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Simple Summary: Colorectal cancer (CRC) is a global healthcare challenge that involves both genetic
and environmental factors. Several pieces of evidence suggest that alterations of the gut microbiome
can influence CRC development. In the present study we analyzed 16S rRNA sequencing data from
fecal immunochemical test (FIT) samples from a large cohort, observing a predictive potential of
the microbiome, revealing changes along the path from healthy tissue to carcinoma. Our work has
implications in the understanding of the roles of microbes on the adenoma to carcinoma progression
and opens the door to an improvement of the current CRC screening programmes.

Abstract: Colorectal cancer (CRC) is the third most common cancer and the second leading cause of
cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is
generally implemented through a two-step population screening approach based on the use of Fecal
Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step
has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize
cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover
microbial taxa, taxon co-occurrence and metabolic features significantly associated with different
colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path
from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier
which reduces the current false positive rate while maximizing the inclusion of CRC and clinically
relevant samples.

Keywords: colorectal cancer; microbiome; 16S rRNA sequencing; screening; diagnosis

1. Introduction

Colorectal cancer (CRC) is the third most common cancer type and the second leading
cause of cancer-related deaths worldwide [1], accounting for nearly 900,000 deaths each
year. This malignant disease develops from the pathological transformation of normal
colonic epithelium to adenomatous polyps, which ultimately leads to invasive cancer.

Cancers 2023, 15, 120. https://doi.org/10.3390/cancers15010120 https://www.mdpi.com/journal/cancers
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This process is gradual and involves the accumulation of genetic and/or epigenetic alter-
ations [2]. CRC incidence increases with economic development and Westernization of
dietary and lifestyle habits, hinting at a significant effect of environmental and lifestyle
factors, likely in combination with genetic predisposition [3]. In this regard, a growing
body of evidence has linked alterations of the gastrointestinal tract microbiota with CRC
development [4]. Earlier research has shown that alterations in the gut microbiota may
influence colon tumorigenesis [5] through chronic inflammation or the production of car-
cinogenic compounds [6]. Differences in the relative abundances of some microbial species
or genera have been found when comparing paired tumor and normal tissues, or fecal
samples from CRC patients and healthy subjects [7,8].

Diagnosis of CRC is challenging and involves a complex process that usually starts
with the detection of the first symptoms by the patient, and is followed by clinical di-
agnostic procedures, mainly based on colonoscopy. The implementation of preventive
measures and early diagnosis of CRC can save many lives [9,10] and routine screening
of asymptomatic populations following an age-selected criteria has been implemented in
many countries. Current CRC screening in the vast majority of Western countries consists
of a two-step procedure with a non-invasive test (most commonly a fecal immunochemical
test (FIT) for quantification of occult hemoglobin in the stool) followed by colonoscopy if
the test is positive (FIT-positive, or more accurately, above a given threshold of hemoglobin
concentration) [11,12]. This approach is effective but results in a high rate of false positives
(around 65% FIT-positive samples reveal no clinically relevant feature at colonoscopy)
at the first step and many unnecessary colonoscopies, with a FIT sensitivity of around
35% [13]. Colonoscopy is an invasive, expensive and time-consuming procedure, and hence
additional biomarkers that could better stratify individuals with higher risk for CRC or
premalignant lesions to undergo a colonic examination would significantly reduce health-
care costs. Much current research is directed towards finding additional criteria, such as
risk factors and alternative biomarkers to be considered by the decision algorithms used to
personalize positive FIT testing to colonoscopy. To search for potential predictive biomark-
ers present in FIT samples and to shed light on the potential roles of the gut microbiome in
CRC development, we performed microbiome profiling using targeted sequencing of the
16S V3-V4 region from DNA extracted directly from FIT containers collected within the
population-based organized screening program implemented in Catalonia, Spain [14]. We
analyzed a total of 2889 FIT-positive samples and assessed their microbial composition and
metabolic potential, and how they varied across samples with different colonoscopy results
(i.e., different diagnostic outcome after colonoscopy exploration, including, among others,
the absence of any clinical feature, the presence of lesions and their risk, the presence of
colorectal cancer, and the presence of polyps).

2. Materials and Methods

Our study followed the Strengthening the Organization and Reporting of Microbiome
Studies (STORMS) checklist (Data S1).

2.1. Sample Collection and Subjects

A total of 2889 FIT-positive (>20 μg hemoglobin/g feces) samples recruited in two
rounds (2009 and 2017–2019) from asymptomatic participants from the Catalan CRC screen-
ing program were analysed. Individuals were selected within the age criteria implemented
by the screening programme (50 to 69 years old) and the diagnosis and sex selection were
based on an ideal balanced dataset (aimed to obtain equal numbers within each class).
Collected metadata comprised six different clinical variables for each sample, including
the diagnosis after colonoscopy evaluation (Data S2), the number of polyps, the FIT value
(μg of hemoglobin/g of feces), the hospital at which the sample was collected, and the
donor’s sex and age. The considered colonoscopy diagnoses were negative (N), colorectal
cancer (CRC) and different lesions that can be relevant in CRC development: carcinoma in
situ (CIS), high risk lesion (HRL), intermediate risk lesion (IRL), low risk lesion (LRL) and
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lesion not associated to risk (LNAR) [15] (Table S1). Additionally, we classified the samples
into two groups according to the clinical relevance of the colonoscopy-based diagnosis [16]:
CRC, CIS, HRL and IRL were considered clinically relevant (CR) lesions (indeed, they are
the goal of CRC screening programs), and N, LNAR and LRL as non-clinically relevant
(non-CR) lesions (Table S1). Individuals with inflammatory bowel disease or polyposis were
excluded from the study. Our study was approved by the institutional ethical committees
of the involved institutions and informed consent was obtained from the participants.

2.2. DNA Extraction and 16S Sequencing

Aliquots of 500 μL of buffer contained in FIT collection devices (OC-Sensor, Eiken
Chemical Co., Tokyo, Japan) were prepared in a test tube and stored at −80 ◦C until further
processing. DNA was extracted from FIT samples using the DNeasy PowerLyzer PowerSoil
Kit (Qiagen, ref. QIA12855) following manufacturer’s instructions. The extraction tubes
were agitated twice in a 96-well plate using the TissueLyser II (Qiagen) at 30 Hz/s for
5 min.

Four μL of each DNA sample were used to amplify the V3–V4 regions of the bacterial 16S
ribosomal RNA gene, using the following universal primers in a limited cycle PCR: V3-V4-
Forward (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG-
CAG-3′) and V3-V4-Reverse (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGA-
CTACHVGGGTATCTAATCC-3′). To prevent unbalanced base composition in further
MiSeq sequencing, we shifted sequencing phases by adding a variable number of bases
(from 0 to 3) as spacers to both forward and reverse primers (we used a total of 4 forward
and 4 reverse primers). The PCR was performed in 10 μL volume reactions with 0.2 μM
primer concentration and using the Kapa HiFi HotStart Ready Mix (Roche, ref. KK2602).
Cycling conditions were initial denaturation of 3 min at 95 ◦C followed by 25 cycles of
95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, ending with a final elongation step of 5 min
at 72 ◦C.

After the first PCR step, water was added to a total volume of 50 μL and reactions
were purified using AMPure XP beads (Beckman Coulter) with a 0.9X ratio according to
manufacturer’s instructions. PCR products were eluted from the magnetic beads with
32 μL of Buffer EB (Qiagen) and 30 μL of the eluate were transferred to a fresh 96-well plate.
The primers used in the first PCR contained overhangs allowing the addition of full-length
Nextera adapters with barcodes for multiplex sequencing in a second PCR step, resulting
in sequencing ready libraries. To do so, 5 μL of the first amplification was used as template
for the second PCR with Nextera XT v2 adaptor primers in a final volume of 50 μL using
the same PCR mix and thermal profile as for the first PCR but for only 8 cycles. After the
second PCR, 25 μL of the final product was used for purification and normalization with
the SequalPrep normalization kit (Invitrogen), according to the manufacturer’s protocol.
Libraries were eluted in 20 μL and pooled for sequencing.

Final pools were quantified by qPCR using the Kapa library quantification kit for
Illumina Platforms (Kapa Biosystems) on an ABI 7900HT real-time cycler (Applied Biosys-
tems). Sequencing was performed in the Illumina MiSeq with 2 × 300 bp reads using v3
chemistry with a loading concentration of 18 pM. To increase the diversity of the sequences,
10% of PhIX control libraries were spiked in.

Two bacterial mock communities were obtained from the BEI Resources of the Human
Microbiome Project (HM-276D and HM-277D), each containing genomic DNA of ribosomal
operons from 20 bacterial species [17]. Mock DNAs were amplified and sequenced in
the same manner as all other FIT samples. Negative controls of the DNA extraction and
PCR amplification steps were also included in parallel, using the same conditions and
reagents. These negative controls provided no visible band or quantifiable DNA amounts
by Bioanalyzer, whereas all our samples provided clearly visible bands after 25 cycles.

3
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2.3. Microbiome Analysis

We used the dada2 (v. 1.10.1) pipeline [18] to obtain an amplicon sequence variants
(ASV) table for each of the sequencing runs separately. The quality profiles of forward and
reverse sequencing reads were examined using the plotQualityProfile function of dada2
and, according to these plots, low-quality sequencing reads were filtered and trimmed
using the filterAndTrim function. We obtained a matrix with learned error rates with the
learnErrors dada2 function. We performed dereplication (combining identical sequencing
reads into unique sequences), sample inference (from the matrix of estimated learning error
rates) and merged paired reads to obtain full denoised sequences. From these, chimeric
sequences were removed. Taxonomy was assigned to ASVs by mapping to the SILVA
16s rRNA database (v. 132) [19]. Negative controls (non-template samples) and positive
controls (mock microbial communities comprising a mixture of 20 strains with known
proportions) were sequenced and analyzed in each of the runs to assess the possible
contamination background and evaluate the accuracy of the pipeline. We obtained ASV
and taxonomy tables for each run separately, and then merged the results. Samples without
metadata information and the controls were discarded in further analyses.

We reconstructed a phylogenetic tree by using the phangorn (v. 2.5.5) [20] and Deci-
pher R packages (v 2.10.2) [21] and integrated it with the merged ASV and Taxonomy tables
and their assigned metadata creating a phyloseq (v. 1.26.1) object [22]. We characterized
alpha diversity metrics including Observed index, Shannon, Simpson, InvSimpson, PD
Chao1, ACE and standard error measures such as se.Chao1 and se.ACE using the esti-
mate_richness function of the phyloseq package. Using the picante package (v. 1.8.1) we
computed Faith’s phylogenetic diversity, an alpha diversity metric that incorporates branch
lengths of the phylogenetic tree. Additionally, we calculated different distance metrics
based on the differences in taxonomic composition between samples using the Phyloseq
and Vegan (v. 2.5–6) [23] packages. These metrics include Jensen-Shannon Divergence
(JSD), Weighted-Unifrac, Unweighted-unifrac, Bray-Curtis dissimilarity, Jaccard and Can-
berra. We also computed Aitchison distances between samples using the cmultRepl and
codaSeq.clr functions from the CodaSeq (v. 0.99.6) [24] and zCompositions (v. 1.3.4) [25]
packages. Normalization was performed by transforming counts to centered log-ratios
(clr) [26]. We performed multiplicative simple zero replacement as implemented in the
cmultRepl function of the zCompositions package (v. 1.3.4) (indicating method = “CZM”).
Samples with fewer than 1000 reads and taxa that appeared in fewer than 10 samples and
at low abundances (fewer than 100 reads) were filtered out. Finally, we agglomerated taxa
at each taxonomic rank to study trends at different taxonomic depths.

We made a comparison of our overall microbiome profiles with samples studied in a
previous study [27]. We treated the samples from their 2 × 300 pb cycle run by applying
the same procedure state in the present section.

2.4. Statistical Analysis

We assessed associations between clinical variables and the overall microbial com-
position of the samples by performing permutational multivariate analysis of variance
(PERMANOVA) using the adonis function from the Vegan R package (v. 2.5–6) with the
seven distance metrics mentioned above. Diagnosis, sex and age variables were consid-
ered as covariates. Additionally, we performed an analysis of similarities (ANOSIM) test
using the anosim function from the Vegan R package to assess differences between and
within groups.

We performed a differential abundance analysis using clr data for the different taxo-
nomic ranks across various clinical variables using linear models implemented in the R
package lme4 (v. 1.1–21) [28]. We built a linear model including diagnosis (Dx), hospital,
sex, age, number of polyps and FIT value as fixed effects, and the sequencing run as a
random effect to account for possible batch effects: tax_element~Dx + hospital + sex + age
+ number_polyps + FIT_value + (1|run). This linear model was evaluated considering all
the diagnoses, but also made a comparison of CRC versus non-CRC samples by changing
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all other diagnoses to “others”. A second linear model was applied that considered as
fixed effect a variable called risk instead of the diagnosis in order to assess the differences
between samples with CR or non-CR colonoscopy, as defined above (Table S1).

We applied analysis of variance (ANOVA) to assess the significance for each of the
fixed effects included in the models using the Car R package (v. 3.0–6) [29]. To assess
differences between groups, we performed multiple comparisons to the results obtained in
the linear models using the Tukey test in the function glht from the multcomp R package
(v. 1.4–12) [30]. We applied Bonferroni as a multiple testing correction as implemented
in the summary.glht function of the multcomp package, and statistical significance was
defined at p values lower than 0.05. In addition, we used the selbal package (v. 0.1.0) [31] to
study groups of taxa (balances) with potential predictive power for CRC status.

2.5. Co-Occurrence and Networks

Co-occurrence networks for microbial species were inferred and represented for each
of the diagnostic groups, considering the top 50 taxa and using the SpiecEasi R package
(v. 1.1.0) [32]. We used neighborhood selection based on penalized regression as the
graphical model inference. The resulting networks, following the path transition from
healthy colon (N) to cancer (CRC), were compared by computing hamming distances with
the netdist function from the R package nettools (v. 1.1.0). We represented the weights of
the correlations of the co-occurrence networks by using the chordDiagram function from
the circlize package (v. 0.4.12).

We also calculated taxa correlation matrices for each diagnosis group by using the
function corr.test from the R psych package (v. 2.0.12) and using the Spearman method,
adjusting for multiple comparisons with the Holm-Bonferroni method. The significance
threshold was set at p.adjust < 0.05.

2.6. Genome Content Inference

Given the ASV and taxonomy tables in the phyloseq object, we applied the t4f function
from the themetagenomics package (v. 1.0.0) [33] to predict the functional content in
terms of functional genes (kegg orthologous groups (OGs), which are families of genes
that descent from a common ancestral gene and that generally perform similar functions).
Then, we applied a linear model (ortholog~Dx + hospital + sex + age + number_polyps
+ FIT_value + (1|run)) to determine OGs that were significantly differentially abundant
according to the diagnosis, and a multiple comparison test (Tukey) correcting by Bonferroni.
From these differentially abundant OGs, we extracted all the functional pathways in
which they were involved and performed a test for pathway enrichment only considering
pathways with 10 or more predicted OGs and having at least 10% of their OGs being
differentially abundant. Using custom scripts and text mining tools implemented in the
easyPubMed R package (v.2.13) [34], we retrieved pubmed articles in which these pathways
appeared related to CRC.

2.7. Machine Learning Classification

We developed a predictive model based on a two-phase classification using a neural
network (NN) algorithm implemented in the caret package (v. 6.0–85) [35]. For each phase
we trained a random 75% of the data with a 10-fold cross validation and tested with the
remaining samples. The process was repeated 100 times to avoid “lucky” splits and to
evaluate the variability in predictive performance. We performed a feature selection based
on the differential abundance results including taxa found as having significantly different
abundances in our study and incorporating FIT-value, age and sex variables. Samples
with missing values for the considered metadata were removed. Taxa abundances were
included as clr. The two-phase classifier proceeds as follows: in the first phase the method
classifies CRC vs. non-CRC samples. Samples that are classified as non-CRC in the first
phase are subjected to a second model that classifies CR vs. non-CR samples. At the end of
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the two-phase classification, the mean percentage of misclassified CRC and CR samples
was calculated, and the performance of the model was evaluated.

To validate our strategy we built a model training with all the CRIPREV samples and
tested it in two independent datasets: a cohort from the USA [36,37] and 100 extra samples
from the same Catalan screening. For the USA cohort, we applied the Catalan hemoglobin
threshold (>20 μg of hemoglobin/g of feces) to select the FIT-positive samples to include
in the validation. We processed their raw data following the same methodology as in our
study (see Microbiome analysis, Materials and Methods). We unfortunately could not
assign Bacteroides fragilis, likely because that study only used the V4 region of the 16S rRNA
gene as compared to V3-V4 in our study.

We assessed possible subsets of taxa with classification potential by using the 100 extra
samples from the same local screening. We identified a total of 27 taxa, found as differen-
tially abundant in both the CRC vs. others and CR vs. non-CR comparisons, intersecting
between the CRIPREV project and these extra samples, that are those included in the results
presented here. We assessed different combinations of the taxa, considering the effect
size observed in our statistical test. We defined top and down taxa from the list, per each
phase, and made an assessment of subsets of taxa as follows: 4 taxa from the top of the list
(50 random combinations), 4 taxa from the bottom of the list (50 random combinations),
4 random taxa (50 random combinations), 2 taxa from the top of the list (all the possible
combinations), 2 taxa from the bottom of the list (all the possible combinations), 1 taxa from
the top of the list (all the possible combinations) and 1 taxa from the bottom of the list (all
the possible combinations).

We tested a total of 948 models using our validation set. We filtered the models based on
some classification metrics: AUC1 >= 0.55, specificity1 > 0.2, AUC2 > 0.5 and specificity2 > 0.

ROC curves were represented using the package pROC (v 1.16.1) [38].

3. Results

3.1. 16S Metabarcoding from FIT Samples Is a Valid Proxy for Gut Microbiome

To assess the diagnostic and research potential of microbiome analyses performed
on FIT samples collected within currently ongoing CRC screening programs, we enrolled
asymptomatic participants of the Catalan CRC screening program that had a FIT-positive
test. We froze their FIT cartridges until the results from the colonoscopy examination were
obtained. These outcomes were categorized into clinically relevant (CR) lesions -including
CRC, carcinoma in situ (CIS), high risk lesion (HRL) and intermediate risk lesion (IRL)-,
and non-CR lesions—including negative (N), lesion not associated to risk (LNAR) and
low risk lesion (LRL). Using the colonoscopy information, we selected a representative
set of samples for microbiome characterization, aiming for a balanced representation
of clinically relevant colonoscopy outcomes. We performed DNA extraction and 16S
metabarcoding analysis of the V3-V4 region on the selected samples (see Materials and
Methods, Section 2.2). A total of 2889 FIT-positive samples passed all quality filters and
were included in the study (see Materials and Methods, Section 2.3). A summary of
the distribution of these samples across several characteristics is shown in Table S2. We
obtained a mean value of 56,219.03 filtered reads per sample, which comprised a total of
376 assigned taxa. Bacteroidetes and Firmicutes were the most represented phyla, and
the ten most abundant genera were, in this order: Bacteroides, Faecalibacterium, Prevotella,
Blautia, F.Lachnospiraceae.UCG, Ruminococcus, Agathobacter, Bifidobacterium, Alistipes and
Akkermansia (Figure S1). These results are consistent with previous studies using stool
samples [39–43], and with earlier analyses showing a high correspondence between stool
and FIT samples from the same individuals [36,37]. We compared our data with that
of a recent Spanish population gut microbiome study [27]. The two cohorts differ in
several features such as the age range, but most notably our cohort was entirely formed
by individuals with blood in stool, a factor shown to impact the gut microbiome [44], and
hence differences are expected. Nevertheless, the two sample sets were largely similar in
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terms of dominating phyla and genera, reinforcing the validity of FIT sampling as a proxy
of the gut microbiome (Figure S2).

3.2. Changes in Microbiome Composition along the Path from Healthy Colon to Colorectal Cancer

We quantified the overall microbiome diversity by computing alpha and beta diversity
metrics. We only observed significant differences (Kruskal-Wallis, p < 0.05) in the observed
index alpha diversity metric (which measures the number of species per sample), and in the
Simpson index (which considers taxa abundances) when considering all diagnoses, but not
when specifically comparing clinically relevant (CR) vs. non-CR samples (Figure S3). For
the Shannon and Simpson indices, which consider differences in taxa abundances, we only
observed significant differences with the Simpson index (which assigns more weight to
dominant species) when considering all diagnoses. We produced multidimensional scaling
(MDS) plots using distances between the microbial profiles of samples (beta diversity) such
as the Aitchison distance (Figure S4). We did not observe a clear clustering of samples with
the same diagnosis or risk (CR vs. non-CR). However, with the adonis test and Aitchison
distance, we detected a significant effect of the diagnosis (p = 0.001) considering sex and
age as covariates, and the sequencing run as a possible source of batch effect. The ANOSIM
test also supported significant differences between the diagnostic groups and a higher
similarity within groups (R: 0.07463, p-value: 0.001). Altogether, these results suggest
the existence of significant but subtle differences in the overall microbiome composition
between FIT-positive samples with different colonoscopy outcomes.

We next used comparative analysis to detect significant differences in the relative
abundance of taxa according to the variables considered (Table S3). These analyses identi-
fied 34 species whose abundance varied significantly across colonoscopy diagnosis (Data
S3 and Figure 1).

Based on the observation that CRC was the diagnosis with the most distinct micro-
biome (Figure 1), we specifically compared CRC to non-CRC samples, which revealed
41 differentially abundant species (Figure 2a and Data S4). These included overrepresen-
tation of Akkermansia muciniphila and Akkermansia spp., as well as underrepresentation
of Bacteroides plebeius and Bacteroides fragilis in CRC compared to non-CRC samples. In
addition, we found that the ratio between species abundance (balance) most associated with
CRC-status was given by a decrease (as compared to non-CRC samples) in a group of taxa
comprising B. fragilis (G1: Bifidobacterium spp., Bacteroides fragilis, Sutterella wadsworthensis,
and Eggerthella spp.), with respect to a second group of taxa including Akkermansia spp. (G2:
Akkermansia spp., Gemella spp., Peptostreptococcus stomatis, Adlercreutzia spp. and Butyrivibrio
spp.). We explored the progression of the levels of Akkermansia genus along the path from
normal colon to CRC, observing an increase from HRL to carcinoma in situ and from
carcinoma in situ to CRC. (Figure S5).

Finally, we applied the same linear model to the comparison of CR vs. non-CR
samples, which identified 34 differentially abundant species, of which six were shared with
the comparison above (Figure 2b and Data S5).

We next explored whether changes in the microbiome correlated with other variables
collected in the study such as the number of polyps observed in the colonoscopy exami-
nation and lifestyle parameters collected by a questionnaire. Colorectal polyps, which are
benign tumors that project onto the colon mucus and protrude into intestinal lumen [45],
have long been identified as potential precursors of CRC. Polyp size, localization and histol-
ogy, among other factors, may influence their role in CRC development. Our study includes
the information of the presence or absence of polyps, wherein colonoscopy detected the
presence of polyps in 66.82% of samples, with the numbers of polyps ranging from one to
22. We observed that some CRC (32/134, 23.88%) samples had no polyps, whereas some
negative samples had from 1 to 3 polyps (21/925, 2.27%), and some lesions that were not
associated with a clinically relevant colonoscopy had a considerable amount of polyps
(from 1 to 11 polyps, e.g., two individuals diagnosed by LNAR and LRL had 11 polyps).
We searched for species whose abundance correlated significantly with the number of
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polyps and found 33 such cases (Data S6), including B. vulgatus, which was associated
with systemic inflammation and CRC progression [46]. Finally, we found no significant
effect of the CRC tumor stage on the microbiome composition, although this may relate
to limited sample size (n = 101, Adonis test, R2: 0.03104 p value: 0.386). A subset of the
included individuals (n = 2016) responded to a lifestyle questionnaire. We assessed the
impact of different variables on microbiome composition, and found a significant impact of
weight, height, regular exercise, smoking, alcohol, vegetables and processed meat intake
and anti-inflammatory drug use, as observed in previous studies. When this impact was
considered in conjunction with the diagnosis, we observed only a significant effect of the
vegetable’s intake (Figure S6).

Figure 1. Representation of the 34 bacterial species found as significantly differentially abundant
in pairwise comparisons of diagnoses following the path from healthy colon to colorectal cancer
(Tukey test, p.adjusted < 0.05, n = 2565). Different colonoscopy diagnoses are depicted from left to
right following this path, with healthier states at the left and in the following order: N, negative;
LNAR, lesion not associated to risk; LRL, low risk lesion; IRL, intermediate risk lesion; HRL, high
risk lesion; CIS, carcinoma in situ; CRC, colorectal cancer. Lines connecting different diagnoses
indicate comparisons, with differentially abundant species names indicated. Colors in the species
names indicate the direction of the change with red indicating decrease and green increased relative
abundance with respect to the healthier state.

3.3. Diagnosis-Specific Co-Occurrence and Functional Profiles

To gain further insights into the changes of microbial composition along the path
from healthy tissue to CRC, we used proxies for community interactions (co-occurrence
networks), and functional potential (functional inference from taxonomic assignment). We
first built species networks showing patterns of correlated abundances for samples with
each specific diagnosis and compared them (see Materials and Methods, Section 2.5). By
constructing and representing co-occurrence networks based on the 50 most abundant
taxa, we qualitatively observed differences across the diagnoses along the path from
healthy colon to CRC (Figure 3). These differences were confirmed by computing hamming
distances between co-occurrence networks of successive pairs of diagnoses along this path:
0.024 (N vs. LNAR), 0.023 (LNAR vs. LRL), 0.014 (LRL vs. IRL), 0.016 (IRL vs. HRL),
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0.030 (HRL vs. CIS) and 0.028 (CIS vs. CRC). According to this, the last two steps in the
progression from healthy tissue towards CRC (HRL to CIS and CIS to CRC) display the
largest dissimilarities. Similar results were obtained using an alternative approach based
on Spearman correlations: 66% (N vs. LNAR), 65% (LNAR vs. LRL), 53% (LRL vs. IRL),
53% (IRL vs. HRL), 79% (HRL vs. CIS) and 73% (CIS vs. CRC).

Figure 2. The effect size of species found as significantly differentially abundant when comparing
CRC vs. non-CRC samples (n = 2565) (a) and CR vs. non-CR samples (b). Bars are green for
overrepresentation and red for underrepresentation. The bars are sorted according to the effect size.
In bold are the highlighted taxa that appeared as differentially abundant in both comparisons.
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Figure 3. Circos plots representing the correlation weight matrices obtained from the computed
networks of co-occurrence according to the diagnosis (negative (N) n = 925, lesion not associated to
risk (LNAR) n = 90, low risk lesion (LRL) n = 681, intermediate risk lesion (IRL) n = 638, high risk
lesion (HRL) n = 397, carcinoma in situ (CIS) n = 24, and colorectal cancer (CRC) n = 134) considering
the top 50 taxa. The green connections are for positively correlated and the red connections are for
negatively correlated taxa. The thickness of the arrows represents the strength of the correlations.

S1: Bacteroides vulgatus, S2: Akkermansia muciniphila, S3: Akkermansia spp., S4: Collinsella
aerofaciens, S5: Bacteroides spp., S6: Agathobacter spp., S7: Bacteroides uniformis, S8: Faecalibac-
terium prausnitzii, S9: Holdemanella spp., S10: Collinsella spp., S11: Faecalibacterium_CM04-06
spp., S12: Ruminococcus bromii, S13: Erysipelotrichaceae_UCG-003 spp., S14: Escherichia spp.,
S15: Faecalibacterium spp., S16: Dorea longicatena, S17: Alistipes putredinis, S18: Phascolarc-
tobacterium spp., S19: Ruminococcus spp., S20: Blautia spp., S21: Subdoligranulum spp.,
S22: Alistipes spp., S23: Dorea spp., S24: Bifidobacterium spp., S25: Bacteroides massiliensis,
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S26: Streptococcus spp., S27: Ruminococcaceae_UCG-002 spp., S28: F.Lachnospiraceae.UCG,
S29: Prevotella spp., S30: Parabacteroides spp., S31: Ruminococcaceae_UCG-014 spp., S32:
Prevotellaceae_NK3B31_group spp., S33: F.Ruminococcaceae.UCG, S34: Coprococcus spp., S35:
Anaerostipes spp., S36: Dialister spp., S37: Roseburia spp., S38: Lachnospira spp., S39: Bar-
nesiella spp., S40: Bacteroides coprocola, S41: F.Muribaculaceae.UCG, S42: Paraprevotella spp.,
S43: Catenibacterium spp., S44: O.Rhodospirillales.UCF, S45: Erysipelatoclostridium spp., S46:
Lachnospiraceae_NK4A136_group spp., S47: Christensenellaceae_R-7_group spp., S48: Lachno-
clostridium spp., S49: Ruminiclostridium spp. and S50: Alloprevotella spp.

Of note, some of the specific differences that we detected were that Akkermansia
muciniphila and Akkermansia spp. were found as positively correlated in all the diagnoses,
but only in CRC we observed a negative correlation of the Akkermansia spp. and Dorea
longicatena species. In contrast, in LNAR and LRL we found a negative correlation of these
species with Agathobacter spp. and Alloprevotella spp., respectively. Also, we observed a
positive correlation between Collinsella aerofaciens and Collinsella spp. in all the diagnoses
except in the CIS group, and only in CRC we observed a negative correlation with another
taxon, Lachnospira spp.

Co-occurrence networks may reflect underlying microbial communities that may
interact metabolically. To obtain functional insights we inferred the functional potential of
the microbiota in each sample by exploring metabolic pathways and processes associated
with 2927 orthologous groups (OG, i.e., functionally-annotated gene families) in 376 taxa
present in our samples (see Materials and Methods, Section 2.6). By studying the variation
of abundance of OGs across samples, we identified 184 that were significantly differentially
abundant according to the diagnosis (Data S7). The differentially abundant OGs were
linked to 23 enriched pathways (containing more than 10 predicted OGs and 10% or more
differentially abundant OGs involved), many of which have been linked to CRC in the
literature, according to a text-mining approach (Figure 4a).

When performing pairwise comparisons between diagnoses along the path from
healthy colon to CRC, we only observed significant differences of OGs in the transition
from IRL to HRL (Figure 4b and Data S8). For instance, some of the OGs that we found as
significantly differentially abundant between these two diagnoses were: K00850, K00963,
K02231, which are involved, respectively, in galactose metabolism, RNA degradation,
pentose and glucuronate interconversions, porphyrin and chlorophyll metabolism, pepti-
doglycan biosynthesis and cell cycle—Caulobacter.

3.4. Development of a Two-Phase Machine Learning Classifier

The observed differences in bacterial composition across samples with varying diag-
noses suggest a diagnostic potential for the microbial compositions of FIT-positive samples
that could be harnessed to improve the efficiency of current screening programs. With
the aim of reducing unnecessary colonoscopies while maintaining a high sensitivity, we
explored machine learning approaches to develop a sample classifier able to discriminate
samples with clinically-relevant diagnoses (CR, CRC samples and lesions of higher risk).
Contrary to most automated classifiers that aim at maximizing accuracy, we intentionally
put our focus on achieving high sensitivity at the cost of reduced accuracy. This is justified
because, in a clinical context, false negatives (i.e., persons with clinically relevant lesions
that do not proceed to colonoscopy) are of higher medical concern as compared to false
positives (persons with no lesions that undergo colonoscopy), and because the main aim
was to reduce the already high level of false positives in current FIT-based screenings
without increasing the amount of false negatives. To derive this predictor, we explored
the effect of using different machine learning algorithms, and the use of feature selection
to restrict the parameter set to all bacterial taxa showing significant differences, or to a
subset of them (see Materials and Methods, Section 2.7). When including more taxa, we
observed a better area under the curve (AUC) and specificity (Table S4) This fact can be
translated to better reduction of false-positive rates. On the other hand, when restricting
to only a panel of taxa, we obtained better recall and sensitivity for CRC and CR samples
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but poor AUC and specificity (Table 1). However, in the context of the current screening,
there is still a satisfactory reduction of the false-positive rate with a good prioritization
of relevant cases. We achieved optimal results, in terms of inclusion of clinically relevant
samples, with a two-phase classifier trained to classify CRC samples in a first phase and
CR samples in a second phase. This final classifier considered information on sex, age and
fecal hemoglobin concentration, and abundances from two different subsets of four taxa
(first phase: Akkermansia spp., Akkermansia muciniphila, Bacteroides fragilis and Bacteroides
plebeius and second phase: Negativibacillus spp., Bacteroides coprocola, Bacteroides caccae and
Dorea formicigenerans) (Figure 5). This classifier obtained an average 98.98% sensitivity for
CRC samples and 97.98% for clinically relevant samples (Table 1B).

We validated our strategy on two independent datasets. We first constructed a model
with all the samples (without including Bacteroides fragilis, see Materials and Methods,
Section 2.7) and tested it on an independent cohort of 135 FIT-positive samples from the
USA [37]. The results of this adjusted model in the USA cohort yielded 100% sensitivity for
CRC and 98.46% for CR lesions, reducing 20 % of the unnecessary colonoscopies (Table
S5A). We also performed an additional validation, in this case including both 4-4 taxa
panels, with an independent dataset composed of 100 additional samples from the same
Catalan screening detecting all CRC samples, 96% of the CR samples and having a reduction
of 12% of the false positives (Table S5B). This last test set was balanced, and it was used for
further optimization of the classifier. The corresponding ROC curves are represented at
(Figure S7).

We explored how changing some parameters of the classifier affected sensitivity and
the number of saved colonoscopies. For instance, by penalizing less the minority class
(CR) at the second phase, we obtained better reduction of unnecessary colonoscopies (26%)
but at the cost of including less CR samples (90%). Similarly, the number of samples to
be tested for the microbial signature can be reduced by applying a FIT-value threshold
above which a benefit of colonoscopy is assumed. For instance, applying a value of 954 μg
hemoglobin/g feces (3rd quartile in our CR samples) for such a threshold, which is passed
by 18% of our samples, would save 14% of unnecessary colonoscopies at the end of the
process and reduce the need for microbiome testing. When we combined both approaches,
we could reach 30% of saved colonoscopies, at the cost of a reduction of CR detection (87%).
However, in all the mentioned cases we detected 100% of the CRC samples. This shows that
our algorithm can be fine-tuned to optimize cost-effectiveness (Figure S8). A comparison of
our algorithm with the current FIT strategy and other available solutions (GoodGut [47]
and ColoGuard [48]) revealed higher sensitivity for both CRC and CR while maintaining a
significant reduction of the current false positive rate and, importantly, without the need of
collecting a separate sample from the screening (Table S6).

We next assessed possible alternative subsets of species included in the lists of differen-
tially abundant taxa according to the diagnosis (Data S4 and S5) as potential features for the
classification (See Materials and Methods, Section 2.7). We tested a total of 948 models and
selected 13.5% of them (128/948). The strategy that led to more selected models was the
one including subsets of 4 taxa with highest effect size, selecting half of the trained models
(Figure S9A). The two Akkermansia species were the taxa that were most often included in
selected models (Figure S9B) and 96.88% of the selected models included at least one of the
8 taxa used as features in the 4-4 taxa panel classifier (Akkermansia muciniphila, Akkermansia
spp., Bacteroides fragilis, Bacteroides plebeius, Bacteroides coprocola, Negativibacillus spp., Dorea
formicigenerans or Bacteroides caccae). These results suggest that different combinations of
biomarkers drawn from the identified differentially abundant taxa can effectively be used
to classify samples according to their clinical relevance.

12



Cancers 2023, 15, 120

Figure 4. Enriched pathways according to the diagnosis. (a) The length of the bar indicates the
number of differentially abundant OGs involved. The bars are sorted and colored according to the
number of articles for which a given pathway has been linked to CRC. (b) Dotplot representing the
pairs of diagnoses in which we found differentially abundant OGs involved in the enriched pathways.
Of note, monobactam biosynthesis, protein export, selenocompound metabolism and aminoacyl-trna
biosynthesis are not represented because multiple comparison tests did not detect involved OG as
differentially abundant in any pairwise comparison.
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Table 1. Performance of the two-phase machine learning predictor. The reported values are mean
values obtained from the 100 random splits and include a panel of four taxa for each of the phases plus
sex, age and FIT-value. Samples with missing metadata were discarded from this analysis (n = 2817).
(A) Average of area under the curve (AUC), recall and specificity for each of the phases. (B) Average
sensitivity for clinically relevant samples and for each of the diagnoses included in this group.

(A)

AUC Recall Specificity

FIRST PHASE 0.565368 0.8709974 0.2597385

SECOND PHASE 0.5358411 0.8052662 0.2664159

(B)

Average sensitivity (%)

CR * 97.98

IRL 97.71

HRL 98.06

CIS 98.54

CRC 98.98
* The average CR sensitivity re-proportionated according to the population (data from the Barcelona colorectal
cancer screening, presented at Data S9) is 98.05%.

Figure 5. Flow chart of the proposed methodology (4-4 taxa classifier). FIT positive samples are
subjected to microbiome profiling by 16S rRNA gene sequencing. Then a two phase classifier is
applied. First the algorithm classifies CRC vs. non-CRC samples. Samples that are classified as
non-CRC in the first phase are subjected to a second model that classifies CR vs. non-CR samples.
FIT: fecal immunochemical test; CRC: colorectal cancer, CR: clinically relevant.
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4. Discussion

CRC is a healthcare challenge and one of the leading causes of cancer-related deaths
worldwide [49]. Early diagnosis of CRC is key for efficient treatment and for the survival
of the patients and, hence, there is a strong interest in implementing diagnostic screenings
for populations at risk. Colonoscopy, which is the gold standard for CRC diagnosis,
is an expensive, time-consuming, invasive technique with potential complications. To
minimize the use of colonoscopy only to cases that are more likely to benefit, population
screening programs use less specific, non-invasive tests to pre-screen for risk of CRC.
Immunochemical methods, such as FIT, have commonly been used as pre-colonoscopy
tests in a two-step approach [50], but they have high false-positive rates, which results
in unnecessary colonoscopies. This, in turn, increases healthcare costs and saturates
endoscopy units, limiting the efficiency of population screenings. Considering this, there
is a need to reduce the false-positive rate of the initial screening step by identifying new
biomarkers and developing new risk scores. In this context, the gut microbiome has been
suggested as a promising source for biomarkers with diagnostic potential in CRC [51]. In
this project, we set out to investigate the potential of FIT samples to identify diagnostic
markers and changes in the microbiota along the path from healthy colonic tissue to CRC.

Recent studies have shown the potential of the gut microbiome for CRC screening
but these are mainly based on other types of samples [8,41,52,53] (e.g.,: gFOBT or stool
samples) and are often focused on the comparison of CRC and healthy controls. In contrast,
the focus of this project was on improving current screening programs based on FIT testing,
using material from the same samples, and focusing on distinguishing clinically relevant
cases (not only CRC) from FIT-positive samples (not the usual healthy baseline but the
baseline of the population currently sent for colonoscopy).

Our results support the use of sampled material directly from FIT containers for
microbiome analysis, avoiding the complex and costly collection and processing of separate
stool samples that are widely and traditionally used to represent the gut microbiome [36].
More importantly, we show that the collected fecal material was enough to perform both
the hemoglobin analysis and DNA extraction, and that the DNA was of sufficient quantity
and quality to efficiently perform 16S metabarcoding. Earlier studies have also shown good
conservation of DNA from frozen samples and close correspondence between microbiome
profiles obtained from FIT samples and matching fecal material [54,55]. This is consistent
with our results, which showed that the identified taxa and abundances are typically found
in studies that use stool samples although observing differences that can be attributed
to cohort or methodological particularities. Hence, our study shows that we can use the
same fecal sample for both FIT and microbiome analyses, facilitating the implementation
of microbiome-based biomarkers in currently ongoing population screening programs.
It is well known that a high percentage of CRCs emerge from premalignant polypoid
lesions (i.e., adenomas and serrated lesions), which progress to CRC following a multi-
stage development driven by both genetic and environmental risk factors [56]. Diet and
lifestyle are key environmental factors associated with the presence of adenomas and
their progression to CRC, likely through alterations of the gut microbiome. In our study,
we captured differences between the fecal microbiome profiles along the various stages
in the path from normal colonic epithelium to CRC. To the best of our knowledge, this
is the first large microbiome study considering such a detailed and rigorous diagnostic
classification associated with the included samples, which comprises different lesions in
addition to healthy and CRC samples (Table S1). We did not observe disparate overall
microbiome compositions between different clinical diagnoses but did find significant
changes in particular taxa. Thus, different combinations of small but relevant changes
may drive microbiome influence on CRC progression. In addition, it must be considered
that microbiota alterations might more profoundly affect lesions and surrounding tissues,
which may result in only subtle differences in the overall composition of the fecal material
contained within FIT tubes.
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Expectedly, we observed that CRC was the diagnostic group that had the most distinct
microbiome profile. Taxa with the highest deviations in CRC-associated samples were
Akkermansia muciniphila and an unclassified species from the same genus (Akkermansia
spp.), which were overrepresented in CRC compared to the other samples, and Bacteroides
fragilis and Bacteroides plebeius, which were underrepresented. Of note, A. muciniphila is
a mucin-degrading bacterium and mucins such as MUC1 and MUC5AC are known to
be overexpressed in CRC patients [57]. Hence, an increase of substrate availability could
influence the observed higher abundance of this species. Interestingly, it is known that if
microorganisms or their products cross the host epithelial barrier, both the immune and
mesenchymal defenses respond with a signaling cascade (e.g., activation of NF-kB and
STAT3) in order to maintain epithelial integrity. This fact has a selective impact on the gut
microbiome and triggers mucin and antimicrobial peptide secretion [58]. A. muciniphila was
found as overrepresented in other populations, and it was recently claimed as a potential
biomarker for CRC in tissue [59].

Contrary to other studies with fecal and tissue samples that reported an enrichment
of Bacteroides fragilis in CRC [58], we found this species to be underrepresented in these
samples. Previous studies suggested that B. fragilis plays a key role in the development of
CRC through the action of its toxin (BFT), which can influence colorectal tumorigenesis by
disturbance or activation of signaling pathways that produce chronic intestinal inflamma-
tion and tissue injury [60]. However, we found this underrepresentation comparing CRC vs.
non-CRC (including all the adenomas), as opposed to these other studies which compared
CRC vs. healthy samples. Previous studies have shown that there are different strains of
B. fragilis along the gastrointestinal tract apart from the mentioned BFT-producing strains,
such as a non-toxigenic B. fragilis which has an immunogenic capsular component, and the
Polysaccharide A that promotes mucosal immune development and whose increase has
not been associated to CRC [61,62].

We also observed an influence on the differences of the microbiome driven by variables
like sex and age and, interestingly, by the number of polyps. As mentioned above, the
presence of polyps can be a sign of risk to development or progression of CRC, so the study
of the microbiome associated with polyps can serve as a source of predictive biomarkers
for CRC. Some of the genera whose abundance correlated with the number of polyps
were also reported in previous studies in relation to risk for CRC polyps (e.g., Bacteroides,
Blautia and Bifidobacterium). However, the presence of polyps does not necessarily lead to
the development of CRC and some patients with particular genetic profiles may present
numerous polyps [63].

It is known that the presence of certain metabolites, DNA damage, and inflammation
are all factors driving CRC progression [64]. Changes in the microbial composition or
functionalities can promote a more optimal microenvironment for the development of
CRC. Conversely, CRC progression can alter the surrounding environment and therefore
affect microbial communities. In our study, we inferred the potential functionalities of the
microbiome profiles associated with each colonoscopy outcome and observed OGs that
were significantly differentially abundant across diagnoses. Interestingly, we observed that
the transition from intermediate risk lesion to high risk lesion was the stage with the greatest
alteration of functional and metabolic capacities. Some examples of enriched pathways
were galactose metabolism, RNA degradation, pentose and glucuronate interconversions
and quorum sensing. In this regard, it has been reported that microbes can interact with
cancer cells through their quorum sensing peptides and influence metastasis [65]. Also
of note, many of the pathways found are related to DNA repair. This may reflect a toxic
environment for the microbial DNA, perhaps caused by the bacterial metabolism. This
same environment could be damaging to the host DNA, supporting a genotoxic pathway
connecting the microbiome and CRC development [66]. Our results are based on 16S rRNA
sequencing, which is a cost-effective approach that can be applied to many samples. In
particular, the presented results related to functional inference should be confirmed using
shotgun metagenomics or meta-transcriptomics approaches, which will provide better
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resolution. However, previous studies demonstrated high correlation of functional profiles
predicted from 16S rRNA sequencing data and from metagenomes [67], and we believe the
data presented here are a good proxy for generating testable hypotheses.

Metabolic capacities of some microorganisms, such as the mentioned mucin utilization
of A.muciniphila, can result in sources of nutrients or energy for other microbes in the gut.
The study of correlated abundances between different microbes is interesting in this context.
We detected distinct taxon co-occurrence patterns in the studied diagnoses that likely
reflect changes in microbial ecosystems and their metabolic interactions that accompany
the transitions towards CRC development. It is interesting to account for these patterns
because of the dominant functional redundancy of the gut microbiome: some bacteria can
share functions and exert similar influences on the development and progression of CRC.
In addition, it is still unclear how microbes modulate each other, or how they shape the
immune environment of the tumor, and these co-occurrence patterns can shed light in this
direction [58]. For instance, we observed an exclusive negative association between Dorea
longicatena and Akkermansia spp. only in the CRC group.

The presented machine learning prediction results show a potential role of the mi-
crobial composition of FIT samples in CRC screening. We derived a two-phase classifier
with high sensitivity for CRC and other CR samples with a small but significant reduc-
tion of the false positive rate. In the context of the Barcelona screening program [13], in
which there is an average participation of 50%, approximately 5% of participants have a
positive FIT result. Of them, around 3–5% have CRC detected during colonoscopy and
an additional 30% have a CR lesion associated with CRC risk requiring a more intensive
surveillance, whereas around 65% have a normal colonoscopy or only non-CR lesions are
detected. Therefore, translating our results to this clinical context and considering the
mean participation and diagnosis obtained during the last four available rounds, we would
save a range between 423 (12%) to 1057 (30%) unnecessary colonoscopies each year, while
maximizing the inclusion of CR individuals (Data S9).

By reducing the number of unnecessary colonoscopies and increasing cost-effectiveness
of current population screenings, microbiome-based tests such as the one explored here,
could not only save money and time but also increase participation and adherence rates.
The present study has some limitations, such as the imbalance in some of the diagnoses, and
the lack of more detailed information on polyps or lesion characteristics (e.g., localization,
size, histology), genetic profiles, or past treatments, which can be factors influencing the
microbiome. However, this lack of information, which is difficult to access beforehand, is
also a strength of our study, showing that with just the FIT sample and information on the
sex and age of individuals we can draw some conclusions and obtain a classification of
the samples with high sensitivity for CRC and CR samples. Further studies are necessary
to validate these findings in different cohorts and to properly assess cost-effectiveness in
the framework of a health economics analysis that considers direct and indirect costs of
colonoscopy and microbiome analysis from FIT samples. Finally, further developments
such as a targeted quantification of a species panel by multiplex PCR, or implementations
in the FIT tube to accommodate this additional test, will likely further reduce costs and
facilitate the adoption of microbiome-based tests.

5. Conclusions

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide with a sub-
stantial challenge in its diagnosis, which if done early could improve overall survival. Our
study suggests a potential role of the microbiome in the path from normal epithelia to CRC,
revealing taxa, metabolic features and co-occurrence changes along this progression. The
proposed classifier and its possible cost-effectivity optimization as well as the addition of
other layers of information or current in-use clinical biomarkers such as microRNAs, gene
mutations and DNA methylation, that are already stated as potential biomarkers, can be a
potential tool for clinical proposes and improvement of current CRC screening.
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Patents

A patent covering the use of microbial biomarkers for CRC and CR detection published
in this manuscript has been filed.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15010120/s1, Supplementary Data (large tables):
Data S1. Strengthening The Organization and Reporting of Microbiome Studies (STORMS) checklist;
Data S2. Metadata will be available prior to publication; Data S3. Table of the taxa at the species
level that we found as differentially abundant according to each of the fixed effects included in
the linear model. Only significant p-values are reported. Samples with missing metadata were
not considered in this analysis, (n = 2565); Data S4. Table of the taxa at the species level that we
found as differentially abundant according to each of the fixed effects included in the linear model
when comparing CRC vs. non-CRC. Only significant p-values are reported. Samples with missing
metadata were not considered in this analysis, (n = 2565); Data S5. Table of the taxa at the species
level that we found as differentially abundant according to each of the fixed effects included in the
linear model when comparing clinically relevant (CR) vs. non-Clinically relevant (non-CR) samples.
Only significant p-values are reported. Samples with missing metadata were not considered in
this analysis, (n = 2565); Data S6. Table of species found as differentially abundant according to the
number of polyps, and the significance values (p-value < 0.05). Samples with missing metadata were
not considered in this analysis; (n = 2565); Data S7. List of differentially abundant OG according to
the diagnosis and the significance values (p-value < 0.05); Data S8. Summary of the significant results
obtained when applying multiple comparisons between diagnoses. Significant p values are reported
(Tukey test, p.adjusted < 0.05). The p-value has the sign of the corresponding effect size, indicating
the direction of the difference; Data S9. Statistics of the last four available rounds of results from the
Catalan CRC screening in Barcelona; Supplementary Material (Figures and small tables): Figure S1.
Pie chart representing the 10 most abundant genera of studied CRIPREV samples. The other genera
were grouped and named as “others”; Figure S2. Comparison of FIT positive 16S samples from
the present study and stool 16S samples from an independent study. (A) Multidimensional scaling
plot (MDS) representing the Aitchison distance and Shannon index according to the source project.
(B) Barplot representing the present phyla. Each column represents a sample; Figure S3. Alpha
diversity characterization, (n = 2889). The lines inside the boxplots represent the medians for each of
the groups. Statistical test: Kruskall-Wallis or Wilcoxon test, with a significant result when p < 0.05.
(A) Observed index according to the diagnosis (carcinoma in situ (CIS), colorectal cancer (CRC),
lesion that is not associated to risk (LNAR), high risk lesion (HRL), low risk lesion (LRL), intermediate
risk lesion (IRL) or negative (N) samples) and risk (clinically relevant (CR) vs. non-clinically relevant
(non-CR) samples) variables. (B) Shannon and Simpson indices according to the diagnosis; Figure S4.
MDS plots using Aitchison distance, (n = 2889). The samples are colored according to the diagnosis.
95% confidence ellipses are represented for each of the diagnosed groups; Figure S5. Box plot of
the Akkermansia clr according to the different explored diagnosis, (n = 2889). Negative (N), lesion
not associated to risk (LNAR), low risk lesion (LRL), intermediate risk lesion (IRL), high risk lesion
(HRL), carcinoma in situ (CIS) and colorectal cancer (CRC); Figure S6. Summary of the results of the
adonis test, evaluating the effect of lifestyle variables on the overall composition. Only significant
(p-value < 0.05) results are colored, including the p-value in each of the cells. The assessment of the
individual effect of each variable is in the orange column, while is the impact using as covariate
the diagnosis is in the pink column. The explained variability (R2) was used for the color intensity
of the cells; Figure S7. ROC curves for each of the phases in the different validations performed.
First phase: CRC vs. others, Second phase: clinically relevant vs. non-clinically relevant (a) USA
cohort, (b) 100 extra samples from the CRC screening; Figure S8. Percentage of saved colonoscopies
and clinically relevant sensitivity according to the different specifications of the proposed classifier;
All_taxa: All the intersecting taxa between the CRIPREV and the validation datasets were used as
features. DA_taxa: All the intersecting differentially abundant taxa between the CRIPREV and the
validation datasets were used as features. 4-4 taxa panel: 4 taxa panel for each of the phases. 4-4 taxa
panel, adjW: 4 taxa panel for each of the phases, with less penalization of the CR samples in the second
phase. FIT_filter_4-4 taxa panel: samples above 954 of the FIT value (μg hemoglobin/g feces) were
directed to colonoscopy and the remaining samples were subjected to the classifier. FIT_filter_4-4
taxa panel_adjW: samples above 954 of the FIT value (μg hemoglobin/g feces) were directed to
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colonoscopy and the remaining samples were subjected to the classifier. Less penalization of the CR
samples in the second phase. Figure S9. (A) Potential selection (number of models selected/number
of evaluated models, in %) of the different feature selection methods. (B) Average potential selection
of each of the 27 studied taxa (number of selected models in which the taxa were included/number
of models in which the taxa were included as a feature); Table S1. Criteria and distribution of the
colonoscopy-based diagnosis types considered in this project. Columns indicate, in this order: the
diagnosis group, the criteria for classification in the group, the number of samples of this study in
the given group, and the clinical relevance; Table S2. Characteristics of the included individuals:
sex, median and range age and samples deemed of clinical relevance after colonoscopy. * Samples
with ‘NA’ value for this parameter are excluded from the calculation; Table S3. Table summarizing
differential abundance analysis results considering all the diagnoses following the path from healthy
colon to colorectal cancer. We used the linear model: tax_element~diagnosis + hospital + sex + age +
n_polyps + FIT_value + (1|run). Samples with missing metadata were not considered in this analysis,
(n = 2565); Table S4. Performance of the two-phase machine learning predictor. The reported values
are mean values obtained from the 100 random splits. Including 41 and 34 taxa for both phase 1
and phase 2, respectively, plus sex, age and fecal hemoglobin concentration. Samples with missing
metadata were discarded from this analysis, (n = 2817). (A) Average of area under the curve (AUC),
recall and specificity for each of the phases (B) Average of sensitivity for clinically relevant samples
and for each of the diagnosis included in this particular group; Table S5.Performance of the two-phase
machine learning predictor on independent datasets. The reported values are obtained by training
on all the CriPrev samples (samples with missing metadata were discarded for training the model,
n = 2817) and testing on the independent sets. Area under the curve (AUC), recall and specificity for
each of the phases and sensitivity for CRC and CR lesions at the end of the two-phase classification
were reported. (A) USA cohort. Including a panel of 3 and 4 taxa for phase 1 and 2, respectively,
plus sex, age and fecal hemoglobin concentration. (B) 100 extra samples from the Catalan screening;
Table S6. Comparison of our algorithm (considering different optimizations, and shadowed cells)
with two alternative solutions and the current FIT strategy.
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Simple Summary: The immune system has a vital role in shaping the development and progression
of CRC. Circulating immune subsets are the primary resources of tumor-infiltrating immune cells
that could directly count against the tumor. The status of the systemic immunity in CRC patients
is still unclear. Our study aims to comprehensively evaluate the circulating immune subsets and
gene expression profiles of CRC patients. Here, we show that CRC patients have a more prominent
systemic immune suppression than healthy controls, as well as NR3C2, CAMK4, and TRAT1, that
might involve regulating the number of circulating T helper cells in CRC patients. The distribution
of circulating immune subsets in CRC could complement the regional immune status of the tumor
microenvironment and contribute to the discovery of immune-related biomarkers, for the diagnosis
of CRC.

Abstract: The development and progression of colorectal cancer (CRC) are known to be affected by
the interplay between tumor and immune cells. However, the impact of CRC cells on the systemic
immunity has yet to be elucidated. We aimed to comprehensively evaluate the circulating immune
subsets and transcriptional profiles of CRC patients. In contrast to healthy controls (HCs), CRC
patients had a lower percentage of B and T lymphocytes, T helper (Th) cells, non-classical monocytes,
dendritic cells, and a higher proportion of polymorphonuclear myeloid-derived suppressor cells, as
well as a reduced expression of CD69 on NK cells. Therefore, CRC patients exhibit a more evident
systemic immune suppression than HCs. A diagnostic model integrating seven immune subsets was
constructed to distinguish CRC patients from HCs with an AUC of 1.000. Moreover, NR3C2, CAMK4,
and TRAT1 were identified as candidate genes regulating the number of Th cells in CRC patients.
The altered composition of circulating immune cells in CRC could complement the regional immune
status of the tumor microenvironment and contribute to the discovery of immune-related biomarkers
for the diagnosis of CRC.

Keywords: colorectal cancer; flow cytometry; immunophenotype; diagnostic model; differentially
expressed genes

1. Introduction

Colorectal cancer (CRC) is the third most frequent carcinoma and the second leading
cause of cancer-associated death globally, accounting for 1.8 million new cases and 900,000
deaths annually [1]. Despite significant advances in diagnostic and therapeutic options
in the past decades, nearly 25% of the patients have synchronous metastases at the initial
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diagnosis, and virtually 50% of primary CRC patients could develop distant metastases
during this disease [2]. Furthermore, after receiving a completed resection of CRC, the
5-year survival rate is approximately 60%, while the rate drops to 12% in the metastatic
disease [3]. The therapeutic strategies ought to be improved, in terms of the high rate of
metastasis and corresponding worse prognosis in patients with primary CRC. Currently,
many biomarkers have been proposed to predict the responses to clinical treatment and to
stratify CRC patients according to the risk classification, including miRNAs, circulating
tumor cells, circulating tumor DNA, and genetic mutations [4]. However, these approaches
are virtually characterized by a tumor-cell-centric nature, overlooking the intrinsic hetero-
geneity of the tumor microenvironment (TME) and immune elements. The accumulating
studies indicated that the immune system has a fundamental role in shaping the devel-
opment and progression of CRC [5–7]. Although most studies focus on tumor-infiltrating
lymphocytes (TILs), immune subsets in the peripheral blood are the primary resources for
intratumoral immune events. Therefore, the composition and phenotype of circulating
immune cell subsets may be linked to the immune response inside the tumor, potentially
playing a significant role in predicting the tumor progression and drug responses in CRC.
In addition, the impact of CRC on the systemic immunity remains to be elucidated.

