), assures an efficient thermal insulation of the test bench (see Table 2).
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Table 2. Principal coordinates of the temperature measuring points [2,71,72,78].

Prototype, at Scale 1:1 Model I, at Scale 1:2 Model II, at Scale 1:4 Model III, at Scale 1:10

Coordinates z(j) in m

0.020 0.020 0.020 0.015

0.110 0.060 0.055 0.030

0.200 0.105 0.090 0.045

0.290 0.150 0.060

0.380 0.190 0.100

0.200

0.400

0.460

0.495

A thermo-couple was always placed at the coordinate level z(0), which also ensured
the implicit control of the nominal temperature tO,nom

[◦
C
]
.

The important fact should be mentioned that, at the time of carrying out the tests on
the first three elements, i.e., on the prototype and the models made at the scales of 1:2 and
1:4, the results of the theoretical-experimental investigations carried out on the first tubular
structural elements, synthesized, were not yet known in our previous article [3].

As mentioned in Section 1, these investigations, reproduced in the work [3], demon-
strated the fact that, in the case of tubular sections, the hypothesis m = const. is valid only
on constitutive areas of the length of the bar, which is why the respective bar must be
divided into at least three subintervals, for which, subsequently, this assumption will be
respected individually.

The tests on the last model reduced to the scale of 1:10 were carried out after the
completion of the theoretical-experimental investigations presented in the authors’ previous
work [3], which is why it was already possible here to take into account this important
conclusion regarding the validity of the hypothesis m = const. on subintervals.

Figure 3 shows the mounting on the aforementioned testing bench of the thin tubular-
rectangular tested specimen (frame column), manufactured at 1:10 scale [71,72,78,79].

Figure 3. Heating stand, together with the tested 1:10 scale pillar model.
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The dimensions of this reduced scale model are 0.030 × 0.030 × 0.0015 m, and its
height is 0.5 m. This model presents on its lower end a steel cylindrical part with diameter
d = 0.105 m and height h = 0.015 m, by means of an intermediate 0.080 × 0.080 × 0.003 m
steel plate (Figure 4).

The significant thermal inertia of this cylindrical part assures the corresponding heat
transfer from the testing bench to the reduced-scale tubular model.

A 0.025 m thick heat-insulation open cylinder, with 0.45 m diameter and 0.65 m height,
disposed around the tested element, eliminates the undesirable influence of an accidental
current of air from the lab. The radius of this heat-insulation cylinder is comparable, at the
reduced scale of 1:10, with the half-distance between the columns.

Figure 4. The lower end of the thin-walled tested element (column): 1—cylinder; 2—intermediate
plate; 3—tested element (column).

The thermal protection of the elements subjected to the tests was carried out with
the help of solvent-based intumescent paint (Interchar 404, from International Marine and
Protective Coatings), applied with a thickness of 1.2 mm.

The thermal regimes imposed on the first three elements, i.e., of the prototype and
the models reduced to the 1:2 and 1:4 scale, were at the nominal temperatures t0,nom =
(100, 200, 300, 400, 450, 500)

◦
C, and the nominal temperatures for the element made at

the 1:10 scale, were t0,nom = (100, 200, 300, 400, 450, 500, 600)
◦
C.

The protocol of these heatings, i.e., their evolution over time, for both thermally
unprotected and thermally protected elements, according to the paper [71], is shown in
Figures 5–12. Here, for the thermoresistors located at different heights, their indications
were specified, i.e., the temperatures stabilized at their level, corresponding to the imposed
nominal temperatures t0,nom

[◦
C
]
.
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Figure 5. Time evolution of the temperature in the unpainted prototype.

Figure 6. Time evolution of the temperature in the painted prototype.

Figure 7. Time evolution of the temperature of the unpainted 1:2 scale model.
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Figure 8. Time evolution of the temperature of the painted 1:2 scale model.

Figure 9. Time evolution of the temperature of the unpainted 1:4 scale model.

Figure 10. Time evolution of the temperature of the painted 1:4 scale model.

159



Mathematics 2023, 11, 741

Figure 11. Time evolution of the temperature of the unpainted 1:10 scale model.

Figure 12. Time evolution of the temperature of the painted 1:10 scale model.

It can be seen that, at the end of each heating step, there is a temperature stabilization
level; the monitoring of the temperatures along the elements subjected to the tests was
carried out only after the completion of the respective stabilization cycle.

3. Results

In Figures 13–18, the results of monitoring the thermal field with the help of thermore-
sistors mounted on these structural elements are provided (see [71]).
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Figure 13. Temperature variation along the unpainted prototype.

Figure 14. Temperature variation along the painted prototype.
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Figure 15. Temperature variation along the unpainted 1:2 scale model.

Figure 16. Temperature variation along the painted 1:2 scale model.
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Figure 17. Temperature variation along the unpainted 1:4 scale model.

Figure 18. Temperature variation along the painted 1:4 scale model.

In Figures 19 and 20 it can be seen that the thermoresistor, located at a distance of
z = 0.015 m, presented a deficiency in operation, which is why its last recording could not
be taken into consideration during the subsequent processing of the data.

It should also be mentioned that the last structural element, made at a scale of 1:10,
actually represented the model attached to the entire pillar.

Starting from this fact, and taking into account the results obtained and presented in the
work [2], we proceeded to divide the curves related to this model reduced to a scale of 1:10
into three intervals, according to those in Section 1, i.e., �I ∈ [(0 . . . 0.05) · �] = [0 . . . 0.03] m;
�II ∈ [(0.05 . . . 0.10) · �] = [0.03 . . . 0.06] m, and �III ∈ [(0.10 . . . 1.00) · �] = [0.06 . . . 0.50] m.
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Figure 19. Temperature variation along the unpainted pole, made at 1:10 scale.

Figure 20. Temperature variation along the painted pole, made at 1:10 scale.

Later, based on this subdivision, the respective curves obtained through experimen-
tal measurements could be approximated each time with minimum degree polynomial
functions; these results are analyzed in Section 4.

Figure 21a–c show these new intervals related to the curves in Figure 19, and in
Figure 22a–c, those corresponding to the curves in Figure 20.

At first glance, the curves in Figures 21c and 22c would show strong gradients of
temperature variation, but if one carefully follows the z(m) scale, one notices that, in fact,
these lengths are much larger than at the first two sets of diagrams (Figures 21a,b and 22a,b);
consequently, these last intervals actually show very smooth changes in temperatures on
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the portion The faulty behavior of the above-mentioned thermoresistor can also be seen on
Figure 22a; here, in fact, the processing of the initial curve from Figure 20 was carried out.

Figure 21. Cont.

165



Mathematics 2023, 11, 741

Figure 21. Variation of temperature along the intervals of the unpainted base, made at a scale of 1:10,
according to Figure 19: (a) �I; (b) �II; (c) �III [71].

Figure 22. Cont.
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Figure 22. Variation of temperature along the intervals of the painted pillar, made on a scale of 1:10,
according to Figure 20: (a) �I; (b) �II; (c) �III [71].

4. Discussion

In the previous paper [3], the classical, exponential, and the polynomial approach
to temperature variation curves, curves obtained based on rigorous measurements, was
presented.

New parameters were proposed, namely: the relative thermal curve tψ [%] as well
as the compared temperature loss Δtψ = 100 − tψ [%] (the percentages of the lost temper-
atures). Also, also in the work [2] a more effective methodology for establishing the “m”
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parameter was proposed, but also the proposal of a new parameter, i.e., the relative curve
mψ [%].

These results, as mentioned before, also facilitate the calculation of the heat transfer
coefficient αn, which, as is well known, is a major objective of these analyses.

The authors performed high-accuracy metrological measurements of the involved
heat/temperature sensors’ accuracy, namely, of the PT 100-type thermoresistors. In
Figure 23 the original testing device of these thermoresistors’ accuracy is shown. From the
literature, it is a well-known fact that the thermo-couples have, in practice, high-accuracy
sensors, up to class 0.1. Because the involved PT 100 thermoresistors present a lower
accuracy, the authors first performed a comparative analysis of them with such a calibrated
thermo-couple.

A steel disc, with a 105 mm diameter and a height of 15 mm, manufactured from
the same quality steel as the associated elements in the described experiments from the
present contribution, was designed with a central hole with a 2 mm diameter (destined
for the thermo-couple fixing) and with three other M3 screws disposed symmetrically for
the PT 100 thermoresistors. By applying the same thermo-charging (heating them up to
the same temperatures as the involved sensors in the described experiments), their own
calibration curves were drawn up with respect to the thermo-couple’s indication, as well as
a probable (global) calibration curve, i.e., with their mean values. Consequently, by this
preliminary calibration, the thermal deviation of the involved PTs was stated with respect
to the real indicated values (by means of a high-accuracy thermo-couple). All collected data
during the experiments mentioned in the paper were corrected, taking into consideration
the obtained thermal deviation.

Figure 23. The testing device of the comparative accuracies (dimensions are in mm).

One other supplementary approach to the measurements’ uncertainty consisted in
performing a metrological evaluation for each channel of the involved data acquisition
chain, starting from the thermoresistor, a LABJACK 9 acquisition device, up to the laptop.

In this way, different high-accuracy (class 0.1) electrical resistors substituted each PT
in order to obtain for the whole thermal interval (up to 600 ◦C) the corresponding electrical
signals for all involved channels. Based on these indications a second re-calibration of the
collected electrical signals from each PT became possible.

One can conclude that this re-calibration was performed the first time by the above-
mentioned comparative measurements of the calibrated thermo-couple vs. three PT 100
thermoresistors, and afterwards, based on these electrical resistors’ indications.

In the authors’ opinion, the obtained data can be considered acceptable from the point
of view of metrological accuracy, as well as uncertainty.
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To obtain a more comprehensive (more general) approach, the authors propose intro-
ducing a percentage length Lψ [%] instead of the effective length z(m); this new length
considers the value of 100% of the size of the quota zmax. With the help of this new parame-
ter, Figure 24 shows the curves related to the nominal temperature t0,nom = 400

◦
C for the

first three unpainted structural elements (not thermally protected), i.e., the prototype, and
the models reduced to the scales of 1:2 and 1:4; these curves are extracted from Figure 13,
Figure 15, Figure 17 respectively, and analyzed with the percentage length Lψ [%].

Similarly, in Figure 25 the related curves of the same structural elements are shown,
but thermally protected, i.e., painted; these resulted by extracting data from from Figure 14,
Figure 16, Figure 18 respectively, and analyzed with the help of Lψ [%].

Figure 24. The three segments of unpainted columns, at 400 ◦C [71].

Figure 25. The three segments of painted columns, at 400 ◦C [71].
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One can notice a very similar allure of the curves rendered within the same figure,
although their sizes and volumes were very different. In the same figures, the approxima-
tion polynomial curves are also mentioned, of the order IV at most, but with a very good
correlation factor R2.

A similar approach in the case of the pillar reduced to a scale of 1:10 led to obtaining the
curves in Figure 26, according to Figure 19, and its more precise analysis of the subintervals,
corresponding to the nominal temperatures of t0,nom = 400 ◦C and t0,nom = 500 ◦C, shown
in Figures 27–29. It can be noted that the change in the degree of the approximation
polynomial functions with the analyzed subinterval depends on the gradient of the initial
temperature curves.

Figure 26. Temperature variation along the unpainted pole, made at 1:10 scale.

