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Sherbrooke University (Canada). His main research activities encompass topics such as energy

systems, energy efficiency, renewables, exergy assessment, and advanced controls for buildings and

communities. His past and current research deals with the optimization of the design and the control

of heating, ventilation, and air conditioning (HVAC) systems; thermal energy storage; solar collectors;

heat pumps; photovoltaic panels; and organic Rankine cycles. In particular, he is currently actively

involved in the areas of virtual energy meters, supervisory control strategies, and energy flexibility, as

well as in projects dealing with operational data and targeting the use of data analytics and artificial

intelligence techniques to improve building system operation.

vii





Preface

Despite the development of increasingly efficient technologies and the increasing amount of

available data from building automation systems and connected devices, buildings are still far from

reaching their performance potential due to inadequate system controls and suboptimal operation

sequences. To assist researchers and practitioners in the field of building controls, this reprint tackles

the development of tools and algorithms that may facilitate the adoption of advanced control methods

in the building control industry. It eventually aims to help bridge the gap between theory and

practical implementations in actual buildings. More specifically, this Special Issue covers various

topics such as virtual sensing of indoor air pollutants; prediction models for indoor air temperature

as well as building heating and cooling loads; local and supervisory control strategies and predictive

maintenance algorithms to improve setpoint tracking and optimize the operation of building heating

and cooling systems. I would like to express my gratitude to MDPI and Buildings journal as well as

the editorial staff for their excellent work, the reviewers for their dedication to peer review, and all

the 25 authors for their contribution to this reprint.

Etienne Saloux

Editor
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Editorial

Practical Applications of Model Predictive Control and Other
Advanced Control Methods in the Built Environment:
An Overview of the Special Issue

Etienne Saloux

CanmetENERGY, Natural Resources Canada, Varennes, QC J3X 1P7, Canada; etienne.saloux@nrcan-rncan.gc.ca

Abstract: This paper summarizes the results of a Special Issue focusing on the practical applications
of model predictive control and other advanced control methods in the built environment. This
Special Issue contains eleven publications and deals with various topics such as the virtual sensing
of indoor air pollutants and prediction models for indoor air temperature and building heating
and cooling loads, as well as local and supervisory control strategies. The last three publications
tackle the predictive maintenance of chilled water systems. Most of these publications are field
demonstrations of advanced control solutions or promising methodologies to facilitate the adoption
of such control strategies, and they deal with existing buildings. The Special Issue also contains two
review papers that provide a comprehensive overview of practical challenges, opportunities, and
solutions to improve building operations. This article concludes with a discussion of the perspectives
of advanced controls in the built environment and the increasing importance of data-driven solutions.

1. Foreword

Many buildings are adopting increasingly complex heating, ventilation, and air condi-
tioning (HVAC) systems to improve their performance and contribute to the decarboniza-
tion of the building sector. However, inadequate system controls and suboptimal operation
sequences prevent buildings from reaching their full performance potential. Advanced
controls are thus required to maximize building performance at low or no capital cost. The
field of building operation is undergoing a paradigm shift; buildings are evolving from
being passive and reactive, simply responding after a change occurs, to being dynamic and
proactive, detecting and correcting inefficiencies, anticipating changes, and adjusting the
operation accordingly. The ever-increasing availability of operational data on buildings and
the significant advancements in modelling capabilities represent an untapped opportunity
to better manage and operate buildings [1].

Advanced control methods such as model-based controls or model predictive controls
are widely acknowledged as effective solutions for improving building operation. Despite
extensive investigation in the past, widespread adoption has yet to be realized. Existing
buildings are inherently imperfect and may present obstacles to the implementation of
advanced controls that might not be encountered in simulation studies; these include,
among others flaws and inefficiencies in existing controls, a lack of data for critical variables
and communication issues with the building automation system or external services [1].
These barriers may significantly affect the development of advanced control strategies and,
thus, their deployment in actual buildings. This Special Issue has collected publications
that deal with existing buildings and address some of these gaps. It ultimately aims to
encourage research and foster the adoption of practical data-driven solutions to improve
the operation of existing buildings.

2. The Papers

The Special Issue presents eleven publications tackling various topics related to ad-
vanced controls in buildings that are summarized in this section. They have been organized

Buildings 2024, 14, 534. https://doi.org/10.3390/buildings14020534 https://www.mdpi.com/journal/buildings
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based on the scale of the application, from the sensor level to the supervisory control and
predictive maintenance of heating and cooling systems. Figure 1 illustrates the various
topics explored in the Special Issue with a word cloud plot based on titles and abstracts.

Figure 1. Word cloud plot based on titles and abstracts of research papers published in the Special Is-
sue.

The opening article by Saloux et al. [1] is a perspective paper focusing on current
research trends in the field of building operation. The authors explored pressing challenges
and identified inefficient local controls, inadequate data availability and quality, communi-
cation issues with the building automation system, and the lack of guidelines and standards
tailored for controls as critical obstacles to the widespread adoption of advanced controls.
According to the authors, cost-effective solutions, successful case studies, and better train-
ing and engagement between the industry and research communities could also foster the
uptake of advanced controls. They also discussed promising opportunities and highlighted
the increasingly important role of modelling for various control applications, as well as
the inevitable paradigm shift from building energy efficiency towards decarbonization.
Data-driven and data analytics methods (e.g., automated fault detection and diagnosis,
predictive maintenance, key performance indicators, virtual sensors and virtual energy
meters, thermal and electric energy use breakdown, and automated data labelling), as well
as high-performance local controls, occupant-centric controls, and advanced supervisory
controls, including predictive control, were identified as promising avenues for improving
building performance.

Gabriel and Auer [2] tackled the critical topic of human health and well-being and
investigated the virtual sensing of indoor air pollutants using deep learning models. This
virtual sensor is an alternative to physical sensors and relies on a long short-term memory
(LSTM) neural network model to estimate indoor air pollutant concentrations such as
particulate matter (PM), volatile organic compounds (VOCs), and CO2 concentrations from
building automation system data (e.g., temperature, humidity, illumination, noise, motion,
and window state), as well as weather conditions and outdoor pollution data. The case
study building is a high-rise office building located in Munich (Germany). The authors
found that the proposed virtual sensing method is suitable for determining PM and VOCs
and is less accurate but still reasonable for estimating CO2 levels; they also demonstrated
the potential for generalization and transfer learning.

Norouzi et al. [3] studied the application of deep learning algorithms to predict
indoor air temperatures in educational buildings as part of a broader project toward the
development of a digital twin for HVAC systems. They explored five algorithms (extra
trees, random forest, multilayer perceptron, LSTM, and convolutional neural networks)
along with different sliding windows (i.e., inputs at previous time steps; up to 120 min) and
forecast horizons (up to 60 min). They tested their model on seven zones of a university
building on the campus of the British Columbia Institute of Technology in Burnaby (British
Columbia, Canada). The results showed that deep learning algorithms outperformed
tree-based algorithms and can reach an average root mean square error of 0.16 ◦C.
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Irshad et al. [4] developed a novel approach to predict residential building heating
and cooling loads in hot arid climates. This approach relies on a shuffled shepherd red deer
optimization linked self-systematized intelligent fuzzy reasoning-based neural network.
The authors tested their model for the climate of Al-Dhahran (Saudi Arabia) and generated
typical heating and cooling load profiles for residential buildings in such climates; for this
purpose, they developed a database of 70 buildings with specific characteristics and systems.
Simulations showed that the proposed model outperformed conventional methods in terms
of various accuracy metrics.

Price et al. [5] presented the implementation of cascaded control architectures for air
handling unit chilled water valves at three university campus buildings located at Texas
A&M University in College Station (TX, USA). This cascaded control aims to overcome the
often-overlooked issue of actuator hunting and targets better tracking and more consistent
performance of control loops. This cascaded system only requires one additional line of
code to existing control routines in the building automation system and was tested for more
than a year in the case study buildings. Field implementation showed 2.2–4.4% energy
savings, in addition to reduced operational costs for maintenance and controller retuning.

Morovat et al. [6] investigated model-based control strategies, aiming to unlock the
energy flexibility of electrically heated school buildings. These strategies build on data-
driven grey-box models to evaluate the optimal duration of building preheating. They
were tested in a school building, located near Montreal (QC, Canada), equipped with
geothermal heat pumps, hydronic radiant floors, and energy storage systems. The authors
tested different resistance–capacitance thermal network models and used the dynamic
building energy flexibility index (BEFI) to evaluate the performance. Simulations showed
that the energy flexibility can be improved by 40% to 65% during peak demand periods.

Arroyo et al. [7] compared the performance of a model-based predictive control
strategy using different types of control-oriented modelling paradigms (white-box, grey-
box, and black-box models). The strategy was implemented during a 26-week period in
a 6 m2 test building zone equipped with a thermally active building system (TABS) and
located in the Arenberg campus of the KU Leuven University in Heverlee (Belgium). The
authors found that there was no significant correlation between prediction and control
performance and that “a better prediction performance does not necessarily indicate an
improved control performance”; the white-box model performed worse in prediction but
led to better MPC performance. They eventually suggested using a modelling approach
that combines both physics-based and data-driven methods.

Saloux and Zhang [8] evaluated the performance of three data-driven model-based
control strategies to improve the cooling performance of commercial and institutional
buildings: (a) chiller sequencing, (b) free cooling, and (c) supply air temperature reset.
These strategies rely on simple yet accurate models, calibrated with operational data, and
aim to be readily implementable in existing buildings using simple control rules. They
were applied to an existing 36,000 m2 commercial building in Montreal (QC, Canada) and
simulations showed that the three measures together could reduce building cooling energy
by 12% and cooling system electric energy by 33%.

Almobarek et al. [9] performed a systematic review of the literature on predictive
maintenance applications of chilled water systems (CWS) and focused on two aspects:
(1) the identification of operational faults and (2) the methods to better predict them.
The authors covered chillers, cooling towers, circulating pumps, and terminal units and
pinpointed the lack of studies tackling the entire CWS (rather than focusing on specific
components); they also suggested that more attention should be given to cooling towers
and pumps. The authors provided exhaustive lists of system faults and predictive tools
for control, discussing operational parameters and data collection considerations. They
finally identified research gaps such as the lack of information about the fault type or the
data collection and the need for maintenance programs to go beyond fault detection and
prediction and address the faults in the actual system.

3
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Almobarek et al. [10] conducted an industry survey to complement the aforementioned
systematic review outputs [9]. This survey targets the identification and frequencies of
more operational faults and fault solutions for chilled water systems. The authors contacted
761 maintenance officers in different commercial buildings in Riyadh (Saudi Arabia) and
compiled a total of 304 responses. The authors presented exhaustive tables of the faults
and their solutions for each component (chillers, cooling towers, pumps, and terminal
units). They also investigated the optimal data sampling time and history for the major
faults, aiming to create better datasets to train machine learning models for predictive
maintenance applications.

Finally, the closing article by Almobarek et al. [11] addressed the need for mainte-
nance programs raised in the aforementioned system review [9] to implement predictive
maintenance in existing buildings. They proposed a methodological framework to describe
the requirements (drawings, measuring devices, and operational data), develop machine
learning algorithms, and conduct quality control (ensure proper operation and correct
faults). Within this framework, a decision tree model was developed to predict faults and
was implemented in a university building in Riyadh (Saudi Arabia); the results showed
that the developed model improved the fault prediction by more than 20% in all chilled
water system components compared to the existing control system.

3. Perspectives and Conclusions

The eleven articles published in the Special Issue showcase just a few of the practi-
cal data-driven solutions that can be developed to encourage the widespread adoption
of advanced controls in buildings. In the context of climate change, building perfor-
mance targets are slightly reoriented from energy efficiency to decarbonization, where
energy flexibility plays a pivotal role [1]. Virtual sensors [2] are emerging as a credible,
cost-effective alternative to physical sensors for tracking critical variables, while data-
driven modelling is becoming the cornerstone of many advanced control strategies [1].
Ongoing efforts to improve models for indoor air temperature [3] and building energy
loads [4] are and will remain essential to strengthening confidence in data-driven solutions.
These solutions could be applied at various scales [1], from setpoint tracking [5] to the
adjustment of building indoor conditions [6] and the optimization of heating and cooling
system operations [6–8,10,11], with different levels of complexity, such as model-based
controls [6,8], predictive control [7], and predictive maintenance [10,11].

These publications illustrate the opportunities to optimize the operation of real-world
buildings but also the efforts needed to take building controls to the next level. A tremen-
dous amount of work is still required in various areas to improve the current scientific
knowledge and enable the widespread adoption of practical advanced control solutions on
a large scale.

Acknowledgments: The author would like to express his gratitude to the Buildings journal for
enabling the exchange of recent findings related to advanced controls in the built environment and
for inviting him to edit this Special Issue on a topic that is becoming increasingly important and will
remain critical in the near future.
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2 Department of Mechanical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada
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* Correspondence: etienne.saloux@nrcan-rncan.gc.ca

Abstract: Despite the development of increasingly efficient technologies and the ever-growing
amount of available data from Building Automation Systems (BAS) and connected devices, buildings
are still far from reaching their performance potential due to inadequate controls and suboptimal
operation sequences. Advanced control methods such as model-based controls or model-based
predictive controls (MPC) are widely acknowledged as effective solutions for improving building
operation. Although they have been well-investigated in the past, their widespread adoption has yet
to be reached. Based on our experience in this field, this paper aims to provide a broader perspective
on research trends on advanced controls in the built environment to researchers and practitioners,
as well as to newcomers in the field. Pressing challenges are explored, such as inefficient local
controls (which must be addressed in priority) and data availability and quality (not as good as
expected, despite the advent of the digital era). Other major hurdles that slow down the large-scale
adoption of advanced controls include communication issues with BAS and lack of guidelines and
standards tailored for controls. To encourage their uptake, cost-effective solutions and successful case
studies are required, which need to be further supported by better training and engagement between
the industry and research communities. This paper also discusses promising opportunities: while
building modelling is already playing a critical role, data-driven methods and data analytics are
becoming a popular option to improve buildings controls. High-performance local and supervisory
controls have emerged as promising solutions. Energy flexibility appears instrumental in achieving
decarbonization targets in the built environment.

Keywords: advanced controls; data analytics; decarbonization; flexibility; model predictive control;
building operation

1. Introduction

1.1. Energy Context in the Built Environment

Buildings are major energy end-users and are responsible for 40% of the world’s total
energy consumption, 60% of the world’s electricity, and 30% of greenhouse gas (GHG)
emissions [1]. Despite initiatives targeting energy efficiency, energy use is expected to
further increase in the future as a result of the combined impact of economic development
and the change in consumption patterns, as well as an increase in the world’s population
projected to rise from 7.6 billion in 2019 up to 9.7 billion by 2050 [2]. In Canada, the
residential sector and the commercial and institutional buildings sector account for 13%
and 12% of the country’s end-use demand, respectively [3]. Ongoing initiatives to electrify
buildings aim to reduce GHG emissions by 40–45% in 2030 compared to 2005 and become
net-zero by 2050 [4]. As a result of these developments and other trends, Canada’s total
electricity demand is projected to increase by 47% in 2050 compared to 2021 levels [5], thus
presenting daunting challenges to the current and projected electric grid infrastructure.
Buildings could play a pivotal role in addressing these challenges.

Buildings 2023, 13, 2566. https://doi.org/10.3390/buildings13102566 https://www.mdpi.com/journal/buildings
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The main energy usage in buildings corresponds to heating, ventilation, and air
conditioning (HVAC); along with domestic hot water, these account for around 50% of
building energy end-use, the rest being shared with cooking, lighting, and other equipment
(appliances, other plug-in devices) [6]. Space cooling currently represents only around
6% of the total building energy demand; however, cooling energy is projected to increase
considerably and may become the primary energy usage in buildings [2].

Furthermore, buildings existing today will represent 70% of the Canadian building
stock in 2050 [7]. Therefore, apart from new high-performance buildings, it is also critical
to tackle existing buildings’ issues through major design and controls retrofits.

1.2. Current Controls in Buildings

Traditionally, buildings have been controlled considering the comfort of their occu-
pants as the primary goal. Therefore, sensors have been installed mainly to ensure that
indoor environment quality requirements (temperature, humidity, air quality, etc.) are
satisfied, not necessarily considering energy efficiency. However, given the increasing
importance of the energy context, efforts have been made to improve the operation of
buildings to reduce energy use and related costs while satisfying indoor environmental
quality (such as thermal comfort).

The operational data commonly available in commercial and institutional buildings
are collected from metering devices installed in critical locations of the HVAC system. These
data might include temperature, relative humidity, pressure, flow rate, valve positions,
damper openings, equipment on/off and modulation, current readings, lighting, and
occupancy levels. All this information can be used by the Building Automation System
(BAS) for local controls to guarantee satisfactory indoor environment quality while reducing
energy usage. However, local controls have been generally developed to optimize the
operation of pieces of equipment, not necessarily to optimize performance at the system
level. A new generation of tools has emerged to leverage available building data to
further improve building performance and reduce energy usage, such as Building Energy
Management Systems (BEMS) [8,9] or Energy Management and Information Systems
(EMIS) with more advanced capabilities [10,11]:

• Energy Information Systems (EIS) targeting performance tracking;
• Fault Detection and Diagnostic (FDD);
• Automated System Optimization (ASO).

From an energy efficiency perspective, buildings commonly perform beneath their
potential: unfortunately, as long as thermal comfort is met, inefficient operation often goes
undetected. Improving building controls, such as introducing better control sequences or
correcting inefficiencies, could help reduce a building’s annual energy use by up to 30% [12],
electric peak loads by up to 20% [12], and maintenance costs by 20% [13]. Recommissioning
and ongoing commissioning initiatives have emerged to bridge the gap between design
and in-operation performance. They could yield 5–15% annual energy savings with typical
payback periods lower than 3 years [14]. Fault detection and diagnostic tools become critical
in this context to detect and correct inefficiencies when they occur. Several commercial
products that are available on the market address the optimization of building operations
and controls [15]. The majority focus on EIS and FDD tools, and only a few of them target
ASO [10]. These tools could provide energy savings of up to 9% on average while being
cost-effective with a return on investment of less than 2 years [10].

Buildings are smoothly transitioning towards data-centric operations with an increased
utilization of sub-hourly data and artificial intelligence (AI) techniques, as well as a focus
on occupants and sustainability objectives. This paradigm shift is similar to that undergone
by many industry sectors with the concepts of Industry 4.0 [16] and Industry 5.0 [17].
However, significant work remains to be achieved to accomplish such a shift.
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1.3. Paper Objective

Within this context, the existing research has focused on different pathways to further
increase building performance through better controls. However, significant practical
hurdles (inefficient local controls, low data availability and quality, communication issues,
etc.) are encountered when attempting to deploy the findings of advanced control research;
this factor has slowed down their widespread adoption by building owners and operators.
This paper aims to provide a critical perspective on current challenges of advanced controls
in commercial and institutional buildings and to explore opportunities that promise ground-
breaking solutions for controls in the built environment.

Previous initiatives have tackled similar topics, but the focus was rather on specific
applications: metadata schemas [18], data analytics [19], FDD [20], model-based pre-
dictive controls (MPC) [9,21–23], reinforcement learning [24], occupant-centric controls
(OCC) [25,26], predictive maintenance [27], peak load management [28], building energy
flexibility [29], strategies for building energy management systems (including MPC, de-
mand side management, optimization, and FDD) [8], and data-driven building operations
(with a focus on metadata, FDD, OCC, key performance indicators, virtual energy meters,
and load disaggregation) [30]. Some other work emphasized the perspectives, challenges,
and opportunities but also concentrated on specific aspects: industry engagement [31],
data requirements for MPC [32], reinforcement learning [33], and OCC [34]. In this paper,
the objective is to provide a broader overview of research trends on advanced controls in
the built environment with a focus on practical considerations such as challenges faced to
deploy advanced controls and opportunities to facilitate their adoption.

It is not the intent of the authors to provide an exhaustive review of the vast field of
building operation nor to dive into technical details in one specific application. Rather, the
content and structure of this perspective paper builds upon the authors’ experience and
personal assessment to shed light on current challenges and future directions in building
operation research at a higher level. Each topic is based on recent state-of-the-art pub-
lications, preferably review papers, which were found through conventional channels
(e.g., search engines such as ScienceDirect, MDPI, Google Scholar, and ResearchGate) and
appropriate keyword searching. A large variety of keywords were used in combination
with one another using Boolean operators (“and”, “or”); some examples are “buildings”,
“control-oriented models”, “data-driven”, “data labelling”, “energy flexibility”, “fault de-
tection and diagnostics”, “key performance indicators”, “load disaggregation”, “metadata”,
“modelling”, “occupancy”, “predictive control”, “reinforcement learning”, and “virtual
energy meters”. Some of the material presented was inspired by fruitful discussions in
workshops and conferences with colleagues, collaborators, and peer researchers.

1.4. Scope

In this paper, we focus on advanced controls that are seen as a means towards better
building performance (energy usage, costs, peak demand, etc.) through improved operation.
Advanced controls in this paper refer to various techniques and tools that could help
improve the way current controls are designed. Figure 1 shows a conceptual diagram
of what we considered “advanced controls” in this study. It includes both supervisory
and local controls, as well as data-driven and model-based controls. We do not intend to
provide a new definition of advanced controls, but rather to delimit the scope of the paper.
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Figure 1. Conceptual diagram of what we consider as advanced controls in this study; applications
in grey are discussed in this article.

Figure 2 complements Figure 1 by providing a word-cloud of research papers reviewed
in this article; titles and abstracts were used for this purpose.

Figure 2. Word-cloud plots based on titles and abstracts of research papers reviewed in this article.

Finally, Abbreviations provides a list of the abbreviations that have been used through-
out the paper for better readability.

2. Pressing Challenges

This section tackles challenges related to advanced controls in the built environ-
ment, specifically (in no particular order) local control inefficiencies, data availability
and quality, communication issues, the need for guidelines and standards, the need for
successful case studies and cost-effective solution sets, and insufficient engagement and
training. These challenges are summarized in Figure 3 and discussed in detail in the
corresponding subsections.
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Figure 3. Challenges related to advanced controls in the built environment.

2.1. Inefficient Local Controls
2.1.1. Causes of Inefficient Local Controls

One of the main challenges for deploying advanced controls is the inefficient local
controls currently seen in many buildings, which can be caused by various reasons.

• Lack of simple energy-efficient control rules: some buildings are still operated with-
out simple energy-efficient control rules such as night setback of indoor air temperature
in winter and air or water temperature reset strategies due to a lack of awareness,
training, or time of building operators; a compelling example of such inefficiencies
has been provided by Gunay et al. [35] for 14 office buildings.

• Faulty operation and performance degradation: inefficient operation could also be
caused by performance degradation with time [27], faulty operation, or low-efficiency
operation, although no fault has been detected.

• Suboptimal electric power management: better managing building electric power
is also a key aspect for current and future operations and some buildings still show
significant differences between average electric load and peak load, which can be
costly when the utility rate depends on total energy use and peak power demand [36].

• Inadequate occupant-centric controls: occupancy is also a key aspect that affects
building performance. Most buildings are generally operated based on full occupancy,
for instance, to determine fresh air requirements; however, the actual occupancy of
commercial buildings rarely exceeds 50% [30], unlocking energy efficiency oppor-
tunities (e.g., lower air-change per hour). Moreover, occupancy can show strong
variability, especially with the rise of telework practices since the beginning of the
COVID-19 pandemic.

Any new advanced control projects targeting the implementation of advanced control
algorithms, such as model-based predictive controls, might need to tackle these issues
first before adding another complexity layer with supervisory controls. Recommissioning,
ongoing commissioning, and predictive maintenance generally address simple energy-
efficient control rules, faulty operation, and performance degradation with time. FDD
algorithms are typically used to detect and diagnose such inefficient behaviour to provide
corrective actions. Hard faults consist of physical failure of mechanical equipment such
as sensors and actuators (stuck, leaks, broken components, fouling) whereas soft faults
are related to controller tuning errors, programming mistakes, poor installation, and non-
optimal commissioning [37].

2.1.2. Type of Controllers

Another aspect that slows down the deployment of advanced controls is the type of
controllers. While DDC controls are suitable for advanced controls, a significant number
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of buildings—generally relatively old—still have pneumatic controllers [38], which limits
the amount of available operational data and allows less flexibility for control modifica-
tions. On a related topic, the current infrastructure of existing building control platforms
might show significant flaws and may not necessarily enable the integration of complex
control algorithms [39]. The deployment of recent research in advanced controls then
becomes laborious.

2.1.3. Conflicting Incentives

Although a building could operate in fault-free modes, lessons learned from previous
projects showed us that conflicting incentives could also affect the performance of the
building. When a building participates in a utility’s demand response program or is
operated in the context of peak power demand charge, a dual-fuel hydronic heating system
(i.e., electric and gas boilers) could favour the operation of gas boilers, although less efficient,
at the expense of the electric boiler, leading to a significant increase in GHG emissions
locally. Increasing ventilation in the context of COVID-19 is another compelling example.
While essential to reduce the spread of SARS-CoV-2 in closed environments, ventilation
might have been increased more than necessary [40]. Awad et al. [41] investigated the
implications of COVID-19 for electricity use in 27 government buildings. They found that
peak loads were reduced in almost all buildings; nonetheless, the average base load was
increased in 43% of buildings as a possible consequence of increased ventilation. Overall,
the change in annual energy use varied between −33% and +25%.

2.1.4. Complex Integrated Energy Systems

Finally, buildings are being increasingly equipped with even more complex HVAC
systems (e.g., heat pumps) and systems for on-site energy generation from renewable
sources (e.g., photovoltaic) and for energy storage, either electrical (e.g., battery) or thermal
(e.g., water tanks, ice banks). These buildings require sophisticated controls to optimally
coordinate their operation and maximize operating efficiency and energy savings.

2.2. Data Availability and Quality Issues
2.2.1. Challenges Related to Data Availability and Quality

Sub-hourly operational data have become increasingly available in commercial and
institutional buildings and represent an untapped opportunity to help better manage and
operate buildings. However, this comes along with several challenges related to availability
and quality:

• Sensors are not often recalibrated.
• Lack of submetering such as equipment electric current (fans, pumps), CO2, and

occupancy sensors, while some key variables might not be measured or directly
available (e.g., critical temperatures, flow rates, etc.).

• Installing new sensors is relatively costly and involves practical issues such as installa-
tion, maintenance, and recalibration [42].

Since instrumentation has primarily been installed for monitoring and control pur-
poses (not so much for energy efficiency), there is also a lack of submetering or tools
to determine how the energy is used in the building [30]. Such information could help
provide electric and thermal energy use breakdown in buildings to understand where the
energy is used and where advanced controls and energy conservation measures could have
more impact.

2.2.2. BAS for Small and Medium Commercial Buildings

Building automation systems generally record data in large commercial buildings
where building operation is complex and needs to be automated appropriately to avoid
excessive costs. Such an infrastructure allows for the gathering of fine-grained operational
data at sub-hourly intervals. In contrast, these data are generally less likely to be available
in small commercial buildings since they are under-served by energy conservation tools,
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given their dispersion and lower payback potential. Small and medium commercial
buildings (<50,000 ft2) account for 94% of commercial buildings in the United States, 50%
of commercial floorspace, and 44% of energy consumption, but only 13% have a BAS
compared to 71% in larger buildings [43]. Similarly, older buildings with pneumatic
controls not only offer less flexibility for controls modifications but also provide fewer
operational data, thus severely limiting advanced control opportunities.

2.2.3. Data Storage

In BAS, operational data are generally collected and saved in trend logs for a few
hours or a few days, but not in the long term. In this case, data storage devices must be
installed, which could be costly. Although this additional cost enables the usage of data
analytics tools, building owners might be reluctant to install such storage devices if the
benefits are not clear. The notion of data warehouses and, more recently, data lakes have
emerged in the past decades [44,45] as long-term data storage and management solutions.
Building data are generally stored in a data warehouse, which is a large repository where
data are stored in a well-structured manner and used for decision-making through data
analytics [45]. With the increasing amount of available data from various sources, data lakes
have appeared as centralized storage repositories, enabling the storage of raw, unprocessed
data, including unstructured, semi-structured, or structured data [45]. Although different
in terms of structure, both data warehouses and data lakes aim to support decision-making
through data analytics, visualization, and machine learning.

2.2.4. Metadata and Variable Labelling

Another important issue with operational data in buildings is metadata management
and variable labelling, which slows down the large-scale deployment of data analytics
tools and advanced controls. Hard-coded names, which are prone to inconsistencies and
mistakes, are still mainstream in most existing buildings. The description of control points
is generally of poor quality in terms of consistency, completeness, and usefulness, while
it does not follow any standards and heavily depends on control solution vendors and
technicians [30,46]. There have been several initiatives to tackle metadata schemas and
ontologies [18], and a few have emerged as potential solutions, such as

• Haystack schema [47];
• Brick schema [48];
• Google Digital Building ontology [18];
• Real Estate Core and Smart applications reference ontology (SAREF) [18].

Work is still required to provide a unified approach for data semantic information.
ASHRAE Standard 223P is a step in this direction [49].

2.2.5. Data Ownership and Data Sharing

Finally, the question of data ownership and data sharing is becoming more and more
prevalent. Since several users could benefit from building operational data (the building
owner, the building occupants, the service provider, or the utility), the question of “who
owns the data?” remains. Ecobee, a Canadian home automation company, proposed a
volunteer-based solution to this issue with the “Donate Your Data” program [50] and made
available the smart thermostat data of over 10,000 anonymized residential buildings for
research purposes [51,52]. However, this approach might be more difficult to deploy in
commercial and institutional buildings. Building owners might not want to share the data
due to potential security and privacy issues, but they might want to know what benefits
they could get by sharing the data. Nonetheless, initiatives exist, such as the collection of
sub-hourly measurement datasets of six real buildings for advanced control applications for
energy use and indoor climate research purposes [53] or the Real Time Energy Management
(RTEM) Incentive Program supported by New York State Energy Research and Develop-
ment Authority (NYSERDA) [54], which allowed to make available operational data from
over 200 commercial and institutional buildings in New York State [55]. Jin et al. [56] have
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also collected detailed information about 33 open datasets of city-level building energy
use from eight countries. Data granularity varies from 1 year down to 15 min and infor-
mation includes energy use intensity or electricity consumption, among others. Similarly,
Li et al. [29] have identified 16 building datasets suitable for building-demand responses
or building-to-grid services that are based on real operational data, hardware-in-the-loop
setups, and numerical simulations.

2.3. Inadequate Communication with the Control System
2.3.1. BAS Design in Siloed Manner

One key issue slowing down the massive deployment of advanced controls is inad-
equate communication with the control system. Current BAS have been designed in a
siloed manner, where each subsystem (HVAC, lighting, security, power, etc.) intends to
improve its performance independently; however, they usually compete with each other
and there is a need for optimizing all the systems at the same time [39]. Master controllers
could be used for this purpose to provide the main operational direction (e.g., perform
building preheating) while letting local controllers adjust their operations accordingly.
Data from other sources (e.g., occupancy sensors, electric vehicle chargers) that are not
directly integrated into the BAS or control algorithms add another layer of complexity to
operating buildings.

2.3.2. BAS Control and Computational Capabilities

Current BAS have also been designed to deal with simple if-then rules, but not
necessarily to support advanced calculations based on a large amount of operational data to
train computationally intensive artificial intelligence models or to run optimization routines
frequently, whereas software tools (e.g., Matlab R2023a, Python 3.8.8, R 4.2.1) could be quite
powerful for such purposes. To enhance computational ability and resources, cloud and
edge computing techniques could be leveraged. Additional communication infrastructure
might thus be required to exploit the capabilities of current BAS for controlling buildings,
along with the capabilities of more advanced data analytic tools for handling large amounts
of data, building complex models, and optimization routines. This might complexify the
communication between the BAS and the advanced calculations modules, which could
physically be hosted in a workstation, in the same local network as a workstation, or in the
cloud. Moreover, different communication protocols (e.g., BACnet, Modbus, LonWorks)
may be used by different devices, which creates barriers to interoperability.

2.3.3. Cybersecurity

Finally, lessons learned from previous projects showed us that security considerations
must be included during the design of advanced controls and should be addressed sooner
rather than later, such as the existence of a firewall or VPN. Cybersecurity has become
an increasing concern for smart connected buildings, especially for cloud-based tools. In
contrast, some buildings could show particularly stringent security restrictions such as
no access to the internet, which could make access to weather forecasts (for instance) and
cloud computing more cumbersome.

2.4. Lack of Guidelines and Standards
2.4.1. Buildings Controls Improvement

In addition to previous challenges, more guidelines, standards, and codes tailored
for control applications are needed. For instance, there is a lack of guidelines to improve
building controls. The initiative of ASHRAE Guideline 36 (G36) [57], although primarily
U.S. focused and not necessarily applicable to cold climates, aims to provide a recipe for
high-performance sequences for local controls for air-side systems (mainly variable air
volume systems and terminal units) but also for water-side systems.
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2.4.2. Model Accuracy Assessment

Advanced control strategies such as predictive control might also take advantage
of control-oriented models to make informed decisions and provide optimal operation
recommendations or to directly operate the building. However, there are no model accuracy
assessment guidelines specifically tailored for controls. ASHRAE Guideline 14 [58] provides
calibration criteria for physics-based energy simulation models using hourly simulation
time steps; a model can be considered calibrated if the coefficient of determination (R2)
is higher than 0.75, the normalized mean bias error (NMBE) is lower than 10%, and the
coefficient of variation of the root mean square error (CV-RMSE) is lower than 30% [59].
Such numbers generally apply to main energy or temperature variables (e.g., electricity
use, gas consumption, indoor air temperature) and provide a reasonable gauge for the
evaluation of control-oriented model accuracy. Nonetheless, other aspects specific to
controls should also be addressed:

• The applicability to other types of variables: fan power, electric boiler power,
electric baseload;

• The impact of sensor uncertainty and data quality [60];
• The robustness to extrapolation, especially for black-box models, which are purely

data-driven models; this aspect is further discussed in Section 3.1.

2.4.3. Savings Assessment

There is also a lack of guidelines about the assessment of savings following the imple-
mentation of advanced control strategies. The International Performance Measurement and
Verification Protocol (IPMVP) [61] prescribes four principles for energy savings evaluations,
yet it remains a question of how these principles could be applied to advanced controls
due to the lack of detailed guides. Signature models for energy, cost, and thermal comfort
could be developed based on sub-hourly to hourly [62], daily [63–66], and monthly [67] be-
haviours, but there are also other options, such as alternating operations between reference
and advanced controls, and then comparing the two scenarios [68]. Research initiatives
investigating the level of complexity required for the benchmarking model (from linear
regression to advanced machine learning models) can also be reported, such as in [69].

2.5. Lack of Successful Case Studies and Cost-Effective Solutions
2.5.1. Economic Feasibility of Advanced Controls

One of the key barriers to the adoption of advanced controls lies in the economic
feasibility of such solutions and the market awareness and confidence in realizing cost ben-
efits. It is worth mentioning that the economic feasibility of advanced controls significantly
depends on the current building operation. As discussed in Section 2.1.1, if the original
strategy shows several inefficiencies or flaws, the new strategy will most likely provide
more savings and be more cost-effective; conversely, an already well-operated building
will show lower savings with advanced controls. This observation makes the expected
performance difficult to estimate, whereas savings generated with a similar control strategy
could greatly vary from one building to another.

The Smart Buildings Analytics Campaign [10] was organized in this context to prove
the business case for building analytics: 85 software tools from 40 different EMIS vendors
have been installed in more than 6500 buildings from 9 different market sectors and 104
commercial organization across the U.S. After two years of EMIS installation, they estimated
energy savings (whole building level, for all fuels) and found [10,70]:

• EIS tools: savings ranging from −15% to 22% with a median of 3% and a top quartile
(best practice) of 11–22%.

• FDD tools: savings ranging from 1% to 28% with a median of 9% and a top quartile
(best practice) of 15–28%.

For both EIS and FDD, the simple payback period is 2 years. Results were not reported
for ASO since it was not prevalent in the study with only two participants [10]. However,
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estimated savings can still be found in the literature for ASO: energy savings of 0–11% and
payback lower than 6.5 years [10,71]. Despite these initiatives, the increasing amount of
solution providers and the difficulty in distinguishing the differences between them slow
down their adoption; a primer built upon the Smart Buildings Analytics Campaign has
been designed to help owners better plan and use EMIS tools [70].

At the research level, advanced controls such as predictive controls have been widely
investigated at the simulation level, but practical implementation remains relatively rare.
Some model-based predictive control field demonstrations were reviewed in [72]. Energy
savings greatly vary from one study to another, with values ranging from 4–7% up to 70%,
with an average of 26% in reported results. Similar numbers were obtained for cost savings,
whereas demand cost could reach up to 10–30%. Thermal comfort was also improved when
reported. It is worth mentioning that the cost-effectiveness of advanced control strategies
is always related to the original control strategy.

2.5.2. Policy Drivers

There is also a need for more policy incentives to encourage the deployment of
advanced controls and intelligent buildings, even though some initiatives are notice-
able. Requiring advanced controls in building certification programs could accelerate
the widespread adoption of such tools. A Smart Readiness Index (SRI) is a standard scheme
developed in the European Union for rating a building’s ability to adopt smart technologies
and services [73]. Successful case studies could provide solid foundations for the energy
and economic benefits of advanced controls, which could foster their inclusion in building
codes. Targets and mandatory reporting for building energy use and GHG emissions
could also be policy drivers, such as the local law 97 in New York City [74], which sets
carbon emissions caps for most buildings over 25,000 ft2, starting in 2024 and becoming
increasingly stringent over time (40% emission reduction by 2030, 80% by 2050).

2.6. Lack of Engagement and Training
2.6.1. Engagement between Industry and Research

The deployment of advanced controls requires industry engagement. There is a
broad consensus that academic researchers and industry practitioners need to be more
engaged with each other [31]; this observation applies to the building industry but also to
other fields. Samad et al. [31] conducted a survey to evaluate industry engagement and
perceptions regarding control research; the authors emphasized the value of rudimentary
control research to facilitate industry uptake, even though advanced control technologies
such as data analytics, fault detection and diagnosis, and model predictive control are
perceived by practitioners as potentially impactful soon. They also mentioned that it is not
necessarily in the company’s best interest to publish the implementation of control because
of confidentiality issues or the lack of incentives for dissemination; this lack of transparency
makes the adoption of advanced controls more difficult to track.

2.6.2. Operators’ Training

Even though building operators are willing to optimize building operations and are
aware of potential savings, they generally lack the time to spend on such an activity. They
also lack the knowledge on how to deploy energy-efficient control strategies and how
to efficiently leverage operational data and control-oriented models to improve building
performance. Data analytics, modelling, and control optimization could provide insights
into building operation, but such tools require adequate training to be correctly used.

The development of advanced controls in buildings combines system knowledge with
advanced data analytic methods and advanced modelling techniques. Control company
employees often have a background in electrical engineering in general but not necessarily
in HVAC or mechanical systems. With the advent of the digital age, data-driven approaches
based on analytics and modelling will also become predominant and a general understand-
ing of these concepts will become a must-have. Therefore, there is a need for trained
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experts not only in the field of controls and mechanical systems but also in data science
and modelling. Industry can play a critical role along with academia in making newly
graduated building technicians, operators, engineers, and researchers more employable
and valuable in a fast-evolving, technology-driven world [31].

3. Promising Opportunities

This section discusses promising opportunities related to advanced controls in the
built environment, namely, building models, data-driven and data analytics methods,
high-performance local controls and advanced supervisory controls, and decarbonization
through flexibility. They are shown in Figure 4 and are discussed in the
corresponding subsections.

Figure 4. Opportunities related to advanced controls in the built environment.

3.1. Building Models to Support Operational Decision Making

Operational data analysis is critical to better understand how buildings behave and to
improve controls. While the analysis of raw data already provides invaluable insights, it
also builds the foundations for more advanced approaches where modelling plays a key
role. Building models can respond to various control needs and the type of model depends
on the application. For instance, models could be tailored for performance tracking, testing
of hypothetical scenarios, forecasting of building performance for optimization purposes,
and generation of measured and unmeasured synthetic data.

3.1.1. Building Information Modelling and Building Energy Modelling

Various types of building models have been developed in the past and could be useful
for control applications. Building information modelling (BIM) provides an integrated ap-
proach to the management of information for built assets over their lifecycles and aims to
facilitate collaboration between disciplines such as architecture, engineering, construction,
operations, and maintenance [75]. BIM generally builds upon a rigorously detailed 3D
model of the building and gathers relevant information from the design to the operation
phase. Building energy modelling (BEM), although not necessarily seamlessly integrated
into BIM [76], has been extensively used for decades for design purposes and has evolved
into dynamic and highly detailed models [77]. Based on physical principles (i.e., mass and
energy balance, heat transfer equations), BEM allows for the simulation of the behaviour of
a building as a function of numerous variables and parameters such as weather conditions,
building geometry and characteristics, internal loads, system schedules and occupancy pat-
terns, generally estimated from design information, educated assumptions, and modeller’s
experience. These models are mainly developed in a laborious manual process. They have
been used for designing new buildings as well as in energy audits, certification programs,
and recommissioning studies for existing buildings. In this latter case, numerous (even up
to thousands of) parameters can generally be calibrated to make simulation results match
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monthly energy bills and, in some cases, operational data. Therefore, the calibration of such
models is a challenging but essential step to building confidence in model utilization since
there have been significant discrepancies between simulated and measured energy use [78].
An important drawback of most BEM tools is that these modelling platforms were mainly
developed for design and are not necessarily suitable for controls, making the testing of
control strategies even more challenging.

3.1.2. Control-Oriented Models

Control-oriented models (COM), i.e., models accurate enough for decision-making for
a specific goal but simple enough to be easily incorporated in further calculations [63],
have then appeared and can be distinguished among others by their simpler structure
(more suitable for optimization), an appropriate selection of input variables (including
controllable variables and disturbances such as weather and occupancy), and a shorter
time-scale (usually minutes to days, rather than one year) [79]. These simplified yet
accurate enough models are generally calibrated using sub-hourly operational data, but
their structure makes them more easily generalized from one building to another, compared
with BEM. These models are applicable for different scales, from a specific zone to the whole
building, and target various outputs such as thermal behaviour (e.g., indoor air temperature,
thermal comfort), energy usage, and system performance [32]. Control-oriented models are
generally divided into three categories [21,32,80]:

• White-box models;
• Black-box models;
• Grey-box models.

Whereas white-box models are physics-based, for which new generation building
performance simulation software such as Modelica-based tools are clear examples [72,81],
black-box models, such as machine learning models, solely rely on operational data. They
aim to find the relationships between a set of inputs and outputs. Grey-box models
appear as a compromise between white-box and black-box models since they are based
on physical principles but are calibrated with operational data. Table 1 summarizes the
differences between white-box, grey-box, and black-box approaches for control-oriented
models. However, there is no clear distinction between these categories (white, grey, black)
but rather a continuum with different “shades of grey” [80]: a resistance-capacitance (RC)
thermal network, whose parameters have been estimated from domain knowledge could
be categorized as a white-box model, whereas state-space models having only parameters
with physical meaning could be considered as grey-box models [32].

Table 1. Distinction between white-box, grey-box, and black-box approaches.

Modelling Type White-Box Grey-Box Black-Box

Techniques Physics-based models Resistance-capacitance
thermal networks

Artificial Intelligence,
time-series, state-space
models

Typical software EnergyPlus 23.1.0, TRNSYS 18,
Modelica * v4.0.0

Modelica * v4.0.0, Matlab
R2023a, Python * 3.8.8, R *
4.2.1

Matlab R2023a, Python * 3.8.8,
R * 4.2.1

Principles
Based on physical principles
generally coupled with design
data

Based on physical principles
generally coupled with
operational data

Solely based on operational
data, without any physics
insights
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Table 1. Cont.

Modelling Type White-Box Grey-Box Black-Box

Benefits

+ Based on design information
+ Detailed physics-based
simulation
+ Suitable for testing detailed
scenarios (e.g., equipment,
occupation)
+ Controls at a more granular
level

+ Compromise between
white-box and black-box
models
+ Requires smaller datasets
+ Flexible and robust to
extrapolation

+ Ease of development
+ Suitable for AI techniques,
entirely based on data
+ Knowledge of building
systems and operation not
required

Drawbacks

- Usually calibrated with
energy bills, rarely with
operational data
- Low flexibility, adaptability
- Development requires
significant efforts

- Model structure determined
on a case-by-case basis
- Diverse estimations required
(parameter, system state, etc.)
- Less detailed than white-box
models, less accurate than
black-box models

- Requires larger datasets
- High overfitting likelihood
- Less reliable for
extrapolation (i.e., operating
conditions not seen during
model development)

Examples of applications
Hypothetical scenario testing,
virtual sensors and meters,
FDD, MPC

Virtual sensors and meters,
FDD, predictive maintenance,
MPC, load disaggregation,
load forecasting

FDD, predictive maintenance,
MPC, load disaggregation,
load forecasting, automated
data labelling, measurement
and verification

* These programming languages are generally used with compatible packages or libraries for modelling.

3.1.3. Reinforcement Learning

Another control approach has recently emerged, Reinforcement Learning (RL), as a
substitute for conventional control techniques [24,33,82]. RL is an agent-based AI algorithm
where agents are trained based on given environmental conditions to take actions that
optimize an objective function. Depending on the performance resulting from a given
action, a reward function is used to either penalize or encourage it and aims to help agents
improve their decision-making process. These agents generally rely on machine learning
algorithms and do not require knowledge of building systems and operation; however, they
are time- and data-demanding (years of data are required) [33] and face several practical
challenges such as model dimensionality, latency, and result interpretability [82].

3.1.4. Software Tools, Control-Oriented Archetypes and Transfer Learning

Different initiatives have been conducted to exploit modelling capabilities for control
purposes. An extensive review of software tools for building modelling, simulation,
and control for MPC applications has been conducted by Drgoňa et al. [21] and tackles
building energy simulation tools, control-oriented modelling tools, MPC design tools,
and solvers. Kazmi et al. [83] have focussed on model requirements as well as popular
modelling techniques and software packages for load forecasting. Grey-box models were
also identified as a pathway for the systematic application of advanced controls in buildings
through the notion of control-oriented archetypes [80]. These archetypes are “reduced-order
models that can provide a generic representation for a common zone or building geometry and
mechanical system configuration, and which can thus provide enough information to evaluate the
effect of control sequences in the short-term and thus inform decision-making”. This approach
is seen as a potential breakthrough in generating versatile control-oriented models to
develop general control policies and strategies for typical buildings and to facilitate the
dissemination of model-based solutions. On a relatively similar topic, transfer learning [84]
has gained in popularity and aims to answer the question: “how can one building benefit
from another building’s modelling and controls project?” Simply said, transfer learning
intends to transfer models trained for highly instrumented buildings to buildings with
limited available data. Four main applications were identified: building load prediction,
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occupancy detection and activity recognition, building dynamics modelling, and energy
systems control [84,85].

3.1.5. Large-Scale Comparison of Control Strategies and Models

Furthermore, building models and advanced control strategies have recently elicited
great research interest and new models and strategies have been investigated for buildings.
However, they have mainly been applied to specific case study buildings and datasets,
which makes a fair comparison between them difficult to perform. In this context, the
tool BOPTEST (building optimization testing framework) has been developed and aims to
enable rapid, repeatable deployment of common building emulators representing different
system types [86]. These emulators enable testing and comparing different control strategies
in standardized conditions. Similarly, the ASHRAE Great Energy Predictor III competi-
tion [87,88] was a machine learning contest for long-term prediction with an application to
measurement and verification. This competition allowed for the testing ofthe performance
of diverse machine learning techniques on the same datasets, composed of over 20 million
points of training data from 2380 energy meters collected for 1448 buildings from 16 sources.
Likewise, CityLearn, an OpenAI Gym environment, has been developed to provide a bench-
mark platform that helps facilitate and standardize the evaluation of RL agents [82]. It was
the foundation of the CityLearn Challenge, where five teams competed in training the best
RL agent targeting the management of a microgrid of nine buildings [89]. On a related
topic, the M4 competition [90] has evaluated 61 forecasting methods on 100,000 time-series
data from a wide range of domains such as industry, finance, and demographic. The project
ADRENALIN is another recent initiative of data-driven smart building competitions [91].

3.1.6. Ties between Modelling Approaches

As shown in Figure 5, the abovementioned modelling techniques could be linked
together to improve building controls. Among others, BIM could be used to partially auto-
mate the development of BEMs; BIMs could support the management of architectural in-
formation and operational data, which will facilitate the development of COMs; and BEMs
could work as virtual testbeds to test control strategies developed with COMs. In addition,
COMs could also rely on a combination of white-box, grey-box, and
black-box models.

Figure 5. Schematic of some potential links between building information models, building energy
models, and control-oriented models.

3.2. Data-Driven and Data Analytics Methods to Improve Building Operation

Operational data represents essential information to investigate in-depth the actual
operation and performance of building heating and cooling systems, and it often reveals
that systems should be operated differently. However, it is still unclear for practitioners how
to leverage operational data to optimize building performance. While FDD commercial
products have already shown good promise [10], other methods based on data-driven
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and data analytics methods could complement these tools to improve building operation
and performance.

3.2.1. Fault Detection and Diagnostics, and Predictive Maintenance

FDD commercial tools generally use a rule-based approach to detect operational faults.
For instance, current temperature readings and setpoints are compared and an alarm is
triggered when the difference becomes too large and exceeds a pre-defined threshold.
Moreover, FDD tools usually focus on the first D in the acronym, which is detection. The
second D, i.e., the diagnosis, or at least the correct diagnosis rather than several potential
diagnoses [11], deserves more attention. Research has focussed on automating this process
(Automated FDD or AFDD). Models can be developed to supplement the rule-based
approach and make the detection more robust [19]. These models, either knowledge-based
or data-driven [20], could then help flag performance degradation while providing insights
to correctly diagnose faults. Other initiatives, such as automated fault correction, can
be found in the literature to reduce the reliance on human intervention while making
the diagnosis more proactive [92]. The access to fault datasets for existing buildings
during normal operation, rather than faults artificially generated (simulation, experiments),
remains a challenge for FDD applications [19,20]. Similarly to FDD, predictive maintenance
also plays an important role; unlike preventive measures planned heuristically, predictive
maintenance relies on models to predict when a component requires maintenance or
replacement [19]. These models, which learn from operational data, identify conditions that
may lead to failure events, thus enabling corrective measures that can increase equipment
lifetime and save costs. Typical faults requiring maintenance are refrigerant leakage, heat
exchanger fouling, pump clogging, damper jam, and coil blockage [27]. FDD and predictive
maintenance tools could be incorporated into a broader predictive maintenance strategy,
where a BIM model could be used along with operational data to facilitate day-to-day
building operation [93].

3.2.2. Key Performance Indicators

Key Performance Indicators (KPI) could help quantify building energy performance,
provide more comprehensive operational insights, and track performance degradation over
time at the component, system, and whole building level [30,94]. These KPIs have been
commonly used at the whole building level for performance rating (e.g., energy use intensity,
carbon footprint) or at the component level for code compliance purposes (e.g., coefficient of
performance, heating seasonal performance factor) [94]. KPIs at the system level are far less
common; they quantify the performance of an entire system providing building services,
considering the contributions and impacts of all its components. System-level KPIs can
point directly to the system or group of components that should be prioritized in a building.
They could thus highlight performance issues, which would remain undetected other-
wise (e.g., longer HVAC operation time than required, excessive perimeter heating) [30].
Li et al. [94] developed a comprehensive set of system-level KPIs and calculated them for
16 U.S. DOE commercial prototype buildings using EnergyPlus building models. However,
the adoption of these system-level KPIs for existing buildings is still in its early stages [94];
this can be partially explained by the following:

• The lack of sensors and submeters;
• The cost-effectiveness of implementing such KPIs;
• The unknown typical values that can be expected;
• The lack of knowledge of the appropriate KPIs to apply for a given situation.

The development of KPIs becomes even more crucial to assess advanced performance,
such as building electric peak load management [28] and energy flexibility [95]. Another
benefit of data-driven KPI is the ability to capture the actual system performance. For
instance, two theoretically identical systems, such as heat pumps [65] or chillers [96], could
show different performance curves in real-life performance; this difference could be further
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exploited in operation to maximize building performance. KPI could also be used for FDD
applications by comparing measurements with the expected performance [20].

3.2.3. Virtual Energy Meters and Load Disaggregation

Another application is the development of virtual sensors and virtual energy meters to
infer unmeasured variables, as discussed in Section 2.2.1. Virtual sensors are mathematical
models that predict a variable using measurements available from other installed sensors;
similarly, virtual energy meters predict the energy consumption of a building zone or one
of its systems [60]. Although more operational data are available, some key variables
are still not measured and virtual sensing or metering is a cost-effective solution as a
substitution for installing new physical devices, which can be costly and face practical
issues [60]. Li et al. [97] reviewed virtual sensing technologies used in buildings. They
investigated various virtual sensors, including air and refrigerant mass flow rates, air
temperature (outdoor, mixed, supply, return), refrigerant pressure, air humidity ratio, as
well as compressor volumetric efficiency, chiller efficiency, valve leakage, and coil capacity.

In addition to the calculation of unmeasured variables, virtual energy meters allow to
determine energy flows within a building—for instance, per floor, per air handling unit
(AHU) or per variable air volume (VAV) box—and contribute to a better understanding of
thermal energy-use breakdown in buildings [98]. Virtual energy meters also unlock many
opportunities, such as [60]

• Performance tracking (daily and weekly patterns and schedules, nature of the load,
energy distribution, performance degradation),

• Energy-use mapping (aiming at better matching building energy usage with actual
occupant’s needs),

• Inefficiency detection (by analyzing the load distribution),
• Operation optimization (using gained information for improving building modelling

and optimization through advanced controls).

Virtual energy meters are not the only method to break down building energy usage.
Load disaggregation methods have emerged as promising techniques to estimate energy
end-uses for specific systems or equipment from total electric and thermal energy usage
measured by a single meter [30,60]. By means of models, electric and/or thermal load can
be disaggregated into different categories such as space heating and cooling, ventilation
(fresh air), distribution (AHUs), and/or occupant-controlled (lighting, plug loads), among
others [99–101]. Physical submetering of energy usage is still an option to encourage
occupants to change their behaviour to save energy [102], although it is relatively costly.

3.2.4. Automated Data Labelling

A key barrier to understanding and analyzing building datasets at a large scale is
the lack of standardized variable nomenclature. To reduce the effort required for data
interpretation, inference techniques could be used to label data and generate descriptive
names without the need for intensive human labour. Diverse automated methods have
arisen to infer contextual information from operational data. For instance, Waterworth
et al. [103] developed a novel neural language processing method that aims to automatically
segment sensor metadata into tokens (i.e., words and sub-words), which is further used for
tagging; data from over 182 buildings were used in this study. Chen et al. [104] proposed
a method to classify variables according to their type (e.g., indoor air temperature and
setpoint, air flow and setpoint, and damper position) only based on numerical values; the
approach was applied to zone-level metadata in two office buildings. Mishra et al. [105]
presented a unified architecture, which uses time-series data and raw variable names and
builds upon rule-based logic and machine learning techniques to apply Haystack tags to
variables; this architecture was applied to three commercial retail buildings and one office
building. These methods showcase the various possibilities to address the challenge of
automating data labelling in buildings. In the future, large language models and other AI
techniques may facilitate data management and interpretation.
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3.3. High-Performance Local Controls and Advanced Supervisory Controls
3.3.1. High-Performance Control Sequences

Inefficient local controls are a significant barrier to the adoption of advanced controls.
The recently released ASHRAE Guideline 36 [57] inventories various high-performance
control sequences to enhance HVAC air-side and water-side system operation. These
standardized sequences aim to reduce the time dedicated to developing and implementing
local controls and could already help achieve significant energy savings while improving
indoor air quality. Zhang et al. [106] simulated new control sequences based on G36
for multi-zone VAV systems under different climates, hours of operation, and internal
loads. They obtained energy savings between 2% and 75%, with an average of 31% for
a medium-sized office building and found that supply air temperature reset, duct static
pressure reset, and zone airflow control contributed the most to these savings. Saloux
and Zhang [96] evaluated the impact of a supply air temperature reset strategy based
on outdoor air enthalpy for an existing large commercial building; they found that the
building cooling load could be decreased by 13%, resulting in a 9% reduction in cooling
system electric energy. Nassif et al. [107] built upon G36 to develop new strategies to
reset supply air temperature and zone minimum airflow rate setpoints for typical VAV
systems; the authors showed a potential of 2–6% fan energy decrease and 8–34% heating
load reduction. Lu et al. [108] compared the performance of G36 for supply air temperature
and static difference pressure setpoints with intelligent controllers (optimization-based
controller and deep reinforcement-learning-based controller) for a simulated medium-sized
office building with a multi-zone variable air volume cooling system. G36 sequences
demonstrated for this case study similar performance in terms of energy efficiency and
thermal comfort compared to the intelligent controllers.

3.3.2. Occupant-Centric Controls

In addition to these energy efficiency measures, the integration of occupant behaviours
into building controls has elicited an increasing interest and has led to the development of
occupant-centric controls [34,109]. A large range of applications can be found: temperature
and humidity setbacks, demand controlled ventilation, temperature setpoint adaptation to
occupants, and illuminance adaptation to occupants (preferences, vacancy off) [25,26]. The
data required for these controls—such as occupant presence (binary patterns), count, and
activity (thermostat use behaviour, comfort feedback)—show high temporal and spatial
variability [25]. As a result, gathering occupants’ feedback data through web, mobile,
and wearable applications has become crucial. In this respect, mobile applications [110]
and “smartwatches” [111] capable of retrieving occupant’s thermal comfort feedback and
platforms to improve workspace allocation based on the occupants’ activity [112] provide
new data sources. A critical review of field implementations of occupant-centric building
controls has been conducted by Park et al. [26]. The impact of the global COVID-19
pandemic has disrupted the way buildings are occupied. Adapting building controls
to individual preferences while maintaining an energy-efficient building operation may
emerge as a key feature of the next generation of controls.

3.3.3. Supervisory Controls for Complex Integrated Energy Systems

With the advent of increasingly more efficient technologies, building heating and
cooling systems have become more and more complex and the optimal design and control
of these systems are far from being straightforward [113]. Advanced control strategies
are thus required to exploit their full potential and advanced supervisory controls are
promising solutions. Unlike local controls that ensure the operation of individual devices,
advanced supervisory controls target system-level operations and aim to fulfill the role of
the master controller discussed in Section 2.3.1. While individual components could be
competing to maximize their own performance, advanced supervisory controls use a bird’s-
eye-view to optimize the system’s performance as a whole, which incorporates heating and
cooling systems, on-site energy generation from renewable sources, and energy storage
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devices. Although most buildings still use conventional methods, new technologies have
emerged and could play a more significant role in commercial and institutional buildings
in the near future:

• Heating and cooling systems generally consist of rooftop units, electric and natural
gas boilers, electrical baseboards, connection to district heating, mechanical chillers,
etc. Technologies such as evaporative cooling [114], air-source and ground-source
heat pumps [95], and high-temperature heat pumps (currently mainly for industrial
applications [115]) will become increasingly present.

• On-site energy generation systems from renewable sources may include photovoltaic
and photovoltaic/thermal systems [116], wind turbines [117], solar collectors [118], as
well as organic Rankine cycles [114,119] (mainly used for waste-heat recovery at the
moment [120]).

• Regarding energy storage devices, batteries represent the main electrical storage de-
vice option; electric vehicles and associated charging stations could provide some
opportunities for electric load management as well [121]. Radiant floors [95], water
tanks, and geothermal fields are common options for thermal energy storage; electri-
cally heated thermal storage [95] is becoming more and more popular. Phase change
materials, although mainly used in the residential sector [122], could emerge as a
potential solution for commercial buildings [123]. For cold storage, ice banks have
shown encouraging promise [124,125].

These numerous systems add complexity to building controls on top of the already
existing variety in HVAC system configurations (e.g., air handling units, fan coil units,
terminal units, variable refrigerant flow), which make each building practically unique.
Figure 6 shows some of the possible heating, cooling, and distribution systems, along
with electricity generation and energy storage devices that could be found in commercial
and institutional buildings. This is where building modelling (see Section 3.1) could
be a game changer in testing different control strategies and determining the optimal
operation of integrated systems. It could be achieved through model-based controls
(MBC) [96], targeting the use of models to estimate building performance and optimize
the operation, as well as model predictive control (see Section 3.3.4), also based on models
but taking advantage of available forecasts to anticipate changes and adjust accordingly.
Reinforcement learning [33] is another type of control technique based on models to address
supervisory controls. Furthermore, such controls could be applied at different levels, from
the equipment level (e.g., zone supplied by dedicated heat pump and radiant floor [95])
to the central plant (e.g., chilled water plant [96]) and the building level [64]. The use of
control-oriented archetypes [80] and building emulators to test control strategies [86] could
facilitate the development of general models and control solutions to eventually foster
supervisory controls deployment.
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Figure 6. Schematic of some technologies which could be used for heating, cooling, and electricity
generation in commercial and institutional buildings.

3.3.4. Model Predictive Control

In addition to inefficient local controls, buildings are currently mainly operated in
a reactive manner and simply respond after a change occurs. Advanced controls such
as model-based predictive control can enable buildings to be proactive by anticipating
changes and adjusting accordingly to satisfy a given objective. Such strategies could build
on various forecasts such as weather conditions, occupancy patterns, dynamic energy costs,
and grid carbon intensity to satisfy objectives such as the reduction in energy use, energy
costs, peak demand, GHG emissions, or the improvement of indoor environment quality
and thermal comfort. For example, by anticipating solar gains in a zone, the heating power
could be reduced beforehand to avoid overheating and thermal discomfort. Similarly, a
building could be preheated at night in anticipation of a cold morning to avoid excessive
electric peak load in the morning. This topic of model-based predictive control has raised
much interest for the past decades and has shown promising results. Several review papers
can be found in the literature on this topic:

• Drgoňa et al. [57] performed a thorough review of MPC for the built environment,
from the structure and formulation to the deployment and performance assessment.

• MPC for HVAC systems has been reviewed by Afram and Janabi-Sharifi [22],
Serale et al. [126], and more recently by Yao and Shekhar [23] and Taheri et al. [127].

• MPC for energy storage has been investigated by Thieblemont et al. [128] and
Yu et al. [129].

• Péan et al. [130] have focused on MPC for heat pumps.
• Mirakhorli and Dong [131] and Park et al. [26] concentrated on occupancy behaviour-

based MPC and occupant-centric building controls.

Control-oriented modelling has been acknowledged as the cornerstone of MPC, and
its development takes a significant share of the effort required for developing and im-
plementing MPC strategies: up to 70% of project costs are attributable to model creation
and calibration [132]. Whereas white-box models are favoured for simulation-based MPC
studies, black-box and grey-box models are used more in actual experiments [32]. A recent
publication suggested shifting from model-centric MPC to data-centric MPC to address
the heterogeneity among buildings and the need for model customization for each build-
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ing [133]. MPC faces other practical challenges that hold up massive deployment, such as
data availability and processing, MPC scheme, qualification of control engineers, and risk
mitigation of MPC implementations [9,134]. Nonetheless, a few initiatives can be reported.
Vallianos et al. [135] investigated the aggregated effect on the grid of model predictive
control strategies applied to 7500 houses in Canada using the Ecobee dataset [50], whereas
Deng et al. [55] evaluated the potential of data-driven predictive controls for 78 commercial
buildings using the data available in the RTEM database [54].