Even though acting as the primary effector cell of humoral immunity, B lymphocytes
are poorly investigated in the TME because of their controversial role in regulating tumor
progression [8]. Conversely, T-cell infiltration of TME has been widely researched in CRC
patients [9–13]. Innate immune cells that principally comprise neutrophils, monocytes,
dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), NK, and NKT cells, are
also involved in the interplay with tumor cells. Neutrophils are indispensable immune cells
to defend against invading microorganisms and facilitate wound healing [14]. Moreover,
monocytes are considered critical regulators of cancer development and metastasis, with
different subsets performing opposing roles in enabling the tumor growth and preventing
the metastatic spread of tumor cells [15]. DCs, one of the essential antigen-presenting cells,
could initiate adaptive immune responses and secret the costimulatory molecules to drive
the cytotoxic T cells’ clonal expansion [16]. Moreover, MDSCs consist of a heterogeneous
population of an early-stage (E-MDSC), monocytic (M-MDSC), and polymorphonuclear ori-
gin (PMN-MDSCs) that typically arise in chronic inflammatory sites, including cancer [17].
NK and NKT cells are innate-like lymphocyte populations with cytotoxic functions, inde-
pendent of the MHC molecules on pathogenic cells and tumor cells in the innate immunity.
It is worth noting that the composition of the above immune subsets is seldom reported in
the peripheral blood of CRC patients.

This study aimed to comprehensively evaluate the circulating immune subsets and
gene expression profiles of CRC patients. Furthermore, peripheral blood immune cell
profiles were subsequently used to construct a diagnostic model and correlate with the
clinical test data. Our study revealed that CRC patients have a significantly suppressed
systemic immunity, compared to healthy controls.

2. Materials and Methods

2.1. Study Population

This study included 12 patients with CRC who were diagnosed, according to the 2019
World Health Organization classification, and underwent a curative surgical resection at
the Ludwig-Maximilians-University Munich (LMU) hospital (Munich, Germany) between
September 2020 and September 2021. Blood samples from these patients were collected
within 4 h prior to surgery. The inclusion criteria were a surgical R0 resection, a tumor
node metastasis (TNM) stage 0-III, a histologically confirmed colorectal carcinoma, and the
provision of written informed consent. The exclusion criteria were a history of chemora-
diotherapy treatment, concomitant immune-associated disorders and other carcinomas,
and the use of immunomodulating drugs or oral steroids within the past three years. In
addition, the pre-operative clinical data of CRC patients were also collected. Peripheral
blood samples from 11 healthy donors were obtained from LMU hospital after obtaining
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written consent, and these samples were considered healthy controls. This study was
approved by the local review board.

2.2. Flow Cytometry Data Analysis

The procedure of the flow cytometry antibody staining is depicted in the Supplemen-
tary Materials. Circulating B lymphocytes, T lymphocytes, and innate immune subsets
from whole blood samples were detected using three multicolor flow cytometry panels,
respectively (Table S1). At least 1 × 105 events per sample were acquired promptly after
staining by 18-color flow cytometry, using the LSR Fortessa (BD Biosciences) with BD
FACSDivaTM software version 8.0.1 (BD Biosciences). For each experiment, the optimal
cytometer values were maintained by this software. The flow cytometer setup and per-
formance tracking were conducted using the cytometer setup and tracking beads (BD
Biosciences). According to the manufacturer’s protocol, the compensation control was
carried out with the CompBeads set (BD Biosciences). The positive staining cells were iden-
tified using fluorescence minus one (FMO) control, when necessary [18]. The FMO controls
were used for IgM, CD38, CD27, CD10, CD24, IgD, and CD20 in flow panel 1. Eight FMO
controls were set for flow panel 2, including CD197, CD194, CD38, CD25, CD196, CD127,
CD45RO, and HLA-DR. Furthermore, the FMO controls were separately prepared for CD69,
HLA-DR, CD14, CD33, CD16, CD11c, CD15, CD11b, CD66b, and CD56 in flow panel 3. The
immunophenotyping of the circulating B lymphocytes, T lymphocytes, and innate immune
subsets is shown in Table S2. In addition, the sequential gating strategy for each panel was
depicted in Figures S1–S3, respectively. The expression levels of the immune markers on
the circulating B cells, T cells, and innate immune subsets were evaluated by the percentage
of the targeted cells or the median fluorescence intensity (MFI) or the absolute number of
immune cells. FlowJo software version 10.4 (Tree Star) was applied to analyze the datasets,
and the data were displayed in dot plots.

2.3. Construction of a Diagnostic Model

The univariable logistic regression was conducted to evaluate the predictive ability of
each immune subset, in two cohorts. In order to obtain the immune subsets that displayed a
relatively higher accuracy with the prediction, we kept those immune subsets with p-values
less than 0.05. The support vector machine (SVM) learning model was performed to identify
the optimal parameters from the above immune subsets to discriminate CRC from the
healthy controls. To ensure the stability and reliability of our prediction method, a tenfold
cross-validation was applied by the SVM model. The best parameters were identified
from the maximum cross-validation results. The selected parameters were fitted into a
multivariable logistic regression analysis to construct the diagnostic model. Each parameter
would be assigned a logistic regression coefficient, and an immune score was generated
using the following formula:

Immune Score =
Num

∑
n=1

(Compositionn × LCn),

where Num refers to the number of immune subsets, Compositionn represents the percentage
of the immune subsetn, and LCn is the logistic coefficient of the immune subsetn.

Furthermore, a nomogram was constructed to visualize this diagnostic model in our
cohort. The calibration curve and the Hosmer–Lemeshow test were performed to evaluate
the goodness-of-fit of the nomogram model. A decision curve analysis (DCA) was used
to assess the model’s reliability by calculating the clinical net benefit for patients at each
threshold probability. The receiver operating characteristic (ROC) curve was applied to
evaluate the discrimination performance of the nomogram.

A logistic regression analysis was performed using the stats R package [19]. A SVM
model analysis was conducted using the e1071 R package [20]. The pROC and ggplot2 R
packages were used to draw the diagnostic ROC curves [21,22].
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2.4. Gene Expression Profile Collection and Processing

The Gene Expression Omnibus (GEO) database was thoroughly searched to find
the eligible GEO datasets, based on blood samples with the following searching strategy
(“colon” or “colorectal” or “rectal”) and (“cancer*” or “neoplas*” or “dysplasia”) and
(“homo sapiens”) and (“gse”). The inclusion criteria of the datasets are listed in Figure S4. A
total of two datasets (GSE164191 and GSE46703) representing different independent studies
of CRC were enrolled, of which GSE164191 contained 59 CRC and 62 normal samples,
and GSE46703 included 14 CRC samples without prior treatment. Moreover, GSE164191
and GSE46703 were derived from GPL570 and GPL6884, respectively. The GEOquery R
package was used to download the expression matrixes of the above datasets [23]. The
probes were annotated into gene symbols, based on the corresponding annotation files.
When multiple probes matched one gene, the median was calculated as its expression value.
Moreover, since GSE164191 and GSE46703 were hybridized into two distinct platforms, the
combat function of the sva R package was applied to integrate two normalized datasets
into a meta-cohort, to remove the batch effects (Figure S5A,B) [24]. Next, the merging
datasets were quantile normalized with the normalizeBetweenArrays function of the limma
R package (Figure S5C,D) [25]. Therefore, the merged GEO datasets were considered the
normalized expression profiles of the blood samples for the CRC and healthy controls.

Due to the potential interaction between the colorectal tumors and peripheral blood,
the sequencing data of the CRC tissue samples were also obtained from the public repository.
The Cancer Genome Atlas (TCGA) projects deposited the largest tissue expression matrixes
of CRC on the single dataset level. Then the gene expression profiles of 568 CRC patients
and 51 non-cancerous samples were downloaded from TCGA through the GDC data portal.

2.5. xCell Algorithm

The xCell R package was used to deconvolute the peripheral blood mononuclear cell
types, based on the merged GEO datasets. By applying a novel gene signature-based
method, the xCell algorithm could reliably estimate the enrichment of 64 stromal and
immune cell types from the gene expression data derived from tissue or blood samples,
among which 34 cell types are immune subsets [26]. According to the validation results of
the extensive in-silico simulations and the cytometry immune profiling, xCell outperformed
other digital dissection methodologies, including CIBERSORT [26].

2.6. Differential Expression Analysis

To identify the differentially expressed genes (DEGs) in the blood and tissue samples
between the CRC and normal subjects, we performed the differential expression analysis
on the merged GEO and TCGA datasets using the limma and DESeq2 R packages, respec-
tively [25,27]. In the GEO dataset, the DEGs were regarded as any gene with adjusted
p values of <0.05 and |log2 (Fold change)| > 0.25. Owing to the entity of colorectal car-
cinoma, the DEGs of the TCGA dataset were defined as genes with adjusted p values of
<0.05 and |log2 (Fold change)| > 1. Furthermore, DEGs that consistently changed in the
above two datasets were identified as the common DEGs.

2.7. Gene Ontology Enrichment Analysis

A gene ontology (GO) enrichment analysis was performed to determine the potential
biological function of the identified common DEGs, using the ClusterProfiler R package [28].
The GO analysis contained three categories: biological process, molecular function, and
cellular components. The cutoff criteria of the p values of <0.05 and the false discovery rate
(FDR) < 0.1 were regarded as statistically significant differences for all analyses.

2.8. Correlation Analysis

A correlation analysis was performed to explore the association between the immune
cell compositions and genetic expression and to investigate the underlying relationship
between the immune cell subsets and clinical test parameters, using the hmisc and corrplot
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R packages. The correlation coefficients and corresponding p values were used to select the
significantly correlated pairs.

2.9. Statistical Analysis

The correlation analysis was performed using the Pearson method. The statistical
difference between the continuous variables was calculated using the two-sample t-test
or the Wilcoxon rank-sum test, depending on the normal distribution. The p-values of the
multiple testing were corrected using the Benjamini–Hochberg method. The comparisons
between the categorical variables were conducted by applying Fisher’s exact test. All
statistical analyses were completed using the R software (version 4.1.0). The p-value < 0.05
was regarded as statistically significant.

3. Results

3.1. Patients with CRC Exhibiting a Systemic Immune Suppression

The study was conducted, as depicted in Figure 1. Since chemoradiotherapy could
affect the systemic immune system, the blood samples were collected only from patients
without neoadjuvant therapy. Table 1 summarizes the clinicopathological characteristics of
12 CRC patients and 11 healthy controls included in the analyses. There was no significant
difference in gender between the CRC patients and healthy controls, whereas the CRC
patients have a trend towards advanced age, compared to the healthy controls (p > 0.05).
The detailed data of the immune distributional comparison between these two groups are
shown in Table S3.

Figure 1. Analysis flow diagram of the study. Abbreviation: GEO, Gene Expression Omnibus; TCGA,
The Cancer Genome Atlas; CRC, colorectal cancer; ICs, immune cells; GO, gene ontology; DEGs,
differentially expressed genes.
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Table 1. Clinical characteristics of healthy controls and CRC patients.

Variables CRC (n = 12) Healthy Control (n = 11) p-Value

Age, year * 75.0 (69.0, 78.0) 58.0 (53.5, 68.0) 0.0600 a

Gender 0.6800 b

Female 6 (50.0%) 4 (36.4%)
Male 6 (50.0%) 7 (63.6%)

Sidedness
Left side 6 (50.0%)

Right side 6 (50.0%)
Elective surgery

Yes 12 (100.0%)
Surgery Type
Open surgery 9 (75.0%)

Laparoscopic surgery 2 (16.7%)
Robot-assisted surgery 1 (8.3%)

T (AJCC 7th)
T1 1 (8.3%)
T2 6 (50.0%)
T3 3 (25.0%)

T4a 2 (16.7%)
N (AJCC 7th)

N0 11 (91.7%)
N1b 1 (8.3%)

M (AJCC 7th)
M0 12 (100.0%)

Tumor stage (AJCC 7th)
I 7 (58.4%)
II 4 (33.3%)
III 1 (8.3%)

Residual tumor classification
R0 12 (100.0%)

MSI
No c 8 (66.7%)
Yes d 4 (33.3%)

Bethesda
No 12 (100.0%)

Abbreviations: CRC, colorectal cancer; AJCC, American Joint Committee on Cancer; T, tumor; N, lymph node;
M, metastasis; MSI, microsatellite instability. Data were represented as n (%) unless otherwise annotated. * Age
was presented as the median and confidence interval. a represented the Wilcoxon rank-sum test. b denoted
Fisher’s exact test. c indicated no protein loss, and d suggested the loss of expression of MLH1 and PMS2
in the immunohistochemistry.

At first, compared to the healthy controls, the proportion of B lymphocytes was signif-
icantly (p = 0.0421) lower in the CRC patients (Figure 2A,C). There was no distributional
difference in the two Breg subsets between the CRC patients and the healthy controls
(Figure 2A). No differences in other B lymphocyte subsets were detected between the CRC
patients and the healthy controls (Figure 2A).

Secondly, the distribution of seven subsets belonging to the T lymphocyte population
was statistically different in the two cohorts (Figure 2A,C): remarkably lower proportions
of circulating T lymphocytes (p = 0.0184), and Th cells (p = 0.0243), were observed in the
CRC patients. In contrast, the percentage of activated CD8T (p = 0.0107) and activated Th
(p = 0.0107) cells was significantly higher in CRC patients compared to healthy controls.
Furthermore, CRC patients presented with an increased percentage of the naïve (p = 0.0088)
and central memory Th (p = 0.0088) cells, but with a decreased proportion of the effector Th
(p = 0.0088) cells, compared to the healthy controls. In addition, the percentage of Tregs and
its subsets was comparable between the CRC patients and healthy controls (Figure 2A).
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Figure 2. The circulating immune subsets distribution in CRC patients, compared to the healthy
controls. (A) The heatmap of the immune subsets from a flow cytometry analysis. Each immune
subset was expressed as the percentage of the source cells annotated following the underscore;
(B) The heatmap of the immune and stromal cells computed from the merged GEO datasets using
the xCell algorithm; (C,D) The boxplot of the significantly different immune subsets from the flow
cytometry analysis and xCell algorithm, respectively. The bars show the median values of each im-
mune cell subset and the corresponding 95% confidence interval. Corrected p-values were calculated
for each comparison using the Benjamini–Hochberg method. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Abbreviation: NCSM: non-class switched memory; CSM: class switched memory; Breg, regulatory B
cells; EM, effector memory; E, effector; CM, central memory; Tregs, regulatory T cells; NC.Monocyte,
non-classical monocytes; C. Monocytes, classical monocytes; NK, natural killer; NKT, natural killer
T; DC, dendritic cell; PMN.MDSC, polymorphonuclear MDSC; M.MDSC, mononuclear MDSC; E.
MDSC, early-stage MDSC; CLP, common lymphoid progenitors; CMP, common myeloid progeni-
tors; GMP, granulocyte-monocyte progenitor; HSC, hematopoietic stem cell; MEP, megakaryocyte-
erythroid progenitor cell; MPP, multipotent progenitor; MSC, mesenchymal stem cell; ly, lymphatic;
mv, microvascular.

Thirdly, among the four monocyte subsets, only non-classical monocytes were signifi-
cantly (p = 0.0125) lower in CRC patients, compared to the healthy controls. Meanwhile, there
was no difference in the percentage of neutrophils between these two groups (Figure 2A).

Fourthly, similar circulating NK and NKT cell percentages were observed in the CRC
patients and healthy controls (Figure 2A). No differences were detected in the CD56bright

29



Cancers 2022, 14, 6105

and CD56dim NK cells (% of NK). Although the CRC patients have a similar distribution
of CD69+CD56dim and CD69+CD56bright NK cells, to the healthy controls, the expression
level (MFI) of CD69 on these two NK subsets was significantly (p = 0.0277) lower in the
CRC patients than in the healthy controls (Figure S6). No differences in other phenotypic
markers on the NK and NKT cells were observed between the CRC patients and healthy
controls (Figure S6).

Lastly, in contrast to the healthy controls, the CRC patients also have an increased
percentage of the PMN-MDSC (p = 0.0107) population (Figure 2C). Moreover, a lower
percentage of DCs was detected in the CRC patients than in the healthy controls (Figure 2C).

Furthermore, we applied the digital dissection method of the xCell algorithm to the
merged GEO dataset consisting of 73 CRC patients and 62 healthy controls, to estimate
the distribution of the circulating immune cells. In total, sixty-four subsets, including
thirty-four immune subsets, were calculated for the CRC patients and healthy controls
(Figure 2B). Although thirteen immune cell subsets showed a significant difference between
the CRC patients and healthy controls (Figure 2D), only the Th cells were consistently
changed in the flow cytometry analysis and bioinformatics analysis (Figure 2C,D).

To further characterize the systemic immune status in the different MSI statuses of
CRC, we compared the distribution of the circulating fifty-two immune subsets between
MSS- and MSI-CRC patients (Figure S7A). No differences were detected in the composition
of the peripheral immune cells and phenotypic markers expression on the NK and NKT
cells between these two cohorts (Figure S7A,B). Therefore, the MSI status did not influence
the systemic immunity of the CRC patients.

3.2. Diagnostic Model Allowed for the Differentiation of the CRC Patients from the Healthy Controls

Eleven immune subsets were identified from the univariable logistic regression on
fifty-two immune subsets (Table S4). When the SVM was applied to evaluate the accuracy
of the different combinations of the above immune subsets, in discriminating between
the CRC individuals and healthy controls, the combination of seven immune subsets was
optimal, with an accuracy of 0.936 (Figure 3A), including NC.Monocyte_Leukocytes, E_Th,
T_Leukocytes, Activated_Th, Activated_CD8T, Th_Leukocytes, and Naïve_Th (Table S5).
Therefore, these seven immune subsets were chosen to construct a diagnostic model using
a logistic regression algorithm. The diagnostic formula was determined as follows:

112.9468 − 44.5381 × Non-Classical Monocyte (% of Leukocytes) − 3.1629 × Effector
Th (% of Th cells) − 5.8056 × T (% of Leukocytes) − 6.0697 × Activated Th (% of Th cells) +
8.9753 × Activated CD8T (% of CD8T cells) + 5.7387 × Th (% of Leukocytes) + 0.0072 ×
Naïve Th (% of Th cells),

Moreover, a nomogram incorporating the above immune subsets was constructed to
visualize this diagnostic model and efficiently predict the risk of malignancy (Figure 3B).
This study used 12 CRCs and 11 normal samples as the training set. The calibration curve of
the nomogram confirmed that the predictive probability of CRC nearly matched the actual
probability, which was also supported by the Hosmer–Lemeshow test result (p = 1.0000)
(Figure 3C). According to the DCA curve, we observed that the diagnostic model acquired
the most clinical benefit with the entire range of the threshold probabilities, compared to
the individual immune subset (Figure 3D). Furthermore, the ROC analysis in our training
cohort suggested that the nomogram model accurately distinguished the CRC and normal
subjects with an AUC of 1.000 (95% CI 1.000–1.000), the sensitivity of 1.000, a specificity of
1.000, the positive predictive value of 1.000, and the negative predictive value of 1.000, at
the cutoff point of −0.038 (Figure 3E). In addition, each immune cell subset of the model
has a good diagnostic performance in distinguishing these two groups with an AUC greater
than 0.850 (Figure 3F–H).
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Figure 3. Diagnostic model for differentiating the CRC patients from the healthy controls. (A) Tenfold
cross-validation accuracy plot of the SVM algorithm; (B) Diagnostic nomogram model to predict
the risk probability of CRC; (C) Calibration curve of the nomogram model; (D) DCA curve of the
nomogram model and corresponding seven predictive risk factors; (E) ROC analysis of the nomogram
model; (F,G) ROC analysis of the seven predictive immune subsets in the model; (H) The forest plot
of the AUC value and 95% CI for each immune subset. Each immune subset was expressed as the
percentage of source cells annotated following the underscore. Abbreviation: Naïve_Th, naïve Th (%
of Th); Activated_Th, activated Th (% of Th); NC.Monocyte_Leukocytes, non-classical monocyte (%
of Leukocytes); Activated_CD8T, activated CD8T (% of CD8T); Th_Leukocytes, Th (% of Leukocytes);
T_Leukocytes, T (% of Leukocytes); E_Th, effector Th (% of Th); Th, T helper, CD8T, CD8+ T; ROC,
receiver operating curve; AUC, area under the curve; 95% CI, 95% confidence interval.

3.3. NR3C2, CAMK4, and TRAT1 Associated with the Composition of the Th Cells

To further elucidate the underlying molecular mechanism associated with the distinct
circulating immune subsets between the CRC cases and healthy controls, we performed the
differential expression analysis on the GEO and TCGA datasets. In the GEO dataset, we
identified 398 DEGs in the blood samples of CRC patients, compared to the healthy controls,
of which 38 genes and 360 genes were up-regulated and down-regulated, respectively
(Figure 4A). Meanwhile, 5245 DEGs were obtained from the gene expression analysis
on the CRC and non-cancerous tissue samples in the TCGA dataset, including 2594 up-
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regulated genes and 2651 down-regulated genes (Figure 4B). We performed theintersection
of the DEGs between the GEO and TCGA datasets to identify the consistently changed
genes in both the blood and tissue samples, regarding the potential interaction between
colorectal carcinoma and the systemic immune system. In total, 39 DEGs, consisting
of one up-regulated gene and 38 down-regulated genes were identified as the common
DEGs (Figure 4C,D). Next, the GO enrichment analysis indicated that these genes were
mainly involved in lymphocyte differentiation and purinergic receptor signaling pathway
(Figure 4E).

Figure 4. Differentially expressed genes between the normal and CRC in the blood and tissue samples.
(A) The heatmap of the top 50 DEGs in the GEO dataset; (B) The heatmap of the top 50 DEGs in the
TCGA dataset; (C,D) Common up-regulated and down-regulated DEGs between the GEO and TCGA
datasets, respectively; (E) GO enrichment analysis of the common DEGs. Abbreviation: GEO, Gene
Expression Omnibus; TCGA, The Cancer Genome Atlas. DEG, differentially expressed genes.

In order to study the relationship between the different distributional immune subsets
and the regulated genes, the correlation analysis between the immune cell subsets and
common DEGs was conducted in the healthy controls and CRC patients, respectively
(Figure 5A,B). Furthermore, the details of the correlation results are depicted in Tables S6
and S7. To ensure the robustness of the selection on the potential genes associated with
the composition of the Th cells, the correlation pairs between the immune cell subsets and
DEGs were used to filter the genes with a coefficient greater than 0.8 and a p-value less
than 0.05 in both the healthy controls and the CRC patients. Three genes: NR3C2, CAMK4,
and TRAT1, were identified as the candidate genes that may involve the regulation of the
composition of circulating Th cells in patients with CRC (Figure 5C–H).
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Figure 5. Identification of the candidate genes associated with the composition of the circulating
Th cells. (A,B) The heatmap of the correlation coefficient between the common DEGs and the Th
cells in the healthy controls and CRC patients, respectively. Blank cells represented the p-value
of the correlation greater than 0.05. Blue color and red color referred to the positive and negative
correlations, respectively; (C,D) Correlation plot of NR3C2 with the Th cells in the healthy controls
and CRC patients, respectively; (E,F) Correlation plot of CAMK4 with the Th cells in the healthy
controls and CRC patients, respectively; (G,H) Correlation plot of TRAT1 with the Th cells in the
healthy controls and CRC patients, respectively. Abbreviation: Th, T helper.

3.4. Correlation of the Clinical Test Parameters with the Immune Subsets in the CRC Patients

To further study the relationship between the fifty-two immune cell subsets and
the twelve clinical test parameters, the correlation analysis was performed for the CRC
patients using the absolute number of the respective immune subsets from a flow cytometry
detection (Figure 6). In order to find the reliable biomarkers associated with the immune cell
composition in the peripheral blood, the correlated pairs with the coefficient greater than
0.8 and a p-value less than 0.05 were selected from the above analysis. Three parameters
were strongly associated with the distribution of the immune subsets in the CRC patients
(Table 2). Firstly, the gamma-glutamyltransferase was positively correlated with the level of
circulating DCs. Five positively correlated pairs involving the aspartate aminotransferase
(AST) were identified, including plasmablasts, activated CD8T cells, effector CD8T cells,
class-switched memory B cells, and CD8T cells. In contrast to AST, only two immune
subsets, T lymphocytes, and memory Treg cells, were positively associated with the alanine
aminotransferase (ALT).
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Figure 6. Correlation analysis between the circulating immune subsets and the clinical test parameters.
Each immune subset was expressed as the absolute cell number in 200 uL of peripheral blood.
Blank cells represented the p-value of the correlation greater than 0.05. Blue circles and red circles
referred to positive and negative correlations, respectively. Abbreviation: NCSM: non-class switched
memory; CSM: class switched memory; Breg, regulatory B cells; EM, effector memory; E, effector;
CM, central memory; Tregs, regulatory T cells; NC.Monocyte, non-classical monocytes; C.Monocytes,
classical monocytes; NK, natural killer; NKT, natural killer T; DC, dendritic cell; PMN.MDSC,
polymorphonuclear MDSC; M.MDSC, mononuclear MDSC; E-MDSC, early-stage MDSC.

Table 2. Clinical test parameters correlated with the immune subsets.

Clinical Parameters Immune Cells Coefficient p-Value

Gamma-glutamyltransferase Dendritic cells 0.96 1.31 × 10−6

AST Plasmablasts 0.95 1.55 × 10−6

AST Activated CD8T cells 0.91 4.91 × 10−5

AST Effector CD8T cells 0.87 2.60 × 10−4

ALT T lymphocytes 0.84 6.60 × 10−4

AST CSM-B cells 0.83 7.29 × 10−4

ALT Memory Treg cells 0.82 1.19 × 10−3

AST CD8T cells 0.81 1.34 × 10−3

Abbreviation: AST, aspartate aminotransferase; ALT, alanine aminotransferase; CSM, class-switched memory;
Treg, regulatory T; CD8T, CD8+ T.
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4. Discussion

The immunoscore, based on the quantification of the CD3+ and CD8+ tumor-infiltrating
lymphocytes at the invasive margin and at the core of the carcinoma, has been proven
to be more reliable than tumor-node-metastasis (TNM) staging, as a prognostic marker
in patients with CRC [29,30]. Meanwhile, cancer immunity is considered a combination
of the intratumoral immune system and the systemic immune response [31]. Until now,
most publications regarding the systemic immune status of patients with CRC focused
on specific cell subtypes and did not consider investigating the majority of the immune
cell subsets, simultaneously. To characterize the peripheral blood immune features of the
CRC patients, we analyzed fifty-two subsets of circulating immune cells, including B and T
lymphocytes, monocytes, neutrophils, NK cells, NKT cells, DCs, and MDSCs. Furthermore,
these immune subsets were used to construct the diagnostic model to differentiate the CRC
patients from the healthy controls and were further correlated with the clinical test data.

We first demonstrated that the CRC patients have a lower percentage of B lympho-
cytes than the healthy controls, which is in line with a recent study [32]. However, this
finding contradicted Shimabukuro-Vornhagen et al., which showed a comparable pro-
portion of B lymphocytes in the peripheral blood of CRC patients, compared to healthy
controls [33]. Since chemoradiotherapy before surgery can potentially change the circu-
lating immune landscape by stimulating the systemic immune response, this discrepancy
may be attributed to the different inclusion criteria of patients with CRC. Meanwhile, we
observed that multiple subsets of T lymphocytes have different compositional features in
CRC patients, than in the healthy controls. T lymphocytes, Th cells, and effector Th cells
have a decreased proportion in CRC patients, whereas activated CD8T cells, activated Th
cells, naïve Th cells, and central memory Th cells, were significantly increased in those
patients. Although evidence reported that the CRC patients have a similar distribution of
naïve T cells, central memory T cells, and effector memory T cells with healthy controls [34],
they failed to discriminate between the two major subpopulations of T cells, namely CD8T
and Th cells. Conflicting results have been reported on circulating Treg cell levels in CRC
patients. Dylag-Trojanowska et al. indicated that Treg cells were significantly decreased
in CRC patients [35], whereas the opposite trend of Treg cells was reported in another
study [34]. Interestingly, our results showed that Treg cells have similar distributional
characteristics in CRC patients and healthy controls. In addition, Krijgsman et al. reported
no statistical difference in the distribution of T lymphocytes and Th cells, between CRC
patients and healthy controls, which is not in line with our study [14]. Due to the crit-
ical role of T lymphocytes in the systemic immune reaction, it is fundamental to focus
on the dynamic distributional changes of circulating T cells, in the context of leukocytes.
Compared to leukocytes as the denominator for T lymphocytes and Th cells in our study,
Krijgsman et al. [14] used the lymphocytes or T lymphocytes as the denominator of the
above immune cell subsets, partially explaining the discrepant results between the two stud-
ies. Due to the low percentage of B and T lymphocytes, and Th cells in the leukocyte popu-
lation of the peripheral blood, CRC patients have an immune suppression in the adaptive
immune response.

To our knowledge, this is the first study comparing circulating DCs of CRC patients
and healthy controls. We found that those were significantly less frequent than healthy
controls. Furthermore, we demonstrated that CRC patients presented an altered distribu-
tion of monocytes, compared to healthy controls, characterized by the reduced proportions
of circulating non-classical monocytes. These findings are partially consistent with one
clinical study that showed no significant compositional differences in the total monocytes,
classical monocytes, intermediate monocytes, and non-classical monocytes, between CRC
patients and healthy controls [36]. The explanation for the difference was that in their
study CD14+CD16++ was used to identify non-classical monocytes, whereas we regarded
CD14low/+CD16+ as the immunophenotype of these cells. Regarding DCs and non-classical
monocytes belonging to antigen-presenting cells, CRC patients may have an impaired
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immune activation on the adaptive immune response, due to the low number of these two
immune cell subsets in the peripheral blood.

Neutrophils are regarded as critical effector cells in the innate arm of the immune
system by counting against the invading microorganisms [37]. Nevertheless, studies on
circulating neutrophils are virtually scarce. Our study showed that CRC patients have a
similar proportion of circulating neutrophils to healthy controls. Furthermore, it is widely
accepted that MDSCs exert immune suppressive effects mostly via inhibiting the T-cell
proliferation and stimulating the Treg development [38]. In contrast to several studies
that reported that circulating MDSCs were significantly increased in CRC patients [39,40],
we found no difference in the distribution of MDSCs between CRC patients and healthy
controls. Moreover, our study explicitly indicated that CRC patients had an increased
percentage of PMN-MDSCs, compared to healthy controls. Accumulating studies have
reported that PMN-MDSCs are the main components of circulating MDSCs and have a
more prominent immune suppressive function than M-MDSC [38]. Hence, the high pro-
portions of PMN-MDSCs within the MDSCs population could present a stronger immune
suppression on the systemic immune response of CRC patients, than healthy controls.

Additionally, compared to the healthy controls, we demonstrated that CRC patients
have an altered phenotype of circulating CD56dim and CD56bright NK cells, characterized
by the reduced expression of CD69. Due to CD69 being regarded as the stimulatory
membrane receptor of the NK cells [41], both CD56dim and CD56bright NK cells may
have a compromised cytotoxic activity in patients with CRC. These findings align with a
recent study that showed a reduced expression of activating receptors on the NK cells in
CRC patients [34]. Furthermore, Krijgsman et al. proved that the immune suppression
of the circulating NK cells could be removed by tumor resection in patients with colon
carcinoma [42]. Therefore, CRC could inhibit the immune function of the circulating NK
cells via downregulating the expression of the cytotoxic activation receptors.

Furthermore, through bioinformatics analyses on the gene expression profiles of the
peripheral blood samples, only the Th cells were consistently identified as the differential
immune cells in CRC patients between the flow cytometry detection and xCell algorithm
analysis. To explore the underlying molecular mechanism involving the regulation of
the Th cells in the peripheral blood, we identified genes differentially expressed, not
only in the blood samples, but also in tissue samples of CRC patients, compared to the
normal controls, with the consideration of the potential effects of the colorectal tumor
on the systemic immune system. Next, we pinpointed three genes that have a strong
positive correlation with the level of Th cells in the peripheral blood of both the healthy
controls and CRC patients, namely NR3C2, CAMK4, and TRAT1. NR3C2, known as
a mineralocorticoid receptor (MR), it has a critical role in mediating a cardiovascular
injury induced by the activation of MR. Recent studies revealed that the MR activation
could facilitate inflammation by inducing the T lymphocyte differentiation into the pro-
inflammatory Th1 and Th17 subsets, while inhibiting the formation of the anti-inflammatory
Tregs [43]. CAMK4, a serine/threonine kinase family member, could regulate the gene
expression via activating the transcription factors in the cells of immune systems [44].
Previous studies reported that CAMK4, highly expressed in the T cells, was an essential
molecule mediating the differentiation of the Th17 cells from the T lymphocytes [45,46].
TRAT1, also referred to as TRIM, can stabilize the T cell receptor (TCR) levels by working
as the integral component of TCR [47]. Although lacking studies reported the influence
of TRAT1 on the proliferation of T cells, TRAT1 could elevate the expression level of
surface CTLA-4 via accelerating its transport from the cytoplasm [48], which may result in
the inhibition of the Th cell proliferation. Therefore, NR3C2, CAMK4, and TRAT1, have
the potential to be candidate genes involving regulating the number of Th cells in the
peripheral blood.

Meanwhile, we established a 7-immune subsets classifier to differentiate the CRC
patients from the healthy controls in our cohort. This 7-immune subsets classifier has an
excellent performance in diagnosing patients with CRC, according to the corresponding
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AUC value and the Hosmer–Lemeshow test result. Due to the limited number of CRC
patients in our study, we could not conduct the internal validation of our diagnostic model.
However, to maximally increase the stability and reliability of this model, we applied
the tenfold cross-validation method of the SVM model, to select the best combination
of parameters, to build the final diagnostic model. Nevertheless, a large cohort study is
needed to validate the diagnostic accuracy of this classifier in the early diagnosis of CRC.

When investigating the associations between the circulating immune cell subsets and
the clinical test parameters, eight positively correlated pairs involving three parameters
were identified in CRC patients: AST, ALT, and gamma-glutamyltransferase. Although
there were scarcely reports about these relationships in CRC, the above clinical parameters
could indirectly reflect the status of the systemic immune profiles, which may contribute to
predicting surgery-related complications.

The primary limitation of this study is that the number of patients is low, which
could compromise the validity of our diagnostic model. However, recently, several robust
studies constructed the diagnostic model, based on a comparable size of subjects [49–51].
In terms of the advanced age in CRC patients, compared to healthy controls, it is difficult
to completely eradicate the potential age-related bias in immune cells. Although we failed
to validate the expression of NR3C2, CAMK4, and TRAT1 in the Th cells between CRC
patients and healthy controls, our study hinted that colorectal carcinoma might affect the
expression of these genes, to mediate further the regulation of the circulating Th cells
via a direct or indirect interaction. The tumor cell shedding from CRC could directly
contact the hematopoietic stem cells, progenitor cells, and circulating lymphocytes, to
cause a systemic immunosuppression for the development and progression of the regional
CRC, even for metastasis. Moreover, CRC could regulate the systemic immunity via the
secretion of soluble biological molecules and extracellular particles. Furthermore, our
study characterized the distribution of a broad spectrum of circulating immune subsets and
opened new avenues to underlie the molecular mechanisms regulating the composition of
the Th cells in the peripheral blood of CRC patients.

5. Conclusions

CRC patients displayed profound distinctions in the immune cell subsets’ distribution
and their phenotype, compared to the healthy controls, showing that CRC patients have an
evident immune suppression in the systemic immune response. Moreover, NR3C2, CAMK4,
and TRAT1 were identified as the candidate genes regulating the level of the circulating
Th cells in CRC patients, which will be the focus of future studies in our laboratory. These
findings are of importance for deciphering the unique features of the circulating immune
cell subsets in CRC, which could complement the regional immune status of the TME and
contribute to the discovery of immune-related biomarkers for the diagnosis of CRC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14246105/s1, Figure S1: Flow cytometry gating strategy
applied for the identification of circulating 891 B lymphocyte subsets; Figure S2: Flow cytometry
gating strategy applied for the identification of circulating 902 T lymphocytes subsets; Figure S3: Flow
cytometry gating strategy applied for the identification of circulating 914 innate immune cell subsets;
Figure S4: Flow diagram of identifying and selecting eligible GEO datasets; Figure S5: The pre-
processing of merged GEO datasets; Figure S6: The peripheral blood immunophenotype of NK and
NKT cells in CRC 935 patients compared to healthy controls; Table S1: Flow cytometry panels applied
to identify peripheral blood B-, T-, and Innate immune subsets; Table S2: Immunophenotyping of
B lymphocytes, T lymphocytes, and Innate immune subsets; Table S3: Comparison of circulating
immune subsets between CRC patients and healthy controls; Table S4: Identification of circulating
immune subsets to differentiate CRC patients from healthy controls through univariable logistic
regression; Table S5: The accuracy of individual immune subset or the combination of different
immune subsets as the classifier to distinguish CRC patients from healthy controls by Support Vector
Machine learning algorithm; Table S6: Correlation analysis between circulating Th cells and common
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DEGs in healthy controls; Table S7: Correlation analysis between circulating Th cells and common
DEGs in CRC patients.
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Simple Summary: Colorectal cancer (CRC) is one of the most prevalent cancers, and approximately
a quarter of patients diagnosed at stage II exhibit a significant risk of recurrence. In this study, we
successfully identified a microRNA (miRNA) signature allowing the recognition of patients at high
recurrence risk. The validity of these findings has been confirmed through an entirely separate group
of patients diagnosed with stage II microsatellite stability (MSS) colon adenocarcinoma (COAD).
Most of the miRNAs present in the signature have demonstrated prognostic relevance in various
other cancer types. Upon examining their gene targets, we discovered that some of these miRNAs
are intricately involved in pivotal pathways of cancer progression.

Abstract: We aimed to identify and validate a set of miRNAs that could serve as a prognostic signature
useful to determine the recurrence risk for patients with COAD. Small RNAs from tumors of 100 stage
II, untreated, MSS colon cancer patients were sequenced for the discovery step. For this purpose, we
built an miRNA score using an elastic net Cox regression model based on the disease-free survival
status. Patients were grouped into high or low recurrence risk categories based on the median value
of the score. We then validated these results in an independent sample of stage II microsatellite stable
tumor tissues, with a hazard ratio of 3.24, (CI95% = 1.05–10.0) and a 10-year area under the receiver
operating characteristic curve of 0.67. Functional analysis of the miRNAs present in the signature
identified key pathways in cancer progression. In conclusion, the proposed signature of 12 miRNAs
can contribute to improving the prediction of disease relapse in patients with stage II MSS colorectal
cancer, and might be useful in deciding which patients may benefit from adjuvant chemotherapy.

Keywords: colorectal cancer; microRNA; prognosis; biomarker
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1. Introduction

CRC is the third most newly diagnosed cancer type worldwide. Although systematic
screening programs have reduced the incidence of CRC in Western countries [1], it is still the
second leading cause of cancer-related deaths worldwide for both men and women [2], with
millions of cases being reported each year. Currently, stage at diagnosis is the most relevant
predictor of prognosis. It is known that about a quarter of patients with CRC are diagnosed
in stage II, with localized disease and no evidence of regional lymph node invasion [3].
Nevertheless, disease will recur or progress to distant metastasis in about 20–25% of these
patients. Clinical and pathological risk factors, such as the size and location of the tumor,
are used to identify patients at high risk of recurrence, but they are not always reliable. As
a result, there has been growing interest in the use of biomarkers to improve the accuracy
of prognostic and predictive testing for CRC patients [4–8]. However, these approaches
are limited by small populations or accuracy [9,10]. Molecular biomarkers could be used
to identify patients who are at high risk of disease recurrence or improve stratification of
patients who could benefit from adjuvant chemotherapy or immunotherapy.

miRNAs are short, double-stranded, non-coding RNA molecules, typically between
19 and 24 nucleotides in length, which play a critical role in the regulation of gene expression.
MiRNAs are involved in post-transcriptional regulation of multiple protein coding genes,
mainly by binding to the 3’ untranslated regions (UTRs) of target genes, leading to inhibition
of messenger RNA (mRNA) transcription [11]. Changes in miRNA expression affect target
genes regulation, and consequently, their deregulation can lead to irregular cell processes
related to tumor development and progression [12]. To date, several miRNAs have been
proposed to be either oncogenic or tumor suppressors [13–15], and there have been some
miRNA signatures proposed as molecular biomarkers in CRC for both diagnosis and
prognosis, as well as treatment decisions [16–19].

In this study, we aimed to identify and validate a signature of miRNAs with prognostic
value in stage II COAD patients. We used next-generation sequencing (NGS) techniques to
obtain miRNA expression values for a set of tumor samples, and we tried to validate the
findings in an independent sample series.

2. Materials and Methods

2.1. Subjects and Samples

In the discovery series, we included Colonomics (CLX): 98 tumor tissue samples, MSS
stage II patients with a new diagnosis of COAD at the University Hospital of Bellvitge
in Barcelona (Spain) between January 1996 and December 2000. Patients were selected
from those that had donated fresh tissue to the biobank and had undergone a complete
surgical resection of the tumor, but had not received adjuvant chemotherapy. In addition, a
minimum of 3 years of follow-up was required.

The validation series included public independent samples of 130 COAD patients
(stage II) from The Cancer Genome Atlas (TCGA) study.

The study was performed in accordance with relevant ethics guidelines and regula-
tions. The Clinical Research Ethics Committee of the Bellvitge Hospital approved the study
protocol (PR178/11). Individuals provided written informed consent to participate and
for genetic analysis to be carried out on their samples. Additional information about the
study can be found at www.colonomics.org (accessed on 15 May 2023). This study carefully
follows the recommendations for reporting proposed by the REMARK guidelines [20].

2.2. Sample Processing

Tumor samples were cut by the pathologist from the surgical specimen during the first
hour after removal and kept frozen at −80 ◦C in the hospital’s tumor bank. Total RNA was
isolated from tissue samples using the miRCURYTM RNA isolation kit (Exiqon, Vedbaek,
Denmark) according to the manufacturer’s protocol, quantified using a NanoDrop® ND-
1000 Spectrophotometer (Nanodrop technologies, Wilmington, DE, USA) and stored at
−80 ◦C. The quality of these RNA samples was assessed with the RNA 6000 Nano Assay
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(Agilent Technologies, Santa Clara, CA, USA) following the manufacturer’s recommenda-
tions. The RNA integrity number (RIN) showed high quality values for all the samples
(mean = 7.89, sd = 0.86). The RNA purity was measured with the ratio of absorbance
at 260 nm and 280 nm (mean = 1.96, sd = 0.04). The quality control for the small RNA
fraction was assessed with the Small RNA Assay in the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) following the manufacturer’s recommendations.

2.3. Small RNA-Seq Analysis of the Discovery Series

The small RNA-seq was performed through the SOLiD platform. The PureLink
miRNA isolation kit was used to construct the libraries of compatible fragments with
SOLiD from an enriched fraction of small RNA. Sequencing microspheres were obtained
by applying an emulsion PCR into an equimolar mixture of 48 libraries followed by an
enrichment process before charging in the reaction chamber. Finally, the reaction to obtain
the sequences (35 nucleotides + 10 nucleotides barcode) from the small RNA fraction
was performed with the Applied Biosystems SOLiD 4 System. Samples were randomly
distributed among the different sequencing slides to minimize batch effects. The data
quality was estimated using the SOLiD Experimental Tracking System (SETS) software.

2.4. Expression Data of the Discovery Series

CLX is a multiomics experiment design with different high-throughput sequencing
data. In addition to small RNA-seq, it has microarray expression data for the same subjects.
Sample processing, quality control and normalization are described elsewhere [21].

2.5. Bioinformatics Analysis

Quality control of sequenced reads was ensured using specially designed bioinformat-
ics framework for the SOLiD system [22]. Total number of reads, proportion of miscalled
reads and low-average-quality-score proportion reads were evaluated. All samples passed
the quality control criteria and were selected for further analysis. Next, quantification of
specific miRNAs was performed by mapping reads to the reference of mature miRNA
sequences annotated in miRBase release 22 [23], containing 2641 human mature miRNA
sequences. The FASTX-toolkit [24] was used to preprocess miRNA data and provide com-
patible sequences for mapping with Bowtie aligner. Read adapters were trimmed with
cutadapt [25], and finally, a table of counts was generated with SAMtools [26]. A principal
component analysis (PCA) was computed to detect possible outliers. A filter based on low
variability of miRNAs across all samples was performed to remove unwanted noisy data
(standard deviation < 0.1). Data normalization was performed using DESeq2 package [27],
after which it was transformed with a logarithmic function to reduce positive skewness.
MiRNAs with normalized expression values not detected in more than 90% of samples
were filtered out due to low expression. This criterion was mandatory for both discovery
and validation datasets.

2.6. Statistical Analysis of Prognosis

For this study, disease-free survival (DFS) was assessed, and disease progression, de-
fined as local tumor recurrence, metastasis or cancer-related death, was the event of interest.
First, we wanted to inspect miRNA profiles based on possible sources of confounding
variables. For this purpose, differential miRNA expression analysis (DEA) was carried
out with the DESeq2 package for sex and tumor site. In addition, a proportional hazards
assumption test was performed to assess possible sources of analysis bias from common
covariates: age, sex and tumor site (left or right colon). Univariate Cox proportional hazard
models were computed for each miRNA and adjusted for age, sex, tumor site and sub-stage.
Kaplan–Meier survival curves were used to graph the results, which were split by median
normalized expression values. Next, in order to identify an miRNA signature that could
capture disease progression, a regularized Cox regression model was performed with an
alpha parameter (α = 0.5) and leave-one-out cross-validation. Adjustment variables were
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included in all models, and we selected the model that minimized the cross-validation
error. The coefficients for the miRNAs that were not shrunk in the optimal model were
used to compute an miRNA prognosis risk score (RS) as follows:

∑n
i=1 = βi ∗ expri

where n is the total number of active miRNAs in the model, βi is the coefficient for each
active miRNA, and expri is the expression value of each active miRNA. The score obtained
was ranked and split into two equal groups by the median value. The performance of
the model was assessed with Cox proportional hazard models (selecting miRNA (RS) and
adjustment variables, as mentioned before) and Kaplan–Meier survival curves. Univariate
Cox proportional hazard models and Kaplan–Meier estimates were obtained with the
survival R package [28]. Regularized Cox regression models were computed with the glmnet
R package [29]. All statistical analysis was performed in R version 3.5 [30].

2.7. Validation Analysis

For the validation dataset, TCGA COAD samples were filtered in order to obtain
similar clinical characteristics and reproducible analysis. Sample exclusion criteria included
no clinical information for disease-free survival status or microsatellite instability (MSI)
subtype, the latter of which was assessed in cBioPortal [31,32]. Normalization of miRNA ex-
pression values and filtering was identical in discovery and validation series. Independent
prognosis analysis for stage II was assessed. The same coefficients and cutoffs obtained in
the training dataset were used for the validation.

2.8. Functional Characterization

We conducted two separate approaches to characterize the resulting miRNA signature
and score. On the one hand, for the signature study, two different miRNA–mRNA interac-
tion resources were interrogated to extract high-confidence gene targets for each miRNA
present in our signature. Only common interactions present in mirDB (release 6.0) [33,34]
and miRTarBase (release 9.0) [35] were included to define the functional role of miRNAs
associated with prognosis. mirDB annotates predicted miRNA–target interactions (MTI)
while miRTarBase captures experimentally validated MTIs from research articles. Network
analysis was carried out with igraph [36] to identify hub miRNAs; next, we performed
an enrichment analysis with the ReactomePA [37] R package based on the REACTOME
pathway database, including direct targets for each selected miRNA. On the other hand,
we wanted to study the relationship between miRNA prognosis RS and the abundance of
tissue-infiltrating immune cell populations that could potentially play different roles in the
tumor microenvironment. For this purpose, a deconvolution method [38] was used to esti-
mate cell population proportions (immune and non-immune stromal) from average gene
expression signals. Non-parametric Spearman’s rank-order correlations were computed
to evaluate correlation patterns between each of the ten different cell types and miRNA
prognosis RS.

3. Results

3.1. Study Population Characteristics and Quality Control of Samples

The CLX small-RNA sequencing dataset comprised 100 tumor tissues, stage II MSS,
and 2641 different miRNAs were initially identified. The first filter removed 153 miRNAs
due to low variability. The second filter was applied to remove low-expression features.
A total of 928 miRNAs passed the filtering criteria. Two samples were filtered out after
PCA analysis (see Supplementary Figure S1). The same procedure was performed for
the validation dataset, which lowered the number of different miRNAs from 2117 to 796.
Finally, 605 miRNAs were determined to be present in both datasets and were selected
for the next analysis. Table 1 summarizes the main characteristics of the patients included
in both datasets. DEA comparing tumor location resulted in only 10 significant miRNAs
with different profiles between the left and right sides (seven overexpressed on the right
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side, three overexpressed on the left side). All of them had an absolute log2-fold change
greater than 0.5. When comparing expression profiles between sex, only two significant
miRNAs were observed (Supplementary Table S1 and Figure S2). None of the inspected
covariates violated the proportional hazards assumption of the Cox model (p-values > 0.05,
Supplementary Table S2). Univariate Cox proportional hazard models, adjusted by sex, age,
site and stage, identified 55 miRNAs associated with disease-free survival (p-value < 0.05).
However, none of them passed the false discovery rate (Benjamini–Hochberg-adjusted
p-value < 0.05) (Supplementary Table S3).

Table 1. Summary of characteristics of the patients included in the study.

Colonomics n (%) TCGA n (%)

Number of Patients 98 130
Gender

Male 70 (71.43%) 69 (53.08%)
Female 28 (28.57%) 61 (46.92%)

Median Age (Years) 71 69
Tumor Site

Right 38 (38.78%) 75 (57.69%)
Left 60 (61.22%) 50 (38.46%)

Stage
II-A 90 (91.84%) 99 (76.15%)
II-B 8 (8.16%) 6 (4.62%)

Disease-Free Survival
No Event 76 (77.55%) 104 (80.00%)

Event 22 (22.45%) 26 (20.00%)
Microsatellite Instability

MSS 98 (100%) 101 (77.69%)
MSI 0 (0%) 20 (15.38%)

Median Metastatic Lymph
Nodes 0 (100%) 0 (100%)

Median Isolated Lymph
Nodes 18.5 20.0

Lymphatic Invasion
Yes 7 (0.07%) 26 (20.00%)
No 86 (87.76%) 92 (70.77%)

Perineural Invasion
Yes 2 (2.04%) 13 (10.00%)
No 83 (84.69%) 38 (29.23%)

3.2. miRNA Signature and Score

The regularized Cox regression model resulted in a 12-miRNA signature computed
in the discovery dataset (Table 2). Of note, all miRNAs present in the signature were
statistically significant according to the univariate models (p < 0.05), and all of them showed
the same trend at the individual coefficient signs, suggesting low collinearity between all of
them (Supplementary Table S4), which was confirmed with a Spearman’s correlation matrix
(absolute Spearman’s r ≤ 0.43 for all pairwise comparisons (Supplementary Figure S3).

The RS formula obtained was:
miRNA RS = hsa-miR-1185-5p × (−0.185) + hsa-miR-16-5p × (−0.111) + hsa-miR-181a-

2-3p × 0.181 + hsa-miR-204-5p × 0.003 + hsa-miR-2355-3p × 0.242 + hsa-miR-29b-2-5p ×
(−0.306) + hsa-miR-331-3p × 0.153 + hsa-miR-423-3p × (−0.355) + hsa-miR-432-5p × (−0.187)
+ hsa-miR-497-5p × (−0.183) + hsa-miR-656-3p × (−0.526) + hsa-miR-935 × (−0.136)

Kaplan–Meier curves demonstrated a good performance of the model, clearly differen-
tiating low- and high-risk patient log-rank p-values = 1.62 × 10−6. Patients in the high-risk
group were found to have higher recurrence rates (HR = 33.59, 4.34–244.8, p < 0.001)
(Figure 1a,c). Three-, five- and ten-year disease-free survival (DFS) were selected to com-
pute the area under the ROC curve (AUC). AUCs of 0.89, 0.92 and 0.94 were obtained for
three-, five- and ten-year DFS, respectively (Figure 2a).

45



Cancers 2023, 15, 3301

Table 2. List of miRNAs present in the signature and the coefficient extracted from the elastic net Cox
regression model.

miRNA Coefficient

hsa-miR-1185-5p −0.185
hsa-miR-16-5p −0.111

hsa-miR-181a-2-3p 0.181
hsa-miR-204-5p 0.003

hsa-miR-2355-3p 0.242
hsa-miR-29b-2-5p −0.306
hsa-miR-331-3p 0.153
hsa-miR-423-3p −0.355
hsa-miR-432-5p −0.187
hsa-miR-497-5p −0.183
hsa-miR-656-3p −0.526

hsa-miR-935 −0.136

 

Figure 1. Comparison of the prognostic value with stratification analysis by miRNA risk group using
Kaplan–Meier disease-free survival curves. (a) Discovery series (Colonomics). (b) Validation series
(TCGA stage II MSS). Multivariate COX regression hazard models. (c) Discovery series (Colonomics).
(d) Validation series (TCGA stage II MSS). Statistically significant HRs denoted with *.
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Figure 2. ROC curves at 3-, 5- and 10-year disease-free survival. (a) Discovery series (Colonomics).
(b) Validation series (TCGA stage II MSS).

3.3. Validation

CLX miRNA signatures were tested on an independent COAD dataset from TCGA.
Overall, the miRNA predictive capacity was poor, which is mainly explained by the poor
performance on stage II MSI tumor samples. However, it improved substantially when
only stage II MSS samples were analyzed (n = 100). A similar trend to that in CLX was
observed; the miRNA risk group had an HR of 3.24, with a range of 1.05–10.0, and p = 0.041
(Figure 1d), and the low- versus high-risk patient log-rank p-value was 0.034, as assessed
using KM curves (Figure 1b). The AUCs were 0.60, 0.59 and 0.67 for three-, five- and
ten-year DFS, respectively (Figure 2b).

3.4. Functional Characterization

Gene target candidates for each miRNA present in our signature were retrieved
from mirDB and mirTarBase (10,352 and 3673, respectively). Overall, common MTIs
from both datasets revealed 1015 MTIs. Network analysis showed three hub miRNAs:
hsa-miR-16-5p (483 gene interactions), hsa-miR-497-5p (252 gene interactions) and hsa-
miR-204-5p (119 gene interactions). Of note, the first two miRNAs shared 242 common
gene interactions (Figure 3). Next, Reactome pathway analysis identified relevant cancer
pathways associated with both hsa-miR-16-5p and hsa-miR -497-5p, such as signaling by
the TGF-beta receptor complex (p = 1.84 × 10−7, p = 1.76 × 10−5, respectively), regulation
of RUNX1 expression and activity (p = 2.82 × 10−7, 1.47 × 10−7, respectively) and aberrant
regulation of the mitotic G1/S transition in cancer due to RB1 defects (p = 2.82 × 10−7,
1.46 × 10−7, respectively). The complete results of the enrichment analysis are available in
Supplementary Tables S5–S13.

MCP-counter was applied to gene expression data from the discovery series. Abun-
dances of reported immune-infiltrating cell populations, as well as other non-immune cell
types, are summarized in Supplementary Figure S4. B-cell infiltrates (Spearman’s r = −0.34,
p-value = 6.24 × 10−4), myeloid dendritic cell infiltrates (Spearman’s r = −0.32,
p-value = 1.51 × 10−3) and T-cell infiltrates (Spearman’s r = −0.29, p-value = 3.79 × 10−3)
appeared with a moderate inverse association with miRNA RS (Supplementary Figure S5).
It is worth mentioning that all tested cell population abundances were inversely correlated
with miRNA RS, suggesting an overall increase in immune infiltration in tumors with
lower values for the computed RS.
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Figure 3. mRNA–miRNA interaction network representation. Light-green nodes represent miRNAs
present in the signature, and orange nodes represent their direct target mRNAs. Gray lines represent
an interaction present between an miRNA and an mRNA (validated in miRTarBase and also predicted
by mirDB). Node size is proportional to its degree centrality measure (number of direct interactors).

4. Discussion

A comprehensive analysis has been conducted in order to identify an miRNA signature
with potential value for stratifying patients into different disease progression risk groups
in stage II MSS colon cancer.

Similar to other prognostic signatures previously published [16–18,39], our signature
demonstrated a significant association. However, its ability to accurately predict which
patients will experience recurrence was limited [40]. Nevertheless, this does not imply that
the signature is not valuable since it can be used to classify patients into distinct risk groups.

To the best of our knowledge, only 2 of the 12 miRNAs included in the proposed
signature have been previously included in other CRC miRNA signatures [41,42]. However,
several of them have been associated with CRC development and/or prognosis; some of
them have also been associated with tumoral progression in other tissues. Our findings
agree with current knowledge concerning the miRNAs present in our signature. Recently,
it has been found that overexpression of hsa-miR-16-5p can inhibit CRC cell proliferation,
migration, immune modulation and invasion [43,44]. Another recent publication pointed
out the relationship between the down-regulation of hsa-miR-16-5p and hsa-miR-497-5p
and the progression of endometrial cancer mediated by circular RNA hsa-circ-0011324 [45].
Both miRNAs appeared to have lower expression values in the CLX series high-risk group,
as reported in univariate Cox proportional hazard models. hsa-miR-656-3p was also in-
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cluded in one miRNA classifier for tumor recurrence in stage II CRC [42]. Interestingly,
it has also been identified as an inhibitor of CRC cell migration in vitro [46]. In contrast,
hsa-miR-204-5p has been identified to be negatively associated with CRC progression and
chemoresistance [47,48]. This specific miRNA goes in the opposite direction both in the
discovery and validation series. Another miRNA present in the signature, hsa-miR-935,
has been studied in different cancer types and seems to have different behaviors depending
on the targeted tissue, inhibiting or promoting tumor development in glioblastoma, liver
and gastric cancer [49–51]. Hsa-miR-423-3p was seen to be down-regulated in hepatocel-
lular carcinoma compared to healthy and liver cirrhosis samples [52]. In a recent study
conducted on bladder urothelial carcinoma patients, hsa-miR-432-5p was found to be a
good biomarker for diagnosis, being under-expressed in tumoral samples [53]. Regarding
the remnant miRNAs, one study suggested opposite effects from what we have reported
for hsa-miR-181a-2-3p in glioblastoma [54], and two studies found hsa-miR-331-3p to be
under-expressed in prostate cancers [55] and CRC [56] compared to healthy groups. Higher
levels of hsa-29b-2-5p expression were associated with the staging of esophageal and gastric
cancer [57] in TCGA. However, this association was not observed in TCGA COAD stage
II samples. No previous studies were found for hsa-miR-2355-3p and hsa-miR-1185-5p
related to cancer.

