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and Achievements

Grzegorz Dudek
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grzegorz.dudek@pcz.pl

1. Introduction

The realm of machine learning (ML) is one of the most dynamic and compelling
domains within the computing landscape today. Over the past few decades, ML has firmly
embedded itself in our daily lives, offering effective solutions to real-world challenges.
The scope of ML’s applications spans a multitude of sectors, encompassing engineering,
industry, business, finance, medicine, and beyond. ML’s comprehensive spectrum of
techniques embraces traditional algorithms such as linear regression, k-nearest neighbors,
decision trees, support vector machines, and neural networks, while also incorporating
cutting-edge innovations such as deep learning and boosted tree models.

Finding the optimal architecture and parameters for ML models presents a substantial
challenge, but is essential for attaining strong performances in both learning and generaliza-
tion. Furthermore, as ML is practically applied, it encounters the complexities of managing
extensive, incomplete, distorted, and uncertain data. A key requirement for ML methods is
interpretability, ensuring a clear understanding of how these models function and fostering
confidence in their outcomes.

Based on the reviewers’ feedback, as well as the evaluations of the editor, 12 papers
from 26 submissions have been selected for this Special Issue. These papers examine
the conceptualization of problems, data representation, feature engineering, ML models
employed, discerning comparisons against existing techniques, and the lucid interpretation
of results. This Special Issue strives to not only showcase the prolific applications of ML,
but to also provide insights into the methodologies and interpretations that underpin
these advancements. The 12 papers, which cover a broad range of topics, are introduced
briefly below.

2. Summary of the Contributions

Paper [1] addresses the challenge of recognizing physical activity in individuals with
spinal cord injuries (SCI) using sensor-based approaches. SCI patients often experience
health complications like obesity and muscle weakness, necessitating effective rehabili-
tation. Existing methods, relying on patient surveys, may not accurately capture actual
activity levels. The advent of physical activity recognition systems presents a more reli-
able solution. The paper compares vision-based and sensor-based approaches, favoring
wearable sensors for their affordability and ease of use. Sensor placement is crucial, with
lower-limb sensors suited for locomotion and upper-limb activity requiring wrist and
upper-arm sensors. This paper explores various applications of activity recognition, partic-
ularly in rehabilitation monitoring.

Segmenting continuous raw data before classification is a key challenge. While the
sliding window approach is common, selecting an appropriate window size is vital to
ensuring accuracy. Short windows may truncate activities, while long windows can merge
them. Adaptive window techniques have been proposed to address this issue. The paper
introduces a novel segmentation method tailored to dynamic activities in rehabilitation. An
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experiment compares this approach to the fixed sliding window method, demonstrating its
effectiveness in boosting recognition accuracy.

This study, which employs wrist-worn accelerometers, reveals an accuracy improve-
ment of over 5%, enhancing model robustness and successfully classifying similar activities.
The method achieves recognition rates exceeding 91% with various ML classifiers, par-
ticularly the support vector machine. Wearable sensors, such as accelerometers, prove
invaluable in rehabilitation assessment. The study acknowledges the potential limitations,
while also highlighting the method’s potential for segmenting and recognizing physical
activities, especially in rehabilitation scenarios.

In [2], a framework for analyzing consumer behavior in the rapidly growing over-the-
top (OTT) media consumption market was introduced, considering factors such as pricing,
service delivery, and infrastructure investments. This paper addresses the challenge of
an imbalanced consumer distribution within the OTT market, and the need for accurate
analysis reflecting changing market conditions due to factors like the COVID-19 pandemic.
This paper highlights the rapid growth of the OTT market, driven by the availability of
digital media content via the internet and IP-based paths. Platforms like YouTube, Netflix,
and Amazon Prime are transforming the media landscape, threatening traditional markets.
With a projected market value of over a trillion dollars by 2027, various service providers
and telecom carriers are competing fiercely in this domain. The COVID-19 pandemic has
further accelerated the growth of OTT consumption, making it vital to analyze consumer
behavior effectively.

The proposed framework combines a conditional probability-based approach with
machine learning techniques, such as support vector machines, k-nearest neighbors, and de-
cision trees. This approach enhances classification performance, particularly for imbalanced
consumer groups. The framework also adapts to changing consumer trends by dynamically
retraining with incoming OTT consumer data. It yields improved classification accuracy,
particularly for lower-number classes, showing a recall-based improvement of 5.3% to
19.2%. Unlike conventional methods, the proposed framework maintains consistently high
performance, even as the OTT market environment changes. The study underscores the
practical significance of the framework for companies participating in the OTT market,
offering a stable performance in a dynamic environment.

Paper [3] investigates demand forecasting for the automotive original equipment
manufacturer (OEM) sector, assessing 21 baseline, statistical, and ML algorithms. Utilizing
real-world data from a European OEM, the study highlights the superiority of global ML
models over local ones. The paper introduces a comprehensive set of metrics for evaluating
demand forecasting models, emphasizing their practicality. The research demonstrates the
effectiveness of pooling product data based on historical demand magnitude to mitigate
forecast errors in global models.

The authors present two data pooling strategies for building global time series models.
A novel approach is introduced to control forecast errors in global models. The integration
of complementary data sources, such as world GDP, unemployment rates, and fuel prices,
is discussed. The findings indicate that grouping products based on demand patterns
and magnitude improves the performance of the ML models. The research reveals that
certain models, such as SVR, voting ensemble, and random forest, outperform others,
particularly when trained on product data of the same demand type. A comparison of
batch and streaming ML models highlights the robustness of batch models. The potential of
digital twins for accurate forecasts and scenario estimation is explored. The study identifies
avenues for future research, focusing on refining error bounding strategies, addressing
anomalous forecasts in global models, and enhancing model explainability for user trust.
This paper concludes by providing insights into the potential applications of ML in demand
forecasting for the automotive OEM sector.

In [4], a novel flight path planning algorithm for unmanned aerial vehicles (UAVs),
based on ellipsoidal mapping, is introduced. The paper discusses the use of spheres and
ellipsoids for geometric representations and mapping, emphasizing their advantages over
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other methods. The research addresses the challenge of efficiently calculating distances
between ellipsoidal objects by a neural network. The algorithm utilizes teaching–learning
based optimization (TLBO) and takes advantage of ellipsoidal representations of obstacles
for UAV navigation. The method aims to provide collision-free, smooth flight paths,
accommodating various environments, including indoor and outdoor settings.

The methodology used to calculate distances between ellipsoids using a neural net-
work involves generating a training dataset and implementing a novel normalization
method. The proposed fitness function for flight path planning considers several factors,
including ensuring safe distances between the obstacle ellipsoids and the UAV ellipsoid to
prevent collisions, minimizing the overall proximity range of the UAV throughout its entire
flight path and other desired features. Results are presented, comparing the algorithm’s
performance with other evolutionary algorithms and rapidly exploring random tree star
algorithm (RRT*). While evolutionary techniques with the proposed fitness function gen-
erally outperformed RRT*, the latter demonstrated a better performance in terms of time.
Future work is outlined, including developing a cost function for comparing different flight
path planning algorithms, replacing the greedy strategy with reinforcement learning, and
designing an intelligent low-level control algorithm for UAV navigation.

Paper [5] proposes a gesture recognition system integrated into visible light commu-
nication (VLC) systems for human–computer interaction applications. The GR technique
utilizes light transitions between fingers, which are detected via a low-cost light-emitting
diode (LED) and a photo-diode sensor at the receiver side. The system employs a long
short-term memory (LSTM) neural network to classify finger movements based on inter-
ruptions in direct light transmission, making it suitable for high-speed communication.
The accuracy of the proposed system in identifying gestures reaches 88%.

The authors present a solution that involves minimal additional cost, as it is integrated
into a VLC-capable system. The LSTM-based approach offers effective gesture recognition
with low computational complexity compared to traditional video processing techniques.
The system’s performance is robust, achieving accurate recognition even under natural
conditions with varying speeds and lighting conditions. Key contributions include the
development of a practical gesture recognition methodology for VLC, utilizing off-the-shelf
components, and demonstrating the effectiveness of a single photo-diode receiver setup.
The system’s accuracy and efficiency are notable, allowing for gesture recognition within
a communications-based VLC system. Possible future directions involve increasing the
number of recognizable gestures, exploring gesture recognition from different aspects of
sunlight and placements, and incorporating the system into automated VLC setups for
more versatile applications. The study’s results highlight the potential of this approach for
various domains such as healthcare, commerce, and home automation.

Paper [6] focuses on analyzing and modeling road traffic accidents (RTAs) using ML
classifiers. The aim is to assist transportation authorities and policymakers by developing
predictive models for RTAs. The research utilizes a real-life RTA dataset from Gauteng,
South Africa, and evaluates the performance of various ML classifiers including naïve
Bayes, logistic regression, k-nearest neighbor, AdaBoost, support vector machine, and
random forest. The study also includes dimensionality reduction techniques and multiple
missing data methods.

The findings of the study show that a random forest (RF) classifier combined with
multiple imputations by chained equations (MICE) for handling missing data achieves
the best overall performance. RF consistently outperformed other classifiers in terms of
accuracy, precision, recall, and AUC. Additionally, the study found promising results with
linear discriminant analysis (LDA) for dimensionality reduction. The study acknowledges
its limitations, such as the use of a dataset from a specific region and the exclusion of certain
features. Future work could involve hyperparameter tuning for specific classifiers, testing
other ML algorithms like artificial neural networks and deep learning, and expanding the
analysis to different datasets or regions.
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In [7], a robust financial crisis early warning model for Chinese listed companies is
proposed. The study’s premise stems from the economic challenges and risks that these
companies face, driving the need for effective risk prediction and mitigation strategies.
The authors propose a unique approach by incorporating textual data analysis, specifically
the sentiment and tone analysis of financial news texts and the management discussion
and analysis (MD&A) sections in annual reports. By leveraging web crawling and textual
analysis techniques, the emotional tones of these texts are extracted. These tones serve as
supplementary indicators alongside traditional financial indicators, providing insights into
internal and external aspects of listed companies. The study includes 1082 Chinese A-share
listed companies from 2012 to 2021 as its sample.

This research systematically evaluates the impact of emotional tone indicators on
the accuracy of financial crisis early warning models. Thirteen ML models are employed
to predict financial crises, and their performance is assessed using various evaluation
metrics. The findings highlight several key points, such as textual data as indicators, model
comparisons, external vs. internal information, and implications and future directions. The
findings underscore the potential of emotional tone analysis of financial news in improving
early warning models. This approach helps mitigate risks and increases the accuracy
of predictions for listed companies. Furthermore, the study suggests avenues for future
research, such as exploring the impact of linguistic features beyond emotional tone and
developing specialized comprehensive emotional dictionaries for financial texts.

Paper [8] explores the field of DNA-based informatics, focusing on the construction
and operation of computers using DNA as both hardware and software. This concept
involves the utilization of DNA computers for intelligent and personalized diagnostics,
particularly in the context of medical treatment. A new approach to designing diagnostic
biochips that combines ML methods with the concept of biomolecular queue automata
is introduced. This enables the scheduling of computational tasks at the molecular level
by manipulating DNA molecules through cutting and ligating sequences. The authors
stress the importance of ML methods in the design of biochips based on biomolecular
computers, as accurate knowledge of unique DNA sequences is a fundamental aspect of
these solutions.

The study highlights the potential of biomolecular computers in constructing biochips
and emphasizes the significance of deterministic input-driven queue automata as a theo-
retical model for these systems. The use of specific restriction enzymes, particularly type
IIB restriction endonucleases, is emphasized for the design of biomolecular computers
with memory capabilities, such as queue automata. The paper introduces the concept
of "Queue-PCR" as an innovative way to automate the polymerase chain reaction (PCR)
method using biomolecular computers, thereby suggesting new avenues for the automation
of molecular genetics techniques.

Paper [9] focuses on the application of ML algorithms to predict the clinical evolution
of patients diagnosed with COVID-19. It aims to optimize the diagnostic process by
utilizing predictive modeling to classify the clinical course of COVID-19 cases. The research
involves a comparative analysis of various classification algorithms, including k-nearest
neighbors, naïve Bayes, decision trees (DT), multilayer perceptrons (MLPs), and support
vector machines. It analyzes 30,000 cases during the training and testing phases of the
prediction models. The authors underscore the significance of accurate predictions for
patients’ vital prognosis and the efficiency of initial consultations in hospitals.

The conclusion of this study highlights the achievement of predicting the clinical evo-
lution of COVID-19 patients using optimized ML models. The MLP algorithm is identified
as the most effective for this purpose, based on comparative benchmarks. The research
suggests potential future work, including analyzing clinical data using different algo-
rithms, applying ensemble learning, and exploring additional neural network algorithms.
However, the study acknowledges limitations such as data quality concerns in medical
applications of ML, which can impact diagnoses and introduce biases.
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Paper [10] explores the use of generative adversarial networks (GANs) for regression
tasks, focusing on multi-output regression in non-image data. The study introduces the
concept of MOR-GANs, which employ Wasserstein GAN (WGAN) as a regression method.
The paper compares the performance of MOR-GANs with Gaussian process regression
(GPR) on various datasets and introduces a prediction algorithm for GANs to generate
responses based on independent variables.

The authors emphasize that WGANs perform well in regression tasks, often surpassing
GPR, and showcase their effectiveness across diverse datasets. MOR-GANs show notable
performance in handling variable uncertainty, multi-modal distributions, and multi-output
regression tasks. Importantly, this performance is achieved without requiring extensive
modifications to the GAN architecture. The authors also speculate on potential applications
in domains like image reconstruction and high-dimensional modeling, where MOR-GANs
could provide invaluable insights and predictions.

In [11], a novel compressed convolutional neural network designed to address the
challenges of human detection in computer vision, ReSTiNet, is introduced. Human
detection is crucial for applications like public safety and security surveillance. ReSTiNet
aims to incorporate a compact size, high detection speed, and accuracy in its design,
inspired by recent advances in deep learning techniques. The main aim of ReSTiNet
is to create a more capable human detection model suitable for portable devices with
limited processing power. This lightweight model enhances the performance of intelligent
surveillance systems without increasing hardware costs or processing demands. The paper
emphasizes the importance of fire modules, their placement, and the integration of residual
connections within the architecture.

The proposed ReSTiNet model is based on Tiny-YOLO architecture, and incorporates
fire modules from SqueezeNet. It strategically adjusts the number and placement of these
modules to reduce the model’s parameter count and overall size. Residual connections
are integrated within the fire modules to enhance feature propagation and information
flow, resulting in improved detection speed and accuracy. Performance of ReSTiNet
surpasses other lightweight models, such as MobileNet and SqueezeNet, in terms of mean
average precision. The study concludes that ReSTiNet can be adapted to various deep
convolutional neural networks for compression purposes. The model’s performance will
be further optimized for high-resolution images in future work, particularly for datasets
like EuroCity Persons.

Finally, paper [12] introduces the natural language policy translator (NLPT) 2.0, an
extended version of the NLPT 1.0 system, aimed at systematically translating data privacy
policies from natural language to controlled natural language for data sharing agree-
ment (CNL4DSA). With the surge in online social networks, user-generated content has
led to data exploitation for various purposes. Privacy policies, often expressed in nat-
ural language, outline data handling, usage, and authorization details, but lack auto-
matic control mechanisms. NLPT 2.0 addresses this by enabling translation for enhanced
machine processing.

The proposed methodology combines natural language processing, logic program-
ming, and ontologies. The system offers a user-friendly Graphical User Interface that allows
non-expert users to input policies in natural language, which the system then translates
into CNL4DSA. The study’s key aspects include the translation of social network data
privacy policies and the effectiveness of the NLPT 2.0 system. Testing involved the use
of privacy policies from popular social network platforms. The system demonstrated
promising performance in components like ontology creation, fragment extraction, and
context extraction, with results ranging from 70% to 95%. While human intervention is
required for certain initial vocabulary and ontology definitions, the system aims to become
increasingly automatic.

NLPT 2.0 addresses the complexity of parsing intricate phrases in original policies
by introducing the role of a Policy Writer. Although some aspects still require human
involvement, NLPT 2.0 is a valuable tool for translating privacy policies and enhancing
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machine analysis. Future work will focus on fully automating the process and addressing
the remaining challenges.

Conflicts of Interest: The author declares no conflict of interest.
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Featured Application: This article presents an application of dynamic segmentation for physical

activity recognition using machine learning techniques.

Abstract: Data segmentation is an essential process in activity recognition when using machine
learning techniques. Previous studies on physical activity recognition have mostly relied on the
sliding window approach for segmentation. However, choosing a fixed window size for multiple
activities with different durations may affect recognition accuracy, especially when the activities
belong to the same category (i.e., dynamic or static). This paper presents and verifies a new method
for dynamic segmentation of physical activities performed during the rehabilitation of individuals
with spinal cord injuries. To adaptively segment the raw data, signal characteristics are analyzed
to determine the suitable type of boundaries. Then, the algorithm identifies the time boundaries to
represent the start- and endpoints of each activity. To verify the method and build a predictive model,
an experiment was conducted in which data were collected using a single wrist-worn accelerometer
sensor. The experimental results were compared with the sliding window approach, indicating
that the proposed method outperformed the sliding window approach in terms of overall accuracy,
which exceeded 5%, as well as model robustness. The results also demonstrated efficient physical
activity segmentation using the proposed method, resulting in high classification performance for all
activities considered.

Keywords: activity recognition; machine learning; wearable sensors; spinal cord injury; telerehabilitation

1. Introduction

Individuals with spinal cord injuries (SCI) who rely on wheelchairs typically experi-
ence associated symptoms such as obesity and low muscular strength. These symptoms
may eventually lead to secondary complications, including diabetes and cardiovascular
diseases [1,2]. Rehabilitation processes, such as in-home strength exercises, play an essen-
tial role in avoiding such symptoms and redeveloping the motor skills that are needed
to perform daily activities and promote quality of life [3,4]. Currently, therapists rely on
patient surveys to measure their adherence to these activities. However, studies indicate
wide variability between self-reported and actually performed physical activity, which can
undermine rehabilitation progress [5]. Nevertheless, with rapid technological innovation,
physical activity recognition systems are emerging as a more reliable way to detect these
activities [6–9].

Based on the approach used to collect data, activity recognition can be broadly clas-
sified into two approaches: the vision-based and sensor-based approaches. Although
the vision-based approach is information-rich, it often suffers from ethical and privacy
concerns, especially in healthcare applications when dealing with patients. By contrast,
the devices used in the sensor-based approach, including wearable sensors, can operate
with limited cost and power, and they have no restrictions in terms of the surrounding
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environment or the location where activities must be performed. As a result, activity
recognition systems commonly adopt the sensor-based approach [10].

Several studies have been undertaken to investigate the impact of different sensor
positions on overall recognition accuracy. These studies indicate that sensor position should
be determined mainly based on the type of activity under study. Forms of locomotion,
including walking and running, as well as static activities, such as standing and sitting,
can be recognized with an accuracy of between 83% to 95% using lower-limb segments
(hip, thigh, and ankle) as the sensor positions. To improve accuracy when recognizing
upper-limb activities, sensors are placed on the wrist and upper arm [11]. Within this
context, the study in [12] considered different positions, such as hip, belt, wrist, upper arm,
ankle, and thigh, to recognize 20 types of activities, including both upper- and lower-limb
activities. The results showed high accuracy when combining different positions. However,
the study also demonstrated a slight performance decrease when using only the thighs and
wrists. In addition to the impact of sensor placement on accuracy, user preferences should
be considered to gain acceptance. To address this problem in the design of wearables, a
meta-analysis was undertaken in [13]. The study concluded that people prefer wearing
sensors on their wrist, followed by the trunk, belt, ankle, and, finally, armpit.

Activity recognition systems have a wide variety of applications, including rehabilita-
tion and physical therapy. These systems allow monitoring of patients and the identification
of exercises being performed [14]. In this regard, Pernek et al. [15] proposed a monitoring
system consisting of a network of wearable accelerometers and a smartphone to recognize
the intensity of specific physical activities (e.g., strength exercises). The system used two
Support Vector Machine (SVM) layers to detect the type of activity being performed and
determine its intensity. The study demonstrated that the hierarchical algorithm achieved
an accuracy of approximately 85% in recognizing a set of upper-body activities. The study
in [16] presented a methodology to recognize three fundamental arm movements using two
different classifiers: Linear Discriminant Analysis (LDA) and SVM. The overall average
accuracy was 88% using data collected from accelerometers and 83% using gyroscope
data. With the same objective, Panwar et al. [10] designed a model to recognize three
physical activities of the human forearm, relying on data collected from a single wrist-worn
accelerometer. Lin et al. [17] proposed a model for recognizing the physical activities
performed to rehabilitate frozen shoulder. Based on wireless sensor networks (WSN), the
model could recognize six physical activities with an accuracy ranging from 85 to 95%. The
study showed the applicability of using these types of models to recognize the rehabilitation
exercises that are ubiquitous in healthcare self-management. In [18], Cai et al. developed
an upper-limb robotic device to rehabilitate stroke patients. The system works by initially
recognizing the activity performed by the healthy side of the patient and then provides
mirror therapy to the affected side. The method used surface electromyography (sEMG)
signals to train and test the model, and SVM was applied to classify the activities. To
provide stroke survivors with feedback to maintain a correct posture during rehabilitation,
Zambrana et al. [7] proposed a hierarchical approach using interrail sensors to monitor arm
movements. This approach consisted of two levels: the first level distinguishes between
movements and non-movements of the arm, while the second level determines whether
the movement was purposeful.

Similar to other pattern recognition problems, continuous raw data should be divided
into smaller fragments before proceeding to feature extraction and other following oper-
ations. The selection and application of an efficient segmentation method substantially
influence the classification process, which directly results in accurate activity recogni-
tion [19]. The sliding window is the most widely used approach and, to date, it is still
considered the best available approach [19–21]. In this method, continuous data obtained
from sensors are segmented into windows of either static or dynamic sizes based on time
intervals. For the former, two different algorithms are available: fixed-size non-overlapping
sliding window and fixed-size overlapping sliding window. The first algorithm is con-
sidered a simple segmentation process, where the number of windows can be calculated
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exactly since no overlap exists. The second algorithm includes data overlap between two
consecutive windows, where the percentage overlap can be referred to as the window shift.
Since different activities have different periods of motion, the size of the window depends
on the type of activity that is evaluated [22]. However, determining the effective window
size is considered a critical issue. A short window size may split an activity’s signal into two
or more consecutive windows, whereas a long window size may combine signals for more
than one activity. Ultimately, these cases may affect the accuracy of activity classification
because information is lost or noise is introduced into the signal, respectively [23,24].

In dynamic sliding windows, data are segmented into different window sizes accord-
ing to specific features. One of the challenges is to optimize different window sizes while
considering activities with both short and long duration. Numerous studies have sought
to resolve the limitation of the sliding window approach. Feda et al. [22] investigated
the impact of using different window sizes on the accuracy of recognizing activities with
different durations, reporting that a 1.5-second window size may represent the best trade-
off. Other researchers have proposed adaptive window size techniques. In this context,
Santos et al. [25] used entropy feedback to adjust the window size and time continuously,
thereby increasing classification accuracy. Nevertheless, the algorithm is computationally
complex since shorter time shifts increase the rate of classifications per second. In [24], Noor
et al. presented a segmentation technique based on adjusting the window size according to
the probability of the signal. Initially, the approach specifies a small window size suitable
for splitting static and dynamic activities. In turn, this size expands dynamically when
a transitional activity is encountered, which stems from its longer duration. Similarly,
using cluster analysis for period extraction, [21] proposed a technique to differentiate
between basic and transitional activities during segmentation. Sheng et al. [26] designed an
adaptive time window by using pitch extraction algorithms to divide the data into periodic
and non-periodic activities. The study in [27] designed and implemented a segmentation
method based on the sliding window autocorrelation technique and the Gaussian model.
Using a dataset consisting of readings from an accelerometer embedded in a smartphone,
the method successfully divided the data into distinct subsets of activities. Based on a
change detection algorithm, an activity segmentation method was presented in [19]. To
identify stationary, dynamic, and transitional activities, starting window positions were
dynamically detected.

The objective of this research is to propose a novel signal segmentation method for
physical activity recognition that can enhance classification performance. Unlike previous
studies, this method is concerned with the segmentation of physical activities that belong
to the same category (i.e., dynamic activities). To achieve this objective, an experiment was
conducted to verify and compare the proposed method with the sliding window approach.
The comparison demonstrates the effectiveness of our method, particularly in terms of
enhancing recognition accuracy.

The remainder of this paper is organized as follows: Section 2 presents the set of
physical activities applied during the rehabilitation of SCI patients; Section 3 offers an
overview of the system; Section 4 describes the proposed segmentation method; Section 5
demonstrates the experimental setup; Sections 6 and 7 present and discuss the results,
respectively; and finally, Section 8 concludes the paper.

2. Physical Activity

Unlike stroke and other neurological conditions, SCI affects patients’ lower limbs. In
rare cases, SCI patients may suffer from complete paralysis based on the degree and location
of their injury. The focus of this work is on the former type of SCI, where individuals
need rehabilitation to avoid having associated symptoms, such as low muscular strength.
Rehabilitation through physical activity is also essential for developing upper-limb motor
skills, which enable patients to perform daily activities and promote quality of life [3,4].

Whenever the aim is to strengthen the upper limbs, the body parts of focus are the
elbows and shoulders [28–30]. The main activities required to strengthen the shoulder
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muscles are flexion, abduction, extension, internal rotation (IR), and external rotation (ER).
In addition, the main activities applied to strengthen the elbow’s major muscles are elbow
flexion (EF) and elbow extension (EE) [28]. An illustration of these activities is given in
Figure 1.

    
(a) (b) (c) (d) 

   
(e) (f) (g) 

Figure 1. Physical activities used to rehabilitate spinal cord injuries (SCI) patients: (a) Shoulder flexion; (b) Shoulder
abduction; (c) Internal rotation; (d) External rotation; (e) Extension; (f) Elbow flexion; (g) Elbow extension [28].

3. System Overview

A wireless sensor was used (Shimmer Research, Dublin, Ireland), each consisting
of a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. Due to
the efficiency of accelerometers in activity recognition, the dataset used in this research
was collected using a single tri-axial accelerometer [31–33]. It is a sensing device used to
measure acceleration in three orthogonal directions simultaneously. However, gyroscope
and magnetometer were excluded since prior studies indicate that accelerometers provide
higher overall accuracy [16]. In addition, the ferromagnetic materials that are commonly
available in domestic environments can affect magnetometers. The sensor was configured
to collect acceleration data with a sampling frequency of 30 Hz (range ± 2 g), which has
been shown to be sufficient for recognizing similar activities [30,31]. In addition, a previous
study demonstrated that the type and intensity of human activities can be recognized using
signals with a sampling rate equal to 10 Hz [34].

Sensors are placed on the wrist and upper arm when recognizing upper-limb activities,
both of which were examined in this research. However, due to the type of motion being
recognized, certain activities, such as EE, EF, and IR, lack upper-arm movements. This
meant that the sensor placed on the upper arm could not detect any motion. Accordingly,
the wrist was chosen as the sensor position.

In terms of axis orientation, the Y-axis was in parallel with the wrist, pointing toward
the fingers and across the X-axis. In addition, the Z-axis pointed away from the backside of
the wrist, as shown in Figure 2.
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Figure 2. Axis orientation.

4. Proposed Method

Since physical activities are performed sequentially rather than concurrently, a clear
activity pattern can be identified by observing the acceleration signal. Figure 3a shows the
raw data collected from a tri-axial accelerometer during 10 repetitions of abduction, where
each part enclosed within the dotted rectangle represents a single repetition.

(a) 

(b) 

(c) 

Figure 3. Acceleration signal for 10 repetitions of (a) Abduction, (b) Internal rotation (IR), and
(c) Extension.
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For all seven activities, each peak along the Y-axis corresponds to a single activity,
except for IR and extension, where two consecutive peaks represent the starting and ending
points of the activity. Figure 3b,c shows 10 repetitions of IR and extension, respectively,
where all data points enclosed within the dotted rectangles belong to a single repetition.
The underlying reason for this difference is the movement direction of the activity and the
hand position while moving.

The proposed segmentation method consisted of three main steps. The first step
involved the selection of peaks in the Y-axis acceleration signal since it best represents the
start and end of all types of activities under study when applying the algorithm. Peaks
were selected based on a threshold and a distance, which represent the minimum value of a
peak and the minimum distance between peaks, respectively. The second step was to select
valleys using a second threshold that represented the highest value of a valley. Finally,
the signal’s characteristics were analyzed for each peak to identify suitable segmentation
boundaries. The method is explained in more detail in the rest of this section.

4.1. Selection of Peaks

Peaks, which represent the local maximum values in the Y-axis acceleration signal,
were first discerned. To avoid including false-positive peaks, as illustrated in Figure 4a,
a threshold value was used. To be detected, a peak must be equal to or greater than
Threshold 1. This can be calculated by separately averaging the peaks in the learning
dataset of each of the seven physical activities and, in turn, choosing the minimum value
among them as follows:

Threshold 1 = min (avgmax (PA1), avgmax (PA2), . . . ., avgmax (PAn)) (1)

where avg denotes the average, max is the local maximum in the processed axis (i.e.,
Y-axis), PA denotes physical activity, and n refers to the number of physical activities to be
classified. The identified peaks after applying the threshold are shown in Figure 4b.

  
(a) (b) 

Figure 4. Detected peaks in acceleration signal: (a) Initial selection of peaks; (b) After applying threshold and minimum distance.

Moreover, to avoid detecting more than one peak within the data points that represent
a single activity, as shown in Figure 4a, a minimum distance between peaks was assigned.
This value can be obtained by calculating the average duration needed to perform the
shortest activity as follows:

Distance = min (avgduration (PA1), avgduration (PA2), . . . ., avgduration (PAn)) (2)
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4.2. Selection of Valleys

In addition to the peaks obtained from the first step, the method required the iden-
tification of valleys (i.e., local minimum values) in the Y-axis acceleration signal. In this
process, a second threshold was used to avoid detecting false-positive valleys. A valley
was chosen when it was less than or equal to Threshold 2. It can be obtained by averaging
the values of true-positive valleys in the learning dataset and, in turn, repeating the process
for each type of activity that consists of a single peak (i.e., in this research, abduction,
flexion, EE, EF, and ER). The maximum average was assigned as the threshold using the
following equation:

Threshold 2 = maximum (avgmin (PA1), avgmin (PA2), . . . ., avgmin (PAm)) (3)

where min denotes the local maximum in the processed axis (i.e., Y-axis) and m is the
number of physical activities consisting of a single peak in each repetition.

4.3. Determining Segment Boundaries

In dynamic activity segmentation, it was necessary to determine the segment time
boundaries to obtain a successful partition among different activities [27]. In the proposed
algorithm, there were two types of boundaries for the activities based on the number of
peaks in each activity. The first type was the peak boundaries, which was used when a
single activity contained two peaks (as in the case of IR and extension). In this type, as the
name suggests, these peaks were regarded as the boundaries of the segment. The second
type was the valley boundaries, which was applied when an activity consisted of only one
peak. In this type, the two valleys that directly preceded and followed each peak were
identified to represent the start- and endpoints of the segment, respectively. Therefore, the
length of a segment changed dynamically according to the duration of the corresponding
activity. To determine the suitable type of boundaries for the segmentation, the algorithm
checked the signal characteristics of each identified peak, as illustrated in Figure 5.

Figure 5. Determining boundary type based on signal characteristics (P: Peak; V: Valley).

Peak boundaries were chosen if the value of Y-axis was smaller than the value of
Z-axis at peaki and peaki+1, as shown in Figure 6a. Moreover, the algorithm checked the
signal’s characteristics between every two consecutive peaks. If there was no intersection
between Y-axis and X-axis along these peaks, as illustrated in Figure 6b, peak boundaries
were also applied. Otherwise, if an intersection existed at any point between the peak and
the valley that directly follows the peak, as shown in Figure 6c–g, valley boundaries were
used. The pseudocode that describes how to segment the acceleration signal of physical
activities adaptively is shown in Algorithm 1. The input values to Dynamic Segmentation
are represented in line 2, and the output value is represented in line 5. The input of the
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algorithm is a set of tri-axial accelerometer data S, which is divided into multiple segments.
The “for” loop in lines 9–28 represents the process of determining the type of boundaries
in all peaks except the last one. The “if” and “else if” statements in lines 10–14 and 15–23,
respectively, examine the signal’s characteristics in each peak and divide the signal using
peak or valley boundaries. Lines 28–36 repeat the process for the last peak using only
valley boundaries.

Algorithm 1 Dynamic Segmentation

1: Input:
2: S: a set of tri-axial accelerometer data
3: Output:
4: A set of segments: Seg = {seg1, seg2, . . . ., segn}
5: peaks = indices of all peaks in Y-axis using Threshold1 and Distance
6: valleys = indices of all valleys in Y-axis using Threshold2
7: p = total number of peaks
8: v = total number of valleys
9: for i = 0 to p-2 do

10: if Y-axis value is smaller than Z-axis value at peak(i) and peak(i+1)
11: OR no intersection between X-axis and Y-axis from peak(i) to peak(i+1) then

12: for h = peaks (i) to peaks (i+1) do

13: Add S(h) to Segi
14: end for

15: else if intersection exists between X-axis and Y-axis at any point from peak(i) to next valley
then

16: for k = 1 to v-1 do

17: if valleys (k) is the valley that directly follows peaks (i)
18: AND valleys (k-1) is the valley that directly precedes peaks (i) then

19: For h = valleys (k-1) to valleys (k) do

20: Add S(h) to Segi
21: end for

22: end if

23: end for

24: else

25: i = i+1
26: end if

27: end for

28: for k = 1 to v-1 do

29: if valleys (k) is the valley that directly follows peaks (p-1)
30: AND valleys (k-1) is the valley that directly precedes peaks (p-1)
31: AND intersection exists between X-axis and Y-axis from peaks(p-1) to valleys (k) then

32: for h = valleys (k-1) to valleys (k) do

33: Add S(h) to Segp-1
34: end for

35: end if

36: end for
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(a) (b) (c) 

   
(d) (e) (f) 

 

 

 

 (g)  

Figure 6. Acceleration signal of two consecutive peaks corresponding to: (a) Single extension; (b) Single IR; (c) Two abduc-
tions; (d) Two flexions; (e) Two elbow extensions (EEs); (f) Two elbow flexions (EFs); and (g) Two external rotations (ERs).

5. Experimental Setup

An experiment was performed to evaluate and compare the results of the proposed
method. This section describes the overall process and experimental details.

5.1. Data Acquisition

This section describes the demographics of the participants. It also offers an overview
of the protocol used to collect data and perform the physical activities.

5.1.1. Participants

In the experiment, 10 healthy individuals (3 male, 7 female) aged between 25 and
50 years were recruited to perform the activities. Before the experiment, all participants
signed an informed consent form that explained the protocol and procedure.
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5.1.2. Activity Session

Before starting the session, participants were given practical advice and instructions
for the correct execution of the exercises. Finally, before each activity, a short demonstration
video was shown as a reminder for more optimal performance.

Each participant was asked to execute 10 repetitions of all activities, resulting in a total
of 700 repetitions. Furthermore, they were asked to separate each group of the same activity
with approximately 10 s, thereby marking the start of each new group of repetitions.

5.2. Data Preprocessing

The raw data acquired from wearable sensors, such as accelerometers, are prone to
noise and error. Hence, preprocessing is an essential step to obtain the most representative
format of physical activities that is suitable for predictive modeling [35,36]. In this research,
preprocessing was implemented in two steps:

• Smoothing

A moving average filter (MAF) was applied to smoothen the data and remove high-
frequency noise introduced due to physical effects [24]. This process, which is equivalent
to lowpass filtering, is important to ensure that small perturbations are insignificant to
the model.

An important aspect of the MAF relates to the problem of how to choose the optimal
length. This is a key consideration because different values can affect recognition perfor-
mance. In this research, different values were tested, which led to the discovery that a
length of 10 produced smoother data without losing key information.

• Removal of Undesired Data (Cleaning)

Since the participants were asked to separate each group of activity repetitions with
approximately 10 s, this meant that part of the collected data corresponded to a time when
no activity was undertaken. These parts were removed manually. It is worth noting that
this step was done only for the learning dataset, whereas patients in the real-world were
not given such directions. In addition, since the proposed method is based on detecting
the peaks and valleys, even the existence of such data will not affect the performance of
the algorithm.

5.3. Segmentation

To demonstrate the performance improvement of the proposed method on activity
recognition, two different segmentation methods were used for comparison purposes. The
first method was the commonly used fixed-size sliding window of length 2 s and 50%
overlap, which provided the highest recognition accuracy in [15]. This method was chosen
because their work involved some activities that were also considered in this research. The
second method was the proposed segmentation method. Figure 7 illustrates the result of
using both methods for segmenting the acceleration signal of EF.

5.4. Feature Extraction

To generate data that could be suitably fed into a machine learning algorithm, multiple
features were calculated from all the segments obtained using both methods. A diverse
set of features is available, including time/frequency-domain features as well as heuristic
features. For sensor-based human activity recognition, it is common to adopt time-domain
features due to their simplicity and effectiveness for activity recognition [15,37]. In this
work, only time-domain features were used since frequency-domain features have high
computation and memory requirements, which may be not applicable in low-power real-
time applications [38]. First, a magnitude (m) value was calculated using the signals (x,
y, and z) from the accelerometer (m =

√
x2 + y2 + z2). Furthermore, six time-domain

features were considered and extracted from raw data of the three axes (x, y, and z), as well
as (m). A list of the features used along with their definitions is presented in Table 1.
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Figure 7. Acceleration signal of four repetitions of EF segmented using sliding window (lower part)
and the proposed method (dotted lines).

Table 1. List of features used (notation: d ∈ (x, y, z, m); N is the number of data points; i is the index).

Name Definition

Minimum min(d) = lowest di, i = 1, 2, . . . , N
Maximum max(d) = highest di, i = 1, 2, . . . , N

Range range(d) = max(d) −min(d)
Mean mean(d) = 1

N ∑N
i=1 xi

Standard Deviation SD(d) =
√

1
N ∑N

i=1 (di −mean(d))2

Root Mean Square RMS(d) =
√

1
N (d2

1 + d2
2 + · · ·+ d2

N)

5.5. Model Training and Validation Strategies

Support vector machine (SVM) was used to train and test the classification model
due to its frequent use in previous physical activity studies [16,29,30]. Ten-fold cross-
validation was used to train the model, which means that data from nine subjects were
randomly divided into training and testing sets using 90 and 10% of the data, respectively.
The Waikato Environment for Knowledge Analysis (WEKA) toolkit was used in this
work. Using a personal computer with an Intel Core i5-2430M CPU (Toshiba International
Corporation, Texas, USA), the total time taken to build the model was 0.43 s.

Ten-fold cross-validation and leave-one-user-out (LOUO) were the evaluation pro-
tocols intensively used in the literature. Although 10-fold cross-validation is the most
accurate approach for model selection, LOUO performs better in terms of model robust-
ness, and it is recommended for human activity recognition [20]. In the latter protocol,
instead of randomly splitting data into evaluation and training sets, it selects data from
some subjects for training and data from the remaining for evaluation. As a result, the
protocol is considered robust to the overfitting problem since training, and testing data
never share samples belonging to the same subject [15]. Algorithm accuracy in this work
was evaluated using LOUO, which means that the algorithm was trained using data from
nine subjects and then evaluated on the remaining one. This process was repeated un-
til data from each subject were evaluated exactly once, and an average of performance
was obtained.
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6. Results

Various performance metrics have been used in prior works, including accuracy,
which refers to the ratio of correctly predicted observations to the total observations; recall,
which refers to the ratio of correctly predicted positive observations to all observations in
the actual class; precision, which is the ratio of correctly predicted positive observations to
the total predicted positive observations; and F-measure, which is a combination of the
precision and recall measures that are used to represent the detection result.

To evaluate the performance improvement of the proposed method, the experiment
was conducted in two phases. First, the abovementioned performance metrics were used to
determine the recognition performance using both segmentation methods: sliding window
and the proposed method. For comparison purposes, only values of similar activities,
as in [15], were presented. This study was chosen because it has the greatest number
of shared activities with the ones provided in this work (i.e., the shared activities are
abduction, flexion, and EF). In addition, it used the fixed-size sliding window protocol
for segmentation. In the second phase, for the purpose of determining the effectiveness
of the proposed method using the SVM classifier, other common classifiers, including J48,
K-Nearest Neighbors (KNN), and Naïve Bayes (NB), were used for comparison.

Table 2 reports the classification performance of the proposed method in comparison to
the fixed-size sliding window approach. It indicates that not only a performance improve-
ment in accuracy measures was obtained when using the proposed method but also the
values for precision, recall, and F-measure showed statistically significant improvements.

Table 2. Performance comparison using accuracy, recall, and precision measures (mean ± standard
deviation) between segmentation using the proposed method and fixed-size sliding window.

Accuracy Recall Precision F-Measure

Our method 96.67 ± 2.7% 96.67 ± 1.2% 96.97 ± 1.9% 96.82 ± 1.5%
Sliding Window 91.44 ± 5.9% 91.90 ± 3.9% 92.51 ± 4.5 % 92.21 ± 3.8%

Additionally, an evaluation of activity type recognition accuracy and prediction error
was undertaken for each of the three physical activities. As shown in Table 3, the algorithm
had the greatest difficulties when recognizing abduction and flexion. This was expected
because these two activities are similar, especially with regard to the starting and ending
points of the movement, as well as the range of motion. However, the algorithm still
achieved a recognition accuracy of 96% for these physical activities.

Table 3. Confusion matrix of activity recognition (in %). Rows represent actual exercise, whereas
columns show algorithm predictions (cells with value 0 are left blank).

Abduction EF Flexion

Abduction 96 1 3
EF 98 2

Flexion 4 96
EF: Elbow Flexion.

Figure 8 depicts the recall, precision, and F-measure values for each activity obtained
by the model using the SVM classifier. Both segmentation methods achieved high classi-
fication performance in recognizing EF, and the enhancement achieved by the proposed
method was small. However, the enhancement became increasingly large when recogniz-
ing more similar activities: abduction and flexion. The increase in recall when using the
proposed method was 5% in abduction and approximately 4% in flexion, while precision
increased by 5% and 7% in recognizing abduction and flexion, respectively. In addition,
our method increased the F-measure of abduction by 7% and flexion by 5%. These re-
sults show that the proposed method not only enhanced performance but also increased
model robustness.
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(a) (b) 

 
(c) 

Figure 8. Performance comparison of each activity using: (a) Recall; (b) Precision; (c) F-measure.

To investigate the effectiveness of the proposed method using the SVM classifier,
three common machine learning algorithms were further used for the comparison. Table 4
shows the performance of the proposed method and sliding window using NB, J48, and
KNN classifiers.

Table 4. Recognition accuracy of both segmentation methods using different classification algorithms.

SVM NB J48 KNN

Our method 96.67 ± 2.7% 91 ± 3.4% 95 ± 5.1% 95.65 ± 1.9%
Sliding Window 91.44 ± 5.9% 84.49 ± 3.9% 89.78 ± 5.4% 90.28 ± 5.4%

7. Discussion

In this study, we proposed and verified a machine learning-based method for physical
activity segmentation using wearable sensors. Our method enabled the algorithm to
classify specific types of physical activity with an accuracy reaching up to 96%. Overall
classification performance improved by approximately 5% compared to a commonly used
approach, namely the sliding window. Furthermore, the results in Table 2 clearly indicate
that the statistically significant improvement occurred not only in terms of accuracy but also
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in all performance measures used in this work. This enhancement reflects the effectiveness
and applicability of the method on continuous data collected from a single accelerometer.

The algorithm enabled the accurate classification of similar activities, such as abduc-
tion and flexion. In contrast, when using sliding window segmentation, the algorithm
frequently confused these activities and experienced difficulties in recognizing them. This
demonstrates that the impact of the correct segmentation of raw data is not only on perfor-
mance but also on model robustness.

Table 4 shows that the new segmentation method achieved a recognition rate of more
than 91% using four different ML classifiers, and SVM outperformed the others. This
is consistent with expectations because SVM is highly regularized and works effectively
with small datasets and few classes. Moreover, the results of this table emphasize the
effectiveness of the proposed method, which outperformed the sliding window method
across all four classifiers with an average of 5.5%.

The results clearly show that wearable sensors are a promising technology for mon-
itoring and performing automated rehabilitation assessments. Despite the performance
enhancement obtained using specific sensor types, affordability and usability are also im-
portant factors for determining their applicability. The study in [18] used sEMG electrodes
to recognize different activities performed by stroke patients. Although the results sug-
gested that sEMG signals provide good accuracy in upper-limb activities, attaching these
electrodes is a sensitive process that requires an expert. This type of sensor is impractical
for use in certain applications, including monitoring in-home rehabilitation, especially if
the set of activities must be repeated daily or multiple times during the day. Contrastingly,
the accelerometers used in this research are low-cost and easy-to-use sensors.

This work can be considered as a systematic approach to dynamic signal segmentation,
which could be applied to other types of physical activity. However, slight modifications
should be taken into account when needed. For the segmentation of a wider range of
activities, more signal characteristics might be needed. One possible solution is to exploit
statistical and time series analysis to detect the signal variation.

The new method presented in this paper overcomes the limitation of the sliding
window approach through the adaptive segmentation of physical activities. However, we
acknowledge that certain limitations are evident in our work. First, only an accelerometer
was used for physical activity recognition. Although studies have proven the effectiveness
and efficiency of accelerometers, additional types of sensors, such as gyroscopes and
magnetometers, may improve recognition performance. Second, this work focused on
the segmentation of physical activities applied during the rehabilitation of SCI patients.
Further research should be undertaken to study the effect of this method on other physical
activities. Third, the data were collected in a controlled environment. Future work might
consider collecting data from real scenarios in which participants perform activities at
home. Finally, the selection of a threshold value depends on the training data. In future
work, the threshold could be chosen with the ability to update periodically according to
the incoming signal.

In addition to the abovementioned future work, the impact of the method on the rest
of the activities will be investigated. In addition, frequency-domain features and additional
time-domain features will be identified to facilitate performance enhancement. Finally,
the method will be introduced into hospital-based rehabilitation sessions to examine the
performance on SCI individuals.

8. Conclusions

In physical activity recognition using machine learning algorithms, data segmentation
is an essential step that may influence accuracy. Nevertheless, studies mostly adopt the
sliding window technique and rely on the window size used in previous works. Although
this approach is considered simple, it might be ineffective, especially for activities with
different durations.
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This study proposed a novel segmentation method that can be applied to enhance
the recognition of physical activities performed in a rehabilitative context. To adaptively
segment the raw data, the algorithm identifies the time boundaries to represent the start-
and endpoints of each activity. Peak boundaries and valley boundaries are used depending
on the signal characteristics.

The proposed algorithm was also verified in this paper. The results, which were
generated using data from a single accelerometer located on the wrist, approved the
effectiveness and applicability of the method on continuous raw data. Moreover, adopting
the proposed method generally improved recognition performance, and the improvement
was more substantial for similar activities.
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Abstract: The over-the-top (OTT) market for media consumption over wired and wireless Internet is
growing. It is, therefore, crucial that service providers and carriers participating in the OTT market
analyze consumer traffic for pricing, service delivery, infrastructure investments, etc. The OTT market
has many consumer groups, but the proportion of users is not consistent in each. Furthermore, as
multimedia consumption has increased owing to the COVID-19 epidemic, the OTT market has
changed rapidly. If this is not reflected, the analysis will not be accurate. Therefore, we propose a
framework that can classify consumers well based on actual OTT market environment conditions.
First, by applying our proposed conditional probability-based method to basic machine learning
techniques, such as support vector machine, k-nearest neighbor, and decision tree, we can improve the
classification performance, even for an imbalanced OTT consumer distribution. Then, it is possible to
analyze the changing consumer trends by dynamically retraining the incoming OTT consumer data.
Conventional methods result in low classification accuracy in low-number classes, but our method
shows an improvement of 5.3–19.2% based on recall. Moreover, conventional methods have shown
large fluctuations in performance as the OTT market environment has changed, but our framework
consistently maintains high performance.

Keywords: consumer analysis; cost-sensitive learning; imbalanced dataset; machine learning; over-
the-top; training data update

1. Introduction

Digital media consumption worldwide is exploding alongside wired and wireless
Internet access speeds and bandwidth since the COVID-19 pandemic started. Consumers
now have access to media content they want, anytime and anywhere, at cheap prices.
YouTube, Netflix, Hulu, Amazon Prime, and Roku are now threatening the existence of
traditional media markets [1]. These new over-the-top (OTT) services are defined as “video
contents provided through paths based on the internet or internet protocol (IP)” [2]. OTT
services are spreading rapidly because consumers can select personalized content and
platforms based on their own schedules. The global OTT market is expected to reach USD
1039.03B by 2027 with an average annual growth rate of 29.4% from 2020 to 2027 [3]. In the
US (the largest OTT market), there were 182-million OTT subscribers as of 2019 [4], and
YouTube (the most popular digital broadcasting platform), was watched by 84.2% of the
US digital video viewers; Netflix was watched by 67.6% [5]. As the OTT market has grown,
various global service providers and telecommunication carriers have competed intensely.

As some indoor and outdoor activities were restricted owing to COVID-19, demand for
video streaming skyrocketed as movie theaters shut down. Subscription video on demand,
the most typical OTT method, is a monthly subscription model that allows users to view
all platform content for a gateway fee. Subscriptions have increased by approximately
10% since COVID-19 started [6]. Similar phenomena have led to a significant increase in
consumer traffic consumption. As the OTT market grows rapidly, an analysis methodology
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specialized for the OTT market is required. Focusing on the OTT market, we intend to
propose a market analysis methodology that will be required by players participating in
the OTT market.

1.1. Motivation and Objective

Due to the growth of the OTT market, the revenue generated by the consumer growth
is positive from the standpoint of OTT service providers, but content delivery network
(CDN) service costs also have grown [7]. To generate profits, OTT companies must analyze
and capitalize network usage. Network operators are also struggling because of the
growth in OTT traffic. A problem occurs in terms of profitability if the service fees are
not commensurate to the provided services [8]. In particular, because it is important for
an OTT company to ensure quality of service (QoS), it is essential to manage the network
effectively [9]. In the case of live streaming, which now accounts for a considerable
portion of OTT, QoS expectations have placed a large burden on telecommunication
carriers [10]. To address these challenges, carriers offer a variety of service contracts.
Normally, if allocated bandwidth is exceeded, a service degradation is often applied [11].
This allows telecommunication carriers to better manage large and complex network
resources. However, throttling often causes complaints from customers with changing
needs. Therefore, both providers and consumers have a learning curve. As such, companies
participating in the OTT market need to be able to more accurately classify the OTT service
patterns of consumers to maintain contracts and create profits.

Many studies have been conducted to analyze the traffic of traditional networks. In
particular, there have been many studies recently that have applied artificial intelligence
and machine learning (ML) based methods for analyzing common Internet traffic. However,
these methods generally target general-purpose traffic, and very few studies have analyzed
OTT service traffic [12,13]. While these studies are significant in that they dealt with ML
methods specialized for OTT traffic classification, they neglected real-world problems that
were common to the OTT market. OTT consumers range from heavy users who watch
tremendous amounts of OTT content, to light users who rarely watch, and the proportions
are not the same [12,14]. If ML is applied without considering these imbalances, the
classification accuracy drops for the smaller user group [15]. OTT usage patterns change
rapidly over time, such as during the COVID-19 pandemic. Because new OTT services
are continually offered, and telecommunication carriers offer various subscription-fee
schemes, consumer usage patterns also change. Conventional studies on OTT traffic have
not considered the dataset changes caused by these phenomena. They generally perform
ML and classification for the data once, which does not reflect continuous changes. Hence,
classification accuracy declines over time. Our research objective is to propose a method to
analyze OTT consumers well, based on actual market environment conditions.

1.2. Contribution

In this study, we propose an OTT user classification method that responds to real-
world problems. OTT users can be divided into several groups according to their data
usage, and the number of members for each group is not consistent. While existing
studies show good performance in classifying groups composed of similar numbers, their
classification accuracy for classes with small numbers reduces with the imbalanced data
environments encountered in real-world situations. We thus propose a framework to solve
this problem as this is an issue that is readily discoverable in the OTT market but has not
yet been considered as a research topic. First, when classifying a class with small numbers
using ML, we tried to increase the classification accuracy by setting the weight for the
error occurring in the class higher than the error occurring in a class with a large number
of members. As the weights were set high, and the ML classifier was set to avoid errors
with high weights, we were able to improve the classification accuracy of classes with a
small number. To set the weight of the error, the probability of indicating the class to which
a sample belongs was calculated based on the costs of misclassification errors, and, by
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setting the cost high, the weight for a specific error could be set high. In addition, in order
to respond to changes in consumer trends, we constructed a module that can periodically
update the training data. Unlike existing studies that do not take changes in trends into
account, our framework periodically updates training data, which allows us to respond
to frequent trend changes with regard to OTT users. According to experimental results, it
can be seen that, even though consumer trends change, our framework shows a constant
performance; however, the performance of existing methods degrades severely. As such,
our study suggests ways to solve the practical problems encountered in the OTT market.
In other words, it has great significance as the OTT user analysis framework reported here
can be utilized to realistically analyze OTT users.

The remainder of this paper is organized as follows. Section 2 discusses the impor-
tance of analyzing OTT-related trends and usage patterns. Furthermore, we examine the
limitations of conventional studies. Section 3 introduces the OTT user analysis framework
proposed in this study, and Section 4 examines the experimental results. Finally, Section 5
presents conclusions and a brief description of future studies.

2. Literature Review

2.1. OTT Services

Recent statistics show that OTT consumers are moving away from traditional tele-
vision (TV)-based content viewing. In the US market, the proportion of those who have
subscribed to a streaming video service at least once (68%) has already surpassed the ratio
of paid TV subscribers (65%). Furthermore, the average number of streaming subscriptions
has increased by 33% since the beginning of the COVID-19 outbreak [16]. As of December
2020, US consumers spent an average of USD 47 per month, a significant increase from the
USD 38 reported in April of the same year [17].

An increasing number of companies are entering the OTT market, intensifying compe-
tition. In the second quarter of 2020, Netflix had the highest streaming proportion in the
US market, accounting for 34%. This was followed by the traditional OTT powerhouses
of YouTube, Hulu, and Amazon Prime, with 20, 11, and 8%, respectively. Disney Plus
then launched, quickly garnering 4% [18] after acquiring the 21st Century Fox library [19].
Because existing OTT companies already dominate the market to some extent, TV broad-
casting companies, telecommunication carriers, and cable operators are now releasing their
own apps or investing in other platforms. After acquiring Warner Media, AT&T launched
an OTT service leveraging their new HBO content [20].

The rapidly changing market is looming as both a threat and an opportunity for
OTT operators. Notably, it is expected that many subscriptions will not be renewed after
COVID-19 restrictions are lifted. Thus, OTT operators must find ways to retain customers.
For this, the Boston Consulting Group has advised OTT operators to analyze user patterns
and to classify them into groups for customized strategies [6]. Pricing plans comprise an
important customer lure. The biggest reason that customers cancel subscriptions is the
expense, and this accounts for 36% of all cancellations [16].

Telecommunication carriers, cable operators, and Internet-protocol TV (IPTV) opera-
tors are struggling under the competitive OTT environment [21,22]. For example, the IPTV
market overlaps and encroaches many OTT services. Bundled service strategies are some-
times required to prevent IPTV subscriptions from being canceled for OTT viewing [23].
In South Korea, KT, the operator with the highest IPTV market share, is partnering with
Netflix to create synergies. Netflix is using this opportunity to enter the South Korean
market. Additionally, KT will receive network fees by providing Internet bandwidth to
Netflix. Furthermore, an increase in the number of KT customers is expected when Netflix
is provided as a bundled service [24]. Mobile network providers are also required to make
infrastructure investments to maintain the quality of live streaming. With the spread of
5G, an increasing number of users are enjoying OTT services wirelessly. However, failure
to provide a stable QoS will result in customer churn. In fact, about 30% of consumers
are willing to for pay premium prices if the mobile networks, especially 5G, can deliver
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better video quality and reduce buffering [25]. As more consumers use real-time services,
network operators face difficulties because of infrastructure investments [10,26]. Network
operators must build a sound service-quality degradation strategy that minimizes network
resource consumption, while also satisfying consumer demand and QoS. As such, it is
crucial for all providers to establish appropriate pricing schemes for the OTT environment.

Various studies have been conducted on pricing systems related to content providers,
network operators, and service users based on net neutrality. These include a study based
on QoS [9], a study based on the quality of experience [27], a study using shadow prices [28],
and a study based on CDNs [29] or software defined networks [30] (see Section 2.1 of our
previous study [13] for a brief description of these constructs). Although there are differences
in these detailed methods, most studies have proposed pricing schemes based on network use
per user per month. Hence, it is a top priority for OTT and network providers to identify the
traffic usage patterns of OTT users to determine the most efficient pricing scheme. It is thus
important to effectively classify and group OTT users. Then, they can implement suitable
pricing strategies. Clearly classifying OTT users is the first step. In this study, we propose a
ML-based framework specialized for OTT user traffic analyses in a real-world environment.

2.2. Review of Classification Using ML

Machine and deep learning methods are widely used for user traffic analyses, owing
to advancements in artificial intelligence technology. Many relevant techniques have been
studied, including decision tree, a traditional ML method [31,32], support vector machine
(SVM) [33–35], k-nearest neighbor (KNN) [36,37], hidden Markov model [38,39], and k-
means [40,41]. There have been recent studies on traffic analyses using deep learning,
which has strengths in terms of accuracy [42–44]. Although there are some differences in
the techniques and forms of the applications, they all tend to capture and analyze traffic
based on features. Analysis targets range from captured packets to open datasets, but little
consideration has been given to OTT data.

Rojas et al. proposed a method of classifying users based on OTT usage data [11,12,45].
They used various ML methods to analyze OTT traffic and classified consumers into three
consumption categories: high, medium, and low. Their study is highly significant in that it
was the first to attempt to classify OTT users. Their dataset contained real-world data that
were equally weighted based on the three consumption classes. However, their validation
was performed in an environment different from a real one, and equal weighting was
problematic, as we discuss herein. Our previous study was significant in that a deep
learning method was applied alongside traditional ML methods [13]. In particular, we
proposed a framework to overcome the temporal disadvantages of applying a deep learning
method alone. Nevertheless, our study had a limitation in that a dataset detached from
the real-world environment was used. In this study, we propose a method that overcomes
these limitations.

2.3. Problem Statement
2.3.1. Class-Imbalance Problem

There are diverse demographics of consumers that consume OTT services. Gen-
Z’s (born between 1997 and 2006) and Millennials’ (born between 1983 and 1996) lives
have included breakthrough technologies and cultural changes that now include OTT
services. Statistics show that the Millennials and Gen-Zs use 17 and 14 subscription
services each, respectively, whereas Baby-Boomers subscribe to eight on average [16]. A
similar phenomenon was observed in network usage statistics. Seventy percent of Gen-Zs
subscribe to Netflix; however, as age increases, the subscription rate decreases, with only
39% of Baby-Boomers subscribing to it [46]. When consumers are grouped by country, the
characteristics differ among groups again. Consumers in populous India spend more than
45B h using video streaming services, more than double that of US consumers. The country
having the highest video content per capita is South Korea, where almost 2000 h are spent
per person [47].
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As such, OTT market consumers can be divided into various groups, and the number
of group members varies widely. According to Walelgne et al. [14], who analyzed the data
traffic of mobile users (including OTT), heavy users who comprise only 2–4% of the total
consume the most data. They collected mobile traffic from Finland, Germany, the UK,
Japan, and Brazil and classified users using a clustering method. In Finland, which had
the largest number of research samples, the proportions of heavy, regular, and light users
were 3.5, 41.9, and 54.6%, respectively, and the data used for uploads and downloads by
each group comprised 328.7, 64.3, and 9.4 MB, respectively. Heavy users, comprising only
about 3% of the total, used more data than approximately 97% of the other users. A similar
phenomenon was found in other countries, although the proportions were different [14].
Furthermore, similar trends were found in a study that grouped users by analyzing actual
OTT traffic. According to Rojas et al., the high, medium, and low consumption groups
consisted of 84, 50, and 582 persons, respectively [12].