Figure 27. Variation of temperatures along the painted pole, made at 1:10 scale; the first interval in
Figure 26.
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Figure 28. Variation of temperatures along the unpainted pole, made at 1:10 scale; the second interval
in Figure 26.

Figure 29. Variation of temperatures along the painted pole, made at 1:10 scale; the third interval in
Figure 27.

If on the first subinterval, related to �I, the gradient is too strong, then one can use an
additional division of it into two other units in order not to excessively increase the degree
of the approximation polynomial, but also to keep a better correlation factor as R2.

A similar analysis for the painted 1:10 scale pillar is shown in Figure 30, according
to Figure 20, and its more precise analysis of the subintervals, corresponding to the same
nominal temperatures of t0,nom = 400

◦
C and t0,nom = 500

◦
C, is shown in Figures 31–33.
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Figure 30. Temperature variation along the painted pillar, made at 1:10 scale.

Figure 31. Temperature variation along the painted pole, made at 1:10 scale, for the first interval in
Figure 30.
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Figure 32. Variation of temperatures along the painted pole, made at a scale of 1:10, on the second
interval in Figure 30.

Figure 33. Variation of temperatures along the painted pole, made on a scale of 1:10, on the third
interval in Figure 30.

If we switch to the use of dimensionless curves Tψ − Lψ, then it will be possible
to highlight the net advantage of this new approach, because curves with very similar,
practically identical slopes will be obtained, which will allow the form of templates or
nomograms intended for preliminary calculations to be used in in further research. The
explanation could also consist in the fact that differences of the order of a few tens of
degrees will not lead to significant deviations of these curves (since we are talking about
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percentages of temperatures in the order of hundreds of degrees), even if their nominal
temperatures are different.

Next, the authors illustrate the efficiency and net advantage of this new dimensionless
approach.

Thus, in Figures 34–39, the curves analyzed in Figures 13–18 are reproduced, but in
dimensionless representation.

Figure 34. Variation of temperatures along the unpainted prototype, in dimensionless representation.

Figure 35. Variation of temperatures along the painted prototype, in dimensionless representation.
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Figure 36. Variation of temperatures along the unpainted 1:2 scale model.

Figure 37. Variation of temperatures along the painted 1:2 scale model.
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Figure 38. Variation of temperatures along the unpainted 1:4 scale model.

Figure 39. Variation of temperatures along the painted 1:4 scale model.

This very similar behavior of these structural elements, also observable in the above-
mentioned figures, justifies the use of a single dimensionless curve Tψ − Lψ, as a weighted
average of them, which will be of great use in an evaluation of the behavior of the structures
with the help of MDA.

In this way, as mentioned in Section 3, the testing of these structural elements was
carried out with the assurance of a thermal similarity, i.e., reaching identical temperatures
in the homologous points of the structures. The most important homologous points from a
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thermal point of view were the measurement points at the base, near the upper end of the
respective structural element.

In this new approach, those reported in Figures 24 and 25 will take the forms shown
in Figures 40 and 41, respectively.

Figure 40. The three segments of unpainted pillars, at 400 ◦C, in dimensionless coordinate system.

Figure 41. The three segments of painted pillars, at 400 ◦C, in dimensionless coordinate system.

Similarly, for the pillar made on a scale of 1:10, the diagrams in Figures 26 and 27 will
take on the shapes shown in Figures 42 and 43, respectively.
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Figure 42. Variation of temperatures along the unpainted pole, in dimensionless representation.

Figure 43. Temperature variation along the painted pole, in dimensionless representation.

It can be observed that, even if the thermal responses of the structural element are
reproduced at eight nominal temperatures, starting from t0,nom = 300

◦
C, practically all the

curves will overlap, which justifies the idea of using a single dimensionless curve Tψ − Lψ,
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as a weighted average of them; the polynomial function, which will approximate it, will
serve to perform subsequent calculations.

Obviously, further dividing this representative curve into three subdivisions will give
the researcher the possibility of a much more accurate polynomial approximation.

Once this global curve, or even the individual dimensionless curves Tψ − Lψ are
obtained, the strategy for determining the value of the “m” parameter and its variation
law along the structural element m(z) becomes unitary and particularly efficient; in the
paper [71] this new approach is detailed.

5. Conclusions

Both the original electrical stand and the results of the investigations carried out with
its help were presented, in order to monitor the behavior of a real structural element (a pillar
of an existing industrial hall), as well as of some models attached to it, made at different
scales (1:2; 1:4; 1:10), all followed in the stabilized thermal regimes. These results were
materialized in a series of temperature variation diagrams along the respective structural
elements.

Based on these diagrams, the authors went on to illustrate the new approach to
diagram analysis, using some normalization steps, gradually moving to dimensionless
curves and replacing those resulting from experimental measurements with approximation
curves (made using the “curve-fitting” method).

The thermoprotective layer, used in engineering applications, represented a shield
in front of the heat flow and prevented the transfer of heat between the structure and the
surrounding environment.

The authors express their hope that this new approach, with the help of dimensionless
curves Tψ − Lψ, due to its simplicity and efficiency argued in this article, will be imple-
mented as soon as possible in the thermal study of structural elements subjected to fires by
specialists in the field.

The obtained results support the methodology studied by the authors considering
the application of MDA to hit transfer phenomena. In this way, measurements made on a
scale model, which can be studied in the laboratory, allow quick conclusions to be drawn
regarding the behavior of the real model.

In this sense, either the individual curves Tψ − Lψ or their representative curve, as
their weighted average, can be of great use to specialists and can also serve as a starting
point in the creation of nomogram-type databases, related to quick preliminary calculations.

The approach of the easier establishment of the “m” parameter along the structural
element and the heat transfer coefficient αn based on it, essential elements in any analysis
of the fire resistance of resistance structures, is also not without importance.

Among the goals pursued by the authors in the near future is even the creation of a
database, taking into account first the requirements of the domestic industry, but later also
of international companies.

Another future objective would be to carry out some numerical simulations, based on
the obtained experimental results, that would validate some pertinent numerical models
useful to specialists in the field.
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Abstract: In this paper, we approach two nonlinear differential equations applied in fluid mechanics
by finite element methods (FEM). Our objective is to approach the solution to these problems; the first
one is the “p-Laplacian” problem and the second one is the “Quasi-Newtonian Stokes” problem with
a general boundary condition. To study and analyze our solutions, we introduce the a posteriori error
indicator; this technique allows us to control the error, and each is shown the equivalent between the
true and the a posterior errors estimators. The performance of the finite element method by this type
of general boundary condition is presented via different numerical simulations.
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MSC: 65N30; 65N15; 65G99; 76D07; 76D99

1. Introduction

One of the important objectives of numerical studies of differential problems is: to
have a “realistic simulation”; for this, many researchers have concentrated on controlling
the error by using the adaptive finite element methods (FEM) meshes. The adaptive
meshes provide effective means of optimizing calculation with reasonable results; “the
meshes are automatically modified by enhancing the scope of their applications”. The error
estimation technique provides an assessment of the accuracy of the solutions obtained by
the finite element solvers, see [1,2] for more precise details. These techniques can efficiently
offer certain flow features (stagnation, reattachment points, and recirculation eddies, with
small velocity magnitudes). Generally, this technique is based on a posteriori local error
estimation, see [3].

Nonlinear differential equations are used to model complex problems in the sciences
and engineering. Many studies have been developed to simplify these complex models.
Among these models, we mention the “p-Laplacian” equation and the “Quasi-Newtonian
Stokes” system. These nonlinear equations have had more attention in recent years, and one
of the important domains using these equations is the glaciology domain. These equations
model the dynamics of ice sheets or glaciers, see [4], and the evolution of glacier geometry,
see [5,6]. Another application in the biological domain is the common use for blood flows,
see [7] for details.

One of the important domains that uses these equations is fluid mechanics. For
example, to model “viscoelastic” fluids we use the “Quasi-Newtonian Stokes” method,
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see [8] for more details. This quasi-Newtonian law was first proposed by Carreau et al.
in [9]; a popular extension to the Carreau law is studied by Yasuda et al. in [10] and a closely
related model, the Cross law, is investigated by Cross in [11]. The well-posedness of these
problems is established in these papers [12,13]. Much mathematical modeling for complex
fluids and numerical algorithms are applied to solve linear/nonlinear equations, see [14].
The fully non-linear elliptic problems in divergence form by using a mixed finite volume
scheme are studied in [15]; the discontinuous Galerkin approximation was considered
in [5] and the hybrid high-order scheme was studied in [16]. The paper where the authors
studied the comportment of solutions of some non–linear diffusion problems and in the
boundary–layer flow of a pseudo-plastic fluid is given [17]. The a posteriori error estimator
for elliptic partial differential equations by using finite elements is presented in [18] and
proves some (elliptic) a posteriori error estimators. The p-Laplacian problem is studied by
using a FEM method in many papers, see [19–22] for details. In [23,24], the authors analyzed
a posteriori error estimators for quasi-Newtonian problems with a homogeneous Dirichlet
boundary condition. There are at least as many relevant references over the past 30 years
on the quasi-Newtonian Stokes problem concerning the posterior estimate and its use in
adaptivity; there were important developments in the Chinese [25–27], German [28–30],
and French [31,32] schools for flow fluid in complex porous media using new boundary
conditions [33] and combined mixed finite element [34].

This paper is organized as follows: in Section 2 and in order to study the p-Laplacian
problem with the new boundary condition, we introduce some useful notations, state
our main assumptions regarding the modeling equations, and following a finite element
discretization, we calculate error estimators with respect to the true error. Section 3 contains
the description of our second problem (quasi-Newtonian system) which is discretized by
a mixed finite element scheme. The a posteriori error estimator is developed in terms of
the Residus of variational formulas with respect to the real error. Section 4 presents two
numerical examples using a velocity angle error indicator.

The authors propose the study of two nonlinear differential equations that have
applications in fluid mechanics, using FEM. These problems are studied in two steps,
within the “p-Laplacian” problem, and then solving the “Quasi-Newtonian Stokes” problem
imposing a general boundary condition. To study and analyze our solutions, an a posteriori
error indicator will be introduced. In this way, there is the possibility to control the error
at each step and compare the calculated error with the a posteriori error. The obtained
results are supported by several numerical simulations that we considered significant for
the presentation of the research.

2. Approximation of p-Laplacian Equation by Finite Element Method

The section aims to study the p-Laplacian equation with a nonhomogeneous Robin
boundary condition; we use FEM to approximate this model. To analyze the error, we
use the a postriori estimates for the Dirichlet boundary condition, see [17,24,35]. First
of all, we recall some useful properties of generalized nonlinear diffusion problems and
we investigate the existence/uniqueness of the solution. Let Ω be an open-bounded
(connected) subset of Rd (d = 2, 3) whose boundary Γ = ∂Ω, and let β ∈ N∗ with conjugate
β′ = β

β+1 .

2.1. Results of the p-Laplacian Operator

We consider the generalized nonlinear diffusion problem, defined by

−∇ · ϕ(x,∇u(x)) = f (x) in Ω, (1)

where the flux ϕ : Ω ×R2 → R2 is assumed to satisfy the following assumptions:
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There exist two positive constants C1, C2, and two functions b1 ∈ L1(Ω) and
b2 ∈ Lβ′(Ω) such that ⎧⎪⎨⎪⎩

(ϕ(x, y)− ϕ(x, z), y − z) > 0, (H1)

(ϕ(x, y), y) ≥ C1|y|β − b1(x), (H2)

ϕ(x, y) ≤ C2|y|β−1 − b2(x), (H3)

for all x, y, z ∈ Ω with y 	= z.
Under these assumptions the problem (1) has a unique solution u ∈ W1,β(Ω), and the

functional u �→ −div(ϕ(·,∇u(·))) is a Leray–Lions operator which satisfies

u ∈
(

Lβ(Ω)
)2 �→ ϕ(·,∇u(·)) ∈

(
Lβ

′
(Ω)

)2
.