To assess the complex functional interrelationships between the miRNAs and their
putative target mRNAs, we analyzed a network of validated miRNA–target gene associa-
tions. Our results show a significant enrichment of genes involved in cellular processes
relevant for cancer progression, such as cell cycle regulation, interleukin signaling and
cell migration [58,59]. Since the information on validated target genes for miRNA is still
incomplete, these results might be biased because more well-known miRNAs share more
interactions with important cancer genes. However, this behavior is expected to be mini-
mized with the release of the latest updated versions. In addition, to further evaluate the
possible effects of the miRNA signature, the immune profile analysis of the miRNA risk
groups revealed an overall increased abundance of all types of immune cell populations
as measured through deconvolution analyses, suggesting a protective effect of immune
infiltration in tumors [60]. Although the role of immune cell infiltrates in cancer progression
is complex and context-dependent [61], it is thought that in early CRC stages, immune
cells could help to control the growth and spread of cancer cells. However, as the tumor
progresses, these immune cells can adapt a pro-tumorigenic role, promoting tumor growth
and metastasis [62,63].

Besides the considerable efforts to generate biomarkers for risk assessment based
on miRNA expression levels [16–18,42], other emerging tools are being investigated as
potential prognostic factors for stage II CRC. One such approach involves examining
molecular characteristics, including mutations or expression profile alterations in BRAF,
KRAS or PIK3CA. These molecular features can aid in determining more targeted treatment
strategies for patients [64–66]. Another emerging tool, circulating tumor DNA (ctDNA)
analysis, has shown promise in identifying minimal residual disease [67], which results in
a higher risk of recurrence for patients and may require closer surveillance or additional
treatment options. Furthermore, the study of the gut microbiome is also a recent topic
of interest for the assessment of both tumor onset and recurrent disease [68,69]. Lastly,
exploring the tumor microenvironment [40,70], such as TILs, tumor-associated fribroblasts
and stromal characteristics, and understanding the interactions between tumor cells and
their microenvironment might provide valuable prognostic information.

This study has several limitations. The most important is the low number of events in
both the discovery and the validation series, which is probably related to the good prognosis
for early COAD diagnosis. In addition, our results may have been underestimated due to
the lack of information regarding the administration of adjuvant chemotherapy or radiation
therapy in the validation series. The low number of events together with the limited sample
size reduces the statistical power for this kind of analysis; as a result, we saw a trend in the
validation cohort with borderline statistical significance. Another limitation of the study is
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the lack of microsatellite instability (MSI) patients. The proportion of MSI in our hospital
was low, around 8%; thus, the CLX series was only composed of MSS patients.

Overall, based on the reported results, this signature could be valuable to stratify MSS
stage II COAD patients and identify those that require adjuvant chemotherapy. Addition-
ally, the individual miRNA prognostic data provided in the discovery series contribute to
increasing the knowledge on these markers in CRC.

5. Conclusions

In summary, we have identified a panel of 12 miRNAs that can be used to stratify
prognosis in MSS stage II COAD. These miRNAs have been described to regulate a large list
of genes involved in relevant cancer pathways, which reinforces the validity of the panel.
Further studies with larger samples sizes are needed to improve our ability to classify
patients with recurrence risk in a more general way.
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Simple Summary: The oncofetal protein OCT4 is a factor that promotes self-renewal and maintenance
of pluripotency of embryonic stem cells and induced stem cells, which has been linked to neoplastic
processes, but its role and clinical significance in rectal cancer are unknown. Therefore, the aim of this
study was to evaluate the expression of the stem cell marker OCT4 related to clinical-pathological
characteristics and its clinical significance in rectal cancer patients. Protein expression of the stem
cell marker OCT4 was found in rectal tumor tissue but not in adjacent non-tumor tissue, and
high expression was significantly associated with phenotypical characteristics of more aggressive
rectal cancer.

Abstract: Rectal cancer (RC) is one of the most common malignant neoplasms, and cancer stem cells
(CSCs) of the intestinal tract have been implicated in its origin. The oncofetal protein OCT4 has been
linked to neoplastic processes, but its role and clinical significance in RC are unknown. This study
investigates the expression of the stem cell marker OCT4 related to clinical-pathological characteristics
and its clinical significance in RC patients. The expression level of stem cell marker OCT4 was
analyzed in 22 primary rectal tumors by western blot. The association between OCT4 protein
expression and the clinical-pathological features of tumors was evaluated by χ2 test and Fisher’s exact
test. We demonstrated that the expression of the stem cell marker OCT4 was observed in tumor tissue
but not adjacent non-tumor tissue. High expression of the stem cell marker OCT4 was significantly
associated with histological differentiation grade (p = 0.039), tumor invasion level (p = 0.004), lymph
node involvement (p = 0.044), tumor-node-metastasis (TNM) stage (p = 0.002), and clinical stage
(p = 0.021). These findings suggest that high OCT4 expression is associated with a more aggressive
RC phenotype, with a greater likelihood of progression and metastasis. These results shed light on
the importance of targeting this CSC marker to attenuate RC progression.

Keywords: rectal cancer; colorectal cancer; cancer stem cells; OCT4; oncofetal protein

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths and the
third most common cancer worldwide. Rectal cancer (RC) represents 63% of all CRC cases
and approximately 58% of deaths caused by this disease globally [1]. Although often
considered the same pathological entity, colon and rectal cancers have anatomical and
biological differences that affect the prognosis [2,3]. Despite advances in surgical treatment,
radiation therapy, chemotherapy, and adjuvant therapies, the prognosis for RC patients
is unsatisfactory due to the high rate of local recurrence, treatment resistance, and distant
metastasis, which are strongly related to mortality [4].
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Cancer stem cells (CSCs) represent a subpopulation of tumor cells characterized by
their ability to self-renew, heterogeneity, plasticity, and infinite proliferation. These charac-
teristics, together with scientific evidence, have closely linked this cell population to tumor
development, therapy resistance, metastasis, and recurrence after primary treatment [5,6].

Among the transcription factors described as regulators of pluripotency and main-
tenance of CSCs is the octamer-binding protein 4 (OCT4; also known as POU domain,
class 5, transcription factor 1 (POU5F1)), an oncofetal protein that promotes self-renewal
and maintenance of pluripotency of embryonic stem cells and induced stem cells, and
which has been found to be involved in the progression and poor prognosis of various
cancers [7], including gastric [8–10], pancreatic [11], breast [12], bladder [13], ovarian [14],
prostate [15], and hepatocellular carcinoma [16]. However, few studies have included OCT4
evaluation in RC [17,18], and even fewer have evaluated its clinical significance in these
patients [19]. The few existing reports on OCT4 expression have been developed in in vitro
models of CRC [20] or in intestinal tumor tissues that have evaluated colon and rectal
cancer as the same pathological entity [21,22]. Therefore, the purpose of this study was
to investigate the expression of the stem cell marker OCT4 related to clinical-pathological
features and its clinical significance in RC patients.

2. Materials and Methods

2.1. Participants and Sample Collection

A cross-sectional study was conducted that included samples of tumor tissue and
adjacent non-tumor tissue obtained from 63 patients diagnosed with primary RC who
were treated at two tertiary referral centers in the city of Cartagena, Colombia. A total of
22 samples that met the appropriate size criteria were used for molecular analysis. None
of the patients had received neoadjuvant therapy or had a history of other tumors or
serious infections. The collected fresh tissues were embedded in RNAlater™ and stored
at −80 ◦C for subsequent analysis. This study was approved by the Ethics Committee
of the Universidad de Cartagena (Minutes No. 108, 10 May 2018) and was conducted in
accordance with the principles of the Helsinki Declaration. Each eligible participant signed
an informed consent form.

2.2. Data Collection

Sociodemographic, pathological, and clinical characteristics were collected from medi-
cal records and a structured survey. Data such as age, sex, symptoms and clinical history,
tumor differentiation grade, lymph node involvement, presence of metastasis, and TNM
stage were collected. TNM stage was evaluated according to the seventh edition of the
cancer staging manual of the American Joint Committee on Cancer (AJCC) [23].

2.3. Western Blot Analysis

The OCT4 protein was isolated using the western blot technique. The tissues were
thawed and resuspended in lysis buffer [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 10%
glycerol, 0.2% Nonidet P-40, 1 mM EDTA, 1 mM EGTA, 1 mM phenylmethylsulfonyl
fluoride (Sigma-Aldrich, St. Louis, MO, USA), 10 mM NaF, 5 mg/mL aprotinin (Sigma-
Aldrich), 20 mM leupeptin (Sigma-Aldrich, St. Louis, MO, USA), and 1 mM sodium
orthovanadate (Sigma-Aldrich, St. Louis, MO, USA)]. The concentration of total protein in
the supernatant was quantified using a spectrophotometric method [24]. The absorbance
at 595 nm was calculated using a standard curve previously prepared with bovine serum
albumin (BSA). The samples were prepared with Laemmli loading buffer and denatured by
heating at 95 ◦C for 5 min. A total of 30 μg of protein was loaded onto a 10% polyacrylamide
gel prepared with sodium dodecyl sulfate (SDS-PAGE) and subjected to electrophoresis in
the presence of an electrophoresis buffer at a constant voltage [25]. After electrophoresis,
the proteins were transferred from the gel to a PVDF membrane (iBlot™ Transfer Stack,
PVDF Invitrogen™ Thermo Waltham, MA, USA) using the iBlot™ 2 Gel Transfer Device
dry transfer technology (Thermo Scientific™, Waltham, MA, USA). Ponceau staining
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was performed to confirm that the transfer was successful. Subsequently, the membrane
was treated with a blocking solution of 5% skim milk in TTBS 1X [10 mM Tris/HCl,
150 mM NaCl, 0.05% Tween-20 (pH 7.5)] and then incubated overnight with the primary
antibody anti-OCT4 diluted 1:2000 (Abcam, Cambridge, UK) [EPR2054] (ab109183). After
the incubation period, the membrane was washed with TTBS 1X to remove excess antibody.
The membrane was then incubated with a horseradish peroxidase-conjugated secondary
antibody for 2 h. Finally, the membrane was washed with TTBS 1X and immunodetection
was performed using the SuperSignal™ West Pico chemiluminescent substrate (Thermo
Scientific™, Waltham, MA, USA). The results were validated using anti-beta glucuronidase
(GUSB) antibody 1:2000 (Abcam Cambridge, UK) [EPR10616] (ab166904) as a housekeeping
antibody. The PVDF membranes were analyzed using an imaging documentation system,
using the iBright CL1000 equipment (Thermo Scientific™ Waltham, MA, USA). The iBright
analysis software desktop version (Thermo Scientific™ Waltham, MA, USA) was used to
measure the band densitometry to determine OCT4 expression.

2.4. Statistical Analysis

Statistical data were analyzed using SPSS for Windows, version 21.0 (IBM Corp.,
Armonk, NY, USA), and GraphPad Prism 8.0.2 (Graphpad Software Inc., San Diego, CA,
USA). The normality of the data distribution was evaluated using the Kolmogorov-Smirnov
test. Descriptive data are presented as mean ± standard deviation (SD) or frequency and
percentage. Student’s t-test was used to determine statistical significance when comparing
two groups. To evaluate the association between OCT4 expression and clinical and patho-
logical characteristics, Pearson’s chi-square test or Fisher’s exact test was used. A p < 0.05
was considered statistically significant.

3. Results

3.1. Characteristics of the Studied Population

The average age of the participants was 61.7 years (range between 22 and 90 years),
60.3% (n = 38) were women, and 39.7% (n = 25) were men, mainly residing in urban areas
(74.6%, n = 47). The most frequent clinical characteristics were rectal bleeding (52.4%;
n = 33) and exophytic lesions detected by colonoscopy (57.1%; n = 36). The most frequent
histological type, histological grade, clinical stage, and TNM were adenocarcinoma (87.5%;
n = 55), moderately differentiated grade (44.4%; n = 28), advanced/regional stage (65.1%;
n = 41), and classification IIIB (22.2%; n = 14) and IVA (17.5%; n = 11), respectively (Table 1).

Table 1. Sociodemographic, clinical, and pathological characteristics of the studied population.

Characteristics
N = 63

n %

Age
≤50 years 17 27
>50 years 46 73
Sex
Female 38 60.3
Male 25 39.7
Residential area
Urban 47 74.6
Rural 16 25.4
Main sign/symptom
Rectal bleeding 33 52.4
Change in bowel habits 10 15.9
Weight loss 1 1.6
Anemia 2 3.2
Acute abdominal pain 10 15.9
Intestinal obstruction 6 9.5
Other 1 1.6
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Table 1. Cont.

Characteristics
N = 63

n %

Finding during colonoscopy
Ulcerative lesion 3 4.8
Multiple polyps 3 4.8
Single polyp 4 6.3
Exophytic lesion 36 57.1
Stenosing lesion 17 27
Histological type
Adenocarcinoma 55 87.3
Mucinous adenocarcinoma 3 4.8
Neuroendocrine carcinoma 5 7.9
Histological grade
Well-differentiated 24 38.1
Moderately differentiated 28 44.4
Poorly differentiated 11 17.5
Clinical stage
Early/local 22 34.9
Advanced/regional 41 65.1
TNM
0 1 1.6
I 8 12.7
IIA 7 11.1
IIB 3 4.8
IIC 4 6.3
IIIA 7 11.1
IIIB 14 22.2
IIIC 5 7.9
IVA 11 17.5
IVB 3 4.8
Local invasion
TIs 4 6.3
T1 6 9.5
T2 21 33.3
T3 11 17.5
T4a 20 31.7
T4b 1 1.6
Lymph node involvement
N1a 30 47.6
N1b 15 23.8
N1c 4 6.3
N2a 11 17.5
N2b 1 1.6
Unknown 2 3.2
Metastasis
M0 49 77.8
M1a 11 17.5
M1b 3 4.8
Vascular invasion
Si 15 23.8
No 29 46
Unknown 19 30.2

3.2. Molecular Determination of OCT4 in Tumor Tissue and Adjacent Non-Tumor Tissue

The expression of OCT4 protein was higher in tumors with some degree of undifferen-
tiation (Figure 1a,b) and in advanced clinical stages (Figure 1c,d). No protein expression of
OCT4 was observed in adjacent non-tumor tissue.

Bivariate analysis showed higher levels of OCT4 expression in tumors with some
degree of undifferentiation (moderately and poorly differentiated) compared to well-
differentiated tumors (p = 0.046) (Figure 2a). In advanced clinical stages, there was also
higher OCT4 expression compared to early stages (p = 0.0356) (Figure 2b).
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Figure 1. Expression of OCT4 protein in RC tissue and adjacent non-tumor tissue according to
the histological differentiation grade and tumor stage. (a) Western blot analysis of OCT4 protein
expression according to the histological differentiation grade. (b) Immunoelectrophoretic analysis of
OCT4 protein expression according to the histological differentiation grade. (c) Western blot analysis
of OCT4 protein expression according to the tumor stage. (d) Immunoelectrophoretic analysis of
OCT4 protein expression according to the tumor stage. The expression of GUSB was used as a
normalizer. See Supplementary Material for the original image of the Western Blots.

Figure 2. Protein expression levels of OCT4 in rectal tumors. (a) OCT4 expression levels in rectal
tumors according to histological differentiation grade. (b) OCT4 expression levels in rectal tumors
according to clinical-pathological stage. Results are the ratio of OCT4 expression normalized to GUSB
protein levels. Statistical differences between groups were evaluated by two-tailed Student’s t-test.
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3.3. Association between OCT4 Expression and Clinical and Pathological Characteristics

The results showed a significant association between the expression (high/low) of
OCT4 and the degree of histological differentiation (p = 0.039), invasion level (p = 0.004),
and lymph node involvement (p = 0.044). No association was found between OCT4
expression and tumor metastasis. Significant differences were found in relation to TNM
stage (p = 0.002) and early clinical stage compared to advanced stage (p = 0.021) (Table 2).

Table 2. Association between OCT4 expression and clinical and pathological variables of the studied
samples (n = 22).

Total Samples

OCT4 Expression

p-ValueHigh Low

n (%) n (%)

Histological grade
Well-differentiated 8 (36.4) 4 (18.2) 4 (18.2)

0.039 *Undifferentiated 14 (63.6) 13 (59.1) 1 (4.5)
Local invasion

TIs 2 (9.1) 0 2 (9.1)

0.004 **

T1 3 (13.6) 1 (4.5) 2 (9.1)
T2 9 (40.9) 9 (40.9) 0
T3 4 (18.2) 3 (13.6) 1 (4.5)
T4a 3 (13.6) 3 (13.6) 0
T4b 1 (4.5) 1 (4.5) 0

Lymph node involvement
N1a 12 (54.5) 7 (31.8) 5 (22.7)

0.044 *
N1b 2 (9.1) 2 (9.1) 0
N1c 3 (13.6) 3 (13.6) 0
N2a 4 (18.2) 4 (18.2) 0
N2b 1 (4.5) 1 (4.5) 0

Metastasis
M0 20 (90.9) 15 (68.2) 5 (22.7)

0.458M1a 1 (4.5) 1 (4.5) 0
M1b 1 (4.5) 1 (4.5) 0
TNM

I 5 (22.7) 1 (4.5) 4 (18.2)

0.002 **
II 2 (9.1) 2 (9.1) 0
III 13 (59.1) 12 (54.5) 1 (4.5)

IVA 2 (9.1) 2 (9.1) 0
Clinical stage
Early/local 7 (31.8) 3 (13.6) 4 (18.2)

0.021 *Late/regional 15 (68.2) 14 (63.6) 1 (4.5)
* p < 0.05; ** p < 0.01.

4. Discussion

Association between stem cell molecules and their derived signals with the evolution
of the tumorigenic process is widely accepted [26,27]. It has been proposed that intestinal
stem cells represent an important part of the origin of CRC [28,29]. Embryonic stem cells
express diverse proteins, including the octamer-binding protein 4 (OCT4), an oncofetal
protein that plays a significant role in self-renewal and pluripotency [30]. Recent evidence
shows increasing numbers of early-onset RC [31], as well as a high frequency of RC among
individuals diagnosed with CRC in the Colombian Caribbean region, as we have previously
reported [32]. Therefore, it is pertinent to have more knowledge of the development of this
disease to provide new therapeutic targets that allow better management of patients. This
study is the first in Colombia to evaluate the relationship between OCT4 expression and
clinical-pathological characteristics in primary rectal tumors.

The samples collected for this study were from individuals with an average age of
61.75 years, similar to the mean age reported in epidemiological studies that have evaluated
colon and rectal cancer together [33]. Recent studies show increasing incidence rates in
adults under 50 years old (early-onset tumors) [34], and in RC, the behavior is similar,
including the population of Latin America and the Caribbean [31,35,36]. Our study reports
27% of individuals with RC under 50 years old, which could be supported by the adoption
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of dietary patterns characterized by high consumption of processed and refined foods and
a sedentary lifestyle, among other unhealthy habits that are considered risk factors for
the appearance of RC. We found that the incidence was higher in females, consistent with
the research of Vargas Moranth et al. in a population of the Colombian Caribbean [37].
Similarly, most individuals were of black race, a characteristic that, beyond being related to
a genetic component, is likely to be a consequence of the predominance of this race in the
region where the study was carried out, where there was historically African settlement
during the colonial period. All these conditions associated with lifestyle and environmental
or hormonal factors can impact the clinical characteristics of the population and influence
the behavior of the disease. However, it must be borne in mind that all these data related to
the epidemiological characteristics of the population should be interpreted with caution,
considering that the sample size limits the statistical efficiency of the results.

Our results showed an absence of modulation of the expression of the stem cell marker
OCT4 in adjacent non-tumor tissue, but did show OCT4 expression in tumor tissue consis-
tent with other authors, who have reported OCT4 protein expression in various human
cancer tissues such as stomach [9], pancreas [11], bladder [13], ovary [14], prostate [15],
and CRC, but not in normal somatic tissues [38]. It is believed, then, that OCT4 reacti-
vation occurs in cells that have undergone malignancy [30], in which the expression of
pluripotency genes by stem cells has been related to tumor proliferation, metastasis, and
poor prognosis [10]. In this sense, our findings suggest that the OCT4 protein may have a
relevant role in the development and progression of the tumor.

Likewise, our work shows increased expression of the intestinal oncofetal protein
OCT4 in tumors with some degree of undifferentiation (moderately and poorly differ-
entiated), which could lead to progression and even metastasis in RC, considering that
it has been reported that the level of stem cell protein expression may be related to the
content of these cells in the tumor and suggests its aggressiveness according to the degree
of histological differentiation [39]. Similar observations to our data have been described in
RC [19], in a case report of CRC [40], as well as in cervical tumors [41] and gastric cancer [8],
which could indicate the role of this cell subpopulation in the loss of colonic identity and
poorer prognosis [42].

For its part, the data from this study revealed a close association between the expres-
sion of the oncofetal protein OCT4 and the stage of the tumors. In this regard, Shaheen
et al. stated that higher expression of OCT4 is associated with more advanced stages of
CRC and distant metastasis [38]. In line with this, Roudi et al. evaluated, through immuno-
histochemical staining, the expression of CSCs markers OCT4 and NANOG, reporting a
trend between low OCT4 expression and absence of metastasis or lymph node involvement,
which could indicate that increased OCT4 expression would contribute to the malignant
behavior of CRC and be related to advanced disease [21]. Similarly, several studies have
confirmed the association between OCT4 and TNM staging in other types of cancer, such
as gastric cancer [9] and lung cancer [43]. Likewise, in gastric cancer, high levels of CSC
biomarkers have been strongly associated with TNM staging, lymph node metastasis,
and poor survival [44]. In contrast, Fujino et al. did not find a significant correlation
between OCT4 expression and TNM staging; however, it is important to note that this
study evaluated the expression of OCT4 mRNA, which was significantly correlated with
poor metastasis-free survival [22].

There is evidence that points to the expression of OCT4 in the regulation of various
signaling pathways associated with tumor formation and malignant transformation and
increased recurrence, such as p38 mitogen-activated protein kinase (MAPK)/caspase-3,
Wnt/β-catenin, AKT, and Janus Kinase (JAK)/signal transducer and activator of tran-
scription (STAT)3 signal pathways [45–47]. Therefore, our results regarding the presence
of OCT4 in RC at its various stages increase the possibility that CSCs are involved in
resistance to conventional radiotherapy and chemotherapy treatments, increasing recur-
rences. It has previously been reported in patients with RC who underwent preoperative
chemoradiotherapy that the CD133, OCT4, and SOX2 markers could be useful for predict-
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ing distant recurrence and poor prognosis, in addition to their possible association with
tumor regrowth and metastases after chemoradiotherapy. [48]. Consequently, the data
generated by our study could point towards the oncogenic role of OCT4 in RC, supported
by the fact that the aberrant expression of this transcription factor and abnormal biological
behavior of signaling pathways in stem cells during the development of RC may contribute
to the promotion of tumorigenesis, its progression and aggressiveness, and the promotion
of recurrences.

The major limitation of this study was the small sample size; however, we consider
the obtained results valuable, taking into account the scarcity of recent data referring to
clinicopathological and molecular aspects of RC in our population. We believe that a larger
study population would allow us to validate our results; furthermore, it would be relevant
to verify the data obtained through other molecular techniques, as well as to analyze the
behavior of this marker over time, in order to analyze its clinical potential in the diagnosis,
prognosis, and treatment follow-up in patients with RC.

5. Conclusions

We demonstrated expression of the stem cell marker OCT4 in tumor tissue of RC
and the absence of modulation of this protein in adjacent non-tumor tissue; furthermore,
we found that high expression of OCT4 was associated with undifferentiated histological
grade, a greater degree of tumor invasion, lymph node involvement, and advanced or
regional clinical stage, and higher TNM grades. Therefore, our results suggest that high
expression of OCT4 is associated with a more aggressive phenotype of RC, with a greater
likelihood of progression and metastasis. These findings shed light on the importance
of focusing on this CSC marker and directing further studies aimed at investigating the
mechanisms involved in its probable role in the initiation and progression of RC.
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Simple Summary: More insight into the biological diversity of colorectal cancer (CRC) is needed to
improve therapeutic outcomes. We aimed at establishing a combined 2D/3D, in vitro/in vivo model
system representing the heterogeneity of CRC with regards to the molecular subtypes, allowing biolu-
minescence imaging-assisted analyses. Comparative characterization of stable luciferase expressing
derivatives of well-established CRC cell lines, derived spheroids and subcutaneous xenograft tumors
showed that regarding primary tumor characteristics, the 3D-spheroid cultures resembled xenografts
more closely than 2D-cultured cells do. Xenograft tumor growth resulted in metastatic spread to the
lungs. Furthermore, a bioluminescence-based spheroid cytotoxicity assay was set up in order to be
able to perform dose–response relationship studies in analogy to typical monolayer assays. Thus, the
model systems can be used in preclinical research applications to study new therapy approaches and
represents the biological heterogeneity of CRC.

Abstract: Colorectal cancer (CRC) is a heterogeneous disease. More insight into the biological diver-
sity of CRC is needed to improve therapeutic outcomes. Established CRC cell lines are frequently
used and were shown to be representative models of the main subtypes of CRC at the genomic and
transcriptomic level. In the present work, we established stable, luciferase expressing derivatives
from 10 well-established CRC cell lines, generated spheroids and subcutaneous xenograft tumors
in nude mice, and performed comparative characterization of these model systems. Transcriptomic
analyses revealed the close relation of cell lines with their derived spheroids and xenograft tumors.
The preclinical model systems clustered with patient tumor samples when compared to normal
tissue thereby confirming that cell-line-based tumor models retain specific characteristics of pri-
mary tumors. Xenografts showed different differentiation patterns and bioluminescence imaging
revealed metastatic spread to the lungs. In addition, the models were classified according to the
CMS classification system, with further sub-classification according to the recently identified two
intrinsic epithelial tumor cell states of CRC, iCMS2 and iCMS3. The combined data showed that
regarding primary tumor characteristics, 3D-spheroid cultures resemble xenografts more closely than
2D-cultured cells do. Furthermore, we set up a bioluminescence-based spheroid cytotoxicity assay
in order to be able to perform dose–response relationship studies in analogy to typical monolayer
assays. Applying the established assay, we studied the efficacy of oxaliplatin. Seven of the ten used
cell lines showed a significant reduction in the response to oxaliplatin in the 3D-spheroid model
compared to the 2D-monolayer model. Therapy studies in selected xenograft models confirmed
the response or lack of response to oxaliplatin treatment. Analyses of differentially expressed genes
in these models identified CAV1 as a possible marker of oxaliplatin resistance. In conclusion, we
established a combined 2D/3D, in vitro/in vivo model system representing the heterogeneity of
CRC, which can be used in preclinical research applications.

Cancers 2023, 15, 4122. https://doi.org/10.3390/cancers15164122 https://www.mdpi.com/journal/cancers
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1. Introduction

Cancer cell lines are valuable in vitro model systems that are widely used in basic
cancer research and drug discovery [1]. Here, the Cancer Cell Line Encyclopedia has clearly
demonstrated that large, annotated cell-line collections may help to enable preclinical
stratification patterns for anticancer agents [2–4]. This has been demonstrated again by
two recent studies, which investigated important issues of cancer research such as tumor
heterogeneity and metastasis [5,6]. Using cell lines, Jin et al. created a first-generation
metastasis map (MetMap) that reveals organ-specific patterns of metastasis associated with
clinical and genomic features, and demonstrated the utility of this MetMap [5]. In the
second study, Kinker et al. described the landscape of heterogeneity within diverse cancer
cell lines and identified recurrent patterns of heterogeneity that are shared between tumors
and specific cell lines [6]. Thus, cancer cell lines can be useful models with clinical relevance.

Colorectal cancer (CRC) is among the most common cancers and a major cause of
cancer mortality [7,8]. CRC is a heterogeneous, clinically diverse disease and is poorly
understood biologically. Therefore, more insight into the biological diversity of CRC,
especially in relation to its clinical behavior, is needed to improve the therapeutic outcomes.
Established CRC cell lines are frequently used and are capable of representing the main
subtypes of primary tumors at the genomic level, which validates their utility as tools
to investigate colorectal cancer biology and drug responses [9]. Furthermore, several
groups have characterized primary CRC tumors based on their gene expression data
combined with their genomic features in order to establish biologically distinct molecular
subtypes with clinical relevance, which resulted in the emergence of different classification
systems [10–15]. Again, CRC cell lines turned out to reflect the differential subtypes
among these classification systems and were capable of being used to test specific targeted
therapy approaches [16]. Later, the international CRC Subtyping Consortium (CRCSC)
was formed with the aim of resolving inconsistencies among the original reported gene
expression-based CRC classification systems. This resulted in the establishment of the CMS
classification system consisting of four consensus molecular subtypes (CMS), each with
distinguishing properties: CMS1 (microsatellite instability immune, 14%), hypermutated,
microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial,
marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident
metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth
factor-beta activation, stromal invasion and angiogenesis [17]. In addition, there was a
fifth group comprising samples with mixed features, labeled as an intermediate group
(13%). Besides the biological differences, clear clinical distinctions were evident between
the aforementioned groups. Among others, patients with CMS4 tumors displayed worse
overall, and relapse-free, survival. The CMS1 population had very poor survival in the
situation after relapse, whereas CMS2 patients showed superior survival after relapse [17].
Furthermore, various studies have also reported on different responses to chemotherapy in
the different molecular subgroups of the CMS classification.

Gene expression profiles of tumor tissue samples represent the sum of signals de-
rived from the cancer cells and their surrounding tumor microenvironment, the latter of
which can impede gene expression analysis, depending on the model used. Moreover, the
stromal component in a tumor has been suggested to be crucial for the determination of
CMS4 [18,19]. In contrast to these reports, Linnekamp et al. characterized a panel of CRC
cell culture models including CRC cell lines, primary cultures and PDX models, and clearly
detected CMS4 in all model systems, indicating that CMS4 can be defined as a tumor
cell-intrinsic phenotype in addition to the observed accumulation of stromal cells [20].
Moreover, Eide et al. developed a novel CMS classifier, referred to as CMScaller, based on
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cancer cell-intrinsic and subtype-enriched gene expression markers, thereby providing a
solution to the analogous problem of classifying pre-clinical models, which either lack a
tumor microenvironment entirely (e.g., cell lines and organoid cultures) or present with
a completely different background (e.g., murine xenografts) [21,22]. This is particularly
relevant for the classification of CMS1 and CMS4, as interactions between tumor cells
and microenvironment play an especially important role in these two subgroups. The
CMScaller was shown to perform in primary tumors models and recapitulated the biology
of the CMS groups, revealing subtype-dependent drug response profiles when applied to
PDX and cell lines [23,24]. Moreover, in a recent study, Joanito et al. performed combined
single-cell and bulk transcriptome sequencing and identified two intrinsic epithelial tumor
cell states in colorectal tumors, which refined the CMS classification system of colorectal
cancer [25].

In the present work, we generated stable, luciferase expressing cell clones from es-
tablished CRC cell lines, in order to analyze growth, therapy response and metastasis
in derived spheroid and nude mouse xenograft models utilizing the endogenous signal.
Tumor spheroids are useful in vitro models as they can represent several important as-
pects of real tumor tissues, e.g., (1) three-dimensional growth with structural organization
and physiologically relevant cell–cell and cell–matrix interactions; (2) establishment of
tumor microenvironmental characteristics such as nutrient gradients, hypoxia and acidosis;
(3) localization-dependent heterogeneous cell growth and differentiation; (4) drug resis-
tance mechanisms [26,27]. Mouse xenograft tumors represent aspects of real tumor tissue
even more strongly, since they contain a complete stromal component including vasculature
and fibrotic tissue, even though being of murine origin. In addition, a residual immune
system consisting of B cells, NK cells, macrophages and dendritic cells is still present in
these models, especially in athymic nude mice. In this work, we compared the labeled
and cloned CRC cell lines with their derived spheroids and xenograft tumors in terms of
gene expression and response to therapy. The aim of the study was to establish a useful
preclinical model system, which represents the heterogeneity of CRC, especially in regard
to the different subtypes according to the CMS classification system.

2. Materials and Methods

2.1. Cell Lines and Generation of Luciferase Expressing Clones

The colorectal cancer cell lines HT29 (HTB-38), DLD1 (CCL-221), LOVO (CCL-229),
SW48 (CCL-231), LS1034 (CRL-2158), SW1463 (CCL-234), COLO205 (CCL-222), LS174T
(CL-188), HCT116 (CCL-247) and SW480 (CCL-228) were originally obtained from the
ATCC and were authenticated in 2010 at the DSMZ-German Collection of Microorganisms
and Cell Cultures GmbH (Braunschweig, Germany). All cell lines were cultivated in RPMI
medium (Sigma-Aldrich, Taufkirchen, Germany) containing 10% fetal bovine serum (BioW-
est, Nuaillé, France) and 1% penicillin/streptomycin (Sigma-Aldrich) at 37 ◦C/5% CO2 in
a humid atmosphere.

The cDNA of the red-shifted firefly luciferase PLR1 [28], kindly provided by Bruce R.
Branchini (Department of Chemistry, Connecticut College, New London, CT, 06320, USA),
was cloned into the lentiviral vector system that we previously used [29]. Preparation of the
lentiviral particles and the transduction of the used cell lines were performed as previously
described [29]. Transduced cell lines were seeded onto 96-well plates to generate single cell
clones by means of using limited dilutions. Luciferase (Luc) expressing clones were iden-
tified by measuring bioluminescence after supplementation of D-luciferin (Perkin Elmer,
Rodgau, Germany) on a Tecan Spark microplate reader (Tecan, Männedorf, Switzerland).
Six to ten Luc-positive clones per cell line were picked, expanded and analyzed regarding
morphology, growth behavior and drug response in direct comparison to the wild-type
cell lines. One clone of each cell line was selected for subsequent experiments. Finally, the
newly generated Luc-expressing, cloned cell lines were re-authenticated at the DSMZ in
2020/2021.
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2.2. Spheroid Preparation, Growth Kinetics, Drug Treatment

In order to generate single tumor spheroids, tumor cells resuspended in culture
medium were seeded onto 96-well plates, which were coated with 0.7% agarose (SeaKem®

GTG™ Agarose, Lonza, Basel, Switzerland) before. The cell lines HT29-Luc, DLD1-Luc,
LS174T-Luc, LS1034-Luc and SW1463-Luc were able to form compact spheroids within
2 days. For the cell lines LOVO-Luc, SW48-Luc, COLO205-Luc, HCT116-Luc and SW480-
Luc, the used culture medium was supplemented with 10 μg/mL collagen I (Ibidi GmbH,
Gräfelfing, Germany) in order to support spheroid formation. Compact spheroids were
formed within 7 days.

In order to analyze spheroid growth, different amounts of cells (range 150–20,000)
were seeded onto agarose-coated 96-well plates. The starting point of the assay (d0) was
chosen after the formation of spheroids within two or seven days. On d0, 20 μL D-luciferin
solution was added per well and luciferase activity was measured after 15 min incubation
time on the Spark microplate reader. Further measurements were performed on d2, d5 and
d7. Growth kinetic curves were established by plotting mean values (8 spheroids) over time
using GraphPad Prism8. Based on these analyses, a cell line-specific cell amount to be used
in our cytotoxicity assays was determined: HT29, DLD1, LS174T, LS1034, SW1463–1500;
HCT116, LOVO–300; SW48, SW480–500; COLO205–150.

For the cytotoxicity assay, cells were seeded onto agarose-coated 96-well plates and
were treated with serial dilutions of oxaliplatin (Eloxatin, 5 mg/mL, provided from own
hospital pharmacy) for seven days after compact spheroids formed. Measurements of lu-
ciferase activity were performed as described above. Dose–response curves and calculation
of IC50 values including standard deviations were carried out using GraphPad Prism8. The
IC50 values of the groups were then compared using a Welch test.

2.3. RNA Preparation, Microarray Analysis, Molecular Subtyping and Classification

Cell lines were harvested 48 h after seeding and different samples per cell line were
pooled. Spheroids were harvested on day 7 (HT29, DLD-1, LS174T, LS1034, SW1463) or
day 12 (LOVO, SW48, COLO205, HCT116, SW480) and were pooled. Xenograft tumors (see
Section 2.4) were resected from nude mice when they had reached a volume of approxi-
mately 1 cm3. Tumors were sliced in half and, afterwards, one half was fixed in formalin for
histological analyses, whereas the other half was immediately processed, performing cell
separation using the MACS cell separation technology from Miltenyi (Miltenyi Biotech, Ber-
gisch Gladbach, Germany). Preparation of the tumor mass was performed on a gentleMACS
Octo by using the Tumor Dissociation Kit (130-095-929), followed by separation using the
Mouse Cell Depletion Kit (130-104-694) and the Death Cell Removal Kit (130-090-101)
according to the protocols of the manufacturer. For histological analyses, formalin-fixed
samples were embedded in paraffin and then cut to perform hematoxylin/eosin (HE)
staining according to standard protocols, as described previously [30].

RNA was extracted using the TRIzol™ Reagent (Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s protocol. For transcriptomic analyses, the
Clariom™ D Assay from Applied Biosystems™ (Thermo Fisher Scientific) was used. The
processing of the microarrays was performed in the core facility “analyses” of the Center
for Medical Basis Research (ZMG) of the Medical Faculty (Martin Luther University Halle-
Wittenberg) according to the instructions of the manufacturer. Microarray data will be
available from the Gene Expression Omnibus (GEO) database. In addition to our preclinical
samples, ten tumor samples and ten normal colon tissue samples from the GEO database
(accession number GSE115261 [31]), which was processed using the same microarray, were
included in the transcriptomic analyses.

Microarrays were analyzed using the robust multi-array average (RMA) algorithm
with the Transcriptome Analysis Console (TAC4.0; Thermo Fisher Scientific). Gene filtering
and cluster analysis was performed with TAC4.0. For the genes included in the cluster
analysis focusing on cell line-specific genes and differences between tumor and normal
samples were filtered for a false discovery rate (FDR) F-test < 0.0001 and a tumor-versus-
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normal log2 fold change of >5/<−5 (749 probe sets passed these filters). Normal samples
were set as the baseline. Genes included in cluster analysis focusing on the different
preclinical model systems were filtered for a FDR F-test < 0.01 and 2D cultures were used
as baseline. Genes were further filtered for spheroid-versus-2D and xenograft-versus-2D
log2 fold changes of >1.5/<−1.5 (152 probe sets) or >2/<−2 (51 probe sets).

The gene expression data were used to classify the samples according to the CMS clas-
sification system applying the CMScaller [21]. The classification was performed according
to the instructions provided on https://github.com/peterawe/CMScaller (lastly accessed
on 10 August 2023). In addition, the datasets were classified using the CRCassigner [14]
according to the instructions provided on https://github.com/syspremed/CRCAssigner
(lastly accessed on 10 August 2023).

For classification of the intrinsic epithelial tumor cell type, the specific iCMS2 and
iCMS3 gene sets provided in the original study [25] were used to calculate scores for iCMS2.
Probe sets were mean collapsed to gene names and for all genes, the sample-specific
quantile ranks were calculated. Thereafter, two different scores were calculated: For score
A, the means of the quantile ranks for the gene sets [25] iCMS2_up (Mq2U), iCMS2_down
(Mq2D), iCMS3_up (Mq3U), and iCMS3_down (Mq3D) were calculated for all samples.
Score A was calculated as A = (Mq2U/Mq2D) − (Mq3U/Mq3D). In score B, the sums of the
quantile ranks for the same gene sets iCMS2_up (Sqi2U), iCMS2_down (Sqi2D), iCMS3_up
(Sq3U) and iCMS3_down (Sq3D) were calculated for all samples. The score B was calculated
as B = (Sq2U–Sq2D) − (Sq3U–Sq3D). In both scores, higher positive values suggest that
the corresponding sample likely belongs to the iCSM2 class. In addition, nearest template
prediction [32] was performed using the mentioned gene sets. Based on the calculated
distances to the gene classes iCMS2_up (D2U), iCMS2_down (D2D), iCMS3_up (D3U) and
iCMS3_down (D3D), the iCMS classes were determined as: (D2U < D2D) and (D3U > D3U)
→ iCMS2; (D2U > D2D) and (D3U < D3U) → iCMS3; all other constellations → unstable.

Additional datasets from public databases were used for iCMS classification of addi-
tional cell lines. From ArrayExpress, the cel files from dataset E-MTAB-2971 were down-
loaded. In addition, the following the GEO datasets were used: GSM1374426, GSM1374451,
GSM1374452, GSM1374456, GSM1374463, GSM1374516, GSM1374517, GSM1374518,
GSM1374561, GSM1374562, GSM1374563, GSM1374564, GSM1374627, GSM1374628,
GSM1374629, GSM1374630, GSM1374632, GSM1374633, GSM1374759, GSM1374919,
GSM1374920, GSM1374925, GSM1374926, GSM1374927, GSM1374928, GSM1374929,
GSM1374930, GSM1374933, GSM1374934, GSM1374935, GSM1374937, GSM206450,
GSM206455, GSM206459, GSM206463, GSM206467, GSM206501, GSM206517, GSM206519,
GSM206524, GSM206547, GSM206548, GSM206552, GSM206553, GSM206554, GSM843481,
GSM843482, GSM844580, GSM844713, GSM887141, GSM887274, GSM887277, GSM887278,
GSM887303, GSM887479, GSM887632, GSM887644, GSM887667, GSM887668, GSM887674,
GSM887675, GSM887677, GSM887679 (GSE57083, GSE8332 [33], GSE34211 [34], GSE36133 [2]).

2.4. Animal Studies, Treatment, Imaging

Generation of subcutaneous xenograft tumors was performed by inoculation of
5 million tumor cells into the right flank of male athymic nude mice (Charles River Lab-
oratories, Sulzfeld, Germany). Monitoring of tumor growth was performed by caliper
measurement and volume calculation using the formula a2 × b × π/6 with ‘a’ being the
short and ‘b’ the long diameter. For molecular and histological analyses (see Section 2.3),
three to four tumors from each cell line model were removed from mice when they had
reached a volume of approximately 1 cm3. To analyze the ability to metastasize, one tumor
of each model was allowed to grow to a size of about 2 cm3. After completing, the lungs
were removed, incubated in D-luciferin solution for 10 min and bioluminescence imaging
was performed on an IVIS Spectrum (PerkinElmer, Rodgau, Germany).
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Selected models were used to analyze the anti-tumor activity of oxaliplatin. For this
purpose, mice were divided into two groups (n = 3) with similar mean tumor volumes of
about 0.150 cm3 and equal volume distribution at the start of treatment. Treatments com-
prised weekly intraperitoneal applications of oxaliplatin (8 mg/kg BW) and normal saline
(control). Mouse weight and behavior were controlled daily during the course of treatment.
The impact of treatment was calculated as the increase in tumor volume after treatment
relative to the tumor volume at the start of the treatment on day 0 (mean values ± SD).

3. Results

3.1. Luciferase-Labelled CRC Cell Line Clones form Subcutaneous Xenograft Tumors with Various
Differentiation Characteristics and Metastasize to the Lung

We chose ten well-known CRC cell lines, which already have been used in recent
classification studies, to establish luciferase-labelled derivatives. The red-shifted firefly
luciferase PLR1 [28] was cloned into the vector system that we previously used [29],
which contains no further selection marker, enabling the utilization of typical selection
markers in subsequent experiments. Single cell cloning was performed in order to achieve
homogenous cell populations in regard to the chromosomal locus of the incorporated
vector cassette. From several picked clones of each cell line, one was selected based on
the criteria luminescence intensity, as well as the morphology, growth behavior and drug
response resembling the wild type of the corresponding cell line. The generated luciferase
(Luc)-expressing, cloned CRC cell lines were re-authenticated using STR analysis.

All new Luc-labelled derivatives were able to grow as subcutaneous xenograft tumors
in nude mice without any differences to the wild-type cell lines. Interestingly, ex vivo
bioluminescence imaging revealed metastatic spread to the lungs in each model (Figure 1A).
Histological examination of the subcutaneous tumors showed clear differences (Figure 1B).
Tumors from LS1034 and SW1463 cells showed well-differentiated structures resembling
those of the colonic mucosa, with arranged columnar epithelial cells including goblet cells.
LS174T, and to a lesser extent HT29, tumors were characterized by pronounced goblet
cell differentiation and displayed only a residual pattern of layered epithelium formation.
Tumors from SW48, LOVO, HCT116, SW480 and COLO205 cells showed a completely
undifferentiated phenotype although scattered goblet cells could occasionally be observed.
In addition, examination of HCT116 and SW480 tumors revealed a high density of small
capillary structures. A high content of mitotic figures was a typical feature of COLO205
tumors, which corresponded with their fast growth compared to the other tumor types.
DLD1 tumors predominantly displayed an undifferentiated phenotype but in part showed
a residual tendency of cellular organization. Together, these analyses showed that the
Luc-labelled, cloned cell lines retained the main properties of wild-type cell lines.
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Figure 1. Characteristics of subcutaneous xenograft tumors generated from luciferase expressing CRC
cell line clones. (A): Lung metastasis analyzed by bioluminescence imaging ex vivo; (B): histological
examination of tumors after HE staining showing different histological phenotypes. LS1034-Luc and
SW1463-Luc: Well differentiated; display of colonic mucosa-like structures with arranged columnar

71



Cancers 2023, 15, 4122

epithelial cells (arrows), as well as goblet cells (arrowheads). LS174T-Luc and HT29-Luc: Occurrence
of pronounced goblet cell differentiation (arrowheads). LOVO-Luc and SW48-Luc: Undifferentiated;
scattered goblet cells (arrowheads). HCT116-Luc and SW480-Luc: Undifferentiated; high density of
small capillary structures (arrowheads). COLO205-Luc: Undifferentiated; high content of mitotic
figures (arrowheads). DLD1-Luc: Predominantly undifferentiated (below middle); residual tendency
of cellular organization (below right). (Scale bar: 100 μm). For higher resolution display, see original
images (Supplementary File S1).

3.2. Luciferase Expressing Cell Lines as Well as Their Derived Spheroids and Xenograft Tumors
Represent Molecular Characteristics of CRC

We performed transcriptomic analyses to characterize the Luc-CRC cell lines, de-
rived spheroids and xenograft tumors. The cell lines LS1034, SW1463, HT29, LS174T and
DLD1 were able to form compacted spheroids within one or two days. In contrast, SW48,
LOVO, HCT116, SW480 and COLO205 only formed loose aggregates in an equal time span.
Medium supplementation with collagen I and a longer incubation time was necessary to
achieve the formation of properly compacted spheroids in these models. From xenograft
tumors, the human tumor cells were extracted and mouse cells were depleted. Furthermore,
ten colorectal tumor samples and ten normal colon tissue samples from publicly available
data sources [31] were included for further comparison. First, we performed hierarchical
cluster analysis focusing on cell line specific genes and differences between the tumor and
the normal tissue samples (Figure 2A, gene set 749 in Supplementary Table S1), revealing
a close relation between the cell lines and their derived spheroids and xenograft tumors.
In addition, clustering the preclinical model systems together with the tumor samples
confirmed that the cell line-based tumor models retain specific characteristics of real tumors
when compared to normal tissue. Hierarchical cluster analysis focusing on differences
among the preclinical model systems showed that spheroids were located in the main
cluster together with cell lines when compared with xenograft tumors (Figure 2B, gene
set 152 in Supplementary Table S2). Spheroids of the cell lines SW48, LOVO, HCT116 and
COLO205 were more closely related to the cell line group than the others. All of these
four cell lines belonged to the group, which were less prone to form spheroids. Although
belonging to the same group, the cell line SW480 was able to form spheroids faster when
supplemented with collagen I, possibly explaining the clustering together with the other
group. Furthermore, to investigate the relation between the three preclinical model systems,
we performed a correlation analysis (Pearson) based on the gene set 152 (Supplementary
Table S2). This revealed that spheroids resemble xenografts more closely than 2D-cultured
cells do in each model, with SW48 as the only exception (Supplementary Table S3).
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Figure 2. Transcriptomic gene expression and analyses of relationship between cell lines, spheroid and
xenograft tumors compared to tumor and normal tissue samples. (A): Hierarchical cluster analysis
focusing on cell line-specific genes and differences between tumor and normal tissue samples (for
parameters see Section 2.3); (B): hierarchical cluster analysis focusing on differences among the preclinical
model systems (for parameters see Section 2.3); (C): examples of genes with model-dependent increasing
or decreasing expression pattern compared to tumor and normal tissue samples. Presented are signal
intensities. Microarray raw data were analyzed and normalized using the RMA algorithm as indicated
in the Materials and Methods section (Section 2.3).

Since spheroid models are described as better reflecting the characteristics of real tumor
tissue than cell lines, we questioned whether this phenomenon is associated with a specific
pattern of increased or decreased gene expression between the different model systems.
Among the 152 genes (Supplementary Table S2) used in the cluster analysis depicted in
Figure 2B, 64 genes showed an increasing and 25 genes a decreasing expression pattern.
In addition, in three cases, gene expression increased from cell lines to spheroids without
further increasing to xenograft tumors, whereas in eighteen cases gene expression decreased
without further decreasing in xenograft tumors. Overall, 72% of the 152 genes showed a
characteristic pattern indicating that spheroids, more than cell lines, comprise molecular
traits of xenograft tumors. Further clustering using a fold-change higher than 2 resulted in a
more restricted set of 51 genes, 84% of which showed the described increasing or decreasing
expression pattern (Supplementary Table S4). Further analyses in combination with the
gene expression data of the tumor and normal tissue samples revealed different, gene-
dependent relations between the preclinical models and clinical samples (Supplementary
Table S2). For example, the expression of genes such as JUN, FOS and DUSP1 showed
an increasing pattern within the model and turned out to be high in both the tumor
and normal samples (Figure 2C), suggesting an involvement of these factors in tissue-
specific differentiation processes. Decreasing pattern of gene expression within the model
associated with lower expression in the tumor and normal samples was found in genes
such as TPX2 and SMC4. These genes are involved in cell division processes, thus reflecting
the higher proliferation rate of cell lines growing on a monolayer. There were also genes
such as SNORD104 whose expression increased from cell lines to tumors, but decreased
from tumors to normal tissue, which might point to a tumorigenicity factor. In some cases,
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gene expression increased within the model, but decreased towards the clinical samples,
suggesting the involvement of pure model-specific expression.

3.3. Luciferase Expressing Cell Lines and Their Derived Spheroids and Xenograft Tumors
Represent the Main Subtypes of CRC According to the CMS Classification

Next, the CRC models were characterized according to the CMS classification using
the CMScaller [21]. In addition, the datasets were analyzed using the CRCassigner, which
was developed by Sadanandam et al. as one of the original classification systems, and
which uses a cell lineage-related classification [14]. As summarized in Scheme 1, a high
concordance between both classification systems could be observed. For example, xenograft
tumors of SW48 and LOVO were classified as CMS1 based on the CMScaller and as
Inflammatory, which is the corresponding group of the CRCassigner. The concordant
CMScaller/CRCassigner classifications of the other xenograft tumors were as follows:
LS1034 and SW1463–CMS2/TA (transit amplifying); HT29 and LS174T–CMS3/Goblet-like;
HCT116 and SW480–CMS4/Stem-like. Xenograft tumors of COLO205 could not clearly be
classified (FDR > 0.2), although there was a clear tendency (lowest distance) to CMS2/TA.
DLD1 xenograft tumors were clearly classified as Stem-like by the CRCassigner, which
correlated with the closest proximity to CMS4 (lowest distance) obtained by the CMScaller.
Interestingly, the clear classification into CMS2/TA and CMS3/Goblet-like correlated well
with the specific epithelial differentiation patterns observed in the corresponding xenograft
tumors (see Figure 1B). This suggests that the cloned tumor cells still harbor the respective
differentiation programs of their origin, which will lead to induction of differentiation
processes once they are able to grow as three-dimensional tissue. Moreover, even in those
tumors displaying an undifferentiated phenotype, residual signs of cellular differentiation
or organization can occasionally be observed.

 

Scheme 1. Molecular classification of cell lines, spheroids and xenograft tumors using the CM-
Scaller [21] and the CRCassigner [14].

Comparing the classification of the xenograft tumors with their corresponding spheroids
and cell lines, a consistent classification was observed in each model of CMS2 (LS1034,
SW1463), CMS3 (HT29, LS174T) and CMS4 (HCT116, SW480) (Scheme 1). Both cell lines of
CMS1 (SW48, LOVO) could not be clearly classified (FDR > 0.2), but they showed the closest
proximity to the CMS of the respective xenograft tumor. Notably, in the case of LOVO, the
corresponding spheroid was clearly classified into CMS1. Spheroids of COLO205 and DLD1
were assigned to CMS2 and CMS4, respectively, in accordance to the characteristic of their
respective xenograft tumors, but their respective cell lines showed the closest proximity
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to a different CMS, i.e., CMS3 for COLO205 and CMS1 for DLD1. This suggest that both
models represent samples of the mixed/intermediate group, which is also supported by
the data obtained with the CRCassigner (Scheme 1). Taken together, the established panel
of Luc-labelled, cloned cell lines represents the heterogeneity of CRC and their derived
spheroids and xenograft tumors are capable of clearly recapitulating the main subtypes of
CRC according to the CMS classification.

In a very recent study, two intrinsic epithelial tumor cell states, iCMS2 and iCMS3,
were identified in colorectal tumors, which can be used to refine the CMS classification
system [25]. In this dual system, iCMS3 comprises the microsatellite unstable (MSI-H)
tumors and one-third of the microsatellite-stable (MSS) tumors. Interestingly, the iCMS3
MSS tumors were transcriptomically more similar to MSI-H tumors than to the iCMS2
MSS tumors. In addition, iCMS3 cancers compared to iCMS2 showed worse survival after
relapse. Notably, poor prognosis CMS4 tumors were shown to contain either iCMS2 or
iCMS3 epithelium, the latter being associated with the worst prognosis of all subgroups [25].
Using the specific gene sets characterizing iCMS2 and iCMS3 provided in the original study,
we analyzed our models. We applied two different scores (see Section 2.3 for explanation) in
order to accomplish the assignment to either of the two epithelial subtypes (Figure 3). Both
of the CMS1 models, LOVO and SW48, could be classified into iCMS3, with concordance
reached between both scoring approaches. Thus, they belong to the most representative
group of CMS1 (Scheme 2). LS1034 and SW1463 were clearly classified into iCMS2, which
is also the common epithelial type of CMS2. The CMS3 model HT29 could not be clearly
assigned, since results of both scores differed (Figure 3). While it rather tends to iCMS3, it
seems to harbor characteristics of both epithelial subtypes or represents an intermediate
type. Most tumors of CMS3 are iCMS3 with MSS (Scheme 2). The other CMS3 model
LS174T, which is MSI-H, turned out to be iCMS3 and therefore belonged to the second
group of CMS3. SW480 and HCT116 were classified as iCMS2 and iCMS3, respectively, the
first therefore representing one of the two large groups of CMS4, whereas the latter belongs
to a small group of CMS4 with MSI-H (Scheme 2). Both intermediate models COLO205 and
DLD1 turned out to be iCMS3 (Figure 3). Thus, these models clearly differ in their molecular
profile. DLD1 represents the iCMS3-MSI type and combines characteristics of CMS4 and
CMS1, whereas COLO205 belongs to the iCMS3-MSS type and harbors characteristics of
CMS2/CMS3 tumors.

Figure 3. Determination of the intrinsic epithelial subtype iCMS2 vs. iCMS3. (values > 0 means
iCMS2 assignment, values < 0 means iCMS3 assignment). Sp: spheroid; X: xenograft tumor.

We noticed that neither of our initially selected models represented the second main
group of CMS4 tumors CMS4/iCMS3-MSS (Scheme 2). In order to find cell lines with
properties of CMS4/iCMS3-MSS, we analyzed a panel of 13 CRC cell lines, which were
classified as CMS4 (w/o MSI-H) in a previous study by Sveen et al. [24], using publicly
available data sources. In addition, publicly available datasets from the cell lines used in this
study were included for comparison. As shown in Figure 4, there was a high concordance
between the luciferase expressing models created in this study and the respective datasets
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from publicly available data sources regarding the iCMS determination, with COLO205 as
one exception. HT29 was confirmed to resemble iCMS3 better than iCMS2. Furthermore,
from the 13 CMS4 cell lines, 7 could be assigned to the CMS4/iCMS3-MSS type, whereas
the others were classified into iCMS2 (Figure 4). Nearest template prediction [32] was
performed in addition to the scoring approach to determine the epithelial subtype, which
confirmed the stated results (Supplementary Table S5). Based on these data, the well-
established cell lines CaCo2, SW837 and LS123 were chosen and will be included into the
panel of this study, in order to achieve and guarantee an adequate representation of the
main groups of CMS4 to complete the CRC model (Scheme 2).

 

Scheme 2. Assignment of the cell models applying combined CMS/iCMS classification. The data of
the table are from the original study by Joanito et al. [25] showing the percent distribution of subtypes
among colorectal cancer, and were complemented with the model names. Red marked cell lines are
in preparation for completion of the CRC model.

Figure 4. Determination of the intrinsic epithelial subtype iCMS2 vs. iCMS3. (values > 0 means
iCMS2 assignment, values < 0 means iCMS3 assignment). Red bars: Cell line models characterized in
this study. Green bars: Datasets from public databases (see Section 2.3). Cell lines marked by bracket
were classified as CMS4 in a previous study by Sveen et al. [24].