Similar to the case of OTT user groups, very small or very large numbers of samples
for particular classes are often observed in real-world environments [48]. Hence, analysis
results will likely be biased toward the most populous classes [49]. With ML, this problem
is called the “class-imbalance problem” and is viewed as one of ten major problems to
overcome [50]. As reviewed above, very few studies have analyzed OTT traffic, and
some did not consider the class-imbalance problem at all, which is easily seen in the OTT
demographics. If this problem is not considered, performance deterioration problems
will occur with real-world grouping and pricing strategy computations. Therefore, we
propose a method to overcome such problems for ML methods, as applied to an actual
OTT environment.

In areas other than OTT, the class-imbalance problem is often encountered when
classification is performed. For example, many studies on the detection of Twitter spam
have overlooked this problem. However, other studies applied methods of artificially re-
sampling the data to solve this problem [51,52]. Nevertheless, if re-sampling is performed
based on a small amount of data, there will be the problem that the minor classes have
the characteristics of only a small amount of collected data. To overcome this, cost-based
methods have been applied in the binary classification field [15,53]. These adjust the cost
of misclassifications to reduce them for the smaller classes. While employing a cost-based
approach in this study, we leverage a method that can be applied to a dataset comprising
many classes in accordance with the characteristics of OTT users.

2.3.2. Rapid Changes in the OTT Market

The OTT market has been active for less than a decade, and many companies are
competing to lead the market. As mentioned, the landscape of the OTT market is expected
to change continuously in the future as media providers, telecommunication operators,
and OTT companies compete for market share. According to a survey, many consumers
intend to cancel one out of five newly acquired subscription services, and one out of ten
previously acquired services after post-pandemic normalization [6]. This is because the
time spent on entertainment will likely be reduced when consumers return to their normal
routines [16].

Most ML-based classification methods perform learning based on previously collected
data. Therefore, it is known that the classification accuracy increases with more learned
data. When analyzing OTT consumers, this can be problematic if the training is performed
using only previously collected data. Because the OTT market is rapidly changing, it will
not be possible to respond to new changes, and the accuracy of the analysis will decrease.
Most existing studies performed training based on initially collected data with no plans to
continuously update the training datasets. This study, however, proposes a framework for
ML and analysis that reflects the evolving patterns of consumers.
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3. Research Design

3.1. Model Design: An Overview

We propose a ML-based framework that facilitates the effective classification of OTT
users in a real market environment. First, OTT consumer classification is performed to
increase the classification accuracy related to the class-imbalance situation. Then, we
propose a module that updates the training data at predetermined intervals to reflect the
continuously changing trends. Figure 1 illustrates the modules of the proposed framework.
The details of each are discussed in the following sections.

Figure 1. Modules of the proposed framework.

3.2. OTT Consumer Classification with Imbalanced Data

The first step in our proposed framework is to analyze the traffic of OTT users by
using ML to classify them into groups. For consumer classification, data annotation with
the help of experts is first needed after collecting the data usage patterns of existing OTT
users. In this method, OTT consumer traffic is classified into three types. Consumers
with high OTT usage are classified as “high consumption”, those with a low usage are
classified as “low consumption”, and those with average usage are classified as “medium
consumption”. As discussed, data consumption differs significantly among the three types.
According to Rojas et al., low consumption users account for 81.3% of the total, while high
and medium consumption users account for only a small portion of the total [12].

After collecting OTT user traffic and performing annotation, feature extraction is
performed. Features refer to individual and measurable properties of data for ML. The
more significant features that are extracted, the higher is the accuracy of the classification.
In this study, the public dataset released by Rojas et al. was used; thus, our feature sets
are also based on their study [12]. As our study’s objective is to classify consumers by
analyzing patterns of OTT users, it is important to know how much data users have
consumed for each OTT application. Therefore, by utilizing the amount of time and data
used by consumers for each OTT application as the main features, consumers can be
classified based on their usage patterns. A detailed description of the datasets and features
used in this study is provided in Section 4.1.

After extracting features based on collected consumer data, they are used as training
data. Afterward, when incoming consumers’ information that needs to be analyzed comes
in, features are first extracted. Subsequently, through ML that uses the training data built
earlier, the group to which the incoming consumer belongs to is determined. In this process
we face the problem of deteriorating classification accuracy due to the class imbalance, as
discussed above. In order to improve performance, even in such a situation, we propose a
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method to calculate the probability of which class each data sample belongs to based on
the cost. To better classify the classes, we use different costs for misclassification errors so
that mistakes are eventually minimized [15,54]. In particular, the OTT consumer dataset
consists of three classes and we propose the appropriate formulation and cost matrix. Table
1 shows the asymmetric cost matrix for OTT consumer classes.

Table 1. Asymmetric misclassification cost matrix.

Actual High Actual Medium Actual Low

Predicted High C(h, h) C(m, h) C(l, h)
Predicted Medium C(h, m) C(m, m) C(l, m)

Predicted Low C(h, l) C(m, l) C(l, l)

Misclassification refers to the incorrect classification of users. If a user who belongs
to the actual high class is classified as medium or low, the costs that occur in this case are
C(h, m) and C(h, l), respectively. In the case of OTT consumers, because the number of
users belonging to the actual high or medium classes is extremely small compared with
those in the actual low class, the classification accuracy for the two classes is inevitably
low. Because our goal is to improve classification accuracy for classes having small sample
sizes, we need to reduce the number of misclassifications of users who actually belong
to the high or medium class. We do this with C(h, m) and C(h, l), which are applied to
misclassifications of high consumption users, and C(m, h) and C(m, l), which are applied
to misclassifications of medium consumption users. They should be set higher than C(l, h)
and C(l, m), the costs occurring due to misclassifying low consumption users. If the costs
are set high, misclassifications will be reduced. On the other hand, if the classification
is properly performed, the costs are C(h, h), C(m, m), and C(l, l) for each respective class.
Because there is no risk to the classification system in the case of proper classification, the
three above costs should all be set to zero.

Upon completion of cost-setting, classification is performed to determine the class
to which samples belong. When a sample is given, the probability of indicating the class
to which it belongs is calculated. Supposing that E is the entire dataset. Then, Ei is a
resample of E with n examples. The probability that an example, x, belongs to a class, j, is
as follows [54]:

P(j|x) = 1
∑i 1 ∑

i
P(j|x, Mi), (1)

where i ranges from 1 to m, and m is the number of newly produced resamples. Then,
Mi is a model created by applying a classification learning algorithm to Ei. Here, the risk
occurring when x is classified as a class s can be defined as follows [15]:

R(s|x) = ∑
j

P(j|x)C(s, j). (2)

We must minimize the risk of sample assignment. Therefore, class s, which satisfies
Equation (3), becomes the class to which x is assigned:

argminsR(s
∣∣x). (3)

For OTT user classification, because there are three classes, the variables, s and j,
indicate the degrees of freedom for high, medium, and low classes.

Various ML algorithms can be used to generate a model, Mi, which is used for
probability calculation when performing consumer classifications. In this study, we use
common ML methods, including decision tree, SVM, and KNN, because we need to
determine whether the performance can increase in an imbalanced data environment when
our framework is applied. This allows us to check whether data encountered in real-world
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situations can be accurately classified, regardless of which ML algorithm is used. The ML
algorithms used in this study are presented in Section 4.2.

3.3. Dynamic Retraining Module

Another problem encountered when analyzing OTT users in real-world situations
is the that where the data characteristics change continuously. Studies on conventional
ML-based classifications tend to continuously utilize data that were initially collected after
annotation. The critical disadvantage of this method is that newly changed characteristics
are not reflected. To overcome this, Chen et al. proposed a method for updating training
data at fixed intervals [55]. Based on their studies, we propose a method suitable for OTT
user analysis.

To classify OTT users, data are collected first, then they are labeled by an expert. If the
collected dataset is Tinit, the classification algorithm, L, is used to perform training using
Tinit. The classifier, Cinit, is composed as follows:

Cinit = L(Tinit). (4)

Our proposed framework also uses Cinit, which is based on labeled data that have
already been collected. However, although most studies continue to use only Cinit, we
update the training data continuously. If the pre-set time interval, τ, elapses, the classifica-
tion result of the data that were already collected is obtained. If an additionally collected
dataset of high consumption users is Ht, that of medium consumption users is Mt, and
that of low consumption users is Lt. Here, t is a time unit that increases by one whenever
the pre-set time interval, τ, elapses. The newly added dataset, Tnew, can be summarized as
Equation (5), and the classifier Cnew that reflects it is Equation (6):

Tnew = ∑
t
(Ht ∪ Mt ∪ Lt), (5)

Cnew = L(Tinit ∪ Tnew). (6)

Periodically, at a given time interval, the training dataset will incorporate the newly
changed characteristics of each user group. Cnew, is updated based on retraining to facilitate
accurate classification while accounting for changes. This enables flexible responses and
updated learning.

4. Results and Discussion

Section 4.1 describes the dataset and evaluation metrics used in this study. Section 4.2
verifies the performance improvement in an environment with a given imbalanced dataset
when our framework is applied. Section 4.3 verifies how well it can respond to the trend
changes if the training dataset is updated periodically.

4.1. Dataset Description and Evaluation Metrics

To validate the method proposed in this study, we used a dataset released by Rojas
et al., who captured data directly for 10 days from the Universidaa del Caucau Unicauca
network in 2019. The dataset comprises a total of 113 features and samples from 1249 users
classified into three classes: high, medium, and low consumption.

OTT data are well-represented, and analyses were performed for a total of 56 appli-
cations, including typical OTT services (e.g., Netflix, YouTube, Twitch, and Spotify). The
traffic flow was analyzed for each, and features were extracted, as shown in Table 2 [12].
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Table 2. Feature description.

Feature Name Feature Description

src_ip_numeric Decimal representation of the IP address of the user
ApplicationName_time_occupation Time spent by the user for each OTT service

Application-Name.Flow.Bytes.Per.Sec Byte size used per second by the user for each
OTT service

The number of samples in each dataset class differed from those in real situations.
There were 406 high-consumption samples, 333 medium-consumption samples, and
510 low-consumption samples, which were readjusted to balance the classes. We used an
analytical approach that shows good performance, even if training is performed to reflect
real-world data. We used the SMOTE method to adjust the above-described open dataset
according to the proportions of an actual situation [56]. We set the number of samples for
each class to 5610 for low, 566 for medium, and 812 for high.

Recall, precision, and F-measure were considered as evaluation metrics and were
calculated based on true positive (TP), false positive (FP), and false negative (FN) results.
In this study, data composed of three classes were classified, and we will first look at the
concepts of TP, FP, and FN using examples of a high-consumption group. TP refers to the
rate at which the sample belonging to the actual high class is predicted to be high. FP and
FN are values indicating an error, FP indicates that a sample that actually belongs to low or
medium class is incorrectly classified as high class, and FN indicates that a sample that
belongs to high is incorrectly classified as low or medium class. TP, FP, and FN of medium
and low classes can also be obtained in the same manner. Recall is equivalent to TP, a
numerical value that indicates correct classifications. Precision is the probability of the data
belonging to that class. F-measure shows the accuracy by finding the harmonic mean of
the precision and recall; see Equation (7):

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, F−Measure =
2·Recall · Precision
Recall + Precision

. (7)

4.2. Performance Comparison with Imbalanced Dataset

To compare the performance between the proposed framework and existing studies,
J48-decision tree, KNN, rule-based PART, and SVM algorithms were used for comparison.
As previously discussed, there are few existing studies classifying OTT consumers, and
these studies derive insights by applying popular ML or deep learning algorithms targeting
OTT consumers [11–13,45]. Therefore, in this study, we compared the performance of our
proposed framework with the widely used ML techniques for performance comparison
with the existing research methodologies. See Section 3.1.1 of our previous study [13] for a
brief description of comparison algorithms. These were implemented using scikit-learn [57]
and Weka [58]. In the case of J48, the seed was fixed to 1, and the confidence factor was set
to 0.25. In the case of KNN, k was set to five; and a polynomial kernel was used for the
SVM. In the case of PART, the number of folds used for pruning was set to five.

To check how much the performance declines when using an imbalanced dataset, we
first compared the performance using the original and the refined dataset with a similar
number of samples. Table 3 shows the performance differences. Apart from these, the
accuracy increases significantly for the low consumption user group, because its proportion
is large, which results in biased training toward that group. In contrast, the medium
and high consumption groups showed performance drops in the unbalanced dataset
compared with the refined one. In particular, the recall, which indicates whether the data
belong to the pertinent group, decreases significantly in the unbalanced dataset. A drop of
approximately 3–4% was observed even when the J48 algorithm was used, which resulted
in the lowest drop, and a 6–10% drop was observed when the KNN and PART algorithms
were used. In the case of SVM, a drop of almost 30% was observed in the high consumption
group. As such, if the imbalanced dataset that reflects a real-world situation is classified
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using a conventional method, the classification accuracy declines for classes having small
proportions. This can be a big problem for companies that need to analyze consumers and
develop customized strategies.

Table 3. Performance comparison between refined data and imbalanced data by ML algorithms.

ML
Algorithms Class

Refined Dataset Imbalanced Dataset
Recall Precision F-Measure Recall Precision F-Measure

J48
Low 0.941 0.950 0.946 0.992 0.984 0.988

Medium 0.955 0.933 0.944 0.917 0.917 0.917
High 0.948 0.955 0.952 0.915 0.966 0.940

KNN
Low 0.951 0.933 0.942 0.999 0.967 0.983

Medium 0.958 0.967 0.962 0.852 0.992 0.916
High 0.946 0.962 0.954 0.863 0.997 0.925

PART
Low 0.925 0.872 0.898 0.991 0.961 0.976

Medium 0.886 0.905 0.895 0.825 0.945 0.881
High 0.901 0.958 0.929 0.839 0.958 0.894

SVM
Low 0.961 0.965 0.963 0.999 0.940 0.968

Medium 0.973 0.961 0.967 0.843 0.988 0.909
High 0.975 0.980 0.978 0.664 0.994 0.796

We proposed a framework to improve the classification accuracy for imbalanced
datasets encountered in real-world environments. In this section, we verify the accuracy
improvement when our framework is applied. In the next section, we validate the per-
formance improvement when retraining is implemented. We used J48, KNN, PART, and
SVM algorithms, which were selected for comparison, to generate the Mi of Equation (1).
Their environment settings are the same as those used previously. Our framework requires
an additional cost-setting, and the cost was set as follows. The cost of misclassifying the
low-consumption group was set to one in all algorithms. The cost of misclassifying the
medium consumption group was set to 10 for J48 and SVM algorithms, 20 for the KNN, and
15 for the PART. The cost of misclassifying the high consumption group was set to 10 for J48
and PART, and 20 for the KNN and SVM. Table 4 shows the performance of the proposed
framework. All four algorithms showed a slight performance drop in the low consumption
group but maintain a 96–99% level in terms of recall, because there were many samples. On
the other hand, in the case of the medium and high consumption groups, the performance
was low when the imbalanced dataset was used as is. However, it increased significantly
when our framework was used. Most algorithms showed a recall of the mid-to-high 90%
range, and in particular, the high consumption group of the SVM algorithm showed that
the recall, which dropped to 66.4%, increased up to 85.6%. In Figure 2, which compares
the recall between the cases of using the refined and imbalanced datasets and the case of
using our framework, it is confirmed that our framework shows good performance, even
in real-world situations. This means that, although the existing algorithms alone cannot
properly classify the propensity of OTT consumers encountered in the real world, our
proposed algorithm facilitates proper classification of data reflecting real-world situations.
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Table 4. Performance comparison between conventional methods and our framework in an imbalanced data environment.

ML
Algorithms Class

Imbalanced Dataset Our Framework
Recall Precision F-Measure Recall Precision F-Measure

J48
Low 0.992 0.984 0.988 0.967 0.995 0.981

Medium 0.917 0.917 0.917 0.972 0.820 0.889
High 0.915 0.966 0.940 0.968 0.910 0.938

KNN
Low 0.999 0.967 0.983 0.997 0.989 0.993

Medium 0.852 0.992 0.916 0.959 0.977 0.968
High 0.863 0.997 0.925 0.954 0.997 0.975

PART
Low 0.991 0.961 0.976 0.975 0.977 0.976

Medium 0.825 0.945 0.881 0.889 0.857 0.873
High 0.839 0.958 0.894 0.903 0.911 0.907

SVM
Low 0.999 0.940 0.968 0.996 0.981 0.988

Medium 0.843 0.988 0.909 0.898 0.906 0.902
High 0.664 0.994 0.796 0.856 0.946 0.899

Figure 2. Comparison of recall between different user groups: (a) low consumption users; (b) medium consumption users;
(c) high consumption users.

4.3. Performance Comparison with the Dynamic Retraining Module

In the previous section, learning and classification were conducted under the assump-
tion that all data were collected in advance. This assumption is easily observed in most
ML-based classification studies. However, this is far from reality. Therefore, we provide a
module that accommodates new retention by including the results of the previous cycle
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in the training data at every fixed cycle. In this section, we verify the performance of the
proposed module. We divided the imbalanced dataset used in the previous section into
10 sub-datasets to reflect the changes in the OTT market environment. If each sub-dataset
is assumed to contain data collected for a single day, the dataset is divided into 10 sub-
datasets from days 1 to 10. Because the dataset is based on data collected over 10 days, this
is a reasonable assumption. First, to check whether the conventional methods properly
respond to the changes in the OTT market environment, we used the data collected on
day 1 as the training data and those collected on days 2–10 as the test data to measure
performance. To evaluate the performance, we measured after retraining using the data
classification results of up to the previous day daily. Figure 3 shows the change in recall
on each day for each group, and Figure 4 shows the change in F-measure for each day for
each group.

Figure 3. Change of recall on each for each user group: (a) low consumption users; (b) medium consumption users; (c) high
consumption users.

First, recall was compared for each group, as shown in Figure 3. In the case of our
proposed method, stable recall values were maintained without significant changes, even
when time elapsed. However, in the case of conventional methods, the deviation was very
large between different days. Even in the low consumption group with many samples,
the performance was significantly different between our proposed method and that of
conventional methods, and in the case of medium and high consumption groups, the recall
dropped below 50% on severe days when only the conventional methods were used. This
means that more than half of the consumers belonging to those groups were not correctly
classified, which may have a critically adverse effect on the reliability of the analysis
results. Similar trends were observed from the comparison of the F-measure for each
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group, as shown in Figure 4. Although our method shows a stable overall performance,
the conventional methods show large deviations between different days. This means that
if the conventional methods are used alone, changes in OTT trends cannot be reflected,
resulting in a decreased classification accuracy. In contrast, our framework facilitates a
proper response to trend changes over time.

Figure 4. Change of F-measure on each day for each user group: (a) low consumption users; (b) medium consumption
users; (c) high consumption users.

5. Conclusions

In this study, we proposed an ML-based framework for OTT user analysis, which
is an important factor for various companies in the OTT market. Specifically, we used a
probability based on cost while utilizing an ML-based consumer classification method to
obtain good performance even with an imbalance between user groups, which is seen in
the actual OTT market environment as well. Our method showed a higher performance
compared with conventional ones, even for an imbalanced dataset. Furthermore, our
framework continually updated the training dataset in response to the ever-changing OTT
market environment. For conventional methods, it is difficult to respond to trend changes,
because the classification is performed based on pre-learned data. However, ours performs
better despite the trend changes.

This study is significant in that it provides a direction to solve the problem that is
easily encountered by various companies participating in the OTT market. Conventional
ML-based classification studies are often conducted based on refined datasets, not datasets
that can be encountered in the real world. In such cases, the accuracy may be high, but
when they are used in real-world environments, the accuracy may drop, making them
difficult to use for practical applications. Furthermore, extant studies often performed
ML and analysis based on previously collected data without considering the constantly
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changing propensity of consumer behavior. However, our study can help companies
analyze consumers in this environment, because our method provides stable performance
in actual changing situations.

In the future, a specific methodology will be required for cost-setting when cost-based
classification is performed. In this study, we conducted experiments by setting the costs
higher when a larger number of errors occurred. In the future, we must consider how to
systemize this and automatically select the appropriate costs. Furthermore, additional
analyses are required based on a variety of OTT user data. To the best of our knowledge,
the dataset used in this study is the latest open dataset specific to OTT service users. In the
future, if additional open datasets are available, validation and improvements should be
studied based on those sets.
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Featured Application: The outcomes of this work can be applied to B2B discrete demand forecast-

ing in the automotive industry and probably generalized to other demand forecasting domains.

Abstract: Demand forecasting is a crucial component of demand management, directly impacting
manufacturing companies’ planning, revenues, and actors through the supply chain. We evaluate
21 baseline, statistical, and machine learning algorithms to forecast smooth and erratic demand on a
real-world use case scenario. The products’ data were obtained from a European original equipment
manufacturer targeting the global automotive industry market. Our research shows that global
machine learning models achieve superior performance than local models. We show that forecast
errors from global models can be constrained by pooling product data based on the past demand
magnitude. We also propose a set of metrics and criteria for a comprehensive understanding of
demand forecasting models’ performance.

Keywords: demand forecasting; smart manufacturing; artificial intelligence; supply chain agility;
digital twin

1. Introduction

Supply (the “amount of something ready to be used” [1]) and demand (“the fact of customers
buying goods... and the amount that they buy” [1] at a given point in time) are two key elements
continually interacting in the market. The ability to accurately forecast future demand
enables manufacturers to make operational and strategic decisions on resources (allocation
and scheduling of raw material and tooling), workers (scheduling, training, promotions, or
hiring), manufactured products (market share increase and production diversification), and
logistics for deliveries [2]. Accurate demand forecasts reduce inefficiencies, such as high
stocks or stock shortages, which have a direct impact on the supply chain (e.g., reducing
the bullwhip effect [3,4]), and prevent a loss of reputation [5].

There is consensus that greater transparency between related parties helps to mitigate
the issues mentioned above [6,7]. Such transparency can be achieved through automation
and digitalization (e.g., implementing Electronic Data Interchange software), by sharing
manufacturing processes’ data, and making it timely available to internal stakeholders and
relevant external parties where appropriate [8]. In addition, the ability to apply intelligence
to multiple stages across the supply chain can improve its performance [9]. Such ability
and the capability to get up-to-date information regarding any aspect of the manufac-
turing plant enable the creation of up-to-date forecasts and provide valuable insights for
decision-making.

Multiple authors found that machine learning outperforms statistical methods for
demand forecasting [10,11]. Machine learning methods can be used to train a single model
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per target demand or a global model to address them all. When designing the models, it
is crucial to consider which data is potentially relevant to such forecasts. Multiple factors
may affect the product’s demand. First, it is necessary to understand if the products can be
considered inelastic (their demand is not sensitive to price fluctuations), complementary,
or be substituted for alternative products. Second, intrinsic product qualities, such as
being a perishable or luxury item, or their expected lifetime, may be relevant to demand.
Finally, the manufacturer must also consider the kind of market it operates on and the
customer expectations. When dealing with demand forecasting in the automotive industry,
most authors do not use only demand data but also incorporate data regarding exogenous
factors that influence demand.

Demand forecasting has direct consequences on decision-making. As such, forecasts
are expected to be accurate so that they can be relied upon. When training machine
learning models, more significant amounts of good quality data can help the model better
learn patterns and provide more accurate forecasts. This intuition is considered when
building global models. On the other side, while for local models, the forecast error is
constrained to past data of a single time series, in global models, the forecasting error is
influenced by patterns and values observed in other time series, which can lead to greater
errors as well. In this work, we explore a strategy to constrain such forecasting errors in
global models. Furthermore, providing a greater amount of data should be considered
regarding products’ demand and its context. To that end, we enrich the demand data with
data from complementary data sources, such as world Gross Domestic Product (GDP),
unemployment rates, and fuel prices.

This work compares 21 statistical and machine learning algorithms, building local
and global forecasting models. We propose two data pooling strategies to develop global
time series models. One of them successfully constrains the global time series models’
forecasting errors. We also propose a set of metrics and criteria for the evaluation of
demand forecasts for smooth and erratic demands [12]. The error bounding data pooling
strategy enables us to gain the benefits of training machine learning models on larger
amounts of data (increased forecast accuracy) while avoiding anomalous forecasts by
constraining the magnitude of maximum forecasting errors. The metrics and evaluation
criteria aim to characterize the given forecasts and provide better insight when deciding
on the best-performing model. We expect the outcomes of this work to provide valuable
insights for the development and assessment of demand forecasting models related to the
automotive industry, introducing forecasting models and evaluation strategies previously
not found in the scientific literature.

To evaluate the performance of our models, we consider the mean absolute scaled
error (MASE) [13] and the R2-adjusted (R2adj) metrics. We compute the uncertainty ranges
for each forecast and compare if differences between forecasts are statistically significant by
performing a Wilcoxon paired rank test [14]. Finally, we analyze the proportion of products
with forecasting errors below certain thresholds and the proportion of forecasts that result
in under-estimates.

The rest of this paper is structured as follows. Section 2 presents related work.
Section 3 describes the methodology we followed to gather and prepare data, create
features, and build and evaluate the demand forecasting models. Section 4 details the
experiments performed and the results obtained. Finally, Section 5 presents the conclusions
and an outline of future work.

2. Related Work

Products’ demand forecasting is a broad topic addressed by many authors in the
scientific literature. Different demand patterns require specific approaches to address their
characteristics. Multiple authors proposed demand classification schemas to understand
which techniques are appropriate for a particular demand type. For example, the work
in [15] focused on demand variance during lead times, while the work in [16] introduced
the concept of average demand interval (ADI), which was later widely adopted.
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ADI =
Total Periods

Total Demand Buckets
(1)

The work in [12] complemented this view of demand introducing the coefficient of
variation (CV). Both concepts allow us to divide demand types into quadrants, classifying
them as intermittent, lumpy, smooth, and erratic demands (see Figure 1). Smooth and
intermittent demand have little variability in demand quantities. Smooth demand has little
variability regarding demand intervals over time, while intermittent demand displays a
higher demand interval variability. Erratic and lumpy demands have higher variability in
demand quantities, which comprehends an additional forecasting model challenge. Erratic
demand has little variability regarding demand intervals over time. In lumpy ones, this
is an essential factor to be considered. Following demand types proposed in [12], in this
work, we focus on smooth and erratic demands.

CV =
Demand Standard Deviation

Demand Mean
(2)

Figure 1. Demand types classification by Syntetos et al. [12]. Quadrants correspond to (I) intermittent,
(II) lumpy, (III) smooth, and (IV) erratic demand types.

Planners, who regularly create demand forecasts, must understand the products they
sell, the market they target, the economic context, and customer expectations. Over time
they learn how buyers behave, the vast array of factors that can influence product demand,
and create their estimates. Each planner can weigh different factors and have distinct ways
to ponder them. Most of this information can be collected and fed to machine learning (ML)
models, which learn how demand behaves over time to provide a forecast. In the scientific
literature addressing demand forecasting in the automotive industry, most authors do not
use only demand data, but also incorporate data regarding exogenous factors that influence
demand, such as the effect of personal income on car ownership [17,18], or the effect of the
GDP [5,17,19,20], inflation rate [18,19], unemployment rate [5], population density[20], and
fuel prices [5,18,20–22] on vehicles demand.
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Demand distributions can also be considered as another source of information for
demand forecasting: research performed by many authors confirmed a relationship exists
between demand types and demand distributions [23–26].

A wide range of models was explored in the literature addressing car, and car compo-
nents demand forecasting. Ref. [5] developed a custom additive forecasting model with
seasonal, trend, and calendar components. The authors used a phase average to compute
the seasonal component, experimented with Multiple Linear Regression (MLR) and Sup-
port Vector Machine (SVM) for trend estimation, and used a Linear Regression to estimate
the number of working days within a single forecasting period (calendar component).
The models were built with car sales data from Germany, obtaining the best results when
estimating trends with an SVM model and providing forecasts quarterly. Models’ perfor-
mance was measured using Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) metrics. Ref. [18] compared three models: an adaptive network-based fuzzy
inference system (ANFIS), an autoregressive integrated moving average model (ARIMA),
and an artificial neural network (ANN). The forecasting models were built considering
new automobile monthly sales in Taiwan, obtaining the best results with the ANFIS model.
Ref. [21] developed an ANN model considering the inflation rate, pricing changes in crude
oil, and past sales. They trained and evaluated the model on data from the Maruti Suzuki
Ltd. company from India, measuring the models’ performance with the Mean Squared
Error (MSE) metric. Ref. [27] compared three models: ANFIS, ANN, and a Linear Re-
gression. They are trained on car sales data from the Maruti car Industry in India and
compared with the root mean squared error (RMSE) metric. The authors report that the
best performance was obtained with the ANFIS model. Ref. [28] compared the ARIMA
and the Holt–Winters models using demand data regarding remanufactured alternators
and starters manufactured by an independent auto parts remanufacturer. They measured
performance using the MAPE and average cumulative absolute percentage errors (CAPE)
metrics, obtaining the best results for the Holt–Winters models. Ref. [29] developed three
models (ANN, Linear Regression, and Exponential Regression) based on data from the
Kia and Hyundai corporations in the US and Canada. Results were measured with the
MSE metric, obtaining the best one with the ANN model. Ref. [19] analyzed the usage of
genetic algorithms to tune the parameters from ANFIS models built with data from the
Saipa group, a leading automobile manufacturer from Iran. Measuring RMSE and R2, they
achieved the best results with ANFIS models tuned with genetic algorithms compared to
ANFIS and ANN models without any tuning. Ref. [30] compared custom deep learning
models trained on real-world products’ data provided by a worldwide automotive original
equipment manufacturer (OEM). Ref. [31] developed an long short-term memory (LSTM)
model based on car parts sales data in Norway and compared it against Simple Exponential
Smoothing, Croston, Syntetos-Boylan Approximation (SBA), Teunter-Syntetos-Babai, and
Modified SBA. Best results were obtained with the LSTM model when comparing models’
mean error (ME) and MSE. Ref. [22] developed tree models (autoregressive moving aver-
age (ARMA), Vector Autoregression (VAR) model, and the Vector Error Correction Model
(VECM)) to forecast automobile sales in China. The models were compared based on their
performance measured with RMSE and MAPE metrics, finding the best results with the
VECM model. The VECM model was also applied by [20], when forecasting cars demand
for the state of Sarawak in Malaysia. Finally, Ref. [32] compared forecasts obtained from
different moving average (MA) algorithms (simple MA, weighted MA, and exponential
MA) when applied to production and sales data from the Gabungan Industri Kendaraan
Bermotor Indonesia. Considering the Mean Absolute Deviation, the best forecasts were
obtained with the Exponential Moving Average.

Additional insights regarding demand forecasting can be found in research related
to time series forecasting in other domains. Refs. [33,34] described the importance of
time series preprocessing regarding trend and seasonality, though [35,36] found the ANN
models could learn seasonality. The use of local and global forecasting models for time
series forecasting was researched in detail by [35]. Local forecasting models model each
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time series individually as separate regression problems. In contrast, global forecasting
models assume there is enough similarity across the time series to build a single model
to forecast them all. Researchers explored the use of global models either clustering time
series [36,37], or creating a single model for time series that cannot be considered related to
each other [38]. They achieved good performance in both cases.

3. Methodology

To address the demand forecasting problem, we followed a hybrid of the agile and
cross-industry standard process for data mining (CRISP-DM) methodologies [39]. From
the CRISP-DM methodology, we took the proposed steps: focus first on understanding the
business and the available data, later tackle the data preparation and modeling, and, finally,
evaluate the results. We did not follow these steps sequentially, but rather moved several
times through them forward and backward, based on our understanding and feedback
from end users, as is done in agile methodologies. We describe the work performed in each
phase in the following subsections.

3.1. Business Understanding

The automotive industry accounts for one of the largest economies in the world, by
revenue [40]. It is also considered a strong employment multiplier, a characteristic that
is expected to grow stronger with the incorporation of complex digital technologies and
the fusion with the digital industry [41]. Environmental concerns have prompted multiple
policies and agreements, which foster the development of more environment friendly
vehicles and rethinking of current mobility paradigms [42–44]. Nevertheless, global vehicle
sales and automotive revenue are expected to continue to grow in the future [45,46].

Demand forecasting is a critical component to supply chain management as its out-
comes directly affect the supply chain and manufacturing plant organization. In our
specific case, demand forecasts for the automotive industry engine components worldwide
were required on a monthly level, six weeks in advance. In Section 2, we highlighted
related work, data, and techniques used by authors in the automotive industry. On top
of data sources suggested in the literature for deriving machine learning features (past
demand data, GDP, unemployment rates, and oil price), we incorporated three additional
data sources based on experts’ experience: Purchasing Managers’ Index (PMI), copper
prices, and sales plans.

PMI is a diffusion index obtained from monthly surveys sent to purchasing managers
from multiple manufacturing companies. It summarizes expectations regarding whether
the market will expand, contract, or stay the same and how strong the growth or contraction
will be.

Prices of the products we forecast are tied to copper price variations used to manufac-
ture them. Therefore, we consider the price of this metal and create derivative features to
capture how it influences the products’ price and how it may influence it in the future.

The strategic sales department creates sales plans on a yearly and quarterly basis.
Experts consider projected sales to be a good proxy of future demand as they inform buyers’
purchase intentions. We found research that backs their claim (see, e.g., in [47]), showing
that purchase intentions contribute to the forecast’s accuracy. The research done in [48]
shows that purchase intentions are good predictors of future demand for durable products
and that this accuracy is higher for short time horizons. Research also shows that the
purchase intention bias can be adjusted with past sales data.

Much research was performed on the effect of aggregation on time series [34,49–51],
showing that a higher aggregation improves forecast results. Though research shows
optimal demand aggregation levels exist [52], we considered forecasts at a monthly level to
reflect business requirements specific to our use case.

To understand demand forecasting models’ desired behavior and performance, we
consulted industry experts. They agreed that one-third of demand forecasts produced by
planners have up to 30% error, and up to 20% forecasts may have more than 90% error.
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They also pointed out that 40% of all forecasts result in under-estimates. When issuing
a forecast, it is more desirable to have over-estimates than under-estimates. We consider
these facts to assess the forecast results.

We address demand analysis in detail in Section 3.2.

3.2. Data Understanding

We make use of several data sources when forming features for machine learning,
described in Table 1. We distinguish between internal data sources (non publicly available
data regarding a manufacturing company provided by that same company) and external
data sources used for the data enrichment process.

Table 1. Data sources. In the first and second columns, we indicate the kind of data we retrieve and its source. The third
column provides information on how frequently new data is available. In contrast, the last column describes the aggregation
level at which the data is published. Periodicity and aggregation levels can be at a yearly, quarterly, monthly, or daily level
and are denoted by “Y”, “Q”, “M”, or “D”, respectively. The London Metal Exchange published copper prices for weekdays.

Data Source Periodicity Aggregation Level

History of deliveries Internal D D

Sales Plan Internal Y,Q M

Gross Domestic Product (GDP) World Bank Y Y

Unemployment rate World Bank Y Y

Crude Oil price World Bank M M

Purchasing Managers’ Index (PMI) Institute of Supply Chain Management M M

Copper price London Metal Exchange D D

Car sales International Organization of Y Y

Motor Vehicle Manufacturers

When performing preliminary data analysis over the seven years of data, we found
that GDP, crude oil prices, PMI values, and demand (see Figure 2) show a different pattern
before and after the year 4 of our dataset. When searching for possible root causes, we
observed that in year 4 some significant economic and political events took place affecting
the economy worldwide. Among them, we found a stock market crash of a relevant
country, a decrease in crude oil production, and several political events that affected the
market prospects.

We consider demand quantity as the executed orders of a given product leaving the
manufacturing plant on a specific date. Even though demand data is available daily, we
aggregate them monthly, satisfying business requirements and providing smoother curves
and ease of forecasting. We also consider that months have different working days (due to
weekdays and holidays). Thus, we computed the average demand per working day for
each month. Future demand can be estimated using the average demand per working day,
multiplying by the number of working days in the target month.

Based on the demand classification in [12], we analyzed how many products corre-
spond to erratic and smooth demands. We create features to capture this behavior. We
present the products demand segmentation in Table 2. From the works in [23,24,26,53], we
understand that demands of a given type follow a certain distribution. Thus, most manu-
facturing companies’ products may have a slightly different demand behavior but share
enough characteristics that would reflect common patterns. We observed that demand
values for each product follow a geometric distribution.
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Figure 2. Median values for (a) crude oil price, (b) GDP, (c) unemployment rate worldwide, (d) PMI, (e) copper price (last
three months average), and (f) demand.

Table 2. Demand segmentations, by demand type as per [12], and by demand magnitude, considering demanded quantities
per month.

By Demand Type By Demand Magnitude

Years Smooth Erratic 10 100 1 K 10 K 100 K

All years 13 43 13 2 5 26 10

Last 3 years 19 37 10 1 4 28 13

To discover potential patterns, we made use of different visualizations.
Demand seasonality was assessed with correlograms (see Figure 3), which show

what lags in time most frequently display a statistically significant correlation (with a
p-value = 0.05). Considering all data available, we found the strongest correlations for
products at three, four, five, eight, and eleven months before the target month. However,
we observed a different pattern in the last three years of data: the strongest correlations
occurred at eight, ten, and eleven months before the target. Therefore, we choose only
those statistically significant when analyzing correlation values, considering a confidence
interval of 95%.

Plotting products’ monthly demand for every year, as shown in Figure 4, we found
that most products were likely to behave similarly over the years for a given month.

When assessing demand data sparsity, we analyzed how many non-zero demand data
points we have for each product and the demand magnitudes we observe in each case. We
present the data in Table 2. Higher aggregation levels regarding the time dimension allow
reducing variability in time. However, aggregate data at a higher than monthly level are
not applicable in our case.

3.3. Data Preparation

The first step we followed for data preparation was to remove records that would
fall into the black period for any given point in time and thus avoid provide our models
any indication about the future (except for the target we aim to predict). In our case, we
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consider a forecasting horizon of six weeks until the beginning of the target month, as
depicted in Figure 5.

Figure 3. Sample demand correlograms, indicating seasonality patterns. The correlogram in panel (a) is computed over the
seven years of data, while correlogram in (b) is computed over last three years.
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Figure 4. Monthly demand over the years of selected products. We compare the last three years of data.

Figure 5. Relevant points in time we considered for forecasting purposes. There is a six-week
slot between the moment we issue the forecast and the month we predict. The day of the month
considered issuing the prediction is fixed.

For sales plans, we performed data fusion, merging annual and quarterly plans into a
single one. In each case, we considered black periods, dates on which each plan becomes
available, and the granularity level at which those estimates are provided.

PMI values are informed by the Institute of Supply Chain Management at the begin-
ning of each month, based on the previous month’s survey results. For crude oil prices, we
considered the ones provided by the World Bank on a monthly level. We considered the
same source for worldwide unemployment rates and GDP values, published yearly and
available from March onwards. Every year in early March, the International Organization
of Motor Vehicle Manufacturers publishes statistics regarding yearly worldwide car sales,
which we used as well. Statistics regarding vehicle production worldwide are incomplete,
and thus we did not consider them in this research. For copper prices, we took the London
Metal Exchange value for each weekday of the year. We then computed the average price
over the last three months. Finally, we computed features based on price adjustments
applied to final products based on copper price fluctuations.

All sources of data are merged into a single dataset and aggregated at a product and
monthly level.
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3.3.1. Feature Creation

We can characterize demand data as a time series per product, each of which may
present some level, trend, and seasonality. Therefore, we require a proper assessment
of these aspects to create good statistical and ML models. While statistical models use
only data regarding past demand to predict the future, ML models can leverage a more
extensive set of features. These features provide insights into different factors affecting
product demand and are taken into account to make predictions. We created a total of
708 features, some of which we describe below.

We computed rolling summary statistics such as average, maximum, and minimum
demand over the last three months to address the time series level. In addition, we
computed the same features for a weighted average and minimum and maximum values
regarding the target month’s past demand.

Trends help us understand demand growth or contraction and must be considered in
forecasting models. However, different approaches may be helpful for statistical and ML
models. The statistical models assume that the forecasted time series is stationary. To fulfill
this assumption, we applied first-level differencing, which is suitable to address stochastic
trends. For ML models, we created features to describe trends and capture monthly or
interannual growth or contraction of GDP, unemployment rates, car sales, crude oil, copper
prices, and demand. We also created features such as relations between observed demand
and sales plans to capture common distortions that may take place on sales plans. Finally,
we created derivative features that indicate growth or contraction for given months and
more extended periods and detect and tag time series peaks from trend data.

We assessed seasonality using correlograms (see Figure 3). In addition, we incorpo-
rated demand at the lag values described before as proxies of potential demand.

We created naïve features to capture time characteristics to represent the month, a
quarter, and workdays for given months. We used information regarding weekdays,
national and collective holidays to compute the average demand per workday.

Values such as lagged demands, average, maximum, or minimum value of the last n
observed months, and values from sales plans for target month, the weighted average of
past demands for target month, and given product could act as reasonable approximations
of demand values. Average demand per workday can be used to project expected demand
on the target month, multiplying it by the number of workdays in the manufacturing
plants. These demand approximations can be further adjusted using trend information.

We created two features to signal demand event occurrence: one based on product
data sales plan, and the second one considering values from a probability density function
on lagged demand values.

When building a single model for multiple products, it can be helpful to have some
features convey information regarding demand similarity. Among others, we provide one-
hot encoded features indicating demand-type as described in [12], considering demand
behavior ever since we have data about the product and the last twelve and six months of
the point in time we consider. To identify a similar context in which demand occurs, we
binned GDP, unemployment rate, crude oil prices, car sales, and demand data into four
bins of equal length for each case. Such features may also help identify specific cases, such
as year 4, when context differs from most observed history.

3.3.2. Feature Selection

Feature selection reduces the number of features used to build a model, producing a
succinct one that is quick to train, analyze, and understand.

We performed feature selection by combining the manual addition of common sense
features with those suggested by a Gradient Boosted Regression Trees (GBRT) model,
which is not sensitive to data distribution and allows us to rank features based on how
much they reduce variance concerning target values. We only use the data that is later used
to train the models and ensure that the test data remains unseen. We performed feature
selection to extract the most relevant features in all experiments, considering all products
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rather than for each product separately. In every case, we selected K features, obtaining K
from

√
N, where N is the number of instances in the training subset, as suggested in [54],

and empirically verified these features within our setting. Some of the best features are
presented in Table 3.

Table 3. Top 15 features selected by the GBRT model considering the last three years of data. We did not remove correlated
features in this case.

Feature Brief Description

wdp3m
Estimate of target demand based on average demand per working day on
third month before predicted month, and amount of working days on target month.

sp · demandpastwavg
sppastwavg

Planned sales for target month adjusted with ratio of weighted averages of
past demand and past planned sales for given month.

demandlag4m · UE3m
UE15m

Lagged demand (4 months before target month), adjusted by the ratio of unemployment
rates three, and fifteen months before the month we aim to predict.

splag12m Planned sales for last year, same month we aim to predict.

sp · UE3m
UE15m

Planned sales, adjusted by the ratio of unemployment rates three and fifteen
months before the month we aim to predict.

sp Planned sales for target month

demandlag3m · GDP3m
GDP15m

Lagged demand (3 months before target month), adjusted by the ratio of GDP
three and fifteen months before the month we aim to predict.

sp · GDP3m
GDP15m

Planned sales for target month, adjusted by the ratio of GDP three and fifteen months
before the month we aim to predict.

demandlag3m Lagged demand (3 months before target month)

wdp12 · sp
sppastwavg

Estimate of target demand based on average demand per working day a year before
the predicted month and amount of working days on target month. Adjusted by the
the ratio between planned sales for target month and the weighted average of
planned sales for the same month over past years.

wdp8m
Estimate of target demand based on average demand per working day on eighth month
before predicted month and amount of working days on target month.

wdp5m · UE3m
UE15m

An estimate of target demand based on average demand per working day on the fifth month
before predicted month and amount of working days on target month. Adjusted by the
ratio of unemployment rates three and fifteen months
before the month we aim to predict.

wdp12m · PMI13m
PMI14m

An estimate of target demand based on average demand per working day a year before
predicted month and the amount of working days on target month. Adjusted by
the ratio between PMI values 13, and 14 months beforethe target month.

demandlag3mscaled

Lagged demand (3 months before target month) - scaled between 0–1,
considering products past demand values.

wdp3m · GDP3m
GDP15m

Estimate of target demand based on average demand per working day on third month
before predicted month, and amount of working days on target month. Adjusted
by the ratio of GDP three and fifteen months before the month we aim to predict.

3.4. Modeling
3.4.1. Feature Analysis and Prediction Techniques

ML algorithms may have different requirements regarding data preprocessing in order
to ensure the best learning conditions. We thus analyzed data distributions and identified
which steps were required in each case to satisfy those requirements.

For ML algorithms, we standardized (3) the features so that they would have zero
mean and unit variance Equation (3), except for the case of the Multiple Linear Perceptron
Regressor (MLPR), where we scaled the values of the features between zero and one
Equation (4). Standardization enhances the model’s numerical stability, makes some
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algorithms consider all features equally important, and shortens ML models’ training
times [55].

xscaled =
X− X

σ
(3)

xscaled =
X−min(X)

max(X)−min(X)
(4)

We took into account 21 forecasting techniques. We considered the naïve forecast (last
observed value as prediction) as the baseline method. We train twelve different batch ML
models: on top of MLR, support vector regressor (SVR) [56], and multilayer perceptron
regressor (MLPR) [57], which we found were used in automotive demand forecasting
literature, we also evaluate Ridge [58]; Lasso [59]; Elastic Net [60]; K-nearest-neighbor
regressor (KNNR) [61]; tree-based regressors (decision tree regressor (DTR), random forest
regressor (RFR), and GBRT); a voting ensemble created using the most promising and
diverse algorithms (KNNR, SVR, and RFR); as well as a stacked regression [62] considering
KNNR, SVR, and RidgeCV as underlying estimators; and a GBRT model as final regres-
sor. We also take into account four streaming ML algorithms: Adaptive Random Forest
Regressor (ARFR) [63], Hoeffding Tree Regressor (HTR) [64], and Hoeffding Adaptive Tree
Regressor (HATR) [65]. Additionally, we also consider forecasts obtained as the average
demand for the last three months (MA(3)) and the ones obtained from statistical forecasting
methods (exponential smoothing, random walk, ARIMA(1,1,0), and ARIMA(2,1,0)). We
did not create deep learning models since we consider that not enough data was available
to train them.

When training the models, we used MSE as the loss function where possible. We
choose MSE because it has the desired property of penalizing higher errors more, thus
reducing substantial discrepancies in predicted values.

3.5. Evaluation

From the literature review in Section 2 we observed that authors mostly used ME,
MSE, RMSE, CAPE, MAPE, and R2 metrics to measure the performance of the demand
forecasting models related to the automotive industry. While ME, MSE, and RMSE are
widely adopted, they all depend on the magnitude of the predicted and observed demands
and thus cannot be used to compare groups of products with a different demand magnitude.
This issue can be overcome with MAPE or CAPE metrics, though MAPE puts a heavier
penalty on negative errors, preferring low forecasts—an undesired property in demand
forecasting. Though R2 is magnitude agnostic, it has been noticed that its value can increase
when new features are added to the model [66].

To evaluate the performance of our models, we consider two metrics: MASE and
R2adj. MASE informs the ratio between the MAE of the forecast values against the MAE of
the naïve forecast, is magnitude agnostic, and not prone to distortions. R2adj, informs how
well predictions adjust to target values. In addition, it weights the number of features used
to make the prediction, preferring succinct models that use fewer features for the same
forecasting performance.

We compute an uncertainty range for each forecast, which illustrates possible bounds
in which future demand values may be found. We also perform the Wilcoxon paired rank
test [14] to assess if forecasts of a given model are significantly better than others.

Summary metrics may not be enough to understand the goodness of fit of a particular
model [67,68]. Therefore, based on experts’ opinions described in Section 3, and available
demand characterizations, we analyzed the proportion of products with forecasting errors
below certain thresholds (5%, 10%, 20%, and 30%), and the proportion of forecasts that
resulted in under-estimates.

Though some research highlighted the importance of measuring forecast utility related
to inventory performance (see, e.g., in [69,70]), this remains out of the scope of this work.
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4. Experiments and Results

In this section, we describe the experiments we conducted (summarized in Table 4) and
assess their results with metrics and criteria we described in Section 3.5. We summarize the
outcomes in Table 5, to understand if a particular model performs significantly better than
others. To evaluate the models, we used nested cross-validation [71], which is frequently
used to evaluate time series models. To ensure conditions on ML streaming models were
comparable to ML batch models, we implemented the nested cross-validation evaluation
strategy. By doing so, we ensured the streaming model did not see new events until the
required month was predicted. In order to test the models, we set apart the last six months
of data. We published the nested cross-validation implementation for streaming models
it in the following repository: https://github.com/JozefStefanInstitute/scikit-multiflow
(accessed date 21 July 2021).

Table 4. Description of experiments performed. Regarding the feature selection procedure, we consider two cases: (I) top
features ranked by a GBRT model and curated by a researcher, and (II) top features ranked by a GBRT model, removing
those with strong collinearity, curated by a researcher as well. N in the “Number of features" column refers to the number of
instances in a given dataset.

Years of Data Experiment Feature Selection Number of Features

All years available Experiment 1 I 6
Experiment 2 II 6

Last three years

Experiment 3 I 6
Experiment 4 II 6
Experiment 5 II 6
Experiment 6 II 6
Experiment 7 II

√
N

Experiment 8 II
√

N
Experiment 9 II

√
N

Experiment 10 II
√

N
Experiment 11 Only past demand 1

Table 5. Median of results obtained for each ML experiment. We abbreviate under-estimates as UE. In Experiments 9–10,
streaming models based on Hoeffding bound show poor performance, resulting in negative R2adj values. We highlight the
best results in bold.

Experiment R2adj MASE 5% Error 10% Error 20% error 30% Error UE 90%+ Error

Experiment 1 0.8584 1.1450 0.0670 0.1086 0.2039 0.3051 0.3854 0.4077
Experiment 2 0.8447 1.1450 0.0655 0.1101 0.1920 0.2887 0.4182 0.3928
Experiment 3 0.9067 0.9150 0.0655 0.1280 0.2351 0.3095 0.4256 0.3928
Experiment 4 0.8998 0.9750 0.0655 0.1176 0.2143 0.3051 0.4152 0.4018
Experiment 5 0.8757 0.3900 0.0536 0.1116 0.2173 0.3140 0.4762 0.3497
Experiment 6 0.8679 0.3350 0.0565 0.1012 0.1875 0.2768 0.4851 0.3601
Experiment 7 0.8903 0.3550 0.0521 0.1131 0.2247 0.3155 0.4851 0.3408
Experiment 8 0.8786 0.3100 0.0506 0.0938 0.1890 0.2813 0.4658 0.3497
Experiment 9 −0.1611 0.8100 0.0357 0.0714 0.1428 0.2143 0.7321 0.3601
Experiment 10 −1.5344 0.5300 0.0178 0.0536 0.1250 0.2143 0.7143 0.4613

In Experiments 1–4, we assessed how events in year 4 affected model learning and
if they significantly degraded forecasts. We also compared two different sets of features,
resulting from two different procedures to obtain them. We obtained the best performance
with local models trained over the last three years of data. Removing features with high
collinearity did not enhance the median of R2adj and MASE. Therefore, we consider
Experiment 3 performed best, having the best MASE and R2adj values. In contrast, the rest
of the evaluation criteria values were acceptable.
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Next, we analyzed if grouping products by specific criteria would enhance the quality
of the predictions. We trained these global models over the last three years of data,
considering insights obtained from Experiments 1–4. Following the ceteris paribus principle,
we considered the same features as for Experiment 3. We experimented with grouping
products based on the median magnitude of past demand (Experiment 5) and demand-type
(Experiment 6). We observed that even though the median of R2adj was lower, and the
under-estimates ratio higher, compared to results in previous experiments, the median
MASE values decreased by more than 40%. Models based on the median of past demand
had the best results in most aspects, including the proportion of forecasts with more than
90% error. Encouraged by these results, we conducted Experiments 7–8, preserving the
grouping criteria but adapting the number of features considered according to the amount
of data available in each sub-group. In Experiment 7, we grouped them based on the
magnitude of the median of past demand. In contrast, in Experiment 8, we grouped
products based on demand type. In both cases, we observed that R2adj values and under-
estimates ratios improved, and MASE values remained low. We consider the best results
were obtained in Experiment 7, which achieved the best values in all evaluation criteria,
except for MASE. We ranked models of these two experiments by R2adj, and took the top
three. We obtained SVR, voting, and stacking models for Experiment 7 and SVR, voting,
and RFR models for Experiment 8. The models from Experiment 8 exhibited lower MASE
in all cases, a better ratio of under-estimates, and a better proportion of forecasts with
an error ratio higher than 90%. Top 3 models from Experiment 8 remained competitive
regarding R2adj and proportion of forecasts with error ratio bounded to 30% or less error.

We assessed the statistical significance of both groups’ models in all the performance
aspects mentioned above, at a p-value = 0.05. The models had no significant difference in the
same group regarding R2adj and MASE. However, the difference was significant between
voting models in both groups for these two metrics. The difference was also significant
between the voting model from Experiment 7 and the RFR model from Experiment 8 for
the MASE metric. Considering the proportion of forecasts with errors lower than 30%,
we observed no differences between both groups’ models. However, differences between
SVR and voting models in Experiment 8 were significant. Finally, differences regarding
the number of under-estimates were statistically significant between all top three models
from Experiment 7 against SVR and RFR models of Experiment 8. For this particular
performance aspect, the stacking model from Experiment 7 only achieves significance
against the voting model from Experiment 8.

Having explored a wide range of batch ML models, we conducted Experiments 9–10
with streaming ML models, following the same conditions as Experiment 7–8, but creating
a global streaming model for each magnitude of the median of past demand demand-
type. This experiment aimed to understand the performance of streaming ML models
against the widely used ML batch models and confirm if they behaved the same regarding
error bounds as models in Experiments 7–8. We found that streaming models based on
Hoeffding inequality did not learn well. On the other side, the Adaptive Random Forest
Regressor displayed a better performance. While its R2adj was lower than the top 3 models
from Experiment 8, it achieved the best MASE in Experiment 10. It also had among best
proportion predictions with less than 5%, 10%, 20%, and 30% error or more than 90% error.
However, the proportion of under-estimates, a parameter of crucial importance in our use
case, hindered these performance results. ML streaming models had among the highest
proportions of under-estimates of all created forecasting models. The highest proportion of
under-estimates was obtained in ML streaming models based on the Hoeffding inequality,
reaching a median of underestimates above 70%.

In Experiments 5–10, we consistently observed global models created considering the
magnitude of the median of past demand outperformed those created based on demand-
type when considering the proportion of forecasts with an error higher to 90%. On the
other side, global models based on demand-type scored better on MASE. However, these
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differences did not prove statistically significant in most cases when comparing top-ranking
models of both groups.

Having explored different ML models, we then trained statistical models for each
product considering demand data available for the last three years (Experiment 11) and
contrasted results obtained with the top three models from Experiment 8 (see Table 6).
When preparing demand data for the statistical models, we applied differencing to remove
stochastic trends. We observed that the ML models outperformed the statistical ones in
almost every aspect. R2adj was consistently low for statistical models, and though their
MASE was better compared to the baseline models, ML models performed better. When
assessing the ratio of forecasts with less than 30% error, ML models displayed a better
performance. We observed the same when analyzing the under-estimates ratio. Even
though the random walk had a low under-estimates ratio, the rest of the metrics indicate
the random walk model provides poor forecasts. We consider the best overall perform-
ers are the SVR, RFR, and GBRT models, which achieved near-human performance in
almost every aspect considered in this research. Even though differences regarding R2adj,
MASE, and the ratio of forecasts with less than 30% error are not statistically significant be-
tween them in most cases, they display statistically significant differences when analyzing
under-estimates.

Table 6. Results we obtained for the top 3 performing models from Experiment 8 (ML batch models), best result for
experiments 9–10 (ML streaming models), and baseline and statistical models. We abbreviate under-estimates as UE.

Algorithm Type Algorithm R2adj MASE 5% Error 10% Error 20% Error 30% Error UE 90+% Error

ML batch
SVR 0.9212 0.2600 0.0774 0.1101 0.2321 0.3333 0.4077 0.3304

Voting 0.9059 0.2800 0.0625 0.0923 0.1786 0.2798 0.4792 0.3393

RFR 0.8953 0.2900 0.0417 0.1012 0.2173 0.3244 0.3423 0.3482

ML streaming ARFR (Experiment 9) 0.8728 0.3300 0.0744 0.1339 0.2500 0.3274 0.5387 0.3452

ARFR (Experiment 10) 0.8205 0.2200 0.0744 0.1280 0.2232 0.3274 0.5268 0.3423

Baseline MA(3) 0.8938 0.8800 0.1190 0.1667 0.2530 0.3482 0.3571 0.3065

Naïve 0.8519 1.0000 0.2024 0.2411 0.3423 0.4137 0.4137 0.3214

Statistical

ARIMA(2.1.0) 0.3846 0.4500 0.0476 0.0774 0.1429 0.1875 0.5536 0.5208

Exponential smoothing 0.3258 0.3600 0.0506 0.1161 0.1905 0.2738 0.5923 0.4434

ARIMA(1.1.0) 0.2840 0.5200 0.0387 0.0744 0.1012 0.1726 0.5119 0.6071

Random walk −0.6705 0.9000 0.0327 0.0387 0.0655 0.0923 0.3780 0.7678

5. Conclusions

This research compares 21 forecasting techniques (baseline, statistical, and ML algo-
rithms) to provide future demand estimates for an automotive OEM company located in
Europe. We use various internal and external data sources that describe the economic con-
text and provide insights on future demand. We considered multiple metrics and criteria to
assess forecasting models’ performance (R2adj, MASE, the ratio of forecasts with less than
30% error, and the ratio of forecasts with under-estimates)—all of them magnitude-agnostic.
These metrics and criteria allow us to characterize results to be comparable regardless of
the underlying data. We also assess the statistical significance of results, something we
missed in most related literature.

The obtained results show that grouping products according to their demand patterns
or past demand magnitude enhances the performance of ML models. We observed that the
best MASE performance was obtained on models created for a group of products with the
same demand type. Furthermore, when training global models based on the median of
past demand, models usually achieved a better R2adj and a better bound on high forecast
errors. However, these values were not always statistically significant.
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Our experimental evaluation indicates that the best performing models are SVR,
voting ensemble, and RFR trained over product data of the same demand type. The SVR
and RFR models achieved near-human performance for the ratio of forecasts under 30%
error, and the RFR model scored close to human performance regarding under-estimates.
However, none of the models achieved close to human performance on the proportion
of forecasts with a high error (more than 90%). How to efficiently detect and bound such
cases remains a subject of future research.

When comparing batch and streaming ML models’ performance, we observed that
ML batch models displayed a more robust performance. From the streaming algorithms,
the ARFR achieved competitive results, except for a high ratio of under-estimates. This
critical aspect must not be overlooked. Models based on the Hoeffding inequality did not
learn well and had poor performance, and further research is required to understand the
reasons hindering these models’ learning process.