3.4. Decarbonization and the Need for Energy Flexibility
3.4.1. From Energy Efficiency to Decarbonization

Current control strategies have mainly focused on minimizing building energy use,
energy costs (especially under a real-time electricity pricing rate), and electric peak load [72].
In the context of climate change and GHG emission reduction targets, these objectives
have been slightly reoriented towards building decarbonization, which requires a new
paradigm shift. The electrification of buildings is seen as an essential means to achieve
it, especially in countries where electricity is already generated from low-carbon sources
(e.g., hydroelectricity) or where renewable energy shows a possibly reasonable penetration
rate. To reduce the current and future burden on the electric grid’s infrastructure, buildings
should not be optimized in a siloed manner anymore but must be part of the Smart Grid
and must become good grid citizens.

3.4.2. Energy Flexible Buildings

The concept of energy flexibility [136] is becoming critical, and buildings can play a
significant role. IEA EBC Annex 67 Energy Flexible Buildings defined the energy flexibility
of a building as the “ability to manage its demand and generation according to local climate
conditions, user needs and energy network requirements” [137]. Built on this concept, the U.S.
DOE introduced the notion of grid-interactive efficient buildings (GEB), which are “energy
efficient buildings with smart technologies characterized by the active use of distributed energy
resources to optimize energy use for grid services, occupant needs and preferences, climate mitigation,
and cost reductions in a continuous and integrated way” [138]. Simply said, buildings should be
able to manipulate their electric load to improve grid reliability: they should reduce their
energy usage during the grid’s peak hours (downward flexibility), whereas they should
help store the grid’s energy surplus when available (upward flexibility, e.g., from solar
plants during sunny days, from wind farms during windy days). Buildings can provide
different grid services [138]:

• Efficiency (consistent load reduction; for instance, more efficient HVAC systems);
• Load shedding (temporary load reduction such as lighting dimming);
• Load shifting (load shifted to off-peak periods such as building preheating);
• Power modulation (e.g., grid frequency and control system voltage);
• Power generation (such as on-site photovoltaic).

To provide these services, multicarrier systems combining different energy vectors (e.g.,
electricity, natural gas, oil, biomass) are particularly of interest and show high flexibility
potential with their ability to switch from one energy source to another (e.g., dual fuel boiler,
electrically driven heat pump with natural gas fired boiler) [136]. Many indicators have
been proposed in the past to quantify building energy flexibility. Li et al. [29] have reviewed
48 of them that are related to peak power and energy load shedding, peak power and
energy rebound, valley filling, load shifting, energy storage capability, demand response
costs savings, and environmental impact, among others.

3.4.3. Role of Advanced Controls to Enhance Flexibility

In the meantime, at the building level, advanced controls are essential to ensure the
continued operation of critical building services, and to improve building resilience and
climate-readiness. Therefore, advanced control strategies offer considerable opportunities
to unlock the flexibility potential of buildings [139] and might take advantage of dynamic

25



Buildings 2023, 13, 2566

price signals and the electric grid’s real-time carbon intensity to minimize building GHG
emissions while maximizing profitability and satisfying building objectives such as thermal
comfort and GHG emission reduction targets. MPC is an appropriate measure to achieve
higher flexibility in buildings. As a complementary measure, policy incentives should
tackle the carbon intensity of buildings and the electric grid as a whole, for example, by
applying dynamic (e.g., hourly) GHG emission factors. The flexibility potential for building
communities harnessed by aggregators and for district energy systems could even be more
attractive with additional thermal energy storage capabilities and aggregated benefits [136].

4. Hierarchy of Advanced Controls

Sections 2 and 3 dealt with pressing challenges and promising opportunities in building
operation where various topics were tackled and targeted a large number of applications at
different scales. This section aims to organize these topics together and develop a hierarchy
in advanced controls opportunities and requirements. Inspired by the energy management
hierarchy of needs developed by Nexus Labs for smart building platforms [140], Figure 7
shows a hierarchy of advanced controls opportunities and requirements for buildings.

Figure 7. Hierarchy in advanced controls opportunities and requirements.

The lower level represents enablers for advanced controls in buildings, which are
mainly related to available data and communication considerations. It includes the
access to general building information such as metadata, BIM (Section 3.1.1), energy
bills, and other data sources; the availability and storage of sub-hourly operational data
(Section 2.2); and an adequate communication infrastructure (Section 2.3). The second
level corresponds to data analysis and performance evaluation. It refers to data analytics
and visualization tools, but it also covers proper data labelling (Section 3.2.4) as well as
virtual sensors, energy meters, and load disaggregation to monitor key variables that are
not measured (Section 3.2.3), and finally, key performance indicators to track building
and system performance (Section 3.2.2). The third level tackles the improvement of local
controls and includes various applications, from fault detection and diagnostics and pre-
dictive maintenance (Section 3.2.1) to high performance control sequences (Section 3.3.1)
and occupant-centric controls (Section 3.3.2). Finally, the higher level builds upon local
controls improvements and optimizes the operation of complex integrated energy systems
to maximize the performance of the building heating and cooling systems as a whole. It
could rely on MBC (Section 3.3.3) and RL (Section 3.1.3) but also MPC (Section 3.3.4) by
leveraging available forecasts such as weather, occupancy, energy prices, and the grid’s
carbon intensity (Section 3.3). Flexibility (Section 3.4) could be incorporated in the objective
function to transition from building energy efficiency to building decarbonization.
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Such a categorization is certainly no easy task and relies on the authors’ experience
and personal assessment. The goal of Figure 7 is to emphasize the main trends, although
there might be no clear distinctions between categories and levels (Figure 1), similarly to
the different “shades of grey” in control-oriented models (Section 3.1.2). For instance, RL
and MPC could be used for local controls (e.g., setpoint tracking) but they show higher
potential for supervisory controls to optimally operate complex integrated building systems
(setpoint optimization, central plant control). MBC could be used to improve local controls
as well, but we see it more in facilitating the development and adoption of supervisory
control solutions (Section 3.3.3). FDD, OCC, and predictive maintenance algorithms might
be already based on models and could be seen as MBC to some extend; similarly, some
MPC strategies can be occupant-centric [62]. KPI are shown in Figure 7 in the second level
for performance evaluation, but it could be used as well for FDD (Section 3.2.2). Data
labelling, virtual sensors, and virtual energy meters could be seen as enablers (lower level);
nonetheless, advanced controls could still be developed even if variable nomenclature is
not standardized, or virtual energy meters are not yet available.

5. Conclusions

Commercial and institutional buildings are currently not operated at their full poten-
tial, resulting in suboptimal performance that could be addressed by more appropriate
control strategies. Although the potential of advanced controls such as MPC is proven,
massive deployment in existing buildings is still not a common practice. This article has
focussed on pressing challenges and promising opportunities in building controls. It aims
to provide researchers, practitioners, and newcomers in the field with a state-of-the-art
overview of the situation. The numerous, significant current challenges are grouped into
six categories:

1. Existing local control flaws that need to be addressed in order of priority. Old control
infrastructure is a crucial hurdle for adopting increasingly more complex mechanical systems.

2. With the advent of the digital era, operational data have become increasingly available
for buildings and are of paramount importance for advanced controls; however, data
are not necessarily available or appropriately stored in every building, key variables
are not necessarily well measured (or measured at all), variable labelling is often
confusing, and data could simply not be shared.

3. Current building automation systems have been designed in a siloed manner and
communication with the control system is no easy task, nor can it support ad-
vanced calculations; cybersecurity and local security considerations add another layer
of complexity.

4. There is, in general, a lack of guidelines tailored for control applications that address
standardized high-performance building control sequences, the evaluation of control-
oriented model performance, and the assessment of energy and economic savings.

5. Economic feasibility and expected savings of advanced controls still need to be widely
acknowledged; successful case studies are rare, and more policy incentives are re-
quired to encourage adoption.

6. Engagement between industry and the research community still needs to be improved;
however, practitioners may face a knowledge gap and require appropriate training to
keep up with a fast-evolving, technology-driven world.

On the other hand, four main streams of opportunities were identified:

1. Building modelling is the cornerstone of advanced control strategies; BIM and BEM,
control-oriented models, and reinforcement learning can serve several objectives, whereas
different initiatives, such as archetypes, emulators, benchmarking platforms, and transfer
learning, aim to scale and generalize existing models and control strategies.

2. Data-driven and data analytics methods allow us to provide invaluable insights into
building operations and facilitate the development of advanced controls; this includes
the development of KPIs, virtual sensors and energy meters, load disaggregation
methods, and automated data labelling.
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3. Attempts at high-performance local controls and advanced supervisory controls have
shown encouraging prospects; work should be continued towards this direction. MPC
promises to make buildings more proactive by anticipating changes rather than being
reactive and simply responding after a change occurs.

4. In the context of climate change, decarbonization of buildings is vital. It requires a
new paradigm shift: advanced control strategies could help make buildings become
energy flexible, more resilient, and good citizens of the smart grid.
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Abbreviations

AFDD Automatic fault detection and diagnosis
AI Artificial intelligence
ASO Automated system optimization
BAS Building automation system
BEMS Building energy modelling
BEMS Building energy management system
BIM Building information modelling
COM Control-oriented modelling
EIS Energy information system
EMIS Energy management and information system
FDD Fault detection and diagnosis
HVAC Heating, ventilation, and air conditioning
IPMVP International performance measurement and verification protocol
G36 ASHRAE Guideline 36
GEB Grid-interactive efficient buildings
GHG Greenhouse gases
KPI Key performance indicator
MBC Model-based control
MPC Model predictive control
OCC Occupant-centric control
RL Reinforcement learning
RTEM Real time energy management
VAV Variable air volume
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Abstract: Monitoring individual exposure to indoor air pollutants is crucial for human health
and well-being. Due to the high spatiotemporal variations of indoor air pollutants, ubiquitous
sensing is essential. However, the cost and maintenance associated with physical sensors make this
currently infeasible. Consequently, this study investigates the feasibility of virtually sensing indoor
air pollutants, such as particulate matter, volatile organic compounds (VOCs), and CO2, using a
long short-term memory (LSTM) deep learning model. Several years of accumulated measurement
data were employed to train the model, which predicts indoor air pollutant concentrations based on
Building Management System (BMS) data (e.g., temperature, humidity, illumination, noise, motion,
and window state) as well as meteorological and outdoor pollution data. A cross-validation scheme
and hyperparameter optimization were utilized to determine the best model parameters and evaluate
its performance using common evaluation metrics (R2, mean absolute error (MAE), root mean square
error (RMSE)). The results demonstrate that the LSTM model can effectively replace physical indoor
air pollutant sensors in the examined room, with evaluation metrics indicating a strong correlation in
the testing set (MAE; CO2: 15.4 ppm, PM2.5: 0.3 μg/m3, VOC: 20.1 IAQI; R2; CO2: 0.47, PM2.5: 0.88,
VOC:0.87). Additionally, the transferability of the model to other rooms was tested, with good results
for CO2 and mixed results for VOC and particulate matter (MAE; CO2: 21.9 ppm, PM2.5: 0.3 μg/m3,
VOC: 52.7 IAQI; R2; CO2: 0.45, PM2.5: 0.09, VOC:0.13). Despite these mixed results, they hint at the
potential for a more broadly applicable approach to virtual sensing of indoor air pollutants, given the
incorporation of more diverse datasets, thereby offering the potential for real-time occupant exposure
monitoring and enhanced building operations.

Keywords: machine learning; deep learning; virtual sensing; LSTM; IAQ; monitoring

1. Introduction

Indoor air pollutants are of different sizes and types, are harmful at different concen-
trations, and have different intake pathways and effects. The major groups of pollutants are
inorganic gases, organic gases, particulates, microbial pollutants, and viral and bacterial in-
fections [1]. Controlling indoor air pollutant exposure is especially relevant since we spend
up to 87% of our time in buildings [2], rendering them the most important environments.
In efforts to make buildings more energy efficient, they have become better sealed and
indoor spaces more dependent on HVAC systems [2]. Studies have shown that bad indoor
air quality leads to a multitude of different symptoms and health impacts. The gravity
of these impacts depends on the pollutants, their concentration, the exposure time, and
individual factors such as age, constitution, and health [3]. Most frequently, occupants
experience tiredness, burning eyes, headaches, and concentration problems [3]. Prolonged
exposure may also lead to respiratory syndromes and immune system reactions such as
asthma, especially in vulnerable groups such as children or elderly persons [3]. According
to a study from the WHO, air pollution is a significant health threat and a primary environ-
mental factor in causing premature deaths in Europe [4]. Exposure to fine particulate matter

Buildings 2023, 13, 1684. https://doi.org/10.3390/buildings13071684 https://www.mdpi.com/journal/buildings
35



Buildings 2023, 13, 1684

has been linked to over 400,000 premature deaths in European countries [5]. Therefore,
many countries are taking steps to reduce indoor air pollutant concentration by enforcing
exposure limits. An in-detail summary of exposure limits in different countries is given
in Abdul et al. [6]. The European Union largely adopted the exposure limits suggested by
the WHO in [7]. Effective strategies for reducing indoor air pollutant exposure include
source control, which involves identifying and minimizing sources of pollution, mitigation
measures such as removing pollutants and introducing clean air, and monitoring indoor
air pollutant concentrations [1]. These measures are situated at different points of the
building life cycle: source control is relevant in the planning and construction phase of
buildings, and mitigation and monitoring are required during the use of the building.
Building codes progressively ensure source control in new buildings by restricting harmful,
pollutant-emitting materials. However, the majority of existing building stock was built
without awareness of indoor air quality concerns. Therefore, improving indoor air quality
in existing buildings is key. Monitoring and mitigation measures are especially relevant
in the non-residential sector since occupants have little influence on the indoor environ-
ment, as opposed to residential buildings. Therefore, the following study will focus on
non-residential typologies in the existing building stock; specifically, typology—with high
occupant density and prolonged exposure will be part of the study.

2. Indoor Air Pollutants in the Non-Residential Building Stock

Several studies have examined the spatiotemporal distribution of indoor air pollutants
within rooms in non-residential building stock. Szigeti et al. [8] examined the spatiotempo-
ral distribution of particulate matter in European office buildings and found a significant
variation between buildings. Within buildings, temporal variation is more pronounced than
spatial distribution variations [8]. According to Szigeti et al. [8], occupants may be exposed
to significantly different pollutant concentrations in different rooms within a building.
Li et al. [9] examined the spatiotemporal distribution of particulate matter within one room
(workshop) with localized sources and found high spatial and temporal variations within
a single room. Sahu et al. [10] examined the distribution of indoor air pollutants—CO2,
particulate matter, VOC—in a multi-story library with shared air volume. They found
high spatial and temporal variations within the library, with temporal variations mainly
driven by the number of occupants and spatial variation more pronounced between the
different stories. Studies Szigeti et al. [8], Li et al. [9], and Sahu et al. [10] show that indoor
air pollutants show significant spatiotemporal variations. Therefore, a continuous and
spatiotemporally high-resolution monitoring is required in order to evaluate occupant ex-
posure and control ventilation units. The state of research in continuous and spatiotemporal
high-resolution indoor air pollutant monitoring was analyzed, looking at fifteen studies,
monitoring indoor air pollutants in non-residential buildings: [9,11–24]. Over all studies,
the most measured pollutant is particulate matter, examined by 14 out of 15 publications.
In 8 of 15 studies measured one or multiple volatile organic compounds, and 7 out of
15 studies measured CO2. Carbon monoxide and nitrogen dioxide were assessed in 5 out of
15 studies, and ozone and sulfur dioxide in 2 studies. Several other pollutants as nitrogen
oxide and fungi, are only considered in 1 publication. The studies evaluated the importance
of different pollutants in non-residential buildings and found that carbon monoxide and
radon only accumulate in particular spaces, such as kitchens with gas ovens and basements,
and are insignificant in typical non-residential buildings [11,25]. Irga et al. [14] found
the levels of nitrogen oxide, volatile organic compounds, fungi, and sulfur dioxide to be
harmless in 11 office buildings. According to Challoner et al. [22], the most problematic
pollutant in non-residential buildings is fine particulate matter, exceeding health thresholds
in 10% of the measured time. Additionally, carbon dioxide regularly exceeds the threshold
of 1000 ppm in naturally ventilated buildings [15]. Likewise, volatile organic compounds
are effectively controlled by mechanical ventilation systems but can reach problematic con-
centrations if the ventilation system is switched off or buildings are naturally ventilated [15].
The reviewed articles exclusively use on-site measurement technology since laboratory
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analysis is not able to gather continuous, high-resolution measurements. Most studies
used MOS technology VOC sensors, NDIR technology CO2 sensors, and OPC technology
particulate matter sensors.

3. Virtual Sensing for Indoor Air Pollutants

Ubiquitous monitoring of indoor air pollutants requires durable, low-cost, low-
maintenance, low-energy sensor equipment. NDIR and OPC technologies are optical mea-
surement principles requiring fragile components and suffer from measurement drift and
longevity issues due to the build-up of foreign particles in the measurement chambers [26].
Furthermore, optical measurement methods have higher energy consumption and are less
suited for battery operation. Even though MOS-based VOC sensors are low cost and low
energy, MOS-based VOC measurements are prone to drift and suffer from reproducibility
issues [27]. These drawbacks necessitate careful maintenance, diligent monitoring for
failures, and thorough post-processing of data, which is often overlooked in building
operations. A mitigation of these shortcomings is presented in previous studies [28,29]
that developed calibration models to improve accuracy and reduce the drift of IAP sensors.
However, those systems have not found their way into practice yet. Therefore, alternatives
to the measurement of particulate matter (PM), volatile organic compounds (VOC), and
carbon dioxide (CO2) have to be found.

Virtual sensing of PM, VOC, and CO2 is an alternative to ubiquitous sensor deploy-
ment. Virtual sensing “aims to approximate unmeasured physical quantities in a dynamic
system using existing sensor information. This is especially beneficial when important
locations of the system are difficult to instrument, or the cost of sensors is very high” [30].
“A virtual sensor uses low-cost measurements and mathematical models to estimate a
difficult to measure or expensive quantity” [31]. The models are based on related physical
measurements, control signals, operation information, and design information [32]. Vir-
tual sensing finds widespread application in the domains of process control, automotive,
avionics, and robotics [31]. However, with the exponential rise of available data points
through developments in IoT and cost reduction of sensors, virtual sensing has been in-
creasingly adopted in the building industry [32]. The application of virtual sensing in
the building industry is manifold. Buildings gather many data points, and nearly every
physical sensor can provide additional information for virtual sensing. Li et al. [31] gives
an example of the potential of virtual sensing in buildings: “A ’smart’ lighting fixture could
provide power, lighting, and heat gain outputs based on the input control signal. A ’smart’
window could provide estimates of heat gain and even solar radiation based on low-cost
measurements and a model”. Application scenarios in buildings include HVAC operation
monitoring [33,34], indoor infiltration rate [35], zone temperature distribution [36], zone
occupancy estimation [37] and indoor air pollutant monitoring [38–40]. Generally, virtual
sensors can be differentiated into three application scenarios: replacement and backup,
observation, and assistance [32]. Replacement and backup virtual sensors are deployed in
parallel to their physical counterparts and, by computing the residuals between physical
and virtual measurement, are able to detect sensor faults or calibration drifts [41], and can
replace their physical counterparts if needed [32]. Observation virtual sensors estimate a
data point without their physical counterpart using other measurements and mathemat-
ical models [32]. Assistance virtual sensors do not estimate a physical quantity but are
integrated into other virtual sensors to improve accuracy. The output of assistance virtual
sensors is often normalized [32]. Virtual sensors can further be differentiated regarding
their modeling method and the underlying measurement characteristics [31]. Modeling
methods are white-box, grey-box, and black-box models [31]. Measurement characteris-
tics can be differentiated in transient (e.g., power usage, indoor temperature) or steady
state (e.g., system failure state) data [31]. White and grey-box models require in-depth
knowledge of the building. These approaches are infeasible for older buildings due to
unavailable planning documents, undocumented changes, and performance deterioration.
One alternative would be a black-box model, which requires extensive measurement data.
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To summarize, virtual sensing for indoor air pollutant prediction in non-residential ty-
pologies requires transient-state observational virtual sensors created using a black-box
modeling method.

Other studies have already examined the applicability of virtual sensing for indoor air
pollutant prediction. A study by Gabriel and Auer [42] used multi-layer perceptron (MLP)
artificial neural networks and support vector machines (SVM) to create an observational
virtual particulate matter sensor based on available Building Management System (BMS)
data (temperature, pressure, humidity, sound, illumination, window opening state, and
printer power consumption). Six months of measurement data were used to train and
test the two machine-learning models. Gabriel and Auer [42] found that MLPs performed
best, and the results indicated that physical particulate matter sensors could be replaced by
virtual sensors based on BMS data. Kusiak et al. [41] created virtual replacement sensors
for temperature, humidity, and CO2 with four modeling approaches for the calibration
and monitoring of physical sensors using HVAC, climate, and other indoor air pollutant
data. MLPs were found to perform best in modeling the physical sensors. Kusiak et al. [41]
conclude that the virtual sensors are able to detect failures of their corresponding physical
sensors and replace them if necessary. Skoen et al. [38] used MLPs to create an observational
virtual sensor using temperature and humidity as input for modeling CO2. Skoen et al. [38]
concludes that estimating CO2 only based on temperature and humidity is difficult and
requires additional measurements to support the black-box model. Leidinger et al. [43]
created a virtual replacement sensor for selective VOC sampling of formaldehyde, benzene,
and naphthalene using an array of low-cost MOS sensors as input. Leidinger et al. [43]
used linear discriminant analysis to estimate the target variables. Under laboratory con-
ditions, the study achieved a classification ratio of over 99%. However, in field tests, the
classification ratio significantly dropped (83%) due to VOC emissions of the hardware [43].
A summary of Literature on Virtual Sensor Creation is given in Table 1. Research in other
domains showed that long short-term memory (LSTM) recurrent neural networks are
suited for time-series data in virtual sensor creation due to their ability to incorporate
measurements from a lookback window into their model. LSTMs are recurrent neural
networks specialized in time series data by incorporating memory cells in their network
architecture, which enable them to identify and remember patterns in time series data [30].
In the building industry, LSTMs have already been applied to building load management
for forecasting energy consumption [44,45] and predicting occupancy [46]. LSTMs have
not yet been applied to modeling virtual indoor air pollutant sensors.

Table 1. Summary of Literature on Virtual Sensor Creation.

Study Virtual Sensor Type Methods Used Main Findings

Gabriel and Auer [42] Particulate Matter MLP, SVM
MLPs performed better than SVM; results

show the potential of virtual sensors to
replace physical ones

Kusiak et al. [41] Temperature, Humidity, CO2 MLP, SVM, Pacereg, RBF
MLP outperformed other models; Virtual

sensors can detect and replace failing
physical sensors

Skoen et al. [38] CO2 MLP Estimating CO2 based only on temperature
and humidity is challenging

Leidinger et al. [43] VOC Sampling Linear Discriminant Analysis 99% lab accuracy, 83% field accuracy due to
hardware VOC emissions

Karijadi et al. [44] and Jang et al. [45] Energy Consumption LSTM LSTMs have been successfully applied in
energy consumption forecasting

Qolomany et al. [46] Occupancy LSTM LSTM can be used for predicting occupancy
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4. Study Definition

The literature indicates that monitoring occupant pollutant exposure and mitigating
indoor air pollutant concentrations is important to ensure health and well-being. Since
occupants in non-residential typologies have no or low possibility of intervention regarding
indoor air quality, particular care has to be taken in providing adequate indoor conditions
in these typologies. Due to the high spatiotemporal variation of indoor air pollutants in non-
residential buildings, high-resolution monitoring is required. However, ubiquitous sensing
of indoor air pollutants is infeasible due to the high cost and time required for installation,
operation, and maintenance. Therefore, virtual sensing is suggested as an alternative to the
ubiquitous deployment of physical sensors. Previous studies have already been conducted,
applying virtual sensing to indoor air pollutant estimation. However, these studies mostly
assessed only one air pollutant, even though exposure monitoring requires the estimation
of multiple pollutants. Furthermore, all currently available studies build virtual sensors
based on data from one zone in a single typology and do not consider the transferability of
the models to other zones and/or typologies. Additionally, all studies reviewed here used
less than a year of measurement data to build the models, thus introducing significant bias
into the models. Despite the demonstrated effectiveness of LSTM in handling time-series
problems across various domains, it is observed that none of the known virtual sensing
approaches to indoor air pollutants have adopted LSTM as their modeling approach [47,48].

Therefore, our study examines the feasibility of observational virtual sensors for PM,
VOC, and CO2 based on an LSTM modeling approach. The study uses multiple years of
accumulated measurement data from multiple zones and typologies to build the virtual-
sensor model and check its transferability to other zones and typologies. The capability of
the virtual sensor was evaluated independently for the room where the model was trained
and on unknown rooms.

Figure 1 gives a visual overview of the study definition.

LSTM virtual IAP sensor 
BMS data 

(Building Management System)

temperature

humidity

noise

...

Outdoor data

radiation

wind speed

pollution

...

Meta data

time / date

max. occup.

room size

...

Indoor Air Pollutant
Concentration

PM

CO2

VOC

Figure 1. Flowchart of the study definition with a black box LSTM model and input/output compo-
nents (Own representation).

5. Methods

In this study, we employed an LSTM model trained on collected measurement data to
predict indoor air pollutant concentrations using BMS, outdoor meteorological, and out-
door pollution data as model inputs. In the following sections, we detail the methods used.
Section 5.1 describes the steps performed in order to build the dataset, including the mea-
surement equipment, the measurement setup, and the measurement location. Section 5.2
presents the steps to preprocess the data for machine learning model training. Section 5.3
encompasses the training of the models, while Section 5.4 focuses on model evaluation.
Finally, the transferability tests are detailed in Section 5.5.

A graphical representation of the method is illustrated in Figure 2.
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Figure 2. Flowchart of the implemented data processing and machine learning pipeline (Own
representation).
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5.1. Measurements

Measurement equipment was developed for indoor air pollutant (IAP) measurements.
The measurement infrastructure for the BMS, meteorological, and outdoor pollution data
was already in place. The BMS is implemented based on the LoRaWAN standard. Lo-
RaWAN is a wireless IoT standard that achieves long-range communication with low power
consumption, thus enabling battery-powered nodes. Due to the minimal installation effort
and battery-powered nodes, it is applicable as a retrofit solution. The BMS data recorded
measurements at a 1 min interval.

The IAP nodes are required to measure CO2 concentrations in parts per million (ppm),
particulate matter concentrations in micrograms per cubic meter (μg/m3), and total volatile
organic compound concentrations as Indoor Air Quality Index (IAQI). Furthermore, the IAP
nodes must achieve continuous, automated measurements with a high sampling rate (10 s)
over a prolonged period of time and should account for measurement drift by frequent
recalibration. While the initial data sampling rate is 10 s, these measurements will be
resampled to a one-minute interval later. This higher sampling rate allows for smoother
and more reliable data, as it enables using more data points for each resampled data point.
Due to the high volume of data collected, data must be stored centrally rather than locally on
the measurement nodes. Therefore, a communication infrastructure supporting high data
rates and low latencies was required. Since tuning periods will be needed in subsequent
deployments, sensor costs must be low to achieve the goal of a ubiquitous deployment.

No currently available commercial system fulfilled these requirements. Therefore,
custom indoor air pollutant nodes (see Figure 3) were developed in order to meet the re-
quirements. Sensors were selected based on their evaluation in the literature. For particulate
matter measurements, we selected the Sensirion SPS30 sensor (Sensirion AG, Switzerland,
Stäfa) based on its evaluation in previous studies [49]. Ref. [49] ascertained a very strong
correlation with the reference instrument for fine particulate matter [49]. The Sensirion
SPS30 utilizes the optical particles counter measurement principle, which has been shown
to have good accuracy in measuring particulate matter of varying diameters [27].

For VOC measurements, we chose the Sensirion SGP30 (Sensirion AG, Switzerland,
Stäfa) sensor. The sensor employs a metal oxide sensing (MOS) element, which is able
to detect a wide range of volatile organic compounds through changes in the material’s
resistance due to chemical reactions with the pollutants. However, due to their broad
sensitivity, it is not possible to identify the pollutant concentrations of individual VOCs,
which means the output value of these sensors is qualitative. However, ref. [49] evaluated a
range of VOC MOS sensors under different pollution events and, in the case of the Sensirion
SGP30, performed well compared to reference instruments, thus making it viable for a
qualitative evaluation of VOC pollution.

For CO2 measurements, we selected the Sensirion SCD30 (Sensirion AG, Switzerland,
Stäfa) due to its proven accuracy [27]. This sensor uses the optical NDIR measurement
principle, which is the common standard in accurately measuring CO2 concentration [50].
The sensors were connected to a microcontroller, which performs continuous measurements
in the defined interval, automatic recalibration, and upload the data to a central database
via WiFi connectivity.

Figure 3. Custom-built IAP sensor node (Own representation).
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Since multiple indoor air pollutant nodes would be deployed, it was important to
reduce sensor bias. Therefore, a cross-calibration scheme was introduced in this study.
Cross-calibration is a method used to reduce sensor bias and improve accuracy by com-
paring the readings of individual sensors to a chosen reference sensor. In our case, one
sensor was selected as the reference, and all other sensors were calibrated to perform like
the reference sensor. This approach ensures consistency among the sensor readings.

The cross-calibration procedure was conducted over a 24 h period, during which
a wide range of environmental conditions were introduced to test sensor response over
the entire measurement range. Based on the gathered data, calibration curves for each
individual sensor are generated using regression analysis. By applying these calibration
curves to the input data of the latter measurements, we could reduce the influence of
sensor biases.

Table 2 gives an overview of the used measurement equipment.

Table 2. Overview of the measurement equipment and sensors used.

Property Sensirion SPS30 Sensirion SGP30 Sensirion SCD30

Parameter Particulate Matter Volatile Organic
Compounds (VOC) Carbon Dioxide (CO2)

Measurement Principle Optical Particle Counter Metal Oxide
Sensing (MOS) Optical NDIR

Evaluation Source [27,49] [49] [27,50]

Measurement Interval 10 s 10 s 10 s

Use in Literature [51,52] [53,54] [55,56]

Measurements were taken in a high-rise office building in the center of Munich with
23 stories and 130,000 m2 floor area that accommodates about 2500 employees. The building
is supplied with heating and cooling through thermally activated ceilings (concrete core
activation) supplied by groundwater heat pumps. A central mechanical ventilation system
supplies the building with fresh air introduced into the room through induction units and
extracted through exhaust outlets in the center of the zones. The ventilation system is
not designed to supply heating or cooling energy. The ventilation operates at a constant
schedule of 1.6 air changes per hour between 5.15 am and 8 pm. In addition to the
mechanical ventilation systems, rooms in the lower stories also have operable windows. All
rooms have radiation-controlled shading systems that can be overridden by the occupants.
The building is in close proximity to much-frequented roads and railway tracks.

The examined office (Office 1) is located on the third floor of the building. It has
two external façades, which are orientated toward the northwest and southeast. The room
provides workplaces for about thirty-five employees and features operable windows. Mea-
surements were taken in Office 1 from June 2021 to December 2022 with three independent
indoor air pollutant nodes. The placement of the IAP nodes is in accordance with the guide-
lines for monitoring indoor air pollutants of the United States Environmental Protection
Agency (EPA):

• Installation of the nodes in the breathing zone (1.10 m height)
• More than 0.5 m away from walls, corners, and windows
• More than 1 m away from local pollutant sources and occupants
• Not in front or below air supply units
• Not exposed to direct sunlight

The floorpolan of the office as well as the sensor node setup is shown in Figure 4.
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Figure 4. Floorplan illustrating sensor placement and room layout of Office 1 (Own representation).

5.2. Preprocessing

The following section outlines the steps that were taken to bring the raw datasets into
a form that can be used as input for a machine-learning model. These include filtering
or selecting relevant data, handling missing or corrupted values, normalizing the data,
and splitting the data into training, validation, and test sets.

The initial data preparation involved extracting measurement data from IAP and the
BMS node from the database and transforming the data from a long format to a wide
format. This data was then loaded into a Pandas data frame for further processing. Pandas
is a widely used library in Python for data analysis. It provides a structure for storing and
manipulating the data in preparation for machine learning tasks.

The available measurement data was enriched by adding contextual and outdoor
environmental data. For contextual data, date and time tags were added, with hours and
days encoded as continuous sinus. Workdays, weekends, holidays, and seasons were
added as boolean tags. Furthermore, information on the HVAC operation schedule, room
size, and number of occupants were integrated into the dataset.

Additionally, outdoor environmental data from a local meteorological station was
added to the dataset. The outdoor environmental data encompasses air temperature,
ground temperature, dew point temperature, global and diffuse radiation, humidity, illu-
mination, air pressure, precipitation, sunlight hours, wind- direction and -speed, as well
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as outdoor particulate matter concentration. The meteorological station is at a distance of
5 km.

We noted that measurements after power cycling the nodes, e.g., after a power outage,
showed elevated values for temperature and humidity for a short timespan after. In order
to avoid model bias, measurements up to 15 min after a power cycle were excluded from
the data set. Furthermore, random measurement fluctuations due to sensor inaccuracies
were removed programmatically from the data set by smoothing measurements.

The final pre-processing steps involved optimizing the dataset for machine learning.
We resampled the data to a one-minute frequency, a balance between attaining high accu-
racy, capturing brief temporal fluctuations, and ensuring smooth, even data. Missing data
up to 15 min was input due to transient sensor response post power cycling, which we
found to normalize after this interval. Overall, the input data amounted to less than 16 h
for the whole measurement period. Finally, the datasets were balanced and normalized
using a min-max scaler for each feature.

5.3. LSTM Setup and Training Protocol

We opted for a deep learning approach utilizing a recurrent neural network archi-
tecture, specifically an LSTM with two hidden layers. Data were fed into the LSTM as
a three-dimensional input tensor, with the first dimension representing the length of the
input variables (temperature, humidity, etc.), the second dimension being the lookback
period (number of past timesteps), and the third dimension representing the batch size,
which indicates the number of input sequences processed concurrently during training and
inference. The learning rate, batch size, lookback period, and the number of neurons in the
two hidden layers were determined through hyperparameter optimization.

The model’s hyperparameters were optimized using Bayesian optimization, a method
that uses a Gaussian process objective function and utilizes probabilistic reasoning to opti-
mize the model’s hyperparameters with the goal of minimizing the model error. An early
stopping function was implemented to prevent model overfitting by monitoring the vali-
dation loss and terminating model training if the validation loss did not improve for five
consecutive runs. The overall training of the LSTM took 28 min on a GPU. An overview
of the model input is provided in the Appendix A in Table A1, and the model output is
shown in Table A2.

Data collected from Office 1 were used to train the machine learning model. To ensure
that the model could generalize and predict indoor air pollutant concentrations, a cross-
validation scheme was employed. This process involved reserving 25% of the data for
testing purposes and using the remaining data to train the models. This training data were
further divided into a training set (75%) and a validation set (25%), with the latter being
employed to trigger the early stopping algorithm to prevent overfitting, determine the best
epoch, and perform hyperparameter optimization.

5.4. Evaluation

Model predictions were evaluated using the set-aside testing dataset, employing the R2,
mean absolute error (MAE) and root mean squared error (RMSE) metrics for quantification.
Metrics were calculated individually for each model, pollutant, and room. We selected the
MAE, RMSE, and coefficient of determination (R2) metrics to assess model performance,
as they are widely used in model performance evaluation [57]. MAE and RMSE are not
dimensionless and are expressed in the units of the evaluated target. The MAE metric
output represents the mean absolute difference between predicted and true values for all
tested timesteps. Due to its quadratic component in the RMSE calculation, larger errors
are weighted more heavily than smaller ones [57]. Consequently, MAE provides a good
indication of the overall error in target units, while RMSE indicates the number of high
deviations. R2 is a dimensionless metric that measures the proportion of the total variance
in the dependent variable that is predictable from the independent variables. Smaller
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values for both RMSE and MAE signify a better fit, while a higher value for R2 indicates a
more accurate fit.

RMSE(y, ŷ) =

√
∑N−1

i=0 (yi − ŷi)2

N
(1)

MAE(y, ŷ) =
∑N−1

i=0 |yi − ŷi|
N

(2)

R2(y, ŷ) = 1 − ∑N−1
i=0 (yi − ŷi)

2

∑N−1
i=0 (yi − ȳ)2

. (3)

5.5. Transferability Testing

To evaluate the model’s ability to predict indoor air pollutant concentrations in other
rooms and environments, the trained and assessed model was transferred to an unseen
office room (Office 2) in the same building with a different layout, occupancy patterns,
density, and orientation.

Office 2 is located on the third floor of the same building as the previous room. It
has one external façade, which is oriented towards the east. The room accommodates ten
employees and features operable windows. Measurements were taken in Office 2 in March
2023 using one IAP node. The same BMS data points used in the training of the LSTM
model in Office 1 are available in Office 2. The outdoor meteorological and pollution data
were retrieved from the same source, as both rooms are located in the same building.

The locations of the nodes and the room layout are depicted in Figure 5.

Figure 5. Floorplan illustrating sensor placement and room layout of Office 2 (Own representation).

The measurements of the IAP nodes were solely used for evaluation in Office 2. The
trained model was used as is.

The model inputs, as specified in Table A1, were provided by the BMS-node as well as
outdoor and metadata. The model then predicts the indoor air pollutant concentrations
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for each timestep (1 min). In the evaluation, the predicted values were then compared to
the actual measurements of the IAP nodes for March 2023. As previously, three prediction
metrics were calculated: MAE, RMSE, and R2.

6. Results

In this section, we present and discuss the results of our machine-learning model.
Section 6.1 presents the results of the model training and its evaluation metrics. Section 6.2
reports the results of transferring the model to Office 2.

6.1. Model Evaluation

Figure 6 displays the predictions of the trained LSTM model for the testing set in Office
1 (yellow) and the measured truth (blue) for each indoor air pollutant. The evaluation
metrics are calculated individually for each pollutant and shown in the top-left corner of
each plot. The testing was conducted for three months, from March 2022 to May 2022. A
visual assessment of the time series plots reveals a high correlation between the truth and
prediction. The most significant deviations between truth and prediction are identified
for CO2 predictions. In the case of CO2, the model tends to slightly overestimate the CO2
concentration during low concentration periods, whereas high concentration events show
a closer fit. However, the model occasionally predicts pollutant peaks incorrectly during
low concentration periods and vice versa. In the case of CO2 predictions, they appear
to be more accurate during the second half of the testing period. For particulate matter,
the visual assessment shows an excellent fit between prediction and truth. All peaks are
identified correctly. The time series plot demonstrates a slight underestimation of peaks
and high pollution events by the prediction compared to the truth. In the case of VOC,
the visual assessment of the time series plots reveals an excellent fit between prediction
and truth. The model can detect all concentration peaks, even though VOC concentration
is highly dynamic. However, a slight underestimation of pollutant peaks can be observed
in the time series, especially during the first half of the testing period.

Table 3 summarizes the evaluation metrics (R2, RMSE, MAE) for each pollutant.
Overall, the model exhibits a low error for all pollutants, as demonstrated by the MAE
and RMSE performance metrics. In the case of CO2, the mean absolute error amounts to
15.4 ppm for the testing period, while a slightly increased RMSE value of 20.2 ppm indicates
that no outliers significantly impact the model’s predictions. The CO2 measurements ranged
from 380 to 560 ppm during the measurement period. For particulate matter, the errors
amount to 0.3 and 0.5 μg/m3 for MAE and RMSE, respectively, indicating consistently
low error rates without outliers. The measurements ranged from 0 to 13 μg/m3 during
the measurement period. In the case of volatile organic compounds, MAE and RMSE
errors amounted to 20.1 IAQI and 31.4 IAQI, respectively, demonstrating low error rates
without major deviations. The measurements for VOC ranged from 0 to 450 IAQI. The R2

performance metric is a statistical measure representing the goodness of fit of the LSTM
model and indicates the percentage of variance in the truth data that can be explained
by the LSTM model. In the case of CO2, an R2 value of 0.47 indicates that the model
explains a substantial part of the variance in CO2 concentration and has a reasonably
good fit, providing meaningful predictions. For PM, a high R2 of 0.88 was identified,
indicating that the model explains a significant percentage of the variability in particulate
matter measurements. Furthermore, it shows a very good fit and indicates that the model
is highly predictive of PM. In the case of VOC, a high R2 of 0.87 was identified, which
shows that a significant percentage of VOC volatility is explained by the LSTM virtual
sensing model. Furthermore, the R2 indicates a very good fit for VOC and that the model is
highly predictive.
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Figure 6. Comparison of virtual indoor air pollutant sensors (yellow) and physical indoor air
pollutant sensors (blue) with overlayed evaluation metrics for Indoor Air Pollutants: VOC (bottom),
PM (middle), and CO2 (top) for Office 1 (Own representation).

Table 3. Evaluation metrics LSTM virtual sensing model in Office 1.

Pollutant MAE R2 RMSE

CO2 15.4 0.47 20.2

PM2.5 0.3 0.88 0.5

VOC 20.1 0.87 31.4

The model successfully identified all pollutant peaks during the testing period, with the
only error being a slight underestimation of peak concentrations. For CO2, a less ideal but
still satisfactory prediction result was achieved. This led to minor errors and a less accu-
rate representation of the variability in actual concentrations, resulting in some erroneous
predictions, such as misidentified pollutant peaks during the testing period. Nevertheless,
the predictions yielded a mean absolute error within the range of measurement inaccuracies
for most sensors.

The performance metrics of MAE = 15.4 ppm, RMSE = 20.2 ppm, and R2 = 0.47 for CO2
showed very low errors with insignificant outliers. The R2 value indicated a reasonably good
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fit and predictive capability. For PM, the metrics MAE = 0.3 μg/m3, RMSE = 0.5 μg/m3,
and R2 = 0.88 signified a strong prediction capability with minimal errors and an excellent
fit. Similar results were observed for VOC, with MAE = 20.1 IAQI, RMSE = 31.4 IAQI,
and R2 = 0.87. Overall, the LSTM model demonstrated strong performance in predicting
indoor air pollutant concentrations, with some room for improvement in CO2 predictions.
Based on the findings from this study, the LSTM model shows promise to potentially
replace physical sensors, contributing to more cost-effective and efficient air quality moni-
toring solutions.

6.2. Transferability Evaluation

Figure 7 displays the predictions of the trained LSTM model (yellow) for Office 2,
as well as the measured actual values (blue) for each indoor air pollutant. The test took
place in March 2023.

Figure 7. Comparison of virtual indoor air pollutant sensors (yellow) and physical indoor air
pollutant sensors (blue) with overlayed evaluation metrics for Indoor Air Pollutants: VOC (bottom),
PM (middle), and CO2 (top) for Office 2 (Own representation).

Visual assessment of the time series plots revealed a correlation between actual values
and predictions for all pollutants, albeit with varying degrees of fit. The highest correlation
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between actual and predicted values was observed for CO2 predictions. The prediction
model successfully identified pollutant peaks, albeit with underestimation. During low
pollutant events, such as weekends or nights, the model results were less smooth and
tended to overestimate variability in pollutant concentrations. Occasionally, the model
predicted pollutant peaks under unpolluted conditions.

For particulate matter, the visual assessment showed a general fit between the magni-
tudes of predicted and actual concentrations. However, the prediction failed to detect some
peaks and underestimated all others. In some cases, the prediction exhibited a phase shift,
resulting in delayed identification of rising concentrations.

For VOC, a visual assessment of the time series plots revealed that the model could
identify some concentration peaks. However, the model frequently and erroneously de-
tected pollutant peaks when none were present.

Table 3 summarizes the evaluation metrics (R2, RMSE, MAE) for each pollutant.
Overall, the model exhibited very low errors for all pollutants, as evidenced by the MAE
and RMSE performance metrics. For CO2, the mean absolute error was 21.9 ppm during
the testing period, while a slightly increased RMSE value of 30.4 ppm indicated that no
outliers affected the model’s predictions. CO2 measurements ranged from 420 ppm to
610 ppm during the measurement period.

For particulate matter, errors amounted to 0.3 and 0.6 μg/m3 for MAE and RMSE,
respectively, indicating consistently low error rates without outliers. Measurements ranged
from 0 to 4 μg/m3 during the measurement period. For volatile organic compounds, MAE
and RMSE errors were 52.7 IAQI and 66.4 IAQI, respectively, demonstrating very low error
rates without significant deviations. Measurements for VOC ranged from 0 to 330 IAQI.

For CO2, an R2 value of 0.45 indicated that the model accounted for a substantial por-
tion of the variability in CO2 concentrations, exhibited a reasonably good fit, and provided
meaningful predictions. For PM, a low R2 of 0.09 suggested that the model explained a
smaller percentage of the variability in particulate matter measurements, demonstrated a
less accurate fit, and was less predictive. For VOC, a low R2 of 0.13 indicated that the model
explained a smaller percentage of VOC variability and was less accurate and less predictive.
The evaluation metrics are summarized in Table 4.

Table 4. Evaluation metrics LSTM virtual sensing model transfer in Office 2.

Pollutant MAE R2 RMSE

CO2 21.9 0.45 30.4

PM2.5 0.3 0.09 0.6

VOC 52.7 0.13 66.4

The LSTM-based virtual indoor air pollutant sensor was tested for Office 2 using
the testing dataset for March 2023. The evaluation results indicated varying degrees of
correlation between the actual and predicted pollutant concentrations. For CO2, the model
successfully identified pollutant peaks, albeit underestimated, and exhibited an MAE of
21.9 ppm, RMSE of 30.4 ppm, and R2 of 0.45, indicating a reasonably good fit and predictive
capabilities. For particulate matter and volatile organic compounds (VOC), the model
showed less accurate predictions in terms of R2 values; however, the MAE and RMSE errors
remained low. For PM, despite the model’s failure to detect some pollutant peaks and a
low R2 of 0.09, the MAE and RMSE were consistently low at 0.3 μg/m3 and 0.6 μg/m3,
respectively, indicating a relatively low error rate without significant outliers. Similarly,
for VOC, the model erroneously detected pollutant peaks in some cases and showed a low
R2 of 0.13. Yet, the MAE and RMSE remained low at 52.7 IAQI and 66.4 IAQI, respectively,
demonstrating low error rates without major deviations. In conclusion, the LSTM model
exhibits varying performance in predicting indoor air pollutant concentrations for Office
2, with better results for CO2 predictions and low error rates in terms of MAE and RMSE
for PM and VOC predictions. However, there is room for improvement in capturing the
variability of PM and VOC concentrations, as indicated by the low R2 values.
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7. Discussion

The findings of this study indicate that machine learning models, particularly LSTM
networks, are effective in predicting indoor air pollutants, especially particulate matter,
and VOC, as demonstrated by the low error rates achieved in the testing set of Office
1. The testing results from Office 1 indicate certain limitations of the virtual sensing
model in capturing the full range of variability in CO2 concentrations. This limitation
may be attributed to the model’s reduced precision in predicting occupancy and occupant
count. Skoen et al. [38] previously noted similar findings when applying Multi-Layer
Perceptron (MLP) models for virtual sensing of CO2, notably, even though the R2 values
from Skoen et al. (0.39) closely match the 0.47 achieved in this study, and a significantly
lower Root Mean Square Error (RMSE) of 31.4 was obtained in this study, compared to
Skoen et al.’s 122.85 [38]. This suggests that, despite the model’s inability to capture full
variability with Long Short-Term Memory (LSTM), the error margins remained relatively
low, particularly when compared to other models. When the pre-trained models were
applied to other rooms of identical typologies, they still exhibited predictive capacity. How-
ever, these models demonstrated a decreased ability to explain the variability of pollutant
concentrations as well as increased errors. This suggests a limitation in model transfer-
ability to different rooms, with a significant decline in the model’s predictive capability
noticed, particularly in terms of capturing the ground truth variability. It is postulated
that this decrease in performance is attributable to the limitations of the training dataset,
which was exclusively trained in Office 1. Given that occupancy and numerous other
dynamic factors influence indoor air pollutants, indoor environments can significantly
differ from each other. They may also display vastly different pollutant dynamics, as pre-
viously demonstrated by Szigeti et al. [8]. It is anticipated that the model’s performance
will be reduced when applied to rooms in other buildings or those belonging to different
typologies, as these environments may present conditions not encountered during model
training. Consequently, it is crucial to enhance the transferability and performance of the
virtual sensing LSTM model by generating larger and more diverse datasets.

While current results do not yet allow for a complete replacement of physical sensors
with LSTM models, the promising predictions of IAP concentrations in the training room,
along with the successful prediction of CO2 levels in a separate office, demonstrate po-
tential. The general application of this model is not yet feasible, but, given more diverse
data, the outlook for the full replacement of physical sensors with such models becomes
more attainable.

The use of machine learning techniques to create virtual sensors for monitoring
indoor air pollutants has the potential to provide real-time data and improve building
operations. Further research and development may lead to the use of virtual sensors for
wider application in building environments, potentially allowing for the optimization of
mechanical ventilation systems and operable window usage. It is important to continue
exploring the potential of virtual indoor air pollutant sensors as a tool for improving indoor
air quality and the overall comfort and health of building occupants.

Further research is needed in expanding the training data for LSTM models for virtual
sensing of indoor air pollutants and testing their generalizability across various typologies
and buildings in different climate zones. Additionally, future studies could investigate
the integration of these models into Heating, Ventilation, and Air Conditioning (HVAC)
systems and evaluate their performance when only a fraction of the given input data is
available. This would help advance the practical implementation of virtual sensing in
real-world scenarios and contribute to the field of indoor air quality monitoring.

8. Conclusions

This study demonstrates the potential of machine learning models, specifically LSTM
networks, to accurately predict indoor air pollutant concentrations in a range of envi-
ronments. By using a large dataset with several years of accumulated data, we were
able to build a virtual indoor air pollutant sensor that exhibited strong performance in
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predicting indoor air pollutant concentrations for the room in which it was trained. The
evaluation results indicated a very high correlation between the actual and predicted
pollutant concentrations for particulate matter and VOC, with performance metrics such
as MAE = 0.3 μg/m3, RMSE = 0.5 μg/m3, and R2 = 0.88 for PM; and MAE = 20.1 IAQI,
RMSE = 31.4 IAQI, and R2 = 0.87 for VOC. These results show that the model was able to
identify most pollutant peaks during the testing period with only a slight underestimation
of peak concentrations. For CO2, the model achieved less ideal but reasonable prediction
results. The performance metrics of MAE = 15.4 ppm, RMSE = 20.2 ppm, and R2 = 0.47 for
CO2 indicated very low errors with insignificant outliers, and the R2 value suggested a
reasonably good fit and predictive capabilities. However, the model was not able to explain
the variability of the actual concentrations and showed some erroneous predictions, such
as misidentified pollutant peaks during the testing period. Nevertheless, the predictions
resulted in a mean absolute error within the range of the measurement inaccuracy of most
sensors. When transferring the model to another room, the LSTM model demonstrated
varying performance, with better results for CO2 predictions and low error rates in terms of
MAE and RMSE for PM and VOC predictions. Specifically, the CO2 predictions exhibited a
mean absolute error of 21.9 ppm, RMSE of 30.4 ppm, and R2 of 0.45, indicating a reasonably
good fit and predictive capabilities. However, there is room for improvement in capturing
the variability of PM and VOC concentrations, as indicated by the low R2 values of 0.09
for PM and 0.13 for VOC. Despite these challenges, the LSTM model shows its potential
in generalizing its ability to predict indoor air pollutant concentrations in different rooms.
To enhance the model’s performance when transferring to other rooms, further research
and optimization could focus on refining the LSTM architecture, incorporating additional
features such as building materials, type of air distribution, and the distance of the nodes
from vents and windows, or exploring other machine learning techniques to improve the
model’s ability to capture the variability of different pollutants. In summary, the LSTM-
based virtual indoor air pollutant sensor presents a promising approach to monitoring
air quality in indoor environments. With further refinement and optimization, this model
could potentially replace physical sensors, contributing to more cost-effective and efficient
air quality monitoring solutions. Ultimately, the development and deployment of accurate
virtual sensing models can play a crucial role in addressing indoor air pollution, leading to
improved public health and well-being.
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Abbreviations

The following abbreviations are used in this manuscript:
BMS Building management system
IAP Indoor air pollutants
IAQ Indoor air quality
IoT Internet of things
MAE Mean absolute error
RMSE Root mean squared error
LSTM long short-term memory network
VOC Volatile organic compounds
PM Particulate matter
IAQI Indoor air quality index
ppm Parts per million
GPU Graphics processing unit
HVAC Heating, Ventilation, and Air Conditioning
MOS Metal oxide sensing
OPC Optial particle counter
NDIR Non-dispersive infrared
SVM Support vector machine
MLP Multi-layer perceptron
ETL Extract transfer load

Appendix A

Table A1. Input Features for LSTM Model.

Feature Description Dimension (Normalized) Group

month_sin Continuous sinusoidal
encoding of month 0–1 Meta

hr_sin Continuous sinusoidal
encoding of hour 0–1 Meta

day_sin Continuous sinusoidal
encoding of day 0–1 Meta

workday Boolean tag for workdays 0, 1 Meta

weekend Boolean tag for weekends 0, 1 Meta

holiday Boolean tag for holidays 0, 1 Meta

season Boolean tags for each season 0, 1 Meta

hvac Boolean tag for
HVAC operation 0, 1 Indoor

room_size Size of the room 0–1 Meta

occupants Occupant density 0–1 Meta

temp Outdoor air temperature 0–1 Outdoor

ground_temp Outdoor ground temperature 0–1 Outdoor

dew_point_temp Outdoor dew
point temperature 0–1 Outdoor

global_rad Outdoor global radiation 0–1 Outdoor

diffuse_rad Outdoor diffuse radiation 0–1 Outdoor

humidity Outdoor humidity 0–1 Outdoor

illumination Outdoor illumination 0–1 Outdoor

air_pressure Outdoor air pressure 0–1 Outdoor
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Table A1. Cont.

Feature Description Dimension (Normalized) Group

precipitation Outdoor precipitation 0–1 Outdoor

wind_dir Outdoor wind direction 0–1 Outdoor

wind_speed Outdoor wind speed 0–1 Outdoor

particulate_matter Outdoor particulate
matter concentration 0–1 Outdoor

indoor_temp Indoor air temperature 0–1 Indoor

indoor_humidity Indoor humidity 0–1 Indoor

indoor_air_pressure Indoor air pressure 0–1 Indoor

indoor_illum Indoor illumination 0–1 Indoor

noise_level Indoor noise level 0–1 Indoor

window_state State of window
(open/closed) 0, 1 Indoor

power_consumption Power consumption
of equipment 0–1 Indoor

Table A2. LSTM model output.

Output Description Dimension (Normalized)

pm Particulate matter concentration 0–1

co2 CO2 concentration 0–1

voc Volatile organic
compound concentration 0–1
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Abstract: The development of digital twins leads to the pathway toward intelligent buildings. Today,
the overwhelming rate of data in buildings carries a high amount of information that can provide
an opportunity for a digital representation of the buildings and energy optimization strategies in
the Heating, Ventilation, and Air Conditioning (HVAC) systems. To implement a successful energy
management strategy in a building, a data-driven approach should accurately forecast the HVAC
features, in particular the indoor temperatures. Accurate predictions not only increase thermal
comfort levels, but also play a crucial role in saving energy consumption. This study aims to
investigate the capabilities of data-driven approaches and the development of a model for predicting
indoor temperatures. A case study of an educational building is considered to forecast indoor
temperatures using machine learning and deep learning algorithms. The algorithms’ performance
is evaluated and compared. The important model parameters are sorted out before choosing the
best architecture. Considering real data, prediction models are created for indoor temperatures.
The results reveal that all the investigated models are successful in predicting indoor temperatures.
Hence, the proposed deep neural network model obtained the highest accuracy with an average
RMSE of 0.16 ◦C, which renders it the best candidate for the development of a digital twin.

Keywords: indoor temperature; HVAC; machine learning; deep learning; educational building

1. Introduction

The world’s energy consumption has significantly increased during the past few
decades. According to the estimates from the International Energy Agency, over two
decades, primary energy demand has grown by 49%, and CO2 emissions have seen a 43%
increase, with an average increase of 2% and 1.8%, respectively, each year [1]. A relationship
between global warming, climate change, rising pollution, and the expansion in global
energy consumption has revealed that reducing energy consumption can impact all the
mentioned issues positively. Reducing global energy consumption is a subject worthy of
more research and analysis because global population growth is anticipated to increase in
the upcoming years, and global energy demands are expected to keep growing.

One of the critical energy consumers in today’s world is the building sector. Building
energy consumption has risen to the level of transportation and industry over the last
decades as a result of population growth, improved building amenities, and comfort levels,
plus increasing time spent in buildings and the spread of building services, particularly
heating, ventilation, and air conditioning (HVAC) systems [2].

In Canada, buildings account for 30% of the total energy consumption, and HVAC
systems consist of a large portion of it in residential and non-residential buildings [3].
HVAC systems with 59% of total energy consumption account for the largest share of
energy use in commercial and institutional buildings in Canada [3].

Optimizing the HVAC energy efficiency benefits the environment and the economy,
and implementing proper operational and management strategies is crucial for achieving
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the best level of energy consumption in buildings. Improving control strategies in HVAC
systems through data-driven modeling and prediction techniques has the potential to
reduce the overall energy consumption in buildings. Since today people spend most of
their time inside buildings, their comfort level must be maintained. Therefore, a key
concern in the field of energy management is how to optimize energy consumption without
sacrificing thermal comfort level. Indoor temperature predictions can be an efficient
measure and effective strategy to optimize the HVAC system [3] while maintaining the
occupants’ comfort level.

Incorporating temperature predictions within a Digital Twin HVAC system offers
significant advantages in terms of optimizing HVAC system operation. By integrating
forecasted temperature conditions, the system gains the ability to proactively adapt its
cooling and heating operations. This proactive approach is made possible by leveraging
temperature forecasting models that consider variables such as weather patterns and
building HVAC characteristics. The system can then make informed decisions regarding
the optimal allocation of resources to maintain the desired indoor temperature, ensuring
occupant comfort while minimizing energy consumption.

Furthermore, the integration of temperature predictions facilitates the optimization
of scheduling within the Digital Twin HVAC system. By considering the anticipated
future temperature conditions, the system can strategically activate and deactivate HVAC
operations. This approach prevents unnecessary energy consumption during the periods of
low occupancy or when temperature adjustments are not required. By aligning the timing
of HVAC system operations with forecasted temperature needs, the Digital Twin HVAC
system could achieve a higher level of energy efficiency and reduce energy consumption.

Traditionally physical or semi-physical models have been employed to model and pre-
dict indoor temperature, but these models’ input parameters are often based on particular
building attributes and occupant activity, which are not always easily accessible [4–7].

Nowadays, modern buildings can negotiate settings that are continually changing
because of the interactive and adaptive nature of the buildings, their components, and the
surrounding environment. Advanced sensor technologies in buildings are increasingly
more capable of inferring valuable information about the building’s properties, outdoor
weather conditions (such as temperature, wind, and solar radiation), and occupant behavior
(e.g., temperature set points, CO2 level). Massive and diverse datasets regarding every
aspect of building operations are produced by the continuous communications between
smart hubs, sensors within buildings, smart meters, and equipment. For data processing
and real-time decision-making, these massive datasets require increasingly automated and
adaptable methods to optimize building operations. Therefore, many researchers over the
last decade have studied data-driven models to predict indoor temperatures, heating or
cooling load, and energy consumption levels.

The majority of data-driven models in the early 2000s were statistical models such as
ARIMA (Auto-Regressive Integrated Moving Average) [8]. Common machine learning (ML)
algorithms, such as SVR (Support Vector Regression) [9], Random Forest [10], XGBoost [11],
etc., have also been widely investigated. Due to the simplicity of the nonlinear parameters
included, the minimal demands on feature engineering, and the capacity to handle interac-
tions among nonlinear features, neural networks (NN) have also been increasingly popular
in the indoor temperature predictions and energy optimization [12,13].

Both academic scholars and building industry professionals have generally acknowl-
edged predictive modeling as a useful technique to support building design and control.
Predictive modeling extracts patterns seen in historical datasets through mathematical
methods seeking to predict future events. The building industry has a chance to employ pre-
dictive algorithms to lower failure rates, maintenance expenses, and energy consumption
while enhancing occupant thermal comfort.

This research investigates suitable data-driven models to predict indoor temperatures
toward building a Digital Twin HVAC system. The accuracy of the models was compared
through the prediction of the indoor temperature of seven different zones—six classrooms

57



Buildings 2023, 13, 1542

and one office area. The preprocessing and modeling procedure is presented through
the use of five-year real operational data collected from the NE01 building at the British
Columbia Institute of Technology, located in the city of Burnaby, BC, Canada. Finally, the
results were evaluated to propose the most efficient and accurate model for the prediction
of indoor temperatures.

2. Related Studies

Indoor temperature prediction is one of the important methods for determining
thermal comfort levels in buildings and identifying energy-saving potential, particularly
when it is used to develop HVAC system control strategies. Over the last decade, different
studies have been carried out to model HVAC systems and simulate indoor temperatures.

Classically, to model and optimize HVAC systems, physics-based models have been
widely developed to express the complex laws of physics, energy, heat transfer, and
thermodynamics in buildings. Most of these models were built for the purpose of systems
control and energy efficiency. In this regard, Nassif et al. [14–16] developed a supervisory
control strategy based on a simplified physics-based model for a Variable Air Volume (VAV)
system to optimize the multi-zone HVAC system. As HVAC systems become more complex,
non-linear, and large-scale involving numerous constraints and variables, developing
physics-based models for buildings energy management becomes more challenging [17].
In order to generate accurate physics-based models, high-order complex models are often
used. The latter are computationally expensive while reducing the model order leads
to an increase in prediction error [18]. Furthermore, high computational time makes
complex models difficult to apply and implement in real-time applications [19]. Thus, the
produced physics-based models are usually deterministic, requiring multiple assumptions
and simplifications on their parameters, rendering models less applicable to represent and
interfere with the buildings’ daily operations.

To overcome the shortfalls of classical physics-based models, many data-driven ap-
proaches have been developed in recent years, and many studies have concentrated on
developing predictive models based on data mining techniques. Data-driven models also
referred to as “black box” models in artificial intelligence are built straight from data by an
algorithm, which cannot be easily comprehended nor interpreted to explain the integration
of variables to produce predictions.

Therefore, in recent years, researchers working on modeling HVAC systems have
focused on indoor temperature predictions using artificial intelligence algorithms. These
algorithms employ various approaches to build models, such as machine learning (ML)
tree-based models and deep learning (DL) neural networks.

Tree-based machine learning models are constructed by recursively dividing the
considered observations following specific criteria. These criteria are created by comparing
all possible splits in the data and selecting the one that provides the highest mean squared
error (MSE) reduction in the variance of child nodes. Tree-based ensemble methods enhance
performance and create stronger predictive models by combining multiple decision tree
predictors. Several studies [20–22] have examined the effectiveness of ensemble methods,
including Random Forest and Extra Trees, in forecasting time series datasets and specifically
HVAC systems.

On the other hand, a deep learning strategy is based on artificial neural networks
(ANN). It involves scanning the data with an algorithm to find features that correlate,
then combining those features to facilitate rapid learning [23]. These algorithms have the
capacity to learn on their own and generate outputs that are independent of their inputs.
They are also capable of accomplishing several tasks in parallel, without impacting the
system’s performance. Studies show that systems with the ANN modeling approach can
handle the internal [24] and external [25] disturbances that impact the modeling process.
In addition, researchers have developed strong numerical foundations that enables ANN
to handle real-time events because they can learn from examples and apply them when
a comparable situation occurs [26,27]. In order to model indoor temperatures, different
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studies [28–33] developed several simple to advanced models with different scenarios,
and all discovered that ANN models provided an acceptable accuracy in temperature
predictions. However, the literature on artificial neural network (ANN) modeling for
buildings primarily focuses on residential buildings and dedicated labs. Researchers in this
field often utilize a limited amount of data, typically centered around a single zone within
the building, which can impact the comprehensiveness of their findings. Furthermore, the
selection of input variables and the preprocessing phase are commonly overlooked, leaving
gaps in understanding the methodology employed.