Thus, including the three cell lines in preparation, the completed model comprises
thirteen CRC cell lines, with four cell lines clearly representing the iCMS2 epithelial subtype
(LS1034, SW1463, SW480, CaCo2), whereas seven cell lines (LOVO, SW48, LS174T, HCT116,
DLD1, SW837, LS123) clearly belong to the iCMS3 subtype. The cell lines COLO205 and
HT29 seem to represent intermediate types with a similarity to iCMS3. Furthermore, Joanito
et al. demonstrated that one of the defining features of iCMS2 was the enrichment in copy
number variations (CNV), whereas iCMS3 tumors were diploid or showed infrequent and
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inconsistent CNV [25]. Data regarding CNV of the cell lines could be found in the study of
Berg et al., presented as a percent of the genome affected by copy number aberrations [23].
According to these analyses, CNV is consistently high in the iCMS2 cell lines LS1034,
SW1463, SW480 and CaCo2 with 42%, 27%, 38% and 47%, respectively, whereas it is low
in the iCMS3 cell lines LOVO, SW48, LS174T, HCT116 and DLD1 with 9%, 10%, 9%, 7%
and 8%, respectively. Regarding CNV, COLO205 (45%) and HT29 (43%) clearly show
features of iCMS2 confirming their nature as intermediate types harboring characteristics
of both epithelial subtypes. Thus, the prevalent iCMS2–iCMS3 dichotomy in CRC as well
as the occurrence of intermediate types, as reported by Joanito et al., is reproduced in
the cell line models. Interestingly, for three out of the seven cell lines representing the
specific CMS4/iCMS3-MSS subgroup of CMS4 tumors (Figure 4) data regarding CNV were
available in the study of Berg et al. [23], which revealed a rather high CNV, with 18%, 48%
and 30% for C11, COLO678 and SW837, respectively. Together, this shows an inconsistent
CNV among iCMS3 cell lines, which is in accordance with the inconsistent CNV among the
whole group of iCMS3 tumors, as reported by Joanito et al. [25].

3.4. Establishing a Bioluminescence Based Cytotoxicity Assay for Spheroid Models

The combined data show that tumor spheroids are more suited to be compared to
xenograft tumors in regards to characteristics of patient tumors in comparison with the
respective cell lines, making them useful models for preclinical drug research. Taking advan-
tage of the endogenous luciferase expression in these models, we set up a bioluminescence-
based cytotoxicity assay in order to be able to perform dose–response relationship studies
in analogy to typical monolayer assays. In order to determine the optimal assay conditions,
we first studied the growth kinetics of each spheroid model in order to prove the expected
correlation between cell amount and signal intensity as an important prerequisite. A direct
correlation between spheroid mass and signal intensity was confirmed in freshly formed
spheroids. However, a near linear growth kinetic in growing and compacted spheroids
is highly dependent on the amount of cells seeded at the start of the experiment. The
relative decrease in signal intensity in growing spheroids can be explained by their typical
characteristics such as the induction of oxygen and nutrient gradients leading to hypoxia,
acidosis and heterogeneous cell growth, with proliferating cells at the rim area, and less
proliferating/differentiated or even apoptotic/necrotic cells in the core area [35–37]. The
characteristic decrease in signal intensity during spheroid growth was observed in each
model to a different extent requiring a cell line-specific cell amount to be seeded at the start
of the assay (see Section 2.2).

Applying the established assay, we studied the efficacy of oxaliplatin in the spheroid
models of the whole panel. Oxaliplatin treatment induced a dose-dependent inhibition of
spheroid growth and resulted in a typical dose–response pattern. Next, IC50 values were
calculated and compared with existing data obtained from monolayer assays. This revealed
clear differences throughout the whole panel (Table 1). In general, seven of the ten used cell
lines showed a significantly reduced response to oxaliplatin, and thus a significant increase
in IC50 values, when comparing the monolayer model with the spheroid model. This effect
is of particular relevance considering that the spheroid assay comprises a prolonged drug
treatment of 7 days compared to the monolayer assay (4 days). The alterations in IC50
values also resulted in a different sensitivity pattern within the panel. For example, on the
monolayer level, SW1463, LS174T, LOVO and SW48 cells represented the most sensitive cell
lines. However, the latter two turned out to be less sensitive in our assay on the spheroid
level (LOVO: 0.13 -> 0.37; SW48: 0.08 -> 0.49), whereas the first two remained the most
sensitive towards oxaliplatin treatment, indicated by their comparably low IC50 values
(Table 1; SW1463: 0.09 -> 0.10; LS174T: 0.11 -> 0.18). The differential gain in resistance
cannot be simply explained by the differential spheroid morphology, so that, for example,
higher compactness leads to hindered drug penetration. For instance, COLO205 has the
greatest increase in IC50 value in the 3D spheroid model, but forms the least compacted
spheroids, whereas the spheroids of sensitive SW1463 and LS174T are very dense and
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compact. This suggests that the differential oxaliplatin sensitivity is instead determined by
molecular mechanisms.

Table 1. Oxaliplatin specific IC50 values (μM) ± SD obtained from cytotoxicity assays performed in
the monolayer- and the spheroid models and analysis of differences. (Monolayer data are from own
previous studies [38]). (*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ns: not significant).

Cell Line
Mean

Monolayer
SD

Monolayer
Mean

Spheroid
SD

Spheroid
p-Value Significance

LOVO 0.13 0.02 0.37 0.09 0.0009 ***

SW48 0.08 0.00 0.49 0.12 0.0005 ***

LS1034 0.30 0.05 0.37 0.14 0.3537 ns

SW1463 0.09 0.04 0.10 0.03 0.7680 ns

HT29 0.26 0.04 2.12 0.97 0.0053 **

LS174T 0.11 0.04 0.18 0.04 0.0778 ns

HCT116 0.24 0.01 1.39 0.33 0.0003 ***

SW480 0.43 0.12 2.40 0.95 0.0035 **

COLO205 0.27 0.12 12.44 6.77 0.0159 *

DLD1 2.02 0.36 4.10 0.84 0.0012 **

3.5. Analyzing Response to Oxaliplatin in Nude Mice Xenograft Tumors

We next questioned to what extent the different in vitro sensitivity of spheroids,
represented by their specific IC50 value, can predict a specific response towards oxaliplatin
treatment in vivo. We therefore analyzed the impact of an oxaliplatin therapy in selected
xenograft models (Figure 5). Clear response to oxaliplatin resulting in a substantial tumor
growth inhibition over time could only be observed in the SW1463 model. A reduced yet
still moderate overall tumor growth inhibition was achieved in the LS174T model. Tumors
of the models LOVO, SW48 and HCT116 were completely resistant to oxaliplatin treatment.
These results confirmed the lack of oxaliplatin sensitivity of LOVO and SW48 models,
which was assumed based on the analyses in the spheroid model. Together, the presented
findings suggest that IC50 values above 0.2 μM in the spheroid assay may predict a lack
of response to oxaliplatin treatment in the xenograft model. The only selective activity of
oxaliplatin within the model reflects the low overall therapeutic activity of this drug as a
single agent in CRC.

3.6. Identification of CAV1 as a Putative Marker of Oxaliplatin Resistance

Based on the proven oxaliplatin resistance, we performed analyses of differentially
expressed genes comparing the xenograft tumors of SW1463 and LS174T with those of
LOVO, SW48 and HCT116 in order to find targets associated with the differential oxaliplatin
sensitivity. CAV1 (caveolin 1) was identified as the top-ranked gene with a 400-fold
increased expression in resistant vs. sensitive xenograft tumors, (Supplementary Table S6).
Furthermore, CAV1 turned out to be the top-ranked gene (375-fold) when performing the
same analyses using the spheroid models. In the 2D models, CAV1 was the second listed
gene with a 280-fold increased expression in resistant cells. This suggests that a possible
CAV1-associated mechanism of oxaliplatin resistance is based on cell intrinsic characteristics
in one part, but is further supported under 3D growth conditions. Interestingly, CAV1
has already been linked with drug resistance in general [39] as well as specifically in
CRC [40–42]. Therefore, further analyses to explore the role of CAV1 in CRC especially
with regard to oxaliplatin-containing chemotherapy are worth performing.
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Figure 5. Antitumor activity of oxaliplatin in nude mice xenograft tumors of SW1436, LS174T, LOVO,
SW48 and HCT116. Mice were treated with NaCl (control) or oxaliplatin (8 mg/kg BW) on days 0,
7 and 14. The tumor volume increase relative to the start of treatment on day 0 is shown, as mean
values ± SD (n = 4, LS174T, LOVO, HCT116; n = 3, SW1463, SW48).

4. Discussion

Cancer is among the world’s greatest health problems and one of the leading causes
of death worldwide [7]. Since cancer itself is a very heterogeneous and still often poorly
understood disease, both from a clinical and a biological perspective, more research is
necessary to improve the prevention and treatment of this deadly disease. Cancer cell
lines are important and useful tools used especially in preclinical cancer research and
drug discovery due to their availability and comparability amongst others [1]. Due to
the heterogeneity of cancer and many new discoveries in the area of targeted medicine,
the emphasis on treatment stratification is as high as ever before. Therefore, preclinical
research needs to establish models, which are able to reproduce the distinct molecular
patterns of in vivo tumors in vitro based on standardized cancer cell lines. Promising
research was conducted on this topic in recent years, showing the potential of cancer cell
line models [5,6].

As CRC is both a leading cause of cancer mortality as well as a very diverse and
poorly understood disease, establishing an aforementioned model is of utmost importance,
in order to improve preclinical research with the aim of improving therapeutic options.
Previous research has already suggested that CRC cell lines have the potential to be
used as representative models [9]. The CMS classification established a consistent CRC
classification system, dividing CRC into several subgroups with different patterns and
properties [17]. Several studies have demonstrated significant differences concerning
outcome and efficacy of chemo- and targeted drug therapy connected to the different
molecular subtypes [24,43–48]. Interestingly, the molecular stratification of CRC is far
from finished as recent work has described the existence of two intrinsic epithelial tumor
cell states, iCMS2 and iCMS3, in colorectal tumors, therefore further refining the CMS
classification [25]. The so-called IMF-classification was introduced, which is based on the
discovered dichotomy of malignant epithelial cells, as well as the microsatellite status and
the occurrence of fibrosis inside the tumor tissue [25].
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Our panel of luciferase-labeled, cloned CRC cell lines was able to robustly recapitulate
the main subtypes of CRC based on the CMS classification in the majority of cases, both in
the spheroid as well as in the mouse xenograft model and to lesser extent in the monolayer
model. The results for the cell lines were in accordance to the results obtained for the
wild-type cell lines in previous reports [23,24]. Further characterization of the models ap-
plying combined CMS/iCMS classification including MSS/MSI status revealed the lack of
representation of the specific CMS4/iCMS3-MSS subgroup of CMS4 tumors, requiring the
complementation with further cell lines. Thus, including the three cell lines in preparation,
the completed model comprises thirteen CRC cell lines, which represent the main subtypes
of the confined CMS classification integrating the iCMS2–iCMS3 dichotomy (Scheme 2),
but also different intermediate types. Therefore, the heterogeneity of CRC is reproduced in
the cell line-derived models.

The combined data showed that 3D-spheroid cultures resemble xenografts more
closely than 2D-cultured cells do regarding primary tumor characteristics, which can be
expected. While unrestrained proliferation is the main task for cancer cells in monolayer
models, three-dimensional growth now requires cell–cell interactions and the establish-
ment of a tumor microarchitecture [49]. This notion is supported by our finding that two
genes, TPX2 and SMC4, both essential proteins involved in mitosis and cell division, are
among the genes which are downregulated in the xenograft and spheroid model, when
compared to the 2D monolayer model, whereas JUN, FOS and DUSP1, genes with a role
in differentiation processes, were among the most upregulated genes [50,51]. JUN and
FOS are part of the transcription factor AP-1, which plays an important role in cell growth
and the differentiation and overexpression of these two proteins leads to an increased
expression of other oncogenes in several cancer entities [52–54]. DUSP1 on the other hand
plays a role in carcinogenesis, tumor progression and response to anti-cancer treatment,
as expression of DUSP1 is essential for the resistance of lung cancer cell lines to cisplatin
treatment [55,56]. In addition, small nucleolar RNA SNORD104 was identified as a marker
whose expression increased from cell lines to tumors, but decreased from tumors to normal
tissue, which might point to a tumorigenicity factor in CRC. Interestingly, in a recent report,
the overexpression of SNORD104 was shown to promote endometrial cancer growth in
preclinical models in vivo and in vitro [57]. Furthermore, SNORD104 was among a marker
panel identified as a novel snoRNA expression signature associated with overall survival
in patients with lung adenocarcinoma [58]. Therefore, further investigation to explore the
role of SNORD104 in CRC is worth performing.

Tumor spheroids are useful in vitro models and are also an easier, cheaper and faster
way to create a three-dimensional preclinical model compared to mouse xenograft tu-
mors [26,27]. Recent studies conducted on spheroids also showed the ability of this three-
dimensional model to improve preclinical research in the fields of drug discovery, drug
penetration, tumor metabolism and tumor migration, among others [59–62]. Furthermore,
recent research by Koch et al. showed differences in the chemo- and radioresistance of four
established CRC cell lines between a two-dimensional monolayer and a three-dimensional
spheroid model [63]. This is in accordance with our observation regarding the different
sensitivity to oxaliplatin. Thus, the establishment of a three-dimensional structure and the
associated mechanisms may play a role in the development of chemotherapeutic resistance,
a common problem for CRC patients, as CRC is capable of a vast number of mechanisms to
achieve chemotherapeutic resistance leading to a worse outcome for patients [64]. How-
ever, the spheroid model, of course, has limitations when compared to an in vivo tumor,
as the first grows in artificial medium and completely lacks the possibility of an interac-
tion between tumor cells and cells of the tumor stroma or the immune system. Mouse
xenograft tumor models contain stromal components and a residual immune system, albeit
of murine origin, is present even in athymic mice making it an even more realistic clinical
model. Nevertheless, our in vitro spheroid model was able to predict a lack of response
to oxaliplatin treatment in vivo. CAV1 was identified as a possible marker for oxaliplatin
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resistance based on analyses in xenograft tumors, which could be completely reproduced
in the spheroid models further confirming the usefulness of the in vitro 3D model.

Analysis of the differential oxaliplatin sensitivity with respect to the molecular sub-
types represented by the models revealed some interesting clues. For example, a subset
of patients with CMS2 featured tumors benefited from oxaliplatin containing chemother-
apy regimen compared to other subtypes in the adjuvant setting [48]. Accordingly, only
one of our two CMS2 models (SW1463) turned out to be sensitive to oxaliplatin treat-
ment. Furthermore, meta analyses of results of further clinical studies, summarized in
Ten Hoorn et al. [46], revealed an overall inferior effect of oxaliplatin-containing therapy
compared to irinotecan-based therapy in all other groups than CMS2 in the metastatic
setting, with a clear superior effect of the latter in CMS4 tumors. Regarding the iCMS2-
iCMS3 dichotomy, a difference in sensitivity to the single drugs, 5-fluorouracil, SN38 and
oxaliplatin, in representative models was found to be not significant [25]. Accordingly,
among our two oxaliplatin-sensitive models, one was iCMS2 (SW1463) and one iCMS3
(LS174T). In addition, Joanito et al. evaluated two sets of genes whose expression was
correlated with drug response [25]. Interestingly, gene sets positively correlated with drug
sensitivity to FOLFOX regimen were upregulated in iCMS2 cells and genes correlated with
drug resistance were downregulated, whereas iCMS3 cells showed patterns of up- and
downregulation suggesting responsiveness to FOLFIRI [25]. This is in accordance with
the observations mentioned above, since almost all CMS2 tumors are composed of iCMS2
epithelium, whereas almost all CMS1, almost all CMS3 and half of CMS4 tumors harbor
iCMS3 epithelium (see Scheme 2). Together, this confirms the predictive value of specific
subtyping of CRC.

5. Conclusions

With our work we aimed to establish a combined 2D/3D, in vitro/in vivo model
system capable of representing the heterogeneity of CRC with regards to the molecular sub-
types, and allowing bioluminescence imaging-assisted analyses. Our work has also shown
that spheroid models do exhibit a higher similarity towards xenograft tumors compared
to monolayer models both in terms of expression patterns as well as in terms of response
to drug treatment due to the establishment of a three-dimensional structure and the as-
sociated mechanisms. Although spheroids do not completely resemble the heterogeneity
found inside xenograft and human tumor samples, they are very solid models, especially
considering their easy manageability and availability in comparison to xenograft models,
with a stronger validity when, for example, performing drug screening studies.
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Simple Summary: Colorectal cancer is one of the most significant causes of cancer mortality world-
wide. Patients stratification is central to improve clinical practice and the Consensus Molecular
Subtypes (CMS) have been validated as a useful tool to predict both prognosis and treatment re-
sponse. This is the first study describing that microRNA profiling can define colorectal cancer CMS
subtypes as well as mRNA profiling. MicroRNAs small size facilitates its analysis in serum facili-
tating a real-time analysis of the disease course. Three microRNA subtypes are identified: miR-LS
is associated with the low-stroma/CMS2-subtype; miR-MI with the mucinous-MSI/CMS1-subtype
and miR-HS with the high-stroma/CMS4-subtype. MicroRNA novel subtypes and association to the
CMS classification were externally validated using TGCA data. Analyzing both mRNAs and miRs
in the same population enabled identification of miR target genes and altered biological pathways.
A miR-mRNA interaction screening and regulatory network selected major miR targets and was
functionally validated for the miR30b/SCL6A4 pair.

Abstract: Colorectal cancer consensus molecular subtypes (CMSs) are widely accepted and con-
stitutes the basis for patient stratification to improve clinical practice. We aimed to find whether
miRNAs could reproduce molecular subtypes, and to identify miRNA targets associated to the
High-stroma/CMS4 subtype. The expression of 939 miRNAs was analyzed in tumors classified
in CMS. TALASSO was used to find gene-miRNA interactions. A miR-mRNA regulatory network
was constructed using Cytoscape. Candidate gene-miR interactions were validated in 293T cells.
Hierarchical-Clustering identified three miRNA tumor subtypes (miR-LS; miR-MI; and miR-HS)
which were significantly associated (p < 0.001) to the reported mRNA subtypes. miR-LS corre-
lated with the low-stroma/CMS2; miR-MI with the mucinous-MSI/CMS1 and miR-HS with high-
stroma/CMS4. MicroRNA tumor subtypes and association to CMSs were validated with TCGA
datasets. TALASSO identified 1462 interactions (p < 0.05) out of 21,615 found between 176 miRs and
788 genes. Based on the regulatory network, 88 miR-mRNA interactions were selected as candidates.
This network was functionally validated for the pair miR-30b/SLC6A6. We found that miR-30b
overexpression silenced 3′-UTR-SLC6A6-driven luciferase expression in 293T-cells; mutation of the
target sequence in the 3′-UTR-SLC6A6 prevented the miR-30b inhibitory effect. In conclusion CRC
subtype classification using a miR-signature might facilitate a real-time analysis of the disease course
and treatment response.

Keywords: colorectal cancer; microRNAs; microarray gene-expression profiling; molecular classifica-
tion; prognostic factors
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1. Introduction

Colorectal cancer (CRC) represents a major health problem being the third most fre-
quent cancer and the second cause of cancer death worldwide [1]. CRC is traditionally
classified according to clinical and morphological characteristics in TNM stages (American
Joint Committee on Cancer). However, the phenotypic diversity of this disease and its
clinical behavior are insufficiently explained by the simple histological grade classification
and clinical factors in current use. Our group identified four tumor subtypes by transcrip-
tional profiling [2] that largely overlaps in both, subtype distribution and clinic-biological
interpretation with the four Consensus Molecular Subtypes (CMS) [3]. Recently relevant
reports have confirmed the prognostic and predictive value of CMS subtypes in phase III
clinical trials [4–6] supporting the use of the CMS classification as a useful tool for patient
management. MicroRNAs (miRs) are noncoding small RNAs that regulate gene activity
post-transcriptionally. In cancer, they can function as oncogenes or as tumor suppressors,
and miR signatures can serve as promising biomarkers [7,8]. Previous attempts to associate
miRs and CRC subtypes have identified members of the miR-200 family downregulated in
the mesenchymal/CMS4 subtype [9,10]. However, no other associations between specific
miRs and the other three tumor subtypes have been described. In this context, using
unsupervised hierarchical clustering analysis, we have analyzed miR expression patterns in
the CRC samples used in our previous molecular subtyping study [2] to investigate if miRs
allowed CRC tumors classification as well as mRNAs. Since one miR can regulate multiple
mRNAs, analyzing both mRNAs and miRs in the same population is an excellent strategy
to determine miR target genes and identify altered biological pathways and regulatory
networks. In this study we report the identification of three miR molecular subtypes that
associate to the described CMSs. This can be an important advance, since it would allow
the search of the relevant miRs in serum/plasma of patients and their classification, as
other authors have reported for pancreatic adenocarcinoma [11], without the need to obtain
biopsies or fragments of the tumor, facilitating real-time analysis of the course of the disease
and of the response to the treatment. A just released report, develops a miR classifier using
supervised analysis to predict four miR subtypes assigned from the four mRNA CMS
subtypes [12]. Using in silico machine learning the study of Adam et al. [12] converts the
four mRNA-CMS subtypes to four miR-subtypes. This procedure is different than ours.
We used unsupervised analysis that does not constrain any subtype number or class.

2. Materials and Methods

2.1. Patients and RNA

For this study we have analyzed the same CRC patients’ cohort used for our previous
study, including RNA samples [2]. Tumor samples were taken from the Biobank of the
Hospital Clinico San Carlos. The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board and Ethics
Committee of Hospital Clinico San Carlos. RNA was extracted from fresh frozen tumor
samples using TRIZOL and the homogenizer Ultraturrax T8-S8N-5G. RNA quality was
measured with Agilent Bioanalyzer 2100. Only tumors with an RNA Integrity Number
(RIN) ≥ 6.5 were included in the analysis.

2.2. MicroRNA Expression Analysis and Tumor Classification

Agilent miR 21827 microarrays were used to analyze the expression of 939 miRs in
97 CRC tumor samples and 19 normal colon samples. Fluorescence was measured and
quantile-normalized using Agilent scanner, Feature Extraction and GeneSpring software.
176 miRs were present in 90% of the samples and therefore considered for the following
data analysis. Expression data was median centered and Average-linkage-hierarchical
clustering (centered Pearson correlation) was carried out to perform unsupervised tumor
classification considering the 176 expressed miRs in the 88 tumor samples from our previous
study [2] (complete data set was submitted to ArrayExpress (E-MTAB-9288)). Then, Differ-
ential expression between miR subtypes was analyzed using one-way ANOVA, Student
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Newman-Keuls (SNK) post hoc test and Benjamini-Hochberg multiple test correction. miRs
were considered as differentially expressed only if global p < 0.05 and fold change > 1.5
considering any of the pairwise subtype comparison.

2.3. Identification of miRs Targets and Correlation with mRNA Expression

TALASSO software [13] was used to find miR-mRNA interactions between the 1722 genes
selected from our previous study [2] and the 176 expressed miRs. In order to predict miR-
target interactions, TALASSO analyzes miRs expression changes and down-regulation of
their putative targets. As criteria to select the most relevant miR-transcript interactions, a
class comparison analysis was carried out to find differentially expressed genes between
groups.

Unpaired Student-t-test with Benjamini-Hochberg multiple correction was carried out
between normal colon tissue and tumors from the low-stroma, high-stroma and Mucinous-
MSI subtypes. Selected genes were considered as differentially expressed at p < 0.05 and
>1.5-fold expression. Then, miRNA-mRNA predicted interactions were used to construct
a regulatory network using Cytoscape software v3.6.1 [14]. Only the largest connected
component was considered for each network. Centrality measures were determined using
NetworkAnalyzer and CentiScaPe 2.2. Clusters with higher interconnections were unveiled
using ClusterViz and EAGLE algorithm with default options (CliqueSize Threshold = 3,
ComplexSize Threshold = 2). Two global centrality measurements, radiality and closeness
centrality, were considered to rank the most relevant nodes, as they reflect not only the
immediate connections of a node (the degree of each node) but the overall structure of
the network. Combining two centrality measurers increase the reliability of this kind of
approaches to predict the most relevant genes in an interaction network [15]. In our data,
those two topological parameters predicted the same upmost central genes, considering
that miRNA-mRNA interactions between the 20 upmost central nodes for each subtype
were selected as putative candidates, along with the interactions between mRNA and
miRNAs involved in the most relevant cluster for each subtype.

Potential microRNA-mRNA interaction candidates were annotated and scored using
information from [16] with two different combined validated predicting scores (Weighted
Scoring by Precision (WSP) and logistic regression score (LRS)). Previously experimen-
tally validated interactions were determined using four different databases Tarbase (http:
//www.microrna.gr/tarbase), miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/), miR-
Walk (http://mirwalk.umm.uni-heidelberg.de) and miRecords (http://miRecords.umn.
edu/miRecords), and also with significant Pearson correlation p-values from Starbase
(http://starbase.sysu.edu.cn/). MicroRNA binding sites were predicted by five differ-
ent algorithms Pita (https://tools4mirs.org/software/target_prediction/pita/), FindTar
(http://bio.sz.tsinghua.edu.cn/findtar/), Miranda (https://www.mirbase.org), rnaHybrid
(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/) and TargetScan (http://genes.mit.
edu/targetscan). MicroRNA candidate prioritization was assessed using an automated
script, considering that the last accession date, for all databases accession dates, are 21
April 2016. Candidate gene-miR interactions were scored and biologically validated in
HEK-293T cell line.

2.4. External Dataset Validation

TCGA data for miRNA and mRNA expression in CRC were downloaded from the
repository using TCGA Biolinks [17] package, RNAseq using Illumina HiSeq platform was
selected to obtain 285 samples with 20,531 features each. Normalized gene expression data
for mRNA was classified in CMS subtypes using CMSclassifier R package 3 according
to the nearest CMS criteria. Sample clustering: TCGA raw data for miRNA consisted
of 444 samples and 1046 features. Expression data from RNAseq was processed using
DESeq2 [18] to obtain normalized counts matrix. Prior to the unsupervised clustering of
samples according to miRNA expression, we performed a 3D-PCA visualization to filter
out those samples with an outlier expression pattern, following this criterion 5 samples
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from the initial dataset were excluded. Afterwards, gene features with less than 10 counts
in more than 90% of samples were filtered out, resulting in 336 features per sample. Hierar-
chical clustering on samples was performed using hclust function over log2 transformed
normalized expression matrix. Pearson correlation as distance measure and ward link-
age as agglomeration method were chosen. In order to create the heatmap visualization,
gene features were also classified using the same parameters. Finally, subtype association
between miRNA and mRNA classification was addressed using Chi-square test (χ2).

2.5. MicroRNAs Differentially Expressed between Tumor-Epithelia and Tumor-Stroma

MicroRNAs expression data were downloaded from GSE35602 [19]. Differential
expression between the epithelial and stromal components of the tumor was analyzed
by T-Test and Benjamini-Hochberg Multiple Correction Test using GeneSpring Dx 14.9
software. Selected miRs were considered as differentially expressed at p < 0.05 and >1.5-fold
expression between tumor epithelia and tumor stroma.

2.6. Evaluation of miRs-Subtypes Using miRaCL20 Classifier

MicroRNAs expression data (miRNA-Seq) from TCGA-COAD were classified using
miRaCl classifier [12] available at Github/rsmadam/CMS-miRaCl. Subtype association
between miRNA and mRNA classification was determined using Chi-square test (χ2).

2.7. Cell Lines, Transformation, Transfection and Luciferase Assay

Human HEK-293T cells were grown in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), penicillin-streptomycin, L-Glutamine
and NaPyr in a humidified incubator at 37 ◦C with 5% of CO2. HmiR0133-MR03 (hsa-miR-
30b), HmiT070741-MT06 (FAP), HmiT017418a-MT06 (SLC6A6-A), HmiT017418b-MT06
(SLC6A6-B) and miR-Control plasmids from GeneCopoeia were used. XL1-Blue bacteria
were transformed by thermal shock and DNA was extracted using Genomed kit (JETSTAR).
HEK-293T cells were cultured in triplicate in 24-well plates (0.05 × 106 cells/well). They
were transfected with miR-30b and miR-Control, using Lipofectamine 2000 (Invitrogen).
Cells were selected with puromycin and miR-30b levels was checked by RT-PCR using
Hs03303066_pri (TaqManTMPri-miR Assays) oligonucleotide and U6 as control. HEK-293T-
miR30b-expressing cells were transfected with SLC6A6-A, SLC6A6-B or FAP plasmids.
Vectors of these plasmids include Firefly and Renilla luciferase reporter genes. After 12 and
24 h Firefly and Renilla luciferases activity were measured using Dual Luciferase Assay Kit
(Promega Madison, WI, USA) in a Tecan Infinite 200 Luminometer. Luciferase intensity
measurement was performed by triplicate per condition and analyzed as described [20].

2.8. Site-Directed Mutagenesis

Predicted miR-30b interaction site at the SLC6A6 3′-UTR (2225-TGTTTAC-2231 nu-
cleotides) was modified using QuikChange site-directed mutagenesis kit (Agilent Technolo-
gies, Palo Alto, CA, U.S.A). The oligonucleotide 5′-cctatgagaatctaatgttattacaaagcaggaaa
gccgccggcc-3′ (2207 to 2251 nucleotides) was designed using QuikChange Primer Design
Tool. G2226T, T2228G and C2231A nucleotides were changed to destabilize the predicted
interaction with miR-30b.

2.9. Statistical Analysis

Luciferase analysis results were analyzed using Student’s t-test to compare mutated
vs control mir-30b. Subtype association was addressed using χ2 Chi-square test. In order
to compare the distribution of qualitative variables between groups Fisher exact test was
applied (as all the variables presented less than 5 events in at least one of the categories) and
“Mantel-Haenzel Test” for b-catenin linear categories. Mean comparison of quantitative
variables between subtypes was performed using Kruskal-Wallis test. Statistical analysis
was performed using GraphPad Prism 6 and R software.
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3. Results

3.1. Tumor Classification Based on miR Expression Patterns and Association to mRNA Subtypes

MicroRNAs arranged tumor samples in three clusters (Figure 1). There is a significant
association (p < 0.001) of the three miR subtypes with the four mRNA subtypes identified
by us [2] as well as with the CMS subtypes [3] (Table 1). Supplementary Table S1 shows
the classification of the 88 tumors from our previous study [2] using the SSP and RF [3].
miR-Cluster-1 contains 27 tumors showing a higher proportion of tumors belonging to the
low-stroma-subtype, as well as the lowest proportion of stromal component in the tumors;
consequently, we named this subtype miR-LS (miR-Low-Stroma). Additionally, miR-LS
show a significant association with CMS2 whether random forest (RF) or single sample
predictor (SSP) were used for sample classification. The highest proportion of tumors
from the mucinous-MSI-subtype as well as from CMS1 are in miR-cluster-2 which contains
31 tumors; mucinous histology as well as microsatellite instability (MSI) are associated
to this cluster, accordingly we term this cluster miR-MI (Mucinous, Instable). Cluster-3
with 30 tumors contains the highest proportion of tumors of the high-stroma-subtype
as well as the highest proportion of stroma in the tumors; we term this cluster miR-HS
(High Stroma). Like-wise, the highest proportion of tumors classified as CMS4 associate to
miR-HS subtype.

 

Figure 1. Molecular classification of tumors and miRs. Centered Pearson correlation and average-
linkage-hierarchical clustering of the 88 tumor samples and 176 miRs in three miR tumor subtypes
(miR-LS pistachio-green lines; miR-MI red lines and miR-HS light blue lines). Villamil et al. sub-
types, CMSs, BRAF mutations and MSI are specified below the tree. Low-stroma-subtype/CMS2:
pistachio green bar; mucinous-MSI-subtype/CMS1: red bar; high-stroma-subtype/CMS4: light blue;
immunoglobulin-related: purple bar; unclassified samples: beige bar. Black bar: BRAF mutated and
MSI; grey bar: BRAF wt and MSS. Heatmap intensities: 3.099 (red) to −3.099 (dark blue).
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Table 1. Association of miRNA clusters to Villamil et al. subtypes, to CMS and to clinic-biological
parameters.

miR-LS (n = 27) miR-MI (n = 30) miR-HS (n = 31) p Value

Villamil et al., 2012
Subtypes

Low Stroma 22 7 6

0.000 χ2
Immunoglobul 2 6 4

High Stroma 1 4 17
Mucinous-MSI 2 9 3

Unclassified 0 4 1

RF

CMS1 1 7 2

0.000 χ2
CMS2 15 9 10
CMS3 4 0 0
CMS4 0 3 13

NA 7 11 6

SSP

CMS1 2 8 3

0.001 χ2
CMS2 21 16 11
CMS3 1 0 0
CMS4 0 3 12

NA 3 3 5

Microsatellite
MSS 24 24 31

0.036 χ2
MSI 3 6 0

Histologic type Conventional 26 24 28
0.144 χ2

Mucinous 1 6 3

BRAF
WT 27 25 28

0.091 χ2
Mut 0 5 3

FF Stroma
Range (5–28) (5–40) (8–65)

0.000 KW
Median 7.5 13.75 22.5

FFPE Stroma
Range (5–20) (5–40) (5–60)

0.004 KW
Median 10 10 20

RF: Random Forest, SSP: single sample predictor. FF: Fresh-Frozen, FFPE: Formalin Fixed Paraffin embedded.
KW: Kruskal Wallis, χ2: Chi-Squared test.

3.2. External Dataset Validation

CRC data from TCGA were classified according to the CMS subtypes, resulting in
the following subtype distribution for the 285 samples: CMS1 (59), CMS2 (144), CMS3 (33)
and CMS4 (49). Hierarchical clustering of miRNA expression (Supplementary Figure S1)
unveiled three different groups according to miR expression with the following correspon-
dence with CMS subtypes determined by mRNA expression (Supplementary Table S2),
this association presented a significant correlation (p < 0.0001) and was performed in those
228 samples with mRNA and miRNA data.

3.3. Comparison between miR-LS, miR-HS and miR-MI with the miRCL20 Classifier Subtypes

Association between unsupervised miRNA subtypes (miR-LS, miR-HS, miR-MI) and
miRaCl20 (CMS subtyping using miRNA data) was addressed in both TCGA data and
Agilent CRC miRNA microarray dataset.

CMS distribution in TCGA data according to miRaCl20 supervised classifier resulted
in 41 CMS1, 90 CMS2, 22 CMS3, 73 CMS4 and 2 unclassified for the total 228 samples. In
the case of the microarray dataset samples were distributed: 23 CMS1, 44 CMS2, 9 CMS3
and 12 CMS4 for the 88 samples.

Association between the three miR subtypes (miR-LS, miR-HS, miR-MI) and miRaCl
CMS subtypes (Supplementary Figures S2 and S3) is significant resulting pvalue of Chi-
square test (χ2) was < 2 × 10−16 in both cases, with a wider consensus in high-stroma- and
low-stroma- subtypes (CMS4 and CMS2).

3.4. Stromal or Epithelial Localization of the miRs Differentially Expressed between Subtypes

Stroma proportion is associated to miR-subtypes (Table 1) but our study was not
designed to distinguish miR expression between the stromal or epithelial components
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of the tumor. To find the contribution of stroma or epithelia to miR expression we took
advantage of the study of Nishida et al. [19] in which miR expression was specifically
analyzed using laser microdissection, in tumor stroma and in tumor epithelia. From
the 176 miRs selected for tumor classification, 45 miRs were significantly differentially
expressed at p < 0.05 and FC > 1.5 between tumor epithelia and tumor stroma.

The 176 miRs were also arranged in clusters. Among all, three of them showed the
most significant miRs differentially expressed between clusters. Interestingly, two of these
clusters contained miRs differentially expressed between tumor-stroma and tumor-epithelia
as well (Supplementary Table S3).

MicroRNA-Cluster-A contains miRs that are down-regulated mainly in the miR-LS-
subtype and up-regulated in the miR-MI-subtype (Figure 2A). It is worth noting that among
the miRs of this cluster are viral miRs such as the human cytomegalovirus-encoded miR,
hcmv-miR-UL70-3p and the Kaposi’s sarcoma-associated herpesvirus miRs: kshv-miR-
K12-3 and kshv-miR-K12-10b. Other relevant miRs of this cluster that have been shown
to be involved in CRC progression are miR-572 [21], miR-1246 [22], and miR-494 [23].
This group of miRs does not show particularly a specific stromal or epithelial localization
(Supplementary Table S3).

MicroRNA-Cluster-B contains miRs that are particularly inhibited in the miR-HS-
subtype (Figure 2B). miR-141; miR-200a; miR-200b; miR-200c and miR-429 are in this
cluster and belong to the miR-200 family. Other relevant miRs down-regulated in this
cluster are miR-378 and miR-194. The miRs of this cluster are down-regulated in the stroma
and up-regulated in the epithelia (Supplementary Table S3).

MicroRNA-Cluster-C contains miRs that are upregulated in the miR-HS-subtype
(Figure 2C). Members of the miR-30 family and of the miR-100 family such as miR-100,
miR-125 and miR-99 are in microRNA-Cluster-C. Other relevant miRs of this cluster are
miR-143 and miR-145. These miRs are up-regulated in the stroma and down-regulated in
the epithelia (Supplementary Table S3).

3.5. Identification of miRs Targets, Selection of Relevant Interactions Associated to Subtypes and
Altered Pathways

TALASSO software [13] identified 1462 significant (p < 0.05) interactions between
176 miRs and 788 genes out of the 21615 putative interactions (Supplementary Table S4).
Out of the 788 genes showing significant miR interactions, 166 genes were differentially
expressed in Low-stroma/subtype, 158 in High-stroma/subtype and 78 in Mucinous-
MSI/subtype.

In order to identify relevant targets in miR-mRNA interaction patterns, three subtype
specific network graphs were generated using those predicted interactions with differential
expression (Supplementary Figure S4). MicroRNAs and mRNAs were represented as nodes,
connected according to the in-silico predicted interactions (p < 0.05), topological parameters
and selecting criteria for the obtained networks are available in Supplementary Table S5.

A list of 88 mRNA-miR interactions was annotated and ranked (Supplementary
Table S6), After discarding those interactions that were already biologically validated
and taking in consideration the observed expression profiles between subtypes, network
centrality values and annotated scores for each interaction, we decided to focus on studying
miR-30b-FAP and miR-30b-SLC6A6 interactions as final candidates for biological validation.
Moreover, miR-30b and their targets (FAP and SLC6A6) belong to the most connected
cluster in miR-HS interaction network (Figure 3), being the subtype featuring the lowest
survival.
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Figure 2. MicroRNAs distribution between Subtypes. (A) miRNA-Cluster-A: miRs down-regulated
in the miR-LS-subtype and up-regulated in the miR-MI-subtype (23 miRs located in the heatmap
between the 7th and the 29th miRs). (B) miRNA-Cluster-B: miRs inhibited in the miR-HS-subtype
(21 miRs located in the heatmap between the 89th and the 109th miRs). (C) miRNA-Cluster-C: miRs
upregulated in the miR-HS-subtype (29 miRs located in the heatmap between the 114th and the
142nd miRs). Heatmap intensities: 3.099 (red) to −3.099 (dark blue).
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Figure 3. Regulatory Network of the High-Stroma/CMS4-miR-HS-subtype. Nodes reflect mRNAS
(squares) and miRNAS (circles), while edges represent a predicted interaction between them. Grey
intensity is mapped to each node’s closeness centrality value, the lighter nodes being the most
marginal nodes. Square details the interactions between miR-30b and their first neighbors (those
genes with a predicted interaction) represented as striped squares.

3.6. SCL6A6 Up-Regulated in the High-Stroma/CMS4 Subtype Shows Specific Interaction with
miR-30b In Vitro

The genes SLC6A6 and FAP, that are up-regulated in the High-stroma/CMS4 subtype,
show in-silico interaction with miR-30b (Figure 3) which is down-regulated in tumors
and in the stroma versus the epithelia component of the tumor (Supplementary Table S3).
In order to validate in-silico predicted miR-transcript interactions, HEK-293T cells were
transfected with a miR-30b expression plasmid and with reporter plasmids containing
3′UTR regions of the genes SLC6A6 and FAP. Since SLC6A6 3′UTR region is too long, two
different reporter plasmids were used SLC6A6-A (between 2174 and 4573) carrying the
putative miR-30b binding site (2225-TGTTTAC-2231) and SLC6A6-B (from 4353 to 6528
nucleotide). MicroRNA-30b significantly (p = 0.0038) decrease luciferase activity of the
SLC6A6-A reporter plasmid. No significant differences in luciferase activity were found
when the putative binding site in SLC6A6-A is mutated or when plasmid SLC6A6-B lacking
miR-30b predicted binding site is used (Figure 4). When using FAP 3′UTR reporter plasmid,
no differences were found between miR-30b and miR-Control (not shown). These results
indicate that miR-30b binds to SLC6A6 3′UTR region to decrease SLC6A6 3′UTR-driven
reporter expression.
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Figure 4. miR-30b target SLC6A6 expression. Luciferase reporter assays of HEK-293 cells transduced
with pre-miR-30b or a control miR, and transfected with the 3′-UTR of SLC6A6-A wild-type, SLC6A6-
A mutated in the target sequence, or SLC6A6-B lacking the predicted miR-30b binding site. Luciferase
activity was normalized to that of control-transfected cells. Data shown as mean ± SEM of triplicates
per experiment (n = 3). ** p < 0.005.

4. Discussion

Tumor molecular classification using unsupervised analysis of gene expression is a
powerful tool that has been widely applied to distinguish tumor subgroups with shared
biological programs and similar clinical behavior [24]. In contrast, tumor subtyping using
unsupervised analysis of miR expression has been barely employed. MicroRNAs are shown
to regulate gene expression, and both, miR and mRNA expression patterns are altered
in cancer [8]. Since miRs and mRNAs coordinately regulate pathways involved in CRC,
our hypothesis was that miR profiling, could also classify CRC in molecular subtypes
and that these miR-subtypes, would probably correlate with the described mRNA tumor
subtypes [2,3]. In this report we describe the identification of three tumor subtypes based
on miR expression patterns that correlates significantly with the four tumor subtypes previ-
ously discovered [2,3]. Subtype miR-LS is associated with low-stroma-subtype and CMS2,
miR-MI is associated with mucinous-MSI-subtype and CMS1 and miR-HS is associated
with high-stroma-subtype and CMS4. Consequently, it is feasible to classify colorectal
tumors in the described molecular subtypes by miRs expression profiling. As expected,
this correlation is also maintained when the CMS are assigned using miRNA data through
miRaCl classifier. Despite of being two strategies for miR classification, they differ in their
approach; whereas miRaCl classifier is a supervised method to determine the CMS subtype
according to the miR data, our classification does not take any kind of previous assumption
to segregate samples. Despite those differences, both classifications have a high correlation
in high and low stroma subtypes, supporting the continuous flow of evidence of the role of
stroma in the course of the colorectal disease.

This could be an important advance, since it would allow in future the search of
these miRs in plasma and the classification of patients without the need to obtain tumor
fragments, facilitating real-time analysis of the course of the disease and the response to
treatment, as has been described for pancreatic adenocarcinoma [11].

MicroRNA-Cluster-A contains miRs that are up-regulated in the miR-MI-subtype and
shows high expression of miRs belonging to the herpesvirus family [25,26]. It has been
shown that viral miRs are able to modulate innate immune responses. MSI and CMS1
tumors are characterized by a higher level of tumor-infiltrating lymphocytes and activation
of immune evasion pathways. MicroRNA-Cluster-B contains miRs down-regulated in
the miR-HS-subtype. These miRs have been shown to be down-regulated in the stroma
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compared to the epithelia component of the tumor [19] as well. MicroRNA-Cluster-B
is mainly composed with members of the miR-200 family. It has been reported that
methylation of the miR-200 promoter identifies tumors of the CMS4 [9,10] this agrees with
the lower expression of these miRs in the miR-HS-subtype we found in our results. Other
relevant miRs down-regulated in this cluster are miR-378 and miR-194. Low levels of
miR-378 and miR-194 are implicated in the malignant phenotype of CRC and restoration
of their expression inhibits EMT (Epithelial-Mesenchymal Transition) and prevent the
migration and invasion of colon cancer cells [27,28].

MicroRNA-Cluster-C contains members of the miR-30 family and of the miR-100
family and are up-regulated in the miR-HS-subtype. Interestingly miRs of this cluster
have been reported to be up-regulated in the stroma and down-regulated in the epithelia
component of the tumor [19]. Overexpression of miR-100 and miR-125b has been associated
with resistance to cetuximab treatment [29]. Other relevant miRs of this cluster are miR-143
and miR-145, these miRs are frequently reduced in colon cancer [30]. We found that when
compared with normal colon tissue, tumor miR-143 and miR-145 levels are down regulated
around three-fold in clusters miR-LS and miR-MI. However, miR-143 and miR-145 are up-
regulated in miR-HS subtype when compared to the other miR clusters but still inhibited
with respect to normal colon tissue. An elegant report shows that miR-143 and miR-145 are
expressed in the intestinal mesenchyme [31]; this could explain the higher miR-143 and
miR-145 in the miR-HS-subtype.

Appropriate integration of miR and mRNA expression profiles is essential to properly
understand regulatory pathways and cellular dysfunction in CRC. Elucidating miR targets
by bioinformatic analysis permits the identification of a panoply of miR-mRNA possible
interactions that need to be ranked. Network analysis is an excellent tool for the selection
of the most significant miR-mRNA interactions. Although relevant nodes were found
in the three subtypes analyzed (low-stroma, high-stroma and Mucinous-MSI) for in vitro
validation we focused on the high-stroma-subtype associated with a poor clinical outcome.
The best scores within non-biologically-validated interactions were obtained between miR-
30b which is down-regulated in the miR-HS subtype, and FAP or SLC6A6 genes, which
are up-regulated in the high-stroma-subtype. High FAP and SLC6A6 levels are associated
with worse prognosis in CRC [32,33]. We could not biologically validate miR-30b and
FAP interaction; however, miR-30b has been shown to silence SLC6A6 expression. Since
higher levels of SLC6A6 are associated with maintenance of stem-cells properties and with
chemoresistance [33] restoring miR-30b could be a promising strategy for the treatment of
CRC patients of the High-stroma/CMS4 subtype.

5. Conclusions

In summary, we show that miR profiles classify colorectal tumors with a straight
correlation with the molecular subtypes identified by transcriptional profiling. miR-LS is
associated with low-stroma/CMS2, miR-MI with the mucinous-MSI/CMS1 and miR-HS
with high-stroma/CMS4 subtypes. Furthermore, the miR/mRNA network identified in
High-stroma/CMS4 subtype was validated for the miR30b/SCL6A4 pair. Considering
this, using miRs as a classifier provides a promising scenario, the classification of colorectal
cancer patients by miR determination in plasma, allowing the classification of patients
avoiding invasive procedures and allowing real-time analysis of the course of the disease
and response to treatment by liquid biopsy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215175/s1, Table S1: Association of Villamil et al. 2012
Subtypes and CMS; Table S2: miR vs CMS subtypes in TCGA; Table S3: miRs differentially expressed
between clusters; Table S4: TALASSO Interaction between miRs and target genes; Table S5: Topologi-
cal parameters of regulatory networks; Table S6: Final interactions; Figure S1: Hierarchical Clustering
of miR expression from the TCGA dataset; Figure S2: Association between miR subtypes (miR-LS;
miR-MI; miR-HS) and miRaCL20A (miRNA CMS); Figure S3: TCGA: Association between miR
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subtypes (miR-LS; miR-MI; miR-HS) and miRaclCL20 (CMS); Figure S4: Regulatory networks of
miRNA-mRNA interactions in each CRC tumor subtype.
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Simple Summary: Colorectal cancer (CRC) is one of the most common malignancies worldwide,
causing thousands to die each year. Its complex molecular nature leads to significant heterogeneity
and variable responses to therapy. ABC proteins, which for many years were regarded as the pillar
of the resistance to chemotherapy because they export anticancer drugs from cancer cells, have
recently been identified as interesting molecular markers associated with many other physiological
functions. We previously reported that during the phenotypic transition, CRC differentially regulates
the expression of two transporters, ABCC4 and ABCG2. In cells with a mesenchymal and invasive
phenotype, ABCC4 is upregulated, and ABCG2 is downregulated. We have therefore decided to
explore this phenomenon by analysing samples from CRC patients with high expression of either
ABCC4 or ABCG2 to determine their potential use as markers of therapeutic outcome.

Abstract: Background: Our previous findings proved that ABCC4 and ABCG2 proteins present
much more complex roles in colorectal cancer (CRC) than typically cancer-associated functions as
drug exporters. Our objective was to evaluate their predictive/diagnostic potential. Methods: CRC
patients’ transcriptomic data from the Gene Expression Omnibus database (GSE18105, GSE21510
and GSE41568) were discriminated into two subpopulations presenting either high expression
levels of ABCC4 (ABCC4 High) or ABCG2 (ABCG2 High). Subpopulations were analysed using
various bioinformatical tools and platforms (KEEG, Gene Ontology, FunRich v3.1.3, TIMER2.0 and
STRING 12.0). Results: The analysed subpopulations present different gene expression patterns. The
protein–protein interaction network of subpopulation-specific genes revealed the top hub proteins in
ABCC4 High: RPS27A, SRSF1, DDX3X, BPTF, RBBP7, POLR1B, HNRNPA2B1, PSMD14, NOP58 and
EIF2S3 and in ABCG2 High: MAPK3, HIST2H2BE, LMNA, HIST1H2BD, HIST1H2BK, HIST1H2AC,
FYN, TLR4, FLNA and HIST1H2AJ. Additionally, our multi-omics analysis proved that the ABCC4
expression correlates with substantially increased tumour-associated macrophage infiltration and
sensitivity to FOLFOX treatment. Conclusions: ABCC4 and ABCG2 may be used to distinguish
CRC subpopulations that present different molecular and physiological functions. The ABCC4 High
subpopulation demonstrates significant EMT reprogramming, RNA metabolism and high response to
DNA damage stimuli. The ABCG2 High subpopulation may resist the anti-EGFR therapy, presenting
higher proteolytical activity.

Keywords: ABCC4; ABCG2; CRC; immune cell infiltration; metastasis; CRC subpopulations; CRC
diagnostic and prognostic biomarkers

1. Introduction

Colorectal cancer (CRC) remains one of the most common cancers and the leading
cause of cancer-related mortality worldwide [1]. Currently, the most effective treatment
for CRC is primary tumour resection with adequate histologic margin, often preceded or
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followed by adjuvant chemotherapy [2]. However, approximately 25% of patients with
CRC will develop distant metastases at the time of initial diagnosis, which is the leading
cause of cancer-related mortality. Additionally, up to 50% of patients develop distant
metastases as the disease progresses. Predominant sites of CRC metastasis are the liver,
lung and peritoneum [3]. CRC is a highly heterogeneous cancer. This results from the
cellular plasticity of epithelial-to-mesenchymal transition (EMT) and the different sites
of origin. Proximal colon (right-sided) tumours predominantly show flat histology and
mutations in the DNA mismatch repair pathway. In contrast, distal colon (left-sided)
tumours show polypoid morphology and mutations related to the chromosome instability
pathway, such as KRAS, APC, PIK3CA and p53 [4]. The heterogeneity of CRC is a key
determinant of their variable response or resistance to therapy. Unfortunately, CRC is
one of the most therapy-resistant malignancies, highly unresponsive to immunotherapy
and various chemotherapeutic regimens based on a combination of 5-fluorouracil (5FU),
oxaliplatin (OxP) and irinotecan (IRI) [2,5–7]. The activity of specific transporters belonging
to the ATP-binding cassette (ABC) protein family, such as ABCB1, the ABCC family, and
ABCG2, has been closely associated with both acquired and innate chemoresistance due to
their ability to export large amounts of various xenobiotics [8,9]. In CRC, the clinical studies
focused mainly on ABCG2 and its role in irinotecan response. ABCG2 mRNA expression
was found to be lower in tumours than in normal colonic tissue. These data suggest that
primary colon cancer cells initially downregulate ABCG2 mRNA expression [10]. Our
previous studies show that CRC overexpressing Snail, an EMT-initiating transcription factor,
reveals upregulation in ABCC4 and downregulation in ABCG2 protein expression [11,12].
These results may indicate that ABCC4 expression is associated with the acquisition of
mesenchymal features by cells, and, in a more general sense, the expression pattern of
ABCC4/ABCG2 may be a determinant of phenotypic transition in CRC. We analysed
microarray data from the public Gene Expression Omnibus (GEO) database to confirm this
observation. We found that ABCC4 was significantly upregulated, whereas ABCG2 was
downregulated in primary tumours in comparison to normal colon tissue.

Interestingly, ABC expression profiles constantly change during ongoing EMT and
cancer progression. In recent years, an increasing number of studies have shown that
loss or inhibition of ABC transporters affects cellular phenotypes closely associated with
differentiation, migration/invasion and malignant potential in various cancers. In addition,
loss of ABC transporters in both xenograft and transgenic mouse models of cancer can
affect tumour initiation and progression. [13–15]. These effects are probably a result of
their normal physiological function as exporters of endogenous metabolites and signalling
molecules. Thus, ABC transporters play a much more complex role in cancer development
than drug efflux [11,16]. To further investigate the importance of ABC proteins and their
engagement in different cancer-related processes, in this manuscript, we decided to com-
pare two CRC subgroups presenting high expression levels of two ABC members: ABCC4
and ABCG2.

2. Material and Methods

2.1. Microarray Data Processing and Analysis

Gene expression profiles with accession numbers GSE18105 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE18105, accessed on 4 September 2023), GSE21510
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21510, accessed on 4 Septem-
ber 2023) GSE41568 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41568,
accessed on 4 September 2023), GSE83129 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE83129, accessed on 4 September 2023) and GSE62080 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE62080, accessed on 4 September 2023) were down-
loaded from The Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/) (accessed on 4 September 2023) and analysed similarly to our previous work [16].
All data were processed using the GEO2R online analytical tool (# Version info: R 4.2.2,
Biobase 2.58.0, GEOquery 2.66.0, limma 3.54.0) [17]. Linear projections of gene mRNA level
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were performed using Orange 3.31.1 software as previously presented by us [16]. mRNA
levels were calculated and visualised using JASP 0.16.0.0 software (https://jasp-stats.org/,
accessed on 4 September 2023), as shown in [18].

2.2. Survival Probability Analysis

The survival rate for patients presenting the high and low expression of chosen dif-
ferently expressed genes (DEGs) was analysed in CRC patients using TCGA data, the
Human Protein Atlas (www.proteinatlas.org, accessed on 4 September 2023) “pathology”
section [19,20] and TIMER2.0 platform (http://timer.cistrome.org/, accessed on 4 Septem-
ber 2023) [21]. The presented data used the best expression cut-off suggested by HPA.

2.3. Enrichment Analysis

Functional enrichment software tool FunRich (v3.1.3) (http://www.funrich.org/,
accessed on 4 September 2023) supported by the Gene Ontology (GO) (http://geneontology.
org/, accessed on 4 September 2023) database was used to compare, analyse and visualise
the Biological Process (BP) and Molecular Functions (MF) differences associated to the
proteins encoded by differently expressed genes (DEGs) in ABCC4 High- and ABCG2
High-level presenting subfractions of CRC patient samples analogues to our previous
work [22].

2.4. Hierarchical Clustering

The top proteins upregulated in both the ABCC4 High and ABCG2 High CRC sub-
groups were used to create a bidirectional hierarchical clustering heatmap with their respec-
tive mRNA levels. The hierarchical clustering method results in a hierarchical dendrogram
highlighting similarities and differences between the subjects analysed. The calculation and
visualisation were performed using the Orange open source machine learning and data
visualisation platform 3.31.1 (https://orangedatamining.com/, accessed on 4 September
2023), as previously described [16,22].

2.5. Protein–Protein Interaction Network

Protein–protein interaction (PPI) networks of top proteins expressed by ABCC4 High
and ABCG2 High CRC subgroups were created and visualised using the STRING version
12.0 online platform (https://string-db.org/, accessed on 4 September 2023) and Cytoscape
3.9.1. as presented by us [16,22,23].

2.6. Analysis of Immune Cell Tumour Infiltration

The Tumor Immune Estimation Resource—TIMER2.0 platform (http://timer.cistrome.
org/, accessed on 4 September 2023) was used to analyse immune cell infiltration. TIMER2.0
employs immunedeconv—an R package that integrates six state-of-the-art algorithms
(TIMER, xCell, MCP-counter, CIBERSORT, EPIC and quanTIseq) to statistically predict
tumour infiltration by selected immune cell types using The Cancer Genome Atlas (TCGA)
database. Similar to our previous work, the data were analysed and visualised using the
xCell algorithm [22].

2.7. Statistics

Statistical evaluation was performed using the normality test (Shapiro–Wilk), followed
by the Student’s t-test (in the case of normally distributed data) or the Mann–Whitney U
test (in the case of non-normally distributed data). Calculations and graphs were performed
using Orange data mining 3.31.1 software and JASP 0.16.0.0 software; p values < 0.05 were
considered statistically significant for all analyses: * p < 0.05; ** p < 0.005; *** p < 0.001,
NS-not statistically significant. Pearson’s linear correlation analysis was performed using
JASP 0.16.0.0 software with Pearson correlation coefficient presented as colour intensity
and numerical values on the correlation matrix. The correlation statistical value was shown
as follows: * p < 0.05; ** p < 0.005; *** p < 0.001, no indication—not statistically significant.
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3. Results

3.1. Analysis of ABCC4 and ABCG2 Expression Level in CRC

Data containing mRNA levels of approximately 40,000 “hits” detected by microarrays
chips in colorectal cancer tumours and normal colon tissue were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 4 September 2023). Two
datasets were analysed: GSE18105 (composed of n = 111) and GSE21510 (composed of
n = 148). Expression of ABCC4 and ABCG2 in CRC samples and normal colon tissue
was analysed in each dataset independently, as shown in Figure 1A–D. ABCC4 presents
significantly higher expression in CRC samples than in normal colon tissue, whereas
ABCG2 expression is considerably higher in normal colon tissue than in CRC. Interestingly,
the TIMER2.0 platform [24]-based analysis of the TCGA database proves that neither
ABCC4 (Figure 1E) nor ABCG2 (Figure 1F) expression level presents any statistically
significant association with survival rate. Additionally, further analysis performed with the
TIMER2.0 platform and TCGA database proved that expression of the mutated (including
any type of mutation) variant of ABCC4 negatively correlates with the expression level of
wild type (WT) of ABCC4 (Pearson correlation p = −0.233) and positively with ABCG2
(Pearson correlation efficiency p = 0.666) (Figure 1G,H).