The p-Laplacian equation is defined by

−∇ · a(∇u) = f in Ω, (2)

where the vector field a(ζ) = |ζ|β−2ζ and β ∈ N∗.
The p-Laplacian equation is a nonlinear diffusion problem. Now, we recall some key

lemmas useful to prove the monotonicity and continuity properties of such operators,
see [12,20].

Let z = (z1, z2) ∈ R2 and let us define the following operator

A(·) : u ∈ V → A(u) = −∇
(
|∇u|β−2∇u

)
∈ V′,

where space V depends on the boundary condition and V′ its dual. In order to prove the
ellipticity of the problem, we need the following lemma.

Lemma 1. For all y, z ∈ R2, we have⎧⎨⎩
(
|z|β−2z − |y|β−2y, z − y

)
≥ α|z − y|β−1 if β ≥ 2,

(|z|+ |y|)2−β
(
|z|β−2z − |y|β−2y, z − y

)
≥ α|z − y|2 if 1 < β ≤ 2,

where α > 0 is independent of y and z.

Proof. See [12]. �

Proposition 2 (Ellipticity). For all u, v ∈ V, we have the following ellipticity properties{
(A(u)− A(v), u − v) ≥ α||u − v||β if β ≥ 2,
(||u||+ ||v||)2−β(A(u)− A(v), u − v) ≥ α||u − v||2 if 1 < β ≤ 2,

(3)

Proof. A direct consequence Lemma 2.1 from [12] for a detailed proof. �

To proof the continuity property, it needs the following lemma,

Lemma 3. For all y, z ∈ R2, we have{
|z|β−2z − |y|β−2y ≤ α|z − y|(|z|+ |y|)β−2 if β ≥ 2,
|z|β−2z − |y|β−2y ≤ α|z − y|β−1 if 1 < β ≤ 2,

where α > 0 is independent of y and z.
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Proof. See [12]. �

Proposition 4 (Continuity). For all u, v ∈ V, we have the following continuity properties{
||A(u)− A(v)||∗ ≤ α||u − v||(||u||+ ||v||)β−2 if β ≥ 2,
||A(u)− A(v)||∗ ≤ α||u − v||β−1 if 1 < β ≤ 2,

(4)

here α > 0, independent to u and v.

Proof. A (direct) consequence of the lemma 2.1, see also [12] for a detailed proof. �

2.2. Mathematical Problem

The practical applications of the p-Laplacian equations [4,5,36] have previously been
mentioned; which, proved useful in a wide range of applications. For example, glacier
dynamics are an important topic in engineering and hydrology. Thus, the ice flow is
assumed to be an incompressible fluid with nonlinear viscosity. Next, let us consider the
problem of the model

−∇ · a(∇u) = f in Ω , (5)

with a(ζ) = |ζ|β−2ζ and f ∈ Lβ′(Ω). Note that if β = 2, it coincides with the linear
Laplacian operator, i.e., A = −Δ.

This equation can then be carried with the following new boundary conditions{
α(u)u +

(
|∇u|β−2∇u

)
· n = g on ΓND,

u = 0 on ΓD,
(6)

where α ∈ L∞(Γ) (α > 0) and g ∈ W1− 1
β ,β(∂Ω).

Theorem 1. The problems (5) and (6) have a unique solution u ∈ W1,β(Ω).

Proof. The proof is a consequence of ellipticity–continuity assumptions on the operator A.
�

The systems (5) and (6) are equivalent to a minimization problem (see [12,13]) defined
by: find u ∈ V such that

J(v) ≤ J(u), ∀v ∈ V, (7)

where
J(u) =

1
β

∫
Ω
|∇u|β + 1

2

∫
ΓND

α|u|2 −
∫

Ω
f v −

∫
ΓND

gv, (8)

for all v ∈ V.
The function J is continuous, strictly convex, and differentiable operator with

lim
||v||→∞

J(v) = +∞; it results, see [37], that J is Gateaux differentiable and (7) admits a

unique solution characterized by its variational formulation: find u ∈ V such that∫
Ω

(
|∇u|β−2∇u

)
∇v +

∫
ΓND

αuv =
∫

Ω
f v +

∫
ΓND

gv, (9)

for all v ∈ V.
Now, in order to analyze the finite element approximation of the problem (9), we

consider a regular mesh Th, h > 0, of the domain Ω. For any element T ∈ Th, we define:
ωT the set of elements share at least one edge with T; ω̃T the set of all elements sharing at
least one vertex with T; ε(T) the set of edges of T; hT the diameter of the simplex T; and
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h = max
T∈Th

hT . Respectively, for edge elements E ∈ ∂T with T ∈ Th: ωE is the set of elements

sharing at least one edge with E; ω̃E the set of all elements sharing at least one vertex with
E; and hE the diameter of a face E of T. Let εh =

⋃
T∈Th

ε(T) designate the set of all edges;
hence, one can divide it into interior and exterior edges such that εh = εh,Γ ∪ εh,Ω with

εh,Ω = {E ∈ εh : E ⊂ Ω}, εh,Γ = {E ∈ εh : E ⊂ Γ}.

Let Vh ⊂ V = W1,β(Ω), the finite dimensional spaces associated to regular partition
of Ω, and a discrete weak formulation is defined using finite dimensional spaces as: find
the vector uh ∈ Vh such that∫

Ω

(
|∇uh|β−2∇uh

)
∇vh +

∫
Γ

αuhvh =
∫

Ω
f vh +

∫
Γ

gvh, (10)

for all vh ∈ Vh.

2.3. A Posteriori Error Estimator

We illustrate the proposed technique with results of the a posteriori error estimation
for the p-Laplacian problem. Denoting u the solution of (5) and (6) and uh the approched
solution of (10). Our aim is to estimate the velocity error e = u − uh ∈ V by using some
important results.

Lemma 6. There is a constant C > 0 for all the elements K ∈ Th and v ∈ W1,β(Ω), such that

hT‖v‖β
0,β,∂K ≤ C

(
‖v‖β

0,β,K + ‖v‖β
1,β,K

)
, (11)

Proof. See [24]. �

Lemma 7 (Clement interpolation estimate). There is a constant C > 0, for any K ∈ Th and
for all E ∈ ∂K, let v ∈ V and πh the operator of the interpolation of discontinuous functions defined
by Clement satisfying

‖v − πhv‖0,β,K ≤ Ch1−m
K ∑

K′∈SK

‖v‖0,β,ω̃K′
(12)

for all v ∈ H1(SK), and m = 0 or 1.
Where SK =

⋃{K′, K
⋂

K′ 	= ∅}. In particular, for vh, is the quasi-interpolant of vdefined
by averaging as in

‖v − vh‖0,β,K ≤ Ch1−m
k |v|1,β,ω̃K′

(13)

with m = 0 or 1.

Proof. See [12,24]. �

The residual error estimator R : V �→ R is given by

〈R, v〉 =
∫

Ω
|∇uh|β−2∇uh∇v +

∫
Γ

αuhv −
∫

Ω
f v −

∫
Γ

gv, (14)

By applying the Green formula, we obtain

〈R, v〉 = ∑
K∈Th

{∫
K |∇uh|β−2∇uh∇v +

∫
Γ∩K αuhv − ∫

K f v − ∫
Γ∩K gv

}
= ∑

K∈Th

{∫
K

(
−∇ ·

(
|∇uh|β−2∇uh

)
− f

)
v +

∫
∂K |∇uh|β−2∇uh · nv +

∫
Γ∩K αuhv + |∇uh|β−2∇uh · nv − gv

}
= ∑

K∈Th

{∫
K

(
−∇ ·

(
|∇uh|β−2∇uh

)
− f

)
v + ∑

l∈∂K

∫
l |∇uh|β−2∇uh · nv + ∑

l∈Γ∩∂K

∫
l

(
αuh + |∇uh|β−2∇uh · n − g

)
v
}

.

(15)
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Because R, vh = 0 for all vh ∈ Vh, we use the interpolation operator πh to obtain

〈R, v〉 = ∑
K∈Th

{∫
K

(
−∇ ·

(
|∇uh|β−2∇uh

)
− f

)
(v − πhv) + ∑

l∈∂K

∫
l |∇uh|β−2∇uh · n(v − πhv)

+ ∑
l∈Γ∩∂K

∫
l

(
αuh + |∇uh|β−2∇uh · n − g

)
(v − πhv)

} (16)

and

〈R, v〉 ≤ ∑
K∈Th

{∫
K

∣∣∣−∇ ·
(
|∇uh|β−2∇uh

)
− f

∣∣∣
0,β′ ,K

|v − πhv|0,β,K + ∑
l∈∂K

∫
l

∣∣∣|∇uh|β−2∇uh · n
∣∣∣
0,β′ ,l

|v − πhv|0,β,l

+ ∑
l∈Γ∩∂K

∫
l

∣∣∣αuh + |∇uh|β−2∇uh · n − g
∣∣∣
0,β′ ,l

|v − πhv|0,β,l

}
.

(17)

So, by (12), we get

〈R, v〉 ≤ C ∑
K∈Th

hK

∣∣∣−∇ ·
(
|∇uh|β−2∇uh

)
− f

∣∣∣
0,β′ ,K

· ‖v‖1,β,K + ∑
K∈Th

{
C ∑

l∈∂K

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

.|v − πhv|0,β,l

+C ∑
l∈Γ∩∂K

∣∣∣αuh + |∇uh|β−2∇uh · n − g
∣∣∣
0,β′ ,l

.|v − πhv|0,β,l

}
.

(18)

For the first term of the second member, we have

I1 = ∑
K∈Th

hK

∣∣∣−∇ ·
(
|∇uh|β−2∇uh

)
− f

∣∣∣
0,β′ ,K

.‖v‖1,β,K ≤ C

(
∑

K∈Th

hβ′
K

∣∣∣−∇ ·
(
|∇uh|β−2∇uh

)
− f

∣∣∣β′

0,β′ ,K

) 1
β′
‖v‖1,β,K. (19)

Now, we increase the second term as follows

I2 = ∑
l∈∂K

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

· |v − πhv|0,β,l

= ∑
l∈∂K

h
1
β′
l

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

.h
− 1

β′
l |v − πhv|0,β,l

≤
(

∑
l∈∂K

hl

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣β′

0,β′ ,l

) 1
β′ ×

(
∑

l∈∂K
h
− β

β′
l |v − πhv|β0,β,l

) 1
β

.

(20)

Using (11), we have

∑
l∈∂K

h
− β

β′
l |v − πhv|β0,β,l ≤ C ∑

K∈Th

h
− β

β′
K |v − πhv|β0,β,∂K

≤ C ∑
K∈Th

h
−(1+ β

β′ )
K

(
|v − πhv|β0,β,∂K + hβ

K|v − πhv|β1,β,K

)
≤ C ∑

K∈Th

h
−(1+ β

β′ )
K

(
hβ

K|v|β1,β,K + hβ
K|v|β1,β,K

)
.

(21)

As 1 + β
β′ = β, it implies that

I2 ≤ ∑
l∈∂K

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

.|v − πhv|0,β,l

≤ C
(

∑
l∈∂K

hl

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣β′

0,β′ ,l

) 1
β′ × |v|1,β,Ω.