Building a single demand forecasting model for multiple products not only drives
better performance, but has engineering implications: fewer models need to be trained
and deployed into production. The need for regular deployments can be further reduced
by using ML streaming models. This advantage gains importance when considering ever
shorter forecasting horizons as it avoids the overhead regular model re-trainings and
model deployments. We consider timely access to real data and the ability to regularly
update machine learning models as factors that enable digital twins’ creation. Such digital
twins not only provide accurate forecasts but allow estimating different what-if scenarios
of interest.

We envision at least two directions for future work. First, further research is required
to develop effective error bounding strategies for demand forecasts. We want to explore
the usage of ML anomaly detection methods to identify anomalous forecasts issued by
global models and develop strategies to address such anomalies. Second, research is
required to provide explanations that inform the context considered by the ML model
and models’ forecasted values and uncertainty. We understand that accurate forecasts are
a precondition to building users’ trust in a demand forecasting software. Nevertheless,
accurate forecasts alone are not enough. ML models explainability is required to help the
user understand the reasons behind a forecast, decide if it can be trusted, and gain more
profound domain knowledge.
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Abbreviations

The following abbreviations are used in this manuscript:

ADI Average Demand Interval
ANFIS Adaptive Network-based Fuzzy Inference System
ANN Artificial Neural Network
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ARFR Adaptive Random Forest Regressor
ARIMA autoregressive integrated moving average model
ARMA Autoregressive Moving Average
CAPE Cumulative Absolute Percentage Errors
CRISP-DM CRoss-Industry Standard Process for Data Mining
CV Coefficient of Variation
DTR Decision Tree Regressor
GBTR Gradient Boosted Regression Trees
GDP Gross Domestic Product
HATR Hoeffding Adaptive Tree Regressor
HTR Hoeffding Tree Regressor
KNNR K-Nearest-Neighbor Regressor
MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
ME Mean Error
ML Machine Learning
MLPR Multiple Linear Perceptron Regressor
MLR Multiple Linear Regression
MSE Mean Squared Error
OEM Original Equipment Manufacturer
PMI Purchasing Managers’ Index
R2 Coefficient of determination
R2adj Coefficient of determination - adjusted
RFR Random Forest Regressor
RMSE Root Mean Squared Error
SBA Syntetos–Boylan Approximation
SVM Support Vector Machine
SVR Support Vector Regressor
UE Under-estimates
VAR Vector Autoregression
VECM Vector Error Correction Model
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Abstract: The research in path planning for unmanned aerial vehicles (UAV) is an active topic
nowadays. The path planning strategy highly depends on the map abstraction available. In a
previous work, we presented an ellipsoidal mapping algorithm (EMA) that was designed using
covariance ellipsoids and clustering algorithms. The EMA computes compact in-memory maps,
but still with enough information to accurately represent the environment and to be useful for
robot navigation algorithms. In this work, we develop a novel path planning algorithm based
on a bio-inspired algorithm for navigation in the ellipsoidal map. Our approach overcomes the
problem that there is no closed formula to calculate the distance between two ellipsoidal surfaces, so
it was approximated using a trained neural network. The presented path planning algorithm takes
advantage of ellipsoid entities to represent obstacles and compute paths for small UAVs regardless of
the concavity of these obstacles, in a very geometrically explicit way. Furthermore, our method can
also be used to plan routes in dynamical environments without adding any computational cost.

Keywords: path planning; unmanned aerial vehicles; neural networks; evolutionary algorithms

1. Introduction

Autonomous Unmanned Aerial Vehicles (UAVs) play an important role in both mili-
tary and civilian applications. In contrast with manned aircrafts, UAVs are able to perform
complex and dangerous tasks with high maneuverability and low cost [1,2]. An important
problem to solve in order to achieve a certain level of autonomy is path planning. In the
past, the best path was selected as the shortest distance to a goal; now, the best path is
associated with the traveled distance and energy consumption [3]. If more parameters,
besides distance, are considered, the path planning problem can been stated as an opti-
mization problem, and population based algorithms have been used in many cases to solve
it successfully [4–8].

In [9], we described a novel algorithm for path planning, which uses conformal
geometric algebra to generate maps using spheres. By using spheres, we gain in terms
of the number of parameters needed for representing the maps and these maps are rich
in information. For example, we need the same number of parameters for representing a
sphere as for a plane, but the plane also needs an extra number of parameters for bounding
the plain. Moreover, the spheres are easy to operate in conformal geometric algebra.

The algorithm employs the characteristics of the spheres described in this algebra to
navigate through the maps by combining them with Teaching-Learning Based Optimization
(TLBO). In this paper, we compared different evolutionary optimization algorithms where
TLBO had the best result.

On the other hand, we also explored approaching the robotic mapping problem by
using ellipsoidal representations [10]. These ellipsoidal geometric entities are coded in
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the geometric algebra G6,3. The resulting map is compact and rich in information as we
showed in [10].

The problem of robotic mapping consists of constructing a spatial representation of
the environment, which is helpful for the robot [11]. There are classic mapping abstrac-
tions, such as grid occupancy [12], where cubes represent the objects. This abstraction is
memory efficient but discretizes the environment; furthermore, it is useful for office-like
environments but is not adequately suited for outdoor environments.

We can also find variable size grid occupancy [13], where we can change the reso-
lution of the grid. With particular modification, we can model dynamic maps with this
abstraction [14].

There are other map abstractions such as multiplanar maps [15], landmarks, and points
of obstacles [16]. A mapping algorithm called OctoMap was proposed in [17,18]. OctoMap
has variable resolution grid occupancy representation with a probabilistic construction. We
include in Table 1 a qualitative comparison between ellipsoidal maps and Octomap.

Table 1. EMA and OctoMap properties.

Property EMA OctoMap

Basic geometric entity Ellipsoids Cubes
Variate granularity Yes Yes
Construction scheme Any clustering algorithm Hierarchical
Robust to outliers Yes Yes

In Figure 1, we present an example of a cloud point (left) [19] and its ellipsoidal
map (right).

(a) Cloud point (83,459 points). (b) Ellipsoidal Map (700 ellipsoids).
Figure 1. Example of an ellipsoidal map generated with the ellipsoidal mapping algorithm presented in [10].

In this work, we present a novel algorithm for path planning in 3D environments
for small UAVs. This algorithm works on ellipsoidal mapping provided by the algorithm
in [10]. There is no closed form for calculating the distance between two ellipsoidal surfaces
and using an iterative algorithm will be computational expensive.

We propose to solve this problem by training a dense neural network for approximat-
ing the distance between two ellipsoids. We propose a new fitness function to find the path
with the TLBO algorithm.

The TLBO algorithm was chosen because it obtained the best performance in a similar
problem presented in [9]. We refer the reader to [9] for a performance comparison on
metaheuristics for similar path-planning.
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The paper is organized as follows: in Section 2, we introduce our solution to efficiently
calculate the distance between ellipsoids and we show the training and generalization
results. In Section 3, we offer a brief review of the TLBO algorithm and we develop the
fitness function for path planning in ellipsoidal maps. Then, the simulation and results
of the proposed algorithm are presented in Section 4. Finally, in Section 5, we offer a
conclusion and future directions based on this work.

2. Approximating the Distance Function with Neural Networks

Our goal was to develop a path planning algorithm to work with the ellipsoidal
maps to take advantage of these maps being compact-in-memory yet rich-in-information.
The hypothesis to achieve the above goal was to design an algorithm that could compute a
path using the distance between the envelope ellipsoids of the obstacles, and the ellipsoid
that models the UAV. The computed path maintains the vehicle safe free space between
itself and the occupied places.

To know how much free space exists between ellipsoids, we needed to solve the non-
trivial key problem of finding a method to compute the distance between them due to the
fact that there is not a closed way to do it. We propose a machine learning method to solve
the above computation using neural networks to overcome the problem that represents
the great computational costs of using iterative algorithms to calculate distances in maps,
where the number of ellipsoids is large.

To solve this problem efficiently, we use a dense neural network to estimate the
distance between two ellipsoids. One ellipsoid will represent a small UAV and the other
will represent an obstacle.

We can train a neural network for the regression problem. To generate a dataset
for training, we randomly generate a pose for the UAV (yaw, pitch and roll). We fix the
semi-axes of the ellipsoid representing the UAV with (0.5, 0.5, 0.3) in meters. Furthermore,
we generate a random ellipsoid around the UAV. We calculate a cloud mesh for every
ellipsoid and estimate the distance between the UAV by using a brute force approach.
In Figure 2, we present an example of generated samples and their estimated distance.

Figure 2. Examples of random generated samples for training.

One problem with this approach is to find a correct normalization of the data. If the
input data of a neural network is not well normalized it could lead to slow or biased
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learning. In the following, we describe a novel normalization method that achieves good
results on the neural network performance.

Firstly, the small UAV is represented by an ellipsoid with fixed semi-axes. These
semi-axes are not considered in the learning problem, because the neural network can learn
them as well. We will fix the UAV position at the center of the 3D space. Then, the position
and the semi-axes are not input data for the neural network. The UAV is represented only
with the angles (yaw, pitch, roll) ∈ [0, 2π]3.

In the second instance, the 3D points on the map representing the obstacles are mapped
using ellipsoids. As we presented in [10], we applied a clustering technique to the cloud
point. Each cluster is a set of 3D points

{
[xi, yi, zi]

T}n
i=1, with center of mass [μx, μy, μz]T .

We can also calculate the pair-wise covariance between two variables; for example,
for x and y coordinates, the covariance is calculated with (1):

σxy = σyx =
n

∑
i=1

(xi − μx)(yi − μy)

n
. (1)

With the pair-wise covariances, we construct the covariance matrix is defined with (2).
The parameters (c1, . . . , c9) carry the information of an ellipsoid that covers all non-outlier
data points.

Σ =

⎡⎣σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

⎤⎦ =

⎡⎣c1 c2 c3
c4 c5 c6
c7 c8 c9.

⎤⎦ (2)

The obstacle ellipsoids will be represented with the normalized covariance matrix.
This parametrization is chosen because it is the output of the multi-ellipsoidal mapping
algorithm presented in [10]. Other parametrizations lead to a high computational cost; for
instance, one could use the angles of rotation and the semi-axes, but this will require the
spectral decomposition of the covariance matrix.

In Figure 3, we present a 2D scheme of the maximum and minimum distances between
two ellipses. The desired distance will be between the minimum and the maximum
distances and it will depend on the orientation of the ellipses.

Maxi
mun dista

nce

Minimun dista
nce

Figure 3. Minimum and maximum distance between ellipses.

The positions of the UAV and obstacles are difficult to normalize. If we normalize
using common techniques like max-min or the standard normalization the neural network
could output strange values for ellipsoid outside this normalization. To avoid this situation,
we will code the relative position with a normalized vector from the UAV center to the
obstacle center (ux, uy, uz).
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Instead of doing regression with the real distance between the ellipsoids, we just
estimate a correction variable δ if we subtract this value from the centers distance of the
ellipsoids, we can calculate the distance between ellipsoids, as we show in (3):

dist(E1, E2) = ||Center1 −Center2||2 − δ. (3)

The δ correction factor depends only on the relative position of the obstacle ellipsoid
and the UAV ellipsoid and their orientations. We can approximate this correction factor
with a neural network. In Figure 4, we present the normalized input vector and the neural
network architecture.

yaw
pitch
roll
ux
uy
uz

c1
c2
c3
c4
c5
c6
c7
c8
c9

u
UAV ellipsoid

Obstacle ellipsoid

Dense
 layer

ReLU
n=64

ReLU
n=32

Dense
 layer

Linear
Neuron

Figure 4. Neural network architecture.

We generate 185,000 random examples that took one day to calculate. We distribute
these samples the following way: 149,850 samples for training, 16,650 for validating
and hyper-parameter tuning, and 18,500 for testing. We trained this neural network for
50 epochs. In Figure 5, we show the training and validation evolution on the mean squared
error (MSE). We got 0.0016 final MSE for training and 0.0017 final MSE for validation.

Figure 5. Neural Network Training Results.

In Table 2, we present the training results. In particular, we present the R2-score
where the best possible value is one, we also show the mean absolute error (MAE) and the
median absolute error (MedianAE), in order to give a good sense of the capabilities of the
neural network.
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Table 2. Neural Network training results.

R2-Score MAE (Meters) MedianAE (Meters)

Train set 0.9928 0.0302 0.0238
Test set 0.9922 0.0308 0.0241

The neural network achieves a high performance in predicting the correction factor
and by using (3), we can accurately calculate the distance between the UAV and the obstacle
ellipsoids. The Network was programmed on Keras/Tensorflow, then the network natively
can run on a graphical process unit (GPU) for high performance. After testing, we can
calculate the distance between a UAV ellipsoid and 200 obstacles in a mean time of 0.1208 s
(We use a RTX 2060 GPU). With this result, we can assure that the application of path
planning over ellipsoidal maps is computationally affordable.

Finally, we run an experiment on a virtual environment by placing the UAV in a grid
position and calculating the minimum distance to the closest object. In Figure 6, we show
the result of the experiment. The warmer colors represent greater distances. Notice that
the neural network can calculate an accurate map that is compact in memory and rich
in information.

Figure 6. Distance map. The warmer colors represent greater distances (20 random ellipsoids).

In the next section, we develop the path planning algorithm based on this neural
network by using a bio-inspired algorithm with a greedy approach.

3. Teaching-Learning Based Optimization

TLBO is an optimization algorithm based on the teaching of knowledge from a teacher
to his or her students on a classroom [20]. This population based algorithm has two main
phases, in which it generates new knowledge: the teacher and the learner phase.

The teacher phase is inspired by the transmission of knowledge from a teacher to the
students, and centers efforts to increase the average score of the class. The learner phase is
inspired by the knowledge shared among students; the students with more information
will be beneficial as the other learners learn new information from them. The teacher is the
best solution so far in the current iteration.

3.1. Teacher Phase

A good teacher will try to increase the knowledge of the students/learners based
on his or her own knowledge over time/iterations. But no matter how good a teacher is,
because of many factors this can only be done to some extent in a classroom composed of n
students. It can be said that the mean of the new knowledge of the class will be moved in
some extent towards the teacher’s knowledge, but it will also depend on the capabilities of
the class [21].
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The following equation shows the intent of the teacher XT to influence, to some degree,
each individual Xi (composed of the drones (x, y, z, yaw, pitch, roll) values) with the help
of the mean of knowledge of the whole class x̄:

X′i = Xi + r(XT − Tf x̄), (4)

where Tf ∈ {1, 2} is a random value of only two possible values, named the teaching factor;
and r ∈ [0, 1] is a random number. If f (X′i) provides a better solution than f (Xi) (where f
is a fitness function), X′i replaces Xi as a solution.

3.2. Learner Phase

The learner phase depends on the interchange of knowledge between students.
A learner with new information will have an influence on the overall knowledge of the
class [22].

This phase consists of adjusting each learner Xi based on another learner Xk, where i
and k ∈ [1, n] : i �= k [9].

There are two alternatives that could happen for learners X; when the f (Xi) is better
than f (Xk) which generates the following learner:

X′i = Xi + r(Xi − Xk) (5)

or vice versa, when f (Xk) is better than f (Xi),

X′i = Xi + r(Xk − Xi), (6)

X′i replaces Xi as a solution if it represents a better solution. As can be seen, this phase also
includes the teacher solution from the previous phase, but in a less important role.

3.3. Fitness Function

We designed a fitness function that is composed of four terms:

f (Xi) = dt + c + h ∗ (dt + 1) + s ∗ (dt + 1), (7)

where dt is the Euclidean distance between a learner Xi and the target point θ (composed
of only by x, y and z values); by itself this term helps to attract the population towards the
target. c is the obstacle collision indicator:

c =

{
∞ if any oj ≤ 0,
0 otherwise

(8)

where oj is the distance between the leaner Xi and the obstacle j, which is obtained using
the neural network described in Section 2. The collision indicator’s function is to heavily
penalize collisions, since it is of utmost importance to guarantee the UAV’s safety.

h represents a heat factor that indicates the proximity of Xi to a set of obstacles
od ∈ oj : 0 < od ≤ r1, where r1 is a user defined range of proximity:

h = ∑(−log2(0.001 ∗ od) + log2(r1)). (9)

To give the drone the capability to avoid large convex obstacles inside a room (usually
obstacles that go from floor to ceiling), a stuck factor s is added. To obtain s it is necessary to
create a set of stuck zones sz; when the euclidean distance of the (x, y, z) values of teachers
τt−1 and τt (where τ is the last teacher obtained from a TLBO run and t is the current run)
is less than a user defined threshold α, a zone is added to sz. If the condition is met the
(x, y, z) values from τt are queued to sz. The stuck factor is obtained as follows:

s = ∑(−log2(0.001 ∗ sk) + log2(r2)), (10)
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where sk is the set of Euclidean distances from a learner Xi to any point in sz, where
0 < sk ≤ r2, and r2 represents a user defined range of proximity. The pseudocode for path
planning is presented in Algorithm 1.

Algorithm 1 Path Planning Algorithm.

1: procedure OPTIMIZE
2: actual_pos ← starting position
3: Xi ← create learner population
4: X′i ← initialize to zero
5: XT ← obtain teacher from population as a separate value
6: ngens ← number of generations
7: stop ← stopping value
8: tqueue ← teachers queue
9: Sz ← set stuck zones list to empty

10: XT f itness ← f itness(Xi, Sz)
11: α ← 0.1 � User defined threshold
12: while XT f itness > stop do
13: for gen ← 1 to ngens do
14: for every Xi do
15: X′i ← teacher_phase(Xi) � This step corresponds to (4)
16: X′i ← bound_increments(Xi, actual_pos)
17: X′i f itness ← f itness(X′i , Sz) � Evaluates (7)
18: Xi ← select_best(Xi, X′i) � Selects the best candidate between Xi and X′i
19: for every Xi do
20: X′i ← learner_phase(Xi) � This step corresponds to (5) and (6)
21: X′i ← bound_increments(Xi, actual_pos) � Described in Section 4

22: X′i f itness ← f itness(X′i , Sz)

23: (Xi, Xi f itness)← select_best_learners((Xi, Xi f itness), (X′i , X′i f itness))

24: (XT , XT f itness)← update_teacher(Xi, Xi f itness)

25: tqueue ← append(XT , tqueue) � Add XT to queue
26: dist = norm(XT [0 : 3]− actual_pos[0 : 3]) � Euclidean norm
27: actual_pos ← XT
28: Xi ← initialize() � Initialize and obtain fitness values
29: X′i ← set_to_zero()
30: mi ← max_index(Xi f itness)
31: if dist < α then
32: Sz ← append(XT)
33: else
34: Xmi ← XT

return tqueue

4. Simulation and Results

To define the whole path, TLBO was run several times, and each time (except the
first one) the learners were initialized randomly within the proximity of τt−1; for the first
iteration the (x, y, z, yaw, pitch, roll) base values where defined arbitrarily. Each TLBO run
consisted of 20 iterations and a population of five individuals; r1 and r2 were assigned
values of 0.35 and 1.5, respectably. As a stopping condition, the Euclidean distance from τt
and the target θ was used (a distance value less than 0.1). At the end of a run, τt is added
to the path. As Figure 7 shows.

The values that could be achieved by a learner were bounded, so that the drone
could not make abrupt changes that could make it behave unstably from one state to
another or fly at very pronounced angles. In each iteration, the values of the learners were
bounded by τt−1 ± (0.5, 0.5, 0.5, 0.15, 0.15, 0.25). The drone’s (yaw, pitch, roll) values were
also bounded globally to ±[π, 0.7, 0.7] radians, respectively. The bounds and other values
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were empirically selected. We included the pitch and roll angles in the search space because
some control schemes for UAV such as Backstepping or Inverse Optimal Control need
these references [23–25]. However, our proposal can work even when ignoring pitch and
roll angles.

Compared to [9], our approach involving the path planning algorithm offers several
advantages. Firstly, our approach was designed to work indoors and outdoors alike.
Ref. [9] shows several limitations avoiding large convex obstacles inside a room since it
does not take them into consideration and this prevents the algorithm to be trapped in
certain local minimums. Tthe influence of the obstacles in our approach also only takes
into account the nearest obstacles in the range and adds smaller penalty values that do not
heavily obfuscate the influence of the distance to a target in the fitness function.

Figures 8–12 show several maps where paths were generated for a drone to follow.
All the maps were contained in a room composed of ellipsoids. The room was not plotted
for display purposes.

Figure 7. Room composed of ellipsoids looking from the outside (700 ellipsoids represent the walls,
floor and roof, and 25 random ellipsoids represent the obstacles).

(a) Upper view. (b) Lower view.

(c) Side view.
Figure 8. Path of map 1 generated with TLBO. The green ellipsoids represent the path obtained, the asterisk represent the
target and the multicolor ellipsoids represent the obstacles. It can be seen that the path is sufficiently smooth for a drone to
follow it.
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(a) Upper view. (b) Lower view.

(c) Side view.
Figure 9. Path of map 2 generated with TLBO. The green ellipsoids represent the drone path and the multicolor ellipsoids
represent the obstacles. Although it shows difficulties to find a path, it is safely pushed away the obstacles at the start.

(a) Upper view. (b) Lower view.

(c) Side view.
Figure 10. Path of map 2 without the room of ellipsoids. In this case, the ellipsoids, where the map is contained, have been
removed. As can be seen, now the UAV can easily find a path above and beside the obstacles.
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(a) Upper view. (b) Lower view.

(c) Side view.
Figure 11. Path of map 3 generated with TLBO. The path represented by the green ellipsoids, are sufficiently smooth for
the UAV.

(a) Upper view. (b) Lower view.

(c) Side view.
Figure 12. Path of map 4 generated with TLBO. The algorithm founds a smooth path in presence of convex obstacles.

The figures display the path followed by the drone (green ellipsoids) to its target (red
asterisk), avoiding on the way several obstacles (multicolor ellipsoids). As can be seen,
the drone can easily follow the paths obtained by the algorithm. Maps, like those shown
in Figures 8 and 9, show little difficulty finding a path; even in the presence of convex
obstacles at the start, the drone is safely pushed away until it finds a way to circumnavigate
the obstacles. Comparing Figures 9 and 10 it can be seen that, without the room, the path
simply passes above and beside the obstacles.
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Comparison with State of the Art Algorithms

In order to validate the proposed method, we compared it with other evolutionary
techniques and a well-known path planning algorithm. Firstly, we describe the Rapidly-
exploring Random Tree Star (RRT*) [26].

The RRT* algorithm, presented in Algorithm 2, finds a free path from the initial point
zinit to the final point zgoal . We created a tree T with an initial node zinit. Next, we grew the
tree up for N attempts.

Algorithm 2 Rapidly-exploring Random Tree Star (RRT*).

1: T ← InitializeTree()
2: T ← InsertNode(∅, zinit, T)
3: for i = 1 to N do
4: zrand ← SampleSpace()
5: znearest ← Nearest(T, zrand)
6: (znew, Unew)← Steer(znearest, zrand)
7: if ObstacleFree(znew) then
8: znear ← Near(T, znew)
9: zmin ← ChooseParent(znear, znearest,znew)

10: T ← InsertNode(zmin, znew, T)
11: T ← Rewire(T, znear,zmin,znew)

return T

To find the next node in the tree, we randomly sampled a point on the map zrand that
is not with an obstacle. We found the nearest node of the tree and renamed it znearest. After
steering from znearest to zrand, this function has heuristics about the robot’s kinematics. Then
we renamed zrand as znew and found a path Unew.

The ObstacleFree function search for collision with obstacles on the line from znearest
to znew; if there were no collisions, we proceeded to add the znew point. We collected the
points close to znew within a certain radius. Then we chose the parent node that carried the
least cost and renamed zmin. Finally, we added the link between zmin and znew and rewired
the tree to find the minimum cost.

To apply the RRT* algorithm on an ellipsoidal map we developed a collision detection
function. We used the Cholesky factorization of the covariance matrices that represent the
obstacles. We show this in (11). In the case of the evolutionary algorithms, we can expect
longer run-times because of the neural network prediction.

Σ = LLT . (11)

Using the triangular matrix L, we can calculate if a point x is inside an ellipsoid on the
map by using the inequality (12), where μ is the center of the ellipsoid.

||LT(x− μ)||2 ≤ 1. (12)

In Figure 13, we show the resulting path of the RRT* algorithm in the same four maps.
Notice that the found paths avoid the obstacles but do not consider the ellipsoid that
represents the UAV. We used a maximum of 5000 iterations, but for the mean convergence
on the four maps it was 1348 iterations.

Furthermore, we also present experiments with other state-of-the-art evolutionary
optimization algorithms. We ran the same tests for the the Differential Evolution (DE) [27]
algorithm, the Particle Swarm Optimization (PSO) [28] algorithm, and the Firefly (FF) [29]
algorithm.
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(a) RRT* result of Map 1 (b) RRT* result of Map 2

(c) RRT* result of Map 3 (d) RRT* result of Map 4
Figure 13. RRT* results of the maps 1 to 4. We show the constructed tree in black and the best found path in red.

All the evolutionary algorithms used the same fitness function presented in (7). All
the proposed methods are non-deterministic. To ensure the validity of the results, we ran
each algorithm experiment 30 times on the same computer. The start and endpoints were
the same for all the experiments. In Table 3, we present the comparison of the different
methods. Notice that the evolutionary schemes have the best mean performance for maps 1,
3, and 4. In Figure 14, we show the box-and-whisker plots for each map and each method.

Table 3. Experimental results, mean and standard deviation of the distance of the found path for
each algorithm.

Algorithm Map 1 Map 2 Map 3 Map 4

TLBO
mean 25.2912 61.5385 32.9653 34.9789

STD 2.2956 34.9912 2.5192 9.3455

DE
mean 29.7900 51.7444 35.8763 39.0414

STD 4.9021 22.3003 3.5688 8.2239

PSO
mean 27.8994 46.1655 32.5432 33.5899

STD 4.5297 29.2296 1.8954 7.6463

FF
mean 25.6914 46.5815 31.9210 32.5309

STD 3.1752 19.2983 2.1017 5.0559

RRT*
mean 37.7490 37.0365 39.6117 40.9821

STD 8.5628 5.1285 3.4001 4.3958
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(a) Comparison results for map 1.
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(b) Comparison results for map 2.
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(c) Comparison results for map 3.
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(d) Comparison results for map 4.
Figure 14. Comparison results for four experimental maps and for the five proposed methods.

In Table 4, we include the number of steps in each evolutionary algorithm and the
number of nodes in the RRT* algorithm.

Table 4. Experimental results, mean steps to goal point.

Algortihm Map 1 Map 2 Map 3 Map 4

TLBO 40.70 47.60 52.80 50.80
DE 52.84 47.10 61.30 59.30
PSO 46.33 45.30 49.40 47.93
FF 42.57 56.23 51.83 51.43
RRT* 1412.34 1115.10 1342.47 1516.24

We proved the novel algorithm in a real environment. We used the map from [19],
and we created the ellipsoidal map. In Figure 15, we offer the resulting path planning.
Notice that this path planning has a good performance even in non-structural environments.
In Table 5, we show how the Cholesky factorization allows lower complexity in the RRT*
algorithm.
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Table 5. Experimental results, mean and standard deviation of the run-time of each algorithm
in seconds.

Algorithm Map 1 Map 2 Map 3 Map 4

TLBO
mean 77.1916 221.7160 98.1027 100.3328

STD 9.1466 145.9610 9.8856 35.7067

DE
mean 57.8452 110.2755 66.7537 71.6009

STD 10.3801 52.5747 8.0530 19.4613

PSO
mean 107.8372 196.9315 111.1351 114.3043

STD 24.4556 15.5697 9.4505 37.8680

FF
mean 130.9127 257.07965 153.2906 151.7518

STD 19.7207 118.1890 13.2743 30.2673

RRT*
mean 5.3038 2.4780 5.8014 4.8056

STD 0.4246 1.0391 0.9550 0.3053

Figure 15. Path planning in a real ellipsoidal map, we show the point cloud for a better understanding
of the image. The cloud point has 100,000 points but the map only has 700 ellipsoids.

5. Conclusions and Future Work

In this work we presented a geometrically explicit and simple algorithm that takes
advantage of the ellipsoidal representation of maps generated to plan collision-free and
smooth paths regardless of the concavity of the obstacles or whether the environment is
indoor or outdoor.

Our method solves the non-trivial problem of computing the distance between two
ellipsoids by using a neural network. To train the neural network, it was necessary to
produce a training dataset and design a novel normalization method for these data. So, we
obtain an accurate approximation for the distance, which allows the computation of the
free-space and occupied-space of an environment, as is shown in Table 2 and Figure 6.

In order to obtain paths and to keep the computational costs of our approach low,
a bio-inspired algorithm named TLBO was used. We have chosen TLBO because it has
had the best performance in previous comparisons with other techniques [9]. The fitness
function was designed taking into account four desired features for the path obtained: to
keep a safe distance between obstacles’ ellipsoids and the UAV ellipsoid; to avoid collisions;
to reduce the total amount of the UAV’s proximity range throughout the whole path; and
to give the drone the capability to avoid large convex obstacles (walls inside a room, dense
and tall vegetation).
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It is important to mention that, based on our design of the fitness function, the com-
puted paths are not optimal. Because it was used as a greedy approach, it cannot get
the optimal path but is more versatile and can manage dynamical maps without extra
computational costs.

We compare the proposed approach with other evolutionary algorithms, DE, PSO,
and FF. We also compare with RRT*, and we constructed the collision detection function
for the ellipsoidal map. In most cases, evolutionary techniques with the presented fitness
function obtained a better performance than RRT*, but clearly RRT* has a better perfor-
mance on time. Furthermore, the evolutionary methods also calculate the UAV orientation
and not just the (x, y, z) position.

Future Work

The proposed algorithm uses a greedy strategy to find a nearby optimal position.
Therefore, the algorithm is locally optimal. To compare different path planning algorithms,
a cost function must be developed, which has non dependency on the map abstraction.

We are working on substituting the greedy politic used to compute the path as well as
the bio-inspired algorithm by a reinforcement learning algorithm so the system can learn
policies of navigation instead of computing paths.

Furthermore, we are designing an intelligent low-level control algorithm that considers
the dynamical model of the UAV to follow the planned path.
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Abstract: Gesture recognition (GR) has many applications for human-computer interaction (HCI)
in the healthcare, home, and business arenas. However, the common techniques to realize gesture
recognition using video processing are computationally intensive and expensive. In this work, we
propose to task existing visible light communications (VLC) systems with gesture recognition. Differ-
ent finger movements are identified by training on the light transitions between fingers using the long
short-term memory (LSTM) neural network. This paper describes the design and implementation of
the gesture recognition technique for a practical VLC system operating over a distance of 48 cm. The
platform uses a single low-cost light-emitting diode (LED) and photo-diode sensor at the receiver
side. The system recognizes gestures from interruptions in the direct light transmission, and is
therefore suitable for high-speed communication. Gesture recognition accuracies were conducted
for five gestures, and results demonstrate that the proposed system is able to accurately identify
the gestures in up to 88% of cases.

Keywords: visible light communications (VLC); gesture recognition (GR); human-computer in-
teraction (HCI); human activity recognition (HAR); machine learning (ML); neural network; long
short-term memory (LSTM); photo-diode (PD)

1. Introduction

Gesture recognition (GR) systems can greatly assist the elderly or infirm as well as
persons unable to control equipment through speech. Meanwhile the growth of Internet of
Things (IoT) propelled the need for improved human-computer interaction (HCI) to enable
control of devices inthe areas of work, play, health, communication, and education. For
real-world application, a GR system should require modest computing resources and be
implementable with low-cost. While proprietary GR systems are emerging, they tend to be
expensive, single-task oriented, and application-specific.

Gesture recognition systems can be classified into contact or contactless types. The most
common contact type is the accelerometer or inertial sensor, while the contactless types
include (i) ultrasound-, (ii) mm-wave radar-, (iii) video camera-, and (iv) photo-diode
(PD)-based units. An accelerometer consists of multiple motion sensors in order to detect
movement in the three cardinal directions. A wrist-strapped accelerometer is a low-cost GR
solution in which the sensor directly tracks the hand gesture. Although research benefited
from analysis of accelerometer data collected by smartphones, such systems are still im-
practical. Short-range frequency-modulated continuous wave (FMCW) radar was recently
used in movement and gesture detection, as well as monitoring vital-signs (breathing and
heart rates), based on measuring the Doppler shifts. Similarly, GR can also be achieved
by measuring the Doppler from ultrasonic waves reflected by limb movement. However,
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these approaches are prone to clutter between the Tx and Rx reducing the resolution, and
ultrasounds can also cause stress to pets and infants who can hear the low-frequency waves.
Unlike visible light, some radio-frequency systems are precluded from use in hospitals,
aircraft, or mines due to electromagnetic compatibility issues. One issue with video-based
GR is that the foreground limb image needs to be distinguished from nearby clutter and
background objects. As deep-learning algorithms became more powerful, the ability to
delineate these images increased. However, deep learning often necessitates a high degree
of storage and processing power, such as from a desktop computer. Although recent
development kits including the Nvidia Jetson and Microsoft Kinect [1] greatly facilitated
AI-based image processing, the hardware and computational costs can still be prohibitive.
Another disadvantage of using video cameras for GR is due to privacy concerns and laws.
Meanwhile, interest in photo-diode (PD)-based GR will increase with the emerging visible
light communication (VLC) systems, which can be made with light emitting diodes (LEDs)
at a fraction of the cost.

Gesture recognition is a related field of human activity recognition (HAR), and recent
developments are briefly described here. Two common methods for HAR are those based
on video scene extraction and that of indirect sensing using wireless signals. Indirect
sensing involves the analysis of the received signal strength signature from Wi-Fi signals
that are blocked or reflected by human movement. Researchers demonstrated accuracies
above 90% using support vector machines (SVM) machine learning (ML) [2–4]. How-
ever, it is currently very difficult to classify the subtle finger gestures using the wireless
signals in a practical setting with a wall-mounted access-point, and it becomes harder
with several people in the room. Physical activity recognition system using wrist-band
based sensors were designed for wheelchair-bound patients with spinal cord injuries [5].
Smart healthcare systems are increasingly employing neural networks to categorize and
automate functions [6]. Estimation of the number of people in a room was made through
an analysis of reflection and blocking of visible light [7]. The long short-term memory
(LSTM) algorithm is a type of recurrent neural network that can efficiently learn time-series
sequences that are increasingly used in ML-based HAR systems, such as [8], for wearable
activity recognition [9] and sign language translation [10].

Meanwhile, visible light communication systems exploit the existing lighting infras-
tructure to provide high-speed and secure data communication [11–13] and are expected to
become commonplace in homes and office following the release of the IEEE 802.11bb [14]
Standardization currently scheduled for 2022. VLC leverages the huge bandwidth available
in the nonionizing visible electromagnetic spectrum [15]. Light is a suitable communication
medium in medical environments [16–18] where there are strict electromagnetic compati-
bility conformance standards. VLC-based health monitoring [19] and notification systems
were developed for the blind [20]. VLC systems can be built with very low-cost [21] using
standard light emitting diodes (LEDs) and photodiodes (PDs), such as those commonly
used in DVD players. High-speed VLC systems direct the transmission of focused light
between the transmitter (Tx) LED and receiver (Rx) PD. On the other hand, currently, most
GR systems for visible light operate on reflected light captured by multiple PDs. A non-
ML-based motion detection system using VL comprising multiple PDs was proposed
in [22]. The work focused on communications performance, and there were no gesture
classification accuracy results.

Gesture patterns are statistically repeatable and can be learned by repeated sampling
using ML. A summary of recent hand GR research using ML is tabulated in Table 1. Infra-
red (IR) systems are less affected by ambient light and can generally achieve higher classi-
fication accuracies. However, most IR systems do not achieve the high visible light (VL)
data-rates and at the same price-point. Using the decision-trees algorithm, authors reported
a 98% classification accuracy using IR proximity sensors [23]. Feature extraction using SVM
achieved 95% accuracy on data collected from an accelerometer [24]. Back-propagation
was used to track hand trajectories using an inertial sensor with 89% accuracy [25]. A smart
electronic-skin comprising an array of detectors and LSTM processing was proposed [26].
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By tracking the shape of shadows cast through hand-blocking using a 32-sensor array,
researchers achieved 96% accuracy [27]. Although the system achieved good performance,
the large 6× 6 ft array is rather impractical, and additionally, not aimed at communications.
Classification performance is generally improved by deploying multiple PDs on the ceiling
and floor. As the cost and computational complexity generally scale with the number
of detection chains, these should be kept to a minimum. K-nearest neighbors (KNN) is
a low-complexity, nonparametric algorithm that can distinguish gesture classes based
on the Euclidean distances between samples. An accuracy of 48% was achieved using
KNN with a single PD and increased to 83% by employing two PDs [28]. Classification of
reflected IR waves was achieved using a hybrid KNN and SVM [29]. The researchers used
the THORLABS PDA100 PD module (currently cost about $430) to capture a wide range
of wavelengths with design ease. When the separation was 20 cm, the average denoised
accuracy was 96% for IR and 85% for VL. The performance decreased with increasing
Tx-Rx distance due to the lower received light intensity. When the separation increased
to 35 cm, the performance decreased to 91% for IR and 73% for VL. The use of reflected light
generally requires additional postprocessing to remove artifacts generated by multipath
reflections from surrounding clutter and is sensitive to thresholding. This makes building
a practical low-cost system challenging, and these systems offer lower data rates. The Fin-
gerLight system employs 8 spatially separated PDs and a recurrent neural network to learn
the gestures from measured light intensities. When a hand is carefully positioned in front
of the sensor array, a 99% classification accuracy was reported possible [30]. Short-range
millimeter wave radar has provided a 98% classification accuracy for hand gesture recog-
nition using LSTM [31]. Image processing-based techniques generally exhibit the highest
performance but require very high computing resources, and hence, are less suitable for
low-cost, portable-use cases. GR using captured video is often implemented using CNNs,
and researchers reported a 97% classification accuracy using this technique [32]. Recurrent
neural networks are able to extract auto-correlations in sequential data and were particu-
larly successful with speech- and hand-writing recognition. The LSTM recurrent network
contains gates that allow it to operate on relatively long time sequences. Multimodal
gesture recognition using 3D convolution and convolutional LSTM was described in [33].
Tracking of hand-joint movements using the unscented Kalman filter [34] with LSTM and
dynamic probabilities [35] was reported.

Our proposed GR solution is part of a wider VLC-capable system, and therefore the GR
capability comes at almost no additional cost. The system learns to associate finger move-
ments with the pattern of light directly impinging on the PD in the absence of obstruction
by fingers. This method is unaffected by nearby clutter or by the light-reflecting properties
of a subjects skin, which can depend on their age and gender. This enables us to employ
a low-cost PD (about $8 in small volumes) and the approach is compatible with high-speed
VLC systems targeted for communications. We employ the LSTM algorithm for the gesture
classification which requires considerably lower complexity than than that of the CNN
algorithm for video processing. Despite the modest complexity, the gesture recognition
performs well (88%) and can be used within a communications-based VLC system.

Our contributions can be summarized as follows:

1. Provided a review of contemporary gesture recognition systems.
2. Developed a practical GR methodology that can be integrated with a VLC system. The tech-

nique uses common off-the-shelf components with full part numbers provided.
3. Developed a system using a single PD that receives direct light from the transmitting LED.
4. Demonstrated an efficient LSTM-based GR system with limited computational complexity.
5. Achieved high classification accuracy under natural settings: gestures made at natural

speed and visible light.
6. Confirmed the system performance at different sampling rates and complexities.

In this paper, we focus on describing the operation of the GR module, which uses
the same components as the VLC system for compatibility. The scope of this paper is
limited to the gesture recognition system, and a full description of the communication
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operation will be described separately. The context switching between the sensing and
communications systems is an implementation issue and outside the scope of this paper.
However, we considered a method based on halting the communications as soon as
the hand is inserted between the Tx and Rx. This would be detected by a significant dip
in the received signal power. Communications would then resume a short period after
the signal blocking finishes.

The organization of this paper is as follows. Section 2 describes the VLC channel
model, and Section 3 discusses the activity recognition concept and our proposed solutions
for a VLC system. Section 4 details the system implementation and experiment setup,
while Section 5 describes the performance results. Discussions on areas for future work
and a conclusion is drawn in Sections 6 and 7, respectively.

Table 1. Gesture recognition systems using machine learning.

Reference Processing Sensor Accuracy (%) VLC

[23] Decision-trees IR proximity 98 No
[24] SVM Accelerometer 95 No
[25] BP-NN Inertial sensor 89 No
[26] LSTM 5× 7 sensor array 85 No
[27] PCA 32 PDs 96 No
[28] KNN 3× 3 PD array 48 (single PD) No
[29] KNN/SVM IR/VL (PDA100A) 73(VL@35 cm) No
[30] RNN 8 PDs 99 (10 cm) No
[31] LSTM FMCW radar 98 No
[32] CNN RGB Camera 97 No
[33] LSTM RGB/depth Camera 98 No
[34] LSTM RGB Camera (dataset) 85 No
[35] DP-LSTM RGB Camera 83 No

This work LSTM Single PD (low-cost) 88 Yes

2. VLC Channel Model

Assume a channel model between a Tx (LED) and an Rx (PD), and consider only
the line-of-sight (LOS) path. The channel impulse response of this LOS component is
deterministic and given by Equation (1) [36].

hLOS(t) = I(φ)
g(ψ)APD

d2 δ(t− d/c), (1)

where APD is the photo-diode surface area, φ is the angle from the Tx to Rx, ψ is is
the angle of incidence with respect to the axis normal to the receiver surface, d is distance
between Tx and Rx, c is the speed of light, g(ψ) is the Rx optical gain function, and I(φ) is
the luminous intensity.

At the Rx, the received optical power can be expressed as (2).

PR = H(0)PE, (2)

where H(0) is the channel DC gain, and PE is the emitted optical intensity.
It is common to model the emitted signal by a generalized Lambertian pattern, and the

DC channel gain can be expressed as [37].

H(0) =
(m + 1)APD

2πd2 cosm(φ)Ts(ψ)g(ψ)cos(ψ), (3)

for 0 ≤ ψ ≤ Ψc where Lambertian order is denoted by (4)

m =
−ln(2)

ln(cos(Φ1/2))
, (4)
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where Φ1/2 is the semiangle at half-illuminance of the Tx. Ts(ψ) is the optical filter gain,
Ψc is the Rx field of view (FOV) semi-angle.

The illuminance at a point on the receiving plane is described by I(ψ)cos(ψ)/d2 [38].
The total received power with lens is plotted in Figure 1. This figure shows that the power
is greatest directly below the LED and falls off greatest at the corners. The Rx power is
sufficiently high in all directions within 2 m of the center, and therefore photo-detectors
receive sufficient illuminance in a typical small room or office setting.

Figure 1. Lambertian simulation for total Rx power for φ = 30◦, ψ = 30◦ FOV.

3. Gesture Recognition System with LSTM Network

A typical HAR system comprises data acquisition, segmentation, feature extraction,
and classification stages. The categorization is based on an analysis of the pattern activity
sensed on each PD. Through training, the system learns to associate the sequences with
each activity.

The concept of the hand movement recognition system is shown in Figure 2. The iden-
tification activity takes place between the LED and PD. Unobstructed light from the LED is
incident on the photo-diode sensor and, as an object moves in between the two, light can
become blocked. The task is to associate the sequence of incident light with the particular
gesture. Typically, a hand may move at about 1 m/s or 1000 mm/s. The distance between
fingers is up to about 10 mm, and therefore periods of activity and inactivity will typically
last for about 10 ms. To reliably capture these movements the symbol sensing slot-time
should be at least 0.1 ms. The slot time depends on the underlying use of the VLC system
and is a trade-off between VLC data rate requirements, prediction accuracy, and computa-
tional complexity. The signaling rate is typically easily satisfied by modern VLC systems
that operate above 1 Mbit/s.
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Figure 2. Concept of finger movement recognition system based on received patterns of light on
a photo-diode sensor.

LSTM is a type of recurrent network that learns patterns embedded in time-series
data [39] and has complexity proportional to the number of time-steps. The network is
applied here to predict the finger gesture on a per time-step basis. The network comprises
a sequence layer for handling the series input data, an LSTM layer for computing the learn-
ing, a fully-connected layer, a softmax layer, and finally, a classification layer. The size of
the fully connected layer determines how well the network can learn the dependencies but
care is required to avoid problems associated with over-fitting. The LSTM block diagram
is shown in Figure 3 in which xt represents the input data. The hidden-state and cell-
states at time t are termed ht and ct, respectively. The current state and the next sequence
data samples will determine the output and updated cell state. The cell state is given by
Equation (5)

ct = ft � ct-1 + it � gt (5)

The hidden-state is given by Equation (6)

ht = ot � σc(ct), (6)

where σc represents the state activation function. Control gates allow data to be forgotten
or remembered at each iteration.

The forget, cell-candidate, input, and output-states at time step t are given by Equa-
tions (7)–(10) respectively:

ft = σc(Wf xt + R f ht−1 + b f ), (7)

gt = σc(Wgxt + Rght−1 + bg), (8)

it = σc(Wixt + Riht−1 + bi), (9)

ot = σc(Woxt + Roht−1 + bo), (10)

where Wf , Wg ,Wi, Wo represent the forget, cell-candidate, input, and output weights.
R f ,Rg,Ri, and Ro are the forget, cell-candidate, input, and output recurrent weights. b f ,
bg,bi, and bo are the forget, cell-candidate, input, and output biases.
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Figure 3. LSTM algorithm unit structure.

4. System Implementation

4.1. Design Approach

Two design approaches were considered for the gesture sensing operation. Approach
(i): the mark-space waveform generated by all fingers is encoded. As a finger cuts the light
beam, it results in a space period where the received light intensity on the PD sensor is
low. In the period where light can pass between the fingers, the received intensity is high.
Approach (ii): the PD output is summed over the duration of the whole gesture. The total
light incident on the PD from the first to last finger cutting the light beam is recorded.
The first approach was selected after an initial study showed it was more reliable, and
in particular, is less dependent on the hand-speed. A minimum and maximum threshold is
set, and the on-off signal is passed to the LSTM algorithm.

4.2. VLC Transceiver

The VLC system is implemented with real-time transmission and reception of symbols
using an arbitrary waveform generator (AWG) and digital storage oscilloscope (DSO) as
depicted in Figure 4. VLC data modulation/demodulation and activity recognition tasks
are computed off-line using a personal computer with Matlab software.

Figure 4. VLC for HAR system block diagram.

The Tx signal was generated with amplitude 1.80 V at 100 kHz in real-time using an
arbitrary waveform generator Tektronix AWG 710B (max. 2.1 GHz bandwidth, 4.2 Gsa/s).
An amplitude equalizer was inserted to counteract the low-pass frequency response of
the LED. The amplitude equalizer provides about 7 dB loss at DC and the normalized
gain rises to unity in the high-pass region at around 100 MHz. A Mini-Circuits ZHL-500
(0.1 MHz to 500 MHz) 17-dB gain-block is employed as a preamplifier to increase the small
signal-level. The amplified data signal is added to a LED bias voltage of 4.2 v using a Mini-
Circuits Bias-T ZFBT-4R2GW-FT+ (0.1–6000 MHz bandwidth) and the output connected
to a Luxeon Rebel LED via a standard SMA connector. The LED was selected as it is
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capable of supporting a data-rate in the order of 100 Mbit/s for communications. However,
many other LEDs can also be used for the purpose of gesture recognition. The bias-T
and amplifier had minimum operating frequency around 50 kHz. The bias voltage is
adjusted to maximize the amplifier output power but backed off to avoid distortion. The
amplifier, bias-T and LED were mounted onto a movable micro-stage platform to facilitate
the alignment of the Tx.

To increase the communication distance, a focusing-lens of diameter 40 mm was placed
at both the Tx and Rx sides with a separation of 30 cm as shown in Figure 5. The focusing
lens produces a narrow beam with optimum focus at the region where the hand is placed
which is at the half-distance between Tx LED and RX PD. The required distance can be easily
adjusted by increasing or decreasing the lens focal-range. In the current set-up if the hand
is positioned away from the center-point then the signal-to-noise ratio (SNR) is reduced
and therefore estimation accuracy will be degraded. A focusing lens is also an integral and
necessary component in all VLC systems and so is not an additional cost. A consumer VLC
system may likely employ directional Tx/Rx or an adaptive lens mechanism.

A standard PD (Hamamatsu S10784 commonly used in DVD laser-discs) was em-
ployed at the receiver. The PD output was amplified by an OPA 2356 based low-noise
amplifier (LNA) circuit that has a BW of about 200 MHz and was used here as a trans-
impedance amplifier (TIA). The Rx waveform is detected by a PD and amplified by the LNA.
LEDs generate incoherent light, which can be detected using simple direct or envelope
detection circuitry. The Rx DSO was set at 2 Msa/s with a total 3.2 Mpoints stored after
peak sampling.

Figure 5. Photograph of optical component section.

4.3. Gesture Waveform Capture

As a proof of concept, the system was trained with five gestures with an increasing
number of fingers as follows:

• Reference Rx signal (absence of movement),
• pointing up-down with 1 finger,
• pointing up-down with 2 fingers,
• pointing up-down with 3 fingers, and
• pointing up-down with 4 fingers.

The hand was moved up and down over a period of two seconds at a steady-rate
corresponding to a natural hand gesture. As the separation between each finger is only
about 3–5 mm, the sampling rate needs to be sufficiently high to capture the correspond-
ingly short duration of light. The Rx signal is first down-sampled as the sampling rate is
higher than the modulated light signal. The modulation is removed by finding the sig-
nal maxima and the resultant signal corresponding to 1–4 fingers present is shown in
Figure 6 (top) to (bottom). The small peaks at the start of each cycle are due to the com-
bined filtering response of the analogue and sample and hold circuitry in the digital storage
oscilloscope. The response quickly decays and does not affect the operation of the system.
The blocking of light by each finger results in low amplitudes and can be seen in each
capture. In part, the accuracy can decrease as the number of fingers increase due to the re-
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duced clarity of the raw signal. This reduction is partly offset however as classification
improves when a signal has more unique features.

Figure 6. Received signal captured on VLC photodiode corresponding to (from top): (a) 1 finger;
(b) 2 fingers; (c) 3 fingers; and (d) 4 fingers gestures.

4.4. Process Flow

There are three processing stages: signal-conditioning, training, and classification.
Signal conditioning: The waveform sampled by the photo-diode undergoes signal condi-
tioning prior to the identification. The signal magnitude is normalized so that the maximum
value for each gesture is one. Gesture training: Data are collected for each of the 5 gestures.
For each gesture, multiple frames are collected by repeating the movement over a period
of two seconds. The data are then randomly split into two sets one for training and one
for classification. This needs to be performed once on first use for each user, as they may
have different movement styles and speed for the same gesture type. Gesture classifica-
tion: The gestures are classified by ML. A practical gesture recognition system should
be able to operate in real-time. Therefore a trade-off can be met between computational
complexity and accuracy. We selected the LSTM algorithm as it offers a good performance
to complexity ratio and is suitable for the repetitive sequential waveforms generated by
hand gestures.

4.5. Signal Conditioning

The signal for training and categorization should encode the finger gesture and
the performance should be relatively unaffected by the level of ambient light. Any reflected
light from an object near to the PD should not result in a high amplitude signal that cannot
be recognized from the same motion without reflection. Therefore, the signal should be
normalized such that all signals have the same amplitude regardless of the ambient light
intensity. The normalization scales the signal according to the minimum and peak signal
level recorded over the measurement period. As the ambient light changes more slowly
than the direct LED light across a measurement frame, this is a simple and efficient step.
The recorded gesture features may vary slightly between each motion and also due to
environment. Each user also presents their hands at a slightly different angle and moves
them at a variable speed, and there will be temporal variations and potentially irregular
random reflex movements. The natural light present in the morning will be different to
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the artificial light in the evening and can vary if it is cloudy or sunny. All PDs exhibit a noise
floor, and the TIA has a noise figure which contributes to a lowering of the signal integrity.
Signal conditioning is required to manage these effects and to provide a clean representative
signal which contains the essential features of each gesture to the ML algorithm. After
conditioning, the Rx signal has range −1/+1 and is processed by the LSTM algorithm.

4.6. Training and Evaluation

As a proof of concept, data were collected for four different hands. The smallest span
(from extended little finger to thumb) was measured as 16.3 cm and the largest hand had
a span of 21.4 cm. Data were collected for the four hands on two separate measurement
campaigns. During a first session, data were collected for training the neural network
algorithm. A second validation session was conducted on the same day for evaluating
the performance of the trained neural network. The data were divided equally into training
and verification sets; that is, the training to verification ratio was 50% of all data. This figure
is common in ML research and some systems use higher amounts of training to achieve
high accuracies. Over-fitting can occur if the system is trained with too much data, and con-
versely, under-fitting if the training ratio is too low. The LSTM algorithm predicts the next
sample in a sequence, and hence the most likely gesture classification, subject to the noise,
variation, and irregularities present in human movement. The LSTM was trained using
the stochastic gradient descent with momentum (SGDM) optimizer. This is a commonly
applied solver with accelerated gradients to reduce the solving time [40]. After training,
the LSTM was switched to validation mode in which a section from the nontraining set
is evaluated. The output of the stochastic gradient solver can be sensitive to the initial
random seed used and, therefore, a Monte Carlo type simulation was set-up averaging
results over 50 cycles each with a different random seed. The accuracy and loss versus
iteration performance for one of the random seed settings is shown in Figure 7.

Figure 7. Performance of LSTM algorithm (top) Accuracy versus iteration and (bottom) Loss
versus iteration.

5. Performance Evaluation

The VLC testbed was positioned square to a window with center at a diagonal distance
of 4.65 m. The light through the window would enter the room in the direction of the VLC
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receiver unit. There was no direct sunlight impinging on the Rx in this experiment due to
an office-divider positioned between the window and the Tx unit.

A correct classification is determined when the actual and estimated gesture is identi-
cal. An average accuracy is computed for all gestures, users and tests per user. An example
of predicted versus actual gesture accuracy is shown in Figure 8, for the case of a low
number of iterations and sample-rate and demonstrates the frequency and duration of
observed errors. There is good agreement between the actual and estimated gesture, and
in this example, most errors occurred between the transition from two to three fingers.
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Figure 8. Predicted versus actual number of fingers in gesture.

Classification accuracy versus number of LSTM hidden-units is tabulated in Table 2
and plotted in Figure 9. The performance peaked at 75% accuracy for 50 hidden-units
and gradually decreased as the number of units increased. The number of units should
not be too large to avoid over-fitting. The performance is limited by the resolution of
the input waveforms but can be improved by over-sampling the Rx signal in the presence of
sampling and receiver noise. The classification accuracy increased to 88% when the number
of samples per symbol increased by a factor of two and is due to the reduction in noise
through averaging. We can compare this performance with other GR systems employing
visible light using a single PD. Classification accuracies of 85% and 73% were achieved
when the Tx-Rx separation was 20 cm and 35 cm, respectively, ref [29] with reflected
light. Our accuracy could be further improved by employing a moving-average filter or
wavelet denoising. Our performance may also increase by shortening the Tx-Rx separation
from 48 cm. However, this is considered a realistic separation for a practical VLC system.
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Table 2. Accuracy versus number of LSTM hidden-units.

Hidden-Units Accuracy (%)

25 72
50 75
75 72

100 71
125 69
150 68
175 70
200 64
225 62
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Figure 9. Accuracy versus number of LSTM hidden-units.

The speed of making a hand gesture depends on each individual. If the Rx is tracking,
say, a robot arm, one could expect a highly regular pattern with near constant time intervals
between blocking. However, there is a relatively large time variation with human gestures.
Hand movements, even by the same person, move at a slightly different angle, speed,
and position relative to the sensor. Therefore, the performance can depend on the sample-
rate, and a system should be capable of increasing this to capture patterns from subjects
who make very fast hand movements. Figure 10 shows the normalized performance
figure-of-merit versus the sensor sample-rate. The normalized performance figure-of-merit
in Figure 10 is computed by dividing the classification accuracy by the processing time and
normalized to the highest value. From this result, we could select 0.25 MHz sampling-rate
as providing a good performance to processing-time ratio. These results show that there
are diminishing performance benefits from over-sampling when considering the added
processing complexity. There are a number of VLC parameters that can affect the overall
accuracy of the GR system. In particular, performance is sensitive to LED bias-voltage,
which should be set high enough to enable communication over the required distance
but not so high as to distort the waveform.
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Figure 10. Normalized figure-of-merit versus sensor sample-rate.

6. Discussion

Human limbs generally do not move with a constant velocity, and different users may
move their hands at a different speed. Depending on the point of capture, the finger may
be accelerating or decelerating. To compensate, the signal can be time-scaled as a function
of the finger velocity. For example, a person who moves their hand at half the speed of
another person would have their signal sampled at half the rate. The duration of shadows
generated by their fingers should then be approximately the same. Hand-speed could be
determined by a variety of means offline or during a calibration, such as by mm-wave
radar. It would also be possible to identify an individual from their unique finger signature,
and this is an interesting area for future work.

6.1. Calibration

Light-intensity distribution may vary at different locations within a room. The natural
changes in the ambient light level within limits should be managed by the amplitude
normalization step. For optimized performance, a calibration should be made if the system
is moved to a new location where the ambient light range may be different. The calibration
routine which could quickly cycle through parameters such as Tx LED amplitude, equalizer
coefficients, Tx-amp bias, and Rx TIA tuning to find optimized values. Alternatively,
a look-up table can supply the coefficients based on the location, time of day, and season.
Aging of components and heating may also result in drift, which can be resolved by
a relatively in-frequent calibration once a week. The calibration routine could also be
executed automatically once the system is first switched on.

6.2. Sensitivity to Hand Movement

Practical VLC systems require lenses to focus beams of light on the small photo-diode.
If the hand is placed off-center, the Rx beam will be slightly off-focus and the accuracy
may be reduced. This issue can be solved using an automatic lens or by employing
multiple spatially separated PDs. An interesting alternative solution would be to employ
the neural network to learn and predict gestures in cases where the beam is defocused.
A study on the performance as a function of hand-offset position is considered as part of
the future work.

87



Appl. Sci. 2021, 11, 11582

6.3. Competing Systems and Cost

Assuming that a VLC infrastructure was established, the additional cost for the GR
subsystem would mainly be due to the software development time. The cost of a dedicated
gesture system is worth consideration. In our work, we employed relatively expensive
and bulky AWG and DSO. The off-line processing could be conducted in real-time using
a low-power microprocessor, such as the MSP430 from Texas Instruments, which includes
built-in signal converters. One competitor to the optical system is an accelerometer based
design that could be positioned on the wrist by a strap or as part of a smartwatch. However,
a wrist-based transmitter unit would also be needed for relaying the accelerometer data to
a receiving unit for further processing. A VLC-based system is still preferable in a hospital
environment or for the elderly who may not own a smartwatch or smartphone.

6.4. Areas for Future Work

The number of recognizable gestures could be increased to include common sign-
language ones. The system could be developed for general human activity recognition by
extending the distance between LEDs and PD with their placement on the ceiling and/or
wall. The duration of each shadow cast could be encoded as a binary sequence, and this
could enable a probabilistic neural network to be employed for gesture pattern recognition,
applying a similar approach to [41], where binary bits encoded a communications busy-
idle state. We will investigate if there is any variability in the performance with different
directions of sunlight and placement. However, this should not impact the system design.
Finally, an automated VLC system should include an initial detection block which would
be intermittently polled to recognize when a finger gesture is deliberately being performed.