Thomas et al. [28] investigated two types of buildings to develop ANN models for
indoor temperature prediction. The first one was a small experimental building, with a
total data collection period of 624 h. The second building was a factory building, and the
studied area was a laboratory room, with a total data collection of 140 h. Mirzaei et al. [29]
presented a simplified model that uses artificial neural network (ANN) techniques to
establish a correlation between weather parameters and indoor thermal conditions in
residential buildings. The study included a measurement campaign in 55 residential
buildings in Montreal. The model incorporates neighborhood-specific parameters, building
characteristics, and occupant behavior. Fewer works considered educational buildings
to develop ANN models and forecast indoor temperatures. Temperature management
and optimization of the thermal conditions in educational buildings is a crucial aspect
that significantly impacts the learning environment and students’ well-being. Educational
buildings have unique specifications and requirements such as the existence of different
areas (e.g., classrooms, offices), the occupancy density and the variety of HVAC features
involved in providing a comfortable and productive learning environment. As an example
of work carried out in an educational building, Atoue et al. [30] studied office areas of an
old school building. The model was developed based on indoor and outdoor temperatures
and humidity as well as solar radiation; in addition, collected data from two summer
months were used for this study.

In buildings modeled using data-driven techniques, investigations usually consider a
single zone area [28,31] and rarely include multiple zones. Afroz et al. [32] evaluated the
performance of single-zone and multi-zone indoor temperature prediction models using
different combinations of training datasets and inputs. The studied area was concentrated
on the second floor of a library building and the data were colected for a few seasons, from
summer to winter.

The collected data for the ANN modeling found in the literature were frequently
extremely brief, ranging from a few days [10] to a few months [34]. It is well known
that ANN performs better when trained on large datasets and that small dataset can
significantly limit ANN performance [35]. In fact, small training and test datasets can lead to
generalization problems because daily fluctuation of the indoor temperature is insignificant.
Therefore, it is essential to look closely at “low” prediction errors; for example, an average
RMSE of 0.8 ◦C might already be too high in comparison to the average daily variance.

The selection of input variables is a crucial subject of investigation in the process of cre-
ating models. The input variables and the performance of artificial neural network (ANN)
models from different studies [28,29,36] show that researchers often employ input variables
without a clear explanation of systematic rationale behind their selection. Moreover, the
majority of the studies employing historical data for the purpose of forecasting future
interior temperatures have generally failed to provide explicit explanations regarding the
preprocessing steps involved [31,32,37,38].

To conclude, it was noticed that there is a lack of comprehensive research exploring the
use of deep learning methods for predicting indoor temperatures in educational buildings
while considered multiple zones, expanded data collection over many years and detailed
data preparation and processing. The research gaps of previous studies can be summarized
in the following aspects:

• Limited research exists on the application of deep learning for indoor temperature
prediction in educational buildings.
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• Consideration of single-zone predictions versus multiple-zone ones.
• Lack of explicit explanations of data preprocessing.
• Extremely brief training periods for ANN models.

The overarching goal of this research is to create a model that would be used to build
a digital twin for optimization of the HVAC system operation. The accurate prediction of
indoor temperatures is required to achieve this goal. The primary objective of this paper
is to select a suitable algorithm to accurately predict indoor temperatures. The secondary
objectives are the following:

• To compare the performance and scalability potential of machine learning versus deep
learning algorithms to predict indoor temperatures.

• To investigate the system parameters and select the best set of input parameters for
model development.

3. Methodology

To achieve the objectives listed above, this research uses a case study HVAC system
serving a group of classrooms and an office at the British Columbia Institute of Tech-
nology (BCIT). The research consists of four main parts to develop prediction models:
data collection and preparation, feature selection and extraction, model development, and
performance evaluation.

3.1. Data Collection and Preparation

The data for this study are provided by the Building Management System (BMS) of
the British Columbia Institute of Technology. The BMS centralizes building management
operations and collects real-time sensor and equipment parameters data.

The raw data that have been collected and archived over the last few years are available
and accessible for the institute researchers. Building meaningful features and datasets
involves several phases, including data cleaning and transformation.

Several parameters require preprocessing to increase the quality of the data. The
database in this study is based on a time series. To reduce the error produced by time delay
and system error, the original data were aggregated to 15 min interval data by resampling
and filling in missing parameters’ data, well-thought-out in the time intervals.

3.2. Feature Selection and Extraction

The intended purpose of feature selection and extraction is to explore options to
improve performance by selecting or extracting features from the existing datasets.

The selection of parameters is based on two approaches. The first approach is based on
domain knowledge, and the second approach relies on statistical and data analysis approaches.

The feature extraction process is crucial in many artificial intelligence applications
because it helps the prediction model generate useful information that will enable accurate
predictions [39]. As a feature extraction strategy, the timestamps feature is simplified
by separating time, day, month, and year. For example, months are treated like dummy
variables, days are divided into working days and weekends, and time is categorized by
daytime. Feature extraction could greatly improve the quality of the data by transforming
the data to have better distribution, removing linear dependencies, etc., and is deemed
crucial to increase the data quality.

3.3. Model Development

A critical comparison of machine learning and deep learning algorithms is conducted
to select the most suitable algorithms for indoor temperature prediction. The indoor
temperatures are a time series problem. As a result, the algorithms applied in this research
were chosen based on their shown effectiveness in time series contexts.

The room temperatures are known to be impacted by historical HVAC features. As a
result, a lookback sliding window approach was applied for the resampling procedure to
effectively train the considered models.
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The first training sample for the input variable “x” is built as a matrix with the dimen-
sions W × F, where W is the window length (W = n × 15 min, i f n = 4, then W = 1 h), and
F is the number of features. As shown in Figure 1, the window then slides forward by one
step (15 min), the data from time step i + 1 create the second sample, and so on. The size
of this sliding window controls how much historical data influences the prediction (e.g.,
30 min, 60 min, 120 min, etc.).

Figure 1. Sliding Window Sampling Procedure.

A reading from a single time step can be included in numerous sliding windows and
overlaps when considering the 15 min step. The final training dataset has the shape of a
matrix [N, n, F]; N is the number of rows of data in total, n is the window size (length of
window) and F is the number of features. The model predicts the room temperatures for
T + i (output) for each sample (window length W), where i is the horizon response in the
future. Each model is created to accurately predict the room temperatures at one or more
alternative forecast responses, such as T + 1, T + 2, T + 3, or T + 4 (15, 30, 45, or 60 min in
the future).

3.4. Performance Evaluation

To assess the model performance, three metrics were used for each test sample: mean
squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE).
The final score was calculated by averaging the metric scores across all samples.

MSE =
∑n

i=1(yi − Yi)
2

n
, (1)

RMSE =

√
∑n

i=1(yi − Yi)
2

n
, (2)

MAE =
∑n

i=1|yi − Yi|
n

, (3)

where n is the total number of observations, Yi and yi are the actual and predicted
values, respectively. MSE, MAE, and RMSE are frequently employed with time series
forecasts [33,40,41]. Since the prediction error is expressed in the same units as the pre-
dicted variables, they offer a simple method for determining the prediction error. While
MSE is calculated as the average of the squared differences between the predicted and
actual values, RMSE gives relatively significant weight to the large errors since they are
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squared before being averaged and MAE evaluates the average magnitude of the errors in
the prediction set. A higher accuracy of the model under consideration is implied by lower
MSE, RMSE, and MAE values.

4. Machine Learning and Deep Learning Algorithms

Machine learning (ML) and deep learning (DL) are two subfields of artificial intelli-
gence (AI) that involve the development of algorithms capable of learning from data and
making predictions or decisions. While both ML and DL algorithms aim to extract patterns
and insights from data, they differ in their approach and level of complexity.

Deep learning focuses on developing algorithms inspired by the structure and function
of the human brain’s neural networks. DL algorithms are designed to automatically learn
hierarchical representations of data by using multiple layers of interconnected artificial
neurons. Machine learning algorithms often provide more interpretability, while deep
learning algorithms, with their complex architectures and a large number of parameters,
can be considered as “black boxes” with less interpretability. In addition, deep learning
algorithms, due to their complex architectures, often require significant computational re-
sources, while machine learning algorithms are generally less computationally demanding.
In this study, we focused on deep learning algorithms as they are expected to be more
suitable for the application. However, we did explore the potential of the less complex
tree-based machine learning algorithms.

Five data mining algorithms, namely Extra Trees and Random Forest (RF) as tree-
based algorithms and the Multilayer Perceptron (MLP), Long-Short Term Memory (LSTM),
and convolutional neural networks (CNN) as deep learning algorithms have been applied
to the studied HVAC system based on their proven potential in related studies. The
Extra Trees and Random Forest are supervised tree-based machine learning models that
solve classification or regression problems by building a tree-like structure to generate
predictions. Recursively dividing the observations under consideration according to some
criteria results in the construction of tree-based models. However, the MLP neural network
as a deep learning algorithm is a widely used feed-forward neural network with several
neurons and multiple layers. The MLP can recognize and learn patterns based on input
datasets and the corresponding target values by adaptively modifying the weights in
supervised learning. The LSTM is a type of neural network architecture that was designed
with memory cells and gates to selectively remember or forget information in time series.
On the other hand, the key innovation of CNNs lies in their use of convolutional layers
that can effectively extract spatial features from raw data.

By selecting these five algorithms, a comprehensive and multi-faceted approach to
indoor temperature prediction was examined. Each algorithm contributes unique capabili-
ties that address different aspects of the problem, such as ensemble learning (Extra Trees
and Random Forest algorithms) for improved accuracy, MLP for non-linear relationship
modeling, LSTM for handling temporal dependencies and CNN for capturing spatial pat-
terns. These algorithms are amongst the most popular algorithms in artificial intelligence
and HVAC system modeling.

4.1. Tree-Based Algorithms

Multiple decision tree predictors are combined in ensemble methods (such as bagging
and boosting) which are known as tree-based algorithms to improve performance and
create more robust prediction models. The bagging method makes use of average forecasts
from various trees that were built using various data subsets; meanwhile, boosting is an
iterative method that fits a series of trees made from random samples. Simple models are
fitted to the data at each phase, and the data are assessed for errors. In the past, several
researchers have examined the efficiency of ensemble-based models for forecasting time
series datasets and HVAC systems in particular [20,21,42].
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4.1.1. Extra Trees

According to Alawadi et al. [20], the Extra Trees algorithm is the most precise and
effective model for HVAC system temperature prediction. Therefore, the Extra Trees
algorithm with randomly selected decision rules is one of the selected algorithms in this
study for modeling purposes.

The sampling for each tree in the Extra Trees algorithm is random and without re-
placement. By sampling the complete dataset, Extra Trees avoids the biases that different
subsets of the data may impose on the results. Additionally, each tree receives a specific
number of features, chosen at random from the entire set of features. The random selection
of a splitting value for a feature is also the most significant and distinctive aspect of Extra
Trees. As a result, the trees become more diverse and uncorrelated, which reduces variance
and lessens the influence of specific features or patterns in the data.

4.1.2. Random Forest

The performance of a single decision tree in regression models is unstable because
the final regions are influenced by the data’s properties, and even little changes in the
data might produce drastically different outcomes. Therefore, Breiman [43] suggested
using random forest algorithms to produce more stable models with improved prediction
accuracy. The Random Forest algorithm also showed reliable performance in dealing with
time series datasets [44]. In addition, it has been frequently employed in HVAC systems for
modeling purposes [26,45,46].

The Random Forest (RF) method subsamples the input data with replacement. The
RF technique is based on the idea that numerous uncorrelated models work significantly
better together than they do separately. With random sampling from robust decision trees,
the RF algorithm decreases the risk of overfitting, while decision trees generally tend to
tightly fit all the samples throughout training, which exposes them to overfitting.

4.2. Deep Learning Algorithms

A group of machine learning algorithms known as “deep learning” go beyond simple
learning and focus on learning from experience [23]. These algorithms undergo many
linear or non-linear transformations of the input data before obtaining an output.

Deep learning (DL) is made up of several hidden layers of neural networks that
perform complex operations on massive amounts of data. Due to the superior predictive
modeling applications of DL, it has advanced predictive modeling by enabling more
accurate predictions and the ability to handle vast amounts of complex data, thus opening
up new possibilities for data-driven insights and decision-making in a number of sectors.

DL techniques have become more popular among researchers in recent years as an
alternative to manual feature extraction. This strategy has gained popularity with ANN
architectures and has produced groundbreaking solutions for time series problems [47].

In this study, three deep learning algorithms are investigated: the multilayer percep-
tron (MLP), long short-term memory (LSTM), and convolutional neural networks (CNN).
These algorithms were chosen because they are pertinent to both the application under
consideration and the studied case study.

4.2.1. Multilayer Perceptron

Multilayer perceptron (MLP) is a deep learning algorithm that is one of the selected
algorithms in this study because it has already demonstrated a good performance in time
series prediction problems [48]. In addition, it proved its potential in HVAC systems
as time-dependent systems [46,49,50]. Figure 2 shows the structure of the deep neural
network model.
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Figure 2. Structure of the deep neural network.

By updating the weights of the neurons, the MLP algorithm has a significant capability
for mapping the link between input parameters and output parameters. Three layers made
up the MLP model in this study: the input layer, the hidden layer, and the output layer.
First, the forward propagation process from the input layer to the output layer is created
when the input parameters are added to the MLP model. Then, using a backpropagation
method, the weights and thresholds between the input layer and hidden layer as well
as between the hidden layer and output layer are tuned. The first and second stages are
repeated until the training error can meet the desired settings.

The perceptron/neuron is the most basic learnable artificial neural network with input
visible units {vi}D

i=1, trainable connection weights {wi}D
i=0, a bias, and an output unit y

as shown in Equation (4). The perceptron model is also known as a single-layer neural
network since it only contains one layer of output units, excluding the visible input layer.
Given an input v ε RD, the value of the output unit y is derived from an activation function
f (.) by taking the weighted total of the inputs as follows:

y(v; θ) = f
(
∑D

i=1 viwi + w0

)
= f

(
wTv + w0

)
, (4)

where θ = {w, w0} stands for a parameter set, w = {wi}D
i=1εRD is a connection weight

vector, and w0 is a bias. In this study, a “relu” function is utilized as the activation func-
tion f (.) and the activation variable z is defined by the weighted sum of the inputs, i.e.,
z = wTv + w0.

As the studied HVAC system involves multiple zones, it needs to be extended to a
multi-output model, so multiple output parameter vector {yk}K

k=1 is added to each output.
The outputs’ respective connection weights {wki}i=1,....,D;k=1,...,K are as follows:

yk(v; θ) = f
(
∑D

i=1 viwki + wk0

)
= f

(
wT

k v + wk0

)
, (5)

where θ =
{

w ε RK×D}, Wki denotes a connection weight from vi to yk.
During the training phase, neural networks learn by iteratively adjusting the parame-

ters (weights and biases). The biases are initially set to zero and the weights are created at
random to establish the parameters. The data are then forwarded across the network to
provide model output. The process of back-propagation is the last one. Several iterations
of a forward pass, back propagation, and parameter update are commonly included in the
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model training process until the model reaches the predefined setting values, and the best
parameters of the network are obtained, which could link the inputs to the outputs with a
high accuracy or low error, even in highly non-linear and sophisticated systems.

4.2.2. Long Short-Term Memory (LSTM)

LSTM topology has been presented as a way to directly integrate time dependence.
The fundamental concept is to dynamically integrate a sequential structure in order to
enhance the functionality of conventional ANN approaches [51]. LSTM has demonstrated
exceptional performance because it can learn the short- and long-term dependencies. The
simultaneous inclusion of slow- and fast-moving phenomena makes LSTM a good option
for indoor temperature prediction problems [52]. Time series data processing and prediction
are all very well suited to LSTM networks [34,53]. The LSTM algorithm was considered
in this research since it can capture features and remember them over time. A typical
illustration of an LSTM cell is shown in Figure 3.

Figure 3. A typical LSTM neuron structure.

When compared to cutting-edge black-box modeling techniques used for indoor
temperature prediction, ANN-based algorithms have high predictive power. Moreover,
recurrent neural network-based methods, particularly LSTM, have an outstanding capacity
for “learning” the dynamics of non-linear problems with time dependency.

4.2.3. Convolutional Neural Networks (CNN)

Convolutional neural networks, generally known as CNNs, are powerful types of
artificial neural networks and deep learning algorithms. CNNs have been demonstrated to
be very successful in a variety of computer vision tasks such as image classification, object
recognition, and segmentation. According to their design, CNNs can automatically and
adaptively learn spatial feature hierarchies from basic to complex patterns. The feature
extraction is carried out by the convolution and pooling layers, and then it is mapped by
the fully connected layer into a final output [54].

In general, CNNs are effective tools for processing and interpreting complicated data
because of their hierarchical structure and learnable filters. Due to the proven capability
and success of CNNs in solving time series problems [55], CNN is also considered in
this study.
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5. Case Study

Numerous initiatives have been implemented on the Burnaby campus of the British
Columbia Institute of Technology to reduce environmental impacts of its educational build-
ings. One of these initiatives aims to reduce BCIT’s greenhouse gas emissions by 33% by
2023 [56]. Therefore, the primary objective of this study is to develop a model to predict in-
door temperatures which can provide a meaningful way to reduce the energy consumption
of the system and meet the requirement of greenhouse gas emissions reduction at BCIT.

The British Columbia Institute of Technology (BCIT) is located in the city of Burnaby,
BC, Canada. It is a post-secondary institution with 62 buildings and five campuses. The
HVAC system under study is owned and operated by BCIT at the Burnaby Campus. The
investigated HVAC system is installed at the NE01 building (NE stands for North East). The
building is 20,076.88 m2 of gross floor area consisting of offices, classrooms, restrooms, and
mechanical rooms. NE01 is a 4-floor educational building dedicated to the Construction
and Environmental Department at the Burnaby campus; see Figure 4.

 

Figure 4. NE01 building overview.

The selection of the NE01 building for this research was based on several key factors,
namely its high energy consumption compared to other buildings in the BCIT campus, the
alignment with BCIT’s sustainability goals, the availability of archived data over many years
for multiple zones served by the same system, and the potential for implementation of the
proposed solution to prove significant energy savings and improved occupant experience.

The temperatures in the NE01 building zones are controlled by ten independent Air
Handling Units (AHUs). In this study, the data and parameters of one AHU (AHU7) are
investigated. AHU7 delivers air to seven Variable Air Volume (VAV) units, serving seven
interior zones on the fourth floor (top floor) of building NE01. The zones consist of six
classrooms and an office area as shown on the floor plan of Figure 5. The BMS is used to
collect the data from sensors and virtual meters of the air handling system.

Figure 6 shows a schematic diagram of AHU7 with the available monitored parameters.
Airflow is controlled via the supply and return fans. Recirculated air from the seven service
zones is mixed with outdoor air and reconditioned through the AHU. The mixed-air
conditions are controlled by three dampers regulating the percentages of air exhausted
from the system, entering the system, and recirculating in the system. The mixed air
is pulled through the filter via the supply fan and then cooled or heated when passing
through the cooling and heating coils. The heating coil uses hot water supplied by the
boiler. Heating is controlled by adjusting the flow of water through the coil, which is
controlled by an electronic valve.

66



Buildings 2023, 13, 1542

AHU7 serves seven VAV units to further condition the supplied air to meet the
required temperature by each zone. The seven reheat systems have the same design.
Figure 7 represents a sample VAV box and the reheat system for each zone. Air is supplied
by the AHU to the VAV boxes, which control the amount of air that is supplied to the zone
by a VAV damper. At the VAV, the air also passes through a reheat coil to be warmed based
on the temperature required in the zone. Similar to the heating coil at the AHU level, the
reheating coil uses hot water supplied by the boiler, and it is controlled by an electronic
valve to adjust the flow of water in the coil.

Figure 5. Schematic of the zones supplied by AHU7.
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Figure 6. Schematic diagram of AHU7.

Figure 7. VAV box and reheat coil subsystem for each zone.

6. Description of Available Data

The facilities department at BCIT has adopted an advanced BMS over the past few
years. The data from many of the system sensors has been recorded and archived since
2016. Due to the COVID-19 pandemic, there was very little activity on campus between
March 2020 and September 2021. Therefore, the data from this period were not considered
for this application of predictive modeling. The data used for this study are for two periods.
The first period is from February 2016 to December 2019, and the second period is from
September 2021 to November 2022.

The first period represents almost four years and about 140,000 data points per system
component, and the second period represents 14 months and about 40,000 data points;
in total, about 180,000 data points were considered. Each row of these data corresponds
directly to the state of the system at 15 min time intervals. Among the studied dataset, last
year’s data were assigned as the test dataset, and the remaining data were divided into two
parts: 80 percent was used for training models, and 20 percent for validation purposes.
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7. Parameter Selection

Since it is too complicated to establish the mapping between inputs and outputs using
all features, parameter selection is a crucial step before building a data-driven model.
A typical HVAC system is a complex, non-linear network with hundreds of parameters
reflecting every particular element. While some of the data obtained are closely related
to the result, others are unnecessary or redundant for the modeling process. In data
mining, the inclusion of redundant or unnecessary parameters may hide primary trends.
Additionally, redundant parameters substantially or entirely replicate the data in one or
more other parameters, making the model considerably more challenging than it has to be.
The accuracy, scalability, and understandability of the resulting models may be enhanced by
removing irrelevant or related characteristics. In addition, by reducing the dimensionality,
a model’s complexity may also be significantly reduced [57].

For a preliminary analysis, a dataset with 75 parameters was selected based on the
domain knowledge. To determine how closely parameters were coupled, a correlation
analysis was applied. The range of the correlation between two parameters is from −1 to
1. The two features are positively associated if the correlation coefficient is greater than
0, and the higher the number, the stronger the correlation. For example, in this study,
the correlation analyzes illustrated that Return Fan Speed and Supply Fan Speed were
highly correlated with correlation equal to 1. It means Supply and Return Fan Speeds were
changing at the same rate, and both were also correlated with the Status of the Return Fan
with a 0.98 correlation. These are expected because the blowing air into the zones must
be exhausted, and if the building is made tight enough, return fans are good controllable
options to control the exhausted air. Similarly, other highly correlated parameters were
diagnosed and eliminated from the list of input parameters in order to reduce the model
complexity and also to reduce the risk of overfitting. With this method, the number of
parameters was reduced from 75 to 57 parameters.

To increase the computational efficiency and lower the generalization error, a se-
quential backward feature selection approach was used to reduce the dimensionality of
the initial feature subspace from N- to K-features with a minimum reduction in model
performance [58]. Sequential backward feature selection was initialized by considering a
feature set containing available predictors in the dataset. The regression model was trained
using these features and its performance was evaluated using mean squared error (MSE).
Iteratively, one feature at a time was removed from the current feature set. After each
removal, the regression model was retrained, and its performance was assessed using the
chosen evaluation metric. Then, the performance of the regression model with the reduced
feature subset was compared to the performance achieved with the previous feature set.
If the performance dropped beyond a predefined threshold or significantly deteriorated,
the process was stopped, and the previous feature set was retained as the final selection.
However, if the performance did not decrease significantly, the next iteration proceeded.
The removal and evaluation steps were repeated until the stopping criterion was satisfied.
Features with the highest impact on error rate indicated a larger contribution to the pre-
dicted output parameters. Based on the domain knowledge, correlation consideration of
parameters and the sequential backward feature selection results, the final set of variables
reached 24 features.

In addition, as the studied zones are on the top floor of the building and through the
roof they are exposed to solar radiation, the solar radiation and outdoor air temperature
data were also added to the dataset. The data were recorded by the sensors installed on
the nearby weather station on the campus, and because of their stochastic nature, solar
radiation and outdoor air temperature were considered as external disturbances. The
selected 26 parameters are shown in Table 1.
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Table 1. Parameters Description.

ID Parameter Name Description Unit No.

01 OAT Outdoor weather temp. ◦C 1
02 AHU7_SAT AHU7 Supply air temp. after heating coil ◦C 1
03 AHU7_SAT_SP AHU7 supply air temp. set point ◦C 1
04 AHU7_EF_SPD AHU7 Return Fan speed % 1
05–11 VAV_x1_SAT_SP VAV_x1 supply air temp. set point ◦C 7
12–18 VAV_x1__SAT VAV_x1 supply air temp. ◦C 7
19–25 VAV_x1_RT Room temp. in each zone supplied by VAVs ◦C 7
26 horiz_solar_rad Roof horizontal solar radiation W/M2 1

x1 represent the specific VAV number.

Furthermore, the HVAC system under consideration operates on set schedules. Based
on the operational specifications, schedules change depending on the day of the week
(weekday/weekend), the hour of the day, as well as holidays. The RTs were affected by this
operation schedule. Therefore, the characteristics that reflect seasonality such as the hour
of the day and the day of the week (weekday/weekend) were also used as inputs in an
effort to capture the temporal dependency in the model. The schedule-based variables that
were specified as input features for the prediction models are listed in Table 2. Therefore,
the total number of input parameters was 30.

Table 2. Schedule-based features.

ID Variables Parameters Description No.

27 Day of Week Weekdays vs Weekends 1
28–30 24 h Day time, evening, night 3

8. Results and Discussion

The five algorithms detailed in Section 4 were trained to predict indoor temperatures
up to a 60 min forecast horizon with 15 min intervals and 30 min, 60 min, and 120 min
sliding window sizes. Since the forecast horizon (T + 1, T + 2, etc.) and the time delay
of input variables (sliding window width) have a major impact on the prediction model
accuracy, various combinations of the two parameters are established in order to examine
their interaction. The width of sliding windows of 2 (30 min), 4 (60 min), and 8 (120 min)
time steps was investigated. As the system is notably changing fast, a lookback window be-
yond 120 min appears unnecessary and could potentially introduce noise to the prediction
results without conferring any benefits. In addition, the RTs for the 15 to 60 min forecast
horizon were predicted using the model since the equipment shows a rapid response to
control commands.

First of all, the model architecture was trained to predict indoor thermal temperatures
in each zone supplied by VAVs, while the evaluation metrics were calculated for different
window lengths and prediction horizons.

Figure 8 illustrates the RMSE obtained on the test dataset for various lookback sliding
windows on the MLP model. The metrics for the error analysis evaluation are plotted
against the window length and forecast horizon to show that the model performance
degrades when the forecast horizon increases and the window length goes beyond 30 min.
For a prediction of 15 min ahead, the lowest errors were observed for a sliding window of
60 min. The size of the lookback window has an insignificant effect on the prediction when
it is one hour or beyond.
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Figure 8. Error analysis evaluation on window length and forecast horizon of the proposed MLP
model. (a) 30 min lookback window; (b) 60 min lookback window; (c) 120 min lookback window.

The investigation of the sliding window and forecast horizon effect on the RMSE was
applied to all studied algorithms, and for all of them, similar results were seen. Thus, the
best window length for the sliding window sampling method was selected as 60 min with
15 min forecast horizon as it resulted in the lowest RMSE in the seven zones; therefore, it
was applied for training the final developed model.

The MSE, RMSE, and MAE for the two tree-based machine learning algorithms and
the deep learning models are shown in Tables 3 and 4 for the 15 min forecast horizon.
The performance of the different architectures was assessed. It was noted that all models
exhibit comparable overall prediction accuracy. Although the ML and DL models under
consideration can predict the RTs with an acceptable error, the rate of their errors was
analyzed in detail. The model sensitivity is crucial since this analysis is a critical part of a
larger study that aims to represent a digital twin of the studied HVAC system for long-term
predictions and application of energy optimization strategies.
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Table 3. The 15 min prediction horizon error [◦C] of validation and test datasets of the trained
tree-based algorithm models for the seven zones supplied by AHU7.

Zones Dataset
Extra Trees Random Forest

MSE RMSE MAE MSE RMSE MAE

Room 412
Validation 0.02 0.15 0.10 0.03 0.17 0.11

Test 0.11 0.33 0.24 0.10 0.32 0.22

Room 411
Validation 0.02 0.14 0.10 0.02 0.16 0.11

Test 0.10 0.32 0.21 0.09 0.30 0.20

Room 410
Validation 0.01 0.12 0.07 0.02 0.14 0.09

Test 0.20 0.44 0.29 0.22 0.47 0.30

Room 409
Validation 0.01 0.13 0.08 0.02 0.15 0.09

Test 0.18 0.42 0.28 0.20 0.45 0.29

Room 408
Validation 0.01 0.11 0.07 0.01 0.13 0.09

Test 0.13 0.36 0.22 0.15 0.39 0.23

Room 407
Validation 0.01 0.11 0.07 0.01 0.13 0.09

Test 0.04 0.20 0.13 0.05 0.23 0.15

Room 415D
Validation 0.02 0.15 0.10 0.02 0.17 0.11

Test 0.12 0.35 0.20 0.13 0.37 0.21

Table 4. The 15 min prediction horizon error [◦C] of validation and test datasets of the trained deep
learning algorithm models for the seven zones supplied by AHU7.

Zones Dataset
MLP LSTM CNN

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Room 412
Validation 0.02 0.14 0.09 0.01 0.13 0.09 0.02 0.16 0.12

Test 0.03 0.17 0.12 0.02 0.16 0.11 0.03 0.17 0.13

Room 411
Validation 0.01 0.13 0.09 0.02 0.15 0.11 0.02 0.16 0.13

Test 0.03 0.17 0.13 0.03 0.18 0.13 0.02 0.17 0.13

Room 410
Validation 0.01 0.12 0.08 0.01 0.12 0.08 0.01 0.13 0.10

Test 0.03 0.17 0.12 0.02 0.17 0.11 0.02 0.14 0.10

Room 409
Validation 0.01 0.13 0.09 0.01 0.12 0.08 0.02 0.15 0.11

Test 0.03 0.18 0.12 0.02 0.17 0.11 0.03 0.18 0.13

Room 408
Validation 0.01 0.10 0.07 0.01 0.10 0.07 0.02 0.16 0.13

Test 0.01 0.12 0.09 0.01 0.13 0.09 0.02 0.15 0.12

Room 407
Validation 0.01 0.11 0.08 0.01 0.11 0.08 0.01 0.13 0.10

Test 0.02 0.16 0.11 0.01 0.11 0.09 0.01 0.13 0.10

Room 415D
Validation 0.01 0.13 0.09 0.01 0.13 0.09 0.02 0.14 0.10

Test 0.02 0.16 0.11 0.03 0.19 0.12 0.02 0.15 0.10

According to Tables 3 and 4, the Extra Trees and Random Forest algorithms are the
least accurate compared to the deep learning algorithms. This demonstrates the necessity
of more complex ML and DL algorithms that learn time dependency and patterns of
room temperature changes over time. It was noticed that the average RMSE rate on the
test dataset for all seven room temperatures was 0.36 ◦C for Random Forest and 0.35 ◦C
for Extra Trees algorithms. All the deep learning algorithms outperformed tree-based
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algorithms and showed a lower RMSE rate on test datasets with an average RMSE of
0.16 ◦C. In addition, the difference between the MSE results of the deep learning algorithms
in validation and test datasets with an average of 0.01 is insignificant, which means a low
variance in the proposed models. In contrast, the MSE error difference between validation
and test datasets for tree-based algorithms is higher. It shows the higher capability of the
deep learning algorithms in modeling indoor temperatures compared to the Extra Trees
and the Random Forest algorithms.

Additionally, it was noted that the RMSE values of both the validation and test sets for
each of the investigated algorithms are higher than the MSE and MAE. This is a reference
to the samples in the dataset having significant error levels. A detailed examination of the
significant errors revealed that the models perform poorly in forecasting abrupt changes in
room temperatures. Therefore, the larger error instances were checked and analyzed and it
was noticed that at harsh temperature changes, the prediction error sometimes can surpass
±0.8 ◦C. However, the number of samples with this error rate is below 0.2% on the whole
samples in the dataset. Samples with high errors can be treated as outliers in the modeling
process, hence they are considered as a nature of the current system in this study which is
part of the existing HVAC systems. In addition, investigations showed that high prediction
errors are recorded in the early mornings and at the end of the day when the HVAC system
starts and stops based on schedules. During these transitions, considerably different set
points are assigned to the system abruptly, which leads to harsh temperature changes in a
short time period. Appendix A illustrates a snapshot of the predicted room temperatures
versus actual room temperatures in each zone.

It should be noted that direct comparison of the results presented in this paper with
those of other published studies is not feasible due to variations in factors such as the
buildings considered, input parameter sets employed, and quantities of collected data
utilized. However, the modeling quality achieved in terms of RMSE, MSE, and MAE in this
study is comparable to the outcomes reported in other published researches. Table 5 lists a
concise summary of the deep learning model results from previous studies. The predictions
of room temperatures obtained in this study through the utilization of deep learning
algorithms show superior performance when compared to the outcomes of previous
comparable relevant studies.

Table 5. Performance of ANN models for indoor temperature predictions in previous works.

Previous Studies Forecast Horizon MSE

B. Thomas et al. [28] 15 min 0.1069
P.A. Mirzaei et al. [29] 1 h 3.16
T.G. Ozbalta et al. [38] daily 0.1521

Ch. Xu et al. [34] 5 min 0.1285

Figure 9 shows the distribution of the average MAE per month across the year in
detail for the studied zones. It was found that all deep learning models can predict all
room temperatures with high accuracy all over the year. The high errors are captured in the
prediction of the transition period (April to June) during spring and then these decrease
during the summer months and again they start to gradually increase from September to
November almost in all algorithms. It means that the models are less accurate in predicting
indoor temperatures during these periods, for example, in the spring when heating is on
and cooling starts to take over the control of the HVAC system.

In addition, Figure 9 shows the MAE of the MLP algorithm for all seven zones is
more consistent compared to the other algorithms. The LSTM and CNN algorithms predict
each individual zones at monthly highly different error rates, while the MLP algorithm is
producing more persistent results for all zones. In other words, LSTM and CNN algorithms
can predict some of the zones with high accuracy, while prediction errors of some other
zones can be twice (or more) as prevalent.
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Figure 9. Distribution of monthly mean absolute errors.

The purpose of this study was first to determine how well algorithms predict HVAC
parameters and then to select the best model settings for predicting room temperatures in
each zone. Based on the performance evaluation detailed above, it was found that the deep
learning models outperform the tree-based models. Specifically, the MLP model showed
a more consistent and accurate prediction among the investigated deep learning models.
This is a promising result leading to the potential employment of the MLP model and more
generally the LSTM and CNN models to adjust the equipment setting of the HVAC in
real-time, without human involvement and scheduled rules.
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9. Conclusions

Accurate indoor temperature prediction is necessary to develop HVAC system digital
twin that can eventually provide opportunities to optimize building energy consumption
and maintain indoor thermal comfort. The main goal of this study was to suggest the most
accurate data-driven model for HVAC systems. In this regard, this study investigated five
suitable algorithms to predict indoor temperatures of a multi-zone HVAC system of an
educational building. Seven room temperatures supplied by an AHU and seven VAVs at
the NE01 building of the British Columbia Institute of Technology were predicted using
five algorithms and collected real data.

Firstly, feature selection techniques were applied to determine the most critical features.
The effectiveness of the proposed feature selection methods was successfully demonstrated
as they proved capable of identifying significant and independent input parameters without
compromising the overall prediction performance. This highlights the robustness and
reliability of the feature selection methods in determining the most relevant features while
ensuring that the prediction accuracy is high.

This study investigated machine learning and deep learning algorithms and proved
that the latter produced better outcomes throughout the analysis with an average RMSE of
0.16 ◦C. The MLP algorithm as a deep learning model produced the best results compared
to the other investigated deep learning algorithms with its consistent and stable prediction
throughout the months of the year. It was demonstrated that room temperatures could be
precisely predicted within a 15 min forecast horizon in advance using the developed MLP
deep learning algorithm. As a result, the study offers the most accurate algorithm for devel-
opment of a digital twin that includes various HVAC systems and the rooms they service
in a specific educational building. Regarding building a digital twin model, the proposed
model will be utilized and addressed in future work to simulate and produce the best
settings for the studied HVAC system, which would result in lower energy consumption
without sacrificing the occupant’s comfort level.

In this study, the test dataset spans a whole year. Therefore, a more thorough analysis
of the models’ performance during this time is necessary. Using whole-year data could
lead to less accurate transitional period predictions because no input variables have been
provided to address transitions over the months in this study. In addition, occupancy level
parameters are not included as a predictor variable, so their effect is not considered during
the modeling process. A qualitative consideration revealed that some significant errors are
the result of unexpected indoor activities, such as high occupancy levels during particular
periods. Future research could further increase prediction accuracy by incorporating the
scheduled occupancy data and analysis of the influence of heat and humidity produced by
occupants, where the “full” effect of occupants can be considered.

Author Contributions: Conceptualization, S.M.; Formal analysis, P.N.; Investigation, P.N.; Resources,
R.M.; Data curation, P.N.; Writing—original draft, P.N.; Supervision, S.M. and R.M.; Project adminis-
tration, R.M.; Funding acquisition, S.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Institute Research Fund granted by the British Columbia
Institute of Technology.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: The authors would like to express their sincere gratitude to the British Columbia
Institute of Technology for supporting this project. The facilities department and the Energy Team are
also acknowledged for their invaluable support, guidance, and assistance throughout the processes
of case study selection and data collection.

Conflicts of Interest: The authors declare no conflict of interest.

75



Buildings 2023, 13, 1542

Appendix A

 

 

 

Figure A1. Cont.

76



Buildings 2023, 13, 1542

Figure A1. The 15 min ahead and 1 h sliding window predicted indoor temperature for the
MLP model.
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Abstract: An important aspect in improving the energy efficiency of buildings is the effective use
of building heating and cooling load prediction models. A lot of studies have been undertaken in
recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as
well as developing a high-accuracy forecasting model are the most difficult and important aspects of
prediction. The goal of this research is to create an intelligent data-driven load forecast model for
residential construction heating and cooling load intensities. In this paper, the shuffled shepherd
red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network
(SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the
suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be
employed, with building system parameters as input factors and heating and cooling loads as output
results for each system. The simulation of this research is executed using MATLAB software. Finally,
the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms
of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute
Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is
compared to that of other conventional methods. It shows that the proposed method has achieved
the finest performance of load prediction compared with the conventional methods.

Keywords: energy consumption; data-driven; prediction; building; heating load; cooling load; optimization

1. Introduction

The proportion of residence structures has grown during the last ten years of global
concern about climate change, worldwide carbon emissions, global warming, urbanization,
and rapid construction development [1]. Many procedures and technologies in residential
and commercial buildings serve to keep the environment at a pleasant and favorable level,
but they cost energy, which adds to the heating and cooling burden [2]. A lot of studies have
been conducted on the energy profile of buildings, as well as many elements of efficient
building development [3,4]. In Saudi Arabia, numerous residential buildings are attached
or semidetached, which require more cooling and heating than ordinary flat residences [5].
Temperature, humidity, the operations of sunlight devices, and the construction and design
elements of buildings all have a role in the heating and cooling of structures [6].

The material used in wall surfaces, the relative compactness of building structures,
the glazed windows region, the ceiling dimensions, the outer layer and density of the
building, the outer layer and density of the wall, the roof height, the number of wall
surfaces and their region, the orientation of the halls and the building, and the stand
over height are all involved in construction and relate to the environment. However,
several aspects of the building design and layout have a significant effect with regard to
the building’s warming and chilling load, which has a direct impact on the building’s
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overall performance [7]. Thus, by alleviating the computational load for optimum design,
which includes multiple building feature subsets, an accurate and rapid forecast of space
heating as well as cooling loads improves energy saving and carbon emission mitigation [8].
Developing machine learning techniques for predicting heating and cooling needs can
assist in improving the effectiveness and precision in real time [9]. Conventional heating
and cooling predictive modeling algorithms include the minimax probability machine
regression (MPMR) [10], deep neural network (DNN) [11], Gaussian process regression
(GPR) [12], and gradient boosted machine (GBM) [13]. Moreover, artificial neural networks
(ANN) [14], categorization and regression trees (CART) [15], general linear regressions
(GLR) [16], and chi-squared automated interaction detectors (CHAID) [17] were used to
forecast the cooling and heating requirements of the building.

As a result, various hybrid methodologies based on ANN and meta-heuristic schemes
have been developed for forecasting a building’s heating and cooling demand efficiency,
including the imperialist competitive algorithm (ICA) [18], artificial bee colony (ABC) [19],
genetic algorithm (GA) [20], whale optimization [21], bat optimization [22], and particle
swarm optimization (PSO) [23]. However, such factors have been utilized in certain
studies with little benefit. Meteorological parameters were employed as an indication and
input for estimating apartment building cooling/heating demands in the majority of the
preceding academic studies [24]. Environmental and climatic conditions do not affect the
cooling/heating loads of residential construction; this is indisputable. However, sudden
weather changes might cause sustainable models to be disrupted, lowering the reliability
factor and enhancing the error in the process [25].

This research focuses on the construction and design characteristics of the building,
as well as their effects on heating/cooling loads. Besides constructing supervised classifi-
cation forecasting models, the research applied in-depth testing on structural features for
building energy. The quantity of the cooling/heating load was regarded as an outcome
parameter, although a collection of information on the structural attributes of the structure
was regarded as an input parameter. The following are the main research contributions:

• A dataset was produced in the Dhahran area of Saudi Arabia for estimating power
requirements based on building attributes in a dry climate.

• After collecting the data, the preprocessing and feature extraction function is applied
for improving the prediction model using a knowledge-based approach.

• Then, to predict building heating/cooling demands, the SSRD-SsIF-NN technique is
presented with various parameter tunings.

• Building energy demand simulations are conducted to anticipate heating and cooling
demands in dry climates. In contrast to various studies, the prediction methods depend
on the characteristics of the study instead of on previous results on energy usage.

• A simulation analysis is conducted by varying the input parameters.
• The actual performance and the theoretical load prediction of the existing structure

are compared.

The rest of the essay is organized as follows. The definition of investigation gaps is
given in Section 2, along with a short assessment of the relevant publications. Section 3
describes how the issue is stated. Section 4 includes detailed explanations of the sug-
gested technique. Section 5 discusses the experimental outcomes as well as the efficiency
comparison with state-of-the-art frameworks. Section 6 is the paper’s conclusion.

2. Related Work

The heating/cooling loads in buildings are closely connected to energy performance,
and various studies have been undertaken in this area. Because cooling/heating loads are
considered key factors for examining building energy efficiency, the necessity to anticipate
and assess them for residential structures appears to be unavoidable. As a result, Xu,
Yuanjin, Fei Li, and Armin Asgari [26] sought to optimize the multi-layer perceptron-based
neural network utilizing a variety of optimization techniques in order to anticipate the
heating/cooling of energy-efficient architecture. The database used for this investigation
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is made up of eight different variables, such as total area, space limitations, wall region,
and so on. Optimizing has the highest accuracy in both the learning and test data for
cooling/heating loads. The normed RMSD, RMSD, and MAE have the lowest values, as
well as adjusted R2, as per the study findings.

The multi-target forecasting of heating/cooling loads through HVAC systems uses
hybrid intelligent methodologies: the wind-driven-based optimization (WDO), grasshop-
per optimization algorithm (GOA), and biogeography-based optimization (BBO) were
employed by [27]. Some swarm-based rounds are carried out to optimize the applicable
methods, and the optimum design for each simulation is provided. In regard to the heating
load, the suggested WDO-ANN offered an accurate forecast, while in terms of cooling
capacity, it provided the finest forecast.

While earlier research has focused on point forecasts, Rana and Mashud [28] focused
on predicting prediction pauses for the building cooling/heating load in this work. A data-
driven technique for predicting prediction periods for building cooling demand is provided
here, which initially employs a machine learning subset of feature techniques to find a
limited but useful collection of factors. The findings demonstrate that the suggested method
may yield a narrow and trustworthy forecasting period while fulfilling the penetration
probabilities that have been defined.

To determine the energy requirement of the structures for heating and cooling, Li,
Xinyi, and Runming Yao [29] combined the physical analytical model with the data-driven
technique. The severity of heating/cooling energy consumption was then predicted using
a variety of machine learning algorithms (EUI). The findings reveal that machine learning
methods can accurately estimate building heating and cooling EUI. At the single-cell
level, the most accurate method is quadratic kernel-based supported vectors extraction,
while the Gaussian perceptron support-vector training has the highest accuracy at the
inventory levels. Kim, Daeung Danny, and Hye Soo Suh [30] used the statistical technique
to design a forecast model for energy usage in residential structures. The links between the
design elements and heating/cooling load of energy usage in residential structures were
detailed utilizing the response surface approach. To establish a prediction model for the
heating/cooling load of energy usage, the connection has validated the dependencies of the
energy consumption on key design factors of exterior technologies in residential structures.
With only a few design factors, the created model can provide a quick energy estimate for
apartment structures. Additionally, it may quickly determine the most significant design
component for creating a more efficient energy residential building layout.

Tran et al. [31] developed an evolutionary Neural Machine Inference Model (ENMIM)
for predicting energy usage using actual data from residential structures. Their novel
ensembles model combines the Radial Basis Function Neural Network and the Least
Squares Support Vector Regression (LSSVR), two separate supervised learning devices
(RBFNN). For forecasting resource usage, the created model is more accurate than previous
comparable artificial intelligence systems.

In the study that was conducted by Zhou et al. [32], the artificial bee colony (ABC)
and particle swarm optimization (PSO) metaheuristic algorithms were used to optimize
the MLP neural network. This was done in order to make accurate predictions regarding
the heating and cooling loads of energy-efficient buildings that are used for residential
purposes. In order to do this, they made use of a dataset that had eight independent
variables. According to the findings of their study, making use of the ABC and PSO
algorithms makes the MLP perform better. In addition to this, they came to the conclusion
that, in terms of MLP performance improvement, PSO was superior to ABC.

In order to study how well machine learning can estimate the heating and cooling
loads of buildings, Seyedzadeh et al. [33] created two datasets using two distinct kinds
of modelling software. In order to investigate the different permutations of the model
parameters, a gridsearch and a cross-validation approach were used. The findings revealed
that, among the five models that were investigated, the Gradient Boosted Regression Trees
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(GBRT) deliver the most accurate forecast predictions depending on the RMSE. On the
other hand, NNs were shown to be the most effective at dealing with complicated datasets.

Sharif and Hammad [34] centered on the creation of an ANN model with the goal of
predicting energy consumption using a big and difficult dataset supplied by the SBMO
model. According to the results of this research, the ANN models that were recommended
were able to yield accurate predictions. These scenarios included the building envelope,
HVAC, and lighting systems.

In a work by Singaravel et al. [35], 201 design scenarios were used to evaluate the
deep learning model against a simulation of a building’s functionality. With an R2 of
0.983, the deep learning model demonstrated remarkable accuracy for cooling predictions.
With additional heating data from a more accurate sample model, the model’s R2 of
0.848 inaccuracy for heating predictions may be eliminated. According to the research,
deep learning simulation results may be obtained in 0.9 s, which is regarded as a high
calculation speed for simulating structure efficiency.

The cooling demand of big industrial structures was predicted by Gao et al. [36]
using a hybrid forecasting model based on the random forest-improvement parallel whale
optimizing-extreme learning machine neural network (RF-IPWOA-ELM). The experimental
findings demonstrate that the RMSE and MAPE of the RF-IPWOA-ELM model accurately
estimate the cooling demand for these two structures. The suggested hybrid model may
be used as a trustworthy tool for cooling load prediction in the administration and energy
saving of air conditioning systems.

Wei et al. [37] used seven common machine learning techniques to determine the
best prediction method in a local heating load sample from Shanghai, China. To evaluate
the model’s effectiveness, data from a power transmission sensor, a heat sensor, and the
current weather are merged into several input options. The findings demonstrate that
SVR outperforms all others in MAPE. Further analysis reveals that the continual length-
ening of previous datasets does not affect performance. The preceding literature analysis
demonstrates the successful application of data-driven algorithms to handle building
heating/cooling load forecast issues. Nevertheless, subsequent research deficiencies have
been identified:

• The majority of the research is being undertaken in non-arid regions such as Canada,
Greece, the United States, and China.

• The benchmark dataset of the conventional technique is used in many studies that
employ building attributes as inputs to the forecasting model. Some self-generated
statistics are kept secret and cannot be replicated experimentally.

• There is some advice on how to utilize deep learning techniques and how to modify
them for the highest predicted accuracy and completeness for the assigned task.
While most research includes machine learning techniques, deep learning, as well as
optimization, are infrequently employed.

• As a result, utilizing a bigger, accessible self-generated database in Dhahran, a typical
desert climatic zone, this research sets out an applicable strategy for adapting smart
data-driven frameworks to building energy performance data.

3. Problem Statement

Predictive cooling/heating load is an effective method for ensuring future energy
use. A significant number of academics are investigating the strategies and models for
predicting cooling/heating demand in green buildings using machine learning and artificial
intelligence techniques. Due to numerous issues that the researchers encountered, linked
to building features, weather conditions, and data produced by the process control itself,
the proposed methodologies differ in their ability to produce precise and reliable outcomes.
Because linear regression is often utilized, it is more difficult to describe the function that
connects to the aforementioned issue than the cooling/heating load. Furthermore, the
non-linear structure of building systems complicates the connection.
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The forecasting models require a lot of specific details from the building features, which
might be difficult to assess and calculate. The operations and conduct of the residents within
the building are predictable, since their behavior does not follow a specific order and varies
irregularly. Thus, this research proposed an intelligent data-driven approach to anticipate
the cooling and heating load in Dhahran buildings in response to the aforementioned issues.

4. Proposed Framework

This research is focused on thermal load characteristics for residential structures, as
their real-world activities are heavily influenced by building design requirements. Building
design rules attempt to decrease energy usage by taking into account two main terms
of heating/cooling load. The proposed framework of a predictive model is illustrated
in Figure 1. Some procedures were followed in the current investigation. The factors of
the residential building layout were first discovered. The buildings in Dhahran, Saudi
Arabia, were chosen for the data collection on design characteristics. The initial step in data
preparation is to filter the data. Furthermore, by obtaining relevant features for validation,
feature extraction methods may be utilized to improve the prediction performance of the
proposed model. A prediction model for the cooling and heating load of the development
of a domestic structure’s energy usage uses SSRD-SsIF-NN. Following that, the proposed
models anticipate the study’s outputs of heating and cooling demand. In the last phase,
the suggested models’ error efficiency is measured using the leftover 30% of the test data
depending on the discrepancies between the true calculated data and the anticipated values
derived from the developed model. Then, the performance analysis is performed for the
effective measurements.

Figure 1. Proposed framework of the predictive model.
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4.1. Pre-Processing and Feature Extraction

Filtering the data is the initial step in data preparation. The information is organized by
the date-time index in order of decreasing importance. Data that are erroneous, anomalous,
or duplicated are found and deleted. The missing data are again filled using knowledge-
based interpolation. The method of translating raw information into information features
that can be examined while keeping the information from the source dataset is carried out
by feature extraction. It produces better outcomes than applying prediction techniques to
raw information automatically. By splitting the inputs and predicting the aim, a singular
sample is produced after the feature extraction procedure.

The acquired dataset of the heating and cooling loads is arbitrarily split into two
different portions—the training data and the testing data—in this stage. Additionally,
70% of the entire data are utilized for building the model in order to develop a good
prediction model and to develop the link across both the heating and cooling objectives and
their significant components, according to a well-delivered train/test database selection. In
order to test and validate the model, the other 30% of the information would be employed.

4.2. SSRD-SsIF-NN-Based Prediction

A quantitative performance indicator is assessed for validity. SSRD-SsIF-NN is the
combination of a self-systematized intelligent fuzzy reasoning-based neural network and a
hybrid meta-heuristic optimization approach. The parameters of SsIF-NN are tuned by the
SSRD optimization technique.

4.2.1. SsIF-NN Methodology

These tools are frequently used to represent difficult engineering problems. By gener-
ating non-linear relationships, this artificial intelligence (AI)-based approach will attempt
to build a link between a sequence of given input layers and one or more output neurons.
A fuzzy inference system layer, four hidden layers, and a defuzzification layer make up
the SsIF-NN structure. Figure 2 depicts the suggested predictive model. The fuzzifica-
tion layer transforms the feature selection’s sharp input into a fuzzy collection of values.
Floors Area, Number of flats, Gross Area, Roof Area (m2), Study Area, Module Orienta-
tion, Parapet Wall Height (m), Annual Consumption (kWh), and Utilization Factor are
the inputs of the SsIF-NN structure. The heating and cooling load is the output of the
proposed approach. The input activation function and layer result were both specified in
Equations (1) and (2), correspondingly.

Input = a
[
z(s)1 , z(s)2 , . . . z(s)n ; b(s)1 , b(s)2 , . . . .b(s)n

]
(1)

Output = F(s)
o = fa(input) = f (a)

a (2)

where the inputs to this unit are z(s)1 , z(s)2 , . . . . . . ..z(s)n and the link weights are b(s)1 , b(s)2 , . . . . . . b(s)n .

The layer number is denoted by f (.)a and the superscript in the overhead equation is denoted
by (s). The activation function is described as follows: each node’s second function is to
create an activation value based on its primary input.

The following six stages of the prediction model are explained. There are no computa-
tions performed by this layer. This layer’s terminals, each of which corresponds to a certain
input factor, only transmit data to the following layer. This is accurate, and the first layer
connection weight factor is

[
b(1)i

]
one, according to Equation (3).

a = z(s)1 and f (1)a = aa = z(s)1 and f (1)a = a (3)
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Figure 2. The proposed model of the SsIF-NN method.

Fuzzification is achieved in the second layer by finding the membership function
parameters of an input to a group of Gaussian MFs. Each component in this provided a
good one to one of the linguistic values of the input variables in the first layer (medium,
small, large, etc.). This research makes use of a Gaussian membership characteristic, which
has been proved to be a global prediction technique of any dynamic function on the basis
of Equation (4).

a
[
z(2)iu

]
= −

[
z(2)i − fiu

]2

σ2
iu

and f (2)a (a) = ta (4)

where the Gaussian MF of the uth element of the ith input factor has a mean and variance of
fiu and σiu, respectively. As a solution, the weight of a second-layer link may be expressed
as fiu. Equation (5) may be used to compute the normalized fuzzy closeness between a
fresh fuzzy sample z1f and uth the stored characteristic L1(u),

Nu =
‖z1 f − L1(u)‖g

∑n
u=1 ‖z1 f − L1(u)‖g

(5)

Here, g-norm is the abbreviation for ‖.‖g. The g-norm ‖d‖g+z ≤ ‖d‖g for d ∈ �n,
u ≥ 1, g ≥ 0 of each given vector ‖d‖g does not expand with g; all other norms are lower-
bounded by the 1-norm. As a consequence, the Euclidean system was implemented g = 2
Radial basis models may also be used to determine rule neuron activation thresholds.
Equation (6) is used in this section.

f 1i = 1 − Nu (6)

where f 1i, Nu ∈ [0, 1]. This threshold controls the model’s sensitivity to the generation
or modification of rule neurons q ∈ [0, 1]. With higher scores, larger numbers of hidden
neurons and attributes are feasible. Assume that the threshold value is set at 0.3 by default,
which was created in each of the iterations. If the number of neurons develops at a faster
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pace than the set rate, the number of neurons grows at a slower rate F > ε, and the number
of neurons increases at F > ε

If F > ε , q is reduced, q(n + s) =
[

1 +
F − ε

s

]
q(n) (7)

If w < β, q is increased, q(n + s) =
[
1 +

ε

s

]
q(n) (8)

This layer’s nodes also each have one fuzzy inference system rule and execute prereq-
uisite testing. For the third layer part, the AND function was utilized, as seen below

a
[
z(3)i

]
= ∏

i z(3)i = t−[Ri(z− fi)]q[Ri(z− fi ] and f (3)a (a) = ta (9)

The number of second layers is stated as being engaged in the IF component of the
fuzzy rule, and the diagonals are written as

Ri = d
(

1
σi1

,
1

σi2
, . . . . . . . . .

1
σin

)
and fi = d( fi1, fi2, . . . . . . . . . fin)

T

In the third layer, there is just one weight connection,
[
b(3)i

]
. The firing intensity of

the connected fuzzy rule is reflected in the third layer consequences. The subsequent layer
has the same number of components as the third layer, the firing strength estimated in the
third layer is normalized in this layer by Equation (10), and the weighted link in the fourth
layer is also one

[
b(4)i

]
.

a
[
z(4)i

]
= ∑i z(4)i and f (4)a (a) =

z(4)i
ta (10)

A discriminative method that estimates the probability and a sample from training
data rather than the prediction model delivers superior results that accurately depict the
data distribution. The purpose of generative training is to reduce the chances of people
making poor decisions. The second MF layer has two distinct modes, which are shown
in Figure 2 as blank and shaded circles, respectively. The basic node, denoted by empty
circles, is a fuzzy set specified by the Gaussian membership degree of the outcome variable.
In the local mean of maximum (LMOM)-based defuzzification approach, the center of each
Gaussian membership value is simply relayed to the next layer, while the width is just
employed for output grouping. The activation of the winning neuron is propagated by
Equation (11), using a saturated scaling factor of the type

Gmax =

⎧⎨
⎩

0 i f G(Fmax)B2 < 0
1 i f G(Fmax)B2 > 1

G(Fmax)B2 otherwise
(11)

Furthermore, Gmax is the neuron with the highest membership value and G(Fmax) is the
activation. The error e* among the actual fuzzy outcome vector z1f and G(Fmax) is contrasted
to a threshold q. If the mistake exceeds the threshold, a rule neuron is formed. Meanwhile,
the leading neuron weight parameters w1 and w2 are generated from Equation (12) for the
shaded and blanked portion,

B1n(s + 1) = B1n(s) + μ1(zi − B1n) (12)

B2n(s + 1) = B1n(s) + μ2Gmaxe∗ (13)

Here, μ1 and μ2 are the constant learning values, and zi is the ith input vector. The
same fuzzy numbers can be given for various rules if many fourth-layer terminals are
linked to the same fifth-layer empty element. By integrating these two components in the
fifth layer, the whole function provided by this layer can be explained.
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f (5)a (a) =
(
∑i ziuzu + fa0j + B1n(s + 1) + B2n(s + 1)

)
z5

j (14)

The mean of the Gaussian MF is expressed. Only when the shaded element is necessary
is it produced. The summing is over the important phrases associated with the darkened
node alone, and qxj is the relevant variable. This layer’s nodes each relate to a single output
variable. The node collects all fifth-layer ideas and functions as a defuzzifier, predicting the
proper outcomes.

a
[
z(6)i

]
= ∑i z(6)i and f (6)a (a) = a (15)

The output of the proposed algorithm provided the consequences of the heating and
cooling load in residential buildings.

4.2.2. SSRD of Parameter Tuning

The SSRD optimization algorithm is a combination of the shuffled shepherd and red
deer optimization algorithms. The fitness of both algorithms is considered for the parameter
tuning of the proposed SsIF-NN predictive model in the residential building energy load.
The purpose of optimization is to create a global solution that takes into account all of the
problem’s factors. Figure 3 also displays the flowchart for the suggested prediction system.
The values of the fuzzy variable and ta parameters are to be optimized in this case.

Figure 3. The flowchart of the proposed SSRD for SsIF-NN parameter optimization.

Initialization: The algorithm is initialized; the parameters in the array form Equation (16):

p(r) = f (t1, t2, . . . . . . ..tn) (16)

In the solution space, the mathematical analysis initiates SSRD with a randomly
determined beginning population parameter:
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T0
q,w = Tmin + ran × (Tmax − Tmin); q = 1, 2, . . . . . . . . . x and w = 1, 2, . . . . . . y (17)

where Tmin and Tmax are the lowest and maximum fuzzy model parameter bounds, respec-
tively; ran is a random variable formed between 0 and 1 for each element; x is the number
of persons in each parameter group; and y is the total number of parameters in the groups.

Shuffling: According to their goal features, the initial point x of each population is
randomly placed in the first column of the cross conditions (Equation (18)), as between
members of each population. The subsequent members x are chosen in the same way
as the previous step and are organized in a random order in the section to create the
second column of the multi-community parameter. This procedure is continued y until the
following multi-community matrix is created:

Tp =

⎡
⎢⎢⎣

T1,1 T1,2 T1,y T1,y
T2,1
Tq,1
Tx,1

T2,2 T2,y T2,y
Tq,2 Tq,w Tq,y
Tx,2 Tx,w Tx,y

⎤
⎥⎥⎦ (18)

It is worth noting that each row of the multi-community parameter reflects an in-
dividual from each group, with the top column being the best values from each group.
Furthermore, the persons in the last segment are the weakest variables in the group.

Optimal value selection: After shuffling the variables, the best and worst values are
selected for the finest tuning of the SsIF-NN model. Equations (18) and (19) are used to
calculate the worst and best functions of the step size for adjusting the parameter

Sw
q , w = α × ran1 ×

(
Tq,w − Tq,w

)
(19)

S f
q , w = β × ran2 × (Tq, f − Tq,w) (20)

Compared to Tq,w, ran1 and ran2 are random variables, with each component formed
between 0 and 1, respectively; Tq,f and Tq,w are the superior and worse variables in terms of
optimal value. To establish a specific step size for each member of the group, two factors
are utilized. The functional form for the step size is as follows:

S
q,w=Sw

q,w+S f
q,w

. . . .q = 1, 2, . . . . . . . . . x and w = 1, 2, . . . . . . y (21)

The potential to explore more areas of the solution space is shown by the first variable
Sw

q , w. The capacity to explore the surroundings of previously visited prospective solution

space portions of the intensification approach is the second variable S f
q , w.

It is worth noting that the xth community’s initial parameter Tq,1 lacks an affiliate that

is superior to it. As a result, S f
q , w has the same value as 0. As a result of the xth group’s

final parameters, Tq,y does not have a worse parameter than itself. As a result, Sw
q , w is

also zero. Furthermore, α and β are the variables that have an impact on both exploration
and exploitation.

New Tuning Position: If the neighbors’ objective functions are better than the attained
fuzzy values, the fuzzy values are replaced with the preceding ones. Allow all fuzzy values
to modify their positions in reality. The following equation is presented to update the
location of the fuzzy value:

Snew =

{
Sold + t1 × ((U − L) ∗ t2) + L) i f t3 ≥ 0.5
Sold − t1 × ((U − L) ∗ t2) + L) i f t3 < 0.5

(22)

Limit the search field to where and when older value neighborhood responses are
appropriate. As a result, they are the upper and lower boundaries of a random search, U
and L. Sold denotes the current fuzzy scenario, whereas Snew denotes the modified position.
Homogeneity between 0 and 1 is employed to develop t1, t2 and t3 for the randomization
of nature’s tuning mechanism.
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Normalized Energy variables: The following expression can be used to calculate the
general normalized power.

Ek =

∣∣∣∣∣ Pk

∑N
i=C1

Pi

∣∣∣∣∣ (23)

where pk is the energy of the kth main node and Nc is the number of variables. To find the
nearest hind, divide the distance among an MF, which is estimated with the ith dimension.

Termination: After a chosen maximum iteration, the optimization procedure will be
completed. If it is not, it goes back to step one for another round of repetitions.

5. Results and Discussion

The proposed prediction models were developed using the MATLAB 2019b software
program and settings on a desktop PC with an Intel Core i-7 9700K processor, 16 GB RAM,
and a 3.6 GHz clock speed, as well as the Windows 10 64-bit operating platform.