(22)

Now, it is simple to increase the third term as follows
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I3 = ∑
l∈Γ∩∂K

h
1
β′
l

∣∣∣αuhv + |∇uh|β−2∇uh · nv − g
∣∣∣
0,β′ ,l

· h
− 1

β′
l |v − πhv|0,β,l

≤
(

∑
l∈Γ∩∂K

hl

∣∣∣αuh + |∇uh|β−2∇uh · n − g
∣∣∣β′

0,β′ ,l

) 1
β′ ×

(
∑

l∈∂K
h
− β

β′
l |v − πhv|β0,β,l

) 1
β

≤
(

∑
l∈Γ∩∂K

hl

∣∣∣αuh + |∇uh|β−2∇uh · n − g
∣∣∣β′

0,β′ ,l

) 1
β′ × |v|1,β,Ω.

(23)

Hence, by combining (19), (22), and (23) we get

〈R, v〉 ≤ C

⎧⎨⎩
(

∑
K∈Th

hK

∣∣∣∇ ·
(
|∇uh|β−2∇uh

)
+ f

∣∣∣β′

0,β′ ,K

) 1
β′
+

(
∑

l∈∂K
hl

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣β

0,β′ ,l

) 1
β′

+C

(
∑

l∈Γ∩∂K
hl

∣∣∣αuh + |∇uh|β−2∇uh · n − g
∣∣∣ β′

0,β′ ,l

) 1
β′
⎫⎬⎭‖v‖.

(24)

As a
1
β′ + b

1
β′ ≤ 2

1
β (a + b)

1
β′ for a and b ≥ 0, we have the following estimate

‖R‖∗ = ‖A(u)− A(uh)‖∗ ≤
(

C ∑K∈Th
η
β′
K

) 1
β′ ,

with the contribution element of ηK, the residual error estimator is given by

η
β′
K = hβ′

K ‖RK‖β′
0,β′ ,K + ∑l∈∂K hl‖Rl‖β′

0,β′ ,l , (25)

his components are given by

RK =
{
∇ ·

(
|∇uh|β−2∇uh

)
+ f

}
K

, (26)

and

Rl =

{
1
2

[
|∇uh|β−2∇uh · n

]
l

if l ∈ εh,Ω,

α(uh)uh + |∇uh|β−2∇uh · n − g if l ∈ εh,Γ.
(27)

where [·]l is the jump of the derivative of uh over the interior edge l = T ∩ S, defined by[
|∇uh|β−2∇uh · n

]
l
=

((
|∇uh|β−2∇uh · n

)∣∣∣T −
(
|∇uh|β−2∇uh · n

)∣∣∣
S

)→
n E,T . (28)

It remains to connect ‖R‖∗ and ‖u − uh‖, which uses a coercivity property of the
operator A : V �→ W−1,β′ for β ∈ ]1, 2[, where we have

〈A(u)− A(v), u − v〉 ≥ C
‖u − v‖2

(‖u‖+ ‖v‖)2−β
, (29)

for all u, v ∈ W1,β(Ω), where C is a constant that does not depend on either u or v. By
taking v = 0, in (29), with u as the solution of problem (5), we get (since A(0) = 0)

〈A(u), u〉 ≥ α‖u‖β.

As A(u) = f , then α‖u‖β ≤ f , u ≤ ‖ f ‖W−1,β′ (Ω)
.‖u‖, which implies (since the injection

of Lβ′(Ω) in W−1,β′(Ω) is continuous)

‖u‖ ≤
(

1
C
‖ f ‖W−1,β′ (Ω)

) 1
β−1 ≤ C

(
‖ f ‖Lβ′ (Ω)

) 1
β−1 .
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Similarly, for uh, we have

(‖u‖+ ‖uh‖)2−β ≤ C
(
‖ f ‖Lβ′ (Ω)

) 2−β
β−1 . (30)

Finally, from (19), (22), and (23), we obtain the following result.

Theorem 8. For any mixed finite element approximation defined on regular grids Th, the residual
estimator satisfies

‖e‖ ≤ C

(
∑

K∈Th

η
β′
K

) 1
β′

,

where C is independent of β, Ω, a, and f .

Proof of Theorem 8. A direct consequence of these inequalities (15) to (29). �

Remark 9. Some remarks are in order: for β ≥ 2, we obtain

‖e‖ ≤ C

(
∑

K∈Th

η
β′
K

) 1
β

where C is independent of u and f , in this case and instead of (29), we have

〈A(u)− A(v), u − v〉 ≥ α‖u − v‖β,

∀u, v ∈ W1,β(Ω).

This result also holds for stable (and unstable) mixed approximations defined on a
regular triangulation.

3. Approximation of Quasi-Newtonian Stokes Problem by Finite Element Method

In reality, the comportment of fluids is more complex; this type of fluid is modeled by
nonlinear operators or tensors. Let us start this part with some definitions of fluid that we
will treat. The type of fluid that is more important is modeled by a nonlinear operator; the
problem is the quasi-Newtonian Stokes flow. For many details on the different models and
algorithms solving these problems, see [14].

3.1. Definition of Quasi-Newtonian Stokes Problem

We denote by u the velocity vector, p the pressure, σ the stress tensor, D(u) the
symmetric gradient of the velocity vector, and f the external forces.

Definition 1 (Quasi-Newtonian fluid). The fluid is said to be quasi-Newtonian when there exists
a positive function μ : R+ �→ R+ called the “viscosity” function, such that the stress deviator σ is
expressed as

σ = −pI+ 2μ
(
|2D(u)|2

)
D(u). (31)

There are two classical laws of quasi-Newtonian Stokes problems, the first one is the
“Carreau law viscosity” and the second one is the “power law viscosity”.

Definition 2 (Carreau law viscosity). The Carreau law expresses the viscosity as

μ(s) = μ∞ + (μ0 − μ∞)(1 + λs)
−1+n

2 , ∀s ∈ R
+, (32)
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where μ0, μ∞, λ, n ∈ R+∗ are given real constants satisfying μ0 ≥ μ∞ when n ≤ 1 and μ0 ≤ μ∞
when n ≥ 1.

The Figure 1 presents Carreau law viscosity for n < 1 and for n > 1. We can see that
under simplification conditions, the Carreau law viscosity can be rewritten as power law
viscosity defined by

μ(ζ) = Kζ
−1+n

2 , ∀ζ ∈ R, (33)

where K and n ∈ R+∗.

Figure 1. Quasi-Newtonian fluid flow, Carreau law viscosity for n < 1 (left) and n > 1 (right).

Note that, when n = 1, both the power law and Carreau law are reduced to a Newto-
nian fluid model with constant viscosity. When n < 1, the viscosity is decreasing with the
shear rate and the fluid is said to be “shear thinning” or “pseudoplastic”. The tensor norm
and the shear rate are defined as follows (see [14], Definition 1.9 for more precise details).

Definition 3 (Tensor norm). The following tensor norm is defined as

|τ|2 =
τ : τ

2
=

1
2

3

∑
i=1

3

∑
j=1

τ2
i,j, ∀τ ∈ R

3×3. (34)

Definition 4 (Shear rate). The shear rate, denoted by
.
γ, is defined by

.
γ = |2D(u)|.

Note that, the stress tensor σ in Newtonian fluid flow is “generally” defined by
σ = −pI+ 2μD(u), where μ is the fluid viscosity (a bound function).

3.2. Mathematical Problem

To simplify this study, the stationary case where the flow is incompressible remains;
hence, we neglect the inertia term which will allow us to focus on the nonlinearity of results
(from the viscosity law). The governing system can be written as{

−div(2μ(|2D(u))|2)D(u)) +∇p = f in Ω,
divu = 0 in Ω,

(35)
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where f ∈ X′, we define the general boundary condition Ca,μ by

Ca,μ : a(u)u +
(

2μ
(
|2D(u)|2

)
D(u)− pI

)
· n = g on Γ, (36)

where g ∈ Γ and a(u) are a bounded function defined in the boundary.
The existence and unique solution (u, p) of the problem (35) and (36) is defined in the

product space X × M with X =
(

H1(Ω)
)2 and M = L2(Ω). The operator

A = 2μ
(
|2D(u)|2

)
D(u) : X �→ X′ , appearing in (35), satisfies the following two propositions.

Proposition 10. For all u, v ∈ X, we have

〈A(u)− A(v), u − v〉 ≥ C(u, v)‖u − v‖2, (37)

where
C(u, v) =

{
α1 + α2(‖u‖+ ‖v‖)2−β

}−1
,

with α1, α2 > 0.

Proposition 11. For all u, v in X and all β > 1, there exists a positive constant C > 0 such that

‖A(u)− A(v)‖X′ ≤ C(u, v)‖u − v‖X . (38)

Proof of Proposition 10 and 11. See [38]. �

It should be noted that conditions (37) and (38) are satisfied for a fluid with a power
law viscosity, see, e.g., [12,39]. For the existence and uniqueness of the solution, we refer to
the works [17,40] by Baranger and Najib. The variational formulation to the problem (35)
and (36) is equivalent to: find (u, p) ∈ X × M such that{

〈A(u), v〉+ 〈Bv, p〉 = 〈 f , v〉,
〈Bu, q〉 = 〈g, q〉, (39)

for all (v, q) ∈ X × M, where

〈A(u), v〉 =
∫

Ω

(
2η

(
|2D(u)|2

)
: D(u)

)
D(v)dx +

∫
Γ

αuvdγ(x), (40)

and
〈Bv, q〉 =

∫
Ω

q div(v). (41)

Theorem 12. The problem (39) has a unique solution(u, p) ∈ X × M if and only if (40) has a
unique solution and B is surjective satisfying the inf-sup condition.

Proof. See [17,41]. �

The functional spaces X and M are Hilbert spaces, then (u, p) (resp. (U, P)) is a
solution of problem (39) associated to the couple ( f , g) (resp. (F, G)) such that

‖u − U‖+ ‖p − P‖ ≤ C(‖ f − F‖∗ + |g − G|∗),

where C is a positive constant, see [42] for more details.
We have to describe the discrete approximation problem corresponding to (39)–(41)

by using notations of Section 2; to this aim, we define the finite element spaces (Xh, Mh) ⊂
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(X, M), where the discrete approximation of the quasi-Newtonian flow problem (with Ca,μ
boundary condition) can be equivalently written as: find (uh, ph) ∈ Xh, Mh such that⎧⎪⎪⎨⎪⎪⎩

∫
Ω

(
2μ|2D(uh)|2

)
D(uh) : D(vh) + phvhd +

∫
Γ auhvhdγ =

∫
Ω f vdx +

∫
Γ gvhdγ, x

∫
Ω qh divuh dx = 0,

(42)

for all (vh, qh) ∈ Xh × Mh.
Under properties (3.2) and (3.2), and assuming the inf-sup condition is satisfied in the

discrete approximation problem (42), we obtain one solution, (uh, ph) ∈ Xh × Mh.