7. Conclusions

This work described the design and implementation of a finger-gesture recognition
system for visible light communication systems. The system employs a single low-cost
LED at the Tx and a single photo-diode at the Rx and operates on the patterns of blocking
of direct light by the finger motion. The LSTM algorithm can correctly categorize the finger
gestures with an average accuracy of 88%, and the optimized number of hidden units
was 50. A good performance-to-complexity state could be achieved by sampling the light
at 250 kHz. The system has many applications in human-computer interaction, including
health-care, commerce, and in the home. Our further work will focus on increasing
the number of gestures and tasking the system with recognizing individuals from their
gesture signatures.
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Abstract: Road traffic accidents (RTAs) are a major cause of injuries and fatalities worldwide. In
recent years, there has been a growing global interest in analysing RTAs, specifically concerned with
analysing and modelling accident data to better understand and assess the causes and effects of
accidents. This study analysed the performance of widely used machine learning classifiers using a
real-life RTA dataset from Gauteng, South Africa. The study aimed to assess prediction model designs
for RTAs to assist transport authorities and policymakers. It considered classifiers such as naïve Bayes,
logistic regression, k-nearest neighbour, AdaBoost, support vector machine, random forest, and five
missing data methods. These classifiers were evaluated using five evaluation metrics: accuracy, root-
mean-square error, precision, recall, and receiver operating characteristic curves. Furthermore, the
assessment involved parameter adjustment and incorporated dimensionality reduction techniques.
The empirical results and analyses show that the RF classifier, combined with multiple imputations
by chained equations, yielded the best performance when compared with the other combinations.

Keywords: machine learning; road traffic accidents; data analysis; missing data; dimensionality
reduction

1. Introduction

The rapidly increasing number of road traffic accidents (RTAs) has negatively affected
different countries by resulting in a high number of injuries and fatalities. The World
Economic Forum [1] estimates that the number of vehicles worldwide is expected to double
by 2040, putting more pressure on the transport infrastructure. According to the World
Health Organisation (WHO) [2,3], RTAs are likely to be the seventh leading cause of
death by 2030. The WHO further stipulated that RTAs cause death to vulnerable road
users because more than half (54%) of the individuals killed on the roads are cyclists,
motorcyclists, and pedestrians. An RTA can be described as an accident that occurs when
at least one road vehicle is involved in an accident which happens on an open public road,
and at least one person ends up being killed or injured [4]. The leading recorded causes of
RTAs are speeding, driving under the influence of alcohol, and distractions when using
mobile phones while driving. In 2015, the WHO reported that RTA deaths affect countries
differently: low-income countries had 24.1 deaths per 100,000 of the population; middle-
income countries had 18.4 deaths per 100,000; and high-income countries had 9.2 deaths
per 100,000 [2]. The figures thus reveal that low- and middle-income countries contribute
more than double the number of deaths than high-income countries.

RTAs remain the main source of travelling uncertainty and impose a high cost on
the transportation infrastructure [5]. Primary road accidents can result in multiple road
accidents, which are referred to as secondary accidents. In some cases, secondary road
accidents add to more lives being lost. Primary road accidents result in secondary accidents
due to delayed primary accident clearance, poor road surface and light conditions, traffic
volume, and travel time. Furthermore, secondary accidents that occur after the initial road
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accident can escalate traffic congestion, travel delays, and safety issues [3,6,7]. Secondary
accidents may account for a lower ratio as compared with initial or primary accidents.
However, despite this, they account for risks that are estimated to be six times greater than
the initial accident, resulting in multiple traumas, serious and complex injuries, as well
as overlapping injuries. The prevention of RTAs has become a priority in transportation
management. Initial and secondary accidents can be identified and investigated using
different data mining techniques that can help support transport authorities and contribute
to reducing the high number of road injuries and fatalities [6,8–11].

Data mining techniques can be globally applied in road safety to improve life-threatening
problems on the roads. Applications of data mining techniques in RTAs can help in the
modelling and better understanding of RTA data records. These records contain important
hidden patterns that RTA stakeholders and decision-makers can use to introduce better
safety policies [12,13]. Data mining techniques are available in data science and can be
used to achieve numerous outcomes such as classification, prediction, outlier analysis,
and clustering analysis. According to [12], data mining techniques are machine learning
(ML) processes. ML is described as a method that can be used to make provisions for
data analysis, decision making, and data preparation for real-life problems, and that allow
self-learning for computers without any complex coding involved [14,15]. Additionally,
ref. [16] describes ML as an approach that focuses mainly on improving computer programs’
capability of accessing data and using the data to learn for themselves. The learning begins
with the data to look for any patterns in the dataset and make future decisions involving
societal problems. ML methods are categorised as supervised, unsupervised, and semi-
supervised. ML have successfully been implemented in automated stock trading, computer
vision, health care, speech recognition, and customer services.

This study investigated widely used supervised ML methods to perform comparative
analysis using a real-life RTA dataset to present the best predictive model. The study used
data collected from Gauteng province, South Africa. The study aimed to align with the
Sustainable Development Goals (SDGs) document regarding road safety to reduce the high
number of fatalities and injuries [17,18]. The objectives of the study were as follows:

(1) To employ six traditional ML methods: naïve Bayes (NB), logistic regression (LR),
k-nearest neighbour (k-NN), AdaBoost, support vector machine (SVM), and random
forest (RF) on a real-life dataset containing primary and secondary RTA features. The
main reasons for using these specific ML classifiers are their unique characteristics
and their popularity in the literature;

(2) To include dimensionality reduction techniques, principal component analysis (PCA)
and linear discriminant analysis (LDA) were utilised to identify the relationship
between the RTA variables to improve the performance of the proposed models. The
study further implemented various missing data methods such as the mean, median,
k-NN, and multiple imputations by chained equations (MICE) to handle missing
values in the RTA dataset;

(3) To further use well-established evaluation metrics such as accuracy, root-mean-square
error (RMSE), precision, recall, and the area under the receiver operating characteristic
(ROC) curve (also referred to as the AUC—the area under the ROC) to evaluate the
performance of the classification models.

The remainder of the paper is structured as follows: Section 2, the literature review,
discusses classification and then focuses on RTA studies; Section 3 comprises the study’s
methodology; the study’s dimensionality reduction techniques are presented in Section 4;
Section 5 presents the experimental results, their discussion and comments on findings
relating to the AUC; and Section 6 provides a conclusion to the paper.

2. Literature Review

This section covers the related RTA studies conducted using both primary and sec-
ondary accident datasets. To begin with, classification is discussed.
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2.1. Classification

In statistics or ML, classification is a supervised learning method that predicts a class
of given datasets. In addition, classification modelling can approximate the mapping of
a function (f) from a given input value (x) and its discrete output value (y), as shown in
Equation (1) below [19]. According to [20], classification is a process that categorises a given
set of data into classes (also referred to as targets). Classification can be executed on both
structured and unstructured datasets. The process begins by predicting the target of a given
data point. The main idea behind classification is identifying into which of the available
classes or targets the data point will fall [21]. The most common areas in which classification
is applied include facial expression detection, image and document classification, sentiment
analysis, and speech recognition. There are famously four types of classification, namely,
binary, multi-label, multi-class, and imbalanced. Multi-class classification is employed in
studies in which the variable (y) consists of more than two targets or classes.

y = f (x), where y = class or target output (1)

2.2. Related Studies

The related studies show an increasing interest in RTAs. This section reviews some
prediction models which have incorporated traditional ML methods. The benefits of the
various prediction models are taken into consideration.

ML methods have been employed for road accident prediction using primary and
secondary road accident datasets. The most considered among these methods are SVM,
decision trees (J48 or C4.5), RF, least squares support vector machine (LSSVM) and LR.
A study by [6] modelled the occurrence of secondary accidents using LSSVM and back-
propagation neural networks (BPNNs); the investigation revealed that BPNNs performed
best in terms of the correlation coefficient (CORR) and mean squared error (MSE). A study
by [22] presented a comparative analysis of sequential minimal optimisation (SMO), J48,
and instance-based learning with k-parameter methods. The study’s findings discovered
that the SMO algorithm accurately compared with the other methods. Another study [23]
predicted traffic accident severity using supervised ML methods such as LR, NB, RF, and
AdaBoost. The study considered the freeway crash dataset, with the RF performing best
with high accuracy of 75.5%. Ref. [24] investigated road accident analysis and predicted ac-
cident severity by considering four supervised methods: k-NN, DT, AdaBoost, and NB. The
results of the study revealed that AdaBoost outperformed the other methods. Furthermore,
in [25–27], the authors investigated road accidents using real-life data considering methods
such as J48, LSSVM, and RF. Other studies used probabilistic reasoning models such as
Bayesian networks, or BNs, [28–32], with [28] performing a comparison between BNs and
regression models. The study’s results showed that BN achieved the best performance.
Artificial neural networks (ANNs), BPNNs, and multilayer perceptron (MLP) methods
were applied during road accident predictions [31,33–35]. In [33], the authors used ML
methods to compare models for incident duration prediction, obtaining promising results.
Another study [35] presented road accident detection by comparing the performance of
three methods: SVM, RF and ANN. The study showed that RF achieved the best results.
Other studies [22,24,30,32] considered k-NN and classification and regression trees (CARTs)
to predict road accidents. It was observed from the literature that there are various rea-
sons why a study uses a specific method. One such reason is the data type, which can
be categorised into primary and secondary datasets. Studies that designed a predictive
model using secondary road accident data were those of [6,29]. A study by [34] considered
using primary and secondary RTA datasets. In this study, MLP performed best during the
modelling of the traffic risk of secondary incidents.

Another study [36] proposed the importance of performing exploratory data analysis
on the road traffic accident dataset. The authors revealed which features affect road
accidents and their negative impact during the investigation. A study by [37] presented
a method of modelling and characterising traffic flow. The study employed regression
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and clustering methods, which achieved very promising results. A Bayesian network-
based framework was developed for assessing the cost of road traffic accidents [38]. This
study managed to identify which features can be incorporated into the framework to
assess different negative impacts on road accidents. The framework presented promising
results. Lastly, [39] presented a study using adaptive Kalman filtering to predict urban
road networks. The study revealed that the proposed model is capable of predicting
traffic correctly.

Most ML classifiers are influenced by the size of the dataset and capabilities to han-
dle overfitting problems and are being implemented in different environments such as
urban and rural settings and on freeways and highways. Evidence from a study by [25]
demonstrated promising results when the RF method was compared with other classi-
fiers. The study evaluated models using an out-of-bag (OOB) estimate of error rate, mean
square error (MSE) and RMSE. The RF method aims to reduce overfitting and is capable
of improving model accuracy. Other performance evaluation methods used in different
studies are precision, recall, f1 score, ROC curve, true positive rate (TPR), and false positive
rate (FPR) [27,30,33,35,36,38]. The LDA approach was implemented by [32]. This study
employed SVM, RF, LR, NB, and k-NN during the comparative analysis due, as mentioned,
to their popularity and demonstrated capabilities in the literature. Furthermore, AdaBoost
was considered even though there is no evidence of it tackling road accident problems.
AdaBoost is perceived as improving the performance of weak classifiers. It can also handle
image and text problems well.

Overall, the literature review revealed that there is no such thing as a perfect method.
Thus, with RTAs, the most appropriate approach to finding the best performing method is
to continue constantly combining and comparing various methods.

3. Methodology

This section covers ML classifiers, experimental settings, the RTA dataset, model
evaluation methods, and the study’s statistical analysis.

3.1. Machine Learning Classifiers

The ML classifiers employed during the comparative analysis are described below. Six
classifiers were used in the study: the aforementioned NB, LR, k-NN, AdaBoost, RF, and
SVM. The classifiers were considered due to their regular usage by other researchers in the
RTA domain (as highlighted in Section 2.2) to construct robust models.

3.1.1. Naïve Bayes

The NB classifier is a simple probabilistic classifier based on applying Bayes’ theorem
with strong independence assumptions among variables. The classifier uses prior knowl-
edge to compute the probabilities of sample data. NB can be easily implemented [40]. Two
algorithms were used during the model design, namely, GaussianNB and BernoulliNB, both
with their default settings.

3.1.2. Logistic Regression

LR is well-known as a classification method with mapping results of the linear func-
tions to the sigmoid functions [41,42]. Similarly to NB, implementation of the method is
easy and it can effortlessly be extended to multi-class problems. LR is well-known as one
of the simplest ML methods. The default parameter, ovr, and multinomial parameter tuning
were applied during implementation of the LR model.

3.1.3. k-Nearest Neighbour

k-NN classifiers, also known as lazy learners, are a form of instance-based method
and are among the simplest classifiers that can handle classification problems well. The
algorithm is a supervised method that employs both regression and classification. The
k refers to the number of the nearest neighbours a model can consider [43,44]. The algo-
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rithm works on similarity measures between new data and categorises the new data into
groups related to the available classes. One of the advantages of the algorithm is that it is
straightforward to implement. During the analysis, k values of 5 and 10 were used.

3.1.4. AdaBoost

AdaBoost, or meta-learning, is known to be one of the best boosting algorithms. It
uses the iterative concept to study errors of weak algorithms and turn them into robust
ones. The weak classifiers can be referred to as algorithms that perform poorly. The clas-
sifier can assist in joining two or more classifiers into one strong classifier. The AdaBoost
classifier can be used to solve classification and regression problems [24,45]. It can also
benefit poor classifiers by improving their performance. In this study, the default parame-
ters learning_rate −1 and algorithm –SAMME.R were initially applied and later optimised
to SAMME.

3.1.5. Random Forest

The RF model is ensemble learning and tree-based, which are employed to construct
predictive models. In line with its name, the classifier creates a forest that is made up of
trees; more trees mean a more robust forest. RF uses the data samples to create decision
trees to calculate each tree and select the best result using the voting approach [46,47].
The algorithm can best identify the significance of features from a set of datasets. The
parameters were set to default and later optimised to n_estimators –10 and criterion –entropy.

3.1.6. Support Vector Machine

SVM is a supervised classifier that addresses the computational problem of predicting
using kernels. SVMs can be used for classification and regression problems [48,49]. In
SVMs, data items are plotted as points in a dimensional space, with the values of each
variable being the value of specific coordinates. SVMs can be applied for variable selection,
prediction, and detection of an outlier. In this study, the Linear Support Vector Classifier
(LinearSVC) was applied because it can handle multi-class problems well. The default
setting was used for the first set of results and, later on, the multi-class parameter was
optimised to crammer_singer.

3.2. Missing Data Strategies

Handling missing data is an essential part of the pre-processing data stage that helps
ensure that absent values are dealt with sufficiently. Missing values are common problems
in RTAs and result from, for example, human error, incomplete data capturing, and system
failure [13,50]. The data were missing some random values that were dealt with using
several missing methods. In this study, missing data methods for single and multiple
imputation methods were used.

3.2.1. Mean and Median

Some methodological strategies replace the missing values for given data with the
mean or median of all the known values by adding available values and dividing their sum
with by the average [51].

3.2.2. k-Nearest Neighbour

This method uses a set of given k-NNs for each sample and then replaces the missing
data for a given variable derived by averaging through non-missing values in the neigh-
bours. The sample’s missing values are dealt with using the mean value of the k-neighbour
from the data. The k-NN imputation method assists in handling missing values present in
the dataset by finding the NN using the Euclidean distance matrix [52,53].

3.2.3. Multiple Imputations by Chained Equations (MICE)

MICE is a well-known multiple imputation method that can, in practice, be imple-
mented to generate imputations based on different sets of imputation models. Initially, the
missing values are filled in by replacing the observed values using the missing-at-random
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mechanism [51,54]. This method works better on a numerical dataset. These imputation
methods were chosen due to their traits and frequent use in related studies.

3.3. Experimental Setup

The experiments performed were comparative analyses to evaluate the performance
of the six ML classifiers described above using five performance metrics, four missing
data methods to handle missingness in the dataset, and incorporating three-dimensionality
reduction methods to reduce the feature scope of the RTA dataset. The experiments were
conducted using the Python platform. During the investigation, the results were generated
using the default setting and parameter tuning. The experiments were performed using
a real-life RTA dataset that contained primary and secondary accident parameters. As
outlined above, the applied ML classifiers were NB, LR, k-NN, AdaBoost, RF, and SVM,
and the missing data methods applied to the dataset were the mean and median, k-NN, and
MICE. The LDA and PCA were the dimensional reduction techniques used. Additionally,
as outlined, the abovementioned methods were employed in the study due to their frequent
use in related studies. The introduction of LDA and PCA methods to the study was to
observe whether they could contribute positive outcomes to constructing the RTA model.

RTA Experimental Process

This section depicts the stages of the experimental process that were followed during
the construction of the RTA model. The process consisted of five layers: type of dataset; data
pre-processing, which involved data cleaning, dimensionality reduction, and preparation;
data pre-processing was followed by sub-processes, namely, data training and testing;
comparison analysis of the ML methods; and finally, the predicted RTA model evaluated.
The process is illustrated in Figure 1 below.

Figure 1. RTAs experimental procedure.
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Table 1. RTA features and events.

No. Features Data Type Events

1. Primary Cause Categorical Major
2. Primary Sub Cause Categorical Minor
3. Secondary Cause Categorical Natural disaster
4. Wet Road Categorical None
5. No. of Travel Lanes Numeric Unknown
6. No. of Vehicles Involved Numeric -
7. Roadway Name Categorical -
8. Date Time Date time -

3.4. Dataset and Statistical Analysis

Experiments were conducted using real-life data obtained from the Gauteng Depart-
ment of Community Safety (GDCS). The collected dataset was compiled over a four-year
duration. Ethical clearance was obtained from the ethics committee and the department to
collect the historical dataset (Ref: 2020SCiiS04). The dataset included recordings of road
traffic accidents over major highways in Gauteng province. Some features were omitted
during data preparation because they contained insufficient entries. Then, features with 5%
missing values were used during the analysis and handled using missing data strategies.
Extensive data pre-processing was performed, resulting in a cleaned dataset containing
46,692 instances and 8 attributes, as shown in Table 1. The data had missing values that
were handled using several missing value methods, as discussed in Section 3.2 above.

RTA Dataset

Table 1 contains a list of features and events employed for the study. The Events
column shows that there are four classes. Due to the kind of dataset, the study was solving
a multi-class problem. Multi-class classification refers to a classification task that contains
more than two classes; it makes assumptions that each sample is assigned to only one
label [53].

During data exploration, different numbers of parameters (features) were chosen to
compute the classification model. This section of the paper statistically summarises the
dataset to observe how data were distributed among the parameters/features. Figure 2a
shows a distribution of road traffic accidents based on the Primary Cause. Stationary vehicles
were the main contributors to causing primary accidents and were followed by crashes.
This means that if the transport authorities or emergency authorities should prioritise
clearing stationary vehicles on the roads, this may significantly reduce the high number of
initial incidents. Figure 2b shows that five lanes were open when minor accidents occurred,
followed by four lanes, which mean most incidents occur when most lanes are unavailable.
The numbers in the figure are ordered according to the high number of vehicles or incidents.
This figure reveals that accidents occur when fewer lanes are open on the freeway.

Figure 2c shows that when the roads were wet, fewer accidents were recorded. The
wet road feature consists of No and Yes variables, with the No wet roads contributing
significantly more to the road accident records when compared with the Yes variable. This
means that from the obtained dataset, most of the accidents are not affected by wet roads.
Figure 2d shows the data distribution for secondary accidents. The secondary accident’s cause
is made up of seven variables, i.e., Crash, Stationary Vehicle, Road Construction, Load Lost,
Routine Road Maintenance, Police and Military, and Fire. It is observed that Crash accidents
contribute more to secondary accidents, which can be due to delayed clearance of the initial
accidents. An overall observation is that if initial accidents are cleared on time, this could
reduce the number of secondary accidents.

Figure 3 shows the distribution of the dependent (events) variables. It demonstrates
that Minor events contribute more than None, Major and Natural Disaster events. This means
that most of the contributing RTAs happen during Minor accidents. In addition, it means
Minor accidents are those which contribute to the high number of road accidents, and they
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can result in lane closures, an increase in the number of stationary vehicles, and delayed
clearance. In terms of the None event, the dataset containing this class was originally
the resulting label or class. Furthermore, the data also contained unknown or unlabelled
instances, which could be the result of capturing errors or the system being offline to
capture real-time information with labels.

Figure 2. RTA data distribution over different features: (a) primary cause; (b) no. of travel lanes; (c)
wet road; and (d) secondary cause.

Figure 3. RTA events data distribution.
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3.5. Model Evaluation

The study evaluated the performance of the classification model using accuracy, RMSE,
precision, recall, and area under the ROC curve based on the confusion matrix. A low value
for RMSE indicates that the predicted model can be considered, whereas a higher accuracy
value indicates outstanding performance [55]. Formulas for calculating the evaluation
metrics are shown in Equations (2)–(6):

The accuracy evaluation metrics in Equation (1) are calculated using the following:
true positive (TP), true negative (TN), false negative (FN), and false positive (FP). The
metrics correspond to the instances that are correctly classified [56].

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Precision and recall represent the ratio of positive instances (TP) that are correct in
the RTA dataset. High values of precision and recall indicate that the returned results are
significant. The computation formulas are captured in Equations (3) and (4):

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Model validation was carried out using the area under the ROC curve, as defined
by Equation (5). The ROC curve can assist in determining the best threshold values
produced by plotting sensitivity (TPR—true positive rate) against the specificity (FPR—
false positive rate), indicating the proportion of RTAs. The study computed the AUC, the
purpose of which is to deal with problems that contain a skewed data distribution to avoid
over-fitting to a single class. An outstanding model will achieve an AUC near 1, which
means good performance; a poor model will achieve an AUC near 0.5, which means poor
performance [57]. The AUC can be defined using Equation (5), representing the average
overall sensitivity values of FPR and TPR.

FPR =
FP

TN + FP
and TPR =

TP
TP + FN

(5)

Equation (6) shows how the RMSE formulation, which determines the difference
between the predicted and actual values, is computed as Xobs,i − Xmodel,i, with Xobs,i being
the observed value for ith and Xmodel,i being the model’s predicted value.

RMSE =

√
∑n

i=1(Xobs,i − Xmodel,i)
2

n
(6)

4. Dimensionality Reduction

In this section of the study, dimensionality reduction techniques, PCA and LDA, were
applied to the dataset. PCA was applied to the dataset to reduce its dimensionality by
identifying the most important and best-contributing features. PCA can be used as an
exploratory data analysis technique, with PC1 describing the highest variance in the RTA
data. Four datasets were used to construct Figure 4: mean, median, k-NN, and MICE.
Missing data methods were applied to the original data to handle the missingness. For the
four augmented datasets, three principal components (PCs) and linear discriminants (LDs)
were used during the experiments discussed in Section 5 and in designing the 3D graphs in
Figure 5. LDA mainly considers the response/state variable chosen by the classifier. Linear
discriminant analysis was used to reduce the different feature sets and predict RTA states
by using different features in this paper. Overall, the PC results captured the following
percentages for the datasets:
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(1) Mean missing data method: PC1—20%, PC2—17%, and PC3—13%, which explained
50% of the overall dataset;

(2) Median method: PC1—20%, PC2—16%, and PC3—14%, which explained 50%;
(3) k-NN method: PC1—27%, PC2—17%, and PC3—14%, which explained 58%;
(4) MICE method: PC1—30%, PC2—23%, and PC3—14%, which explained 67% (of the

overall dataset).

Figure 4. The proportions of variance explained for the RTA dataset.

Figure 5. Three-dimensional principle component plots using the four missing data methods: (a)
mean, (b) median, (c) k-NN, and (d) MICE.
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The MICE dataset explained more of the PCs when compared with the other PCs.
In this study, the main idea behind PCA was to identify the correlation between the
RTA features.

Figure 5 shows the 3D scatter plots for PC1, PC2, and PC3 components against four
events to better understand the data distribution. The distributions of PC1, PC2, and PC3
are represented by the colours yellow, blue and viridis, respectively. Figure 5 presents the
data variance distribution for the RTA dataset.

Figure 5a shows that PC2 was distributed more than PC1 and PC3. On the other hand,
some outliers were observed from PC3. Outliers can affect the final results of the analysis
of the study.

Figure 5b shows that PC1 and PC2 contributed most of the variance in the data
distribution, when compared with PC3. Some outliers are observed from PC2, which were
moving towards PC3 using the median RTA dataset.

Figure 5c shows that PC1 and PC3 were moving more towards PC3, which appeared
to be overlapping with PC2. It can also be observed that PC1 was moving away from PC2
and PC3, with some outliers from PC1. The figure shows some correlation between PC2
and PC3.

In Figure 5d, it can be observed that PC2 contributed more to the data points when
compared with the other PCs. PC1 shows fewer data points moving towards PC3.

5. Results and Discussion

This section discusses and presents the results of the six classifiers, namely, NB, LR,
k-NN, AdaBoost, RF, and SVM. The classification comparisons are discussed in detail to
observe which methods/algorithms best predict RTAs.

5.1. Comparison Results

Figures 6 and 7 show the results for the default and optimised model settings. The
results report the performance of the observed classifiers based on different missing data
methods. The following can be observed: the results obtained using default Figure 6a
settings for the six classifiers did not perform well across the different missing data methods
applied to the RTA dataset. However, RF (97%) performed much better in terms of all the
model evaluations. These results could be due to RF offering efficient test error estimates
without experiencing any cost and offering reliable feature importance approximation.
The AdaBoost classifier showed the lowest performance across all evaluation methods.
AdaBoost could have performed poorly because it cannot handle data with outliers well.
Figure 6b shows results obtained for RMSE where the RF model obtained the lowest value
of 0.01, which means the model had lower errors when compared to the other methods. In
terms of precision, the RF model achieved the best value of 93% when the mean and kNN
missing value methods data was used in Figure 6c. Then results presented in Figure 6d
for recall show that RF model obtained a high value of 89% when the mean missing value
data method was utilised. In addition, MICE performed well across the used classifiers
compared with the mean, k-NN, and median missing value methods.

Concerning the Figure 7 model optimisation results, the following can be observed:
Figure 7a RF performed slightly better overall than the other classifiers across all the
evaluation methods with an accuracy of 97%. One possible reason is that RF can handle
thousands of inputs without deleting any variables. The RF settings were tuned to entropy
and n_estimators = 10. The RF results show that parameter tuning did not improve the
results, as shown in Figure 7a. Furthermore, LR and SVC performed poorly when compared
with the other classifiers. In terms of RMSE in Figure 7b, RF model obtained 0.12, which
mean the model has low errors compared to the others. Figure 7c shows precision results,
which revealed that the RF performed well by obtaining 93% when mean missing value
data was considered. Finally, Figure 7d shows that RF achieved the best value of 89%
compared with the other methods such as SVC, NB, kNN, LR and AdaBoost. In general,
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RF obtained promising results when compared with the other classifiers. The following
graphs present results for PCA and LDA.

Figure 6. Default settings performance results.

Figure 7. Model optimisation performance results.
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Figures 8 and 9 contain graphical results computed using the RTA dataset. They
include PCA and LDA dimensionality reduction techniques, which means reducing a large
number of features to a smaller number of PCs. The results report the performance of the
six classifiers based on four different missing data methods. The following is observed
from the results: in the PCA results in Figure 8a, the RF classifier performed reliably and
much better with accuracy (93%), precision and recall performance metrics when using
MICE data. The MICE imputation method performed better compared with the other
missing value methods because, as pointed out in Section 4, it captured 67% of the overall
dataset. With a high RMSE, the AdaBoost classifier is the most poorly performing classifier.
Figure 8b shows the results of the RMSE for all the augmented datasets and the results
revealed that RF obtained a very low RMSE value of 0.27 compared to the other methods.
Figure 8c show that the RF models achieved the best results in terms of precision, with
MICE imputation methods achieving 93%. Then in Figure 8d, the graph presents recall
results, which revealed that RF in terms of mean and median obtained 84%.

The LDA results in Figure 9a indicate that the RF (94%) and k-NN (94%) classifiers
performed comparatively better than the other classifiers and the PCA results. AdaBoost
(82%) was the classifier with the lowest performance results across all the evaluation metrics.
In Figure 9b, the results show that kNN and RF methods best performed by achieving
0.22; in terms of the RMSE metric, the lowest values were obtained by RF and kNN when
MICE imputation data is utilised. Figure 9c presents precision results with RF obtaining
the best performance across all missing value methods compared to the others. Lastly, the
Recall results graph in Figure 9d shows that RF, in terms of the mean missing value method,
achieved the best value of 86%. The results mean that the LDA reduction method dataset
obtained much better results when compared with the PCA technique. Furthermore, LDA
performed best in multi-class classification problems. The LDA technique, when compared
with the PCA, considers dependent variables during the creation of the LDs.

Figure 8. PCA performance results.
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Figure 9. LDA performance results.

The results in Figures 8 and 9 show that the application of PCA and LDA positively
changed the performance of the classifiers. The RF model remained the best performing
in terms of the overall results. This is in addition to the fact that Figures 6 and 7 present a
lower RMSE when compared with the Figure 8 and 9 results.

5.2. ROC Curve (AUC)

The area under the ROC curve is the ratio between 0.5 and 1, where values close to
0.5 indicate poor results, whereas values of 1 mean the best performance. The AUC is
mainly implemented to evaluate and validate how robust the ML model is. In this study,
the AUC for the MICE data performed better throughout the investigation compared with
other missing data methods. The RF model, as seen in Figure 10, showed a performance of
99%; better than the other classifiers. Additionally, as shown in Figure 10, the AUC gives
certainties of excellent classifications of the RF model.

Figure 10. Comparison of the AUC results.
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6. Conclusions

This study investigated the strength of widely used ML classifiers for road traffic
accident problems. The classifiers were NB, k-NN, AdaBoost, SVM, LR, and NB. These
were evaluated with four missing data methods: MICE, k-NN, mean and median, and two-
dimensionality reduction methods: PCA and LDA. Accuracy, RMSE, precision, recall, and
the ROC curve (AUC) were the five performance metrics used to evaluate the ML models.
The overall results revealed that RF performed marginally better across the experiments
in terms of accuracy, precision, recall, and ROC (AUC) when compared with the other
classifiers. RF had the lowest RMSE compared with all the other classifiers, indicating a
better fit for the RF model. Overall findings of the study on this particular RTA dataset are
as follows:

(1) Statistical analysis included two-dimensionality reduction methods, with LDA obtain-
ing promising results compared with PCA. In terms of missing data methods, MICE
achieved good results;

(2) A wide range of ML methods was applied due to their popularity and characteristics.
It was observed from the empirical analysis that RF performed best when compared
with the rest;

(3) Furthermore, the AUC evaluation method was introduced to validate the classification
results once the evaluation performance was assessed using accuracy, precision,
and recall.

Some apparent limitations of the study are as follows: only a dataset from Gauteng
province was utilised during the comparative analysis. The dataset contained a certain
number of features for the specific area of interest, excluding other features that could
have been beneficial to improving the model’s performance. The data only contained four
events/targets for possible scenarios to incorporate subclasses into the data.

For future work, further hyperparameter tuning could improve the SVC model results
because the classifier is more strongly influenced by proper parameter tuning. Future
research could test other ML classifiers such as artificial neural networks and deep learning,
testing similar methods with different datasets or provincial metro and expanding the data
in years. The approach itself is a contribution that benefits RTA stakeholders such as model
developers and researchers, and inform policymakers and transportation safety designers
in terms of actions relating to modern traffic safety control and actual predictive models,
which will help develop the field of transportation.
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Abstract: Nowadays, China is faced with increasing downward pressure on its economy, along with
an expanding business risk on listed companies in China. Listed companies, as the solid foundation
of the national economy, once they face a financial crisis, will experience hazards from multiple
perspectives. Therefore, the construction of an effective financial crisis early warning model can help
listed companies predict, control and resolve their risks. Based on textual data, this paper proposes a
web crawler and textual analysis, to assess the sentiment and tone of financial news texts and that
of the management discussion and analysis (MD&A) section in annual financial reports of listed
companies. The emotional tones of the two texts are used as external and internal information sources
for listed companies, respectively, to measure whether they can improve the prediction accuracy
of a financial crisis early warning model based on traditional financial indicators. By comparing
the early warning effects of thirteen machine learning models, this paper finds that financial news,
as external texts, can provide more incremental information for prediction models. In contrast, the
emotional tone of MD&A, which can be easily modified by the management, will distort predictions.
Comparing the early warning effect of machine learning models with different input feature variables,
this paper also finds that DBGT, AdaBoost, random forest and Bagging models maintain stable and
accurate sample recognition ability. This paper quantifies financial news texts, unraveling implied
information hiding behind the surface, to further improve the accuracy of the financial crisis early
warning model. Thus, it provides a new research perspective for related research in the field of
financial crisis warnings for listed companies.
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1. Introduction

The financial situation of listed companies has attracted the attention of government
departments, shareholders, business operators, creditors and other stakeholders in pace
with the development of the capital market. Academics have also been committed to
exploring effective financial crisis recognition indicators and constructing a more accurate
financial crisis warning model to improve the predictive capability of listed companies’
financial crises. In terms of the selection of crisis recognition indicators, most scholars focus
more on standardized financial data and less on non-standardized textual information.
Textual information, as a newer data element, contains richer emotions. Thus, the sentiment
analysis of textual information turns out to be an effective supplement to financial indicators.
This paper quantifies the sentiment and tone of MD&A sections in the annual financial
reports of listed companies and financial news texts, combining them with traditional
financial indicators, respectively, to form new input feature variables. Furthermore, it
constructs different financial crisis early-warning models based on thirteen representative
machine learning methods. The study puts textual information and traditional financial
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indicators together for financial crisis identification, which has a significant positive effect
on the sustainable growth of Chinese listed companies and the capital market.

Based on the emotional tone of texts and machine learning models, this paper mainly
focuses on four questions as follows:

RQ1: Whether the combination of the emotional tone of MD&A texts and traditional
financial indicators can improve the identification of financial crises of listed companies.
RQ2: Whether the combination of the emotional tone of financial news texts and traditional
financial indicators can improve the identification of financial crises of listed companies.
RQ3: A comparative study of the effect of the emotional tone of internal texts (MD&A) and
external texts (financial news) on early warning of financial crises in listed companies.
RQ4: A comparative study of the early warning effects of thirteen machine learning models.

Based on the above research questions, this paper selects 1082 Chinese A-share (RMB-
denominated common shares) listed companies from 2012 to 2021 as the sample. This
paper takes the year of the sample as T and selects the traditional financial indicators in
T-3 years as the benchmark. This study compares the financial crisis early warning effect
incorporated with the emotional tone of MD&A texts and financial news texts, respectively,
and then compares the recognition performance of thirteen machine learning models.
Finally, in this paper, we find the emotional tone of the text that can improve the financial
crisis recognition performance of listed companies, along with the financial crisis early
warning model with greater accuracy.

In summary, the contributions of this paper are mainly: (1) This paper quantifies
textual information and uses the information as a new prediction indicator to measure the
financial crisis of listed companies, which expands the choice of financial crisis prediction
indicators. (2) This paper covers universal machine learning models. By comparing the
effects of different models based on different combinations of prediction indicators, this
paper finds models with better and more stable early warning effects, which provide
references for model users. (3) This paper investigates the effectiveness of the emotional
tone indicator of financial news texts on the early warning models for financial crises
and finds that this indicator helps enhance the accuracy of these early-warning financial
crisis models for listed companies. (4) This study expands on the differences between the
emotional tone indicator of MD&A and that of financial news in enhancing financial crisis
warning capability, from the perspective of the internal and external texts of companies.
Moreover, it expands the relevant research in the field of research concerning financial crisis
early warning models for listed companies.

This paper is structured as follows. The second part introduces related studies. The
third part gives an introduction to the basic models and methods involved in this study.
The fourth part describes the selection of traditional financial indicators and the process of
emotional tone indicators and conducts an empirical study and analysis based on the data
of Chinese listed companies. The fifth part further discusses the empirical results. Finally,
the paper concludes with an outlook on future research directions.

2. Related Studies

2.1. Theoretical and Empirical Definition of the Concept of Financial Crisis

There is no uniform theoretical definition of the concept of the financial crisis. Two
mainstream views exist on the current definition. Beaver [1] took the company’s inability
to pay its debts as the main measure of a financial crisis and summarized four elements
of financial crises: bank overdrafts, unpaid preferred stock dividends, bond defaults and
declaration of bankruptcy. A company would be considered to be in financial crisis if it
meets one of these conditions, only the severity of the crisis varies. Another view equated a
financial crisis with the situation where the company collapses into bankruptcy, claiming
that a company in financial crisis referred to the act of filing a legal bankruptcy petition
under the bankruptcy law [2]. From the perspective of defining financial crises empirically,
the researchers usually define the listed companies undergoing financial crises as those
under special treatment (ST) [3–7]. A stock identified as ST represents that the listed
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company has an abnormal financial condition, and this abnormality mainly includes one of
two cases: one is that the listed company has lost money for two consecutive years, and
the other is that the net assets of the listed company are lower than the par value of the
stock. In this paper, the research object is Chinese listed companies. It is difficult to apply
the standards of other countries to meet the actual situation and to define whether a listed
company has a financial crisis or not. Therefore, the financial crisis in this study is defined
as the listed companies marked with ST, which is more in line with objective reality.

2.2. Financial Crisis Early Warning Indicators and Methodological Techniques

In terms of the selection of early warning indicators for financial crises, existing studies
have mainly used traditional financial indicators as the basis for early warning of financial
crises, with the indicators mainly reflecting solvency, operating performance and cash
flow [8–14]. However, little literature considered other sources of information that interact
with financial data, where textual information is an important form. There was a small
proportion of literature that used the tone of texts such as company annual reports to predict
corporate financial crises and confirmed that non-standardized financial information can
be used for financial crisis early warning [15–18]. Referring to existing literature [19,20],
this paper considers the following five perspectives which measure the performance of
listed companies as profitability, solvency, asset operating efficiency, cash flow quality and
development quality, choosing ten traditional financial indicators as benchmarks. For the
textual information, this paper selects both internal (MD&A) and external (financial news)
texts and calculates the emotional tone to complement traditional financial indicators.

In terms of the use of early warning models, related research presents a transition
from univariate analysis to multivariate analysis, and then to the machine learning method
which is broadly used nowadays. At the very beginning, researchers mainly focused
on univariate analysis methods, using two ratios, net income/shareholders’ equity and
shareholders’ equity/debt, for early warning of the financial crisis of the company [21].
Some researchers selected fourteen financial ratios from company financial statements
for comparative studies and found that the ratio of cash flow to total liabilities is a better
predictor of financial crisis in a company [1]. For bridging the limitation of the univariate
analysis method, researchers used the Z-score model as the introduction of multivariate
discriminant analysis into financial crisis warning. Some researchers chose their five most
significant indicators among the beginning twenty-two financial indicators to construct
the Z-score model. They used the magnitude of the Z-value to reflect the bankruptcy
risk a company faces and found it more accurate than the univariate warning model [2].
However, in practice, it was found that the Z-score model is especially suitable for short-
term prediction, so the ZETA model was subsequently proposed as a complement to this
model. The modified model had a significantly better long-term warning effect [22]. Other
scholars used logistic models for financial crisis prediction. With the help of this model,
they overcame the strict requirements for the distribution of independent variables in the
analysis and confirmed its high accuracy in predicting studies of listed companies [23].
As a result, this method has gradually replaced discriminant analysis as the mainstream
method in this field.

Machine learning began to be introduced into the field of financial crisis early warning
with the development of information technology. Some scholars applied neural network
techniques to crisis early warning models and found that this method could better predict
samples [24]. Random forest was also applied in the risk prediction of listed companies.
Compared to the AdaBoost algorithm, the result of the random forest exercise showed a
decreasing error rate [25]. Researchers also applied the model of support vector machine
(SVM), which works well for nonlinear and high-dimensional samples. In the prediction
results of 944 manufacturing companies, they found that the SVM has a better early warning
effect than the Back Propagation (BP) neural network, logistic regression and multiple linear
regression models [26]. Furthermore, some researchers conducted a comparative study, by
using several methods to construct financial early warning models. Wang et al. [27] used
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three decision tree models to build a financial crisis early warning model and found that
the random forest model has the best classification and prediction capabilities.

The existing research mainly used a single model or several models but paid little
attention to the comparative study of different machine learning models. This paper pro-
poses to use thirteen mainstream machine learning methods, including logistic regression,
ridge regression, lasso regression, GBDT, CatBoost, XGBoost, LightGBM, AdaBoost, SVM,
BPNN, decision tree, random forest and Bagging, to build early warning models for cor-
porate financial crises. Each type of machine learning is based on different theoretical
backgrounds, and its applicability can be fully exploited for different data. The empirical
study demonstrates the financial crisis recognition effect of each model to provide a basis
for enterprises’ decision-making.

2.3. The Emotional Tone of Text and Financial Crisis Early Warning

Textual information, as a new type of data factor, contains more emotions than stan-
dardized financial data and is characterized by containing both negative and positive
emotions. Some researchers have studied the tone of textual information disclosed by
companies. They found that the tone of management in the disclosure of annual reports,
management discussion, analysis and prospectuses has a predictive effect on the future
performance of the company [28–32]. Chinese listed companies have begun to add man-
agement discussion and analysis to their annual reports since 2005, which is an effective
supplement to the annual reports. This section includes further explanations of important
events in the earning calendar and descriptions of business plans, possible challenges and
difficulties in the next year. Existing literature has suggested that when listed companies
are trapped in financial trouble in the current year, the appearance of negative words in the
MD&A section will increase, along with the level of uncertainty [33,34]. By analyzing the
tone of earning calendars some researchers predicted the financial crisis of listed companies
and verified the availability of non-standardized financial information in financial crisis
recognition [35–38]. However, the textual tone seems to fail to perform as a definite and true
reflection of the situation of the company all the time. Compared to numerical information,
textual information can be more easily manipulated, which even costs less [39]. Some
researchers have pointed out that management can manipulate their tone for the purpose
of whitewashing corporate earnings, which further leads to irrational trading and poses
greater risks to business operations [40,41]. The positive tone formed by this manipulative
behavior affected the assessment of the firm’s operating conditions, so it did not necessarily
improve the early warning effect of the model [42,43]. Yang et al. [44] also pointed out
that company management may release positive information by modifying the text, and it
would in turn reduce the accuracy of the early warning model of a company’s financial
crisis by adding emotional tone.

It can be seen that in some relevant papers, research mainly focused on the internal
texts of companies, including MD&A and annual reports, but seldom noticed the external
texts. This paper will study the emotional tone of financial news texts relating to listed
companies and compare the effect of internal and external texts on the improvement of
prediction accuracy of the financial crisis early warning model. In addition, the literature
showed that research on internal textual tone and the effect of early warning of a financial
crisis in listed companies presented two views. This paper will also use sample data for a
10-year period from 2012 to 2021 to explore these two views empirically.

3. Machine Learning Models

Machine learning methods are widely used to solve complex problems in engineering
applications and scientific fields [45–51]. Based on the classification problem, this paper
chooses thirteen mainstream machine learning models to study the effect of crisis warning.
These models include traditional machine learning models, tree-based machine learning
models and integrated machine learning models. This section introduces the main contents
of the models.
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3.1. Logistic Regression, Ridge Regression, Lasso Regression

Logistic regression (LR) is well-known as a machine learning method for solving
binary classification problems by mapping the results of sigmoid functions. It maps any
real value to a value between zero and one but does not take zero or one. A threshold
classifier is then used to convert the value in the interval of (0, 1) to the value of zero or one.
The Sigmoid function plays the role of a threshold classifier, and the functional formula is
shown in Equation (1).

sigmoid(x) =
1

1 + e−x (1)

Overfitting problem always exists when fitting a model, and so is the case with the
logistic regression model. One solution to this problem is regularization, which can be
divided into L1 regularization and L2 regularization. The objective function of the ridge
regression is the sum of the average loss function and L2 regularization. The objective
function of the Lasso regression is the sum of the average loss function and L1 regularization.
The key difference between these two is the penalty term. L1 regularization adds the L1
norm as a penalty term to the average loss function, making it easier to obtain a sparse
solution. L2 regularization adds a squared magnitude of the L2 norm as a penalty term to
the loss function. Compared with L1 regularization, L2 regularization provides a smoother
solution that can reduce the complexity of the model.

3.2. Support Vector Machine

Support vector machine (SVM) is a binary classification model and a linear classifier
that finds the partitioned hyperplane with the maximum interval. Its learning strategy is
interval maximization, which can eventually be translated into the solution of a convex
quadratic programming problem. Vapnik first proposed the SVM model in 1995 [52],
and this model has shown many unique advantages in solving problems such as small
samples, non-linear and high-dimensional pattern recognition. Its excellent performance in
classification becomes a major technique in machine learning and has been extended to
other machine learning applications such as function fitting. In real situations, the sample
data are mostly nonlinearly separable. When dealing with nonlinear problems, they need to
be transformed into linear problems. By introducing a suitable kernel function, an optimal
classification hyperplane can be constructed to achieve fast processing of high-dimensional
inputs. This paper adopts the current mainstream radial basis kernel function, as shown
in Equation (2). xi and xj represent the feature vectors of the ith sample and jth sample,
respectively. σ represents the parameter of the radial basis kernel function.

κ
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(2)

3.3. Back Propagation Neural Network

Back propagation neural network (BPNN) was proposed by Rumelhart et al. [53]. The
BPNN is a widely used neural network model, consisting of an input layer, an implicit
layer and an output layer. Through the training of sample data, researchers continuously
modify and iterate the network weights and thresholds until they reach the minimum sum
of squared errors of the network, where the desired output is approximated. The neural
network model needs the participation of the activation function, which could make the
sparse model better able to mine relevant features to fit the training data, as a source of
nonlinearity in neural networks. The commonly used activation functions are the Sigmoid
function, Tanh function and ReLU function. This paper uses the ReLU function, which is a
sparse activation function that enables the sparse model to better mine the relevant features
and fit the training data. Concurrently, compared with the Sigmoid function and Tanh
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function, the ReLU function is faster and overcomes the problem of gradient saturation
and gradient disappearance. The formula of the ReLU function is shown in Equation (3).

f (x) = max(0, x) (3)

3.4. Decision Tree and Random Forest

Decision tree (DT) model is a tree structure for classifying samples based on features,
with each of its leaf nodes corresponding to a classification, and non-leaf nodes corre-
sponding to a division of a certain attribute. The models constructed by decision trees
are readable, and common DT algorithms are ID3, C4.5 and CART (Classification and
Regression Tree) [54–56]. This paper adopts the Gini index to classify the attributes of the
CART decision tree, and the Gini(D) reflects the probability that two randomly selected
samples with inconsistent category labels in the data set D. The smaller the Gini(D), the
higher the purity of the dataset. The higher the purity of a decision tree node means that
the samples contained in the branch nodes of the decision tree are most likely to belong to
the same category. The Gini index of attribute α is defined by Equation (4), where V is the
number of possible values of attribute α.

Gini(D, α) =
v

∑
v=1

|Dv|
|D| Gini(Dv) (4)

Random forest (RF) is an integrated machine learning model. It consists of several
decision trees and selects the majority of classification results as the final result, resulting in
an overall model with high accuracy and generalization performance.

3.5. Gradient Boosted Decision Tree

Proposed by Friedman [57], Gradient boosted decision tree (GBDT) is an iterative
decision tree algorithm, which is composed of multiple decision trees. The main idea of the
algorithm is as follows. (1) The initialization of the first base learner. (2) The construction
of M base learners. (3) The calculation of the value of the negative gradient of the loss
function in the current model, then using it as an estimate of the residual. (4) Building a
CART regression tree to fit this residual and finding a value that reduces the loss as much
as possible at the leaf nodes of the fitted tree. (5) Updating the learner. The method can do
both regression and classification. The loss function chosen in the regression algorithm is
generally the mean squared error or absolute value error, while the loss function chosen in
the classification algorithm is generally a logarithmic function. The core of GBDT is that in
each iteration, the latter decision tree is trained using the residuals of the previous decision
trees following the negative gradient. The negative gradient residuals can be calculated by
Equation (5).

rti = −
[

∂L(y, f (xi))

∂ f (xi)

]
f (x)= ft−1(x)

(5)

where rti denotes the negative gradient of sample i at the iteration of tth times. L(y, f (xi))
represents the loss function, which can be expressed as Equation (6).

L(y, f (x)) = log(1 + exp(−y f (x)) (6)

3.6. CatBoost, XGBoost and LightGBM

CatBoost, XGBoost and LightGBM share basically the same principle, and can be
categorized into the family of gradient boosting decision tree algorithms. The characteristics
of these three models are described below.

CatBoost takes a symmetric decision tree as a base model, having only a few pa-
rameters. CatBoost combines category features to construct new features, which enriches
the feature dimension and facilitates the model to find important features. CatBoost is
very flexible in handling category-based features, and the processing process is as follows:
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(1) Randomly sort the input sample set and generate multiple sets of random permutations.
(2) Convert floating point or attribute value token to integers. (3) All the category-based
feature results are converted into numerical results according to Equation (7). Where,
ϕ represents the indicator function. The function value takes 1 if it satisfy the condition(

xi
j = xi

k

)
, otherwise takes 0. p is the a priori value, and α is the weight of the a priori value.

x̂i
k =

n
∑

j=1
ϕ
(

xi
j = xj

k

)yj+αp

n
∑

j=1
ϕ
(

xi
j = xj

k

)yj
(7)

XGBoost adds the complexity of the tree model into the regularization to avoid over-
fitting. The model performs well in generalization and supports training and prediction
for data containing the missing value. The essence of XGBoost is integrated from decision
trees, so the model can be written as Equation (8), where k is the number of decision trees
in the model, Xi is the ith input sample, ŷi denotes the predicted value of the model after
the kth iteration, fk(Xi) denotes the predicted value of the kth tree and F is the set of all
decision trees.

ŷi =
K

∑
k=1

fk(Xi), fk ∈ F (8)

GBDT requires multiple training of the entire training data at each iteration. With a
higher training efficiency, LihghtGBM takes GBDT as its core and makes essential improve-
ments in many aspects, including second-order Taylor expansion for objective function
optimization, a histogram algorithm and an optimized leaf growth strategy. It also makes
the algorithm more adaptable to high-dimensional data. LightGBM uses the Gradient-
based One-Side Sampling algorithm, which maintains the accuracy of the information
gain estimation. The information gain is measured using the variance gain after splitting,
keeping only those samples with larger contributions. The formula of variance gain is
given in Equation (9), where j is the split feature used, d is the split point of the sample
feature and n is the number of samples. A and B are samples with large and small gradients,
respectively. l and r are the left and right subtrees, respectively, and g is the sample gradient.

ṼJ(d) =
1
n

⎛⎜⎜⎜⎜⎜⎝

(
∑

xi∈Al

gi +
1−a

b ∑
xi∈Bl

gi

)2

nj
l(d)

+

(
∑

xi∈Ar

gi +
1−a

b ∑
xi∈Br

gi

)2

nj
r(d)

⎞⎟⎟⎟⎟⎟⎠ (9)

3.7. AdaBoost and Bagging

Freund and Schapire first proposed the AdaBoost algorithm in 1995 [58]. The algorithm
learns a series of weak classifiers from the training data and then accumulates them by
certain weights to obtain strong classifiers. It first assigns an initial weight value to each
sample and then updates the sample weight with each iteration. The sample with a small
error rate will have a reduced weight value in the next iteration, while the sample with a
significant error rate will increase the weight value in the next iteration. This algorithm
belongs to a typical integrated learning method. Finally, M weak classifiers are combined
into a strong classifier according to their respective weights, as detailed in Equation (10).
Where, Gm(x) is the mth base classifier, and αm is the weight of this base classifier in the
strong classifier.

G(x) = sign( f (x)) = sign

(
M

∑
i=1

αmGm(x)

)
(10)
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Bagging is another sort of integrated learning method. The main idea is to train
multiple classifiers by sampling the training set several times and then vote on the test
set, in which each classifier is equally weighted. The given winning result is the final
classification result. The final classifier is shown in Equation (11), where M is the number
of classifiers, and ai(x) is the individual classifiers trained. The main difference with
AdaBoost is that its training set is selected with put-back in the original set, and the
training set selected from the original set are independent of each other for each round. In
addition, AdaBoost determines its weight values based on the error rate situation, while
Bagging uses uniform sampling with equal weights for each sample. Finally, Bagging
can generate the individual prediction functions in parallel, while AdaBoost can only
generate them sequentially because the latter model parameters require the results of the
previous model round.

a(x) =
1
M

M

∑
i=1

ai(x) (11)

4. Empirical Analysis

4.1. Design of the Empirical Analysis Process

As shown in Figure 1, the steps of the empirical process of financial crisis warning in
listed companies based on thirteen machine learning models are as follows.

Figure 1. Flow chart of empirical analysis.
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In the first step, this paper carries out the indicator design, including the selection of
traditional financial indicators, the construction of the emotional tone indicators of both
the MD&A section and financial news. Traditional financial indicators constitute input
feature 1. Traditional financial indicators and the emotional tone indicators of MD&A
constitute input feature 2, and traditional financial indicators and emotional tone indicators
of financial news constitute input feature 3.

In the second step, this paper uses thirteen mainstream machine learning models,
including logistic regression, ridge regression, lasso regression, GBDT, CatBoost, XGBoost,
LightGBM, AdaBoost, SVM, BPNN, decision tree, random forest and Bagging, to establish a
financial crisis early warning model for companies. The three sets of input feature variables
formed in the first step are sequentially substituted into the model, and the output feature
variables are binary values, which implies whether the company is a listed company
marked ST or not. All machine learning models in this paper are supervised learning
models. The code of machine learning models is written and run using PyCharm.

In the third step, this paper compares the effect of different input feature variables for
the identification of financial crises of listed companies.

In the fourth step, the early warning effects of thirteen machine learning models are
compared based on a combination of different input feature variables.

4.2. Evaluation Index System Construction

Based on traditional financial indicators, this paper compares the warning effect of
the financial crisis early warning model merged with different textual emotional tone
indicators. In this section, this paper explains the selection of traditional financial indicators
and the process of textual emotional tone indicators.

4.2.1. Traditional Financial Indicators

The selection of traditional financial indicators has a direct influence on the accu-
racy of the early warning model. This paper follows the principles below in terms of
selecting indicators.

1. Principle of importance: It is necessary to select important indicators, instead of
picking all traditional financial indicators indiscriminately.

2. Principle of accessibility: The selection of traditional financial indicators should
consider the accessibility of data and try to select data that are easy to collect.

3. Principle of objective relevance: The selection of traditional financial indicators
needs to be highly relevant to the purpose of use, and a financial crisis warning
requires that the selected indicators are highly relevant to the financial situation of the
listed company.

Since there is no accepted standard for the financial indicators used in the financial
crisis early warning model, based on the relevant category literature, this paper selects five
aspects of traditional financial indicators according to the principles of selection [8–14,19,20].
The financial status of listed companies depends mainly on the profitability, solvency, asset
operating efficiency, cash flow quality and development quality of listed companies in
these five aspects, which contain a total of ten specific indicators. The traditional financial
indicators selection and calculation formula are shown in Table 1.

4.2.2. Textual Emotional Tone Indicators

For the emotional tone indicators of MD&A, this paper first uses Python to write a web
crawler program to crawl from CNINFO (see www.cninfo.com.cn, accessed on 17 April
2022), which is the information disclosure website of listed companies designated by the
China Securities Regulatory Commission. After data cleaning and making Chinese word
separation with the raw text data crawled, based on the financial emotional English words
list provided by Loughran and McDonald [28], this study obtains an emotional dictionary
translated from English to Chinese, and then counts positive and negative emotion words.
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Table 1. The selection of traditional financial indicators and formulas.

First Level Indicators Specific Financial Indicators Formulas

Profitability indicator Operating profit ratio (%) Operating profit/Operating income × 100%

Earnings per share (yuan)

An enterprise shall calculate basic earnings per share
by dividing the net profit for the period attributable
to common shareholders by the weighted average

number of common shares outstanding

Solvency indicator
Current ratio (time) Current assets/Current debts

Oper-cash into current debt (%) Net cash flow from operating activities/Current
debts × 100%

Debt assets ratio (%) Total debts/Total assets × 100%

Interest cover (time) (Net income + Income tax expense + Finance
costs)/Finance costs

Asset operating efficiency indicator Accounts receivable turnover rate (time) Operating revenues/Accounts receivable
ending balance

Cash flow quality indicator Operating cash per share (yuan) Net cash flow from operating activities/Total
common share capital at the end of the year

Cash rate of sales (time) Cash received from sales of goods and
services/Operating income

Development capacity indicator Net profit growth rate (%) Additional net profit in this year/Net profit in the
previous year

There are two main methods in terms of measuring the textual emotional tone. The
first is to measure emotional tone by the ratio of the difference between positive words and
negative words to the total words [59,60]. The second is to use the ratio of the difference
between positive words and negative words to the sum of positive words and negative
words [61–66]. The second method is adopted in this paper, and the formula is shown in
Equation (12).

Tone =
Pos−Neg
Pos + Neg

(12)

Tone presents the value of emotional tone, and the range of values is [−1, 1]. Pos is
the number of words with a positive tone in the text, and Neg is the number of words with
a negative tone in the text.

For the emotional tone indicators of financial news, the study uses the data from the
Chinese research data Services Platform, which has a database of financial news of Chinese
listed companies. The database collects financial news of listed companies from more than
400 online media and 500 newspaper publications. It also counts the amount of positive
and negative news for each listed company. The same Formula (1) is used to calculate
the value of the emotional tone of financial news based on the number of positive and
negative news.

4.3. Sample Selection and the Source of Data

Whether a company is marked as ST (an indicator of delisting risk) is taken as the
identifier of financial crisis for Chinese listed companies, and the year in which a financial
crisis occurs is defined as year T. This paper chooses listed companies that are newly
labeled as ST in year T as the sample of ST listed companies, with a time interval from
2012 to 2021. The number of listed companies labeled as ST in 2012–2021 and the ratio of
listed companies marked as ST to all A-share listed companies in that year are shown in
Table 2. The number of listed companies labeled as ST in each of the 10 years is 550, and we
finally obtained 541 listed companies labeled as ST by excluding 9 companies that had no
traditional financial indicators data in year T-3. It can be found in this table that the total
number of listed companies labeled as ST is very limited, which will lead to the imbalance
of data between ST and non-ST listed companies. Therefore, this paper will explain how
to solve the imbalance data problem in Section 4.4. Finally, this paper chooses 541 non-ST
listed companies, the same number as the selected ST listed companies. It forms a total of
1082 samples, of which ST listed companies are in the positive category and non-ST listed
companies are in the negative category.

118



Appl. Sci. 2022, 12, 6662

Table 2. Number and share of ST companies and all listed companies.

Year Number of ST Companies Total Number of Listed Companies Ratio

2012 16 2494 0.0064
2013 23 2489 0.0092
2014 35 2613 0.0134
2015 42 2827 0.0149
2016 58 3052 0.0190
2017 55 3485 0.0158
2018 52 3584 0.0145
2019 84 3777 0.0222
2020 101 4154 0.0243
2021 75 4682 0.0160

ST listed companies are companies that have been given special treatment for two
consecutive years of losses, so the financial indicator data of T-2 years have already shown
the financial crisis. In order to reflect the effect of early warning, this paper uses the financial
indicator data of T-3 years. For instance, financial indicator data in 2017 are used, which
were actually published in 2018, for the early warning analysis of listed companies labeled
as ST in 2021. The traditional financial indicator data used in this paper are obtained from
the China Stock Market and Accounting Research Database. MD&A text is crawled from
CNINFO, which is processed as an emotional tone indicator through natural language. The
financial news text data are obtained from the Chinese Research Data Services Platform,
with the tone values calculated according to the emotional tone formula.

4.4. Data Processing

To solve the problem of imbalanced data, this paper follows the practice of many
previous researchers, adopting the random under-sampling method [67–69]. By selecting
the number of listed companies labeled as ST as the number of non-ST listed companies
and form a balanced data set.

Considering the effect of extreme values of the data, this paper winsorizes all continu-
ous variables by 1% up and down.