5.1. Case Study

The district meteorological station has been established in Al-Dhahran. The research
employed the use of climatic variables from Al-Dhahran. In the Saudi Arabian metropolis
of Al-Dhahran, the study area covers more than 100 km2 and includes 33,000 residential
properties. For more than a 38-year span, the average global temperature data were
obtained. The hottest month is July, with the maxima reaching 49 ◦C and a mean high
temperature of 43 ◦C. The coldest month is January, with a mean low temperature of 11 ◦C.
Summers in Al-Dhahran are hot and muggy, with an estimated average of 100% relative
humidity (RH) ranging between 61 and 90 percent and the daily total minimum RH ranging
between 15 and 46 percent over the year. During the year, the area features clear skies with
rare sandstorms that reduce sun irradiation. With a total surface area of 254 m2, a 1.7 m-high
parapet wall, and a PV utilization ratio of 0.13, the roof is rectangular. In addition, site
inspections were made to further understand the roof’s qualities and the nearby regions of
70 model buildings. To understand the differences in building features, specimens from
several residential districts around the city were tested. The database includes 70 samples,
each with nine characteristics, namely, z1, z2, z3, z4, z5, z6, z7, and z8, along with b1 and b2
as objective functions (see Table 1). Using the preceding properties as objective functions,
this study tries to predict y1 as the heating load and y2 as the cooling load.

Table 1. Description of the case study’s input and output data.

Variables Symbols Values

Floors Area z1 504 m2

Number of Flats z2 14
Gross Area z3 254 m2

Roof Area (m2) z4 254
Study Area z5 100 m2

Module Orientation z6 Main elevation facing east
Parapet Wall Height (m) z7 1.7

Annual Consumption (kWh) z8 188,740
Utilization Factor, UF z9 0.3

Cooling Load b1 -
Heating Load b2 -

5.2. Performance Analysis

The NMAE and NRMSE are context-independent and may be used to compare the
performance of the model on building heating and cooling load strength with various input
ranges. Smaller numbers for RMSE, like MSE, imply a better performance of the model.
The correlation between the actual and predicted variables is measured by the R value.
The nearer the R value is to 1, the greater the association is and the better the model’s
effectiveness is. R2 measures how much variance in the relying factor can be anticipated
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from the independent factors. The nearer the R2 number is to 1, the greater the relative
value is and the better the model’s performance is. The preceding formulae are used to
compute each of the categories referenced, where ap and bp are the actual and anticipated
values for sample p, respectively. Furthermore, a and b show the average of the actual and
desired heating/cooling load intensity for a building, where M is the representative sample
and A is a simulation run in MATLAB that represents the average of the building’s initial
heating and cooling load strength.

R =
∑M

p=1
(
ap − a

)
(bp − b)√

∑M
p=1

(
ap − a

)2
∑M

p=1(bp − b)2
(24)

R2 = 1 − ∑M
p=1

(
ap − bp

)2√
∑M

p=1(ap − b)2
(25)

RMSE =

√
1
M ∑M

p=1

(
ap − bp

)2 (26)

MSE =
1
M ∑M

p=1

(
ap − bp

)2 (27)

MAE =
1
M ∑M

p=1

∣∣ap − bp
∣∣ (28)

NRMSE =
RMSE

A
(29)

NMAE =
MAE

A
(30)

During the training stage, Figure 4 shows a good correlation coefficient between the
actual values and the projected value for the presented approach. Considering the massive
correlation between the goal data and each channel’s outcome, it is evident that all of these
systems survived the training phase with excellent grades. Great training implies that the
system can recognize statistical properties in the types of information and forecast new data
using the learned structures, allowing each system to learn how much cooling and heating
load is necessary for every building with unique features. Each model can anticipate the
quantity of cooling and heating loads based on the test stage’s data input with some of
this training.

Each model is verified by early test data once it has been trained (30 percent of
100 percent). This is a form of a practice run for the training stage, which is handled entirely
by the system. Figure 5 shows the forecast error in the testing or validation stage, which is
one of the foremost essential metrics in assessing the outcomes, in a histogram manner, for
the SSRD-SsIF-NN. The minimal and largest prediction errors are indicated by the error
histogram framework’s error. This indicates that the number of inaccuracies that all of the
trained systems can have in forecasting the cooling and heating loads for such a testing set
is equivalent to the quantity stated in the statistics.

It can be inferred by examining and analyzing each of the above statistics, which reflect
the effectiveness of each system throughout the first training stage as well as the testing
stage, that the suggested techniques’ training has been well verified using the needed data.
It is worth mentioning that, whenever a model is trained with extreme accuracy, it is well
built, and the number of failures in the validation as well as the first testing procedure
is more dependent on the data quality. It also indicates that the system will be able to
examine and forecast new and untested data with accuracy. During training, each system
is preserved as a black box. During the training stage, the system was able to recognize
trends inside this black box. New and untested data must first be utilized to evaluate these
systems and forecast cooling and heating loads for buildings. To accomplish this, 15% (five
samples) of the information, which was preserved as unidentified and unique data, was
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employed. Figure 6a,b demonstrate the outcomes of predicting heating and cooling loads
for updated information by trained SSRD-SsIF-NN models.

Figure 4. The training and testing phases of the proposed model’s correlation coefficient. (a) Heating
load, (b) cooling load.

Figure 5. Heating load and cooling load histogram testing error. (a) Heating load, (b) cooling load.
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Figure 6. Forecasting heat load and cooling load using the proposed method. (a) Heating load,
(b) cooling load.

In the log scale, Figure 7 shows the MSE effectiveness of the proposed models for
the training, validation, and test datasets. The best performing network on the validation
dataset is the completed system. As a result of training, the system can now predict simul-
taneous heating and cooling needs. The MSE of the developed framework reduced quickly,
resulting in lower error levels. Using the validation sample, the suggested framework
predicted the heating load with an MSE of 0.01530 at epoch 115 (Figure 7a) and the cooling
load with an MSE of 0.148 at epoch 110 (Figure 7b).

Figure 8 depicts the forecasting accuracy of models tuned using training/testing sets
with various sample sizes. When the sample size is increased from 50 to 250, the criteria for
evaluating prediction performance drop considerably. When the sample size exceeds 250,
meanwhile, the process of diminishing prediction standard evaluation metrics decreases or,
indeed, reverses.

Table 2 shows the R, R2, RMSE, MSE, MAE, NRMSE, and NMAE performance evalua-
tions of the proposed approaches. The best prediction was connected to the forecast of the
heating load by the suggested technique, which had the greatest value of R (0.9998) and
the lowest errors of MSE (0.01530), RMSE (0.21), MAE (0.2), NRMSE (1.5), and NMAE (0.2).

The suggested strategy in the prediction of the cooling load was likewise linked to
the best ratings of MSE & RMSE prediction errors. The kind of data input has a significant
impact on the application of proposed algorithms and the outcomes. There is indeed a
difference in the outcomes of each platform’s prediction of cooling and heating loads, and
the heating load is anticipated with a high degree of accuracy. This disparity arises from a
lack of connection between the data input and the degree of cooling load in comparison to
the number of the heating load.

5.3. Comparative Analysis

It is vital to compare the findings acquired with the findings of earlier research to
assess the usefulness of the offered approaches in this study. Using identical datasets,
comparisons must be conducted with caution. For that purpose, some studies with similar
findings for estimating cooling and heating loads were chosen for comparison. The findings
of numerous tests conducted to estimate cooling and heating loads by relevant metrics were
compared with the experimental results obtained in this paper to represent the efficacy of
the data structure in the accuracy of the results. This comparison is made in Table 3.

93



Buildings 2022, 12, 1677

Figure 7. Analysis of the best performing model in terms of prediction using the MSE metric. (a)
Heating load, (b) cooling load.

Figure 8. (a,b) Developed model performance using varying sample sizes in the training and
testing sets.

Table 2. The suggested approach results in terms of predicting heating and cooling loads.

Loads
Performance Metrics

R R2 RMSE (kWh/m2) MSE (kWh/m2) MAE (kWh/m2) NRMSE (%) NMAE (%)

Heating load 0.9998 0.9987 0.21 0.01530 0.2 1.5 2.5
Cooling load 0.999 0.9978 0.4 0.148 0.25 3.5 0.2

The comparison in Table 3 demonstrates the precision and robustness of the proposed
approaches in this research for projecting a building’s cooling and heating demands. In
residential structures, the use of the proposed SSRD-SsIF-NN methods and the choice of
the most appropriate approach for energy prediction and energy-efficient technologies are
highly beneficial in reducing energy consumption. With their great accuracy, the chosen
approaches were able to accomplish the objective of the study and achieve this key goal.
Finally, it is worth noting that the presented techniques may be applied to real-world data as
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well. The SSRD-SsIF-NN approach was used to forecast the yearly spatial heating/cooling
of load intensities in individual groups in this study. Meanwhile, the database of annual
residential heating and cooling load intensities created in this study will be a useful resource
of household energy statistics for traditional research on WDO-ANN [27], RF-IPWOA-
ELM [31], and SVR [32] approaches. Compared to conventional methods, the developed
model has achieved much fewer errors of MSE, RMSE, and other significant metrics. The
MATLAB simulation is used to create the information on the building structures’ heating
and cooling of load intensities for this study.

Table 3. Comparative analysis of the proposed method and conventional approaches.

Loads
Performance
Evaluation

Model

WDO-ANN [27] RF-IPWOA-ELM [31] SVR [32]
Proposed

SSRD-SsIF-NN

Heating load

R 0.99 0.9978 0.997 0.9998
R2 0.97 0.987 0.991 0.9987

RMSE (kWh/m2) 0.2476 0.146 0.3458 0.21
MSE (kWh/m2) 0.1459 0.01597 0.26 0.01530
MAE (kWh/m2) 0.28 0.39 0.85 0.2

NRMSE (%) 1.16 2.04 1.89 1.5
NMAE (%) 2.92 3.18 2.987 2.5

Cooling load

R 0.9987 0.99 0.9912 0.999
R2 0.8931 0.928 0.948 0.9978

RMSE (kWh/m2) 0.599 0.492 0.643 0.4
MSE (kWh/m2) 0.234 0.285 0.68 0.148
MAE (kWh/m2) 0.396 0.46 0.26 0.25

NRMSE (%) 4.2 4.6 3.9 3.5
NMAE (%) 0.39 0.52 0.4 0.2

6. Conclusions

The necessity of energy protection and sustainability has created several obstacles in
predicting a building’s heating and cooling needs. Numerous strategies and techniques
for estimating heating and cooling loads are offered by most experts in this subject to
improve predictive performance. In this research, SSRD-SsIF-NN is offered as a method for
predicting a residential structure’s cooling and heating demands. In this work, considerable
improvements can be made by including additional values in constructing structural
features and switching from a shallow to a profound design-based forecasting model.
During the training stage, after developing each of the proposed frameworks, the essential
features of a residence were utilized as sources, and the heating/cooling loads were utilized
as the output results of each system. To validate the trained networks and anticipate
the heating and cooling needs, unique and unidentified information was employed. In
forecasting the heating load, this proposed model had an MSE of 0.01530, an MAE of 0.2,
an RMSE of 0.21, and an R and R2 both as great as 0.998, and in forecasting the cooling
load, it had an MSE of 0.148, an MAE of 0.25, an RMSE of 0.4, and an R and R2 both as
great as 0.99. Because the generated prediction methods were dependent on the building
attributes, the findings of the study may be useful for developers during the pre-design
phase of the energy-efficient heating/cooling of residential buildings.

Author Contributions: Conceptualization, K.I.; methodology, K.I. and M.S.S.; validation, K.I., and
M.H.Z.; formal analysis, M.S.S. and M.H.Z.; data curation, K.I., M.H.Z. and M.S.S.; writing—review
and editing, K.I. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Interdisciplinary Research Center for Renewable Energy and
Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
under Project No. INRE2113.

95



Buildings 2022, 12, 1677

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: The authors gratefully acknowledge the funding (Project No. INRE2113) from
the Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King
Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. Kashif Irshad acknowledges
the funding support provided by the King Abdullah City for Atomic and Renewable Energy
(K. A. CARE).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Felimban, A.; Prieto, A.; Knaack, U.; Klein, T.; Qaffas, Y. Assessment of Current Energy Consumption in Residential Buildings in
Jeddah, Saudi Arabia. Buildings 2019, 9, 163. [CrossRef]

2. Krarti, M.; Dubey, K.; Howarth, N. Evaluation of Building Energy Efficiency Investment Options for the Kingdom of Saudi
Arabia. Energy 2017, 134, 595–610. [CrossRef]

3. Irshad, K.; Algarni, S.; Islam, N.; Rehman, S.; Zahir, M.H.; Pasha, A.A.; Pillai, S.N. Parametric Analysis and Optimization of a
Novel Photovoltaic Trombe Wall System with Venetian Blinds: Experimental and Computational Study. Case Stud. Therm. Eng.
2022, 34, 101958. [CrossRef]

4. Alassery, F.; Alzahrani, A.; Khan, A.I.; Irshad, K.; Islam, S. An Artificial Intelligence-Based Solar Radiation Prophesy Model for
Green Energy Utilization in Energy Management System. Sustain. Energy Technol. Assess. 2022, 52, 102060. [CrossRef]

5. Alshamrani, O.; Alshibani, A.; Mohammed, A. Operational Energy and Carbon Cost Assessment Model for Family Houses in
Saudi Arabia. Sustainability 2022, 14, 1278. [CrossRef]

6. Soni, A.; Das, P.K.; Yusuf, M.; Pasha, A.A.; Irshad, K.; Bourchak, M. Synergy of RHA and silica sand on physico-mechanical and
tribological properties of waste plastic–reinforced thermoplastic composites as floor tiles. Environ. Sci. Pollut. Res. 2022, 1–19.
[CrossRef]

7. Esmaeil, K.K.; Alshitawi, M.S.; Almasri, R.A. Analysis of energy consumption pattern in Saudi Arabia’s residential buildings
with specific reference to qassim region. Energy Effic. 2019, 12, 2123–2145. [CrossRef]

8. Islam, N.; Irshad, K.; Zahir, M.H.; Islam, S. Numerical and experimental study on the performance of a photovoltaic Trombe wall
system with Venetian blinds. Energy 2021, 218, 119542. [CrossRef]

9. Feng, Y.; Duan, Q.; Chen, X.; Yakkali, S.S.; Wang, J. Space cooling energy usage prediction based on utility data for residential
buildings using machine learning methods. Appl. Energy 2021, 291, 116814. [CrossRef]

10. Sajjad, M.; Khan, S.U.; Khan, N.; Haq, I.U.; Ullah, A.; Lee, M.Y.; Baik, S.W. Towards efficient building designing: Heating and
cooling load prediction via multi-output model. Sensors 2020, 20, 6419. [CrossRef]

11. Irshad, K.; Khan, A.I.; Irfan, S.A.; Alam, M.M.; Almalawi, A.; Zahir, M.H. Utilizing artificial neural network for prediction of
Occupants thermal comfort: A case study of a test room fitted with a thermoelectric air-conditioning system. IEEE Access 2020, 8,
99709–99728. [CrossRef]

12. Zeng, A.; Ho, H.; Yu, Y. Prediction of building electricity usage using gaussian process regression. J. Build. Eng. 2020, 28, 101054.
[CrossRef]

13. Malik, A.; Saggi, M.K.; Rehman, S.; Sajjad, H.; Inyurt, S.; Bhatia, A.S.; Farooque, A.A.; Oudah, A.Y.; Yaseen, Z.M. Deep learning
versus gradient boosting machine for Pan evaporation prediction. Eng. Appl. Comput. Fluid Mech. 2022, 16, 570–587. [CrossRef]

14. Bagheri-Esfeh, H.; Safikhani, H.; Motahar, S. Multi-objective optimization of cooling and heating loads in residential buildings
integrated with phase change materials using the artificial neural network and genetic algorithm. J. Energy Storage 2020, 32, 101772.
[CrossRef]

15. Amasyali, K.; El-Gohary, N. Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office
buildings. Renew. Sustain. Energy Rev. 2021, 142, 110714. [CrossRef]

16. Tsoka, S.; Tolika, K.; Theodosiou, T.; Tsikaloudaki, K.; Bikas, D. A method to account for the urban microclimate on the creation
of ‘typical weather year’ datasets for building energy simulation, using stochastically generated data. Energy Build. 2018, 165,
270–283. [CrossRef]

17. Lin, Y.; Zhou, S.; Yang, W.; Shi, L.; Li, C.-Q. Development of building thermal load and discomfort degree hour prediction models
using data mining approaches. Energies 2018, 11, 1570. [CrossRef]

18. Moayedi, H.; Gör, M.; Kok Foong, L.; Bahiraei, M. Imperialist competitive algorithm hybridized with multilayer perceptron to
predict the load-settlement of square footing on layered soils. Measurement 2021, 172, 108837. [CrossRef]

19. Wang, W.; Tian, G.; Chen, M.; Tao, F.; Zhang, C.; AI-Ahmari, A.; Li, Z.; Jiang, Z. Dual-objective program and improved artificial
bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J. Clean. Prod. 2020,
245, 118714. [CrossRef]

20. Green, C.; Garimella, S. Residential microgrid optimization using grey-box and black-box modeling methods. Energy Build. 2021,
235, 110705. [CrossRef]

21. Cui, X.; E, S.; Niu, D.; Chen, B.; Feng, J. Forecasting of carbon emission in China based on gradient boosting decision tree
optimized by modified whale optimization algorithm. Sustainability 2021, 13, 12302. [CrossRef]

96



Buildings 2022, 12, 1677

22. Mokhtara, C.; Negrou, B.; Settou, N.; Settou, B.; Samy, M.M. Design optimization of off-grid hybrid renewable energy systems
considering the effects of building energy performance and climate change: Case study of Algeria. Energy 2021, 219, 119605.
[CrossRef]

23. Chaturvedi, S.; Bhatt, N.; Gujar, R.; Patel, D. Application of PSO and GA stochastic algorithms to select optimum building
envelope and air conditioner size—A case of a residential building prototype. Mater. Today: Proc. 2022, 57, 49–56. [CrossRef]

24. Almalawi, A.; Khan, A.I.; Alqurashi, F.; Abushark, Y.B.; Alam, M.M.; Qaiyum, S. Modeling of remora optimization with deep
learning enabled heavy metal sorption efficiency prediction onto biochar. Chemosphere 2022, 303, 135065. [CrossRef]

25. Usman, M.; Frey, G. Multi-objective techno-economic optimization of design parameters for residential buildings in different
climate zones. Sustainability 2021, 14, 65. [CrossRef]

26. Xu, Y.; Li, F.; Asgari, A. Prediction and optimization of heating and cooling loads in a residential building based on multi-layer
Perceptron neural network and different optimization algorithms. Energy 2022, 240, 122692. [CrossRef]

27. Moayedi, H.; Mosavi, A. Double-target based neural networks in predicting energy consumption in residential buildings. Energies
2021, 14, 1331. [CrossRef]

28. Rana, M.; Sethuvenkatraman, S.; Goldsworthy, M. A data-driven approach based on quantile regression forest to forecast cooling
load for commercial buildings. Sustain. Cities Soc. 2022, 76, 103511. [CrossRef]

29. Li, X.; Yao, R. Modelling heating and cooling energy demand for building stock using a hybrid approach. Energy Build. 2021,
235, 110740. [CrossRef]

30. Kim, D.D.; Suh, H.S. Heating and cooling energy consumption prediction model for high-rise apartment buildings considering
design parameters. Energy Sustain. Dev. 2021, 61, 1–14. [CrossRef]

31. Tran, D.H.; Luong, D.L.; Chou, J.S. Nature-inspired metaheuristic ensemble model for forecasting energy consumption in
residential buildings. Energy 2020, 191, 116552. [CrossRef]

32. Zhou, G.; Moayedi, H.; Bahiraei, M.; Lyu, Z. Employing artificial bee colony and particle swarm techniques for optimizing a
neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. 2020, 254, 120082. [CrossRef]

33. Seyedzadeh, S.; Rahimian, F.P.; Rastogi, P.; Glesk, I. Tuning machine learning models for prediction of building energy loads.
Sustain. Cities Soc. 2019, 47, 101484. [CrossRef]

34. Sharif, S.A.; Hammad, A. Developing surrogate ANN for selecting near-optimal building energy renovation methods considering
energy consumption, LCC and LCA. J. Build. Eng. 2019, 25, 100790. [CrossRef]

35. Singaravel, S.; Suykens, J.; Geyer, P. Deep-learning neural-network architectures and methods: Using component-based models
in building-design energy prediction. Adv. Eng. Inform. 2018, 38, 81–90. [CrossRef]

36. Gao, Z.; Yu, J.; Zhao, A.; Hu, Q.; Yang, S. A hybrid method of cooling load forecasting for large commercial building based on
Extreme Learning Machine. Energy 2022, 238, 122073. [CrossRef]

37. Wei, Z.; Zhang, T.; Yue, B.; Ding, Y.; Xiao, R.; Wang, R.; Zhai, X. Prediction of residential district heating load based on machine
learning: A case study. Energy 2021, 231, 120950. [CrossRef]

97



Citation: Price, C.; Park, D.;

Rasmussen, B.P. Cascaded Control

for Building HVAC Systems in

Practice. Buildings 2022, 12, 1814.

https://doi.org/10.3390/

buildings12111814

Academic Editor: Etienne Saloux

Received: 1 September 2022

Accepted: 10 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Cascaded Control for Building HVAC Systems in Practice

Chris Price 1, Deokgeun Park 2 and Bryan P. Rasmussen 2,*

1 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
2 J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station,

TX 77840, USA
* Correspondence: brasmussen@tamu.edu

Abstract: Actuator hunting is a widespread and often neglected problem in the HVAC field. Hunting
is typically characterized by sustained or intermittent oscillations, and can result in decreased effi-
ciency, increased actuator wear, and poor setpoint tracking. Cascaded control loops have been shown
to effectively linearize system dynamics and reduce the prevalence of hunting. This paper details
the implementation of cascaded control architectures for Air Handling Unit chilled water valves at
three university campus buildings. A framework for implementation the control in existing Building
Automation software is developed that requires only a single line of additional code. Results gathered
for more than a year show that cascaded control not only eliminates hunting in control loops with
documented hunting issues, but provides better tracking and more consistent performance during
all seasons. A discussion of efficiency losses due to hunting behavior is presented and illustrated
with comparative data. Furthermore, an analysis of cost savings from implementing cascaded chilled
water valve control is presented. Field tests show 2.2–4.4% energy savings, with additional potential
savings from reduced operational costs (i.e., maintenance and controller retuning).

Keywords: building; HVAC; control; energy efficiency; faults

1. Introduction

Actuator hunting is a known and well documented problem in the HVAC field affect-
ing a wide range of systems from vapor compression systems to Variable Air Volume (VAV)
terminal units. Hunting is an undesired oscillation in a system’s control input due only to
the interaction of the controller with the system dynamics, in contrast to oscillations due to
a changing external input. The phenomenon is the result of nonlinear and time varying
dynamics associated with HVAC systems. For example, VAV units have steady-state in-
put/output gains that can vary by more than an order of magnitude over the full range of
operating conditions [1]. Fixed controllers will struggle to provide consistent performance
when a system operates far from its tuning conditions. Hunting can also be spread to
upstream and downstream components in an HVAC system, making identification of the
root cause difficult. A survey at Texas A&M University showed campus Air Handling
Units displayed high levels of hunting, with chilled water valves hunting 70% and supply
fans hunting nearly 25% of operating time [2].

While hunting is often easily identifiable by visual inspection of a measured signal,
there are several automated methods to detect the behavior. These methods are able to
distinguish between daily disturbances such as outdoor air temperature and the high
frequency oscillations that stem from the controller. The time between consecutive zero
crossings of the Integrated Absolute Error signal is used to detect the presence of oscil-
lations [3]. Hunting is detected when two or more crossings occur far enough apart and
with sufficient magnitude. This paper uses the simple method proposed by [2] to identify
and measure hunting times. This method only requires the input signal and uses the
magnitude and time between consecutive sign changes to identify hunting. For details on
the algorithm parameters and implementation, see [4].
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Most control loops utilized in the HVAC field are Proportional-Integral-Derivative
(PID) controllers. As shown in Equation (1), PID is a low order controller consisting of three
parts that respond to instantaneous error (P), steady-state error (I), and changes in error (D).
Despite its simplicity, PID has proven versatility and robustness for controlling a wide range
of systems in many fields [5–7]. In many HVAC applications, the time derivative ‘D’ term
is not used due to its sensitivity to noise and additional implementation complexity. For
effective operation, the control gains, kp, ki, and kd must to be tuned for the equipment and
operating conditions. There are numerous methods for tuning PID controllers each with
their own unique goals and procedures [8]. The most common of which are the methods of
Ziegler and Nichols. Building Automation System (BAS) software often have built-in PID
functions that implement the controller with native anti-windup and saturation solutions.
Such commands typically have recommended initial gains from which the tuning process
can begin. Further background on PID control can be found in [7,8].

PID(t) = kpe(t) + ki

∫ ∞

0
e(t) dt + kd

d
dt

e(t), (1)

The tendency for HVAC systems to have large, load-dependent nonlinearities often
causes difficulties for PID controllers; see [1] for examples. Nonlinearities are the result
of fundamental heat transfer processes and system actuators that typically do not have
linear flow profiles. PID controllers tuned in high system gain conditions will have very
slow response times when operating conditions change. Conversely, a controller tuned in
low gain conditions can easily develop hunting behavior as system gains increase. These
variations in performance lead to hunting behavior and decreased system efficiency. To
address such issues, some have focused on assessing poor control and designed control
quality factors (CQF) to analyze control performance based on measured data [9].

Improving the control of HVAC subsystems is important for two main reasons. First,
the nonlinear power profiles of actuators such as fans or pumps (Equation (2)) causes
overall energy use and operational costs to increase with oscillatory (hunting) behavior.
Second, hunting behavior increases actuator wear and, finally, system-level coordinating
controllers, such as Model Predictive Control (MPC), are increasingly used to optimize
system setpoints. These supervisory controllers depend on subsystem controllers that can
consistently track setpoints. Hunting can also interfere with model predictions, reducing
the effectiveness of advanced control techniques and resulting in lost efficiency.

P1

P2
=

(
ω1

ω2

)3
, (2)

This paper details the implementation of cascaded control architectures for building
Air Handing Unit (AHU) temperature control. Research has shown that cascaded control
loops are an effective strategy to reduce common HVAC issues stemming from nonlinear
dynamics and input/output coupling, including the elimination of hunting behavior. The
proposed architecture uses nested PID control loops to improve system performance by
isolating and linearizing system dynamics. Cascaded loops are inherently low order and
easily implementable in existing Building Energy Management (BEM) software. As will
be shown, this approach requires no special software commands and can be implemented
with a single line of additional code, facilitating adoption in HVAC applications.

The simplest embodiment of a cascaded control architecture is the addition of a
proportional control loop inside of a standard Proportional-Integral (PI) controller. An
example of this approach, would be the representation of a cascaded control loop applied to
nonlinear system, as seen in Figure 1. The nonlinear plant is represented as a Hammerstein
model consisting of a nonlinear gain function dependent on operating condition ‘σ’ and
some dynamic of unitary gain. In this model, inner and outer loop signals (yi and yo)
and nonlinearities (ψi and ψo) can be equal or unique. Note that the plant nonlinearity is
contained inside the inner loop control where it is effectively linearized by proportional
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feedback with gain kL. This affect can be seen in Equation (3), where the inner and
outer loop nonlinearities are placed in the numerator and denominator of the inner loop
transfer function. This structure allows nonlinearities to counteract themselves over all
operating conditions and thereby reducing their overall effect. Additionally, the inner loop
process will essentially become a static gain as the inner loop gain becomes large. If the
nonlinearities are equal or multiplicatively related, all dependence on operating condition
is eliminated. This behavior is guaranteed if both ψi(σ) and ψo(σ) are monotonic and share
the same trends. For more details on cascaded control and properties of the inner loop gain,
see [10].

L(s, kL, σ) =
kLψo(σ)Go(s)

1 + kLψi(σ)Gi(s)
, (3)

Figure 1. Block diagram of a generalized cascaded control loop. Subscripts ‘i’ and ‘o’ denote the inner
and outer loops, respectively.

Recent work with cascaded control architectures has shown it to be an effective strategy
for control of a wide range of HVAC systems. Simulations have improved control of and
eliminated hunting behavior in VAV units, hydronic radiator systems, and AHUs [1]. The
architecture was also able to decouple the dynamics of a multi-evaporator refrigeration
systems and improve individual tracking performance [11]. Although cascaded loops
require an additional control loop and a more complex tuning process, simple metrics have
been developed to quantify the benefits of cascaded control and tune inner and outer loop
gains accordingly along with optimal frameworks [10] and simple tuning rules [12].

The linearization and decoupling effects of cascaded control are particularly important
for Model Predictive Control algorithms that rely on consistent and linear sub-system
behavior. The simplicity of cascaded controllers can enable MPC algorithms to better
optimize building HVAC performance while still guaranteeing control stability. Neither
MPC nor cascaded control, however, has seen widescale testing in real building systems.
Numerous studies have implemented cascaded controllers in simulation with simple
models of HVAC systems or with experimental test rigs [13]. In [14], a Hybrid Expansion
Valve (HEV) was used to linearize the response of a small laboratory vapor compression
cycle system. The HEV used a combination of physical and digital feedback to implement
the cascaded control loop and eliminate differences in high flow and low flow conditions.
Cascaded control has also appeared in trade manuals [15] that adjust equipment exit
temperatures based on room temperature setpoint errors. These manuals, however, do not
focus or test the linearization behavior of the architecture. Testing of MPC controllers in
buildings has similarly been mostly in simulation [16] with some studies beginning to test
on real building systems [17].

This paper presents results of a widescale implementation of cascaded control loops
for AHU discharge air temperature control in three university campus buildings (9 AHUs).
These controllers regulated the position of chilled water supply valves and utilized standard
building automation software. The implementation required the addition of only a single
line of code to existing control routines. Data was collected over multiple years, comparing
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building operation under existing control algorithms, and the proposed cascaded control
approach. A comparative analysis of this data is presented, including the primary source
of wasted energy and costs for discharge air temperature control. The results lay the
groundwork for future work testing the implementing of an MPC algorithm across a whole
building HVAC system.

2. Materials and Methods

Most building automation software can implement PID control loops using a built-in
command. Consider, for example, a LOOP command given below that has 11 usable inputs.
These inputs define the direction of control (type = 0 direct control, type = 1 indirect), the
regulated signal (pv), the control signal (cv), the setpoint signal (sp), PID control gains
(pg, ig, and dg), sample time (st), loop bias, and the saturation limits of the controller (lo
and hi). Loop gains have a divisor (usually 1000) and have recommend values such as
pg = 1000 and ig = 20 that provide good control for a wide range of systems. A sampling of
AHUs at Texas A&M reveals that most PI control loops have these standard values, which
strongly indicates that many loops operate with factory defaults and may never receive
additional tuning unless problems are detected [4]. The relationship between LOOP gains
and a standard PI control formulation is given in Equation (4) where it is important to note
the multiplication of the sampling time and integral gain.

LOOP(type, pv, cv, sp, pg, ig, dg, st, bias, lo, hi, 0)

u = kp · e + kits · ∑ e = pg
1000 · e + ig

1000 ts · ∑ e,
(4)

A first pass implementation of a cascaded control loop in building software is given by
Algorithm 1 for a discharge air temperature controller. Note that the inner and outer loops
are implemented using two LOOP commands and an intermediate virtual point named
‘AHU.DATLOOP1.ILSP’ (Discharge Air Temperature Loop 1, Inner Loop Set Point) that
stores the inner loop setpoint signal (i.e., the outer loop output). Although most LOOP
commands in building software will have built-in saturation and anti-windup solutions,
the interaction of the two loops must be considered. When the inner loop output (i.e.,
valve position) becomes saturated, the outer loop controller must also be disabled to avoid
windup while the inner loop is disabled. Lines 6 through 7 deal with this issue by checking
if the inner loop signal is saturated and then dynamically enabling/disabling the outer
LOOP command on Line 11 accordingly. Although intuitive, this code is somewhat lengthy,
requires the creation of intermediate virtual points, and has seven tunable variables.

Algorithm 1 Cascaded control implementation with two LOOPs

1: C Point Name Abbreviations
2: DEFINE(X,”AH01.”)
3: DEFINE(Y,”DATLOOP1.”)
4: DEFINE(Y,”DATLOOP2.”)
5: C Outer Loop Anti-Windup
6: IF(“%X%CCV” .GT. 1 .AND. “%X%CCV” .LT. 99) THEN SET(0,SECND2)
7: IF(SECND2 .GT. “DISABLE.TIMER”) THEN DISABL(110) ELSE ENABLE(110)
8: C Inner Loop Control
9: LOOP(128,”%X%DAT”,”%Y%ILSP”,”%X%DAT.S”,”%Y%P”,”%Y%I”,0,”%Y%TIME”,”%Y%BIAS”,50,70,0)

10: C Outer Loop Control
11: LOOP(0,”%X%DAT”,”%X%CCV”,”%Y%ILSP”,”%Z%P”,0,0,”%Z%TIME”,”%Z%BIAS”,50,70,0)

An alternative approach to cascaded control can shorten the code required and simplify
implementation. Consider the inner loop control signal given in Equation (5) where
e1 = r − y1, e2 = u1 − y2, B1, and B2 are outer and inner loop errors and biases, respectively.
Note that the first two terms resemble the output of a PI controller with PI gains of kLkp
and kLki while the final terms are a combination of loop biases and inner loop feedback.
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u2 = kLe2 + B2
= kL(u1 − y2) + B2
= kL

[(
kpe1 + ki ∑ e1 + B1

)− y2
]
+ B2

= kLkp(r − y1) + kLki ∑(r − y1) + B2 + kLB1 − kLy2,

(5)

Expressed in this form, the cascaded controller can clearly be implemented as a single
LOOP command without the need for the extra intermediate virtual point as before. This is
important because inner/outer loop anti-windup issues are avoided as the new algorithm
takes advantage of built-in saturation features. Code based on this implementation for
AHU control is given by Algorithm 2 taking into account that the outer and inner loops
are reverse and direct acting, respectively. The bias term is calculated and stored in a local
variable $LOC1 on Line 4 because some software does not allow for calculations inside of
function calls. Note that the simplified code eliminates fives lines and reduces the number
of tuning variables to five. One disadvantage of this implementation is the loss of ability
to have different sampling times for the inner and outer loops. Despite this, all benefits
of cascaded control can still be realized even through the two loops operate at the same
sampling rate.

Algorithm 2 Simplified cascaded control implementation with one LOOP

1: C Point Name Abbreviation
2: DEFINE(X,”AH01.”)
3: C Bias Term Calculation
4: $LOC1 = “%X%BIAS” + “%X%KL”*”%X%DAT”
5: C Cascaded Control
6: LOOP(0,”%X%DAT”,”%X%CCV”,”%X%DAT.S”,”%X%P”,”%X%I”,0,”%X%TIME”,$LOC1,0,100,0)

The final sections of this paper detail results of applying cascaded control within
three campus buildings. Details about the size, layout, and location of each building will
be provided as well as comparisons between original PI and cascaded control. Finally, a
discussion of the cost of poor AHU control is presented with a savings estimate based on
observed performance improvements.

3. Results

Working with the staff at the Utilities and Energy Services, limited access to the HVAC
control systems of Building 1497, 0474 and 1600 was established.

3.1. Building 1497 Results

This building is a single-story, rectangular building with an area of 12,040 ft2 (1119 m2)
and consisting of ten temperature-controlled zones and one unconditioned server room
with the general floor plan shown in Figure 2. The building is serviced by a 14 ton single
rooftop AHU consisting of a chilled water coil with valve, return/outdoor air dampers,
and variable speed fan capable of suppling 6425 CFM of air. The unit has two sensors for
discharge air temperature and end static pressure. Zones 1–10 have VAV terminal boxes
equipped with a hot water reheat coil and an air damper. The hot and cold water needs of
the building are serviced by two dedicated loops that provide access to the university’s
centralized heating and cooling water supply.

Building 1497 uses a complex, nested PI-based architecture for its HVAC control
(Figure 3). During normal operation, PI controller (1) modulates the speed of the supply
fan to maintain static pressure in the air ducts. The End Static Pressure (ESP) setpoint is the
output of another PI controller (2) that compares the damper demand given by Equation (6)
to a design setpoint Dset = 60. Room air temperature is regulated by a cascaded damper
control architecture similar to the one discussed in [1]. An outer loop PI controller (3)
uses room temperature error to calculate a flow demand Fi ∈ [0, 100] that determines
the flow rate required for each room. Flow demand is converted to a flow rate though
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linear interpolation between minimum ventilation requirements and the maximum system
output. Inner loop control (4) uses local control and a flow rate sensor to match the outer
loop flow setpoint. Similar to ESP control, the AHU discharge air temperature setpoint
is generated by a PI controller (5) using the cooling demand calculation of Equation (7)
and the design setpoint Cset = 60. PI controllers (6–7) modulate hot and cold-water supply
valves to match the exit/supply air temperature setpoint.

D =
3
5

max(θi) +
2
5

(
1
n ∑n

i=1 θi

)
, (6)

C =
3
5

max(Fi) +
2
5

(
1
n ∑n

i=1 Fi

)
, (7)

Figure 2. Layout of HVAC zones for Building 1497.

Figure 3. HVAC control system diagram for Building 1497.

Chilled water valve control used to regulate AHU exit air temperature for Building
1497 has documented issues with actuator hunting. Oscillations are most pronounced
during low load conditions such as early morning or during cool winter weather. For
example, the valve hunted 57% of its operating time during the three-month period of
1 November 2013 to 1 February 2014 while the valve hunted only 14% from 1 May to
1 August 2016. PI valve control has three distinct hunting behaviors as seen in Figure 4.
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Under high load, valve control typically does not hunt (19 March 2016). In early spring,
temperatures are usually warm in the afternoon but cool in the evening resulting in hunting
late in the day (23 March 2016). On other spring days, there is never enough load to prevent
hunting behavior (30 March 2016). This behavior indicates that control performance is
strongly tied to the operating conditions of the system.

Figure 4. Building 1497 PI control performance displays three hunting behaviors depending on
system load (outside temperature). The chilled water valve will not hunt, hunt late in the day, or
hunt continuously.

Cascaded control was applied to Building 1497 chilled water valve control from
approximately October through December of 2015. Testing utilized Algorithm 1 with
gains tuned using step identification tests for a range of supply fan speeds (system loads)
from 20–90%. Cascaded gains of kL = 4, kpc = 1.25, and kic = 0.2 were chosen using the
analysis and the tuning procedure from [10]. Figure 5 shows that valve hunting modes
seen with the original PI control for a range of system loads has been eliminated without
sacrificing performance.

Figure 5. Building 1497 cascaded control performance displays no hunting behavior over a range of
system loads.
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3.2. Building 0474 (Philosophy Department) Results

Building 0474 is a four-story building originally completed in 1914 that houses the
university Philosophy Department. A total renovation in 2012 included upgrading the
entire HVAC system and controls. Each floor has a dedicated AHU for the floor and is
numbered for the floor it covers. AHU1, AHU2, AHU3 and AHU4 have capacities of
35, 27, 21 and 22 tons and total air flow capacity of 12,000, 10,000, 8000, and 8000 CFM,
correspondingly. Building 0474 has approximately 54000 ft2 (5017 m2) of office space with
approximately 20 heating and cooling zones per floor, controlled by the AHU in the middle
of the floor area (Figure 6). Each floor has its own AHU where return and outside air
are mixed and conditioned. Zones have a parallel fan powered VAV terminal box with
hot water reheat coil and return air ducting that draws warm air from the ceiling plenum
for ‘free’ reheat. The heating coil can be used for substitute reheat when at the minimum
supply air flow rate. The building control system has a wide array of sensors including
relative humidity, CO2, and outside air flow rate (ventilation). The overall temperature
control structure is the same as at Building 1497 (Figure 3) with the exception of additional
complexity due to the upgraded terminal boxes and ventilation sensors.

Figure 6. Layout of HVAC zones and exterior of Building 0474.

Cascaded control Algorithm 2 was initially tested on the fourth floor AHU chilled
water valve and later applied to the other three floors. All four original PI controllers
had gains of pg = 1000 and ig = 20 with sampling times of ts = 1 s, which are the
recommended LOOP gains from [18]. As a starting point, the inner loop gain was set at
a conservative value kL = 0.5 and the outer loop gains at kpc = 1 and kic = 0.04. When
converted to nominal gains using the relationships of Equation (5), the resulting LOOP
gains are equal to the original PI LOOP gains. This choice should provide similar transient
performance to the original control, but with the added linearization benefits of the inner
loop control. The resulting control gains (pgc and igc) used in Algorithm 2 are calculated
using Equation (8). The inner loop bias is the average of the minimum and maximum valve
position (i.e., B2 = 50%). The outer loop bias is the average of the minimum and maximum
allowable exit/discharge air temperatures, 52 ◦F and 65 ◦F, respectively. The overall bias
term B for the PPCL code is therefore given by Equation (9), where DAT is discharge air
temperature. Note that the bias term of the LOOP command has no scaling factor. Inner
loop gains for all units were later increased to kL = 1 starting in March 2018 to increase the
level of cascaded linearization.

pgc = 1000kLkpc = 500 & igc = 1000kLkic = 20, (8)
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B = B2 + kL(DAT − B1)

= 50% +
(

0.5 %◦F

)(
DAT − 65◦F+52◦F

2

)
= 20.75% +

(
0.5 %◦F

)
DAT,

(9)

Building 0474 operations were transferred to a new server in the spring of 2017 with full
historical trending of relevant HVAC operating points beginning approximately 1 August
at 5 min intervals. Table 1 gives the results of analyzing each floor’s AHU operation for fan
and chilled water valve hunting with PI control through 31 December 2017. Overall, CHW
(Chilled Water) control in Building 0474 displays very little hunting behavior except for
the third floor where the valve hunts just over 10% of its operating time. Observations of
building performance show that identified hunting in AHU3 occurs almost entirely in low
cooling conditions. This indicates that the PI controller was likely tuned for mid-to-high
load conditions. Hunting results for the CHW and fan control show that implementing
cascaded control reduced hunting in the third-floor unit and had minimal effect on the
other floors.

Table 1. Building 0474 Hunting Analysis Results with green arrows showing improvements and red
arrows showing decline when compared to the PI control baseline case.

Control Type AHU1 AHU2 AHU3 AHU4

CHW Valve
PI 2.29% 1.05% 11.4% 2.12%

Cascaded 1.91% 3.79% 6.32% 3.35%

Fan Speed PI 2.78% 0.17% 0.32% 0.52%
Cascaded 1.24% 0.02% 0.42% 0.40%

The main benefits of cascaded control implementation at Building 0474 were improved
tracking performance due to more aggressive performance afforded by the cascaded archi-
tecture. To fairly compare HVAC performance before and after implementation, weather
disaggregation was applied to the data using the Degree Day (DD) method. A DD is related
to how long and by how much outside ambient conditions stay above or below a baseline or
balance temperature. Usually assumed to be 65 ◦F, this balance temperature is the ambient
load condition under which a building requires no conditioning. Cooling and heating
degree days, CDD and HDD, respectively, can be thought of as the area above or below the
balance temperature for a given outside temperature profile. The DD is therefore a useful
tool to compare HVAC data as it inherently normalizes for warmer or colder weather.

System performance is measured using the Root-Mean-Square (RMS) error given by
Equation (10). For error to be calculated, the system must be ON and in cooling mode
for more than 90 min. These criteria are important because, particularly on weekends,
AHUs will cycle ON/OFF randomly for short periods of time to maintain building air
quality. These bursts are not long enough for the AHUs to reach their setpoints and are
not representative of the tracking ability of the valve controller. Detecting cooling mode is
important as the chilled water valve can be saturated at 0% causing large error accumulation
despite not being utilized. Criteria for detecting these conditions are given in Table 2 with
cooling time found by the intersection of ON time and the negation of HEAT detection.

RMSE =

√
∑N

k=1(Tset(k)− T(k))2

N
(10)

Table 2. Cooling Mode Detection Criteria for Building 0474.

Condition Criteria Comment

ON/OFF ωi = 0 (Fan Speed) Minimum ωi when LOOP is active is 20%.
HEAT δi = 0 (Valve Opening) Identified when true continuously for 90 min.
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Improvements in system performance can be seen in Figure 7 that shows PI con-
trol data from 2017 and Cascaded Control (CC) data from 2018. For each floor, at least
marginally, there is a reduction in dependence on load condition (i.e., flatter trend lines)
and a much tighter dispersion of daily error with cascade control than PI control. This is
seen visually and in the decrease in standard deviation from the trend line. Improved RMS
error results show that the cascaded controller is better able to track setpoint changes and
ensure occupant comfort.

Figure 7. Performance comparison between PI and cascaded controllers at Building 0474. Cascaded
control can be seen to provide tighter and more consistent performance.

The minimal improvements in AHU 1 and AHU 4 are the results of two main issues.
For AHU 1, PI data from 2017 has less cold weather than CC in 2018. As these conditions
tend to result in more error for this unit, the 2017 trend line is lower in this regime than
expected. AHU 4 data is the result of the unit either being slightly undersized for observed
loads or a system fault that restricts cooling capacity. In warm weather, AHU 4 was at
maximum load with the valve and supply fan both operating continuously at 100%, but
only slowly reaching command setpoints for static pressure and air temperature after
several hours. This leads to large errors in warm weather that will be similar for both PI
and CC control. However, there does appear to be an improvement in performance in cooler
conditions. Overall, cascaded control was applied successfully to all AHUs at the YMCA
building and showed performance benefits without introducing control hunting issues.

3.3. Building 1600 Results

Building 1600 is an approximately 85,000 ft2 (7897 m2) office and research facility
completed in 1999 and consisting of three floors in a mostly L-shaped configuration with
additional space on the ground floor. Each floor has a dedicated AHU and is numbered for
the floor level it covers. AHU1, AHU2 and AHU3 have 63, 59, and 60 ton capacity with
22,050, 21,610, 20,160 CFM air flow capacity, respectively. There are 32 heating and cooling
zones on the first floor, 40 on the second and 38 on the third floor roughly corresponding
to the HVAC diagram given in Figure 8. Building 1600 has a 49 ton capacity Dedicated
Outdoor Air System (DOAS) for its ventilation requirements that is functionally the same
as a standard AHU except that 100% of its supply air is drawn from the outside (Figure 9).
The DOAS supplies preconditioned ventilation air at maximum 7910 CFM to AHUs on
each floor that have local cooling coils to make up for latent heat in the return air stream.
Parallel fan powered VAV terminal boxes in each zone have reheat capabilities if necessary.

107



Buildings 2022, 12, 1814

Figure 8. Layout of HVAC zones and exterior of Building 1600.

Figure 9. Building 1600 uses a dedicated outdoor air unit for ventilation supply to each floor’s AHUs.

Historical data for this building was not available due to software limitations. How-
ever, dynamic trending of critical points for several months was facilitated by the university
utilities office. This method of data collection records point values when signals vary above
a threshold value with a maximum sampling time of 2 min. Data was initially collected
from approximately 10:00 a.m. to 4:00 p.m. from November through December 2017 to
capture original building operations. The nature of dynamic trending resulted in data sets
with random sampling times. To utilize the hunting algorithm from [2], each dataset was
resampled to enforce a 2 min sampling time.

Though Building 1600 is less than 20 years old and has an advanced HVAC system
design, the AHU chilled water valve controls still have significant hunting issues. As seen
in Figure 10, each floor’s AHU valve control experiences some level of hunting behavior.
AHU1 has a hunting period of approximately 60 min, AHU2 30 min, and AHU3 20 min.
The level of hunting, in terms of amplitude and period, is again correlated with system load
as it is significantly reduced/disappears when outdoor air temperature approaches 70 ◦F
(21.1 ◦C). Apparent from the figure is the supply air fan for AHU2 also has a significant
hunting issue. Fan speeds are allowed to vary within ω ∈ [20%, 100%] which accounts for
the saturated appearance of the signal. Fan speeds for AHUs 1 and 2 vary only slightly or
are constant during a normal day.
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Figure 10. Performance data for Building 1600 on 5 December 2017 under original PI control shows
significant levels of valve and fan hunting.

The tuning process at Building 1600 highlights several fundamental issues of practical
building control. In particular, how hunting controllers can mask multiple system faults.
The following sections detail issues discovered as they arose and how implementing
cascaded control revealed the underlying problems.

3.3.1. Problem 1—Poorly Tuned Control Gains

Parsing building control code, the chilled water LOOP command settings for each
AHU were found to vary widely as seen in Table 3. At issue are the vastly different sampling
times seen in the upper floors. Due to the multiplication of the integral gain and sampling
time (see Equation (4)), the effective integral gain for these systems is 30 times larger for
upper floors than the first floor. Differences in gains help to explain the variation in loop
performance between AHUs. Most likely, hunting behavior was observed in AHU3 and
to compensate the magnitude of pg was reduced by an order of magnitude. Similarly, the
integral gain for AHU1 was reduced to avoid oscillations.

Table 3. PI Control gains for Building 1600 AHU chilled water valves.

Unit pg ig ts (sec) kp kits

AHU1 600 7.5 1 0.6 0.0075
AHU2 600 15 15 0.6 0.225
AHU3 60 15 15 0.06 0.225
DOAS 600 20 1 0.6 0.020

The main culprit of the nearly constant hunting in the initial dynamic data is therefore
the large effective integral gains. From building data, however, there is still a clear depen-
dence on operating conditions as warmer ambient temperatures reduce the prevalence
of hunting. Implementing a properly tuned cascaded controller will therefore inherently
eliminate oscillations due to poor tuning as well as reduce variations in performance due
to changing operating conditions.

For initial cascaded tuning, the LOOP sampling time was ts = 1 s with an initial inner
loop gain of kL = 0.5. The gains pg and ig for AHU1 were used as initial gains for the
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tuning process. The cascaded loop gains were therefore kpc = 0.2 and kic = 0.015, which
correspond to the initial LOOP gains pgc = 100 and igc = 7.5 used with Algorithm 2. These
calculations, including for the LOOP bias term, are given by Equations (11) and (12).

pgC = pg − 1000kL = 600 − 1000(0.5) = 100 & igc = ig = 7.5, (11)

B = B2 − kLB1 = 50% −
(

0.5
%
◦F

)(
65 ◦F + 55 ◦F

2

)
= 20%, (12)

After some initial testing, the inner loop gain was increased to kL = 1 to amplify the
linearization effect of the cascaded controller. Due to the additional issues discussed below,
the integral gain was slowly decreased to igc = 2.5. With these gains, the system showed a
qualitative improvement in performance as seen in Figure 11. This improvement represents
incremental progress with notable reductions in oscillation period and magnitude. After
the remaining issues were fixed, the final integral gains for each unit were increased to 7.5,
10, 10, and 7.5, respectively.

Figure 11. Performance data for Building 1600 on 20 March 2018 after initial cascaded loop tuning.
Performance is improved but a fault with end static pressure sensors for AHU2 is exposed.

3.3.2. Problem 2—Failed End Static Pressure Sensors

As seen in Figure 11, fan speed for AHU2 hunts periodically throughout a normal day.
The architecture of Figure 3 shows that the fan speed is used to maintain a certain static
pressure at given points in the system ducting. Usually End Static Pressure (ESP) sensors
are located at a point two-thirds along the longest path of the ducting. Given the L-shape
of Building 1600, floors 2 and 3 have two ESP sensors.

In normal operation, the building code takes the minimum reading from the two ESP
sensors as the input to the static pressure control loop. However, on floor 2 both sensors
had failed, outputting a constant value that did not change with changes in supply fan
speed. This had the effect of breaking the ESP feedback loop at the red mark shown in
Figure 3, effectively introducing a constant disturbance between ESP setpoint and the fan
speed control. While unmeasurable from the failed ESP sensors, the effect of the hunting
fan speed was still observable through the damper command calculation. As dampers at
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each zones VAV box closed to accommodate rising ESP due to the increased fan speed, the
ESP setpoint controller would lower the ESP setpoint. This process would reverse and
eventually cause the observed sustained oscillation in the ESP setpoint. As soon as ESP
sensors on floor 2 were replaced, the oscillations in AHU2 fan speed was eliminated giving
the slightly improved results of Figure 12. Note that although AHU2 is parallel to AHU1
and AHU3, the hunting fan speed acted as a disturbance, affecting the distribution of fresh
air being delivered to every AHU.

Figure 12. Data from Building 1600 on 16 April 2018 shows synchronized oscillations in AHU
discharge air temperature due to short cycling of the building CHW pump, simultaneous actuation
of the pump and the building return water valve, and a failed return water pressure sensor (RP).

3.3.3. Failed CHW System Pressure Sensor and Control Issue

After fixing the ESP sensor, a synchronized oscillation in all four AHUs in Building
1600 began to manifest (see Figure 12). Due to the configuration of the system, an issue
with the DOAS was suspected as oscillations in discharge air temperature for that unit
could propagate to the other three units. Trouble shooting proved inconclusive as simple
valve stiction tests such as [19] failed to positively identify the issue.

In early April 2018, local weather conditions were cold enough that no conditioning of
fresh air was needed from the DOAS. Despite the stable supply fresh air temperature being
delivered to AHUs 1–3, discharge air temperatures still displayed the same synchronized
oscillations. Their persistence strongly indicated that another upstream disturbance besides
the DOAS was causing the oscillations.

Such a disturbance was determined to be coming from the building chilled water
(CHW) supply system. As seen in Figure 13a, the system consists of two actuators (a
pump and a valve) and sensors to measure Differential Pressure (DP). The CHW controller
seeks to maintain a Differential Pressure Setpoint (DPSP) between the building supply
and return water lines. DPSP is determined through a rule set that uses a time averaged
Root-Mean-Square (RMS) valve position from the four AHUs. A PI controller operates
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on DP error to output DPLOOP ∈ [20, 100], a demand variable that is interpolated to
determine settings for the return water valve position and pump speed. A deadband block
in the pump control is meant to prevent short cycling of the pump and to ensure that the
pump and valve are actuating separately.

 
(a) (b) 

Figure 13. (a) Schematic of Building 1600 CHW supply system; (b) Comparison of original and new
CHW system pump and valve control. Actuation overlap of return water valve and pump control
(shown in red) resolved by adjusting deadband settings.

As seen in Figure 12, the building CHW pump short cycles ON/OFF several times
throughout the day. These cycles correspond to the periodic oscillations seen in AHU
discharge air temperature. The sudden changes in pump speed cause sharp changes in
building CHW flow rate which affects flows to each individual AHUs simultaneously. The
short cycling was due to several concurrent system issues. Firstly, the deadband region
meant to prevent rapid pump cycles was extremely small turning ON the pump when
DPLOOP rose above 36 and OFF when it dropped below 34. As DPLOOP would drop
below 34 almost immediate after the pump switched ON, the pump would cycle OFF after
the five-minute sampling time of the DPSP rules block. Additionally, because the linear
interpolation for the return water valve was for 20 ≤ DPLOOP ≤ 66, both the pump and the
valve were actuating simultaneously for a significant range of operation shown graphically
in Figure 13b. Secondly, the return CHW pressure (RP) sensor had a fault causing large
swings in measurements. The resulting oscillation was propagated through the supply
CHW PI controller causing the pump and valve to oscillate. Finally, the integral gain in the
SCHW (Supply Chilled Water) PI loop was ig = 125 with a sampling time ts = 1. The large
integral gain caused DPLOOP to hunt even for small errors in DP. Each of these identified
issues was fixed by working with campus utilities. The CHW program was changed to
expand the deadband zone and alter interpolations to regions where the pump and valve
actuate separately (see Figure 13b). The return pressure sensor was also replaced and
calibrated and the DPLOOP PI controller was returned.

After fixing CHW supply issues, the system began to operate fault free. Initial results
showed that hunting had been completely eliminated and that large disturbance oscillations
due system faults had been removed. However, tracking performance was poor as cascaded
controllers had been detuned to tolerate the many system faults. After retuning the
controllers to improve tracking performance, system results are similar to those from
Figure 14. Comparing with the original performance seen in Figure 10, implementing
cascaded control and fixing the multiple faults revealed by the improved chilled water
valve control has significantly improved building performance. Note that at the end of the
tuning process, final cascaded LOOP gains were kL = 1, pgc = 100, and igc = 10 except for
the DOAS whose integral gain was igc = 7.5.
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Figure 14. Data from Building 1600 on 14 May 2018 shows greatly improved building AHU discharge
air temperature control due to cascaded control implementation and fixing revealed system faults.

4. Discussion

Having established that cascaded control can significantly improve the performance
of AHU exit air temperature controllers, one final question is where the costs due to poor
AHU valve control originate. The hidden and measurable costs of hunting behavior will be
reviewed in this section, and the measured cost savings from the elimination of hunting
results will be quantified.

4.1. Increased Replacement Costs

Most literature asserts that hunting will cause excessive component wear, eventually
leading to increased replacement costs. While true, this cost is hard to estimate and is likely
small because it only accounts for lost operation time as replacement actuators would be
purchased regardless of hunting behavior.

4.2. Retuning Costs

Retuning costs due to occupant discomfort from hunting behavior are more easily
estimated. Eliminating the time and expense of sending technicians to recommission each
AHU on a seasonal basis has the potential for large savings in labor costs. However, such
costs may vary across time and locations. In order to show the time-invariant effect of
cascaded control, this paper will focus on quantifying the energy saving costs that require
almost no investment costs.

4.3. Increased Energy Costs

There are additional energy costs associated with hunting behavior. Due to the
nonlinear power consumption of most HVAC actuators (e.g., fan/pump power is cubically
related to speed), more power is consumed above a nominal input than below. Thus, for
oscillating signals, the average power consumed is greater than for the corresponding
fixed signal.

This section quantifies the additional energy costs due to hunting behavior and the
corresponding savings from the improved performance due to the implementation of
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cascaded controllers. As discussed in the previous section, equipment corrections at
Building 1600 from the previous section have resulted in the HVAC system operating
fault-free, and a comparison of daily energy usage and costs can be made by alternating
between the original PI and new cascaded controllers. As the only difference will be the
AHU temperature control architecture, assuming similar loads, any differences in energy
usage are due to control type alone.

To estimate daily resource consumption, additional information about the building
HVAC system was collected. The nominal power of the four AHU fans and CHW pump are
known and given in Table 4. Each of these motors are variable speed, normally operating at
some fraction of their maximum speed. The part load power can be found using standard
fan/pump affinity laws leading to the instantaneous electrical power estimate of Equation
(13) where ωi ∈ [0, 100] are speeds and the subscripts ‘oa’ and ‘p’ are for the DOAS fan and
SCHW pump, respectively. Each building on campus is billed at a rate of approximately
0.08 USD/kWh of electricity which represents the average cost of electricity production at
the campus generation sites.

Pelec = 18.65ω3
1 + 18.65ω3

2 + 14.92ω3
3 + 5.595ω3

oa + 14.92ω3
p [kW] (13)

Table 4. Building 1600 HVAC Motor List.

Unit AHU1 AHU2 AHU3 DOAS SCHW

Type Fan Fan Fan Fan Pump
Power 25 HP 25 HP 20 HP 7.5 HP 20 HP

The volume of chilled water used daily by the HVAC system in Building 1600 is
monitored in real time. However, the associated costs must be estimated since campus
utilities does not bill by volume, but by energy content. As all conditioning water is
returned to the central processing plants, buildings that require more cooling will return
warmer water. Solely billing on volume usage therefore does not capture the additional
cost of re-cooling warmer return water. Calculating energy used by the HVAC system
requires monitoring chilled water flow rate as well as the temperature differential between
supply and return water. The instantaneous power delivered by the CHW is given by
Equation (14).

PCHW = cp ρ
.

V ΔT = 0.1463
.

V ΔT [kW] (14)

This estimated power does not include costs associated with chilled water production.
An estimate for production cost is found by assuming an efficiency from a comparable
air-cooled chiller system. Coefficient of Performance (COP) curves for such a system are
shown in Figure 15a, based on the model from [20]. The chiller was sized at 400 kW
using the 98th percentile of instantaneous chilled water power observed for the period
between May through December of 2018. This assures that the unit will meet almost all
demand by the building chilled water system with nominal operation in a region of high
COP. To calculate the chiller electric power, Equation (15) divides the instantaneous chilled
water consumption by a cubic interpolation of the chiller COP based on part load (Lp) and
outdoor air temperature (Toa).

Pc =
PCHW

COP
(

Lp, Toa
) (15)

The COP curves shown in Figure 15a are used to estimate the additional costs asso-
ciated with oscillations in chiller load. As discussed previously, hunting results in above
average energy use for systems with nonlinear power profiles. Thus, for the chilled water,
the additional cost of hunting is expected to be greatest in the regions where COP surface
is the most nonlinear. However, hunting is most prevalent in times where the system part
load is low (i.e., in cool weather with minimal demand). The COP curve in that region is
essentially linear indicating that there will be minimal wasted energy due to hunting oscil-
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lations. To illustrate this effect, the cost penalties for a sinusoidal chilled water demand (5%
variation around the nominal load) are given in Figure 15b, which shows wasted energy in
the region of interest to be between 0.05 and 0.1%. This level of wasted energy might seem
insignificant. However, a 5% variation around nominal load is a conservative estimation,
and ±20% or more variation can often be observed (see Figures 10 and 11). Additionally,
Figure 15b shows a sharp increase in wasted energy when the outside temperature is low,
and the load is high. Systems tuned for high temperatures can suffer significantly with
exacerbated level of wasted energy.

 
(a) (b) 

Figure 15. (a) COP surface for a rooftop air-cooled chiller system; (b) Estimated wasted energy due
to ±5% sinusoidal hunting chiller load factor.

4.4. Estimated Cost Savings at Building 1600

The AHU discharge air temperature control (i.e., valve control) was switched between
the original hunting PI control and the new cascaded control approximately every two
weeks from May 2018 through May 2019. Leverage and standardized residual methods
were used to filter outliers from daily data and to ensure a consistent comparison of the
two approaches. More details on the statistical method used for the outliers can be found
in Appendix A. Energy consumption, costs, and cooling degree days were calculated daily
to generate Figure 16, comparing the two control architectures.

Figure 16. Daily HVAC energy production and usage costs for Building 1600 from May 2018 through
May 2019.
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Analysis of the two data sets (i.e., energy use with PI control and cascaded control)
found statistically significant differences in bias values but not slopes. Equation (16) shows
a difference of 54.6 kWh in daily AHU energy consumption for models fit with a constraint
on equal slopes. The smaller intercept value for the cascaded controller indicates that it is
better able to eliminate oscillatory behaviors that result in wasted energy and can better
follow setpoints due to faster transient responses. The reduced bias value corresponds to a
2.2–4.4% savings in total energy consumed by the AHU system. This analysis, however,
does not include other important cost factors of hunting. The true costs of hunting behavior
would also include an increase in maintenance costs, resulting from the frequent actuation.
When the maintenance and energy savings are combined with the economical and ease of
implementation, cascade control in buildings is strongly recommended.

EPI = 1488.3 + 35.8 × CDD [kWh]

EC = 1393.7 + 35.8 × CDD [kWh]
(16)

5. Conclusions

Hunting behavior in buildings causes an increase in operating cost arising from:
(1) increased replacement frequency of components due to excessive component wear,
(2) retuning cost due to occupant discomfort, and (3) increased energy cost. Among these
costs, this paper has focused on quantifying the energy savings from the detection and
elimination of hunting behavior in several buildings on a university campus through the
implementation of cascaded control loops. Shown in Figures 4 and 5, hunting in Building
1497 valve was significantly reduced from cycling 10 to 20 times per hour to no oscillations
after the cascaded control implementation. As a result, exit air temperature that used
to vary more than 2 ◦F was reduced within 0.5 ◦F. Shown in Figures 10 and 14, valve
hunting in Building 1600 AHU2 and AHU3 decreased, with oscillations in valve position
decreasing in magnitude from 30% to 20% after the implementation of cascaded control.
Additionally, the actuation frequency decreased from approximately 3 to 4 cycles per hour
to 1 cycle per hour for AHU3 and AHU2. Results at Building 0474 were mixed with a
slight improvement in tracking performance but an overall improvement in the consistency
of AHU discharge air temperature regulation. An estimation of the costs of poor AHU
discharge air temperature control was presented for Building 1600. These results show
2.2–4.4% energy cost savings due to the elimination of chilled water valve hunting, with
further potential savings associated with reduced maintenance costs. Further work and
detailed analysis can be found in [4].