3.2. Correlation of Immune Cell Infiltration with ABCG2 and ABCC4 Expression Levels in CRC

The tumour microenvironment (TME) is composed of cancer cells, normal cells (tissue
of origin), cancer-associated fibroblasts (CAFs) and various immune cells such as CD8
+ T cells, natural killer cells (NK cells), regulatory T cells (Treg cells), tumour-associated
macrophages (TAM), and Dendritic cells (DC). The cellular components of TME regu-
late tumour survival and promote metastasis. In recent years, many studies have in-
vestigated the role of tumour infiltration by immune cells [25,26]. In the case of CRC,
intratumoral infiltration by CD8+ and CD4+ T cells is concerned with a favourable prog-
nostic factor increasing patients’ overall survival rate, whereas M2 tumour-associated
macrophages (M2-TAMs) infiltration promotes cancer cell proliferation and increases
metastatic potential [27–29]. Using the TIMER2.0 platform and gene-signature-based
algorithm—xCELL, we analysed the correlation of ABCC4 and ABCG2 mRNA levels
with immune cell infiltration (Table 1 and Supplementary Figure S1) [24,30]. Our analysis
proves that both ABCC4 and ABCG2 levels present a negative correlation with CD4+ and
CD8+ T-cell infiltration but a positive correlation with CAFs infiltration. Interestingly, the
mRNA level of mutated ABCC4 shows a high positive correlation with CD4+ (CD4+ Th2
log2FC = 0.565 (Figure 2A) and CD4+ Th1 log2FC = 0.805 (Figure 2B)) and CD8+ (CD8+
central memory log2FC = 1.401 (Figure 2C) and CD8+ naive log2FC = 0.526 (Figure 2D)) T-
cell infiltration, with no impact on other immune cells.

3.3. Identification of ABCC4 and ABCG2 High Expression CRC Subsets

Even though ABCG2 presents significantly lower expression in CRC samples than in
the normal colon, a small subfraction showing a high mRNA level is observed. Additionally,
CRC cells present various ranges of ABCC4 expression. Thus, we decided to identify and
analyse differences between CRC subfractions presenting high ABCC4 (ABCC4 H) and
high ABCG2 (ABCG2 H) levels. First, we have selected two CRC subgroups for each of
the analysed datasets using Orange data mining 3.31.1 software and a VizRank-based
algorithm (“linear projection”). The first subgroup presented a high ABCC4 level and low
ABCG2 level, whereas the second subgroup presented the opposite expression pattern,
as shown in Figure 3A,B [31]. Next, gene expression patterns specific to each subgroup
were compared using the online tool GEO2R with an adjustable p value < 0.05 for every
dataset (Figure 3C). This analysis provided 867 upregulated genes for the ABCC4 High
subgroup and 918 upregulated genes for the ABCG2 subgroup in the GSE18105 dataset
and analogously 970 and 1275 for GSE21510 (Figure 3D). Finally, using the Venn Diagram,
704 genes significantly upregulated in the ABCC4 High CRC subgroup and 772 genes
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upregulated in ABCG2 HIGH CRC subgroups were identified in both datasets, as shown
in Figure 3E.

Figure 1. ABCC4 and ABCG2 involvement in CRC progression. ABCC4 and ABCG2 expression
levels in “CRC” and noncancerous “Normal” colon tissue were calculated using data from GSE18105
(A,C) and GSE21510 (B,D) and visualised using Orange data mining 3.31.1 software. A normality
test (Shapiro–Wilk) was performed, followed by the Mann–Whitney U test ** p < 0.005; *** p < 0.001;
ABCC4 (E) and ABCG2 (F) impact on survival rate was analysed using TCGA data and visualised by
the TIMER2.0 platform. The correlation of ABCC4 (G) and ABCG2 (H) wild-type (WT) and mutated
variants was calculated using TCGA data and visualised by the TIMER2.0 platform. Wilcoxon test
was performed, and the p-value is indicated in the figure.
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Table 1. Correlation of immune cell infiltration of CRC tumour subfractions presenting high ABCG2
or ABCC4 expression level. Data were obtained using the TIMER2.0 platform and TCGA database.

Infiltrating Cells Correlation Rho p

ABCC4 H
CAFs 0.188 1.72 × 10−3

Neutrophils 0.226 8.01 × 10−6

NK −0.181 2.54 × 10−3

Macrophage 0.326 3.26 × 10−8

Macrophage M1 0.358 9.51 × 10−10

Macrophage M2 0.304 2.86 × 10−7

CD8+ T-cell effector
memory −0.119 4,87 × 10−2

CD8+ T-cell-naive −0.143 1.75 × 10−2

CD4+ T cell Th1 −0.207 5.41 × 10−4

CD4+ central memory −0.127 3.50 × 10−2

ABCG2 H
CAFs 0.182 2.48 × 10−3

Neutrophils 0.119 4.89 × 10−2

Class-switched
memory B cells −0.228 1.35 × 10−4

CD8+ T-cell central
memory −0.14 2.04 × 10−2

CD4+ T-cell effector
memory −0.153 1.12 × 10−2

CD4+ T cell Th2 −0.143 1.75 × 10−2

CD4+ T cell
non-regulatory −0.138 2.20 × 10−2

3.4. Enrichment Analysis of DEGs Unique to ABCC4 High or ABCG2 High CRC Subsets

Genes upregulated in ABCC4 High and ABCG2 High CRC subgroups were analysed
using the FunRich platform supported by the Gene Ontology database to verify differences
in enrichment of Biological Processes (BP) (Figure 4A) and Molecular Functions (MF)
(Figure 4B). The ABCC4 High CRC subgroup presents significantly higher enrichment in
processes related to DNA and RNA binding, regulation of gene expression and response
to DNA damage. In contrast, the ABCG2 High CRC subgroup demonstrates significant
enrichment in positive regulation of apoptotic processes, cell adhesion, extracellular matrix
decomposition, actin filament assembly and cell migration.

3.5. Correlation of ABCC4 and ABCG2 Expression Levels with Major Dysregulated Protein Hubs

Having established enriched biological processes, we shifted our focus to major dys-
regulated protein hubs. Thus, data containing upregulated genes from each subgroup were
used to draw a protein–protein interaction (PPI) network via the STRING (ver. 12.0) plat-
form (https://string-db.org/, accessed on 4 September 2023) (supplementary Figure S1).
Next, the PPI network was analysed using Cytoscape 3.9.1 (https://cytoscape.org/, ac-
cessed on 4 September 2023) to identify the top 10 protein hubs (for each subgroup) with
the highest number of direct protein interaction counted as the highest number of drawn
“edges” (Table 2), similar to our previous study [16]. This type of analysis provides insight
into critical proteins that, by direct interactions, influence various processes and thus poten-
tially can be utilised as molecular targets for future therapies. To further analyse and verify
the correctness of chosen protein hubs, a hierarchical clustering analysis of data consisting
of mRNA levels of 20 chosen DEGs from all CRC patients (GSE18105 and GSE21510) was
performed (Figure 5A). Step by step, this analysis connects most similar subjects, forming
clusters (branches) until all clusters are defined. The obtained hierarchical dendrogram
proves that protein hubs upregulated in ABCC4 High CRC subgroups cluster together
with ABCC4 on one arm (branch). In contrast, protein hubs were observed for the ABCG2
High subgroup on the second arm, together with ABCG2. Additionally, using Orange data
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mining 3.31.1 software and the FreeViz tool, ABCC4 High and ABCG2 High CRC patients
cluster differentiation, using top protein hubs, was visualised (Figure 5B). Next, the Pear-
son correlation matrix was created to analyse the mutual interaction of genes that encode
the chosen top networking protein hub (Figure 5C). Interestingly, selected protein hubs
demonstrate a substantial amount of interaction with each other, forming stable clusters
presented in Figure 6. The cluster formed for the CRC subgroup characterised by high
ABCC4 (Figure 6A) expression enriches biological processes such as GO:0003723—RNA
binding and GO:0003676—Nucleic acid binding (according to the Gene Ontology database).
Arguably, two of the most important proteins of this cluster are RPS27A and NOP58. RPS27
shows the highest number of edges, directly interacting with 10% of all proteins observed
in this group (87 out of 867 proteins), whereas NOP58 presents the highest connectivity
inside the cluster. Both proteins play important antiapoptotic roles [32,33]. On the other
hand, the ABCG2 High cluster (Figure 6B) presented enrichment in GO:0046982—Protein
heterodimerisation activity, GO:0046983—Protein dimerisation activity and GO:0005515—
Protein binding.

 

Figure 2. Correlation of mutated ABCC4 gene expression and immune cell infiltration of CRC.
ABCC4 presents a high positive correlation with CD4+ Th2 log2FC = 0.565 (A) and CD4+ Th1
log2FC = 0.805 (B), CD8+ central memory log2FC = 1.401 (C) and CD8+ naive log2FC = 0.526 (D) T-cell
infiltration. The calculation was performed using TCGA data and visualised by the TIMER2.0
platform. Wilcoxon test was performed, and the p-value is indicated in the figure.
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Figure 3. Identification of CRC subgroups presenting high ABCC4 (ABCC4 High) and ABCG2
(ABCG2 High) expression levels and related DEGs. Identification of CRC samples belonging to
each subgroup using GSE18105 (A) and GSE21510 (B) datasets. Visualisation performed using a
2D VizRank-based algorithm and Orange data mining 3.31.1 software. Visual representation of
differently expressed genes (DEGs) for ABCG2 High and ABCC4 High CRC subgroups in GSE18105
and GSE21510 analysed using the GEO2R online tool (C). Venn diagram of selected ABCG2 High
and ABCC4 High DEGs from datasets GSE18105 and GSE21510 (D). Venn diagram presenting no
mutual DEGs between ABCC4 High and ABCG2 High subgroups (E).
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Figure 4. Enrichment analysis of ABCC4 High and ABCG2 High CRC subgroups related to DEGs.
Data were analysed and visualised using the FunRich platform supported by the Gene Ontology
database, depicting the total percentage of subgroup-specific DEGs enriched in Biological Process
(A) and Molecular Functions (B).

Table 2. Main protein hubs observed among DEGs of ABCC4 High and ABCG2 High CRC subgroups.

Gene Protein Number of Edges

ABCC4 H
RPS27A ribosomal protein S27a 87
SRSF1 Serine/arginine-rich splicing factor 1 56

DDX3X DEAD-box helicase family member 50
BPTF bromodomain PHD finger transcription factor 44

RBBP7 RB Binding Protein 7, Chromatin Remodeling Factor 44
POLR1B RNA Polymerase I Subunit B 44

HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1 43
PSMD14 proteasome 26S subunit, non-ATPase 14 42
NOP58 ribonucleoprotein 42
EIF2S3 eukaryotic translation initiation factor 2 subunit gamma 41

ABCG2 H
MAPK3 mitogen-activated protein kinase 3 53

HIST2H2BE histone cluster 2 H2B family member E (H2B clustered histone 21) 34
LMNA Lamin A/C 29

HIST1H2BD histone cluster 1 H2B family member D (H2B clustered histone 5) 29
HIST1H2BK histone cluster 1 H2B family member K (H2B clustered histone 12) 29
HIST1H2AC histone cluster 1 H2A family member C (H2A clustered histone 6) 29

FYN FYN proto-oncogene, Src family tyrosine kinase 28
TLR4 toll-like receptor 4 28
FLNA filamin A 28

HIST1H2AJ histone cluster 1 H2B family member J (H2A clustered histone 14) 27

Additionally, using the STRING platform, we have added known proteins that interact
with selected clusters, thus filling the gaps to obtain major KEGG pathways, with PPI
enrichment p-value for ABCC4 High and ABCG2 High respective subgroups: 1.77 × 10−14
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and 4.28 × 10−5, respectively. The obtained data are shown in Table 3. Interestingly,
the obtained protein hub cluster network for the ABCC4 High subgroup presents high
involvement in proteasome functions and RNA polymerase functions, whereas the protein
hub cluster network for the ABCG2 High subgroup—in MAPK signalling pathway, focal
adhesion, PD-L1 expression and PD-1 checkpoint pathway, platelet activation, natural-
killer-cell-mediated cytotoxicity, apoptosis and insulin signalling pathway.

 

Figure 5. ABCC4 and ABCG2 correlation with top hub proteins selected from ABCC4 High and
ABCG2 High CRC subgroups related to DEGs. Hierarchical clustering analysis of chosen top protein
hubs, selected from DEGs using mRNA values of CRC patients from GSE18105 and GSE21510 datasets
visualised using Orange data mining 3.31.1 software (A). Radial visualisation of clusters created
by chosen top networking DEGs visualised using the FreeViz tool and Orange data mining 3.31.1
software and mRNA values of CRC patients from GSE18105 and GSE21510 datasets (B). Pearson
correlation matrix of ABCC4, ABCG2 and chosen DEGs, using mRNA values of CRC patients from
GSE18105 and GSE21510 datasets, calculated and visualised using JASP 0.16.0.0 software. * p < 0.05;
** p < 0.005; *** p < 0.001 (C).
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Figure 6. Protein–protein interaction network (PPI) of ABCC4 High (A) and ABCG2 High (B) CRC
subgroups related to top networking DEGs. Calculated using the STRING platform and visualised
by Cytoscape 3.9.1.

Table 3. Main protein hubs for ABCC4 High and ABCG2 High CRC subgroup KEGG enrichment.

KEGG ID Description Strength False Discovery Rate

ABCC4 H
hsa03050 Proteasome 2.14 2.26 × 10−9

hsa05012 Parkinson’s disease 1.46 5.28 × 10−7

hsa05017 Spinocerebellar ataxia 1.64 5.28 × 10−7

hsa05014 Amyotrophic lateral sclerosis 1.29 3.48 × 10−6

hsa05020 Prion disease 1.35 1.47 × 10−5

hsa05016 Huntington’s disease 1.29 2.41 × 10−5

hsa05010 Alzheimer’s disease 1.22 5.63 × 10−5

hsa05169 Epstein–Barr virus infection 1.31 0.0018
hsa03020 RNA polymerase 1.8 0.0192
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Table 3. Cont.

KEGG ID Description Strength False Discovery Rate

ABCG2 H
hsa05034 Alcoholism 1.74 2.90 × 10−7

hsa05133 Pertussis 1.95 4.60 × 10−7

hsa05322 Systemic lupus erythematosus 1.85 9.16 × 10−7

hsa04620 Toll-like receptor signalling pathway 1.81 1.02 × 10−6

hsa05132 Salmonella infection 1.49 2.75 × 10−5

hsa04064 NF-kappa B signalling pathway 1.71 5.70 × 10−5

hsa04217 Necroptosis 1.54 0.00022
hsa05203 Viral carcinogenesis 1.46 0.00042
hsa05205 Proteoglycans in cancer 1.43 0.00049

hsa05235 PD-L1 expression and PD-1 checkpoint
pathway in cancer 1.65 0.0014

hsa05142 Chagas disease 1.6 0.0018
hsa05145 Toxoplasmosis 1.57 0.0020
hsa05135 Yersinia infection 1.5 0.0030
hsa05161 Hepatitis B 1.39 0.0056
hsa05152 Tuberculosis 1.37 0.0059
hsa05164 Influenza A 1.38 0.0059
hsa04621 NOD-like receptor signalling pathway 1.35 0.0060
hsa05130 Pathogenic Escherichia coli infection 1.32 0.0070
hsa04510 Focal adhesion 1.3 0.0078
hsa05131 Shigellosis 1.25 0.0098
hsa05134 Legionellosis 1.68 0.0137
hsa04010 MAPK signalling pathway 1.13 0.0185
hsa04520 Adherens junction 1.59 0.0185
hsa04664 Fc epsilon RI signalling pathway 1.6 0.0185
hsa05140 Leishmaniasis 1.57 0.0185
hsa05221 Acute myeloid leukemia 1.6 0.0185
hsa05220 Chronic myeloid leukemia 1.54 0.0193
hsa04012 ErbB signalling pathway 1.5 0.0226
hsa04660 T-cell-receptor signalling pathway 1.41 0.0313
hsa05146 Amoebiasis 1.42 0.0313
hsa04066 HIF-1 signalling pathway 1.39 0.0327
hsa04725 Cholinergic synapse 1.38 0.0341
hsa04071 Sphingolipid signalling pathway 1.35 0.0366
hsa04380 Osteoclast differentiation 1.33 0.0385
hsa04611 Platelet activation 1.33 0.0385
hsa04650 Natural-killer-cell-mediated cytotoxicity 1.33 0.0385
hsa04210 Apoptosis 1.3 0.0418
hsa04910 Insulin signalling pathway 1.29 0.0418
hsa04145 Phagosome 1.26 0.0456
hsa04072 Phospholipase D signalling pathway 1.25 0.0475

3.6. Analysis of Potential CRC Metastatic Organotropism Biomarkers

Finally, we decided to verify whether mRNA levels of ABCC4, ABCG2 and genes
encoding major protein hubs for their respective CRC subgroups (ABCC4 High and ABCG2
High) can be used to predict metastatic organotropism. Thus, we have downloaded and
analysed transcriptomic data from the GSE41568 dataset (composed of n = 133), consisting
of primary CRC samples and CRC metastases to the liver, lung and omentum [34]. Samples
were divided into four subgroups, Primary, Lung Met., Liver Met. and Omentum Met., and
analysed using ANCOVA with Post Hoc Test and Tukey correction. The ABCC4 mRNA
level presents no statistically significant changes that could distinguish metastatic sites.
However, ABCG2 and six other genes encoding protein hubs (FYN, FLNA, POLR1B, RBBP7,
EIF2S3 and PSMD14) were found to be potentially valuable (Figure 7A). According to our
analysis, upregulation of ABCG2, FLNA and FYN with simultaneous downregulation
of RBBP7 is characteristic of CRC metastasis to the liver. Thus, we may assume that
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the ABCG2 High CRC subgroup prefers liver metastasis. Additionally, POLR1B and
EIF2S3 expression downregulation compared to primary CRC and liver metastasis was
observed for CRC samples resected from the lung. Furthermore, FYN upregulation is also
significant for omentum, peritoneal and abdominal wall metastasis. This metastatic site
lies near the primary CRC tumour (compared to distant metastasis to the lungs or liver).
It requires a different form of cancer cell migration, preferring single-cell mesenchymal
migration focusing on adhesion/deadhesion and active decomposition of extracellular
matrix (ECM). The protein encoded by FYN is highly involved in hsa04510 (focal adhesion)
and hsa04520 (adherent junctions), as well as hsa04611 (platelet activation). Thus, to
further combine the obtained data, we have developed a metastasis site discriminative
model using Orange data mining 3.31.1 software and a linear projection tool based on the
VizRank algorithm (Figure 7B). This model places each data point on the visualisation
matrix, simultaneously analysing each attribute value (gene expression). All attributes—
chosen genes—are identified on a ring surrounding the visualisation space and equally
separated from one another (in this instance, 450 or 0.785 RAD); thus, the greater the
attribute value, the closer the data point is drawn in 2D space [31]. Most primary CRC is
located inside the triangle created by EIF2S3, RBBP7 and FYN and most Lung metastasis
inside the triangle formed by ABCC4, PSMD14 and FLNA. The proposed method could
potentially be beneficial in predicting (with some probability) metastatic progression after
primary CRC biopsy. In addition, using the TIMER2.0 platform [24] and data from the
TCGA database, we analysed the correlation between the expression levels of FYN, FLNA,
POLR1B, RBBP7, EIF2S3 and PSMD14 and the survival of CRC patients (Figure 8). The
average 5-year survival rate for CRC is 60%, a high expression of FLNA and POLR1B
represents a significantly lower probability of the survival of CRC patients’, but only FLNA
can be considered as a prognostic biomarker with HR = 1.25 and p = 0.025.

3.7. Analysis of ABCC4 and ABCG2 Potential Chemotherapy Response Predictive Capabilities

Finally, to evaluate differences between ABCC4 and ABCG2 mRNA expression and
response to the main anti-CRC chemotherapy regimens, two datasets containing mRNA
expression levels of CRC patients treated with FOLFIRI (GSE62080 consisting of n = 21;
12 resistant and 9 sensitive) and FOLFOX (GSE83129 consisting of n = 23; 12 resistant,
21 sensitive) were downloaded from the GEO database. Data were analysed using pre-
viously selected and set gates for CRC subpopulations with high expression of ABCC4
and ABCG2 using Orange data mining 3.31.1 software and a VizRank-based algorithm
(“linear projection”) (Figure 9A,B). The ABCC4 High subgroup consists mainly of FOLFOX-
sensitive samples and moderately of FOLFIRI-resistant samples, whereas the ABCG2 High
subgroup is an even mix of samples with different chemotherapy responses. In addition,
analysis of ABCC4 and ABCG2 mRNA expression levels revealed no statistically significant
differences between FOLFIRI (Figure 9C)- and FOLFOX (Figure 9D)-resistant and -sensitive
CRC patients.
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Figure 7. Selected DEGs expression level and its implication as metastatic CRC organotropism
biomarkers. mRNA expression levels of selected DEGs in primary CRC, liver, lung and omentum
metastases. Data downloaded from GSE41568 were calculated and visualised using JASP 0.16.0.0
software. A normality test (Shapiro–Wilk) was performed, followed by the Mann–Whitney U test
(A)—linear projection model of primary and metastatic CRC based on the mRNA expression level of
chosen DEGs. GSE41568 data were analysed and visualised using Orange data mining 3.31.1 software.
Dashed lines presents region of interest formed by chosen DEGs mRNA expression consisting mostly
of primary (orange) and metastatic (red) CRC (B).
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Figure 8. Selected DEGs’ impact on CRC patients’ survival rate. RBBP7, FLNA, POLR1B, EIF2S3,
PSMD14 and FYN impact on survival rate was analysed using TCGA data and visualised by the
TIMER2.0 platform. Dashed lines indicate 5-year survival rate (60 months) for CRC samples charac-
terised by low (blue) or high (red) expression of chosen DEGs.
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Figure 9. Chemotherapy response predictive capabilities of ABCC4 and ABCG2 mRNA expression.
Data containing FOLFIRI (A)- and FOLFOX (B)-resistant and -sensitive patients’ responses were
downloaded from the GEO database (GSE62080 and GSE83129, respectively). Visualisation was
performed using a 2D VizRank-based algorithm and Orange data mining 3.31.1 software. Dashed lines
present gates set for ABCG2 High and ABCC4 High subgroups. mRNA expression of ABCC4 I ABCG2
in FOLFIRI (C)- and FOLFOX (D)-treated CRC patients’ sample. Visualisation was performed using
Orange data mining 3.31.1 software and the GEO database (GSE62080 and GSE83129, respectively).
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4. Discussion

CRC, being one of the most common cancer types, contributes highly to cancer-related
mortality. One of the most critical reasons is high molecular heterogeneity within CRC,
resulting in substantial differences in treatment response to both chemo- and immune-
therapy [4]. Regarding various immunotherapy schemes, CRC is considered one of the
most resistant cancer types. Approximately 40–50% of CRC presents resistance to anti-
epidermal growth factor receptor (anti-EGFR) therapy, and only 5–10% of metastatic CRC
shows a positive response to anti-PD-1/PD-L1 (anti-programmed death-1/programmed
cell death ligand 1) therapy [35,36]. Thus, standard first-line treatment for CRC includes
conventional, reasonably inexpensive, tissue non-specific chemotherapy based on a mix
of fluorouracil and oxaliplatin or irinotecan, often leading to acquisition resistance to its
components by CRC cells [5]. Different mechanisms of chemoresistance, such as systems
of DNA damage repairs or overexpression of antiapoptotic factors, have been identified.
However, one of the most extensively studied mechanisms is the expression of anticancer
drug exporters belonging to the ABC transporter family [11,23,37]. In the case of CRC,
the significance of ABCG2 protein level as the patient’s potential predictive marker of
resistance to irinotecan was examined. ABCG2 protein expression analysed by IHC showed
that ABCG2-positive cells were mainly positioned in the cancer’s invasion front, and strong
membranous staining was significantly correlated with a higher Dukes’ stage and distant
metastases [10,38]. On the other hand, high ABCG2 expression does not contribute to
higher patient mortality and negatively correlates with EMT advancement [11]. In addition,
our analysis showed that ABCG2 expression did not correlate with response to FOLFOX or
FOLFIRI treatment. There were no statistically significant changes in mRNA expression
in the cohorts of responding and non-responding patients. In contrast, CRC patients
with high ABCC4 expression and low ABCG2 expression may be considered sensitive to
FOLFOX therapy and resistant to the FOLFIRI regimen. This is probably due to substrate
specificity. Both proteins transport irinotecan, but neither transports oxaliplatin [39]. Recent
studies prove that ABC transporters use mitochondrial-derived ATP, but not ATP from
glycolysis, as the primary source of energy for drug efflux in chemo-resistant cancer
cells. Importantly, often observed among various cancer types, a metabolic switch toward
aerobic glycolysis (known as the Warburg effect) renders ABC proteins rather non-related
to chemoresistance [37,40,41]. Thus, the correlation between the level of ABC proteins and
their actual molecular function in cancers remains to be proven.

Our multi-omics analysis proves that CRC patients’ sample subfractions, expressing a
high level of either ABCC4 or ABCG2 followed by a low mRNA level of the second corre-
sponding ABC transporter, are presenting different molecular and physiological functions,
even though both transporters present to some extent substrate homology including active
transport of irinotecan and its active metabolite SN38 [39]. The ABCG2 High CRC subgroup
presents significant enrichment in positive regulation of apoptotic processes, cell adhesion
extracellular matrix decomposition, actin filament assembly and cell migration. On the
other hand, dysregulated genes in the ABCC4 High CRC subgroup significantly enrich
processes related to DNA and RNA binding, regulation of gene expression and response
to DNA damage. This observation corresponds to our previous findings, in which we
have proven that during phenotypical reprogramming such as EMT, mesenchymal pheno-
type presenting CRC cells upregulate ABCC4 expression, simultaneously downregulating
ABCG2 expression [11]. Differences in the number and composition of EMT transcription
factors binding sites for both ABC transporters may explain their various expression during
EMT. ABCC4 poses 11 E-Box sequences and 3 TWIST binding sites, whereas ABCG2—only
6 E-Box sequences and 1 TWIST binding site [42].

Similar CAFs, Neutrophils, CD8+ and CD4+ T-cell infiltration patterns may charac-
terise both analysed CRC subfractions. However, ABCC4 expression positively correlates
with M2 macrophage infiltration, whereas ABCG2 expression level does not impact this
process. Polarised M2 macrophages increase stemness and metastatic ability of CRC cells
by secreting TGF-β2 and chemokine C-X-C-Motif Ligand 12 (CXCL12), which activates the
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WNT/β-catenin pathway, thus promoting EMT [43]. Therefore, we suggested that due to
their complex functions, ABC transporters could be considered to represent markers of spe-
cific molecular alterations or advanced reprogramming that accompany cancer progression
and that more attention should be placed on the most dysregulated genes and their role in
the regulation of particular processes in each analysed subpopulation.

Top networking (top hub) proteins encoded by upregulated genes in the ABCC4
High CRC subgroup are mainly involved in the regulation of nearly all stages of RNA
metabolism (transcription, pre-mRNA splicing, RNA export and translation), chromatin
metabolism, transcription factors binding and construction of small nucleolar ribonucleo-
proteins (snoRNPs) complex (composed of core RNP proteins such as NOP58, and rRNA
such as SNORD27, which facilitates 2′-O-Me of A27 on 18S rRNA) [33,44,45]. Gene ex-
pression and protein levels of NOP58, BPTF and SRSF1, HNRNPA2B1 correlate with CRC
progression, increased proliferation and metastasis, TNM staging, and poor prognosis
of CRC patients. RNA-binding protein HNRNPA2B1 is involved in the transportation
and posttranscriptional regulation of numerous cancer-progression-related micro RNA
(miRNAs) and long noncoding RNA (lncRNA) through binding of the specific motifs
GGAG/CCCU such as miR-934, Linc01232, miR100HG, H19 and RP11 [46,47]. Recently,
it was proven that in the case of CRC, HNRNPA2B1 mediated miR-934 packaging into
exosomes that macrophages take up, leading to their polarisation into TGF-β2-secreting
M2 macrophages [47]. The protein encoded by the SRSF1 gene promotes alternative
splicing of BIM (also known as BCL2L11) and BIN1—isoforms that lack pro-apoptotic
functions [48]. BPTF promotes CRC cell cycle progression, thus CRC proliferation and
overall tumour progression by targeting Cell division cycle 25 A (Cdc25A) [49]. NOP58
is a ribonucleoprotein that is a central component for several box C/D small nucleolar
RNAs (snoRNAs), such as U3, U8 and U14. Its overexpression is associated with poor
cancer patients’ survival, as it may regulate cell cycle mitosis, mitotic G1/S phase, mi-
totic G2/M phase, Rb-1 pathway, M phase, IL-10 signalling, pathways via regulation of
TP53 and P53 activity [50]. Interestingly, lncRNA ZFAS1, one of the significant EMT in-
ducers in CRC, promotes small nucleolar RNA-mediated 2′-O-methylation via NOP58
recruitment and is also responsible for CRC tumorigenesis and further progression via
DDX21-POLR1B regulatory axis [33,51,52]. Retinoblastoma-binding protein 7 (RBBP7), an
important component of chromatin metabolism-regulating complex, is overexpressed in
various cancer types, enhancing cancer cell proliferation, invasion and stemness, increasing
cyclin-dependent kinase 4 (CDK4) expression [44,53]. The impact of DDX3X on CRC pro-
gression is somewhat enigmatic due to its involvement in all stages of RNA metabolism,
which impacts different signalling pathways [45]. On the one hand, it has been reported
to act as a tumour suppressor. On the other hand, DDX3X has been shown to induce
EMT and subsequent CRC proliferation and migration by stabilising the mRNA of the
transcription factor GATA2 [54,55]. Interestingly, the blood mRNA level of EIF2S3 was
found to be a discriminating marker of CRC [56]. In addition, the expression levels of other
top network proteins, such as RPS27A and PSMD14, are usually significantly higher in
CRC tumours than in tumour-adjacent tissue, but unlike PSMD14, which is associated
with more aggressive cancers, RPS27A correlates with smaller tumours, lower T-stage and
drastically reduced apoptosis rates. [32,57].

In the ABCG2 High CRC subgroup, most top hub proteins belong to the histone
cluster family. Recent studies proved that mRNA expression of HIST1H2BK, HIST1H2AG,
HIST2H2AA4, HIST1H2BJ, HIST2H2BE and HIST1H2AC proteins positively correlates
with each other, and their upregulation is related to the poor prognosis in glioma [58].
Additionally, HIST1H2BK correlates with metastatic CRC cytokine secretion, myeloid
leukocyte migration into the tumour, and resistance to proteasome-inhibitor-based anti-
cancer therapy [59].

Although a great deal of CRC patients present resistance to anti-EGFR therapy, it
remains the primary form of immunotherapy administered to the patients [35,36]. Three
(FLNA, TLR4 and FYN) of the top hub proteins for the ABCG2 High CRC subgroup
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are involved in the EGF–EGFR pathway. CRC tumours, characterised by high filamin A
(FLNA) expression, do not respond to anti-EGFR therapy in cetuximab treatment but may
respond to c-MET receptor tyrosine kinase inhibitors [60]. In squamous cell carcinoma,
activation of TLR4 reversed cetuximab-induced inhibition of proliferation, migration and
invasion, increasing resistance to anti-EGFR therapy [61]. As an effector of oncogenic EGFR
signalling, Fyn promotes tumour growth and motility. Its silencing limits EGF-triggered
cancer progression [62]. Interestingly, several multi-omics analyses prove that MAPK3
occupies one of the top networking protein positions along with EGFR in various cancers,
resulting in poor prognosis [63,64].

From a clinical applicability perspective, precise discrimination of CRC patients into
ABCC4/ABCG2 High subgroups may be another factor enabling the selection of correct
and appropriate personalised therapy, including a mix of chemo and immunotherapy and
identifying the most likely metastatic site.

5. Conclusions

Our analysis proved that ABCC4 and ABCG2 mRNA levels may be used to distinguish
two molecular and physiologically different CRC subgroups that may present different
susceptibilities to specific therapy. The CRC subgroup characterised by high expression
of ABCC4 shows substantial dependence on EMT reprogramming (acquired via TMEM
interaction) and RNA metabolism, with higher response to DNA damage stimuli and
rather good response to oxaliplatin-based FOLFOX treatment that primarily focuses on the
formation of DNA-platinum adducts. It may also be regulated by lncRNA ZFAS1, whereas
ABCG2 high expression presenting CRC subgroup may be resistant to the anti-EGFR
therapy, demonstrating higher proteolytical activity and actin-filament-related activity,
thus higher ability to invade surrounding tissue. Unfortunately, the precise correlation of
ABCC4 and ABCG2 mRNA expression levels with response to chemotherapy is limited
by the small sample size (n) of FOLFOX- and FOLFIRI-treated patients. In addition, most
of the data were obtained from Japanese (Asian) and Danish (Caucasian) patients, and
accurate extrapolation to other ethnic groups is difficult and requires further investigation.
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www.mdpi.com/article/10.3390/cancers15235623/s1, Figure S1: Immune cell infiltration analysis.
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Simple Summary: Colorectal cancer is a leading cause of cancer-related deaths, mainly caused by
resistance to therapy and metastatic spread, in turn sustained by the activation of mechanisms such
as the epithelial-to-mesenchymal transition (EMT). We investigate here the role of the Hedgehog-GLI
and NOTCH signaling pathways, already associated with poor prognosis in CRC, in the mechanism of
chemoresistance and EMT, using monolayer and organoids from two models of common mutations
in CRC: KRAS and BRAF. Our results show that treatment with the chemotherapeutic drug 5-
fluorouracil activated both pathways in the investigated contexts. However, we observed a different
behavior in the investigated models: in KRAS-mutated CRC, the inhibition of both the HH-GLI
and NOTCH pathways is necessary to enhance chemosensitivity, while in BRAF-mutated CRC the
inhibition of HH-GLI is sufficient to impair both signaling pathways and promote chemosensitivity.

Abstract: Colorectal cancer (CRC) is a leading cause of cancer-related mortality and chemoresistance
is a major medical issue. The epithelial-to-mesenchymal transition (EMT) is the primary step in
the emergence of the invasive phenotype and the Hedgehog-GLI (HH-GLI) and NOTCH signaling
pathways are associated with poor prognosis and EMT in CRC. CRC cell lines harboring KRAS or
BRAF mutations, grown as monolayers and organoids, were treated with the chemotherapeutic agent
5-Fluorouracil (5-FU) alone or combined with HH-GLI and NOTCH pathway inhibitors GANT61 and
DAPT, or arsenic trioxide (ATO) to inhibit both pathways. Treatment with 5-FU led to the activation
of HH-GLI and NOTCH pathways in both models. In KRAS mutant CRC, HH-GLI and NOTCH
signaling activation co-operate to enhance chemoresistance and cell motility, while in BRAF mutant
CRC, the HH-GLI pathway drives the chemoresistant and motile phenotype. We then showed that
5-FU promotes the mesenchymal and thus invasive phenotype in KRAS and BRAF mutant organoids
and that chemosensitivity could be restored by targeting the HH-GLI pathway in BRAF mutant CRC
or both HH-GLI and NOTCH pathways in KRAS mutant CRC. We suggest that in KRAS-driven
CRC, the FDA-approved ATO acts as a chemotherapeutic sensitizer, whereas GANT61 is a promising
chemotherapeutic sensitizer in BRAF-driven CRC.

Cancers 2023, 15, 1471. https://doi.org/10.3390/cancers15051471 https://www.mdpi.com/journal/cancers
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1. Introduction

Colorectal cancer (CRC) is the third most frequent cancer and the second cause of
cancer-related death worldwide [1]. Mutations in KRAS and BRAF oncogenes represent the
most common genetic drivers in CRC. Indeed, KRAS and BRAF mutations occur in 40% and
10% of CRC, respectively [2], and they are both associated with a poor outcome [3]. Even
though they both belong to the MAPK pathway, KRAS and BRAF mutations are mutually
exclusive in CRC and these two types of cancer are characterized by distinct clinical and
molecular features. BRAF-mutant CRC often displays genome-wide hypermethylation,
high microsatellite instability and mutation rates, while KRAS mutant CRC is associated
with lower levels of microsatellite instability and gene methylation [2].

First-line and palliative treatments for metastatic CRC, bearing KRAS or BRAF muta-
tions, include the cytotoxic chemotherapeutic agent 5-fluorouracil (5-FU) [1,4]; however,
patients often present disease recurrence after 5-FU therapy [5]. Chemoresistance is con-
ferred by a plethora of mechanisms, including the modulation of signaling pathways
involved in the emergence of the cancer stem features and epithelial-to-mesenchymal
transition (EMT) [6]. Other mechanisms for resistance to therapy include the inhibition
of apoptosis driven by upregulation of autophagy [7], metabolic reprogramming [8], up-
regulation of molecules involved in drug efflux and drug metabolism and activation of
alternative pathways [9].

Hedgehog-GLI (HH-GLI) and NOTCH signaling are pivotal developmental pathways
involved in the regulation of multiple biological and pathological processes. The canonical
HH-GLI pathway is activated upon the interaction between the extracellular ligands Shh,
Ihh and Dhh and the receptor Patched (PTCH), which in turn derepresses Smoothened
(Smo), thus activating the transcription factors GLI1, GLI2 and GLI3. Activated GLI
translocate into the nucleus where they bind to DNA and activate the transcription of
target genes [10]. In cancers, GLI1 can also be activated in a non-canonical way by the
“oncogenic load” of the cancer cell [11]. NOTCH cascade is activated upon binding of
ligands Jag1, Jag2, Dll1, Dll3 and Dll4 to NOTCH receptors (from 1 to 4). The binding leads
to proteolytic cleavages of the NOTCH receptor, releasing the NOTCH intracellular domain
(ID) into the cytoplasm. Then, NOTCH ID migrates into the nucleus where, in complex
with CBF1 (also known as RPBJ), it activates its transcriptional program [12]. Downstream
target genes include HES1, which is involved in EMT and transcriptionally regulates ATP-
binding cassettes transporters (ABC transporters), involved in multidrug resistance [13].
Interestingly, deregulation of the NOTCH pathway was described in numerous cancerous
and non-cancerous diseases, with its role being highly context-dependent [14].

Deregulated HH-GLI is involved in the development and maintenance of numerous
cancers [10] and, together with NOTCH signaling, plays a crucial role in the maintenance
of stem cells of the intestinal epithelia [15]. The crosstalk of HH-GLI and NOTCH signaling
is fundamental for spinal cord patterning [16], and several previous reports highlighted
how several molecules belonging to the NOTCH pathway regulate the key components of
the HH-GLI pathway and vice versa, as reviewed Kumar et al. [17].

Both HH-GLI and NOTCH pathways were described as deregulated and associated
with poor prognosis in CRC [18,19]. In this context, our previous work has described a
chemoresistance mechanism operated by the HH-GLI signaling in CRC, where chemother-
apy treatment resulted in aberrant activation of the HH-GLI pathway which in turn led
to the transcription of ATP-binding cassette transporters (ABC transporters), involved in
multidrug resistance [20].
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Therefore, our current work aimed to evaluate the role of HH-GLI and NOTCH
signaling pathways as regulatory molecular mechanisms responsible for chemotherapy
resistance in models of KRAS- or BRAF-driven CRC.

2. Materials and Methods

2.1. Cell Cultures and Treatments

HCT116 (KRAS G13D mutant) and HT29 (BRAF V600E mutant) were obtained from Amer-
ican Type Culture Collection (ATCC) and grown in DMEM high glucose (supplemented with
10% (v/v) fetal bovine serum, 1% (v/v) penicillin (50 U mL−1)—streptomycin (50 U mL−1)—
and 2 mM L-glutamine. Cells were routinely checked for mycoplasma contamination by
testing with PCR Mycoplasma Detection Kit (Cat. G238, ABM, Richmond, BC, Canada).

Cells were treated with 10 μM GANT61 (ENZO Lifesciences, New York, NY, USA),
10 μM DAPT (Merk Life Science S.r.l., Milan, Italy), 10 μM Arsenic Trioxide (ATO) (Merck,
Merk Life Science S.r.l., Milan, Italy) and 10 μM 5-Fluorouracil (5-FU).

For combined treatments, GANT61 and DAPT or Arsenic Trioxide (ATO) were admin-
istered to the cells 24 h before 5-FU.

2.2. Cell Viability by Trypan Blue Exclusion Assay

Cell proliferation was assessed by trypan blue dye exclusion test using 0.4% (w/v)
Trypan Blue solution (Merk Life Science S.r.l., Milan, Italy). Blue-stained cells were scored as
non-viable and unstained cells were scored as viable cells. The percentage of viable cells was
obtained as the ratio between the percentage of viable cells in treated cells versus control.

2.3. Transwell Invasion Assay

Transwell invasion assay was performed using Corning® Transwell® chambers (8μm
pore size, Corning®). HCT116 and HT29 cells (2.5× 104 in each well) were seeded in
the upper chambers of the 48-well plates (Corning, Somerville, MA, USA) while lower
chambers were filled with 1 mL of medium with indicated treatments. Cells in the lower
chambers were fixed with 95% ethanol for 10 min, stained with crystal violet and counted.

2.4. Western Blot

Cells were lysed as previously described [20]. Lysates were separated on 8% acry-
lamide gel and immunoblotted using standard procedures [21]. Primary antibodies were
Anti-GLI1 (L42B10, Cell Signalling Technology Inc., Boston, MA, USA), anti-PARP p85
Fragment (G7341, Promega, Madison, WI, USA) and anti-Cleaved NOTCH1 (D3B8, Cell
Signalling Technology Inc., Boston, MA, USA). HRP-conjugated secondary antisera (Santa
Cruz Biotechnology, Shanghai, China) were used, followed by enhanced chemilumines-
cence (ECL Amersham, Merk Life Science S.r.l., Milan, Italy).

2.5. RNA Isolation and Real Time qPCR

cDNA was obtained as described earlier [20]. RNA expression was analyzed on
cDNAs using the ViiA™ 7 Real-Time PCR System, SensiFAST™ Probe Lo-ROX (Bioline,
Memphis, TN, USA), TaqMan gene expression assay according to the manufacturer’s
instructions (Life Technologies, Waltham, MA, USA). mRNA quantification was expressed
in arbitrary units, as the ratio of the sample quantity to the calibrator or to the mean values
of control samples. All values were normalized to three endogenous controls: HPRT,
GAPDH and β-ACTIN.

Primers for gene expression are listed in Supplementary Table S1. Gene expression of
GLI1, HES1, c-MET, ABCG2, CD133, KRAS, BRAF, HPRT, GAPDH and β-ACTIN was as-
sessed using Life technologies “best coverage” assays (Life Technologies, Waltham, MA, USA).

2.6. Organoids

Organoids were produced by seeding 1500 cells per well. Cells were mixed with 33%
growth-factor-reduced phenol red-free Matrigel (Corning, Somerville, MA, USA). Cultures
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were grown using a flat-bottom 24-well microplate in advanced DMEM-F12 (Cat. 12634010,
Gibco, Waltham, MA, USA) supplemented with Epidermal growth factor and Fibroblast
growth factor both at final concentrations of 20 ng/μL.

For in vivo live imaging experiments, GFP-labelled organoids were obtained by trans-
ducing HCT116 with PLKO lentiviral particles carrying pTWEEN-GFP vector.

Transduced green fluorescent cells were selected by cell sorting and used for organoids
production.

2.7. Whole Mount Immunofluorescence

Organoids were fixed with 4% paraformaldehyde and permeabilized with Triton X-100
in PBS (Sigma-Aldrich, St. Louis, MO, USA). Organoids were stained with anti-vimentin
(ab11256, ABCAM, Cambridge, UK) antibody. Nuclei were DAPI-counterstained. Phalloidin
was used for f-actin staining. Images were acquired using an LSM 900 (Zeiss, Milan, Italy)
laser scanning confocal microscope with 40×/0.75 NA objective. Images were analyzed by
using the program Zeiss ZEN 2.3 blue edition (https://www.zeiss.com/microscopy/int/
products/microscope-software/zen-lite.html (accessed on 10 September 2022)).

2.8. Datasets and In Silico Analyses

Datasets available on R2 platform (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
(accessed on 15 December 2021)) were interrogated to evaluate GLI1 and NOTCH1 cor-
relation in patients carrying BRAF or KRAS mutations. In detail, Tumor Colon Mutation
status (Core Exon)—Sieber—211—rma_sketch—huex10p investigated gene correlation
between GENE/REPORTER1: GLI1 and GENE/REPORTER2: NOTCH1, in 29 samples
of CRC-carrying braf_v600e mutation; Tumor Colon (after surgery)—Beissbarth—363—
custom—4hm44k investigated gene correlation between GENE/REPORTER1: GLI1 and
GENE/REPORTER2: NOTCH1, in 32 samples of CRC carrying kras_g13d mutation.

2.9. Single-Particle Tracking Analysis

Single-particle tracking (SPT) diffusibility analysis was performed in five steps. In the
first step, single cells were detected from the time-lapse movies of oHCT116-treated and
control group organoids using Imaris spot model. Spots were taken in each frame and were
linked to the spots corresponding to the same cell in the successive frame. Frame-to-frame
tracking was implemented using the linear assignment problem (LAP) method [22,23].
In the third step, MSD, the mean square distance travelled by a cell given a certain time
interval (see Supplementary Figure S3), was computed from single trajectories, as described
by Michalet X [24]. In the fourth step, the diffusion parameter D was calculated for each
tracked cell. To this end, the MSD was plotted for different time intervals (Δt) for each cell
trajectory and the slope was computed using the Least Squares Method. In the fifth step,
the Kolmogorov–Smirnov test was applied on the diffusion parameters D, obtained from
5-FU-treated oHCT116 and control group organoids.

2.10. Statistical Analysis

Results are representative of at least three independent experiments and are expressed
as means +/− SD. Differences were analyzed using One-way ANOVA and Two-way
ANOVA tests where appropriate, using the GraphPad Prism software Version 8.0. Adjusted
p-values of less than 0.05 were considered as statistically significant.

3. Results

3.1. HH-GLI and NOTCH Signaling Pathways Sustain Resistance to 5-FU in KRAS Mutant
CRC Cells

5-fluorouracil (5-FU) is a chemotherapeutic agent used for adjuvant and palliative
treatment of CRC; however, patients often present disease recurrence [5]. Therefore, we
evaluated the role of HH-GLI and NOTCH signaling pathways as molecular mechanisms
responsible for chemotherapy resistance.
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KRAS mutant HCT116 CRC cells were treated with 5-FU, alone or in combination with
the HH-GLI inhibitor GANT61 and/or the NOTCH inhibitor DAPT. Our results showed
that GLI1 and NOTCH1 ID were significantly upregulated after 5-FU treatment (Figure 1A).
HH-GLI inhibition by GANT61 resulted in the downregulation of GLI1 and, interestingly,
in the upregulation of NOTCH1 ID; vice versa, NOTCH inhibition by DAPT resulted in the
downregulation of NOTCH1 ID and the upregulation of GLI1 (Figure 1A).

Figure 1. HH-GLI and NOTCH signaling pathways sustain resistance to 5-FU in KRAS mutant
CRC cells. (A) Western blot analysis of NOTCH1 Intracellular domain (NOTCH1 ID), GLI1 and
cleaved-PARP (c-PARP) in HCT116 cells after 5-FU treatment in combination with GANT61 and
DAPT. Numbers indicate intensity ratio of bands. Bar graphs show densitometric quantification of
the band intensity values normalized to the loading control. * p < 0.05; ** p < 0.01; *** p < 0.001
versus control; § p < 0.05 versus 5-FU; §§ p < 0.01; §§§ p < 0.001 (Two-way ANOVA test). Uncropped
full scan in Supplementary Figure S4. (B) Evaluation of cell viability by Trypan Blue exclusion assay
in HCT116 after 5-FU treatment with or without GANT61 and/or DAPT; * p < 0.05, ** p < 0.01 versus
CTRL (One-way ANOVA test). (C) Correlation analysis between GLI1 and NOTCH1 expression from
dataset interrogated on R2 platform, as indicated in main text. (D) Western blot analysis of GLI1,
NOTCH1 ID and c-PARP in HCT116 cells treated with 5-FU and ATO. Numbers indicate intensity
ratio of bands. Bar graphs show densitometric quantification of the band intensity values normalized
to the loading control; * p < 0.05; ** p < 0.01; (Two-way ANOVA test). (E) Transwell invasion assay
in HCT116 cells treated with 5-FU, ATO and the combined treatment and control group (CTRL). Scale
bar 150 μm. ** p < 0.01; *** p < 0.001; versus control; §§§ p < 0.001 (One-way ANOVA test).
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We then determined the effects of treatments with the combination of HH-GLI in-
hibitor, NOTCH inhibitor and 5-FU. NOTCH1 ID expression was impaired in all combined
treatments that included DAPT (DAPT+GANT61, DAPT+5-FU and DAPT+GANT61+5FU),
while it was unaffected by the combination of 5-FU+GANT61.

On the other hand, GLI1 was downregulated by GANT61 alone, as well as when
combined with 5-FU and 5-FU+DAPT, while the combination of NOTCH inhibition and
5-FU failed to inhibit GLI1.

Overall, our results show that GLI1 and NOTCH1 ID levels were concomitantly
significantly downregulated only after the combined treatment of the chemotherapeutic
agent 5-FU together with the inhibition of HH-GLI and NOTCH.

In addition, we observed that the combination of HH-GLI and NOTCH pathway
inhibition prevents the GLI1 upregulation and NOTCH1 activation induced by 5-FU.

To determine the effects of treatments on apoptosis, levels of cleaved PARP (c-PARP)
were evaluated; our results show that c-PARP was significantly induced by the combination
of 5-FU and GANT61 or DAPT, and the three drugs combined (Figure 1A).

We further analyzed the effects of treatments on cell viability, and we found it signifi-
cantly impaired in cells treated with the combination of GANT61 and DAPT and with the
combination of 5-FU with either GANT61 or DAPT or the combination of the three drugs
(Figure 1B).

To discern potential interdependence between the HH-GLI and NOTCH signaling
pathways in mutant KRAS CRC cells, we analyzed GLI1 and NOTCH1 levels in an available
cohort of CRC patients carrying this mutation (Tumor Colon (after surgery)—Beissbarth—
363—custom—4hm44k; https://hgserver1.amc.nl/cgi-bin/r2/main.cgi, accessed on 15
December 2021) and no correlation was found (Figure 1C)

We therefore envisioned a model where the oncogenic force of the driver gene
KRASG13D sustains both HH-GLI and NOTCH pathways and both pathways need to be
targeted to achieve a successful impairment of cells after chemotherapy.

Hence, to clarify if the KRASG13D driver mutation sustained expression of GLI1
and NOTCH, we performed silencing of KRAS in HCT116 (Supplementary Figure S1A),
which resulted in the significant downregulation of GLI1 and NOTCH1 ID protein levels
(Supplementary Figure S1B). KRAS silencing was also accompanied by a significant down-
regulation of ABCG2 and HES1, target genes of HH-GLI and NOTCH1 ID, respectively
(Supplementary Figure S1C).

Arsenic Trioxide (ATO) is an organic compound approved for the therapy of adult
patients with acute promyelocytic leukemia [25] and was shown to successfully inhibit
both HH-GLI and NOTCH pathways [26]. ATO’sability to inhibit both GLI1 and NOTCH
ID levels was confirmed in the KRASG13D-driven CRC model (Figure 1D). As previously
shown, 5-FU alone was able to upregulate both GLI1 and NOTCH1 ID, while the com-
bination with ATO impaired both signaling pathways (Figure 1D). Cleaved-PARP levels
showed that apoptosis was significantly increased by the combination of ATO and 5-FU,
while we observed a non-significant trend in ATO-treated cells (Figure 1D).

A pivotal feature of CRC aggressiveness relies on the epithelial-to-mesenchymal
transition (EMT), a process that includes the acquisition by cancer cells of properties
including motility and migration, early steps in cancer invasion and metastasis.

Therefore, we investigated whether the targeting of HH-GLI and NOTCH could impair
KRAS mutant CRC’s migratory ability.

We investigated the effects of the combined treatment of 5-FU and ATO on the mi-
gration ability of HCT116 cells. We observed that the migration was unaffected by 5-FU
treatment, while it was impaired with ATO treatment and was completely abrogated after
ATO plus 5-FU combined treatment (Figure 1E). Then, we evaluated epithelial differentia-
tion through E-cadherin levels, which increased after the combined treatment of ATO and
5-FU (Supplementary Figure S1D).
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3.2. HH-GLI Signaling Pathway Sustains Resistance to 5-FU in BRAF Mutant CRC Cells

BRAF V600E is the activating driving mutation in 10% of CRC and correlates with
poor prognosis, however targeted therapy against the mutation was proven ineffective and
first-line treatment includes cytotoxic chemotherapy [1]; thus, we investigated the role of
the HH-GLI and NOTCH signaling pathways in 5-FU chemotherapy resistance in BRAF
mutant HT29 cells.

HT29 cells were treated with 5-FU alone or in combination with the HH-GLI inhibitor
GANT61 and the NOTCH1 inhibitor DAPT (Figure 2A). We observed that 5-FU induced
upregulation of GLI1 and NOTCH1. GANT61 treatment resulted in the downregulation
of both GLI1 and NOTCH1 ID, while DAPT treatment caused the downregulation only
of NOTCH1 ID, without exerting any effect on GLI1 levels compared to control cells.
The combination of GANT61 and DAPT successfully targeted both GLI1 and NOTCH1
ID. The combined treatment of GANT61 plus 5-FU was able to revert the 5-FU-induced
upregulation of GLI1 and NOTCH1 ID, and the combined treatment of DAPT and 5-FU was
able to revert the 5-FU-induced upregulation of NOTCH1 ID and partially of GLI1. Only
when both HH-GLI and NOTCH pathways were inhibited together with 5-FU treatment
were both GLI1 and NOTCH1 ID significantly downregulated (Figure 2A).

Figure 2. HH-GLI signaling pathway sustains resistance to 5-FU in BRAF mutant CRC cells. (A)
Western blot analysis of NOTCH1 Intracellular domain (NOTCH1 ID), GLI1 and cleaved-PARP
(c-PARP) in HT29 cells after 5-FU treatment in combination with GANT61 and DAPT. Numbers
indicate intensity ratio of bands. Bar graphs show densitometrically quantified band intensity values
normalized to the loading control; * p < 0.05 ** p < 0.01; *** p < 0.001; § p < 0.05 versus 5-FU; §§ p < 0.01
(Two-way ANOVA test). Uncropped full scan in Supplementary Figure S5. (B) Evaluation of cell
viability by Tripan Blue exclusion assay in HT29 after 5-FU treatment in combination with GANT61
and DAPT; * p < 0.05, ** p < 0.01 versus CTRL (One-way ANOVA test). (C) Correlation analysis
between GLI1 and NOTCH1 expression from dataset interrogated on R2 platform as indicated in
main text. (D) Transwell invasion assay in HT29 cells treated with 5-FU, GANT61, the combined
treatment and control group (CTRL); Scale bar 150 μm; * p < 0.05, ** p < 0.01 versus CTRL (One-way
ANOVA test).
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Apoptosis was evaluated through c-PARP levels; treatment with 5-FU and single
inhibition of HH-GLI and NOTCH1 failed to induce apoptosis; c-PARP levels indeed
increased only when cells were treated with GANT61 in combination with 5-FU, or with
the combination of the three drugs (Figure 2A).

We then investigated cell viability and our results showed a significant impairment
after GANT61 treatment, alone or in combination with 5-FU (Figure 2B).

Based on these results, chemotherapy resistance to apoptosis in BRAF V600E mutated
cells seems to be driven by the HH-GLI signaling, which in turn sustains the activation
of the NOTCH pathway. To gain more insight into the interdependence between the
HH-GLI and NOTCH pathways, we interrogated GLI1 and NOTCH1 levels in a cohort
of CRC patients carrying BRAFV600E mutation (Mutation status (Core Exon)—Sieber—
211—rma_sketch—huex10p; https://hgserver1.amc.nl/cgi-bin/r2/main.cgi, accessed on
15 December 2021) and found a positive and significant correlation between GLI1 and
NOTCH1 (Figure 2C). The above presented data suggest an upstream role of HH-GLI in
the regulation of NOTCH signaling in the BRAF-driven CRC model.

To investigate whether BRAFV600E acted as a driver on the regulation of HH-GLI
and NOTCH, we performed BRAF silencing (Supplementary Figure S2A). BRAF silencing
resulted in decreased GLI1 and NOTCH1 ID protein levels (Supplementary Figure S2B).

We also evaluated mRNA levels of HH-GLI and NOTCH1 ID readout, ABCG2 and
HES1, respectively, and both were significantly decreased after BRAF silencing (Supple-
mentary Figure S2C).

The above-reported data demonstrate that chemotherapy stress induced increased lev-
els of both HH-GLI and NOTCH1 pathways in the BRAF-driven CRC model. Interestingly,
we observed that the GLI1 inhibitor GANT61 was also able to decrease NOTCH1 ID levels;
conversely, the NOTCH1 inhibitor DAPT did not affect GLI1 levels.

Since we observed that the targeting of HH-GLI was able to indirectly also target the
NOTCH pathway, we wondered if the combination of 5-FU and GANT61 could affect cell
motility, a key feature of EMT and therefore of CRC aggressiveness.

Our experiments showed that 5-FU did not affect cell motility, while GANT61 resulted
in decreased cell motility, which was further impaired by the combination of GANT61 with
5-FU (Figure 2D).

Then, we investigated the expression of two HT29 cell-specific epithelial differenti-
ation markers, Axin and Muc2. We observed upregulation of Axin only after combined
treatment, while Muc2 was affected by both 5-FU and GANT61 alone and by their combi-
nation (Supplementary Figure S2D), suggesting that treatments enhance the differentiated
phenotype.

3.3. 5-FU Increases Motility of CRC Organoids

The previous set of experiments allowed us to point out the role of HH-GLI and
NOTCH pathways as regulators of EMT in KRAS mutant and BRAF mutant CRC, a key
feature of chemoresistance [27]. Organoid models in pre-clinical studies have become
widespread due to their high reproducibility and high similarity to in vivo models [28,29].
Indeed, cell features and behavior depend on the architecture of the cell population, e.g.,
the cell–cell contact, the stiffness of the extracellular matrix and the interaction with the
microenvironment. All these conditions concur with specific characteristics related to cell
polarity, stemness and differentiation status.