This paper uses gradient descent for loss function optimization, and the use of feature
normalization helps the model converge faster and the gradient descent process is straighter
and more stable. The use of Lasso regression and ridge regression will make coefficients
smaller for features with large dimensions, leading to an omission of this feature. The
coefficient changes have a very small degree of influence on the change of regularization
term values, so the effect of dimension needs to be eliminated by normalization. Although
some tree-based models are more concerned with which cut point is optimal in a particular
feature, normalizing these features does not affect the result of that model. It is necessary
to normalize the feature variables of other models. In summary, this paper normalizes
all input feature variables to map the feature variable data to a range of [0, 1], and the
normalization formula is given in Equation (13).

x∗i =
xi − xmin

xmax − xmin
(13)

xi and x∗i present the values before and after data normalization, xmin and xmax present
the minimum and maximum values of the sample data, respectively.

4.5. Results of Empirical Analysis

In the division of the machine learning model dataset, this paper adopts the 10-fold
cross-validation, dividing the dataset into 10 parts, and taking turns to use 9 of them as the
training set and 1 as the test set. The process is repeated 10 times, and we use the average
of the results as the estimation of the algorithm accuracy. For one thing, it enhances the
generalization ability of the model. For another thing, it avoids the overfitting situation.
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This paper performs ten times the 10-fold cross-validations and averages the results to
reduce the chance and increase the confidence of the results.

As for the evaluation indexes of the early warning effect of machine learning models,
this paper selects the average accuracy, the prediction accuracy of non-ST listed companies,
the prediction accuracy of ST listed companies and Area Under Curve (AUC) as the
evaluation indexes. In the dichotomous classification, the prediction results will appear in
the following four cases.

1. True Positive (TP): Positive samples predicted by the model as positive;
2. False Positive (FP): Negative samples predicted by the model as positive;
3. False Negative (FN): Positive samples predicted by the model as negative;
4. True Negative (TN): Negative samples predicted by the model as negative;

According to the four prediction results, this paper calculates the evaluation indicators
of the machine learning model. The average accuracy (ACC) is calculated by Equation (14),
which represents the share of the number of correctly predicted samples to the total number
of the samples.

ACC =
TP + TN

TP + FP + FN + TN
(14)

The prediction accuracy rate of non-ST listed companies, also known as sensitivity
(SEN), is calculated by Equation (15), which represents the percentage of samples with
correct predictions among all samples that are truly non-ST listed companies.

SEN =
TP

TP + FN
(15)

The prediction accuracy rate of ST listed companies, also known as specificity (SPE), is
shown in Equation (16), which represents the percentage of samples with correct predictions
among all samples that are truly ST listed companies.

SPE =
TN

TN + FP
(16)

AUC is the area under the line of the Receiver Operating Characteristic (ROC) Curve,
the area which is chosen to measure the accuracy of the dichotomous classification model.
The larger the value of the AUC area is, the higher the classification accuracy of the model.
When the value of the AUC area is less than 0.5, the model will almost lose its predictive
effect. the AUC calculation formula is shown in Equation (17).

AUC =
∑i∈ positiveClass ranki − m(1+m)

2

m ∗ n
(17)

ranki represents the serial number of the ith sample. m and n represent the number of
positive samples and negative samples, respectively. ∑i∈ positiveClass means the numbers of
positive samples are added up.

In this paper, AUC, as well as the value of SPE, will be prioritized when determining
the effect of early warning. This is because AUC is used to measure the overall performance
of a model in identifying the financial crisis of the sample companies. As the prediction
accuracy of the sample of ST listed companies, SPE is more important than the prediction
accuracy of the sample of non-ST listed companies, because the goal is the identification of
the listed companies in financial crisis.

4.5.1. Analysis of Empirical Results of Financial Crisis Early Warning Based on Traditional
Financial Indicators

Using traditional financial indicators as the benchmark, this paper tests the perfor-
mance effects of thirteen machine learning models based on traditional financial indicators,
and the results are shown in Table 3. The ranking is based on the value of AUC, where
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the five models with the highest value are AdaBoost, random forest, Bagging, DBGT, and
CatBoost. Bagging has the highest prediction accuracy of 0.6839 for the sample of ST listed
companies, followed by the random forest model and the DBGT model, with a value of
0.6821 and 0.6710, respectively. Among the thirteen machine learning models, the decision
tree has the lowest value of AUC and SPE. All thirteen models have an AUC of 0.7 or
higher, and the average AUC of the thirteen models is 0.7292. The average score of ACC,
SEN and SPE is 0.6647, 0.6707 and 0.6586, respectively.

Table 3. Early warning effects of thirteen machine learning models based on traditional
financial indicators.

AUC ACC SEN SPE Rank

Logistic regression 0.7149 0.6488 0.6322 0.6654 11
Ridge regression 0.7144 0.6488 0.6322 0.6654 12
Lasso regression 0.7152 0.6497 0.6322 0.6673 10

DBGT 0.7429 0.6784 0.6858 0.6710 4
XGBoost 0.7300 0.6590 0.6599 0.6580 7

LightGBM 0.7230 0.6580 0.6617 0.6543 8
CatBoost 0.7413 0.6728 0.6969 0.6488 5
AdaBoost 0.7462 0.6867 0.7061 0.6673 1

SVM 0.7165 0.6534 0.6488 0.6580 9
BPNN 0.7397 0.6728 0.6913 0.6543 6

Decision tree 0.7065 0.6442 0.7024 0.5860 13
Random forest 0.7455 0.6774 0.6728 0.6821 2

Bagging 0.7431 0.6904 0.6969 0.6839 3
Mean 0.7292 0.6647 0.6707 0.6586

4.5.2. Analysis of the Empirical Results of Financial Crisis Early Warning Based on
Traditional Financial Indicators and Emotional Tone of MD&A

According to the RQ1 proposed by this paper, this section examines the early warning
effects of thirteen machine learning models using traditional financial indicators and the
emotional tone of MD&A as input feature variables. The results are shown in Table 4, and
the ROC curves are detailed in Figure A2 of Appendix A. From the comparison of the
values of AUC, it can be found that AdaBoost, random forest, DBGT, and Bagging and
CatBoost models are the five models with the best performance.

Table 4. Early warning effects of thirteen machine learning models based on traditional financial
indicators and emotional tone of MD&A.

AUC ACC SEN SPE Rank

Logistic regression 0.7136 0.6525 0.6359 0.6691 11
Ridge regression 0.7135 0.6525 0.6359 0.6691 12
Lasso regression 0.7141 0.6525 0.6340 0.6710 10

DBGT 0.7434 0.6719 0.6821 0.6617 3
XGBoost 0.7301 0.6571 0.6747 0.6396 7

LightGBM 0.7212 0.6516 0.6636 0.6396 8
CatBoost 0.7355 0.6691 0.6932 0.6451 5
AdaBoost 0.7514 0.6774 0.7006 0.6543 1

SVM 0.7164 0.6599 0.6433 0.6765 9
BPNN 0.7343 0.6811 0.6543 0.7079 6

Decision tree 0.7071 0.6349 0.6913 0.5786 13
Random forest 0.7464 0.6682 0.6691 0.6673 2

Bagging 0.7432 0.6747 0.6839 0.6654 4
Mean 0.7285 0.6618 0.6663 0.6573

Compared to the warning effect of thirteen machine learning models based on tra-
ditional financial indicators, there is a slight decrease in the average value of AUC, ACC,
SEN and SPE in thirteen machine learning models merging emotional tone of MD&A,
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but the magnitude of decrease was less than 0.01. In addition, there are seven machine
learning models with slightly decreasing AUC and six machine learning models with
slightly increasing AUC, but the magnitude was less than 0.01. As for these six machine
learning models with slightly higher AUC, a further comparison of the value of ACC,
SEN and SPE shows that the values of the five models are lower than those only based
on traditional financial indicators. Then this paper studies the distribution of emotional
tone of MD&A for ST and non-ST listed companies and finds that the distribution is more
consistent and does not have significant differentiation. The results are shown in Table 5.
Because of the existence of management manipulation and modification of emotional tone
in ST listed companies, the emotional tone of MD&A in ST and non-ST listed companies
is not as distinguishable as it is expected to be. Through the empirical results, it can be
clearly seen that the emotional tone of MD&A does not have a significant effect on the early
warning of financial crises of listed companies and even brings some noise.

Table 5. Descriptive statistics of the emotional tone of MD&A for ST and non-ST listed companies.

ST Non-ST

Average value 0.4435 0.4548
25th percentile 0.3420 0.3312

Median 0.4725 0.4930
75th percentile 0.5607 0.5885

4.5.3. Analysis of Empirical Results of Financial Crisis Early Warning Based on Traditional
Financial Indicators and Emotional Tone of Financial News

Financial news text, as an external text, having a characteristic of objectivity, is not
susceptible to manipulation by the companies. Based on this, this paper studies whether
the emotional tone of financial news texts can enhance the effect of traditional financial
indicators for the identification of financial crises in listed companies. Based on traditional
financial indicators and the emotional tone of financial news, the empirical results of
financial crisis early warning are shown in Table 6. The ROC curve is detailed in Figure A3
of Appendix A. By comparing the values of AUC, it can be found that CatBoost, AdaBoost,
random forest, DBGT and Bagging remain to be the five models with the best performance.

Table 6. Early warning effects of thirteen machine learning models based on traditional financial
indicators and the emotional tone of financial news.

AUC ACC SEN SPE Rank

Logistic regression 0.7359 0.6765 0.6617 0.6913 11
Ridge regression 0.7349 0.6747 0.6636 0.6858 13
Lasso regression 0.7358 0.6765 0.6599 0.6932 12

DBGT 0.7732 0.7135 0.7190 0.7079 4
XGBoost 0.7648 0.6969 0.7024 0.6913 6

LightGBM 0.7550 0.6839 0.6858 0.6821 8
CatBoost 0.7795 0.7033 0.7375 0.6691 1
AdaBoost 0.7761 0.7098 0.7043 0.7153 2

SVM 0.7368 0.6895 0.6821 0.6969 9
BPNN 0.7587 0.6904 0.6691 0.7116 7

Decision tree 0.7367 0.6765 0.7301 0.6229 10
Random forest 0.7751 0.7107 0.7098 0.7116 3

Bagging 0.7679 0.7043 0.7116 0.6969 5
Mean 0.7562 0.6928 0.6952 0.6905

Figure 2 is plotted based on the values of the AUC of thirteen machine learning models
under three groups of input feature variables. According to Figure 2, the values of the
AUC of the group with the emotional tone indicators of financial news are higher than the
effects of the other two groups of input feature variables on each machine learning model.
Moreover, according to the average value of the four evaluation indexes of the thirteen
machine learning models, the prediction effect of the group of input feature variables with
the emotional tone indicators of financial news is significantly better than those of the other
two groups of input features.
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Figure 2. AUC values of 13 machine learning models under three sets of input feature variables.

4.5.4. Comparative Analysis of the Effect of Financial Crisis Early Warning with the
Emotional Tone of MD&A and Financial News

According to the rank of AUC, this paper selects five models with the best performance
to compare the early warning effect. Based on the values of four evaluation indexes, Figure 3
is plotted, which shows in detail the early warning effect of the five models incorporated
with the emotional tone of MD&A and financial news. AdaBoost-MD&A represents the
early warning effect of the AdaBoost model based on traditional financial indicators and
the emotional tone indicators of MD&A. AdaBoost-News represents the early warning
effect of the AdaBoost model based on traditional financial indicators and the emotional
tone indicators of financial news. The other four models also use the same rule of labeling.
It can be seen from Figure 3 that the five models incorporating the emotional tone of
financial news are more effective than the models incorporating the tone of MD&A in all
four evaluation indexes. The average value of the AUC of the thirteen models considering
the tone of financial news is 0.0277 higher than that of MD&A in terms of warning effect. It
is also 0.0310 higher in terms of prediction accuracy, 0.0289 higher in non-ST listed company
sample, and 0.0332 higher in ST listed company sample.

 

Figure 3. Models warning effects based on different textual emotional tones.
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4.5.5. Comparative Analysis of the Performance of Each Machine Learning Model for
Sample Recognition

This paper uses the average value of the effect evaluation indexes of the thirteen
machine learning models based on three different groups of input feature variables and
ranks each effect evaluation index to compare and analyze the performance of each machine
learning model for sample recognition. The specific results are shown in Table 7. There are
seven models with AUC above the mean, six models with ACC above the mean, seven
models with SEN above the mean and nine models with SPE above the mean. There are
four models with all four groups of effect evaluation indexes exceeding the mean, namely
DBGT, AdaBoost, random forest and Bagging. These four models also rank in the top five in
terms of AUC and ACC, and both the rankings of SEN and SPE remain in the top positions
with good and smooth forecasting results. In addition, the BPNN model, whose AUC ranks
sixth, ranks first in terms of SPE. It means this model has the highest prediction accuracy
for ST listed companies. The traditional logistic regression, ridge regression and Lasso
regression models have poor performance in identifying samples. Decision tree models
rank last in the value of AUC, ACC and SPE, but rank second for identifying non-ST listed
companies. The purpose of early warning mainly lies in the identification of ST listed
companies, so the decision tree model does not belong to the focus of this paper.

Table 7. Mean values and ranking of early warning effect evaluation indicators of 13 machine learning
models based on three different sets of input feature variables.

AUC Rank ACC Rank SEN Rank SPE Rank

Logistic regression 0.7215 11 0.6593 11 0.6433 12 0.6753 8
Ridge regression 0.7209 12 0.6587 12 0.6439 11 0.6734 9
Lasso regression 0.7217 10 0.6596 10 0.6420 13 0.6772 6

DBGT 0.7532 3 0.6879 3 0.6956 5 0.6802 4
XGBoost 0.7416 7 0.6710 7 0.6790 7 0.6630 10

LightGBM 0.7331 8 0.6645 9 0.6704 9 0.6587 11
CatBoost 0.7521 4 0.6817 5 0.7092 1 0.6543 12
AdaBoost 0.7579 1 0.6913 1 0.7037 3 0.6790 5

SVM 0.7232 9 0.6676 8 0.6581 10 0.6771 7
BPNN 0.7442 6 0.6814 6 0.6716 8 0.6913 1

Decision tree 0.7168 13 0.6519 13 0.7079 2 0.5958 13
Random forest 0.7557 2 0.6854 4 0.6839 6 0.6870 2

Bagging 0.7514 5 0.6898 2 0.6975 4 0.6821 3
Mean 0.7379 0.6731 0.6774 0.6688

5. Further Discussion

According to the results of the empirical analysis, it can be found that the introduction
of the emotional tone of the MD&A does not provide more incremental information for
the identification of financial crises of listed companies. However, it brings a certain
amount of noise, which leads to a slight decrease in the overall mean value of AUC,
ACC, SEN, and SPE. This is in line with some literature findings that management can
manipulate and modify texts to increase the positive level of the emotional tone, which
can be very disruptive to the early warning effect [42–44]. It is clear that texts disclosed
internally by firms are vulnerable to manipulation by management. This paper further
investigates external texts that are difficult for companies to influence, such as financial
news texts. The introduction of the emotional tone indicator of financial news to the
machine learning model results in a better early warning effect than that of MD&A, which
provides a new research idea for financial crisis early warning models from the perspective
of feature engineering. On the early warning effects of thirteen machine learning models,
DBGT, AdaBoost, random forest and Bagging all have good prediction performance on all
three sets of input feature variables, providing an empirical basis for following research
and applications.

124



Appl. Sci. 2022, 12, 6662

6. Conclusions

Taking Chinese A-share listed companies as the sample and selecting data from 2012
to 2021, this paper uses a web crawler to obtain the MD&A section in annual reports of
listed companies and uses textual analysis technology to quantify this section. Based on
the emotional dictionary, this paper calculates the tone of the MD&A and calculates the
emotional tone of the financial news by using structured data from the database of the
Chinese Research Data Services Platform. The emotional tone of MD&A and the emotional
tone of financial news are internal and external texts for listed companies, respectively.
This paper further combines them with traditional financial indicators for comparing the
early warning effect of financial crises in listed companies, and finally draws the following
four conclusions: (1) The introduction of the emotional tone indicators of MD&A text
has no significant effect on the improvement of the early warning effect financial crisis
in listed companies and even brings some noise, which has a negative influence on the
prediction effect of some models. (2) The introduction of the emotional tone indicators
of financial news text can improve the early warning effect of financial crises of listed
companies. It can be seen that the external text contains incremental information and can
objectively reflect the operation and the future development trend of listed companies.
(3) The emotional tone indicator of financial news text is not easily influenced by listed
companies. However, the emotional tone indicators of MD&A are easily modified and
manipulated by the management of listed companies. Adopting the tone of financial news
text can exclude the interference of some modification information to the research results,
and then improve the accuracy of financial crisis early warning. (4) Under three different
sets of input feature variables, DBGT, AdaBoost, random forest and Bagging models still
maintain stable and accurate sample recognition ability. The above four models can be
used as relatively optimal classifiers for financial crisis early warning for listed companies.

There are still some limitations in this study, which are as follows: (1) There is no
research on the early warning effect of linguistic features of texts other than emotional tone.
(2) The establishment of a special comprehensive emotional dictionary of financial texts
can be a research direction in the future. (3) There is a lack of research on other external
texts, such as commentary texts, which represent the emotions of investors, and they may
have an enhancing effect on the early warning effect of financial crises.

Owing to low credibility and financial falsification, traditional financial indicators may
fail to truly reflect the development of listed companies. This paper focuses on non-financial
indicators such as textual data, to quantify the internal and external texts of companies,
finding that the emotional tone of financial news texts has an enhancing effect on the
early warning effect of models based on traditional financial indicators. This finding will
provide a useful supplement to the methods of crisis prediction relying solely on traditional
financial indicators. It will also bring important theoretical and practical implications for
the financial risk identification of listed companies.
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Figure A1. ROC curve of machine learning model based on traditional financial indicators. (a) Logistic
regression. (b) Ridge regression. (c) Lasso regression. (d) GBDT. (e) XGBoost. (f) LightGBM. (g) CatBoost.
(h) AdaBoost. (i) SVM. (j) BPNN. (k) Decision tree. (l) Random forest. (m) Bagging.
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Figure A2. ROC curve of machine learning model based on traditional financial indicators and
MD&A emotional tone indicators. (a) Logistic regression. (b) Ridge regression. (c) Lasso regression.
(d) GBDT. (e) XGBoost. (f) LightGBM. (g) CatBoost. (h) AdaBoost. (i) SVM. (j) BPNN. (k) Decision
tree. (l) Random forest. (m) Bagging.
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(m)

Figure A3. ROC curve of machine learning model based on traditional financial indicators and
financial news emotional tone indicators. (a) Logistic regression. (b) Ridge regression. (c) Lasso
regression. (d) GBDT. (e) XGBoost. (f) LightGBM. (g) CatBoost. (h) AdaBoost. (i) SVM. (j) BPNN.
(k) Decision tree. (l) Random forest. (m) Bagging.
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Abstract: The branch of informatics that deals with construction and operation of computers built
of DNA, is one of the research directions which investigates issues related to the use of DNA as
hardware and software. This concept assumes the use of DNA computers due to their biological
origin mainly for intelligent, personalized and targeted diagnostics frequently related to therapy.
Important elements of this concept are (1) the retrieval of unique DNA sequences using machine
learning methods and, based on the results of this process, (2) the construction/design of smart
diagnostic biochip projects. The authors of this paper propose a new concept of designing diagnostic
biochips, the key elements of which are machine-learning methods and the concept of biomolecular
queue automata. This approach enables the scheduling of computational tasks at the molecular level
by sequential events of cutting and ligating DNA molecules. We also summarize current challenges
and perspectives of biomolecular computer application and machine-learning approaches using
DNA sequence data mining.

Keywords: machine learning; DNA computer; biochips; queue automata; type IIB endonucleases

1. Introduction

For the last several years, there has been a growing interest in the possibility of com-
puting by means of DNA molecules (called “DNA computing” later in this paper). The
different directions of studies in this area include construction of biomolecular computers
hardware and software which are based on biochemical components (bioorganic chemical
compounds). Such computers are nanodevices built exclusively of organic components.
Biomolecular computers may have a number of practical uses in the future, owing to their
various properties, such as parallelism of operation or the ability to store information.
Importantly, the biomolecular computers may, in the predictable future, fill some gaps in
the areas not yet accessible to conventional computers. Particularly interesting is the com-
patibility between biomolecular computers and the cellular environment via biochemical
reactions taking place both in vitro and in vivo.

An important part of DNA computing is involved in the construction of intelligent
biochips (meaning decision making in the choice of a diagnosis/treatment direction), as
such technological solutions may simplify and automate molecular diagnostics. This paper
presents the use of biomolecular computers for constructing diagnostic biochips based on
DNA chain cutting and ligating reactions carried out by restriction enzymes. The study
was inspired by the concept of the hypothetical enzymatic Turing machine that was built of
biomolecules by Charles Bennett in 1982 [1]. It also indicates the feasibility of using only
biochemical components for designing computers characterized by high energy efficiency—
with low energy consumption for performing calculations scheduled by humans. It should
be pointed out that Charles Bennett noticed a similarity between the biochemical processes
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taking place in live organisms (specifically DNA polymerase) and the operation of the
Turing machine—specifically, a model of a programmable universal Turing machine that
enables data processing and which is very well known in computer science.

In 1995, Paul W.K. Rothemund published his concept of a Turing machine based on
commercially available class IIS restriction enzymes [2]. This concept indicated a theoretical
possibility (not requiring laboratory experiments) of encoding, in double-stranded DNA,
the transition table of the Turing machine, the idea of which is based on alternate cutting
and ligating the double-stranded DNA with the class IIS restriction enzymes and a ligase.
Moreover, Paul W.K. Rothemund suggested a method for constructing symbols as well
as input words, for instance: the input word x = 000111 (built of the symbols 0 or 1), of
Turing machines which were designed by recording them as double-stranded DNA. In that
approach, encoding the information (the symbol encoded in the input word x = 000111)
as double-stranded DNA is feasible, as modern laboratories offer production of double-
stranded DNA with a preset nucleotide sequence. Paul W.K. Rothemund also proposed a
method for encoding the state of the biomolecular Turing machine which, in his approach,
was interpreted as a sticking-out, single-stranded DNA (the so-called sticky end), obtained
by cutting the double-stranded DNA with class IIS restriction enzymes.

Further studies, including experimental ones, were carried out by our and Ehud
Shapiro’s teams, and demonstrated the potential of restriction enzymes in developing
practical programmable biomolecular nanodevices, functioning in actual laboratory con-
ditions [3–6]. In 2001, Ehud Shapiro’s group built biomolecular computers in which
double-stranded DNA was employed for encoding processed input data (symbols encoded
in the input word). They also used double-stranded DNA for developing molecular soft-
ware to enable such a biomolecular computer to be programmed. The hardware of such a
biomolecular computer consisted of FokI restriction enzyme and ligase. They achieved a
computational result by alternately cutting and ligating double-stranded DNA, placing in
a test tube the double-stranded DNA encoding the input word, the software in the form of
double-stranded DNA, and the hardware (FokI, ligase). It is worth noting that the entire
process was run autonomously in a reaction mixture comprising the appropriate reaction
buffers until the final computational result was obtained. This approach showed that it
is feasible to practically construct a biomolecular computer, working only in a test tube
(without any electronic components), in which the computations are based exclusively on
biochemical reactions.

The use of restriction enzymes in typical laboratory conditions requires optimization
of reaction conditions [5] and an appropriate approach to encoding various components
of biomolecular computers, especially when multiple restriction enzymes are used. A
number of laboratory experiments were carried out using multiple restriction enzymes,
operating alternately on DNA chains in a single reaction mixture [5,6]. After solving
various practical problems, we developed an algorithmic method that enabled an ad hoc
addition of more restriction enzymes acting alternately on the appropriately encoded
DNA [6]. Understanding the successive properties of the biomolecular computers led
us to the formulation of a new mathematical theory involving a base formal apparatus
concerning performance of computation by means of a single restriction enzyme and a
double-stranded DNA [7]. Other theoretical studies included the fundamentals of designing
biomolecular computers with memory and discussed the potential use of type IIB restriction
endonucleases for developing a biomolecular push-down automaton [8].

One concern with biochip design is targeting particular specific molecular goals.
Typically, these targets are specific DNA or RNA sequences defined and determined by the
biochip’s application target (infectious agent or pathological protein/sequence). This issue
can be solved with machine learning.

Machine learning is an important part of the new concept of designing biochips
based on biomolecular computers that has been proposed in this paper. This approach
(concept) requires knowledge of unique DNA fragments, which is obtained by using
machine-learning methods, such as sequence pattern mining [9]. Knowledge about unique
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DNA fragments, the presence of which we want to diagnose, makes it possible to use
biomolecular computers to read these DNA fragments. We selected from the various
approaches to the application of machine-learning methods in biology those that will be
useful for finding unique DNA fragments—important from the point of view of designing
biochips based on biomolecular computers.

2. Machine-Learning Approaches in Nucleotide Sequence Data Mining

In recent years, the use of algorithms and mathematical methods has become widespread
in biological sciences [10,11]. This is due to a dynamic increase in the number of biological
data sets, which prompts the use of various methods typical of exact sciences [12], including
artificial intelligence and machine-learning algorithms, for example, recurrent neural net-
works [13] or convolutional neural networks [14]. This requires using sophisticated methods
characteristic of exact sciences to deepen the biological knowledge (see Table 1). The current
knowledge on living organisms demonstrates great complexity of processes occurring at
the molecular level, e.g., the expression of genetic information is a complex and not fully
understood process.

Table 1. Summary of the existing machine-learning approaches for DNA sequence mining.

Paper Method Type of Input Target Dataset Result

Luedi et al.
(2007) [15]

Multiple
classification
algorithms

DNA sequence Imprint status of
human genes Ensembl 156 imprinted

genes identified

Chen et al. (2016) [16] Hierarchical neural
networks cDNA microarrays Molecular signal

transduction PUMAdb

Novel model for
evaluating the

machinery regulating
gene expression

Kelley et al.
(2016) [17]

Convolutional neural
networks Genome sequence

To annotate and
interpret the
noncoding

genome parts

DNaseI-seq peak
BED format files for

125 cells

Noncoding genome
parts annotated
and interpreted

Amin et al.
(2018) [18]

Long short-term
memory Genome sequence Annotate genome

sequences
NCBI genomedomek-

database

DeepAnnotator
algorithms
and models

Zeng et al. (2018) [19] Natural language
processing Gene sequence Enhancer-promoter

interactions
Various databases
from TargetFinder Framework EP2vec

Yuan and Bar-Joseph
(2019) [20]

Convolutional neural
network RNA sequences Gene–gene

relationships
scRNA-seq and bulk

RNA-seq Framework CNNC

Fudenberg et al.
(2020) [21]

Convolutional neural
network DNA sequences Genome folding

Five Hi-C
anddomekMicro-C

datasets
Akita network

A dynamic development of the next-generation sequencing (NGS), which became
cheap and available, brought about an increase in the amount of data containing nucleotide
sequences. NGS is a sequencing method that makes it possible to determine the order of
nucleotides in a sample of nucleic acids and high-throughput whole-genome sequencing.
The GenBank database, which collects research results from the sequencing of living
organisms, is of particular interest here. Thus, it is possible to quickly find information
about the nucleotide sequence in the form of files containing nucleotide sequences, e.g.,
for a selected group of organisms for which we want to check for differences in nucleotide
sequences. This makes it possible to develop new approaches to the analysis of data
derived from the sequencing of living organisms. In recent years, many different machine-
learning approaches have been used in life sciences. They focus on different aspects
related to sequencing data analysis, such as sequence alignment, classification, and pattern
finding [22].

To implement the biomolecular computers in medicine, as proposed in this paper,
it is crucial to find unique DNA fragments that can be read/identified by biomolecular

135



Appl. Sci. 2022, 12, 6928

computers. It is important to find unique patterns for the DNA sequences tested so that
genetic differentiation of the investigated organisms is possible. DNA fragments encode
various information, e.g., they encode amino acids that make up proteins. Therefore,
comparing genomes based on specific DNA fragments makes it possible to find similarities
between the tested organisms or to differentiate them with respect to the occurrence of
unique nucleotide sequence arrangements. The problem of finding patterns in large sets
of biological data that contain genomic sequences [9,23] is a challenge both for computer
scientists and mathematicians, but also for biologists. Figure 1 presents the main idea of
finding patterns in various nucleotide sequences that are analyzed by applying machine-
learning methods to files containing nucleotide sequences. In our approach to the use
of biomolecular computers, we amplify the unique DNA fragments by PCR (fragments
number 2 and number 4 to be exact); then, we read the amplified DNA fragments using a
properly designed biomolecular computer. Thus, the step of finding unique patterns using
machine-learning methods is a key stage in the application of biomolecular computers for
molecular diagnostics.

Figure 1. A diagram showing the use of machine-learning methods to find patterns and similarities
in nucleotide sequences. By studying different nucleotide sequences with the use of machine-
learning methods, unique DNA fragments can be found that are distinctive patterns of a DNA
sequence. Two unique sequences (1 and 4) in the S1 sequence tested are marked green. Abbreviations:
S1, . . . , S7—denote different genome sequences (different nucleotide sequences in genomes); the
numbers 1, 2, 3, 4, 5, 6, 7—denote nucleotide sequences that occur in the sequences tested; the numbers:
58, 114, 1047, 1087—denote the sequence position in the genome; the unique DNA fragments are
denoted by green color; the nonunique DNA fragments are denoted by yellow color.

Machine-learning algorithms are of particular interest, as they allow classifying DNA
sequences, for example, the use of convolutional neural networks to analyze DNA se-
quences [14]. The classification of DNA sequences is very useful in understanding the
relationship between DNA sequences encoding different proteins, as well as the relation-
ships between proteins [13]. The main problem with these studies is that the functions of
DNA fragments are not fully understood and the relationships between DNA fragments
are still being discovered. There are many different approaches to finding homology in
files containing nucleotide sequences [24], e.g., the use of basic local alignment search tool
(BLAST) to find similarities in nucleotide sequences [25]. These problems are similar to
those of fast search in text files encountered in computer sciences [26].

The key element of the proposed approach of employing the biomolecular computers
is the use of machine-learning methods to find unique and characteristic DNA fragments
of the diagnosed organism. These can be unique patterns of DNA fragments that are found
by machine learning. Our proposed new approach is a combination of different research
results in the field of machine learning and theoretical and practical work in the field of
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biomolecular computers. This approach requires an interdisciplinary treatment of looking
at the problem of molecular diagnostics, which needs to be solved by a joint action of
computer science and molecular biology.

3. New Concept of Designing Diagnostic Biochips

Extraction of DNA sequence patterns with the use of machine-learning methods
provides the background for the construction of diagnostic biochips based on biomolecular
computers. In the proposed concept of designing diagnostic biochips based on biomolecular
computers, unique DNA fragments play a special role, as they enable proper programming
of a biomolecular computer in such a way that it reads unique DNA nucleotide sequences.

In the previous section, we discussed different machine-learning approaches to nu-
cleotide sequence data mining. In our new concept of designing diagnostic biochips, it is
possible to use artificial neural networks, for example, recurrent neural network (RNN) [18],
at the stage of machine learning in the sequence data mining. RNNs can be used for data
containing ordered strings, e.g., nucleotide sequences. From the point of view of the re-
search methodology involving the RNN, it is important that the nucleotide sequences of
the studied living organism genome are the input layer of such a network. RNNs can be
used to generate output based on a nucleotide sequence of a given length. For example,
RNNs can analyze nucleotide sequences that are characteristic of protein-coding genes and
identify promoter sequences [10]. As part of the methodology of working with sequence
extraction machine-learning methods, classic elements of machine learning, such as the
process of training, validation, and testing, should be distinguished in individual steps. In
the first step, it is necessary to well understand the set of input data and then to formulate
an appropriate research question. In the next step, the data should be divided into training,
testing, and validation sets. The next step is to choose the most suitable model for the
research question. At this stage, it is especially important to check assumptions on the
possibility of using the model. From the point of view of machine-learning methodology, it
is also important to fine-tune the hyperparameters for the methods used. It is worth noting
that in recent years, the model called transformers have attracted a lot of interest from
researchers, as it allows better accuracy when studying character strings such as nucleotide
sequences [27,28].

We propose a new approach to biochip design with biomolecular computing as the
hardware and software (Figure 2) to enable DNA-level diagnostics. In this approach, the
main mechanism is based on the use of biomolecular computers, built of appropriately
encoded DNA chains as the software, and restriction enzymes and ligase as the hardware.

Figure 2. Schematic diagram of the new approach to using biomolecular computers as diagnos-
tic biochips.

In this approach, the DNA fragments, for example, unique to a pathogenic virus,
are determined by means of machine-learning methods in the sequence data mining.
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Knowledge on unique DNA fragments, e.g., viral genomes, can come from analyzing
an open access genetic sequence database, such as the GenBank database. Particularly
interesting studies in this area include fingerprinting, which enables detection of the specific
DNA fragments (obtained by PCR) characteristic of the investigated organisms. Recent
years have also seen the development of methods based on artificial intelligence, which
enable an automatic retrieval of information from genetic data. To this end, we propose
the development of various machine-learning methods enabling detection of those DNA
fragments that are unique with reference to the tested species. An important part of
this approach is the software that will enable automatic encoding of the indispensable
parts of diagnostic biochips based on biomolecular computers. This type of software will
allow highly precise designing of indispensable components of the diagnostic biochips.
At the molecular level, the mechanism of action of the diagnostic biochips consists of
a sequential (alternate) reading of characteristic genetic features by the programmable
biomolecular nanodevices built of a double-stranded DNA and the restriction enzymes.
The devices complete their action as soon as they detect the presence of the desired DNA
fragments and output signal, e.g., by means of fluorescence. It is worth noting that the
so-designed diagnostic biochips can be manufactured commercially as laboratory kits or
diagnostic devices.

One of the requirements for the correct and accurate designing of biochips based on
biomolecular computers is to develop theoretical fundamentals of the implementation of
practical biomolecular computers. In the case of diagnostic biochips, we propose the use of
a formal system called queue automata [29] which have a memory that works according to
the first in, first out (FIFO) principle—queue memory [30] (Figure 3).

Figure 3. Schematic diagram of the queue memory operation (FIFO principle). A new element added
to the queue is placed at the end of the queue, and the first element is removed from the front of the
queue. The operation of adding a new element to the queue is called ENQUEUE, while the operation
of removing an element from the queue is called DEQUEUE. Abbreviations: 1, 2, 3, 4, 5 denote the
positions of the elements that are in the queue.

The queue automata consist of a head (finite control), a type with cells containing an
input word created from symbols of a certain finite alphabet and a queue (Figure 3). A
finite control reading of the symbols of the input word runs one after another and changes
its state according to the transition rules followed. At every step of the queue automaton
operation, the first symbol in the queue may be removed or retained, and another symbol
may be added at the end of the queue. The transition depends on the current state of
the queue automaton and on the symbol read out from the input word. A variant of
queue automata is the deterministic input-driven queue automata [31]. In these automata,
“input-driven” means that the automata are controlled by the input, i.e., that the input word
controls the queue. The deterministic input-driven queue automata are a formal system
M = (Q, Σ, Γ, q0, F,⊥, δe, δr, δi), where Q is the finite set of internal states; Σ is the finite
set of input symbols consisting of the disjoint union of sets Σe, Σr, Σi; Γ is the finite set of
queue symbols; q0 ∈ Q is the initial state; F ⊆ Q is the set of accepting states; ⊥ /∈ Γ is the
empty queue symbol; δe is the partial transition function mapping Q× Σe × (Γ ∪ {⊥}) to
Q× Γ; δr is the partial transition function mapping Q× Σr × (Γ ∪ {⊥}) to Q; and δi is the
partial transition function mapping Q× Σi × (Γ ∪ {⊥}) to Q.

The choice of that theoretical model (exactly queue automata) was dictated by the
possibility of task scheduling with the use of queue automata, which is required for the
controlled genome reading at the molecular level with the use of type IIB restriction
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endonucleases. The biomolecular implementation of the queue automata (biomolecular
queue automata) requires specific encoding of the respective components of the queue
automata (Figure 4).

Figure 4. Schematic diagram of a biomolecular queue automaton. Abbreviations: a, b, c, d, e denote
the symbols of the biomolecular queue automaton; A, B, C, D, E—the queue symbols of a biomolecular
computer; the empty queue symbol denotes the beginning of the biomolecular queue; the spacer
denotes the DNA fragment between the input symbols or the queue symbols of the biomolecular
queue automaton; 5′, 3′—the DNA chain direction.

We propose that the symbols in the queue automaton should be separated by spacers,
that is, the DNA fragments which do not encode the input symbols of a biomolecular
computer—similarly to a computing machine made of biomolecules and presented by
Ehud Shapiro’s group in 2003 [4]. In addition, our proposal is that the spacers between
the symbols should be of different length as this provides an opportunity to perceive a
genome as a system of different symbols separated by spacers (Figure 5A). In our approach,
the spacers can be used as technical DNA fragments encoding additional information at
the biological level, but they do not play a significant role in queue automata. From the
point of view of queue automata, the spacers are not very important for the calculations,
but can be used as carriers of biological information encoded in DNA, e.g., a spacer can
be used to store DNA sequences encoding proteins. It is suggested that the input symbols
of the queue automata are encoded with same-length DNA chains, for instance: 10 base
pairs, since this will enable appropriate encoding of the states of the queue automaton.
In this approach, we are able to find the respective DNA fragments in the genome and
then read the symbols using type IIB restriction endonucleases. The queue symbols of
the biomolecular computer are encoded with DNA chains which have the same encoding
lengths and which may contain spacers—just like the symbols of the queue automaton
(Figure 5B). The states of the biomolecular queue automata are understood as the cut places
of the symbol of a queue automaton within a fragment of the diagnosed genome [7].

Figure 5. (A) An example of the input symbols of a biomolecular queue automaton. (B) An example
of the queue symbols of a biomolecular queue automaton. Abbreviations: bp—the number of base
pairs, encoding information in DNA; 10 bp—the length of a DNA with 10 base pairs (other base pair
numbers such as 7 bp are to be understood accordingly); the input symbols of a biomolecular queue
automaton are denoted by blue color; the queue symbols of a biomolecular queue automaton are
denoted by green color, the empty queue symbol is denoted by yellow color.
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The distinguished initial state is the first cut place of a type IIB restriction endonuclease
in the appropriate place of the symbol of a genome. The set of accepting states is understood
as cut places generated after the last cut with type IIB restriction endonuclease. The empty
queue symbol is a separate DNA molecule, encoded with a unique DNA fragment with
a sticky end. The queue symbols are encoded within the DNA fragment located in the
transition molecule—to the left of the action site of the type IIB restriction endonuclease.
The queue symbols are released only after the transition molecule relates to the symbol,
encoded in the input word consisting of the symbols of the biomolecular queue automaton.
The transitions of the biomolecular queue automaton are encoded with DNA chains which
contain the restriction site for a type IIB restriction endonuclease in the middle of the
transition. One queue symbol is encoded on the left of the restriction site and on the right,
there is the sticky end complementary to the sticky end of the symbol of the biomolecular
queue automaton.

Type IIB restriction endonucleases may constitute the hardware for biomolecular
computers with queue memory, as they have the ability to simultaneously read and write
information by cutting the double-stranded DNA to the right and to the left of the restriction
site (Figure 6A). It is also acceptable to use multiple type IIB restriction endonucleases
that act alternately in a single reaction mixture as well as to use restriction enzymes of
other classes, for instance Class II, which cut the DNA chain only in one direction from the
restriction site. This is of interest particularly in the aspect of earlier laboratory studies on
the applicability of multiple restriction enzymes [5,6], as well as the concept of a theoretical
design of a push-down automaton with the use of multiple restriction enzymes [32].

Figure 6. (A) The operation of the restriction enzyme BaeI. (B) The mechanism of writing the queue
symbols using the restriction enzyme BaeI. Abbreviations: t1—the transition molecule named t1.

It is worth mentioning that, in the area of DNA computing, earlier practical solu-
tions based on the use of restriction enzymes, only offered the possibility of reading the
information encoded in the DNA, but not that of writing it [3,5]. The type IIB restriction
endonucleases enable cutting the DNA chains in two directions and, in addition, they leave
relatively long sticky ends, e.g., the length of the sticky ends left by BaeI is five nucleotides
(Figure 6A). This effect of the type IIB restriction endonucleases enables the biomolecular
computer to be programmed so that, after cutting the DNA chain, the enzyme writes
information on the read-out DNA fragment (Figure 6B)—this is similar to the case of the
biomolecular push-down automaton [8]. It is worth mentioning that a representative of the
type IIB restriction endonucleases, BaeI, was used in practical experiments aimed at the
implementation of the biomolecular computer involving multiple restriction enzymes [6].
This provided an experimental ground in the area of DNA computing for constructing
various practical solutions based on type IIB restriction endonucleases.
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4. A Concept for PCR Automation by Means of Biomolecular Computers

Biomolecular computers, specifically those with queue memory, which use type IIB
restriction endonucleases may be used for automating the PCR method. The proposed
new approach (called Queue-PCR) to automating the PCR method consists of the use of
biomolecular computers as the hardware and the software for a wide range of PCR solutions.
In comparison with the conventional PCR, this approach has the advantage of reading
numerous replicated DNA fragments by the appropriately programmed biomolecular
computer (Figure 7). The first step involves the replication of selected DNA fragments using
the starters and the polymerase—as in the conventional PCR protocol. In the next step, the
appropriately programmed biomolecular software in the form of transition molecules (see
t1, t2, t3, Figure 8) enables cutting the respective DNA fragments. The transition molecules
enable both reading the DNA fragments and writing the read-out DNA fragment at the
same time (Figure 8). The key elements in this approach are the appropriately programmed
transition molecules that are unique for each transition executed by the biomolecular
computer—they have the unique sticky ends and the encoded queue symbols.

Figure 7. Diagram Queue-PCR of a new PCR automation concept of the use of biomolecular
computers with type queue memory based on type IIB restriction endonuclease. The first step
of Queue-PCR concept is replication of selected DNA fragments and the next step is sequential
cutting and ligating DNA molecules by means of molecular software and hardware. Abbrevia-
tions: t1, t2, t3, t4, t5—respective transition molecules (molecular software); PCR—conventional PCR
method; the numbers: 58, 114, 1047, 1087 denote positions on the genome. The blue line denotes the
genome fragment multiplicated by the PCR. The green rectangle denotes the sequence recognized by
type IIB restriction endonuclease (molecular hardware). The DNA fragments amplify by PCR are
denoted by blue color. The restriction sites are denoted by light green color. The remaining colors
schematically illustrate the queue symbols.
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Figure 8. Operation of the restriction enzyme BaeI in a system which reads the genome
fragment—reading and writing information into the queue. The molecular software (t1, t2, t3) allows
alternating and autonomous cleavage of DNA molecules which are genome fragments obtained
by the PCR method. The biomolecular computer produces the final DNA fragment, as a standard
output, after the cyclic reactions of cutting and ligating the genome fragment obtained by the PCR
method. The green circle denotes the factor of fluorescence. The DNA fragments that are cleaved by
restriction enzyme (BaeI) are denoted in yellow. The restriction sites are denoted by light green color.
The other colors schematically illustrate the queue symbols that are placed in the queue.

After reading the DNA fragments (see Appendix A), the appropriately programmed
and designed biomolecular computer will return, as the standard output, information on
the result of the operation, e.g., in the form of fluorescence (see Appendix B). An important
element in the new approach to designing diagnostic biochips is the use of a restriction
enzyme cutting DNA in two directions (as described in the previous subsection). This
enables designing transition molecules which also comprise writing the information (queue
symbols) and reading multiple DNA fragments replicated by the PCR method. In the final
phase of DNA reading, a chain is formed that changes the color of the solution due to
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fluorescence. This approach may additionally be supplemented with DNA sequencing
using the restriction enzymes [33,34].

5. Discussion

Searching for unique nucleotide sequences using machine-learning methods is crucial
for the proposed applications of biomolecular computing. An important direction of
research in this area has been shown to be the discovery of unique patterns in nucleotide
sequences [9], as this knowledge enables biomolecular computer programming to read
unique patterns in nucleotide sequences.

Current and potential future research directions and an example of the use of biomolec-
ular computers as the hardware and software in technological solutions are presented.
Among the vast array of available restriction enzymes, type IIB restriction endonucleases
were selected as having a great potential in applications related to biomolecular computers.
In addition, the idea of biomolecular queue automata is proposed along with queuing
systems and queuing networks based on the use of type IIB restriction endonucleases and
appropriate encoding of double-stranded DNA. This approach shows that it is possible to
design biomolecular computers with queue memory as well as queuing networks using
type IIB restriction endonucleases. The earlier technological solutions included practical
laboratory experiments testing biomolecular finite state automata that were computers
without memory [3,4]. Moreover, laboratory tests were already run on the functioning of
type IIB restriction endonuclease (BaeI) in a system of biomolecular computers [6]. This
provides practical foundations for creating different technological solutions linked with
broadly understood biomolecular computers involving type IIB restriction endonucleases,
specifically for creating diagnostic biochips.

The proposed approach to designing biochips with biomolecular computers can
incorporate one or more than one type IIB restriction enzyme. The choice of multiple
restriction enzymes (type IIB) depends on the possibility of using an appropriate type IIB
restriction enzyme to read a genome fragment. If a given DNA fragment cannot be read by
a given type IIB restriction enzyme (in use with designed transition molecules), it should
be checked whether it is possible to read it using two or more restriction enzymes. When
selecting the number of type IIB restriction enzymes, one should be guided by the principle
of minimalism and choose the minimum number of restriction enzymes that can read a
given DNA fragment. In this regard, attention should be paid to the main advantage of
such an approach, namely that the use of more types of IIB restriction enzymes makes it
possible to read DNA fragments of greater lengths. Thus, the use of multiple restriction
enzymes in the diagnostic biochip (while maintaining the principle of minimalism) allows
building more complex biochips.

Additionally, in the case of diagnostic biochips, we propose the use of a formal
apparatus available in the theory of queue automata [29,35]. Particularly interesting are
the deterministic input-driven queue automata [31]; nevertheless, this approach does not
take into account encoding the input data with DNA chains and the action of restriction
enzymes. In addition, we used the idea of queue automata—a concept mentioned as
early as 1943 by Emil Leon Post [36]. The queue automata were the subject of studies
in various areas [31,35,37–39]. From the PCR perspective, especially interesting are the
queue automata in the context of scheduling problems [40], as in this method scheduling
of the resulting DNA chains is particularly useful. We propose to advance the idea of
the deterministic input-driven queue automata [31]. The other theories we used in our
paper include the queuing theory [41] and queuing networks [42]. The former was used
for modeling biological processes [43].

The use of type IIB restriction endonucleases also makes it possible to implement other
models, based on the type of queue memory. Particularly promising seem the queuing
systems based on the Erlang queuing theory [44,45]. It is worth noting that queuing systems
can be combined to form queuing networks [46], which enable complex systems based on
queues to be designed. Biomolecular implementation consists of the appropriate encoding
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of all elements of the system, where the queue is the hardest element to implement. It
should be noted that the idea of biomolecular implementation of a queue is provided in the
present paper. For instance, in every queuing system, one can use one type IIB restriction
endonuclease and combine it with others so that they form a queuing network.

Theoretical studies on biomolecular computers may provide practical solutions. Such
new methods and models may have numerous medical applications, complementing con-
ventional therapies and laboratory diagnostics. Early research on biomolecular computers
focused on human-operated, laboratory-scale computers for solving complex computa-
tional problems. More recently, simple, autonomous and programmable molecular com-
puters have been presented in which the input and output information can be given in
a molecular form. Such computers, using biological molecules as input and biologically
active molecules as output, could create a system for the “logical” control of biological
processes. An autonomous biomolecular computer is proposed, which, at least in vitro,
logically analyzes mRNA levels and responds by producing a molecule capable of affecting
gene expression levels. This approach can be applied in vivo for biochemical sensing,
genetic engineering, and even medical diagnosis and treatment.

A good example of the use of biomolecular computers is the concept of cancer diag-
nostics and cancer treatment based on silencing a cancer gene expression [47]. With this
approach in mind, Ehud Shapiro’s team developed a method for the activation of biomolec-
ular software for cases where the reaction mixture contains typical neoplastic mRNA. For
that purpose, they used a simple biomolecular computer, developed in a similar way as in
their previous experiments [3,4]: it was built of software (in the form of double-stranded
DNA) and hardware (in the form of the FokI restriction enzyme), which could only assume
one of two states—“yes” or “no”. If “cancer mRNA” was present, then the biomolecular
computer switched to the “yes” state; otherwise, it was in the “no” state. When all the
sought for cancer features in the form of mRNA were present in the reaction mixture, then
the biomolecular computer completed its operation and yielded the diagnosis of “yes”,
confirming the presence of cancer genes. Then, it released a drug capable of silencing the
cancer gene expression. A part of that approach was also the proposed new concept of
designing the input word, which enabled the release of the drug after the final cutting of
the double-stranded DNA encoding the symbols of the biomolecular computer.

Another interesting application of DNA computing is the general concept of de-
signing reconfigurable DNA nanovaults capable of controlling interactions between the
enzymes [48]. Of particular interest seem to be issues involving DNA sequencing, where
Sanger’s sequencing remains the basic method [49]. Interestingly, one of the methods of
studying sequencing is based on the use of class IIS restriction enzymes [33,50], and another,
similar approach to sequencing is used as well [34,51]. The proposed concept, of which
DNA sequencing is the main aim, is based on reading DNA by the restriction enzymes. It is
worth noting that the idea of sequencing with the use of the restriction enzymes was shown
before the first practical experiment, i.e., implementing biomolecular computers with a
single restriction enzyme [3]. It is particularly interesting to study the feasibility of sequenc-
ing in the aspect of programming and using biomolecular computers, because the two
approaches complement each other. It seems that comprehensive studies on sequencing
with the use of biomolecular computers will yield numerous practical solutions in the field
of sequencing. Another interesting application of restriction enzymes, regarding type IIB,
is fingerprinting with the use of a class of such enzymes [52]. The researchers noted that
type IIB restriction endonucleases can be used for studies on the genome of live organisms.
Details of the biochemical cutting of DNA by means of type IIB restriction endonucleases
were studied in a number of papers, including ours [6,53]. Type IIB enzymes were used in
DNA-computing studies for developing a theoretical biomolecular push-down automaton
model, that is, for a stack-memory computer. The main idea was based on using a circular
double-stranded DNA and a single type IIB restriction endonuclease, PsrI [8], which en-
ables cutting of the double-stranded DNA to the left and to the right of the restriction site.
This approach is similar to the idea presented by Paul W.K. Rothemund in 1995, in which
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the symbols are encoded by means of the double-stranded DNA, and input data processing
is affected by alternately cutting and ligating the double-stranded DNA. It should also
be noted that our practical studies on the use of multiple restriction enzymes in a single
reaction mixture also showed the applicability of type IIB restriction endonuclease for
designing biomolecular computers [6].

The action of a typical type IIB restriction endonuclease (more specifically, BaeI) was
studied in earlier works in a system of biomolecular computers using multiple restric-
tion enzymes [6]. Those studies demonstrated how to design synthetic nucleotides with
LITMUS 38i plasmids, and how to obtain the respective components of a biomolecular
computer working in a system of multiple alternately functioning restriction enzymes.
The biochemical reactions were optimized for two restriction enzymes acting in a single
reaction mixture [5]. In those studies, we also investigated in detail the optimization of
the reaction medium in which a biomolecular computer operates and identified problems
that may occur in preparing the respective components of biomolecular computers. More-
over, we explained how to solve any problems that may occur in the practical functioning
of the biomolecular computer comprising multiple restriction enzymes within a single
reaction mixture.

It is worth mentioning that earlier experiments demonstrated the action of a single
restriction enzyme in a biomolecular computer system [3,4,54]. The experimental conditions
of the work of various restriction enzymes were also investigated as potentially useful in
the construction of biomolecular computers [55].

Numerous research papers describe the development of biosensors, or small devices
enabling detection of organic compounds, for instance DNA, by means of miniature physi-
cal detectors. Another concept is to design biochips, or devices that enable a number of
biochemical reactions to take place in a single device, usually integrated with electronic
components that constitute the hardware [56,57]. A compelling approach to designing
diagnostic devices is the lab-on-a-chip (LOC), with a number of strategies to design actual
devices that are based on the lab-on-a-chip idea [58] and have practical applications involv-
ing operations on DNA [59]. An interesting illustration of how the lab-on-a-chip idea may
be coupled with DNA computing is the concept of a molecular inference system [60–62].
One more example of an innovative approach to using biomolecular computing is the idea
of creating biosensors [63,64].

What is frequently required in the practical implementations of biomolecular comput-
ers is an advanced mathematical formal apparatus, the purpose of which is to organize
state-of-the-art knowledge of various approaches to constructing biomolecular computers.
A precursor formal apparatus, which enables computations performed with the use of
restriction enzymes and a double-stranded DNA to be grasped, was described as the theory
of tailor automata [7]. A uniform formal system helps to precisely define a formal model
used for implementing biomolecular computers. This approach to DNA computing enables
problems connected with the practical designing of biomolecular computers to be solved
effectively. For instance, from the practical point of view, it is an important thing to increase
the number of states of a biomolecular computer [6,54,65], and to correctly encode the
symbols of the biomolecular computer, simply because their precise design is required
for the optimum operation of a biomolecular computer in the conditions of a reaction
medium [66,67].

In addition to that, a number of other concepts of building biomolecular computers
as well as their applications are currently in the phase of theoretical considerations. As a
proof of the principle, a computer can be used to identify and analyze mRNA of disease-
related genes from in vivo cancer models. Theoretical studies on biomolecular computers
include, as a leading topic, studies on the splicing system [68–71]. Another interesting
approach to DNA computing is the reaction system [72,73]—the subject of numerous
studies recently [74–76].

In this paper, we proposed an idea of biochips that can be constructed using DNA.
Therefore, the natural target processed easily by our biochips is cell-free DNA (cfDNA)
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present in a wide variety of pathological conditions ranging from cancer to autoimmune
diseases [77]. It is associated not only with disease occurrence, but also with the severity
of symptoms and even treatment options. It is worth mentioning that cfDNA can easily
be isolated using noninvasive methods and further processed. To date, cfDNA analysis
has only been quantitative; however, it has recently been shown that cfDNA can be used
to detect the sign of genomic instability. In other words, cfDNA profiling, defined as
a common set of disease-specific mutations, can be a useful tool for screening healthy
individuals for early symptoms of cancer and other diseases with the genomic instability
background. Such a screening is time- and cost-consuming, as it requires sequencing
followed by library preparation. Our conceptual biochips could be used instead of DNA
sequencing. It is possible to configure our biochips in such a way that individual mutations
would be scheduling by queue biomolecular automata and the signal is only emitted when
the exact mutation is detected.

6. Conclusions

This paper presents a novel concept for building biochips of which the hardware
and the software are based on biomolecular computers. Due to their unique properties,
the biomolecular computers are of particular interest in building biochips. Among the
various known theoretical models of computation, we selected the one that is exceptionally
interesting regarding the aspect of PCR automation, namely, the deterministic input-driven
queue automaton. We also indicated a group of restriction enzymes (type IIB restriction
endonucleases), especially important for biomolecular computers. The use of such enzymes
provides a foundation for designing biomolecular computers with memory, e.g., queue
automata. It would also be interesting to pursue studies on the applicability of type IIB
restriction endonucleases for designing various data structures known in computer science,
e.g., tree data structure.

We also propose a new approach—Queue-PCR—for automation of the PCR method
using the biomolecular computers. The Queue-PCR concept is important as a new idea of
the use of biomolecular computers. It shows their applications and indicates the potential
directions of study on new functionalities of programmable biomolecular nanodevices.
This approach to PCR automation may be the beginning of new directions of study, focused
on the automation of molecular genetics methods using biomolecular computers as the
hardware. This provides fundamentals for creating biomolecular software for PCR solutions
in their broad sense, thus enabling them to be programmed at the molecular level.

In the proposed approach, it is important to use machine-learning methods at the
stage of designing biochips based on biomolecular computers, because the key element of
the proposed solutions is knowledge on unique nucleotide sequences.
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Appendix A

Figure A1. The list of DNA chains that are formed during the action of a biochip—an example:
(A)—the set of all transition molecules; (B)—the set of all reaction by-products formed during the
alternating action of type IIB restriction endonuclease (more specifically, BaeI); (C)—the set of all
queue symbols. (D)—the set of all detection molecules; (E)—the process of biomolecular queue
symbols ligation; (F)—the set of all reactions in which DNA molecules are not ligated together.
Abbreviations: A, B, C (in italic text)—the queue symbols of a biomolecular computer; t1, t2, t3, t4,
t5—molecular software. The color markings are described in Figure 8.
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Appendix B

Figure A2. The list of DNA chain lengths before, during and after molecular diagnosis by means
of a biochip based on a biomolecular computer. The length of DNA strands before the diagnosis is:
200 bp, 56 bp, and 46 bp, while after the molecular diagnosis it is: 480 bp, and 28 bp. The fluorescence
mechanism is used, in which fluorescence occurs when a DNA chain of 480 appears in the solution.
The color markings are described in Figure 8.
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Abstract: Predictive modelling strategies can optimise the clinical diagnostic process by identifying
patterns among various symptoms and risk factors, such as those presented in cases of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus (COVID-19). In
this context, the present research proposes a comparative analysis using benchmarking techniques
to evaluate and validate the performance of some classification algorithms applied to the same
dataset, which contains information collected from patients diagnosed with COVID-19, registered in
the Influenza Epidemiological Surveillance System (SIVEP). With this approach, 30,000 cases were
analysed during the training and testing phase of the prediction models. This work proposes a
comparative approach of machine learning algorithms (ML), working on the knowledge discovery
task to predict clinical evolution in patients diagnosed with COVID-19. Our experiments show,
through appropriate metrics, that the clinical evolution classification process of patients diagnosed
with COVID-19 using the Multilayer Perceptron algorithm performs well against other ML algorithms.
Its use has significant consequences for vital prognosis and agility in measures used in the first
consultations in hospitals.

Keywords: machine learning; COVID-19; prediction; machine learning; medical diagnosis optimisation

1. Introduction

The COVID-19 pandemic has spread worldwide since the first cases were reported in
China in December 2019 [1]. Since then, more than 546 million cases of COVID-19 have been
reported, with features of severe acute respiratory syndrome due to SARS-CoV-2. Globally,
the number of weekly COVID-19 cases increased for the third week, during 20–26 June
2022. COVID-19 variants such as Delta and Omicron are putting hundreds of thousands
of people at risk, especially those with weakened immune systems. With the increasing
spread of COVID-19, different ways to identify COVID-19 infection using deep learning
(DL) methods are widely used to track the spread of the virus [2]. Symptom association
activities and epidemiological and treatment recommendations for status alerts can utilise
machine earning (ML) capabilities and deep learning (DL) approaches to optimise the
correct interpretation of diagnoses, analysis of medical exam imaging treatments, and
possible sequelae left by the infection [3].

Predictive models can identify and classify patterns and predict outcomes based
on the analysed data. By applying its techniques to structured and unstructured data,
a predictive model can lead to more realistic decision-making through relevant criteria
and evaluation of various attributes (characteristics), such as the symptoms of a specific
disease. According to Andrew Moore of Carnegie Mellon University School of Computer
Science, artificial intelligence (AI) models look for computational devices to simulate the
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human ability to think and solve problems [4,5]. In addition, artificial intelligence can help
guide medical analyses, aiming to assess and understand the characteristics of various
symptoms such as those existing in COVID-19 cases. With the current crisis, the capacity
of healthcare professionals has been challenged. The interpretation of tests to obtain
diagnoses and prognoses during the waves of COVID-19 required hard work that was
limited by experience, speed, and fatigue. In specific healthcare settings, such as intensive
care services or in health crises such as COVID-19, professionals may experience high levels
of compassion fatigue (CF), and their quality of work-life (ProQoL) may be impaired [6].
These healthcare workers exposed to COVID-19 are at high risk of developing mental
health issues, including anxiety, depression, and stress, so may need psychological support
or interventions to help them manage their situation [7]. Professionals who care for patients
with COVID-19 have higher levels of HR and burnout (BO) than those who work in other
healthcare settings [8,9].