Results also show the mechanism for hunting behavior to cause a more measurable
loss of efficiency in HVAC systems. While chilled water production may have minimal
nonlinearity around a given operating point, fan and pump affinity laws have a consistent
nonlinear relationship between speed and power. Should hunting be induced in those
actuators due to their poor control or that of an upstream controller (i.e., chilled water
control), energy savings will be more prevalent. This paper has shown that cascaded
control improves tracking performance, reduces the need for seasonal retuning due to its
inherently non-linearity limiting nature, and is easy to implement with a single LOOP
command. While the scope of this paper has been on improving supply water control,
many campus buildings examined by the authors have shown hunting behavior in their
AHU supply fan loops. Implementation of cascaded control loops at these buildings can be
used to more easily establish energy penalties related to poor PI control design.
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Nomenclature

B Bias
C Cooling demand
cp Heat capacity
CDD Cooling Degree Day
COP Coefficient of Performance
D Damper demand
e Error
E Energy
F Flow demand
G System transfer function
k Control gain
L Inner loop transfer function
Lp Part load
P Power
PID Proportional-Integral-Derivative controller
r Reference input (set point)
RMSE Root-Mean-Square error
s Laplace variable
t Time
u Control signal
.

V Volumetric flowrate
y Output
δ Valve opening
θ Damper position
ρ Density
σ Operating condition
ψ Nonlinear gain
ω Rotational speed
Subscripts
C Cascaded
CHW Chilled water
D Derivative
elec Electric
i, L Inner loop
I Integral
o Outer loop
oa Outside air
p Proportional
pc Proportional-cascade
PI Proportional-Integral
s Sample
set Setpoint

Appendix A

A set of linear regressions can be generalized into a matrix representation as in
Equation (A1). Based on the regression fit, prediction of dependent variables can be accom-
plished using Equation (A2). With matrix manipulation, prediction can be expressed in
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terms of observation y as in Equation (A3). The matrix H can then be defined and maps the
observation y to the prediction ŷ as in Equation (A4).

Y = Xβ+ e, (A1)

ŷ = Xb, (A2)

ŷ = X
(
X′X

)−1X′y, (A3)

ŷ = Hy, (A4)

The diagonal elements in the H matrix are called leverage points. These points
represent the effect of observation yi on prediction value ŷi. Points with high values of
leverage points can be labeled as outliers and be filtered out. Another way to define
leverage point is shown in Equation (A5). With expressions for the leverage points defined,
a general rule-of-thumb of filtering criterion for leverage is presented in Equation (A6).

hii =
1
n
+

(xi − x)2

∑n
j=1

(
xj − x

)2 , (A5)

hii >
6
n

, (A6)

As a second set of filters, the standardized residuals method was used to further
process the building data. Standardized residual is defined as the ratio of the prediction
error, ei, over the standard deviation of the error (Equation (A7)). Points with standardized
residual magnitude above 95% percentile confidence level of t distribution outlined in
Equation (A8) were labeled as outliers and filtered out, where n is number of observations
and k is the number of predictors.

e∗i =
ei

sd(ei)
, (A7)

t(n − k − 2), (A8)

After the outliers had been removed, analysis of covariance was conducted to separate
out the covariate effect of cooling degree days on the dependent variable, total energy
consumption. In the analysis of covariance, cascade and PI control are classified by λ = 1
and λ = 0, respectively. In the analysis of data, the two different control algorithm
distributions are fitted to one of the following cases:

Case I: Different intercepts and different slopes

Y = β0 + β1λ + β2X + β3λX + e, (A9)

Case II: Different intercepts but same slopes

Y = β0 + β1λ + β2X + e, (A10)

Case III: Same intercepts and same slopes

Y = β0 + β3X + e, (A11)

Data from Building 1600 was used to test which of these cases best fit the results.
Using Case I, Table A1 is generated. For Case I, β3 had high p-value and therefore, the
two data sets have no significant difference in their slopes. Case II was checked for the
two different controller data sets. p-values from Table A1 show significant differences in
intercepts with same slopes. β0 gives the intercept for the PI controlled dataset and β0 + β1
gives the intercept for the cascaded control dataset. Case III was not performed since Case
II showed statical significance.
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Table A1. Case I and II Fitted with Building Data.

Coefficient t P > |t|

Case I
β1 −92.8 −2.947 0.004
β3 2.9 1.441 0.152

Case II
β0 1448.3 - -
β1 −54.6 −3.202 0.002
β2 35.8 - -
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Abstract: This paper presents a general methodology to model and activate the energy flexibility of
electrically heated school buildings. The proposed methodology is based on the use of archetypes of
resistance–capacitance thermal networks for representative thermal zones calibrated with measured
data. Using these models, predictive control strategies are investigated with the aim of reducing
peak demand in response to grid requirements and incentives. A key aim is to evaluate the potential
of shifting electricity use in different archetype zones from on-peak hours to off-peak grid periods.
Key performance indicators are applied to quantify the energy flexibility at the zone level and the
school building level. The proposed methodology has been implemented in an electrically heated
school building located in Québec, Canada. This school has several features (geothermal heat pumps,
hydronic radiant floors, and energy storage) that make it ideal for the purpose of this study. The study
shows that with proper control strategies through a rule-based approach with near-optimal setpoint
profiles, the building’s average power demand can be reduced by 40% to 65% during on-peak hours
compared to a typical profile.

Keywords: energy flexibility; model-based control strategies; school buildings; measured data

1. Introduction

Electric utilities consider demand-side management (DSM) a key solution to reduce
peak power demand. In periods of peak power demand, using DSM is more cost-effective
than operating peaking power plants or purchasing power from other jurisdictions [1].
DSM can have an even more significant effect on the grid when integrated with renewable
energy sources (RESs). Buildings are important components of smart electricity grids; they
can provide flexible services to reduce peak loads and shift demand in accordance with
local RES production, such as energy storage in thermal mass and batteries [2,3], charging
of electric vehicles [4], and HVAC system adjustments [5]. Ruilova et al. [6] defined energy
flexibility in buildings as “the possibility to deviate the electricity consumption of a building
from the reference scenario at a specific point in time and during a certain period”. Annex
67 of the IEA Energy in Buildings and Communities Programme (IEA-EBC) defined energy
flexible buildings as those with “the ability to manage [their] demand and generation
according to local climate conditions, user needs, and grid requirements” [5]. Energy
flexibility takes into consideration two-way communications between buildings and the
power grid. In this way, buildings are regarded not as consumers but as prosumers [7].
Energy flexibility can be referred to in two ways: thermal energy storage and shifting
equipment operation. According to the first approach, the energy consumption of a specific
electrical device can be predicted based on the thermal properties of the device or building
to minimize electricity consumption. In the second approach, some electrical devices can
be controlled to shift the electricity demand to periods with lower electricity prices or
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greater renewable energy generation [8]. Based on the published literature and presented
in IEA-EBC Annex 67, increasing energy flexibility for the design of smart energy systems
and buildings is influenced by (1) physical features of the building [2,3], (2) heating,
ventilation, and air conditioning (HVAC) systems [5], (3) appropriate control systems and
strategies [5], and (4) IEQ requirements [9]. In this context, an effective application of control
strategies within HVAC systems is essential for increasing buildings’ efficiency [10–12] and
energy flexibility [13].

Finck et al. [14] developed a method and tested it under real-life conditions, including
the stochastic behavior of occupants and the dynamic behavior of the building and heating
system. They used key performance indicators to quantify energy flexibility by considering:
(1) energy and power, (2) energy efficiency, and (3) energy costs. They found that this
categorization helps to make clear the benefits of using flexibility indicators in real-life ap-
plications. Junker et al. [15] presented a methodology for evaluating energy flexibility based
on the flexibility function, to describe how a particular smart building or cluster of smart
buildings reacts to a penalty signal. Coninck and Helsen [16] developed a methodology
to quantify flexibility in buildings based on the cost curve. The methodology returns the
amount of energy that can be shifted and the costs of this load shifting. Tauminia et al. [17]
proposed a multidisciplinary approach to finding trade-offs between the need to limit
environmental impacts and the trend toward higher building energy performance. They
found that an oversized photovoltaic (PV) system is not the best solution for load-matching,
grid interactions, and environmental impacts in the absence of storage systems. They noted
that installing a storage system in conjunction with the appropriate size of a PV system
would result in an improved load-matching of the building and reduce grid dependence at
low generation times.

Montreal (Québec, Canada) is categorized in climate zone 6 [18], meaning it experi-
ences extreme cold weather during winter. Québec generates most of its electricity (99.8%)
from hydroelectric plants, and most commercial buildings rely on electricity as their pri-
mary or only energy source [19]. Thus, during cold weather in Québec, the morning peak
load (6:00 a.m. to 9:00 a.m.) and evening peak load (4:00 p.m. to 8:00 p.m.) put a strain on
the electrical grid [20]. Thus, it is imperative to analyze energy consumption and develop
control strategies that effectively reduce and shift peak electricity demand due to heating
in buildings. In this context, obtaining a model that provides reliable predictions and can
be implemented in real controllers is crucial for optimizing building performance.

The Québec province has over 2600 schools, reaching over 1 million students and
almost 100,000 teachers and other staff [21]. Therefore, quantification of energy flexibility
in school buildings has a significant role in providing a safe and efficient operation of the
future resilient grid. Additionally, indoor environmental quality (IEQ) has a considerable
impact on the health and well-being of teachers and students. Thus, simultaneously
meeting the need to improve energy flexibility as a grid requirement and the growing
demands for environmental performance (especially during/after the COVID pandemic)
is of utmost importance to be considered. To achieve these goals, we need to develop
models for a school building that provide reliable predictions and can be generalized for
widespread deployment in schools.

Although school buildings contribute considerably to the total energy needs, few
studies have been focused on school buildings in Canada [22,23]. They examined the
energy use intensity (EUI) of 129 elementary and junior high schools in Manitoba, Canada,
using data collected from 30 school buildings over ten years. They found that the average
EUI at a K-12 school is 127 kWh/m2/year, 264 kWh/m2/year at a junior high school,
and 270 kWh/m2/year at an elementary school. They stated that energy consumption
might differ between K-12 and elementary and secondary schools due to differences in
equipment and activities. Another study by Ouf et al. [23] examined the use of electricity
and natural gas in Canadian schools. They divided the schools into three categories based
on the year they were built: before 2004, between 2004 and 2013, and after 2013. They
found that the electricity EUIs before 2004 was 58 kWh/m2/year, between 2004 and 2013
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was 116 kWh/m2/year, and after 2013 was 125 kWh/m2/year. Newly constructed schools
are more energy efficient in heating and cooling, but school electricity usage has increased
due to the electrification of heating systems and additional teaching equipment.

Building energy performance simulation (e.g., EnergyPlusTM and TRNSYS) is a pop-
ular approach to studying school buildings. However, studies based on control-oriented
models and measured sensor data of schools are relatively rare. This study investigates
measured field data in an archetype electrically heated school building in cold regions.
The main objectives of this paper are to: (1) develop a methodology to create data-driven
control-oriented models that facilitate developing and assessing the impact of alternative
control strategies in the schools; (2) propose different control strategies aimed to enhance
the energy flexibility potential of school buildings; and (3) introduce key performance
indicators (KPIs) as key parameters to quantify energy flexibility at the zone and building
levels while considering IEQ.

2. Methodology

In recent years, international initiatives have recognized the need for a methodology to
assess energy flexibility in buildings. This paper outlines the following steps in the method:

1. Identification of the system and load.
2. Characterization of flexibility.
3. Analyzing the impact of scenario modeling on the demand profiles.
4. Proposing key performance indicators to facilitate interaction between building oper-

ators, aggregators, and utility companies.

In addition, the method should be scalable and easy to implement [24]. Following
these steps, this paper aims to model and enhance the energy flexibility of electrically heated
school buildings through a rule-based approach with near-optimal setpoint profiles based
on the archetype grey-box models. These archetype models can be adjusted depending
on the specific features of the building. This study presents a practical methodology that
facilitates the modeling and widespread implementation of appropriate control strategies
in school buildings.

2.1. Data-Driven Grey-Box Model

Data-driven grey-box models ensure both physical insight and the reliability of mea-
sured data. Literature review indicates that grey-box models are also suitable for demand-
side management in smart grids [25–28]. Gouda and Danaher [25] proposed a second-
order model in which each construction element is modeled using three resistances and
two capacitances. Candanedo and Dehkordi [26] presented a generalized approach for
creating reduced-order control-oriented models. Their methodology can be implemented
in building simulation tools to generate simplified models automatically. Bacher and
Madsen [27] developed a statistical method for identifying models in building thermal
studies. Reynders et al. [28] analyzed two detached single-family houses in Belgium. These
two buildings represent two extreme cases of detached single-family houses in Belgium
regarding insulation level (high and low insulation levels). They used data obtained from
detailed building simulations with the IDEAS library in Modelica software. This study
investigated five grey-box model types, ranging from first- to fifth-order models.

In grey-box models, choosing an appropriate level of resolution is essential, as it
directly affects the parameter tuning and calculation time. A high-order model containing
too many parameters requires information that is not often available with adequate accuracy.
An oversimplified model may not be accurate enough to help make decisions. Therefore,
obtaining a model that provides reliable predictions and can be implemented in real
controllers is crucial for optimal building performance.

This paper investigates the accuracy of data-driven grey-box models for energy de-
mand simulation and energy flexibility analysis. Providing a closer link between smart
grids and smart buildings requires appropriate control strategies. Thus, this study presents
an application of the developed model for control purposes based on smart grid re-
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quirements. The following steps are used to develop grey-box models and quantify
energy flexibility:

1. Real building measurement data are collected from the smart meters installed in the
archetype zones. Data included variables such as electricity consumption (kW), zone
air temperature (◦C), weather data, and specific data are related to each zone (e.g.,
floor heating temperature). All measurements are taken at intervals of 15 min.

2. Numerical models of thermal building control are developed. These models are based
on RC model thermal networks.

3. The developed models are calibrated using the collected data. The important pa-
rameters are identified using the Sequential Least-Squares Programming (SLSQP)
in Python.

4. Appropriate control strategies for zones with the convective system are presented to
enhance the energy flexibility available from the building to the grid at specific times,
depending on the grid requirement.

5. A building energy flexibility index (BEFI) is applied to quantify dynamic building
energy flexibility at the zone and building levels.

6. Predictive control strategies for zones with the convective system and hydronic radiant
floor system are presented to use the maximum thermal capacity of the concrete slab,
reduce peak load during on-peak hours, and enhance energy flexibility when needed
by the grid.

2.2. Governing Equation

A fully explicit finite difference approach is used to solve the energy balance equa-
tions at each node in the models. The fully explicit approach assumes that the current
temperature of a given node depends only on its temperature and the temperature of
the surrounding nodes at a previous time step. By using the heat balance for the control
volume, a node’s differential equation can be written as [29]:
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• Uij: Thermal conductance between nodes i and j, W/K;
• Uik: Thermal conductance between nodes i and k that node k has a known temperature,

W/K.
• T: Temperature at node i, ◦C.
• Ci: Thermal capacitance at node i J/K.

•
.

Q: Heat source at node i, W.
• Δt: Time step, s.

The capacitance of the air node contains a factor CT (air thermal capacitance multi-
plier) that accounts for phenomena such as (energy storage in furniture and objects, the
time required for air mixing, delay due to ducting and other factors) that in a low-order
model result in capacitance with an observed effective value significantly larger than the
one calculated using only the physical properties of the air. The air thermal capacitance
multiplier ranges between 6 and 10 [30]. In this paper, we use CT = 8. Equation (1) in matrix
form is:
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where
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• 
: is an elementwise multiplication operator.
• N: is the number of nodes.
• M: is the number of nodes with known temperatures.

To assure numerical stability in the solution, the time step must be chosen according
to the stability criterion defined in Equation (3):

Δt ≤ min
(

Ci

∑ Ui

)
(3)

Using Equation (4), the proportional–integral control (PI controller) calculates the
heat produced by the heating system at each time step, and the integral part should be
reset periodically.

.
Q
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)
dt (4)

where

• kp: proportional gain of the controller, W/K.
• ki: integral gain of the controller, W/K·s.

Equation (5) illustrates state-space representations of linear differential equation sys-
tems. In this equation, (x) is the state vector with n elements, (u) is the input vector with
p elements, and (y) represents output vectors with q elements. The vectors are linked by
the following matrices: A (n × n), B (n × p), C (q × n), and D (q × p).

.
x = Ax + Buy = Cx + Du (5)

Temperatures of thermal capacitances are generally considered the system’s state in
this approach since they have specific physical meaning and are relatively easy to mea-
sure [26]. Model identification refers to determining the physical properties of unknown
systems based on some experimental or training data. In this paper, the Python func-
tion SLSQP is used to minimize the coefficient of variance of the root mean square error
(CV-RMSE) as a fit metric. In accordance with ASHRAE Guideline 14, the model should
not exceed a CV-RMSE of 30% relative to hourly measured data [31]. By minimizing CV-
RMSE, the optimization algorithm determines the equivalent parameters for RC circuits.
Equation (6) [31] is used to calculate CV-RMSE, where Ti represents the measurement data,
T̂i represents the simulation results, n corresponds to the total number of observations, and
T represents the average of all measurements.

CV − RMSE(%) = 100 ×

√[
∑n

i=1 (Ti − T̂i)
2/n

]
T

(6)

This methodology can be used to create archetype RC thermal networks for repre-
sentative zones. For example, Figure 1 presents a third-order thermal network RC model
(4R3C) for zones with a convective system, which is defined by three state variables.

The inputs to this RC thermal network model are outdoor temperature (Text), solar heat
gain (QSG), internal heat gain from occupants and equipment (QIG), and heat delivered by
local water–air heat pumps (Qaux), and the output is the indoor air temperature. Montreal
weather data are used to determine the outdoor temperature and solar irradiance [32].
Then, the performance of the RC thermal network model is validated with measured data.
Table 1 presents an overview of the third-order thermal network parameters.
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Figure 1. Thermal network model of the zones with convective system.

Table 1. Description of RC thermal network model parameters (4R3C).

Parameter Description Parameter Description

R1, ext Resistance of Wall 1 Envelope node
R1,2 Resistance between wall and air 2 Indoor air temperature node
R2,3 Resistance between floor and air 3 Floor temperature node

R2, ext Resistance of infiltration Text Outdoor temperature
C1 Capacitance of Envelope QSG Solar heat gain
C2 Capacitance of effective air QIG Internal heat gain
C3 Capacitance of floor Qaux Heating power

2.3. Energy Flexibility Quantification

The term “building energy flexibility” refers to “the ability to deviate from the reference
scenario at a specified point in time and for a specified period” [6]. Enhancing energy
flexibility is essential for balancing supply and demand on the grid and incorporating
renewable energy capacity to reduce peak demand at key periods for the grid. Flexibility is
also essential for providing contingency reserves for emergencies (e.g., after a power outage)
and enabling dynamic electricity trading. Flexible buildings can also meet immediate or
short-term grid needs.

Thus, real-time energy flexibility should be predicted and calculated on short notice
(e.g., kilowatts available over the next few hours). This paper presents dynamic building
energy flexibility indexes (BEFI) to quantify energy flexibility in school buildings and their
interaction with the smart grid. We have described the BEFI concept in two previous
conference papers on the topic with a preliminary introduction and case studies [33]. By
implementing the flexibility strategy and using the reference as-usual profile, Equation (7)
calculates the average BEFI at time t for duration Dt, Equation (8) presents the BEFI as a
percentage, and Equation (9) quantifies BEFI% at the building level.

BEFI(t, Dt) =

∫ t+Dt
t Prefdt − ∫ t+Dt

t PFlexdt
Dt

(7)

BEFI% =
Pref − PFlex

Pref
(8)

BEFIbuilding =
n

∑
1

BEFIzone (9)

A model can be used to determine the difference in power demand (P, unit: Watt)
between the reference case (Pref) and the flexible case (PFlex) to determine the available
flexibility. This calculation gives the available flexibility at time t. Every hour, the calculation
is repeated to give the available flexibility over the period BEFI(t, Dt).
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3. Description of the Case Study: Electrically Heated School Building

The case study school (Figure 2) is an electrically heated building located in Sainte-
Marthe-sur-le-Lac (near Montreal, QC, Canada). The total floor area of this two-story school
building is 5192 m2 (2596 m2/story). The school includes the following features:

• In operation since 2017.
• Hydronic radiant floor systems in several zones (gym and offices).
• Convective systems in several zones (classrooms, library, kindergarten).
• A 28-loop geothermal system.
• An Electrically heated Thermal Energy storage device (ThermElect) with an 80 kW

heating capacity. ThermElect converts electrical power into stored heat when the price
of electricity is low (or when demand on the grid is low) and provides heat when
demand is high.

• Water–air Heat pumps with a heating capacity of 40 kW at 36 terminals.
• Water–water heat pump with a capacity of 33 kW.

 

Figure 2. Electrically heated school building, Horizon-du-Lac (near Montreal, QC, Canada).

The building automation system (BAS) and dedicated electrical submeters at this
school provide high-quality data with a sampling timestep of fifteen minutes. The ther-
mocouples are T-types with a standard accuracy of 0.2 ◦C for the temperature range
of 0 to 70 ◦C. The gym and offices have been designed with significant thermal mass,
which helps to improve energy flexibility. Table 2 presents some of the key features of the
school building:

Table 2. Key features of the school building.

General Information

In operation since 2017
Site Sainte-Marthe-sur-le-Lac, Québec, Canada
Latitude 45.5
ASHRAE climate zone 6
Heating degree days 4495
Net floor area (m2) 2596 m2/floor
Number of floors 2
Window type Double-glazed argon low-e
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Table 2. Cont.

Mechanical

Space heating/cooling Ground-source water–water HP and local water–air HPs

Ventilation system
Balanced mechanical ventilation with DCV, with centralized
AHUs with rotary heat recovery. Centralized dedicated
outdoor air system (DOAS) modulated based on CO2

Main system, features Ground-source heat pump (GSHP), energy recovery
ventilator (ERV)

DHW source Electricity boiler

Electrical

Lighting, typical type, controls LED-tube luminaires

System Description

Figure 3 illustrates the schematic of the building’s heating system. The system consists
of an integrated geothermal system, ThermElect, a water–water heat pump, local water–air
HPs, and a hydronic radiant floor system. All heating systems are electrical devices and
hence provide a link with the electrical grid. A predictive controller can exploit this link to
help balance electricity production and demand, among other potential uses.

Figure 3. Process flow diagram (PFD) of the building heating systems.

The water–water HP has a capacity of 33 kW in two stages (16.5 kW per stage)
and a maximum water supply temperature of 48.8 ◦C. Borehole Thermal Energy Storage
(BTES) with 28 loops on the evaporator side of the HP generates low-temperature heat. A
thermal energy storage device (ThermElect) pre-heats the water input to local water–air
HPs and water–water HP. The supply water temperature of the HP to the zones is controlled
through a thermostatic three-way valve with a maximum temperature setting of 48.8 ◦C.
Thermostats regulate the indoor temperature in each zone separately. The hydronic radiant
heating and convective systems supply space heating in the offices and the gym.

4. Modeling Results and Discussion

4.1. Archetype Zones with Convective System: Classrooms

Figure 4 shows one of the classrooms in this school. Classrooms are equipped with
ground-source water–air heat pumps (1.5–2 tons each) with COP of 3.2 and proportional–
integral control (PI) in the local-loop control of room temperature. The classrooms are
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typically 9.1 m long by 7.2 m wide, with ceiling–floor heights of 3.0 m. Figure 5 shows a
schematic of a classroom equipped with a water-to-air HP:

Figure 4. Typical classroom with convective heating.

 

Figure 5. Schematic of a classroom with water–air heat pump.

Figure 6 presents the thermal network RC model structures for zones with convective
systems. Figure 6a–c shows the first-order model (1R1C), second-order model (3R2C), and
third-order model (4R3C), respectively. The inputs for the analyzed models include outdoor
temperature (Text), solar heat gain (QSG), internal heat gain (QIG), and heat delivered by
water–air heat pumps (Qaux). Montreal weather data are used to determine outdoor
temperature and solar radiation. In the measured data, the heat supplied by water–air
HP is calculated by multiplying the measured electricity demand by COP of the HP and
is used for comparison of models and measurements (shown in Figure 7). The solar heat
gains, internal gains, and heating for the third-order model are distributed over the thermal
capacitances (Figure 6c). The performance of the simplified RC models from the first-order
to the third-order model is validated with measured data, as shown in Figure 7a–c.

As shown in Figure 7a, the first-order model cannot capture the system’s dynamics
well. The second-order model has better calibration results than the first-order model,
but it still cannot capture details of the thermal dynamics of the system (Figure 7b). The
calibration of the third-order model (Figure 7c) shows good accuracy and adequate sta-
tistical indices (CV-RMSE of 8% and a maximum difference of 0.4 ◦C). It should be noted
that higher-order models require additional inputs, such as heat flux measurements, to
guarantee observability. Since these measurements will not be available in most buildings,
higher-order models’ identity cannot be guaranteed [28].
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(a) 

 
(b) 

 
(c) 

Figure 6. RC thermal network model: (a) first-order, (b) second-order, and (c) third-order models.

 
(a) 

 
(b) 

 
(c) 

Figure 7. Calibration of RC thermal network models with measured data: (a) first-order, (b) second-
order, and (c) third-order models.
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4.1.1. Weather Conditions: Cold Winter Days

Weather data for Montreal’s coldest days (5–8 February 2020) are selected because peak
energy demand occurs under these conditions. Figure 8 presents the outdoor temperature
and solar flux during these days. The weather data are measured data and were obtained
from the hourly Montreal weather file [32].

Figure 8. Outdoor temperature and solar flux-Montreal’s coldest days.

4.1.2. Available Energy Flexibility in Contingency Event

Contingency reserves are amounts of power that a utility can use in the event of the
loss of a generation unit or unexpected load imbalance. To address this need, real-time
thermal load flexibility should be predicted ahead of time or calculated continuously and
should be available at short notice (e.g., 10 min) over an hour or several hours. This section
presents the contingency strategy to quantify the energy flexibility available from the zones
with a convective system to the grid at specific times. In this case, a tolerance band setpoint
profile is proposed. A flexible approach is proposed within the tolerance limits where
the temperature is allowed to deviate from the reference setpoint. For example, during
a flexibility event occurring at 2 p.m. for one hour, the temperature is allowed to drop
by 2 degrees to provide a “temporary relief” to the heating system (Figure 9a). At this
point, the setpoint is lowered two degrees (from 24 to 22 ◦C). Figure 9b shows the results of
available energy flexibility during contingency events.

 
(a) 

 
(b) 

Figure 9. (a) Daily setpoint profile with acceptable temperature band and a flexibility event with a
duration of 1 h at 2 pm; (b) energy flexibility curve, 1 h event.
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According to Figure 9b, energy flexibility of around 20 W/m2 can be provided to the
grid in the event of loss of a generation unit or other unexpected power outages. The BEFI
can be implemented in the BAS with a predictive model controller, which can optimize
power flexibility for a known period of high demand. This makes BEFI appropriate for
various grid requirements, including contingency reserves and load shifting.

4.2. Archetype Zones with Hydronic Radiant Floor and Convective Heating Systems

Figure 10 presents a schematic of the office zones equipped with local water–air HP
and a hydronic radiant floor system on the school’s first floor.

Figure 10. Schematic of the office zone equipped with hydronic radiant floor and convective systems.

The plan view of the offices and piping of the hydronic radiant floor system is shown
in Figure 11. These offices are heated with hydronic radiant and local convective systems.
Proportional–integral thermostats control heating systems. The thermocouples in the offices
are T-types with a standard accuracy of 0.2 ◦C for the temperature range of 0 to 70 ◦C.
In addition to air temperatures, floor temperatures are also measured at eight different
locations, as shown in Figure 11.

Figure 11. Plan view of the offices with hydronic radiant floor system.

Table 3 presents the radiant hydronic floor area in each zone and the piping length.
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Table 3. Floor area and piping length of the offices with hydronic radiant system.

Thermal Zone Area (m2) Piping Length (m)

Office 1 64 244
Office 2 12 69
Office 3 21 91
Office 4 27 176
Office 5 19 87

Total 143 667

A front view of the slab with hydronic radiant piping can be seen in Figure 12. The
floor is a concrete slab 15 cm thick insulated at the bottom with total thermal resistance
of 5.64 m2 K/W. The pipe is made of cross-linked polyethylene (PEX), has a diameter of
1.25 cm, and is located at the depth of 6 cm. The pipes were kept in place by a wire mesh
before casting concrete, and the distance between the pipes was 30.4 cm.

Figure 12. Slab cut with hydronic radiant heating piping.

Concrete’s properties are affected by its age, temperature, humidity, and moisture
content [34]. Following ASHRAE [35], a normal-density concrete has a conductivity of
1.7 W/(m·K), specific heat of 800 J/(kg·K), and a density of 2200 kg/m3

. A water–water
HP provides a controlled flow rate of 0.29 L/s with a maximum temperature of 48.8 ◦C.
The HP has a nominal COP of 2.7 under full load conditions at 48.8 ◦C. Heating power to
the hydronic radiant system is calculated by Equation (10):

Q =
.

m × cp × ΔT (10)

According to the ASHRAE standard 55, the floor temperature must not exceed
29 ◦C [36]. Thus, a floor surface temperature of 26 ◦C is considered in this study. Several
floor sensors and control valves protect the floor from overheating and enhance thermal
comfort. The RC thermal network for the zones with hydronic radiant and convective
heating/cooling systems is shown in Figure 13. The inputs are outdoor temperature (Text),
solar gain (QSG), internal heat gain (QIG), heat delivered by the hydronic radiant system
(qRF), and heat delivered by the convective system (Qaux). These inputs can be:

• Controllable: such as the heat delivered by the heating systems and the ventilation
airflow rate.

• Uncontrollable: such as the outdoor temperature, solar gains, and internal gains.
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Figure 13. RC thermal network model of the zones with hydronic radiant floor system and
convective system.

The performance of the simplified RC model is validated with measured data, as
shown in Figure 14.

Figure 14. Calibration of RC thermal network model with measured data, zones with hydronic
radiant floor system and convective system.

Table 4 provides an overview of the thermal network model parameters:

Table 4. Description of RC thermal network model parameters (7R4C).

Parameter Description Parameter Description

1 Node of envelope R1,ext Resistance of wall, (K/W)

2 Node of indoor air R1,2
Resistance between wall and air

node, (K/W)

3 Node of floor surface R2,3
Resistance between floor and air

node, (K/W)
4 Node of pipe Rinf Resistance of infiltration, (K/W)

5 Node of concrete (top) R3,4
Resistance between pipe and floor

surface, (K/W)

Text Temperature of outdoor, (◦C) R4,5
Resistance between concrete and

pipe, (K/W)

Tg Temperature of ground, (◦C) R6,g
Resistance between ground and

concrete, (K/W)
QSG Solar heat gain, (W) C1 Capacitance of envelope, (J/K)
QIG Internal heat gain, (W) C2 Capacitance of effective Air, (J/K)
Qaux Heating power, (W) C4 Capacitance of floor (top), (J/K)
QRF Heating of radiant floor, (W) C5 Capacitance of floor (below), (J/K)
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4.2.1. Control Scenarios for Energy Flexibility Activation in Archetype Zones with
Hydronic Radiant Floor and Convective Systems

This section investigates the heat supplied to the zones with hydronic radiant and
convective systems. It will be possible to develop simple predictive control strategies that
use thermal storage potential while also considering peak load and thermal comfort. In the
reference case (a business-as-usual case), the hydronic radiant floor temperature setpoint
(21.8 ◦C) is always lower than the air temperature setpoint (23 ◦C) during the daytime
(Figure 15a). As a result, the convective system is the primary heating system, and the floor
acts as a heat sink. In this study, alternative control scenarios for a cold winter day are
examined and compared to current building operations as a reference case. Assumptions
considered in designing control strategies include:

• To maintain the slab temperature within the comfort range, the slab surface is set to a
maximum of 26 ◦C.

• The water–water HP can deliver up to 15 kW of heat to the radiant floor heating
system, according to the observation from measured data.

• The operating temperature is considered to be the effective indoor temperature.
• During unoccupied hours (nighttime), the slab is charged and discharged during

occupied hours (daytime).

 
(a) 

 
(b) 

 
(c) 

Figure 15. Temperature profile in different control strategies: (a) Control Strategy 1 (reference case);
(b) Control Strategy 2; (c) Control Strategy 3.
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1. Control Scenario 1 (Reference Case)

The reference case is presented in Figure 15a, which is the current operation of zones
with hydronic radiant heating. In this scenario, the convective system is the primary heating
system, and the hydronic radiant system is not commonly used. As seen in Figure 16a, in
this case, the peak load is 10 kW and occurs during the on-peak hours (6 a.m. to 9 a.m.).
Thus, in order to improve the energy flexibility of the building, the following two control
scenarios are presented.

 
(a) 

 
(b) 

 
(c) 

Figure 16. Heat delivered to the thermal zones in different control strategies: (a) Control Strategy 1
(reference case); (b) Control Strategy 2; (c) Control Strategy 3.

2. Control Scenario 2 (Constant Air Setpoint Temperature)

This control scenario involves preheating the slab from midnight to 8:00 a.m. with
a setpoint temperature of 26 ◦C (Figure 15b). During occupied hours (from 8:00 a.m. to
5:00 p.m.), the slab’s set point temperature is 18 ◦C, and then it is raised to 22 ◦C. It is
considered that the air setpoint temperature is always constant and equal to 20 ◦C during
occupied and non-occupied hours.

According to Figure 15b, the operative temperature varies between 21 and 24 ◦C, which
is within the thermal comfort range for the occupants. In Figure 16b, the heat delivered to
the thermal zones is calculated using Control Scenario 2. In this control scenario, the radiant
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floor system is the primary heating system, and the heating demand during occupied hours
is reduced. It should be noted that in this control scenario, the ventilation system is off,
resulting in poor air quality in the offices. Therefore, Control Strategy 3 is presented to
address the air quality of the zones during occupied hours.

3. Control Scenario 3 (Variable Air Setpoint Temperature)

As part of this control scenario, the air setpoint temperature is increased to 23 ◦C
during occupied hours (Figure 15c). As a result, the morning peak load can be reduced, and
fresh air can be provided to the zones from 10:00 a.m. to 5:00 p.m. The energy consumption
in this flexible scenario is 133.5 kWh, which is less than the reference case (136.6 kWh). The
following section will address the slab’s state of charge (SOC) (i.e., thermal storage), as
well as the flexibility associated with reducing peak loads and energy consumption over
peak periods.

4.2.2. State of Charge (SOC) of the Slab

The thermal inertia in the slab can provide the flexibility to reduce peak loads and
shift the heat production of the radiant heating system in time. State of charge (SOC) is a
concept that describes how much energy is stored at time t relative to the total capacity, as
shown in Equation (11) [37]:

SOC =
Eth(t)− Eth,min(t)

Eth,max(t)− Eth,min(t)
(11)

The SOC is the percentage of the stored thermal energy as a function of the minimum
and maximum slab surface temperatures, as given by [38].

SOC =
Tslab(t)− Tth,min(t)

Tth,max(t)− Tth,min(t)
(12)

where Tth,max is the maximum slab surface temperature, set at 26 ◦C for indoor thermal
comfort, and Tth,min is the minimum slab surface temperature, considered equal to the
average indoor air temperature.

Figures 17 and 18 illustrate heat storage and SOC of the slab in the reference case
(Control Strategy 1) and flexible case (Control Strategy 3). It can be observed that in the
reference case, the slab cannot be fully charged. Thus, the thermal energy storage capacity
of the slab is not fully utilized; while using a flexible case (Control Strategy 3), the slab
is fully charged during unoccupied hours and discharged during on-peak hours. This
approach activates the thermal load flexibility of the school and allows the electricity grid
to manage electricity demand when needed.

Figure 17. Heat storage and state of charge (SOC) of the slab (reference case).
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Figure 18. Heat storage and state of charge (SOC) of the slab (flexible case).

4.2.3. Thermal Load Flexibility in Archetype Zones with Hydronic Radiant System

Equations (7)–(9) calculate BEFI by implementing the flexibility strategy and compar-
ing it with the reference as-usual profile. In Figure 19, a flexibility strategy is applied to
zones with hydronic radiant and convective heating systems to calculate the hourly BEFI.

 
Figure 19. Average hourly BEFI (flexible control strategy).

By applying a flexible control strategy, available hourly BEFI provided to the grid
during on-peak hours is positive, indicating the power reduction value available compared
to the reference case. During nighttime (off-peak hours), the BEFI is negative, showing a
higher power demand for charging the slab and preheating the zones. Based on Figure 19,
around 60 W/m2 energy flexibility can be provided to the grid in the morning and 45 W/m2

in the evening (on-peak hours).

4.3. Building Level Energy Flexibility

Figure 20 presents energy flexibility at the building level. Zones with radiant floor and
convective heating systems can provide around 60 W/m2 energy flexibility. Additionally,
classrooms and the library with convective heating systems can provide 20 W/m2 during
on-peak hours. In total, by implementing appropriate control strategies, the school building
can provide energy flexibility from between 30 W/m2 and 80 W/m2 when needed by
the grid.

In this school, the gym and offices’ floor area is 586 m2, and the classrooms’, libraries’,
and kindergartens’ floor is 2054 m2. Therefore, the school at the building level has potential
flexibility of between 50 and 80 kW, representing 40 to 65% building energy flexibility. This
bottom-up approach opens the path towards labeling energy flexibility in school buildings
as part of the future smart grid and smart cities.

137



Buildings 2022, 12, 581

Figure 20. Hourly building energy flexibility in school.

5. Conclusions

School buildings are an important part of the building stock; they also represent a
sizable portion of the total energy use in the building sector. Therefore, quantification of
energy flexibility in school buildings has a significant role in providing a safe and efficient
operation of the future resilient grid. This paper presented a practical methodology that
facilitates the modeling and implementation of appropriate control strategies in school
buildings. This paper also presented a methodology for defining and calculating a dynamic
energy flexibility index for buildings. The dynamic building energy flexibility index (BEFI)
is defined in terms of key performance indicators relative to a reference energy consumption
profile at the zone level, building level, and as a percentage. The application of the BEFI
was presented for an electrically heated school building in Canada. This study illustrated
how low-order lumped parameter thermal network models could be utilized to calculate
the BEFI. Furthermore, the activation of energy flexibility through a rule-based approach
with near-optimal setpoint profiles is investigated. Results show that applying appropriate
control strategies can enhance the school building energy flexibility by 40% to 65% during
peak demand periods. In addition to improving energy flexibility in school buildings, these
control strategies could reduce the size of HVAC units at the design stage, thereby lowering
their operating and initial capital costs.
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Abbreviations

BAS Building automation system
BEFI Building energy flexibility index (W)
BTES Borehole thermal energy storage
C Thermal capacitance (J/K)
COP Coefficient of performance
CV-RMSE Coefficient of variance of the root mean square error
DSM Demand-side management
Dt Time (seconds/hours)
EUI Energy use intensity (kWh/m2/year)
HVAC Heating, ventilation, and air conditioning
KPI Key performance indicator
NZEB Net zero energy building
P Electric power (W)
PV Photovoltaic
QSG Solar gain (W)
QIG Internal heat gain (W)
Qaux Heating power (W)
R Thermal resistance (K/W)
RES Renewable energy sources
RC Resistance–capacitance
SOC State of charge
T Temperature (◦C)
To Outdoor temperature (◦C)
TSP Setpoint temperature (◦C)
Subscripts

Flex Flexible case
Ref Reference case
SP Setpoint
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Abstract: Building predictive control has proven to achieve energy savings and higher comfort levels
than classical rule-based controllers. The choice of the model complexity needed to be used in model-
based optimal control is not trivial, and a wide variety of model types is implemented in the scientific
literature. This paper shares practical aspects of implementing different control-oriented models for
model predictive control in a building. A real thermally activated test building is used to compare
the white-, grey-, and black-box modeling paradigms in prediction and control performance. The
experimental results obtained in our particular case reveal that there is not a significant correlation
between prediction and control performance and highlight the importance of modeling the heat
emission system based on physics. It is also observed that most of the complexity of the physics-
based model arises from the building envelope while this part of the building is the most sensitive to
weather forecast uncertainty.

Dataset: https://doi.org/10.17632/xzdy23nzvj.1

Keywords: model predictive control; advanced controls; control-oriented models; energy efficiency;
optimization; thermal comfort

1. Introduction

During the last decade, there has been a clear interest growth in using advanced control
techniques for heating, ventilation, and air conditioning (HVAC) systems in buildings.
This increased interest is motivated by the large amount of energy needed for building
acclimatization, accounting for 15% of the world’s final energy use [1], and by the recent
introduction of demand response techniques in the building sector [2]. Buildings with a
large thermal mass like those equipped with thermally activated building structures (TABS)
can notably benefit from advanced control thanks to the large flexibility potential offered
by their high thermal mass. Moreover, typical control strategies can difficultly handle the
wide variety of time constants involved in these building systems.

Advanced controllers are often predictive, as in model predictive control (MPC), and
require a building system model to anticipate future behavior and optimize the controls
at supervisory or local-loop levels. The model is a core element of the controller, which
relies on the model predictions to decide actions. Therefore, the choice of the modeling
approach is fundamental for setting up a predictive controller and heavily influences
the implementation [3]. Many practical factors influence the development of models for
MPC [4], and the choice of the model technique and complexity directly determines the
optimization or the state estimation methods that can be used.

Three paradigms are used when modeling the building envelope, emission, and
production systems, namely white-, grey-, and black-box modeling. These paradigms range
from a purely physics-based approach to an entirely data-driven approach, respectively.
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Although there are fuzzy boundaries among these paradigms, this terminology has always
helped the community in defining the approaches followed by each case study. Authors
usually master only one of these approaches and advocate their paradigm by highlighting
its advantages and stressing the weaknesses of the other paradigms. Nevertheless, it
remains unclear if there is a best approach or if particular contexts ask for a certain modeling
paradigm.

The models can be evaluated in both prediction and control performance. A model is
evaluated in prediction performance when historical data is used to study how the model
maps inputs to outputs. The historical inputs are introduced into the model to investigate
how accurately the model outputs fit the measured outputs. The fitness is assessed based
on metrics like the Root Mean Square Error (RMSE) or the n-step-ahead prediction error. A
model is evaluated in control performance when implemented into a predictive controller
to decide actions that are applied to the actual building. In this case, the performance is
evaluated based on the metrics optimized by the controller, like thermal discomfort or
operational cost.

Previous studies have evaluated and compared different modeling approaches for
optimal control, although usually the models are assessed in prediction performance only,
and a correlation is assumed between this metric and the control performance. However,
factors other than the model prediction accuracy influence the control performance, namely
the suitability of a controller model for optimization, the extrapolation capabilities of the
model, and the robustness of the controller to forecasting errors. Hence, the acid test for
these models is their implementation in a predictive controller of an actual building to
evaluate how the controller can accomplish its predefined objective when using a particular
model type.

The main goal of this paper is to share practical aspects of implementing the three
main modeling paradigms for optimal predictive control in a real case. To this end, a
direct comparison of a representative model of each approach is performed in an actual
building test case. First, one model representative of each modeling paradigm is selected,
configured, and calibrated. Second, the prediction and control performances of the three
models are assessed when implemented into the same MPC framework and test case
building. Finally, guidelines for building modeling in optimal control are provided. While
simple and unoccupied, the envisaged test case is prone to real weather disturbances that
may not be captured by simulations, such as actual forecast uncertainty, measurement
errors, or hidden infiltration losses.

Therefore, the main contribution of this paper is the comparison of the three main
modeling paradigms for predictive control in a real test building. A thorough analysis is
performed for different aspects of the models, and special care is taken to ensure a fair
assessment. Moreover, the authors of this work assemble a mix of physics- and data-driven
backgrounds, which is imperative to avoid any bias or prejudice concerning the evaluated
modeling techniques.

The outline of the paper is as follows: Section 2 summarizes other studies that have
addressed a similar research topic; Section 3 elaborates on the building test case and the
experimental setup used to gather data and perform the experiments; Section 4 explains
the modeling approach followed for each modeling paradigm and makes the first com-
parison in prediction performance; Section 5 describes the control task and how each of
the obtained models has been implemented into the same MPC framework to evaluate
their control performance. The correlation between simulation and control performance
is also investigated in this section; Section 6 discusses the main insights obtained when
developing and implementing each of the modeling paradigms into the same MPC in a
real building. Finally, Section 7 draws the main conclusions.

2. Related Work

The benefits of optimal predictive control based on weather forecast data have already
been proven several times [3,5–9]. These studies highlight that the main bottleneck for
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the widespread adoption of MPC in the building sector is the need for methods to obtain
building models that are reliable and suitable for optimization. An extensive review on
control-oriented thermal modeling, in general, can be found in [10]. The advantages and
disadvantages of each modeling approach are listed, and a decision tree is provided to
aid in deciding a modeling method for control-oriented modeling of multi-zone buildings.
This study is mainly theoretical and leans on previous scientific literature, but it does not
directly compare modeling paradigms. Contrarily, Blum et al. [4] directly compared the
controller model complexity, among other elements, in optimal predictive control. They
identified seven practical factors that influence the development of MPC in buildings
and systematically analyzed each factor’s influence in simulations. The controller model
complexity was studied by implementing three grey-box models, gradually increasing their
order from one thermal capacitance up to four. They showed that higher-order models can
improve the performance of a given MPC up to 20%, although they acknowledged that
better initial guesses are required in the parameter estimation process as the number of
parameters increase.

Similarly, Picard et al. [11] compared controller model complexities using simulations
of six-zones residential buildings with different insulation levels. It was indicated that a low
prediction accuracy of the controller model can heavily influence the MPC performance
and that low order models may not suffice to capture all the building system dynamics.
They systematically reduced the order of controller models derived from a linearized
plant model used as an emulator to assess performance. Although they did not compare
different modeling paradigms, they clearly indicated the relevance of utilizing a suitable
model complexity. Arroyo et al. [12] evaluated different grey-box modeling complexities
in control performance. Their focus was the comparison of single-zone to multi-zone RC
model structures. Centralized and decentralized multi-zone grey-box model architectures
were compared to each other and to a single-zone grey-box model architecture. It was
found that modeling inter-zonal effects was beneficial when using multi-zone grey-box
models for optimal control. However, their comparison did not involve different modeling
paradigms either.

Picard et al. [13] compared a grey-box model to a purely white-box model for an
existing 12-zones office building. The models were validated with real data, and their
control performance was evaluated in simulation. They showed that both approaches
can lead to an efficient MPC as long as accurate identification data sets are available. In
the considered simulation case, the white-box MPC led to better thermal comfort while
using 50% less energy than the best grey-box model. However, it should be noted that the
white-box controller model was derived from the plant model used for the simulations,
something that would not be possible in practice. Moreover, the authors stated that further
research was still needed to confirm the strength of the white-box approach in the presence
of all uncertainties.

A white-box model was compared to a black-box model in [14]. In this case, the white-
box model was a lumped RC representation of the plant, and the black-box model used an
artificial neural network architecture. Again, the physics-based model was better than the
data-driven approach, although the RC parameter values were obtained assuming perfect
knowledge of the thermal and geometrical building characteristics. A direct comparison
across the three main modeling paradigms was performed by Arendt et al. [15]. They
implemented the white-, grey-, and black-box paradigms by selecting representative models
for each approach, similar to what is done in this paper. However, they only analyzed the
fitting accuracy to indoor temperature on historical monitoring data of a building. The
differences in control performance were not explicitly investigated.

The studies above indicate a common understanding of the importance of polishing the
modeling techniques to adopt advanced control. However, despite using simulations, the
test cases were always different, and each work followed a different approach for the analy-
sis. To solve this issue, the recently developed building optimization testing (BOPTEST)
framework [16] enables the direct comparison of different controllers for the same building
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and boundary conditions by using simulations. The aim is to derive guidelines for optimal
control by benchmarking controllers in the same test cases.

While simulations offer a clear, practical advantage for assessment purposes, they
do not allow coping with real model mismatch and forecasting uncertainty, which is only
possible in actual implementations. Nevertheless, access to real buildings for testing and
research purposes is more difficult and expensive. Hence, there are fewer efforts that imple-
ment MPC in operational buildings. In this context, the work of Širokỳ et al. [5] excels in
achieving energy savings between 15% and 28% in a two months experiment performed on
an actual building in Prague, Czech Republic. The setup of this study was unique because
two identical building blocks enabled the cross-comparison of two different controllers
by switching the control strategies between the blocks to compensate for the changing
boundary conditions. However, their focus was on showing the energy savings potential of
implementing MPC compared to a heating curve based control strategy. A novel modeling
approach for the same building based on partial least squares was introduced in [17]. Other
demonstrations of MPC in actual buildings are described in [6,18–20]. White- [18], grey- [6],
and black-box [19] models have been used in practical implementations of MPC in real
buildings separately. However, none of them performed a comparison of any kind between
different models for the same predictive controller.

3. Experimental Setup

The test building of this study is called the Vliet building and is located on the Arenberg
campus of the KU Leuven University in Heverlee, Belgium. A detailed overview of the
building materials, properties, and geometry can be found in [21], and a brief description of
the building is provided here for completeness. The building was constructed in 1996, and
is equipped with a local weather station. It comprises separate testing modules to conduct
research about different aspects of building physics and HVAC systems. The module under
consideration in this paper was constructed in 2011 and is a small unoccupied room with
an elementary rectangular geometry of 3.45 m long, 1.80 m wide, and 2.4 m high. Two
walls connect to an adjacent room that is always conditioned at a constant temperature of
21 ◦C. The other two walls connect to the outer space, and one of them has a window of
1.25 m wide and 1.60 m high. The window is integrated into the southwest oriented façade.
The building exterior, the control setup, the heat production system, the heat distribution
system, and the interior of the test room are shown in Figure 1.

The test room is conditioned using hydronic heat production, distribution, and emis-
sion systems. The heat production system is an electric boiler that always maintains water
at 60 ◦C ready for delivery. The water is distributed to the TABS emission system with
embedded pipes in the concrete floor and ceiling (two circuits), although only the floor
TABS are used in the experiments. Each circuit uses a pump for distributing the hot water
and has a three-way valve to mix the water coming from the heat production system with
the water returning from the TABS, which enables control of the water supply temperature
to the concrete.

A LabView software interface has been developed as described in [22], which allows
automatic data acquisition and control at a higher configuration level. The field and automa-
tion layers of the infrastructure are interfaced through modules of National Instruments.
The interface controls the primary actuators of the system, namely the circulation pumps
and the circuit valves. Most of these actuators are relays with a simple on/off control. For
the three-way valves of each distribution circuit (floor and ceiling), a continuous signal
is used between 0 and 10 V to prescribe a state between a fully closed or opened valve
position. When the valve is fully closed, there is no water coming from the heat production
system, and the water through the TABS is recirculated. When the valve is fully opened,
there is no recirculation, meaning that all water going to the TABS is delivered directly by
the heat production system at 60 ◦C, without mixing with the return water. Any signal in
between specifies partial recirculation as an intermediate case between the two scenarios
described above.
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(a) (b)

(c) (d)

Figure 1. Overview of the Vliet building. (a) Building exterior; (b) Production system and control
setup; (c) Distribution system; (d) Test room interior.

The measurements available are the supply and return temperatures to and from the
TABS, the water flow rate through each circuit, and four air temperatures at different heights
in the test room. The water temperatures are measured with PT-1000 sensors inside the
pipes, and flow-meters provide the water flow rate through each circuit. The electric power
use profile is needed to calculate the operational cost when subject to a dynamic electricity
price profile, but there is no electric power measurement available in the setup. Therefore, it
is assumed that there is a direct electric water heater that instantaneously converts electricity
to heat with a constant electric-to-thermal power efficiency of η = 0.9. The instantaneous
heat can be directly calculated from the supply and return water temperatures and the
mass-flow rate of the water through the TABS circuit as defined in Equation (1). All these
variables are measured in the setup.

P(t) =
Q̇(t)

η
=

ṁ(t)cp(Ts(t)− Tr(t))
η

(1)

In Equation (1) ṁ is the mass flow rate of the water through the floor TABS, and
cp is the specific heat capacity of the water. The electric power of the circulation pump
is neglected.

Figure 2 shows the main components with P the electric power from the grid, u the
valve opening signal, ṁ the mass flow rate through the floor TABS, Ts and Tr the water
supply and return temperatures to and from the TABS, respectively, Tz the average zone
air temperature, referred to as the zone air temperature hereafter. The latter temperature
is obtained as the simple average of the four temperature sensors located at different
heights. Finally, Q̇ is the thermal heat delivered by the floor TABS. The green-coloured
element indicates the controllable signal, which is the valve opening in this case since the
circulation pump is automatically switched on in a post-processing step when u > 0. The
grey-coloured elements indicate measured signals. Finally, the non-coloured circles indicate
variables that are derived from measurements.
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Figure 2. Scheme of the Vliet test building.

4. Modeling

This section explains the steps taken to identify and calibrate the models that are
later implemented as system equations in the MPC in Section 5. First, the modeling task
is described. Second, the data gathering process is explained. Third, the selection of
a representative model of each modeling paradigm is justified. The identification and
calibration processes of each model are also described. Finally, the models are compared
in prediction performance using auto- and cross-validation data sets from the obtained
operational data.

4.1. Modeling Task

The controlled variable of the optimal control problem is the zone air temperature,
and the controllable variable is the opening of the three-way valve that determines the
water supply temperature to the floor TABS and as a consequence the heat delivered to the
room. The two most important system disturbances are the ambient temperature Ta and the
solar irradiation Q̇rad (Note that the room is unoccupied, thus disturbances associated to
occupancy are not considered.). The predictive controller thus needs to know the effect of
the valve opening, ambient temperature, and solar irradiation on the zone air temperature.
The controller also needs to estimate the electric power used to compute the operational
cost. Hence, a multi-input multi-output model is required to represent the system, and
the modeling task is to find a function F that estimates Tz and P from u, Ta, and Q̇rad, as
indicated by Equation (2). Notice that the estimated variables may depend not only on the
inputs and disturbances, but also on previous outputs and system states. The models may
use a vector of hidden internal states XXX to capture those regressive effects. Finally, a set
of parameters θθθ characterize the model. These parameters are considered constant in this
study. The control toolbox used in this work does not require the models to be linear nor
convex for optimization.

Ṫz(t), P(t) = F(u(t), Q̇rad(t), Ta(t), Tz(t), XXX(t), θθθ) (2)

4.2. Data Gathering

Data are needed to identify, train and calibrate the models and test the models’ perfor-
mance. Historical data obtained from 24 January until 21 February 2018 is used for these
tasks. That is, a total of four weeks of historical data are gathered for system identification
and model calibration. During this period, the heating of the test room is alternated be-
tween heating and free-floating periods, i.e., periods with hot water circulating through the
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TABS and periods with no water circulation, respectively. The first heating period lasts for
three days and tests and tunes the software interface and the whole experimental setup.
During this period, large excitations are introduced, leading to a zone air temperature up to
33.35 ◦C. After these excitations, the building is left to free-float. By studying the evolution
of the zone air temperature during this period, a settling time of six days is observed, from
where it is deduced that the system’s time constant is approximately two days. Notice that
this time constant is only an approximation because an actual building system never fully
settles because of the effect of the disturbances.

A PID controller is implemented for the second heating period to deliver heat to the
floor TABS following a pseudo-random binary sequence (PRBS) of 1 kW amplitude. This
signal type is suggested by [23] and has been used by other authors to gather data for
building modeling, e.g., in [24]. This input sequence is beneficial for system identification
because it ensures that there is no correlation between the controllable inputs and the
disturbances. The PRBS is designed to put the heating power input signal in the range
relevant for control. Finally, the building is left to free-float for the remaining days. The
evolution of the variables of interest during these periods is plotted in Figure 3.

 

Figure 3. Comparison of the white-, grey-, and black-box models in prediction performance, together
with the inputs.

Measurement data from the weather station of the Vliet building was also obtained
during this period to compare with the data provided by the DarkSky web-service, the
weather forecast provider used by the MPC. The objective is to assess the reliability of the
weather forecast service. DarkSky is not limited to climate forecast but also provides current
weather condition information for any location which is what is shown by the dashed
lines in Figure 3. Even though DarkSky can mostly follow the disturbances’ evolution,

147



Buildings 2022, 12, 539

it is observed that it occasionally shows significant deviations. These deviations go up
to 6.72 ◦C for ambient temperature and up to 366.67 W for solar irradiation. Forecasting
is an even more challenging task than estimating current weather for a given location.
Hence, errors are expected to be more frequent and larger when forecasting these variables.
Forecasting errors are unavoidable, so the MPC will have to deal with these inaccuracies.

4.3. General Considerations

A general-purpose modeling, simulation, and optimization framework is required
to model all three paradigms. The toolchain should be powerful to support simulation,
optimization, and data handling, and at the same time, it should be flexible to prototype the
different modeling approaches. This work uses the JModelica toolbox [25] since it meets all
requirements listed above. This toolbox uses Modelica [26], a general-purpose modeling
language for configuring the models. Additionally, it provides solvers for Optimica [27],
an extension of Modelica for the definition of optimization problems. This choice is also
motivated by the development of several open-source Modelica libraries for building
energy simulations like Buildings [28], IDEAS [29], AixLib [30], BuildingSystems [31], and
FastBuildings [32]. These libraries facilitate the implementation of white-, grey-, and black-
box modeling techniques and continue their development within IBPSA Project 1 [33].

4.4. White-Box Modeling

White-box modeling uses only physical insights obtained from the meta-data of the
building to represent its thermal behavior. Information like the building orientation,
construction components, dimensions, and thermal properties of the materials must be
known. The correctness of these data is essential to obtain an accurate model since all
parameters are derived from this meta-data. The IDEAS [29] library is used for representing
the main components of the Vliet building. The main components used from the IDEAS
library to model the building are listed in Table 1. For the sake of conciseness, we refer
to [29] for a detailed description of the main equations and assumptions used in these
component models.

Table 1. Modelica components used for the white-box model.

Building zone IDEAS.Buildings.Components.Zone

IDEAS.Buildings.Components.SlabOnGround

IDEAS.Buildings.Components.OuterWall

IDEAS.Buildings.Components.Window

IDEAS.Buildings.Components.BoundaryWall

Heating system IDEAS.Fluid.Interfaces.PrescribedOutlet

IDEAS.Fluid.Actuators.Valves.ThreeWayEqualPercentageLinear

IDEAS.Fluid.HeatExchangers.RadiantSlab.EmbeddedPipe

Boundary conditions IDEAS.BoundaryConditions.SimInfoManager

An overview of the heating system and the building envelope model is provided in
Appendix A (Figure A1a,b). The building envelope and the heating system models are
connected through the heating port that interfaces both models. Since the model relies on
physical principles, it explicitly represents the water mass-flow rate and the supply and
return water temperatures to and from the TABS. Hence, it is possible to directly estimate
the heat to the TABS and the electric power from these variables.

It is important to note that the white-box model uses some additional weather inputs
for the building envelope, namely the dew point temperature, the atmospheric pressure, the
relative humidity, and the wind direction and speed. All these variables are obtained from
the DarkSky web service. The solar irradiation is also split into direct normal irradiation
and diffuse horizontal irradiation based on a preprocessing step [34]. Additionally, some
simplifications are required from the original IDEAS library components to allow the
introduction of this model into the MPC optimization problem. The introduced changes
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are the following: (1) The window glazing absorption and transmission properties are set
constant, (2) the ReaderTMY3 class from IDEAS is transformed to bypass the external solar
irradiation data from DarkSky, and (3) the air properties are represented using the air model
obtained from [35]. This air model reduces the number of algebraic loops when compared
to the air model used in the IDEAS library. The resulting system of differential-algebraic
equations (DAE) has a total of 4420 unknowns and equations. After translation, the system
has 94 continuous-time states and 636 time-varying variables, that is variables calculated
from the states.

The parameters are derived from information about the building’s geometry and
materials, and the historical data-set described in Section 4.2 is only used for testing. The
calibration of the parameters is performed by an iterative process of changing individual
parameters manually and testing to evaluate the simulation accuracy in the historical
data. This manual calibration of the white-box model to achieve a proper fit has been the
most cumbersome task of implementing the three modeling paradigms. The reason is
that a simulation needs to be performed to evaluate every new combination of parameter
values, many of them having counteracting effects on the outputs. Automatic parameter
estimation is avoided here to respect the white-box model nature strictly. However, a
systematic process to identify the parameters that primarily influence the outputs of a
complex physics-based model and to train these parameters from monitoring data would
be highly beneficial.

The blue dashed lines in Figure 3 show the evolution of the zone air temperature and
electric power over the period for which data was gathered for model calibration. Note
that these are the outputs with the implemented simplifications and after the calibration
process. The solid black lines indicate the measured variables for the same period.

4.5. Grey-Box Modeling

A grey-box model uses some physical insights with lumped parameters trained by
monitoring data to learn the system’s thermal behavior. In this case, the accuracy of the
meta-data of the building is not critical since the model also utilizes monitoring data to train
its parameters. Contrarily, the richness of the gathered monitoring data is crucial because
it is used to train the model parameters through prediction error methods. In this paper,
the parameters are estimated through standard least squares. The Grey-Box Toolbox [32]
is used for this task and has been chosen for compatibility with the Modelica language
through the FastBuildings library. A forward selection procedure is employed to decide on
the model structure. This process increases the model complexity step-wise by adding more
thermal resistances and capacitances. Additionally, the optimized values of the previous
more simple models are introduced as initial guesses for the new, more complex models. A
5R3C model architecture is selected for the building envelope. An overview of this model
is provided in Appendix B. Notice that there is an additional thermal resistor in an outer
layer of the model not shown in Figure A2. This thermal resistor connects the test room
with a constant temperature source that represents the adjacent room.

The RC model does not explicitly represent the water mass-flow rate nor the supply
and return water temperatures to and from the TABS. Because of this, the heat to the
TABS needs to be estimated in another way, by using a quadratic polynomial from the
three-way-valve opening u as represented in Equation (3).

Q̇ = a0 + a1u + a2u2 (3)

The polynomial parameters (a0, a1, and a2) are trained together with the thermal
resistances and capacitances of the model, although they lack any physical interpretation.
Only the thermal capacitance representing the zone air temperature (cZon) is given an initial
guess value computed from system knowledge. All other parameters are provided with
reasonable initial guesses according to what they represent and are allowed a wider search
space because of the larger uncertainty on their value. These are the wall capacitance cWal,
the TABS embedded capacitance cEmb, the wall internal and external thermal resistors
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rWalInt, rWalExt, the embedded internal and external thermal resistors rEmbInt, rEmbExt,
and the window transmittance gA. For every model structure considered, a latin hypercube
sample is generated on the parameter space to aid in the search for a good local minimum.
Additionally, the target variables, i.e., Tz and P, are normalized with their maximum and
minimum values along the training data-set to facilitate the parameter estimation process.
This process has proven extremely helpful when training a model with outputs of different
orders of magnitude. The main components used from the FastBuildings library to prototype
the grey-box model are listed in Table 2. We refer to [32] for a complete description of the
main equations and assumptions used in these type of models.

Table 2. Modelica components used for the grey-box model.