Thus, to obtain CRC organoids, we seeded HCT116 and HT29 cells in Matrigel and
after 7 days we observed organoid growth, as shown in Figure 3A,B. We compared basal
levels of GLI1 and NOTCH1 in organoids and in 2D monolayer and our results reported
higher GLI1 and HES1 expression levels in organoids, indicating that both pathways
were more active in organoids compared to monolayer cellular models (Figure 3C). We
then evaluated levels of the EMT marker c-MET in both organoids and monolayers and
observed that c-MET was expressed at higher levels in organoids (Figure 3C). Since our
results showed that 5-FU was not able to impair the migratory ability of CRC (Figures 1

128



Cancers 2023, 15, 1471

and 2), and that CRC patients often present disease progression despite chemotherapy,
we wondered if 5-FU itself favored aggressiveness in organoids, unleashing the migratory
potential.

Figure 3. 5-FU increases motility in CRC organoids. (A) Workflow for CRC organoid growth. (B)
Brightfield image of HCT116 and HT29 organoids (respectively oHCT116 and oHT29) after 7 days
of culture. (C) Quantitative real-time PCR of HES1, GLI1, c-MET expressed in HCT116 and HT29
cultured in monolayer and as organoids; * p < 0.05 versus CTRL; ** p < 0.01 (Two-way ANOVA test).
(D) Fluorescent images of GFP-labeled HCT116 on sequential hours, scale bar 200 μm. Supplementary
Videos S1 and S2 of time lapse experiments are available in Supplementary Figure S3A,B. (E) Violin
plot of the diffusion parameters obtained from the single cell trajectories for CTRL and 5-FU-treated
organoids. Kolmogorov–Smirnov test p-value 0.0032.

Increased motility and migration capacity are features of EMT, thus we performed
in vivo live cell imaging in the KRASG13D-driven CRC organoid model, the HCT116-
derived organoids (oHCT116) at basal state and after 5-FU treatment (Supplementary
Material Supplementary Video S1).

To investigate the behavior of CRC cells within organoids, we investigated the diffu-
sion parameters that allow the motility of individual cells to be quantified. The diffusion
parameters from the oHCT116 control or 5-FU-treated organoids are reported (Figure 3E)
along with the single cell trajectories that were used for the calculation of the diffusion
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parameters (Supplementary Figure S3). Interestingly, 5-FU-treated oHCT116 cells mostly
present lower diffusion parameters compared with CTRL (Figure 3D), with a long tail
corresponding to a sub-group of cells presenting very high diffusion (Figure 3E). Based on
these results, we believe that cells with augmented motility after chemotherapy represent a
subset of aggressive cells able to initiate the metastatic process.

3.4. HH-GLI and NOTCH Inhibition Impairs 5-FU-Driven Mesenchymal Phenotype in
KRASG13D-Driven CRC Organoids

We then proceeded to investigate the inhibition of HH-GLI and NOTCH by using
ATO in combination with 5-FU in KRAS-driven CRC organoids, oHCT116.

Treatment with 5-FU alone did not affect organoid growth, while organoids treated
with ATO were significantly smaller; the association of 5-FU and ATO further impaired
organoid growth (Figure 4A). Expression levels of the EMT marker c-MET, cancer stemness
markers ABCG2 and CD133a, which is both HH-GLI target and cancer stemness marker,
were significantly decreased in the combined treatment of 5-FU and ATO (Figure 4B).
Interestingly, ATO was able to counteract the 5-FU-driven upregulation of ABCG2.

Figure 4. HH-GLI and NOTCH inhibition impairs 5-FU-driven mesenchymal phenotype in
KRASG13D-driven CRC organoids. (A) Brightfield image of oHCT116 treated with 5-FU, ATO,
their combination and the control group (CTRL); Scale bar 150 μm; * p < 0.05 versus CTRL; §§ p < 0.01
versus 5-FU (One-way ANOVA test). (B) Quantitative real-time PCR of stem markers expressed in
oHCT116 treated with 5-FU, ATO, their combination and the control group (CTRL). mRNA levels
of ABCG2, CD133a and c-MET expressed in oHCT116 were expressed in arbitrary units; * p < 0.05
versus CTRL; §§ p < 0.01 versus 5-FU (Two-way ANOVA test). (C) Whole-mount immunofluorescence
staining of oHCT116 stained with phalloidin-594 (F-actin, red), vimentin (mesenchymal marker,
green) and DNA (DAPI). Images were analyzed by using the program Zeiss ZEN 2.3 blue edition.
Scale bar 200 μm.
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Mesenchymal features were also investigated by the immunofluorescence of the EMT
marker vimentin, whose levels increased after 5-FU treatment and were reduced when
organoids were treated with ATO alone or in combination with 5-FU. Of note F-actin,
revealed by phalloidin staining, underwent a marked rearrangement in 5-FU-treated
oHCT116, where cells lost their pseudopodia, probably due to a modification in the cell
polarity (Figure 4C).

3.5. HH-GLI Inhibition Impairs 5-FU-Driven Mesenchymal Phenotype in BRAFV600E-Driven
CRC Organoids

We then investigated the effects of 5-FU alone or in combination with the HH-GLI
blockade in the BRAFV600E-driven CRC organoids (oHT29).

Our results showed that the size of oHT29 treated with 5-FU did not differ from
the control group, while organoids treated with GANT61 were smaller in size and the
combination of 5-FU and GANT61 strongly impaired organoid growth (Figure 5A).

Figure 5. HH-GLI inhibition impairs 5-FU-driven mesenchymal phenotype in BRAFV600E-driven
CRC organoids. (A) Brightfield image of oHT29 treated with 5-FU, GANT61, their combination and
the control group (CTRL); Scale bar 150μm; * p < 0.05 versus Ctrl; §§ p < 0.01 versus 5-FU (One-way
ANOVA test). (B) Quantitative real-time PCR of ABCG2, CD133a and c-MET expressed in oHT29
were expressed in arbitrary units. Data are representative of three independent experiments, * p < 0.05
versus Ctrl; §§ p < 0.01 versus 5-FU (Two-way ANOVA test). (C) Whole-mount immunofluorescence
of HT29 organoids stained using phalloidin-594 (f-actin, red), vimentin (mesenchymal marker, green)
and DNA (DAPI). Images were analyzed by using the program Zeiss ZEN 2.3 blue edition. Scale bar
200 μm.
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Gene expression analysis showed that the levels of cancer stem cell and EMT markers
ABCG2, CD133 and c-MET significantly increased after chemotherapy treatment and were
impaired by HH-GLI inhibition and the combination of 5-FU and GANT61 (Figure 5B).

To better investigate EMT, we performed whole-mount immunofluorescence staining
for the mesenchymal marker vimentin and observed that vimentin levels were upregulated
in 5-FU-treated organoids, they decreased with GANT61 and were strongly impaired in
the combined treatment (Figure 5C).

Altogether, our experiments show that in KRAS-driven and BRAF-driven CRC, the
HH-GLI and NOTCH pathways sustain the resistance to 5-FU through the activation of the
EMT. Of note, ATO, the drug targeting both HH-GLI and NOTCH pathways, reverted the
mesenchymal phenotype, therefore supporting the action of the chemotherapeutic drug.

4. Discussion

Despite recent advances in cancer therapy, CRC is still among the prevalent causes
of cancer-related death [30]. Even though medical research has focused on identifying
genetic mutations linked to CRC progression and tumor prognosis to improve patient
treatment, drug resistance often occurs. One of the mechanisms conferring drug resistance
is the misactivation of evolutionarily conserved pathways, such as Wingless (WNT) [31,32],
phosphoinositide-3-kinase [33,34], extracellular signal-regulated kinase (ERK) [35,36], nu-
clear factor-κB (NF-κB) [37,38] and the Hedgehog-GLI (HH-GLI) signaling pathway [20].
The HH-GLI pathway has a crucial role in correct embryonic development and plays a role
in the physiological maintenance of many tissues, including the colonic mucosa [39,40].
While canonical activation of the HH-GLI pathway transduces the signal through the
Hedgehog/PTCH/SMO/GLI axis, non-canonical regulation of GLI is external to Hedge-
hog signaling. Of note, it was demonstrated that transforming growth factor-beta (TGF-
β) [41], epidermal growth factor receptor (EGFR) [42], mitogen-activated protein kinases
(MAPK) [11], β-arrestin [43] and WNT/β-catenin [44,45] were able to induce the expres-
sion of GLI, regardless of SMO activation. Since both canonical and non-canonical routes
culminate with the activation of the GLI1 transcriptional program, GLI1 inhibition could be
useful to prevent chemoresistance in cancer cells. Our group has previously demonstrated
that HH-GLI signaling regulates the expression of ATP-binding cassette transporters (ABC
transporters), which are correlated to multidrug resistance in cancer cells, providing a
rationale for the consideration of the HH-GLI pathway as a therapeutic target in CRC [20].
NOTCH signaling has been reported to play a crucial role in the development of the normal
mucosa [15] and its aberrant activation is related to carcinogenesis in CRC. HH-GLI and
NOTCH signaling pathways together with the WNT and BMP pathways are responsible for
the development of intestinal mucosa, which is the innermost layer of the colon. Stem cells,
transit amplifying cells and terminally differentiated secretory cells or enterocytes, concur
in the formation of the structural unit of the colon, known as the crypt of Lieberkuhn [46]. A
recent paper showed that the HH-GLI blockade with GANT61 was able to inhibit NOTCH
and WNT/β-catenin in cellular models of CRC [47]. Since the HH-GLI and NOTCH
pathways play a fundamental role in the correct patterning of the colonic mucosa and
HH-GLI is upregulated by chemotherapeutic stress, we wondered whether HH-GLI and
NOTCH crosstalk could be involved in the resistance mechanism of CRC cells related to
5-FU chemotherapeutic stress.

The results of this study show how the HH-GLI and NOTCH pathways sustain
CRC chemoresistance in different ways depending on the driver oncogene mutation. In
detail, in KRASG13D-driven HCT116 cells we observed an upregulation of HH-GLI and
NOTCH pathways after 5-FU and the inhibition of HH-GLI resulted in increased levels of
NOTCH1 ID and vice versa (Figure 1A). These results, coupled with the interrogation of
public datasets (Figure 1C) suggested that the HH-GLI and NOTCH signaling pathways
are connected in a positive feedback loop aiming to escape apoptosis induced by 5-FU
(Figure 6).
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Figure 6. Hedgehog-Gli and NOTCH pathways sustain chemoresistance and the mesenchymal phe-
notype in CRC. Model of the activity of the Hedgehog-GLI and NOTCH pathways after chemotherapy
stress in BRAFV600E and KRASG13D models. In KRAS-driven CRC, the chemotherapy stress acti-
vates both HH-GLI and NOTCH, which independently sustain the EMT program; in BRAF-driven
CRC, chemotherapy stress induces the activation of the HH-GLI pathway, which in turn sustains the
activation of NOTCH1 signaling, determining the acquisition of the EMT phenotype.

Importantly, the combined inhibition of HH-GLI and NOTCH was able to impair
EMT, shown both as an impairment of transwell migration ability and with EMT mark-
ers in organoids (Figures 1E and 4). ATO, which was used to target both HH-GLI and
NOTCH pathways, has been approved by the FDA for the therapy of adult patients with
acute promyelocytic leukemia (APL). A phase I trial investigating the co-administration
of ATO and 5-FU/Leucovorin in patients with advanced/relapsed CRC showed that
ATO was well tolerated and that in some patients it was associated with therapeutic re-
sponse and increased survival; a later study investigated GLI1 levels in biopsies from
the above-mentioned clinical trial and found that it resulted to be down-modulated after
ATO administration. Of note, data on the mutational status of enrolled patients are not
available [48,49]. In BRAFV600E-driven CRC, both pathways were upregulated after 5-
FU treatment, but importantly GANT61 downregulated not only its specific target GLI1
but also NOTCH (Figure 2A), suggesting an upstream role of HH-GLI over the NOTCH
pathway (Figure 6), thus explaining the positive correlation between these two signaling
pathways (Figure 2C). Importantly, HH-GLI inhibition was able to impair EMT features,
both in monolayer and organoids (Figures 2D and 5).

5. Conclusions

In conclusion, our study describes for the first time two distinct models for KRAS-
and BRAF-driven CRC where the HH-GLI and NOTCH signaling pathways play different
roles in the chemoresistance and mesenchymal phenotype of CRC (Figure 6). Indeed,
we described that in KRASG13D-driven CRC, chemotherapy resistance is directed by the
concurrent activation of the HH-GLI and NOTCH pathways and the inhibition of both
is crucial to revert the resistant phenotype. Conversely, in BRAFV600E-mutated CRC,
the resistance to apoptosis induced by chemotherapy is mainly sustained by the HH-GLI
signaling pathway. The implications of this novel information can be far-reaching if taken
into consideration for the management of CRC patients, providing clinicians with further
tools for the development of more effective treatment plans.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers15051471/s1. Supplementary Table S1. List of gene
expression primers for quantitative real-time PCR. Gene expression of GLI1, HES1, c-MET, ABCG2,
CD133, KRAS, BRAF, HPRT, GAPDH and β-ACTIN was assessed using Life Technologies “best
coverage” assays (Life Technologies). Supplementary Figure S1. (A) Quantitative real-time PCR of
KRAS in HCT116 cells after KRAS silencing (siKRAS) and control group (siCTRL). (B) Western blot
analysis of KRAS, GLI1 and NOTCH1 ID in HCT116 cells after KRAS silencing (siKRAS) and control
group (siCTRL). (C) Quantitative real-time PCR of ABCG2 and HES1 in HCT116 cells after KRAS
silencing (siKRAS) and control group (siCTRL). (D) mRNA levels of E-cadherin (ECAD) expressed in
arbitrary units in HCT116 treated with 5-FU, ATO, combined treatment and control group (CTRL).
Data are representative of three independent experiments * p < 0.05 versus control; ** p < 0.01 versus
5-FU (Two-way ANOVA test). Supplementary Figure S2. (A) Quantitative real-time PCR of BRAF in
HCT116 cells after BRAF silencing (siBRAF) and control group (siCTRL). (B) Western blot analysis
of GLI1 and NOTCH1 ID in HT29 cells after BRAF silencing (siBRAF) and control group (siCTRL).
(C) Quantitative real-time PCR of ABCG2 and HES1 in HT29 cells after BRAF silencing (siBRAF)
and control group (siCTRL). (D) mRNA levels of AXIN and MUC2 expressed in arbitrary units,
in HT29 treated with 5-FU, GANT61, the combined treatment and control group (CTRL). Data are
representative of three independent experiments * p < 0.05; ** p < 0.01 (Two-way ANOVA test).
Supplementary Figure S3. The plots show how the mean square displacement (MSD) changes for
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Uncropped full scan for Figure 2 (panels refer to main figure panel). Supplementary Video S1. time
lapse of gfp transduced oHCT116 at basal state (oHCT116-gfp CTRL); Supplementary Video S2.
treated with 5-FU (oHCT116-gfp 5-FU); length: 6 h.
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Simple Summary: The mortality rate of CRC is higher than that of other malignant tumors because
of its high late-diagnosis rate. Searching for new diagnostic biomarkers for CRC is very important
clinically. Accumulating evidence has demonstrated that UBQLN1 plays an important role in many
biological processes. However, the role of UBQLN1 in CRC progression is still elusive. In this
study, we found that UBQLN1 was significantly highly expressed in CRC tissues compared with
normal tissues. In addition, reduced UBQLN1 inhibited CRC cell proliferation, colony formation,
and EMT in vitro and CRC cells’ tumorigenesis and metastasis of nude mice in vivo. Moreover,
the knockdown of UBQLN1 reduced the expression of c-Myc by downregulating the ERK-MAPK
pathway. Collectively, the knockdown of UBQLN1 inhibits the progression of CRC through the
ERK-c-Myc pathway, which provides new insights into the mechanism of CRC progression. UBQLN1
may be a potential prognostic biomarker and therapeutic target of CRC.

Abstract: Purpose: Colorectal cancer (CRC) is characterized by the absence of obvious symptoms
in the early stage. Due to the high rate of late diagnosis of CRC patients, the mortality rate of
CRC is higher than that of other malignant tumors. Accumulating evidence has demonstrated that
UBQLN1 plays an important role in many biological processes. However, the role of UBQLN1 in
CRC progression is still elusive. Methods and results: we found that UBQLN1 was significantly
highly expressed in CRC tissues compared with normal tissues. Enhanced/reduced UBQLN1
promoted/inhibited CRC cell proliferation, colony formation, epithelial–mesenchymal transition
(EMT) in vitro, and knockdown of UBQLN1 inhibited CRC cells’ tumorigenesis and metastasis in
nude mice in vivo. Moreover, the knockdown of UBQLN1 reduced the expression of c-Myc by
downregulating the ERK-MAPK pathway. Furthermore, the elevation of c-Myc in UBQLN1-deficient
cells rescued proliferation caused by UBQLN1 silencing. Conclusions: Knockdown of UBQLN1
inhibits the progression of CRC through the ERK-c-Myc pathway, which provides new insights
into the mechanism of CRC progression. UBQLN1 may be a potential prognostic biomarker and
therapeutic target of CRC.

Keywords: UBQLN1; ERK-c-Myc pathway; colorectal cancer; cancer progression
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1. Introduction

Colorectal cancer (CRC) is a globally important disease that ranks as the third most
diagnosed malignancy worldwide [1–3]; it has the second highest incidence among malig-
nant tumors in China and ranks first among digestive tract tumors, according to the latest
report from the National Cancer Center [4]. For a long time, due to the frequent diagnosis of
CRC at an advanced stage, mortality ranks second among cancers globally [5,6]. Therefore,
it is critical to find novel biomarkers for early diagnosis, as well as new directions for the
treatment of CRC.

UBQLN1 belongs to the family of ubiquitin-like proteins and plays an important role
in regulating protein degradation [7,8]. In eukaryotes, UBQLN1 connects proteasomes and
ubiquitinated proteins to stimulate the degradation of ubiquitinated and misfolded proteins
via autophagy regulation [9,10]. The inactivation of UBQLN1 function can induce the
pathological process of a variety of human neurodegenerative diseases, such as Alzheimer’s
disease and Huntington’s disease [11,12]. In addition, UBQLN1 is related to the occurrence
and progression of a variety of human tumors. UBQLN1 is abnormally upregulated in
breast cancer, and the knockdown of UBQLN1 inhibited the invasion and stemness of
breast cancer cells through the AKT pathway [13]. In non-small cell lung carcinoma, loss
of UBQLN1 repressed EMT [14]. Upregulated UBQLN1 predicts a poor prognosis in
hepatocellular carcinoma patients and induced PGC1β degradation in a ubiquitination-
independent manner to reduce mitochondrial biogenesis [15]. However, the expression
of UBQLN1 in colorectal cancer and the corresponding mechanism of action have not yet
been reported.

KRAS mutation is found in approximately 35–45% of colorectal cancers [16]. Mutant
KRAS was reported to cause activation of the ERK signaling pathway [17]. Previous
research has shown that activation of the ERK pathway could promote c-Myc protein
stability by post-translational phosphorylation [18].

In this study, we noted enhanced expression of UBQLN1 in CRC samples compared
with normal samples. Moreover, we found that overexpression/knockdown of UBQLN1
promoted/inhibited the proliferation, migration, invasion, and epithelial–mesenchymal
transition (EMT) of CRC cells in vitro and knockdown of UBQLN1 inhibited CRC cell’s
tumorigenesis as well as metastasis in vivo. Furthermore, we demonstrated that the
knockdown of UBQLN1 inhibited cell progression by downregulating the ERK-c-Myc
signaling pathway.

2. Materials and Methods

2.1. Cell Lines and Cell Culture

HCT-116, SW480, and HEK-293T cells were preserved by Huang Changzhi’s laboratory
and cultured in DMEM with 10% fetal bovine serum (FBS). DLD1, HCT-8, LoVo cell was
preserved by Huang Changzhi’s laboratory and cultured in RPMI-1640 with 10% FBS. All
cells were grown at 37 ◦C with 5% CO2 in cell incubator.

2.2. Plasmid Constructions

Human cDNA of Ubqln1 was cloned using Q5 high-fidelity DNA polymerase
Kit (New England Biolabs, MA, USA). The full-length cDNA of Ubqln1 was
constructed into pLVX-Puro vector. The Ubqln1 full-length primers were as follows:
forward, 5′-AAGTCTAGAGAATTCGGATCCATGGCCGAGAGTGGTGAAAGC-3′; re-
verse, 5′-AACAAGCTTCCATGGCTCGAGCTATGATGGCTGGGAGCCCAG-3′. Short
hair-pin RNA (shRNA) targeting Ubqln1 was initially inserted into the BamH I and EcoR I
sites of pSIH1 plasmid, forming the pSIH1-shUBQLN1 plasmids. Three pairs of shUBQLN1
sequences were as follows: shUBQLN1.1: sense: 5′-GTTTTTCAATGTCTAAGTCGTCCCA
AAAGAGAACTTTTTGGGACGACTTAGACATTGCCTAG-3′; antisense: 5′-GCAATGTCT
AAGTCGTCCCAAAAAGTTCTCTTTTGGGACGACTTAGACATTGAAAAACTTAA-3′;
shUBQLN1.2: sense: 5′-GTTTTTGAGGGTTGAAAGGAGGTTGTTAGAGAACTTAACAA
CCTCCTTTCAACCCTCCCTAG-3′; antisense: 5′-GGAGGGTTGAAAGGAGGTTGTTAA

138



Cancers 2023, 15, 3088

GTTCTCTAACAACCTCCTTTCAACCCTCAAAAACTTAA-3′; and shUBQLN1.3: sense:
5′-GTTTTTGGAGTCGATGTCTTAGGTCTTAGAGAACTTAAGACCTAAGACATCGACT
CCCCTAG-3′; antisense: 5′-GGGAGTCGATGTCTTAGGTCTTAAGTTCTCTAAGACCT
AAGACATCGACTCCAAAAACTTAA-3′.

Human cDNA of c-Myc was cloned using Q5 high-fidelity DNA polymerase Kit
(New England Biolabs, MA, USA). The full-length cDNA of c-Myc was constructed
into pLVX-Puro vector. The c-Myc full-length primers were as follows: forward, 5′-
CCGGAATTCCTGGATTTTTTTCGGGTAGTG-3′; reverse, 5′-CCGCTCGAGTTACGCACA
AGAGTTCCGTAG-3′.

2.3. Establishment of Stable Expression Cell Lines

Lentivirus was produced using packaging system psPAX2, pMG2G, and pLVX-Ubqln1-
Puro (pSIH1-shUBQLN1) plasmid at the ratio of 4:2:4, transfected by Lipofectamine 2000
(Invitrogen) in HEK-293T cells.

Cells were plated in 6-well plates and infected with lentivirus assisted by 8 μg/mL
poly-brene (Sigma-Aldrich, St. Louis, Missouri, USA) for 36 h, and were then selected
by puromycin for two weeks. Expression of Ubqln1 in stable cell lines was verified by
Western blot.

2.4. Cell Counting Kit-8 (CCK-8) Assay

CCK-8 assay was carried out to assess cell proliferation. CCK-8 reagent (Meilunbio,
Dalian, China) was added to 96-well plates with cells seeded in at a ratio of 1:10, and then
spectrometric absorbance at 450 nm was measured after incubation at 37 ◦C for 1 h.

2.5. Colony Formation Assay

For colony formation assay, every 400 cells were seeded into 6-well plate and then
incubated at 37 ◦C until colonies were macroscopic. Next, colonies were stained with 0.5%
crystal violet, and the number of colonies was counted.

2.6. Cell Invasion and Motility Assay

To investigate cell motility and invasion capabilities, a total of 2 × 105 colorectal cancer
cells were added to the upper chamber of cell culture insert (pore size, 8 μm; Corning,
NJ, USA) coated with diluted Matrigel basement membrane matrix (BD, Franklin Lakes,
NJ, USA) and grown in serum-free medium. In the lower chamber, 600 μL of cell culture
medium supplemented with 10% FBS was added. As a result of PBS wash, non-attached
cells were removed after being incubated for 24 h in 5% CO2 at 37 ◦C. We fixed attached
cells in 4% paraformaldehyde for 30 min and stained them with 0.5% crystal violet. Five
visual fields at ×100 magnification were randomly selected, and the number of cells in
fields was recorded. The mean value was calculated from three independent experiments
performed in triplicate.

2.7. Western Blot

Cells were washed with ice-cold PBS and lysed in lysis buffer. BCA protein concen-
tration determination was used to quantify total protein contents. A total of 20 μg of
protein were loaded on SDS-PAGE and transferred to PVDF membrane. After blocking in
5% BSA, PVDF membrane was incubated with specific primary antibodies (anti-β-actin,
1:1000, Abclonal Technology, Wuhan, China; anti-UBQLN1, 1:1000, Proteintech, Wuhan,
China; anti-GAPDH, anti-E-cadherin, anti-MMP-9, anti-VIMENTIN, anti-t-ERK1/2, anti-p-
ERK1/2, anti-MEK1, anti-p-MEK1, and anti-c-MYC, 1:1000, Cell Signaling Technology, MA,
USA) overnight. After washing, membrane was incubated with secondary antibody for 1 h.
Finally, blots were visualized with enhanced chemiluminescent (NCM Biotech, Suzhou,
China) by GE ImageQuant LAS 4000.
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2.8. Nude Mice Xenograft and Metastasis Experiments

Nude mice (5 weeks old) were purchased from Beijing Huafukang Bioscience and
raised in SPF laboratory animal room. All animal experiments were approved by the
Animal Care and Use Committee of the Chinese Academy of Medical Sciences Cancer
Hospital, and conducted in accordance with guidelines of the National Animal Welfare
Law of China.

In nude mice xenograft experiment, LoVo-shCTRL and LoVo-shUBQLN1.2 cells at
their exponential growth phase were harvested and washed twice in 0.9% saline water, and
then resuspended in 0.9% saline water at a density of 3 × 107 cells/mL. Cell suspension
(0.1 mL, 3 × 106 cells) was subcutaneously injected into the right flank of 5- to 6-week-old
male BALB/c nude mice (4 mice in each group). Mice were humanely euthanized when
the subcutaneous tumors reached 10 mm in diameter.

In nude mice metastasis experiment, LoVo-shCTRL and LoVo-shUBQLN1.2 cells at
their exponential growth phase were harvested and washed twice in 0.9% saline water, and
then resuspended in 0.9% saline water at a density of 1.5 × 107 cells/mL. Cell suspension
(0.1 mL, 1.5 × 106 cells) was injected into tail veins of nude mice (5 mice in each group).
Mice were humanely euthanized when the mice were raised to 40–50 days.

2.9. Statistical Analysis

Data were described as mean ± SD from at least 3 independent experiments. Student’s
t-test was used to assess statistical differences between groups. Differences with p value
less than 0.05 were considered to be statistically significant. Statistical analysis of data was
performed using GraphPad Prism 8.0 and SPSS 17.0 software.

3. Results

3.1. UBQLN1 Enhanced Expression in Colorectal Cancer Tissues and Is Correlated with
Poor Prognosis

To assess the overall profile of UBQLN1 expression in colorectal cancer, we ana-
lyzed the UBQLN1 gene expression level in a Gene Expression Omnibus (GEO) dataset
(GSE106582), and these data were analyzed via a scatter plot. UBQLN1 showed signif-
icantly increased expression in 77 colorectal cancer tissues compared with 117 healthy
control tissues (Figure 1A).

Figure 1. Cont.
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Figure 1. UBQLN1 enhanced expression in colorectal cancer tissues and is correlated with poor
prognosis. (A) UBQLN1 mRNA expression levels of colorectal cancer samples and normal control
were analyzed by quantitative RT-PCR; (B,C) relapse-free survival (RFS) of colon cancer patients
(B) and colorectal cancer patients (C) based on UBQLN1 mRNA expression was analyzed by lnCAR
database. Data are shown as mean ± SD; *** p < 0.001 based on Student’s t-test.

We used the lnCAR database (https://lncar.renlab.org/, accessed on 7 August 2020) to
access prognosis data for those colorectal patients with high levels of UBQLN1 expression.
Prognostic values, including two relapse-free survival (RFS) values of UBQLN1 mRNA
expression, respectively, in colon cancer samples and colorectal cancer tissues, were esti-
mated. We found that the mRNA expression level of UBQLN1 was negatively correlated
with RFS in colon cancer (Figure 1B; analysis ID: CR_O19, p = 0.0056) and colorectal cancer
(Figure 1C; analysis ID: CR_O16, p = 0.0172).

3.2. UBQLN1 Promoted CRC Cell Proliferation In Vitro

UBQLN1 protein expression level was measured in five CRC cell lines (DLD1, HCT-8,
HCT-116, LoVo, and SW480) by Western blot, respectively (Figure 2A). The results showed
that among five CRC cell lines, the expression level of three cell lines (HCT-8, LoVo, and
SW480) was higher compared to another two (DLD1 and HCT-116).

Figure 2. Cont.
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Figure 2. UBQLN1 promoted colorectal cancer cell progression in vitro. (A) UBQLN1 protein
expression levels were detected in different cell lines by Western blot; (B) colorectal cancer cell line
DLD1 was used to establish UBQLN1 over-expression cell line; (C) colorectal cancer cell line LoVo
was used to establish UBQLN1 silencing cell line; (D,E) CCK-8 assay was performed to detect cell
proliferation in DLD1-UBQLN1 (D) and LoVo-shUBQLN1 (E); (F,G) colony formation assay was
performed in DLD1-UBQLN1 to detect cell colony formation ability and results were displayed as
represent figures (F) and statistical graph (G); (H,I) colony formation assay was performed in LoVo-
shUBQLN1 to detect cell colony formation ability and results were displayed as represent figures
(H) and statistical graph (I); (J,K) Transwell and Matrigel assays were performed in DLD1-UBQLN1
to detect cell vitality and mobility and results were displayed as represent figures (J) and statistical
graph (K), and the scale bars represent 50 μm; (L,M) Transwell and Matrigel assays were performed
in LoVo-shUBQLN1 to detect cell vitality and mobility, results were displayed as figures (L) and
statistical graph (M), and the scale bars represent 50 μm; (N,O) Western blot was performed to detect
EMT marker proteins in UBQLN1 over-expression cell line DLD1 (N) and UBQLN1 silencing cell line
LoVo (O). Data are shown as mean ± SD; n = 3 independent experiments; and ** p < 0.01 based on
Student’s t-test.

To identify the functional role of UBQLN1 in CRC cells, we established two CRC cell
lines that stably enhanced/reduced UBQLN1, whose expression level was assayed by West-
ern blot (Figure 2B,C). CCK-8 assay and colony-formation assay were performed to examine
the effect on the cell’s abilities of proliferation and colony formation brought by UBQLN1.
As shown, DLD1-UBQLN1 and LoVo-shUBQLN1 cells, which increased/decreased
UBQLN1, exhibited higher/lower ability of proliferation than that of control cells,
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i.e., DLD1-CTRL and LoVo-CTRL (Figure 2D,E), as well as the ability of colony formation
(Figure 2F–I).

3.3. UBQLN1 Promoted CRC Cells’ EMT In Vitro

To ascertain whether over-expression/knockdown of UBQLN1 would influence cell
epithelial–mesenchymal transition (EMT) capacities, a transwell migration and invasion
assay were performed. Over-expression of UBQLN1 increased the numbers of migrated and
invaded cells through the bottom of the transwell with or without matrigel (Figure 2J,K).
In contrast, the knockdown of UBQLN1 decreased migrated and invaded cells’ numbers
(Figure 2L,M). Meanwhile, Western blot assay was used to detect EMT marker E-cadherin,
VIMENTIN, and MMP-9. The protein level of E-cadherin was reduced in DLD1-UBQLN1
cells compared with the control level (Figure 2N), and the protein level of VIMENTIN and
MMP-9 was reduced in LoVo-shUBQLN1 cells compared with the control level (Figure 2O),
suggesting that UBQLN1 may also enhance CRC cells’ EMT.

3.4. Reduced UBQLN1 Inhibited CRC Cells’ Tumorigenesis and Metastasis In Vivo

To investigate the role of UBQLN1 in CRC carcinogenesis in vivo, a CRC xenograft
model was established by implanting LoVo-shCTRL and LoVo-shUBQLN1 cells subcu-
taneously into the right flanks of nude mice. The results showed the tumors of the mice
injected with LoVo-shCTRL cells after injection for four weeks (Figure 3A,B). The aver-
age weight of the tumors taken from the mice injected with LoVo-shCTRL cells was 245
milligrams, while that of the tumors from the ones injected with LoVo-shUBQLN1 cells
was 158 milligrams (Figure 3C). Additionally, Tumor growth curves indicated that reduced
UBQLN1 inhibited tumor growth in terms of volumes (Figure 3D).

Figure 3. Cont.
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Figure 3. Reduced UBQLN1 inhibited CRC cells’ tumorigenesis and metastasis in vivo. (A,B) Nude
mice were subcutaneously injected with UBQLN1 silencing cell line LoVo and its control cells.
The transplanted tumors were dissected out. (C) tumors’ weights were measured after dissection.
(D) tumors’ volumes were measured during growth process. (E,F) nude mice were injected with
UBQLN1 silencing cell line LoVo and its control cells through tail vein to establish distant metastasis
model. The nude mice were sacrificed by anesthesia, and their liver metastasis was observed.
Results were displayed as figures (E) and statistical graph (F). Data are shown as mean ± SD; n = 3
independent experiments; and * p < 0.0.5, ** p < 0.01 based on Student’s t-test.

Moreover, to detect the role of UBQLN1 in CRC metastasis in vivo, LoVo-shCTRL and
LoVo-shUBQLN1 cells were injected into nude mice through the tail vein, respectively. The
visible metastatic foci point in the liver of the mice injected with LoVo-shUBQLN1 cells
was significantly less than those in the control group (Figure 3E,F). The results indicated
that reduced UBQLN1 inhibited CRC cells’ tumorigenesis and metastasis in vivo.

3.5. Knockdown of UBQLN1 Suppressed ERK-c-Myc Signaling Pathway in CRC

Approximately 50% of patients with metastatic colorectal cancer has mutations in
the RAS gene, including HRAS, KRAS, and NRAS mutations, most of which are KRAS
mutations [19–21]. KRAS mutations can abnormally activate the MAPK signaling path-
way, causing the continuous activation of downstream ERK1/2 and promoting colorectal
cancer malignant progression [22,23]. As we determined that the knockdown of UBQLN1
inhibited CRC cells’ progression both in vitro and in vivo, Western blot was used to detect
the activity of ERK1/2, a downstream effector of RAS in the MAPK pathway. As shown,
the phosphorylation level at site Thr202/Tyr204 of ERK1/2 protein was decreased, while
the total protein level of ERK1/2 was changeless after knocking down UBQLN1 in CRC
cells (Figure 4A). Meanwhile, Western blot was used to detect the activity of MEK1, an
intermediator in signal transmission between RAS and ERK1/2. As shown, the phosphory-
lation level at site Thr286 of the MEK1 protein was decreased, while the total protein level
of MEK1 was changeless after knocking down UBQLN1 in CRC cells (Figure 4B). Previous
research has shown that c-Myc is a potential target of the ERK1/2-MAPK pathway [24];
thus, we detect the effect of UBQLN1 on c-Myc. We found that the protein level of c-Myc
was decreased after knocking down UBQLN1 in LoVo cells (Figure 4C). Nextly, we sought
to validate whether the knockdown of UBQLN1 reduces the expression of c-Myc through
ERK-MAPK suppression. ERK1/2 activator tert-Butylhydroquinone (tBHQ, 50 μM) was
used to treat LoVo-shUBQLN1 cells for 48 h. Western blot analysis showed activating the
ERK signaling pathway reversed the decreased c-Myc protein expression brought by the
knockdown of UBQLN1 (Figure 4D). Those results suggested the knockdown of UBQLN1
attenuated expression of c-Myc through the ERK1/2 signaling pathway.
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Figure 4. Knockdown of UBQLN1 inhibited colorectal cells’ malignant progression through ERK-c-
Myc signaling pathway. (A,B) Western blot was performed to detect influence of UBQLN1 silencing
on ERK-MAPK pathway; (C) Western blot was performed to detect influence of UBQLN1 silencing
on expression of c-MYC; (D) Western blot was performed to detect relativity between ERK-MAPK
pathway and c-MYC in UBQLN1 silencing cell line LoVo; (E) UBQLN1 silencing cell line LoVo was
used to establish c-MYC over-expression cell line; (F,G) CCK-8 assay was performed to detect cell
proliferation in LoVo-shUBQLN1 followed by c-MYC over-expression; (H–K) Colony formation
assay was performed to detect cell colony formation ability in LoVo-shUBQLN1 followed by c-MYC
over-expression; and results were displayed as figures (H,I) and statistical graph (J,K). Data are
shown as mean ± SD; n = 3 independent experiments; and NS p ≥ 0.05, * p < 0.0.5, ** p < 0.01, and
*** p < 0.001 based on Student’s t-test.
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3.6. Knockdown of UBQLN1 Inhibited CRC Cells’ Malignant Progression through ERK-c-Myc
Signaling Pathway

To specify whether UBQLN1 loss inhibited CRC cells’ progression through the ERK-c-
Myc signaling pathway, we overexpressed c-Myc in UBQLN1-deficient CRC cells
(Figure 4E). The CCK-8 and colony formation assay showed LoVo cells’ abilities of pro-
liferation and colony forming were restored to normal levels upon elevation of c-Myc in
UBQLN1-deficient cells, establishing a strong connection between UBQLN1 and c-Myc
(Figure 4F–K). We also confirmed the correlation between knockdown of UBQLN1 and
ERK-c-Myc pathway in SW480 (Figure S1). These results confirmed that c-Myc is the
downstream target of UBQLN1 that mediates proliferation by UBQLN1 loss. Above all, the
knockdown of UBQLN1 inhibited CRC cells’ malignant progression through the ERK-c-
Myc signaling pathway.

4. Discussion

UBQLN1 is a member of the UBQLN family, which plays important roles in protein
degradation [7,25]. In our study, we found that over-expression of UBQLN1 promoted
colorectal cancer cell progression, including proliferation, migration, and invasion, and
vice versa. We also found knockdown of UBQLN1 downregulated the ERK-c-Myc pathway.
Moreover, enhanced c-MYC rescued colorectal cancer cell progression caused by UBQLN1
silencing. To our knowledge, this is the first report to show that UBQLN1 played a role in
colorectal cancer and was correlated with the ERK-c-Myc pathway.

As a member of the mitogen-activated protein kinases (MAPK) family, extracellular-
signal-regulated kinases (ERK) are a type of serine/threonine protein kinase, including
ERK1 and ERK2 [26]. The Ras/Raf/MEK/ERK signal transduction pathway follows the
three-stage enzymatic cascade of MAPKs [27–29]. Ras acts as an upstream activating
protein, which is activated after external stimulation and transmits the signal to Raf,
namely MAPKKK. MEK acts as MAPKK to receive the signal [30]. Additionally, then the
phosphorylated ERK is translocated to the nucleus, which mediates the transcriptional
activation of Elk-1, c-fos, and c-Jun [29,31,32]. Finally, extracellular signals are transmitted
to the nucleus, mediating cells to participate in a variety of life activities. Our study
revealed that the knockdown of UBQLN1 inhibited the phosphorylation levels of ERK1/2
and MEK1, suggesting UBQLN1 could regulate the ERK pathway.

Previous studies have shown that activation of the ERK pathway could upregulate
the expression level of c-Myc [24]. The Myc gene is the first proto-oncogene discovered
in Burkitt lymphoma [33]. The Myc gene family members include b-Myc, l-Myc, n-Myc,
s-Myc, and c-Myc, among which c-Myc is the most widely studied [34]. Previous studies
observed the amplification or over-expression of the c-Myc gene in gastric cancer [35],
breast cancer [36], cervical cancer [37], and other cancers, suggesting that the abnormal
activation of the c-Myc gene is closely related to the occurrence and development of
malignant tumors [38,39]. Similarly, our study revealed that the knockdown of UBQLN1
reduced protein expression of c-MYC and activated the ERK pathway, mediated by the
tBHQ-rescued expression of c-Myc caused by UBQLN1 silencing.

Our study identified the knockdown of UBQLN1 down-regulated c-Myc by reducing
the phosphorylation level of the ERK pathway. Furthermore, we found enhanced c-MYC
rescued colorectal cancer cell progression caused by UBQLN1 silencing. These findings
suggested that the knockdown of UBQLN1 inhibited colorectal cancer cell progression
through ERK-c-Myc pathway.

5. Conclusions

The knockdown of UBQLN1 inhibits the progression of CRC through the ERK-c-Myc
pathway, which provides new insights into the mechanism of CRC progression. UBQLN1
may be a potential prognostic biomarker and therapeutic target of CRC.
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Densitometric analysis.
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Simple Summary: This review aims to shed light on the proliferative markers important in the
everyday clinical management of colorectal cancer (CRC), ranging from simple methods of assessing
cellular proliferation (e.g., DNA ploidy, BrdUrd/IdUrd/tritiated thymidine binding index) to the
use of immunohistochemistry (IHC) and modern molecular biology techniques (e.g., qRT-PCR, in
situ hybridization, RNA/DNA sequencing) for the detection of genetic and epigenetic markers.
Among the examined markers, the prognostic utility was demonstrated for aneuploidy and the
overexpression of IHC markers (e.g., TS, cyclin B1, and D1, PCNA, and Ki-67). Classical genetic
markers of prognostic significance mostly comprise mutations in commonly examined genes such
as APC, KRAS/BRAF, TGF-β, and TP53. Chromosomal markers include CIN and MSI, while CIMP
is indicated as a potential epigenetic marker with many other candidates such as SERP, p14, p16,
LINE-1, and RASSF1A. Modern technology-based approaches to study non-coding fragments of the
human genome have also yielded some candidates for CRC prognostic markers among the lncRNAs
(e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and miRNAs (e.g., miR-20a, miR-21, miR-143, miR-145,
miR-181a/b). With growing knowledge of the human genome structure and the rapid development
of molecular biology techniques, it is hoped that a panel of reliable prognostic markers could improve
the assessment of survival as well as allow for the better estimation of the treatment outcomes for
CRC patients.

Abstract: Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide.
Recent advances in diagnostic methods allow for more accurate identification and detection of
several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective
prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic
markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Further-
more, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and
many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-
related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g.,
miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also
steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers,
the prognostic value regarding the patients’ overall survival (OS) or disease-free survival (DFS)
has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear
antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was
related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC
therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited
to replenish the rapidly proliferating population in response to cell-damaging factors. Considering
the above, the aim of this article is to review the most common proliferative markers assessed using
various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ
hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive
markers in CRC.
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1. Introduction

Colorectal cancer (CRC) remains a major medical challenge worldwide, ranking third
in prevalence and second among cancer-related death causes [1–4]. The high mortality
rate persists in European countries, but also affects several other regions around the world
such as the Caribbean, East Asia (China), and South America (Uruguay), indicating a
continuously high incidence as well as lackluster detection and treatment methods [3].
An increase can also be observed in CRC incidence in younger people (under 50 years
of age), with those predisposed to CRC generally classified as ‘medium’ and ‘high’ risk
groups [1,3,5,6]. Moreover, the incidence of CRC is positively correlated with the levels of
the human development index (HDI) [6].

The development of CRC is a multistage process. The numerous genetic alterations in
CRC are reflected in morphological features that can be visualized by various molecular
techniques [7–9]. A significant role in tumor initiation, growth, and metastasis is now
attributed to cancer/tumor-initiating cells (CICs/TICs) or cancer stem cells (CSCs), which
are capable of self-renewal and differentiation. Numerous studies support the ‘CSC hy-
pothesis’, in which the essence of carcinogenesis is progressive colonic SC overpopulation.
Research is ongoing into the biology of these cells, the identification of their molecular mark-
ers, and the mechanisms of CSC proliferation, differentiation, and resistance to treatment
in CRC [10–15].

There are several theories regarding the sequence of events in the formation of
CRC [16]. The first pathway of the ‘adenoma–carcinoma sequence’ describes a sequence
of morphological alterations, from hyperplasia through dysplasia to the formation of
malignant, invasive foci [7,17]. Pre-cancerous lesions, in this case, comprise adenoma-
tous polyps [7], with the ‘adenoma–carcinoma sequence’ concept supplemented by early
dysplastic lesions, known as aberrant crypt foci (ACF) [18,19]. The second theory of CRC
formation, known as the mutator pathway, took its origin from the 1992 discovery of genetic
alterations in patients with Lynch syndrome (LS), also known as hereditary non-polyposis
CRC (HNPCC) [20].

Approximately 15% of CRC arises from genetic alterations. Several syndromes can
be distinguished in the etiology of CRC, associated with a high lifetime risk of CRC due
to the inheritance of mutations in a single gene. Specific ‘Mendelian’ CRC syndromes
include familial adenomatous polyposis (FAP), with gene mutation of the adenomatous
polyposis coli (APC) gene, LS genes (MSH2, MLH1, MSH6, PMS2), Peutz–Jeghers syn-
drome (LKB1/STK11), juvenile polyposis (SMAD4, BMPR1A), MUTYH-associated polypo-
sis, and hereditary mixed polyposis (GREM1). All of these conditions, except for MUTYH-
associated polyposis, are inherited in a dominant manner. However, there is a recessive
version of HNPCC in which both copies of one of the DNA mismatch repair (MMRs) genes
are mutated (reviewed in [21]).

A third theory of CRC development, the serrated pathway or hyperplastic polyp-
carcinoma sequence, considers hyperplastic polyps (HPs) together with a subgroup of
serrated polyps (SPs) as precursors of CRC [22]. It is now recognized that up to 10–30%
of CRC cases arise through this alternative pathway, characterized by its genetic and
epigenetic profile [23–27].

From a clinical perspective, people with LS or colorectal polyposis syndromes are
at the most significant risk of developing CRC. LS accounts for 1–3% of all cases, with
people affected with this syndrome characterized by an absolute CRC risk ranging from
30 to 70% [28]. Increased risk also applies to people with colorectal adenomatous polyps,
inflammatory bowel disease, a history of CRC, or cases of this cancer in close family mem-
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bers under the age of 50. Low to moderate risk of developing CRC applies to virtually the
entire population, associated with age over 50 years and the consequences of an unhealthy
lifestyle leading to obesity and other metabolic disorders, resulting in the production of
a number of tumor-promoting proteins [12,29]. Obesity prevention, especially among
the young human population, is an important preventive factor for CRC. A recent meta-
analysis showed that overweight and obesity may be more potent risk factors for CRC and,
possibly, other cancers than the previous epidemiological studies suggested [30].

Together with changes in chromatin structure and DNA methylation, gene mutations
in CRC lead to the dysregulation of signaling pathways responsible for cell proliferation,
apoptosis, metabolism, differentiation, and survival [16,21,31,32].

The ’adenoma–carcinoma sequence’ is mainly characterized by a loss of proliferation
control. In turn, in the serrated neoplasia pathway, a failure of apoptosis mechanisms
is the most characteristic factor. However, asymmetric proliferation (shift of the zone of
proliferation from the base to the lateral side) is typical of the architecturally distorted
serrated crypt, a characteristic of sessile serrated lesions (SSLs) [22].

CRC is a typically malignant tumor characterized by genetic/epigenetic mutations in
mutator genes (i.e., genes whose alterations accelerate mutations in other genes). However,
the molecular and cellular alterations associated with the immortality (abnormal mainte-
nance of proliferation) and autonomy of colorectal cells, as with other malignancies, remain
unknown (reviewed in [33]). Studies also suggest that the mechanism linking abnormalities
at the genetic (e.g., APC mutations) and cellular level (e.g., hyperplasia, dysplasia) between
tumor initiation to metastasis is the excessive number of colonic CSCs. It also considers
the symmetrical division of CSCs as an essential mechanism driving tumor growth, which
may have therapeutic implications for patients with advanced CRC [34].

Due to the above, searching for optimal methods to evaluate tumor proliferation and
for more sensitive markers with potential prognostic significance seems crucial. A prognos-
tic factor is a variable that indicates the predicted natural course of the disease and can be
used to estimate the chance of recovery or the likelihood of recurrence. Prognostic signifi-
cance is particularly relevant to progression-free survival (PFS) and overall survival (OS).
Prognostic factors are classified into tumor-related, host-related, and environmental [35,36].

The aim of this article was to review the most common proliferative markers assessed
by various methods including immunohistochemistry (IHC) and selected molecular biology
techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation
sequencing) as prognostic and predictive CRC markers.

2. Molecular Mechanisms of Colorectal Cancerogenesis

At the core of the classical pathway of CRC development (‘adenoma–carcinoma se-
quence’) are genetic alterations of several suppressor genes such as APC, responsible for the
development of FAP, and a gene known as colorectal mutant cancer protein (MCC) [37,38].
APC mutations usually result in activation of the canonical Wnt pathway [39]. Further genes
include deleted in colorectal cancer (DCC), encoding members of the CAM immunoglobulin
family of adhesion proteins [40], similar to neural cell adhesion molecules (NCAMs) [41].
Its product acts as a netrin 1 receptor [42] and is often silenced in CRC through the loss
of heterozygosity or epigenetic mechanisms [43]. TP53 and the K-ras (K-RAS, KRAS) and
BRAF protooncogenes are also implicated in the development of CRC, playing a role in the
MAPK signaling pathway [5,9,44]. However, further studies have indicated that alterations
in the three ‘classical’ carcinogenesis genes (APC, K-RAS, TP53) affect only about 10% of
CRC, as this cancer is characterized by considerable genetic heterogeneity [23].

Thus, according to the conventional pathway theory of colorectal carcinogenesis,
the first step involves APC changes, resulting in increased cell proliferation and polyp
formation. In the next step, genetic alterations of K-RAS result in further clonal tissue
proliferation and increased polyp size. This is followed by polyp proliferation due to DCC
mutations. TP53 mutations with telomerase activation are reported in approximately 70%
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of CRC cases. Mutation in the TP53 leads to malignancy, resulting in metastasis to the
surrounding tissues and distant organs [5,16,44].

Nowadays, it is known that at the molecular level, chromosomal instability (CIN)
(~70–85%), extensive DNA methylation known as CpG island methylator phenotype
(CIMP) (~17% CRC), and microsatellite instability (MSI) (~15% CRC) are the most common
factors in the classical pathway of colorectal carcinogenesis [9,17,23,32]. The presence of
CIN in tumors results in the accumulation of mutations in oncogenes and tumor suppressor
genes (APC, TP53, KRAS, and BRAF). However, more than 24 mutated genes have currently
been associated with CRC [45], with the number possibly higher due to the development
of modern testing techniques including single-cell next-generation sequencing (NGS) [46].

In contrast to CIN, in MSI, morphological changes are associated with minor aneu-
ploidy, with LS serving as a typical example (3% CRC) [20]. The main characteristic of
these lesions is the mutation of MMR genes, namely MLH1, MSH2, MSH6, and PMS2,
with no congenital polyps in the CRC development sequence. The process of neoplastic
transformation, however, is similar to that in the CIN pathway (i.e., with a prior devel-
opment of adenoma (AD)). On the LS (mutator pathway), the development of CRC can
occur through (1) sporadic adenomas that acquire secondary MMR deficiency (dMMR);
(2) flat intramucosal lesions that arise directly from dMMR crypts; (3) LS-specific adenomas
that arise from flat lesions as a result of secondary APC mutations [47]. A subgroup of
hypermutating carcinomas that do not show MSI features has also been demonstrated. In
addition, families with oligopolyposis and MS stable (MSS) at a young age but without
APC or MYTYH (MYH) mutations have been identified. Investigations of further mecha-
nisms responsible for the hypermutation revealed germline exonuclease domain (EDM)
mutations of POLE and POLD1 genes, associated with a high risk of multiple ADs and
CRC, resulting in a condition known as polymerase proofreading-associated polyposis
(PPAP). Somatic POLE EDMs have also been found in sporadic CRC, although very few
POLD1 somatic EDMs have been described [48].

In the third concept, the so-called serrated pathway (‘hyperplastic polyp–carcinoma
sequence’), HPs, together with a subgroup of serrated polyps (SPs), have been recognized as
precursors of CRC [22]. It is now known that as many as 10-30% of CRCs arise through this
alternative pathway, characterized by their own genetic and epigenetic profile [23–27]. The
most recent classification of serrated colorectal lesions (formerly known as sessile serrated
polyp/adenoma) describes them as precursors of various molecular CRC subtypes [22,49].
In these lesions, hypermethylation of cytosine residues within CpG islands can sometimes
be observed. Point mutations of B-Raf protooncogene serine/threonine kinase (BRAF),
promoter methylation of multiple genes, and MSI have also been described in the serrated
pathway [24]. In turn, the molecular mechanisms of the CIMP pathway are not well
understood. These cancers are characterized by a poorer prognosis but can be detected
earlier, as aberrant DNA methylation is already present [50]. Morphologically, the CIMP
pathway is associated with lesions with a characteristic microscopic ‘serrated’ mucosal edge
structure, previously identified as hypertrophic benign polyps. These polyps are currently
known as sessile serrated adenomas/polyps (SSA/Ps) and have been recognized as major
precursor lesions for CRC. They can arise from HPs or de novo from normal mucosa [24,25].
Serrated polyposis syndrome (SPS) is also a risk factor for CRC, characterized by large
and multiple serrated polyps throughout the colon. The most common genetic variants
associated with CRC susceptibility in SPS patients are rs4779584-GREM1, rs16892766-EIF3H,
and rs3217810-CCND2 [51].

Interestingly, the MSS/CIMP-negative subset has been shown to evolve through
the classical ‘adenoma–carcinoma sequence’. In contrast, the MSI/CIMP-positive and
MSS/CIMP-positive subsets often develop through the ‘serrated pathway’ [23]. As in-
dicated by a recent cohort study (~30,000 participants) evaluating 40 established CRC
susceptibility subtypes, common genetic variants play a potential role in conventional and
serrated CRC pathways. The occurrence of different sets of variants for these two pathways
demonstrates the etiological heterogeneity of CRC [52]. It should be noted that a third
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concept of CRC development (in addition to the conventional tubular/villous adenoma–
carcinoma and the serrated adenoma–carcinoma pathways) has been proposed (although
much less common), namely, cancer formation in the mucosal domain of gut-associated
lymphoid tissue (GALT) [53].

There are currently four molecular subtypes of CRC, the so-called consensus molecular
subtypes (CMS) (i.e., CMS1—immunological, CMS2—canonical, CMS3—metabolic, and
CMS4—mesenchymal). Considering the clinical features, biology, and gene signatures
of colon cancer subtypes (CCS), the CCS3 subtypes, whose precursors are SSAs, have
the worst prognosis (defined by the shortest disease-free survival, DFS). Using the CR-
Cassigner signature to classify the TCGA dataset, they are known as the stem-like and
transit-amplifying (TA) (including cetuximab-resistant TA) subtypes [54].

Among the numerous molecular markers of CRC (more than 100 differentially ex-
pressed), most are overexpressed during tumorigenesis. Functionally, they are involved in
various biological signaling pathways including those related to cell proliferation [55].

3. Cellular Proliferation Models versus Colorectal Carcinogenesis Theories

Complex cell cycle (mitotic cycle) mechanisms regulate proliferation, survival, and
death. The processes and factors involved in cell cycle regulation in mammalian cells in
physiology and tumorigenesis have been well-characterized in numerous reviews [56–59].
The cell cycle is primarily driven by the activation of serine/threonine cyclin-dependent
kinases (Cdks) by cyclins and the phosphorylation and dephosphorylation of Cdks [56,57,60].
In human cells, there are 20 different Cdks and about 30 cyclin genes [57,61], which, in
addition to participating in the cell cycle process, are also involved in transcription and pre-
mRNA splicing [62]. In addition to Cdks, which drive cell passage through the phases of
the cell cycle, there are also kinase inhibitors that regulate it and prevent it from progressing.
The concentration of Cdks in the cell is constant, while the concentration of cyclins varies
according to the cycle phase. The most significant role in cell cycle progression and its
timely and precise regulation is attributed to the ubiquitin–proteasome system [59].

Cell cycle genes encoding proteins that stimulate the cell cycle are known as pro-
tooncogenes, and those that inhibit the cell cycle are the suppressor genes. In a cancer
cell, genetic changes result in the conversion of protooncogenes to oncogenes, and the
loss of function of some suppressor genes. This leads to a steady production of proteins
that induce cell division (products of oncogenes) and a deficiency of proteins that inhibit
this process (suppressor genes products). According to the clonal theory of oncogenesis,
tumor formation starts from a single cell. Furthermore, there is a close relationship between
tumor development and the inhibition of apoptosis, which ensures cell immortality [63].
Dysregulation proliferation, apoptosis, and autophagy factors also include altered Ca2+

transmission [64].
According to the somatic mutation theory (SMT) of carcinogenesis, external cancer-

causing agents (e.g., environmental, chemical, radiation, carcinogens) damage the DNA
of a single cell, leading to the generation of mutations. These, in turn, through successive
rounds of cell proliferation and clonal selection, drive the process of carcinogenesis. In
contrast, tissue organization field theory (TOFT) recognizes that proliferation and motility
are the default states of all cells [65]. Among the current 10 hallmarks of cancer, in addition
to ‘genomic instability and mutations’, ‘non-mutational epigenetic reprogramming’, and
‘polymorphic microbiomes’ are ‘sustaining proliferative signaling’, ‘enabling replicative
immortality’, and ‘resisting cell death’ [66].

Unlike normally differentiating cells, cancer cells can enter the proliferation or tumori-
genesis pathway from the G0 to G1 phase (the G0 repose model) [67]. This hypothesis
assumes that in a tumor, there are non-proliferating cells in the G0 phase, forming a rest-
ing compartment (quiescent, Q). The fate of these cells was dual, either re-entering the
cycle through the G1 phase with growth factors, cytokines, oxygenation, and nutrients or
cell death (after exiting the G0 phase and Q compartment) [67,68]. In tumor tissues, the
proliferative process predominates, resulting in a greater withdrawal (especially in the
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absence of nutrients, hypoxia) of cells from the G1 to G0 phase. This greater number of
cells in the G0 phase is characteristic of solid tumors including CRC. Another proliferation
model (the growth retardation model) assumed that, under unfavorable conditions, the
withdrawal of cells to the G0 phase could occur in any stage of the cycle, not only in the
G1 phase [69]. A few years later, a multilevel model of cancer cell proliferation, known
as the proliferation plane model, was proposed [70]. It assumes the existence of different
subpopulations of cells that differ in growth rate, rates of cycling, and recruitment to the
cycle within a single population. A modification of this model is the so-called Wilson’s
integrated tumor growth model, which also assumes different subpopulations of cells in
the tumor but also various factors affecting tumor growth (e.g., differentiation, apoptosis,
tumor microenvironment (TME) factors) [68]. The advantage of both models is the potential
prognostic and predictive significance of a subpopulation of slowly proliferating cells in
the tumor and the depiction of the molecular mechanisms controlling the division cycle of
tumor cells. These cells may include CSCs that reside in the G0 phase (like SCs of normal
tissues) or proliferate very slowly.