3.3. A Posteriori Error Estimator

A posteriori error indicator and residual error for quasi-Newtonian problems with
Dirichlet and Newman boundary conditions are developed in these papers [17,24,35].
Based on these results, one can adapt their estimates to the case of our problem (42); by
using the notation μh = 2μ|2D(uh)|2, we get

〈R, v〉 = ∑
K∈Th

∫
K

div
(

2μ|2D(uh)|2
)

D(uh)D(v)− ∑
K∈Th

∫
K

phdivv − ∑
K∈Th

∫
K

f v + ∑
K∈Th

∫
∂K∩Γ

αuhv + ∑
K∈Th

∫
∂K∩Γ

gv. (43)

From Green’s formula, and for any element K, we obtain

〈R, v〉 = ∑
K∈Th

(∫
K(A(uh) +∇ph − f )v +

∫
∂K(μhD(uh)n − phn)v +

∫
∂K∩Γ αuhv +

∫
∂K∩Γ gv

)
= ∑

K∈Th

(∫
K(A(uh) +∇ph − f )v +

∫
∂K(μhD(uh)n − phn)v +

∫
∂K∩Γ αuhv + (μhD(uh)n − phn)v − gv

)
= ∑

K∈Th

(
∫

K(A(uh) +∇ph − f )v + ∑
l∈εh

∫
l(μhD(uh)n − phn)v + ∑

l∈εΓ

∫
l αuhv + (μhD(uh)n − phn)v − gv)

where εΓ is the set of all edges of all elements Th divided into interior and exterior edges
εh = εh,Γ ∪ εh,Ω with εh,Ω = {E ∈ εh : E ⊂ Ω} and εh,Γ = {E ∈ εh : E ⊂ Γ}. As 〈R, vh〉 = 0
for all vh ∈ Xh, and for vh = πhv, we get

〈R, v〉 = 〈R, v − πhv〉 = ∑
K∈Th

∫
K(A(uh) +∇ph − f )(v − πhv)

+ ∑
l∈εh

∫
l(μhD(uh)n − phn)(v − πhv)

+ ∑
l∈εΓ

∫
l(αuh + (μhD(uh)n − phn)− g)(v − πhv).

(44)

Hence

〈R, v〉 ≤ ∑
K∈Th

|A(uh) +∇ph − f |0,K|v − πhv|0,K + ∑
l∈εh

|μhD(uh)n − phn|0,l |v − πhv|0,l

+ ∑
l∈εΓ

|αuh + (μhD(uh)n − phn)− g|0,l |v − πhv|0,l .
(45)

In order to deal with the three terms of the right-hand side, we write

∑
K∈Th

|A(uh) +∇ph − f |0,K|v − πhv|0,K ≤
(

∑
K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2
(

∑
K∈Th

h−2
K |v − πhv|20,K

) 1
2

(46)
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we use Lemma 3 (when m = 0) to obtain

∑
K∈Th

|A(uh) +∇ph − f |0,K|v − πhv|0,K ≤
(

∑
K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2

‖v‖. (47)

Defining the vector s

s = |μhD(uh)n − phn|0,l =
∣∣[σ(uh, ph)n]l

∣∣
0,l = |[σhn]l |0,l ,

the second term of the right-hand side is rewritten as

∑
l∈εh

s|v − πhv|0,l ≤
(

∑
l∈εh

hl |s|2
) 1

2
(

∑
l∈εh

h−1
l |v − πhv|20,l

) 1
2

. (48)

Observe that(
∑

K∈Th

∑
l∈εh

h−1
l |v − πhv|20,l

) 1
2

≤
(

∑
K∈Th

Ch−1
K |v − πhv|20,l

) 1
2

= C

(
∑

K∈Th

h−1
K |v − πhv|20,l

) 1
2

,

(49)

then, one can use lemma 3 (with β = 2) to get

(
∑

K∈Th

∑
l∈εh

h−1
l |v − πhv|20,l

) 1
2

≤ C

(
∑

K∈Th

h−2
K |v − πhv|20,K + ∑

K∈Th

h2
K|v − πhv|21,K

) 1
2

≤ C

(
∑

K∈Th

|v|21,K

) 1
2

= C‖v‖.

(50)

Thus, the second term of (45) is increased by

C

(
∑

l∈εh

∣∣[σ(uh, ph)n]l
∣∣2
0,l

) 1
2

‖v‖.

To treat the last term of (45), we write §

∑
l∈εh

|αuh + s − g|0,l |v − πhv|0,l ≤
(

∑
l∈εh

hl |αuh + s − g|2
) 1

2
(

∑
l∈εh

h−1
l |v − πhv|20,l

) 1
2

,

by using lemma 3 and (50), the last term of (45) is increased by

C

(
∑

l∈εh

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l

) 1
2

‖v‖. (51)

Finally, we conclude

〈R, v〉 ≤ C

(
∑

K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2

‖v‖+ C

(
∑

l∈εh

∣∣[σ(uh, ph)n]l
∣∣2
0,l

) 1
2

‖v‖

+C

(
∑

l∈εh

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l

) 1
2

‖v‖,

(52)
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where

‖R‖∗ ≤ C

(
∑

K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2

+ C

(
∑

l∈εh

∣∣[σ(uh, ph)n]l
∣∣2
0,l

) 1
2

+C

(
∑

l∈εh

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l

) 1
2

.

(53)

Finally, from (47), (50), and (51) we obtain the following result:

Theorem 13. There exists a constant C (independent of h) such that

‖u − uh‖+ ‖p − ph‖ ≤ C

(
∑

K∈Th

η(K)2

) 1
2

(54)

where
η(K) = h2

K|A(uh) +∇ph − f |20,K + ∑
l∈εh∩K

∣∣[σ(uh, ph)n]l
∣∣2
0,l

+ ∑
l∈εΓ∩K

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l + |divuh|20,K.

(55)

Proof of Theorem 13. A direct consequence of these inequalities (43) to (53). �

Remark. For more complex models where the dependence of the viscosity with respect to the second
invariant is more strongly nonlinear (for example Carreau law with μ∞ = 0 or power law), we
should use both methods of Sections 2 and 3 and a nonlinear version of Theorem 3.3, in [43].

These systems are written as a big matrix (his component is nonlinear). In these
simulations, we used the GMRES (GMRES is a generalized minimal residual algorithm
applied to solve nonsymmetric linear systems, see [31,41,42] for more details.) algorithm to
accelerate simulation.

4. Numerical Simulations

To conclude this paper, and in order to see the performance of the finite element
method for the nonlinear equations, two different numerical simulations are represented:
the first one uses the finite element software package “IFISS toolbox “ (IFISS software library
is an algorithm executed under MATLAB for the interactive numerical study of differential
equations for incompressible flow problems) to solve the Navier–Stokes equations with
different rectangular discretization sizes of meshes (16 × 16, 32 × 32, 64 × 64, 128 × 128,
256 × 256) and multiple elements (Q1–Q1, Q1–P0, Q2–Q1 and Q2–P1); while the second
one, uses the engineering simulation software “COMSOL Multiphysics software (COM-
SOL Multiphysics is a cross-platform finite element analysis, solver, and multi-physics
simulation software. It allows conventional physics-based user interfaces and coupled
systems of partial differential equations (PDEs)“. Inspired by the model defined in this
paper [44] (applied in a porous media), we consider a “nonlinear Brinkman equation” with
an inhomogeneous boundary condition, where the change of the parameter represents the
change of the velocity field u and the pressure p in a different figure.

4.1. Fist Experience

We consider a Poiseuille (the Poiseuille flow problem is a steady horizontal flow
in a channel driven by a pressure difference between the two ends) channel flow so-
lution with an analytic solution of the Navier–Stokes equations as u =

(
1 − y2, 0

)
and

p = −2νx, see [45,46] for more details. Where the boundary conditions are of Dirichlet
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or Neumann type on all the boundary—the inflow boundary is considered in the part
[x = −1,−1 < y < 1]—a no-flow Dirichlet condition, u = 0, is applied on the characteristic
boundaries y = {−1, 1} and an outflow condition is considered in the rest of the boundary
(i.e., [x = 1,−1 < y < 1]). Figures 2–5 represent the uniform streamline and the pressure
associated with, respectively, 16 × 16 and 256 × 256 in cases Q1–Q1, Q1–P0, Q2–Q1 and
Q2–P1 mixed approximation.

  
(a) (b) 

Figure 2. Equally distributed streamline plot associated with a 16 × 16 and 256 × 256 square grid,
Q1–Q1 approximation. (a) 16 × 16 elements; (b) 256 × 256 elements.

  
(a) (b) 

Figure 3. Equally distributed streamline plot associated with a 16 × 16 and 256 × 256 square grid,
Q1–P0 approximation. (a) 16 × 16 elements; (b) 256 × 256 elements.

  
(a) (b) 

Figure 4. Equally distributed streamline plot associated with a 16 × 16 and 256 × 256 square grid,
Q2–Q1 approximation. (a) 16 × 16 elements; (b) 256 × 256 elements.
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(a) (b) 

Figure 5. Equally distributed streamline plot associated with a 16 × 16 and 256 × 256 square grid,
Q2–P1 approximation. (a) 16 × 16 elements; (b) 256 × 256 elements.

Figures 6–9 represent the errors, associated with a 16 × 16 and a 256 × 256 uniform
square grid with a different element, Q1–Q1, Q1–P0, Q2–Q1, and Q2–P1.

 
(a) (b) 

Figure 6. Error associated with a 16 × 16 and a 256 × 256 square grid, Q1–Q1 approximation. (a)
16 × 16 elements; (b) 256 × 256 elements.

 

(a) (b) 

Figure 7. Error associated with a 16 × 16 and a 256 × 256 square grid, Q1–P0 approximation. (a)
16 × 16 elements; (b) 256 × 256 elements.

197



Mathematics 2023, 11, 1943

 
(a) (b) 

Figure 8. Error associated with a 16 × 16 and a 256 × 256 square grid, Q2–Q1 approximation. (a)
16 × 16 elements; (b) 256 × 256 elements.

 

(a) (b) 

Figure 9. Error associated with a 16 × 16 and a 256 × 256 square grid, Q2–P1 approximation. (a)
16 × 16 elements; (b) 256 × 256 elements.

In the previous figures, we can notice that the results are well-presented if we take the
mesh to be very small.

Table 1 represents the residual error estimator η, the estimated velocity divergence
error ‖ ∇ ·←u h ‖0,Ω, and the Stokes solution residual ηS for difference discretization (16× 16,
32 × 32, 64 × 64, 128 × 128, and 256 × 256) in these elements, cases Q1–Q1, Q1–P0, Q2–Q1
and Q2–P1 mixed approximations.

Table 1. Residual error estimator, estimated velocity divergence error, and Stokes solution residual
for 16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256.

Elements Errors Number of Girds

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Q1–Q1

η 5.86 × 100 1.34 × 100 9.99 × 10−1 8.38 × 10−1 2.37 × 10−1

‖ ∇ · ←u h ‖0,Ω 8.77 × 10−2 2.22 × 10−2 5.65 × 10−3 1.47 × 10−3 3.92 × 10−4

ηS 4.22 × 100 1.75 × 100 9.43 × 10−1 5.58 × 10−1 3.26 × 10−1

Q1–P0

η 5.98 × 100 1.90 × 100 1.28 × 100 9.93 × 10−1 2.47 × 10−1

‖ ∇ · ←u h ‖0,Ω 1.29 × 10−1 4.09 × 10−2 1.35 × 10−2 7.39 × 10−3 1.00 × 10−3

ηS 1.11 × 101 3.90 × 100 1.45 × 100 1.65 × 100 3.51 × 10−1

Q2–Q1

η 5.36 × 100 2.05 × 100 6.09 × 10−1 2.25 × 10−1 1.02 × 10−1

‖ ∇ · ←u h ‖0,Ω 1.05 × 10−1 3.23 × 10−2 6.06 × 10−3 1.31 × 10−3 3.2 × 10−4

ηS 3.24 × 100 2.14 × 100 1.30 × 100 7.61 × 10−1 4.29 × 10−1

Q2–P1

η 5.36 × 100 1.67 × 100 4.92 × 10−1 1.55 × 10−1 6.14 × 10−2

‖ ∇ · ←u h ‖0,Ω 1.07 × 10−1 1.28 × 100 5.25 × 10−3 1.23 × 10−3 3.03 × 10−4

ηS 2.70 × 100 6.09 × 10−1 1.21 × 100 7.18 × 10−1 4.09 × 10−1
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A good way to explore the capabilities of this method is to see the convergence time.
Table 2 presents the solve time of finite element methods with different discretization
and elements.