The ability of machines to perform complex tasks and make decisions independently
can help these professionals to be more efficient in investigating the case and implementing
treatments in the first days of symptoms. Symptom association activities, epidemiological
recommendations and status alert treatment can use AI resources to optimise the correct
interpretation of diagnoses, treatments, and possible sequelae left by infection [10]. The
AI-based methods employed to identify, classify, and diagnose medical images have sig-
nificantly improved the screening, diagnosis, and prediction of COVID-19, resulting in
superior scale-up, timely response, and more reliable and efficient results and occasionally
outperforming humans in certain health activities [11]. Choosing the correct artificial intel-
ligence (AI) algorithm for a specific problem is not a trivial task. The definition of which
one will be applied to a dataset to perform a predictive analysis is decisive in the quality of
forecasts and selecting strategies related to the desired objective. The health area requires
the control of many stages, which are highly variable and depend on other stages of the
patient’s treatment. A predictive and centralised command and control system is needed
to manage this variation, thus dealing with complex data, continuously learning from its
experience, and improving the algorithms used in clinical predictions [12]. This study aims
to evaluate the feasibility of using different ML techniques by applying predictive models
to classify the clinical course of COVID-19 cases. Some metrics were used to measure the
performance of the following algorithms: K-Nearest Neighbor (KNN), Naive Bayes (NB),
Decision Trees (DT), Multilayer Perceptron (MLP), and Support Vector Machine (SVM).
Once a comparative benchmark has been established between the different classification
algorithms, showing which one has the best effectiveness, through the problem proposed
in this study, the clinical evolution of patients with different symptoms of COVID-19 can
be safely predicted.

For the learning process of the model, 129,475 cases of patients with COVID-19 were
registered by the Epidemiological Surveillance of state and municipal bodies in the Epi-
demiological Surveillance System of the municipality (SIVEP-Influenza) were analysed
until March 2021. The health area requires the control of many stages, which are highly
variable and dependent on other stages of a patient’s treatment. A predictive and cen-
tralised command and control system is needed to manage this variation, thus dealing with
complex data, continuously learning from its experience, and improving the algorithms
used in clinical predictions [4]. This study aims to evaluate the feasibility of using different
ML techniques by applying predictive models to classify the clinical course of COVID-19
cases. Some metrics were used to measure the performance of the following algorithms:
K-Nearest Neighbor (KNN), Naive Bayes, Decision Trees, Multilayer Perceptron (MLP),
and Support Vector Machine (SVM). Once a comparative benchmark has been established
between the different classification algorithms, showing which one has the best effective-
ness, through the problem proposed in this study, the clinical evolution of patients with
different symptoms of COVID-19 can be safely predicted.

This article is organised as follows. First, Section 2 highlights the concepts of COVID-
19 and machine learning. Then, in Section 3, the methodology was used in this study.
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In Section 4, the performance of the ML models is evaluated. Section 5 presents the
comparative benchmark between the best values obtained from each prediction model.
Finally, Section 6 exposes the target class prediction process. Section 6 summarises the
conclusions, future work, and research limitations.

2. Background and Research

This research’s theoretical framework and related work were structured into three
topics: highlighted aspects of COVID-19, machine learning, and proposals for AI solutions
used to diagnose and predict the disease’s clinical evolution.

2.1. Highlights of COVID-19 Pandemic Concepts

COVID-19 has a wide spectrum, from superficial asymptomatic infection to severe
pneumonia with acute respiratory distress syndrome (ARDS) and death. Anyone with
consistent symptoms should be tested for SARS-CoV-2 infection [6]. Of 373,883 reported
cases in the United States, 70% of the patients experienced fever, cough, and shortness of
breath, 36% had muscle pain, and 34% reported headaches. Other reported symptoms
include, but are not limited to, diarrhoea, dizziness, sore throat, abdominal pain, anorexia,
and vomiting. SARS-CoV-2 was first identified in Wuhan, China, in December 2019. In
Brazil, the first case was recorded in February 2020 in São Paulo [10]. COVID-19 has a
significantly higher mortality rate than common influenza, and its transmission rate is
higher than in recent epidemics such as SARS-CoV and H1N1 [11]. Sanitary measures to
stop disease transmission have impacted the global socioeconomic scenario [12].

Brazil is currently the third country in the world in the total number of cases, behind
only the United States and India. Furthermore, it ranks second in COVID-19 deaths [13].

2.2. Exposure of Healthcare Professionals to the COVID-19 Pandemic

The COVID-19 pandemic has exposed healthcare workers and new work-related
problems [1]. Daily exposure to pandemic challenges can cause a risk described in the
waiting context as a challenge (CF), such as burnout and secondary trauma (ST) [4,14].

Disease outbreaks provoke an intense response from the medical team, and fatigue,
due to this challenge, has a significant impact on the mental health of health professionals,
generally causing less vigilance and cognitive loss [15]. In the same way, stress with other
psychological implications during the pandemic is considered to cause insomnia. Previous
research on SARS identified poor sleep quality in nurses caring for patients with SARS [16].

In turn, isolation from loved ones, colleagues, and people with whom they used to have
ties, the demand for long working hours, virus transmission in the workplace, and ethical
concerns directly affect the physical and mental well-being of professionals [17]. Being
in contact with the virus or feeling fear in day-to-day work can trigger more significant
symptoms [18].

A systematic review found that many healthcare professionals experience significant
anxiety, depression, and insomnia levels during the COVID-19 outbreak. A high proportion
of healthcare professionals reported mild symptoms of both depression and anxiety [7,19].

Technology can reduce unnecessary visits, decrease healthcare workers’ risk of in-
fection, reduce their workload, and optimise their time to care for patients with acute
conditions [20]. Artificial intelligence technology can also be applied to monitor the mental
health of professionals, for example, to recognise people and medical teams at risk of
suicide or other crises through psychological messages and necessary alarms [21,22].

It seeks to find patterns and make predictions [6]. Predictive models support the
decision-making process, simplify the analysis of a problem and its alternatives, and,
therefore, justify the choice of a particular action [7]. Another approach, from the point
of view of decision-making based on verbal factors, is predictive ML models associated
with a multi-criteria decision-support method of verbal decision analysis [8]. Based on
machine learning algorithms and techniques, predictive models use mathematical calcula-
tions in datasets, according to a specific scenario and needs, to highlight patterns capable
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of highlighting trends or determining possible clinical diagnoses through statistics and
probability [10,23] and, in short, extracting the valuable information stored in historical
data to predict and decide the best actions. In addition to healthcare, other organisations
are performing predictive analytics to solve complex problems and gain insights. One can
mention the analysis of credit risk, finance, improvement in marketing actions, and supply
and demand management.

AI predictive models can be supervised when the input data is known (labelled) or
unsupervised when the ML algorithm is not telling the input data’s meaning. The input
data for this study are labelled. Thus, supervised models were applied to classify the data.
The models aim to identify the class (target) an object (characteristics) belongs by mapping
the input variables into distinct categories, such as the most important characteristics
(clinical symptoms), thus determining the group or class to which the data belongs within
the business context. Figure 1 presents the evaluation metrics used in the data classification
task that are analysed in this study.

 

Figure 1. Measures for data classification.

2.3. Applying Artificial Intelligence to Pandemic Data

This section of the theoretical review describes the application of ML models used in
data from patients diagnosed or suspected of having COVID-19, following a technological
and practical approach to AI. ML models are applied to large amounts of data to obtain
pattern detection of the information related to COVID-19 [24,25]. In this context, ML models
played an important role in combating the COVID-19 pandemic [26]. Furthermore, studies
propose a system with artificial intelligence to improve the ability to define the diagnosis
more quickly in patients with COVID-19 [14,27]. Similarly, ML models are used to predict
the prognosis of patients diagnosed with SARS-CoV-2 [2,28] and are used to analyse risk
factors and predict mortality among patients in the ICU with COVID-19 [29]. In addition,
the continuous development of AI is an effective tool for treating the COVID-19 pandemic
and has reduced human intervention in medical practice [16]. Moreover, ML solutions can
combat the chaos of the pandemic and help define the prognosis [17]. In a similar approach,
deep learning is used in the initial screening of patients diagnosed with COVID-19 [18].
Some AI techniques are used to analyse blood tests and CT images to develop diagnostic
and prognostic models of COVID-19 [19,30].

However, from the perspective of intelligent systems, ML algorithms have been used to
predict intelligent physiological deterioration and death in patients diagnosed with COVID-
19 [20]. ML models help analyse early mortality prediction in critically ill patients [31,32].
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The K-means clustering method has also been used to provide input to the Indonesian
government against the spread of COVID-19 [33].

Similarly, ML models are essential for clinical decision support to predict severity
risk and the screening of patients with COVID-19 at hospital admission [34]. Studies have
reported crucial symptoms such as dyspnea, cough, and fever to define the clinical course
of patients with COVID-19. These resources are used as input to develop ML-based models
and predict diagnostic results in patients with SARS-CoV-2 [35,36].

3. Methodology

The methodology used in this study is based on the execution of four steps, regardless
of the ML method to be used.

• Step 01: Data collection and measurement (selection);
• Step 02: Data pre-processing;
• Step 03: Model execution (transformation/mining);
• Step 04: Validation of the results (interpretation/knowledge).

Figure 2 presents the execution flow to obtain knowledge through data and metrics
collection, preprocessing, execution of the ML model, and final validation of the results.

Figure 2. Get knowledge cycle.

This research used the collaborative environment, “Colab” (Collaboratory), a product
of Google Research, based on the open-source project Jupyter. The sections used have
access to a processor with two cores, 12 GBytes of RAM, and an L3 cache of 40–50 Mbytes.
Furthermore, Google Colab is a free cloud service hosted by Google to encourage machine
learning and artificial intelligence research. This environment is widely used to run Python
code with machine learning libraries and tools.
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In each of the four stages, the libraries NumPy, Pandas, Seaborn, and Scikit-learn
were used to manipulate and analyse the data, generate calculations and statistical plot
graphs, and apply the practice of ML methods. Specifically, NumPy is the foundational
package for scientific computing in Python, and Pandas provides tools for data analysis and
manipulation [37,38]. Seaborn is used for plotting statistics, and Scikit-learn is a machine
learning library that supports supervised and unsupervised learning [39,40]. These are
some of the main Python libraries [41].

3.1. Data Collection and Measurement

It is essential to obtain a satisfactory result, as the quality of the collected data affects
how they will be processed and interpreted through the evaluation metrics.

3.1.1. Data Collection

Health data science, also known as the solution based on data science in health,
can transform the reality of professionals in this area. The focus is on applying artificial
intelligence and ML algorithms to interpret and understand patient data and generate
clinical predictions [3,30].

The present study collected the data from 129,475 COVID-19 patients registered in
the system developed by the Health Surveillance Secretariat (SVS) Ministry of Health of
Brazil, SIVEP-Gripe. This system incorporated 2020-specific information about COVID-19
and, from there, information such as the date of onset of symptoms, date of death, date
of hospitalisation, associated risk factors, age, sex, date of exam collection, and status of
exams, among others, of hospitalised cases of a severe acute respiratory syndrome (SARS)
by COVID-19. Therefore, improve the records of SARS deaths confirmed by COVID-19 in
the SIVEP-Influenza system.

3.1.2. Data Dictionary

Table 1 describes the attributes used in this study.

Table 1. Data dictionary.

Individual Record Form—Hospitalised Severe Acute Respiratory Syndrome Cases

Field Name Type Allowed Values Description

FEVER Varchar2 (1)

1—Yes
2—No

0—Ignored
9—Ignored

Did the patient have a fever?

COUGH Varchar2 (1) Did the patient cough?

DYSPNEA Varchar2 (1) Did the patient have dyspnea?

THROAT Varchar2 (1) Did the patient have a sore throat?

PAIN_ABD Varchar2 (1) Did the patient have abdominal pain?

FATIGUE Varchar2 (1) Did the patient experience fatigue?

DIARRHEA Varchar2 (1) Did the patient have diarrhoea?

SATURATION Varchar2 (1) Did the patient have O2 saturation <95%?

VOMIT Varchar2 (1) Did the patient experience vomiting?

PERD_OLFT Varchar2 (1) Did the patient experience a loss of smell?

LOST_PALA Varchar2 (1) Did the patient experience taste loss?

RISC_FACTOR Varchar2 (1) Does the patient have risk factors?

OBESITY Varchar2 (1) Does the patient have obesity?

VACCINE Varchar2 (1) Was the patient vaccinated against influenza in the last campaign?
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Table 1. Cont.

Individual Record Form—Hospitalised Severe Acute Respiratory Syndrome Cases

Field Name Type Allowed Values Description

SUPPORT_VEN Varchar2 (1)

1—Yes, invasive
2—Yes, non-invasive

3—N
0—Ignored
9—Ignored

Did the patient use ventilatory support?

EVOLUTION Varchar2 (1) 1—Cure
2—Death Evolution of the case

The data fields FEVER, COUGH, DYSPNEA, THROAT, PAIN_ABD, FATIGUE, DI-
ARRHEA, SATURATION, VOMIT, PERD_OLFT (loss of smell), and LOST_PALA (loss of
taste) store the respective signs and symptoms of the patient, according to codes 1—Yes
(if) the patient presented the sign/symptom), 2—No (if the patient did not present the
sign/symptom), or 0/9—Ignored (if the presence of the sign/symptom is unknown).

In addition, the RISC_FACTOR data field records the patient’s risk factors for wors-
ening the disease. It is filled with codes 1—Yes or 2—No, depending on the existence or
not of the risk factor, and 0/9—Ignored (if the presence of the risk factor is unknown). The
BMI must be specified for the risk factor Obesity registered in the OBESITY field if code
1—Yes is marked for “Obesity”.

Information on the flu vaccine is registered in the VACCINE field. In this, data are
obtained if the patient received the flu vaccine in the last flu vaccination campaign carried
out in Brazil. It is filled in with the corresponding code, 1—Yes or 2—Patient’s use of venti-
latory support, which is recorded in the SUPPORT_VEN data field. It contains information
on whether the patient used ventilatory support, with the corresponding code: 1—Yes,
invasive (he used a ventilation technique with the patient with prostheses and endotra-
cheal tubes that work as a patient/ventilatory support interface); 2—Yes, non-invasive
(the patient used a ventilation technique in which a mask or similar device works as a
patient/ventilatory support interface, without the use of prostheses and endotracheal
tubes); and 3—No (the patient did not use ventilatory support).

Finally, recording the evolution of the case, the EVOLUTION data field, where the
corresponding code of the patient’s clinical evolution is found: 1—Cure, 2—Death, and
3—Death by causes. See the clinical evolution of the case for the unknown code 9—Ignored
is used.

3.1.3. Data Measurement

At this stage, we seek to understand the collected data, identifying trends, and patterns
to be mapped. A descriptive statistical analysis was used to understand, summarise,
and describe the essential aspects of the set of observed characteristics of cases with the
diagnosis of COVID-19.

Through the matrix presented in Figure 3, the correlation between attributes/symptoms
is evaluated. Table 2 shows the highest correlation coefficients for the attribute pairs, demon-
strating a linear relationship. The values indicate a moderately positive relationship. That
is, as one attribute increases, the other attribute also increases. Taking as an example the
pair with the highest correlation (0.96), when PERD_OLFT (loss of smell) increases from
1—Yes to 2—No, PERD_PALA (loss of taste) tends to increase. Furthermore, it is observed
that when there is an improvement in the symptom of loss of smell, there may also be an
improvement in the patient’s taste.
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Figure 3. Correlation.

Table 2. Positive correlation.

Attribute 01 Attribute 02 Correlation Value

THROAT VOMIT 0.81

PAIN_ABD PERD_OLFT 0.85

FATIGUE PAIN_ABD 0.86

DIARRHEA PAIN_ABD 0.82

VOMIT DIARRHEA 0.9

PERD_OLFT LOST_PALA 0.96

Table 3 presents a negative linear relationship between the attributes EVOLUCAO
and SUPPORT_VEN. Indeed, as the value of EVOLUTION goes from 1—Cure to 2—Death,
the value of SUPPORT_VEN decreases from 2—Use of noninvasive ventilatory support)
to 1—Use of invasive ventilatory support), thus demonstrating a relationship between
invasive ventilatory support and death cases. In this study, attributes with high correlation
were used, as they have the most significant predictive capacity (sign), and irrelevant
variables (low correlation) were excluded.

Table 3. Negative correlation.

Attribute 01 Attribute 02 Correlation Value

EVOLUTION SUPPORT_VEN −0.19

3.2. Data Preprocessing

Data preprocessing is the process of preparing, organising, and structuring data. In
this stage, techniques are used to extract knowledge, which is determined by the quality
of the input data (collected data). Based on AI algorithms, data mining techniques can
also help in data selection, preprocessing, and transformation, by discovering patterns and
generating knowledge through their interpretations [21].

159



Appl. Sci. 2022, 12, 8939

In this study, the values analysed for the EVOLUTION attribute are 1.0—Cure and
2.0—Death). The value “1.0—Cure” was considered “hospital discharge”. Cases without
clinical evolution records and records with death from other causes were excluded from
the preprocessing, leaving 60,992 cases of patients with COVID-19.

3.2.1. Definition of Input Data

In this phase, the division between the desired attributes of the other features of the
dataframe is carried out. Thus, the input data to be used by the prediction models are
defined. The input data are denoted as X when determining the output class (target). The
target class, y, is the attribute that wants to predict the output value. The prediction models
will use the input data (X) to predict the clinical course (y) of the COVID-19 cases.

3.2.2. Training and Test Data

An ML prediction model is based on the observation of data. Once the learning is
complete, it can perform complex tasks and make predictions with greater precision [3].
For this reason, we divide the input data into training and testing data. This segmentation
aims to acquire knowledge to simulate forecasts and evaluate their performance. In this
study, the Pareto proportion was used, where 80% (48,793 cases) were used for training
and 20% (12,199 cases) were used for tests.

3.3. Model Execution

At this stage, the training base is submitted to the prediction models. Its parameters
are optimised according to the data presented. In a second moment, the prediction of the
target class was performed: the test data were applied to the trained models, and, finally,
the predictions of the clinical evolution were obtained (1—Cure or 2—Death).

3.4. Validation of Results

The evaluation metric used to determine the best ML model depends on the analysed
problem [42]. Metrics applied to health problems, such as the accuracy of a diagnosis, mean
the ability of a prediction to discriminate between the target class and the patient’s actual
prognosis. For more critical qualifications in predicting clinical evolution, the diagnostic
accuracy measures presented in Table 4 were used for the two models of this study.

Table 4. Evaluation metrics.

Evaluation Metrics

Accuracy Defines the overall performance of the model [43].

Precision Indicates whether the model is accurate in its classifications [44].

Recall
Is the number of samples classified as belonging to a class

divided by the total number of samples belonging to it, even if
classified in another [44].

F1 score Indicates the overall quality of the model [44].

Area Under the Curve (AUC)
Measures the area under the curve formed between the rate of

positive examples and false positives [45].

4. Results and Discussion

Furthermore, the definition of the attributes to be used and the hyperparameters of
each algorithm were adjusted to obtain the best behaviour for the proposed problem. Then,
the performance of each one of them was evaluated through competitive benchmarking.
Metrics indicative of performance and precision were used, thus obtaining the model’s
ability to learn by demonstrating a satisfactory result to perform in an authentic context.
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4.1. KNN Results

The first model applied was K-Nearest Neighbor (KNN). For this method, analyses
were performed, as shown in Table 5. The result obtained using three different K values
(5, 25, and 45) is observed. The distance validation metrics were analysed for each K value:
Euclidean, Manhattan, and Hamming.

Table 5. Benchmark for K-Nearest Neighbor—KNN.

K-Nearest Neighbor—KNN

Metrics/
Distance KNN

Accuracy Precision
Recall
That

F1
Score Accuracy Precision

Recall
That

F1
Score Accuracy Precision

Recall
That

F1
Score

Neighbor K 5 25 45
Euclidean 71.17% 74.31% 0.8518 0.79380 73.47% 74.25% 0.9073 0.81671 74.45% 75.04% 9107 0.82283

Manhattan 71.17% 74.32% 0.8516 0.79375 74.07% 74.62% 0.9122 0.82090 74.87% 75.09% 0.9191 0.82654
Hamming 71.87% 74.61% 0.8613 0.79957 74.65% 74.71% 0.9235 0.82599 75.27% 74.93% 0.9322 0.83082

The value of K equal to 45, as shown in Figure 4, using the Hamming distance
measure, was the configuration with the best overall performance (accuracy), obtaining
75.27% confidence in the estimate. Its execution time was 69.995 s, the fastest execution
using Euclidean distance and K equal to 5, taking 7.132 s, but it was the least accurate
among the analysed K values.

Figure 4. K optimized.

An accuracy of 74.93% was obtained according to the parameters, indicating the
percentage of correct classification of clinical evolution. Recall (sensitivity), which indicates
the frequency of the correct classification, obtained a value of 0.9322. KNN presents a good
frequency of assertiveness (optimal value is equal to 1) when classifying the evolution of the
clinical case as high: hospital or death. When combining the values obtained from precision
and recall, we have an F1 score of 0.83082 (optimal value equal to 1). The value reached
corroborates the information on the precision and recall values. AUC was performed for
all K values, and the respective distances were investigated. Figure 5 shows the graph
generated through the best parameters identified, reaching a value of 0.76 (ROC score).
With this information, a patient chosen randomly is evaluated, with 76% assertiveness in
classifying their clinical evolution, using the K-Nearest Neighbor (KNN) prediction model.

161



Appl. Sci. 2022, 12, 8939

Figure 5. ROC curve—Hamming.

4.2. Naive Bayes Results

Then, the Naive Bayes model was applied to the training data sample. Table 6 presents
the results obtained using the following distributions: Gaussian, Bernoulli, and Multino-
mial.

Table 6. Benchmark for Naive Bayes.

Naive Bayes
Metrics/Distribution Accuracy Precision Recall That F1 Score

Gaussian 65.13% 66.42% 0.9401 0.77843

Bernoulli 59.37% 66.93% 0.7439 0.70462
Multinomial 66.62% 66.98% 0.9618 0.78966

Moreover, with accuracy reaching 66.62%, the specific instance of the Naive Bayes
classifier, using the Multinomial distribution, stood out from the others that were analysed.
The Accuracy metric, used to investigate whether the model is accurate in its classifications,
obtained 66.98%. Sensitivity or recall, indicative of assertiveness frequently in the classifica-
tion of the patient’s clinical evolution, obtained a value of 0.9618, considering the optimum
equal to 1. This was a significant result. The harmonic means between precision and recall
(F1 score) resulted in 0.78966 for the model’s overall quality.

The area under the ROC curve or Area Under the ROC curve (AUC) was verified for
all Naive Bayes distributions, as shown in Figure 6. The highest value reached was 0.64 for
the multinomial distribution, which means a 64% chance of correctly classifying clinical
evolution using the multinomial naive Bayes.

Figure 6. ROC curve—multinomial.

162



Appl. Sci. 2022, 12, 8939

4.3. Results of the Decision Trees

The Decision Tree model was also applied to the same training data. Table 7 presents
the result obtained. The parameters Gini and entropy index were used in its analysis.

Table 7. Benchmark for Decision Tree.

Decision Tree
Metrics/Criteria Accuracy Precision Recall That F1 Score

Gini index 71.58% 74.61% 0.8546 0.79670
Entropy 71.83% 74.87% 0.8544 0.79808

The best accuracy of 71.83% was obtained using entropy. This parameter defines how
to measure the purity of each subset in each decision tree. In other words, it measures
the probability of obtaining an occurrence of a positive event (hospital discharge) from a
random selection of the data subset. It is observed that the precision obtained was 74.87%,
the sensitivity (recall) was 0.8544, and the harmonic mean between these two variables
(F1 score) was 0.79808.

The value reached for the ROC curve analysis was 0.69 (with the entropy parameter),
as shown in Figure 7. There is a 69% chance of correctly classifying the patient’s clinical
evolution using the Decision Tree model prediction.

Figure 7. ROC curve—Decision Tree—entropy.

4.4. Multilayer Perceptron Results

Applying the Multilayer Perceptron (MLP) model, the values shown in Table 8 were
obtained using different learning rates and momentum.

Table 8. Benchmark for Multilayer Perceptron (MLP).

Multilayer Perceptron—MLP
Metrics/Learning Rate and Momentum Accuracy Precision Recall That F1 Score

learning_rate = constantmomentum = 0.1 69.86% 70.48% 0.70633 0.70556

learning_rate = invscalingmomentum = 0.9 61.1% 65.23% 0.64333 0.64781
learning_rate = adaptive momentum = 0.9 76.3% 76.41% 0.76466 0.76441
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Using MLP, with learning rate parameters equal to adaptive and momentum equal
to 0.9, an accuracy of 76.3% was obtained. The precision was 76.41%, and the sensitivity
was 0.76466.

The F1 score reached the value of 0.76441, the general quality of the model. Following
the ROC analysis, the best result was 0.84 (ROC score), with a hypothesis of an 84% correct
classification in clinical evolution, using the Multilayer Perceptron—MLP model. Based on
the hypothesis presented in this study, the results of the analysis of the behaviour of the
MLP networks trained on the COVID-19 dataset proved to be entirely satisfactory, lacking
in terms of time for model training.

4.5. Results of the Support Vector Machine

The results of the fifth and last applied model, Support Vector Machine (SVM), using
different values for the Kernel parameters, width, and degree, are presented in Table 9.

Table 9. Benchmark for Support Vector Machine (SVM).

Support Vector Machine—SVM

Metrics/Kernel Accuracy Precision
Recall
That

F1
Score Accuracy Precision

Recall
That

F1
Score Accuracy Precision

Recall
That

F1
Score

Cost 1 2 3
kernel =

linearGamma = scale
66.25% 66.25% 1.0 0.79699 66.25% 66.25% 1.0 0.79699 66.25% 66.25% 1.0 0.79699

Kernel =
LinearGamma = auto

66.25% 66.25% 1.0 0.79699 66.25% 66.25% 1.0 0.79699 66.25% 66.25% 1.0 0.79699

Kernel =
RBFGamma = scale

72.08% 73.35% 0.9086 0.81173 72.80% 73.83% 0.91320 0.81646 73.28% 74.27% 0.91283 0.81902

Kernel =
RBFGamma = auto

74.92% 75.53% 0.91924 0.82927 75.58% 76.43% 0.91283 0.83198 75.78% 76.61% 0.91320 0.83318

Kernel =
POLYGamma = scale

66.25% 66.25% 1.0 0.79699 66.25% 66.25% 1.0 0.79699 - - - -

Kernel =
POLYGamma = scale

66.25% 66.46% 0.99018 0.79539 66.27% 66.48% 0.99018 0.79551 66.33% 66.51% 0.99056 0.79581

Kernel =
POLYGamma = scale

66.95% 67.82% 0.95358 0.79265 - - - - - - - -

Kernel =
POLYGamma = auto

66.25% 66.25% 1.0 0.79699 - - - - - - - -

Kernel =
POLYGamma = auto

- - - 66.30% 66.51% 0.98981 0.79557 - - - -

The parameters γ (gamma), C (cost), and degree were changed during the analysis
of this algorithm, aiming for the best results for the learning of the model. During this
exercise, it was noticed that as the values increased, the performance and complexity of the
classifier increased.

An accuracy of 75.78% was obtained using Kernel RBF, with C equal to 3 and gamma
equal to auto. This was the most performative result among the other configurations of
this algorithm. A substantial compromise in the algorithm’s performance is noticed when
inserting new parameters in this configuration. Its precision was 76.61%, with a sensitivity
of 0.91320 and 0.83318 as the harmonic mean (F1 score). The ROC curve analysis for the
parameters Kernel linear, C equal to 1, and gamma equal to scale presented the best ROC
score of 0.73772, as shown in Figure 8. Using these values, a patient has a 73% chance of
being correctly classified using the Support Vector Machine.
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Figure 8. ROC curve—SVM.

4.6. Discussion

Among all the analysed characteristics of the five algorithms, it can be observed that,
according to the parameters explicitly defined to control the learning process, different
metrics were obtained that indicate the result of the performance of each one of them. The
understanding of data was carried out in each case by testing different configurations at
the beginning of the learning process of each model. As a result, the fastest algorithm in
its execution was Decision Tree using entropy, with only 0.05444 s for performance. The
best precision and F1 score were seen with the Support Vector Machine (SVM) algorithm,
using Kernel RBF, C equal to 3, and gamma equal to auto. The multinomial naive Bayes
algorithm has the best sensitivity or recall, and the K-Nearest Neighbor (KNN) also stands
out in this metric. A comparative benchmark was created between the best values obtained
from each forecast model, which was analysed to summarise the data obtained. Table 10
summarises the condensed results among the metrics obtained.

Table 10. Benchmark for prediction models.

Comparative Benchmark between Prediction Models

Metric/Prediction Model Accuracy Precision Recall That F1 Score ROC Time (s)

K-Nearest Neighbor—KNN 75.27% 74.93% 0.9322 0.83082 0.76202 69.995

Naive Bayes 66.62% 66.98% 0.9618 0.78966 0.64363 0.0826

Decision trees 71.83% 74.87% 0.8544 0.79808 0.69686 0.5455
Multilayer Perceptron—MLP 76.3% 76.41% 0.7646 0.76441 0.84300 286.023

Support Vector Machine—SVM 75.78% 76.61% 0.91320 0.83318 0.73772 0.00101

Accuracy and reliability are essential in studies carried out in health [22,46]. According
to the no free lunch theorem, if an algorithm outperforms another in one metric, it may lose
in a different metric, depending on the problem. So, in general, there is no certainty about
which algorithm is the best. However, the Multilayer Perceptron (MLP) algorithm, which
is extremely fast when performing predictions, obtained the best results for the present
study. Training MLP networks with backpropagation took considerable time, despite using
the term momentum. Analysing the cost of recognising bold patterns in predicting clinical
evolution was prioritised to obtain the best precision at the speed of diagnosis. Next, the
predictions made with the winning MLP prediction model are presented.
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5. Experimental Evaluation

Through the definition of an experimental process, the ability to predict the target
class is analysed, based on random tests, with different attributes (symptoms) applied to
the MLP model. The following parameters were used in the prediction activity of the target
class (clinical evolution):

• Model: Multilayer Perceptron (MLP):
• Parameter 01: Learning rate = adaptive;
• Parameter 02: Momentum = 0.9;
• Parameter 03: Solver = SGD.

5.1. Definition of Values

Table 11 presents the questionnaire on the symptoms of COVID-19. Randomly, re-
sponses were defined for five clinical cases.

Table 11. Clinical questionnaire.

Individual Record Form—Hospitalised Severe Acute Respiratory Syndrome Cases

1. Did the patient have a fever? 9. Did the patient experience vomiting?

2. Did the patient have a cough? 10. Did the patient use ventilatory support?

3. Did the patient have dyspnea? 11. Did the patient experience a loss of smell?

4. Did the patient have a sore throat? 12. Did the patient experience a loss of taste?

5. Did the patient have abdominal pain? 13. Does the patient have any risk factors?

6. Did the patient experience fatigue? 14. Does the patient have obesity?

7. Did the patient have diarrhoea? 15. Was the patient vaccinated against influenza in the last campaign?

8. Did the patient have O2 saturation <95%?

5.2. Prediction of Clinical Evolution

By applying the scikit-learn, predict (X), and predict_proba (X) methods, the prediction
of the clinical evolution of the patient diagnosed with COVID-19 was obtained, as was the
percentage perspective of assertiveness of this class.

The percentage of precision of 76.3% (accuracy) and 76.41% accuracy in the classifi-
cation of the target class (hospital discharge or death) to obtain the prediction results is
shown in Table 12. It is close between accuracy and precision, thus indicating the absence
of systematic errors.

Table 12. Prediction of clinical evolution.

Questions/Patients Patient 01 Patient 02 Patient 03 Patient 04 Patient 05
1. Did the patient have a fever? 1—Yes 2—No 1—Yes 1—Yes 1—Yes

2. Did the patient have a cough? 1—Yes 2—No 1—Yes 1—Yes 1—Yes

3. Did the patient have dyspnea? 1—Yes 1—Yes 1—Yes 2—No 2—No

4. Did the patient have a sore throat? 0—Ignored 2—No 2—No 2—No 2—No

5. Did the patient have abdominal pain? 0—Ignored 2—No 2—No 2—No 2—No

6. Did the patient experience fatigue? 1—Yes 2—No 1—Yes 1—Yes 1—Yes

7. Did the patient have diarrhoea? 1—Yes 2—No 1—Yes 2—No 2—No

8. Did the patient have O2 saturation < 95%? 0—Ignored 2—No 1—Yes 2—No 2—No

9. Did the patient experience vomiting? 1—Yes 2—No 2—No 2—No 2—No

10. Did the patient use ventilatory support? 0—Ignored 1—Yes 1—Yes 1—Yes 2—No
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Table 12. Cont.

Questions/Patients Patient 01 Patient 02 Patient 03 Patient 04 Patient 05
11. Did the patient experience a loss of smell? 0—Ignored 2—No 1—Yes 1—Yes 1—Yes

12. Did the patient experience a loss of taste? 0—Ignored 2—No 1—Yes 1—Yes 1—Yes

13. Does the patient have any risk factors? 1—Yes 1—Yes 2—No 2—No 1—Yes

14. Does the patient have obesity? 1—Yes 2—No 2—No 1—Yes 2—No

15. Was the patient vaccinated against
influenza in the last campaign? 0—Ignored 1—Yes 1—Yes 1—Yes 1—Yes

Clinical Case Evolution

73%—the case
progressed to
the cure (1) of

the patient

84%—the case
progressed to

death (2) of the
patient

92%—the case
progressed to

death (2) of the
patient

86%—the case
progressed to

death (2) of the
patient

85%—the case
progressed to
the cure (1) of

the patient

Through the symptoms of the five patients as input data not observed in the training
and testing phase of the MLP model, the prediction results are observed:

• In general, the model obtains a probability above 70% in the classification of the target
class (hospital discharge or death);

• Patient 01 has a 73% probability of being discharged from the hospital;
• Patient 02 has an 84% probability of clinical evolution to death;
• Patient 03 obtained a chance of 92% that their clinical case would evolve to an end;
• Patient 04 has an 86% probability of clinical evolution to an end;
• Patient 05 reaches an 85% probability of discharge from the hospital.

6. Conclusions and Future Works

In this step, the purpose of this study is analysed with the application of a machine
learning model optimised to predict the clinical evolution in patients diagnosed with
COVID-19. A case study was carried out with ML techniques to classify the clinical
evolution in cases of COVID-19. Through a historical base of patients, 30,000 cases were
analysed during the training and testing phase of the prediction models. A competitive
benchmark was obtained, comparing the metrics aiming at a behaviour closer to reality.
Among the K-Nearest Neighbor (KNN), Naive Bayes, Decision Trees, and Support Vector
Machine (SVM) algorithms, the Multilayer Perceptron (MLP) obtained a more specific
behaviour for this study approach, which helped with the recognition of patterns in the
data not observed in the model preprocessing phase [15]. This way, the proposed objective
was achieved by classifying the clinical evolution of patients diagnosed with COVID-19, by
analysing their symptoms and classifying the clinical development through an optimised
prediction model. The implication of the conclusion obtained by this study is to indicate,
among the analysed algorithms, the one with the highest performance. In this case, the
MLP has specific parameters, classifying the clinical evolution of patients diagnosed with
COVID-19 through the symptoms identified in the SIVEP database. Furthermore, it was
necessary to analyse different characteristics of each concurrent algorithm (K-Nearest
Neighbor, Naive Bayes, Decision Trees, and Support Vector Machine), demonstrating their
details and where each stands out using the same database.

Some future work suggestions are clinical data analysis using bootstrap and temporary
aeries analysis for prognosis classification of COVID-19 patients; using ensemble learning
to obtain the result via various ML algorithms and perform a comparative benchmark
with COVID-19 patient data from other countries; and analysing the performance of some
convolutional neural network algorithms as well as the Farmland Fertility algorithm [46,47],
African Vultures Optimization Algorithm [48], and Artificial Gorilla Troops Optimizer [49]
for the same COVID-19 datasets.

This study has potential limitations. The effect estimates in the model are based on the
interventional and prospective observational studies of five predictive models of ML, to
build a benchmark with the analysed data from patients diagnosed with COVID-19. For
the construction of this comparative model, only the classification of evolution to death
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or not was analysed, without analysis of the other clinical conclusions. Overall, there are
other critical limitations of machine learning models in medical applications stemming
from the quality of the data, as it can mean the difference in diagnosing patients to the risk
of intentional manipulation, so that the algorithm can introduce a particular bias leading
doctors to wrong conclusions.
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Abstract: Regression modelling has always been a key process in unlocking the relationships between
independent and dependent variables that are held within data. In recent years, machine learning
has uncovered new insights in many fields, providing predictions to previously unsolved problems.
Generative Adversarial Networks (GANs) have been widely applied to image processing producing
good results, however, these methods have not often been applied to non-image data. Seeing the
powerful generative capabilities of the GANs, we explore their use, here, as a regression method. In
particular, we explore the use of the Wasserstein GAN (WGAN) as a multi-output regression method.
The resulting method we call Multi-Output Regression GANs (MOR-GANs) and its performance
is compared to a Gaussian Process Regression method (GPR)—a commonly used non-parametric
regression method that has been well tested on small datasets with noisy responses. The WGAN
regression model performs well for all types of datasets and exhibits substantial improvements over
the performance of the GPR for certain types of datasets, demonstrating the flexibility of the GAN as
a model for regression.

Keywords: Generative Adversarial Networks; Wasserstein GAN; regression; multi-output regression;
multi-modal distributions

1. Introduction

Regression is a statistical technique which aims to find and describe relationships
that exist between inputs (the independent variables also known as predictors, covariates,
features) and outputs (dependent variables also known as responses, targets, outcomes).
An abundance of data has enabled machine learning techniques to be successfully applied
to regression modelling. Data from observations or experiments often comes from complex
nonlinear systems that are challenging to model, therefore, a regression model that is able
to model uni- or multi-modal distributions, single or multi-output regression problems
and quantify uncertainty is highly desirable. Borchani et al. [1] highlight two challenges
for regression: (1) modelling uncertainty, both handling the uncertainty in the data itself,
but also in quantifying the uncertainty in the responses; and (2) identifying co-dependencies
between response variables (for multi-output regression problems). Two approaches are
commonly used for multi-output regression problems: transforming the problem and
applying single-output methods, and developing extensions to single-output regression
methods (such as kernel methods, regression trees and support vector regression) so they
are capable of analysing multi-output distributions [2]. Although the former is more
straightforward, the latter, when possible, gives better results. In this paper, we propose
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a generative model for performing regression. This model is flexible as it can be applied
(without modification other than hyperparameter tuning) to uni- and multi-modal data;
multiple regression problems; single- and multi-output regression tasks (including co-
varying responses); and to data with uncertainty or noise. It can also be used to calculate
the uncertainty associated with a prediction. We compare this method to Gaussian Process
Regression (GPR) which has performed well for regression problems. GPR is a machine
learning technique based on Gaussian Processes introduced by Rasmussen and Williams in
1996 [3]. A probability distribution is defined, rather than a single-valued function, which
can be applied to data where a range of responses can come from a single point in the
regression phase space. Feed-forward neural networks give a single response for a given
input, whereas, both GPR and the method proposed here can give multiple responses for
a single input enabling the uncertainty in the response to be quantified. This is a highly
desirable feature for a regression method.

1.1. Related Work

Generative models were originally developed with the aim of creating a network
that could generate realistic examples, that is examples that appear to be drawn from
the distribution which was used to train the model. A powerful generative model is
the Generative Adversarial Network (GAN) introduced in 2014 by Goodfellow et al. [4].
GANs have quickly become one of the most popular generative models and are widely
used in image processing [5] where they are well known for generating images that are
capable of tricking the human eye into believing that it is seeing genuine data [6]. Instead
of learning a mapping between an input and output determined by training data, these
models attempt to learn the distribution underlying the training data (in fact, they learn a
mapping from a simple distribution to the more complex distribution which describes the
training data). This property is desirable as we would like to avoid extrapolating because it
can lead to unreliable results. A GAN consists of two neural networks, a generator and a
discriminator that are trained simultaneously according to a min-max game. The generator
and discriminator adopt the structure of popular neural networks [7–9]. Although many
studies have explored the idea of using GANs when manipulating or identifying images,
little research currently exists around implementing GANs to generate non-image data
with targeted distributions. One exception is Jolaade et al. [10] who apply GANs to the
time series prediction of fluid flow. Furthermore, GANs have shown to be able to perform
well even with small samples of data [11], making them a reliable technique and suitable
for regression in these circumstances. Since their introduction in 2014, a number of variants
have been developed, including the Wasserstein GAN (WGAN) [12,13]. This particular
flavour of GAN was introduced to address the problems of mode collapse and vanishing
gradients [14] from which the GAN [4] and DCGAN [7] are known to suffer.

GAN methods are not widely used for regression in the literature, with the exception
of Aggarwal et al. [15] and McDermott et al. [16]. Aggarwal et al. [15] apply Conditional
GAN (CGAN) to a number of datasets, including one which predicted property prices in
California and another which predicted the control action on the ailerons given the status of
the aeroplane. McDermott et al. [16] apply a semi-supervised Cycle Wasserstein Regression
GAN (CWR-GAN) to biomedical applications such as predicting a patient’s response to
treatment. Both articles showed good results, but both commented on the additional
training time and training complexity exhibited by the GAN models in comparison with
other methods. The CGAN and the CWR-GAN both have a different structure to the
WGAN implemented here. Our WGAN (as with a standard GAN) generates a sample from
random values (the input to the WGAN), whereas the CGAN and CWR-GAN have inputs
and outputs of the same dimension, although the input can have additional variables
corresponding to noise or constraints. Therefore CGANs and the CWR-GAN can be more
straightforward to use for regression and time series modelling.

We compare our GAN approach with regression performed by Gaussian Process
Regression (GPR). GPR has become an effective, non-parametric Bayesian approach that
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can be applied to regression problems and can be utilised in exploration and exploitation
scenarios [17]. Instead of inferring the distribution of parameters, non-parametric methods
can directly predict the distribution of functions. Gaussian Process Regression starts with a
set of prior functions based on a specified kernel. After incorporating some known function
values (from the training dataset), a posterior distribution is obtained. The posterior can
then be evaluated at points of interest (from the test dataset) [18].

1.2. Contributions and Outline

Due to the structure of GANs, the independent and dependent variables appear in
the output of the generator (whereas for feedforward networks, the independent variables
would be more likely to appear in the input, and the dependent variables in the output).
The input of a GAN is a set of random variables, and it generates a realistic sample from
these random variables. For regression problems, although sampling the latent space will
give a good idea of the distribution learned by the generator, it can also be desirable to be
able to obtain a response at a particular value of the independent variable. In order to do
this, we propose a prediction algorithm which involves minimising the difference between
the output of the GAN for the independent variable and its desired value. This prediction
algorithm has been used previously to enable a GAN to make time series predictions [10,19].
It is somewhat similar to an algorithm presented by Wang et al. [20], which searches the
latent space in order to match a given image with an image produced by the generator.
The necessity for these algorithms comes about because the output of the GAN contains
both the independent and dependent variables. In this paper, we develop a new regression
method based on GANs and show how it compares to a state-of-the-art GPR regression
method by testing both methods on a range of datasets. We apply the same model (a GAN)
to all the datasets in the paper and compare with a standard GPR model. Although specific
types of GPR have been developed for particular datasets (for example, Heteroscedastic
GPR [21], and GPR for clustered data [22]), here we choose a single type of GPR model as
we do not tailor the GAN to the specific datasets (other than optimising the architecture
and other hyperparameters as is usual). This enables us to demonstrate the flexibility of
the single GAN model.

The contributions of this article are the use of a WGAN to perform regression; the abil-
ity to apply this model to multi-modal data and multi-output regression (MOR-GAN) tasks
with no modifications required to the GAN; the presentation of a prediction algorithm
to be used with the trained GAN in order to predict a response for a given independent
variable; the exploitation of the WGAN’s critic to provide a confidence level or assessment
of reliability for the predictions made by the WGAN’s generator.

The remainder of the paper is organised as follows: Section 2 describes the methods
used in this paper, Section 3 presents results from the synthetic example problems and
Section 4 shows results from an in vitro study. Section 5 gives an overview of the speed of
the proposed method. Conclusions are drawn and indications given as to future work in the
final section. The notation used in this paper is summarised in Table A1 in the Appendix A.

2. Methods

2.1. Data Generation

We investigate the performance of Gaussian Process Regression (GPR) and Wasserstein
GAN (WGAN) models for regression using a number of datasets. Simple functions were
used to generate all but one of the datasets, which have different properties, including with
and without additive Gaussian noise (which here, represents uncertainty in the data); one-
or two-dimensional examples; uni- and multi-modal distributions; single or multi-output
regression; and, for the WGAN model, we explore both random inputs and constrained
inputs (where input refers to the independent variable or input of the regression problem
not the input of the WGAN). The final dataset is taken from an in vitro study and explores
the influence of silver nanoparticles on cells taken from the lungs. Following standard
practice, preprocessing was applied to all the datasets to ensure that no bias is introduced
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due to different variables having different ranges of values. This was done by applying a
linear mapping to normalise the values so they were in the range [−1, 1].

2.2. Gaussian Process Regression

GPR is a machine learning technique, based on Bayesian theory and statistical learning
which has wide applicability to complex regression problems with multiple dimensions
and non-linearity [18]. The basic theory of prediction with Gaussian processes dates back to
the 1940s [23,24], and, since then, there have been many developments and insights gained
into using Gaussian Processes as a regression technique. For example, Jerome Sacks and
Wynn [25] introduced GPR for computer experiments and used parameter optimisation in
the covariance function and also applied it to experimental design, i.e., the choice of input
that provides the most information. Moreover, Rasmussen and Williams [18] described
GPR in a machine learning context, and expressed the optimisation of the GPR parameters
in terms of co-variance functions.

A python library GPy was used to perform the GPR [26]. Important to the performance
of the GPR is the choice of kernel. Here we use a radial basis function (RBF) kernel which
has three hyperparameters; length, kernel variance, and the standard deviation of the
Gaussian noise. These hyperparameters are automatically tuned via GPy.

2.3. Generative Adversarial Networks

A Generative Adversarial Network (GAN) consists of two neural networks: a genera-
tive model or generator, G, and a discriminative model or discriminator, D. The models are
trained simultaneously resulting in a generator that can produce samples which appear to
be taken from the same distribution as the training data. During training, the generator
tries to fool the discriminator that it is generating real data, see [4]. For each data point the
following combined loss function is defined for G and D:

L = min
G

max
D

[log(D(x)) + log(1− D(G(α)))] (1)

where x ∈ Pr is a sample from the real data and α represents the latent variables. The gen-
erator and discriminator are essentially playing a two-player min-max game through the
corresponding function V(G, D) [4]:

min
G

max
D

V(D, G) = Ex∼Pr(x)[log D(x)] +Ez∼pα(α)[log(1− D(G(α)))]. (2)

GANs are notoriously difficult to train, often reported to suffer from mode collapse
and the vanishing gradient problem [14]. Mode collapse occurs when the generator G
produces only one solution, or a limited set of solutions, which is/are able to fool the
discriminator, and the vanishing gradient problem is described below (Section 2.4).

2.4. Wasserstein Generative Adversarial Networks

The WGAN [12] was developed in order to alleviate the issue of the vanishing gradient
problem. To measure the distance between probability distributions, rather than use the
Jensen-Shannon (JS) divergence (expressed by Equation (1)) as in the GAN, Arjovsky et al
proposed the Earth-Mover (EM) or Wasserstein-1 distance:

W
(
Pr,Pg

)
= inf

γ∈Π(Pr ,Pg)
E(x,y)∼γ[‖x− y‖], (3)

where Π
(
Pr,Pg

)
denotes the set of all joint distributions γ(x, y) whose marginals are

respectively Pr (real data) and Pg (generated data) [12]. The Wasserstein-1 distance is
able to provide a similarity measure between two probability distributions, even when
the two probability distributions have no overlap, making it a more sensible cost func-
tion. The discriminative model is renamed the critic in the WGAN, as it is not explicitly
attempting to classify inputs as real or fake, but rather to determine how real an input
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is. The WGAN value function is constructed via the Kantorovich-Rubinstein duality as
Equation (3) is computationally intractable [12]:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃))] (4)

where D is the set of 1-Lipschitz functions. To enforce the Lipschitz constraint, weight
clipping was originally used by Arjovsky et al. [12], who stated that this method of en-
forcement was terrible, despite it working well for the examples shown in their paper and
was, at least, simple. Gulrajani et al. [13] introduced an improvement to weight clipping,
by enforcing the Lipschitz constraint with a Gradient Penalty (GP) method. By enforcing
a soft version of the constraint with a penalty, the new loss function becomes:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
loss of the critic

+ λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
︸ ︷︷ ︸

gradient penalty

. (5)

Throughout this study we enforce the Lipschitz constraint by using the GP method in
our WGAN models.

2.5. Regression with WGAN

GANs are a type of generative network, the aim of which is to generate realistic
looking samples that appear to have been drawn from the same distribution as the training
data. The input to a WGAN (and GANs in general) is a set of random numbers (not related
to the data) and the output contains the generated sample. Consider simple regression,
where a relationship is sought between an independent variable x (also known as covariate
or feature) and a dependent variable y (also known as a response). The WGAN is trained to
produce both the independent and dependent variables of the regression problem (x, y) as
its output. In contrast, for feed-forward networks, the input of the network often takes the
independent variable and the output, the dependent variable. Therefore, in order to specify
a particular value for the independent variable, a prediction algorithm is introduced to
the WGAN.

Suppose we have trained the WGAN and wish to use it to predict the output at a
given value of the independent variable xp. First, the latent variables (α) are set to random
numbers. The generator is evaluated at these values, G(α), producing a pair of values
(x, y)—the input and output or response in our regression problem. The difference between
x and xp is then minimised with respect to the latent variables. Once this is done, we assume
that the output of the generator closely approximates (xp, yp). The minimisation can be
done efficiently by using the same software libraries that are used for back-propagation
during training. This procedure means that we can generate multiple outputs for one
input, xp, by starting from different random states for the latent variables, and we can
therefore produce a distribution of values which reflect the uncertainty in the output yp.
This procedure is detailed in Algorithm 1 and introduces a projection operator, Proj, which
projects the output of the WGAN onto a space that contains only the variables that are to be
constrained. For the example described in this paragraph, the projection operator would
be represented by the matrix [1 0] for an output of the generator in the form (x, y)T .

Simple regression (for a single independent variable), multiple regression (for more
than one independent variable) and multi-output or multi-variate regression (for more
than one dependent variable) can all be performed by the WGAN and demonstrated by
the results in this paper. Due to the generative nature of the WGAN, both independent
and dependent variables are contained in the output of the generator which means that,
when randomly sampling the latent space of the generator to produce an output, we have
no control over the particular value of independent variable. In order to specify particular
values of independent variable(s), a prediction algorithm is used, described in Algorithm 1.
So there are two ways of using the WGAN, either with random values for the independent
variable or with constrained values:
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• Random input: Random variables are assigned to the latent space from which the
generator of the WGAN yields a realistic output of a n-tuple of the independent and
dependent variables associated with regression problem. By sampling the generator
many times, this can be used to assess the probability density function learned by the
generator. The value of the independent variable(s) cannot be controlled, however,
as they are an output of the generator. Although random inputs allow us to see the
distribution learned by the generator, having the facility to constrain the independent
variables is an important feature.

• Constrained input: An algorithm is used in conjunction with the (trained) WGAN
to find predictions for given value(s) of the dependent variable(s). This results in a
property similar to a GPR, where, for example, the independent variables are inputs of
the GPR (and can be prescribed) and the outputs are dependent variables. An inherent
property of a trained WGAN is that both independent and dependent variables are
contained within the output the generator. Using the constrained input method
described here, a WGAN can therefore make a prediction for any combination of
known and unknown variables, with the independent variables being treated in
the same way as dependent variables. A GPR, however, can only make predictions
for the particular set of dependent variables that it was trained on, given the set of
independent variables that it was trained on.

Algorithm 1 Prediction Function. Built to be used in conjunction with the trained WGAN,
to constrain the independent variable of the regression problem.
Require: The desired value of the independent variable xp, initial values of the latent

variables α(1) ∼ N (0, 1), trained generator G, number of iterations N.
for i=1, . . . , N do

x̃i = G(α(i)) � Output of GAN from latent space of iteration i
ε = Proj

(
x̃i − xp

)
� Work out mismatch between GAN output and desired value

αi+1 ← BackPropagation(αi, ε) � Adjust latent space by backpropagating mistmatch
end for

2.6. WGAN Architectures

The WGAN models were constructed using Keras [27]. The generator is a four-layered
network, as displayed in the top orange box in Figure 1, which takes Gaussian distributed
noise from the latent space as an input, and outputs the x and y coordinates in a 1D
regression problem. The first dense layer employs batch normalisation and the leaky
rectified linear activation functions (LeakyReLU) followed by fully-connected dense layers.
The last layer applies the non-linear tanh activation function. The structure of the critic is
also a four-layered network, with a reduced number of neurons. Its input is data from the
training set and data generated from the generator. To reduce the likelihood of overfitting,
dropout with a probability of 0.2 is applied to the critic. Layer normalisation is employed
for the critic as opposed to batch normalisation, as the latter inhibits the performance of the
gradient penalty term in Equation (5).

The MOR-GAN used in Section 3.4 for the co-varying spiral dataset follows the same
architecture described in the previous paragraph but with certain fully-connected layers
replaced by convolutional layers. In fully-connected or dense layers, every neuron in the
input is connected to every neuron in the output. Instead, convolutional layers apply filters
to the input where only neurons close to each other are connected to the output.
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Figure 1. WGAN Structure. The architectures of the Generator and Critic are shown above and
below the WGAN structure respectively. The equations displayed are the losses used to update
each component. The orange-boxed structure used for the single-output regression problems is
a multilayer perceptron network. The blue-boxed structure used for multi-output regression has
convolutional layers.

2.7. Visualisation

To compare the models, the predictions of a test set are visualised. Assuming we have
a regression problem in which x is on the horizontal axis and y on the vertical axis and a
point on the graph is represented by (x, y). The GPR outputs are the randomly sampled x
values and the associated y values from the GPR posterior distribution. On the other hand
the WGAN outputs a prediction of both the x and y values. After training, the generator
will produce an output of (x, y) when given a value(s) of the latent variable(s) α.

2.8. Statistical Analysis

To assess the accuracy of the regression method some statistical analysis is performed
on the results. The 1D synthetic datasets have the Kolmogorov-Smirnov (KS) test applied
to them [28]. A number of specific coordinates (xi) are chosen with which to perform the
KS test. Within the real and generated data there exists a range where the x-coordinate
satisfies the condition xi − 0.01 < x < xi + 0.01. The corresponding y-coordinates form
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a distribution in the real dataset (Pr,i) and a distribution in the generated dataset (Pg,i).
The average p-value is then determined by:

p̄ =
∑I

i=1 KS(Pr,i,Pg,i)

I
, (6)

where KS is the Kolmogorov-Smirnov test.
The silver data is assessed by using the Mann-Whitney U test [29]. The test is per-

formed on the real data and generated data that corresponds with a given time level
(xi), concentration level (yj) and surface area (zk). A number of responses (ri,j,k) exists for
these three measurements and they form a distribution in the real dataset (Pr,i,j,k) and a
distribution in the generated dataset (Pr,i,j,k). The average p-value is then determined by:

p̄ =
∑I

i=1 ∑J
j=1 ∑K

k=1 MW(Pr,i,j,k,Pg,i,j,k)

I JK
, (7)

where MW is the Mann-Whitney U test. Both metrics are implemented using the SciPy
package [30].

3. Results from Synthetic Datasets

In this section we present results for the performance of the GPR and WGAN ap-
proaches for regression on a number of synthetic datasets. We would like our model to
perform well on different types of dataset, so datasets with different properties are used
here, including uni- and multi-modal distributions, one- or two-dimensional inputs (or
independent variables), single- or multi-output. The WGAN can also be used in two ways:
with a random input or a constrained input. These combinations are given in Table 1.
For the datasets with noise, 500 samples are taken. All the models here follow the general
architecture in the orange box of Figure 1 with slight variations on the number of nodes in
each dense layer.

Table 1. Properties of the synthetic datasets.

Distribution of Dataset Input Type Section
Dataset Dimension Noise Type Output

sine wave 1D � uni-modal single output random 3.2.1
heteroscedastic 1D � uni-modal single output random 3.2.1
circle 1D � multi-modal single output random 3.2.2
sine wave with lines 1D � multi-modal single output random 3.2.2
distance 2D � uni-modal single output random 3.2.4
helix 2D � multi-modal single output random 3.2.4
sine wave 1D � uni-modal single output constrained 3.3
heteroscedastic 1D � uni-modal single output constrained 3.3
circle 1D � multi-modal single output constrained 3.3
eye 1D � multi-modal multi-output constrained 3.4.1
spiral 2D � uni-modal multi-output constrained 3.4.2

3.1. Training

The training process of the WGAN is described in Algorithm 2. Training a WGAN
can be easier than training a GAN, due to the former’s removal of the issues associated
with mode collapse and weight clipping. Nonetheless, there are still many factors (neural
network architecture and training hyperparameters) that can be optimised during train-
ing. See Table 2 for the set of hyperparameters that we use for WGAN training. Some
values were found by hyperparameter optimisation; others were informed by the literature.
For example, λ = 10 and ncritic = 5 are commonly used settings and have been shown to
work well across a range of datasets and architectures [12,31].
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Algorithm 2 WGAN with gradient penalty and sample-wise optimisation. All experiments
in the paper used the default values λ = 10, ncritic = 5, α� = 0.0001, β1 = 0.5, β2 = 0.9. This
algorithm is a modified version of the one displayed in the paper by Gulrajani et al. [13]
Require: The gradient penalty coefficient λ, the number of critic iterations per generator

iteration ncritic, the batch size m, Adam hyperparameters α�, β1, β2.
Require: initial critic parameters ω0, initial generator parameters θ0.

while θ has not converged do
for t = 1, . . . , ncritic do

for i = 1, . . . , m do
real data x ∼ Pr, latent variable α ∼ p(α), a random number ε ∼ U [0, 1].
x̃ ← Gθ(α)
x̂ ← εx + (1− ε)x̃
L(i) ← Dω(x̃)− Dω(x) + λ(||∇x̂Dω(x̂)||2 − 1)2

end for
ω ← Adam(∇ω

1
m ∑m

i=1 L(i), ω, α�, β1, β2)
end for
Sample a batch of latent variables {α(i)}m

i=1 ∼ p(α).
θ ← Adam(∇θ

1
m ∑m

i=1−Dω(Gθ(α)), θ, α�, β1, β2)
end while

Table 2. Hyperparameters used in the construction and training of our WGANs for both the single-
output and multi-output distributions.