The assessment of proliferation in CRC, especially in a prognostic and diagnostic
context, has been the focus of scientists and clinicians for a number of years. The difficulty
in interpreting many findings in this area is related to the enormous heterogeneity of the
tumor in terms of genotype, phenotype, morphology, and cell metabolism [46]. Interestingly,
while epithelial cells in the large intestine have a longer lifespan and proliferate slower than
in the small intestine (5–21 days versus 3–4 days) [71,72], colon cancer is far more common
than small intestinal cancers (10% versus <1% of all cancers) [4]. This discrepancy between
proliferation characteristics and the risk of uncontrolled, malignant tissue transformation
is called ‘the proliferation paradox’ [73]. For example, patients with FAP are ∼30 times
more likely to develop CRC than duodenal cancer. Studies by Tomasetti and Vogelstein
suggest that this occurs as there are ∼150 times more SC divisions in the colon than in
the duodenum. The risk of CRC would be very low (even with the APC mutation) if
the SCs of the colonic epithelium were not constantly dividing [74]. Thus, both SCs and
non-SCs, which may differentiate into an SC-like cell phenotype, are suggested to be
involved in colon carcinogenesis [75]. In the ‘top–down’ model of CRC heterogeneity
involving intestinal SCs (ISCs), tumor initiation would start at the top of the crypt, where
APC-mutated cells are observed and spread laterally and downward toward the normal
crypt [76]. The second model of carcinogenesis is the spread of cancer ‘from the bottom up.’
In patients with a familial predisposition to APC mutations, dysplastic lesions have been
observed on the tissue surface and then within individual crypts. Hence, this direction of
lesion spread involving ISCs is not excluded [77].

The tissue heterogeneity of CRC is explained in two ways, namely (1) in the CSC
model and (2) in the clonal evolution model. In the former, tumor cells are organized
hierarchically. Some of them are CSCs, which retain the ability to proliferate, while their
progeny ‘differentiate’ into non-proliferating lineages [10,13]. It was in colon cancer that
the different subpopulations of CSCs/CICs/TICs, which are responsible for the different
stages of CRC development in primary CRC (pCRC), were first distinguished [14]. Previous
studies indicated that in the progression from normal to the mutated epithelium of AD,
aldehyde dehydrogenase 1 (ALDH1)-positive cells restricted to the normal crypt bottom
increased in number and became distributed further up the crypt. This marker was there-
fore found to be a favorable marker of CSCs responsible for tumor progression [12]. The
role of CSCs with a leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)(+)
phenotype, essential for tumor growth and metastasis formation (e.g., in the liver), has
also been demonstrated in growing CRC tumor tissues [78–80]. Genetic experiments have
confirmed that these dynamic CSCs are at the top of the hierarchy of human CRC cells, and
this organization resembles that of the normal colonic epithelium [78].

Interestingly, ablation of Lgr5(+) CSCs did not inhibit the growth of the primary tumor,
as Lgr5(+) CSCs were continuously replenished by proliferative Lgr5(−) cancer cells, but
resulted in reduced liver metastasis (CRLM) [79]. There has long been research evaluating
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other colon markers of CSCs and the mechanisms controlling the rate of division and self-
renewal, which may confer tumor growth and be the cause of chemoresistance [81,82]. In a
rat model, it has been shown that only 1 in 25 cells, or 1 in 262 cells, have the characteristics
of CSCs in the whole CRC cell population [11,12]. Moreover, the CSC480 CRC stem
cell line exhibited an elevated expression of CSC markers such as CD44, ALDH1, and
Sox2 compared to the grade 3–4 colon adenocarcinoma cell line (SW480). In addition,
the quiescent cells were detected in a heterogeneous tumor cell population using the
proliferation marker 5-ethynyl-2′-deoxyuridine (EdU) and a label-retaining cell protocol.
Most of the normal fetal human colon epithelial cell line (FHC) resided in this quiescent
state. These cells are characterized by extremely slow cell division, as evidenced by the
increased expression of ALDH1 compared to other cell lines. In addition, elevated ATP-
binding cassette superfamily G member 2 (ABCG2) expression was also present in the FHC
cells compared to the SW480 and CSC480 cells. This may support reports that quiescent
cells are resistant to chemotherapy (CTx) [82].

The clonal evolution model assumes that genetic and epigenetic changes occur over
time in individual cancer cells and that if such changes confer a selective advantage, they
will allow particular cancer cell clones to compete with other clones. Clonal evolution can
lead to genetic heterogeneity, resulting in phenotypic and functional differences between
cancer cells within a single patient [13]. While initial studies suggested that colorectal
tumors were monoclonal, later research has shown that the majority (up to 76%) of human
early microadenomas are polyclonal [10,83,84].

Clinical observations have prompted more intensive research into the cellular and
environmental mechanisms affecting the tumor cell proliferation rate. Proliferative abnor-
malities of the normal colonic mucosa have been proposed as a possible marker of increased
susceptibility to CRC development (particularly an upward shift of the proliferative com-
partment in the normal mucosa of CRC patients) [85]. Significant differences in the effects
of the same therapy (CTx and RT) in patients with the same type of CRC have also been
noted [86–88]. Attention has been drawn to the predictive (efficacy of different treatment
options, individualization of treatment) and prognostic values (treatment outcome) of
proliferation rates as a biological CRC feature. The prevailing view was that the pool of
rapidly proliferating and mature tumor cells within the tumor was responsible for treatment
failure [86]. Increased proliferation rates were considered as one of the determining factors
in the accelerated repopulation of malignant tumors including CRC [89,90]. Therefore it
was necessary to assess the tumor growth rate as early as possible (i.e., before treatment) to
prevent recurrence. Although the prognostic significance of rapid tumor cell proliferation
has not been demonstrated, there is a consensus that rapidly proliferating tumors should be
treated with accelerated RT regimens. When it comes to CRC, there are huge discrepancies
regarding how RT should be administered in rectal cancer (RC). There is no international
consensus regarding the preoperative RT irradiation schedule for RC [91].

The main culprits of treatment resistance, metastasis, and relapse in CRC appear to
be CSCs [92,93]. These cells are mostly ‘quiescent’ and poorly differentiated and thus
can easily survive CTx. The high heterogeneity of TICs was first shown in colon cancer,
with only specific subpopulations (self-renewing long-term TICs, LT-TICs) leading to
the development of metastatic disease. Other examples of this subgroup include tumor
transient amplifying cells (T-TACs) and rare delayed contributing TICs (DC-TICs) [14].
Moreover, abnormal activation of multiple cellular pathways (e.g., Wnt, Notch, Hedgehog,
PI3K/AKT) in CRC can result in the emergence of CSCs characterized by excessive self-
renewal, increased invasiveness, and resistance to treatment [92].

It appears that varied therapy effects did not occur due to differences in the prolifera-
tion rates between CSCs and more differentiated tumor cells as the therapy-induced deaths
did not depend on the proliferative status of the cells. These results confirm that CSCs are
selectively resistant to conventional CTx due to reduced mitochondrial priming [94]. Stud-
ies indicate that these cells arise from normal proliferating colonic crypt SCs. The marker of
these cells, encoded by the LGR5 gene, is overexpressed during CRC development. At the
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same time, LGR5 is associated with Wnt pathway activation and the c-MYC protooncogene,
and may be a prognostic factor in CRC [95].

4. Methods to Assess Cell Proliferation in Colorectal Cancer

In clinical practice and basic research, several methods exist for assessing the growth
rate of normal and tumor cells. The most common is the assessment of (1) the “density”
of ongoing mitoses in the tissue material, known as the mitotic index (the percentage
of mitoses in the assessed pool of tumor cells per 1 mm2), the so-called mitotic rate, the
rate at which cells enter the mitotic phase (M phase) (% of the cells/h) [96–98]; (2) the
percentage of cells in the S phase by calculating the so-called bromo-, iododeoxyuridine
labeling index (LIBrdIUdR) [99–102] with in vitro tritiated thymidine [103,104], or with a
new thymidine analog, 5-ethynyl-2-deoxyuridine (EdU) labeling [82]; (3) IHC expression of
classical proliferative markers (e.g., cyclins, proliferating cell nuclear antigen (PCNA), and
Ki-67 [105–109]); (4) computed tomography (CT) with dual-layer spectral detector CT [110]
or positron emission tomography (PET) [111–113].

The cancerogenic process of the colonic mucosa is associated with the development
of cell proliferation abnormalities, which precede the onset of morphological alterations
such as epithelial dysplasia. Individuals with gastrointestinal (GI) tract cancer risk factors
and animals exposed to carcinogens mainly show an increase in the cell proliferation rate
and abnormalities in the distribution of proliferating cells. The so-called extension of
the proliferative compartment was observed even when the mucosa was not yet affected
by morphological abnormalities. This proliferative feature seems to be related to the
presence of defects in cell differentiation [114]. There is also a report in which a significantly
lower expression of multi-gene proliferation signature (GPS) was observed in CRLMs,
confirming lower levels of their proliferation using qRT-PCR and Ki-67 immunostaining.
According to the authors, slow proliferation is a biological feature of both CRLMs and
primary tumors with metastasis capacity [115]. In the context of the stem cell hypothesis of
CRC development, in vitro studies based on the exposure of CSC480 cells to a 2 h pulse
of 10 μg EdU have recently allowed for the identification of as many as five different cell
populations, of which the EdU-negative and CD44-positive population may represent the
‘true’ CSC lineage [82].

In formalin-fixed, paraffin-embedded tissues, changes in DNA content or the expres-
sion of proteins involved in the cell cycle in dysplastic, precancerous, and neoplastic tissues
of the human colon were most often comparatively assessed. However, changes in the
expression of IHC markers (e.g., PCNA, p53, Ki-67) at different developmental stages of
CRC were not always clear enough to serve as reliable prognostic markers [31,116,117].

4.1. Assessment of Mitosis in Cancer Tissues

The mitosis count/mitotic index in pathological samples allows for the assessment of
tumor proliferative activity, facilitates tumor classification and diagnosis, assesses grade
malignancy, determines aggressive behavior, allows for intratumoral lymphocyte counts,
and may present prognostic significance [98,118]. The preferred sites for mitosis counting
include invasive fronts (rich in viable tumor cells) or the periphery of the tumors. The tissue
area for counting mitotic activity for different tumors was standardized as the number
of mitoses in a fixed number of high-power fields (HPFs) (typically 10 fields of view at x
400 magnification) [118]. HPFs for digital pathology, different from glass-slide HPFs in
conventional light microscopy, require re-evaluation [119]. The current recommendation
for CRC is not to report the number of mitoses in HPFs, but to report them per square
millimeter [98], or per 2 mm2 (this is approximately equivalent to 10 HPFs on modern
microscopes) [97,118].
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4.2. DNA Ploidy and Percentage of Cells in S Phase

Aneuploidy refers to an abnormal number of chromosomes in a cell, different from
a multiplication of the haploid set, resulting from several genetic alterations. It reflects
both gain/loss of whole chromosomes and unbalanced chromosome rearrangements (e.g.,
deletions, amplifications, translocations of large genome regions) [120]. For more than
100 years, aneuploidy has been postulated as a tumor-promoting factor, and its clinical
relevance is still highlighted as a prognostic marker [121,122]. Interestingly, it has been
suggested that tissue SCs have also developed their distinct response to aneuploidy, being
able to survive and proliferate as aneuploid [121].

DNA content and ploidy were evaluated as prognostic factors in CRC [123–126],
with DNA aneuploidy demonstrated to be a feature of tumors with a higher proliferation
rate [124,126,127]. On the other hand, ploidy alone, determined by flow cytometry (FCM),
had no prognostic significance in CRC (DFS). In a group of more than 400 CRC patients,
it was shown that nearly 73% of patients showed aneuploid tumors. Still, the DNA
pattern was not correlated with either age, gender, location, differentiation, or stage of the
tumors [128].

Review studies [129,130] and a meta-analysis [127] indicate a significant association of
aneuploidy with tumor progression and a worse prognosis. An older meta-analysis (2007)
showed that patients undergoing surgical resection of aneuploid CRC have a higher risk
of death after five years [129]. Later meta-analysis (2015) including more than 7000 CRC
patients showed a higher prevalence of aneuploidy in late versus early stage sporadic CRC
(OD 1.51, 95% CI 1.37–1.67), indicating that genomic instability increases with CRC pro-
gression. In 54.1% of studies, a significant effect of aneuploidy on prognosis was described
for OS, disease-specific survival (DSS), and recurrence (relapse)-free survival (RFS). Hence,
aneuploidy may be considered as a tumor stage-specific prognostic marker [127].

Other methods to assess the proliferation of different cell populations in CRC include
evaluating the number of cells in which DNA synthesis occurs using LIBrdIUdR, with triti-
ated thymidine [103,104] and EdU labeling [82]. Such procedures allow in vivo calculation
of the S-phase fraction labeling index (LI), the duration of the S phase (Ts), and the potential
tumor doubling time (Tpot) [131].

Evaluation of the binding index of BrdUrd/IdUrd/tritiated thymidine, etc., is possible
(1) following the use of monoclonal antibodies (mAbs) against thymidine analogs in FCM or
(2) by using the IHC method. Although these method variations are inexpensive and easy
to perform, they are characterized by high subjectivity in the evaluation of specimens, poor
reproducibility of results, and the lack of standardization between centers [104,124,128,132].

Studies from the 1990s showed that examining only the total and aneuploid LI in CRC
is not sufficient as an indicator of proliferation, as Ts also can vary between tumors and
even within a single tumor (from 4.0 to 28.6 h). The mean Tpot ranged from 1.7 to 21.4 days.
None of the cellular kinetic parameters correlated with Dukes’ classification or histologic
examination [133]. Wilson et al. showed that while IUdR assessed by FCM (IUdRfmc) and
assessed by IHC (IUdRimm) correlated with each other, and their LIs were significantly
higher in aneuploid than diploid tumors, no prognostic property of these markers was
demonstrated [124]. Similar results were reported by other authors [126]. On the other hand,
Palmqvist et al., using both IUdR detection techniques (FCM + IHC), demonstrated that
patients with Dukes’ B tumors with higher IUdR LI (in invasive margin) and/or low Tpot
(at both the invasive margin and the luminal border) had longer survival [100]. FCM studies
on the prognostic value of the DNA index or S-phase fraction also did not demonstrate
prognostic significance for disease recurrence in CRC stages II and III [125], survival in
the overall group, or within stages [132]. In contrast, the kinetic parameters assessed by
Michel et al. using in vivo injection of Brd and FCM, were independent prognostic factors
in diploid tumors. These included lymph node (LN) involvement, ploidy, and Tpot in all
tumors, and Tpot only in diploid tumors [131].

In summary, most studies failed to demonstrate the prognostic value of the CRC
proliferation markers assessed. Moreover, using these methods, more accurate results for
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evaluating normal and tumor cell proliferation are obtained after analyzing material at
different stages of CRC development. On the other hand, performing such tests before and
during treatment allows one to predict the outcome of CRC radiotherapy. For example,
BrdUrd LI before RT treatment of RC was not a predictor of early clinical and pathological
tumor response. In contrast, the BrdUrd LI ratio before/after RT was correlated with the in-
hibition of proliferation in responsive tumors. Thus, the rapid growth rate of preoperatively
irradiated rectal cancer was a favorable prognostic factor [134].

4.3. Immunohistochemical Methods for the Detection of Proliferative Markers

The immunohistochemical (IHC) technique is based on antibodies against specific anti-
gens in tissues and cells. In histopathology, IHC testing is most commonly performed on
formalin-fixed, paraffin-embedded tissues that can be stored for long periods of time [135,136].
Increasingly, tissue microarrays (TMAs), which contain selected tissue material from tu-
mors, normal tissues (control), and tumor metastases on a single slide, are being used for
IHC. Although the cost of producing TMAs remains high, their selection saves labor time
and the number of reagents used (including sometimes expensive antibodies), allowing
for better result reproducibility [137]. The markers most commonly used to assess tumor
proliferation rate (including CRC) are discussed below.

4.3.1. Thymidylate Synthase (TS) in CRC

Thymidylate synthase (TS, EC 2.1.1.45) is an enzyme protein required to synthesize
and repair DNA. It catalyzes the conversion of 2′-deoxyuridine-5-monophosphate (dUMP)
to deoxythymidine-5′-monophosphate (dTMP), which is phosphorylated to the triphos-
phate state (dTTP), a direct precursor for DNA synthesis. It is also an important cellular
target for cytotoxic drugs of the fluoropyrimidine group, which are widely used to treat
solid tumors [138]. The first clinically used TS inhibitor was the 5-fluorouracil (5-FU)
antimetabolite drug, a metabolite of 5-fluorouracil, fluoro-deoxyuridine monophosphate,
which forms a ternary complex with TS and 5,10-methylenetetrahydrofolate [139].

IHC studies of TS are used to determine proliferative indices and drug resistance [138].
The role of ectopic production of human TS in the neoplastic transformation of mouse
cells in vitro and in vivo has also been demonstrated, suggesting a role for TS as an
oncogene [140]. Overexpression of TS is responsible for the resistance of tumor cells to
TS-targeted chemotherapeutics and correlates with response to targeted CTx [141–144].
With the generation of mAbs against TS, particularly TS 106 and TS 109, it was possible
to use IHC methods to detect TS in normal and tumor tissues. The color reaction is
granular and occurs in the cytoplasm of cells. TS has been shown to be overexpressed
in tumors including CRC. The prognostic significance of this IHC marker has also been
studied [141–143,145–147].

Observations on the prognostic role of TS indicate that increased tissue expression of TS
may serve as an independent factor of poor prognosis for DFS and OS [141,143,145,146,148–150]
or RFS and OS [147]. However, there are also results in which the prognostic role of TS in
the survival of CRC patients could not be proven. Moreover, it was shown that high levels
of Ki-67 were associated with increased (decreased) survival in patients with a low (high)
expression of TS [142]. The meta-analysis by Popat et al. showed that tumors with high TS
levels appeared to have worse OS compared to tumors with low TS levels (HR 1.74, 95% CI
1.34 to 2.26) [151].

The predictive role of TS in CRC adjuvant therapy has also been investigated in
various combinations (e.g., 5-FU-based CTx, oxaliplatin followed by 5-FU). One study
showed a significantly higher degree of TS immunoreactivity in primary tumors compared
to corresponding metastases. Still, the response rates after CTx for metastatic disease were
similar for patients with low and high levels of TS shown in their primary tumors. In
contrast, response rates were found to be higher in patients with low versus high TS in
metastatic disease (71% and 23%, respectively) [152]. Thus, TS levels in primary tumors
cannot be reliably used to predict the response to adjuvant therapy [147,152]. An opinion
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questioning the benefit of TS labeling for predicting the effect of 5-FU in CRC can also be
found in a review paper [139].

Moreover, while an extensive prospective analysis showed that high TS levels in the
tumor were associated with improved DFS and OS after adjuvant treatment of CRC, TS
expression in the tumor did not predict the benefit of 5-FU-based CTx [153]. However, a
recent study by Badary et al. showed that high TS expression is a predictor of early failure
in CRC therapy. Hence, high TS expression may help identify patients who will benefit less
from oxaliplatin and 5-FU CTx (FOLFOX) [143].

4.3.2. Cyclins in CRC

The human cyclin family includes about 30 genes encoding protein products contain-
ing the so-called cyclin box. Only a few subfamilies of these proteins (A-, B-, C-, D-, and
E-cyclins) play a role in cell cycle regulation [57,58,61,154]. Others distinguish between
‘primary’ cyclins (A, B1, D1, D3, and E), crucial for cell cycle progression, and ‘secondary’
cyclins (C and H), with indirect cell cycle-related effects. Few papers have addressed the
secondary prognostic role of cyclins in cancer including CRC [155].

Cyclin A can activate two different Cdks, playing a role in both the S phase and mitosis
(M) [156], controlling various phenomena related to DNA replication and progression
through the G2 phase [58]. Cyclin B is a regulator of the mitotic phase, responsible for M
phase entry and chromosome segregation. In turn, cyclin C, encoded by the CCNC gene,
is involved in G1/S progression. It forms complexes with cdk8 and cdk19, modulating
DNA initiation and duplication by binding Mdm2 binding protein (MTBP), an interaction
required for proper entry into the M phase with complete DNA replication [157]. D-type
cyclins are a major determinant of cell cycle initiation and progression in many cell types.
Cyclins D1, D2, and D3 (encoded by CCND1, CCND2, and CCND3) are identified as cell
type-specific G1 mitogen sensors. The E-type cyclins control DNA replication. Cyclin E1,
encoded by the human CCNE1 gene, interacts mainly with Cdk1 and Cdk2 and plays an
essential role in transition of human cells from G1 to the S phase [58,158].

In some studies, cyclin A (A2) overexpression was observed in 77–80% of CRC
cases [159,160]. In rectal cancer, a linear correlation was observed between cyclin A and Ki-
67-positive cell expression, whereas no such relationship was found between TS and cyclin
A [161]. Several publications have recognized cyclin A overexpression as an independent
unfavorable prognostic factor in CRC patients [159,160,162]. There are also reports showing
that high cyclin A expression was independently associated with improved survival [155],
and its level above the median predicted a better prognosis in CRC patients (HR 0.71, 95%
CI 0.53–0.95) [163].

Cyclin B (B1) is classified as a mitotic cyclin [164,165]. Its elevated expression may
promote the development of CRC, but its prognostic significance is controversial. De-
creased expression of this cyclin has been shown in pCRC cases characterized by large size,
mucinous type, deep invasion, or short postoperative survival. High cyclin B1 expression
has been associated with increased p53 levels in ADs, and high Ki-67 in ADs and primary
carcinomas [164]. Cyclin B1 is overexpressed and promotes cell proliferation in early-stage
CRC [165,166]. No correlation was found between cyclin B1 expression and DFS or OS [165].
Other authors have reported that after CRC cells invade surrounding tissues and metasta-
size to distant tissues, cyclin B1 expression is reduced. Furthermore, it was observed that
patients with a low level of cyclin B1 had lower survival rates than those with a high level
of cyclin B1 expression. Suppression of cyclin B1 may promote tumor cell migration and
invasion and reduce E-cadherin expression. Cyclin B1 may thus promote tumor growth
but inhibit metastasis in CRC [166]. As shown in a recent meta-analysis regarding the
prognostic role of cyclin B1 in solid tumors, in CRC, elevated cyclin B1 expression was
associated with better prognosis, reflected by favorable 5-year OS of CRC (OR 0.49, 95% CI
0.30–0.82) [167].

Cyclin C overexpression was observed in 88% of CRCs, and CCNC (qRT-PCR) amplifi-
cation was independently associated with poor prognosis. The association between CCNC
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amplification and impaired survival appears independent of its gene product [155]. How-
ever, further studies on the role of cyclin C itself as a prognostic factor in CRC are lacking.
In contrast, a study by Firestein et al. found the expression of Cdk8, a kinase functionally
related to cyclin C, in 70% of CRCs. This expression was independently associated with
β-catenin activation, female gender, and fatty acid synthase (FASN) overexpression. Cdk8
expression also significantly increased the colon cancer-related mortality. However, no such
association was observed among RC patients. These data support a potential association
between Cdk8 and β-catenin and suggest that CDK8 may identify a subgroup of CRC
patients with poor prognoses [168].

D-type cyclins play a central role in cell cycle entry. Changes in the activity of the D-
Cdk4/6 cyclin complex are an almost universal feature of cancer cells [60]. Their expression
increases in response to oncogenic alterations in key oncogenic pathways (e.g., K-RAS,
PI3K/AKT, WNT) [58]. Overexpression of cyclin D1 is observed in CRC, particularly
in advanced disease [160,169–171]. However, opinions are divided on the prognostic
significance of this cyclin. Overall, more than 20 publications have been published on
the prognostic value of cyclin D1 expression in case–control studies, as reviewed by other
authors [171]. Maeda et al. showed a shortening of both OS and DFS, and an increase in
the CRC recurrence rate in patients with strong cyclin D1 expression [172]. In the study
by Bahnassy et al., as mentioned, cyclin D1 overexpression in CRC, similarly to cyclin A,
was also correlated with shorter OS. This study indicated that cyclin D1 amplification was
also associated with reduced OS. Both cyclin D1 and cyclin A were independent prognostic
factors in CRC patients [160]. Another study showed an association between increased
cyclin D2 and D3 expression and vascular invasion, CRLM, and decreased DSS [173]. In
turn, a study by Mao et al. showed that positive cyclin D1 expression was associated
with shorter survival in patients with colon adenocarcinoma [174]. Another publication
demonstrated worse 5-year survival in patients with positive cyclin D1 expression in
advanced-stage CRC (III, IV) [169]. Moreover, a recent study showed that cyclin D1 and
epidermal growth factor receptor (EGFR) overexpression and late pathological stage after
surgery were characterized by shorter relapse-free time (RFT) [175]. It has also been shown
that the early recurrence of CRC in high-risk Duke B and Duke C stages is associated
with high cyclin D1 expression [176]. However, some studies reported no prognostic role
for cyclin D1 in RC or CC [155,177–180]. Finally, some studies have considered cyclin D1
overexpression to be a good predictor of survival [181,182], both in terms of cytoplasmic
and nuclear expression [183].

There are also two meta-analyses on the prognostic significance of cyclin D1. One of
them (2014) showed that cyclin D1 overexpression is a factor for poor prognosis in CRC,
both in terms of OS (HR 0.73, 95% CI 0.63–0.85) and DFS (HR 0.60, 95% CI 0.44–0.82) [170].
Another meta-analysis (2022) confirmed these results, reporting both shorter OS (HR 0.36,
95% CI 0.94–0.22) and DFS (HR 0.46, 95% CI 0.77–0.20) [184].

In contrast, in a study by Jun et al. based on a large cohort of pCRC patients (n = 495),
in which high cyclin D1 expression was observed in nearly 80% of patients, high cyclin
D1 expression was a marker for better OS and RFS. Multivariate analysis showed that
cyclin D1 overexpression and the young age of patients remained independent predictors
of higher OS rate. In turn, high cyclin D1, female gender, CTx, absence of nodal metastasis,
and lower T category remained independent predictors of better RFS. The authors believe
that cyclin D1 expression can be a favorable prognostic indicator in CRC patients [171].

Studies on the prognostic role of cyclin E in CRC have also been conducted, most often to-
gether with other markers of cellular proliferation (e.g., cyclin D1 and Ki-67) [176,179,185,186].
Ioachim et al. demonstrated cyclin E overexpression in 30% of CRC patients, but the prog-
nostic significance in determining the risk of recurrence and OS was not confirmed [179].
Elevated cyclin E expression correlated with increasing TNM staging and decreasing tumor
differentiation. In turn, PFS and median survival were reduced in patients with positive
cyclin E expression [185]. Another group found cyclin E expression in a similar propor-
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tion of CRC patients (~35%) but did not report prognostic significance in CRC as a single
marker [186].

The data in Table 1, arranged chronologically, show variable results regarding the
tissue expression of various cyclins in CRC. In general, the overexpression of these cell
cycle markers is detected in most patients (up to almost 90%). When it comes to the
evaluation of the prognostic value of cyclins, most data concern cyclins A (A2), B (B1),
and D (D1). However, as with other tissue markers, the data are not consistent. Cyclins
of the D family show the strongest association with signaling pathways involved in CRC
development (e.g., KRAS, PI3K/AKT, WNT). Moreover, while some studies have also
associated cyclin D1 overexpression with poor prognosis, some present results describe
no prognostic significance or indicate cyclin D1 as a good prognostic factor. In conclusion,
examining the expression of these proteins alone seems insufficient to determine the
prognosis for survival of CRC patients. Hence, further research is needed to determine the
role of cyclin C and E as prognostic markers in CRC.

Table 1. Cyclins and their potential prognostic value in colorectal cancer (CRC).

Type of
Cyclin

Material (No. of Cases)
and Method

Findings
Year of

Publication
Ref.
No.

A (A2)

CRC (73); IHC, SI

Mean: 12.26 ± 5.8; SI was correlated with tumor differentiation;
↑expression correlated with ↓OS; ↑expression is an

independent negative prognostic factor (HR 7.82, 95% CI,
0.02–60.12) (UA) and (HR 13.89; 95% CI 1.01–190.58) (MA)

1999 [159]

CRC (60); IHC, SI ↑Expression associated with ↓OS; independent
prognostic factor 2004 [160]

CRC (167); IHC
(+) Expression (61.1%); (+) expression correlated with ↓survival;
(+) expression, LN meta, and Dukes’ stage were independently

associated with unfavorable prognosis
2004 [162]

CRC (219); IHC;
qRT-PCR

(+) Expression (83%), extra gene copies (6.2%); correlation with
stage and differentiation; ↑expression independently associated
with improved survival (UA), (HR 0.57, 95% CI 0.33–0.98) (MA)

2005 [155]

CRC (790); IHC
Expression above the median predicted an improved patient

prognosis (HR 0.71, 95% CI 0.53–0.95); cell proliferation and (+)
expression were prognostic indicators of patient outcome

2011 [163]

B (B1)

C (22), ADs (62); CAs in
ADs (17), pCRC (194),

LN meta (21); IHC

↑B1 expression from C through ADs to pCRC; ↑expression with
increasing degree of dysplasia in ADs, from peripheral ADs to

central CAs, and from primary to metastatic foci; ↓in pCRC
with large size, mucinous type, deep invasion, or short

PPS time

2003 [164]

CRC (342); IHC ↑Expression (78.7%); no association with histopathologic
features; no impact on OS and DFS (UA) 2004 [165]

CRC (219); IHC,
qRT-PCR

(+) Expression (83%), extra gene copies (9%); no
prognostic value 2005 [155]

CRC (150); WB; qRT-PCR;
IHC

↑mRNA expression (92.7%); ↑expression negatively related to
LN and distant meta, and TNM; ↓expression associated with

poor OS
2015 [166]

C CRC (219); IHC;
qRT-PCR

↑Expression (88%), extra gene copies (26.9%); ↑expression
correlated with CCNC amplification; protein expression tends

to associate with DSS; CCNC amplification related to an
unfavorable prognosis, (HR 1.72, 95% CI 1.00–2.94) (MA)

2005 [155]
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Table 1. Cont.

Type of
Cyclin

Material (No. of Cases)
and Method

Findings
Year of

Publication
Ref.
No.

D (D1,
D3)

CRC (123); IHC ↑D1 expression correlated with poor OS and DFS; an
independent predictor of disease recurrence 1998 [172]

CRC (90); IHC Nuclear/cytoplasmic expression of cyclin D1; no
prognostic value 1998 [177]

CRC (73); IHC, SI
Mean: 6.9 ± 6.3; SI correlated with tumor differentiation; ↑in
LN meta vs. those without; ↑in advanced than in early CAs;

↑expression tends to associate with poor prognosis
1999 [159]

CRC (126); IHC (+) Expression (58.7%); cytoplasmic (HR 0.56, 95% CI 0.31–1.0)
or nuclear level (HR 0.24, 95% CI 0.07–0.81) related to ↑survival 2001 [183]

RC (160); IHC, (+) at the
10% level (+) D1 expression (48%); no prognostic role of this marker 2002 [178]

CRC (60); IHC, SI
↑SI within deeply invasive tumors and LN meta; ↑expression

and D1 amplification associated with ↓OS; independent
prognostic factor

2004 [160]

CRC (219); IHC;
qRT-PCR

(+) D1 expression (11%) and extra gene copies (55%), cyclin D3
(36%) and extra gene copies (20.5%); no prognostic role of

these markers
2005 [155]

CC and RC (363), Dukes’
A–D, TMA; IHC (+) Nuclear staining of cyclin D1 reflected better survival 2005 [182]

CRC (97); IHC, (+) at >5%
cells

↑Expression (5.9%); ↑levels in mucous differentiation;
↑expression correlated with stage, LN meta; no

prognostic value
2008 [179]

CC (602), stage I–IV; IHC
↑Expression (55%) was related to low cancer-specific mortality
(HR 0.57, 95% CI 0.39–0.84) (MA), and for low overall mortality
(HR 0.74, 95% CI 0.57–0.98); ↑expression related to ↑survival

2009 [181]

CRC (84), TMA; cyclin
D1, D2, D3; IHC

D2 expression at the margin associated with vascular invasion,
LN meta, and CRLM; ↑D2 and D3 associated with vascular

invasion, CRLM, and ↓DSS (cyclin D2)
2010 [173]

CRC (169); IHC (+) D1 expression related to shorter survival 2011 [174]

CRC (117), TMA; IHC ↓Nuclear expression associated with negative lymphovascular
invasion; no prognostic value of cyclin D1 2015 [180]

CRC with meta (1205);
IHC

↑Expression (46.7%); ↑D1, EGFR expression, late stage after S
indicated ↓RFT (UA); no independent factor of prognosis (MA) 2019 [175]

CC (102); IHC (+) Expression of cyclin D1 correlated with a worse 5-yrs
survival rate in pts with advanced stage (III, IV) 2019 [169]

CRC (101), Dukes’ B and
C stages; IHC

↑Expression more often in DFS ≤24 group vs. ≥48 group and
had 5.2 higher odds of having DFS <24 mo; ↑expression
correlated with early recurrence in high-risk Duke’s B

and C stage

2021 [176]

E

CRC (219); IHC,
qRT-PCR

(+) Expression (25%) and extra gene copies (19.1%); no
prognostic value 2005 [155]

CRC (97); IHC, (+) at >5%
cells

↑Expression (30%); (+) correlation with p21waf1/cip1,
PCNA-LI and Ki-67; no prognostic value 2008 [179]

CRC (200), benign
alterations (200); IHC;

RT-PCR

↑Expression with TNM and decreasing tumor differentiation;
(+) expression correlated with shorter PFS and median survival 2016 [185]

CRC (31), TMA; IHC (+) Expression (34.78%); no prognostic role of this marker 2016 [186]

CC (102); IHC (+) Correlation with cyclin D1; no prognostic role 2019 [169]
Legend: ↑/↓—increase (overexpression)/decrease; </>—lower/higher; (+)/(−)—positive/negative; ADs—
adenomas; C—control, normal mucosa; Cas—carcinomas; CC—colon cancer; CCNC—cyclin-C encoded gene;
CI—confidence interval; CRLM—CRC liver metastasis; DFS—disease-free survival; DSS—disease-specific sur-
vival; (p)CRC—(primary) colorectal cancer; EGFR—epidermal growth factor receptor; HR—hazard ratio; IHC—
immunohistochemistry; LI—labeling index; LN(s)—lymph node(s); MA—multivariate analysis; meta—metastasis;
mo—months; no.—number; OS—overall survival; PCNA—proliferating cell nuclear antigen; PFS—progression-
free survival; PPS—postoperative patient survival; pts—patients; RFT—relapse-free time; qRT-PCR—quantitative
real-time polymerase chain reaction; RT-PCR—reverse transcriptase-polymerase chain reaction; S—surgery;
SI—staining index; UA—univariate analysis; WB—Western blot analysis; yrs—years.
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4.3.3. Proliferating Cell Nuclear Antigen (PCNA) in CRC

In eukaryotic cell physiology, PCNA plays a vital role in DNA replication and many
replication-associated processes. It is a 36 kDa non-histone nuclear protein, accompanying
delta and epsilon DNA polymerase. It is referred to as a cyclin, playing a prominent role in
cell proliferation. It is mainly produced in proliferating and transformed cells as a specific
marker of cell division [187]. PCNA expression is detected in all phases of the cell cycle,
confirming the function of this polypeptide in DNA repair, synthesis, and regulation [108].

There is a significant variability of results regarding PCNA expression in ‘adenoma–
carcinoma sequence’ changes in CRC. Either no increase in PCNA-positive cells was
detected in adenocarcinoma [116], or a gradual increase in PCNA expression was shown
in HP-AC lesion sequences [117]. Some authors observed high PCNA expression in more
aggressive forms of ADs, which can progress to malignant lesions [188]. As for the value of
PCNA expression in predicting CRC, results also vary. One publication recognized PCNA
as an independent predictor of relapse and shorter survival in CRC patients [189]. Choi et al.
demonstrated a significantly higher relapse rate in CRC patients, with higher-than-average
PCNA-LI. Also, the four-year survival rates in cases with higher-than-average PCNA-LI
were considerably worse than those with lower-than-average PCNA-LI [190]. Other studies
either failed to demonstrate the prognostic value of PCNA in this cancer [123,124,191] or
showed an inverse relationship between the percentage of PCNA-positive cells and the
survival time of CRC patients [192]. Increased PCNA-LI of tumors was often associated
with tumor progression (venous invasion, lymph node metastasis, or liver metastasis),
while higher PCNA-LI was also associated with less differentiated tumors. Thus, PCNA
testing could have prognostic significance for assessing higher malignant potential [193].
However, Neoptolemos et al., in RC studies, showed that PCNA-LI was not prognostic
in this cancer subtype and that patients with the smallest LI exhibited the worst survival
times [191]. In contrast, Nakamura et al. showed longer survival for CRC patients with
lower PCNA expression, which was true for both CEA-positive and serum CEA-negative
patients [194]. Some authors have indicated that while higher proliferation is associated
with a higher incidence of rectal ADs, PCNA-LI is not useful for predicting future colorectal
neoplasia [195]. Others have found lower PCNA-LI expression to be a good predictor of
survival, especially in combination with HLA-DR expression [196]. Studies of the entire
cell cycle panel (e.g., cyclins D1, E, cyclin-dependent kinase (CDK) inhibitors: p21 and p27)
and other cell cycle regulators including PCNA have not proven the prognostic value of
any of them in terms of predicting the risk of relapse or OS. These molecules have mainly
been considered as cell growth regulators during colorectal carcinogenesis [179]. Moreover,
studies by Guzinska et al. confirmed correlations between PCNA expression and lymph
node metastasis and tumor location (lower in RC). However, the prognostic value of PCNA
was not evaluated [197].

The only available meta-analysis on the level of immunohistochemical PCNA expres-
sion as a prognostic factor in CRC considered OS, cancer-specific survival (CSS), and DFS
in 1372 CRC patients [198]. It showed that patients with high PCNA expression were char-
acterized by shorter OS (HR 1.81, 95% CI 1.51–2.17) and CSS (HR 1.99, 95% CI 1.04–3.79).
However, there was no significant association between PCNA and DFS. Thus, it was shown
that high PCNA expression can predict a poor prognosis in CRC patients. However, this
analysis needs to be confirmed in a larger number of studies based on bigger groups of
patients.

Table 2 shows, in chronological order, the results that illustrate the difficulty in forming
a clear opinion on the prognostic significance of PCNA. The tissue expression of PCNA was
studied simultaneously with various histopathological classifications and/or with other
tumor biomarkers (e.g., CEA, HLA-DR, Bcl-2) to analyze the interactions of these proteins
and/or to expand the panel of prognostic factors in CRC.
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Table 2. Prognostic value of proliferating cell nuclear antigen (PCNA) in colorectal cancer (CRC).

S No.
Material (No. of

Cases) and Methods
Findings Prognostic Role

Year of
Publication

Ref.
No.

1. CRC (40); IHC, PI
↑PI in both cancer and epithelial
cells of adjacent C crypts in those

who died vs. survivors

PI is an independent predictor
of recurrence and poor
survival in both groups

1993 [189]

2. CRC (82) and LN meta
(18); IHC, q estimation

Similar to the median and range
of the % of (+) cells in primary

tumors and LN meta

An inverse relationship
between the % of (+) cells and

survival times
1993 [192]

3.
CRC (60) and ADs (35);

IHC; FCM for DNA
content

Mean: 38% (ADs); mean: 50.4%
(CRC); aneuploid ACs had a
tendency to poorer prognosis,

especially in Dukes’ C female pts

Can be an indirect indicator of
cells in the S phase; is not an

independent prognostic factor
1994 [123]

4. CRC (125); IHC, LI,
image analysis

LI without significant correlation
with clinical characteristics (stage,

grade, age, sex, fixity)

No prognostic role for
survival 1994 [124]

5. CRC (49); IHC, LI

↑LI of tumors with venous
invasion (mean: 51.7%); with LN
meta (mean: 50.5%); with meta to

the liver (mean: 55.2%); ↑LI
associated with less differentiated

tumors

Evaluation of LI at the
invasive tumor margin may

help identify CRC with
↑malignant potential

1994 [193]

6. CRC biopsies (50);
FCM, LI

LI from 38.7% to 53.0%; in diploid
tumors (27), the median LI in
G0/G1: 71.5%, in S: 10.5%, in

G2/M: 17.4%

Is expressed throughout the
cell cycle; prognostic

role—probable
1995 [108]

7. CC (50) and 40 RC; IHC
(79), LI

LI improved the prediction of
survival when used with

histopathological classification
(Dukes’ or Jass’) (MA)

Little prognostic power of LI
(UA); not predictive for RC;
↓LI related to the worst

prognosis

1995 [191]

8. CRC (57); IHC, LI

↑Deep invasion, CRLM, and
↑stages with ↑LI (>49.4%) vs. ↓LI;
↑survival curves for pts with (−)
CEA and ↓LI vs. pts with (+) CEA
and ↑LI; ↑survival curves for pts

with (+) CEA and ↓LI vs. pts with
(+) CEA and ↑LI

Serum CEA and PCNA LI for
cancer pts are useful in the

evaluation of tumor
progression and prognosis

1996 [194]

9. CRC (86); IHC, LI

↑LI with stage, histologic
differentiation, lymphatic and

vascular invasion, LN meta, and
CRLM; ↑LI in tumors with DNA

aneuploidy

↑Recurrence rate with LI >
than the mean LI; ↓4-yr

survival rates for overall and
curative pts with LI > than the

mean LI

1996 [190]

10. CRC (59); IHC, LI
Lesions combining HLA-DR

expression and a relatively ↓LI
had the best prognosis

HLA-DR expression with ↓LI
is an important outcome

predictor
1998 [196]

11. CRC (47); IHC, >60%
nuclei (+)

(+) Correlation with Bcl-2, LN
meta, and tumor location

May be an indicator of the
development of LN meta 2009 [197]

Legend: ↑/↓—increase/(overexpression)/decrease; (−)/(+)–negative/positive; </>—lower/higher; AC(s)—
adenocarcinoma(s); AD(s)—adenoma(s); AS1—antisense to PCNA; C—control, normal mucosa; CRLM—CRC
liver metastasis; FCM—flow cytometry; HLA-DR—human leukocyte antigen–DR isotype, major histocompatibil-
ity complex, class II, DR alpha; HP(s)—hyperplastic polyp(s); LN(s)—lymph node(s); meta—metastases; No.—
number; PI—proliferating index; pTNM—pathological tumor/node/metastasis; pts—patients; q—quantitative;
ROC—receiver operating characteristic curve; RR—risk ratio; S No.—study number.
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4.3.4. Ki-67 Antigen in CRC

The prototype of the Ki-67 antigen was the IgG1 class, murine mAb, directed against
the nuclear fraction of the Hodgkin’s lymphoma-derived cells (L428) [106,199]. Recognition
of the structure of the Ki-67 protein (pKi-67) has enabled this protein to be placed in a new
category of cell cycle-related, nuclear non-histone proteins. pKi-67 is encoded by the MKI67
gene on chromosome 11 (10q26) and has two major splice variants of 320 and 352 kDa [200].
The pioneering generation of anti-Ki-67 mAbs [199], characterization of the Ki-67 antigen
using molecular biology techniques [201] and experimental studies demonstrated the
presence of pKi-67 in the S, G2, and M phases of the cell cycle, and its absence in the G0
phase [105]. Thus, Ki-67 exhibits the so-called growth fraction in non-cancerous cells and
tumors, indicating it as a marker of cellular proliferation [105,202]. It is worth mentioning
that Ki-67 positivity does not always indicate that the cell entered the division phase. It can
also signify a transition into a quiescent state and the possibility of entering the cell cycle
after removing the inhibiting factor. Subcellular localization during interphase shows the
presence of Ki-67 mainly in the cell nucleus, while in mitosis, it is translocated to the surface
of chromosomes [106]. Recent studies have also indicated the extranuclear translocation
of pKi-67 in non-cancerous cells to eliminate the protein, with initial accumulation in the
endoplasmic reticulum (ER) and later in the Golgi apparatus. This mechanism is less
effective in cancer cells [203].

Numerous publications over the years have discussed the role of Ki-67 as a marker of
proliferation [106,202,204–206] and thus as a prognostic factor in many diseases, primarily
cancer (including CRC) [207]. At the same time, studies have been conducted on the struc-
ture and biological role of pKi-67 in normal cells [207–210]. The multifactorial regulation
of Ki-67 in non-cancerous and cancerous human cells has been described [203,206,210].
The role of Ki-67 in cell cycle progression is debated, most notably its almost opposite
role in the initial phase of mitosis (prometaphase) (chromosome individualization) and
exit from mitosis (chromosome clustering) [211]. Ki-67 has been shown to form repulsive
molecular brushes during the early stages of mitosis [212]. In turn, the brushes collapse
during mitotic exit, and Ki-67 promotes chromosome clustering [213]. Other significant
advancements regarding the structure and functional role of pKi-67 in recent years include
the demonstration of (1) the putative role of this protein in the higher-order organization of
perinucleolar chromatin [208]; (2) the involvement of pKi-67 in the early stages of rRNA
synthesis in vivo [209]; (3) the involvement of Ki-67 as a PP1 interacting protein (PIP) in
the phosphorylation of nucleophosmin/B23 by casein kinase II (CKII) and the organization
of the perichromosomal layer [214]; (4) the role in the generation of a spherical and electro-
static charge barrier, enabling independent chromosome mobility and efficient interaction
with the mitotic spindle [212]; (5) the role in the spatial organization of heterochromatin in
proliferating cells and in the control of gene expression [215]; (6) the differential regulation
of the two main splice variants of the protein (i.e., α and β) in non-cancerous and cancerous
cells; (7) the continuous regulation and degradation of Ki-67 by proteasomes in normal
and cancerous cells and the extranuclear pathway of protein elimination [203]; (8) changes
in expression depending on cell cycle regulation as a reliable indicator of the effect of
CDK4/CDK6 inhibitors on cell proliferation [109]; (9) accumulation of the protein during
the S, G2, and M phases, and degradation during the G1 and G0 phases; (10) the graded,
rather than binary, nature of the protein, with a stable decrease in pKi-67 levels in quiescent
cells [210]; (11) the presence of a gradient of Ki-67 expression depending on the phase of the
cell cycle, (fast-growing tumors exhibit high levels of this protein in G2 phase cells, while in
slow-growing tumors, these levels are notably lower) [216]; (12) the involvement in the reg-
ulation of chromosome clustering conditioning the removal of mature ribosomes from the
nucleus after mitosis [213]. Although Ki-67 is widely recognized as a proliferation marker,
genetic studies indicate that its levels do not correlate directly with this process. Indeed,
the downregulation of Ki-67 did not affect the proliferation of HeLa cells [212,214,215],
BJ-hTERT cells, and U2OS cells [215].
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To evaluate the Ki-67-positive cells (the Ki-67 labeling/proliferating index, LI, PI)
in paraffin-embedded sections during histopathology, an antibody called MIB-1 is most
commonly used. Sometimes, in the literature, the name pKi-67 is used interchangeably
with anti-Ki-67 antibody, or both are used together (Ki-67/MIB-1). Using IHC, it is possible
to not only determine the presence of Ki-67 LI but also identify the type of proliferation,
which could be a potential prognostic factor [70].

Ki-67 and Clinicopathologic Data in CRC Patients

The study of the tissue expression of Ki-67, as the most common proliferative marker,
is widely used to assess tumor grade or stage, predict tumor progression, or identify
potential therapeutic targets [106,202,204].

Lower Ki-67 LI with medium intensity has been described in non-neoplastic polyps
compared to neoplastic lesions [217]. In colorectal ADs, the Ki-67 expression was lower [218]
or comparable to CRC [217]. Moreover, a higher positive rate was observed in AD cases
with high atypia and carcinoma in situ [219] and in more severe dysplastic adenoma-
tous lesions [220]. The latter study indicated that the severity of dysplasia is associated
with greater cellular proliferation, as opposed to the morphological type of AD (tubular,
tubulovillous, and villous).

High levels of Ki-67 expression in pCRC are most often correlated with more severe
histopathological changes (stage, grade) [217,218,221–230]. An inverse correlation between
Ki-67 expression and the degree of differentiation in non-mucinous AC was observed [231].
A higher Ki-67 LI (≥30%) was present in lymphatic and venous invasion as well as in
lymph nodes and CRLMs. The same LI (≥30%) in the primary tumor was associated with
a significantly higher incidence of metachronous CRLMs. However, the mean Ki-67 LI
was higher in primary tumors compared to CRLMs [221], which was also confirmed at the
mRNA level [115]. Moreover, other researchers observed a positive correlation of Ki-67
LI with LN metastasis [88,197,224,228,229,232]. At the same time, Lei et al. showed Ki-67
level ≥ 60% to be associated with a high risk of distant metastasis and death, compared
with a Ki-67 below this level [230].

Some authors did not show any significant correlation with the clinicopathological
data [96,124,126,142,233–235]. In contrast, other authors have shown better clinicopatho-
logical variables in CRC patients with higher Ki-67 expression [147,236,237] and an inverse
relationship between Ki-67 expression and tumor aggressiveness [115]. Similarly, the per-
centage of Ki-67-positive cells in poorly differentiated and mucinous AC was significantly
lower than in well-differentiated and moderately differentiated AC. In contrast, lower Ki-67
LI in the primary lesion in cases with metachronous liver or lung metastases, compared to
synchronous cases, may indicate that metachronous hematogenous metastases occur even
in tumors with low proliferative activity [219].

In numerous publications, IHC studies have also evaluated other proliferation markers
and their correlation with Ki-67 expression levels. IudR [124] and BrdUrd [126] were
positively correlated with Ki-67, while TS expression correlated with Ki-67 in one study of
RC [161] but not in others [142,238].

Positive correlations with Ki-67 were observed for cyclin A [141,159,160], cyclin B1 [164],
cyclin D1 [160,169], cyclin E [185], cyclin E, and the p21waf1/cip1 cdk inhibitor [179]. Many
authors have investigated the extent of cellular proliferation, measured by the expres-
sion of Ki-67 and the mutated tumor suppressor gene product p53, as an example of
the most common genetic aberration in CRC [125,142,147,218,224,228,232,235,237,239–242].
As for the reciprocal correlations of the two proteins, either a directly proportional
correlation [228,235,241], no significant correlation [224,238], or an inverse correlation
of Ki-67 and p53 was detected [218].

166



Cancers 2023, 15, 4570

Ki-67 as a Prognostic Marker in CRC

Cell proliferation is significantly associated with CRC progression and can be used
to identify patients with a predicted unfavorable disease outcome after surgery [223,243].
The prognosis of CRC is not solely determined by the proliferative capacity of tumor
cells [224]. Many clinicopathological prognostic factors have been documented, related to
the advanced pathological TNM stage (pTNM) and the so-called TNM-independent factors
(e.g., tumor subtype and histological grade, lymphovascular invasion, tumor-infiltrating
lymphocytes, perineural invasion, microvessel density, tumor margin configuration, and
poorly differentiated clusters (PDCs) [55,244–246]. One publication provided an algorithm
to profile ‘bad’ and ‘good’ prognostic biomarkers in CRC that considered the clinical fea-
tures, histopathology, biochemical markers, and response factors. Of those discussed in
this review, typical proliferative markers and, at the same time, unfavorable prognosis
factors, included cyclin D, TS, and PCNA [244,245]. Another review reported that more
than 100 differentially expressed CRC molecular markers (including proliferative markers),
representing more than 1000 biological pathways, have been demonstrated in CRC [55]. It
should also be mentioned that MSI-H status and impaired signaling pathways resulting
from common gene mutations in CRC (e.g., WNT, TP53, KRAS, BRAF, PI3K, TGF-β, phos-
phatase and tensin homolog protein (PTEN)) or amplifications of specific genes (e.g., IGF-2,
IGFBP2, EGFR, VEGF, SMAD) are usually associated with the overexpression of markers
and lead to increased cell proliferation and the inhibition of apoptosis [55,244,245].

Many studies from different regions around the world have also shown the importance
of the tissue overexpression of Ki-67 in pCRC and/or CRLM as a poor prognostic predictor
of survival for patients with this cancer. Most publications have shown that high Ki-67
expression was associated with inferior OS, but some reports have demonstrated that
high Ki-67 expression was correlated with favorable/longer survival [237,247–250], also in
CRLM [238]. There was also a study in which the Ki-67 LI analysis results demonstrated
various proliferation extents in the central areas of the tumor (cPDCs) (high) and at the
tumor periphery (pPDCs) (low) and a range of different correlations with the clinical
data [246].

It should be noted that few publications have investigated the prognostic significance
of Ki-67 expression in different CRC locations (colon/rectum), resulting in divided opinions.
One research group reported no correlation between Ki-67 expression, tumor location, and
prognosis [237]. In contrast, Hilska et al. demonstrated a better prognosis for Ki-67 LI
values ≥ 5% compared to a lower index, only in the group of patients with rectal cancer [182].

Several authors have indicated Ki-67 as an independent prognostic factor. For some,
an increase in Ki-67 is a poor prognostic factor for survival [96,223,228], while others have
reported a longer survival in patients with high Ki-67 levels [237,250]. An analysis by Valera
et al. showed that tumor Ki-67 PI was an independent prognostic variable, consistently used
by the classification and regression tree (CART) algorithm to classify patients with similar
clinical features and survival [243]. Studies on Ki-67 expression in CRLM indicate the
overexpression of this protein as an independent factor of poor OS prognosis [238,251,252].

The meta-analysis by Luo et al., focused on Ki-67 validation using IHC expression,
covering 34 studies based on 6180 primary CRC patients, confirmed that the high expression
of Ki-67 is a poor predictor for OS (HR 1.54, 95% CI 1.17–2.02) and DFS (HR 1.43, 95% CI
1.12–1.83) based on an univariate analysis. In multivariate analysis after adjusting for other
prognostic factors, an association was shown only for OS (HR 1.50, 95% CI 1.02–2.22) [175].
Another meta-analysis investigated the determination of prognostic biomarkers in CRLM.
Ki-67 was included among the 26 independent OS biomarkers in resected CRLM [253].

More than a dozen research publications on Ki-67 as a prognostic factor in CRC have
also investigated the prognostic significance of potential apoptosis proteins (e.g., p53, bcl-2,
programmed death ligand 1 (PD-L1), survivin) [125,134,142,147,182,197,218,224,228,232,
235,237,238,241,254,255] (Table 3).

There is also a summary of studies on the segmental distribution of some commonly
used molecular markers (including proliferative and apoptotic markers) in CRC, which
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could also potentially affect their prognostic or predictive value [256]. One such marker
is Ki-67, a component of the 12-gene Oncotype DX® Colon Cancer Assay, with potential
significance for predicting the risk of disease recurrence, DFS, and OS in stages II and III
CRC [257]. However, more recent studies indicate that routine use of the Oncotype DX
Colon Recurrence Score in stage IIa CC may be unnecessary, especially in patients with
normal levels of additional biomarkers [258].

Table 3. Immunohistochemical (IHC) studies on the prognostic relevance of Ki-67 in colorectal cancer
(CRC) and CRC with liver metastases (CRLM) (S No. 9, 13, 26, 29, 32).

S No. Material (No. of Cases)
and Methods

Findings
Prognostic Role

for Survival
Year of Publica-

tion/Country
Ref.
No.

1. pAC (139); IHC, mAb
Ki-67, LI; S

↑In mucinous vs. non-mucinous CRC;
inverse correlation with grading in

non-mucinous AC
No 1990; Italy [231]

2. pCRC (125); IHC, LI; S No correlations with clinicopathological
data No 1994; UK [124]

3. CRC (106); IHC, MIB-1, 3
methods of estimation; S No correlation with clinical outcome No 1996; Austria [233]

4. CRC (70); stages II and III;
IHC, MIB-1, LI; S

Relation to disease recurrence, retained in
stage II; LI > 45% associated with ↑risk for

disease recurrence vs. LI ≤ 45% (MA)
Yes 1997; USA [125]

5.
CRC (255); Dukes’ A–D;

IHC, MIB-1, weak (<50%),
strong (>50%); S

Level > 50% (62%); <50% (38%); no
correlations with clinicopathological

variables
No 1997; Sweden [234]

6.
CRC (56); Dukes’ B;

survival analysis (47); IHC,
anti-Ki-67, morphometry; S

Mean value in luminal border (27.4%),
invasive margin (36.8%); ↓LI at the invasive
margin correlated with poorer survival (RR

12.1, 95% CI 1.1–1.33) (UA and MA)

Yes 1999; Sweden [247]

7. CRC (52); AD (56); IHC,
MIB-1, LI; S

↓LI in AD (30.05%) vs. CRC (38.12%);
↑correlated with poor differentiation and

Duke’s stage
Nd 2000; USA [218]

8. CRC (30); IHC, LI; S No correlation with tumor stage and grade Nd 2001; France [127]

9. CRLM (41); IHC, MIB-1; LI
at the hot spot; S

Mean value (38%); LI ≥50% related to
shorter survival vs. low scores; ↑score an

independent adverse prognostic factor (RR
3.04) (MA)

Yes 2001; Germany [251]

10.
CRC (25); pTNM; stages

I–IV; IHC, MIB-1, LI,
morphometry; RT-PCR; S

Median protein LI (61%), median mRNA LI
(0.88 amol); better OS for the group with ↓LI

and ↓mRNA level vs. median
Yes 2001; Germany [259]

11.
CRC (100); MSI-H (31),

MSI-L (29), MSS (40); IHC,
PI; S

↑PI (90.1%) in MSI-H vs. MSI-L (69.5%) and
vs. MSS (69.5%); ↑PI showed a trend toward

predicting ↑survival only within MSI-H
cancers

Probably yes 2001; Australia [260]

12.
CC (465); Dukes’ B2 and C;

S alone (151) or S +
FU-based CTx (314); IHC,

LI

No significant association with clinical
outcome No 2002; USA [142]

13. pCRC (74); CRLM (37);
IHC, MIB-1, LI; S

LI ≥ 30% more frequently in lymphatic and
venous invasion, LN meta, and CRLM; ↑in
primary tumors vs. CRLM (24.3 ± 17.9 vs.
5.0 ± 4.2); LI ≥ 30% in pCRC correlated

with ↑frequency of metachronous CRLM

Nd 2002; Japan [221]

14.