Table 2. Solve time of finite element methods for 16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256.

Elements 16×16 32×32 64×64 128×128 256×256

Q1–Q1 1.71 × 10−1 s 2.08 × 10−1 s 8.75 × 10−1 s 3.78 × 100 s 1.99 × 101 s
Q1–P0 8.24 × 10−2 s 3.58 × 10−1 s 3.69 × 10−1 s 5.53 × 100 s 2.42 × 101 s
Q2–Q1 3.19 × 10−2 s 1.88 × 10−1 s 1.30 × 100 s 6.55 × 100 s 2.66 × 101 s
Q2–P1 1.69 × 10−1 s 1.88 × 100 s 5.33 × 100 s 3.25 × 101 s 5.66 × 101 s

4.2. Second Experience

The second experience comes from the second example (pore–scale flow experiments)
defined by Sirivithayapakorn and Keller in [44] to model the transport of colloids in
saturated porous media, and by Auset and Keller in [47] to control the dispersion of colloids.
Inspired by the same model examples, and considering the new boundary conditions, the
domain covers [0.640 μm × 0.320 μm], see Figure 10. The flow in the pores does not
penetrate the solid grains and the inlet fluid pressure is known as p = 0.715 Pa, see
Figure 10, and assumes that the boundary is changed at the outlet. Top and bottom
boundaries are modeled by α(u)u + (−pI + K) · n = f , where the change of the parameter
α(u) represents the change of the velocity field and the pressure in the figures. The primary
zone of interest is the rectangular region with an upper-left corner at (0, 0) and lower-right
coordinates at [581.6 μm × 265.0 μm].

 
(a) (b) 

Figure 10. Geometry and boundary conditions of the reservoir (the color code is blue for 0 and red
for 1 ). (a) Geometry of the reservoir; (b) boundary conditions of the reservoir.

Instead of solving for the creeping flow in the channels, the incompressible, stationary
Brinkman equations are used, with the Stokes—Brinkman assumptions used next. Figure 11
shows the reservoir and localization of the boundary conditions. Figures 11 and 12 represent
the velocity and pressure of the model defined for these simulations. We use the finite
element method to approach the unknown functions (pressure and velocity), change the
value of μ in the boundary condition to see the comportment of the fluid in the reservoir,
and take the two cases μ >> 1 and μ << 1.

In this simulation, we can see the difference between Figures 11 and 12: the distribution
of the lines is modified when the parameter is changed. For this, in modeling the linear or
nonlinear problems, we can count on this boundary condition, i.e., we can treat complex
boundary conditions. This method, “the finite element method”, remains valid in our case
to solve these types of problems.
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(a) (b) 

Figure 11. The velocity field calculated by the Brinkman equations. (a) μ = 10−3; (b) μ = 106.

  

(a) (b) 

Figure 12. The pressure calculated by the Brinkman equations. (a) μ = 10−3; (b) μ = 106.

5. Conclusions & Perspectives

In this paper, we studied two nonlinear differential equations, the “p-Laplacian”
problem and the “Quasi-Newtonian Stokes” problem. This model is applied in many
domains, for example in fluid mechanics, and we approach these models with a general
boundary condition using the finite element method (FEM). For the theoretical study, we
introduced the a posteriori error indicator to control the errors. The performance of this
method is presented via different numerical simulations. From these perspectives, we
can apply the P1/P1 Bubble method to approach this model for the study of the element,
see [48] for a linear Brinkman model. Another problem that we can treat is to couple
this model (quasi-Newtonian Stokes problem (35)) with Darcy’s law, see [49] for how the
authors use the finite element methods to approach the coupled Darcy—Stokes problem.
Another model which we can choose for permeability is a tensor in the equation and in the
boundary condition for the quasi-Newtonian Stokes problem in (35) and (36) (i.e., we can
choose a more complex model), see for example [50–53] applied to the linear model.
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Abstract: In this paper, a mathematical model based on the T-S fuzzy model is proposed to solve the
fault estimation (FE) and fault-tolerant control (FTC) problem for singular nonlinear time-varying
delay (TVD) systems with sensor fault. TVD is is extremely difficult to solve and the Laplace
transform is devised to build an equal system free of TVD. Additionally, the sensor fault is changed
to actuator fault by the developed coordinate transformation. A fuzzy learning fault estimator is first
built to estimate the detailed sensor fault information. Then, a PI FTC scheme is suggested aiming at
minimizing the damage caused by the fault. Simulation results from multiple faults reveal that the
FE and FTC algorithms are able to estimate the fault and guarantee the system performance properly.

Keywords: T-S fuzzy model; time-varying delay; singular systems; sensor fault; FE; FTC
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1. Introduction

Singular systems, also known as generalized systems, are more complex systems than
general systems, consisting of faster-changing differential systems and slower-changing
algebraic equations [1–3]. There are still many unsolved problems waiting to be studied,
and the study of singular systems is very meaningful. The stability analysis and PD
controller design methods for nonlinear singular systems are given in [4]. Reference [5]
provides the design of a predictive sliding mode controller for the control of singular
systems. Meanwhile, nonlinear problems are widely found in real systems [6–8]. The
reference in [9] constructs an explicit controller for systems with stochastic nonlinearities
to make the closed-loop system globally bounded. The neuro-fuzzy and state feedback
control scheme for the problem of nonlinear control systems is presented in [10]. For fuzzy
control, the selection of the membership function is very important. In [11], a membership
function of interval type-2 is given and relies on the characteristics of the function for an
analytical approach to analyze the system stability. An enhanced membership function
transformation method is proposed in [12] to approximate the membership function, and
stability analysis of a polynomial fuzzy system is performed. The problem of time delay
has also received the attention of researchers [13,14]. Reference [15] presents a consistency
analysis of a system with a distributed delay adopted PI controller. A nonlinear mixed
reaction diffusion dynamics model for prostate cancer cells with time delay is given in [16],
and the properties of the positive solutions of the model are investigated. Therefore, the
problem addressed in this paper is a very worthy research direction.

When a fault occurs in a normal system, the output of the system can be severely
affected or even destroy the system directly, so fault estimation algorithms should be
proposed to obtain fault information for subsequent processing [17,18]. Firstly, for the
data-based fault estimation aspect, a multi-scale bidirectional diversity-entropy-based FE
algorithm is addressed in [19] to improve the extraction of nonlinear dynamic fault features.
Various adaptive principal component analysis methods are proposed in [20] to perform
early fault detection by comparing their monitoring metrics. There are also algorithms
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that perform fault estimation by monitoring changes in the system model through an
estimator [21–23]. In [24], a memory-state feedback control algorithm is designed for time-
delay interval type-2 T-S fuzzy systems to mitigate the effects of external disturbances and
actuator fault. A time-based sliding mode estimator for a quadrotor UAS with multiple
actuator faults is suggested in [25] and the output residuals are applied in the estimation
algorithm. Tests demonstrate that the algorithm is able to identify multiple faults even
under the influence of perturbations. In [26], a reduced-order estimation observer is
developed for an uncertain system and equipped with an online adaptive FE method,
which is capable of identifying multiple faults simultaneously. In addition, a batch-type
least squares projection method is constructed to measure the degree of the faults. Multiple
fault detection methods based on directed unknown input observers are designed in [27]
for networked control systems and validated in power systems. However, the FE research
results of singular systems are relatively few.

Once the fault information is acquired, control algorithms are needed to mitigate the
effects of the fault [28,29]. Reference [30] addresses the problem that bounded nonlinear
systems are affected by sensor and link fault, and proposes a distributed state estimation
and active FTC scheme to ensure the stable operation of the communication. An output
feedback FTC scheme is suggested in [31] for nonlinear uncertain systems with multiple
faults. In [32], a data-driven distributed formation FTC method is developed for quadrotors
with nonlinearity, uncertainty, and multiple faults. A data-based distributed iterative
FTC method is designed in [33] for multi-input systems, which does not require all the
system information, reduces the computational burden, and the simulation verifies the
performance of the algorithm. However, there has been relatively little focus on the research
of FTC algorithms for generalized delay systems.

In this paper, a mathematical model for the FE and FTC of singular nonlinear TVD
systems with sensor fault is addressed based on a T-S fuzzy model. The T-S fuzzy model is
implemented to approach the system’s nonlinear dynamics. A Laplace transform method
is devised to construct an equivalent system without explicit TVD. The sensor fault is
changed to actuator fault by the developed coordinate transformation. A fuzzy learning
fault estimator is built to estimate the detailed sensor fault information. When the system
output drifts away to the expected value, a PI FTC scheme is suggested with the aim of
reducing the damage of the fault. Simulation results from multiple faults indicate that the
FE and FTC algorithms are capable of estimating the fault and guaranteeing the system
performance appropriately.

Among the main contributions of this paper are

1. The nonlinear dynamics is approached through a T-S fuzzy model, Laplace transform
is adopted to tackle the TVD issue, and coordinate transformation is utilized to
simplify the sensor fault handling challenge.

2. A novel fuzzy learning fault estimator is addressed to capture detailed fault information.
3. A fuzzy PI FTC scheme is introduced to mitigate the impact of fault on system

performance to the maximum extent possible.

This paper is structured as follows: In Section 2, the system T-S fuzzy modelling is
presented. In Section 3, the coordinate transformation algorithms and the design of a fuzzy
learning fault estimator are given. A PI FTC controller is introduced in Section 4. Next,
some examples of comparative simulations are provided in Section 5. Eventually, Section 6
presents the conclusion.

204



Mathematics 2023, 11, 2547

2. Model Description

The T-S fuzzy model is the most powerful tool to process system nonlinearity, so the
T-S fuzzy system is deployed to approach the system dynamics in this paper. The T-S model
is characterized via IF-THEN fuzzy rules, and under each rule is a linear subsystem whose
set represents an approximation of the nonlinear system. The ith fuzzy rule for a class of
singular nonlinear systems is represented as

rule i: IF ζ1(k) is δi1, ζ2(k) is δi2, . . ., and ζκ1(k) is δiκ1 , THEN

Eẋ(t) = Aix(t) + Biu(t − τ) + Nid(t),
y(t) = Dix(t) + Si fs(t).

(1)

where x(t), u(t), y(t) denote the state vector, control input vector, and output vector, respec-
tively. Matrices Ai, Bi, Di, Ni, Si represent the system parameters with the required dimen-
sions. The TVD τ obeys the exponential distribution of parameter α. fs(t) denotes the vector
of possible sensor fault. ‖d(t)‖ ≤ Kd is bounded extraneous noise. ζ j(k)(j = 1, 2, . . . , κ1)
is the antecedent variable, δij(i = 1, 2, . . . , κ2; j = 1, 2, . . . , κ1) is the vague collection, charac-
terized with the membership function, and κ1 and κ2 are the number of If-Then rules and
the antecedent variables.