Hyperparameters Single-Output Multi-Output

Learning rate 10−3 10−4

Number of Critic iterations per Generator iterations 5 5

Batch size 100 32

Latent Space Dimension 3 3 (3, 6, 12 used for spiral problem)

Adam optimiser hyperparameters (decay rates of moving averages) 0.5 & 0.9 0.5 & 0.9

Gradient penalty hyperparameter λ 10 10

3.2. Single-Output Regression with Random Input Values

In this section, we sample the posterior of the GPR at random points. For the WGAN,
we randomly sample points in the latent space which leads to outputs of n-tuples which
are the inputs and responses of the regression problem. We do not control which values
are taken by the independent variables(s) or inputs when using regression with randomly
generated inputs. The test or sample data is generated by evaluating the functions used
to create the training data with randomly generated independent variables. Therefore,
the three sets of results have different values of the independent variable(s).

3.2.1. 1D Uni-Modal Examples

To generate a sinusoidal dataset with uncertainty, we use the function

y = sin(x) + ηφ where φ ∼ N (μ, σ) (8)

where N is a Gaussian distribution with mean μ = 0 and standard deviation σ = 1.
The uncertainty is represented by Gaussian noise through the term φ and its magnitude is
adjusted by a scalar η ∈ [0, 1]. We can see from Figure 2 that the random sampling from
WGAN and GPR both match well to the test data. For the sinusoidal dataset, the WGAN
structure shown in Figure 3 is used, and for the remaining problems in this section, we
increase the number of neurons, see Figure 4.
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Figure 2. Sinusoidal dataset with added noise (η = 0.2, see Equation (8)). The test data is shown on
the left, sampled points from the WGAN are shown in the middle and sampled points from the GPR
posterior are shown on the right.

Figure 3. The structure of the generator (left) and critic (right) for the sinusoidal datasets.

Figure 4. The structure of the generator (left) and critic (right) for the majority of the problems in
this section.

The previous example modelled uncertainty by using noise that was independent
of x. To test the WGAN model more thoroughly, a heteroscedastic dataset is used where
the noise increases with increasing x. Figure 5 shows that the WGAN model is capable
of modelling the variation in noise accurately, whereas the GPR, with a single kernel size
representing the probability density function, is unable to do so. We note that there is
a variant of GPR called Heteroscedastic GPR [21], which has been designed to handle
intricate changes in noise. Implementing this method would result in a better performance
of the GPR. However, here we aim to avoid tailoring methods to different datasets, so that
we can demonstrate the flexibility of the single WGAN model.
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Figure 5. Heteroscedastic dataset. The test data is shown on the left, sampled points from the WGAN
are shown in the middle and sampled points from the GPR posterior are shown on the right.

3.2.2. 1D Multi-Modal Examples

Here we explore the use of WGAN and GPR to perform regression of multi-modal
distributions. The WGAN models in this section use the architecture displayed in Figure 4.
For the first multi-modal distribution, a uniform distribution of data points is generated
within an annulus (i.e. between two concentric circles) as shown in Figure 6 (left). There
is a significant difference in the performance of the GPR and WGAN. Whilst the WGAN
captures the distribution very well (see Figure 6 (middle)), the GPR is unable to represent it
(see Figure 6 (right)), predicting an almost uniform distribution of points.

Figure 6. Annulus dataset. The test data is shown on the left, sampled points from the WGAN are
shown in the middle and sampled points from the GPR posterior are shown on the right.

The second multi-modal distribution is a sinusoidal wave with several intersecting
lines. The same trends appear as seen when using the annulus dataset: the WGAN
outperforms the GPR, which is unable to detect the gaps that exist in the dataset, see
Figure 7. The overall profile of the data is visible, but within the bounds of the minimum
and maximum y values there is no gap. Although GPR struggles with these complex
functions, it has been used and built upon to work on clustering complex functions [22], so
there is the capability of modelling these types of complex functions. However, we wish to
compare the WGAN against one model, without tailoring it for different types of data.
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Figure 7. A sine wave intersected by several lines. The test data is shown on the left, sampled points
from the WGAN are shown in the middle and sampled points from the GPR posterior are shown on
the right.

3.2.3. Confidence of Solutions from the Critic

Sections 3.2.1 and 3.2.2 show how sampled points produced by the generator of the
WGAN match the distribution seen in the test data (or sample data). During the training of
the WGAN, the critic learns to determine how real an sample is. This section demonstrates
how the critic can be used to determine the confidence in a sample produced by the
generator, which is an indication of how reliable the method’s predictions are.

Figure 8 shows the value taken by the critic for predictions or responses made through-
out domain for both the sinusoidal and annulus datasets. These are produced by finding
the value of the critic for each point on a 100× 100 grid that covers the same domain as
the original data. As previously stated, the critic of a WGAN does not explicitly determine
whether a sample is real or fake, but instead, how real a sample is. Therefore the larger the
value produced by the critic, the more confidence the model has in the prediction. The critic
values shown here are normalised to be between 0 and 1.

(a) The sinusoidal dataset (b) The annulus dataset

Figure 8. Contour plots showing the values of the two critics for the sinusoidal and annulus datasets.
These indicate the confidence in or reliability of the predictions and also indicate where extra training
data may be required.

Figure 8a shows the values of the critic produced for the sinusoidal dataset. It can
be observed that the values of the critic are higher where the data of the noisy sine curve
occurs (see Figure 2), which corresponds to the region mostly occupied by the training data.
These values are higher where there is a higher concentration of data points, particularly
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around x = −2.0 and x = 2.0. Outside of where the sine wave is located the critic value
sharply decreases, therefore confidence in any prediction made here is low.

Figure 8b shows the values of the critic produced by the annulus dataset. It can be
observed that the values are higher within the annulus, which corresponds to the region
occupied by the training data (see Figure 6). We can see that the critic produces lower
values for coordinates predicted outside of the annulus, meaning that the confidence in
predictions or responses that occur here is low.

Figure 8a,b demonstrate how the critic can be used in conjunction with the generator
to produce a confidence level in the predictions made by the generator. A lower critic value,
and therefore a lower confidence, in a prediction made may indicate that extra training
data is required there. A possible location requiring extra data for the sinusoidal dataset
is x = 0.5 and for the annulus dataset is x = 0.0. The critic value can be used to remove
solutions generated that are not realistic, thereby improving the results. The solutions
shown in Figures 2 and 6 had their average p-value improved from <0.2 to <0.1 by removing
the 10% of solutions generated that had the lowest value after being passed through
the critic.

Thus, the confidence level might help us to determine where to collect more experi-
mental data or where to observe the system. It also suggests where the neural network is
not predicting well, which might not be because of lack of data. Ultimately, this confidence
level should be combined with the importance of the region where the confidence is being
determined. This importance could be set according to how much or little influence this
region may be have on the final results. If applying the GAN approach to regression to
optimisation, importance could, for example, be determined from sensitivities (or adjoints)
of what is important with respect to the independent variables.

3.2.4. 2D Uni- and Multi-Modal Examples

Increasing the dimensions in the inputs of the regression problem means the need
for a larger neural network, thus the following problems use the structure displayed in
Figure 9.

Figure 9. The structure of the generator (left) and critic (right) for the two-dimensional problems.

The performance of the WGAN regression method for data with a single input has been
shown to be very reliable. We now test the GPR and WGAN methods on two-dimensional
data with a distance function h =

√
x2 + y2. The GPR performs exceptionally well, out-

putting predictions very close to the true model, see Figure 10. The WGAN also performs
well, although some deviation from the distance function can be seen.

Having demonstrated that both models are capable of performing regression on
datasets with multiple intputs, a more complicated problem is defined as a 2D multi-modal
function in the form of a helix with additive Gaussian noise. Figure 11 shows that WGAN
is capable of generating data similar to the true model, whereas the GPR struggles to
recognise the variation in h (on the z axis) and fills the hole in the circle, looking at the
xy plane.
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Figure 10. 2D distance function. The test data is shown on the left, sampled points from the WGAN
are shown in the middle and sampled points from the GPR posterior are shown on the right.

Figure 11. The helix dataset. The test data is shown on the left, sampled points from the WGAN are
shown in the middle and sampled points from the GPR posterior are shown on the right.

3.3. Single-Output Regression with Constrained Input Values

A key benefit of using the WGAN for regression is its capability of producing a
latent space that with a constrained input, can be optimised to produce multi-modal
responses. In Figure 12 we can see the function displaying a few of the potential responses
y, at differing fixed x. The WGANs used for the constrained input regression are the same
ones used in Sections 3.2.1 and 3.2.2 for their respective datasets.

Figure 12. The sinusoidal wave dataset, heteroscedastic noise dataset and annulus dataset predicted
at a given values of the x coordinate using the WGAN prediction method. Prediction displays
potential responses at the given x coordinates.

The way this optimisation is performed is to first randomly generate a latent input
vector of the generator. Then from this initial condition point in latent space we apply our
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optimiser to minimise the least squares functional, see Algorithm 1, which aims to match
the latent space with the specified x coordinate. We repeat this multiple times in order to
obtain a probability density function for this fixed x coordinate but with differing initial
latent space inputs. The average p-value for all three solutions generated this way is <0.05.

3.4. Multi-Output Regression with MOR-GAN
3.4.1. 1D Eye Dataset with Covariance

By taking a digitised, hand-drawn eye and adding a second eye which is obtained
by a rotation of 90◦ and a reflection of the first eye, we produce a distribution which is
multi-modal and multi-output or multivariate, see Figure 13. This forms the dataset for the
first multi-output regression test. The WGAN is trained to produce two pairs of coordinates,
(x1, y1) and (x2, y2).

Figures 14 and 15 contains the structure of the generator and discriminator respectively
used for the WGAN model in this section.

To provide a challenge for the algorithm which enables the WGAN to make predictions
a particular values for the independent variable (Algorithm 1), we constrain the value
of x1 (for the non-rotated eye) and predict the corresponding values for y1 (non-rotated
eye), x2 and y2 (rotated eye). We repeat this process for every point in the eye dataset to
form the image shown in Figure 16. Similarly, we constrain the value of x2 (for the rotated
eye) and predict the corresponding values for y2 (rotated eye), x1 and y1 (non-rotated
eye). This is done for every point in the dataset and the result can be seen in Figure 17.
The predictions using the MOR-GAN method take into account the known or learned
covariance information between the images, enabling the model to determine the second
image from all the points in the first image and vice versa. The agreement between the real
data and the predicted data using the constrained input is excellent.

Figure 13. The eye dataset which contains two eyes. One eye is rotated and reflected to produce a
second eye.

Figure 14. The structure of the generator for the eye dataset.
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Figure 15. The structure of the discriminator for the eye dataset.

Figure 16. The eye generated by the WGAN (left) and the comparison between the real data and the
generated data (right) using the constrained input method described in Algorithm 1.

Figure 17. The rotated eye predicted using Algorithm 1 (left) and the comparison between the real
rotated data and the predicted data (right).

3.4.2. Co-Varying Spiral Dataset

In many applications, variables often co-vary, in other words, a change in one variable
is typically reflected by a change in another variable. In this work, we use a two dimensional
spirals dataset as a benchmark to compare the capability of both GAN and WGAN. x and y
are the variables that define the spiral at 20 different z levels which are equally spaced with
z ∈ [0, 4]. Thus there are 20 pairs of x, y coordinates as the output of the MOR-GAN.

The structure of the model and the hyperparameters of each layer used in this section
are displayed in Figures 18 and 19, and Table 3.
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Figure 18. The structure of the generator for the Co-Varying Spiral problem.

Figure 19. The structure of the discriminator for the Co-Varying Spiral problem.

Table 3. Hyperparameters used in the construction of the convolutional neural network.

Layer Kernel Size Strides Padding Use Bias

Conv2D_1 (8, 2) (1, 2) same True

Conv2D_2 (8, 2) (2, 1) same True

Conv2D_transpose_1 (8, 2) (1, 2) same False

Conv2D_transpose_2 (8, 2) (2, 1) same False

Conv2D_transpose_3 (8, 2) (2, 1) same False

Conv2D_3 (8, 2) (2, 1) same True

Conv2D_4 (8, 2) (2, 1) same True

The three-dimensional spiral curves dataset is generated based on the equations below:

x = r sin θ, (9)

y = r cos θ, (10)

z = 4
(

θ − a
b− a

)
, (11)

where θ ∈ [a, b], a = 4πx1 − 2π and b = 4πx2 + 2π for x1, x2 chosen randomly from the
unit interval, and the radius r is chosen randomly from the interval [0.6, 1]. For each spiral,
r, x1 and x2 are chosen at random, and 20 equally-spaced values for θ are chosen from the
interval [a, b] to generate the curves shown in Figure 20.

Figure 20 shows the predictions made by the MOR-GAN. The first 10 data points in
the spiral, shown as solid blue dots, are used to predict the next 10 data points in the spiral,
produced by constraining the output using Algorithm 1. The real spiral is given by the blue
line and the spiral generated by the algorithm constraining the first 10 samples is given by
the red line. Three different sizes of latent spaces are used and it can be observed that all
latent spaces give reasonable reconstructions of the real spirals, therefore demonstrating
that the reconstruction reliability of the shape of the curve does not vary much with the
increasing dimension of latent space. Figure 20 also shows that the MOR-GAN can learn
the structure of the input data and can recreate the shapes (which are spirals in this case)
with approximate distributions (which are annular distributions representing the start of
the spirals in this case).

187



Appl. Sci. 2022, 12, 9209

Figure 20. The figures above show the generated data using the prediction function on real samples
(rows 1, 3, 5) and test samples (rows 2, 4, 6) when the size of the latent space is 3, 6 and 12 respec-
tively. The blue lines indicate the real spiral, the solid blue dots show the 10 data points that are
constrained using Algorithm 1 and the red lines show the spiral produced by the generator for these
10 constrained points.
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4. Silver Nanoparticle Data

We now explore the application of WGAN to real-world data regression. Reference [32]
explores the effects on cells from the lungs of four types of silver nanoparticles (AgNPs):
silver nanospheres (AgNS) of diameter 20 nm and 50 nm; short silver nanowires (s-AgNWs)
of length 1.5 μm and diameter 72 nm; and long silver nanowires (l-AgNWs) of length 10 μm
and diameter 72 nm. Silver nanoparticles are increasingly used in consumer products and
reports state that up to 14% of products containing AgNPs will release these nanoparticles
into ambient air [33,34] where they can be inhaled into the lungs of workers and consumers.
The work in [32] explores the influence of the nanoparticles on airway smooth muscle (ASM)
cells, which are an important component of the airways in the lungs, being responsible for
narrowing the airways in conditions such as asthma. Bronchi and tracheas from transplant
donor lungs were dissected to obtain the cells. These cells were serum-starved overnight
and then incubated with 20 nm or 50 nm AgNSs, or s-AgNWs (5 μg mL−1 or 25 μg mL−1)
or Ag+ ions (0.25 μg mL−1 or 25 μg mL−1) for 24 or 72 h. Change in cell viability assessed
by a reduction assay and change in cell proliferation assessed by the rate of DNA synthesis
were both measured, and the results are reproduced in Figure 21. Cell viability is defined
as the number of live, healthy cells in a sample.

Figure 21. Concentration and time-dependent effect of AgNSs and AgNWs, and Ag+ ions on ASM
cell viability after 4 h, 24 h and 72 h. The bars represent mean values of 3 ASM cell donors and the
whiskers indicate standard error of the mean (SEM). The data is expressed as percentage change with
respect to the untreated control. This plot was formed from the dataset also reported in [32].

The data from [32] contains four different molecules analysed at two concentrations at
three different times. The molecules were given numerical values based on their specific
surface area, defined as the total surface area of a material per unit of mass. This can be
seen in Table 4:

Table 4. Specific surface area of the particles formed from different molecules which form independent
variables for the WGAN regression.

Molecule Specific Surface Area m2 g−1

Ag+ 4.4
s-AgNWs 4.6

50 nm AgNSs 6
20 nm AgNSs 40.4

The generator part of the WGAN was trained to produce four outputs: the specific
surface area of the particles containing a specific molecule, the concentration level, the time
level (we sample the response at 3 time levels: 4 h, 24 h and 72 h) and the response
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(change in cell viability). All four outputs were scaled to be between 0 and 1. The WGAN
architecture can be seen in Figure 22.

Figure 22. The structure of the generator (left) and critic (right) for modelling the silver data in
this section.

Figure 23 contains the predictions made by the WGAN for cell viability, given time
level, concentration level and surface area taken from the original study. For each combi-
nation of parameters (time level, concentration level and surface area), 10 predictions are
made using the prediction Algorithm 1, minimising the error in the numerical value associ-
ated with a molecule, the concentration level and the time of interest. It can be observed
that the mean of the predictions is close to the mean of the assessment. The average p-value
for these predictions made is <0.2.

Figure 23. Concentration and time-dependent predictions of AgNSs and AgNWs, and Ag+ ions on
ASM cell viability after 4 h, 24 h and 72 h. The bars represent mean values of 10 predictions made
using a WGAN and the whiskers indicate standard error of the mean (SEM).

5. Execution Time of Method

Presented in Table 5 is an overview of the execution time of the method.

Table 5. First column contains the type of dataset, second column contains how long randomly
sampling 4000 of the posterior of the GPR took in seconds, third column contains how long it took to
randomly sample 4000 points of the latent space of the WGAN took in seconds and fourth column is
how long the WGAN took to run the prediction Algorithm 1 for 1000 iterations.

Dataset GPR WGAN—Random WGAN—Constrained

sine wave 0.0325 s 0.328 s 2.412 s
heteroscedastic 0.0642 s 0.144 s 2.737 s

circle 0.0444 s 0.198 s 2.543 s
helix 0.0774 s 0.231 s 3.528 s

silver nanoparticle 0.0623 s 0.261 s 4.601 s

Table 5 contains the time taken, in seconds, for randomly sampling 4000 points of the
GPR posterior and the WGAN latent space for different datasets. It can be observed that
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the time taken to randomly sample does not increase significantly as the number of input
parameters increases but sampling the GPR posterior is an order of magnitude faster than
sampling the WGAN latent space.

The third column of Table 5 contains the time taken to run the prediction algorithm 1
for 1000 iterations. The values here are meant as a form of comparison, Algorithm 1
incorporating a convergence criteria would could reduce the amount of iterations but
would make comparison less clear. There is a notable increase in time taken for the
algorithm to be applied to the datasets with a larger number of independent variables.

6. Conclusions and Future Work

In this paper, we demonstrate that Generative Adversarial Networks (GANs) can
perform well for a number of regression tasks, sometimes outperforming a model based
on state-of-the-art Gaussian Process Regression (GPR). The particular model used is a
Wasserstein GAN (WGAN), which can be easier to train than a standard GAN. For simple
regression and multiple regression tasks, both GAN and GPR perform well, although for
the dataset which has variable uncertainty (modelled as heteroscedastic noise), the GPR
fails to learn any variation in uncertainty, whereas the GAN captures this variation well.
Also, for the more challenging problem of multi-modal distributions, the GPR struggles
to learn the distribution whereas the GAN is able to reproduce the distribution very
well. Furthermore, for multi-output regression, the WGAN also demonstrated good
performance, showing that the GAN is able to capture the covariance information between
all the output variables (which includes the independent and dependent variables of the
regression problem).

Although the GPR can be modified for improved performance on specific types of
data (such as heteroscedastic noise and multi-output regression), we wanted to highlight,
here, that the WGAN needs no modification for these problems: one single WGAN model
can perform well for all the datasets with which we tested the models.

Novelties of the work include using a GAN for regression; being able to apply this
model to multi-modal data and multi-output regression (MOR-GAN) tasks with no fun-
damental modifications; the presentation of a prediction algorithm to be used with the
trained GAN in order to predict a response for a given independent variable; using the
critic to provide a confidence level of the predictions made by the generator, which could
ultimately be used to help determine where more data is needed.

In the future, the methods developed here could be applied to imaging, for example,
where, when there is missing data from an image or video, we could attempt to re-construct
the missing parts. Being able to reconstruct this image with specified uncertainties would
be useful. In modelling, the approach could be applied in high-dimensional space (with
applications across computational physics e.g. Computational Fluid Dynamics) to perform
data assimilation and analyse remaining uncertainties in the modelling, see Silva et al. [35].
Using the confidence level provided by the discriminator in such applications could deter-
mine where better models are needed or where coarser models (that are faster) can be used.
Performing a sensitivity analysis of the discriminator could also indicate where the model
is most error prone and thus where it needs to be improved.

Author Contributions: Conceptualisation, C.C.P., A.E.P. and K.F.C.; methodology, C.C.P., T.R.F.P.
and C.E.H.; software, T.R.F.P., E.B., Q.L. and L.H.; data curation, A.E.P.; writing—original draft
preparation, T.R.F.P., E.B. and C.E.H.; writing—review and editing, C.C.P., C.E.H. and K.F.C.; funding
acquisition, C.C.P. and K.F.C. All authors read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the following EPSRC grants: INHALE, Health
assessment across biological length scales (EP/T003189/1); RELIANT, Risk EvaLuatIon fAst iN-
telligent Tool for COVID19 (EP/V036777/1); MUFFINS, MUltiphase Flow-induced Fluid-flexible
structure InteractioN in Subsea applications (EP/P033180/1); the PREMIERE programme grant
(EP/T000414/1) and MAGIC, Managing Air for Green Inner Cities (EP/N010221/1).

Institutional Review Board Statement: Not applicable.

191



Appl. Sci. 2022, 12, 9209

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the reviewers for their comments which have improved
the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Nomenclature

See Table A1 for a description of the nomenclature used in this article.

Table A1. Nomenclature used in the paper.

Section 2 and Algorithm 2 from Section 3

G, D generator and discriminator (or critic) networks (for GANs, D is referred
to as the discriminator, for WGANs it is referred to as the critic)

α latent variables
L, V the loss function and function describing the two player min-max game
x, x̃ samples from real and generated data
Pr, Pg distributions for the real data and the generated data
pα distribution of the latent variables
W Wasserstein distance between distributions
γ(x, y) a joint distribution
D set of 1-Lipschitz functions
x̂ a linear combination of a real sample and a generated sample (at which

the gradient penalty will be imposed)
λ gradient penalty
ε mismatch between desired (partial) output of GAN and actual (partial)

output of GAN
x, y independent and dependent variables
xp, yp particular values of the independent and dependent variables
ε random number
U Uniform probability distribution
α� learning rate
β1, β2 optimiser hyperparameters
ncritic number of iterations of the critic
m batch size
N number of iterations

Section 3

x, y, z independent and dependent variables
x1, x2, y1, y2 independent and dependent variables
θ angle
η a scalar controlling the amount of noise
φ ∼ N (μ, σ) random variable (noise) sampled from a Gaussian distribution N with

mean μ and standard deviation σ
h distance function
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Abstract: Human detection is a special application of object recognition and is considered one of
the greatest challenges in computer vision. It is the starting point of a number of applications,
including public safety and security surveillance around the world. Human detection technologies
have advanced significantly in recent years due to the rapid development of deep learning techniques.
Despite recent advances, we still need to adopt the best network-design practices that enable compact
sizes, deep designs, and fast training times while maintaining high accuracies. In this article, we
propose ReSTiNet, a novel compressed convolutional neural network that addresses the issues of
size, detection speed, and accuracy. Following SqueezeNet, ReSTiNet adopts the fire modules by
examining the number of fire modules and their placement within the model to reduce the number of
parameters and thus the model size. The residual connections within the fire modules in ReSTiNet are
interpolated and finely constructed to improve feature propagation and ensure the largest possible
information flow in the model, with the goal of further improving the proposed ReSTiNet in terms of
detection speed and accuracy. The proposed algorithm downsizes the previously popular Tiny-YOLO
model and improves the following features: (1) faster detection speed; (2) compact model size;
(3) solving the overfitting problems; and (4) superior performance than other lightweight models
such as MobileNet and SqueezeNet in terms of mAP. The proposed model was trained and tested
using MS COCO and Pascal VOC datasets. The resulting ReSTiNet model is 10.7 MB in size (almost
five times smaller than Tiny-YOLO), but it achieves an mAP of 63.74% on PASCAL VOC and 27.3%
on MS COCO datasets using Tesla k80 GPU.

Keywords: computer vision; object detection; human detection; convolutional neural networks

1. Introduction

Human beings possess an inherent ability to perceive surrounding objects in static
images or image sequences almost flawlessly. They can also sense emotions and interactions
among persons and notice the total persons present in images by making mere observations.
The computer vision field is expected to provide the required technological assistance for
this human aptitude in order to improve the quality of life of humans. Hence, the aim of
this field is to explore methods for effectively teaching machines or computers to observe
and understand characteristics in images or videos using digital cameras [1].

A precise detection of objects in an image is essential in computer vision in order to
suit the demands of various applications involving vision-based approaches. For instance,
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object detection includes the identification of specific details in an image, and localizing
its coordinates is considered to be a problem in vision technology. Identifying objects
is not the only task that requires performance but categorizing them accordingly across
various classes in an appropriate manner is also required [2]. A classic example of this
includes visual object detection [2]. Figure 1 illustrates the basic operation of a machine
learning (ML) model for detecting objects. For example, consider the goal of classifying
three dissimilar objects: a bird, a human being, and a lion. Initially, training images are
collected with labeled data in preparation for training an ML framework. Secondly, the
desired features are extracted and then added to the classifier’s architecture.

Training Data Feature Extraction Test Data

Human

Classifier

Figure 1. Example of machine learning work flow for object classification across three different classes
(bird, human, and lion).

Certain features can be best expressed by utilizing various object characteristics that
include colors, corners, edges, ridges, and regions or blobs [3]. The success achieved from
training is directly proportional to several factors that include feature extraction, classifier
selection, and the training procedure. The first task is important as it not only enhances
the accuracy of trained networks but also eliminates redundant features in the image. It
involves reducing the dimensionality of data by extracting redundant information, which
in turn improves the quality of inference while simultaneously improving the training
rate. An ideological view is to expect features to be invariable in the control of dynamic
and illuminated conditions while possessing the capability to cope with any randomized
variations during either scaling or rotational motions. Features are appended to the training
framework after all feasible features from the image samples have been extracted. They
are then supplied to an appropriate sort of classifier based on accuracy and speed. Some
normally used classifiers exist, which include the Support Vector Machines (SVM), Nearest
Neighbor (NN), Random Forest (RF), and Decision Tree (DT). Once the training framework
is ready, removing alike features from the test image samples and, as a consequence,
predicting the proper class from features using the trained framework for each provided
test image are feasible.

Several techniques were proposed in light of the efficient extraction of features as
well as classification to detect arbitrary objects in images [4]. Over the past two decades,
the focus had been on the design of efficient hand-crafted features to improve detection
robustness and accuracy. A diverse set of extraction techniques was provided by the
vision research community such as Scale Invariant Feature Transform (SIFT), Viola Jones
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(VJ), Histogram of Oriented Gradients (HoG), Speeded Up Robust Features (SURF), and
Deformable Part-Based Models (DPM) [5,6].

Deep learning techniques have effectively combined the task of extracting the features
and classification in an end-to-end way [4]. Convolutional neural networks (CNNs) have
become quite popular for tackling various problems, among which includes object detection.
Subsequently, the performance of such architectures has led to a proliferation in both
achievable speed and accuracy. The object detection methods using deep CNN such
as Spatial Pyramid Pooling Networks (SPPNets), Region-based CNN (R-CNN), Feature
Pyramid Networks (FPNs), fast RCNN, You Only Look Once (YOLO), faster R-CNN,
Single-Shot Multibox Detector (SSD), and Region-based Fully Convolutional Networks
(R-FCNs) have shown excellent benefits relative to state-of-the-art ML methods [7,8]. This
article focuses on a specific sub-domain of detection, which is the human detection.

In a year, over a billion people lost their lives and around 20–50 million people
experienced fatal complications as a result of traffic accidents [9]. In 2015, more than
5000 pedestrians died in traffic accidents, while about 130,000 pedestrians required medical
care for non-fatal problems in the United States. However, the ratio of traffic fatality can
be reduced or even eliminated by utilizing various detection techniques in autonomous
vehicles that use sensors to interact with other neighboring vehicles in the vicinity [10].

With increases in crime and public fear of terrorism, public security has become an
unavoidable concern, and human detection techniques can be employed to monitor and
control public spaces remotely. Approximately 21,000 people lose their lives because
of terrorist activities every year and 0.05% of the total deaths in 2017 occurred due to
terrorism [11]. The necessity to install a sufficient number of human-detecting devices
has spiked in public locations following tragedies in London, New York, and other cities
across the globe. Such incidents are critical enough and demand a robust design and
global deployment of such systems. Hence, human-detection systems are observed as a
viable answer for ensuring public safety and have become one of the most significant study
fields today.

The detection of human beings is one of the key responsibilities in the field of computer
vision. It is indeed difficult to identify human in pictures because of several background ef-
fects such as occlusions [12], illuminated conditions and background clutters [13]. Previous
techniques have been unsuccessful in real-world scenarios for detecting humans, as they
took a longer period of time for detection and yielded outcomes that were not sufficiently
accurate due to distance as well as changes in appearance [6]. Therefore, a universal rep-
resentation of objects still continues to remain an open challenge in midst of such factors.
Human detection is currently being utilized for many applications. Human detection is in
the early stages in a number of use cases including pedestrian detection, e-health systems,
abnormal behavior, person re-identification, driving assistance systems, crowd analysis,
gender categorization, smart-video surveillance, human-pose estimation, human tracking,
intelligent digital content management, and, finally, human-activity recognition [6,14–17].

The deep CNN is a dense computing framework in and of itself. With a large number
of parameters and higher processing loads, followed by high memory access, energy
consumption increases rapidly, thereby making it impossible to adopt the method for
compact devices with minimal hardware resources. A feasible approach is a compressive,
deep CNN technique for real-time applications and compact low-memory devices, which
reduces the number of parameters, the cost of calculation, and power usage by compressing
deep CNNs [18].

Over the past few years, the construction of tiny and effective network techniques to
detect objects has become a point of discussion in the field of computer vision research. Ac-
celeration and compression techniques are related primarily to the compact configuration
of network architecture [19], knowledge distillation [20], network sparsity and pruning [21],
and network quantization [22]. Various studies on network compression have advanced
network models: for instance, SqueezeNet [23], which is a fire module based architecture;
MobileNets [24], a depthwise separable filters based architecture; and, finally, the Shuf-
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fleNet [25], a residual structure based network in which channel shuffle strategy and group
pointwise convolution were incorporated.

Motivated by lightweight architectures, a novel compact model was proposed to
detect humans for the portable devices that were absent in the current literature. Tiny-
YOLO, which is the tiny version of the YOLO model, is used as the base architecture
of this proposed model. YOLO is a faster and more accurate technique compared to
other object detection models, and it has been enhanced since its first implementation,
which includes v1-YOLO, v2-YOLO, and v3-YOLO. However, these architectures are not
suitable for portable devices because of their large sizes and inability to maintain real-time
performance in constrained environments. As mentioned, Tiny-YOLO is smaller than these
models. However, it failed to achieve high accuracy, and speed remained unsatisfactory for
low-memory devices.

This article proposes a model called ReSTiNet that is based on Tiny-YOLO. This model
reduces the size of the model while simultaneously achieving higher accuracy and boosting
detection speeds.The ultimate goal of this article is to develop a more capable human
detection model for portable devices. Intelligent surveillance systems that use portable
devices with less processing power can easily take advantages of this smaller and lighter
model. This improves the performance and capabilities of the system without increasing
the cost of the hardware or the amount of processing power it needs. Furthermore, lighter
and faster models can be used in low-latency real-time human detection applications. The
inspiration for ReSTiNet came from SqueezeNet, which use the fire module in order to
decrease the total model parameter numbers and therefore compressed the overall size of
the model. Determining the number of fire modules and where in the network they should
be placed is one of the parts of integrating the fire module in Tiny-YOLO that presents one of
the greatest challenges. The investigation of the residual connection between fire modules
is still another key issue that needs to be addressed in order to improve detection accuracies
and speeds even more. The useful feature of residual connections in Resnet [26] served as
an inspiration for the implementation of residual connections within the fire modules of
ReSTiNet. This was performed to ensure that the maximum amount of information flowed
and to improve feature propagation throughout the architecture. In the end, dropout was
used in ReSTiNet in order to circumvent the overfitting issue, attain an overall satisfactory
level of performance, and lower the amount of computing effort required.

Prior to delving into the details of the study, it is essential to discuss the scope of the
current effort. The following sections are the contents of this paper: Section 2 discusses
the recent literature on human detection. In Section 3, the proposed ReSTiNet model
for portable devices is explained. The experimental results are reported step-by-step
in Section 4: system specification, dataset Specification, mAP, model training, ablation
experiments of the proposed ReSTiNet, comparison with other lightweight models, and
performance analysis of the proposed ReSTiNet. Finally, Section 6 concludes the article.

2. Related Literature: State-of-the-Art Methods

Human detection is the process of identifying each object in a static image or image
sequences that are regarded to be human. Human detection is widely acknowledged to
have advanced through two different historical periods in recent decades: “conventional
human detection period (before 2012)” and “deep learning-based detection period (after
2012)”, as illustrated in Figure 2.

Human detection is typically accomplished by extracting regions of interest (ROI) from
an arbitrary image sample, illustrating the regions using descriptors, and then categorizing
the regions as non-human or human, accompanied by post-processing processes [27].

In conventional techniques, human descriptors are generally designed by locally re-
moving the features. A few examples include “edge-based shape features (e.g., [28])”,
“appearance features (e.g., color [29], texture [30])”, “motion features (e.g., temporal dif-
ferences [31])”, “optical flows [32]”, and their combinations [33]. Most of their functions
are manually designed, which benefit from the ease of description and intuitively compre-
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hending them. In addition, they were shown to perform well with limited collections of
training datasets.
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Figure 2. Human-detection milestones.

The Deformable Part-based Model (DPM) is the earlier state-of-the-art approach for
detection process [34]. DPM is considered an extension of the histograms of the oriented
gradients (HOG) model. The projected object is scored using the entire image’s coarse
global template as well as the six higher-resolution portions of the object. HOG is used to
characterize every single input. Following this approach, HOG’s multi-model can address
the varying viewpoint problem. In the training phase, a latent support vector machine
(latent SVM) was employed to decrease the detection drawback relative to the classification
area. The coordinates of the component are considered as the latent element. This approach
resulted in a massive impact due to its robustness.

Manually described features on the other hand, are unable to present more detailed
information about the objects. In particular, they were challenged by the background,
occlusion, motion blur, and illumination conditions. Hence, deep learning algorithms
are regarded as relatively more efficient in human detection because they can learn more
sophisticated features from images [35–37]. Although these initial deep algorithms have
demonstrated some improvements over the classical models, these functions are still
constructed manually, and the key concept is to expand the earlier models. Deep CNNs
are also applied for the feature extraction in a few studies, for example [38]. A complexity
perception cascade training for human detection was performed followed by the extraction
of features.

Deep learning approaches are currently being used to address many identification
problems in several ways. One of the most promising architectures is the Convolutional
Neural Network (CNN). Deep CNNs can learn object features on their own; thus, they
depend less on the object’s classes. Training a class-independent method, contrastingly,
means that more data will be used for learning as deep learning requires a significant
volume of data relative to training a domain-specific method. Only a few articles have
been published in the field of human detection using the CNNs method. Tian et al. [39]
employed a CNN to learn human segmentation characteristics (e.g., hats and backpacks),
but the network component leads to boosting the prediction accuracy by re-classifying the
prediction item as negative or positive, rather than making predictions directly. Li et al. [40]
included a sub-network relative to a novel network built on Fast R-CNN to deal with
small-scale objects. Zhang et al. [41] straightforwardly examined a cross-class detection
method (CNN), which involved faster R-CNNs performances on independent pedestrian
detection, and came up with good findings. Among the three techniques, besides [39],
which does not directly deal with detection, refs. [40,41] performed various experiments
based on cross-class detection techniques. In [42], the authors suggested a system based
on the combination of “Faster R-CNN” and “skip pooling” to deal with human detection
issues. The architecture of “Faster R-CNN’s region proposal network” is generalized to a
multi-layer structure and finally combined with skip pooling. The skip pooling structure
removes several interest regions from the lower layer and is fed to the higher layer, without
considering the middle layer. In [43], the authors had suggested an enhanced mask R-CNN
approach for real-time human detection that achieved 88% accuracy.
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In [44], a deep convolutional neural network-based human detection technique was
proposed using images that were used as input data to classify pedestrians and humans.
The authors used the VGG-16 network as a backbone and the model had provided better
accuracy on the “INRIA dataset”. In [45], the authors combined a deep learning model
with machine learning technique to achieve high accuracies with less computational time
for human detection and tracking in real time. However, the model had a lower speed.
In [46], the authors suggested a sparse network-based approach for removing irregular
features and the developed approach was applied to a kernel-based architecture to reduce
nonlinear resemblance across different features. This model, on the other hand, cannot be
used for real-time detection and tracking.

H. Jeon et al. [47] resolved the human detection problem in extreme conditions by
applying a deep learning-based triangle pattern integration approach. Triangular patterns
are employed to derive more precise and reliable attributes from the local region. The
extracted attributes are fed into a deep neural architecture, which uses them to detect
humans in dense and occluded situation. In [48], K.N.Renu et al. proposed a deep learning-
based brightness aware method to detect human in various illuminated conditions for both
day and night scenarios. In [49], the authors cascaded aggregate channel features (ACF)
with the deep convolutional neural network for quicker pedestrian and human detection.
Then, a hybrid Gaussian asymmetric function was proposed to define the constraints of
human perception. In [50], the authors proposed a single-shot multibox detector (SSD) to
detect pedestrians. The SSD convolutional neural architecture extracts low features and
then combines them with deep semantic information in the convolutional layer. Finally,
humans are identified in still images. In the suggested technique, pre-selection boxes with
different ratios are used, which increased the detection capability of the entire model.

In [51], the authors proposed a multi-stage cascade framework for coarse-to-fine
human-object interaction (HOI) recognition understanding. The introduced method
achieved first position in ICCV2019 Person Context Challenge (PIC-19) and also showed
the excellent outcomes on V-COCO dataset. In [52], the authors developed a compressed,
powerful, and effective architecture to resolve the instance-aware human part parsing
issue. In the proposed method, structural information are used across a variety of human
granularities, which makes the challenging task of person-partitioning easier.

3. The Proposed ReSTiNet for Low-Memory Devices

3.1. Motivation

The network structure of Tiny-YOLO is shown in Figure 3. This architecture consists
of a total of nine convolutional layers followed by six max-pooling layers that are used
to remove features of images along with one detection layer. This method uses convolu-
tional layers containing 512 and 1024 filters that provide a large parameter density, large
memory storage, and a lower detection speed. Another issue with Tiny-YOLO is its low
detection accuracy. The network’s irrational compression techniques may further decrease
detection accuracies.

Input
Output

Detection Layer

Figure 3. The structure of Tiny-YOLO.
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Hence, in order to address such issues, ReSTiNet is introduced in this research, which
directs towards the performance of the model’s size as well as its accuracy. Algorithm 1
details the proposed ReSTiNet model.

Algorithm 1 ReSTiNet pseudocode

Input: Input(shape= (input_size, input_size,3))
Input: learning_ rate, epoch, batch_size
Input: iou_ threshold, score_ threshold
Output: output_shape, mAP
def fire_module(model, fire_id, squeeze, expand)
def maxpooling (pool_size, stride)
def resnet_block (model, filters, reps, stride)
def mAP (model):

map = model.evaluate (generator, iou_threshold,
score_threshold, average_precisions)

return map
def layer(conv, batchnorm, activation, maxpooling, dropout)
def main (){

create layer1: ([16,3,1], norm_1, leakyReLU[.1], 2, null)
x← layer1

for i in range(2,3,4,5):
create layer(i): ([32∗(2∗∗i), 3, 1], norm_ + str(i+2),
leakyReLU[.1], 2, [0.20])
x← (x) (layer(i))

//return x
create fire_module1: (x, 2, 16, 64)
create fire_module2: (x, 3, 16, 64)
create maxpooling1: (3, 2)
create resnet_block1: (x, 64, 3, 1)
create fire_module3: (x, 4, 32, 128)
create fire_module4: (x, 5, 32, 128)
create maxpooling2: (3, 2)
create resnet_block1: (x, 128, 4, 2)
create fire_module5: (x, 6, 48, 192)
create fire_module6: (x, 7, 48, 192)
create fire_module7: (x, 8, 64, 256)
create fire_module8: (x, 9, 64, 256)
dropout← 0.50
return mAP(x), output_shape(x)}

The goal of ReSTiNet is to develop a model that is smaller, swifter, and more capable
at detecting humans on lightweight devices. The network’s optimization is carried out by
performing a reduction in parameters to an acceptable level rather than blindly decimating
the convolution layers. SqueezeNet’s fire module compresses the framework using a
bottleneck network layer and widens the network module without significantly sacrificing
detection accuracy. As a result, the introduction of fire module was carried out to achieve
the performance of a faster as well as a smaller network structure. ReSTiNet then seeks
achieve a higher accuracy in detection while simultaneously minimizing the parameters.
Study [53] achieved a higher accuracy with a smaller number of parameters in which
residual blocks were integrated between fire modules in the VGG-16 network. Thus, in
between the fire modules lies the residual block, which is used in ReSTiNet to maximize
the detection accuracy.

201



Appl. Sci. 2022, 12, 9331

3.2. Construction of ReSTiNet

The structure of ReSTiNet is shown in Figure 4. The first five convolutional layers of
Tiny-YOLO are retained in ReSTiNet. Layers with 512 and 1024 filters in the Tiny-YOLO are
replaced with the fire modules, which shrink the model. Then, residual connections from
Resnet-50 network inside the fire modules are integrated, which help the proposed model
achieve a higher mAP. This article synthesizes three widely used approaches: Tiny-YOLO,
ResNet, and the SqueezeNet method. The details of the implementations are as follows.

Input

Residual block inside the fire 
modules after max pooling 

Fire Module

Output
Detection Layer

Figure 4. The structure of ReSTiNet. Fire modules are adopted from SqueezeNet, which shrinks the
model. Then, residual connections are integrated from ResNet-50 network inside the fire modules to
enhance the proposed ReSTiNet’s efficiency.

3.2.1. Tiny-YOLO

A popular technique called “Tiny-YOLO”, which is the smaller version of “You Only
Look Once (YOLO)”, was formulated to create a single step procedure that involved both
the detection as well as the classification process. Upon a single appraisal of the input
image, both the bounding box and class predictions are produced.

The distinguishing feature of this technique as opposed to the conventional models
is that the class as well as bounding box predictions are performed at the same time. The
procedure is as follows: Firstly, the image that is considered as the input is split across
the S× S grid. Secondly, every single grid cell is assigned with a confidence score, which
contains the respective bounding box. The probability or chances that the object is present
in every bounding box is referred to as the confidence score and is mathematically given by
the following:

C = Pr(Object) ∗ IOUtruth
pred (1)

where term IOU (“intersection over union”) is defined to be a fraction that numerically lies
within the limits of [0, 1]. The overlapped area in between the ground truth as well as the
bounding box predictor is termed as the intersection. The entire region between the ground
truth and the predictor is known as the union. In ideal terms, the IOU must be closer to 1,
which implies that the ground truth is approximately equal to the bounding-box predictor.

Similarly, the conditional class probability C is also predicted by individual grid cells
while the bounding boxes are created. Thus, for every cell, the class-specific probability
function is expressed as follows.

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred

= Pr(Classi) ∗ IOUtruth
pred .

(2)

3.2.2. Fire Module of ReSTiNet

The introduction of the fire module under ReSTiNet was to decrease the number
of parameters as well as escalate the width and depth of the entire network. This was
performed in order to ensure the accuracy of detection. This model consists of both expand
as well as the squeeze components so that the model’s network tends to expand and
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compress. The compress or squeeze component utilizes the convolutional layer with a
size of 1× 1 introduced by NIN as a substitute for the usual layer with the size 3× 3. In
order to decrease the number of parameters, the model that follows the 1× 1 technique
was found to be more efficient. Additionally, the accuracy of detection does not reduce
significantly as the training parameter is only a single variable that should be learnt.
During the expansion, both the models with sizes 1× 1 as well as 3× 3 are typically used.
Finally, the arrived outputs from the respective convolutional layers are concatenated at
the concatenation layer.

For a convolutional layer, the parameters are given as ci, the number of channel input
variables, k as the kernel size, and co as the number of channel output variables. Using
Equation (3), the value of the number of parameters for the convolutional layer is then
calculated. The number of channel inputs is ci for the fire module; ks1 is the kernel size
of the squeeze component, and s1 is the number of channel output variables. If the value
of ks1 is assigned to 1, a reduction in a large number of model parameters for the squeeze
component is possible. The number of channel input variables is s1 followed by the kernel
sizes ke1 and ke3 for the expanded component. The total number of channel output variables
is the sum of e1 and e3. Using Equation (4), the number of model parameters is calculated.
Figure 5 illustrates the structure of the fire modules in ReSTiNet.

Pconv = (ci × k2 + 1)× co (3)

Pf ire = (ci × k2
s1
+ 1)× s1 + (s1 × k2

e1
+ 1)

× e1 + (s1 × k2
e3
+ 1)× e3

(4)

1*1 Conv ReLU

ReLU

Concat

1*1 Conv
Squeeze

Expand

ReLU

1*1 Conv

Output
Input

Figure 5. The structure of Fire Module. It is made up of two layers: squeeze and expand. The squeeze
layer consists of a small number 1× 1 filters, and the expand layer consists of a small number of 3× 3
and 1× 1 filters.

The ability with which the fire can be utilized more effectively depends on the appro-
priateness of the position of the fire module within the network. ReSTiNet architecture
comprises a total of eight fire modules. In the ReSTiNet network, the sixth layer is replaced
with the initial four fire modules where the former contains 512 filters followed by down-
sampling technique. Layers seventh and eighth containing 1024 filters are replaced with
four other fire modules, and this is carried out before the 1× 1 convolutional layer and
detection layer. However, the choice of the number of channel inputs ci is not bounded,
while choosing a large number of channel inputs would lead to reduction in parameters.

3.2.3. Residual Block between Fire Modules

The optimization trajectory will follow a negative slope due to degradation when it is
expected of depth to provide an enhanced detection accuracy. Relative to the conclusions
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derived from other neural networks, it is observed that the error is typically higher in deep
CNN architectures [53]. In study [26], the authors developed a degradation resolution
that enables a subset of stacked layers to accept the existing residual mapping. This is
the area where the degradation typically halts the layers in order to be congruent with
the standard subsidiary mapping. Formula (6) represents the subsidiary mapping rather
than Formula (5), where H(x) is the desired mapping, and F(x) is the learned residual
mapping. The actual mapping is modified into F(x) + x. In study [26], the authors found
that optimization is relatively easier in a residual-based mapping than the primary one.

F(x) = H(x) (5)

F(x) := H(x)− x (6)

H(x) = F(x) + x (7)

However, one or more layers were ignored during “shortcut connections”, as men-
tioned in studies [26,53]. “Shortcut connections” are expressed in Equation (7) [26].
Study [26] utilized “shortcut connections” in order to conduct identity mappings. The
fusing of stacked layer outputs is performed with that of the “shortcut connections” output
values. The latter possesses the advantage of being parameter-free, thereby using minor
values during the computational process. Paper [54] developed highway-based networks
by merging “shortcut connections” and “gating functions” along with their parameters.
The possibility of optimization using a “stochastic gradient descent (SGD)” is another bene-
fit of “shortcut connections” [26]. It is easier to integrate “identity shortcut connections”
using deep learning open-source libraries [26,53].

We integrated “residual learning” from ResNet-50 within ReSTiNet architecture fol-
lowed by a down-sampling technique after the 2nd and 4th fire modules. The building
residual block is expressed in Equation (8).

y = F(x, Wi) + x (8)

Terms y and x represent the output and input vectors of the layers, respectively. The
mentioned function, F(x, Wi), is nothing but the residual mapping to be learnt. As in
Figure 2, there are 2 layers, F = W2σ(W1x), in which the term σ represents the ReLU
functionl; for reducing the complexity of notations, many biases were appropriately re-
moved. The process, F + x, was carried out by the use of a “shortcut connection” and
“elemental-wise addition” operation upon which the second ReLU (non-linearity) function
was made use of. The “shortcut connections” in Equation (8) add neither more parameters
nor complexity to the computation [26].

3.2.4. Dropout in ReSTiNet

The mask that neutralizes the effects caused by neurons in the succeeding layer is
termed as the dropout layer. This mask tends to stabilize the neurons and keeps the others
unchanged. This layer is important while training CNNs since they counteract the effects
of overfitting on the data that needs to be trained. Otherwise, an influence from the initial
batch of samples will be present on the learning and causes disproportionate results in the
performance. Thus, the efficiency in learning the features will be deeply affected; it further
delays the arrival of such results in later batches [55]. The common practice of a dropout
is to use a small value within the range of 20–50% of neurons, with 20% being a decent
starting point. A probability that is too low has no impact, whereas a value that is too large
results in the network’s under-learning [56]. In the convolutional layers (2nd–5th), 0.2 and,
after the fire module, 0.5 dropouts are used in the proposed ReSTiNet network to overcome
the overfitting problem.
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3.2.5. Loss Function of ReSTiNet

The custom loss function is utilized in this study, unlike Tiny-YOLO, which consists of
three parts: error in prediction coordinate, error in IOU, and classification error.

The error in coordinate prediction is described as follows:

Errorcoord =
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j=0
L

obj
ij
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2
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(9)

where s2 denotes the grid cell number of all scale. B represents the bounding-box number
for every grid. Lobj

ij defines target of the i-th grid cell, which falls in the j-th bounding box.

(x̂i, ŷi, ŵi, ĥi) and (xi, yi, wi, hi) represent the center coordinate, height, and width of the
predicted box and the ground truth, respectively.

The IOU error is described as follows:
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where Ĉi and Ci define the predicted and true confidence, correspondingly.
The classification error is defined as follows:

Errorcls =
s2

∑
i=0

L
obj
i ∑
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(pi(c)− p̂(c))2. (11)

where p̂i(c) denotes the predicted value, while pi(c) denotes the target’s true probability.
From the above, the final loss function is shown in Equation (12).

Loss = Errorcoord + ErrorIOU + Errorcls
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3.3. Time Complexity, Success, and Challenge of ReSTiNet

In this section, time complexities of the proposed ReSTiNet with its success and
challenge are described.

3.3.1. Time Complexity

In the proposed algorithm, some operations occur only once and their time complexity
is O(1). However, in ReSTiNet, different methods have iteration, and their time com-
plexity is O(n2). Therefore, the time complexity of our proposed algorithm is as follows:
O(1) + O(n2) = O(n2). Therefore, we define this algorithm as having a Quadratic Time
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Complexity to indicate that as the size of the input increases, the amount of time needed to
run it increases accordingly. Informally, Quadratic Time Complexity represents an algo-
rithm for which its performance is directly proportional to the squared size of the input
data set.

3.3.2. Advantage of the Model

This proposed method is easily adaptable; therefore, this process can be applied to
compress various current deep CNN models. As human detection is the first phase of
many applications, this developed method can be used for pedestrian detection and pose
estimation with low-memory devices.

3.3.3. Challenge of the Model

ReSTiNet employs fire modules that reduce the model’s parameter and, thus, the com-
putational cost. However, the procedure still requires a significant amount of processing to
be performed on a portable device. As a result, the architecture is still trained on a machine
(i.e., remote server) capable of handling this computationally intensive method.

4. Experimental Results

Initially, the experimental environment setups, datasets, and evaluation criteria (mAP)
are described in this segment of the article. The performance is then compared based
on training time, mAP, and model size metrics. Moreover, to validate the advantage of
ReSTiNet performance over alternative lightweight networks, we conducted comprehen-
sive experiments to verify the findings of the performance comparison.

4.1. System Specification

The Tesla K80 is used to train the ReSTiNet model and also to evaluate the detection
speed of the architecture. The Tesla K80 is a pro graphics card launched by NVIDIA. Tesla
K80 is built on the GK210 GPU and manufactured using 28 nm technology. The GK210
GPU has a 561 mm² die area with 7100 million transistors. The Tesla K80 integrates two
GPUs to boost the performance. The configuration of the Tesla K80 is provided in Table 1.

Table 1. Configuration of Tesla K80.

Computing Platform Graphics Processor Memory

Tesla K80

GK210 × 2,
2496 × 2 shading units,

208 × 2 TUMs,
48 × 2 ROPs

12 GB × 2,
384 bit × 2,

GDDR5,
240.6 GB/s × 2

Ubuntu-16.04 LTS is used as base operating system with 62 GB RAM, NVDIA CUDA
v10.2, NVDIA cuDNN v7.6.5. The script is written in python v2.7 with TensorFlow v1.14.0,
Keras v2.2.2, cv2, NumPy v1.16.4.

4.2. Data-Set Specification

This study makes use of the “MS COCO” [57] and “Pascal VOC” [2] datasets. Generally,
object detection, image classification, and segmentation are performed with these two
datasets. The “Pascal VOC” dataset consists of “Pascal VOC 2007” and “Pascal VOC
2012”. There are 8540 images of human beings from the “Pascal VOC” dataset used for
this experiment. “MS COCO” is more challenging while “Pascal VOC” is easier to train.
Generally, the performance on the MS COCO dataset of a method for object detection
models is more inclined. There are 45,174 images of human beings used from the “MS
COCO-train2014” dataset for accomplishing this study. Both datasets are split 80/20
for training and validation, respectively. The IOU (“intersection over union”) is set 0.5
by default for both datasets while calculating mAP values. The “INRIA” dataset [6]
(1208 images) is used to test the proposed ReSTiNet model’s detection speed.
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4.3. Evaluation Criteria (mAP)

The mean average precision (mAP) metric is utilized to estimate the performance of
the introduced ReSTiNet and the baseline architectures. The mAP scores are reported for
both “MS COCO” and “Pascal VOC”.

Average Precision (AP): The recall/precision curve is used to assess the output perfor-
mance for a specific class and task. Precision is the ratio between the relevant and retrieved
examples explained in Equation (13).

precision =
|{relevant instances} ∩ {retrieved instances}|

|{retrieved instances}| (13)

The rate of recall is described as the ratio of the total number of relevant examples to
the total positive instances. The average precision is utilized for evaluating precision over
multiple equidistant recall levels:

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)] ∗ Precisions(k) (14)

where n defines the number of the threshold.
The mAP (“mean average precision”) is employed to calculate the C class’s average precision:

mAP =
1
C ∑

i∈{0,1,2,...,C}
AP(ci) (15)

where AP(ci) defines the average precision for the class of ci.

4.4. Model Training

The pre-trained weight daraknet19.conv model is imported into ReSTiNet before the
training started on both “MS COCO” and “Pascal VOC” datasets. ReSTiNet takes 416∗416
as the size of the input. The learning rate of ReSTiNet is 0.001, and the batch size is 16
with 50 epochs. MS COCO has a max iteration batch number of 504K, whereas Pascal
VOC has a max iteration batch number of 129 K. Table 2 represents the model’s trained
hyperparameters.

Table 2. Hyperparameters used in the ReSTiNet.

Hyperparameter Range

input size 416 × 416
learning rate 0.001
activation Leaky ReLU (α = 0.1), ReLU
batchsize 16
no. of epoch 50
optimizer adam (β1 = 0.9, β2 = 0.999, ε = 1× 10−8)
loss function custom loss
dropout 0.2, 0.5
iou_threshold 0.5
score_threshold 0.5

4.5. Ablation Experiments of the Proposed ReSTiNet

We have conducted ablation experiments in the ReSTiNet network by sequentially
adding fire modules, residual connections, and dropout layers to demonstrate the impact
of these methods on ReSTiNet’s performance. Table 3 shows the results (mAP) of the
proposed model, ReSTiNet, and the original Tiny-YOLO on the “Pascal VOC” and the “MS
COCO” dataset.
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Table 3. Ablation experiments: Tiny-YOLO vs. ReSTiNet.

Tiny-YOLO ReSTiNet

fire module � �
residual learning �
dropout � �
MS COCO mAP(%) 19.0 24.37 27.31
Pascal VOC mAP(%) 42.21 55.67 63.79

Detection accuracy is commonly evaluated using the mAP. The new proposed model
achieved 27.31% mAP on the MS COCO dataset, whereas Tiny-YOLO obtained 19% mAP.
The dropout layer and residual connections helps the ReSTiNet model in achieving higher
accuracies than Tiny-YOLO. ResTiNet achieves 63.79% mAP on the Pascal VOC dataset; on
the other hand, Tiny-YOLO reaches 42.21% mAP. The use of residual connections between
the fire modules and the dropout layer significantly contributes to the increase in mAP
without requiring an excessive number of parameters. Utilizing residual connections and
dropout improves mAP by 12.06% on “MS COCO” and 14.59% on “Pascal VOC” based on
adding fire modules. In addition, employing the dropout layer helps reduce the training
time and helps the model from the over-fitting problem. ReSTiNet outperforms Tiny-
YOLO, showing 43.74% and 51.09% improvements on the “MS COCO” and “Pascal VOC”
datasets, respectively.

Detection Time, Parameter, and FLOPs Comparison between Tiny-YOLO and ReSTiNet

The entire testing time is calculated for 1208 images from the “INRIA Person” dataset
using the Tesla K80. Table 4 shows the average test time, total parameter, and FLOPs for
both Tiny-YOLO and ReSTiNet models. As observed, the overall time needed to detect
1208 images using the ReSTiNet is less than 40 s. ReSTiNet outperforms Tiny-YOLO in
terms of detection speeds. Tiny-YOLO completes the detection in more than 74 s. When
compared to Tiny-YOLO, the detection speed of ReSTiNet is improved by 49.2%. On the
other hand, it has been observed that ReSTiNet has 80.90% less parameters than Tiny-YOLO,
and the FLOP’s amount is also reduced by 34.47%.

Table 4. Detection time, parameter, and FLOP comparison.

Tiny-YOLO ReSTiNet Dataset

Avg. test time 74.486 (s) 37.514 (s) INRIA

Model parameters 11.043 (m) 2.109 (m) -

FLOPs 11.552 (bn) 7.570 (bn) -

4.6. ReSTiNet Performance Comparison with Other Lightweight Methods

ReSTiNet is compared with the other lightweight state-of the-art networks, such as
MobileNet, SqueezeNet, and Tiny-YOLO in order to analyze the proposed model’s further
improvement. The “Pascal VOC” customized dataset is used to train the MobileNet and
SqueezeNet models. The training operation is performed on the Tesla k80, which operates
in similar experimental settings as ReSTiNet.

The comparative findings of the four models are summarized in Table 5. As shown
in Table 5, ReSTiNet outperforms Tiny-YOLO and MobileNet in terms of model size and
achieves higher mAP compared with all three models. The model size of SqueezeNet is
very impressive, while resulting in very low mAP. The proposed model is 10.7 MB, which
is larger than SqueezeNet yet smaller than MobileNet and TinyYOLO. Compared with
Tiny-YOLO, ReSTiNet reduces the model size of 82.31%, which is suitable for portable
devices. ReSTiNet shows 51.09%, 35.38%, and 53.67% improvements in terms of mAP on
Tiny-YOLO, MobileNet, and SqueezeNet, respectively.
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Table 5. ReSTiNet vs. other lightweight models.

Network mAP (%) Model Size (MB)

MobileNet 47.12 13.5
SqueezeNet 41.51 3.0
Tiny-YOLO 42.21 60.50
ReSTiNet 63.79 10.7

5. Performance Analysis of ReSTiNet

Tiny-YOLO is used as the backbone architecture for the proposed ReSTiNet model. As
Tiny-YOLO has several layers with 512 and 1024 filters, it has a large number of parameters,
its speed is slow, and its model size is large. A replacement is carried out, thereby using
the fire module instead of the sixth, seventh, and eighth layer present in the Tiny-YOLO
method as the fire module contains far lower numbers of parameters as opposed to its
counterpart filter of size 3× 3.