CC (706); stages II and III; S
alone (275) or S +

FU-leucovorin CTx (431);
IHC, LI

Tumors with ↑number of (+) cells had
improved outcomes vs. tumors with few (+)

cells; association with RFS (RR 0.76) and
with OS (RR 0.62)

Yes 2003; USA [147]

15.
CRC (47); IHC, MIB-1, LI;

ISH for mRNA with
DIG-labelled cRNA probe,

LI; S

Median protein LI (59%), mean mRNA LI
(42%); ↑protein but ↓mRNA are likely to
proliferate more slowly, which possibly

explains the pts’ improved outcome

No 2003; Germany [236]

16. CRC (81); IHC, anti-Ki-67,
IRS; S

↑Expression in the low differentiated
tumors; inverse correlation to survival Yes 2003; PL [222]
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Table 3. Cont.

S No. Material (No. of Cases)
and Methods

Findings
Prognostic Role

for Survival
Year of Publica-

tion/Country
Ref.
No.

17.

pCRC (311 including 82
with distant meta); AD and
CA in situ (22); IHC, MIB-1;

S

↑Rate in AD with severe atypia and CA in
situ; ↓rate in poorly differentiated and
mucinous AC vs. well- and moderately

differentiated tumors

Nd 2003; Japan [219]

18. CC (144), RC (90); IHC;
MIB-1, semiq estimation; S

↑In LN meta of short-term (505 d) vs.
long-term survivors (4150.5 d)

No, but an
indicator of

survival in Dukes’
C

2004; Japan [240]

19.

RC and rectosigmoid AC
(146); IHC, MIB-1, high
(>40%) and low (≤40%),
hot spot areas (>50%); S

Better OS for ↑values vs. those with ↓values;
the presence of hot spot areas associated
with better survival (MA); hot spot areas

one of the prognostic factor

Yes 2005; Finland [248]

20. CRC (106); IHC, MIB-1,
PI; S

Mean PI (38.0%); (+) correlation with
advanced T status, LN and distant meta,

and ↑pTNM stage; an independent
prognostic factor for long-term survival; pts
with high PI were at greater risk for death

(HR 2.1, 95% CI 1.1–4.1) (MA)

Yes 2005; Japan [223]

21.
CC (53), RC (33); stages

I–IV; IHC, MIB-1, group A
(<40%) and B (≥40%); S

Mean LI (0.44 ± 0.16); no correlation with
sex, age, and clinical stage; ↑level correlated
with ↓survival; an independent predictor of

survival (MA)

Yes 2005; Brazil [96]

22. CRC (pCC + pRC) (363),
Dukes’ A–D; IHC, LI; S

In RC, pts with a LI ≥ 5% had a better
prognosis than those with a lower index Yes 2005; Finland [182]

23. CRC (40); IHC, NCL-Ki67p,
PI; S

Mean PI (52.39%); pts who developed either
local recurrence or meta had a significantly

raised PI; PI ≤ 52.7% with a trend to
improved survival

No for OS (MA) 2006; UK [261]

24.

CRC (38): mucinous (14),
non-mucinous (24); stage

B1, B2, C1, C; IHC,
anti-Ki-67, hot spot, NIH’s

Image I; S

Median (35%); (+) correlation with age, LN
meta, and with Dukes’ MAC staging (25% in

B1, 60% in C2); ↑with grade
Nd 2007; Romania [224]

25.
CRC (47): mucinous (5),
non-mucinous (42); pT3,
G2; IHC, MIB-1, negative
<50%; positive >50%; S

(+) Correlation with LN meta Nd 2009; PL [197]

26.
CC (40), rectosigmoid or

rectal AC (33); CRLM (27);
IHC, MIB-1; qRT-PCR; S

pCRC (81.8%) vs. CRLM (36.2%); ↓of the
GPS in CRLM and confirmed their
↓proliferative levels by qRT PCR

Nd 2009; New
Zealand [115]

27.
CRC (152), stages I–IV;
IHC, rabbit anti-Ki-67,

semiq estimation; S

(+) Correlation with the UICC stage and
differentiation; (+) pts had the ↓cumulative

survival vs. pts with no expression (MA)
Yes 2010; China [225]

28. CRC (356); IHC; S No association with clinicopathological
variables Nd 2010; Korea [235]

29. CRLM (188/124 for Ki-67);
IHC; S

↑Expression (62%); ↑expression as an
independent predictor of poor survival after

colon resection (HR 2.6, 95% CI 1.4–4.8)
Yes 2010; USA [252]

30.
CRC (201); stages I–IV; IHC,
anti-Ki-67, semiq estimation,

(+) (score ≥ 5); S

(+) Expression (59.7%); (+) correlation with
tumor size, grade, invasive depth, LN meta,
distant meta, TNM; independent prognostic

factor of favorable OS (HR 0.34, 95% CI
0.16–0.72) (MA)

Yes 2011; China [249]

31.
CRC (31), men with Dukes’
B AC; IHC, MIB-1, semiq

estimation; S

Median (46.9 ± 19.2%); inverse relationship
with OS (r = −0.67) Yes 2012; Italy [241]

32.
TMA with CRLM (98); IHC,
MIB-1; cut-off value for (+)

phenotypes (>50%); S

More (+) pts among the long-term survivors;
pts with ↑ expression lived longer (HR 0.82,
95% CI 0.68–0.98) (MA); positive predictor

for AS, but not for DFS

Yes 2014; Slovenia [238]
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Table 3. Cont.

S No. Material (No. of Cases)
and Methods

Findings
Prognostic Role

for Survival
Year of Publica-

tion/Country
Ref.
No.

33. RC (111); IHC, MIB-1, LI;
SCRT + S

↑Expression correlated with pTR; in females
(+) correlation with pTNM in a long break

after SCRT
Nd 2014; PL [88]

34.
TMA CRC (672), including
CRC with LN meta (210);

IHC, anti-Ki67, LI; S

Median in pCRC (68.2%), in LN meta (55%);
↑in pCRC vs. CRC LN meta; (+) correlation
with tumor penetration and differentiation

No 2015; Portugal [226]

35.
CRC (110) including Dukes’

C; IHC, MIB-1, LI; semiq
estimation; S

↑Expression in LN meta vs. pCRC No 2015; Turkey [232]

36.
CRC (74) including

mucinous AC (5); IHC, LI;
S

LI of well (14%), moderate (31%), and
poorly differentiated AC (43%); (+)

correlation with stage and grade
Nd 2015; India [227]

37.
CRC (2233), I–IV stage;

IHC, MIB-1, low (<50%),
high (≥50%); S

Pts in stage III with ↑level had ↑3-yr DFS
and OS vs. ↓level pts; improved 3-yr PFS for

stage IV pts in the ↑vs. ↓level group
Yes

2016;
Germany/pts of
Chinese origin

[250]

38.

TMA CRC (1800); IHC,
anti-Ki-67, low (0–10%),

moderate (>10–25%), high
(>25%); S

↑Expression associated with low stage and
LN status; an independent prognostic factor

of favorable survival
Yes 2016; Germany [237]

39.

TMA CRC (254), stage II
and III; IHC, anti Ki-67,

low (<20%) and high
(≥20%); S

↑LI associated with ↑TNM stage; ↓LI related
to RFS (UA); ↑LI (HR 2.62, 95% CI 1.12–6.14;

an independent predictor of unfavorable
prognosis (MA)

Yes 2018; China [228]

40.

RC (46), stage II and III;
IHC, MIB-1, Image System
(Nikon), LI, cut-off value

(30%); CRT + S

No difference between ↓ and ↑expression
groups in clinicopathological factors; ↑LI
correlated with lower 5-yr DFS vs. group

with ↓LI (53% and 88%), as was the 5-yr OS
(68% and 100%)

Yes 2018; Japan [254]

41.

CRC (1090), stage 0-IV;
IHC; anti-Ki-67, semiq

estimation; cut-off value of
25%; S

(+) Correlation with invasive depth,
differentiation, and size, AJCC-8, (+) no. of
LN and CTx status; ↑level related to poor

prognosis and independently predicts
prognosis in the AJCC-8; no differences for

DFS and OS in stage IV

Yes 2020; China [229]

42.
CRC (38), non-neoplastic
polyps (2) and AD (20);

IHC, anti-Ki-67, LI; S

CRC: ↑LI in higher grade and stage; AD:
↑intensity and high score similar to CRC;
non-neoplastic polyps: ↑LI and medium

intensity; ↑LI from non-neoplastic to
neoplastic cases

Nd 2021; India [217]

43.
CRC (210), stages I–III;
IHC, polyclonal Ab, LI,

cut-off value 60%; S

LI ≥60% indicated a high-risk ratio for both
distant meta (HR 2.56, 95% CI 1.08–6.06) and

death (HR 2.64, 95% CI 1.07–6.54)
Yes 2022; China [230]

44.

RC (154), RC I–II after RT +
S (2–3 d after) (64), RC I–III

after S (90); IHC, image
analysis application

package

↑Level with a survival rate of less than 3 yrs
in both pts after RT and S Yes

2022;
Switzerland,

Germany, UK
[255]

Legend: ↑/↓—increase (overexpression)/decrease; >/<—higher/lower; (+)—positive; AC—adenocarcinoma;
AD(s)—adenoma(s); AJCC—American Joint Committee on Cancer 8th edition; AS—actual survival; C—control;
CA—carcinoma; CC—colon cancer; CI—confidence interval; CRT—chemoradiotherapy; CTx—chemotherapy; d—
days; DFS—disease-free survival; DIG—digoxygenin; FU—fluorouracil; GPS—multi-gene proliferation signature;
HR—hazard ratio; ISH—in situ hybridization; IRS—immunoreactive score; Lbs—laboratories; L(P)I—labeling
(proliferation) index; LN—lymph node metastasis; MA—multivariate analysis; mAb—monoclonal antibody;
meta—metastasis; MIB-1—antibody against Ki-67 antigen; MSI-H/L—microsatellite instability high/low; MSS—
microsatellite stable; nd—not determined; no.—number; OS—overall survival; (p)CRC—(primary) colorec-
tal cancer; PFS—progression-free survival; PL—Poland; pTNM—pathological tumor/node/metastasis; pTR—
pathological tumor response; pts—patients; RC—rectal cancer; RFS—relapse-free survival; RR—relative risk;
RT—radiotherapy; qRT-PCR—quantitative real-time polymerase chain reaction; RT-PCR—reverse transcriptase-
polymerase chain reaction; S—surgery; semiq—semiquantitative; UA—univariate analysis; UICC—International
Union Against Cancer; UK—United Kingdom; yr(s)—year(s).
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Table 3 shows the potential correlations between Ki-67 expression, clinicopatholog-
ical data, and survival as prognostic factors in CRC. Moreover, it illustrates the broad
geographical coverage of the studies conducted, which include several countries in Amer-
ica, Europe, and Asia. The studies mainly used mAbs (MIB-1) rather than polyclonal
antibodies, allowing for better result comparability. However, the publications varied in
the semi-quantitative methods used to estimate the results, which may be one reason for
the differences between the investigators. Most articles, revealing significant correlations
between Ki-67 expression and clinicopathological data, also provided answers regarding
the prognosis and survival of patients (OS, DFS).

Traditionally, pathologists examine the expression of IHC markers visually and calcu-
late it semi-quantitatively by considering the intensity and distribution of specific staining.
Visual assessment is fraught with problems due to the subjectivity of interpretation. There
is a lack of standardized systems for evaluating performance, relying on different cut-off
values and inconsistent criteria to define the threshold value of marker/antigen positive
expression by IHC. A lower reproducibility of results may also be affected by differences
in the preparation conditions, antibodies used, their dilutions, and IHC reaction detection
systems [135,136,198,210]. Automated IHC measurements promise to overcome these limi-
tations. Nowadays, spatial visualization methods of digital images are used to quantify
IHC data [262].

4.4. Modern Molecular Biology Techniques for the Assessment of Proliferative Markers in CRC

With the rapid development of complex molecular biology techniques (e.g., qRT-
PCR, in situ hybridization (ISH), RNA/DNA sequencing, NGS, and DNA methylation
detection methods), there is a constant search for new biomarkers of cellular proliferation
with potential diagnostic, prognostic, and/or predictive significance in cancers including
CRC [115,236,259,263–278].

Quantitative RT-PCR is generally used as the ‘gold standard’ method to measure
RNA expression [115,259,267,276,277]. In situ hybridization is a research tool to detect
protein production and provides invaluable information regarding the localization of gene
expression in heterogeneous tissues. For example, it was used to detect Ki-67 mRNA in
CRC tissues with the digoxigenin-labelled cRNA probe [236].

RNA sequencing is used to study the expression of non-coding RNAs (ncRNAs) [275,276],
often complementary to methods for assessing protein expression (e.g., IHC, BrdU staining,
Western blotting, qRT-PCR, and ISH). Among the sequencing techniques, NGS is currently
the only method that enables the parallel sequencing of thousands of short DNA sequences
in a single assay, replacing many less advanced profiling technologies. NGS is used to
analyze the genome (whole and partial genome), methylome, transcriptome, or available
chromatin using techniques including DNA-Seq, RNA-Seq, or chromatin profiling with
methods such as ChIP-Seq. This technology offers a better approach for detecting multiple
genetic changes with a minimal amount of DNA. What is particularly important is that it is
also possible to sequence RNA transcripts from single cells (scRNA-Seq) [46].

Detection methods for DNA methylation in CRC include methylation-specific poly-
merase chain reaction (MSR), DNA sequencing (e.g., bisulfide sequencing, pyrosequencing),
methylation-specific high resolution melting curve analysis (MS-HRM), and MethyLight
assay (reviewed in [278]).

4.4.1. PCNA mRNA Expression

PCNA expression was also studied at the RNA level. Yue et al., using RT-PCR, showed
higher PCNA mRNA expression (94.1%) in patients with CRC and venous invasion and
LM than in CRC without metastasis (70.6%), confirming the increased production of this
marker with CRC progression [263]. However, PCNA was not indicated as a prognostic
marker but only as a useful marker for evaluating the LM of cancer cells. In contrast,
Cui et al., using qRT-PCR, demonstrated increased PCNA antisense RNA1 (PCNA-AS1)
expression in CRC relative to the controls, and detected correlations of this biomarker with
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the clinical data (tumor invasion and TNM stage). A higher expression of PCNA-AS1 was
also confirmed by in vitro studies. These data suggest a role for PCNA-AS1 mainly as a
diagnostic rather than a prognostic marker in CRC [264].

4.4.2. Ki-67 mRNA Expression

Possible correlations between the Ki-67 mRNA and clinicopathological data were
also analyzed, investigating its prognostic significance in CRC [115,236,259]. A positive
correlation was described between protein LI, Ki-67 mRNA, and TNM. The mRNA level
was also prognostically important as it correlated with patient survival, similarly to the
pKi-67 index [259]. The correlation between pKi-67 LI (median: 59%) and the mRNA
level detected using ISH (median: 42%) was slightly more difficult to obtain as a positive
correlation was observed in 32/47 resected tumors, with a significant difference detected
in 15 cases. In the latter tumors, more than 30% of the cells were pKi-67-positive but did
not exhibit the presence of its mRNA. The authors explain this by the likelihood of cell
cycle arrest. Interestingly, the latter patients were characterized by a better prognosis. In
other words, tumors with high pKi-67 and low mRNA are likely to proliferate more slowly
and, hence, be attributed to a better prognosis [236]. On the other hand, comparative
studies between pCRC and CRLMs, using qRT-PCR and IHC, showed significantly lower
multi-gene proliferation signature (GPS) expression in CRLM and confirmed their lower
proliferation rate. Interestingly, proliferative activity was significantly lower for primary
cancers with recurrence or those with established metastases than for CRCs that did not
metastasize and had no recurrences [115]. Such studies need to be continued, as they may
shed new light on tumor proliferation.

4.4.3. Non-Coding RNAs (ncRNAs) Expression

Particular value is attributed to fragments of the human genome that do not encode
proteins but play a specific role in many of the biological processes involved in colon
carcinogenesis including cell cycle regulation. These are the so-called non-coding RNAs
(ncRNAs), among which there are two main classes: small non-coding RNAs with less
than 200 nucleotides (nc) (e.g., microRNAs, small interfering RNAs, Piwi-interacting RNAs,
small nuclear RNAs, and small circular RNAs) and long non-coding RNAs (lncRNAs)
(greater than 200 nc in length [270,273,274].

Studies have consistently demonstrated that the majority of both miRNAs and lncR-
NAs are dysregulated in CRC. The role of hundreds of different ncRNAs has been demon-
strated in CRC cell proliferation in vivo and in vitro. Non-coding RNAs most often show
increased expression in CRC compared to the controls. Depending on what function a
given ncRNA has in the tumor (oncogene, tumor suppressor), its overexpression or down-
regulation enhances proliferative activity and tumor progression [266,268,270,279–281].

Numerous reviews have illustrated the underlying mechanisms of the biological action
of miRNAs in CRC and/or reported downstream targets linked to known signaling path-
ways in colorectal carcinogenesis (mostly responsible for cell proliferation) [276,279,282,283].
For example, microRNAs can activate the KRAS pathway (downregulation of tumor sup-
pressors: miR-96-5b, miR-384, mi-143, Let-7) [279,283] as well as WNT (miR-135, miR-145,
miR-17-92) and EGFR signaling (miR-126, miR-143, miR-18a, Let-7, miR-196a, miR-21), and
inactivate the TGF-β pathway (miR-200c) [282]. They can result in the downregulation
of the TP53 pathway (overexpression of miR-34a, miR-34b, miR-34c, miR-192, miR-194-2,
miR-215), epithelial–mesenchymal transition (EMT) (overexpression of miR-181a, miR-
17-5p, miR-494; miR-21, miR-22) and SMAD4 (overexpression of miR-20a, miR20a-5p,
miR-888). Moreover, the miR-21, miR-31, and miR-200 families are involved in EMT
regulation [282,283].

In addition to miRNAs, lncRNAs are also closely involved in enhancing cellular pro-
liferation, acting through the CRC’s well-known signaling pathways, as already described
in some excellent reviews [268,281,284,285]. These include (i) JAK/STAT (downregulation
of cancer susceptibility candidate 2, CASC2), (ii) MAPK (overexpression of H19 imprinted
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maternally expressed transcript, H19 and a newly discovered lncRNA with a length of
2685 nc, i.e., LINC00858), (iii) EGFR/MAPK (overexpression of solute carrier organic an-
ion transporter family member 4A1-antisense RNA 1, SLCO4A1-AS1), (iv) Ras/MAPK
(overexpression of colorectal neoplasia differentially expressed, CRNDE), and (v) AKT
(overexpression of nuclear-enriched abundant transcript 1, NEAT1). A further example
would be WNT-β-catenin signaling, which is activated by the overexpression of lncRNAs
including small nucleolar RNA host gene 1 (SNHG1), HOX transcript antisense RNA
(HOTAIR), SLCO4A1-AS1, taurine upregulated gene 1 (TUG1), and the downregulation of
growth arrest specific 5 (GAS5). In turn, the TGF-β1 pathway is affected by the downreg-
ulation of maternally expressed 3 (MEG3) and the upregulation of LINC00858, whereas
TGF-β/Smad is activated by the upregulation of SNHG6. Many lncRNAs are involved
in the regulation of the EMT process. These mainly include TUG1, sprouty RTK signal-
ing antagonist 4 intronic transcript 1 (SPRY4-IT1), and promoter of CDKN1A antisense
DNA damage activated RNA (PANDAR) [281,284,286,287]. The activation of prolifera-
tion through STAT3 or β-catenin-mediated signaling pathways is also mediated by the
upregulation of lncRNAs such as BC200, CASC15, colon cancer-associated transcript 2
(CCAT2), focally amplified lncRNA on chromosome 1 (FAL1), SNHG1, and SnaR. The
ERK (MAPK)/JNK pathway is also affected by lncRNA DMTF1V4. Moreover, lncRNA
SNHG7 acts in the K-RAS/ERK (MAPK)/cyclin D1 pathway (reviewed in [268]), while the
MIR22 host gene (MIR22HG) is responsible for blocking the SMAD complex, resulting in
the inhibition of EMT signaling [270,288].

Some of the lncRNAs above-mentioned interact with other cell cycle markers. For
example, the zinc finger NFXT-type containing 1 antisense RNA 1 (ZFAS1) affects cell pro-
liferation through a mechanism that destabilizes p53 via the CDK1/cyclin B1 complex [289].
Another lncRNA (i.e., ENSG00000254615), inhibits CRC cell proliferation and attenuates
CRC resistance to 5-FU by regulating p21 and cyclin D1 expression [290]. Cyclin D1 also
belongs to one of the target proteins of lncRNAs such as SNHG1 [291], SNHG7 [292],
and XIST [293]. PCNA, on the other hand, is one of the target proteins for the lncRNA
FAL1 [294]. These studies suggest a complex network of functional relationships between
ncRNAs and classical cell cycle proteins, which may result in their variable expression at
different stages of CRC development. In turn, any epigenetic modifications and interactions
of lncRNAs with both miRNAs and proteins as well as the action of lncRNAs as precursors
or pseudogenes of miRNAs may regulate the expression of multiple genes [272].

The prognostic role of ncRNAs in CRC has also been increasingly demonstrated. A
summary of the activity of both subtypes of ncRNAs (miRNAs and lncRNAs) as regulatory
and prognostic factors in CRC is provided in other reviews [266,279,280,295].

MicroRNA (miRNAs, miRs)

There has been a rapidly increasing number of original publications and systematic
reviews [276,283,296] addressing the prognostic role of miRNAs in CRC. A worse prognosis
for survival (worse OS/DFS) is related to both miRNAs that are downregulated and
overexpressed in CRC [276,283]. Representative miRNAs detected in tissues and body
fluids are often compared in the literature [276]. An analysis of 115 articles identified
hundreds of miRNAs with oncogene properties including miR-21, miR-181a, miR-182, miR-
183, mi-R210, and miR-224. Overexpression of these miRNAs was associated with CRC
progression and shorter patient survival. The most frequently described tumor suppressors
among miRNAs included miR-126, miR-199b, and miR-22. Decreased expression of the
latter was also associated with poor prognosis and a higher risk of relapse (worse DFS) [283].
A detailed review addresses the mechanisms of methylation of miRNAs as a cause of their
silencing and the prognostic value of such altered miRNAs in CRC [296].

In addition, dozens of meta-analyses are available on the prognostic role of single
miRNA types (e.g., miR-21 [297], miR-181a/b [298], miR-20a [299], miR-155 [300]) or the
entire group of miRNAs tested (e.g., miR-21, miR-215, miR-143-5p, miR-106a, and miR-145)
in specific stages of CRC development [301]. Gao et al., in their meta-analysis, showed that
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the strongest markers of poor prognosis included high levels of miR-141 in blood (HR 2.52,
95% CI 1.68–3.77) and miR-224 in tissue (HR 2.12, 95% CI 1.04–4.34) [302].

Long Non-Coding RNAs (LncRNAs)

Modern molecular techniques and the TCGA dataset allow for the identification of an
increasing number of different lncRNA subtypes as new prognostic and predictive factors
in CRC [267,272]. Representative lncRNAs detected in CRC tissues and plasma/serum
(circulating lncRNAs) have already been compared in the literature [303]. A prognostic role
was shown for lncRNAs with tumor suppressor and oncogene properties. For example,
the reduced expression of tumor suppressors such as LOC285194 [304] or MIR22HG [288]
is associated with poor prognosis. Upregulation of lncRNA-oncogenes in CRC has also
been associated with poor prognosis through various mechanisms. These include, among
others, plasmacytoma variant translocation 1 (PVT1) [275,305], differentiation antagonizing
non-protein coding RNA (DANCR) [306], HOXA distal transcript antisense RNA (HOT-
TIP) [307], BRAF-activated non-protein coding RNA (BANCR) [308], SPRY4-IT1 [309],
CCAT1/CCAT2 [310], and X inactive specific transcript (XIST) [311].

Although many ncRNAs have been reported as proliferative markers, only a few
meta-analyses have provided evidence for the actual role of selected lncRNAs in CRC
prognosis [265,312–316]. These include, among others, overexpressed oncogene urothelial
cancer-associated 1 (UCA1) for OS (HR 2.25, 95% CI 1.77–2.87) [312], or SNHG6 for OS
(HR 1.92, 95% Cl 1.48–2.49), and DFS (HR 1.84, 95% CI 1.02–3.34) [313]. As shown in a
recent meta-analysis based on 25 publications and more than 2000 patients, the overex-
pression of various SNHGs (especially SNHG1) is a poor prognostic factor in CRC (HR
1.64, 95% CI 1.40–1.86). The authors also presented all the signaling pathways interacting
with this type of lncRNA. Many lncRNAs enhance cancer cell proliferation, acting directly
or through different miRNAs [316]. For example, SNHG20 exerts this effect by directly
affecting cyclin A1, and its expression is a poor prognostic factor in CRC (HR 2.97, 95% CI
1.51–5.82) [317]. Zhuang et al., in their meta-analysis, showed that the overexpression of
lncRNA HNF1A antisense RNA 1 (HNF1A-AS1) could also be a recognized factor for poor
prognosis (HR 3.10, 95% CI 1.58–6.11) [318]. A meta-analysis of numerous solid tumors
(including CRC) revealed that increased expression of five prime to Xist (FTX) [314] and
KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OTI) correlated with shorter OS in
CRC [315]. A previous study on metastasis-associated lung adenocarcinoma transcript 1
(MALAT-1/NEAT1) in six different tumors (including CRC) showed that the high expres-
sion of MALAT-1 correlated with lymph node and distant metastases (OR 3.52, 95% CI
1.06–11.71) [265]. In contrast, Xie et al. demonstrated a prognostic role for high levels of
CRNDE in various cancer types including CRC (poor OS) (HR 2.11, 95% CI 1.63–2.75) [319].

Table 4 summarizes the examples of lncRNAs as prognostic markers in CRC, published
in recent years.

Table 4. Prognostic value of selected long non-coding RNAs (lncRNAs) in colorectal cancer (CRC).

Type of lncRNA Material/Research Model Expression Level Findings Ref. No.

LOC285194
CRC (81); CRC cell lines:

CaCO-2, HCT8, LoVo and C
(CCC-HIE-2 cells); qRT-PCR

↓ A poor DFS; an independent
predictor of DFS (MA) [303]

PVT1

Pairs of CRC and C (164); CRC
cell lines: RKO and HCT116;

siRNA transfection; cell
proliferation and invasion

assays; gene expression array;
qRT-PCR; array-CGH and copy
no. analysis; gene set enrichment

analysis; WB

↑
Promoted cell proliferation; a

poor prognosis; an independent
risk factor for OS (UA and MA)

[275]

Pairs of CRC and C (210);
qRT-PCR ↑

A shorter DFS and OS; an
independent predictor of poor

prognosis (MA)
[304]
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Table 4. Cont.

Type of lncRNA Material/Research Model Expression Level Findings Ref. No.

DANCR CRC (104); qRT-PCR ↑
A shorter OS and DFS; an

independent poor prognostic
factor for both OS and DFS (MA)

[305]

HOTTIP CRC (156), C (21); qRT-PCR ↑
An unfavorable as well as an
independent poor prognostic

factor (MA)
[306]

SNHG20 CRC and C (107) ↑ An independent poor prognostic
factor for OS (MA) [316]

BANCR CRC (106), C (65), qRT-PCR ↑
A shorter OS; an independent

poor prognostic factor (HR 2.24,
95% CI 1.22–4.16)

[307]

SPRY4-IT1 CRC (106); qRT-PCR ↑
A poor OS; an independent

prognostic factor (HR 2.34, 95%
CI 1.14–4.82)

[308]

CCAT1 and CCAT2 CRC (280) and C (20); qRT-PCR ↑ A poor RFS and OS [309]

XIST
CRC (196); CRC cell lines:

LOVO, HT-29, HCT8, HCT116,
SW480, and DLD1 and C

(HCoEpics cells); qRT-PCR
↑

Could predict PFS and OS; could
act as independent risk factor for

poor prognosis
[310]

LINC00858

Pairs of CRC (115); CRC cell
lines: T-29, HT-15, SW837 and

SW1463; qRT-PCR; siRNA
transfection; cell proliferation
and apoptosis assays; colony

formation assay; dual luciferase
reporter assays; RIP; WB

↑ An independent poor prognostic
factor [284]

Pairs of CRC (50) and 20 female
BALB/c nude mouse; qRT-PCR;
ISH; MTT assay; BrdU staining;

FCM, wound healing, and
Transwell assays; luciferase

activity assay and RIP; IHC; WB;
HE staining

↑ Prognostic factor for OS [277]

MIR22HG

CRC (79) and C (84); CRC cell
lines LoVo and HCT116;

bioinformatics screen; qRT-PCR;
MTT and Transwell assays;

mouse model

↓
A poor OS and DFS; promoted
cell survival, proliferation and

tumor meta in vitro and in vivo
[287]

Legend: ↑,↓—high (upregulation), low (downregulation); BANCR-BRAF—activated nc RNA;
BrdU—bromodeoxyuridine/5-bromo-2’-deoxyuridine; C—control; CCAT1/2—colon cancer-associated
transcript 1/2; CGH array—comparative genomic hybridization array; CI—confidence interval; CRC–colorectal
cancer; DANCR—anti-differentiation ncRNA; DFS—disease free survival; FCM—flow cytometry; HR—hazard
ratio; HNF1A-AS1—HNF1A antisense RNA 1; HE—hematoxylin and eosin; HOTTIP—HOXA transcript
at the distal tip; IHC—immunohistochemistry; ISH—in situ hybridization; MA—multivariate analysis;
meta—metastasis; MIR22HG—MIR22 host gene; no.—number; OS—overall survival; PFS—poor progression-free
survival; PVT1—plasmacytoma variant translocation 1; SNHG20—small nucleolar RNA host gene 20;
SPRY4-IT1—sprouty RTK signaling antagonist 4-intronic transcript 1; RIP—RNA immunoprecipitation;
qRT-PCR—quantitative real-time polymerase chain reaction; UA—univariate analysis; WB—Western blot
analysis; XIST—X-inactive specific transcript.

In a previous review focused on the expression of some ncRNAs (miRNAs and lncR-
NAs), attention was drawn to the low reproducibility of the results and the poor power of
statistical analyses for the reliability of the study. This may be due to both the small amount
of material assessed or the over-sampling of ncRNAs, resulting in false positive or nega-
tive results [280]. The limitations of ncRNA detection in archival tissue material include
high tumor heterogeneity, leading to an increasing preference to detect these molecules in
serum/plasma or stool for prognostic purposes [276,303].

It should be noted that protein-coding mRNAs have a short half-life, and their expres-
sion changes enormously depending on the physiological/pathological state. Therefore,
they are not ideal as prognostic indicators. The correlation between mRNA expression and
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protein translation is not always guaranteed, especially in heterogeneous tumors (including
CRC), prompting the need for more sophisticated molecular techniques to assess the actual
expression of biomarkers. In addition, studying complex interactions between different
RNA types requires modern technology (e.g., high-throughput CLIP-Seq, degradome-Seq,
and RNA–RNA interactome sequencing methods) [46,320].

4.4.4. Prognostic Genetic and Epigenetic Biomarkers

The most relevant genetic and epigenetic alterations have been described as ‘potential
prognostic markers’ [244] or ‘potential emerging biomarkers’ of clinical utility [321–323].
Initially, numerous panels of genes have been identified for metastatic CRC patients. For
example, among the common core of five genes including BRAF, EGFR, KRAS, NRAS, and
phosphatidylinositol-4,5-biphosphate 3 kinase catalytic subunit alpha (PIK3CA), two of
them, EGFR and PIK3CA, have been named as ‘emerging biomarkers’ [321].

In an era of revolutionary advances in molecular biology techniques and bioinfor-
matical methods, different strategies are being adopted to classify biomarkers in CRC.
Considering the mechanisms of carcinogenesis, KRAS, BRAF, APC, and TP53 genes have a
permanent place among genomic biomarkers, whose role can be retrospectively traced to
the Vogelstein model [7,45,245,324]. Mutations in protooncogenes (including KRAS) confer
a strong growth signal to cancer cells and are closely associated with the development of
CRC [5,55]. Notably, the KRAS mutation is currently the only marker with proven benefit
for routine clinical use and selection for anti-EGFR mAbs therapy [324]. However, the
presence of KRAS mutations does not always correlate with cell proliferation or the survival
of patients with CRLMs [251]. In contrast, a meta-analysis by Sorich et al. showed that
patients with metastatic CRC without RAS mutations (either KRAS exon 2 or new RAS
mutation) treated with anti-EGFR mAbs had longer PFS and OS compared to patients with
the presence of these mutations [325]. A recent study performed in a group of 73 CRC
patients from South Korea reported no differences in DSF and OS treated with the FOLFOX
regimen in groups divided according to the presence of KRAS mutations and the expression
status of the excision repair cross-complementing 1 (ERCC1) protein. Interestingly, it was
shown that the subgroup of patients with wild-type KRAS and increased IHC expression
of the ERCC1 protein had lower OS compared to the subgroup with decreased ERCC1. No
significant difference was found in the group of patients with mutated KRAS. In addition,
the authors suggest that the presence of wild-type KRAS in combination with ERCC1
overexpression may be associated with oxaliplatin resistance. In other words, the KRAS
status and ERCC1 expression in CRC patients treated with oxaliplatin-based CTx exhibit
significant prognostic value [326].

An association has also been found between the loss of TP53 (17q-TP53) and poorer
survival rates, but TP53 is not considered as a useful prognostic marker as the current data
are insufficient to validate it [44]. Similarly, mutations in TGF-β, rare in CRC, cannot be
indicated as significant prognostic factors in this cancer [5]. One meta-analysis showed
a weak correlation between short OS and loss of 18q (HR 2.0, 95% CI 1.49–2.69), which
encodes two crucial tumor suppressor genes (SMAD2 and SMAD4) of the TGF-β family.
Loss of function of these two genes leads, among others, to cell cycle deregulation [327]. In
turn, the prognostic value of chromosomal instability in the form of CIN and MSI has been
confirmed (also in meta-analyses) [245,327,328]. Erstad et al. listed genes including matrix
metalloproteinases (MMPs), tumor inhibitor of metalloproteinase-1 (TIMP-1), manganese
superoxide dismutase (mnSOD), TGF-β, Survivin, and prolactin receptor (PRLR) among the
prognostic factors of survival. From the classical proliferative markers, they mention the
genes for TS and PCNA. The publication also provides an algorithm for the determination
of prognostic biomarker profiles in CRC [244]. The following have also been cited as
prognostic or predictive markers related to disease recurrence after surgery or resistance to
treatment: ‘SC signature’ circulating tumor (ct)DNA and cell-free (cf)DNA, RAS, PIK3CA
mutations, loss of PTEN (shorter PFS), low expression of EGFR (increase tumor regression),
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high density of TILs (better survival), loss of Bcl-2 expression (tumor recurrence), and
somatic mutation of BRAF (mainly V600E) [323].

Epigenetic alterations in CRC mainly comprise abnormal methylated DNAs, abnormal
histone modifications, and changes in the expression levels of abundant ncRNAs [329–331].
The prognostic significance of ncRNAs is described in Section 4.4.3. While the studied
epigenetic aberrations in CRC include CIMP [50,323,332], opinions on the prognostic value
of this marker differ and are debated by others [323,324].

Several DNA-methylation markers with prognostic value in CRC have also been
demonstrated. These include the methylation of genes such as secreted frizzled-related
protein (SFRP), p16, and long interspersed nucleotide element-1 (LINE-1). Methylation
of SFRP, which acts as a tumor suppressor gene, is associated with increased CRC cell
proliferation and tumor growth [333]. In turn, the methylation of LINE-1 is associated with
poor prognosis, shorter survival, and advanced stage [334,335]. A meta-analysis on LINE-1
also suggests that its methylation is significantly related to the survival of CRC patients and
may be a prognostic factor [336]. Another gene that undergoes DNA methylation in CRC
is the DNA-binding protein Ikaros (IKZF1), which regulates the cell cycle. Methylation of
the IKZF1 promoter is associated with the loss of regulation of tumor cell proliferation and
differentiation [337].

Recent studies also indicate high sensitivity and specificity in the detection of circu-
lating DNA methylated in branched-chain aminotransferase 1 (BCAT1)/IKZF1 in CRC
compared to other cancers (breast, prostate) [338]. Other reviews additionally included
methylated biomarkers of prognostic importance such as p14, Ras association domain-
containing protein 1A (RASSF1A) and APC (poor prognosis), O-6-methylguanine-DNA
methyltransferase (MGMT), DNA mismatch repair protein (hMLH1) (improved survival),
homeodomain-only protein (HOPX-β) (worse prognosis in stage III CRC) and several
EMC genes (worse survival), and IGF-2 hypomethylation (poor prognosis, short sur-
vival) [245,329]. Moreover, a recent study combined classical histopathology, the IHC
method (p53 and Ki-67 expression), and MSP (aberrant methylation of p16, E-cadherin, APC,
RUNX family transcription factor 3 (RUNX3), and hMLH1) with autofluorescence imaging
(AFI) to assess the proliferative capacity of CRC. Abnormal expression of p53 and Ki-67
and the altered methylation of p16 correlated with a lower AFI intensity [339].

It is important to note that the DNA methylation of genes in CRC also plays a role as
predictive markers and/or can be a basis for the development of novel methylation-based
therapies. Recent publications point to the important role of selected DNA methylation
markers for the screening and early diagnosis of CRC [323,331,340]. One such plasma
PCR-based test is the Epi proColon®, which is used to detect methylated SEPT9 and has
been approved by the U.S. Food and Drug Administration (FDA) for CRC screening in the
U.S. The test, which is performed in conjunction with a stool test for methylated DNA from
CRC cells, is used in patients who reject traditional screening methods [55].

Modern marker testing strategies in CRC potentially allow for the discovery of
thousands of new genomic and transcriptomic factors. At least some of these are ex-
pected to become sensitive and specific proliferative markers with prognostic signifi-
cance [55,323,324,340,341].

Considering the mechanisms of colorectal carcinogenesis associated with familial CRC,
clinically useful markers such as dMMR, MSI, KRAS, BRAF, APC, SMAD4, and BMPR1A
have already been indicated [47,323]. Markers with crucial roles in the pathogenesis of
CRC also include key genes in the cell cycle process [324,328]. Moreover, a range of state-
of-the-art molecular technologies used to detect a whole range of diagnostic markers in the
human body (blood/plasma, tissue, stool) have also been described [340,342]. There are
several recent summaries regarding the available technologies in for the search for the most
sensitive, specific, low-cost, and reliable diagnostic, prognostic, and predictive markers in
CRC [55,322,323,340,342].

Several publications have summarized the data on the clinical application of NGS
technology in CRC [46,321,322,324,342,343]. Additionally, NGS allows for the identification
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of unknown interactions between genetic variation in CRCs and the relationship of CRCs
to the structure of the gut microbiota composition [342].

Regarding the prognostic value in CRC, the activity of many protumoral genes (e.g.,
CD74, CLCA1, and DPEP1) has been described using this method. Additionally, using
this technique revealed intra-tumor cell heterogeneity in ulcerative colitis (UC)-associated
CRC [344]. Another study, based on several complementary techniques including scRNA-
Seq, revealed that kinesin family member 21B (KIF21B) was highly expressed in CRC and
was associated with poor survival. KIF21B expression was positively correlated with infil-
trating CD4+ T cells and neutrophil levels, cell apoptosis, and metastasis. In vitro studies
confirmed the role of KIF21B in enhancing proliferation, migration, and invasion [345]. In
addition, one study based on scRNA-Seq, RNA-Seq, and microarray cohorts established
a prognostic model based on the composition of prognosis-related cell subsets in TME
including nine specific immune cell lineages [346].

Other publications have described the advantages and technical challenges of using
liquid biopsies in the form of circulating tumor cells (CTCs) [347] and ctDNA as a promising
alternative to molecular tissue analysis [323,348,349]. ctDNA detection in blood can be
used to predict CRC recurrence after surgical resection [323]. In turn, a meta-analysis (2016)
showed strong associations between cfDNA, RFS (HR 2.78, 95% CI 2.08–3.72), and OS (HR
3.03, 95% CI 2.51–3.66) in CRC patients. Thus, the appearance of cfDNA in the blood can
predict shorter OS and worse RFS regardless of the tumor stage, study size, tumor markers,
detection methods, and marker origin [349]. Nonetheless, targeted NGS analysis of cfDNA
from TruSight Tumor 170 (TST170) may be useful for the non-invasive detection of gene
variants in metastatic CRC patients. TST170 is an NGS panel that covers 170 cancer-related
genes including KRAS [350]. High compatibility was also detected between cfDNA and
tumor DNA in metastatic CRCs using a 10-gene NGS panel. TP53 was the most frequently
mutated gene (63.2%), followed by APC (49.5%), KRAS (35.8%), and FAT tumor suppressor
homolog 4 (FAT4) (15.8%). The concordance of mutation patterns in these 10 genes was
as high as 91% between the cfDNA and tumor samples. These results also confirmed
the high sensitivity (over 88%) and specificity (100%) of the KRAS status in cfDNA for
predicting mutations of this gene in tumor tissue. Significant prognostic correlations
(peritoneal, lung metastasis) between TP53, KRAS, and APC mutations in the tumor were
also demonstrated [351].

The use of ctDNA-based genotyping of KRAS, NRAS, and BRAF indicates the utility
of predicting patient survival depending on the mutations of these genes. The highest
mutation frequency is attributed to KRAS (34%). The median OS of patients with RAS/BRAF
mutations detected in plasma was 26.6 months, and patients with wild-type RAS/BRAF did
not reach median survival during follow-up. The median RFS for RAS/BRAF wild-type and
RAS/BRAF mutation patients was 12 and 4 months, respectively [352]. Attempts have been
made to determine the prognostic role of markers detected by CTC-based techniques in
CRC. However, the results are still not convincing enough for recommendation in clinical
practice [340,347].

A recent review paper summarized the use of various molecular techniques (e.g., RT-
PCR, PCR, and single nucleotide polymorphism (SNP) genotyping assay, NGS, NanoString
analysis, Sanger sequencing, MassArray sequencing, quantitative MSP) to investigate
changes at the DNA and RNA level that may predict CRC metastasis to the peritoneum.
Only BRAF mutations were associated with peritoneal metastases in 10/17 studies [353].

The development of modern, especially non-invasive molecular technologies in CRC
should improve the specificity of tests (above 90%) primarily for disease screening and
therapeutic decisions [55,341,354].

Nowadays, numerous molecular techniques can be chosen, and the decision to use
specific markers should balance advantages and limitations that may affect the final results.
In the case of NGS-based DNA nucleotide variation testing, the difficulty lies in wide
variety of NGS platforms and gene panels and the multi-step nature of the study. In terms
of sensitivity, ctDNA NGS techniques cannot compete with digital PCR, prompting the
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need for PCR result validation. The sensitivity issue is important, particularly in liquid
biopsy, as random results (false positive mutations) can be obtained from hematopoietic
clones rather than from the tumor itself. The significant number of gene variants of
unknown roles obtained in the study is also not accepted by experts due to the lack of
clinical utility [321,348]. Another author described the limitations of non-standardized
methods, the small cohorts of patients analyzed, and the lack of demonstration of a clear
clinical benefit of liquid biopsy studies in CRC [347]. The scientific literature also contains
proposals for a systematic review and meta-analysis protocol in detecting KRAS mutations
in CRC using liquid biopsy samples, with paired tissue samples serving as the control [355].

4.5. Positron Emission Tomography (PET) to Assess Tumor Growth Rate

PET is the most specific and sensitive method of in vivo molecular interaction and
pathway imaging, finding an increasing number of applications in oncology [356]. This
non-invasive technique for the functional imaging and assessment of CRC growth rate
is based on the use of labelled 18-fluoro-3-deoxy-3-fluorothymidine (FLT). The method
can reveal the spatial organization of proliferating cells in the tumor and allows for multi-
ple simultaneous in vivo measurements. However, there are some correlations between
FLT uptake and tumor proliferative activity [111,112]. FLT was reported to have high
sensitivity in detecting extrahepatic disease but poor sensitivity in imaging CRC liver
metastases [112]. A better and currently the most commonly used tracer in CRC is 18F-
labelled 2-fluoro-2-deoxy-D-glucose (18F-FDG), with its usefulness resulting from increased
glucose consumption by malignant cells. Therefore, this tracer’s uptake is closely linked
to cancer cell proliferation, which depends mainly on glycolysis for energy. Many sig-
nal transduction pathways in the malignant transformation of cancer cells are regulated
by glycolytic metabolism [357]. Therefore, the combination of PET and 18F-FDG has be-
come an established tool for diagnostic tumor imaging and complete preoperative staging
in CRC [112,113,358]. PET–18F-FDG results may have implications for the therapeutic
management of patients with CRC [358,359] including metastatic CRC [113]. One review
recognized that PET in CRC also allows for the metabolic characterization of lesions sus-
pected of recurrence or the identification of latent metastatic disease [358]. Comparative
studies indicate lower FLT versus FDG uptake in patients with CRC. However, no correla-
tion was shown between the two radiotracers used and the proliferative activity assessed
by the Ki-67 index [360]. A later meta-analysis only confirmed a moderate correlation
between 18F-FDG uptake and Ki-67 expression in CRC [361]. A recent study by Watanabe
et al. indicated that tumor proliferation in CRLM is reflected by the standardized uptake
value (SUV) from FDG-PET. In addition, the authors showed a high correlation between
SUV and Ki-67 expression. SUV was also shown to include factors of glucose metabolism
(expression of hypoxia-inducible factor 1 alpha (HIF-1α), pyruvate kinase M2 (PKM2), and
glucose transporter 1 (GLUT1)). Thus, this test can be a valuable method to assess the
proliferative and metabolic viability of the tumor in advanced CRLM [113].

The remaining limitations of PET comprise its high cost and the lack of necessary
equipment in cancer centers, limiting the potential for multidisciplinary PET studies. The
most significant limitation for the patient is the need for the administration of radioactive
tracers, resulting in potential radiation exposure [356].

Figure 1 summarizes the major categories of prognostic proliferative markers in CRC
and the most important signaling pathways that are genetically altered in CRC progression.
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Figure 1. Different categories of proliferative markers with potential prognostic and predictive signif-
icance in CRC in association with key signaling pathways that are dysregulated in the ‘adenoma–
carcinoma sequence.’ Dysfunction of the WNT/β-catenin, EGFR/MAPK, TGF-β, and TP53 signaling
pathways leads to cell cycle progression, increased proliferation, and the inhibition of cell apoptosis.
Classic genetic markers of prognostic significance include the mutated genes (e.g., APC, KRAS/BRAF,
TGF-β, and TP53). Markers at the chromosome level are CIN and MSI. Epigenetic markers are
CIMP and many other candidates including SERP, p14, p16, LINE-1, and RASSF1A (not shown).
Selected genes also undergo amplifications (e.g., EGFR, VEGF, SMAD7, IGF-2), enhancing cellular
proliferation. Prognostic markers also include ncRNAs. Several representatives were selected based
on their proven role in cell cycle progression and enhancement of proliferation, with prognostic
value demonstrated in meta-analyses. A prognostic role for aneuploidy and altered expression of
conventional IHC proliferating markers in CRC (i.e., TS, cyclin B1, cyclin D1, PCNA, and Ki-67) was
shown. Legend: ⇓—regulation; ↑/↓—increase/decrease; ⊥—inhibition; APC—adenomatous polypo-
sis coli; BRAF—protooncogene B-Raf; CASP3—caspase 3; CIMP—CpG island methylator phenotype;
CIN—chromosomal instability; c-Myc—protooncogene from Myc family; CRC—colorectal cancer;
DCC—deleted in colorectal cancer; EGFR—epidermal growth factor receptor; EMT—epithelial–
mesenchymal transition; ERK/MAPK—extracellular signal-regulated kinase or classical MAP ki-
nase; IGF-2—insulin-like growth factor 2; IHC—immunohistochemical; KRAS—Kirsten rat sarcoma
virus; LINE-1—long interspersed nucleotide element-1; MEK/MAP2K—mitogen-activated kinase;
MSI—microsatellite instability; ncRNAs—non-coding RNAs; PCNA—proliferating cell nuclear anti-
gen; PTEN—phosphatase and tensin homolog deleted on chromosome ten; RAS–rat sarcoma virus,
three Ras genes in humans: HRAS, KRAS, and NRAS; RASSF1A–Ras association domain-containing
protein 1A; STAT3—signal transducer and activator of transcription 3; TGF-β (RI/RII)—tumor
growth factor β (receptor I/II); TS—thymidylate synthase; SERP—secreted frizzled-related protein;
SMAD2/3/4/7—mothers against DPP homolog 2/3/4/7; VEGF—vascular endothelial growth factor;
WNT—gene wingless + integrated or int-1.
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5. Final Remarks and Future Perspectives

The development of IHC and modern molecular biology techniques (qRT-PCR, ISH,
RNA/DNA sequencing, NGS, DNA methylation detection methods) has made it possible
to determine the prognostic efficacy of many classic IHC markers for the estimation of
patient survival, disease-free time, or disease recurrence. The prognostic role of aneuploidy,
overexpression of markers such as TS, cyclin B1 (better 5-year survival), cyclin D1 (poor OS
and DFS), PCNA (poor OS and CSS), and Ki-67 (poor OS) could be confirmed. Ki-67 antigen
was also among 26 independent biomarkers of OS in resected CRLMs. However, studies
indicating the overexpression of Ki-67 or other proliferation markers as good predictors of
survival remain controversial. It has been suggested that an association between a high
Ki-67 index and improved survival is only present in MSI-H status tumors. In turn, RT-PCR
studies showed a high positive correlation of Ki-67 mRNA with pKi-67 and confirmed the
role of Ki-67 mRNA as a predictor of poor OS. Studies indicate that tumors with high pKi-67
and low mRNA levels are likely to proliferate more slowly and have a better prognosis.

In CRC therapy (especially RT), slowly proliferating cells should also be considered,
in addition to rapidly proliferating cells. Such cells provide a reservoir from which cells
can be recruited to short-cycle, resulting in accelerated cell repopulation in response to
damaging factors (irradiation, hypoxia). However, further research is required to clarify
to what extent the pool of slowly proliferating cells includes CSCs that may reside in the
G0 phase. So far, an optimal panel of IHC assays with markers of cellular proliferation in
CRCs has not been established to predict survival or the effect of adjuvant treatment. While
Ki-67 shows some promise as one of the components of the Oncotype Dx Colon Cancer
Assay for predicting the risk of recurrence in stages II and III colon cancer, recent studies
do not recommend this assay for use in patients with stage II CRC.

Modern molecular biology techniques have confirmed or discovered the role of several
genetic and epigenetic markers, mainly as diagnostic and predictive markers in CRC. New
technology also allows for the identification of a broad range of candidate prognostic
markers. Classic genetic markers of prognostic significance include mutated genes (e.g.,
APC, KRAS/BRAF, TGF-β, and TP53), chromosomal markers CIN and MSI, epigenetic
markers such as CIMP, and many other candidates including SERP, p14, p16, LINE-1, and
RASSF1A. Further research is required to determine the prognostic role of KRAS mutation
status in different CRC patient populations worldwide. Similarly, continued research is
necessary to determine the contribution of KRAS mutations to the mechanisms of drug
resistance to oxaliplatin.

The number of long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and
microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) related to proliferation
in CRC as confirmed prognostic markers is also increasing. Despite the rather obvious
limitations of IHC and new molecular techniques, the standardization of methods for the
quantitative assessment of the expression of proliferation markers, or the understanding of
endogenous and exogenous (environmental) mechanisms of accelerated cellular prolifera-
tion, requires further development. For a more accurate survival prognosis or prediction
of therapeutic effects in CRC, it would be ideal to use complementary methods to study
cell cycle disruption, apoptosis, and genomic alterations. The expanding development
of research techniques is undisputedly contributing to the systematization of knowledge
regarding cancer biology. Moreover, the detection of numerous ncRNAs, given their role in
cell cycle regulation in CRC, cannot be underestimated. However, the recommendation of
a specific ncRNA or a panel of such molecules as clinically useful prognostic markers is
still a matter of the future. The previously signaled need to validate large-scale research
and conduct multicenter studies on different populations will help to create a base of more
reproducible results and identify their potential application in CRC patients.
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6. Conclusions

As the reviewed literature reports, the prognostic utility of aneuploidy testing and of some
immunocytochemical markers of cellular proliferation in CRC (TS, cyclin B1 and D1, PCNA,
and Ki-67) needs to be supplemented by modern molecular biology techniques. The limits
of conventional techniques to assess cellular proliferation, the high heterogeneity of tumor
tissues, etc., justify the search for a panel of optimally sensitive, specific, and non-invasive CRC
biomarkers. A specific expression pattern of ncRNAs (miRNAs and lncRNAs) may prove
helpful in effectively identifying patients with a poor prognosis. It is particularly important to
confirm known gene mutations/epigenetic alterations and to identify new mutation ‘patterns’
in different CRC patient populations to determine the prognosis for survival and/or the
effects of cytotoxic and biologic regimens. For clinical and personalized medicine purposes, it
seems important to construct a commercial test, based on a broad, prospective study, with the
independent validation of biomarkers with prognostic/predictive value.
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Abbreviations

ABCG2 ATP-binding cassette super-family G member 2
AC Adenocarcinoma
AD Adenoma
AKT Serine/threonine kinase Akt, or protein kinase B (PKB)
ALDH1 Aldehyde dehydrogenase 1
APC Adenomatous polyposis coli
BMPR1A Bone morphogenetic protein receptor, type 1A
BRAF Protooncogene B-Raf; encodes protein called B-Raf
Brd/Id/Urd Bromo-, iodo-deoxyuridine
CAMs Cell adhesion molecules
CCND2 G1/S-specific cyclin-D2
CD44 CD44 molecule (Indian blood group), a cell-surface glycoprotein
Cdks Cyclin-dependent kinases
CEA Carcinoembryonic antigen
CCS Colon cancer subtype
CI Confidence interval
CIMP CpG island methylator phenotype
CIN Chromosomal instability
CMS Consensus molecular subtype
CRC Colorectal cancer
CRLM(s) Colorectal cancer liver metastasis(es)
CSCs Cancer stem cells
CSS Cancer-specific survival
DCC Deleted in colorectal cancer
DFS Disease-free survival
EdU 5-Ethynyl-2′-deoxyuridine
EGFR Epidermal Growth Factor Receptor (HER1 in humans)
EIF3H Eukaryotic translation initiation factor 3 subunit H
EMT Epithelial-mesenchymal transition
ERK Extracellular signal-regulated kinase or classical MAP kinase (MAPK)
FAP Familial adenomatous polyposis
FCM Flow cytometry
FDG 18-Fluoro-2-deoxy-D-glucose
FLT 18-Fluoro-3-deoxy-3-fluorothymidine
GALT Gut-associated lymphoid tissue
GI Gastrointestinal
GLUT1 Glucose transporter 1
GREM1 Gremlin 1, DAN family BMP antagonist
HIF-1 Hypoxia-inducible factor 1
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HNPCC Hereditary non-polyposis colorectal cancer
HPs Hyperplastic polyps
HPFs High-power fields
HR Hazard ratio
IGF-2 Insulin growth factor 2
IGFBP2 IGF binding protein 2
IHC Immunohistochemistry
ISCs Intestinal stem cells
ISH In situ hybridization
JAK Janus kinase
JNK c-Jun N-terminal kinase
KRAS/K-ras Kirsten rat sarcoma virus; encodes protein called K-Ras
LGR5 G-protein-coupled receptor 5
LKB1 Serine/threonine-protein kinase STK11
LI Labeling index
LS Lynch syndrome
mAb(s) Monoclonal antibody (antibodies)
MAPK Mitogen-activated protein kinase
MCC Colorectal mutant cancer protein
MKI67 Marker of proliferation Ki-67 gene
MLH1, 2, 6 MutL homolog 1, 2, 6
MMR DNA mismatch repair
MSI-H High microsatellite instability
MSH2 MutS homolog 2
MSS Microsatellite stable
MUTYH E. coli MutY homolog
NCAMs Neural cell adhesion molecules
OS Overall survival
PCNA Proliferating cell nuclear antigen
PFS Progression-free survival
PI Proliferating index
PI3K Phosphatidylinositol-3-kinase
PKM2 Pyruvate kinase M2
PMS2 Mismatch repair endonuclease 2
PP1 Protein phosphatase 1
PTEN Phosphatase and tensin homolog deleted on chromosome ten
RAS Oncogene “Rat sarcoma virus” from three Ras genes: HRAS, KRAS and NRAS
RC Rectal cancer
RFS Relapse/recurrence-free survival
RT Radiotherapy
RT-PCR/qRT-PCR Reverse transcriptase-polymerase chain reaction; quantitative real-time PCR
SMAD4 SMAD family member 4, Mothers Against DPP Homolog 4
SOX2 Transcription factor 2, known also as sex determining region Y (SRY)-box 2
SPs Serrated polyps
SPS Serrated polyposis syndrome
SSLs Sessile serrated lesions
STAT3 Signal transducer and activator of transcription 3
TCGA The cancer genome atlas
TGF-β Transforming growth factor beta
TMA Tissue microarray
TME Tumor microenvironment
TNM Tumor-node-metastasis
TP53/p53 Tumor gene/protein 53
Tpot The potential tumor doubling time
Ts Duration of S phase
TS Thymidylate synthase
VEGF Vascular endothelial growth factor
Wnt/WNT Gene wingless + integrated or int-1
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