Assumption 1 ([34]). The system is regular, namely, |sE − A| 	= 0.

Assumption 2 ([35]). The system is pulseless, i.e., rankE = deg|sE − A|.

Assumption 3. For fault fs, the condition is satisfied ‖ fs‖ ≤ K f with unknown positive scalar K f .

When assumptions 1 and 2 hold, there are two non-singular matrices and so that the
following formula is established:

Ψ1EΨ2 =

[
Ip 0
0 0

]
, Ψ1 AΨ2 =

[
A1 0
0 In−p

]
,

Ψ1B =

[
B1

B2

]
, Ψ1N =

[
N1

N2

]
, DΨ2 =

[
D1 D2 ]

.
(2)

where Ψ1, Ψ2 ∈ Rn×n, A1 ∈ Rp×p, Ii is i-dimensional unit matrix, then System (1) can be

transformed by coordinate transformation
[

x1(t)
x2(t)

]
=Ψ−1

2 x(t) as

rule i: IF ζ1(k) is δi1, ζ2(k) is δi2, . . ., and ζκ1(k) is δiκ2 , THEN

Ψ1EΨ2

[
ẋ1(t)
ẋ2(t)

]
=Ψ1 AiΨ2

[
x1(t)
x2(t)

]
+ Ψ1Biu(t − τ) + Ψ1Nid(t),

y(t) = DiΨ2

[
x1(t)
x2(t)

]
+ Si fs(t).

(3)

By plugging the block matrix from (2) into the above equation, the following can be
obtained:

rule i: IF ζ1(k) is δi1, ζ2(k) is δi2, . . ., and ζκ1(k) is δiκ2 , THEN

ẋ1(t) = A1
i x1(t) + B1

i u(t − τ) + N1
i d(t),

x2(t) = −B2
i u(t − τ)− N2

i d(t),
y(t) = D1

i x1(t) + D2
i x2(t) + Si fs(t).

(4)
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By fusing the local models guided by all IF-THEN rule through fuzzy blending, the
global fuzzy model below is obtained:

ẋ1(t) =
κ2
∑

i=1
h̄i(ζ(t))

[
A1

i x1(t) + B1
i u(t − τ) + N1

i d(t)
]
,

x2(t) =
κ2
∑

i=1
h̄i(ζ(t))

[−B2
i u(t − τ)− N2

i d(t)
]
,

y(t) =
κ2
∑

i=1
h̄i(ζ(t))

[
D1

i x1(t) + D2
i x2(t) + Si fs(t)

]
.

(5)

where ζ(k) = [ζ1(k), ζ2(k), . . . , ζκ2(k)], ωi(ζ(k)) =
κ2
∏
j=1

δij(ζ j(k)) > 0, h̄i(ζ(k)) =
ωi(ζ(k))

∑
κ2
i=1 ωi(ζ(k))

> 0,
q
∑

i=1
h̄i(ζ(k)) = 1.

Lemma 1. For real matrices X, Y, the following inequality holds [31]:

XTY + YTX ≤ XTX + YTY. (6)

3. Fault Estimation

The system is affected by both sensor fault and TVD, which are very difficult to handle
directly. Two transformation methods are presented below to deal with sensor fault and TVD.

Introducing a new state variable

ẋs = −Asxs(t) + Asy(t). (7)

where As is a Hurwitz matrix.
The new system structure is represented below

ẋs1(t) =
κ2
∑

i=1
h̄i(ζ(t))

[
As

i xs1(t) + Bs
i u(t − τ) + Ss

i fs(t) + Ns
i d(t)

]
,

ys1(t) =
κ2
∑

i=1
h̄i(ζ(t))

[
Ds

i xs1(t)
]
,

(8)

where xs1(t) =

[
x1(t)
xs(t)

]
, As

i =

[
A1

i 0
AsDs

1 −As

]
, Bs

i =

[
B1

i
−AsDs

2B2
i

]
, Ss

i =

[
0

AsS

]
,

Ds
i =

[
0 Ip

]
.

After the above conversion, the sensor fault is transformed into actuator fault, which
is convenient for subsequent processing.

To deal with TVD, the Laplace transform is used to solve the delays and convert
System (8) into an equivalent system without significant delays. The delay module in this
paper satisfies the exponential distribution function and yields the following results:

FT(t) = 1 − e−αt. (9)

The probability density function (PDF) of the exponential distribution is f (α, t) =
αe−αt, and taking the Laplace transform on the PDF yields

FT(s) =
∫ ∞

0 αe−ατe−sτdτ = α
α+s . (10)

The expected value of the output response of a random delay block is equivalent to the
Laplace transform of the phase-synchronized signal with the same sampling period [36],
and it leads to

E[u(t − τ)] = L−1
{

α

α + s
u(s)

}
. (11)
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Furthermore,
xs2(t) =

α

α + s
u(s). (12)

Then the following system is available:

ẋs2(t) = −αxs2(t) + αu(t). (13)

Merging Systems (8) and (13), the novel system model is given below:

˙̄x(t) =
κ2
∑

i=1
h̄i(ζ(t))[Āi x̄(t) + B̄iu(t) + S̄i fs(t) + N̄id(t)],

ȳ(t) =
κ2
∑

i=1
h̄i(ζ(t))[D̄i x̄(t)],

(14)

where x̄ =

[
xs1
xs2

]
, Āi =

[
As

i Bs
i

0 −α

]
, B̄i =

[
0
α

]
, S̄i =

[
Ss

i
0

]
, N̄i =

[
Ns

i
0

]
, D̄i =

[ Ds
i 0 ].

After the above transformation, the system has been transformed into a system without
significant time delay affected by actuator fault. To estimate detailed fault information, the
structure of the fuzzy learning fault estimator is given below:

˙̄̂x(t) =
κ2
∑

i=1
h̄i(ζ(t))[Āi ˆ̄x(t) + B̄iu(t) + S̄iZ(t) + Giε(t)],

ˆ̄y(t) =
κ2
∑

i=1
h̄i(ζ(t))[D̄i ˆ̄x(t)],

Z(t) =
κ2
∑

i=1
h̄i(ζ(t))[K1iZ(t − τ) + K2iε(t − τ)],

˙̂fs(t) = WZ(t),

(15)

where ˆ̄x(t) and f̂s(t) are the estimated state and sensor fault, ε(t) = ȳ(t) − ˆ̄y(t) is the
residual signal, and Gi, K1i, K2i are gain matrices remaining undetermined.

The estimated error is specified below:

ēx(t) = x̄(t)− ˆ̄x(t),
e f s(t) = fs(t)− f̂s(t).

(16)

Combining System (14) and the learning estimator (15), the estimation error system is
gained below:

˙̄ex(t) =
κ2
∑

i=1
h̄i(ζ(t))[(Āi − GiD̄i)ēx(t) + S̄i fs(t)− S̄iZ(t) + N̄id(t)]. (17)

Theorem 1. For System (14) and the learning estimator (15), the error system (17) is considered
convergent when there exist positive definite symmetric matrices (PDSMs) P1, R1 and K1i, K2i > 0
to make the following inequalities valid:

(Āi − GiD̄i)
T P1 + P1(Āi − GiD̄i) + R1 + P1S̄iS̄T

i P1 + Q1 ≤ 0,
0 < (6 + 3σ)K1i

TK1i ≤ I,
0 < (6 + 3σ)(K2i D̄)T(K2i D̄) ≤ R1.

(18)

Proof. The following is a definition of the Lyapunov function:

Λ1(t) = ēT
x (t)P1 ēx(t) +

∫ t

t−τ
ēT

x (ς)R1 ēx(ς)dς +
∫ t

t−τ
ZT(ς)Z(ς)dς, (19)
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The derivative of Λ1(t) yields

Λ̇1(t) ≤
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[ēT

x (t)(P1(Āi − GiD̄j)

+(Āi − GiD̄j)
T P1)ēx(t) + 2ēT

x (t)P1S̄i f (t)
−2ēT

x (t)P1S̄iZ(t) + 2ēT
x (t)P1N̄id(t) + ēT

x (t)R1 ēx(t)
−ēT

x (t − τ)R1 ēx(t − τ) + ZT(t)Z(t)− ZT(t − τ)Z(t − τ)],

(20)

For the learning estimator (15), the following inequalities are established:

2ZT(t)Z(t) ≤
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[2ZT(t − τ)KT

1iK1iZ(t − τ)

+ZT(t − τ)KT
1iK1iZ(t − τ) + ēT

x (t − τ)(K2i D̄j)
T(K2i D̄j)ēx(t − τ)

+ZT(t − τ)KT
1iK1iZ(t − τ) + ēT

x (t − τ)(K2i D̄j)
T(K2i D̄j)ēx(t − τ)

+ZT(t − τ)KT
1iK1iZ(t − τ) + 2ēT

x (t − τ)(K2i D̄j)
T(K2i D̄j)ēx(t − τ)

+ēT
x (t − τ)(K2i D̄j)

T(K2i D̄j)ēx(t − τ) + ZT(t − τ)KT
1iK1iZ(t − τ)

+ēT
x (t − τ)(K2i D̄j)

T(K2i D̄j)ēx(t − τ)]

=
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[6ZT(t − τ)KT

1iK1iZ(t − τ)

+6ēT
x (t − τ)(K2i D̄j)

T(K2i D̄j)ēx(t − τ)],

(21)

Using Lemma 1, one can obtain

2ēx(t)P1S̄iZ(t) ≤ ēT
x (t)P1S̄iS̄T

i P1 ēx(t) + ZT(t)Z(t),
2ēT

x (t)P1N̄id(t) ≤ ēT
x (t)P1N̄i N̄T

i P1 ēx(t) + dT(t)d(t),
(22)

Substituting the above equation into Formula (20) and rearranging yields

Λ̇1(t) ≤
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[ēT

x (t)(P1(Āi − GiD̄j) + (Āi − GiD̄j)
T P1)ēx(t)

+ēT
x (t)P1S̄iS̄T

i P1 ēx(t) + 2K2
f + ēT

x (t)P1S̄iS̄T
i P1 ēx(t) + σZT(t)Z(t)

+ēT
x (t)P1N̄i N̄T

i P1 ēx(t) + 2K2
d + 2ZT(t)Z(t)− σZT(t)Z(t)

−ēT
x (t − τ)R1 ēx(t − τ)− ZT(t − τ)Z(t − τ)]

≤
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[ēT

x (t)(P1(Āi − GiD̄j) + (Āi − GiD̄j)
T P1 + R1

+2P1S̄iS̄T
i P1 + P1N̄i N̄T

i P)ēx(t) + 2K2
f + 2K2

d
+(6 + 3σ)ZT(t − τ)KT

1iK1iZ(t − τ)
+(6 + 3σ)ēT

x (t − τ)(K2i D̄j)
T(K2i D̄j)ēx(t − τ)

−ēT
x (t − τ)R1 ēx(t − τ)− σZT(t)Z(t)− ZT(t − τ)Z(t − τ)]

=
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[ēT

x (t)(P1(Āi − GiD̄j) + (Āi − GiD̄j)
T P1 + R1

+2P1S̄iS̄T
i P1 + P1N̄i N̄T

i P)ēx(t) + 2K2
f + 2K2

d
+ZT(t − τ)

(
(6 + 3σ)KT

1iK1i − I
)
Z(t − τ)

+ēT
x (t − τ)

(
(6 + 3σ)(K2i D̄j)

T(K2i D̄j)− R1

)
ēx(t − τ)− σZT(t)Z(t)],

(23)

When Theorem 1 holds, the following result is obtained:

Λ̇1(t) ≤
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[ēT

x (t)(P1(Āi − GiD̄j) + (Āi − GiD̄j)
T P1 + R1

+2P1S̄iS̄T
i P1 + P1N̄i N̄T

i P)ēx(t) + 2K2
f + 2K2

d − σZT(t)Z(t)]

=
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[ϕT(t)Q1 ϕ(t) + 2K2

f + 2K2
d]

≤
κ2
∑

i=1
h̄i(ζ(t))

κ2
∑

j=1
h̄j(ζ(t))[−λmin(Q1)‖ϕ(t)‖2 + 2K2

f + 2K2
d],

(24)
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where λmin(·) represents the minimum eigenvalue of the matrix.