Building zone FastBuildings.Zones.BaseClasses.Capacitor

FastBuildings.Zones.BaseClasses.Resistance

FastBuildings.Zones.Windows.Window_gA

Heating system Quadratic polynomial from the three-way-valve opening (Equation (3))

Boundary conditions FastBuildings.Input.SIM_Inputs

Three weeks of measured data are used for training and the last week for cross-
validation. The parameter estimation process successfully finds a satisfactory set of model
parameters for a model of three states. A substantial reduction of DAE complexity is
observed when compared to the white-box model. In this case, the DAE has a total of
88 unknowns and equations. After translation, the system has 3 continuous-time states and
18 time-varying variables. The red dashed lines in Figure 3 show the outputs of the selected
grey-box model in auto- (left of the vertical dashed line) and cross-validation (right of the
vertical dashed line).

4.6. Black-Box Modeling

Finally, a purely data-driven model is identified as representative of the black-box
paradigm. From the many existing black-box modeling approaches it is decided to use a
state-space representation to follow the same mathematical architecture as the one used
for the grey-box models. In contrast to grey-box models, the parameters of a black-box
state-space model directly coincide with the elements of the state-space matrices of the
model. Because it lacks any physical interpretability, a schematic presentation has no added
value, one block relates the outputs with the inputs.

Analogously to grey-box modeling, the first three weeks of monitoring data are used
for training, and the last week is used for cross-validation. Again, the least-squares method
is used to maximize the fitting on training data, and a forward selection procedure is
implemented that increases the order of the state-space model one by one. A model of
order three is found to provide a good fitting on training data. Coincidentally, this order
matches the number of thermal capacitances of the grey-box model. This is convenient since
both present the same structure and dimension, which elucidates further their comparison.
The DAE complexity is further reduced to 17 unknowns and equations. After translation,
the model has three continuous-time states and 13 time-varying variables. The green
dashed lines in Figure 3 show the outputs of the selected black-box model in auto- and
cross-validation.

4.7. Prediction Performance Assessment

Three models have been identified, trained and calibrated in the previous sections.
Each of them represents one modeling paradigm. A summary of the model structures and
their fitting to historical data can be found in Table 3. In this table, ne is the number of
equations of the original model; nx and nv are the number of states and variables after
symbolic manipulation, respectively. The RMSE is used for the evaluation of goodness
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of fit because that is the target metric to be minimized during the parameter estimation
process. The RMSE is calculated as defined in Equation (4).

RMSE =

√
∑M

k=1(ez,k)2

M (4)

where:
ez,k = yz,k − mz,k ∀k ∈ 1, . . . ,M (5)

In Equation (4), ez,k are the residuals and M is the number of measurements. In
Equation (5), yz,k indicates the model output, mz,k the measurement at time index k.

Table 3. Summary of model structures and their fitting to historical data. ne is the number of
equations of the original model; nx and nv are the number of states and variables after symbolic
manipulation, respectively. The RMSE is evaluated in auto- (RMSEa) and cross- (RMSEc) validation.

Translated Model TzTzTz [K] PPP [kW]
Model

nenene nxnxnx nvnvnv RMSEaaa RMSEccc RMSEaaa RMSEccc

White-box 4420 94 636 1.00 1.13 0.18 0.003
Grey-box 88 3 18 0.52 0.64 0.20 0.002
Black-box 17 3 13 0.92 2.26 0.22 0.15

Particularly, RMSEa is the RMSE in the auto-validation period, and RMSEc is the
RMSE in the cross-validation period. Notice that this separation is made for the training of
the data-driven models only, but it is maintained for the evaluation of the white-box model
for clarity. The number of equations refers to the original model size. The translated model
is the model after symbolic manipulation i.e., after eliminating aliases and performing
index reduction.

What stands out in Table 3 is the strong contrast between the white-box and the data-
driven model sizes. The white-box model is 50 times larger than the grey-box model and
260 times larger than the black-box model when comparing the number of equations in the
original models to represent the same building system. After translation, the physics-based
model has 31 times more states than both data-driven models. The white-box model is
thus the most computationally demanding for both simulation and optimization. While
the computational complexity may not be critical for simulation, it plays an important role
in optimization, as shown in the following section.

The notable model size difference stems from the amount of detail that the white-box
model needs in order to describe the main building physics, e.g., the heat-flow through each
of the layers of the walls, roof, and window; the thermal properties of the fluid media like
the zone air or the water through the pipes of the heating system; or the air infiltration and
the pressure differences. Interestingly, most of the model details come from the building
envelope, which is the part of the system mostly exposed to the forecast uncertainties. The
model of the building envelope has 91 states and 566 variables after translation, whereas
the model of the heating system has only 3 states and 217 variables after translation.

The data-driven models present a simpler structure and rely on the parameters trained
by historical data to capture the building dynamics. The selected data-driven models
are very similar in their mathematical architecture. Basically, the two main differences
between the grey- and the black-box models are that: (1) the black-box model lacks any
physical insight, and that (2) its parameters are allowed a much wider search space in
the parameter estimation process. Their simpler model structure does not hamper their
prediction performance. Contrarily, these models show better accuracy in auto-validation
when compared to the very complex white-box model. This indicates that an increased
model complexity does not necessarily lead to increased accuracy. Moreover, calibrating
a complex physics-based model is found to be a cumbersome and very time-consuming
task. Most of the parameters of the white-box model are located in the building envelope,
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with most of them having a weak influence on the model outputs compared to the heating
system parameters. The higher accuracy of the data-driven models may be related with
their more flexible structure which facilitates to learn the correlations between the inputs
and outputs of the data-set. However, the white-box model is expected to better explain
the dynamic coupling of the building system. Figure 3 and Table 3 reveal that the black-box
model only poorly extrapolates beyond the training conditions.

5. Implementation and Control

The acid test of a controller model is the assessment of its performance when imple-
mented in a predictive controller. This section implements all models described in the
previous section one by one in the same MPC formulation for the Vliet building. Three
different experiments are designed to challenge the controllers in different ways. In this
section first, the control task is introduced. Second, the model predictive control and the
solution method of the optimization are explained. Third, the experiments are described.
Finally, the control performance of the controllers using each paradigm is analyzed.

5.1. Control Task

The objective of the MPC is to maintain indoor thermal comfort at the lowest possible
operational cost. The comfort assessment is based on zone air temperature since it is the
main factor influencing the thermal comfort perceived by the occupants in a building [36].
Note that zone air temperature is used in this work instead of zone operative temperature
because it is the only measured temperature in the zone. Most standards are based on the
zone operative temperature, but the air temperature can be a good proxy for buildings
with TABS systems where the radiant temperature is frequently not too different [37].
The comfort range is inspired by ISO 7730 Class A, which establishes a comfort band of
22 ± 1 ◦C. However, this range is shifted two degrees upwards to increase the heat demand
intentionally. The motivation is that the space adjacent to the test room is maintained at
21 ◦C which stabilizes the indoor temperature. A higher heat demand increases the degrees
of freedom to test control. Hence, thermal discomfort is defined as the cumulative deviation
of the zone air temperature out of the temperature range 24 ± 1 ◦C, and it has the units
Kelvin-hour (Kh). A highly dynamic pricing tariff is contemplated by fictitiously exposing
the controller to the 2019 Belpex prices, i.e., the day-ahead prices of the year before the
experiments start. No additional taxes or transportation fees are considered in the price
signal, to exploit the highly dynamic profile.

Therefore, the control task consists of deciding every step a valve opening value
that minimizes the overall discomfort and operational cost. To this end, the controller is
provided at the beginning of every control step with only one measurement: the zone air
temperature. Also the price signal and the weather forecast along the prediction horizon are
provided. It is worth mentioning that the experimental setup does not have any auxiliary
fast-reacting system, making control complicated because of the lack of controllability. Since
no cooling system is available, the only way for the controller to deal with overheating
that can be induced by solar irradiation is by heating less, which might lead to too low
temperatures, something that the controller should carefully balance. Still, an MPC with a
proper system model should be able to minimize discomfort while aiming for the lowest
operational cost.

5.2. Model Predictive Control Formulation

All controller models explained in Section 4 are implemented in the same MPC. The
objective function l of the MPC is defined according to the control task explained in
Section 5.1 as a multi-objective function with two counteracting terms: discomfort and
operational cost. The formulation of this objective function is specified in Section 5.3
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because it varies with each experiment carried out. The set of Equation (6a–e) defines the
optimal control problem that is general to all experiments.

min
u

∫ ti+Th

t=ti

l(t)dt

Ṫz(t), P(t) = F(u(t), Q̇rad(t), Ta(t), Tz(t), XXX(t), θθθ)

Tz(t)− δTz(t) ≤ Tz(t) ≤ Tz(t) + δTz(t)

u(t) ≤ u(t) ≤ u(t)

δTz(t) ≥ 0

(6a)

(6b)

(6c)

(6d)

(6e)

where ti is the initial time of the current control step, δTz are the deviations of the indoor
temperature out of the comfort range, u, and u are the technical constraints (lower and
upper values) of the input signal, respectively, and Tz and Tz are the lower and upper
bounds of the comfort range, respectively. The prediction horizon Th is set of two days
based on the estimated time constant of the test room. A control step of 15 min is chosen as
a reasonable trade-off between controllability and granularity of the prediction horizon.

One of the main advantages of using the JModelica toolchain is that the MPC optimiza-
tion problem can be easily constructed by extending the models with the Optimica language
to formulate the objective and constraints of the optimization problem. JModelica utilizes
the direct collocation discretization scheme with CasADi [38] for defining the nonlinear
program and for algorithmic differentiation. More efficient discretization methods exist
for the mostly linear mathematical structures of building envelopes [39]. However, direct
collocation is known for its versatility and robustness. Moreover, symbolic elimination as
implemented in [40] is used to eliminate many of the algebraic variables in a preprocessing
step and to improve the numerical efficiency.

The MPC module described in [41] is used to effectively reuse the fixed discretization
scheme of the receding horizon controller every time step. The module has been extended
to allow mutable external data, which was not implemented but is required to expose the
optimization to the continuously changing boundary condition data. Additionally, the
MPC uses the result from the solution obtained in the previous step to warm-start every
new optimization problem. An unscented Kalman filter is implemented as described in [42]
to estimate the initial value of the hidden states of the models every control step after
measuring the zone air temperature. The sigma points are chosen according to [43], and the
covariance matrices are constructed according to the fitting information obtained during
training and calibration as summarized in Table 3.

5.3. Description of the Experiments

Three experiments are designed with slightly different formulations of the MPC
objective function and constraints. The goal is to challenge the controllers, and thus
the controller models, in different ways. All three modeling approaches are tested by
implementing their representative model into the MPC formulation of each experiment.
The three models are alternated such that the MPC runs for at least two weeks with each
model in every experiment. The two-week period is decided as a reasonable period length
to trade-off between shuffling the models and enabling a representative behavior of each.
Note that shuffling is beneficial because it minimizes the influence of seasonal boundary
condition changes.

The experiments always use the same comfort bounds: Tz = 23 ◦C and Tz = 25 ◦C,
and the same lower limit on the valve opening: u = 0. Moreover, only the zone air
temperature measurement is available to the controllers in all experiments and the valve
opening is the control variable. The DarkSky web-service is used to retrieve and update
the expected weather forecast every control step. More specifically, all weather variables
required by each model as described in Section 4 are obtained from this forecast provider.
That is, the ambient temperature and solar irradiation for the data-driven models, and the
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additional weather variables required by the white-box model. The variations introduced
for each experiment on the objective function and the valve opening upper limit are
explained below.

Experiment 1 uses the objective function defined in Equation (7a), where pe(t) is
the dynamic Belpex electricity price, and w is a weight that has been carefully tuned to
account for the different orders of magnitude between the operational cost and the thermal
discomfort. This experiment also sets the upper constraint of the valve opening to its
maximum technical allowed value: 10 V. This experiment is interesting from a control
point of view because it exploits the full technical range allowed by the only controllable
variable: the three-way valve opening. However, it is not representative of an actual TABS
building where the typical water supply temperature is never higher than 30 ◦C. A fully
opened valve leads to water supply temperatures that can be high as 50 ◦C and beyond.
This motivates the definition of the second experiment.

l(t) = pe(t)P(t) + wδTz(t)

u = 10

(7a)

(7b)

Experiment 2 uses the same objective as Experiment 1, which has been reintroduced in
Equation (8a) for clarity. However, the opening of the three-way valve is limited to 3 V to
avoid very high water supply temperatures. This limit leads to water supply temperatures
that never surpass 30 ◦C, which reflect real TABS conditions much better.

l(t) = pe(t)P(t) + wδTz(t)

u = 3

(8a)

(8b)

Experiment 3 maintains the same limit of the valve opening as Experiment 2 but squares
the operational cost in the objective function aiming to steer more flexibility from the test
room during operation. Squaring the operational cost reduces the peaks of energy use when
prices are higher. The experiment formulation is summarized in the set of Equation (9a,b).

l(t) = (pe(t)P(t))2 + wδTz(t)

u = 3

(9a)

(9b)

Two key performance indicators (KPIs) are defined to benchmark and compare the
performance of the MPC in all experiments while using each of the controller models. Since
the duration of the implementation of each model into the MPC does not last for exactly the
same time period, all KPIs are normalized per day. Additionally, three days of initialization
are used every time a new modeling approach is implemented into the MPC. These three
days are not included in the KPI calculation. The aim is to avoid that the outcome of one
experiment influences the results of the next one.

The first performance indicator is the cumulative discomfort D as defined in
Equation (10).

D(t0, t f ) =
∫ t f

t0

δTz(t)dt (10)

where t0 and t f indicate the initial and final time of the evaluation period, respectively.
The second performance indicator relates to the cumulative operational cost. In order

to fairly compare the operational cost of different controllers in a real testbed, it is required
to normalize the incurred cost by a proxy of the energy needs of the building. The reason is
that each controller is implemented in different periods with different energy demands,
which might bias the cross-comparison in performance among the controllers. A typical
approach (e.g., Široký et al. [5]) is to normalize the cost with the heating degree days as a
measure for the building energy demand. The heating degree days are computed as the
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difference between the indoor temperature setpoint and the ambient temperature. Inspired
by this, the normalized cumulative operational cost is defined by Equation (11).

C(t0, t f ) =
∫ t f

t0

(
pe(t)P(t)

Tz(t)− Ta(t)

)
dt (11)

Both the thermal discomfort and the normalized operational cost are direct indicators
of the MPC performance because they represent what is being minimized in the objective
function.

5.4. Control Performance Assessment
5.4.1. General Evaluation

This section analyzes the MPC results in a real test building when using the different
controller models. Figure 4 provides a complete overview of the period when the MPC
was actively controlling the test room heating system. The first graph shows the evolution
of the zone air temperature and the price signal; the second graph shows the evolution
of the three-way valve opening as decided by the predictive controller; the last graph
shows the evolution of the main weather disturbances, i.e., ambient temperature and solar
irradiation. The duration of each experiment is shown at the top of the figure, and the
background colors indicate the periods when each model was implemented into the MPC
in the following order: grey-, black-, and white-box model.

Figure 4. Experimental results with MPC applied in the real test building.

An overview of the obtained thermal discomfort and normalized operational cost
for each experiment and controller model is shown in the left column of Figure 5. The
results of this figure should be interpreted cautiously because the comparison of control
performance over changing boundary conditions is always subject to uncertainty (in this
case, mainly related to the weather forecast). It is observed that no controller model always
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outperforms the others for all three experiments. In fact, it is the MPC formulation that
primarily influences the results. This is observed the significant cost reductions obtained
when limiting the heat input in Experiment 2 and when squaring the cost term of the
objective function in Experiment 3, an effect common to all controller models.

Figure 5. Summary of control KPIs (left) and the n-step-ahead prediction errors for each model and
experiment (right).

The data-driven models show a substantial increase in discomfort during Experiments
2 and 3. This is explained by the different operational conditions of these experiments
compared to the training data that do not include information of opening the valve within
the range 0 < u ≤ 3. The detrimental effect of changing operating conditions might have
been prevented by exciting the system using the constraint input range when generating
the training data-set. This stresses the importance of having high-quality, i.e., rich in
information, training data for data-driven approaches. Contrarily, the white-box model
does not substantially increase its thermal discomfort when tested out of the conditions
used for its calibration since it relies on first-principle physical equations and does not lean
on the limited information of the calibration data. Note that, although the grey-box model
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uses simplified physics to represent the building envelope, its heating system is modeled
using a polynomial without physical interpretability. This likely damages the performance
of the grey-box model in Experiments 2 and 3 and highlights the importance of modeling
the heating system based on physical insights. A way to amend this effect can be to base
the polynomial on a full performance map. On the other hand, only the white-box model
presents algebraic loops after symbolic elimination. These are sets of variables that depend
on each other, increasing the computational complexity of the optimization problem. The
three largest blocks have sizes of 12, 9, and 8 variables.

5.4.2. Analyzing the Correlation between Prediction and Control Performance

A preliminary inspection of the correlation between prediction and control perfor-
mance can be made based on comparing the results from Table 3 and Figure 5. It is observed
that only for Experiment 1, where the operational conditions are similar to the training condi-
tions, there is a correlation between the RMSE in auto-validation and control performance.
However, the analysis based on the results of Section 4 is limited because there is no heating
during the available cross-validation period. The RMSE in auto-validation represents only
the one-step-ahead prediction accuracy. In order to investigate the correlation between
prediction and control performance, it is useful to analyze the prediction accuracy for
longer horizons and using test data obtained in conditions that differ from the training
data. Such analysis can throw light on the robustness of the models to make predictions
beyond the training conditions. Hence, the data from the control experiments are used
offline to evaluate the prediction error of the zone air temperature as a function of the
prediction horizon.

The same state estimator of the MPC is utilized to implement the a priori estimates
of the zone air temperature for different prediction horizons. Every step, the estimate is
cached, and the model state is updated with the historical measurement to perform a new
prediction estimate. The process is repeated for every model and experiment, and the
results are shown in the boxplots in the right column of Figure 5. The centered line gives
the mean, the box gives the first and third quartiles, and the whiskers mark the range of the
non-outlier data defined as 1st/3rd quartile ±1.5 times the interquartile range (IQR). Using
the data obtained from the experiments allows to conveniently display the prediction errors
together with the control performance obtained during each experiment.

Overall, the predictions are centered and not skewed. Only from horizons longer
than 24 h, predictions start showing some bias, most notably for the black-box model. The
black-box model also shows the most scattered error distribution, which is more noticeable
as the prediction horizon increases. The white-box model generally shows the most precise
predictions closely followed by its grey-box counterpart. Despite using the same data for
prediction evaluation as the data obtained from the control experiments, it is still impossible
to make a strong conclusion on any significant correlation between prediction and control
performance.

5.4.3. Analyzing the n-Step ahead Control Deviation

To further assess the control strategies, the variability of the optimization results
obtained with each model is investigated. The goal is to assess how effectively the MPC
implements its devised strategy. At every control step, the complete optimization result
trajectories are stored to compare each prediction with the eventual value observed at
the prediction time. We call this metric the n-step ahead control deviation. Notice that it
differs from the classical n-step ahead prediction error in the sense that the predictions are
not obtained as the outcome of simulations carried out offline, but as the full trajectory
results of the MPC optimizations performed every control step. Therefore, this metric
does not only evaluate the controller model, but the combination of all elements that
interact within the MPC, namely the model, the weather forecast and the state estimator.
Hence, the complete MPC machinery is being evaluated when using a particular model. A
small control deviation might suggest a good control behavior because it indicates that the
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strategy devised by the MPC is effectively implemented. However, it is important to note
that small control deviations do not guarantee improved performance. Figure 6 illustrates
the process to compute the control deviations for a variable V along a horizon with h
optimization steps. In this figure, the subscript (·)p|q indicates a value that is estimated for
time p based on the prediction of time q. The red lines illustrate the control deviation for
each step of the prediction horizon and an example for the one-step ahead control deviation
calculation. Further steps are not shown for clarity.

Figure 6. Illustration of the control deviation calculation process.

The distributions of the obtained control deviations are determined for all prediction
horizons and shown in Figure 7. Specifically, Figure 7 shows the mean and standard
deviation of the control deviations as a function of the prediction horizon for each controller
model and experiment. In general, the control deviations are centered and remain at
reasonable bounds. It can be seen that the deviations of the MPC using the white-box
model are the largest, especially for the zone air temperature. These deviations are enhanced
during Experiments 2 and 3 where solar irradiation is substantially increased during the
periods that the white-box model is implemented into the MPC. The black-box model is
also exposed to increased solar irradiation in Experiment 3, but it does not lead to enhanced
deviations. Solar irradiation is also large during the period that the black-box model is
implemented in Experiment 3. However, this model does not lead to enhanced deviations
The daily pattern of the control deviations of the zone air temperature evidences the
stronger influence of the weather forecast uncertainty in the white-box approach. This
effect is not observed for the valve opening control deviations that are not significantly
biased and do not show a daily pattern for any model.

The stronger influence of the weather conditions uncertainty on the white-box model
predictions can be explained by the increased number of disturbances that this model
needs to handle. Interestingly, the white-box model leads to the most accurate predictions
of the zone air temperature when using historical data while showing the largest control
deviations for the same variable. This lack of correlation reveals the larger sensitivity of
this model to the weather forecast uncertainty, which can be considerable, as indicated by
Figure 3. In Experiment 3 the white-box model shows the most significant control deviations
in the zone-air temperature. However, it also leads to the least thermal discomfort of all
models. The detrimental effect of a higher uncertainty influence is effectively amended by
the MPC machinery that undergoes forecast and state updates every control step. Also, the
more reliable representation of the heating system aids in balancing this effect.
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Figure 7. Mean and standard deviation of the control deviation as function of the prediction horizon.
The graphs in the left column show the control deviations for the zone air temperature in each
experiment and have units of (◦C). The graphs in the right column show the control deviations for the
valve opening in each experiment and have no units (-). Note that negative values are possible since
both positive and negative control deviations can occur between predictions and observed values.

6. Discussion

There are strong reasons to believe that Modelica will constitute the future of build-
ing modeling and optimization, namely the support of IBPSA and several tools, the ac-
tive development of multiple building component libraries, the language flexibility, and
the possibility of extending the models for gradient-based optimization algorithms. An
essential choice in the study has been the selection of the representative models. The
white-box model is prototyped with the IDEAS library. The grey-box model architecture
is decided from a forward-selection procedure. Finally, the black-box model is chosen
to have the same representation as the grey-box model but not being constrained by any
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physical insight. Despite the scope of this study being limited to one model per paradigm,
the selected models constitute a good representation of the main characteristics of each
modeling paradigm.

This paper has highlighted practical aspects that are relevant for the implementation
of each modeling approach into MPC. The most notable aspect is the significant size
difference between the physics-based and the data-driven models. Even though there has
been considerable progress with the development of numerous Modelica libraries that
ease the development of white-box models, there is still a substantial engineering effort
required to prototype and calibrate them. One of the main advantages of the white-box
modeling approach is that it theoretically does not require monitoring data to be assembled.
However, we experienced here that historical data is still needed to validate and calibrate
the model. In fact, despite having complete access to all geometry and material properties,
we observe that the calibration process is essential to achieve a good prediction performance.
There exist efforts to alleviate this issue by generating the models directly from building
information models [44], from geographic information systems [45], or from building floor
plans and meta data [46].

Even if historical data is still required, the physics-based approach brings other rele-
vant advantages. First, the richness of the data used for calibration and validation is not
critical because the model is reinforced with physical insights. Second, constraining the
model with physical principles increases its robustness and reliability so that the model
may be well suited to make predictions for the full range of operating conditions. Although
this notion may not be new, we experience that not modeling the heating system can
seriously hamper the control performance of the data-driven models when working out
of the operating conditions captured by the training data-set. Finally, the physics-based
approach brings other implicit advantages like the possibility to interpret its results or its
increased suitability for fault detection and diagnosis.

Another relevant aspect that has been investigated is the correlation between predic-
tion and control performance. It is found that a better prediction performance does not
necessarily indicate an improved control performance. Contrarily, increasing the amount of
physical detail in the model increases the robustness in prediction and control performance.
This was confirmed by Blum et al. [4] who evaluated the prediction performance using the
RMSE in cross-validation. We come to the same conclusion by also analyzing the n-step-
ahead prediction errors for horizons up to two days. In fact, the white-box model shows the
worst accuracy of all models in training data, while generalizing better and outperforming
in control. Increasing the amount of physical detail is, however, a double-edged sword: the
model size is substantially increased, which is particularly critical for the solution method
of the optimization problem. Two approaches can be followed: either the model complex-
ity is reduced or the optimization solver is improved. The transcription method used is
particularly critical in this regard since it can easily magnify the optimization complexity.
Another disturbing matter when increasing the model size of the building envelope is its
increased sensitivity to weather forecast uncertainty. The increased sensitivity to weather
forecast uncertainty is revealed by the daily pattern of the control deviations evaluated
for the zone air temperature, common to the three experiments and magnified by the high
solar irradiation.

Overall, we observe that including physical insights in a model is beneficial, but the
increased complexity should be carefully handled. On the one hand, the analysis of the
models’ architecture in Section 4 shows that most of the complexity of a white-box model
comes from the building envelope: only 3 out of the 94 model states belong to the heating
system. On the other hand, the control performance assessment of Section 5 highlights the
importance of modeling the heating system in detail. Moreover, it is suggested that a more
detailed building envelope model can be more sensitive to weather forecast uncertainty.
Consequently, we advocate a modeling approach that synergizes the physics- and data-
driven paradigms. Primarily the heating system should be modeled in detail and based
on first principles, which is motivated by three main aspects that are treated in this paper:
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(1) the relevance of the heating system in control performance, (2) its low complexity
overhead, and (3) its low sensitivity to uncertainty during operation. On the other hand,
the building envelope can substantially benefit from using operational data for training
and making some simplifications, motivated by: (1) the benefits of utilizing a systematic
approach to calibrate the parameters, (2) the high complexity overhead of the building
envelope, and (3) its high sensitivity to uncertainty during operation. Still, physical insights
may be used as much as possible to derive good initial guesses of the parameters and
obtain an intelligible model.

7. Conclusions

This paper investigates the strengths and weaknesses of the three main modeling
paradigms for optimal building predictive control. A representative model of each paradigm
is selected, and the three models are configured using the same optimal control framework
for a thermally activated building located in Leuven, Belgium. The models are analyzed
and evaluated in prediction and control performance. The main difference between the
physics- and data-driven models is the disparity in model size, which stems from the num-
ber of equations and states that the white-box model needs to describe the main building
physics completely.

The physics-based model has 94 states for the envisaged case, while the data-driven
models use only 3 states. It is shown that most of the states of the white-box model
belong to the building envelope, with only three states belonging to the heating system.
Despite its increased level of detail, the white-box model has the highest RMSE in historical
monitoring data, and its calibration process is a very cumbersome task. However, the results
suggest that increasing the amount of physical detail is beneficial for prediction and control.
Specifically, it is shown that not modeling the heating system based on first principles can
seriously hamper the control performance. Prediction and control performance are also
compared, but a correlation between both metrics cannot be found, even when using the
same data for prediction assessment as those obtained from the control experiments. Finally,
the n-step ahead control deviation is proposed to assess if the strategies devised by the MPC
are effectively implemented. The analysis of this metric and the prediction performance
indicates that the very detailed building envelope model may be more sensitive to forecast
uncertainty.

To conclude, we suggest a modeling approach that synergizes the physics- and data-
driven approaches. On the one hand, the heating system may be mainly modeled based on
physical principles because of its lower complexity overhead and less exposure to uncer-
tainty. On the other hand, the building envelope may introduce some simplifications while
using physics to derive a good initial guess and monitoring data to train its parameters.
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Appendix A. White-Box Modelica Model
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Figure A1. White-box model of the Vliet building test room and heating system. (a) White-box model
of the building envelope of the test room; (b) White-box model of the heating system.
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Appendix B. Grey-Box Modelica Model
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Figure A2. Grey-box model of the building envelope of the Vliet building test room.
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7. Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All
you need to know about model predictive control for buildings. Annu. Rev. Control 2020, 50, 190–232. [CrossRef]

8. Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive
control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [CrossRef]
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Abstract: The increasing amount of operational data in buildings opens up new methods for improv-
ing building performance through advanced controls. Although predictive control has been widely
investigated in the literature, field demonstrations still remain rare. Alternatively, model-based con-
trols can provide similar improvement while being easier to implement in real buildings. This paper
investigates three data-driven model-based control strategies to improve the cooling performance
of commercial and institutional buildings: (a) chiller sequencing, (b) free cooling, and (c) supply air
temperature reset. These energy efficiency measures are applied to an existing commercial building in
Canada with data from summer 2020 and 2021. The impact of each measure is individually assessed,
as well as their combined effects. The results show that all three of the measures together reduce
building cooling energy by 12% and cooling system electric energy by 33%.

Keywords: advanced controls; energy efficiency; model-based controls; free cooling; chiller sequencing;
temperature reset strategies

1. Introduction

1.1. Motivation

Despite the efforts made toward control optimization, most existing buildings are still
not operated at a high level of energy efficiency. It is estimated that the annual energy
use of existing buildings could be reduced by up to 30% [1] with the improvement of
control and operation, as well as the detection and correction of equipment problems and
inefficiencies [2]. Besides energy savings, more efficient building operation could reduce
maintenance costs by 20% [3]. Furthermore, with the advent of increasingly efficient tech-
nologies, buildings are becoming more and more complex. Thus, the adequate optimization
of building operation has become a key enabler for harvesting the full potential of these
energy systems. Kramer et al. [4] conducted a vast campaign to prove the business case for
building analytics. They categorized commercial products that are available on the market
for optimizing building controls into three categories: energy information system, fault
detection and diagnostics, and automated system optimization. They tested 85 different
software on 6500 buildings from 104 organizations and showed that the median annual
energy savings could reach up to 9% with a two-year simple payback.

Moreover, sub-hourly data have become increasingly available in buildings and pro-
vide an untapped opportunity for improving existing building controls. This vast amount of
data could be leveraged to support the development of advanced control strategies, which
could eventually be further integrated into existing building automation systems (BAS)
or building optimization commercial platforms. Model-based predictive controls (MPC)
are a compelling example and have been intensively investigated in the past decades [5].
This method consists of the use of a control-oriented model along with forecasts (e.g.,
weather, occupancy) to predict the future behavior of a building hours ahead and optimize
its heating and cooling system operation accordingly. Although it shows good promise in
theory, its implementation in existing buildings remains relatively scarce and somewhat
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challenging [6,7]. On the other hand, operational data could still be leveraged through
simpler approaches such as data-driven rule- or model-based controls, which are much
easier to implement in existing buildings.

This paper aims to investigate three data-driven model-based control strategies, which
can be readily implemented in actual building controls to improve the cooling performance
of Commercial and Institutional (CI) buildings equipped with BAS.

1.2. Literature Review

Various control strategies for optimizing building operation have been investigated
in the past and inventoried in review papers. For instance, Wang and Ma [8] investigated
supervisory and optimal control for building Heating, Ventilation and Air Conditioning
(HVAC) systems while Afram and Janabi-Sharifi [9], and more recently Taheri et al. [10],
conducted reviews of MPC strategies for HVAC systems. In addition, some authors
focused on specific aspects of building operation. Thieblemont et al. [11] and Yu et al. [12]
investigated MPC for buildings equipped with energy storage devices. Péan et al. [13]
reviewed control strategies for heat pump systems for enhancing flexibility. Darwazeh et al.
concentrated on peak load management strategies [14]. Finally, Mirakhorli and Dong [15]
focused on occupancy behavior-based MPC while Park et al. [16] conducted a review of
field implementations of occupant-centric building controls. Although a good proportion of
these publications focus on applications related to building heating performance, advanced
controls have also been widely used for improving the cooling performance. Some of these
applications include, among others:

• Building precooling in a time-of-use tariff structure, targeting the reduction of building
energy use during mid-peak and high-peak hours [17].

• The optimization of HVAC operating conditions, targeting the reduction of building
energy use [18] or building electric power [19].

• The optimization of fresh air intake based on occupancy, aiming to provide a suitable
amount of fresh air depending on the actual number of occupants [20].

• Natural and hybrid ventilation, targeting the incorporation of more fresh air into the
building at critical times of the day to reduce mechanical cooling [21,22].

• The optimization of cooling system performance, with the goal of improving the chiller
performance at the part-load ratio [23–25].

• The management of ice banks, targeting the reduction of building energy use during
peak hours [26–28].

• The management of radiant slab systems to reduce building energy use in the morning
while improving thermal comfort [29,30].

Three applications are further discussed since they are the foundations of the proposed
measures: local HVAC controls, chilled water system performance at the part-load ratio,
and free cooling.

Recently, ASHRAE Guideline 36 (G36) has been released and provides high-performance
control sequences to improve the operation of HVAC systems [31]. Such standardized
control sequences will help reduce engineering time and reduce programming and com-
missioning time while improving energy efficiency and indoor air quality. This guideline
has focused on airside equipment, mainly variable air volume (VAV) systems and terminal
units, as well as more recently, on waterside equipment related to heating and cooling
plants. Zhang et al. [18] estimated the potential savings obtained by retrofitting existing
controls to new control sequences based on this guideline and applied it to multi-zone
VAV systems. They tested various scenarios under different climates, building operating
hours, and internal load magnitudes, and found that G36 control sequences could reduce
energy use by 2–75% with an average of 31%. Three control strategies played a significant
role in this reduction: supply air temperature reset, duct static pressure reset, and zone
airflow control.

For the cooling system operation at the part-load ratio, Thangavelu et al. [23] inves-
tigated a multi-chiller plant and evaluated its electric power as the contribution of that
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of the chiller, the circulating pumps, and the cooling tower fans. They proposed a novel
methodology, which optimizes the flowrates of chilled and condenser water, chilled and
condenser water temperatures, and cooling tower air flowrates, to maximize cooling system
performance. They validated the approach using three case studies and found that the
energy savings could reach 20%, 40%, and 42%, respectively, compared to conventional
controls. Fan et al. [32] studied optimal control strategies for a multi-chiller system to
determine the optimal sequencing based on probability density distribution of the cooling
load ratio. They obtained savings of up to 4% compared to the original control strategy.
Liao and Huang [24] developed a hybrid predictive sequencing control for a multi-chiller
plant, which optimizes the chiller sequencing based on the forecasted cooling load. For
this purpose, chiller performance curves were derived from three months of historical data
from a real chiller and the objective function was intended to enhance system stability
(i.e., number of chiller switches) and reduce operational costs while maintaining thermal
comfort and energy efficiency. It is worth mentioning that operational costs were calcu-
lated as the sum of the chiller plant energy consumption, the start-up cost of chiller plants
(chillers and pumps), and the depreciation cost of all devices. The results showed that the
switch number of chillers was reduced by 20% and the operational cost decreased by 4%.
A similar approach was developed by Gunay et al. [25] for equipment sequencing in a
central heating and cooling plant. The hourly cooling peak load was forecasted for the next
day and the chiller sequencing was adjusted accordingly. Operational data were used to
derive data-driven performance curves for the five chillers of the cooling plant. The authors
obtained cooling energy savings of 25% compared to the current operation. The impor-
tance of chiller scheduling has also been reported by Chen et al. [33]. The authors studied
the impact of multi-chiller plants on design and operation optimization and considered
13 centrifugal chillers. They showed that it is a good practice to select chillers with different
capacities and that energy consumption could be reduced by 20% with the best chiller
design option compared with the worst option.

Free cooling is an effective strategy to improve HVAC system performance when
outdoor air conditions are favorable. Broadly speaking, “free cooling” strategies can
be implemented in various ways such as by using airside and waterside economizers, or
natural and hybrid ventilation. An airside economizer increases fresh air intake and reduces
the return air by adjusting the dampers in the air handling unit (AHU) system. ASHRAE
Standard 90.1 specifies various operating conditions for economizer high limits and devices
(e.g., fixed and/or differential dry bulb or enthalpy) [34]. Hybrid ventilation offers a great
opportunity for taking advantage of favorable outdoor air conditions to precool buildings at
night in order to discharge building thermal mass, which decreases operative temperature,
and to reduce mechanical cooling during the day [22]. A hybrid ventilation system consists
of a possibly fan-assisted system (e.g., windows and motorized dampers), which allows
the outdoor air to enter the building and that is used along with a mechanical cooling
system (e.g., chillers) to provide cooling to the building at all times [21]. Stasi et al. [35]
investigated nearly zero-energy buildings three hybrid ventilation strategies: earth-to-air
heat exchanger, night hybrid ventilation, and free cooling mode, and showed that cooling
energy was reduced by 14–21%, and electricity consumption by 8%, respectively.

1.3. Paper Objectives and Contributions

This paper intends to develop and evaluate energy efficiency measures to improve the
cooling system performance of CI buildings. Specifically, these measures are:

• Chiller sequencing based on data-driven performance curves;
• Free cooling strategy based on electric power estimation of the whole cooling system,

including both the waterside (chilled water system) and airside system (AHUs);
• Supply air temperature reset strategies.

The contributions of the paper include the following:

• The proposed measures build upon operational data, virtual energy meters, and
control-oriented models, which do not require prediction and forecasting, and aim
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to be readily implementable in existing buildings while being more robust and less
prone to errors compared to more complex methods such as model predictive control.

• The proposed measures tackle the existing systems and do not require the installa-
tion of additional equipment (e.g., sensors, meters, motorized operable windows for
natural ventilation, etc.). The implementation only requires minimum code modifica-
tion in the BAS, making it applicable to a wide range of CI buildings with different
HVAC configurations.

• This work evaluates both the individual and combined impacts of energy efficiency
measures in the same building, which has rarely been investigated in the past to the
best of our knowledge.

The paper is organized as follows: Section 2 describes the case study, an existing large
commercial building. The three proposed measures are described in Section 3, where the
methodology to assess the performance is also explained. Section 4 reports the performance
of each measure, as well as their combined performance, and discusses the generalizability
of the measures. Section 5 concludes the paper.

2. Case Study: A Large Commercial Building

2.1. Building Description

The case study building is a 36,000-m2, 11-floor commercial building located in Mon-
treal, Quebec. Figure 1 shows a schematic of the chilled water network. The cooling plant is
composed of three chillers: one centrifugal chiller connected to two wet cooling towers and
two screw chillers connected to two air-cooled condensers or dry cooling towers. A heat
exchanger is connected to the condenser water network of the air-cooled condensers as a
waterside economizer. It is activated when the outdoor air temperature is low. The chilled
water is distributed to cooling coils in the AHUs which are located on different floors of
the building.

Figure 1. Schematic of the chilled water system in the large commercial case study building.
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The airside system is a primary-secondary AHU system. The primary AHU system is
composed of two fresh air pre-treatment units equipped with gas burners, precooling coils,
humidifiers, and heat recovery wheels to pre-treat the outdoor air before being sent to the
secondary AHU system. This secondary system consists of 22 cooling coils in the AHU
located from the 2nd floor to the 11th floor. Once conditioned in the primary AHU system,
the outdoor air is mixed with the return air in each AHU in the different floors, further
cooled down if required, and discharged to building zones through single- or dual-duct
systems. For dual-duct systems, a fraction of the cooled air flowrate is bypassed via the hot
deck before being mixed again with the cold deck. Figure 2 shows a schematic of the air
handling unit system.

 

Figure 2. Schematic of the air handling unit system in the large commercial case study building [36].

2.2. Operational Data

Building operational data such as temperature, relative humidity, pressure, flow rates,
valve openings, chiller modulation, and electric currents (amps) were recorded at five-
min intervals. More specifically, the following variables were used for the modelling
and calculations:

• Primary loop of chilled water network: amps of circulation pumps;
• Secondary loop of chilled water network: flowrate along with supply and return water

temperature to estimate building cooling load; amps of circulation pumps;
• Chillers: % Rated Load Amps (RLA) for each chiller, used to derive electric power;
• Condenser water loop: amps of fans in cooling towers and air-cooled condensers; amps

of circulation pumps;
• Air handling units: supply and discharged air temperatures; outdoor air temperature

and relative humidity; return air temperature and relative humidity; air flowrates;
amps from the fans.

The data collected from 1 June 2020 to 1 September 2020 and from 1 June 2021 to
1 September 2021 were used to develop and validate the proposed data-driven measures.
The outliers and missing data were removed from the dataset based on statistical means
and expert knowledge. The available data allowed for calculation of the cooling thermal
power at the building level, although not at the chiller level due to the lack of measurement
devices. Therefore, chiller performance curves were generated for combinations of chillers
in operation and the building cooling power was used as a proxy. More information on the
uncertainty analysis of the building cooling power can be found in [36]. Spot measurements
were used to derive electric power from % RLA for each chiller. When spot measurements
could not be collected, manufacturer specifications were used as an alternative.

2.3. Energy Use of the Building

This subsection provides an overview of the electric and thermal energy usage in
the case study building, especially the contribution of chillers, pumps, and cooling tow-
ers to the building electric power and the impact of ventilation on the building cooling
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load. This analysis aims to better put in perspective the potential energy savings of the
proposed measures.

Figure 3 shows the electricity use of the chillers, chiller auxiliary equipment (i.e.,
circulation pumps, cooling tower fans, air-cooled condenser fans), the AHU fans (for
both primary and secondary systems), and the remaining load, deduced from the total
building electricity consumption. Note that chiller auxiliary equipment concentrates on
the major energy loads (pumps and fans) and excludes the consumption of smaller loads
such as valves and damper actuators. In total, the chilled water system and the AHU fans
contribute 60–70% of the total building electricity use.

Figure 3. Electricity use of the case study building: “Baseload” refers to the non-HVAC load; “AHU
fans” includes all of the fans in the air distribution network; “Pumps and cooling towers” refers to all
the pumps in the water network and all the fans in the cooling towers and air-cooled condensers;
“Chillers” include all three chillers.

A similar calculation was done for the building cooling load. Figure 4 shows the
mechanical cooling load provided by the chilled water system as well as the contribution
from fresh-air pretreatment, which accounts for ventilation requirements for occupancy and
air quality, as well as space cooling (i.e., room conditioning), deduced from the difference
between the chilled water system and fresh-air pretreatment. The fresh air pretreatment
thermal power (

.
Qfresh air pretreat) is calculated as follows:

.
Qfresh air pretreat =

.
mfre,occ(hOA − hEA), (1)

where
.

mfre,occ is the fresh air flowrate related to occupancy, and hOA and hEA are the
enthalpy of outdoor air and exhaust air. A negative value means that fresh air pretreatment
cools down the building by introducing cool fresh air; in contrast, a positive value means
that it requires additional cooling to pretreat the air to indoor conditions. Figure 4 shows
that fresh air pretreatment significantly contributes to the total cooling load, especially
when it was hot and humid in July and August 2020, and August 2021. In June 2020 and
2021, and July 2021, its average was close to zero, meaning that the free cooling and cooling
load introduced by the fresh air intake is approximately equal in those months.
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Figure 4. Cooling load overview for the case study building: the chilled water system bars show the
overall cooling load incurred in the plants; the bars labelled space cooling and ventilation represent
the amount of cooling load used for room conditioning and fresh air pretreatment.

3. Development of Data-Driven Measures

3.1. Chiller Sequencing

Chiller sequencing intends to take advantage of the most efficient chillers at specific
cooling loads to increase the system energy efficiency. The proposed chiller sequencing is
based on performance curves derived directly from the operational data. Developing per-
formance curves based on operation data allows for capturing the performance difference
between identical chillers in real-world scenarios. Manufacturer data in the chiller specifi-
cations will not be able to reflect those differences [37], whereas such differences could be
further exploited to improve chilled water system performance. A similar situation was
found for heat pumps [38].

3.1.1. Chilled Water System Models at Part-Load Ratio

The performance of chillers mainly depends on three factors [23]: supply water
temperature at the evaporator, supply water temperature at the condenser, and the chiller
part–load ratio, i.e., the ratio between the cooling load at which the chiller is operated and
its nominal cooling capacity. In operation, the chiller part–load ratio appears to be the
main variable that affects the system performance and has been mainly used for modelling
purposes [24,25]. In fact, this simplification eases the chiller sequencing and could be
justified by the slight variation in the water temperature on the demand side (evaporator)
in operation, while the effect of water temperature at the condenser could be relatively
well-captured by the part–load ratio itself. Indeed, if the outdoor air temperature is high,
the water temperature at the condenser might be relatively high as well, which coincides
with a higher cooling load and, thus, a higher chiller part–load ratio.

The chiller COP has been calculated as follows:

COPch =

.
Qcool

∑
i

.
Wch,i

=

.
mwcp,w

(
Tret − Tsup

)
∑
i

.
Wch,i

, (2)

where
.

Qcool is the building cooling load, which is estimated from water flowrate (
.

mw),
and supply and return water temperature (Tsup and Tret). cp,w is the water specific heat at

constant pressure.
.

Wch,i is the electric power of the ith chiller.
Figure 5 shows the chiller data-driven performance curves obtained using hourly

averaged data. Note that the chiller COP is shown against the thermal load, not the part–
load ratio, in order to support the development of the chiller sequencing strategy. The
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centrifugal chiller is referred to as CH #1, while screw chillers are referred to as CH #2
and CH #3. Since the evaporator thermal power was not measured, these curves were
developed only when chillers were individually in operation (i.e., one at a time) or for
a given combination of chillers (e.g., both screw chillers at the same time). To generate
relatively cleaned performance curves, the following data process steps were taken:

• Low differences between water supply and return temperature (<3 ◦C) were excluded
by statistical means;

• Low water flow rates (<10 kg/s) were excluded by statistical means;
• Low hourly electric power values (<25 kW) were excluded by statistical means; this

allows for avoiding possible cycling;
• To remove transient operation, for each datum point, the corresponding combination

of chillers must have been in operation for one hour and must remain in operation for
one hour.

Figure 5. Chiller data-driven performance curves obtained with operational data. The electric power
accounts for the chiller(s) in operation only.

The results from Figure 5 show that screw chillers (CH #2 and CH #3), although
identical, have slightly different performance curves and are the most efficient units in
this multi-chiller system. Both screw chillers show an unexpected COP increase at a low
part–load ratio; this could be partially explained by the measurement uncertainty at a low
load. When both of the screw chillers are in operation at the same time (CH #2 and #3),
their combined performance is lower than when they are operated alone. This could be
explained by the less-favorable operating conditions when the cooling load is high (i.e.,
lower inlet water temperature at the evaporator and higher inlet water temperature at
the condenser). On the other hand, the centrifugal chiller (CH #1) shows an unexpected
poor performance, which may indicate a technical issue. This was raised to the building
technical team, which has further investigated this aspect and found that the chiller was
rusted and needed in-depth cleaning. Once the chiller is cleaned, the performance curve
can be easily updated to account for the new situation.

The main drawback of chiller performance curves is that they does not consider the
power use of auxiliary devices, such as circulation pumps and fans from cooling towers. At
a low cooling load, the chiller might be energy efficient; nonetheless, the electric power of
pumps and fans might remain high. This may significantly reduce the system performance
of the chilled water network. To account for the energy use from auxiliary equipment, the
chilled water system COP has been calculated as follows:

COPcool =

.
Qcool

∑
i

(
.

Wch,i + ∑
j

.
Wpp,i,j + ∑

k

.
Wfan,i,k

) , (3)
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where
.

Wpp,i,j is the electric power of the jth circulation pump related to the operation of

the ith chiller; it includes pumps in both primary and secondary water loops.
.

Wfan,i,k is the
electric power of the kth fan related to the operation of the ith chiller; it includes fans in the
air-cooled condensers and/or cooling towers.

Figure 6 shows the performance curves of the chilled water system. As expected, at a
low cooling load, chiller electric power is relatively low and the contribution of auxiliary
equipment to the total electric power becomes significant. Overall, similar trends were
obtained: individual screw chillers perform the best, followed by the combination of screw
chillers, the centrifugal chiller, and, last, all chillers together. Other chiller combinations
were barely found in the historical data. In general, the auxiliary equipment significantly
reduces the performance: the chilled water system COP (Figure 6) almost never exceeds 3
while the chiller COP (Figure 5) can easily reach 6 and beyond.

Figure 6. Chilled water system data-driven performance curves obtained with operational data. The
electric power accounts for the chiller(s) in operation and the associated auxiliary equipment (i.e.,
circulation pumps, cooling tower fans, air-cooled condenser fans).

3.1.2. Proposed Chiller Sequencing Strategy

Chilled water system data-driven performance curves (Figure 6) were used to develop
the new chiller sequencing strategy. Linear models were used to estimate the COP of the
screw chillers (CH #2 and CH #3) and all of the chillers together (CH #1-3) from the thermal
load; quadratic models were used for the combination of the screw chillers (CH #2-3) and
the centrifugal chiller (CH #1):

COPCH#1 = −2.375e−6
.

Q
2
CH#1 + 4.348e−3

.
QCH#1 − 1.068, (4)

COPCH#2 = 1.818e−3
.

QCH#2 + 1.898, (5)

COPCH#3 = 2.004e−3
.

QCH#3 + 1.774, (6)

COPCH#2-3 = −5.307e−6
.

Q
2
CH#2-3 + 7.896e−3

.
QCH#2-3 − 0.326, (7)

COPCH#1-2-3 = 1.935e−3
.

QCH#1-2-3 + 2.009, (8)

The model accuracy was evaluated based on the coefficient of determination (R2),
the normalized mean bias error (NMBE), and the coefficient of variation of the root mean
square error (CV-RMSE) [39]. The results are given in Table 1 and show good consistency
with the operational data.
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Table 1. Accuracy of chilled water system COP models.

Chiller in Operation Model R2 NMBE CV-RMSE

CH #1 (centrifugal) Quadratic 0.92 3.3 × 10−14% 3.0%
CH #2 (screw) Linear 0.53 2.2 × 10−14% 7.5%
CH #3 (screw) Linear 0.57 −2.3 × 10−14% 7.5%
CH #2-3 Quadratic 0.61 −2.1 × 10−14% 5.0%
CH #1-2-3 Linear 0.98 −3.5 ×10−14% 2.9%

Based on the findings from Figure 6, it appears that CH #2 is the most efficient chiller,
although the difference with CH #3 becomes negligible for a cooling load higher than
575 kW. At a high cooling load (above 650 kW), both screw chillers CH #2 and #3 might be
required and should be used, instead of the centrifugal chiller. Switch-on and switch-off
thresholds should also be considered to avoid cycling, while more advanced controls could
be incorporated as well to reduce the number of switches and chiller start-ups [24]. For
the present case study, the proposed chiller sequencing is described in Table 2. Switch-on
and switch-off thresholds were tuned to reduce the number of chiller switches without
degrading the system performance. The centrifugal chiller is not used in the proposed
sequencing due to its poor performance.

Table 2. Chiller sequencing strategy: switch-on and switch-off thresholds.

Switch-On Threshold Switch-Off Threshold

From #2 to #3 575 kW From #3 to #2 550 kW
From #3 to #2-3 650 kW From #2-3 to #3 625 kW

Although more advanced controls could be used to improve the multi-chiller system
by considering more complex chiller models [23], more control variables (e.g., water and
air flowrates and temperatures) [23], or advanced optimization routines [40], the proposed
approach requires limited operational data, only targets chiller sequencing without affecting
local controls in the chilled water network (and related technical considerations), and
relies on a simple part–load ratio model for the chillers, which eases the development
of the sequencing strategy. Such features are intended to facilitate the implementation
of the proposed strategy into actual control systems and the replicability to other multi-
chiller systems.

3.2. Free Cooling

A free cooling strategy aims to cool down a building with or without the limited use
of a mechanical device by introducing more outdoor air when conditions are favorable.
Unlike conventional free cooling strategies which rely on natural or hybrid ventilation
generally, the proposed free cooling strategy is to increase fresh air intake through the
existing mechanical ventilation system in the AHUs. Increasing the ventilation flowrate
might reduce the chilled water system electric power; however, it also increases the AHU
fan power consumption, whose contribution can be significant to the total building electric
power (see Section 2.3). The proposed free cooling strategy aims to identify outdoor
conditions under which the total electric power of the chilled water system and the AHU
fans is lower compared to the baseline operation, i.e., without increased fresh air flowrates.

3.2.1. Free Cooling Thermal Power

Quebec’s climate shows a high potential for free cooling, which is mainly due to the
large daily temperature variations, as temperatures at night can easily go below 15 ◦C [22].
Free cooling in these conditions especially occurs in early or late summer, or during
shoulder seasons, and depends on required indoor air conditions.

To evaluate the feasibility of potential free cooling, outdoor air conditions must be
lower than indoor air conditions. In this case, incorporating more fresh air cools down
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the building. Otherwise, more cooling from the mechanical cooling system is required to
pre-condition the fresh air (see Section 2.3). This fresh-air pre-treatment can be evaluated
by comparing fresh air and return (or exhaust) air conditions. In addition, the amount of
potential free cooling depends on the capacity of the ventilation system to incorporate more
fresh air into the system, besides occupancy needs. At night, occupancy in CI buildings
is relatively low, which offers more potential for free cooling than during the daytime.
Consequently, the free cooling thermal power can be estimated as follows:

.
Qfree cooling = min

( .
Qtotal cooling,

( .
mfre,max − .

mfre,occ
)
(hOA − hEA)

)
, (9)

where
.

Qfree cooling is the total building cooling load (kW),
.

mfre,max and
.

mfre,occ are the
maximum fresh air flowrate based on ventilation system capacity and fresh air require-
ments for occupancy purposes (kg/s), and hOA and hEA are outdoor air and exhaust air
enthalpies (kJ/kg) and depend on temperature and relative humidity. From the operational
data for summer 2020 and 2021, the maximum fresh air flowrate observed was 20,500 L/s;
this value was used in Equation (9). In theory, Equation (9) provides the maximum free
cooling thermal power by considering the maximum fresh air flowrate. However, a more
sophisticated approach could be to test all possible flow rates from occupancy requirements
up to the maximum; however, it would also make the approach more complex and more
difficult to implement in real buildings.

Figure 7 shows the total building cooling load and the free cooling thermal power for
one week in late August 2020. It is worth mentioning that this free cooling thermal power
is possible due to favorable outdoor air conditions compared to indoor air conditions, and
only accounts for the free cooling potential from a thermal load viewpoint. In other words,
it does not necessarily mean that it is efficient to conduct free cooling from an electric
power perspective (see Section 3.2.3). We can see that free cooling is possible mainly at
night, although also sometimes during the day due to lower outdoor air conditions during
this period of the year. Figure 7 also shows the fresh air flowrate required for occupancy
needs and the flow rate available for free cooling. During the day, building occupancy is
higher and reduces the potential for free cooling by decreasing the available air flowrate
for free cooling (see Equation (9)), which partially explains why the potential free cooling
thermal power is lower during work hours. The total fresh air flowrate is sometimes below
20,500 L/s, which occurs when the potential free cooling load exceeds the building cooling
load and is adjusted to exactly match it by lowering the flowrate.

Figure 7. (a) Total building cooling load and free cooling thermal power, and (b) fresh air flowrate
for occupancy needs and available for free cooling for two weeks in August 2020.
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3.2.2. Chiller and AHU Fan Electric Power

To evaluate the electric power associated with the free cooling strategy, models are
required to calculate the contribution of chillers and of fans located in the primary and
secondary AHU systems. The chiller models developed in Section 3.1.2 were reused for
this purpose.

The fan electric power was calculated as a function of flowrate by means of linear re-
gression: the primary AHU fan power is determined from fresh air flowrate; the secondary
AHU fan power is estimated from discharged air flowrate. Figure 8 shows the results for
the AHU fan power.

Figure 8. (a) Primary AHU fan power as a function of fresh air flowrate; (b) secondary AHU fan
power as a function of discharged air flowrate.

Under free cooling, a portion of the cooling load can be satisfied by incorporating more
fresh air into the ventilation system. This portion is calculated from Equation (9) and the
primary AHU system operates at the maximum fresh air flowrate. The rest of the cooling
load is supplied by the chillers, which operate at a lower part–load ratio. If the building
cooling load is low, it might occur that the entire load can be satisfied by free cooling
and the primary AHU system might need to modulate the fresh air flowrate to avoid any
overcooling in the building. The total fresh air flowrate becomes the contribution of the
fresh air flowrate for occupancy needs and for free cooling. In contrast, the discharged air
flowrate depends on the building cooling load; Figure 9 shows this behavior under the
baseline operation as well as the obtained model. Based on the model, the total discharged
air flowrate under the free cooling mode was calculated as the sum of the additional fresh
air flowrate and the discharged air flowrate at the cooling load covered by the chillers (i.e.,
total building cooling load minus free cooling thermal power). Note that the contribution
of increased fan power to the building cooling load was neglected for simplicity.

Table 3 shows the accuracy of the fan power models and discharged air flowrate model
based on R2, NMBE, and CV-RMSE [39]. The results are given in Table 3 and show good
consistency with the operational data.
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Figure 9. Discharged air flowrate as a function of the cooling load from the chilled water system
under baseline operation.

Table 3. Accuracy of fan power and discharged air flowrate models.

Variable Model R2 NMBE CV-RMSE

Primary AHU fan power Linear 0.22 −3.6 × 10−14% 22.4%
Secondary AHU fan power Linear 0.91 3.1 × 10−14% 14.8%
Discharged air flowrate Linear 0.73 0.65% 27.9%

3.2.3. Proposed Free Cooling Strategy

The free cooling thermal power given in Equation (9) mainly depends on the difference
between indoor air (approximated by exhaust air) and outdoor air conditions: the larger
the difference, the higher the free cooling thermal power. However, this does not guarantee
that it is always energy efficient to run the building under free cooling conditions. It is
therefore required to verify that the sum of the electric power of the chilled water system
and that of the AHU fans is reduced compared to the baseline case. Figure 10 depicts the
reduction in total electric power of the chilled water system and AHU fans as a function of
the enthalpy difference between indoor and exhaust air. The negative values indicate that
operating under free cooling increases the electric power. From this figure, we can clearly
see a change point at 7.5 kJ/kg from which the electric power reduction becomes positive
and free cooling thus becomes energy efficient. It is worth mentioning that this change
point was obtained with the chiller sequencing under baseline operation; nonetheless, it
does not change with the proposed chiller sequencing strategy.

The outdoor air conditions that allow for efficient free cooling were investigated and
the results are shown in Figure 11. It can be clearly seen that the temperature is the main
driver for efficient free cooling; however, relative humidity also plays an important role.
Overall, free cooling was found to be effective when the outdoor air temperature was lower
than 21 ◦C; however, the threshold also depends on relative humidity and a free cooling
strategy based on outdoor air temperature only could have increased the electric power.
Such a strategy could become quite effective during shoulder seasons when, for instance,
outdoor air temperature at night can be low while cooling is still required for the building
to compensate for internal gains.
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Figure 10. Reduction in total electric power of chilled water system and AHU fans by using free
cooling as a function of the enthalpy difference between exhaust and outdoor air.

Figure 11. (a) Outdoor air temperature and (b) relative humidity for inefficient and efficient free
cooling as a function of the enthalpy difference between exhaust and outdoor air.

Such a global approach not only makes the proposed free cooling strategy applicable
to conventional HVAC configurations with economizers but also to more unique config-
urations. It requires chiller and fan electric power and fresh air flowrates, and allows
for evaluation of the overall benefits of the proposed free cooling strategy. In terms of
implementation, the proposed strategy is simple and could be easily implemented by using
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the enthalpy difference between exhaust and outdoor air, and the estimated threshold
of 7.5 kJ/kg.

3.3. Supply Air Temperature Reset
3.3.1. Proposed Supply Air Temperature Reset Strategy

To improve AHU energy efficiency in a VAV system, Supply Air Temperature (SAT)
setpoint is a common variable to optimize. ASHRAE G36 [31] has recommended various
SAT reset strategies for AHUs. Zhang et al. [18] reported that the G36 SAT reset strategy
based on outdoor dry bulb temperature saved energy in different California climates.

The existing SAT setpoints for the two AHUs in the case study are configured to be
constantly equal to 13 ◦C. This low setpoint requests cooling load from the chillers as
long as the outdoor air (close to cooling coil inlet temperature) is higher than the setpoint
value due to the lack of air economizers in the AHUs (see Figure 2). This generates an
unnecessary cooling load for the chillers even when the outdoor air is relatively cool and
dry, especially during shoulder seasons or cold summer nights. G36 suggests resetting
SAT setpoint to a higher value when the outdoor air is in favorable conditions. Specifically,
it recommends adjusting the SAT setpoint proportionally from 13 ◦C to 18 ◦C when the
outdoor air changes from 21 ◦C to 16 ◦C [31].

To consider the impact of humidity, this work adopts a reset strategy based on outdoor
air enthalpy. The green line in Figure 12 shows the proposed SAT reset strategy based on
fixed outdoor air enthalpy. The SAT setpoint range is selected to be the same as that in G36
from 13 ◦C to 18 ◦C. The low and high limits for the outdoor air enthalpy (40.5 kJ/kg and
61.6 kJ/kg, respectively) are selected by considering the same outdoor dry bulb temperature
(16 and 21 ◦C) with a constant relative humidity at 85%. Note that this high limit of outdoor
air enthalpy, 61.6 kJ/kg, is lower than the high limit, 65.1 kJ/kg (equivalent to 24 ◦C outdoor
air at 85% relative humidity), specified in ASHRAE Standard 90.1 [34] for an air economizer
based on fixed enthalpy with a fixed dry bulb temperature of outdoor air for all ASHRAE
climate zones. It is, therefore, considered to be safe for the proposed SAT reset strategy not
to introduce extra humidity into the building.

 
Figure 12. Proposed supply air temperature reset strategy as a function of outdoor air enthalpy while
the existing supply air temperature setpoint remains constant.
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3.3.2. AHU Cooling Load Calculation

To evaluate the cooling load reduction in the SAT reset strategy, it is necessary to
calculate the cooling load of the coils in the AHUs. The BAS measures and stores the
temperature, relative humidity, and flowrates of the fresh air, as well as the inlet and outlet
temperatures of the cooling coils. Based on mass and energy balance equations [36,41], the
cooling coil load of an AHU can be calculated using Equation (10):

qAHU =
.

ma,AHUi (ha(Tcoil,i,in, ωcoil,i,in)− ha(Tcoil,i,out, ωcoil,i,out))− .
mw,AHUi hw(Tcoil,i,out, x = 0), (10)

where
.

ma,AHUi and
.

mw,AHUi are the mass flow rate of air and condensation water in AHUi;
indices coil,i,in and coil,i,out refer to the cooling coil inlet and outlet of AHUi. ha is the
enthalpy of the humid air, and hw is the water condensation from the humid air. T and ω
are the temperature and humidity ratio, and x is vapor quality.

For the calculation of the baseline cooling load, the measured values were used for
the outlet temperatures of the cooling coils. For the calculation of the cooling load with
the reset strategy, the outlet temperatures of the cooling coils were assumed to be equal
to the SAT reset setpoints. This assumption is considered to be reasonable, as the existing
data of the SAT and its setpoint show negligible discrepancies. In other words, the cooling
coils were always able to deliver the required cooling load within the sampling rate (5 min)
of the data and there was no risk that the reset setpoint could not be reached or would be
reached with significant delay.

The proposed temperature reset strategy follows a structure commonly found in BAS
and generally implemented through if/then statements, which eases its implementation.
Moreover, such a strategy could be replicated to other HVAC configurations with pri-
mary/secondary AHUs, as well as different AHU configurations with small modifications,
as proposed by G36.

3.4. Methodology to Assess Performance

The performance of each measure was first evaluated individually, and a baseline
case (reference or BAU, “Business As Usual”) was defined to evaluate energy savings. It
consists of: (a) the measured building cooling load (i.e., no SAT reset strategy), which is
fully satisfied by the cooling system (i.e., no free cooling), whose electric power is calculated
using the chiller models; (b) a baseline chiller sequencing deduced from the measured
operation (i.e., which chiller in operation at a given time); and (c) measured fresh air
flowrates and discharged air flowrates to calculate fan electric power (i.e., no free cooling).
Once the individual assessment was performed, the impact of all measures together was
evaluated. In summary, this means:

• Chiller sequencing: the new chiller sequencing was compared with the baseline sequenc-
ing for the same building cooling load without free cooling;

• Free cooling strategy: the proposed free cooling strategy was compared to the baseline
case without free cooling for the same building cooling load and chiller sequencing;

• Supply air temperature reset strategy: the SAT reset strategy was compared with the
baseline cooling load for the same chiller sequencing and without free cooling;

• All measures together: the air temperature reset strategy coupled with the proposed
chiller sequencing and the free cooling strategy were compared with the baseline case.