The input channels also decreased to the filters with a size of 3× 3. Then, by multiply-
ing the number of filters as well as the input channel values, the net parameters present in
the fire module can be calculated. By reducing the input channel and filter count, a deep
CNN network can be designed containing only fewer number of parameters. Table 6 shows
that the parameters that are reduced in the layer containing 256 filters are numerically
lower relative to the layer with 512 filters.

Table 6. Parameter numbers comparison between fire modules and convolutional layers.

Conv.
Layer

Input
Channel

Output
Channel

Kernel
Size

Conv. Layer
(Parameters)

Fire Module
(Parameters)

1 3 16 3 448 184
2 16 32 3 4680 740
3 32 64 3 18,496 2888
4 64 128 3 73,856 11,408
5 128 256 3 295,168 45,344
6 256 512 3 1,180,160 180,800
7 512 1024 3 4,719,616 722,048
8 1024 512 3 4,719,616 722,048

If the goal is to further decrease the number of model parameters, a replacement with
a larger number of channel inputs in the convolutional layer is required while distributing
such layers in the middle and the end components of the ReSTiNet module.

It was found that the accuracy of detection becomes poor if fire modules substitute the
total convolutional layers since fire modules replace certain convolutional layers with a
limited number of filters. If the convolutional layers (first five) with a fewer number (less
than 256) of convolution filters are retained instead of being substituted by fire modules,
the rate of accuracy can improve by 6.2 percent and the size of model can increase by
1.6 megabyte. Thus, ReSTiNet retains the frontal (first five) convolutional layers while
replacing the convolutional layers (three) with eight fire modules at the end of Tiny-YOLO.

A simplistic method to compress the network is to decrease the number of layers in
the network, network scaling factor, and to utilize networks that are considered shallow.
However, the degree of freedom to efficiently compress such networks is limited and more
distant from existing DNN models [58]. Ba et al. [59] suggested a training procedure
of shallow neural networks that best simulates the deep models, but there has been an
increase in the number of parameters. In study [60], the authors had shown that the
degree of expansion possesses the capability to be exponentially grown as a function
of increasing depth. However, networks that are too shallow do not play the role of
substitution for deeper networks. As illustrated in Figure 4, there are five pooling layers
after the five convolutional layers. It contains a total of eight fire modules with a depth value
of 2 followed by convolutional layer with a kernel size 1× 1 in the ReSTiNets architecture.

209



Appl. Sci. 2022, 12, 9331

The above mentioned eight fire modules in ReSTiNets replaced the three convolutional
layers from the last layer in Tiny-YOLO. As a result, the net depth attains a value of 29,
which is exactly twelve layers deeper in physical depth compared to Tiny-YOLO thereby
raising the network’s accuracy.

All max-poolings are set to 3× 3 in size followed by the down-sampling technique later
within the architecture. This in turn yields several layers with large activation maps [61].
Such layers provide activation maps with a minimum of 1 × 1 spatial resolution and
typically in higher orders at other times.

Activation maps’ width and height can be determined using a set of variables, namely
the input data size and various choices of layers in which down-sampling more likely
tends to occur. The down-sampling strategy has been accomplished in studies [62–64]
using a stride that is larger than one during a choice of convolutional or pooling layers.
It was concluded that a large number of layers contain smaller activation maps when the
initial layers are set to larger stride parameters. The authors in [65] detected improved
classification accuracies after implementing down-sampling strategies into four distinct
CNN networks [53].

Then, residual connections are integrated to examine whether it can increase the
efficacy of the Tiny-YOLO network while making the model quicker and smaller at the
same time. The concept of the fire module [23] is modified by adding residual connections
at strategic locations across the network. The model does not experience an increase in
complexity apart from a bit of computation associated with the collection operation as
the residual connections do not have any parameters. This model employs the dropout
layer to handle the over-fitting issue and speed up data processing. The dropout method
disregards the randomly chosen neurons during the training period.

Figures 6 and 7 show the detection results for both proposed ReSTiNet and Tiny-
YOLO models. From all figures, it can be seen that the proposed model detects human
objects with a higher accuracy, while Tiny-YOLO can sometimes miss objects and recognize
non-human objects as human. These scenarios are shown in Figures 6c and 7b . The
proposed ReSTiNet sometimes misses people in a dense scenario shown in Figure 7a. In
this scenario, there are five people on the wall. Of these five people, ReSTiNet detected only
four. However, the detection rate is still better than that of Tiny-YOLO, which detected
only two out of the five people, but the proposed method can still be improved. The
images showing the results of the detection are available in full size at the following URLs:
Figure 6: https://i.ibb.co/6FhDYf5/P1-comp.png (accessed on 4 September 2022); Figure 7:
https://i.ibb.co/tDs6xPB/P2-comp.png (accessed on 4 September 2022).

The ReSTiNet architecture that has been suggested has a significantly reduced number
of parameters while also preserving a greater amount of information flow throughout the
model. It detects humans more quickly than other lightweight models, and its performance
in terms of detection time and mAP score is superior to that of those models. This is despite
the fact that the model itself is quite compact.
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Figure 6. Detection results with confidence values for the proposed ReSTiNet and Tiny-YOLO model
in a sparse scenario. (a–d) presents comparison for four images for the models.

Figure 7. Detection results with confidence values for proposed ReSTiNet and Tiny-YOLO model in
a dense scenario. (a,b) presents comparison for two images for the models.

6. Conclusions

In this article, ReSTiNet, a compact human-detection method, is proposed for portable
devices, and it focuses on issues related to size, speed, and accuracy. The suggested
method reduces the size of the previously popular Tiny-YOLO algorithm while improving
the following characteristics: improving detection performance, reducing model size,
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resolving overfitting issues, and outperforming existing lightweight models in terms of
mAP. ReSTiNet is constructed by first incorporating the fire modules from SqueezeNet
inside the Tiny-YOLO with the aim of minimizing the model’s size. Following that, the fire
module numbers and their placement have been investigated in the model’s architecture.
The residual connection inside the fire modules in Tiny-YOLO is integrated from the Resnet
model. The residual connection helps maximize feature propagation and information flow
within the network, with the aim of further improving the developed ReSTiNet’s detection
speed and accuracy. Using the dropout layer in the convolutional layer and at the end of
the fire module helps resolve the overfitting problem in ReSTiNet. The experimental results
show that ReSTiNet outperforms Tiny-YOLO in terms of efficiency. ReSTiNet also exhibits
comparable performances when compared to lightweight models such as MobileNet and
SqueezeNet with respect to the model’s size and mAP. The findings show the effectiveness
of ReSTiNet for portable devices. The developed algorithm can be simply modified and
completely incorporated into a variety of different deep convolutional neural networks
for compression. The performance of ReSTiNet will be further optimized in future for
high-resolution images, particularly for the EuroCity Persons dataset.
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Abstract: With the growing popularity of online social networks, one common desire of people is
to use of social networking services for establishing social relations with others. The boom of social
networking has transformed common users into content (data) contributors. People highly rely on
social sites to share their ideas and interests and express opinions. Social network sites store all such
activities in a data form and exploit the data for various purposes, e.g., marketing, advertisements,
product delivery, product research, and even sentiment analysis, etc. Privacy policies primarily
defined in Natural Language (NL) specify storage, usage, and sharing of the user’s data and describe
authorization, obligation, or denial of specific actions under specific contextual conditions. Although
these policies expressed in Natural Language (NL) allow users to read and understand the allowed
(or obliged or denied) operations on their data, the described policies cannot undergo automatic
control of the actual use of the data by the entities that operate on them. This paper proposes an
approach to systematically translate privacy statements related to data from NL into a controlled
natural one, i.e., CNL4DSA to improve the machine processing. The methodology discussed in
this work is based on a combination of standard Natural Language Processing (NLP) techniques,
logic programming, and ontologies. The proposed technique is demonstrated with a prototype
implementation and tested with policy examples. The system is tested with a number of data privacy
policies from five different social network service providers. Predominantly, this work primarily
takes into account two key aspects: (i) The translation of social networks’ data privacy policy and
(ii) the effectiveness and efficiency of the developed system. It is concluded that the proposed system
can successfully and efficiently translate any common data policy based on an empirical analysis
performed of the obtained results.

Keywords: natural language; controlled natural language; natural language processing; privacy
policies; social networks; machine learning

1. Introduction

The advent of Online Social Networks (OSNs) allows users to establish and maintain
interpersonal relations among people without any boundaries [1]. OSN interactions usually
require exchanging users’ data for numerous purposes, including the provisioning of
services. However, by offering such services for virtual social interaction and data sharing,
OSNs also raised user privacy issues by having access to personal data and exposing it,
such as blogs, videos, images, or user profile information, e.g., name, date of birth, phone
number, email, etc. This shared data leaves traces that may disclose users’ activities and
their opinions, norms, consent, and beliefs. OSNs usually regulate the collection, usage,
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and sharing of users’ data (e.g., Facebook [2], Twitter [3], Google [4]), etc. in terms of
privacy policies. Usually, the policies [5] published in English describe the terms and
conditions under which the provider will manage the data in terms of, e.g., authorization,
obligation, or denial. Although the use of English as a natural language enables end-users
to read and understand the operations allowed (or obliged, or denied) on their data, a
key fact exists that a plain Natural Language (NL) cannot be used as the input language
for a policy-based software infrastructure dedicated to automatic policy management and
machine readability [6]. Both automated policy analysis (the process to assure the lack of
conflicting data policies, see, e.g., [7]) and policy enforcement (the actual application of
the data policies, whenever a data access request takes place) require machine-readable
language as inputs, such as the standard XACML [8].

An approach proposed for translating Natural Language (NL) data privacy policies [6]
as they appear on an OSN website into a Controlled Natural Language (CNL) is the so-called
Controlled Natural Language for Data Sharing Agreements (CNL4DSA) [9–11]. The system refers
to ‘Natural Language Policy Translator (Natural Language Policy Translator (NLPT) 1.0)’,
which outlined the policy translation on a small set of Facebook data privacy policies [6].

This paper presents the extended prototype version of ‘Natural Language Policy Trans-
lator (NLPT) 1.0’, [6] the so-called ‘Natural Language Policy Translator (NLPT) 2.0’, with
improvements from the previous version. The system (NLPT 2.0) is equipped with a
user-friendly Graphical User Interface (GUI), and it is composed of different components,
i.e., Policy Parser (PP), Policy Processor (PR), Ontology Builder (OB), Fragment Extractor (FE),
Context Extractor (CE), and Controlled Natural Language (CNLT) (details of each component is
discussed in Section 5). The system (NLPT 2.0) simply allows non-expert users to write or
input policies in Natural Language (NL) sentences, and the system automatically translates
it into CNL4DSA. To validate the system’s performance, it is tested with five popular social
network platforms’ data privacy policies, i.e., Twitter [3], Facebook [2], Google [4], Insta-
gram [12] and LinkedIn [13]. Moreover, the system is also designed to assist researchers
in evaluating the specification of social networks’ data privacy policies but can also be
utilized for the other application domains (e.g., e-health, e-commerce, etc.).

The rest of the paper is outlined as follows: Section 2 gives an overview of the
Controlled Natural Languages (CNLs). Section 3 explores the previous literature work.
Section 4 describes the proposed methodology. Section 5 depicts the overall architecture of
the system. Section 6 presents the experimental setup. Section 7 explains the results and
analysis. Finally, Section 8 concludes the work with possible future directions.

2. Controlled Natural Language

Generally, formal languages have been proposed and used as knowledge representa-
tion languages as they are designed with proper well-defined syntax and unambiguous
semantics and support automated reasoning [14]. However, their syntaxes and semantics
are quite complex for domain experts to understand and recognize and cause a cognitive
distance to the application domain that is not inherent in the Natural Language (NL).
One approach to bridge the gap between natural and formal ones is the utilization of
Controlled Natural Language (CNL) and full Natural Languages (NLs), developed with
well-defined grammar and vocabulary to make statements more understandable and un-
ambigious [15,16]. CNLs have certain writing rules that are, in general, easier for humans
to understand and easier for machines to process [14]. CNLs are generally defined in the
literature with attributes such as processable, human-readable, structured and simplified [17].
Controlled Natural Language (CNL) approaches has evolved in different environments
based on the requirements, i.e., different specifications in the context of industry, academia,
and government, as well as in different disciplines, i.e., artificial intelligence, computer
science, linguistics, biology, literature, etc., since 1930 till today [17].

CNLs have been classified into two broad categories: human-oriented and machine-
oriented [18]. Both are built for different purposes and have various applications. Human-
oriented CNLs are designed to help humans read and understand technical documents,
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e.g., ASD Simplified Technical English [19], and to make human-to-human interactions
simpler in certain situations, for instance, air traffic control [20]. Machine-oriented CNLs
are designed for the Semantic Web to improve the translation of technical documents and
enhance knowledge representation and processing [14]. These languages facilitate the technical
document’s translatability, e.g., [21], and the acquisition, representation, and processing of
knowledge (e.g., for knowledge systems [22] and, in particular, for the Semantic Web [16].

2.1. CNL4DSA

CNL4DSA, Controlled Natural Language for Data Sharing Agreements, is chosen as a target
language. This language was introduced in [9,23], within the EU projects Consequence
(Consequence: http://www.consequence-project.eu/) and Coco Cloud (Coco Cloud: http:
//www.coco-cloud.eu/) and successfully applied to the pilots of the two projects. It is
equipped with analytic tools, i.e., a policy authoring tool, a policy analyzer, and conflict
solver, and a policy mapper of enforceable language. CNL4DSA was originally developed
for editing so-called data sharing agreements (formal contracts regulating data sharing),
allowing a simple and readable, yet formal, specification of different classes of privacy
policies, as listed below:

• Authorizations, referring to permission for subjects to perform actions on object under
a specific context.

• Prohibitions, expressing the fact that a subject cannot perform actions on an object
under a specific context.

• Obligations, referring to subjects obliged to perform actions on objects under a
specific context.

CNL4DSA relies on the notion of fragments, tuples of the form f = 〈s, a, o〉, where s is
the subject, a is the action, o is the object. A fragment simply says that ‘subject s performs
action a on object o’. By adding can/must/cannot constructs to the basic fragment, a
fragment becomes either an authorization, obligation, or prohibition. In the scenario
of social networks, subjects are usually physical or legal entities (e.g., users and service
providers), actions are, e.g., collect, login, etc., while objects consist of any data published
on the social network or stored on its servers, e.g., the personal details of a Facebook
account, content created by the social network users, or the data policies themselves.

Fragments are assessed in a certain context. A context is assessed as a Boolean value
(true/false) in CNL4DSA. It makes claims about the characteristics of subjects and objects
in words such as user’s roles, data categories, date, and location. Simple context examples
are ‘subject hasRole Facebook_admin’, or ‘object hasCategory user_post’. It predicates the
constructs that connect subjects and objects to their values, such as hasRole and hasCategory
in the examples above. Contexts must be mixed to define complicated policies. Therefore,
the Boolean connectors and, or, and not are used to indicate a composite context C, which is
defined inductively as follows :

C := c | C and C | C or C | not c

The syntax of a composite fragment denoted as FA is as follows:

F := nil | can, must, cannot f | F; F | if C then F | after f then F

• nil can do nothing.
• can, must, cannot f is the atomic fragment that expresses that f is allowed/require/not

permitted, where f = 〈s, a, o〉. Its informal meaning is the subject s can perform action a
on the object o.

• F; F is a list of composite fragments (i.e., a list of authorizations, obligations, or prohibitions).
• if C then F expresses the logical implication between a context C and a composite

fragment: if C holds, then F is allowed/required/not allowed.
• after f then F is a temporal sequence of fragments. Informally, after f has happened,

then the composite fragment F is allowed/required/not allowed.
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Additionally, the syntax used by CNL4DSA to represent composite obligation and
prohibition fragments are unique. The obligation fragment, such as the authorizations,
states that the subject s must perform action a on the object o, whereas the subject s cannot execute
action a on the object o is stated for the prohibition.

2.2. Scenario Examples

Consider the example of an emergency situation in which many cars are engaged in
a collision, including a tanker [23]. Firefighters, Red Cross paramedics, and toxicologists
all rush to help the wounded. Firefighters and Red Cross volunteers are referred to as
‘rescuers’ or ‘Rescuers’ in a general sense (complete details available in [23]).

Consider the following sample cases:

1. P1: Firefighters can access the victim’s personal and medical information.
2. O1: Once the alert states of the accidents have been determined by the Red Cross

members, if it is larger than five, they must then inform the local community of the
alert level.

3. PT1: Non-firemen cannot access tanker delivery notes that are currently in progress.

The expression of P1 in CNL4DSA are as follows:

IF c THEN CAN f

where:

• c = hasRole(user1, fireman) and hasDataCategory(data, personal) and hasDataCate-
gory(data, medical) and isReferredTo(data, user2) and isInvolvedIn(user2, accident) is
a composite context.

• f = can access(user1, data) is a composite authorization fragment.

The expression of O1 in CNL4DSA are as follows:

IF c THEN MUST f

where:

• c = hasRole(user1, RedCross) and hasDataCategory(data, alertState) then after that
access(user1, data) then if isGreaterThan(alertState,five).

• f = must communicate(user1,data) is a composite obligation fragment.

The expression of PT1 in CNL4DSA are as follows:

IF c THEN CANNOT f

where:

• c = not hasRole(user1,fireman) and hasDataCategory(data, deliveryNote) and is-
ReferredTo(data,truck) then cannot access(user1, data) where not hasRole(user1,
fireman) and hasDataCategory(data,deliveryNote) and isReferredTo(data,truck) is a
composite context.

• f = cannot access(user1, data) is a composite prohibition fragment.

The impetus for selecting CNL4DSA as the aim translation’s language is due to the
following facts: first, as proposed in [9], composite fragments have formal semantics that
are described by modal transition systems. Because of this, the language may be formally
analyzed, even using already available tools such as Maude [24]; for instance, the authors
of [7,25] show the automated analysis of data sharing and privacy policies completely;
second, the CNL4DSA is equipped with an editor with a dedicated authoring tool, having
preloaded domain-specific vocabularies in the form of ontologies, understandable for
machine translation, and can be automatically mapped into a low-level language, namely
XACML [8], which enables seamless policy enforcement.
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3. Related Work

Controlled Natural Languages (CNLs) are generally discussed in the literature with
characteristics such as easy to process, human-readable, structured and simplified [17]. Con-
trolled Natural Languages (CNLs) are more contrived subsets of Natural Languages (NLs),
whose representation—including grammar, syntax, semantics, and vocabulary—have been
developed in a simple but more efficient way to reduce and mitigate the ambiguity and
complexity of natural language and make it feasible for machine processing [14]. A variety
of CNLs have been proposed for different purposes by researchers of diverse expertise and
background [17], e.g., Tateish et al. [26] propose an approach to automatically generate a
smart contract from a Natural Language (NL) contract document that is defined using a
document template and a Controlled Natural Language (CNL). The system is based on the
mapping of the document template and the Controlled Natural Language (CNL) to a formal
model that can describe the terms and conditions in a contract, including temporal con-
straints and procedures. The formal model is translated into an executable smart contract.
A framework for tax fraud detection was developed by Calafato et al. [27], where the fraud
expert is empowered to design tax fraud patterns through a Controlled Natural Language
(CNL) independently. Colombo et al. [28] suggested a Controlled Natural Language (CNL)
that maintains machine readability while allowing non-technical users to make queries that
are simple to comprehend.

The automatic and unambiguous translation from a Controlled Natural Language
(CNL) to first-order logic is demonstrated by Fuchs et al. [22]. Originally intended to be a
specification language, the language has evolved to focus on knowledge representation and
applications for working with the Semantic Web [17]. A tool known as ‘RuleCNL (a CNL
for creating business rules) incorporates formal syntax and semantics to enable business
professionals to formalize their business rules in a business-friendly manner that machines
can understand [29]. The key feature of ‘RuleCNL’ is the business rule definition alignment
with the business vocabulary that assures consistency and traceability in this domain.

Brodie et al. [30] developed a policy workbench called ‘SPARCLE’ for parsing privacy
policy rules in Natural Language (NL). ‘SPARCLE’ enables organizational users to enter
policies in Natural Language (NL), parse the policies to identify policy elements, and then
generate a machine-readable Extensible Markup Language (XML) version of the policy. The
work is empirically evaluated from the usability perspective by targeting organizational
privacy policies. This results in the successful implementation of the parsing capabilities
to provide a usable and effective method for an organization to map the natural language
version of privacy policies to their implementation and subsequent verification through
compliance auditing of the enforcement records.

Fisler et al. [31] provided an authoring language based on Datalog-like formats
as input for the policy editor. The work emphasizes the social and environmental as-
pects that can influence the interpretation and specification of trust and privacy policies.
Kiyavitskaya et al. [32] proposed a methodology that delivered the transformation of natu-
ral language into semi-structured specifications. The approach suggests a mechanism to
support designers during requirements elicitation, modeling, and analysis.

Fantechi et al. [33] provided a tool that formalizes the behavioral needs of reactive
systems into a process algebra and converts natural language phrases into ACTL (Action-
based Temporal Logic). A logic-based framework for policy analysis was developed by
Craven et al. [34] that enables the expression of responsibilities and authorizations offers
practical diagnostic data and allows for dynamic system modeling. Fockle et al. [35]
created a model-driven development-based methodology for requirements engineering.
For documentation, elicitation, and requirements negotiation, the system depends on
requirements models and a controlled natural language. Through a bidirectional, multi-
step model transformation between two documentation forms, the methodology combines
the advantages of model-based and natural language documentation.

A graphical visual interface with an adequate level of abstraction was developed by
Mousas et al. [36] to allow users to specify fundamental ideas for privacy protection, such
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as values for roles, activities, data kinds, rules, and contextual information. Ruiz et al. [37]
developed a software infrastructure to handle data sharing agreements (DSA), which govern
data access, usage, and sharing. The framework permits DSA editing, analysis, and enforcement.
The input language used by the authoring tool to edit the DSA is ‘CNL4DSA’ [9]. The CNL4DSA
provides easy yet explicit specifications for many privacy policy kinds, including authorizations,
obligations, and prohibitions. The language can be automatically mapped into a low-level
language, XACML [8], thus enabling seamless policy enforcement.

The approach proposed by Tanoli et al. [6] is one of the few initiatives to bridge the
gap between modifying and processing a Controlled Natural Language (CNL), such as
CNL4DSA, and maintaining complete readability of privacy policies by expressing them in
a natural language. The approach relies on standard and well-established Natural language
Processing (NLP) techniques, e.g., Crossley et al. [38], the Natural Language Toolkit [39],
the Stanford CoreNLP [40], Spacy [41] and the adoption of ontologies [42].

4. Design Approach

This section highlights an overview of the design approach for semi-automatically translat-
ing natural language data privacy policies into CNL4DSA. A prototype console-based system
referred to as ‘Natural Language Policy Translator (NLPT) 1.0’ is designed to translate the data
policy into CNL4DSA [6]. The core of the approach relies upon three phases: (i) Natural
Language Processing (NLP); (ii) building ontologies; (iii) translation into CNL4DS using logic
programming. The various steps are depicted in Figure 1. (The complete details following
step-by-step policy translation, as shown in Figure 1, are discussed in [6]).

Figure 1. Pictorial representation of the system operations.
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4.1. Policy Translation Using Natural Language Policy Translator (NLPT) 1.0

To explain the process of three phases, consider the following subset of the Facebook
data privacy policy as a case example—available at [43].

P1: “We collect the content and other information you provide when you use our Services [...]"
Policy P1 is an authorization policy, allowing the social networking service provider to

collect information provided by the user when the user interacts with the platform services.
P1 as an authorization policy in CNL4DSA:
The CNL4DSA representation of the policy P1:

IF c1 THEN CAN f1

where:

• c1 = subject1 hasRole ‘social_networking_service_provider’ AND (object1 hasCategory
‘content’ OR object1 hasCategory ‘other_in f ormation’) AND (subject2 provides ob-
ject1 OR subject2 provides object1) AND subject2 hasRole ‘user’ AND subject2 uses
‘social_networking_service’ is a composite context.

• f1 = subject1 collect object1 is an atomic fragment.

In the above translation, for the sake of a more direct understanding, the term ‘we’ of
the original policy is substituted with ‘social_networking_service_provider’, the term ‘you’
with ‘user’, and the term ‘service’ with ‘social_networking_service’.

4.1.1. Natural Language Processing

The first phase of the translation process is the application of Natural Language
Processing (NLP) techniques to policy P1. The goal of this phase is to automatically
derive, from the sentences in Natural Language (NL), the standard elements of a data
policy (i.e., subject, object, and action), as well as the typical constructs of CNL4DSA
(i.e., fragments and contexts).

Following standard NLP approaches, a data policy is first parsed and then represented
in a tree form, using a syntactic dependency parser (step (a) in Figure 1). A dependency
parser shows syntactical dependencies among individual words in a sentence, as well
as among the main sub-sentence and its subordinates. For our goals, the dependency
parser is used to discriminate among actions and predicates for those cases in which the
predicate in the sentence is under a verbal form. Such concepts are illustrated with the
following example.

Considering P1, it is needed to automatically verify whether ‘collect’ is the action
element of the policy (as it is, see fragment f1 defined in the CNL4DSA representation of P1)
or part of a context. To meet the goal, the dependency parser is used. This enables picking
up the verb(s) of the main sentence and labeling them as action(s), while the verb(s) in the
subordinate’s sentences will be tagged as predicates. In this case, the system recognizes the
terms ‘provide’ and ‘use’ as predicates. Finally, it is worth noting that other predicates, e.g.,
‘hasRole’ and ‘hasCategory’, will be defined in a subsequent phase during the definition of
ontologies (Section 4.1.2).

Upon considering different parsers, i.e., the Stanford parser [44], the one provided by
the NLTK toolkit [39], and the one provided by the SpaCy Python package [41], the latter is
found to be fast and accurate enough to parse the sentences. Figure 2 shows the resulting
tree after applying the SpaCy dependency parser to P1.
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Figure 2. P1 upon dependency parser processing.

Referring to Figure 1, the data policy is also split into single sentences, using a sentence
tokenizer—step (b). Each sentence is further divided into words, using a word tokenizer—
step (c). Plurals are substituted with their singular forms, and different forms of verbs are
led back to their first form using the NLTK lemmatizer [39]. Upon step (c), a word list WL
is obtained.

In the specific case of P1, the NLTK word tokenizer and the SpaCy dependency parser
treat the two terms ‘other and information’ as two separate words (see, e.g., Figure 2). For
the sake of the next processing phase, the two terms have been then manually replaced
with a single one ‘other_in f ormation′ by relying on the Python string replace method [45].

Sentences are tokenized:
[‘we collect the content and other_information
you provide when you use our services]

Words are tokenized:
[‘we’, ‘collect’, ‘the’, ‘content’, ‘and’,
‘other_information’, ‘you’, ‘provide’,‘when’,
‘you’, ‘use’, ‘our’, ‘service’]

From WL, the terms that constitute the actions and the predicates are removed, as
identified by the dependency parsing operations, as well as duplicate items if there are
any in a list. The actions and predicates removal corresponds to step (d) in Figure 1. In the
second list of words, WL1 is obtained.

Action and Predicates removal:
[‘we’, ‘the’, ‘content’, ‘and’,‘other_information’,
‘you’,‘when’, ‘our’, ‘service’]

In next phase of word replacement, in which in WL1 is replaced with a few ambiguous
words with a more precise meaning. In P1, for example, the term ‘service’ is replaced with
‘social_networking_service’, ‘we’ with ‘social_networking_ service_provider’, ‘you’ with
‘user’. The replacement happens according to a manually pre-defined list of words: the tool
replaces such words accordingly. It is worth noting that, in the prototype implementation
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presented in the work [6], automatic co-reference detection is not considered. Although
a current limitation of the approach, it is argued that this necessary refinement can be
applied in future work, possibly using existing tools for automatic co-reference detection.
A modified list of WL2 is obtained.
Words replacement with meaningful words:
[‘social_networking_service_provider’,‘the’,
‘content’, ‘and’, ‘other_information’,‘user’,
‘when’, ‘our’, ‘social_networking_service’]

Then, a list of stop words is used to remove words, such as articles an, a, the, etc.,
prepositions, e.g., in, on, etc., and adverbs, e.g., before (step f). As words for removal, the
pre-defined NLTK stop words list [39] is applied. The modified list WL3 is obtained.
Stop words removal:
[‘social_networking_service_provider’,‘content’,
‘other_information’,‘user’,‘social_networking_
service’]

As already discussed at the beginning of Section 4.1.1, it is required to identify each
data policy:

1. The subjects, the objects, and the actions;
2. The contexts and fragments, as required by the CNL4DSA language.

It is worth mentioning that actions and (part of) predicates are already identified
during the application of the dependency parser. The Unigram Tagger [46] is exploited
to label the tokenized words in WL3 as subjects or objects. The UnigramTagger class
implements a simple statistical tagging algorithm: for each token, it sets the most likely
label for that type of token. For example, it assigns the ‘JJ’ (adjective) tag to any occurrence
of the word ‘frequent’ since it is mostly used as an adjective (e.g., a frequent word) rather
than as a verb (e.g., I often frequent this place).

Before actually using the Unigram Tagger to tag the data, it must be trained on the
tagged Python dictionary. The creation of the training dictionary happens once, on a set of
initial words. For subsequent words, the user will update the dictionary with the possibly
encountered new terms, which are not in the original set of terms, until no major update
is needed. The tool prompts a message for the user to define a Python dictionary tagged
according to a privacy policies terminology—step (g). The user can define as many terms
as possible so that the tagging machine can automatically label the words that will appear
in subsequent data policies. The use of the Unigram Tagger in this work is specific to tag
terms as either subject or object. In addition, the tagger also considers the terms expressing
authorizations, prohibitions, and obligations (such as can, must, and cannot).

##############################################
Do you want to define a training dictionary?
‘Y’ or ‘N’ => Y
Please define a Python dictionary, e.g.,
‘user’:‘subject’, ‘data’:‘object’
##############################################
Please proceed with dictionary (subject, object,
as keys) => ‘social_networking_service_provider’:
‘subject’,‘user’:‘subject’,‘other_user’:‘subject’
Dictionary Data =>
{‘social_networking_service_provider’:‘subject’,
‘user’:‘subject’,‘other_user’:‘subject’}
###############################################

###############################################
Updated Dictionary =>{‘other_information’:‘object’,
‘device’:‘object’,‘data’:‘object’, ‘information’:
‘object’,‘user’:‘subject’,‘must’:‘obligation’,
‘content’: ‘object’,‘can_not’: ‘prohibition’,
‘can’:‘authorization’,
‘social_networking_service’:‘object’,
‘other_user’: ‘subject’,
‘social_networking_service_provider’:‘subject’}
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After running the Unigram Tagger on P1—step (h), the following list of tagged words
(TWL) is obtained:

Words tagged according to policy elements:
[[(‘social_networking_service_provider’,‘subject’),
(‘content’, ‘object’),(‘user’, ‘subject’),
(‘other_information’,‘object’),
(‘social_networking_service’, ‘object’)]]

Regarding the distinction among authorizations, prohibitions, and obligations, the
following simple procedure is adopted. The keywords can, should, may in the original
Natural Language (NL) statement lead to considering the policy an authorization. The
keywords can not, should not, shall not, must not (and relative contracted forms) lead to
considering the policy a prohibition. Finally, the keywords must, shall, will characterize
obligations. The choice is made following the interpretation given in RFC2119 [47].

Additionally, terms should and may are replaced with can during the replacement phase.
Similarly, shall not should not, must not are replaced with cannot, while shall and will are
replaced with must. Whenever such keywords appear in the original policy statement, the
tool labels them accordingly. However, a current limitation of the approach is that, if such
keywords do not appear in the natural language statement, the tool treats the statement as
an authorization policy. This is exactly what happens in the case of P1.

Finally, to handle incorrect tagging, when the user defines the Python dictionary, the
allowed keys for tags are only: subject, object, authorization, prohibition, and obligation.
When more than one term is tagged as subject (resp., as object), the labels are subject1,
subject2, . . . , subjectn (resp., object1, . . . , objectn). The same holds for actions and predicates
when applying the dependency parser.

Regarding the formation of the CNL4DSA contexts, the next Section 4.1.2 will show
how to link objects and subjects to predicates employing ontologies.

4.1.2. Building Ontologies

An ontology is a explicit formal description of a domain of interest [48]. A specific
ontology-based vocabulary is defined, inherent to the scenario of privacy policies, which
defines terms representing, e.g., categories for objects (such as posts, content, picture,
etc.), roles for subjects (such as the user, social networking service providers, Facebook
provider, etc.), identifiers for subjects and objects (e.g., John Doe, pic12345) and terms for
actions (such as read, send, access, store). Then, the ontology defines the relations between
all the terms in the vocabulary. Relations are established using predicates, e.g., hasRole,
hasCategory, isTime, hasLocation, etc. Owl ontologies [49] and Owl ready [42], a Python
module, are used to load them.

The classes: subject, object, action, category, and role are defined. Below is an example
of class declaration—step (j) in Figure 1.

class Category(ObjVocabItem):
ontology=onto

The predicates are hasRole, hasCategory, provide and use. In Owl ready, these predi-
cates are called object properties. The object properties create relations between the classes.
Examples of object properties are:

class hasCategory(ObjectProperty):
domain=[Object], range=[Category]

or

class hasRole(ObjectProperty):
domain=[Subject], range=[Role]

As an example, hasCategory is an object property with the domain class Object and
range class Category. Moreover, the predicates hasRole and hasCategory are created
manually through ontologies, while the predicates use and provide are obtained by the
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application of the dependency parser. As a remark, hasCategory and hasRole are object
properties of the ontology classes. In Owlready, they are declared with the following syntax:
‘class hasCategory (ObjectProperty)’, where ObjectProperty syntax refers to the predicate
as object property [42]. ‘Collect’ is defined as a functional property; it has only one value,
and it is created by inheriting the FunctionalProperty class [42]:

class collect(FunctionalProperty):
domain=[Collect], range = [str]

The relations are defined as follows: subject1 hasRole: ‘subject1’, subject2 hasRole:
‘subject2’, object1 hasCategory: ‘object1’,‘subject2’ provide ‘object1’, ‘subject2’ provide
‘object1’, and subject2 use ‘object3’.

Figure 3 shows the ontology representation of P1, created using Protégé [50], where
Thing is the main ontology class and Term, Action, and ObjVocabitem are the ontology
subclasses. Furthermore, Term has Subject and Object as subclasses and Objvocabitem has
Category, Subject, Object, Role, etc. To establish relations between subject and object, object
properties are used. As an example, to establish a relation between subject and role class,
the hasRole object property is used.

To conclude this step, the actual values of subject1, subject2, object1, object2, and
object3, as well as the values for action(s) and predicate(s), are required: the subject and
object values are extracted from the policy tagged-tokens and create the instances—step (i).
Actions and predicates values are extracted from the dependency parsing tree, as follows:

Extracted Values for Subject, Action, Object,
Predicate: Subject1 is: [‘social_networking_service_provider’]
Subject2 is: [‘user’], Object1 is: [‘content’] Object2 is:
[‘other_information’],
Object3 is: [‘social_networking_service’]
Action1 is: [‘collect’], Predicate1 is: [‘provide’]
Predicate2 is: [‘use’]

Figure 3. Ontology representation for P1.

4.1.3. Translation into CNL4DSA

In the final phase, the extracted values for the various instances of subject and object
are passed as arguments to the ontology classes previously defined—steps (k), (l), (m).
As an example, subject1, with value ‘social_networking_service_provider’, is passed to the
Role class, and the relation between the subject and the Role class is established through
has_Role; object1, with value content, is passed to the Category class, and the relation
between the object and the Category class is established through has_Category.
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print (‘IF subject1 hasRole:’,Subject1.hasRole)
output: IF subject1 hasRole: [onto.‘social_networking_service_provider’]

Similarly, the action ‘collect’ is passed as an argument to the Action class. The printed
output represents the translation of the natural language data policy into CNL4DSA. The
outputs are stored in variables c1 and f1:

IF c1 THEN CAN f1

where:

c1 = subject1 hasRole: [onto.social_networking_service_provider]
AND (object1 hasCategory: [onto.content] OR object2 hasCategory:
[onto.other_information]) AND subject2 hasRole: [onto.user] AND
(subject2 [onto.user] provide object1:[onto.content] OR
subject2 [onto.user] provide object2 [onto.other_information])
AND subject2 [onto.user] use [onto.social_networking_service]
is a composite context.
f1 = subject1 (action): [collect] object1 is an atomic fragment.

onto is the Python variable that is used to modify, save, and load ontologies, for
example: onto = get_ontology [42]. The example of obligation and prohibition policy is
presented and discussed in the work [6].

5. Architecture and Graphical User Interface

In Section 4, the mechanism of the social network data privacy policy translation into
CNL4DSA is demonstrated. Initially, the system was designed to translate only a limited
set of Facebook data privacy policies [2]. Here, an improved new prototypical version
of Natural Language Policy Translator (NLPT) 1.0 is referred to as Natural Language Policy
Translator (Natural Language Policy Translator (NLPT) 2.0). The major development in the
NLPT 2.0 is that it is equipped with a user-friendly graphical interface to directly input
the policy, and the system is capable enough to translate any common social network data
privacy policies defined in Natural Language (NL) into CNL4DSA.

Natural Language Policy Translator (NLPT) 2.0 is composed of the following components:

• Policy Parser (PP)
• Policy Processor (PR)
• Ontology Builder (OB)
• Fragment Extractor (FE)
• Context Extractor (CE)
• Controlled Natural Language Translator (CNLT)

The translation of the policy is split among these components to ease the user into
understanding the translation process, which was not possible in the previous version
(‘Natural Language Policy Translator (NLPT) 1.0’).

The high-level architecture of the system ‘(Natural Language Policy Translator (NLPT))
2.0’ is presented in Figure 4.

The detailed working of each component is as follows:
Policy Writer: A person or entity who properly enters the policy is known as the

“Policy Writer”. To prevent potential incorrect/wrong tagging performed by the policy
parser, a policy writer is essential. The Policy Writer just needs to be an end-user who is
aware of the proper way to write/enter the policy in the system. They do not need to be a
Controlled Natural Language (CNL) expert or a domain specialist. A Policy Manual with
all essential instructions on how to write/input the policy is provided to train the Policy
Manual. The Policy Manual is a document that outlines a process for properly combining
Subject, Verb, and Object (SVO) in an original policy by giving various policy examples [51].

The introduction of the Policy Writer role is diverse since writing styles are used by
online service providers to describe the policies, and if a privacy statement is lengthy
and complex, it is possible that it may contain several distinct predicates. As a result,
it is possible that the dependency parser incorrectly tags some policy terms or fails to
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appropriately parse the statement. These problems also directly affect the translation of
policy, especially in terms of the extraction of actions and predicates.

Figure 4. System architecture Natural Language Policy Translator (NLPT) 2.0.

Consider the following Facebook policy example:
Policy M1: ‘We also collect contact information if you choose to upload, sync, or

import it from a device [...]’ [43]. .
When the Policy Writer inputs M1 in Natural Language Policy Translator (NLPT) 2.0, and

upon processing M1 using the policy parser, the following output is generated, as shown
in Figure 5.

The Policy Parser (PP) labels ‘sync’ as a noun, but this should be tagged as a verb.
However, the policy writer can rephrase the policy following policy manual guidelines to
specify it properly, i.e., the parser tags the words properly with the right combination of
Subject, Verb, and Object (SVO).

An adequate rephrasing is:
Rephrase M1: ‘We also collect data if you choose_to _upload data or you sync data,

or you import data from a device.
When using the system once on M1, it is apparent that with the right rephrasing, the

parser correctly tags ‘sync’ as a verb, as demonstrated in Figure 6. It is important to note
that for better and more precise tagging, words such as ‘information’, ‘content’, ‘contact
information, ‘content and information’, etc., are replaced with the general term ‘data’. An
infinitive form verb, e.g., ‘decide to signup’, (_) is introduced, i.e., ‘choose_to _upload’,
which makes the Natural Language Policy Translator (NLPT) 2.0 consider infinitive verb(s) as
a single word.

Policy Parser (PP): The policy parser simply parses the policy using the Spacy de-
pendency parser [41] to obtain action and predicate(s), as already properly explained
in Section 4.
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Figure 5. Policy (M1) upon dependency parser processing.

Figure 6. Rephrase-policy (M1) upon dependency parser processing—3.

Policy Processor (PR): Policy processor (PR) applies sentence and word tokenization,
removes stop-words, and creates a dictionary for extra stop-words. For uni-gram tagging,
it allows creating the dictionary containing subject(s) and object(s) in the policy. PR is
entirely developed with the combination of NLTK [39], and Spacy [41]. The results of this
processing are then saved in a file using the Python OS.System function.

Ontology Builder (OB): The identified subjects, objects, actions, and predicates are
provided as input to the Ontology Builder, which is already furnished with some pre-defined
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predicates, such as ‘object/subject isRelatedto’, ‘object/subject isPartof’, and ‘object/subject
hasCategory’, for objects, and ‘subject hasRole, hasID’, and "object hasOwner’. The subject,
object, action, category, predicate, id, owner, and role classes are all specified. Owlready,
a python package to load ontologies is utilized to implement the Ontology Builder. Each
time a new predicate is needed to process the policy, the ontology vocabulary is manually
updated. The Context Extractor (CE) will use the result after storing it in a file.

Fragment Extractor (FE): ’Subject Action Object’ is a policy fragment that is extracted
by Fragment Extractor (FE). For fragment recognition, this component is implemented in a
policy using logic programming; specifically, it translates the subject, action, and object to
the values determined by Policy Processor (PR). For instance, the FE extracts the fragment ‘we
collect data’: ‘subject action object’. The result is once more recorded in a separate file, saved to
the file system, and utilized by the Controlled Natural Language Translator (CNLT) afterward.

Context Extractor (CE): The CNL4DSA context is extracted from the policy by Context
Extractor (CFE). The output of the Ontology Builder is also recalled to obtain any contexts
with the predicates ‘hasRole’ and ‘hasCategory’. Fragment Extractor (FE) and Context
Extractor (CFE) are created using logic programming. Concerning policy M1, the anticipated
output is:

subject hasRole: ‘we’ AND subject hasRole: ‘you’ AND object hasCategory: ‘data’ AND subject
(you) predicate (choose_to_upload) object (data) AND subject (you) predicate (sync) object (data)

AND subject (you) predicate (import) object (data) is a composite context.

The acquired output is saved once more in a different file and utilized later by the
Controlled Natural Language Translator (CNLT).

Controlled Natural Language Translator (CNLT): The outputs of Fragment Extractor
(FE) and Context Extractor (CFE) are simply retrieved from the file system by Controlled
Natural Language Translator (CNLT), which then displays the policy translation in CNL4DSA.
Controlled Natural Language Translator (CNLT) can also categorize the obtained output as
authorization, obligation, and prohibition fragments.

Complete Translation into Controlled Natural Language (CTCNL) is developed
with a mechanism that orchestrates the components to process the translation all at once.
It does this by first calling the Policy Parser (PP), then the Policy Processor (PR), Ontology
Builder (OB), Fragment Extractor (FE), Context Extractor (CFE), and Controlled Natural Lan-
guage Translator (CNLT). The full process flow of the translation is depicted in Figure 7 as a
single iteration.

Figure 7. Complete Controlled Natural Language (CNL) translation process.

Figure 8 display the Graphical User Interface ofNatural Language Policy Translator
(NLPT) 2.0. The Graphical User Interface (GUI) is developed with Python GUI Genera-
tor (PAGE) [52]. The are shown on the window’s right and bottom sides (in the form
of buttons).
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Figure 8. NLPT 2.0 graphical user interface.

6. Experimental Social Networks Policies

The experimental setup was established based on the evaluation criteria to analyze
the overall system performance. The components of the Natural Language Policy Translator
(CNLT) 2.0 are tested with five social networks’ data privacy policies. The objective of the
experiment is simply to check whether Natural Language Policy Translator (NLPT) 2.0 is
efficient enough to translate any common data privacy policy in the social network domain.
To carry out the experiments, the subset of five different popular social network services’
data privacy policies are gathered, i.e., Facebook [2], Twitter [3], Google [4], Instagram [12],
and LinkedIn [13].

6.1. Experimental Setup

On social networking sites, there are different policy categories listed, e.g., Face-
book (https://www.facebook.com/policies_center), Twitter (https://help.twitter.com/en),
Google (https://policies.google.com/?hl=en-US), LinkedIn (https://www.linkedin.com/
legal/user-agreement), Instagram (https://help.instagram.com/). The policies are manu-
ally skimmed, and only such policies that deal with user data management are considered.
The choice of the policies is also determined by the fact that the policies are presented
in full text, even if two different policies are defined in one paragraph. The subset of a
data privacy policy from sets of policies is considered. In total, 100 different data privacy
policies [53] that are related to user data regulation were chosen for the experiment.

The ‘one output per input’ evaluation paradigm is adopted to analyze components’
accuracy using the following formula [54]:

A =
∑i=1..n,agri

n
=

numbercount
n

(1)

where agr_i is 1 if li = ti and 0 otherwise. Sometimes the inverse of accuracy, or error rate, is
reported instead: 1 − A. To determine the performances, the following evaluation criteria
are established.

6.2. Evaluation Criteria

• How many policies are accurately parsed by Policy Parser (PP), i.e., extracting action(s)
and predicate(s) in a policy?

• How many times is a dictionary update required in terms of subject(s) and object(s)
while processing the policy with Policy Processor (PR) until no update
is required?
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• How many times does an existing ontology have to be updated, or be created, while
processing with Ontology Builder (OB) until no update is required?

• Can the Fragment Extractor (FE) accurately extract the fragment from the given policy?
• Can the Context Extractor (CFE) properly extract the context(s) from the input policy?
• Can the Controlled Natural Language Translator (CNLT) correctly classify the policy as

authorization, obligation, and prohibition fragment?
• What is the success rate of Policy Parser (PP), Fragment Extractor (FE), Context Extrac-

tor (CFE) and Controlled Natural Language Translator (CNLT) over the total number
of policies?

6.3. Experimental Operations

To maintain uniformity for components testing, the policies are processed in the
following manner:

1. Run Policy Parser

• Count the number of policies parsed correctly in a single iteration.

2. Run Policy Processor

• Count the number of policies where it is required to update the vocabulary, with
new subjects, objects, and predicates until no update is required.

3. Run Ontology Builder

• Count the number of policies where it is required to create or update the ontology
dictionary until no update is required.

4. Run Fragment Extractor

• Count the number of fragments correctly extracted in a single iteration.

5. Run Context Extractor

• Count the number of contexts correctly extracted in a single iteration.

6. Run Controlled Natural Language (CNL) Translator

• Count the number of policies where a Controlled Natural Language Translator
(CNLT) successfully identifies fragments as authorizations, obligations, and
prohibitions in a single iteration.

Considering the experimental operations (Section 6.3), for example, the policy writer
inputs a policy into the system and runs the policy parser in a single iteration. The obtained
result from Policy Parser (PP) is analyzed to validate whether verbs and predicates are
correctly identified, and the result is noted. Similarly, the same is performed for all other
components. All 100 policies are processed according to the above-defined operations, and
the obtained results for each component are stored, evaluated against the criteria defined
in Section 6.2 and reported in Section 7.

The success rate of the following components, i.e., Policy Parser (PP), Fragment Extractor
(FE), Context Extractor (CFE), and Controlled Natural Language Translator (CNLT), is calculated
using the following formula:

Success rate formula:

Success Rate = X
T ∗ 100

where:
T = Total number of policies.
X = Number of policies correctly parsed by Policy Parser (PP) or number of policiesac-

curately extracted by Fragment Extractor (FE) and Context Extractor (CFE) in a single iteration
or number of policies correctly recognized as authorization, obligation, and prohibition
fragment by Controlled Natural Language Translator (CNLT).
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6.4. Performance Evaluation Criteria

Referring to the ‘summarizing and comparing performance’ evaluation paradigm [54],
the performance metric scale for for Policy Parser (PP), Fragment Extractor (FE), Context
Extractor (CFE) and Controlled Natural Language Translator (CNLT) is defined as reported
in Table 1. The upper bound is set if the component’s success rate is above or equal to 80%
and the lower bound is above or equal to 20%.

Table 1. Performance evaluation against success rate.

Success Rate 80% >= 80% < and
>=60%

60% < and
>=40%

40% < and
>=20% 20% <

Rating Excellent Above
Average Average Below

Average Low

7. Results and Discussion

Tables 2 and 3 show the results of each component’s performance with respect to the
evaluation criteria described in Section 6, where the first row denotes the evaluation criteria,
the first column identifies the targeted social network domain, and the other columns offer
information about the evaluation. The complete results of all 100 policy translations are
available at [53].

Success Rate: For Google, Policy Parser (PP), Fragment Extractor (FE), Context Extrac-
tor (CFE) and Controlled Natural Language Translator (CNLT) success rates are calculated
as follows:

PP Success Rate = (14/20)∗100 = 70%

FE Success Rate = (16/20)∗100 = 80%

CE Success Rate = (13/20)∗100 = 65%

CNLT Success Rate = (18/20)∗100 = 90%

The computation of the success rate for the rest of the social network policies is
depicted in Figure 9.

The analysis of the obtained results is as follows:

• Google: Out of 20 policies, 14 (70%) are accurately parsed by the Policy Parser (PP),
identifying terms either as the main action or predicate(s). Initially, the dictionary has
been updated 11 times (55%) with new terms for subjects and objects (including seven
times (35%) with predicates due to the wrong parser tagging). The vocabulary for
ontologies required an update eight times (40%) manually by the Policy Writer. It is
hypothesized as if the percentage for dictionary and ontology updates is becoming low,
as the system becomes more efficient at classifying subject(s), object(s), or predicates
within a policy with less human intervention.
In total, 16 fragments (80%) and 13 contexts (65%) have been properly extracted, while
for 18 policies (90%), the Controlled Natural Language Translator (CNLT) classified terms
as either authorization, obligation, or prohibition fragments.

• Facebook: 13 policies (65%) are correctly parsed by Policy Parser (PP), and the dic-
tionary and ontology are updated by the Policy Writer 7 (35%) and 4 (20%) times.
Fragment Extractor (FE) classifies 17 (85%) fragments and Context Extractor (CFE) 11
(55%) contexts correctly. Controlled Natural Language Translator (CNLT) validates 16
(80%) policy fragments as authorizations, obligations, or prohibitions accurately.

• Twitter: The obtained results of Twitter appear to be quite promising. In total, 16
(80%) policies are correctly parsed, while there was no need to update vocabularies for
ontology and terms. Fragment Extractor (FE) obtains 20 (100%)) fragments accurately.
A total of 16 (80%) contexts are correctly extracted by Context Extractor (CFE). Controlled
Natural Language Translator (CNLT) recognizes all 20 (100%) policies as authorization,
obligation, or prohibition.
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• LinkedIn and Instagram: For LinkedIn and Instagram, 17 (85%) and 16 80 are prop-
erly parsed. The dictionary terms and ontologies are required to update only 1–2 times.
Fragment Extractor (FE) and Context Extractor (CFE) obtained 18 (90%) fragments and
15 (75%) contexts for the premier, 20 (100%) and 15 (75%) for later. The performance
of Controlled Natural Language Translator (CNLT) is (95%) for LinkedIn and (100%)
for Instagram.

Table 2. Experiment results of social network data policies.

Social Network
Site

Total
Policies

Correct
Parsing

Accurate
FE

Accurate
CE

Distinction by
CNLT

Google 20 14 (≈70%) 16 (≈80%) 13 (≈65%) 18 (≈90%)

Facebook 20 13 (≈65%) 17 (≈85%) 11 (≈55%) 16 (≈80%)

Twitter 20 16 (≈80%) 20 (≈100%) 16 (≈80%) 20 (≈100%)

LinkedIn 20 17 (≈85%) 18 (≈90%) 15 (≈75%) 19 (≈95%)

Instagram 20 16 (≈80%) 20 (≈100%) 15 (≈75%) 20 (≈100%)

Total 100 76 (≈76%) 91 (≈91%) 71 (≈70%) 93 (≈93%)

Table 3. Experimental results of social network data policies.

Social Network
Site

Number of
Policies

Dictionary
Update

Ontology
Update

Google 20 11 (≈55%) 08 (≈40%)

Facebook 20 07 (≈35%) 04 (≈20%)

Twitter 20 0 (≈0%) 0 (≈0%)

LinkedIn 20 02 (≈1%) 01 (≈1%)

Instagram 20 01 (≈1%) 0 (≈0%)

Total 100 21 (≈21%) 13 (≈12%)

Initially, the Natural Language Policy Translator (NLPT) 2.0 did not perform well parsing
Google and Facebook policies, which also affected Context Extractor (CFE)’s performance. It
is due to the Policy Writer finding difficulty in rephrasing policies. However, it is hypothe-
sised that Policy Writer may gain the appropriate experience to input the policies correctly,
which later happened in the case of Twitter, LinkedIn, and Instagram. This also reveals that
the parser performance is relatively dependent on how the Policy Writer inputs policy.

The complete experimental results show that the whole performance of Natural Lan-
guage Policy Translator (NLPT) 2.0’s components is really good. In total, 76% of the policies
are parsed precisely. Initially, the vocabulary for terms and ontology relations needs to be
created or updated frequently by the Policy Writer due to new terms appearing in the poli-
cies. Once the dictionary is enriched enough with unique vocabularies and an ontologies
relations lexicon, the human intervention decreases, and the system is trained enough to
automatically tag the words as subject(s) and object(s) more accurately and produce proper
ontology relations as in the case of Twitter, LinkedIn, and Instagram. The total accuracy
of the Fragment Extractor (FE) and Context Extractor (CFE) is (91%) and (71%), respectively.
The overall accuracy achieved by the Controlled Natural Language Translator (CNLT) is (93%).

The classification of Policy Parser (PP), Fragment Extractor (FE) ,Context Extractor (CFE),
and Controlled Natural Language Translator (CNLT) performance based on the established
evaluation criterion in Table 1 is shown in Table 4. The performance of Policy Parser (PP)
in the case of Google and Facebook is categorized as ‘Above Average’, while for other
three, the performance appeared as ‘Excellent’. The performance of Fragment Extractor
(FE) and Controlled Natural Language Translator (CNLT) for all five social network policies is
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classified as ‘Excellent’. For Context Extractor (CFE), in the case of Google, LinkedIn and
Instagram, the performance appeared as ‘Above Average’, while for Facebook, ‘Average’,
and ‘Excellent’ for Twitter. The complete performance of the Fragment Extractor (FE) and
Controlled Natural Language Translator (CNLT) emerged as ‘Excellent’ for all five social
network policies and ‘Above average’ for Policy Parser (PP) and Context Extractor (CFE).

Table 4. Policy Parser (PP), Fragment Extractor (FE), Context Extractor (CFE) and Controlled Natural
Language Translator (CNLT) performance evaluation against success rate.

Case
Study

PP
Performance

FE
Performance

CE
Performance

CNLT
Performance

Google Above Average Excellent Above Average Excellent

Facebook Above Average Excellent Average Excellent

Twitter Excellent Excellent Excellent Excellent

LinkedIn Excellent Excellent Above Average Excellent

Instagram Excellent Excellent Above Average Excellent

Total Above Average Excellent Above Average Excellent

Fragment Extractor (FE); Context Extractor (CE); Controlled Natural Language Translator (CNLT).
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Figure 9. Performance of Policy Parser (PP), Fragment Extractor (FE), Context Extractor (CFE) and
Controlled Natural Language Translator (CNLT) with respect to success rates.

During the experimentation, certain limitations and issues were observed. The policy
writer found it quite difficult to rephrase the policy, which also impacts the performance of
the Policy Parser (PP). However, after gaining experience and the following instruction from
the policy manual, it became easy to rephrase, and the Policy Parsers (PP) performance also
improved, which can be observed in the case of Twitter, Instagram and LinkedIn, as shown
in Table 2. The creation and updating of ontologies are currently manual, and we aim to
make it automatic or semi-automatic in future work. The dependency parser tagging is
based on how the policy is inputted. Wrong parsing may occur if the policies are composed
of many complex sentences. The wrong parsing has a direct impact on the performance of
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Fragment Extractor (FE) and Context Extractor (CFE). The Policy Writer role has mitigated
this issue at a certain level.

Moreover, automatic co-reference detection is not considered, and it will be assailed in
future work. In addition, the complete process of translation is semi-automatic since it re-
quires human intervention at different stages. However, it is argued that once the system is
trained enough on upgraded lexicons with unique terms and ontology relations, the human
interventione intervention lessens. In general, the overall performance indicators of the
system’s components indicate that Natural Language Policy Translator (NLPT) 2.0 is capable
of automatically translating any social network data privacy policy into a CNL4DSA.

8. Conclusions

The data management regulations on social media platforms are defined using Natural
Language (NL). These policies are not machine-checkable and are mostly vague and impre-
cise. The tight lexicon(s), vocabulary, syntax(es), grammatical structure, and pragmatics
of Controlled Natural Languages CNLs make them more suitable for machine processing.
This study proposes a unique technique for handling data privacy policies by introducing
the translation of their natural language descriptions into phrases that are easier for non-
experts in terms of readability and usability. The goal of this work is to provide an effective
and efficient approach for the formal analysis of privacy rules. The aimed language for
translation is Controlled Natural Language for Data Sharing Agreement [55], which is
more similar to a pure Natural Language (NL) and is easier for non-experts in terms of
understandability and usability [51].

The proposed methodology is based on processing the data policies through Natural
Language Processing (NLP) techniques, logic programming and ontologies, recognising—
and appropriately relating—the typical elements of a privacy policy in the original natural
language statements. The prototype system that translates the data privacy policies is
presented and is referred to as ‘Natural Language Policy Translator (NLPT) 2.0’, an extended
version of the system ‘Natural Language Policy Translator (NLPT) 1.0’ [6]. Natural Language
Policy Translator (NLPT) 2.0 is composed of different components that allow the end-user
to analyze the functionality and operations required for policy translation. The system is
equipped with a user-friendly GUI that supports end-users entering the policies, and the
system translates it into CNL4DSA.

In conclusion, Natural Language Policy Translator (NLPT) 2.0 provides the following
functionalities:

• Parses the policy to extract action(s) and predicate(s).
• Processes policy by means of tokenization of sentences, words, stop-words, unigram

tagging to label subject(s) and object(s) and extract subject(s), object(s), action(s)
and predicate(s).

• Identifies and produces ontologies with respect to subject hasRole, the object hasCate-
gory, the object hasPurpose, relation as subject predicate object, etc.

• Extracts the fragment from the original policy.
• Extracts the context from the original policy.
• Classifies between authorization, obligation, and prohibition fragments.
• Performs all the above tasks separately and together.

For experimentation, NLPT 2.0 is tested with five popular social network data privacy
policies. To analyze the components’ performance, a criterion is defined for evaluation.
The obtained results of various components’ performances are between 70% and 95%. The
performance indicators of the system components appeared relatively encouraging and
satisfactory. Initially, the work aims to provide complete automatic machine translation
without human intervention. However, due to certain limitations found during experi-
mentation, there is a need for human intervention to define the vocabulary for unigram
tagging and ontologies at the initial stage. It is argued that once the system is fully trained
with unique terms for the vocabulary and ontology lexicon, human intervention becomes

235



Appl. Sci. 2022, 12, 10499

minimal, and the system can automatically tag the words as subject(s) and object(s) more
accurately and produce proper ontology relations.

As discussed in Section 7, the policy cannot simply be input in its original form since
the dependency parser [41] may not be able to correctly parse too complicated phrases.
Of course, improper parsing also has a direct influence on Fragment Extractor (FE) and
Context Extractor (CFE) performance. This issue has been dealt with by introducing the
role of a Policy Writer to enter the policy following the manual’s guidelines. The approach
is currently not fully automatic because it needs human involvement at certain points, yet
it is close to fully automatic translation. All these issues will be addressed in future work.
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