Therefore, when Theorem 1 and ‖ϕ(t)‖ >

√
2

K2
f +2K2

d
−λmin(Q1)

are satisfied, then Λ̇1(t) < 0.

Depending on the Lyapunov theory, the error system (17) is convergent.

4. Fault-Tolerant Control

System performance is severely affected when fault is not handled in a timely manner,
so when fault information is obtained through the designed fuzzy learning estimator,
a fault-tolerant control algorithm needs to be designed to compensate for fault to the
maximum extent possible to ensure that expected output is followed even with fault. In
this paper, a fault-tolerant controller is constructed based on a PI control strategy.

A new state variable is introduced as follows:

�(t) = [x̄T(t),
∫ t

0
(ȳ(ς)− yc)

Tdς]T . (25)

where yc is a reference output.
The corresponding estimation error of �(t) is defined as

e�(t) = �(t)− �̂(t) =

[
x̄(t)∫ t

0 (ȳ(ς)− yc)dς

]
−

[
ˆ̄x(t)∫ t

0 ( ˆ̄y(ς)− yc)dς

]
. (26)

On the basis of system (14), the new dynamic system is expressed as

�̇(t) =
κ2

∑
i=1

h̄i(ζ(t))
[
Ãi�(t) + B̃iu(t) + S̃i fs(t) + Ñid(t)− Ĩyc

]
, (27)

where Ãi =

[
Āi 0
D̄i 0

]
, B̃i =

[
B̄i
0

]
, S̃i =

[
S̄i
0

]
, Ñi =

[
N̄i
0

]
, Ĩ =

[
0
I

]
To ensure that the system output continues tracking the intended output when fault

occurs, the PI compensating controller is provided below:

u(t) =
κ2
∑

i=1
h̄i(ζ(t))B̃p

i

[
GPi ˆ̄x(t) + GIi

∫ t
0 ( ˆ̄y(τ)− yc)dτ − f̂s(t)

]
=

κ2
∑

i=1
h̄i(ζ(t))B̃p

i

{[
GPi GIi

][ ˆ̄x(t)∫ t
0 ( ˆ̄y(τ)− yc)dτ

]
− f̂s(t)

}
=

κ2
∑

i=1
h̄i(ζ(t))B̃p

i

[
GPI�(t)− f̂s(t)

]
,

(28)

where B̃p is the pseudo inverse of matrix B̃, and GPI =
[

GPi GIi
]

is the pending
controller gain.

The error system yields the following results:

ė�(t) = �̇(t)− ˙̂�(t)

=
κ2
∑

i=1
h̄i(ζ(t))

[
(Ãi + B̃iGPI)�(t) + (S̃i − B̃i) fs(t) + Ñid(t)− Ĩyc

]
−[

(Ãi + B̃iGPI)�(t) + (S̃i − B̃i) fs(t)− Ĩyc
]

=
κ2
∑

i=1
h̄i(ζ(t))

[
(Ãi + B̃iGPI)e�(t) + (S̃i − B̃i)e f s(t)

]
.

(29)

Theorem 2. The convergence of the closed-loop dynamical system (29) is guaranteed when there
exist GPI, PDSM P2 and Q2 to make the following inequality hold:

(Ãi + B̃iGPI)
T P2 + P2(Ãi + B̃iGPI) + P2(S̃i − B̃i)(S̃i − B̃i)

T P2 + Q2 ≤ 0. (30)
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Proof. The Lyapunov function is defined below:

Λ2(t) = eT
�(t)P2e�(t), (31)

Taking the interval derivative of Λ2(t) and employing Lemma 1, this leads to

Λ̇2(t) =
κ2
∑

i=1
h̄i(ζ(t))((Ãi + B̃iGPI)e�(t) + (S̃i − B̃i)e f s(t))T P2e�(t)

+
κ2
∑

i=1
h̄i(ζ(t))eT

�(t)P2((Ãi + B̃iGPI)e�(t) + (S̃i − B̃i)e f s(t))

=
κ2
∑

i=1
h̄i(ζ(t)){eT

�(t)((Ãi + B̃iGPI)
T P2 + P2(Ãi + B̃iGPI))e�(t)

+2eT
�(t)P2(S̃i − B̃i)e f s(t)

≤
κ2
∑

i=1
h̄i(ζ(t))eT

�(t)((Ãi + B̃iGPI)
T P2 + P2(Ãi + B̃iGPI))e�(t)

+eT
�(t)P2(S̃i − B̃i)(S̃i − B̃i)

T P2e�(t) + eT
f s(t)e f s(t)

≤
q
∑

i=1
hi(ξ(t))eT

�(t)((Ãi + B̃iGPI)
T P2 + P2(Ãi + B̃iGPI)

+P2(S̃i − B̃i)(S̃i − B̃i)
T P2)e�(t) + 2K2

f

=
κ2
∑

i=1
h̄i(ζ(t))eT

�(t)Q2e�(t) + 2K2
f

≤
κ2
∑

i=1
h̄i(ζ(t))[−λmin(Q2)‖e�(t)‖2 + 2K2

f ],

(32)

Thus, in case Theorem 2 and ‖e�(t)‖ ≥ K f

√
2

−λmin(Q2)
are valid, it is evident that

Λ̇2 < 0, which implies that System (29) is stable.

5. Simulation and Discussion

In this paper, MATLAB software was applied for simulation verification. To verify the
efficacy of the suggested FE and FTC schemes, some simulation procedures are given and
the desired results are presented.

The parameter matrix of the initial system is given below:

E =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦A1 =

⎡⎣ −2 1 0
3 −2.8 0

−0.7 0.5 −1

⎤⎦, A2 =

⎡⎣ −2.3 0.95 0
1 −3.08 0

−0.16 1.06 −1.51

⎤⎦,

B1 =

⎡⎣ 0.15
0.3

0.21

⎤⎦, B2 =

⎡⎣ 0.21
0.29
0.15

⎤⎦, N1 =

⎡⎣ 1.2
0.9
0.5

⎤⎦, N2 =

⎡⎣ 0.5
1.6
0.1

⎤⎦, D1 =

[
1 0.2 0

0.5 −1 1

]
,

D2 =

[ −0.5 0.1 −0.2
0.1 1 0.6

]
, S1 =

[
0.3
1

]
, S2 =

[
0.5
1

]
.

To validate the algorithm, the TVD module is set to satisfy an exponential distribution
whose rate parameter is α = 10. In this paper, the coupling between the TVD and the
system is reduced, so the TVD is relatively independent, and the initial state of the TVD
has very little influence on the system, so the initial state of time delay is taken as 0.05.

The following two types of sensor faults are given:
Constant fault:

fs(t) =
{

0 0 ≤ t < 120
0.7 120 ≤ t < 300

,

Time-varying fault:

fs(t) =
{

0 0 ≤ t < 120
0.2 sin(0.05t) + 0.4 120 ≤ t < 300

.
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The intended output is given as yc = [1.2, 4.6]. By solving the inequalities in
Theorems 1 and 2, the FE and FTC parameters are obtained below:

K11 = 0.29, K21 =
[ −5.5 −0.04 0.02 0.5

]
,

K12 = 0.53, K22 =
[ −3.8 0.15 0.6 0.09

]
,

GP1 =
[ −0.366 0.453 −0.648 0.048

]
,

GP2 =
[

0.109 −0.043 0.214 −0.513
]
,

GI1 =
[ −0.371 0.266 0.012 0.743

]
,

GI2 =
[ −1.292 −0.021 0.125 −1.503

]
.

Regarding a constant fault, the residual signal depicted in Figure 1 displays a noticeable
variation at 120 s, indicating the occurrence of the fault at that moment. The results of FE in
Figure 2 demonstrate that sensor fault is effectively estimated quite well. The proposed
FE algorithm is highly effective for constant fault. The FTC result is depicted in Figure 3.
Obviously, the system output deviates from the target output at 120 s. Nevertheless, by
adopting the FTC method suggested in Section 4, the system output can continue tracking
the intended output. To illustrate the comparison, Figure 4 depicts the system output
without FTC, indicating that the system is not well controlled and its performance is
seriously affected.
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Figure 1. Residual signal of constant fault.
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Figure 2. Sensor fault and its estimation of constant fault.

To more comprehensively verify the algorithm’s feasibility, simulation results for
time-varying fault are displayed in Figures 5–8. The residual signal in Figure 5 additionally
confirms that the fault occurred at 120 s. The FE algorithm can accurately track the changes
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in the time-varying fault, as evident from the FE results in Figure 6. When detailed
fault information is obtained, applying the designed controller, the system output results
displayed in Figure 7 show that system output tracking of the expected output can be
ensured even in the event of fault, thus maintaining system performance. The results in
Figure 8 without FTC reveal that the system output failed to track the desired output.
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Figure 3. The system output with FTC of constant fault.
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Figure 4. The system output without FTC of constant fault.
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Figure 5. Residual signal of time-varying fault.
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Figure 6. Sensor fault and its estimation of time-varying fault.
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Figure 7. The system output with FTC of time-varying fault.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

t/s

O
ut

pu
t w

ith
ou

t F
T

C
 a

nd
 e

xp
ec

te
d 

ou
tp

ut

 

 
y(1) estimation
Expected output y(1)
y(2) estimation
Expected output y(2)

Figure 8. The system output without FTC of time-varying fault .

Therefore, for different types of faults, the algorithm designed in this paper yields
very good results.

6. Conclusions

In this paper, the mathematical modelling problem for the FE and FTC of singular
nonlinear TVD systems with sensor fault is solved based on the T-S fuzzy model. The
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Laplace transform is utilized to build an equal system free of TVD to solve the TVD issue.
The coordinate transformation is developed to change sensor fault to actuator fault for
processing. A fuzzy learning fault estimator is built to estimate sensor fault. As shown in
the results in Figures 2 and 6, the fault estimation error at steady state is much less than 0.01
for constant or time-varying faults, indicating that the fault diagnosis algorithm has a good
estimation effect. When fault occurs, the PI-compensated FTC is engineered to decrease the
possible effect of the fault. The simulation results show that the error of the system output
before and after the fault is less than 0.3 when adopting the FTC algorithm designed in
this paper, but the error of the system output before and after the fault is generally greater
than 1 when there is no FTC algorithm. The algorithm of this paper has good results for
both constant and time-varying faults. Singular systems are widely available in power grid
systems, chemical processes, satellite attitude control systems, etc. The algorithms in this
paper provide solutions for fault handling in these systems.

Further research may include research on mathematical models for the fault handling
of singularly uncertain systems, singularly switching systems, and their applications.
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