To assess the energy savings, the decrease in building cooling energy (ΔQmeasure) and
the overall reduction in the cooling system electric power (ΔWmeasure) were estimated over
a given period of time as shown in Equations (11) and (12). For the specific case of free
cooling, the cooling system electric power reduction comes along with an increase in AHU
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fan power; this effect is considered in the energy savings by penalizing the cooling system
electric power reduction with the fan power increase as follows:

ΔQmeasure =

∫
t

(
.

Q
re f
cool −

.
Q

meas
cool

)
dt

∫
t

.
Q

re f
cooldt

, (11)

ΔWmeasure =

∫
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where
.

Q
re f
cool ,

.
W

re f
cool,sys, and

.
W

re f
f an are, respectively, the building cooling energy, the cooling

system electric power, and the AHU fan power for the baseline case.
.

Q
meas
cool ,

.
W

meas
cool,sys, and

.
W

meas
f an are the same variables for the evaluated measure(s).

4. Performance Evaluation of Data-Driven Measures

The performances of the proposed data-driven measures are given in Table 4 with
their associated thermal and electric energy savings. These results are discussed in detail in
the sub-sections.

Table 4. Performance of proposed data-driven measures.

Measure
Thermal Energy

(Baseline)
Thermal Energy

(Measure)
Electric Energy

(Baseline)
Electric Energy

(Measure)

Chiller sequencing only 1429 MWh 1429 MWh
(-) 676 MWh 547 MWh

(−19.1%)

Free cooling only 128 MWh 128 MWh
(-) 73 MWh 53 MWh

(−27.2%)

Supply air temperature reset only 1264 MWh 1103 MWh
(−12.7%) 614 MWh 558 MWh

(−9.1%)

All measures together 1429 MWh 1261 MWh
(−11.8%) 676 MWh 456 MWh

(−32.5%)

4.1. Performance of Individual Measures
4.1.1. Chiller Sequencing

The performance of the proposed chiller sequencing was evaluated when one of the
chiller combinations described in Section 3.1 was in operation (i.e., for which models were
developed) and when data were available (i.e., no missing values). It corresponds to 89% of
the whole period.

The new strategy allowed for reducing the cooling system electric power by 19%
compared to the baseline case. This was mainly due to the low performance of chiller #1,
which was used alone or in combination with the other chillers. From the performance
curves shown in Figure 6, operating chillers #2 or #3 was also more energy efficient than
the operation of both at the same time. The proposed chiller sequencing extended the
operation of individual chillers, which further improved the performance. Figure 13 shows
the chiller sequencing for the baseline case and the proposed strategy for two weeks in
August 2020. We can see that chiller #1 is not operated anymore while chiller #2 is the most
used, especially when the building cooling load is lower than 550–575 kW.
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Figure 13. (a) Building cooling load, (b) baseline chiller sequencing, and (c) proposed chiller sequenc-
ing for a two-week period.

4.1.2. Free Cooling

To operate under free cooling mode, the building must satisfy two conditions: (a) there
must be potential for free cooling (i.e.,

.
Qfree cooling in Equation (9) higher than zero), and

(b) free cooling must be energy efficient (i.e., enthalpy difference between exhaust and
outdoor air higher than 7.5 kJ/kg). During the six-month period, free cooling was possible
for 33% of the time and efficient free cooling represents 37% of the period when free cooling
was possible. Since outdoor air conditions must be favorable, applying the free cooling
measure during shoulder seasons (e.g., May and September) would further increase its use.

Although it was not often used during the whole period (12%), Table 4 shows that
efficient free cooling can provide significant savings by reducing chilled water system
electric energy by 27%. Note that this number includes the increased fan power when
the building operates under free cooling mode. Figure 14 shows the results for a one-
week period. We can see that free cooling is generally used at night, when outdoor air
temperature is cooler and occupancy fresh air requirements are lower; however, it can
also be used during the day (e.g., 10 or 16 June). Figure 14b shows the electric power
reduction when the building is under free cooling mode. We can clearly see that free
cooling helps reduce cooling system electric power when the chilled water system is not
required anymore (i.e., at night). When free cooling complements the chilled water system,
interesting savings are still achieved.
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Figure 14. (a) Building cooling load satisfied by chilled water system or free cooling and (b) electric
power with and without free cooling for a one-week period. The electric power is the contribution of
the chilled water system power and the increased fan power, as given in Equation (12).

4.1.3. Supply Air Temperature Reset

Figure 15 shows the cooling load of the baseline and proposed reset strategy for a
typical week in summer 2021. We can see that the proposed strategy requires less cooling
when the outdoor air enthalpy is low, which is especially effective during 1–5 July. Low
enthalpy means that the outdoor air is cool and dry during those periods, which leads to
less need for the AHU system to further cool and dehumidify the fresh air entering the
system. Unlike the existing control, the proposed measure resets the SAT setpoint to a
higher value in those conditions and thus reduces the cooling load.

It is worth mentioning that the cooling load was estimated using air-side measure-
ments at the AHU level and might lead to slightly different cooling load results compared
to using chilled water measurements in Equation (2), which were used for the chiller
sequencing measure. When combined measures are assessed, this cooling load reduction
(absolute value) is used along with Equation (2). For more information about the differences
and uncertainties regarding the two cooling load calculation methods, see [36,41].

Figure 16 summarizes the average cooling load of the baseline and proposed SAT
measure for the two summers. We can see that the measure was able to reduce cooling load
for all summer months by 7–22%, with slightly more reductions in June. It was expected
that the measure could further reduce the cooling load in shoulder seasons such as in the
months of May and September. The overall cooling load reduction from the SAT measure is
12.7% against the baseline for the investigated six months as shown in Table 4. The decrease
in cooling energy comes along with a reduced utilization of the chilled water system and a
reduction in electric power, estimated at 9.1%.
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Figure 15. (a) Cooling load of a typical week in 2021 for the baseline and proposed supply air
temperature reset strategy; (b) outdoor air enthalpy and dry bulb temperature for the same week.

Figure 16. Average cooling load per month for the baseline and proposed supply air temperature
reset strategy during 2020 and 2021 summer.

4.2. Performance of Combined Measures

The combined effect of all of the measures applied together is given in Table 4. It
shows an overall reduction in thermal energy of 11.8% and in electric energy of 32.5%.
The SAT reset strategy allows for reducing both the thermal and electric energy. The
new chiller sequencing takes advantage of the most energy-efficient chillers and directly
tackles chilled water system electric power. Finally, when effective, the free cooling strategy
permits further reducing electric energy by increasing fresh air intake into the building,
thus reducing the usage of the chilled water system.

Figure 17 shows the cooling load and electric power for the baseline and the com-
bined measures for a typical week in 2021. Both thermal and electric power are consis-
tently reduced due to the combined effects of chiller sequencing, free cooling, and SAT
reset strategies.
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Figure 17. (a) Building cooling load; (b) electric power for the baseline and the combined measures
for a typical week. The electric power is the contribution of the chilled water system power and the
increased fan power, as given in Equation (12).

On a monthly basis, Figure 16 shows the cooling load reduction of the SAT reset
strategy; however, it also represents the results of the combined measures, since only the
SAT reset strategy affects the building cooling load. For the chilled water system electric
power, Figure 18 shows the average monthly results and reductions ranging between 23%
and 46%. In 2020, June provideed higher savings (34%) due to the most favorable outdoor
air conditions, which allowed for operating under the effective SAT reset strategy and free
cooling mode. In 2021, more significant savings were achieved, especially for the months
of July and August (36–46%). These savings were mainly achieved due to the new chiller
sequencing, which avoids the usage of both the chiller #1 alone and the chillers #1-3, which
show poor performance, as displayed in Figure 6.

Figure 18. Average chilled water system electric power per month for the baseline and the combined
measures during summer 2020 and 2021.
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4.3. Generalizability of Proposed Data-Driven Measures

The proposed data-driven measures were built on models to obtain insights into
the cooling system performance to further optimize building operation. To facilitate the
implementation in the current control system, the proposed measures were aimed to be
implemented by means of simple rule-based controls:

• Chiller sequencing: the sequencing can be implemented using switch-on and switch-off
thresholds as given in Table 2; this sequence could act as a master controller and could
be further overridden by local control rules if required (e.g., a high temperature limit
can be reached, which may require a chiller switch). This strategy could be replicated
to any other multi-chiller systems with the same ease of implementation.

• Free cooling: the free cooling mode requires the change point (7.5 kJ/kg, as shown in
Figure 10) and the enthalpy calculations for both exhaust and outdoor air; the library
Coolprop [42] can be used for this purpose. Additional control modifications are
necessary to allow the fresh air flowrate to increase. This strategy could not only be
replicated to conventional HVAC configurations with economizers, but also to more
unique configurations.

• Supply air temperature reset: reset strategies are already commonly used in BAS for
various temperatures with if/then statements. The proposed temperature reset strat-
egy is given in Figure 12 and relies on outdoor air enthalpy estimation; the library
Coolprop [42] can be used in this case as well. This strategy is inspired by ASHRAE
Guideline 36 [31] and, as such, it could be replicated to many AHU systems with
minor adjustments.

The proposed measures could be generalized to other buildings; however, their devel-
opment depends on the available operational data while the tuning of control parameters
(i.e., chiller sequencing switch-on and switch-off thresholds, free cooling change point, tem-
perature reset strategy parameters) requires careful data analysis and model development.

5. Conclusions

This work tackled the development of three data-driven model-based control strategies
to improve the cooling performance of commercial and institutional buildings:

• A new chiller sequencing based on data-driven performance curves;
• A free cooling strategy considering both chilled water system electric power and air

handling unit fan power;
• A supply air temperature reset strategy based on outdoor air enthalpy.

These measures were built upon operational data and virtual energy meters and
models, and were intended to be relatively simple to develop and easy to implement
in actual control systems. This approach makes the proposed measures more robust
and less prone to errors compared to more complex methods because the installation of
additional hardware is not required, which makes the approach more easily replicable in
other buildings.

These measures were developed for an existing large commercial building and were
evaluated both individually and all together during summer (June–August) 2020 and
2021. The results showed that the chiller sequencing could reduce chilled water system
electric energy by 19%. The free cooling strategy was efficient with a 27% reduction in
electric energy; however, this mode could be activated during only a small fraction of
the summer periods (12%). More energy savings would be expected by extending the
analysis to shoulder seasons (e.g., May and September). Finally, the supply air temperature
reset strategy helped to reduce the building cooling load by 13% and, as a side effect,
reduced the electric power by 9%. All of the measures combined allowed for a reduction
in building cooling load by 12% and chilled water system electric power by 33% over the
six months studied.

Future work includes field implementation of the proposed measures in the case
study building, replication to other existing buildings, and the development of a predic-
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tive control strategy built upon the proposed measures to further improve the building
cooling performance.
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Abstract: Predictive maintenance plays an important role in managing commercial buildings. This
article provides a systematic review of the literature on predictive maintenance applications of chilled
water systems that are in line with Industry 4.0/Quality 4.0. The review is based on answering
two research questions about understanding the mechanism of identifying the system’s faults during
its operation and exploring the methods that were used to predict these faults. The research gaps
are explained in this article and are related to three parts, which are faults description and handling,
data collection and frequency, and the coverage of the proposed maintenance programs. This article
suggests performing a mixed method study to try to fill in the aforementioned gaps.

Keywords: predictive maintenance; faults detection and diagnosis; chilled water system; commercial
buildings; Industry 4.0; Quality 4.0; data-driven analysis

1. Introduction

1.1. Background

At commercial buildings (CBs)/large facilities, business work fills most people’s
time and occupies most employees or workforces, who spend most of their workday
inside these buildings, so CBs make up a sizable portion of the built environment for the
people. Common-sense drives the organizations/owners to take care of these buildings
in order to avoid any negative impact on the surrounding or the internal environment of
these buildings.

CBs are different from city to city and could be massive or regular ones such as
universities, offices buildings, shopping malls, hotels, factories, compounds, hypermarkets,
etc., and cover most of the land areas in the cities. The University of Michigan reported that
CBs’ floor spaces are foreseen to encompass 124.7 billion square feet by 2050, which is a
34 percent increase from 2019 [1]. Moreover, they are obviously playing a significant role in
the communities, as a great CB can enhance people’s more social life and can generate more
jobs. However, they are approximately consuming up to 40 percent of the total global energy
demand [2]. Moreover, one of the main challenges that CBs are facing is climate change.
Monge-Barrio and Gutierrez indicated that climate change has a significant impact on such
buildings [3]. Furthermore, climate change is predicted to have strong effects on the energy
requirements of CBs, as their heating and cooling needs are highly related to temperature
conditions and weather variations [4]. In addition, activities in buildings contribute to a
major share of global environmental concerns [5]. These challenges motivate any facility
manager or engineer to take valid actions toward building performance improvement and
maintenance, as well as looking after the associated operation and maintenance (O&M)
costs. This should be performed, as CBs are increasingly equipped with sophisticated
engineering facilities, as well, such as Heat, Ventilation, and Air Conditioning (HVAC)
equipment/machines [6]. By doing so, the facility manager will fulfil the sustainability of
his/her CB [7].

Buildings 2022, 12, 1229. https://doi.org/10.3390/buildings12081229 https://www.mdpi.com/journal/buildings
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Maintaining a particular building requires managing all the systems within it. Gen-
erally, it includes either mechanical or electrical systems. There are five major disciplines,
which are (1) HVAC, (2) plumbing and fire protection, (3) electrical power and telecom-
munications, (4) illumination, and (5) noise and vibration control [8]. The HVAC system
is a technology of internal environmental ambience that supplies thermal comfort and
agreeable indoor air quality (IAQ) [9]. It is based on the contrivances and the findings
from William Rankin, Nikolay Lvov, Willis Carrier, James Joule, and others [10]. It is a
critical system and is playing a big role in consuming a high percentage of energy in CBs,
and accordingly, there will be an assertion on the electricity bill [11]. It consumes more
than thirty percent of the total energy used in CBs [12]. Cho and others argued that the
energy consumption of an HVAC system for a large office building can take forty to fifty
percent of the building’s total energy use [13]. It is, generally, worrying the organizers at
CBs about the difficulty of replacing its components, when needed, so caring and making
a planned control arrangement about that will save energy, with minimal infrastructure
investments [14]. However, conducting a proper and well-organized maintenance program
for this system is totally required, as many researchers have found that the factor most
often embroiling IAQ is maintenance related [15].

The importance of HVAC existed even before operating a particular CB, where select-
ing the appropriate system with its components at the beginning of its project time covers a
significant part of its design. In this regard, Hassanain et al. argued that the HVAC system is
one of the most convoluted systems in buildings projects [16]. The aforementioned HVAC
components were listed by Sugarman, such as water chillers, cooling towers, etc. [17].
Naturally, the selection of the said system is made based on three concepts, which are the
configuration of that CB, the climate conditions, and the inclination of the organization
that owns them [18]. The standards that HVAC building design are held to when being cre-
ated, selected, or studied come from The American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE) [19]. Furthermore, it is an important system from
well-being and safety points of view, as it monitors the environment related to occupant
health, such as the level of colorless odorless gas (CO2) and humidity margins, as well as
occupant thermal comfort, including ambient temperature and airflow [20]. This system,
especially its ventilation and cooling part, plays a big role in reducing the infection inside
CBs during the recent global pandemic (COVID-19) if a proper maintenance management
exists in monitoring airflow [21]. Aebischer and others underlined that due to the impact
of climate change, the need for cooling comfort inside CBs will be increased even in Europe
until 2030 as the increment in temperature would be two-degree centigrade over time [22].

The sub system highlighted in this article is the chilled water system (CWS). It is
considered as one of the major functions in HVAC system and it usually consumes a
significant amount of the total energy amortization used in the main system [23]. ASHRAE
handbook listed the components of CWS onto four as follows [24]:

1. Chillers.
2. Cooling towers.
3. Primary/secondary/condenser water pumps.
4. Terminal units: air-handling units (AHUs) and fan coil units (FCUs).

Per ASHRAE [24], the operation of CWS starts with chillers producing the chilled
water required to operate the AHUs/FCUs and thereby to achieve the designed room
conditions. Chillers, primary chilled water pumps, are operated and sequenced to produce
chilled water at a set temperature, whereas a specified temperature of water required by the
condenser component of chillers is produced by the cooling towers through the condenser
water pumps. The produced chilled water is then pumped by the secondary water pumps
to all the terminal units, such as AHUs and FCUs, and in case of a variable flow system,
their speed is controlled to maintain a set differential pressure in the pipe network. Finally,
the terminal units receive the chilled water and control their respective valve actuators
to achieve the desired temperatures inside the rooms they are serving. Figure 1 shows a
schematic drawing of a CWS.
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Figure 1. CWS schematic.

1.2. Predictive Maintenance Paradigm

Predictive maintenance (PdM) was first devised back in the late 1940s [25] and is
basically used to assist in determining the status of an operated equipment in order to
estimate the time of performing the maintenance actions [26]. According to Selcuk, it can
be defined as an exercise of pre-empting failures depending on historical data in order to
optimize the maintenance efforts [27]. Moreover, it is considered to be conditioned-based
maintenance (CBM) to predict the likelihood of the failure time of a particular equipment
and advise which maintenance task should be performed accordingly [28]. Figure 2
illustrates the position of PdM, along with other maintenance strategies. Since PdM is
under the preventive maintenance (PM) category, it allows for convenient scheduling
of reactive maintenance (RM) and prevents the equipment at a particular CB from any
unexpected failure, where its principle is to evaluate the actual operating condition of
a certain system and its components in order to optimize the O&M costs [29]. So, PdM
can be considered as an enhancement of PM and RM; Figure 3 visualizes this argument.
Furthermore, this research believes that PdM is significant for CB’s maintenance program,
as it counts on the current operational situation of an equipment and leads the concerned
party to identify the expected issue immediately rather than average or expected life
statistics, and also to predict when a maintenance activity will be needed. Verbert and
others have assured that the routine maintenance does not usually identify the faults but
can be sorted by implementing a PdM program [30].

 

Figure 2. Structure of maintenance management strategies.
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Figure 3. Effectiveness of PdM.

Having said it is a significant paradigm, well-known and key industrial manufacturers
have invested in PdM to maximize machine parts and their uptime and disseminate
maintenance to be more cost-effective [31]. Wang and others have argued that scheduled
and unscheduled shutdowns; astronomical O&M costs; avoidable inventory; and undue
maintenance activities performed on a particular equipment, machine, or system can be
dwindled with PdM [32]. However, any technique has its own pros and cons; the main
advantages of PdM are making the repairs based on the equipment condition, and this
will sometimes lead to twenty-percent savings, as well as enriching safety aspects of the
equipment and its surrounding; meanwhile, the disadvantages of PdM come from the
organization’s culture of hesitating to assign a sufficient budget for it [33].

PdM uses data analytics to detect equipment faults and to try to rectify operational
inefficiencies with a goal of eliminating the root cause of potential system flops [34]. Am-
ruthnath and Gupta did mention that observing equipment performance and monitoring
the critical parameter of a particular system are one of the main PdM techniques [35].
Moreover, Huang and Wang considered components’ monitoring of a particular system
as one of PM’s themes, which is the derived category of PdM [36]. Nguyen and Medjaher
plus Yu and others have indicated that fault detection and diagnosis (FDD) and condition
monitoring are critical components of PdM [37]. To perform automatic fault detection, PdM
requires a big data collection, analytics platform, and data sufficiency [38]. The analytics
platform must incorporate domain expertise, so that the algorithms have an intended appli-
cation to the system under study [39]. According to Garg and Deshmukh, data sufficiency
is the availability of data from enough sensors, actuators, meters, and control parameters
so that a meaningful analysis can be performed accordingly [40].

Per Ran and others, maintenance in business industrial life is mainly RM and PM,
with the PdM strategy being applied only for critical situations [41]. They believe that
these maintenance strategies do not consider the vast amount of data that can be generated
and the available approaches that align with Industry 4.0/Quality 4.0 principles, such

193



Buildings 2022, 12, 1229

as machine learning (ML), internet of things (IoT), Artificial Intelligence (AI), big data,
advanced data analytics, data driven, cloud computing, and augmented reality.

Based on the thoughts of Chukwuekwe and others, PdM 4.0 is aligned with Industry
4.0, which is a paradigm shift in industrial processes impelled by intelligent information-
processing approaches [42]. This shift in the maintenance paradigm has motivated this
research’s argument to believe in the PdM 4.0 paradigm, which can consider the operational
status of CWS and shows the concerned manager, the maintenance engineer, or the system’s
user the health condition of the said system and make affirmative measures toward that,
when required. Figure 4 explains the idea behind PdM 4.0.

Figure 4. PdM’s general plan.

2. Literature Review Methodology

2.1. Systematic Literature Review

Typically, a systematic literature review (SLR) is a kind of review that compiles varied
research studies and epitomizes them in order to find the answers for a research question
by using stringent methods [43]. Here, in this article, the protocol that was outlined by
Kitchenham and others is followed [44]. The SLR went through four stages, as follows:

1. Determining the research questions.
2. Base of the research.
3. Criterion of the literature selection.
4. Quality assessment.

2.1.1. Stage #1

This stage is the launching of SLR. It consisted of defining the research questions (RQs)
of this study. The RQs are questions that a study or research project intends to answer [45].
To make a strong RQ for all fields, especially in technology, engineering, and management,
Figure 5 shows the principles that should be used [46].

As the idea of this research is to look after the studies that proposed a PdM 4.0 for
CWS from an engineering management point of view, the following two RQs arose:

• RQ1: How can the faults be identified in order to predict them?
• RQ2: What are the methods that can be used to predict the faults?

2.1.2. Stage #2

This stage shows the search string and source selection. For the search string, operators
called Boolean allow the researcher to use specific keywords with symbols such as “AND”
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and “OR” in order to limit the relevant research papers [47]. Based on the information of
previous sections, Boolean operators were exercised at the search engines as follows:

Figure 5. Principles of Strong RQ.

 

(“Industry 4.0” OR “Quality 4.0”) AND (“Machine learning” OR “Deep Learning” 
OR “Data Driven” OR “Artificial Intelligence”) AND (“Predictive Maintenance” OR 
“Faults Detection” OR “Faults Diagnosis” OR “Condition Based Maintenance” OR 
“Condition Monitor Maintenance”) AND (“Architecture” OR “Framework” OR 
“Management” OR “Program”) AND (“Ontology” OR “Reasoning”) AND (“Chilled 
Water System” OR “HVAC” OR “AC” OR “Chiller” OR “Cooling Tower” OR “Pri-
mary Pump” OR “Secondary Pump” OR “Condenser Pump” OR “Terminal Unit” 
OR “Air Handling Units” OR “Fan Coil Unit”) AND (“Commercial Buildings” OR 
“Large Facilities”). 

The search engines or database used in this article, in addition to MDPI, are Google
Scholar, IEEE, Springer, ACM Digital Library, Scopus, ProQuest, Web of Science, and
ScienceDirect, as they are persuasive and reliable [48,49].

2.1.3. Stage #3

Following the actions that were performed within the previous two stages, all studies
that were not pertinent to the aim of this article were removed. To do so, the following
exclusion criteria, which are shown in Table 1, were applied.

Table 1. Exclusion criteria.

Exclusion Criteria Reference

Papers (journals or conferences) that are not related to predictive PdM in a beeline [48–50]
Papers that are not related to Industry 4.0 or Quality 4.0 or data-driven analysis or data mining in a beeline [48–50]

Grey literature [51]
Non-English publications [51]

Pre-1999 publications [49]
Papers that are not peer-reviewed [52]
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After that, filtering process have been implemented. Duplicate papers to be removed,
thereafter, titles, and abstracts to be analyzed, and then the entire text to be analyzed [48].

2.1.4. Stage #4

Following SLR’s procedure [44], the remaining articles were subjected to four ques-
tions; at least two questions out of these four questions should be fulfilled with a “yes”
answer. The said four questions are as follows:

• Is the purpose of the research clearly presented?
• Does the research showed a framework/an architectural proposal or a research methodology?
• Does/do the author(s) present and discuss the results of the research?
• Does the paper used an ontology or reasoning?

2.2. Search Results

Starting from the second stage of SLR up to the fourth one, 168 studies are the total
number of considered research papers in this article. Table 2 shows the papers’ selection
journey and how many papers are left after each stage.

Table 2. Journey of SLR.

Action Stage Number Number of Studies

Initial Search 2 1094
Exclusion Criteria 3 483

Duplicates Removal 3 422
Filtering Process by Title 3 328

Filtering Process by Abstract 3 244
Filtering Process by Entire Text 3 179

Quality Assessment 4 168

3. Applications

This section covers the considered studies that were mentioned in the previous section.
It has four subsections—one for each of CWS components.

3.1. Chillers

PdM for chillers was presented in many ways either by a general maintenance frame-
work or by FDD protocol in order to keep pace with the rapid industrial development.
Rueda and others reported the development of FDD for liquid chillers based on AI tech-
niques at one of the laboratory test facilities [53]. By using an artificial neural network
(ANN), they predicted the temperature increment of the water-cooled condenser with
almost ninety-nine per cent prediction accuracy. A similar valuable study was performed
in the United Kingdom by Tassou and Grace to predict the refrigeration leak fault of a
particular liquid chiller at one of the large CBs [54]. This fault was also predicted by using
the Kalman Filter (KF) algorithm [55]. Han and others integrated k-nearest neighbors
(KNN), support victor machine (SVM), and random forest (RF) into an ensemble diagnostic
model to predict the said fault and achieved around ninety-nine per cent accuracy [56]. Liu
and others stated that the leakage faults are seriously affecting the reliability of chillers, and
therefore, they proposed an excellent timely and accurate method based on the adaptive
moment estimation algorithm with multilayer feedforward neural networks trained with
the error backpropagation neural network (Adam-BPNN) [57]. In Hong Kong and China,
seven studies applied principal-component analysis (PCA) to predict several faults of
sensors that are reading operational parameters, such as chilled-water flow rate, condenser
water flow rate, and evaporating pressure [58–64]. Furthermore, Hu and others applied
self-adaptive PCA to enhance sensors’ FDD efficiency [65]. In contrast, Li and others
reported that support vector data description (SVDD) is better than PCA, as PCA is not
very efficient when it comes to predicting complex sensor faults, due to the weakness of
Q-statistic plot, which is part of it [66]. Choi and others utilized data from one of ASHRAE
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projects to predict multiple sensors faults of parameters such as the evaporator water
entering temperature [67]. They applied three data-driven techniques, which are multiway
dynamic PCA, multiway partial least squares (PLS), and deep-learning SVM. Based on their
results, they found that the first two techniques, which employed generalized likelihood
ratio test, are more accurate than the neural network one (SVM). This finding emerged
with another study performed by Namburu and others to predict eight different faults of
chillers by using the same three techniques [68]. From another ASHRAE project, Schein and
Bushby applied a hierarchical rule-based FDD to predict the scheduling fault during three
different weather seasons but with no broaching to the data sample of their study [69].

Sensors faults were not usually considered in the previous studies. For example, at
one of CBs in Hong Kong, performance indices (PIs) proposed to predict evaporator fouling
using regression model [70]. PIs were again proposed to predict the other seven faults,
such as condenser fouling using fuzzy modeling and ANN technique [71]. Both previous
studies concluded that PI may not be effective in fault diagnosis. In this regard, it would be
interesting if the data of one of the ASHRAE projects which were mentioned by Comstock
and others were utilized for proposing a new FDD, as the sensitivity of eight common faults
were already tested [72]. Han and others applied FDD for multiple simultaneous faults of
two chillers using combined SVM and multi-label (MLB) techniques [73]. These combined
techniques showed high accuracy detection of the chillers’ performance, although the
experimental data were limited. On a separate note, such techniques require sufficient
training data for high-quality outputs [74,75]. Per Ma and Wang, chiller performance
degradation can be detected significantly by using a hybrid quick search (HQS) method
through characterizing the PIs of multiple operational parameters, such as the temperature
of the condenser water supply [76].

A high chiller’s load affects the performance and leads to the appearance of faults
such as condenser fouling. Yu with Chan discussed that via two studies, the first one on
how to improve chiller management using regression model and the other one proposed
an assessment strategy of chiller’s performance using clustering analysis [77,78]. Zhao and
others indicated that early identification of the said fault (condenser fouling) is essential
to highly maintain chiller performance and developed a virtual sensor for that fault [79].
Moreover, Magoules and others proposed a significant FDD strategy using a recursive
deterministic perception neural network (RDPNN) to predict faults related to chiller’s
load [80]. Data from one ASHRAE project were utilized in twelve different studies to predict
condenser fouling, along with other faults [81–92]. The first study applied exponentially
weighted moving average (EWMA) control charts; the second one applied Bayesian belief
network (BBN); the third one applied SVDD; the fourth one used SVM; the fifth one
applied conditional Wasserstein generative antagonistic networks (CWGANs); the sixth
one combined extended KF (EKF) and recursive one-class SVM (ROSVM); the seventh one
derived a tree-structured fault dependence kernel (TFDK); the eighth one used PCA, along
with SVDD; and the ninth one adopted Linear Discriminant Analysis (LDA). With regards
to the tenth one, One-Dimensional Convolutional Neural Network (1D-CNN) and Gated
Recurrent Unit (GRU) were applied while the eleventh one conjoined a distance rejection
(DR) technique with Bayesian network (BN) via transforming the chiller FDD problem into
a single-class classification problem. The last one in that group predicted seven different
faults by using the large margin information fusion (LMIF) method and found that this
method is more accurate than others, such as multi-class SVM (MSVM), ANN, decision tree
(DT), quadratic discriminant analysis (QDA), Ada Boost (AB), and logistic regression (LR).
All of these studies showed significant accuracies but did not include fault-free situation in
their data training. Moreover, three more studies used the same ASHRAE project just to
compare different models for the same purpose of the previous twelve studies [93–95]. The
first study presented two models, one by SVM and the second by combining nonlinear least
squares support vector regression (SVR) based on the differential evolution (DE) algorithm
with EWMA control charts, and it was found that the second one has better prediction. The
second study applied multiple linear regression (MLReg), kriging algorithm, and radial
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basis function (RBF) and concluded that RBF is the best. The outcome of the third study
showed that ANN is more accurate than KNN and bagged tree (BT) algorithms. The impact
of condenser fouling was discussed and, accordingly, a decoupling-based FDD method
was proposed to predict this fault [96]. This method was applied by observing the cooling
capacity and suggested to clean the condenser water tubes before data collection. Later,
this method was applied again alongside another two methods for efficiency comparison
purposes in detecting multiple simultaneous chiller’s faults [97]. The aforementioned other
two methods were MLRrg and simple linear regression (SLReg), and it was found that
these two methods (MLReg and SLReg) are not very effective. Bonvini and others argued
that observing the energy consumption of chiller is considerable to predict the faults that
are related to the high load [98]. They introduced the FDD approach based on unscented
KF (UKF), which is an advanced Bayesian nonlinear state estimation technique, to predict
three of the aforementioned faults. KF can be considered as a quite proven technique and
does not require long-time focused studies when applied in individual CWS devices in
different CBs [99]. This pretext came from a study that used KF to detect gradual chiller
degradation based on the gray-box model at the Jinmao tower of China. The said model is
based on measuring and analyzing the variations of chilled water flow rate and supplied
chilled water temperature through statistical process control (SPC). Moreover, Karami and
Wang integrated the Gaussian mixture model regression (GMMR) technique with UKF to
model a nonlinear system based on the measurement data of four operational parameters
and found this to be efficient in detecting chiller degradation and reducing the number of
detecting sensors, as well [100].

The chiller faults either that are related to the high load or from other issues can be
linked to human interventions and, accordingly, can influence the occupant’s satisfaction.
Having said that, maintenance characteristics such as the skills, the knowledge, and the
number of maintenance laborers were addressed by Au-Yong and others at one of the
office buildings, using mixed methods [101]. Following a survey that was shared with the
occupants, as well as with key responsible staff, they predicted eight of that maintenance
characteristics via a regression model and found empirical evidence that such communi-
cations with the concerned parties can improve the maintenance management and lead
to the occupant satisfaction. In regard to high performance levels, it has been noticed that
some CBs are using building management system (BMS) software in relation to their main-
tenance activities. For example, Alonso and others suggested utilizing BMS, in addition
to plant management software (PMS), to control CWS, and they successfully applied this
idea by observing the coefficient of chillers’ performance at one of the large hospitals [102].
Yan and others proposed chiller’s FDD procedure to develop BMS via a hybrid model
that integrated SVM with autoregressive exogenous variables (ARX) and obtained a high
prediction accuracy and minimal false-alarm rate [103]. Identical results were presented by
Mclintosh and Mitcell, using statistical analysis by modeling the log-mean temperature
difference and condenser water temperature difference to predict six faults of chillers [104].
In addition, two studies proposed a control strategy for chiller operation uncertainty by
using the Monte-Carlo simulation (MCS) [105,106]. To curb the deterioration of chillers,
Beghi and others proposed a semi-data-driven approach by using PCA in differentiating
anomalies from normal operation variability and a reconstruction-based contribution ap-
proach to segregate variables related to faults [107]. To minimize faults prediction errors,
Kocyigit addressed eight faults and claimed to use a fuzzy interference system (FIS) and
Levenberg–Marquart-type ANN (LMANN) algorithm by evaluating several operational
parameters, such as condenser pressure and evaporator pressure [108]. Additionally, Gao
and others presented a novel FDD strategy in combining maximal information coefficient
(MIC) with a long short-term memory (LSTM) network by using a virtual sensor [109].

It has been noted from the market that multiple providers of maintenance solutions for
smart CBs are proposing building information modeling (BIM) and the building automation
system (BAS) in addition to BMS. Cheng and others utilized BIM with IoT sensors to predict
chillers’ faults through ANN and SVM [110]. However, their approach could not be applied
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for other CWS components due to the differences in operational parameters. From BMS
data, Escobar and others used a fuzzy logic clustering (FLC) approach for smart buildings
that was called the learning algorithm for multivariable data analysis (LAMDA) and
succeeded in reaching a zero-error state for chillers’ control [111]. Besides BMS, Srinivasan
and others have used explainable AI (XAI) for chiller FDD and showed how it is significant
to acquire the trust of maintenance officers [112]. Hu and others used BAS for collecting
data of chiller operational parameters, such as the condenser water flow, and then used
them to detect faults by using SVM [113]. Considering the fault-free situation in their
model training, their approach detected only one single fault, which was compressor
overcharging. The same fault was efficaciously detected by using a PCA-based EWMA
and virtual refrigerant charge (VRC) algorithm [114]. From BMS, Luo and others collected
the data of chilled water supply and return temperatures in every minute frequency of six
days from four different weather seasons to predict six different faults, in addition to fault
free condition, using k-means clustering [115]. The said faults were not fully described, and
as with other studies, the frequencies of their data sampling were not justified even after
the development of this approach [116]. Theiblemont and others explored state-of-the-art
control strategies [117]. The first strategy, called “Model-Free Control Strategy”, does not
require building a model or the use of historical data. It can be performed by programming
the ambient temperature based on the weather forecast of the next day. The second strategy
is an intelligent one which uses AI, along with a cold thermal energy storage (CTES) system.
This strategy suggests combing a fuzzy logic controller and a feed-forward controller with
weather predictions. To do so, the authors listed 27 rules for that [117]. Advanced control
is the third strategy, which includes two techniques: Non-Optimal Advance Predictive
Control and Model Predictive Control (MPC). The Unknown-but-Bounded method is an
example of the first technique, and its implementation is costly. The concept of MPC is
to optimize the variables of CWS as a function of future horizon to satisfy the relevant
constraints. Arteconi and others suggested applying CTES for Demand-Side Management
(DSM) strategy, which can change the chiller load profile to optimize the power system
from generation to delivery [118].

Some studies used the ratio between the cooling load and the energy consumed,
which is called the coefficient of performance (COP), as a data sample for scheduling PdM
activities. In this regard, Wu and others proposed a method to optimize the PdM scheduling
for HVAC system by mixed-integer programming (MIP) [119]. The said method has two
stages: the first one is the parameter generation through historical data, and the second
one is the optimization by linear programming. They conducted a case study on chillers
and addressed COP. The idea of the first stage is to study the operational status and then
listing the related constraints while the optimizing model (second stage) has to be solved
to present a high-quality PdM schedule in order to detect the chillers’ degradation. The
model is a bit general, and it did not consider or discuss any precise faults or issues that
lead to the chiller degradation. Li and others proposed a novel FDD method using a deep
belief network (DBN) [120]. Their data were collected through an IoT agent and processed
through four different stages, including optimizing them by particle swarm optimization
(PSO) algorithm. Moreover, they did compare DBN with deep neural network (DNN),
KNN, and SVM and obtained almost same prediction accuracy. From COP data, Motomura
and others developed two outstanding simulation models to evaluate multiple chillers
faults [121,122]. The first model calculated the increase amount of daily peak power, while
the second one tracked the decrease rate of COP. Sulaiman and others observed chillers’
COP and developed an FDD approach by using deep learning (DL), multi-layer perceptron
(MLP), and SVM, and they mentioned that MLP is more accurate than others [123]. From
a chiller’s COP data sample, Ng and others used BN to predict sensor bias of water flow
temperature, but the results were not very encouraging [124]. To obtain usual promising
results, Harasty and others argued that an ANN should be used in PdM management [125].
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3.2. Cooling Towers

Compared to the studies on chillers, the studies on cooling towers were limited and
were either part of chillers’ ones or were discussed separately. Ahn and others developed
a simulation model to detect three faults of cooling towers [126]. Their model was built
based on the deviation of different operational parameters such as the difference between
the water temperatures that are leaving the tower and the temperatures that are entering
the same. The only claim against this study is the data collection, as the authors did not
clarify the source of their samples that were used in the associated experiment. Zhou
and others used a regression model to detect air fan degradation fault by formulating the
PI of the air-flow-rate reduction [70]. The sample size of their data was small, as it was
generated from only five days in the summer season, including the fault-free condition.
Hu and others collected data on fan power to detect the same fault by using SVM, and
their sample size was also small [113]. From a qualitative method study, Chew and Yan
suggested cleaning cooling towers’ fans before applying any FDD approach [127]. Khan
and Zubair discussed another fault, which is fouling of fills, and predicted it very well by
using a regression model [128]. Through this model, the correlation was analyzed between
the PIs of different operational parameters. Per Ma and Wang, the said two faults (fouling
of fills and air fan degradation) can be detected significantly by using the HQS method
through characterizing the PIs of multiple operational parameters, such as the inlet water
temperature [76]. Air fan faulty was again predicted by Sulaiman and others when they
compared MLP, SVM, and DL methods, and they found that MLP is more accurate than
others [123].

Human and organizational factors are obviously affecting PdM costs and its schedul-
ing. In this regard, Jain and others studied the failure conditions of a particular cooling
tower by introducing a process resilience analysis framework [129]. This framework uti-
lized a BN model to integrate two factors, which are process parameter variations as a
technical factor, and human and organizational factor as a social one. It illustrated the
impact of the said model on PdM management from cost and safety points of view. Melani
and others insisted that making a significant investment in PdM is essential to maintaining
the availability of systems that are operating CBs [130]. Having said that, they developed
a generalized stochastic Petri net (GSPN) model to predict multiple faults, such as those
related to fans, including the operational errors caused by humans. Furthermore, Aguilar
and others proposed an autonomic cycle of data analysis tasks (ACODAT) involving BMS
to manage the failures of two cooling towers of opera palace in Spain [131]. They utilized
three techniques, namely MLP, KNN, and gradient boosting (GB), and reached to similar
prediction accuracies. To diagnose such failures, Poit and Lancon suggested CBs to use
SCANSITES 3D system and surveyed several cooling towers in France and found the said
system to be very useful [132].

As was performed in chillers, the FDD of sensor faults was also studied in regard
to cooling towers. At the Oak Ridge National Laboratory (ORNL) in the United States
of America, the air fan degradation faults of the high flux isotope reactor (HFIR) were
predicted by using wireless sensors [133]. Wang and others predicted the motor degradation
by using PCA [63]. Their data samples were collected through a sensor that read one of
the operational parameters, which was the inlet water temperatures, and per their results,
the PCA did not always record the occurrence timings of that fault, and, accordingly, they
could not evaluate the PI of the aforementioned parameter. An excellent study collected
data from the same parameter to predict fan degradation fault by using the KF method [99].
Another study used the KF method to observe the cooling towers’ performance at one of
China’s CBs [134]. To reduce the false-alarm rate, the said study analyzed and measured
some chosen parameters via SPC. Motomura and others developed two superb simulation
models to assess multiple cooling-tower faults [121,122]. The first model checked the water
flow and the outside air wet-bulb temperature, whilst the second model focused on the
inlet and the outlet condenser water temperatures. Data on air wet-bulb temperature, as
well as other parameters, were collected to predict a particular cooling tower’s performance
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and to eliminate the severity of the related faults by using the BPNN method [135]. The
said method resulted in the obtainment of a very good correlation coefficient between the
predicted and the experimental values.

3.3. Pumps

Following the literature on cooling towers, the number of studies on pumps is almost
the same. Karim and others predicted five faults of pumps—out of which two were related
to the cooling system—using ANN method, and their hypothetical data showed that such
a method is capable of predicting the aforementioned faults [136]. Using a clustering
method, Luo and others studied the sensors bias of primary and secondary pumps, but
with no full description of the faults [115]. Through the HFIR project at ORNL, Hashemian
predicted three different faults by using wireless sensors [133]. These faults are excessive
noise, control switch failure, and faulty starter, and all of them are related to the secondary
pump. From BAS, Hu and others collected a good data sample of differential pressure to
predict the degradation of secondary pump by using SVM [113]. In order to keep control
on the differential pressure of primary and secondary pumps, Ma and Wang developed a
simulation model that takes the water flow rates into consideration [137]. Miyata and others
used MCS to detect the operational uncertainty caused by the imponderable pressure [105].
Zhou and others used a regression model to detect partial clog fault in the secondary pump
by formulating the PI of the increase in the pipeline resistance [70]. On the other hand, Wang
and others predicted the same fault (partial clog) by using the PCA [63]. Furthermore, Liu
and others studied the pipeline resistance and then predicted the primary pump’s leakage
fault by using Adam-BPNN [57]. Motomura and others developed two valuable simulation
models to predict the faults of primary, secondary, and condenser pumps [121,122]. From
the BMS data, their first model observed the water flow in liter per minute, while the second
one focused on the sensor errors, and it also studied the impact of pumps specifications,
such as the caliber.

The appearance of faults obviously affects the CWS performance, whether they are
caused by human interventions or by an operational issue or unreliable sensor. Au-Yong
and others focused on the pumps within their mixed-method study, which was explained
in the section on chillers [101]. Per the qualitative method research of Chew and Chan, the
maintenance officers and the researchers are advised to check the condenser pumps for
corrosion before applying any FDD approach [127]. Moreover, Yang and others proposed
the use of the FDD strategy with the ML method and counted data samples via BMS that
are related to pumps, but they did not specify the associated operational parameters nor
the ML method [138]. Yuan and Liu used a semi-supervised learning (SSL) technique to
predict severe gear damage of a particular pump and took into consideration the fault
free condition while training the model [139]. Bouabdallaoui and others introduced a
PdM framework by using LSTM [140]. As part of this framework, they collected data for
three pumps via BAS and IoT devices, but they did not specify the associated operational
parameters nor the detected faults. With regard to the state-of-the-art control strategies,
Theiblemont and others suggested applying adaptive MPC to decrease the pumps running
time [117].

3.4. Terminal Units

The subject component has the largest number of studies comparing it to other CWS
components. Liang and Du proposed an FDD model of the HVAC system that uses
mixed methods. The under-study component was an AHU of a particular CB in Hong
Kong [141]. They combined the simulation-based-model method with the SVM method.
Three types of faults were addressed, which are return damper jam, cooling coil blockage,
and speed reducing of the supply fan, noting that false signal fault is not considered in
their study. Their method was built by collecting data of multiple parameters, such as the
set temperature and the indoor cooling load. The original sample size was small; because it
was generated from ten operational hours but based on the qualitative output of a related
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research that was reviewed by Ding, they assumed that the fault would arrive within one
hour [142]. So, they did depend on this assumption when finalizing their required data
and obtained a bigger sample size, which was used to build the said model. Through
BIM and Modelica software, Andriamamonjy and others presented a simulation model
to detect damper faults of a particular AHU [143]. Their model showed the potential
of BIM for a significant reduction of the manual configuration needed to disseminate
such a model, which was based on calculating the normalized root mean square error
(RMSE) of multiple operational parameters, such as supply air temperature under three
conditions, faulty, uncertain, and fault free. In contrast to a case study performed at one of
the universities, Alavi and Forcada argued that BIM cannot constitute complete information
on maintenance activities when implementing decision-making frameworks [144]. The
study, which discussed the impact of human interventions in the occurrence of faults
and was explained in chillers and pumps sections, also included AHUs [101]. The PdM
framework of Bouabdallaoui and others, which was discussed in the pumps section, was
also embedded with two AHUs, but they were not defined by the predicted faults in their
case study, which was performed at one of the sport facilities in France [140].

Bruton and others discussed previous procedures and proposed a good one on how
to choose the appropriate ML technique based on AHUs conditions [145]. Thereafter,
they developed an automated FDD for AHUs, the contents of which are data access layer
to be flexible with BMS, business layer to be flexible with any combination of sensors
with operational parameters, and graphical user interface to evaluate the performance of
AHUs [146]. Candanedo and others used DT technique for evaluating an early stage PdM
model of terminal units [147]. In a set of buildings that are between zero and thirty years old,
they obtained historical data of the indoor temperatures in order to compare them with the
designed ones and then to identify any abnormal behavior. They indicated that DT showed
its accuracy in covering the faults possibilities. To achieve the thermal comfort inside CBs,
an experiment was performed by collecting occupant skin temperatures to predict and
evaluate multiple issues, such as the air velocity of AHUs, using SVM and extreme learning
machine (ELM) techniques, and obtained satisfactory results from both [148]. To get high
accuracy FDD model, it is advised to clean the impeller, the fan scroll, and the blower blade
of AHUs before applying that model [127]. Arteconi and others suggested a state-of-the-art
control strategy using DSM to reduce the required AHU’s size up to 40%, which leads to
energy saving [118].

The variable air volume (VAV) of AHUs was discussed in many studies. For instance,
in a multi-purpose research and test facility called an environmental chamber, Cho and
others conducted two studies on a number of rooms that represent CBs’ standards [149,150].
In addition to the fault-free condition, the first study used ANN to predict eight faults
linked to AHU parts, including VAV, while the second study applied transient pattern
analysis (TPA) to isolate the said faults to reach steady-state condition. The study of Schein
and Bushby, which was mentioned above in chillers section, did predict a VAV sensor fault
when reading the discharge air temperature [69]. At a large academic office building in
Canada, Gunay and others developed an excellent simulation model to detect five VAV
sequencing logic faults in two AHUs [151]. By using ASHRAE project’s data, another
excellent simulation model was developed by Norford and others to detect multiple AHU’s
faults that are related to VAV’s damper, fan, and filter coil system [152]. Moreover, Li
and others proposed a simulation model to predict eleven VA faults at a particular CB in
China, and they succeeded in detecting nine of the faults, including outdoor air damper
stuck and multiple sensors faults [153]. Two more valuable studies precited the damper
stuck fault at two different CBs: the first one applied RF, while the second developed a
simulation model [154,155]. At other different CBs, thirteen interesting studies used data
from one ASHRAE project to predict some faults of AHUs and FCUs, including the ones
that related to VAV, and obtained an acceptable prediction accuracy for each [156–168].
The first study applied the temporal association rules mining (TARM) algorithm, while
both the second and third ones applied BN. The fourth study applied ensemble rapid
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centroid estimation (ERCE), the fifth one applied regression tree (RT), and the sixth one
applied SVM. With regard to the seventh one, the generative adversarial network (GAN)
was applied, and the eighth one combined RF with SVM. The ninth one utilized simulation
software called HVACSIM+, the tenth one derived LMIF, the eleventh one applied PCA,
the twelfth one applied SSL, and the last one applied SVM with ARX. In contrast, Zhao
and others criticized the same ASHRAE project because its data did not cover a vast range
of operating conditions [169].

Combining the FDD approach with faults-isolation approach is one of the PdM
ideas. A study in Canada presented this idea by applying the PCA to detect two selected
faults of AHUs faults and active functional testing (AFT) to isolate the same faults [170].
Two more studies applied the PCA, but in both detecting and isolating a number of faults
on AHUs [171,172]. Ranade and others developed a simulation model to predict five
selected faults of FCU and VAV, including fault free condition [173]. They argued that
these faults can be isolated easily by applying DT. Using data of AHU’s outlet water and
supply air temperatures, Shahnazari and others applied a recurrent neural network (RNN)
to detect and isolate the faults of the associated sensors [174]. Moreover, Wang and Chen
conducted a case study at a particular CB, which has thirty-six floors, by applying EWMA
for the same purpose [175]. Wang and others applied a genetic algorithm (GA) to predict
and isolate the faults of AHU’s supply fan and VAV [176]. Data from BMS were utilized
to predict and isolate ten selected faults of AHUs by using BN [177]. At a green CB, an
excellent experiment resulted in developing four simulation models to detect and isolate
four faults of AHUs (one model for each fault) [178]. Yang and others presented a pragmatic
simulation model to detect only four selected faults at forty-four buildings in Canada. Their
solution relied on clustering work orders datasets, which were collected from occupants’
complaints, and then computing mean time between failure (MTBF) [179]. MTBF was also
computed by Sanchez-Barroso and Sanz-Calcedo [180]. To detect and isolate small bias
sensors faults, a novel study advised using a hybrid-model-based FDD that combines the
fractal correlation dimension (FCD) algorithm with SVR [181]. Zhang and Hong explained
the background of multiple AHU faults, which will help the researchers or CBs’ officers to
take that into consideration while making PdM programs [182].

By recalling of what is written in the chillers section about how CBs are using BMS
to control CWS performance, we note that Hosamo and others stated that BMS cannot
detect many faults, including those that are related to AHUs [183]. Having said that,
they conducted a case study on four AHUs at a particular university which proposed a
digital twin technology that utilizes BIM and IoT’s sensors, noting that this technology
is an ANN-based technique. On a related note, Lee and others predicted seven faults
of sensors by using a general regression neural network (GRNN) model [184]. Gao and
others studied the impact of the system’s water temperature difference (delta-T) on AHUs’
performance [185]. They developed a worthy simulation model that generates the PI of
each multiple operational parameter. Choi and Yeom introduced a thermal satisfaction
prediction model that combined human factors and physiological signals [186]. Their
data were collected from volunteer students through a LabVIEW-based data acquisition
(DAQ) system and were analyzed by multiple statistical analysis and data-mining software
called WEKA. Their study showed a significant correlation between the said factors and
signals. A similar study discussed IAQ and used hypothesis tests to diagnose AHU’s
sensors’ faults [187]. Shaw and others studied the correlation between multiple operational
parameters to obtain reliable FDD results [188]. In Australia, an auto FDD model, which
was developed by Guo and others in one of the large CBs, merged the hidden Markov
model (HMM) and SVM [189]. Their data were collected through BMS from fifteen AHU
sensors, and their model was trained based on selected faults over two business months.
Unfortunately, they did not specify which parameters of the said AHU were studied, nor
did they consider the sensors’ false signal in their model. Holub and Macek presented
a simulation model within a stochastic system by addressing the set temperature of a
rooftop AHU [190]. The target of their application was to detect a diagnostic fault that
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links to the fan. Frankly, the data used to simulate the aforementioned model were limited
where they applied a hybrid system. To obtain an active simulation model, Deshmukh
and others suggested (while collecting AHU’s data of fault free mode) holding three
operational conditions, including closing the cooling valve [191]. Ma and others introduced
a PdM framework which integrated BIM, geographic information system, and reliability-
centered maintenance technologies by implementing a quantitative decision-making model,
along with an MCS model [192]. Their case study was performed on a virtual university
campus that includes AHUs, and they found it difficult to acquire a large data sample size.
Gourabpasi and Nik-Bakht indicated that the lack of knowledge in locating the sensors is
causing difficulty for either data collection or sensor’s FDD [193].

Terminal units’ FDD can be considered as a probabilistic approach. In the USA, Dey
and Dong applied BBN in a probabilistic way to predict some AHU faults at one of the
universities [194]. Du and others applied the wavelet neural network (WNN) to fix the
AHU’s sensor bias [195]. A subtractive clustering technique and BPNN were combined to
catch the missing alarm when an AHU’s fault occurred [196]. For missing alarm issues, a
study suggested applying LMANN to eliminate that [197]. To enhance the thermal comfort,
Dudzik and others used BAS and applied ANN to develop and examine the environmental
quality management system [198]. At one of Qatar’s sport facilities, Elnour and others
applied a neural network that clustered the RMSE of some operational parameters, and then
compared that with SVR, KNN, and DT techniques [199]. They found their approach to be
more efficient than the aforementioned three techniques in controlling AHU’s operation.
Through virtual refrigerant mass flow sensors, Kim and Braun presented an FDD approach
to predict five selected faults, such as condenser fouling [200]. Lauro and others used FLC
to predict the abnormal behavior of a particular building’s FCU [201]. Li and Wen used
wavelet transform with the PCA technique (WPCA) to predict some AHU faults [202].
Liu and others applied the Markov chain Monte Carlo (MCMC) algorithm to drive the
statistical characteristics of an AHU’s faults levels [203]. On a single terminal unit, Lo
and others applied fuzzy GA to eliminate sensors’ false signals [204]. The study of Luo
and others, as was explained in the chillers and pumps sections, also included terminal
units [115]. By utilizing of ASHRAE’s thermal comfort database, a novel study compared
the thermal sensation vote (TSV) and the predicted mean vote (PMV) by using an RF model
and resulted in around sixty-five percent accuracy in TSV prediction [19]. The study of
Miyata and others, as mentioned in the chillers and pumps sections, did include AHUs,
but they defined the related faults [105]. From an ASHRAE project dataset, Montazeri
and Kargar applied six algorithms, namely SVM, RBF, kernel PCA (KPCA), DT, DBN, and
shallow neural network (SNN), to detect the sensor and actuator faults, and they stated
that DT had the biggest prediction accuracy [205].

ASHRAE datasets were not the only source in developing FDD within the literature.
Novikova and others utilized VAST Challenge 2016 dataset to develop a simulation model
that monitored and assessed terminal units’ performance at a three floors’ CB [206]. The
data of residential complex building were utilized by Parzinger and others for AHU’s
FDD, using ARX and RF techniques [207]. Both techniques showed similar and acceptable
prediction accuracy. Rafati and others performed a good review of the utilization of non-
intrusive load monitoring software in terminal units’ FDD [208]. In cooperation with a
leading building management company, Satta and others proposed a PdM approach for
the cohort of seventeen appliances that are similar to terminal units and examined it at
one of Italian hospitals [209]. Using the historical data of different variables, such as the
indoor temperature, they used DT to detect the abnormal behavior of these appliances.
They argued that the reciprocal dissimilarities between appliances’ behavior can expose
an upcoming fault with enough anticipation to allow for a proactive meddling and avert
breakage in operation. Tehrani and others addressed one fault related to a particular
terminal unit at one of the Canadian universities [210]. The said fault was filter blockage,
and they used ANN to predict the behavior of the said unit. Moreover, they determined
that the performance of the unit in discussion has improved by using DT instead of
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ANN. Furthermore, Shakerian and others recommended applying the synthetic minority
oversampling (SMO) technique to improve the prediction accuracy [211]. Sulaiman and
others developed a fuzzy fault detection model for centralized CWS, using simulation [212].
They implemented the said model in the air-supply damper of an AHU, which is linked to
two specific rooms. Three cases were studied in their research to simulate the said model.
Two of them were related to the damper’s faults, and the third one was at normal operation,
without any faults. They identified these faults by checking the room-temperature variation.
They mentioned that the developed model had resulted in detecting the damper faults,
but with no technical details. Another FDD approach, which was presented by them and
explained in the chillers and cooling towers section, also covered AHUs [123]. Thumati and
others developed a generic simulation model to detect terminal unit faults and to isolate the
associated residual errors [213]. Their idea could be presented perfectly by using virtual-
sensor approaches such as Verbert and et al.’s one [30]. At a residential facility, Turner and
others developed a simulation model for AHUs’ FDD [214]. During seven days’ study time,
they focused on the outdoor temperature and the set indoor temperature parameters to
detect selected faults, such as compressor failure. They believe that using such data-driven
approaches for tracking the said parameters can help easily detect the associated faults.
Van Every and others applied Gaussian regression (GR) and SVM to estimate AHU’s sensor
values and to detect the associate faults, respectively [215]. Velibeyoglu and others applied
directed acyclic graph (DAG) to assess the detectability of AHUs’ simultaneous faults and
obtained promising results [216].

The usage of one or more software or systems such as DAQ, BIM, IoT sensors, BAS,
and BMS is important in controlling CWS performance. Villa and others extolled the
usage of such software in AHU’s FDD purposes, and, accordingly, they introduced an
outstanding PdM framework, using an automatic ML platform called H2O [217]. Using
FLC, Wijayasekara and others assessed BMS’s performance in controlling the thermal
comfort inside selected rooms [218]. Alongside BMS, DT was used by Yan and others
to develop a diagnostic strategy for AHUs [219]. Nine cases were addressed for their
related experiment, which are eight faults, such as duct leakage, and one case for normal
operation (fault free). For this experiment, they used data that were recorded from one of
the ASHRAE projects. They emphasized that data-driven methods are unique to glean the
useful information from large datasets and for modeling the behavior of HVAC systems.
Yu and others proposed association rule mining (ARM), which is a data-mining technique,
to test the correlation between all AHUs’ operational parameters at one of the complex
buildings that contains offices and chemical labs [220]. It seems that they faced some
difficulties in regard to the data-collection part. The absence of data sources makes any ML
model weak in detecting and diagnosing the faults [108].

4. Discussion

From the previous section, it is observed that chillers and terminal units were mostly
researched, while there was not much research focused on cooling towers and pumps.
Following SLR, the maximum number of research studies on chillers was carried out in
the years 2016 and 2019, whereas on terminal units, it was performed in the year 2020.
Regarding cooling towers and pumps, the year 2019 recorded the maximum number of
research studies. Figure 6 highlights the research trends from the year 1999 onward.
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Figure 6. Research trends.

The considered studies sometimes addressed CWS components independently and
other times in combinations. For combinations, some of them addressed either two com-
ponents or three components in total; no research study addressed the whole system (i.e.,
four components) at once. Table 3 shows the number of considered studies that addressed
either a single component or addressed more than one within the same research.

Table 3. Breakdown of considered studies.

Components Number of Considered Studies

Just Chillers 57
Just Cooling Towers 6

Just Pumps 4
Just Terminal Units 82

Chiller and Cooling Towers 5
Chillers and Pumps 1

Chillers and Terminal Units 3
Cooling Towers and Pumps 1
Pumps and Terminal Units 1

Chillers, Cooling Towers, and Pumps 3
Chillers, Pumps, and Terminal Units 3

Chillers, Cooling Towers, and Terminal Units 1
Cooling Towers, Pumps, and Terminal Units 1

This research is intended to answer the aforementioned two RQs where the idea
behind both of them is to explore the ways of implementing a PdM program on a CWS.
The aim of RQ1 is to understand how the researchers are preparing or arranging for the
PdM program. This includes checking the way of identifying and studying the system
faults, which are considered as a base of implementing the PdM program. Moreover, it
includes identifying the operational parameters, which allow us to observe the system and
lead to the faults, as well as knowing their data sample size and their source. With regard
to the aim of RQ2, it is a further action after RQ1 and intends to explore the tools, methods,
frameworks, or control strategies that were applied to make the PdM program. So, the
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third section of this article (Application) is presented based on the aims of these RQs. Each
considered study has gone through these activities unless it has missing information.

The following four subsections highlight the findings of this research. The first one ad-
dresses the faults-related information, and the second subsection focuses on the operational
parameters and their data samples. Both of these subsections are related to RQ1. The third
subsection is related to RQ2, while the last subsection lists and explains the research gaps.

4.1. System Faults

The following points are the major findings with regard to system faults:

• The fault is defined as any failure that may lead to a CWS breakdown over time.
• Some of the considered studies were focused on only one fault, such as condenser

fouling of chillers.
• Many of the considered studies addressed refrigeration leaks, which can be considered

as the most popular fault in chillers.
• Fouling of fills and air-fan degradation are the most addressed faults of cooling towers.
• The most addressed fault of pumps is the partial clogging, whereas the full clogging,

which is more critical, was not addressed at all.
• For terminal units, the most addressed faults were return damper jam, cooling coil

blockage, and speed reducing of the supply fan including the VAV related faults.
• There are obvious differences between the studies in the number of the addressed

faults for all CWS components.
• Some of the studies addressed the same faults, while the others addressed different faults.
• Some studies did not state the addressed faults, and even if they stated the faults, they

were found to be not fully described, stating “abnormal behavior” as a fault, for example.
• Some studies stated multiple faults, but they did not address or predict all of them in

their case studies.
• Faults such as sensors’ bias and controller false alarms were not usually considered in

the aforementioned studies.
• High chiller’s load is affecting the performance and leading to faults such as condenser

fouling and compressor overcharging.
• Condenser fouling was found to be the fault with the most negative impact on CWS

reliability, as well as on the occupants’ satisfaction.
• Human factors, such as the skills of the maintenance officer who manages the system,

have a significant impact on faults appearance.
• Fault-free mode has to be considered in any research in order to increase the prediction

reliability.

4.2. Operational Parameters and Data Collection

Operational parameters are the measurable factors that provide numerical data of the
system performance [26]. Hereunder are the major findings in this regard:

• Any operational parameter can give a glimpse of the health condition of the related
CWS component.

• Water leaving temperature is the most operational parameter used for both chillers
and cooling towers.

• The most operational parameter used for pumps is the differential pressure, while the
space temperature is the most common one for terminal units.

• Some studies did not specify which operational parameter their studies were built on. In
addition, some studies stated the operational parameters, but they did not provide detailed
information about the associated data, including the sample size, source, and frequencies.

• The way of collecting the data is different for different the studies. The samples size
and the frequencies were not the same for all considered studies. With regard to
the data source, some studies used ASHRAE projects, part of them counted on the
sensors, and others used historical records of the same buildings that were under
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study. Moreover, some studies utilized IoT sensors, BMS, or BAS to obtain their data,
as well as to control the system.

• In the literature considered that used sensors as a data source, it has been noticed
that no study has suggested management or technical procedures in the case of
unavailability of that source at a particular building.

• Using the PI of operational parameters may not be effective in fault diagnosis.
• The buildings management software, such as BMS, cannot detect all the faults. In con-

trast, faults predictions and system control can be improved by using them alongside
ML methods.

4.3. Predictive Tools and Control

This subsection gives a swift overview on PdM tools that were applied within the
considered studies and highlights the major findings of the same as per the below points:

• The methods mostly used are a simulation model, SVM, DT, and ANN. They are
furnished in Table 4, along with others which are not used so commonly. The said
table showcases which method is applied for which CWS component.

• There is a clear difference of views on predicting sensors’ faults by using PCA. Some
studies indicated that the sensors’ FDD can be enhanced by using the said technique,
while some other studies argued that PCA is not very efficient at predicting complex
sensors’ faults, due to the feebleness of one of the PCA parts, which is called Q-statistic
plot; however, these studies did not present valid justifications to support this argument.

• Some studies include a comparison between several ML tools from the accuracy
point of view. In most of them, DT and ANN scored the highest accuracy percentage
in predicting the faults. Generally, all ML techniques showed good accuracies in
predicting and diagnosing the faults.

• Combining ML techniques in PdM applications such as ARX with SVM showed
positive outcomes in predicting CWS faults.

• DSM, which is one of the state-of-the-art control strategies, showed a significant impact
on energy savings.

• To ensure an excellent ML model, it is advised to clean some CWS’s critical parts such
as the AHU’s fan scroll and chiller’s condenser water tubes before collecting the data.

• Having an excellent ML model would be challenging if the data sample size is inadequate.
• The literature showed that the proposed PdM programs ended with testing the ML

model. Moreover, no management solutions were provided for the addressed faults.

4.4. Research Gaps

Based on the RQs, the research gaps found in this literature review from engineering
management point of view can be summarized into three parts. The first part is on how the
faults are identified and described, the second part is on data collection and the frequency of
training the chosen model, and the third part is to what extent the proposed PdM programs
are made. Hereunder is the description of the said gaps:

• The literature did not have the same faults and was concentrated only on selected
faults, as some faults were either not stated/mentioned or were not fully described.

• The current literature did not specify how the data were collected or justify the period
or the frequency of the collected data, and it was limited to testing the model and not
controlling it.

• The suggested programs/frameworks/models contained either no or inconclusive
solutions for the said faults from the management point of view, as they ended at how
to detect/predict the faults. Moreover, the said programs did not study/cover the
whole system comprehensively.
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Table 4. Summary of CWS’s PdM tools across the literature (chiller, CH; cooling tower, CT; pump, P;
terminal unit, TU).

Technique Component(s) Technique Component(s) Technique Component(s)

ANN CH, P, and TU DR CH FLC CH and TU
KF CH and CT BN CH, CT, and TU XAI CH

KNN CH, CT, and TU LMIF CH and TU VRC CH
SVM CH, CT, P, and TU MSVM CH GRU CH
RF CH and TU DT CH and TU MIP CH

Adam-BPNN CH and P QDA CH DBN CH and TU
PCA CH, CT, P, and TU AB CH DNN CH
PLS CH LR CH MLP CH and CT

Fuzzy Modeling CH and TU SVR CH and TU Simulation CH, CT, P, and TU
MLB CH DE CH GB CT
HQS CH and CT MLReg CH GSPN CT

Regression CH, CT, and P Kriging CH BPNN CT and TU
Clustering CH and TU RBF CH and TU PSO CH
RDPNN CH BT CH DL CH and CT
EWMA CH and TU SLReg CH SNN TU

BBN CH and TU UKF CH SSL P and TU
SVDD CH SPC CH and CT WPCA TU

CWGAN CH GMMR CH MCMC TU
EKF CH ARX CH and TU GA TU

ROSVM CH MCS CH, P, and TU GAN TU
TFDK CH Decoupling CH AFT TU
LDA CH FIS CH GRNN TU

1D-CNN CH LMANN CH and TU WEKA TU
k-means clustering CH Virtual Sensor CH and TU HMM TU

WNN TU H2O CH and TU RT TU
KPCA TU ARM TU RNN TU
SMO TU TARM TU FCD TU
DAG TU ERCE TU DSM CH and TU

5. Conclusions

This article aimed to answer two RQs, which are addressing the literature from an
engineering management point of view. The first RQ asked about the arrangements or the
preparations to identify the faults, and the second RQ is considered as a further activity of
the first RQ, as it is asking about the tools that were used in line with Industry 4.0/Quality
4.0. This article implemented an SLR that includes four stages, and then it highlighted the
studies performed post-1999 on PdM in CBs and explored many frameworks, programs,
and methods. It also highlighted the gaps found in the literature from an engineering
management point of view. Following SLR, especially the second stage, it was found that
there is no research covering the entire CWS. The considered studies are covering either
one, two, or three components only. Therefore, this article was made to focus on all four
components. From a maintenance management point of view, it is recommended for the
researchers to study the whole system or at least to give more research attention to the
cooling towers and pumps.

As per the first research gap, which is mentioned in the previous section, it is concluded
that CWS may have some other different faults than those that were studied in the literature,
and, therefore, it is recommended that researchers perform further studies to explore more
faults. With regard to the second research gap, it is recommended that the researchers
verify the required sample size, as well as the frequencies of data readings/record. For
data collection, it is recommended that the researchers create their own dataset from the
same building in order to obtain more accurate data about the current operational situation
and to avoid depending on historical record from different building or project. In addition,
it is highly recommended to make a control plan after testing the ML model in order to
keep continuous tracking on the building’s O&M.
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The suggested future course of action of this article is to make a PdM 4.0 program by
using mixed methods. The first step would be to design a survey and share it with the
facility management professionals at CBs located in the study area. The content of the said
survey should list the faults found in the literature and ask the participants to select the
ones they find in their site and add more faults, if any. This will enrich the knowledge of
the research community with more faults about CWS. Moreover, it should include asking
the participant about the frequency of such faults’ occurrence (minimum and maximum
duration). The survey should also let the participants prescribe solutions to the faults. This
article believes the operational parameters that are reflecting the health condition of CWS
components are leaving temperatures for chillers, as well as for cooling towers, the pressure
for pumps, and space temperature for terminal units. This argument has been supported by
the literature, along with practical experience. So, the survey should include a verification
of this belief from the participants. Furthermore, it is recommended to conduct a pilot
study to ensure that the said survey is valid.

The second step would be to make a methodological framework that contains three
parts, as follows:

1. Setup Part: This part should include the following points:

• Showing how to understand the drawings of CWS at a particular building.
• Proposing a format to extract/identify the number of components of CWS from

the said drawings (number of chillers, number of cooling towers, number of
primary/secondary pumps, and number of terminal units).

• Introducing a management procedure on checking the availability of reading
tools, such as sensors, building management software, etc., and how to deal with
their unavailability situation.

• Proposing a way of formulating a team that will be responsible for data collection.

2. ML Part: This part should explain how the proposed predictive maintenance program
is in line with Industry 4.0/Quality 4.0. The first task in the ML part is data collection.
The readings should be from the operational parameters and should be taken based
on the minimum and maximum frequencies that should come from the said survey.
A check sheet is proposed to be used in recording the data at the building under
study. All of these points should be formatted in a methodological manner from a
management point of view. Python is suggested to be used in the next step of the ML
part. For the said step, a procedure should be proposed on how to insert the data,
train the ML model, and test the same model for each component of CWS.

3. Quality-Control Part: Here, a control plan for CWS through a tabulated format should
be presented. The outcomes of the survey (frequencies) should again be used here
as part of the said control plan. The other survey’s outcome (solutions for each fault)
should be summarized here, as well, in order to create a comprehensive management
program for PdM 4.0 for CWS.
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Abstract: Predictive Maintenance 4.0 (PdM 4.0) showed a highly positive impact on chilled water
system (CWS) maintenance. This research followed the recommendations of a systematic literature
review (SLR), which was performed on PdM 4.0 applications for CWS at commercial buildings. Per
the SLR, and to start making an excellent PdM 4.0 program, the faults and their frequencies must be
identified. Therefore, this research constructed an industry survey, which went through a pilot study,
and then shared it with 761 maintenance officers in different commercial buildings. The first goal
of this survey is to verify the faults reported by SLR, explore more faults, and suggest a managerial
solution for each fault. The second goal is to determine the minimum and maximum frequencies of
faults occurrence, while the third goal is to verify selected operational parameters, in which their data
can be used in smart buildings applications. A total of 304 responses are considered in this study,
which identified additional faults and provided faults solutions for all CWS components. Based on
the survey outcomes, justifiable frequencies are proposed, which can be used in creating the dataset
of any machine learning model, and then to control the CWS performance.

Keywords: predictive maintenance; chilled water system; commercial buildings; industry 4.0; quality
4.0; survey; faults; frequencies

1. Introduction

The commercial building (CB) is defined as a large facility that contains sophisticated
systems such as a chilled water system (CWS) and power plants [1]. Globally, the num-
ber of CBs have rapidly increased and require significant attention from a maintenance
management point of view [2]. Wireman defined maintenance as managing any assets
that are owned by the organization [3]. Duffuaa and others pointed out that maintenance
can be looked such as a system with input and an associated output [4]. The input part
contains workforces, management, tools, equipment, and machines, while the output part
comprises the equipment or machines that are working perfectly, fulfilling the reliability
concepts, and well-configured to reach the scheduled operational time. According to the
European Standard, maintenance connects all managerial actions that are required during
the life cycle of a particular CB’s equipment [5,6].

Previously, the attention provided to the maintenance was not recognized as it was con-
sidered as a “Cinderella Function” due to some historical reasons and it can be surmounted
by new information technologies [7]. Up to around 1940, maintenance was considered as an
inescapable cost and once the failure of a particular equipment happened, the maintenance
technician should be servicing the same equipment based on a call request [8]. In 1968,
it was predestined that better maintenance practices in the United Kingdom (UK) could
have economized approximately GBP 300 million per year of lost production; because
of the unavailability of a particular equipment [9]. In 1972, the significance of building
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maintenance was first recognized by the responsible authorities in the UK [10]. Mainte-
nance became one of the important managerial departments or functions that should be
included in the company’s organizational hierarchy [11]. Maintenance, in the 21st century
is a huge business where operating and maintaining CBs is significantly taking more time
than designing and constructing the same building during its project time, also the life cycle
cost of operating and maintaining the same building is about sixty percent to eighty-five
percent of the total cost, whereas its design and its construction are about five percent to
ten percent [12]. Moreover, alongside energy costs, maintenance costs can be the biggest
portion of the operational budget [13]. Many researchers have argued that implementing
good and effective maintenance management increases the equipment performance and
this is definitely maximizing the revenues, minimizing the operation and maintenance (O
and M) costs, and then growing the organisations’ profits [14–17]. In this regard, Cholasuke
and others explained how to maximise organisations’ profit through implementing mainte-
nance management [18]. He listed some factors such as trying to minimise the accidents
or failures. Dhillon presented an approach containing steps and important principles for
maintenance management in a cost-effective manner such as measurement comes before
control [19].

Maintenance can be actioned in many ways, depending on the operational status
and the strategy of the organisation. However, Seeley categorized maintenance types for
buildings [20]. He mentioned that it can be considered as a planned activity which can
be organized by scheduling the building operation and tracking its performance, so it
can be considered as a scheduled activity as well. In contrast, it can be also considered
as unplanned activity [20,21]. In addition, it can be performed as a preventive task by
controlling the building operation to reduce the probability of destruction, to avoid the
failure of a mechanical or an electrical system (s), or to maintain an item performance
from any unexpected breakdown [20,22]. Furthermore, this task can be considered as a
planned, scheduled, or predictive activity [20,23]. In case of failure, it can be considered
as a corrective workorder to return a system to its standard operation. For immediate
action, maintenance can be known as an emergency task such as big water leakage or
power outage. Furthermore, Kanisuru classified maintenance into four major types [24].
The first one is reactive (RM), corrective, or breakdown maintenance. The second one is
preventive maintenance (PM), which he categorised it into two major types, predictive
maintenance (PdM), which is considered in this article, and periodic one. The third major
type of maintenance is the improvement or design maintenance while the fourth one is
technology maintenance.

Applying quality engineering and quality control concepts in maintenance manage-
ment and processes is one of the keys of making it a successful program. Having said that,
Marquez and others presented a modelled framework containing eight phases, which are
linked to four blocks (effectiveness, efficiency, assessment, and improvement) [25]. The
philosophy behind this framework was to make a strategic plan for the organisations to
improve the outcome of maintenance program. Applying the maintenance control function
is another valuable technique for improving the maintenance management [26]. This func-
tion contains four phases, which are planning, organising, implementing, and controlling.
Specifically, this research believes in the paradigm of the last phase (controlling), which is
measuring the performance of the maintained equipment, taking predictive and corrective
actions, and reviewing the associated policies and procedures. Quality control is one of the
main domains of evaluating the risks of maintenance activities [27]. Chanter and Swallow
argued that constructing industrial quality control procedures in maintenance projects
prevents the organisation from any managerial failure with any contractual party [28]. One
of the concepts of maintenance management is the process improvement, which is part
of industrial quality control and was performed in many applications using Six-Sigma
techniques [29–32]. With a specific regard to this research, the quality engineering approach
is a data driven in PdM filed. It is one of the important features of the fourth industrial
revolution, which is called Industry 4.0 [33]. Many research studies have proposed a data
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driven PdM framework for multiple purposes as part of quality control [34–38]. Zonnen-
shan and Kenett indicated that quality engineering is a crucial dimension of the processes in
maintenance, and it should be a data driven, and accordingly they proposed a framework
called Quality 4.0 [39]. According to Zonta and others, PdM is a rife area in the locomotion
across Quality 4.0 and its related data are the clef to produce acquaintance that can partake
to predict decisions [40].

This research follows a systematic literature review (SLR) study, which was looked
into in the studies that proposed PdM frameworks or fault detection and diagnosis (FDD)
protocols, which are in line with Industry 4.0/ Quality 4.0 [1]. The aforementioned SLR
study explained and focused on CWS, which has four components as shown in Figure 1.

 

Figure 1. CWS components.

The said SLR has two research questions (RQ) from engineering management point of
view as follows:

• RQ1: How can the faults be identified in order to predict them?
• RQ2: What are the methods that can be used to predict the faults?

Based on these RQs, the SLR considered 168 studies that applied different machine
learning (ML) algorithms to predict CWS faults [1]. In addition, two more review studies
have been considered in this regard [41,42]. The fault here is defined as any operational
issue that may negatively affect CWS over time [1]. Having said ML, the said studies were
considered different operational parameters to collect their readings. These readings must
cover two modes, which are fault existing and fault free [1,43]. The SLR defined these
readings as fault frequencies, which are used to build the prediction model [1]. So, this
research focuses on these two elements (faults and their frequencies), as the research gaps
resulted from the said SLR were related to both. Table 1 shows the gaps that are intended
to be filled by this research.

Table 1. SLR’s research gaps.

Research Gap Related Element

The literature did not have the same faults and was concentrated
only on selected faults, as some faults were either not

stated/mentioned or were not fully described.
Fault

The current literature did not specify how the data were collected
or justify the period or the frequency of the collected data, and it

was limited to testing the model and not controlling it.
Frequency

The suggested programs/frameworks/models contained either
no or inconclusive solutions for the said faults from the
management point of view, as they ended with how to

detect/predict the faults. Moreover, the said programs did not
study/cover the whole system comprehensively.

Fault
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To fill these three gaps, SLR recommended an industry survey to execute the follow-
ing points:

• To validate the faults that are identified by the literature. Furthermore, from the first
research gap the SLR argued that CWS may have some other different faults, so the
survey can explore more ones;

• To identify the minimum and maximum faults’ occurrence timings. These timings
help to determine the frequencies, which can be used in creating the dataset of any
ML model; for more prediction accuracy;

• To understand how to solve/ fix the faults, which are either identified by the literature
or by the survey.

2. Methodology

As mentioned in the previous section, this article is intended to address the aforemen-
tioned gaps, which are related to CWS’s faults and their frequencies by proposing a survey.
A survey is defined as a research method utilised to collect data from a predetermined
group of participants to obtain information and thoughts on diverse topics of interest [44].
Collecting data that are related to any study is important in terms of harmonization with
the research goals [45]. In this research, the data should allow to investigate the operational
circumstances at the buildings that are managed by the respondents. As recommended by
the aforementioned SLR, the survey should be looked onto the CBs in the area/ city of the
building that is going to be studied [1], and for this article Riyadh city of the Kingdom of
Saudi Arabia was chosen.

2.1. Survey Construction

This research followed four guidelines while constructing the survey [46,47]. They are
furnished in Figure 2.

Figure 2. Survey construction guidelines.

The proposed survey contains four parts, which acquire quantitative and qualitative
data. The said survey began with asking the participants about the availability of CWS
in their facilities. The answer required for this enquiry is either ‘yes’ or ‘no’, and the
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participants were asked to complete the survey if the answer was ‘yes’. The second part
of the survey is related to the faults and asked the participants about the observation of
listed faults that were collected from the literature for each CWS component and to provide
additional faults that occurred in their buildings. Moreover, the participants were asked to
suggest solution for each listed/ provided fault.

The third part of the survey is related to the faults frequencies by asking the partici-
pants which the most fault occurred so often and which most fault occurred rarely, and then
to specify the frequency occurrence time for both. The further action of this part is to pick
the frequencies’ minimum value of the faults that occur often, and to pick the frequencies’
maximum value of the faults that occur rarely. The idea here is to utilise these two values in
creating the dataset that is going to be used in building any ML model. The minimum fre-
quency is proposed to be used as a time interval in collecting the data for each component,
for example, the readings should be taken every forty-five minutes. In contrast, the idea
of using the maximum one is to consider it as a study period, for example, the readings
should be taken over three months. Asking the participants to state those two faults is to
make obtaining the frequencies information easy and to avoid any misunderstanding. As
advised by the said SLR, the source of the associated data are the readings of any chosen
operational parameter of each component as these operational parameters can reflect the
health conditions of CWS components [1]. The fourth part of the said survey is seeking the
opinion of the participants about the chosen operational parameter of each CWS component
for validation purposes. The parameters are the water leaving temperature for chillers and
cooling towers, pressure for pumps, and space temperature for terminal units. Up to this
point, the first two guidelines, which are related to the specification of the data type and the
consideration of the questions’ wording and their logical order, were fulfilled. Regarding
the third guideline, which is related to the method of administration, the self-completed
questionnaire is selected as an instrument to collect the data. The last guideline, which is
related to pre-testing the survey, was performed through a pilot study, which is explained
in the next subsection.

2.2. Pilot Study

In order to adhere to the fourth guideline, the draft questionnaire was sent to ten ex-
perts from academia and industry for their review and advice. In addition to the questions,
the draft included an explanation of the research goal and expectation. This is to ensure
that the survey with its questions is fulfilling the needs from validity and reliability points
of view and to rise the response rate [48,49]. The experts from academia were from different
departments/ fields, which are industrial engineering, mechanical engineering, electrical
engineering, economics, and operation management. On the other hand, a manufacturer of
each CWS component as well as an O and M contractor were the experts from the industry.

The experts were provided a month to reply with their feedback. Table 2 shows the
main comments from both side, academia and industry.

Table 2. Pilot study’s outcomes.

Academia Industry

The anonymity of the participants and their organisations must
be protected by adding a statement in this regard.

The minimum age of CBs that are managed by the respondents
should be three years.

Add a note into the solution part to make the answer short
and manageable.

The CBs should have valid commercial registration with the
concerned authority.

Clarify the questions that are related to the frequency part with
an example.
The form of writing the solutions for the new faults should be
made united for every participant.

A separate part for each component should be fabricated.
Avoid using abbreviations.

After addressing the experts’ comments, the survey was finalised and inserted into a
web-based platform, which is explained in the next sub-section. Figure 3 shows an excerpt

223



Buildings 2022, 12, 1995

from the survey that is related to the cooling tower part. The same is repeated with other
CWS components.

 

Figure 3. Excerpt of cooling tower’s survey.

2.3. Targeted Participants and Survey Distribution

Following the outcome of the pilot study, the concerned authority in Riyadh city was
contacted, and accordingly the professionals’ contacts of seven hundred and sixty-one
(761) CBs were received, which contained e-mails and phone numbers. The professionals
are facility managers, O and M managers, and support services managers. For survey
distribution, the associated technique of the survey administration method, which is part
of the survey construction guidelines, is the web-based questionnaire through the Survey-
Monkey platform. The aforementioned platform generated e-mails to the participants, and
following Andrews’ and others’ recommendations, an informative title of the e-mail was
used as well as using careful language in the body of said e-mail in order to encourage
the participants to open the e-mail, to click on the survey link, and to downplay the onus
of the participants [50]. In this regard, the agreement with the participants was deal with
their answers anonymously by writing a statement in the body of the generated e-mails.
The duration of the survey was three months, and auto reminders were sent every seven
working days. In addition to the auto reminders, a follow-up mechanism was used via
phone calls for a more response rate [51].
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3. Survey Results and Discussion

As the outcomes of the survey contained quantitative and qualitative data, an analysis
activity was taken and then the said outcomes were summarised. The time spent on this
task was three weeks.

3.1. Response Rate

From the mentioned 761 CBs that were contacted, three hundred and thirty-six (336)
responses were received within the provided time, out of which three hundred and four
(304) responses have CWS at their facilities, which are considered in this study. Figure 4
illustrates the response rate of the survey.

 

69%
3%

28%

No Response

CBs With No CWS

Total Considered Responses

Figure 4. Survey responses.

The auto reminders and the phone calls’ follow-up paid-off as the responses increased
during the second and the third months, respectively. Figure 5 explains the number of
responses for each month of the provided duration.
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Figure 5. Monthly number of responses.
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3.2. CWS Faults

To summarise the CWS faults that were addressed in the SLR, a fish-bone diagram
was prepared to highlight the same as shown in Figure 6. In contrast, the argument of the
aforementioned SLR was proven here as the survey came up with more faults for each CWS
component. The outcome provided the research community with seventeen (17) faults
for chillers, thirteen (13) faults for cooling towers, ten (10) faults for pumps, and twenty
(20) faults for terminal units. In this regard, Figure 7 illustrates the difference increment
between the literature and the survey outcomes.

Figure 6. Faults presented in the literature.
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Figure 7. Difference in faults number.
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The appearance of faults is different between the CBs that are managed by the partici-
pants, who repeated some faults for each component and stated some other faults a few
times or only one time. Table 3 shows the most repeated fault for each CWS component in
the CBs that are managed by the participants.

Table 3. Most repeated faults.

Component Fault Repeating Percentage

Chillers Refrigeration Leak 100%
Cooling Towers Malfunctioning Blowdown System 89%

Pumps Noisy Non-Return Valve 91%
Terminal Units Low Static Pressure 84%

From the above table, a refrigeration leak is the most common fault for chillers, and
this is aligned with what was mentioned in the said SLR. For the cooling towers, the
literature mostly addressed fills fouling and air fan degradation faults, while the survey
showed that the malfunctioning blowdown system fault is mostly repeated and therefore,
more research attention should be provided to this fault. The same is seen with pumps and
terminal units where the literature mostly addressed the pumps’ clogging fault and the
terminal units’ return damper jam fault, while the survey showed different faults that are
repeated by the majority of the participants and therefore, they should be provided more
focus in the upcoming research.

As stated previously, the faults that were addressed in the literature were listed in
the survey for each component and the participants were asked if they observe them, and
then were asked to state other faults that are not listed. Furthermore, the survey provided
managerial solutions for both the faults that were studied in the literature and the new
faults that are resulted from the survey, whereas the previous studies of the said literature
ended their proposed PdM or FDD programs by tracing the faults with no solutions to fix
the studied faults. To summarise these outcomes, a table for each component describes the
faults and its source, which is either from the literature or from the survey, as well as lists a
solution/action for each fault. Table 4 is for chillers, and Tables 5–7 are for cooling towers,
pumps, and terminal units, respectively.

Table 4. Chillers faults and solutions.

Fault Identified By Solution/Action

Refrigeration Leak Literature All the components of refrigeration system including tube, joints,
and valves should be checked, tested, and rectified as appropriate.

Evaporating Fouling Literature The associated parameters should be checked and the
tubes descaled.

Compressor Overcharging Literature The factory sheet should be checked and then the charge
reduced accordingly.

Operation Scheduling Literature The control switch should be reset.

Condenser Fouling Literature The associated parameters should be checked and the tubes
descaled to fix the evaporating fouling.

High Condenser Temperature Literature The return water temperature should be checked, and then the
tubes descaled.

Sensor Bias Literature The controller, the artificial agent, or the sensor should be checked,
verified, and replaced if needed.

Low Discharge Superheat Survey The liquid refrigerant flow in the compressor should be checked
and adjusted.

Low Evaporator Refrigerant Temperature Survey The expansion valve and the filter should be checked and cleaned.

Low Oil Pressure Survey The oil filters should be cleaned, and the oil pump with its quality
should be checked and rectified.
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Table 4. Cont.

Fault Identified By Solution/Action

Low Condenser Flow Survey The pressure of the condenser pump in operation should be
checked and rectified.

Low Chilled Water Flow Survey The pressure of the secondary pump in operation should be
checked and rectified.

Low Cooler Delta-T Survey The lowering efficiency of the primary pump in operation should
be checked and the pressure reset.

High Cooler Delta-T Survey The accuracy of the water flow’s control should be checked and
rectified and amended.

High Compressor Lift Survey The water flow should be checked.
High Motor Temperature Survey The compressor parameters should be checked.

High Motor Ampere Survey The linked mechanical system and the motor winding should be
checked and rectified.

High Condenser Approach Survey The connected tunnel of the cooling tower in operation should be
checked and serviced.

High Evaporator Approach Survey The assigned water temperature set-point should be checked and
reset if needed.

High Condenser Pressure Survey The strainer should be checked and cleaned.
Relief Valve Discharge Survey The pressure sensors should be checked and fixed.

Vibration Survey The supply water temperature should be checked, and the
mountings should be reassembled.

Imbalanced Line Current Survey The loose connection at the terminals should be rectified.
Manual Guide Vane Target Survey The override sittings should be checked and reset.

Table 5. Cooling towers faults and solutions.

Fault Identified By Solution/Action

Air Fan Degradation Literature The fan should be checked physically, and then repaired
by grinding, or replaced if needed.

Fills Fouling Literature The fills should be cleaned or replaced if needed.

Sensor Bias Literature The controller, the artificial agent, or the sensor should
be checked, verified, and replaced if needed.

Unusual Sound Survey The bearings of the motor in operation should
be checked.

Malfunctioning Blowdown System Survey The solenoid valves should be checked.
High Water Total Dissolved Solid Survey The chemical treatments should be checked.

Fills Clogging Survey The chemical treatments should be checked, and then
the required chemicals refilled if needed.

Low Circulating Water Flow Rate Survey The filters should be checked and cleaned or replaced
if needed.

Vibration Survey The motor in operation and its blade alignment should
be checked.

Over Current Survey The phase voltage and other electrical connection
should be checked.

Rise in Circulating Water Temperature Survey The filters should be checked and cleaned, or replaced
if needed.

Damaged Fan Survey The associated motor should be replaced.
Faulty Water Level Valve Survey The valve should be replaced.

Faulty Isolation Valve Survey The valve should be replaced.
Motor Overheating Survey The voltage should be checked and adjusted.

Low Water Basin Level Survey The water makeup system should be checked and the
water level should be increased.
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Table 6. Pumps faults and solutions.

Fault Identified By Solution/Action

Clogging Literature
The strainer should be checked and cleaned in case of partial clogging, and

deep cleaned with chemicals and high-pressured water in case of
full clogging.

Faulty Control Switch Literature The switch is should be troubleshooted or replaced if needed.
Faulty Starter Literature The electrical connection should be checked and rectified.

Pipeline Leakage Literature The pipe joint and its fittings should be checked and then welded or
replaced if needed.

High Flow Rate in Cold Exchange Literature The right pump speed should be checked and adjusted.
Low Flow Rate in Cold Exchange Literature The right pump speed should be checked and adjusted.

Abnormal or Excessive Noise Survey The associated bearings and shaft should be checked and fixed.
Motor Vibration Survey The bearings and the foundation support should be checked and rectified.

Motor Heats-up Survey The bearings and the associated fan should be checked and rectified,
ground, or replaced if needed.

Leakage from Pump Set Survey The associated gland and joints should be checked and reassembled.

Leakage from Valves Survey The associated joints should be checked, reassembled, or the valve to be
replaced if needed.

Pumps Run but Provides No Water Survey The valves should be checked and made free of air.
Pumps Run at Reduced Capacity Survey The Stainer should be checked and cleaned.

Noisy Non-Return Valve Survey The valve set-up should be checked and replaced if needed.
Improper Pump Water Alignment Survey Realignment.

Sensor Bias Survey The controller, the artificial agent, or the sensor should be checked, verified,
and replaced if needed.

Table 7. Terminal units faults and solutions.

Fault Identified By Solution/Action

Faulty Variable Air Volume Literature The damper connection and controller should be checked and rectified.
Faulty Fan Literature The fan should be checked, rectified, and replaced if needed.

Compressor Failure Literature The voltage and related control accessories should be checked before
replacing formalities.

Filter Blockage Literature The filter should be cleaned or replaced if needed.
Faulty Filter Coil System Literature The dirt and debris should be cleared.

Cooling Coil Blockage Literature The fresh air damper position should be checked, and the air speed should
be reduced if needed.

Return Damper Jam Literature The damper should be serviced and replaced if needed.
Speed Reducing the Supply Fan Literature The blower tips should be checked and cleaned.

Sensor Bias Literature The controller, the artificial agent, or the sensor should be checked, verified,
and replaced if needed.

Dirty Air Flow Survey The bag filer section should be checked and cleaned.
Faulty Supply air Damper Survey The damper should be replaced.

Loose Belts Survey The associated pulleys, mountings, and V. belts quality should be checked
and rectified.

Air Trapped in Cooling Coil Survey The coil should be checked and cleaned.

Faulty Control Valve Survey The associated voltage should be checked, and the valve should be replaced
if needed.

Broken Belts Survey The associated pulley should be checked and rectified, and then the belt
should be replaced.

Noisy Motor Survey The blower bearings should be checked and fixed.
Faulty Bearing Survey The bearing should be replaced.

Motor Overload Survey The power voltage and electrical accessories should be checked
and rectified.

Noisy Contactors Survey The terminal in operation should be cleaned.
Vibration Survey The associated blowers should be aligned.

Motor Overheating Survey The voltage and rated amperes should be checked and adjusted.
Damaged Insulation on Pipe Survey The insulation material should be replaced and then sealed properly.

Variable Frequency Drive Soft Starter Survey The associated parameters should be reset.
Low Static Pressure Survey The air flow rate should be checked and decreased.

Damaged Insulation on Duct Survey The duct should be vacuumed, and the defective insulation should
be replaced.

Faulty Fresh Air Damper Survey The air speed should be reduced, or the damper should be replaced
if needed.

Faulty Exhaust Air Damper Survey The connected duct should be vacuumed, or the damper should be replaced
if needed.

Faulty Cooling Valve Actuator Survey The voltage should be checked and adjusted.

Faulty Damper Actuator Survey The voltage should be checked and adjusted, and the air flow rate should be
minimised.

229



Buildings 2022, 12, 1995

Part of the research gaps of the said SLR was related to the coverage of the previous
studies where the literature did not focus on the entire CWS [1]. They were either considered
one, two, or three components only [1]. In return, the said SLR argued to study the
whole system; in order to obtain a comprehensive PdM program. Having said that, the
information in Tables 4–7 confirmed this argument as many faults in a particular component
are due to the health condition of another component.

3.3. CWS Faults’ Frequencies

This subsection is related to the third part of the survey, which its concept was ex-
plained in the methodology section. The participants’ responses were counted by tabulating
the frequencies’ values of the faults that are occurring so often (x’s) as well as the frequen-
cies’ values of the faults that are occurred rarely (y’s). Then, the smallest value of the x’s
and the biggest value of the y’s are identified. In addition, these two values were scored
by the majority of the participants. Table 8 summarises these outcomes where each CWS
component has two values (x and y) and shows the highest percentage of how many times
each value is repeated by the participants.

Table 8. Frequencies outcome.

Component X (Minutes) Repeating Percentage Y (Weeks) Repeating Percentage

Chillers 30 75% 12 56%
Cooling Towers 30 68% 16 39%

Pumps 60 49% 24 34%
Terminal Units 45 40% 8 39%

From the above table, the proposed readings’ time interval of the chosen operational
parameters for the chiller in operation is every 30 min over a study period of 12 weeks.
The same procedure is for other CWS components taking into consideration that these
frequencies are convenient and applicable for the chosen city (Riyadh). These frequencies
provide a justifiable thought on how to build the ML model, to predict the faults, and
to control the entire CWS. Having said the operational parameters, the survey asked the
participants in its fourth part about their opinion on specific operational parameters for
each CWS component. This is to ensure that these operational parameters are valid and are
the best to provide the health condition of the CWS components, and accordingly to find
and predict the faults. Table 9 shows that the majority of the participants said the chosen
operational parameters are the best to predict the health condition of CWS components,
and accordingly verifies the belief of the said SLR.

Table 9. Operational parameters.

Component Operational Parameters Participants, Who Are with the Choice

Chillers Water Leaving Temperature (◦C) 98%
Cooling Towers Water Leaving Temperature (◦C) 96%

Pumps Pressure (Bar) 100%
Terminal Units Space Temperature (◦C) 90%

4. Conclusions

This article is a contribution of the published SLR research on the applications of PdM
4.0 for CWS at CBs. It is intended to fill the research gaps that are listed by the said SLR,
which are related to the CWS faults and their frequencies. To address these research gaps,
a survey was prepared as concluded by the said SLR, and it went through constructive
guidelines and a pilot study. The survey was sent to 761 CBs in Riyadh city, which have
valid registration certificates with the concerned authority. As recommended by the pilot
study, the CBs that were contacted have a minimum age of three years. Within three
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months’ time, 336 responses were received, out of which 304 responses are considered in
this research as they have CWS in their facilities.

Besides the outcomes of the said SLR, the survey enriched the research community
with additional faults that are affecting CWS performance. It provided 17 faults for chillers,
13 faults for cooling towers, 10 faults for pumps, and 20 faults for terminal units, while
the said literature only addressed 7 faults for chillers, 3 faults for cooling towers, 6 faults
for pumps, and 9 faults for terminal units. Moreover, the survey provided a manageable
solution or action for each fault, which either addressed in the literature or resulted from the
survey, whereas the previous studies, which were mentioned in the said SLR, ended with
only detecting the faults and they did not provide solutions to fix the same. Furthermore,
this research showed the importance of covering the entire CWS in future studies as
there are faults appearing in a particular CWS component due to another component’s
health condition.

The main part of any PdM 4.0 program is applying ML algorithms to predict the
system faults, and these algorithms require a dataset to build the predictive model. Having
said that, the said literature has not justified the frequencies of fault appearance, which were
used to create their datasets, noting that the source of these frequencies was the readings
of chosen operational parameters. The survey resulted in justifiable frequencies for each
component, which can be used in creating the dataset of any ML model and to control the
CWS after training and testing the said model. The chosen operational parameters here
are the water leaving temperature for chillers and cooling towers, the pressure for pumps,
and the space temperature for the terminal units, which are the best to predict the faults
as verified by the survey. To create a dataset for each CWS component, the readings of
water leaving temperature of a particular chiller are proposed to be taken every 30 min for
a time period of 12 weeks. For a particular cooling tower, the readings of water leaving
temperature are proposed to be taken every 30 min for a time period of 24 weeks. For a
particular pump, the readings of pressure are proposed to be taken every 60 min over a time
period of 24 weeks. For a particular terminal unit, the readings of the space temperature
should be taken every 45 min for a time period of 8 weeks. The readings must be taken
while operating the system and should be collected by professional technicians or users.
These data are recommended to be recorded by one of the quality engineering tools such as
check sheet. The check sheet should include cells for writing down the readings as well
as cells for the inspection results, which should be either ‘1′ in case of fault, or ‘0′ in case
of no fault. So, the dataset contains two columns, one is for the readings of the particular
component and the other one is for the related inspection results.

The scientific contributions of this research are summarised as follows:

• The survey outcomes verified that there are more faults, which are not addressed or
identified by the literature;

• Based on the survey results, faults frequencies are proposed to provide the researchers
a justifiable thought on how to build the dataset for any ML model;

• A solution or action is provided for each fault to provide a comprehensive management
view as the literature ended the proposed PdM programs by tracing the faults.

Though this research and the said SLR made a rigorous investigation on PdM 4.0
application for CWS, researchers are advised to perform further studies to explore more
insights on these applications. Below are the suggested future research agendas:

• While making a PdM 4.0 program, the proposed frequencies can be considered to
create the dataset for ML algorithms;

• This research confirmed that the appearance of the faults at a particular CWS compo-
nent is due to the health condition of another component. Therefore, future research
should consider covering the whole system for a more effective PdM program;

• The selected building is assumed to have sensors, for example, to collect readings of
the operational parameters. In case of no reading’s tools, a procedure on how to have
them available should be discussed and proposed.
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Abstract: Predictive maintenance is considered as one of the most important strategies for man-
aging the utility systems of commercial buildings. This research focused on chilled water system
(CWS) components and proposed a methodological framework to build a comprehensive predictive
maintenance program in line with Industry 4.0/Quality 4.0 (PdM 4.0). This research followed a
systematic literature review (SLR) study that addressed two research questions about the mechanism
for handling CWS faults, as well as fault prediction methods. This research rectified the associated
research gaps found in the SLR study, which were related to three points; namely fault handling, fault
frequencies, and fault solutions. A framework was built based on the outcome of an industry survey
study and contained three parts: setup, machine learning, and quality control. The first part explained
the three arrangements required for preparing the framework. The second part proposed a decision
tree (DT) model to predict CWS faults and listed the steps for building and training the model. In
this part, two DT algorithms were proposed, C4.5 and CART. The last part, quality control, suggested
managerial steps for controlling the maintenance program. The framework was implemented in a
university, with encouraging outcomes, as the prediction accuracy of the presented prediction model
was more than 98% for each CWS component. The DT model improved the fault prediction by more
than 20% in all CWS components when compared to the existing control system at the university.

Keywords: predictive maintenance; Industry 4.0; Quality 4.0; decision tree algorithm; chilled water
system; HVAC; commercial buildings; industrial engineering; engineering management

1. Introduction

1.1. Overview

In the past decades and especially today, the downtowns of large cities have been
mainly made up of commercial buildings, and the owners or the caretakers of these build-
ings make efforts to develop strategies and plans for their upkeep and to control their
equipment. One of the said strategies is predictive maintenance (PdM), which is defined
as a strategical monitoring approach that optimizes the usability of a particular equip-
ment/system [1]. On a related note, PdM 4.0, which is in line with Industry 4.0/Quality
4.0, can determine the best time to detect equipment/system faults using machine learning
(ML) models or artificial intelligence (AI) [2]. Bousdekis and others have outlined the
benefits of developing the said strategies, especially PdM 4.0, and indicated that they have
shown a positive impact for improving many aspects related to the organizations, such as
maintenance and operation costs, replacement costs, repair downtime and verifications,
machine failures, spare part stock, part service life, production, operator safety, and overall
profit [3]. Using the outputs of a novel AI approach [4], PdM 4.0 can be considered a control
task that maintains buildings efficiently. Moreover, PdM 4.0 ensures the sustainability of
the buildings, as it allows the human and the machine to be harmonized [5,6]. In contrast,
Achouch and others discussed the challenges of PdM 4.0 regarding four aspects, which are

Buildings 2023, 13, 497. https://doi.org/10.3390/buildings13020497 https://www.mdpi.com/journal/buildings
234



Buildings 2023, 13, 497

financial and organizational limitations, the limitations of data sources, activity limitations
for repairing machines, and the limitations in the deployment of industrial PdM models [7].

This article focuses on one of the most important building utility systems, which is
the chilled water system (CWS). It is part of the heat, ventilation, and air conditioning
(HVAC) system and contains four main components, which are chillers, cooling towers,
pumps, and terminal units, which are operated in an interactive way [8]. It plays a
significant role in controlling the ambient temperature, which should meet the satisfaction
of the buildings’ occupants [9]. Furthermore, efficiently maintaining a CWS will prevent
premature replacement of its components and save energy [8]. Therefore, the goal of this
research was to present a comprehensive PdM 4.0 program for CWS via a methodological
framework. There are a number of studies that have presented PdM 4.0 programs for
CWS, focusing on either on one, two, or three components of the system to predict its
faults. These faults were predicted through ML techniques such as the decision tree
(DT) algorithm [10–12], artificial neural network algorithm [13–15], and support vector
machine algorithm [16–18]. Moreover, a systematic literature review (SLR) addressed
PdM 4.0 applications in 168 studies on CWS [19]. This research followed this SLR study,
which was underpinned by two research questions, responded to three research gaps, and
proposed a route for PdM 4.0. Table 1 shows the research questions and the research gaps,
while Figure 1 visualizes the proposed PdM 4.0 route.

Table 1. Research Questions and Gaps.

Research Question Research Gap

(1) How can faults be identified, in order to predict them?
(1) The literature did not consider the same faults and only
concentrated on selected faults, as some faults were either not
stated/mentioned or were not fully described.

(2) What are the methods that can be used to predict the faults?

(2) The current literature does not specify how data were
collected or justify the period or the frequency of the collected
data, as well as being limited to testing the model and not
controlling it.
(3) The suggested programs/frameworks/models did not
contain, or contained inconclusive, solutions for the mentioned
faults from a management point of view, as they ended at how
to detect/predict the faults. Moreover, these programs did not
comprehensively study/cover the whole system.

Figure 1. PdM 4.0 Route.
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In addition, this research utilized the outcomes of an industry survey (IS) study [20] in
building the framework. The IS study provided two tools that were used in this research,
which were the fault frequencies and fault solutions. The utilization of these tools are
explained in the next sections. Following Jebreen [21], and as the IS study collected
quantitative and qualitative data from a number of professional participants [20], this
research employed an inductive approach that proposed a methodological framework
for a PdM 4.0 program for CWS in commercial buildings. From a philosophical point of
view, this research follows the pragmatic paradigm, which was introduced by William
James in 1898 [22]. This is defined as a philosophical tradition that considers ideologies
as instruments for prediction as well as for problem solving [23]. According to Sakib and
Wuest, the aforementioned research paradigm is ideal for PdM research [24]. Therefore, this
research is an extension of the previously published SLR and IS studies [19,20]. It rectifies
the research gaps that were identified by the SLR study and applies the recommendations
of the IS study.

From an ML point of view, this research utilized the DT algorithm within the pro-
posed framework; as the SLR study indicated that DT typically shows a high accuracy for
predicting faults that affect the condition of a CWS over time [19]. The next subsection
gives an overview of the mentioned algorithm.

1.2. Decision Tree Algorithm

DT is a common ML algorithm that is mainly used for classification, prediction, and
regression applications. It has many benefits, and Sharma and Kumar argued that it can
be used to predict continuous and discrete values [25]. They also indicated that it can
capture nonlinear relationships, as well as being easier to use than other ML algorithms for
understanding, interpretation, and visualization [25].

The DT has a tree-like structure, with a root node and intermediate nodes that split into
branches. The last intermediate node is split into leaves and is terminated with an end node.
Each node represents a classification or prediction feature. A branch or a leaf represents the
possible value of the feature. The path from the root node to the end node is labeled using
the predicted outcome or target classification, which is assigned using an existing training
dataset. Using supervised training algorithms, the features are split recursively from top
down according to certain criteria. Figure 2 depicts the general structure of the tree [26].

Figure 2. General Structure of the DT.
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2. Methodological Framework

Constructing management frameworks for projects, continuous activities, or any other
core program of building facility management gives structure to the program and allows
corrective measures that can achieve related goals [27]. The framework in this research was
built from an engineering management point of view, where each part of the framework
contains multiple managerial steps. Table 2 describes the parts of the proposed framework,
as well as the objective of each part.

Table 2. Framework Structure.

Part Objective

Setup

• To understand the CWS at the building
under study, in order to identify the
numbers of each component, as well as
their location at the site;

• To ensure that the data reading tools are
in the right locations;

• To prepare the data collection plan, which
includes data collection tools,
determining the schedule of data
collection, and formation of the team who
will collect the data.

Machine Learning
• To formulate the algorithm, train the

prediction model, and test it.

Quality Control

• To make a control plan for the
maintenance program and evaluate the
prediction model.

The above parts should be followed in the same logical order as shown and detailed
in the next subsections.

2.1. Setup Part

In order to prepare the framework, three stages are suggested, to be gone through in
the same order as they are listed in the following subsubsections.

2.1.1. CWS Drawing

As recommended by SLR [19], the first step in preparing the framework is to under-
stand the as-built drawing of CWS at the building under study, in order to determine the
number of CWS components installed there and to determine their locations around the site;
and then to study the whole system accordingly. Such drawings show the actual building
layout and are normally handed over to the facility management after completion of the
building construction [28]. Following the standard in [29], this research made a simplified
schematic CWS drawing; in order to easily identify the numbers of each component, as
shown in Figure 3.
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Figure 3. CWS As-Built Drawing.

2.1.2. Reading Tools for Operational Parameters

Following the SLR and IS studies [19,20], one of the fundamentals of PdM 4.0 is the
datasets that contain the readings of the CWS operational parameters. Here, operational
parameters are defined as quantifiable factors that give numerical data about the per-
formance of the CWS [19]. In this research, the operational parameters chosen were the
temperature of water leaving the chillers and cooling towers, pressure for pumps, and the
space temperature for terminal units; as they are the best for showing the health condition
of these components [20].

In order to collect the readings of these parameters, the associated tools were assumed
to be available at the building under study. The measurement tools can be meters, gauges,
sensors, thermostats, or any other agent, such as the building management system (BMS). In
case of the unavailability of these reading tools, the authors in [30,31] outlined procedures
on how to install such tools. Following the standard operating procedure in [29], Table 3
shows the best location for installing the reading tool for each CWS component in the
building under study.
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Table 3. Best Location for Reading Tools.

CWS Component Location

Chiller Chilled water supply header
Cooling Tower Straight pipeline entering the condenser

Pump Discharge pipeline

Terminal Unit 1.5 m above the floor level in a space or in the
return air duct

Once the reading tools are installed, they have to be connected to the computer unit
(CU) that will be used in the PdM program. Kayastha and others outlined a procedure for
how to connect such tools to computers [32]. This course of action was utilized and is ex-
plained in the third subsection of the methodological framework section (Quality Control).

2.1.3. Data Collection

After determining the numbers of each component and finalizing the reading tools,
the last stage of the setup is data collection. The IS study proposed time frequencies to
collect data in a building [20]. Following these proposals, the readings of water temperature
leaving a particular chiller should be taken every thirty minutes over a study period of
twelve weeks. The same should be applied for cooling towers, but over a study period
of sixteen weeks. With regard to pumps, the readings of pressure should be taken every
hour over a study period of twenty-four weeks. For terminal units, the readings of space
temperature should be taken every forty-five minutes over a study period of eight weeks.
The SLR and IS studies suggested utilizing a check sheet to collect the data for each
component, which should contain the readings as well as the inspection results. The
inspection results will be either ‘1’ in case of fault or ‘0’ in case of no fault. As recommended
by the IS study, the check sheet must be filled out by experienced technicians or users [20].
Each check sheet should be recorded by two team members, one for the morning and part
of the afternoon shift, and one for the evening and the second part of the afternoon shift.
Appendix A shows a proposed check sheet for terminal units, and the same was applied for
other CWS components, taking into consideration the differences in the time intervals and
the unit of the operational parameters between the components. After collecting the data,
a file for each particular component should be created in Excel, and then the information
from the related check sheet should be logged. Thus, each file should contain two columns,
one for the readings and the another for the inspection results [20], and then it should be
saved in the CU in csv format. Therefore, these files present the required datasets, and at to
this point, the setup is completed, and accordingly the ML part can be started, as explained
in the next subsection.

2.2. Machine Learning Part

In this part, two DT algorithms are recommended for use, which are the C4.5, a
successor of the iterative dichotomiser 3 (ID3), and the classification and regression tree
(CART) algorithm, as they are efficient for splitting the trees [33]. The basic principle of
the splitting mechanism is to select a root node from the ‘N’ features and subsequently
decide which attribute should be used next as the intermediate node. Different statistical
criteria should be used to make these decisions, such as the Gain Ratio and the Gini
Index. According to Grąbczewski [34], the Gain Ratio criterion is mainly used in the C4.5
algorithm, while the Gini Index is used in the CART algorithm. The Gain Ratio is calculated
as in Equation (1):

Gain Ratio(A) =
In f ormation Gain

SplitIn f o
=

Entropy(parent)− ∑k
j=1 Entropy(j, child)

∑k
j=1

Dj
D log2

Dj
D

(1)
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In information theory, entropy measures the uncertainty in data. The entropy(parent)
measures the amount of randomness (impurity) in the parent node before it splits. D is the
number of instances in the parent node and Dj is the number of instances in the child j, and
k is the number of discrete values of an attribute A, which is tested at the parent node for
splitting. The entropy at each child node is found using Equation (2):

Entropy = −
n

∑
i=1

pi log2 pi (2)

where pi is the probability of selecting an instance in class i, and n is the number of classes.
The attribute that is selected for splitting the parent node is the one with the highest Gain
Ratio. Similarly, the Gini Index for the CART algorithm can be found by Equation (3):

Gini Index(A) =
k

∑
j=1

Dj

D
Gin(j, child) (3)

Similarly to the Entropy, the Gini Index measures the impurity at the parent node. The
Gini of a child node is found using Equation (4):

Gini = 1 −
n

∑
i=1

p2
i (4)

The attribute that is selected for splitting at the parent node is the one with the smallest
Gini Index. In this research, this attribute is the operational parameter of each CWS
component. Many programming languages/software can read collected data and train
the prediction model, such as Python [35]. The software should be installed in the CU and
the required codes should be written in a way that allows reading the files (datasets) for
each CWS component, which were mentioned in the data collection stage of the setup part,
and then to train and test the model. The next section of this article (Implementation and
Discussion) gives a case study on how a prediction model is trained and tested.

2.3. Quality Control Part

This is the last part of the proposed framework, and its goal is to ensure the prediction
model is working correctly, as well as to rectify the faults immediately. To do this, this
research suggests making a control plan, which should contain monitoring and response
actions [36]. Table 4 clarifies the descriptions of these two actions, as well as who is
responsible for executing each action.

Table 4. Control Plan.

Quality Control Action Description Responsible

Monitoring

The prediction model should be connected to
the reading tools, which were connected to the

CU during the setup part. This is to ensure
that the CU shows a continuous reading for

each CWS component.

Information Technology (IT) Department or
Programming Supplier

Response

When the prediction model shows a fault,
which is a “1” as a result of a particular

reading, the related component should be
inspected and then to be rectified as per the

solutions tabulated in the IS article [20].

Facility Department Officer/technician

After that, the response actions should be documented as follows:

• Listing the lessons learned from the proposed PdM program, such as focusing on
the faults that occurred, and then brainstorming permanent solutions to avoid the
reoccurrence of such faults;
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• Tracking the spare part stock;
• Ensuring that the CU is working efficiently;
• Training more technicians to be familiar with the prediction model;
• Making regular reports about the performance of the proposed PdM program for

future improvements.

3. Implementation and Results

This section presents a case study on the proposed framework. The case study was
performed at a university in Riyadh city, Kingdom of Saudi Arabia. Implementation of
the framework was carried out as per the three parts proposed in the previous section
(Methodological Framework).

3.1. Implementaion of Setup Part
3.1.1. CWS Drawing

The main goal of the proposed framework is to make a PdM 4.0 program that considers
the whole CWS (i.e., all CWS components). Therefore, to start implementing the framework,
the CWS as-built drawing was collected and then, following Figure 3, the numbers of each
CWS component were determined, as shown in Table 5, as well as their locations around
the site.

Table 5. Number of CWS Components.

CWS Component Quantity

Chiller 5
Cooling Tower 7

Pump 19
Terminal Unit 72

3.1.2. Reading Tools

At this stage, the standard shown in Table 3 was followed, and it was ensured that
the reading tools for the operational parameters of each CWS component were in the best
location. Figures 4–7 show the reading tool location for each CWS component. As stated in
the previous section, these tools read the temperature for water leaving each chiller and
cooling tower, the pressure for pumps, and the space temperature for terminal units.

 

Figure 4. Chiller Reading Tool.
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Figure 5. Cooling Tower Reading Tool.

 

Figure 6. Pump Reading Tool.

 

Figure 7. Terminal Unit Reading Tool.

Through the IT department of the university, these reading tools were connected via
sensors to a CU, to be ready for the quality control part.
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3.1.3. Data Collection

The most important stage in setting up the PdM 4.0 program was the datasets required
to build the prediction model. As the previous two stages had been finalized, data collection
was started as per the recommendations of the IS study [20]. This research used the
recommended minimum frequencies as time intervals when collecting the data, and the
recommended maximum frequencies were used as study periods for each CWS component.

Twelve qualified technicians from the university were assigned for the subject matter.
Two operational units for each CWS component were selected as subjects. The readings for
the water temperatures of each chiller and cooling tower were collected using check sheets.
The same was performed for the pressures for each pump and the space temperatures for
each terminal unit. In addition, the inspection result, which was either a fault “1” or fault
free “0”, was included for each check sheet. Appendix B illustrates a fully filled one day
check sheet for a particular pump, and Table 6 shows the data collection plan.

Table 6. Data Collection Plan.

CWS Component
Time Interval for

Reading and
Inspection (Minutes)

Study Time (Weeks) Study Period

Chiller 30 12 From 29 May 2022 to
20 August 2022

Cooling Tower 30 16 From 29 May 2022 to
17 September 2022

Pump 60 24 From 29 May 2022 to
12 November 2022

Terminal Unit 45 8 From 29 May 2022 to
23 July 2022

After that, an Excel file was created for each component, and the information in all
related check sheets was transferred to the associated Excel file. Following the procedure
proposed in the methodological framework section, each Excel file represented a dataset
that contained two cells, one for the readings and another for the inspection results, as
shown in Appendix C for a one of the cooling towers. After that, each file was named
and saved in csv format. For example, for a particular pump, the file was named and
saved as “pu.csv”; so it could be read when training the prediction model, as shown in the
next section.

3.2. Implementation of the Machine Learning Part

A DT was built for each CWS component selected. As stated in the methodological
framework section, the faults of each component were predicted using the related attributes.
Table 7 shows the attribute and the training data size for each unit of the selected CWS
components that were in operation.

Table 7. Main Inputs of The Prediction Model.

CWS Component Attribute Data Size

Chiller Water Leaving Temperature (◦C) 2688
Cooling Tower Water Leaving Temperature (◦C) 3584

Pump Pressure (Bar) 2688
Terminal Unit Space Temperature (◦C) 1288

The C4.5 and CART algorithms were used to train the tree. Different training pa-
rameters were used to optimize the tree accuracy. The parameters included the training
to testing ratio and the level of pruning. The model was executed in Python, with the
script shown in Figure 8 being for a particular pump. The same was done with other CWS
components, taking into consideration the changes in file reading/loading.
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Figure 8. DT Python Code.

The initial run of the training stage was performed without pruning, which led to
prediction overfitting, as can be seen for the chiller tree in Figure 9. The same was done for
the other CWS components.

Figure 9. Chiller DT without Pruning.
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Examining the different pruning methods, the optimally trained trees for each CWS
component were found, as shown in Figures 10–13.

Figure 10. Chiller DT.

Figure 11. Cooling Tower DT.

Figure 12. Pump DT.
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Figure 13. Terminal Unit DT.

Changing the training to testing ratio and the training algorithms had a very small
impact on the prediction accuracy. A 70 to 30 percent training to testing ratio was adopted
using the CART training algorithm. The prediction accuracies of each component at the
optimal DT setting are presented in Table 8.

Table 8. CWS Component Prediction Accuracies.

CWS Component Prediction Accuracy (%)

Chiller 98.50
Cooling Tower 99.60

Pump 99.80
Terminal Unit 99.20

3.3. Implementation of the Quality Control Part

After successfully building the prediction model, the control plan mentioned in Table 4
was actioned. In the monitoring of the control plan, the prediction model was connected to
the CU, in order to begin the second stage of the plan (Response). After that, the readings of
all CWS components at the university, which are shown in Table 5, were observed daily, as
per the minimum frequencies mentioned in Table 6, for a month time, excluding weekends.
For example, for a particular terminal unit, the reading of space temperature was observed
every 45 min. During this period, the DT model predicted 16 different faults in the chillers,
11 different faults in the cooling towers, 12 different faults in the pumps, and 19 different
faults in the terminal units, noting that the occurrence of some faults was repeated. Table 9
lists how many faults in total were predicted by the DT model within the said period, as
well as the fault that occurred most for each CWS component. All fault signals from the
CU, which were displayed as “1”, led to real faults around the site. Thereafter, all the
faults within this period were solved immediately after their appearance, by following the
solutions mentioned in [20].

Table 9. Number of CWS Faults.

CWS Component Number of Faults Most Occurred Fault

Chiller 101 Refrigeration Leak
Cooling Tower 113 Malfunctioning Blowdown System

Pump 79 Noisy Non-Return Valve
Terminal Unit 138 Low Static Pressure

Furthermore, the facility department at the university was advised to keep observing
the readings as was convenient and to inspect the site in case of a fault “1”. In addition,
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they were advised to document the response action of the control plan, as per the steps
proposed in the previous section (Methodological Framework). On a related note, the
existing monitoring system implemented by the department was a BMS, and they were
asked to give a report for the same period that was used for observing the whole CWS via
the DT model. The report contained the total number of faults that were predicted by the
BMS for each CWS component. Figure 14 shows a comparison between the DT model and
the BMS in predicting the faults within the same period.

 

Figure 14. Comparison of Prediction Performance.

4. Discussion

The case study applied a methodological framework proposing three parts to build
an efficient PdM 4.0 program. During the setup part, the first stage gave an overview
of the building CWS, by determining the number of units of each component, as well as
identifying their locations on site. This action was easily carried out using the schematic
shown in Figure 3. The second stage was to give a clear picture about the best location for
the reading tools for each CWS component. The third stage was to produce a clear map on
how to collect the data, as the main objective of the setup part was to create a dataset for
each CWS component. These datasets were essential to allow beginning the second part
of the proposed framework. To recall what was mentioned in the previous sections, each
row of a dataset contained a reading of the operational parameter in one column and its
associated inspection result in another column.

In the second part, the datasets were used in building the ML model. The results
were encouraging, as the DT model showed a very high prediction accuracy for each CWS
component, as shown in Table 8. This confirmed that the fault frequencies proposed in [20],
which were used while collecting the data of this research, are valid for tracking faults.
In the third part of the proposed framework, the aforementioned control plan in Table 4
facilitated the execution of the prediction model. The empirical period of this part provided
the following findings:

• The C4.5 and CART algorithms had a similar prediction accuracy for each CWS component.
• The DT model had a better performance than the BMS in predicting the faults for all

CWS components, as shown in Figure 14. This fulfilled the requirements of the facility
department, who manage the CWS at the university.

• The most frequent fault in chillers was refrigeration leaks. This was also confirmed by
the SLR study [19], as well as the IS study [20], which reported this fault as the most
common in chillers;
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• A malfunctioning blowdown system was the most common fault in the cooling towers.
This finding matches what was found in the IS study [20]. The IS study stated that the
majority of the survey’s participants suffered from this fault;

• With regard to the pumps, a noisy non-return valve occurred most often. This also
matches the information provided by the IS study [20], where the majority of the
survey’s participants faced this fault continuously;

• Low static pressure in the terminal units occurred more than twice a day. The IS
study [20] had already confirmed that the most of the survey’s participants were
finding this fault on a regular basis while operating the associated terminal unit;

• The solutions provided in the IS study [20] gave practical actions to rectifying the
predicted faults. In this regard, one of the research gaps listed by the SLR study was
that the previous 168 studies considered did not cover the whole CWS (i.e., all for
components) and ended their PdM programs once detecting the faults [19]. However,
the SLR study recommended having control measures, including fault solution, after
completing the prediction model, which will allow a comprehensive PdM program,
such as the proposed framework.

As stated in the first section of this article (Introduction), this research is a response
to the mentioned SLR study [19] as well as the IS study [20]. Considering the gaps in
Table 1, this study covered the first gap and prepared tools to rectify the second and the
third gaps [20]. The first tool in the IS study was the frequencies, which were used in
collecting the data and in controlling the whole CWS. The second tool was the solutions to
faults, which were used in the quality control part. Therefore, this research has contributed
to building a framework that will provide a comprehensive PdM 4.0 program for the
whole CWS in commercial buildings. On a related note, this framework was implemented
at another site for external validity purposes. The site is a hotel that is related to the
same foundation that manages the university. The DT’s prediction accuracy for each CWS
component was similar to those at the university. Although this framework has obtained
encouraging results, it has some challenges from a research point of view, as follows:

• The availability of the data source;
• The experience of the team who collect the data;
• The organizational culture at the building, which may not be cooperative;
• The associated costs, such as arranging the reading tools, the CU, and the labor.

5. Conclusions

This research proposed a methodological framework for a PdM 4.0 program for
commercial buildings. A framework was made for one of the most important utility
systems of the commercial buildings, the CWS, which has four components. These are the
chillers, cooling towers, pumps, and terminal units. The framework contains three parts,
which are the setup, ML, and quality control. Each part of this framework has multiple
managerial stages or steps to build the maintenance program.

The setup part of this framework contained three stages. The first stage allowed
efficiently understanding the building through analyzing its as-built drawing. By doing
so, it was possible to determine the unit numbers of each CWS component in the building,
as well as to know their locations on site. A schematic was made in this regard, to make a
simplified view of such drawings. The second stage of the setup part focused on the reading
tools for the CWS operational parameters. How to make the reading tools available and the
best location for each tool was discussed. The readings of the operational parameters were
essential for creating the datasets that are were used in the second part of the framework,
ML. The operational parameters chosen in this research were the water temperatures
for chillers and cooling towers, the pressures for pumps, and the space temperatures
for terminal units. The third and last stage of this part addressed the data collection. It
presented the data required and proposed a complete plan for collecting them. Therefore,
the main goal of the setup part was to provide the datasets that were required to build a
prediction model, which was explained in the second part of this framework, ML. As this
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research was intended to implement a PdM 4.0 program, the second part of the framework
utilized ML. The DT technique was chosen to build a model for predicting the CWS faults,
as recommended by the SLR study. Two DT algorithms, C4.5 and CART, were proposed to
build, train, and test the model. The last part of the framework, which was quality control,
proposed a control plan to evaluate the prediction model. The control plan required two
actions, which were monitoring and response. Both actions proposed executing the DT
model while operating the CWS, and then to control the system via many aspects, such as
solving the faults predicted and documenting the outcomes of the predictive model from
an engineering management point of view.

This research implemented the proposed framework in a university in Riyadh city,
Kingdom of Saudi Arabia. The DT model produced encouraging results, where the predic-
tion accuracy was 98.50 percent for chillers, 99.60 percent for cooling towers, 99.80 percent
for pumps, and 99.20 percent for terminal units. Furthermore, the DT model was evalu-
ated over an empirical period. The model gave outstanding performance in predicting
the faults of all CWS components, especially when it was compared to the BMS, which
was the existing control system at the university. During the said period, the DT made a
27 percent improvement in predicting the faults for chillers, 22 percent for cooling towers,
23 percent for pumps, and 31 percent for terminal units. On a separate note, refrigeration
leaks, malfunctioning blowdown systems, noisy non-return valves, and low static pressure
faults occurred often during this period in chillers, cooling towers, pumps, and terminal
units, respectively. This confirmed the information provided by the IS study with regard to
the most common faults.

Though this research, along with the SLR and IS studies, provided significant outcomes
towards implementing PdM 4.0 for CWS in commercial buildings, future research agendas
could explore further insights about this topic, as follows:

• To discuss how to integrate the ML models with the building automation and manage-
ment systems such as BMS, for a more efficient prediction model;

• To propose an intelligent system for updating the datasets, which are required to build
the prediction model, in order to rise the control efficiency of commercial buildings;

• To investigate and give more focus to the repeated occurrence of faults, especially the
aforementioned four faults, which are refrigeration leaks in chillers, malfunctioning
blowdown systems in cooling towers, noisy non-return valves in pumps, and low
static pressure in terminal units;

• To use the ideas of this research, which built the framework, and extend them to other
HVAC systems such as heating systems, as well as for other utility systems, such as
the electrical system.
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